

What readers are saying about Prototype and script.aculo.us

I use Prototype and script.aculo.us all day in my work, yet I learned a
lot reading this book. I frequently dive back into it to find information
I can’t find anywhere else. This is a helpful book written by an expe-
rienced teacher that will help anybody who wants to easily add some
JavaScript features to their application.

Stéphane Akkaoui

Ruby on Rails developer, Feedback 2.0

If you are thinking about learning a JavaScript framework (or would
like your team to...), this book is a step-by-step guide to painless Pro-
totype and script.aculo.us. From the basics to advanced code, this
book is written in the cleanest style. You’ll be amazed to find out all
that JavaScript can do.

Arnaud Berthomier

Web developer, Weborama

This is a book that every Prototype and script.aculo.us developer
should have. It’s more than a reference book; you will find everything
you need to know about these two frameworks, and you’ll learn good
JavaScript practices. I have learned great tips about script.aculo.us
and have discovered Prototype functions to make my code more con-
cise and more readable while improving performance. Thanks for this
book!

Sébastien Gruhier

Founder and CTO, Xilinus

Tired of waiting around for a page to reload, again and again? Well,
if you’re like me, you’re looking for a smart and elegant way to inject
pieces of Ajax into your application. Well, you’ll find in this book all
you need to know about Prototype and script.aculo.us. This book will
show you the best practices without forgetting the fun!

Amir Jaballah

Technical Leader, Fastconnect

At Relevance, we use Prototype and Scriptaculous for all of our web
projects. When we train other developers, we always get the same two
questions: (1) Where can I get more information on the libraries? and
(2) Where can I learn to program JavaScript in a modern, functional
style?

Prototype and Scriptaculous answers both of these questions.
Christophe demonstrates the power and the beauty of these libraries,
and of the idiomatic JavaScript style they employ. And he doesn’t
just skim the surface—his intro chapter shows more advanced Java-
Script usage than some entire books on the subject. Even after years
of using Prototype and Scripty, I learned new things in every chapter.
Thanks Christophe!

Stuart Halloway

CEO, Relevance, Inc.
www.thinkrelevance.com

www.thinkrelevance.com

Prototype and script.aculo.us
You Never Knew JavaScript Could Do This!

Christophe Porteneuve

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2007 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-01-8

ISBN-13: 978-1-934356-01-2

http://www.pragprog.com

To Élodie, my love, ever supportive.

You’re my true home.

Contents
Preface 13

1 Introduction 15

1.1 It’s About Time . 15
1.2 What’s in This Book, and How Is It Organized? 17
1.3 Acknowledgments . 18

I Prototype 20

2 Discovering Prototype 21

2.1 What Is Prototype, and What Is It Not? 21
2.2 Using Prototype in Our Project 22
2.3 What Does Our JavaScript Look Like When Using Prototype? 22
2.4 Prototype Jargon and Concepts 37
2.5 What Are Prototypes Anyway? 39
2.6 Running Prototype Code Samples in This Book 41

3 Quick Help with the Dollars 42

3.1 Shortcuts Should Be Short 42
3.2 Quick Fetching of Smart Elements with $ 42
3.3 $w, Because Array Literals Are Boring 44
3.4 $$ Searches with Style 45
3.5 $A, the Collection Unifier 47
3.6 $F Is a Field Expert . 49
3.7 $H Makes a Hash of Things 50
3.8 Handling Ranges with $R 50

4 Regular JavaScript on Steroids 52

4.1 Generic Object Manipulation 52
4.2 Proper Function Binding 58
4.3 Your Functions Actually Know More Tricks 62
4.4 Numbers . 65

CONTENTS 9

4.5 Strings . 68
4.6 Arrays . 76
4.7 Full-Spectrum JSON Support 82

5 Advanced Collections with Enumerable 88

5.1 The Core Method: Iterating with each 88
5.2 Getting General Information About Our Collection . . . 91
5.3 Finding Elements and Applying Filters 93
5.4 Grouping Elements and Pasting Collections Together . 95
5.5 Computing a Derived Collection or Value 99
5.6 Order Now: Getting Extreme Values and Using Custom Sorts102
5.7 Turning Our Collection into an Array or Debugging String104
5.8 Enumerable Is Actually a Module 104

6 Unified Event Handling 108

6.1 Event . 108
6.2 The Events Hall of Fame 125
6.3 Reacting to Form-Related Content Changes 127

7 Playing with the DOM Is Finally Fun! 130

7.1 Extending DOM Elements 130
7.2 Element, Your New Best Friend 132
7.3 Selector . 167
7.4 Debugging Our DOM-Related Code 168

8 Form Management 173

8.1 Toward a Better User Interface 173
8.2 Looking at Form Fields 177
8.3 Submitting Forms Through Ajax 178
8.4 Keeping an Eye on Forms and Fields 183

9 Ajax Has Never Been So Easy 186

9.1 Before We Start. 186
9.2 Hitting the Road: Ajax.Request 192
9.3 Streamlining: Ajax.Updater 208
9.4 Polling: Ajax.PeriodicalUpdater 215
9.5 Monitoring Ajax Activity: Ajax.Responders 219
9.6 Debugging Ajax . 219
9.7 Ajax Considered Harmful? Thinking About Accessibility and Ergonomy220

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=9

CONTENTS 10

10 More Useful Helper Objects 225

10.1 Storing Values in a Hash 225
10.2 Expressing Ranges of. . . Well, Anything You Want! . . . 230
10.3 Periodical Execution Without Risk of Reentrance 231
10.4 Templating Made Easy 233
10.5 Examining the Current Browser and Prototype Library . 236

11 Performance Considerations 241

11.1 Element Extension and the $ Function 241
11.2 Iterations vs. Regular Loops 242
11.3 Obsolete Event Handlers 243
11.4 Recent Speed Boosts You Should Know About 243
11.5 Small Is Beautiful . 244

12 Wrapping Up 245

12.1 Building a Fancy Task List 245
12.2 Laying the Groundwork 246
12.3 It Takes Only 40 Lines: The JavaScript Code 248

II script.aculo.us 252

13 Discovering script.aculo.us 253

13.1 The Modules of script.aculo.us 253
13.2 Using script.aculo.us in Your Pages 255

14 Visual Effects 257

14.1 What Are Those Effects, and Why Should We Use Them? 257
14.2 Core Effects . 259
14.3 Diving into Effects . 265
14.4 Combined Effects . 269
14.5 Unlocking the Cool Factor: Effect Queues 272
14.6 Effect Helpers . 274
14.7 How to Create Our Own Effects 276

15 Drag and Drop 283

15.1 Dragging Stuff Around . 283
15.2 Controlling How It Starts, Where It Goes, & How It Ends 289
15.3 Ghosting . 297
15.4 Dragging and Scrolling 298
15.5 Monitoring Drags . 301
15.6 Dropping Stuff . 301

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=10

CONTENTS 11

15.7 Customizing Drop Behavior 302
15.8 Sorting with Drag and Drop 307
15.9 Common Pitfalls . 319

16 Autocompletion 323

16.1 The Basics . 323
16.2 Local Autocompletion . 325
16.3 Getting Ajaxy . 330
16.4 Using Rich-Markup Choices 334
16.5 Autocompleting Multiple Values in One Field 335
16.6 Reacting to Completion with Callbacks 339

17 Building DOM Fragments the Easy Way: Builder 343

17.1 Building Explicitly . 344
17.2 Using an (X)HTML Representation 347

18 In-Place Editing 349

18.1 What’s In-Place Editing Exactly? 349
18.2 A Simple Example . 352
18.3 How Can We Tweak the Ajax Persistence? 354
18.4 Customizing the Appearance 355
18.5 Dealing with Multiple Lines 363
18.6 Editing Alternative Text 364
18.7 Disabling In-Place Editing 367
18.8 Offering a List of Values Instead of Text Typing 368

19 Sliders 373

19.1 Creating a Simple Slider 374
19.2 Customizing the Basics 376
19.3 Restricting Range or Allowed Values 378
19.4 Tweaking an Existing Slider and Adding Controls 381
19.5 Defining Multiple Values 381

20 Sound Without Flash 386

20.1 Where Does It Work? . 386
20.2 How Do We Play Sounds? 387
20.3 Playing Multiple Sounds on Multiple Tracks 387

A Extending and Contributing 391

A.1 Building Over: Classes, Inheritance, and DOM Extension 391
A.2 Contributing! . 398

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=11

CONTENTS 12

B Further Reading 411

B.1 Official Websites . 411
B.2 Useful Blogs by Prototype Core Members 411
B.3 JavaScript Masters . 412
B.4 Community and New Sites Around Ajax 413
B.5 ECMAScript Intimacy . 413
B.6 Bibliography . 413

C Installing and Using Ruby 414

C.1 On Windows . 415
C.2 On Linux . 415
C.3 On Mac OS X . 416
C.4 Running a Ruby Script 416
C.5 “But I Don’t Know a Thing About Ruby!” 417

Index 418

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=12

Preface
Prototype began its life in early 2005 at a time when the name “Java-
Script” still evoked images of pop-up ads, blinking text, and copied-
and-pasted <script> tags in most developers’ minds. Even though web
applications such as Gmail and Google Suggest were showing the world
that JavaScript (and this new thing called “Ajax”) could actually be used
to improve the user experience, implementing these new techniques in
your own apps proved to be painful and frustrating. Each web browser
had its own quirks to work around, and most existing code wasn’t
designed to take advantage of JavaScript’s object-oriented nature or
powerful closure capabilities.

Inspired by the expressiveness of dynamic languages such as Ruby,
we set out to build a browser programming environment that we could
actually look forward to using. We started with a small set of tools that
let us work with classes and functions. Then we extracted common
Ajax and DOM manipulation operations from our existing applications.
In March 2005, we released Prototype 1.0 as part of the Ruby on Rails
framework. Prototype has grown a lot since then, but it remains focused
on providing the best possible environment for JavaScript developers.

As for script.aculo.us, or “Scripty” as it’s affectionately known by the
Core team, it started out as a short section of code in Prototype that
implemented the now-ubiquitous “yellow fade technique.” With a desire
to make web applications more user-friendly—and provide eye candy
that’s really useful to boot—it quickly grew into a complete real-time
DOM-based effects engine, drag-and-drop framework, and controls
library. Version 1.0 was released in June 2005.

You should understand that script.aculo.us is distinct from many other
UI libraries in that it does not try to shield the developer from the
DOM but rather extends and improves the DOM so that developers
and designers can capitalize on their existing knowledge.

PREFACE 14

Combined with Prototype, it’s engineered for building your own widgets,
controls, and basically any artsy awesomeness in less time than it takes
to configure heavier, widget-based frameworks.

To paraphrase the motto of Ruby, the language whose design has heav-
ily influenced our libraries: Prototype and script.aculo.us are “a web
programmer’s best friends.” According to the feedback we’ve received,
we’re not the only ones who feel that way.

Two-and-a-half years after the initial release, Prototype and script.acu-
lo.us are in use on many of the web’s most popular websites and power
all sorts of innovative web applications.

This rapid popular uptake has been possible only through the efforts
of the Prototype Core team, consisting of Seth Dillingham, Andrew
Dupont, Mislav Marohnić, Justin Palmer, Christophe Porteneuve, Tobie
Langel, Scott Raymond, and Dan Webb; the thousands of hours of work
by hundreds of contributors from the Prototype and script.aculo.us
community; and, of course, Christophe, for providing this very book.

Big thanks to all of them and to you.

Sam Stephenson (Creator of Prototype)

October 15, 2007

Thomas Fuchs (Creator of script.aculo.us)

October 15, 2007

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=14

Chapter 1

Introduction
Prototype is a wonderful JavaScript library aimed at easing dynamic
web application development. Its close friend, script.aculo.us, provides
a lot of user interface–oriented features with a high wow factor (still),
such as drag and drop, autocompletion, mouse-driven element sorting,
awesome visual effects, and in-place editing. It’s all at your fingertips,
with only a couple lines of script.

The close relation between the two lies in that they both originated in
the Ruby on Rails universe, as Rails “spin-offs.” They are provided with
Rails but can be obtained separately on their official web sites and are
actually backend-agnostic: you can use them over PHP, .NET, J2EE,
Python, Delphi, or anything else that helps you produce dynamic web
pages. And indeed, thousands of developers do just that every day. Also,
script.aculo.us relies on Prototype, and both libraries are written in a
consistent style.

These libraries will, quite simply, rock your world. You will discover, as I
and countless others have, that client-side web page development does
not need to be gruesome, kludgy, or even dull. It can be expressive,
productive, efficient, clean, portable, and intellectually pleasing. It can
call to our technical sense of aesthetics, and most important, it can be
a huge amount of fun.

1.1 It’s About Time

Prototype and script.aculo.us have been around for quite some time
now. According to an Ajaxian.com survey in September 2006,1 they

1. http://ajaxian.com/archives/ajaxiancom-2006-survey-results

http://ajaxian.com/archives/ajaxiancom-2006-survey-results

IT’S ABOUT TIME 16

are by far the two most popular JavaScript frameworks, with whop-
ping 43% and 33% adoption rates, way more than the third contender,
Dojo. With the advent of Prototype’s new official site and comprehensive
online reference documentation in January 2007, it will likely have an
even higher adoption rate by the time this book hits the shelves.

Still, a year ago, both frameworks already were extremely popular. And
what did shelves have to say about it? Nothing. In November 2006,
Scott Raymond and Sergio Pereira produced a 30-page Prototype quick
reference in O’Reilly’s Short Cuts series, but that’s it. The script.aculo.-
us wiki is a good starting point but uses a fairly inconsistent style and is
way out-of-date. As for Prototype, most addicts started out with Sergio’s
unofficial page and then had to dive into the source code to try to figure
out all the neat tricks.

And some source code it is. Both frameworks squeeze all the power
they can get out of JavaScript and are written in a fairly advanced
style. The unfortunate result is that those diving into the code without
serious JavaScript knowledge could very easily become lost, dazzled,
confused, or all of these at once. Although accurate, timely, and polite
answers could be found on the Google Group,2 all users agreed that
some production-quality, official documentation was in order. It is now
available, at least for Prototype, at its official website.3

“This is all well and good,” you might say, “but then what the heck do
I need this book for?” Well, there are several reasons why reading this
book is a good idea:

• This book goes far beyond the documentation available online. It
includes a lot more examples, goes further into details, and pro-
vides a lot more besides the actual reference material: a full-on
tutorial; real-world scenarios and their solutions; and plenty of
extra tips, tricks, best practices, and all-around advice.

• You may well want to leverage passive offline time to learn. This is
about reading on the bus, in the subway, or in the passenger seat
in a carpool highway lane.

• Even active offline time needs a book, such as when you’re work-
ing on your laptop in a train or plane.

2. http://groups.google.com/group/rubyonrails-spinoffs

3. http://prototypejs.org

http://groups.google.com/group/rubyonrails-spinoffs
http://prototypejs.org
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=16

WHAT’S IN THIS BOOK, AND HOW IS IT ORGANIZED? 17

• Like many people, you may just like having the physical copy of
the book close at hand. It just is nicer to the eye than on-screen
text, you know?

I discovered Prototype and script.aculo.us in late 2005 and dived into
them for real around June 2006 (since my early perusal had made me
fall in love with them) when I was writing my first book, Bien dévelop-

per pour le Web 2.0, which featured rather detailed coverage of them
through dedicated chapters. I loved the code I saw, I loved the code
I could write, and I started contributing heavily to the Google Group
and then the official documentation site. So if you find examples in
this book that also appear online, this is no accident. I may well have
written the online page. And at any rate, when you have a very good
example available, you just use it.

1.2 What’s in This Book, and How Is It Organized?

The book is organized in three parts: the case-study tutorial, the Pro-
totype reference, and the script.aculo.us reference. These are not refer-
ences in the usual sense of the term, which generally implies a rather
dry series of object and method descriptions sprinkled with laconic
snippets of code. These references are written like books unto them-
selves, arranged by topics, and they devote plenty of time and effort to
providing background, explaining concepts, detailing the architecture,
and helping you grasp the big picture as well as the details.

Both reference parts open with an introductory chapter; these are
Chapter 2, Discovering Prototype, on page 21 and Chapter 13, Discover-

ing script.aculo.us, on page 253. They’re here to help you dip your foot
and test the waters. Then they tackle the library by topic, in roughly
prioritized order, with the most critical appearing first. This is actually
not a straight rule; for instance, in script.aculo.us, features are orthog-
onal, so you can study them in any order. I decided to go first with what
seems most useful and perhaps brings the most fun.

This book is, quite simply, the comprehensive reference for these two
libraries, with enough extra stuff to help you actually master them, be
able to extend them for your own needs, or even contribute to them.
This is the single book you need to become a Rails spin-offs guru.
Doesn’t that sound good? Of course it does.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=17

ACKNOWLEDGMENTS 18

Some Things This Book Doesn’t Specifically Address

Although Prototype helps and encourages best practices such as unob-
trusive JavaScript, better accessibility, and so on, it does not guarantee
it at all: it’s a tool, not a process.

I am personally very fond of JavaScript accessibility and the narrower
subject of Ajax accessibility. I discussed them at length in my previous
book, Bien développer pour le Web 2.0, which is, however, not available
in English so far. . . . But the focus of this book is Prototype and script.-
aculo.us, which makes it a sizeable book as it is. To stay focused and
avoid straying too far afield, I won’t cover the details of such general
matters, which can be tackled and honored with any set of tools, as
long as your development process embraces the right constraints.

Who Is This Book For?

This book is essentially for any JavaScript developer interested in fully
leveraging the power of these two wonderful libraries: Prototype and
script.aculo.us. I expect that you have at least a decent understand-
ing of JavaScript (although you may not master its tricky details) and
(X)HTML, as well as basic knowledge of the DOM and CSS. That’s all
you’ll need, really! Whenever we tread in deeper waters, I’ll try to help
you wade through by explaining whatever details are relevant.

1.3 Acknowledgments

Writing a book is no walk in the park. It takes time, effort, dedication,
steadfastness, and a tremendous amount of help and support.

I cannot thank Pragmatic Programmers enough. These guys take you
through a book-writing journey that leaves you loathe to write for any-
body else. As publishing goes, they’re the bleeding edge and a real mag-
net for technical writers with a soft spot for efficiency and cool tool
chains. My heartfelt thanks especially to Dave Thomas, Andy Hunt,
and Daniel H. Steinberg. You’re putting the word editor into a whole
new perspective and a wonderful one at that.

I would also like to express my undying gratitude to my copy editor,
Kim Wimpsett, who did a wonderful job with enormous insight and
attention to detail; to my indexer, Sara Lynn Eastler, who produced the
outstanding, Pragmatic-Bookshelf-quality index at the end of this book;
and to my typesetter, Steve Peter, who provided all the final touches that
make it all look so prim.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=18

ACKNOWLEDGMENTS 19

Before all this started, I asked Justin Palmer if I could step in his shoes
and write this book for Pragmatic Programmers. Not only was he very
gracious about it, but he got me on board with the Prototype documen-
tation effort and later with Prototype Core. It has been an amazing ride
so far. Thanks a bunch, Justin.

This book would be an order of magnitude less pleasant to read if it
were not for the keen eyes and minds of its reviewers, both “live” and
at the final draft stage. I am deeply in the debt of Stéphane Akkaoui,
Arnaud Berthomier, Craig Castelaz, Seth Dillingham (Prototype Core),
Tom Gregory (a prominent voice on the official mailing list), Sébastien
Gruhier (of Prototype Window Class fame), Amir Jaballah, Tobie Langel
(Prototype Core), Justin Palmer (again), and Sunny Ripert. Many read-
ers also got onto the bandwagon at the beta stage and went so far as to
report a number of typos, errata, and the like. Among those, I’m espe-
cially grateful to Steve Erbach, Brandon Kelly, and “DarkRat” (whose
real name I’m sorry not to know), who’ve been particularly helpful.

Sam Stephenson (creator of Prototype) and Thomas Fuchs (creator of
script.aculo.us) first deserve the highest accolade for having churned
out those two libraries. The groundbreaking nature of their work can-
not be emphasized enough, and the immense satisfaction they have
brought to countless web developers commands respect. When it comes
to this particular book—the first ever focusing in depth on their babies!
—they not only revised the final draft but also agreed to write the pref-
ace, for which I cannot help but feel honored. Working with them is a
privilege and a very fun ride, and I take this opportunity to thank them
thrice over: for the libraries, for the review, and for the preface.

Élodie Jaubert, my fiancée, took admirably well to this second book-
writing endeavor, barely four months after the previous one ended. She
showed wonderful patience and support through the eight months it
took to write and edit this one, bearing with quite a few late evenings
and afternoons I spent writing at my desk, pushing me ahead, and giv-
ing me strength and love at all turns. I could not dream of more. This
book is for her.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=19

Part I

Prototype

Furious activity is no substitute for understanding.

H. H. Williams

Chapter 2

Discovering Prototype
This part provides in-depth coverage of Prototype, which is the Java-
Script library at the core of this book. Prototype is a very dense library:
although rather small (at about 120KB raw, less than 30KB gzipped, it
is no huge framework), it is replete with features, helper objects, and
nifty tools, arranged in a reasonably consistent set.

But before we go ahead, we need to answer a few questions and tackle
the more involved subjects with a clear mind and proper expectations.
For example, what’s Prototype exactly? What should we expect it to
do for us? What kind of lingo may we need to learn? And apparently
it relies on. . . well, prototypes, so what are JavaScript prototypes in
the first place? So, I’ll start with explaining all this quickly; you will
then be armed with everything necessary to fully leverage the following
chapters.

2.1 What Is Prototype, and What Is It Not?

Prototype is a JavaScript library designed to improve the browser’s
JavaScript environment; it extends DOM elements and built-in types
with useful methods, has built-in support for class-style OOP (includ-
ing inheritance), advanced support for event management, and power-
ful Ajax features.

Prototype is not a complete application development framework: it does
not provide widgets or a full set of standard algorithms, I/O systems, or
what have you. It stands in this middle ground between down-and-dirty
manual coding of everything and full-fledged frameworks with their
countless objects. Most massive frameworks do indeed use Prototype
internally and build upon it.

USING PROTOTYPE IN OUR PROJECT 22

Note, however, that there is a more visual-oriented library working
closely with Prototype called script.aculo.us; we’ll explore it in the sec-
ond part of this book.

Although inspired by the Ruby programming language, Prototype is not

attached to any server-side technology. True, it stems from the Ruby
on Rails universe, but it is a stand-alone spin-off. It is indeed very easy
to use Prototype when coding with Ruby on Rails, but the library can
be used with no difficulty over any back end, such as PHP, J2EE, or
ASP.NET. It is very successfully used in production for projects with all
these technologies and more.

Prototype is distributed as a single file called prototype.js, currently
weighing about 120KB (before any sort of packing or gzipping). Despite
this relative litheness, it provides a large set of features, most of which
interoperate in an intuitive way.

2.2 Using Prototype in Our Project

So, how do we go about enabling Prototype in a web page? It is really
quite simple: we just need to load prototype.js, and loading it first will
let us leverage its power in any other scripts we have. This loading is
best done with a simple <script> element in the <head> of our page:

<head>
...
<script type="text/javascript" src=".../prototype.js"></script>
...

</head>

Where Can We Get Prototype?

The official website is the authoritative source for the latest public ver-
sion of Prototype and also provides detailed, up-to-date API documenta-
tion with plenty of examples, tutorial-style articles, and a blog updated
by the Prototype Core team. It’s located at http://prototypejs.org.

2.3 What Does Our JavaScript Look Like When Using Prototype?

Good question. To make a long story short, it looks darn good. It looks
nifty. It looks smart. It looks Rubyesque. JavaScript is fun again. But
don’t take my word for it—see for yourself. Let’s look at a simple exam-
ple and then at a more involved, combined demo that will help you
understand just how easy Prototype coding is.

http://prototypejs.org
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=22

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 23

A Note About Versions

This book covers Prototype 1.6. To understand how Prototype
evolved, and where it’s headed, it’s worth looking at a short
history.

The release of version 1.5, on January 18, 2007, was a major
event for people using only the public versions. They had
been stuck with 1.4 for a year, and 1.5 brought about a
tremendous amount of improvements and new features.

These days, Prototype is rapidly pacing ahead, moving in
swifter, shorter steps. Version 1.5.1 was released in April 2007
and brought a few new features and significant refactor-
ing and cleanup of the code base. Version 1.5.1.1, a bug-
fix release with a few nice surgical improvements to boot,
was released in June. With a first release candidate in early
August 2007 and a final release scheduled in October 2007,
version 1.6 is a major step ahead. It introduces a complete
overhaul of the event system, the first improvements on sub-
classing, and many more new features. Prototype Core is
considering a later 1.6.1 release with yet more event- and
class-related improvements, and then we’ll be done with
the 1.x branch. The next steps will take us to 2.0. And we’re
hard at work on it already!

The information in this book is current at the time we’re about
to go to press. This means by the time this book is out, you’re
at worst one or two months behind; in other words, you’re
up-to-date on 95% of the library and have only to peruse
the recent items in the change log to be on the very top of
things.

You can get additional information on later releases
and feature updates on the book’s site and blog:
thebungeebook.net.

thebungeebook.net
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=23

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 24

An important note: the code in the following two examples is intention-
ally heavy on Prototype “magic,” which means it might use advanced
syntaxes and concepts that you may not—yet—be familiar with. Fear
not, however: this was done to let you feel the might of properly lever-
aging what Prototype has to offer you, and we’ll dive together, in detail,
into these capabilities and syntaxes in the following chapters. If some of
the code is unclear as you go through this chapter, I’m confident you’ll
be able to come back and squeeze every ounce of meaning out of it once
you’re through the Prototype part of the book. In the meantime, I did
try to lace the text with enough explanations that you can grab the idea
and general dynamics of the code.

A Simple Example: Playing with People

Er, this sounds like an invitation to use pyramid scams on unsuspect-
ing strangers. Actually, I just suggest we put together a simple class
representing a person, then start spawning a few people with it, and
finally fiddle with the resulting population to extract a few pieces of
information. We’ll do all of it the Prototype way.

I bet you could use some code before deciding whether what I just said
made any sense. So, let’s create an empty folder, put Prototype’s proto-

type.js in it (version 1.5.1 or later), and write the following bench page
for us to play in:

Download prototype/intro/basic/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>A basic demo of Prototype at work</title>
<link rel="stylesheet" type="text/css" href="basic.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="basic.js"></script>

</head>

<body>

<h1>A basic demo of Prototype at work</h1>

<div id="result"></div>

</body>

</html>

The <div> with id="result" is just a placeholder for our upcoming script
to spew HTML into.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=24

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 25

Now, let’s create this basic.js we referenced and write a Person class. In
Prototype, we would do it this way:

Download prototype/intro/basic/basic.js

Line 1 var Person = Class.create({
- initialize: function(first, last, city, country) {
- this.first = first;
- this.last = last;
5 this.city = city;
- this.country = country;
- },
-

- getFullName: function() {
10 return (this.first + ' ' + this.last).strip();

- },
-

- getDisplayName: function() {
- var result = this.getFullName();

15 if (this.city || this.country) {
- result += ' (';
- if (this.city) {
- result += this.city;
- if (this.country) result += ', ';

20 }
- result += (this.country || '');
- result += ')';
- }
- return result;

25 }
- });

This first fragment deserves some explanation:

• The Class.create() call on line 1 produces a Prototype class. For
the JavaScript gurus among you, yes, that is a function object.

• When using Prototype classes, initialization is taken care of via a
initialize() method, here on line 2, which receives all the arguments
passed at construction time.

• Finally, our getDisplayName() method, starting on line 13, builds
a variable-form string representation of the person, with the first
name and/or last name and possibly city/country information
between parentheses, all of it properly formatted and adjusted.

Being defined at the prototype level, all of these methods are basically
instance methods. We’ll add a class method (or static method) that pro-
vides a comparator between two people.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=25

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 26

Just to make our code more “Prototypish” and to demonstrate neat
JavaScript usage, we’ll make it conform to the following usage syntax:

Person.compare([criterion = 'first',] p1, p2) → (-1|0|1)

Now, that’s unusual—optional arguments appearing first! It’s actually
easy to deal with once you regard your arguments as just an array of
values, much like Ruby would allow. Here is the code:

Download prototype/intro/basic/basic.js

Line 1 Person.compare = function() {
- var prop = 'first', args = $A(arguments);
- if (args.length == 3 && typeof args[0] == 'string')
- prop = args.shift();
5 var c1 = args[0][prop], c2 = args[1][prop];
- return (c1 < c2 ? -1 : (c2 < c1 ? 1 : 0));
- };

As you may know, functions in JavaScript get an automatic arguments

variable that holds their arguments. It’s not an array properly speaking,
but it looks like one (in other words, it features a [] operator and a
length property), so we can readily convert it to an actual array with
Prototype’s $A() utility function, as shown on line 2.

Prototype-enhanced arrays are mighty to say the least, but in this par-
ticular occasion all we need is their native shift() method, which will
take the first element out and return it.

By simply checking whether there are three arguments instead of two,
with a String-typed first one, we know we’ve been called with an explicit
field name as the comparison criterion. So, we override our prop vari-
able with the first argument, which we take out of the argument list at
the same time.

Now that we have the name of the field we’re going to use for compar-
ison, we need to dynamically access it for each of the two people we’re
about to compare. This is trivially done in JavaScript with the square
brackets operator, [], which we use on line 5. When used on an object,
it takes an expression that evaluates to the name of a property in the
object, and it returns the value of that property.

Finally, using nested ternary operators (?:), we return -1 if the first
object looks lesser, 1 if it looks greater, and zero otherwise.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=26

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 27

It’s time we spawn a whole series of people to tinker with:

Download prototype/intro/basic/basic.js

var people = [
new Person('Jes "Canllaith"', 'Hall', 'Wellington', 'NZ'),
new Person('Sebastien', 'Gruhier', 'Carquefou', 'FR'),
new Person('Clotile', 'Michel'),
new Person('Stéphane', 'Akkaoui', 'Paris'),
new Person('Elodie', 'Jaubert', 'Paris')

];

Notice how we do not need to pass all the arguments every time and
how the objects are constructed: through the traditional new keyword.

OK, we’re all set. We can now start playing with Prototype-induced
power. For instance, let’s say we need to get a sorted list of all the
first names for these people, with no risk of duplicates:

Download prototype/intro/basic/basic.js

people.pluck('first').sort().uniq().join(', ')
// => 'Clotilde, Elodie, Jes "Canllaith", Sebastien, Stéphane'

Doesn’t this rock? The pluck() method fetches a given property from all
the objects in the series and returns an array of the resulting values.
uniq() strips out duplicates. This is rather concise, don’t you think?

How about getting full information on all people with a defined country,
sorted by ascending country code:

Download prototype/intro/basic/basic.js

people.findAll(function(n) { return n.country; })
.sort(Person.compare.bind(Person, 'country')).invoke('getDisplayName')

// => ['Sebastien Gruhier (Carquefou, FR)',
// 'Jes "Canllaith" Hall (Wellington, NZ)']

The findAll() method takes a predicate (a function taking an element
and returning a boolean about it) and returns all the elements that
passed it. Here, our predicate just returns each person’s country prop-
erty, whose value may very well be undefined. If it holds a nonempty
string, it will be deemed true, so the predicate will pass. Otherwise, the
predicate will fail.

Perhaps you come from a programming background with languages
that do not have higher-order functions, meaning you can use functions
as regular values to be assigned, passed around as arguments to other
functions, returned as result values, and so on.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=27

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 28

JavaScript, like many dynamic languages, has that important feature,
so we can indeed pass a function around without having to resort to
“ancient” tricks such as method pointers.

In the code we just saw, we’re passing a function as an argument to
the sort() method. This is one aspect of higher-order functions. The
function we’re passing is actually the result of calling bind() on the
original Person.compare() method, which means this bind() thing, which
I’ll explain shortly in a moment, actually returns a function. This is
another aspect of the language’s support for higher-order functions.

In this code, we would like to use our comparator function, except we
need to pass it with the first argument (the criterion one) prefilled. Pro-
totype’s bind() method on functions lets us do this, among other things
(and we’ll discuss it in depth in Section 4.2, Proper Function Binding,
on page 58).

Finally, the invoke() method lets us call a given method on each element
in the series returned by sort() (possibly with arguments, although we
don’t need any here) and returns an array of the resulting values. Java-
Script places no restrictions on where you can use the dot (.) operator;
as long as its left side is an object, you’re in the clear. If that side is a
method call, all you need is that method call to return an object; this
lets you chain calls easily to any length you may need.

Finally, on page creation, once it is loaded and the DOM is all ready,
we want to dynamically inject a bulleted list of all the people we have
by ascending natural order (since the default value for the criterion is
the first name, we’ll get first-name ordering).

Manually creating all the required DOM nodes would be fastidious, so
we elect to build valid XHTML text and inject it safely into the proper
container. Here’s the code:

Download prototype/intro/basic/basic.js

Line 1 document.observe('dom:loaded', function() {
- html = '\n'
- + people.sort(Person.compare).map(function(p) {
- return '\t' + p.getDisplayName().escapeHTML() + '';
5 }).join('\n')
- + '';
- $('result').update(html);
- $$('#result li:nth-child(2n)').invoke('addClassName', 'alternate');
- });

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=28

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 29

Look at the map() call on line 3; this is the all-purpose transformation
method (pluck() and invoke() are special-purpose optimizations of it). We
get an array of ... text with our “display” names inside, then
join them with line delimiters, and finally wrap the whole thing in a
.... To guard us against weird characters in the people data,
we use escapeHTML() on the resulting strings, effectively “defanging”
any markup in there.

This is all just markup. To safely inject it into the DOM, we need to
grab the element with id="result", which is gracefully done with $(). This
method also makes sure the element we get back is equipped with the
countless DOM extensions Prototype provides, including the mighty
update() method, that we use to inject our markup into the element’s
DOM fragment.

Notice that our whole anonymous method is passed to document.

observe(), which is part of Prototype’s unified API to event handling
(if you’ve ever played with events with your bare hands, you noticed,
for instance, that Internet Explorer superbly ignores most of the official
W3C specifications about it). Our method will be run when the docu-
ment’s DOM has finished loading, which is just what we need.

Finally, the killer call is on line 8. You know these fancy CSS 3 selectors
we just can’t use because they’re not all that well supported yet? Well,
we sure can use them with Prototype’s $$()1 to select any set of elements
in the DOM! Then Prototype comes with CSS-tweaking methods, such
as addClassName(), that take an extra CSS class name argument, but
such methods are designed to work on the element we’re calling them
on. How can we use it on all the elements $$() returned? That’s what
invoke() is for, and using it lets us alter all matching elements concisely.
The matching CSS is very short:

Download prototype/intro/basic/basic.css

#result li.alternate { font-weight: bold; color: green; }

Once loaded, our page looks like Figure 2.1, on the next page.

That’s it for a first run. Excited? I hope so. Take some time to breathe.
If you’re on Firefox, why not bring up a Firebug2 console and play with
this script interactively? Or take a stroll. Go enjoy the company’s free
coffee. Check out the blogs.

1. Blazing fast since 1.5.1.
2. http://getfirebug.com

http://media.pragprog.com/titles/cppsu/code/prototype/intro/basic/basic.css
http://getfirebug.com
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=29

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 30

Figure 2.1: Our dynamic, custom-styled content

Ready to move ahead with something more involved? Here we go.

One Good-Looking Script: A Table Sorter

To let you feel how using Prototype can lead to neat, cool JavaScript
code, we’ll build a simple table sorter. As long as our (X)HTML tables
properly feature a <thead> and a <tbody>, our sorter object will be
able to sort it.

The idea is to unobtrusively bind sorter objects to <table> elements
so that the user can click the column heading and have the table
sort accordingly. Clicking a second time on the current sort heading
switches to a descending sort. We’ll also use a few CSS class names so
that styling can be applied to express the current sorting status.

Our table sorter system is “simpler” insofar as it does not deal with data
types; it treats every cell as text. On the other hand, it does grab the
cell’s whole text, regardless of internal markup.

The full source code is available online. For this example, we’ll focus on
the neat parts, but there’s very little we’re leaving out anyway: support
for CSS rules, status toggling for the sort, and extra <table> elements.

Laying the Groundwork

OK, so we need an HTML page with a couple tables on it (just to show
the sorting capability is neatly wrapped into an object and we can reuse
it multiple times on the same page).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=30

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 31

We can put together such a page with tables like the following one:

Download prototype/intro/table_sorter/index.html

<table id="todo">
<thead>

<tr>

<th>What?</th>
<th>When?</th>
<th>Location</th>

</tr>

</thead>

<tbody>

<tr>

<td>Paris Web 2007</td>
<td>2007-11-15</td>
<td>IBM La Défense / INSIA</td>

</tr>

<tr class="alternate">
<td>Paris On Rails 2007</td>
<td>2007-12-10</td>
<td>Cité des Sciences</td>

</tr>

<tr>

<td>Burger Quiz party</td>
<td>2007-04-14</td>
<td>Volta</td>

</tr>

</tbody>

</table>

We also need a pinch of styling to make this look presentable. A few
rules are important to our purposes: the alternate class so that lines
alternate background colors, the decoration that will let the user see
which column is being used for sorting, and whether we use ascending
or descending order. These rules are as follows:

Download prototype/intro/table_sorter/sorter.css

thead th.sort-asc, thead th.sort-desc {
background: #aaf url('sort-asc.png') no-repeat right center;

}

thead th.sort-desc { background-image: url('sort-desc.png'); }

tr.alternate * {
background-color: #ddd;

}

When loaded, our page looks like Figure 2.2, on the following page.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/table_sorter/index.html
http://media.pragprog.com/titles/cppsu/code/prototype/intro/table_sorter/sorter.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=31

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 32

Figure 2.2: Our initial tables

And Now for the Scripting Part

First, we’ll create an object dedicated to handling the sorting of a given
<table> element; we’ll call it TableSorter. In the best Prototype fashion,
the idea is to make it trivial to add sorting capabilities to a <table>

element.

We’d like to be able to do that with this simple code:

new TableSorter('tableId')

Here’s the start of our object definition and its constructor function:

Download prototype/intro/table_sorter/sorter.js

Line 1 var TableSorter = Class.create({
- initialize: function(element) {
- this.element = $(element);
- this.sortIndex = -1;
5 this.sortOrder = 'asc';
- this.initDOMReferences();
- this.initEventHandlers();
- }, // initialize
-

http://media.pragprog.com/titles/cppsu/code/prototype/intro/table_sorter/sorter.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=32

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 33

10 initDOMReferences: function() {
- var head = this.element.down('thead');
- var body = this.element.down('tbody');
- if (!head || !body)
- throw 'Table must have a head and a body to be sortable.';

15 this.headers = head.down('tr').childElements();
- this.headers.each(function(e, i) {
- e._colIndex = i;
- });
- this.body = body;

20 }, // initDOMReferences
-

- initEventHandlers: function() {
- this.handler = this.handleHeaderClick.bind(this);
- this.element.observe('click', this.handler);

25 }, // initEventHandlers

Types obtained through the Class.create() system use as a constructor
an initialize() method. There are a few interesting things to note in this
constructor:

• Notice the calls to methods such as down() and childElements(),
as on line 15, and how they ease the task of walking through the
DOM element hierarchy. They’re part of a treasure trove of DOM
extensions guaranteed through the $() call.

• Relying on $() also lets us pass in either an element ID or the
element itself (that is, its DOM reference).

• The each() method on line 16 is just one example of how built-in
iteration methods let us do away with manual numerical loops. It
comes from the wonderful Enumerable module, which is one of the
Rubyesque features offered by Prototype.

• If you ever tried using a method reference as an event handler, you
may have noticed you lost its binding on the way (when its code
relied on the this reference, it would use the wrong object for it).
Calling bind(), on line 23, spares us that frequent nightmare.

So, we have this handleHeaderClick() method that will get called on
every click anywhere on our table. Its job is to make sure the click
actually happened on a heading (a <th> element within <thead>) and,
when so, to trigger sorting.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=33

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 34

Here it goes:

Download prototype/intro/table_sorter/sorter.js

Line 1 handleHeaderClick: function(e) {
- var element = e.element();
- if (!('_colIndex' in element)) {
- element = element.ancestors().find(function(elt) {
5 return '_colIndex' in elt;
- });
- if (!((element) && '_colIndex' in element))
- return;
- }

10 this.sort(element._colIndex);
- }, // handleHeaderClick

Because at construction time we endowed every proper heading cell
with a custom property named _colIndex,3 checking for a valid heading
is as easy as looking for that property. Note, however, how easy it is to
walk the element chain from our clicked element outward until we find
such a heading cell (if indeed we clicked somewhere in one). As shown
on line 4, we just need to use find() over the ancestors() list.

This leaves us with the core sorting method, pragmatically named sort().
We’ll leave the visual adjustments to another method, named adjust-

SortMarkers(), which will also do the bookkeeping on our sortIndex and
sortOrder properties. This is rather plain code, with no real Prototyp-
ish flavor. But the sorting code, and its application to the actual DOM,
gives our code a few opportunities to shine.

Download prototype/intro/table_sorter/sorter.js

Line 1 adjustSortMarkers: function(index) {
- if (this.sortIndex != -1)
- this.headers[this.sortIndex].removeClassName('sort-' +
- this.sortOrder);
5 if (this.sortIndex != index) {
- this.sortOrder = 'asc';
- this.sortIndex = index;
- } else

- this.sortOrder = ('asc' == this.sortOrder ? 'desc' : 'asc');
10 this.headers[index].addClassName('sort-' + this.sortOrder);

- }, // adjustSortMarkers
-

- sort: function(index) {
- this.adjustSortMarkers(index);

15 var rows = this.body.childElements();

3. In scripting parlance, we call such custom additions expando properties.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/table_sorter/sorter.js
http://media.pragprog.com/titles/cppsu/code/prototype/intro/table_sorter/sorter.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=34

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 35

- rows = rows.sortBy(function(row) {
- return row.childElements()[this.sortIndex].collectTextNodes();
- }.bind(this));
- if ('desc' == this.sortOrder)

20 rows.reverse();
- rows.reverse().each(function(row, index) {
- if (index > 0)
- this.body.insertBefore(row, rows[index - 1]);
- }.bind(this));

25 rows.reverse().each(function(row, index) {
- row[(1 == index % 2 ? 'add' : 'remove') + 'ClassName']('alternate');
- });
- } // sort
- }); // TableSorter

1. First, as shown on line 16, we rely on the sortBy() method, which
lets us provide a custom key for the rows to sort. We’ll use that
row’s proper cell and this cell’s full textual contents. To do this, we
borrow the collectTextNodes() method, on line 17, that currently
sits in script.aculo.us, not Prototype (this might well change soon,
though). You can see the code for this method, which I pasted into
the script, in the next code snippet.

2. Now that our local array holds the DOM references in the proper
order, we need to mirror it in the document’s DOM. A concise way
to do this, starting on line 21, is to iterate through the sorted list
in reverse order, inserting elements according to it. Because the
DOM method insertBefore() will remove the row from its current
position prior to reinserting it, it’s just a one-call trick.

Notice how we bind the anonymous function to the current Table-

Sorter object, so it can use this.body to address the property we
defined in the constructor (with no bind, this would be the current
window object).

3. It’s now time to update the zebra striping of our rows. The order
was changed, so the same rows don’t necessarily stripe the same
way. It’s not sorting per se, and I should have put that in its own
function, but it’s a nice example of Prototypish code, so I wanted
it in this short snippet.

The call on line 26 dynamically selects between the addClass-

Name() and removeClassName() methods, both being extensions
provided by Prototype. It then passes the proper class name to the
selected method.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=35

WHAT DOES OUR JAVASCRIPT LOOK LIKE WHEN USING PROTOTYPE? 36

As mentioned earlier, we do need to use the collectTextNodes() method
for proper sorting, and this would currently require script.aculo.us,
which would be a bit overkill here. So, we can paste the correspond-
ing code at the beginning of our script:

Download prototype/intro/table_sorter/sorter.js

// Borrowed from script.aculo.us' effects.js...
Element.addMethods({

collectTextNodes: function(element) {
return $A($(element).childNodes).collect(function(node) {

return (node.nodeType==3 ? node.nodeValue :
(node.hasChildNodes() ? Element.collectTextNodes(node) : ''));

}).flatten().join('');
}

});

There! We have this nice little object available, so how do we dynami-
cally apply it to all <table> elements in the document? With very few
lines and the wonderful $$() selector, this is how:

Download prototype/intro/table_sorter/sorter.js

Line 1 document.observe('dom:loaded', function() {
- $$('table').each(function(table) { new TableSorter(table); });
- });

When the DOM is done loading, our anonymous function gets called,
and its single line (line 2) uses the ubiquitous $$() function to select all
tables in the document and then creates a TableSorter object over each.
We’ll dive more into the astounding powers of $$() in Section 3.4, $$

Searches with Style, on page 45.

OK, now let’s refresh our page and try it. After a few clicks on headings,
you could obtain something like Figure 2.3, on the following page.

And that’s it for our second, fuller example. All in all, our TableSorter

object is about 70 lines of code, which is admittedly low for such a fea-
ture set. If you need advanced capabilities, such as support for data
types, merged rows and columns, and more, check out the Table Sort-
ing with Prototype library by Andrew Tetlaw,4 a Prototype fan from
Down Under. It’s likely to have all the features you need and more.

4. http://tetlaw.id.au/view/blog/table-sorting-with-prototype/

http://media.pragprog.com/titles/cppsu/code/prototype/intro/table_sorter/sorter.js
http://media.pragprog.com/titles/cppsu/code/prototype/intro/table_sorter/sorter.js
http://tetlaw.id.au/view/blog/table-sorting-with-prototype/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=36

PROTOTYPE JARGON AND CONCEPTS 37

Figure 2.3: Sorted tables after a few clicks

2.4 Prototype Jargon and Concepts

Prototype comes with a handful of specific notions that will come up
time and again in this reference. To keep things nice and concise, I will
provide names for these notions. As with any domain, knowing the lingo
will help you grasp things more readily and avoid potential mistakes.

Objects, Namespaces, and Modules

Prototype objects fall into three categories, which I’ll use when describ-
ing an object. This categorization lets you immediately understand how
a given object is to be used. There are three categories: class, name-
space, and module.

Class

Such objects are intended for regular use: construction with the
new operator, properties being stored in instance fields, and so
on. Regular objects include ObjectRange, Ajax.Request, and Peri-

odicalExecuter, for instance.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=37

PROTOTYPE JARGON AND CONCEPTS 38

Namespace

Several objects are not intended for instantiation. They exist only
to bundle related elements, such as functions or objects. I call
such objects namespaces, because this is the role they play—a
named area where related objects exist. Two examples of such
namespaces are Ajax and Event.

Module

Sometimes an object is neither a regular namespace nor a proper
namespace. It does contain methods, but these are supposed to
be mixed in another object’s prototype. There is generally some
assumption about this other object; it is usually supposed to fea-
ture one or more methods, upon which the mixed-in ones depend.

Such objects represent an almost stand-alone feature set that just
needs a host object to satisfy a few criteria in order to extend it
with all those features. I call such objects modules, because it is
the exact term for this kind of entity in the Ruby world, and the
word sounds nice. Prototype’s most famous module is Enumerable,
which is mixed in by numerous objects, such as Array.

Iterators

For brevity’s sake, I use iterators for all callback functions that are
passed to methods that, internally, iterate over a collection. Such call-
back functions are called in sequence over part or all of the iterated ele-
ments. The quintessential iteration function is Enumerable.each, which
most functions from Enumerable rely upon internally.

Extended Elements

Prototype features an awesome DOM extension mechanism, described
at great length in Chapter 7, Playing with the DOM Is Finally Fun!,
on page 130. When I refer to extended elements (which happens fairly
often), I mean a DOM element that went through DOM extension, one
way or another. This essentially means all element-related methods
can be invoked straight on it, which is good. elt.hide() feels much more
object-oriented than Element.hide(elt), don’t you think?

Aliases

Sometimes, a given feature is well-known under multiple names. For
instance, consider a method that iterates through a sequence to find

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=38

WHAT ARE PROTOTYPES ANYWAY? 39

the first occurrence that matches a criterion. Depending on the tech-
nical environment you’re used to, you may think of it as detect() or
find().

Prototype provides many such methods, which are commonly referred
to by at least two names. When that happens, Prototype uses a form of
aliasing. I then refer to these methods as aliases; if one name clearly
dominates or is deemed preferable for one reason or another, I may
label its other name only as being an alias.

2.5 What Are Prototypes Anyway?

Most people are used to regular object-oriented programming where
types are defined by classes, which are usually closed (you cannot
change them dynamically), and where they serve as blueprints for all
instances of the class. Classes can organize themselves in a hierarchy,
where every child class inherits all the attributes of its ancestor classes.

JavaScript works in an entirely different way. Everything is an object,
and every object is defined by a constructor function and this construc-
tor’s prototype. A prototype is basically a repository of things (mostly
methods) that all objects produced by the constructor function share.

This all sounds a bit quirky, so let’s look at some simple example code:

Download prototype/intro/prototypes.js

Line 1 function Person(lastName, firstName) {
- this.lastName = lastName;
- this.firstName = firstName;
- }
5

- Person.prototype = {
- getFullName: function() {
- return this.firstName + ' ' + this.lastName;
- }

10 }
-

- var sam = new Person('Stephenson', 'Sam');
- var thomas = new Person('Fuchs', 'Thomas');
-

15 sam.getFullName()
- // -> 'Sam Stephenson'
- thomas.getFullName()
- // -> 'Thomas Fuchs'

On line 1, you can see a classic constructor function, which is simply
a function that is intended to be used with the new operator and that

http://media.pragprog.com/titles/cppsu/code/prototype/intro/prototypes.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=39

WHAT ARE PROTOTYPES ANYWAY? 40

manipulates the this reference to work with instance members (such as
instance fields). You can see a call to the constructor on line 12.

Starting on line 6, we define what is in our constructor’s prototype.
Here, it’s only a single method, called getFullName(), which uses a sim-
ple version of the full-name algorithm. The important point here is that
this method’s definition is shared by all instances of the Person class. It
is defined only once and used from then on. We use it indifferently on
both instances, as you can see from line 15.

This is very much preferable to “old-school” code that you still find in
too many tutorials, which goes something like this:

Download prototype/intro/bad_function_definition.js

function Person(lastName, firstName) {
this.lastName = lastName;
this.firstName = firstName;
this.getFullName = function() { // DON'T DO THIS!

return this.firstName + ' ' + this.lastName;
}

}

In such code, every single time an instance is created, it gets its own
singleton method (a method that exists specifically on this object; its
definition is not shared by any other instance). This is entirely wasteful,
because the function’s definition does not change over time and does
not need lexical closure from the constructor’s code, since it uses data
obtained only from the this reference. The prototype-based approach is
a much cleaner solution (and is how JavaScript is supposed to be used
anyway).

Note that the syntax we use to express the prototype from line 6 onward
is pure-vanilla JavaScript. The {...} block is a regular object literal, with
a comma-delimited list of key: value pairs.

Now for the salient points. First, prototypes are open. You can alter
them at any point, and this retroactively alters all the instances based
on this prototype. So, for instance, adding a method to String.prototype

makes it available to all String objects, whether they were created prior
to or after the addition! This is a way of “monkey patching”5 classes,
much like you would do on Ruby classes and modules.

5. In scripting parlance, monkey patching is the practice of patching existing objects
(classes, functions, and so on) at run time, not in their actual source code. Dynamic
languages, which generally leave their types “open,” are a prime candidate for this kind
of approach.

http://media.pragprog.com/titles/cppsu/code/prototype/intro/bad_function_definition.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=40

RUNNING PROTOTYPE CODE SAMPLES IN THIS BOOK 41

Second, there is no inheritance per se. You cannot make a prototype
inherit from another, at least not in the regular sense. But the syntaxes
provided by Prototype let you emulate “classical” inheritance for just
about all intents and purposes.

If you need to get further details on how Prototype uses constructor
functions and prototype manipulation to implement classes and mod-
ules, look at Appendix A, on page 391. It explains all this and outlines
all you need to know in order to extend Prototype for your own needs
or even contribute to the framework itself.

2.6 Running Prototype Code Samples in This Book

Most of the functions, methods, and objects in this part of the book
are documented through small code snippets. The files are available
online, but in order to execute them, you’ll often need to run the code
in the context of a web page with Prototype loaded. The easiest way to
try them is to set up a small web page, load it in your browser, and then
copy/paste the snippets in your JavaScript console or, better yet, your
Firebug console (if you’re using Firebug on Firefox, which you should

be, indeed). The page itself can be minimal to the point of Zenhood:

Download prototype/bench.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>My Prototype test bench</title>
<script type="text/javascript" src="prototype.js"></script>

</head>

<body>

<h1>A simple page to test Prototype</h1>
</body>

</html>

Of course, you’d need to put Prototype’s library file in the same direc-
tory for things to work smoothly. A few snippets here and there assume
your page contains this or that element (for example, “a simple <div>

element with an id= attribute set to navbar”). Just add whatever is nec-
essary to your test page. In the long run, it will look something like
Prototype’s unit test pages (that is, it will feature a haphazard assort-
ment of utterly unrelated elements that seem, at first glance, to have
been thrown in there with no rhyme or reason). That’s OK. It’s a test
bench! It should smell of sawdust, fresh paint, and hot iron.

http://media.pragprog.com/titles/cppsu/code/prototype/bench.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=41

Good things, when short, are twice as good.

Baltasar Gracián

Chapter 3

Quick Help with the Dollars
3.1 Shortcuts Should Be Short

There are little bits of code that you use all the time. For example,
how often do you type document.getElementById? There are many such
examples, and Prototype provides convenient shortcuts for the most
common ones.

But shortcuts should live up to their name; they should actually be
short. They should also be instantly recognizable as shortcuts. This is
why Prototype uses the “dollar convention” to name shortcuts by using
two characters: the dollar sign and an extra letter or sign.

Such shortcuts are referred to as utility functions in Prototype, and they
are, indeed, very useful. This chapter will take you through them all,
which will be quick enough but immeasurably useful; you’ll be able to
express in a very few characters of code what used to be boringly ver-
bose or even dauntingly complex: ID- or even CSS-based DOM extrac-
tions, flexible array conversions, and more!

3.2 Quick Fetching of Smart Elements with $

The $() function is by far the most useful (and indeed, the most used)
function in Prototype. Its goal is twofold:

• It lets you fetch a DOM element by its ID in the most concise
syntax possible. Because of this, for example, if ($(’foo’)) is the
preferred way of quickly verifying that an element exists. . . .

QUICK FETCHING OF SMART ELEMENTS WITH $ 43

• It provides a guaranteed way of getting an extended element. Re-
member those? As discussed in Section 2.4, Extended Elements,
on page 38, an extended element is a DOM element object that
became endowed with all the additional methods provided by
Prototype’s DOM extension mechanism. It’s a DOM element with
superpowers, so to speak.

Having the guarantee that the resulting element is extended makes $()
not only much more concise than its traditional pure-DOM counterpart
(document.getElementById) but also superior from a usage standpoint.
Since the resulting elements feature all the extended methods, you can
make your code both shorter and more object-oriented. In short, you
can make it more expressive:

Download prototype/utility/dollar.js

// Vanilla DOM
document.getElementById('navBar').style.display = 'none';

// Prototype's way - because of DOM extension!
$('navBar').hide();

// And if $ did not guarantee extended elements...
Element.hide('navBar');

Another key point is that you can pass $() either an ID string (such as
’navbar’) or an actual DOM element reference. Either way, you’ll get the
extended version of the element (if this element was already extended,
it is basically untouched). This behavior is used by every single method
in Prototype that takes “an element” as an argument, always allowing
you to pass either the element’s ID or its actual reference.

A final feature is that you can grab many elements at once by pass-
ing multiple arguments (each of which has the same flexibility we just
described), in which case you’ll get an array of extended elements back.
This can be very useful:

Download prototype/utility/dollar-multiple.js

// "I haven't read the whole doc on $()"
var items = [];
items[0] = $('navbar');
items[1] = $('adbar');
items[2] = $('footer');

// "I sure did!"
var items = $('navbar', 'adbar', 'footer');

http://media.pragprog.com/titles/cppsu/code/prototype/utility/dollar.js
http://media.pragprog.com/titles/cppsu/code/prototype/utility/dollar-multiple.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=43

$W, BECAUSE ARRAY LITERALS ARE BORING 44

To summarize, the following syntaxes are supported:

$(ID) → extendedElement
$(element) → extendedElement
$(ID|element...) → [extendedElement, ...]

In syntax blocks such as the previous summary, the | (referred to as
the pipe character) describes an alternative, which remains local when
applied to an argument. In the third syntax, you should not read, as
you would on a regular expression, “an ID, or an element and an ID, or
a series of elements.” Instead, you should read “an ID or an element,
followed by one or more arguments that each can also be an ID or
an element, individually.” As for the square brackets and dots on the
return type, this reads “an array of extended elements,” which does not
imply anything about the size of returned arrays; they might contain
any number of items, including 0 or 1.

Hey, who doesn’t like having dollars around anyway?

3.3 $w, Because Array Literals Are Boring

Sometimes, typing string array literals can seem like a study in rigor;
getting all the quotes and commas right seems like a burden to some,
especially if there are numerous elements. Perl developers have long
used the qw() function, and Rubyists are fond of %w. Prototype gives
you $w(), which is slightly different from both these venerable prece-
dents in that it requires you to pass it an actual string, which will be
split based on whitespace:

Download prototype/utility/dollar-w.js

// The hard way
var fruits = ['raspberries', 'pears', 'peaches', 'kiwis'];

// The easy way
var fruits = $w('raspberries pears peaches kiwis');

Because it splits on whitespace, you cannot, obviously, use it when you
have individual elements that contain whitespace. Also, if the passed
string is nothing but whitespace (or is plain empty), you’ll get an empty
array back.

http://media.pragprog.com/titles/cppsu/code/prototype/utility/dollar-w.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=44

$$ SEARCHES WITH STYLE 45

3.4 $$ Searches with Style

This one is quite the power tool. It lets you harvest your DOM and
get elements based on CSS selectors—not just CSS class names, either.
You can use advanced selectors, because $$() features almost the whole
complement specified by CSS 3. Here are a few examples:

Download prototype/utility/dollar-dollar.js

$$('div')
// -> all DIVs in the document. Similar to
// document.getElementsByTagName('div'), although returning a non-live
// Array of extended (as in $'d) elements, instead of a live NodeList
// of (possibly unextended) elements.

$$('#contents')
// -> same as $('contents'), only it returns an array anyway.

$$('li.faux')
// -> all LI elements with class 'faux'

$$('#contents a[rel]')
// -> all links inside the element of ID "contents" with a rel attribute

$$('a[href="#"]')
// -> all links with a href attribute of value "#" (eyeew!)

$$('#navbar li', '#sidebar li')
// -> all list items within the elements of ID "navbar" or "sidebar"

$$('a:not([rel~=nofollow])');
// -> all links, excluding those whose rel attribute contains the word
// "nofollow"

$$('table tbody > tr:nth-child(even)');
// -> all even rows within all table bodies

$$('div:empty');
// -> all DIVs without content (i.e., whitespace-only)

Supported CSS Selectors

To avoid browser compatibility hassles, Prototype has its own CSS
parser code, which means it may well differ from the regular CSS selec-
tor set your browser originally provides. Version 1.6 supports the fol-
lowing selectors:

Type
Tag names, as in div.

http://media.pragprog.com/titles/cppsu/code/prototype/utility/dollar-dollar.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=45

$$ SEARCHES WITH STYLE 46

Descendant
Whitespace between other selectors, as in #a li.

Attribute
The full CSS 3 set is available:

[attr] Is present.

[attr=value] Has a specific value.

[attr~=value] Has a whitespace-separated list containing a value.
Think class= values.

[attr|=value] Has a specific value or starts with it followed by a
hyphen (-). Think language codes.

[attr!=value] Does not have a specific value (note it’s not standard
CSS 3; it’s just there for convenience).

[attr∧=value] Starts with a specific value.

[attr$=value] Ends with a specific value.

[attr*=value] Contains, anywhere, a specific value.

If the value you’re matching against includes a space, be sure to
enclose the value in quotes, as in [title="Hello world!"].

Class
CSS class names, as in .highlighted or .example.wrong.

Child
As in #item1 > a.

Sibling
As in #item1 + p.

Adjacent
As in #item1 ~ p.

:not(. . .)

As in *:not(.critical) or a:not([rel~=nofollow]).

:nth-*
As in tbody > tr:nth-child(even), #dialog > p:nth-child(3n+1), or #intro

> p:nth-of-type(2).

:first-*
As in #intro > h1:first-of-type or #footer > *:first-child.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=46

$A, THE COLLECTION UNIFIER 47

:last-*
As in ul > li:last-child or #article p:last-of-type.

:empty

As in p:empty.

:enabled, :disabled, and :checked

As in input:enabled or input:checked.

Naturally, you can combine these selectors and use multiple combina-
tions as well, as shown in the previous large code example. This can
actually get pretty complex, with stuff like this:

$$('#items td.controls > input[type!="submit"]:not(:disabled)')

However, try to optimize your markup so your CSS-based selections are
as simple as can be. When you find yourself reaching for every ounce
of syntax power in there, you’re probably using something too complex
for your actual needs. . . .

For further details on the exact semantics of these selectors, look up the
W3C Recommendation for CSS 3 Selectors.1 Oh, and in case you were
wondering, the elements are, naturally enough, returned in document
order (and with no duplicates).

3.5 $A, the Collection Unifier

This function is a kind of universal converter that turns just about
anything roughly collection-like (or, if you prefer, “array-compatible”)
into an actual Array object.

When would you need to do that? Well, the occasions are plenty. When
scripting a web page, you often find yourself getting some collection
back from the DOM, usually an implementation of NodeList or HTMLCol-

lection. Or perhaps you’re dynamically exploring the arguments passed
to your function, through JavaScript’s predefined arguments variable.
All of these are not actual arrays (as in, they are not instances of Array),
but they “look like one.” They feature an integer length property, and
they have integer-indexed properties ranging between 0 and length -
1, accessible through the [] operator. You could say such objects are
iterable.

1. http://www.w3.org/TR/css3-selectors/

http://www.w3.org/TR/css3-selectors/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=47

$A, THE COLLECTION UNIFIER 48

OK, so we have several common cases when what we manipulate are
not actual arrays but are iterable. What’s the big deal? Well, you see,
Prototype extends Array. A lot. You can get all the juicy details in Sec-
tion 4.6, Arrays, on page 76, after which it should be abundantly clear
to you just how badly Array trumps any other collection type in town.

To get the feel of it, just look at the following before/after examples:

Download prototype/utility/dollar-a.js

// Using the regular types
var paras = document.getElementsByTagName('p');
for (var index = 0; index < paras.length; ++index)

Element.hide(paras.item(index));
Element.update(paras.item(paras.length - 1), 'Jeez that is verbose');

// The Prototype way (nonextending version, though)
var paras = $A(document.getElementsByTagName('p'));
paras.each(Element.hide);
Element.update(paras.last(), 'This looks better');

Note that if we didn’t mind extending fetched elements as we went, we
could actually change the two lines fetching our paragraphs to hide
them so they become this:

var paras = $$('p');
paras.invoke('hide');

But hey, we were working on $A(), right? Here’s another example with
JavaScript’s automatic arguments local variable in functions:

Download prototype/utility/dollar-a-2.js

// Using the regular types
function showArgs() {

alert(Array.prototype.join.call(arguments, ', '));
}

// The Prototype way
function showArgs() {

alert($A(arguments).join(', '));
}

So, how does $A() go about converting stuff to an actual Array? It’s quite
simple really:

1. null, undefined, and false become an empty array.

2. If the object features a toArray() method, we delegate to it.

3. Otherwise, we assume the object is “iterable.” We then iterate over
it in the usual way to build our actual array.

http://media.pragprog.com/titles/cppsu/code/prototype/utility/dollar-a.js
http://media.pragprog.com/titles/cppsu/code/prototype/utility/dollar-a-2.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=48

$F IS A FIELD EXPERT 49

The nifty thing about this reliance on toArray() is that all objects that
mix in the Enumerable module have one, which makes for cool tricks.
In the following code, we’ll use the $R() function, which we’ll discuss
shortly in Section 3.8, Handling Ranges with $R, on the next page, that
represents a range of values and constitutes a valid Enumerable. This
lets you see a concrete conversion:

Download prototype/utility/dollar-a-tricks.js

$A($R(1, 10))
// -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

// OK, playing with the cool kids now...

var names = ['Amir', 'Arnaud', 'Stéphane', 'Sunny', 'Tobie'];
$A($R(1, names.length)).zip(names, function(a) { return a.join('. '); })
// -> ['1. Amir', '2. Arnaud', '3. Stéphane', '4. Sunny', '5. Tobie']

“A” as in “Amazing!”

3.6 $F Is a Field Expert

$F(fieldElt) → value | [value, ...]

$F() takes a form field (or its ID) and returns the field’s value. Careful:
it takes the ID, not the name (the value of the name= attribute).

Getting the value from a form field sounds like an easy task, but it
isn’t so simple actually. If you’re dealing with a textual field (such as a
<input> with type="text" or a <textarea>), you’re pretty much in the
clear. But radio buttons and checkboxes should yield a value only
when they’re checked, and listboxes rely on a list of options, where
multiple options might be selected. Even when properly detecting the
selected ones, the relevant <option> tags may not have a defined value=

attribute, in which case you should use the text within the opening and
closing tags.

As you can see, the complexity of the algorithm to guarantee you get
the proper value quickly escalates. There are a few discrepancies, too,
between browsers (for instance, Internet Explorer doesn’t observe this
latest rule for listbox options with no value= attribute).

To spare you the trouble of dealing with values in multiple ways or of
having to work around these inconsistencies, $F() handles it all and
returns the properly extracted value:

http://media.pragprog.com/titles/cppsu/code/prototype/utility/dollar-a-tricks.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=49

$H MAKES A HASH OF THINGS 50

• For multiple-selection listboxes, you’ll get an array of values, one
for each selected option. For anything else, you’ll get a single
value.

• For unchecked radio buttons or checkboxes, you’ll get null.

• For anything else, you’ll get a single value.

All actual values are returned as strings, and for listbox options, if the
value= attribute is missing, you get the option’s text.

3.7 $H Makes a Hash of Things

Prototype provides a new kind of object, called hashes, through the
Hash type. We will explore it in Section 10.1, Storing Values in a Hash,
on page 225. Once you start working with hashes, it can get pretty
addictive, so you might find yourself quite often writing new Hash(...).
The $H() function is a convenience shortcut for this.

3.8 Handling Ranges with $R

This is probably a slightly underused function, simply because the
object it relies on (see Section 10.2, Expressing Ranges of. . . Well, Any-

thing You Want!, on page 230) is itself underused. This is simply a
convenience alias over the ObjectRange constructor. No fancy fluff, no
extra features or safeguard. A plain alias. Its most common use is, of
course, for integer ranges:

Download prototype/utility/dollar-r.js

$R(1,5).each(function(n) {
// Gets invoked 5 times, with n from 1 to 5

});

$A($R(1, 7))
// -> [1, 2, 3, 4, 5, 6, 7]

$R(1, 10).findAll(function(n) {
return 0 != n % 2;

})
// -> [1, 3, 5, 7, 9]

Ranges can be very useful things in the appropriate context. You’ll learn
more about them in their dedicated sections.

And that’s it! Those are Prototype’s utility functions. You’ll find yourself
using them over and over again. They’re pretty much ubiquitous, both

http://media.pragprog.com/titles/cppsu/code/prototype/utility/dollar-r.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=50

HANDLING RANGES WITH $R 51

in the library’s source code and in real-world user code. And although
$() and $A() are by far the most popular ones, do not pass over the other
ones; they’re all here for a reason, and they’re all idiomatic Prototype.

Let’s Review What We Learned

Prototype offers a series of utility functions, which are so commonly
used that their names were made as short as reasonably possible: just
two characters (a dollar sign and a letter).

• $() is all over the place, grabbing DOM elements by their id= and
extending them on the fly if need be. It is the key to tapping the
power of Prototype’s countless DOM extensions and does away
with the oh-so-verbose document.getElementById.

• $A() turns just about anything remotely array-compatible into a
bona fide Array, complete with its scores of extended methods
(which we’ll detail in the next chapter). As a special shortcut to
creating an array of no-space strings, $w() splits a single string
into an array of “words.”

• $$() lets us extract parts of our DOM using all the might of CSS 3
selectors, regardless of our browser’s actual CSS support.

Those are the core ones. Prototype also provides more targeted func-
tions:

• $F() extracts the current value, however complex, of a form field.
Remember that it uses the field’s id=, not its name=.

• $H() is the short way of creating hashes, which are slightly en-
hanced associative arrays.

• Finally, $R() creates ranges, which come in handy to iterate over
sequences of values, be they integers, characters, and so on.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=51

Chapter 4

Regular JavaScript on Steroids
Prototype goes to great lengths to make JavaScript development feel
better. Prototype Core loves Ruby. (Who doesn’t? Honestly, give it a seri-
ous try.) That’s why Prototype tries to make JavaScript feel more like
Ruby—so that most common tasks become a breeze and are eminently
readable. Dealing with collections of items (be it for simple iteration,
filtering, transforming, or whatnot), exploring object properties, manip-
ulating strings, or even finally passing methods around without losing
their binding along the way—all of this (and much more!) becomes easy
as pie when using Prototype.

4.1 Generic Object Manipulation

In JavaScript, just about everything is an object: strings, numbers,
functions, arrays, regular expressions. . . . And there is a basic inheri-
tance that makes all objects descend from the fundamental Object type.
Prototype carefully avoids adding anything in Object.prototype, because
this would percolate into every single object, effectively breaking every
legitimate use of the for...in construct. However, Prototype does add a
few methods in the Object namespace that are mainly geared toward
object introspection.

A Fresh Look at for...in

Misconception alert: for...in is not intended to iterate over an array.
That it works (and works only as long as you leave Array’s prototype
untouched) is a mere side effect. Its actual purpose is fairly different. It
is intended to iterate over all the iterable properties and methods of an

object.

GENERIC OBJECT MANIPULATION 53

Native methods (and many native properties) usually do not appear
in a for...in loop because JavaScript does not mark them as iterable.
In an array, for example, only the numerical indices of its cells are
iterable, which creates the illusion that you can use for...in to iterate
over its contents. Unfortunately, our own code cannot mark properties
or methods as “not iterable.” Everything we augment native types with
will show up on such a loop. Because Prototype relies a lot on extending
native types with custom methods, using for...in when it’s not exactly
appropriate starts yielding weird values.

Download prototype/steroids/for_in.js

var arr = ['hello', 'world'];
var props = [];
for (var prop in arr)

props.push(prop);

// Without extensions to Array.prototype:
// -> ['0', '1']

// With Prototype's extensions:
// -> ['0', '1', 'each', 'eachSlice', 'all', ..., 'clone'] (38 items)

Before throwing a vase at Sam Stephenson, remember that just about
every common use case for iteration is covered in a very concise way
by the methods Array gains, either directly or through mixing in the
Enumerable module. Just look at Section 4.6, Arrays, on page 76.

In short, you just need to remember this: for...in is not actually intended

for array iteration. It iterates over all the properties of an object, including

its methods.

If you’re looking for a pure-JavaScript, efficient array iteration, there’s
only one true way:

for (var index = 0, l = array.length; index < l; ++index)
// your code using index here

This is usually regarded as optimum code; it uses local variables,
caches array length (which is useful when, for some reason, the Java-
Script runtime doesn’t), and uses the prefix ++ operator to avoid the
potential cost of uselessly saving the index’s pre-incrementation value.
You can’t go much faster than that, I guess. Yes, it’s a bit more verbose
than the tricks wrapped around it by libraries. But it’s fast, and it’s
correct. It won’t get foiled by extensions to Array.prototype, because it’s
doing exactly what you need. It iterates on the array’s integer-indexed
properties, not all its properties.

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/for_in.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=53

GENERIC OBJECT MANIPULATION 54

Introspecting Objects
Object.inspect(obj) → String
Object.isArray(obj) → Boolean
Object.isElement(obj) → Boolean
Object.isFunction(obj) → Boolean
Object.isHash(obj) → Boolean
Object.isNumber(obj) → Boolean
Object.isString(obj) → Boolean
Object.isUndefined(obj) → Boolean
Object.keys(obj) → [String, ...]
Object.values(obj) → [value, ...]
Object.toQueryString(obj) → String

The keys() and values() methods let you treat any object like a basic
hash (or associative array, if you will). They provide an array of prop-
erty names or of these properties’ values, respectively. The actual order
of the array is not guaranteed, because this implementation relies on
for...in internally, for which the JavaScript specification does not man-
date any particular order. Still, because of this dependence, you will
get all the extensions Prototype provides to the object, as in the second
case in the previous code sample.

Version 1.6 introduces a series of type detection methods all starting
with is. Most of them rely on the typeof operator (isFunction(), isNum-

ber(), isString(), and isUndefined()). One is a convenience shortcut over an
instanceof call (isHash()). Finally, two are a bit more advanced: isArray()
checks the object’s constructor against Array, and isElement() verifies
the object’s nodeType property value (expecting 1, which is the ELEMENT

type). These methods are used extensively in Prototype to help make
the code more expressive (that is, more concise and yet more readable
at the same time); be sure to use them in your own code to reap the
same benefit!

The inspect() method enjoys a loftier status, because it has a wider
impact on the Prototype library. The idea for this method is to provide
the developer with better string representations of objects, mostly for
debugging purposes. The reason behind this is that the default string
representations JavaScript provides are not very useful in quite a few
cases.

For instance, take null or undefined; in many cases, they will amount to
the empty string (such as when passed as arguments or when being
items in arrays), which certainly will not give the developer enough
clues. Arrays will be rendered without their square-bracket delimiters.
Strings also appear without delimiters. This can cause confusion when

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=54

GENERIC OBJECT MANIPULATION 55

Figure 4.1: toString() makes for unhelpful displays.

you want to display something that contains, say, carriage returns or
newline characters, or even just spaces. DOM objects usually get ren-
dered as their interface name (for example, HTMLFormElement). Consider
the following code:

Download prototype/steroids/toString.js

// Assuming a <div> with ID 'navbar' and a 'nonPrint' CSS class...
var data = ["hello\nworld!", false, null, , " ", 42, $('navBar'), "\n"];
alert(data);

On Firefox 2, for instance, this will display as in Figure 4.1.

That’s not very helpful, is it? What Object.inspect() does is this:

1. It renders null and undefined properly (using their names).

2. If the object passed as an argument features an inspect() method,
it delegates to it.

3. Otherwise, it reverts to the bare-bones toString() method (which all
objects have).

The thing is, Prototype provides nice inspect() methods for several types,
both native and custom, namely, String, Array, Enumerable, and Hash.
It is also added to extended DOM elements, letting you obtain a reg-
ular XML tag representation with its id and class attributes, if any.
Because the inspect() implementations for containers recursively call
Object.inspect() on their items, you get as good a representation as pos-
sible.

Converting the previous code to inspect() results in the following listing:

Download prototype/steroids/inspect.js

// Assuming a <div> with ID 'navbar' and a 'nonPrint' CSS class...
var data = ["hello\nworld!", false, null, , " ", 42, $('navBar'), "\n"];
alert(Object.inspect(data));

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/toString.js
http://media.pragprog.com/titles/cppsu/code/prototype/steroids/inspect.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=55

GENERIC OBJECT MANIPULATION 56

Figure 4.2: The wonders of Object.inspect()

This produces a much more usable display, as you can see in Fig-
ure 4.2.

I find such output much more helpful from a debugging standpoint.
Of course, you do not have to use such a kludge as the good ol’ alert().
Depending on your installed browser or extensions, you may have nicer
mechanisms at hand. I, for one, am a big fan of the Firebug1 extension
to Firefox and tend to use its console.log() method (and other debug-
oriented methods in the same object) for such purposes.

Finally, version 1.6.0 added the toQueryString() method for use cases
when you have any regular object and want to serialize it in the URL-
encoded way. This used to be a static method of the Hash class but
didn’t quite make sense there. It’s actually based on its instance-level
namesake in Hash, though.

Cloning and Extending Objects
Object.clone(obj) → newObject
Object.extend(dest, source) → dest

Prototype devotes two methods to the (somewhat technical) task of
cloning objects. By cloning, I mean “producing an object with a shal-
low copy of the original object’s property set.” In short, we start with
an empty object and iterate over all the properties in the original one,
copying them to the new one. This is shallow copying, which means the
properties do not get cloned. We just share references. This is no issue
for simple values, such as strings and numbers, but can be surprising
when properties are themselves custom objects, arrays, and the like.

1. http://getfirebug.com

http://getfirebug.com
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=56

GENERIC OBJECT MANIPULATION 57

Let me illustrate:

Download prototype/steroids/clone.js

var o = {
name: 'Prototype',
version: 1.5,
authors: ['sam', 'contributors']

};
var o2 = Object.clone(o); // Apparently cloning...

o2.version = '1.5 weird';
o2.authors.pop(); // Watch out! Shared reference inside!

o.version
// -> 1.5

o2.version
// -> '1.5 weird'

o.authors
// -> ['sam'] // Ouch! Shallow copy ended up with a shared array!

Therefore, tread carefully with clone(). Also note that several custom
objects in Prototype provide their own clone() method, as does Array,
but this is usually for performance or consistency purposes and does
not involve deep copy.

The last method Prototype puts in the Object namespace is extend(),
which is at the heart of how Prototype extends built-in objects. We
will explore its usage in more depth in Appendix A, on page 391, but
for now, know this: Object.extend() basically simulates a sort of static

inheritance through a one-time copy of all properties (including meth-
ods, remember?) from the source (or parent) object to the destination
(or child) object.

This is used extensively inside Prototype itself to mix in modules, extend
namespaces, and so forth. Actually, Object.clone() is easily defined
thanks to Object.extend():

Download prototype/steroids/extend.js

...
clone: function(object) {

return Object.extend({}, object);
}

...

An important note: do not mistake this method with Element.extend(),
which is much more intricate and is at the heart of Prototype’s DOM

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/clone.js
http://media.pragprog.com/titles/cppsu/code/prototype/steroids/extend.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=57

PROPER FUNCTION BINDING 58

extension machinery. We will explore this one in Chapter 7, Playing with

the DOM Is Finally Fun!, on page 130, but just remember this for now:
Object.extend() simply takes two objects and grafts the second one’s
properties onto the first one. On the other hand, Element.extend() takes
a DOM element (not just any object) that it augments, if necessary, with
all the extensions Prototype provides depending on its actual type (or
tag name, if you prefer).

Miscellanea
Object.toHTML(obj) → String
RegExp.escape(touchyText) → String

The Object.toHTML() method will use the parameter’s toHTML() method
if it exists; otherwise, it will rely on String’s interpret() (which produces
an empty string for null or undefined and relies on native String conver-
sion otherwise). It is mostly used internally for content insertion and
replacement in the DOM extensions, but I mention it here for the sake
of completeness.

As another utility function, RegExp.escape() lets you “defang” text that
you want to use inside a regular expression, with no risk of its contents
altering the expression semantics. Every character in the text that has
meaning in a regex context will be escaped, so you can safely include
it. For instance, RegExp.escape(’Hi. [1] Anyone there?’) yields ’Hi\. \[1\]

Anyone there\?’.

4.2 Proper Function Binding

JavaScript has this particular notion called function binding. The bind-
ing of a function is, essentially, the object to which its this reference
is bound when the function executes. It is a dynamic concept; it is
not statically resolved when the function is defined. It all depends on
the actual execution flow of your code—which chain of function calls
and which objects these functions were called on (be it through the
obj.method() notation or through more advanced JavaScript tricks,
such as the apply() or call() methods), leading to your function eventu-
ally being called.

By default, a function defined outside any explicit object is bound to
the current window object, accessible through the predefined window

variable.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=58

PROPER FUNCTION BINDING 59

You can see this with the following code:

Download prototype/steroids/binding-window.js

function getName() {
return this.name

}

getName()
// -> ''

window.name = 'Demo';
getName()
// -> 'Demo'

Functions defined in a specific object (which I will refer to as methods

from now on) have, quite unsurprisingly, a default binding on their con-
tainer object. It just so happens that JavaScript lets you drop the win-

dow object reference; it’s implicit. So, defining what looks like a “global”
is actually defining in the scope of the window object. This object is the
global scope, in JavaScript.

This is all well and good, but there is one critical gotcha: if the function

invocation does not use its specific object, you lose the binding. The most
common case for this is when you pass a method as an argument to be
invoked later. It then reverts to the default window binding. Just look
at the following code:

Download prototype/steroids/binding-method.js

var CoolObj = {
name: 'Joe the cool object',

getName: function() {
return this.name;

}
};
window.name = '';

CoolObj.getName()
// -> 'Joe the cool object'

function callFx(fx) {
return fx();

}

callFx(CoolObj.getName)
// -> ''

window.name = 'The window';
callFx(CoolObj.getName)

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/binding-window.js
http://media.pragprog.com/titles/cppsu/code/prototype/steroids/binding-method.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=59

PROPER FUNCTION BINDING 60

// -> 'The window'

Now that’s a serious issue. Passing methods around is frequent, espe-
cially in Prototype, where just about every other method accepts an
iterator argument (just look at Enumerable!). To fix this, Prototype gives
Function some love with two new methods (yes, methods on functions;
bear with me here):

bind(thisRef [, arg. . .]) → boundFunction
bindAsEventListener(thisRef [, arg. . .]) → boundFunction

Let us focus on bind() first. The most common usage scenario involves
only the mandatory first argument, which is the object you want to be
bound, at execution time, to the this reference. For instance, using a
variant of our previous example, we get this:

Download prototype/steroids/bind.js

var CoolObj = {
name: 'Joe the cool object',

getName: function() {
return this.name;

}
};

CoolObj.getName()
// -> 'Joe the cool object'

function callFx(fx) {
return fx();

}

callFx(CoolObj.getName.bind(CoolObj))
// -> 'Joe the cool object'

Of course, we do not need to call bind() every time. If we use the bound
version quite a lot (or quite often, as in a loop), it would be wasteful to
do so, too. We’ll be better off binding once and for all and keeping the
bound version on hand for later uses:

Download prototype/steroids/bind-saved.js

var CoolObj = {
name: 'Joe the cool object',

getName: function() {
return this.name;

}
};

CoolObj.getName()

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/bind.js
http://media.pragprog.com/titles/cppsu/code/prototype/steroids/bind-saved.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=60

PROPER FUNCTION BINDING 61

// -> 'Joe the cool object'

function callFx(fx) {
return fx();

}

// WRONG: creates a new bound function on each iteration!
for (var index = 1; index <= 42; ++index)

callFx(CoolObj.getName.bind(CoolObj));

// RIGHT: caches the bound version
var boundGetName = CoolObj.getName.bind(CoolObj);
for (var index = 1; index <= 42; ++index)

callFx(boundGetName);

Prefilling Arguments with bind

Here’s a little-used, albeit cool, extra trick: bind() also lets you prepend
the actual call with specific arguments; whatever arguments will be
provided to the bound version will get appended to the predefined call.
This is technically referred to as partial function application:

Download prototype/steroids/bind-args.js

var CoolObj = {
name: 'Joe',

getCallDef: function() {
var call = 'getCallDef("' + this.name + '"';
var extraArgs = arguments.length > 0

? ', ' + $A(arguments).join(', ')
: '';

return call + extraArgs + ')';
}

};

CoolObj.getCallDef()
// -> 'getCallDef("Joe")'

var boundCall = CoolObj.getCallDef.bind(CoolObj, 1, 2, 3);

function callFx(fx) {
return fx(4, 5);

}

callFx(boundCall)
// -> 'getCallDef("Joe", 1, 2, 3, 4, 5)'

This is pretty useful when you want to pass your method around, pre-
filled with a few arguments. For instance, maybe you have this generic
method that takes a behavior mode string and then one or more ele-

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/bind-args.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=61

YOUR FUNCTIONS ACTUALLY KNOW MORE TRICKS 62

ments to process; you would then want to pass it with a prefilled mode

argument to another part of your script, which would call it only with
the elements to process. Using bind() with the mode value produces
such a “prepared” method wrapper.

That’s it for bind(). By now you’re probably wondering what bindAsEv-

entListener() is about. Well, Prototype provides a unified management
of events in your browser window, which is great. As we’ll see in much
detail in Section 6.1, The Art of Observing Events, on page 112, properly
registered event handler methods take the current event object as their
first argument. But maybe you realized several handlers were very sim-
ilar and refactored them in a single one, which now just needs an extra
parameter or two so it can adjust its behavior slightly. And still you’d
need the event parameter being passed first, as it usually is. That’s
what bindAsEventListener() is for, essentially. It works like bind(), but it
preserves the current event as the first argument. For more examples
and details, look at Section 6.1, Methods as Listeners: Careful with the

Binding!, on page 114.

As a final note, know that failing to pass an argument to bind() makes it
moot (it returns the original function). This behavior was added in Pro-
totype 1.6 to facilitate generic code (that may or may not bind a passed
function depending on whether a context argument was passed), such
as in Enumerable.

4.3 Your Functions Actually Know More Tricks

Proper binding is key to a lot of object-oriented JavaScript code tech-
niques, but Prototype offers even more nifty tools since version 1.6.

Prefilling Arguments
fx.curry(arg...) → Function

Often we find ourselves needing to pass a method around, but we need
to prefill one or more arguments. For instance, we have a split() method
handy, but we’d like to pass it prefilled with ’:’ as a delimiter.

Typically, we’d find ourselves doing something like this:

// WRONG: prefer curry :-)
String.prototype.splitOnColons = function() { return this.split(':'); }
// ...
'1:2:3:4'.splitOnColons()
// => ['1', '2', '3', '4']

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=62

YOUR FUNCTIONS ACTUALLY KNOW MORE TRICKS 63

That’s really too verbose for the need. Enter curry(), whose name comes
straight out of the functional programming world, where this feature
has existed for a long time:

String.prototype.splitOnColons = String.prototype.split.curry(':');

No manual tricks with anonymous functions anymore. Oh, and should
we fail to pass argument (who knows, rough night perhaps?), it will
return the original function untouched, avoiding the cost of an anony-
mous wrapper function. But wait, there’s more.

Executing Later
fx.delay(timeoutInSecs [, arg. . .]) → timeoutHandle
fx.defer([arg. . .]) → timeoutHandle

When dealing with events, DOM updates, or Ajax calls, we often need
to execute a given function, only not just now but in a few moments.
There are actually two use cases here:

• We’re going to have to wait for some time to elapse. Perhaps we
want to trigger some behavior only after a while, such as initiating
a drag on a clickable element only when the mouse button stays
down long enough (which it won’t on a regular click) or delaying
the appearance of a custom tooltip. That’s what delay() is for.

• We just need the browser to take recent DOM updates into ac-
count, perhaps to actually display our indicator before running
our Ajax call. All we need is to give the browser a little breathing
time with no JavaScript load and then get back to our code. Typi-
cally, this is done with a tiny, 10-millisecond delayed execution.
And this is exactly what defer() does.

Here are example calls:

function showQuestion(qId) {
// Show question, move to next in 5 seconds.
loadQuestion.delay(5, ++qId);

}

// Giving the browser time to breathe, and render DOM updates:
$('indicator').show();
postNewComment.defer();

As a cute side note, defer() is just a curried version of delay():

Function.prototype.defer = Function.prototype.delay.curry(0.01);

I told you curry() was nice. . . .

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=63

YOUR FUNCTIONS ACTUALLY KNOW MORE TRICKS 64

Note that on all JavaScript implementations that Prototype supports,
a deferred (or delayed) call will execute only after the current function
completes.

Wrapping and Playing with Arguments
fx.wrap(wrapper [, arg. . .]) → Function
fx.argumentNames() → [String, ...]

Another cool tool is the ability to wrap a function in another wrapper

function (if you’re used to functional programming, that’s a compose
operation). This can spare us a few tricks with anonymous function
and proper binding, too.

The biggest advantage here, probably, is the ability to modify the behav-
ior of existing code, in a way akin to aspect-oriented programming
(AOP), by wrapping the behavioral changes as a layer around the origi-
nal code.

Here’s a nice example that shows how to log all events by piggybacking
on the event extension method (which equips all event objects with the
event-related extended methods, as we’ll see in Chapter 6, Unified Event

Handling, on page 108):

if (Event.extend === Prototype.K) Event.extend = function(x){ return x };
Event.extend = Event.extend.wrap(function(proceed, event){

proceed(event);
if(event.type == 'mousemove') return; // That would slow us down too much
console.log((event.eventName||event.type)+' on ' + event.target +

(event.target.id ? ' #'+event.target.id : '') +
' [' + event.pageX + '/' + event.pageY + ']');

});

The idea is to provide wrap() with your wrapper function (you call wrap()
on the function you want to wrap around). The wrapper function will
be passed, when called, the original function as its first argument, and
“actual” arguments (those passed to your newly wrapped function later
by user code) follow.

Prototype also finds it increasingly useful to examine the names of a
function’s arguments, especially in conjunction with wrapping (we use
it to implement the new inheritance mechanism, for instance). argu-

mentNames() provides a safe way to obtain a list of the argument names
for the function we’re calling it on, so we can implement, say, opt-in
aspects based on specific argument names. Here’s a simple example:

'hello'.gsub.argumentNames()
// => ['pattern', 'replacement']

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=64

NUMBERS 65

“Methodizing”: Functions Looking Like Methods

It often happens that existing features are provided in a traditional,
function-based manner. You’d pass the object being processed as the
first argument, with whatever parameters are needed as later argu-
ments. In an object light, this is not very good form. We would prefer to
be able to invoke the method on the object itself, passing only further
arguments as necessary.

You can see such a duality at work in Prototype’s DOM extensions, with
most features being accessible as functions (for example, by passing
your element, possibly unextended, to Element.update()) but are also
available as methods on extended elements (so you would just call the
element, the update() method).

This recurring pattern is captured by the methodize() extension to func-
tions:

fx.methodize([arg. . .]) → Function

This provides a new function that will, when called as a method on
any given object, pass this object as the first argument to the origi-
nal function. You can also prefill extra arguments by passing them to
methodize().

As an example, consider some of the extensions to Number described in
the next section. The abs(), ceil(), floor(), and round() methods are just
“methodized” versions of their function counterparts in the native Math

object. Here’s the code for it:

$w('abs round ceil floor').each(function(method){
Number.prototype[method] = Math[method].methodize()

});

Isn’t that sweet?

4.4 Numbers

It often comes as a surprise to everyone except JavaScript gurus, but
numbers are indeed objects in JavaScript. Hey, that’s just like in Ruby!

For instance, ECMAScript-compliant numbers (as of the third edition,
which is roughly JavaScript 1.5) feature, among other methods,
toString() and toFixed().

What, you never used those?

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=65

NUMBERS 66

Download prototype/steroids/numbers_ecma.js

Math.PI.toString()
// -> '3.141592653589793'

(42).toString(16)
// -> '2a'

parseInt('42', 11).toString(9)
// -> '51' (51 in base 9 is 42 in base 11)

Math.sqrt(2).toFixed(4)
// -> '1.4142'

(5 / 3).toFixed(6)
// -> '1.666667'

(3.141596).toString()
// -> '3.141596'

And there are more. Still, there are many common needs that still cry to
be addressed. Prototype goes ahead and answers several of them with
a slew of new methods:

abs() → Number
ceil() → Number
floor() → Number
round() → Number
succ() → Number
times(iterator) → sameNumber
toColorPart() → hexString
toPaddedString(length [, radix = 10]) → String

The four first ones are just convenience wrappers around their Math

counterparts, so instead of writing this:

Math.round(n)
Math.abs(n)

. . . we can do this:

n.round()
n.abs()

The second method, succ(), is there only to make Numbers compatible
with object ranges (n.succ() will return n + 1). We already had a peek
at them in Section 3.8, Handling Ranges with $R, on page 50, and we
will get deeper into them in Section 10.2, Expressing Ranges of. . . Well,

Anything You Want!, on page 230. But essentially, this means we can do
stuff like $R(1, 42), which is a range of numbers. In short, this method
is mostly for Prototype’s internal use.

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/numbers_ecma.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=66

NUMBERS 67

Prototype also sprinkles Number with Ruby-flavored powder by provid-
ing it with a times() method, which lets us do zero-based numerical
loops in a rather straightforward and very legible way:

Download prototype/steroids/number_times.js

(5).times(function() { alert("Isn't this annoying?"); });

// With anything that is not a literal number, you don't need the extra
// parentheses:
var count = parseInt($F('soundCount'), 10);
count.times(playSound);

This is just so nice on the eyes. . . . Who would want to get back to
vanilla for loops once this kind of syntax is available?

The fourth addition to Number is specifically geared toward CSS color
string creation. As you probably know, CSS lets you specify colors in a
variety of syntaxes, including reserved color names (such as white), six-
digit hexadecimal color codes (such as #a0cf26), three-digit hexadecimal
codes (for example, #dd0), and long-winded function-style definitions
(something like rgb(220, 220, 0)).

I am fond of the three-digit form myself, which is the shorter syntax and
also makes for “safer” colors (colors that have a better chance of being
properly rendered on devices with less than 24-bit color resolution). The
idea is that, essentially, #rgb is equivalent to #rrggbb. This decreases the
amount of possibilities by a 2

12 factor, leaving you with 4,096 colors.

Still, in order to provide maximum flexibility, toColorPart() goes for the
six-digit game. The idea is that whenever you want to create a hexadec-
imal code for CSS color properties based on computed values in Java-
Script, you have to struggle a bit or write the same boilerplate all over
again. Even the native toString(radix) method doesn’t help you much,
because it will produce a single digit for values less than 16. So, toCol-

orPart() provides a lowercase, two-digit hexadecimal representation of
your number, which is assumed to be an integer in the valid range for
a color component (red, green or blue): 0 to 255.

Therefore, you can deal quite easily with CSS color composition:

Download prototype/steroids/number_toColorPart.js

var rgb = [220, 110, 0];
'#' + rgb.invoke('toColorPart').join('')
// -> '#dc6e00'

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/number_times.js
http://media.pragprog.com/titles/cppsu/code/prototype/steroids/number_toColorPart.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=67

STRINGS 68

Finally, there’s a simple toPaddedString() method that lets you output
a minimum-width, zero-padded representation of your number, in any
radix (or base) you want:

Download prototype/steroids/number_toPaddedString.js

(5).toPaddedString(2)
// => '05'

(42).toPaddedString(4, 16)
// => '002a'

It can be useful, for instance, when formatting dates or times as strings,
because numerical components usually mandate two characters.

4.5 Strings

Strings and arrays are probably the two richest types in native Java-
Script; they come with tens of methods out of the box. But because
they are so essential to just about any kind of processing, there is still
plenty of room for useful improvement. Prototype endows them with
numerous new methods, which I’ll explain for you now, organized by
theme.

Trimming the Fat: strip, stripTags, stripScripts, and truncate

Let’s start with methods aimed at removing extra stuff in the string. All
of those return the new version of the string:

strip() → String
stripScripts() → String
stripTags() → String
truncate([length = 30 [, truncation = '...']]) → String

For starters, strip() is the equivalent of the classic (but missing) trim(); it
chops out leading and trailing whitespace. stripTags() purges any open-
ing or closing tag but does not remove whatever lies between an opening
tag and its closing match. stripScripts() is, in some regard, more surgi-
cal; it strips out any <script> element, with its contents and closing
tag. Finally, truncate() chops text that is longer than its length argu-
ment, which will be used for the final length of the truncated version,
including the truncation text. So if your text is, say, 35 characters long
ending with “too bad really” and you’re truncating to 30 characters,
you’ll end up with “too ba...”.

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/number_toPaddedString.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=68

STRINGS 69

Here is a combined example for these methods:

Download prototype/steroids/string_strips.js

var spacedOutText = ' Hello there!\n';
var markup = '<h1>This is marked up text</h1>\n' +

'<p>See, there are tags.</p>';
var scriptMarkup = '<h1>Okay, still marked up</h1>\n' +

'<p>But this time we have scripts as well.</p>\n' +
'<script type="text/javascript">\n' +
'window.location.href = "http://ooo-bad-sitey.com/scam_me";\n' +
'</script>\n' +
'<p>End of markup.</p>';

var longText = 'This text is sort of too long for my taste, you know.';

spacedOutText.strip()
// -> 'Hello there!'

markup.stripTags()
// -> 'This is marked up text\nSee, there are tags.'

scriptMarkup.stripTags()
// -> 'Okay, still marked up\nBut this time we have scripts as well.\n\n' +
// 'window.location.href = "http://ooo-bad-sitey.com/scam_me";\n\n' +
// 'End of markup.'

scriptMarkup.stripScripts()
// -> '<h1>Okay, still marked up</h1>\n' +
// '<p>But this time we have scripts as well.</p>\n\n' +
// '<p>End of markup.</p>'

longText.truncate()
// -> 'This text is sort of too lo...'

longText.truncate(42)
// -> 'This text is sort of too long for my ta...'

longText.truncate(42, '~')
// -> 'This text is sort of too long for my tast~'

Transformations: sub, gsub, escapeHTML, unescapeHTML,

camelize, capitalize, underscore, dasherize, scan, and succ

Numerous extensions deal with string transformation, which can be
sorted out among three categories: (un)escaping, part-based format-
ting, and search and replace.

succ() → String

The method succ() falls out of these three categories, however, because
its primary use is to make strings range-compatible (make them usable

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/string_strips.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=69

STRINGS 70

with $R() and ObjectRange; for more about this, look at Section 10.2,
Expressing Ranges of. . . Well, Anything You Want!, on page 230).

(Un)escaping HTML

escapeHTML() → String
unescapeHTML() → String

Prototype provides a bulletproof way of escaping HTML, based on using
a DOM trick. Usage is simple: escapeHTML() “defangs” an HTML frag-
ment by replacing whatever is needed in there (mostly opening and clos-
ing angle brackets) with the corresponding HTML entities. Conversely,
unescapeHTML() turns an escaped HTML string into literal HTML.

Here are two demo calls:

Download prototype/steroids/string_escaping.js

'<h1>A nice title</h1>'.escapeHTML()
// -> '<h1>A nice title</h1>'

'<h1>A nice title</h1>'.unescapeHTML()
// -> '<h1>A nice title</h1>'

Part-Based Formatting

camelize() → String
capitalize() → String
dasherize() → String
underscore() → String

Prototype provides many methods taken straight out of Ruby’s (or Rail’s
extension of) String class. These are mostly useful for turning part-based
strings into suitable IDs, CSS class names, and the like.

camelize() turns a hyphenized string into an upper camel string (a
string with no delimiters between parts, but each part starts with an
uppercase letter). Note that only the first characters of each part are
transformed; the rest is left untouched. It is very useful, for instance,
to turn CSS property names into their DOM property names. A usual
method as well is capitalize(), which quite simply capitalizes the first
letter and puts the remainder in lowercase.

The story is more complex on underscore(), which does hail straight
from Ruby on Rails shores and is capable of turning virtually any iden-
tifier name into an underscore-delimited lowercased string. This is more
sophisticated than other methods, because it does not chop the string
in parts based on a single delimiter character. It looks for hyphens
(-) and case changes (from lowercase to uppercase, although it also

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/string_escaping.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=70

STRINGS 71

handles uppercase sequences properly). It actually goes beyond that,
dealing with double colons (which are replaced by slashes), but that is
rather seldom useful in a web page context.

Finally, dasherize() is a simple conversion from underscores to hyphens.
After explaining underscore(), it is a bit of an anticlimax, I’ll give you
that. But combining both lets us easily turn CSS-related DOM proper-
ties into their regular CSS names. Just a thought.

With all those details, I’m sure you’d love a nice dollop of examples.
Here, my treat:

Download prototype/steroids/string_transfos.js

'border'.camelize()
// -> 'border'

'border-style'.camelize()
// -> 'borderStyle'

'border-sTYLE'.camelize()
// -> 'borderSTYLE' // See? Leaving non-initials untouched.

'border-left-color'.camelize()
// -> 'borderLeftColor'

'borderLeftColor'.underscore()
// -> 'border_left_color'

'borderLeftColor'.underscore().dasherize()
// -> 'border-left-color'

'Draft-WHATWebForms1'.underscore()
// -> 'draft_what_web_forms1'

'cool stuff'.capitalize()
// -> 'Cool stuff'

'COOL STUFF'.capitalize()
// -> 'Cool stuff' // Lower-casing the remainder, too.

Advanced Replacing

gsub(pattern, replacement|iterator) → String
interpolate(scopeObject [, pattern]) → String
scan(pattern, iterator) → sameString
sub(pattern, replacement|iterator [, count = 1]) → String

This leaves us with the two more advanced methods: sub() and gsub().
They let us replace one or more occurrences of a given regular expres-
sion with either a template string or the result of calling an iterator

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/string_transfos.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=71

STRINGS 72

function over the match description. This is a bit more advanced than
what the native String.replace() method lets us do (plus, browsers such
as Safari 1.x and early 2.x do not all fully implement replace() yet when
it comes to replace functions).

To properly understand how to use these, you must know how regular
expression matches are provided in JavaScript. Specifically, you do not
get a String back; you get either null (no match) or a MatchData object.
Suffice to say that such an object can be used like an array of matched
groups, with index 0 (zero) being the whole match and indices from
1 up are groups within the match. Remember that in regular expres-
sions, you can group fragments for later reference by enclosing them in
parentheses.

A vanilla2 example should help clarify this:

Download prototype/steroids/string_match.js

var md = 'Hey guys!'.match(/^(.)(\w+)/);
md[0] // -> 'Hey'
md[1] // -> 'H'
md[2] // -> 'ey'

You have two ways of specifying replacements in sub() and gsub()—
either by using a template string or by providing an iterator function.

Template strings use Ruby’s expansion syntax: #{...}, where you would
specify the match object’s property name between the curly braces (if
you need more details right now about template processing, check out
Section 10.4, Templating Made Easy, on page 233). Here, the properties
amount to the numerical indices described earlier.

You can also specify a custom behavior by passing an iterator function,
which will get called with the MatchData instance as an argument and
whose return value will be used as a replacement.

Finally, know that the only difference between gsub() and sub() is that
the former replaces all occurrences, while the latter can replace a spe-
cific amount, defaulting to only the first one.

2. Well, maybe not that vanilla. Perhaps you’re not too keen on reg-
ular expressions. If so, you should gain proficiency; they’re powerful
tools for text processing. Head over to a nice online tutorial, perhaps
something like http://etext.lib.virginia.edu/services/helpsheets/unix/regex.html or
http://jmason.org/software/sitescooper/tao_regexps.html.

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/string_match.js
http://etext.lib.virginia.edu/services/helpsheets/unix/regex.html
http://jmason.org/software/sitescooper/tao_regexps.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=72

STRINGS 73

Finally, there are cases when you just want to detect all occurrences
of a pattern in a string, pass each match to an iterator, and still get
the same string back (maybe to chain calls on other methods). In short,
this is a particular use case for gsub(). Well, this is exactly what scan()
does for you.

This certainly calls for a bunch of example invocations:

Download prototype/steroids/string_subs.js

// OK, emulating a String.replace on a global regex:
'Vowels are bad for you'.gsub(/[aeiouy]/, '-')
// -> 'V-w-ls -r- b-d f-r ---'

// Group-based replacement
'My name is Henry-James'.gsub(/[aeiouy]/, '[#{0}]')
// -> 'M[y] n[a]m[e] [i]s H[e]nr[y]-J[a]m[e]s'

// Escaping #
'Life is short'.sub(/\w+/, '\##{0}\#')
// -> '#Life# is short'

// Coming soon to a monitor near you... String#replace could not
// work here on Safari 1.x and early 2.x.
'Die hard 4 (scripting is back with a vengeance)'.gsub(/\w+/,

function(match) { return match[0].capitalize(); })
// -> 'Die Hard 4 (Scripting Is Back With A Vengeance)'

// How about bracketing the 3 first words?
'Poor sample string gets framed'.sub(/\w+/, '[#{0}]', 3)
// -> '[Poor] [sample] [string] gets framed'

// Let's count the 'o' sequence lengths...
var oCounts = []
'foo boo boz'.scan(/o+/, function(match) {

oCounts.push(match[0].length);
});
oCounts
// -> [2, 2, 1]

The possibilities are limitless. . . .

Version 1.6 also introduced the interpolate() method, which is just a
convenience wrapper over the one-shot creation of a Template object
based on the current string as its template text. See Section 10.4, Tem-

plating Made Easy, on page 233 for details.

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/string_subs.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=73

STRINGS 74

Script Fragments: extractScripts and evalScripts

Prototype-enabled pages often deal with strings containing HTML mark-
up, most often in Ajax responses. You may need to take scripts out of
the markup, holding on to it for later evaluation.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=74

STRINGS 75

Or you may just want to evaluate the scripts in an HTML fragment:

extractScripts() → [JSString, ...]
evalScripts() → [resultValue, ...]

If you need the scripts in a HTML fragment, just call extractScripts().
It returns an array of scripts (without their enclosing <script> tags,
just pure JavaScript). If you want to eval() all the scripts in a fragment,
go directly with evalScripts(). As a bonus, it will return an array of all
the result values for said scripts (a script with no specific return value
yields undefined). By the way, do not mistake extractScripts() with strip-

Scripts() (which strips the scripts out of the fragment and returns the
expurgated fragment).

Converting and Extracting: toQueryParams, parseQuery, toArray,

and inspect

We’ll end this exploration of String extensions with a few methods turn-
ing strings into some other representation of their contents:

inspect([useDoubleQuotes = false]) → String
parseQuery/toQueryParams([separator = '&']) → Object
toArray() → [char, ...]

We already heard about the inspect() method back in Section 4.1, Intro-

specting Objects, on page 54. With strings, it takes an extra customiza-
tion, letting you bracket its text with either single quotes (the default)
or double quotes. It basically escapes backslashes, special characters
such as tabulations and carriage returns, and the proper quote type
within the string.

If you want to handle a String like an Array of characters, you can go
with toArray() (and therefore, get concise with $A()).

Finally, Prototype provides String with a URL-related decoding method,
aimed at turning the query string part of a URL (lengthy stuff like
name=john&text=cool%20stuff&show=yes) into a set of properties. You can
even use it on strings that are not quite query-string-like and use
another delimiter than the ampersand (&) simply by passing an alter-
native delimiter (which can very well be longer than a single character).
Also note this method is aliased, making it available under two names.
Use whichever suits you best: parseQuery() or toQueryParams().

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=75

ARRAYS 76

The result is an anonymous object whose properties mirror the param-
eters in the query string. If multiple parameters share the same name,
there is only one property, and its value is an array of parameter val-
ues. Of course, proper decoding is done on both parameter names and
parameter values, thanks to the native decodeURIComponent() method.

As a final usage note, be aware that an anchor (the trailing #... part,
which usually refers to an id= or name= attribute within the document),
if present, is ignored.

Here are a few example calls for these methods:

Download prototype/steroids/string_convs.js

'Sam Stephenson\nThomas \'madrobby\' Fuchs'.inspect()
// -> "'Sam Stephenson\\nThomas \\'madrobby\\' Fuchs'"

'Sam Stephenson\nThomas \'madrobby\' Fuchs'.inspect(true)
// -> "\"Sam Stephenson\\nThomas 'madrobby' Fuchs\""

'hello'.toArray()
// -> ['h', 'e', 'l', 'l', 'o']

$A('hello')
// -> ['h', 'e', 'l', 'l', 'o']

var query = '?login=tdd&age=29&country=FR';
query.parseQuery()
// -> { login: 'tdd', age: '29', country: 'FR' }

Searching for Contents: startsWith, endsWith, and include

These are three no-brainer methods that just let you do away with any
roundabout use of indexOf():

endsWith(string) → Boolean
include(string) → Boolean
startsWith(string) → Boolean

Usage is pretty self-explanatory. . . . I don’t think you need an example
of those, do you?

4.6 Arrays

Arrays are already resourceful objects in native JavaScript. They are
endowed with a fair amount of methods, the most common ones prob-
ably being push(), concat(), join(), pop(), and shift(). If your eyes are

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/string_convs.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=76

ARRAYS 77

Playing Nice to the Latest JavaScript

Prototype goes out of its way to smooth things over with
recent JavaScript versions, starting with 1.6.

• It homogenizes its API extensions to those proposed by
official JavaScript (for example, it features aliases such
as filter() and every() over array methods it originally
calls select() and all()).

• It relies on native implementations of its features when-
ever possible for performance reasons (for example,
the enumeration of arrays will use the native forEach()
when present).

goggling just now, I advise you to take a look at Array again, such as at
DevMo3 or W3Schools.4 Still, there is much room for improvement.

In Prototype, arrays are probably the richest objects of all. First, they
mix in the Enumerable module, which brings in a host of great methods,
as we will see in Chapter 5, Advanced Collections with Enumerable, on
page 88. Second, they get an extra load of extensions, which we are
going to discuss now. The net result is simple; arrays in Prototype are
very much more powerful than you would expect. They do feel like they
are on steroids!

As was the case for String, the sheer amount of new methods is better
reviewed in categories. Do remember that this section alone does not
account for all that Prototype brings to arrays. At the time of this writ-
ing, arrays have no less than 35 outward-facing5 extra methods, either
through Enumerable or specifically for Array, thanks to Prototype. Factor
in the native methods described in JavaScript 1.5, and arrays feature
a whopping 47 “public” methods. . . .

Enumerating an Array

As Array mixes Enumerable in, it obviously features its cornerstone
each() method. I just want to make it perfectly clear (although it is fairly

3. http://developer.mozilla.org/en/docs/JavaScript

4. http://w3schools.com/js/js_obj_array.asp

5. That is, designed for public use, as opposed to internal use.

http://developer.mozilla.org/en/docs/JavaScript
http://w3schools.com/js/js_obj_array.asp
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=77

ARRAYS 78

evident) that iteration happens in increasing numerical index order,
from 0 (zero) to length - 1.

However, there is the question of sparse arrays. Sparse arrays are
arrays where you manually assign values to nonadjacent indices, some-
thing like this:

var a = [];
a[0] = 'foo';
a[10] = 'bar';

Using a regular fast loop, you would iterate over the “missing” indices
(1 to 9), with undefined values. But starting with version 1.6, Prototype
leverages the native forEach() method in JavaScript arrays when it is
available (recent enough JavaScript version), and this method will not

iterate through undefined indices. You’ll get index 0 for foo and index 1
for bar.

The thing is, using sparse arrays is using arrays instead of hashes
(which, in JavaScript, are any literal object). Arrays are designed for
sequential, integer-based indexing—not sparse population, which is
what hashes are for. So when you find yourself playing with sparse
arrays, either convert to a hash or explicitly define the missing indices.
Here’s the hash version, on which enumeration iterates only on the
defined properties:

var a = {}; // Note the curly braces instead of square brackets
a[0] = 'foo';
a[10] = 'bar';

However, I should mention that property iteration order is undefined
in JavaScript; it is essentially browser-dependent. One browser may
go 0 and then 10, and another one may go 10 and then 0—there’s no
guarantee. It’s usually no big deal, though. If worse comes to worst, you
can grab the keys, sort them, and iterate on the sorted list.

As of Prototype 1.6, if the native JavaScript method forEach() is avail-
able on arrays, it is used instead of manual iteration.

Transformations: clear, compact, flatten, intersect, reverse,

reduce, uniq, and without

Prototype introduces many methods to specifically alter the contents,
or even the structure, of an array:

clear() → emptiedArray
compact() → newArray
flatten() → Array

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=78

ARRAYS 79

intersect(Array) → Array
reduce() → Array | singleValue
reverse([inline = true]) → Array
uniq([sorted = false]) → Array
without(value...) → Array

Most of these methods are easy to understand and use. A few deal
with removing unwanted elements: clear() removes them all, return-
ing the original array, now empty; compact() returns a new version
exempt of any null or undefined element; intersect() returns a new set
of the elements that exist both in the current array and in the one
passed as a parameter (using the === operator for comparisons);6uniq()
returns a new version devoid of any duplicate, while retaining the orig-
inal order; finally, without(value...) returns a new version purged of any
of the passed arguments.

If you call uniq() on a large array that is already sorted, tell it so. It’ll
work in linear time instead of quadratic time, resulting in a significant
performance boost.

A common operation when dealing with recursively built arrays is flat-

ten(). As its name implies, it takes an arbitrarily nested array and
turns it into its “flat” (linear) equivalence, using depth-first traversal;
check the next example code for a demo. Another structural method
is reduce(), which leaves multiple-element arrays untouched but turns
single-element arrays into their unique element. Imagine gathering all
the values for a given form field name; if you end up with only one
value, as will most commonly be the case, you want to spare external
code the need to index your result with [0]. You could use reduce() on
the array of values you got from the initial collection process.

Finally, reverse() lets you reverse the contents of an array. Unless you
explicitly pass false as its optional inline argument, it will reverse the
array itself. Otherwise, it clones the original array and reverses the
copy. In both cases, the reversed array is returned. As an interesting
note, reverse() exists, strictly inline, as a native method for JavaScript
arrays. Prototype replaces it with this version that lets you choose
whether you want inline reversal, which delegates to the native one
unless you need to leave the original array untouched.

6. Beware: it starts by using uniq() on the current array, which may have performance
impacts as discussed in the next paragraph.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=79

ARRAYS 80

Theory is good but is no substitute for actual code:

Download prototype/steroids/array_transfos.js

var easy = [42, 'Hey', NaN, 'fellas', null, "What's up?"];
var harder = [42, ['Hey', [NaN], 'fellas'], null, [[["What's up?"]]]];

easy.reverse()
// easy: ["What's up?", null, 'fellas', NaN, 'Hey', 42]
easy.reverse(false)
// -> [42, 'Hey', NaN, 'fellas', null, "What's up?"]
// easy: ["What's up?", null, 'fellas', NaN, 'Hey', 42]

var easy2 = harder.flatten()
// -> [42, 'Hey', NaN, 'fellas', null, "What's up?"]

easy2 = easy2.without(NaN, 'fellas').compact()
// -> [42, 'Hey', NaN, "What's up?"] // Remember NaN != NaN...

easy2.clear()
// easy2: []

[].reduce() // -> undefined
[1].reduce() // -> 1
[1, 2, 3].reduce() // -> [1, 2, 3]

[1, 2, 3, 7, 2, 5, 7, 4, 8].uniq()
// -> [1, 2, 3, 7, 5, 4, 8]

Conversions: from and inspect
Array.from(iterable) → Array
inspect() → String

If you fail to see the difference between Array.from() and the $A() utility
function, it is because there is none. These are aliases, and the latter
form is simply the preferred one, thanks to its conciseness. See Sec-
tion 3.5, $A, the Collection Unifier, on page 47 for full details on how
Array.from() works.

We already discussed inspect() methods, particularly in Section 4.1,
Introspecting Objects, on page 54. The Array version produces a string
of the form [item1, item2... itemN], using Object.inspect() on each item.
Here are a few examples:

Download prototype/steroids/array_convs.js

Array.from === $A
// -> true

Array.from('hello')
// -> ['h', 'e', 'l', 'l', 'o']

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/array_transfos.js
http://media.pragprog.com/titles/cppsu/code/prototype/steroids/array_convs.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=80

ARRAYS 81

$A({0: 'What kind', 1: 'of twisted', 2: 'example is this?', length: 3})
// ['What kind', 'of twisted', 'example is this?']

[42, 'hello', Number.POSITIVE_INFINITY, []].inspect()
// -> "[42, 'hello', Infinity, []]"

Extractions: first, last, and indexOf

Prototype provides a few extra methods to quickly get at specific ele-
ments in an array:

first() → value
indexOf(value) → position
lastIndexOf(value) → position
last() → value

We often need to get at the first, or last, element of an array. Although
writing arr[0] is certainly easy enough, arr[arr.length - 1] leaves a bitter
taste. This is why Prototype introduces first() and last(), whose names
are self-explanatory. Note that on empty arrays, they yield undefined.

Another fairly common need is to determine whether an element exists
in an array and where it is. Mere presence is better addressed by the
include() method mixed in from Enumerable, but actual position can be
obtained by indexOf(), which encapsulates the all-too-common numer-
ical loop over a == operator. In the usual fashion, it returns -1 if the
element is not found and otherwise returns the index of its first occur-
rence. Note that because it uses == instead of ===, you must be careful
about equivalences, such as 0 == false == ” and null == undefined. If a
value may be present multiple times, you may want to differentiate
between its first and last positions. Use lastIndexOf() for the latter case.

Here are a few quick lines to get the hang of these simple methods:

Download prototype/steroids/array_extracts.js

[].first()
// -> undefined

[1, 2, 3].first()
// -> 1

[].last()
// -> undefined

[1, 2, 3].last()
// -> 3

['Hey', 'fellas', "What's up?"].indexOf('fellas')
// -> 1

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/array_extracts.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=81

FULL-SPECTRUM JSON SUPPORT 82

['Hey', 'fellas', "What's up?"].indexOf('Fellas')
// -> -1 (String == String is case-sensitive)

[0, 1, 2, 3].indexOf('')
// -> 0 (0 == '')

Optimizations: clone, size, and toArray

Sometimes code exists in a generic fashion that could be optimized
locally for Array. Prototype usually takes the smart road and introduces
local optimizations or type-specific variants.

clone/toArray() → newArray
size() → Number

The clone() method is not an override of a mixed-in method but pro-
vides a type-specific alternative to the slower Object.clone() method
discussed in Section 4.1, Cloning and Extending Objects, on page 56.
It basically relies on the native concat() method.

Aliasing toArray() over clone() does override the toArray() method mixed
in from Enumerable, and this is a good thing: Enumerable’s version is
significantly slower, because it requires manually iterating over all the
elements (because of its generic nature).

Finally, size() also overrides the mixed-in version, which required prior
array conversion, something that would, on actual arrays, be utterly
unnecessary, not to mention wasteful. It simply uses the array’s native
length property.

These methods are straightforward enough that I believe there is no
need for example code here. If you insist on seeing code, just look at
the generic versions of toArray() and size() in Chapter 5, Advanced Col-

lections with Enumerable, on page 88.

The Case of Opera and concat

As an interesting note, by November 2006 Opera did not implement the
native concat() method properly. This was noticed by Thomas Fuchs,
who tweaked Prototype so that it now replaces (on Opera only) the
native version with a “guaranteed” one.

4.7 Full-Spectrum JSON Support

Version 1.5.1 introduced full support for JSON, thanks to the tireless
efforts of Tobie Langel.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=82

FULL-SPECTRUM JSON SUPPORT 83

Joe Asks. . .

Hang on. . . What’s This JSON Thingy?

JSON stands for JavaScript Object Notation. It’s a simple rep-
resentation of any object as text using only standard Java-
Script syntax for literal values (objects, arrays, strings, num-
bers, booleans, and so on).

It was formalized by Douglas Crockford, noted JavaScript
guru. The specification is available at http://json.org.

The major advantage of JSON is that it’s trivial to produce
and parse in JavaScript, no matter how rich and structured
the information may be. This makes it a tasty format for
exchanging complex information with a server through, say,
Ajax. It’s rapidly becoming prevalent over XML in this use
case.

The resulting API is as follows:

Object.toJSON(obj) → String
array.toJSON() → String
date.toJSON() → String
hash.toJSON() → String
number.toJSON() → String
string.toJSON() → String
jsonString.evalJSON([sanitize = false]) → Object

Converting Any Object to JSON

The generic way of turning a JavaScript value into its JSON representa-
tion is to call Object.toJSON(), passing it the value. It honors the JSON
serialization mechanism, which basically means the following:

• Functions, DOM elements, undefined, and exotic stuff7 are ignored.

• null and booleans are represented literally.

• If the object features a toJSON() method, it is used; Prototype does
equip all relevant types (see the API block in the prior section)
with appropriate toJSON() methods. It even equips Date with one

7. For instance, in Internet Explorer, objects that are accessed across a COM+ bridge,
which makes dear old Internet Explorer’s typeof burp the nonstandard ’unknown’ value.

http://json.org
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=83

FULL-SPECTRUM JSON SUPPORT 84

serialization method, which uses a format akin to W3DTF (for
example, 2007-04-29T22:53:49).

• Otherwise, the object is manually serialized, iterating over its
properties and using Object.toJSON() on each one, in a recursive
fashion.

Here’s a small example:

Download prototype/steroids/json_serializing.js

var undef;
Object.toJSON(undef)
// => ''
Object.toJSON(null)
// => 'null'

var doudou = { first: 'Élodie', last: 'Jaubert',
birthDate: new Date(1980, 9, 29), // 0 == January
gang: ['Camille', 'Clotilde', 'Diane'],
getJob: function() { return 'Chef du monde' },
blond: false

};
Object.toJSON(doudou);
// (single-line value, wrapped here, assuming we're GMT+1 in Fall)
// => '{"first": "Élodie", "last": "Jaubert",
// "birthDate": "1980-10-28T23:00:00Z",
// "gang": ["Camille", "Clotilde", "Diane"], "blond": false}'

Converting a JSON Representation to an Object

Turning a JSON text into actual JavaScript objects (an arbitrarily com-
plex object, which can be regarded as a tree of objects, basically) is done
through the new evalJSON() method added to String. This simply returns
the resulting object, which you can then use as any vanilla JavaScript
object.

Here’s a bit for taste:

Download prototype/steroids/json_deserializing.js

'[1, 2, 3]'.evalJSON()
// => [1, 2, 3]

var doudou = '{"first": "Élodie", "last": "Jaubert"}'.evalJSON();
doudou.first
// => 'Élodie'
doudou.last
// => 'Jaubert'

http://media.pragprog.com/titles/cppsu/code/prototype/steroids/json_serializing.js
http://media.pragprog.com/titles/cppsu/code/prototype/steroids/json_deserializing.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=84

FULL-SPECTRUM JSON SUPPORT 85

JSON and Security

Prototype offers two features regarding JSON security.

The first one is JSON sanitizing. It will validate that the JSON text fol-
lows the accepted syntax and does not contain any attempt at tricking
the JavaScript evaluator into undesirable processing (for example, dis-
closing sensitive information). You can enable it by passing true as an
argument to the evalJSON() method. If you’re using an Ajax requester
or updater (see Chapter 9, Ajax Has Never Been So Easy, on page 186),
there’s a sanitizeJSON option that lets you request this for automatic
JSON evaluation.

The second one lets you wrap JSON data with special “filter” text that
aims to defeat JavaScript hijacking, a recently discovered security hole.8

The default filter, represented by the Prototype.JSONFilter regular expres-
sion, has you start with /*-secure- and finish with */ (with allowed
whitespace after that). Such a wrapper is automatically stripped by
evalJSON().

Still, these are by no means silver bullets. They provide a rough security
improvement, but as with any data format that can contain active code
and can go through an eval()-like call, you should be extra careful about
the reliability and security of your JSON exchanges.

So, What Did We Learn Here?

We sure covered a lot of ground in this chapter: Prototype’s augmen-
tation of native JavaScript capabilities and types is quite impressive.
Let’s take a minute to recap the main points we’ve gone through:

• The for. . . in loop is not intended to iterate over arrays; it iterates
over an object’s properties. We should not use it to go through an
array’s integer-indexed values and should rely on a regular loop
or a prebaked enumeration instead.

• Most type detections (for example, whether something is an array,
a string, a function. . .) are straightforwardly available as Object.

is...() methods.

8. For all the details, read up on it at http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf.

http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=85

FULL-SPECTRUM JSON SUPPORT 86

• Numbers are actual objects, and they are replete with cool meth-
ods, either from native JavaScript (such as toFixed()) or thanks to
Prototype extensions (such as ceil() and toPaddedString()).

• Strings gain a lot of mojo with Prototype, especially when content
transformation is concerned. Stripping, replacing, splitting, and
converting to and from syntaxes and URLs—it’s all there for the
taking!

• Arrays are even more powerful; already well-endowed by native
JavaScript, they become über-collections thanks to Prototype,
with close to 50 public-facing methods. Thanks to method chain-
ing (calling a method straight from the result of another one), we
can produce mighty transformations in a concise way.

• Function binding (what this refers to when the function actually
runs) is an important issue often unknown to or misunderstood
by web developers. Prototype provides a nifty bind() method that
lets us not only guarantee context but also prefill arguments.

• When it comes to function tricks, we’re actually well stocked.
curry() provides partial application (prefilling part of the arguments
of a function and producing a new function out of it); defer() and
delay() let us schedule the execution of a method call for later;
finally, wrap(), argumentNames(), and methodize() open up a large
field of dynamic function analysis and usage.

• Prototype now has excellent support for JSON, the JavaScript
Object Notation.

Neuron Workout

Here are a few questions to help you flex these fresh scripting muscles:

• What’s the technical reason a for. . . in loop on an array will go
berserk when you’re using Prototype?

• What happens to this when you attempt to bind an already-bound
function?

• When should you use curry() instead of bind()?

• When, at the earliest, will a delay()ed function run? Is this also
true of defer() red calls? Why?

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=86

FULL-SPECTRUM JSON SUPPORT 87

• What situations (outside of debugging) can you think of that would
find argumentNames() very useful?

• Why can we write Math.PI.toFixed(4) but must add parentheses in
(240).toColorPart()?

• After a call to stripTags(), do we still have the contents of <script>s
in the string?

• What happens if we pass sub() a RegExp with a global flag (for
example, /test/g)?

• How could we use without() to strip from an array all the values

from another one without resorting to a form of loop?

“But Wait! There’s More!”

At this point, you must be beginning to realize just how much improve-
ment Prototype manages to pack into such a small library. Vastly im-
proved strings and arrays, class-based element selection, properly
bound functions, debug-oriented string representations. . . it is quite a
feat, indeed. Yet there is much, much more to discover and marvel at.
And the next step on this journey is about the new objects and modules
Prototype brings to the mix.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=87

By relieving the brain of all unnecessary work, a good

notation sets it free to concentrate on more advanced

problems.

Alfred North Whitehead

Chapter 5

Advanced Collections
with Enumerable

OK, this is it. This, dear reader, is the mother lode—one of the true cor-
nerstones on which the power of Prototype is built. This is the module
that provides many an object type with no less than 27 new methods,
which address just about any common collection manipulation need,
from filtering to sorting to transforming to grouping to. . . .

This method set is, most important, mixed into Array; with Prototype, all
your arrays have these new methods. Of course, anything easily con-
vertible to an array (through $A(), such as DOM NodeLists, for instance)
also gets the prize. With Prototype, arrays become this super collection
type that features just about everything you need.

Many other types also mix Enumerable in, but you’ll use that aspect less
often. I’ll make sure to remind you of this mixing in when we hit those
types in later chapters.

5.1 The Core Method: Iterating with each

each(iterator [, context]) → enumerable

At the heart of Enumerable lies each(), the fundamental iteration
method. This is the one that actually relies on the host type providing
an _each() method to implement the raw iteration algorithm (a techni-
cal detail we’ll cover in Section 5.8, Which Objects Can Mix Enumerable

In?, on page 105). So, what is the added value of each()?

THE CORE METHOD: ITERATING WITH EACH 89

Well, it takes care of all the extra fluff:

• It makes sure the iterator you pass gets invoked with two argu-
ments: the current item and the current index in the iteration
(starting at zero).

• It handles the special $break exception your iterator may use to
short-circuit the iteration loop.

Indeed, whatever iterator you pass to each(), when invoked upon every
iteration, gets not only the current item but also the numerical index
for the current iteration (this lets you for instance, distinguish between
first item and later items). Just look at the following code:

Download prototype/new/enumerable_each.js

// Alerts 'one', 'two', then 'three'
['one', 'two', 'three'].each(function(s) {

alert(s);
});

// Alerts '0: hello' then '1: world'
['hello', 'world'].each(function(s, index) {

alert(index + ': ' + s);
})

We’ll get to the context parameter in a moment, but there are a few
things I’d like to explain first, which are generally more useful.

Short-Circuiting Enumerations

With vanilla loop constructs (such as for or while), you can use two
short-circuit instructions: continue skips the remainder of the loop body
and goes over to the next iteration (if any), while break terminates the
loop altogether. Such instructions, or their equivalents, are found in
many languages (such as C/C++, Java, C#, and Delphi).

What seems to be a problem here is that we do not use vanilla loops;
we use each()! So, how can we obtain the same kind of functional-
ity? Well, quite easily. We can skip the remainder of the current itera-
tion by simply returning from the iterator function, using return as the
Gods of Code intended us to use. However, there is no such straight-
forward substitute for break. That is why Prototype introduces a spe-
cific exception constant, named $break. Just throw it from your iterator,
and each() will automatically catch it, cleanly terminate the loop, and
return normally.

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_each.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=89

THE CORE METHOD: ITERATING WITH EACH 90

Whatever Happened to $continue?

Originally there were two exception constants related to iter-
ation short-circuits: $break and $continue. However, the latter
can be replaced by a simple return, which happens to yield
much better performance.

This is why, starting with version 1.5.1, $continue got kicked out
of Prototype. Use return instead!

Here’s a small code example for this:

Download prototype/new/enumerable_shortCircuits.js

// This could be done better with an accumulator using inject, but humor me
// here...
var result = [];
$R(1,10).each(function(n) {

if (0 == n % 2)
return;

if (n > 6)
throw $break;

result.push(n);
});
// result -> [1, 3, 5]

each Underlies Most Other Enumerable Methods

Because each() is the fundamental iteration mechanism, it forms the
basis of most other methods in Enumerable. Whatever need these ad-
dress, they always need to iterate over some or all of the items in the
collection. This means you can also use return and the $break exception
in the iterators you pass to these methods (although you’d better know
what you’re doing, because short-circuiting predefined algorithms may
yield results you hadn’t expected).

Currently, the only methods not relying on each() are eachSlice() and
inGroupsOf(), which makes sense, considering their job is to work with
groups of items instead of single items.

Enumeration Context

Starting with Prototype 1.6, every Enumerable method has a new, final
context parameter. This was introduced in order to mimic JavaScript

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_shortCircuits.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=90

GETTING GENERAL INFORMATION ABOUT OUR COLLECTION 91

1.6+ behavior when necessary. This parameter is quite simply the bind-
ing to be used for the execution of your iterator functions. If the iterator
you pass is already bound (using bind()), this last argument is useless.
But if your iterator function is not specifically bound, you can ask it
to be by passing its bound object (the object to which this will refer
within the iterator function) as the context argument to your Enumer-

able method.

When the method you use is not provided directly by JavaScript 1.6+,
it won’t be any faster than manually binding the iterator. It may be a
tad more concise, though:

items.all(function(item) { ... }.bind(obj))
// vs.
items.all(function(item) { ... }, obj)

When the method you use is a native one, using this argument will be
much faster than manually binding the iterator (you’ll save the cost of
the wrapper anonymous function created by bind(), at every turn of the
loop).

I will not repeat this final context argument on the signatures of each
Enumerable method. That would be pretty verbose and likely to distract
from each method’s specific purpose. Just know it’s there every time if
you need it.

5.2 Getting General Information About Our Collection

The first set of methods we’ll look at (each() doesn’t count. Come on.
A one-method set?) is about quickly checking simple facts about our
elements, including whether any or all of them suit our needs, whether
an element is there, or how many elements there are:

all/every([iterator = Prototype.K]) → Boolean
any/some([iterator = Prototype.K]) → Boolean
include/member(value) → Boolean
size() → Number

The all() and any() methods are more and more common in collec-
tion libraries. In Mozilla browsers, native JavaScript arrays actually
feature them already, although under the names every() and some().
They’re likely to be standardized in JavaScript 2.0 (ECMAScript, 4th
edition, due in 2007). To help smooth over runtime differences, Proto-
type includes aliases for them when needed, starting with version 1.6.
But because we need to support $break for now, we override with our

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=91

GETTING GENERAL INFORMATION ABOUT OUR COLLECTION 92

Joe Asks. . .

What Is This Prototype.K Thing?

It’s an identity function, which simply takes its first argu-
ment and returns it untouched. It’s very useful to Enumerable,
because it lets most methods make the iterator argument
optional. Either you pass in your own element processing or
it will use the raw elements, without having to use two sepa-
rate algorithms internally.

Prototype.K() is part of a few boilerplate functions described
in Section 10.5, Boilerplate Functions, on page 238.

own versions for now. Anyway, these two methods let us verify that
all, or at least one, of the elements satisfy a given condition, which we
express in the iterator. The iterator function is then a predicate, that is,
a function that returns a boolean information about its argument (for
example, “no, this argument is not greater than 10”).

It is possible not to pass iterators to these two methods, in which case
they use the elements themselves as booleans. If you are fuzzy on Java-
Script boolean equivalence, here it is: null, undefined, false, 0, NaN (Not a
Number), and the empty string are all equivalent to false. Anything else
is equivalent to true.

Here are a few example uses:

Download prototype/new/enumerable_quickChecks.js

// Are there only numbers in there?
[1, 2, 3, '4', 'hello'].all(function(item) {

return 'number' == typeof item;
})
// -> false (ticks on '4', stops right there)

// Only higher percentiles?
[92, 97, 90, 98].all(function(grade) { return grade >= 90; })
// -> true (kick-ass class!)

var nodes = $('topBar', 'menuBar', 'navBar', 'footer');
// Found any of those?
if (nodes.any())

// whatever...

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_quickChecks.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=92

FINDING ELEMENTS AND APPLYING FILTERS 93

Oh, and in case you’re wondering, both methods obviously stop iterat-
ing internally as soon as possible: all() will not bother checking ahead
once it encounters an item that fails the predicate, and any() is satisfied
as soon as an item passes the test.

Then we have the aliased duo with include() and member(). As always
with aliases, just pick whichever feels more natural to you. It’s all about
your comfort. The names are self-explanatory anyway. They just let you
know whether a given value is among the elements. It relies on lenient
comparison (that is, using == instead of ===), which can be surprising
if you don’t pay attention to details. Finally, size() obviously returns the
number of elements in the collection.

Here’s a final series of example calls to get things straight:

Download prototype/new/enumerable_quickChecks.js

$R(1, 20).include(12)
// -> true
$R(1, 20).include('20')
// -> true (20 == '20')
$A(document.childNodes).member(document.body)
// -> false (not so fast, son!)
$R(5, 20).size()
// -> 16

5.3 Finding Elements and Applying Filters

One of the most common usage patterns over a collection of elements is
finding stuff, or filtering the contents to retain only the relevant items.
In this area, Enumerable comes with a varied set of methods, catering
to just about every common need:

detect/find(iterator) → firstElement | undefined
filter/findAll/select(iterator) → Array
grep(pattern [, iterator = Prototype.K]) → Array
partition([iterator = Prototype.K]) → [trueItems, falseItems]
reject(iterator) → Array

The find() method (and its detect() alias) searches for the first element
that matches the criteria expressed by the iterator you provide. That
is, it returns the first element in the collection for which your iterator
returns true. If no element lives up to the test, it doesn’t return any-
thing, which means it returns undefined.

If you’re interested in getting all the elements that match your iterator,
use findAll() (or its select() alias) instead. It returns an array of results,

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_quickChecks.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=93

FINDING ELEMENTS AND APPLYING FILTERS 94

which will be empty if no elements matched (I repeat: an empty array,
not undefined). These can be pretty plain to illustrate, so I threw in an
optimal1 JavaScript prime detection, on the house:

Download prototype/new/enumerable_finders.js

// An optimal naive-class (i.e. not requiring a Math Ph.D. and 50+ lines of
// code) deterministic prime detection method, slightly compacted.
function isPrime(n) {

if (2 > n) return false;
if (0 == n % 2) return (2 == n);
for (var index = 3; n / index > index; index += 2)

if (0 == n % index) return false;
return true;

} // isPrime

$R(10,15).find(isPrime)
// -> 11

['hello', 'world', 'this', 'is', 'nice'].find(function(s) {
return s.length <= 3;

})
// -> 'is'

$R(1, 10).findAll(function(n) { return 0 == n % 2; })
// -> [2, 4, 6, 8, 10]

['hello', 'world', 'this', 'is', 'nice'].findAll(function(s) {
return s.length >= 5;

})
// -> ['hello', 'world']

grep() is a rather specialized variant of findAll(). Before version 1.6,
it matched the String representation of elements (the result of their
toString() method) against a regular expression pattern. Since 1.6, it’s
much more flexible. It takes as a pattern (the first argument) any object
that has a match() method and uses this method on each item in turn.
All elements for which match() returns true (or something equivalent to
true) are returned.

This opens the door to a lot of power. Prototype extends RegExp, so it
features a match() method equivalent to its native test() on the item’s
toString() result, so we can use regular expressions, preserving back-
ward compatibility.

1. Well, optimal in the naive class (essentially, a class of solutions not requiring a math
PhD). If you’re geeky enough, check out the AKS primality test, for instance.

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_finders.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=94

GROUPING ELEMENTS AND PASTING COLLECTIONS TOGETHER 95

But Selector (described in Section 7.3, Selector, on page 167), also fea-
tures a match() method that will check that the element you pass to it
does match its CSS 3 selection. And naturally, you can create your own

objects with custom match() logic.

Just like findAll(), it returns all the matching elements in an array.

You can pass an iterator if you need to get a derived value based on the
elements, instead of the elements themselves. Note that this is about
transforming the values being returned, not altering the string repre-
sentation being matched against the pattern.

An example should drive the point home on this:

Download prototype/new/enumerable_grep.js

// Get all strings with a repeated letter somewhere
['hello', 'world', 'this', 'is', 'cool'].grep(/(.)\1/)
// -> ['hello', 'cool']

// Get all numbers ending with 0 or 5!
$R(1,30).grep(/[05]$/)
// -> [5, 10, 15, 20, 25, 30]

// Those, minus 1
$R(1,30).grep(/[05]$/, function(n) { return n - 1; })
// -> [4, 9, 14, 19, 24, 29]

5.4 Grouping Elements and Pasting Collections Together

Sometimes, you want to cut collections into chunks, roughly equal-
sized. Maybe you want to put them into multiple columns or some other
stylish layout. Maybe you can pass only so many at a time to a backend
processing layer (aaaah, those hard-coded, arbitrary limits in legacy
software. . .). Maybe you just feel like it. That’s what inGroupsOf() is for.
As it was coded, it spawned eachSlice(), a nice group-based iterator.

Another grouping issue arises when you need to zip stuff together. Pic-
ture the fly on a pair of trousers: there’s the left side, the right side, and
zip! They’re bound in pairs. Taking two collections and turning it into a
collection of pairs is what zip() does:

eachSlice(size [, iterator = Prototype.K]) → [slice, ...]
inGroupsOf(size [, filler = null]) → [group, ...]
zip(sequence... [, iterator = Prototype.K]) → Array

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_grep.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=95

GROUPING ELEMENTS AND PASTING COLLECTIONS TOGETHER 96

Don’t Waste Time: findAll vs. partition vs. reject

The reject() method does exactly the opposite of findAll() (or
select(), its alias). Instead of getting the elements that match
the iterator, it gets those that do not. It’s fairly simple.

Often enough, your code needs to extract both sets: the
selectees and the rejectees. The dummy way of doing this is
to call the two methods in sequence. This will iterate twice,
calling the iterator twice as much when a single pass could
suffice. So, the smart way in such a context lies with parti-
tion(). It sorts out the elements in two arrays: those that pass
the iterator and those that fail it. Then it returns those two sets
wrapped in another array (remember that JavaScript, like
most languages, lets you return only one thing at a time).

Note that partition() doesn’t require the iterator. Without it,
it will use the elements’ boolean equivalence to sort them
apart.

Here is an example using it:

Download prototype/new/enumerable_partition.js

['hello', null, 42, false, true, , 17].partition()
// -> [['hello', 42, true, 17], [null, false, undefined]]

$R(1, 10).partition(function(n) {
return 0 == n % 2;

})
// -> [[2, 4, 6, 8, 10], [1, 3, 5, 7, 9]]

So, let’s play with inGroupsOf() for starters. It’s actually fairly simple.
It takes the full list of elements we have and arranges them in fixed-
size groups. If there are not enough elements for the last group to be
complete, it gets filled with either null or the second, optional argument.
Naturally, groups are composed in iterating order.

This is actually a special case of generic grouping. You may well not
want to fill up the last group, or you may want to do something alto-
gether different to the groups as they’re created, turning them into
something else. This is why the actual slicing behavior resides in each-

Slice(), which is then reused internally by inGroupsOf(). You pass the
maximum size of each slice and an optional iterator that is used to
transform each slice once they are all defined.

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_partition.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=96

GROUPING ELEMENTS AND PASTING COLLECTIONS TOGETHER 97

For instance, inGroupsOf() uses a simple iterator that fills the slice to
size if needed and returns the updated slice.

I know, I know—that makes quite a few ideas to juggle around and pic-
ture in your head. How about seeing some code? Let’s start by defining
a series of students, with their first names (doesn’t “Élodie” feel lovely?)
and ages:

Download prototype/new/enumerable_slicing.js

var students = [
{ name: 'Sunny', age: 20 }, { name: 'Audrey', age: 21 },
{ name: 'Matt', age: 20 }, { name: 'Élodie', age: 26 },
{ name: 'Will', age: 21 }, { name: 'David', age: 23 },
{ name: 'Julien', age: 22 }, { name: 'Thomas', age: 21 },
{ name: 'Serpil', age: 22 }

];

Then we get our first eachSlice() out to produce groups of up to four
students, with an iterator that will turn the original groups (arrays of
student objects) into name-only groups (arrays of strings):

Download prototype/new/enumerable_slicing.js

students.eachSlice(4, function(toon) {
return toon.pluck('name');

})
// -> [['Sunny', 'Audrey', 'Matt', 'Élodie'],
// ['Will', 'David', 'Julien', 'Thomas'],
// ['Serpil']]

We could actually do this more efficiently by “plucking” the whole set
and then grouping, but, hey, humor me. We’ll do that later with in-

GroupsOf(), anyway.

Still with me? All right, on to the next one, which demonstrates a simple
use with no iterator:

Download prototype/new/enumerable_slicing.js

students.eachSlice(2).first()
// -> [{ name: 'Sunny', age: 20 }, { name: 'Audrey', age: 21 }]

Prototype.K() leaves the groups intact, and we call first() on the resulting
object to grab the first group only. The result is unsurprising (even more
than you think).

Now, here comes the mammoth.

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_slicing.js
http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_slicing.js
http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_slicing.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=97

GROUPING ELEMENTS AND PASTING COLLECTIONS TOGETHER 98

It actually does some heavy lifting here, so there is some code involved:

Download prototype/new/enumerable_slicing.js

Line 1 students.eachSlice(3, function(toon) {
- var maxAge = toon.max(function(s) { return s.age; });
- var leader = toon.findAll(function(s) { return s.age == maxAge })
- .sortBy(function(s) { return s.name; }).last();
5 return { leader: leader.name, members: toon.pluck('name').sort() };
- })
- // -> [{ leader: 'Audrey', members: ['Audrey', 'Matt', 'Sunny'] },
- // { leader: 'Élodie', members: ['David', 'Will', 'Élodie'] },
- // { leader: 'Serpil', members: ['Julien', 'Serpil', 'Thomas'] }]

We use eachSlice() on line 1 to break the students in threes and then
proceed to turn arrays of student objects into something more struc-
tured—an object with the name of the group leader and a list of the
group members’ names. Most of the code in the iterator has to do with
how to appoint the leader. I decided, quite arbitrarily, that the oldest
student should lead, and if many students are at that age, the last one
in alphabetical order should get the job.

So, we start by getting the maximum age on line 2 and then get the
students in the group who are at that age (using findAll() at line 3), and
because there may be more than one, we sort the resulting array by
name (here comes sortBy(), which we will describe later) and pick the
last one. After that, it’s a matter of turning the original group descrip-
tion into the new format we described in the previous paragraph.

We use pluck() again (described later) to restrict objects to a specific
property of theirs and sort the result. Note that if Élodie ends up last
in the members list of her group, it is because it’s actually a lexico-
graphical sort (based on the order of characters in the Unicode table)
instead of a localized sort (in French, Élodie would turn up between
David and Will).

Agreed, after such a hard-core iterator, the illustration of inGroupsOf()
is rather anticlimactic:

Download prototype/new/enumerable_slicing.js

Line 1 students.pluck('name').inGroupsOf(4) {
- // -> [['Sunny', 'Audrey', 'Matt', 'Élodie'],
- // ['Will', 'David', 'Julien', 'Thomas'],
- // ['Serpil', null, null, null]]

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_slicing.js
http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_slicing.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=98

COMPUTING A DERIVED COLLECTION OR VALUE 99

Just note how it fills up the groups to a fixed size, as opposed to a sim-
ilar eachSlice() call, which we saw earlier. This makes it nicely suited to
a variety of purposes, say, rendering elements into a full grid, such as
a calendar.

What zip() does is another matter entirely. It takes one or more sequen-
ces and creates tuples made of one element per sequence (starting with
the one you’re invoking zip() on), walking the sequences in lockstep.
When sequences passed in arguments are too short, we get undefined

at the proper position in the tuple.

This is useful in many cases. For instance, say we need to assign num-
bers to items we have in a sequence:

Download prototype/new/enumerable_zip.js

$w('Prototype script.aculo.us Dojo DWR').zip($R(1, 4))
// -> [['Prototype', 1], ['script.aculo.us', 2], ['Dojo', 3], ['DWR', 4]]

The sequences in arguments can be longer than the one we’re calling
zip() on. Extra items will simply be ignored. Now remember, from the
syntax blocks earlier, that zip() can take an iterator, which will trans-
form the original tuple into whatever we need. We might want to turn
the framework/rank tuples we just made into nice text:

Download prototype/new/enumerable_zip2.js

$w('Prototype script.aculo.us Dojo DWR').zip($R(1, 4), function(tuple) {
return tuple.reverse().join('. ');

})
// -> ['1. Prototype', '2. script.aculo.us', '3. Dojo', '4. DWR']

5.5 Computing a Derived Collection or Value

There are many ways to transform a collection into something else. We
can compute a global value or turn each element into something else
derived from it.

Computing a Global Value
inject(accumulator, iterator) → value

Injection is a pretty well-known mechanism in functional languages but
is less famous in the mainstream. The idea is simple; we start with an
initial value for the accumulator, then iterate over the collection, and,
for each element, call the iterator with the current accumulator value,
the current element, and the index (this last bit is mostly Prototype,

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_zip.js
http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_zip2.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=99

COMPUTING A DERIVED COLLECTION OR VALUE 100

since all iterations pass the index as the final argument of the iterator).
The iterator computes a new value for the iterator and returns it.

Since JavaScript passes object arguments by reference, you can use
complex objects as accumulators whose state evolves across the iter-
ation. For instance, you can fill up an array like this, which is pretty
frequent within Prototype itself. As an example, the flatten() and uniq()
methods added to Array are both implemented using inject() over an
initially empty array, which accumulates values over time.

Injection is commonly used to create internal sums or products:

Download prototype/new/enumerable_inject1.js

$R(1,10).inject(0, function(acc, n) { return acc + n; })
// -> 55 (sum of 1 to 10)

$R(2,5).inject(1, function(acc, n) { return acc * n; })
// -> 120 (factorial 5)

However, we can use it, as I just said, to fill up resultsets (usually
expressed as arrays):

Download prototype/new/enumerable_inject2.js

['hello', 'world', 'this', 'is', 'nice'].inject([],
function(array, value, index) {

if (0 == index % 2)
array.push(value);

return array;
})

// -> ['hello', 'this', 'nice']

// Note how we actually use references:

var array1 = [];
var array2 = [1, 2, 3].inject(array1, function(array, value) {

array.push(value * value);
return array;

});
array2
// -> [1, 4, 9]
array1
// -> [1, 4, 9]
array2.push(16);
array1
// -> [1, 4, 9, 16]

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_inject1.js
http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_inject2.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=100

COMPUTING A DERIVED COLLECTION OR VALUE 101

Turning Each Element into Something Else

This is actually the most common case. Most beginners at Prototype
often commit the venial sin of overusing each() instead of leveraging
these tailor-made methods.

collect/map(iterator) → Array
invoke(methodName [, arg. . .]) → Array
pluck(propertyName) → Array

The collect() method, and its more commonly used alias map(), let you
turn each element into virtually anything! Here’s how it goes: each ele-
ment is passed to your iterator, which computes the value being stored
in the resultset instead of the original element.

Here are a couple examples, using both method names:

Download prototype/new/enumerable_collect.js

['Hitch', "Hiker's", 'Guide', 'To', 'The', 'Galaxy'].collect(
function(s) {

return s.charAt(0).toUpperCase();
}).join('')

// -> 'HHGTTG'

$R(1,5).map(function(n) {
return n * n;

})
// -> [1, 4, 9, 16, 25]

A common use case for collect() is to either call the same method on
each element, with the same arguments, or get the same property for
each element. Then we use either the method call result or the property
value instead of the original element. These two use cases make up,
together, a significant share of collect()-like scenarios.

This is why Prototype provides two specific methods, which should be
preferred over collect(). For the method-calling need, use invoke(). Just
pass the name of the method and whichever arguments you would want
it to get. Combined with the DOM extension mechanism, which equips
all DOM elements with numerous cool methods, this is a potent tool.
For the property-getting use case, go with pluck(), passing in the prop-
erty name. pluck() has a gentle, delicate aura about it that fits perfectly
with the efficient, minimalistic approach it takes, codewise, to perform-
ing its task.

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_collect.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=101

ORDER NOW: GETTING EXTREME VALUES AND USING CUSTOM SORTS 102

Always Remember invoke and pluck

These two methods address two very common needs:

• invoke() calls a specific method on each element and
returns an array of the results.

• pluck() gets a specific property from each element and
returns an array of their values.

When you’re looking for one of these behaviors, you should
forgo collect() and go with the specific method. I mean it.
Why? Because not only does it make your code more con-
cise and yet more readable, it also makes it more efficient.

You see, collect() takes an iterator, which will then be
invoked for each element, with the associated costs of func-
tion call and lexical closure. On the other hand, pluck() and
invoke() do not need such iterators, avoiding all these extra
costs. It’s just better in all respects.

As always, examples help make it all click:

Download prototype/new/enumerable_invokePluck.js

['hello', 'world', 'cool!'].invoke('toUpperCase')
// ['HELLO', 'WORLD', 'COOL!']

['hello', 'world', 'cool!'].invoke('substring', 0, 3)
// ['hel', 'wor', 'coo']

// Of course, this works on Prototype extensions (why shouldn't it?!)
$('navBar', 'adsBar', 'footer').invoke('hide')

['hello', 'world', 'this', 'is', 'nice'].pluck('length')
// -> [5, 5, 4, 3, 4]

$$('.cool').pluck('tagName').sort().uniq(true)
// -> sorted list of unique canonical tag names for elements with this
// specific CSS class...

5.6 Order Now: Getting Extreme Values and Using Custom Sorts

Naturally, Enumerable comes with a few methods about ordering and
sorting:

max([iterator = Prototype.K]) → value
min([iterator = Prototype.K]) → value
sortBy(iterator) → Array

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_invokePluck.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=102

ORDER NOW: GETTING EXTREME VALUES AND USING CUSTOM SORTS 103

The names are self-explanatory. However, we need to shed some light
on the semantics of these iterators. For min() and max(), passing an
iterator lets you produce derived values on which to search for a mini-
mum or maximum, instead of working on the raw elements.

You might, for instance, want to determine not the last string in lexi-
cographical order, but the longest string. As for sortBy(), it requires an
iterator, which computes a criterion value that is then used to sort the
elements.

Here are examples of both methods, with both call modes:

Download prototype/new/enumerable_minMax.js

$R(1,10).min()
// -> 1

['hello', 'world', 'gizmo'].min()
// -> 'gizmo'

['hello', 'world', 'gizmo'].max()
// -> 'world'

function Person(name, age) {
this.name = name;
this.age = age;

}

var john = new Person('John', 20);
var mark = new Person('Mark', 35);
var daisy = new Person('Daisy', 22);

[john, mark, daisy].min(function(person) {
return person.age;

})
// -> 20

[john, mark, daisy].max(function(person) {
return person.age;

})
// -> 35

Note that Array natively features a sort() method, which can be passed a
customized comparison function. So, you should use it, with no argu-
ment, when sorting on the “natural order” of the elements (that is, when
relying on the native < operator between two raw elements). If you need
custom sorting, using sortBy() lets you compute just a criterion, instead
of recoding a complete, overflow-proof comparison method:

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_minMax.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=103

TURNING OUR COLLECTION INTO AN ARRAY OR DEBUGGING STRING 104

Download prototype/new/enumerable_sortBy.js

['hello', 'world', 'this', 'is', 'nice'].sortBy(function(s) {
return s.length;

})
// -> 'is', 'this', 'nice', 'hello', 'world']

['hello', 'world', 'this', 'is', 'cool'].sortBy(function(s) {
var md = s.match(/[aeiouy]/g);
return null == md ? 0 : md.length;
// 100% Prototypish: return (md || []).length;

})
// -> ['world', 'this', 'is', 'hello', 'cool'] (sorted by vowel count)

5.7 Turning Our Collection into an Array or Debugging String

We’re almost done with Enumerable. The last methods we shall see are
those that let us turn an Enumerable into an array (with no element
transformation) or into a debug-oriented string:

entries/toArray() → Array
inspect() → String

We already mentioned entries() earlier, explaining that it is the main
reason why collect() accepts being called with no iterator. It is actually
an alias over the more generic toArray() method. Recall that toArray()
provides compatibility with the $A() utility function, as we saw in Sec-
tion 3.5, $A, the Collection Unifier, on page 47.

We also talked already about inspect() methods, which we introduced
in Section 4.1, Introspecting Objects, on page 54. This version is rather
generic and currently relies on its Array variant, surrounded by #<Enu-

merable: and >. Just wash it down with a few lines of code:

Download prototype/new/enumerable_converts.js

$R(1, 5).toArray()
// -> [1, 2, 3, 4, 5]

$R(1, 5).inspect()
// -> '#<Enumerable:[1, 2, 3, 4, 5]>'

5.8 Enumerable Is Actually a Module

So, this is a module. . . . If you remember what we explained in Sec-
tion 2.4, Objects, Namespaces, and Modules, on page 37, this means
Enumerable is not for direct instantiation; rather, it is supposed to be

http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_sortBy.js
http://media.pragprog.com/titles/cppsu/code/prototype/new/enumerable_converts.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=104

ENUMERABLE IS ACTUALLY A MODULE 105

mixed in other object types, which are usually concrete types such as
Array or Hash. From a technical standpoint, modules have no construc-
tor function, so the new operator does not work with them. You will
just get an error, something along the lines of “Enumerable is not a
constructor.”

Which Objects Can Mix Enumerable In?

Modules often make requirements on the objects they get mixed in, in
order for the mix to work. Enumerable makes one specific demand on
its “host objects”—that they provide the fundamental iteration mecha-
nism through a method named _each(). It can be as simple as a vanilla
numerical-index for loop (as it is for Array). Let your object feature this
method, and it becomes, shall we say, “Enumerable-compatible.”

This _each() method will be passed a single argument, which is a call-
back function. All it has to do is call it for each element in the iteration.
Simple as Sunday (but not as SOAP).

As a real-world example, consider the implementation of _each() in
Array (your favorite collection type):

Download prototype/new/array_each.js

_each: function(iterator) {
for (var i = 0, length = this.length; i < length; i++)

iterator(this[i]);
}

See? No big deal.

How to Mix Enumerable In?

That’s easy. If your type was created using Class.create(), just use its
addMethods() method with the module, like so:

YourObjectType.addMethods(Enumerable);

If it’s a more custom type, go like this:

Object.extend(YourObjectType.prototype, Enumerable);

Be sure to do so before adding your own methods to your object type in
order to make sure you can override generic methods from Enumerable

if need be (for instance, Array defines optimized versions of size() and
toArray(), to name but two).

For further details on Object.extend(), go to Section 4.1, Cloning and

Extending Objects, on page 56.

http://media.pragprog.com/titles/cppsu/code/prototype/new/array_each.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=105

ENUMERABLE IS ACTUALLY A MODULE 106

What’s Enumerable Already?

There are quite a few object types that mix Enumerable in, out of the
box:

• Ajax.Responders

• Array

• Element.ClassNames (which is deprecated in 1.6, though)

• Hash

• ObjectRange

We mostly use Array, Hash, and ObjectRange, though.

What We Just Learned

Enumerable is quite something. Let’s quickly go through the salient
points:

• The core enumeration is each(), which relies on your enumer-
able container’s own _each() implementation. All the more specific
methods (for example, map() or inject()) end up using each() to do
their jobs.

• To skip ahead to the next turn, just return from your iterator func-
tion. To short-circuit the enumeration, throw $break.

• There is likely a predefined method for just about every common
need you might have.

• There’s often a way to squeeze more performance out of Enumer-

able if you know it well. For instance, use pluck() or invoke() in-
stead of the more generic map() whenever appropriate, or leverage
partition() instead of calling both select() and reject().

• Method chaining (calling a method directly on the result of another
method call) can quickly whip up complex processings in a rather
concise way; however, because every call is an enumeration, you
might sometimes turn out to run faster with fewer predefined calls
and a more advanced custom iterator. . . .

• Although sortBy() looks more comfortable, it’s usually less efficient
than sort() with a custom iterator.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=106

ENUMERABLE IS ACTUALLY A MODULE 107

Neuron Workout

Think you got it all? Great! Then try this for size. . . .

• Which is faster when iterating over an array, a standard integer-
based for loop or each()? Are there circumstances where one is
preferable over the other?

• If you must check that all elements in an Enumerable meet a con-
dition that can be expressed both positively and negatively, is all()
the best choice?

• So, we’ve got items.max(function(i) { return i.size; }). Does it return the
item with the biggest size or the biggest size itself?

• Use inject() to write a function that computes the product of all
values of an array. Add your new function to the Array prototype.

• Do it again in a more concise way by leveraging curry() as well.

• Aside from strings with regular expressions and DOM elements
with CSS selectors, what situations can you imagine where it
would make sense to provide a match() method to become grep()-
compatible?

• Ignoring the slight structural difference of the resulting elements,
what’s faster: a.zip(b).zip(c) or a.zip(b, c)? Why?

Pfew. There! We’re all done with Enumerable! That was quite a hand-
ful. It is, indeed, one of the largest modules in Prototype. Time for
lunch, dinner, a beer, or maybe just a nice cookie with a glass of milk.
Suit yourself, and then come back and read ahead. The next chapter
explores Prototype’s delicious API for unified event handling. Those bat-
tling with Internet Explorer vs. W3C code will at long last find peace.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=107

Chapter 6

Unified Event Handling
This book is all about Prototype and script.aculo.us, the two libraries
at the forefront of Web 2.0 application scripting the world over. We’re
surrounded by JavaScript, and our pages must react to events coming
from a variety of sources: DOM events resulting from user interaction
with elements on the page, wake-up calls by timers, UI notifications
from the browser itself, custom events triggered by library objects. . . .
It’s an event-rich world our code lives in.

Until now, we could basically test whichever code sample was in this
part of the book by simply opening a blank page in your browser that
loaded Prototype, grabbing a JavaScript console (or better yet, Firebug’s
console on Firefox), and typing away. That sure was handy and allowed
for easy experimentation, irb style.1

But now, we’re going to get into more and more complex examples,
which will require our code to react to events from many sources. To
do that, we first need to get familiar with event objects, including their
nature, their origins, their behavior, and what we can do with them.

6.1 Event

The fundamental object here is Event. Depending on your browser, such
an object may already exist. In that case, Prototype will merely expand
it. Otherwise, it creates it from scratch. Event provides an entry point
for using event-related methods and constants (although, as we’ll see,
we can also access the key methods directly on DOM elements and
documents).

1. irb is a command-line tool that provides an interactive Ruby shell.

EVENT 109

Version 1.6 Changed Everything!

Prototype 1.6 was internally dubbed the “event overhaul”
release. It brought about major changes in the API and pro-
vided many new, exciting, powerful features. This chapter
attempts to systematically point out when a feature or syn-
tax was changed or appeared in this release.

Internet Explorer vs. the Rest of the World

Events can be a pretty messy thing to play with, mostly because there is
no unified support across major browsers. More specifically, there are
two factions: Microsoft Internet Explorer, which just walks its own path,
and everybody else, who follows W3C specifications. In this instance,
the bible is DOM Level 2 Events.2 And on just about every aspect of
dealing with events, Internet Explorer superbly ignores it and does
things its own way (which must be a persisting itch to the six Microsoft
experts who helped with the specification, especially Chris Wilson, Mr.
Internet Explorer).

Even Internet Explorer 7, with a fairly recent release, has not made
an inch of progress on the JavaScript/DOM front (or too little progress
to warrant mention). It focused on “security” and catching up a bit on
CSS, which is certainly good but won’t help us at all when it comes to
event support and DOM manipulation.

Never fear, though, for you now use Prototype! And as you may have
come to expect, it comes to the rescue in these areas, too.

Smooth Operator: A Unified Interface to Events

Indeed, Prototype provides a unified way of dealing with events. In the
following sections, I will mention, for each feature, three syntaxes: Pro-
totype, the W3C, and Internet Explorer. This should help those of you
who are familiar with the W3C’s or Internet Explorer’s ways understand
exactly how to migrate your code, and it provides an informal conver-
sion table.

2. http://www.w3.org/TR/DOM-Level-2-Events/events.html

http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=109

EVENT 110

Registering an Event Listener

• Prototype: $(elt).observe(eventName, handler)

• W3C: elt.addEventListener(eventName, handler, useCapture)

• Internet Explorer: elt.attachEvent(onEventName, handler)

Internet Explorer parts away from the W3C specs in that it does not use
official event names (you need to use the on prefix) and does not sup-
port capture-style propagation3 (which is why Prototype now ignores
that aspect too, because it’s not portable so far).

Unregistering an Event Listener

• Prototype: $(elt).stopObserving([eventName[, handler]])

• W3C: elt.removeEventListener(eventName, handler, useCapture)

• Internet Explorer: elt.detachEvent(onEventName, handler)

We get the same kinds of differences we had on registration.

Stopping Event Propagation

• Prototype: event.stopPropagation() or event.stop()

• W3C: event.stopPropagation()

• Internet Explorer: event.cancelBubble = true

Internet Explorer uses a custom property on the event object.

Preventing the Default Behavior

• Prototype: event.preventDefault() or event.stop()

• W3C: event.preventDefault()

• Internet Explorer: event.returnValue = false

Internet Explorer uses another custom property on the event object.

3. If you’re unfamiliar with capture, don’t fret. I’ll explain the idea behind it in Sec-
tion 6.1, A Quick Primer on Event Propagation, on page 117. Still, Prototype ditched it
with version 1.6, so it’s not that big of a deal.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=110

EVENT 111

Grabbing the Source Element

• Prototype: event.element()

• W3C: event.target

• Internet Explorer: event.srcElement

Internet Explorer uses yet another custom property on the event object.
Note that the Prototype version returns the extended form of the ele-
ment (more on the extension in the next chapter) and also guarantees
you get an element back (not, say, a text node).

Getting Details on the Event

• Prototype: event.pointerX(), event.pointerY(), event.isLeftClick(). . .

• W3C: event.clientX, event.clientY, event.button. . .

• Internet Explorer: event.clientX, event.clientY, event.which. . .

Internet Explorer has some specific properties, mostly about mouse
buttons and key codes.

Event-Related Methods Straight in the DOM 1.6

The three fundamental methods for event manipulation, observe(), stop-

Observing(), and fire(), do not need to be accessed through the Event

namespace. As described in the syntax blocks of the previous sections,
they are part of the DOM extensions Prototype performs for every ele-
ment, plus the document object itself. See Section 7.2, Handling Events,
on page 143 for details.

A Normalized Event Object 1.6

In the same spirit, Prototype 1.6 introduced event object normalization;
most methods that used to be called from the Event namespace, such
as element(), stop(), or isLeftClick(), can now be accessed directly on the
event object passed to handlers. W3C methods that browsers such as
Internet Explorer currently fail to provide (for example, stopPropaga-

tion()) are filled in when necessary. Finally, Prototype provides a few
normalized properties (for example, target, relatedTarget, and pageX),
as defined by the W3C, based on what the browser natively defines.
Such normalization has a trimming effect on Prototype’s code base and
probably on yours, too! We will review and use them in the coming
sections.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=111

EVENT 112

The Art of Observing Events

A lot of web developers these days are still using plenty of obtrusive

JavaScript. That is, their HTML pages are laden with event-related attri-
butes (think <body onload="...">) or inline <script> elements. But you
see, this is increasingly regarded as bad because this mixes content
and behavior, which is generally not the best thing to do (although
I should mention it may yield a performance boost in specific cases
or make it easier to provide tooling for script-based features). It also
leads to inconsistent behaviors when Internet Explorer calls handlers
attached this way.

You may object that your page-creation tools are the culprits and that
you just can’t make them do things in a better way. Well, first, check
your vendor for upgrades; unobtrusive JavaScript, which aims to put
all (or at least most) scripting outside the content file (in separate Java-
Script files), is quickly becoming the widely accepted best practice.

The clean scenario is like this:

1. The DOM of the page loads, creating elements in source docu-
ment order—the <html> node, the <head> node, and at some
point the <script> nodes—which immediately load and process
your scripts.

Because the body of the page is not loaded yet, it is important to
remember not to register event listeners on page elements yet. You’ll
have to wait for phase 2, or at worst phase 3, in this sequence.

2. The DOM is fully loaded; all elements described by the document
are created in memory. External resources may not yet be loaded
(for example, images, CSS files, embedded objects), but their DOM

elements exist. From this point on, you can register event listen-
ers on them. Prototype 1.6 introduces a normalized DOMContent- 1.6

Loaded event (originally a custom event from Mozilla) so you can
react at this phase. Just use the custom dom:loaded event on the
document object.4

3. The page is fully loaded; all external resources were loaded in
and processed. That’s when the load event triggers on the win-

4. Due credit: the code is inspired by the excellent works of Dan Webb, Mathias Miller,
Dean Edwards, and John Resig. As Isaac Newton would have said, we stand on the
shoulders of giants. . . .

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=112

EVENT 113

dow object. If your page is heavy on external resources, this may
happen quite some time after the page’s initial rendering. . . .

Events can start happening from phase 1 (but they are not user-related
events, which start more at phase 2). Whenever an event happens,
associated listeners get notified, and there is an event object repre-
senting everything there is to know about the current event.

How can we get this event object? Well, the W3C spec mandates that all
listeners get passed this event object as their first argument. Natively,
Internet Explorer does things differently if you’re using inline event
attributes in your markup (but not if you’re attaching listeners through
JavaScript). It doesn’t pass the event as argument but makes it avail-
able through a global event object (technically available as the win-

dow.event property, but that’s functionally equivalent to a global vari-
able for your scripts).

Basic Scenario: Regular Functions as Listeners

element.observe(eventName, observer) → element
element.stopObserving([eventName [, observer]]) → element

This is quite simple:

Download prototype/events/basic.js

function checkForm(event) {
var form = event.element();
var formOK = true;
// Generic form checking code...
if (!formOK)

event.stop();
}

$('signUpForm').observe('submit', checkForm);

If we were to remove this listener later (for some reason, this check is
no longer necessary), we could do it simply with one line of code:

Download prototype/events/basic_unreg.js

$('signUpForm').stopObserving('submit', checkForm);
// Or $('signUpForm').stopObserving('submit')
// Or $('signUpForm').stopObserving()

Easy as pie.

Note that two important things changed in version 1.6: 1.6

• First, Prototype used to sport an extra, optional boolean argument
on these two methods that let you request capturing instead of

http://media.pragprog.com/titles/cppsu/code/prototype/events/basic.js
http://media.pragprog.com/titles/cppsu/code/prototype/events/basic_unreg.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=113

EVENT 114

bubbling.5 Because Internet Explorer (including version 7) doesn’t
support this, Prototype did away with the argument, which was
misleading developers into thinking capture was emulated across
browsers.

• Second, you don’t need to provide the handler you registered any-
more, or even the event name. Prototype will automatically unreg-
ister any handlers matching the partial request. So if you just
provide an event name, you’ll unregister all handlers for that event
on this element. If you don’t provide anything (something like ele-

ment.stopObserving()), you’ll unregister all handlers for this ele-
ment, regardless of the event name.

Methods as Listeners: Careful with the Binding!

Before Prototype 1.6, event handlers did not get any automatic bind-
ing when you registered them as listeners. They were subjected to
JavaScript’s usual binding rules (which you can review at Section 4.2,
Proper Function Binding, on page 58). Starting with 1.6, event handlers 1.6

are automatically bound to the element they’re registered on. In other
words, within an event handler, this always refers to the equivalent of
W3C’s currentTarget property.

The thing is, your listeners are often methods that do rely on their
containing object to perform their work. They need the this reference
within these handlers to work properly. You may then be tempted to use
bind(), as we saw in Section 4.2, Proper Function Binding, on page 58.
This is not always enough, though. Just look at this:

Download prototype/events/methods_bind.js

var Displayer = {
intro: 'Received click event: ',

display: function(e) {
alert(this.intro + e);

}
};

document.observe('click', Displayer.display.bind(Displayer));
document.observe('click', Displayer.display.bind(Displayer, 42));

5. If you’re unfamiliar with them, check out Section 6.1, A Quick Primer on Event Propa-

gation, on page 117.

http://media.pragprog.com/titles/cppsu/code/prototype/events/methods_bind.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=114

EVENT 115

Clicking will first alert something like Received click event: [object

MouseEvent], which is right and proper. Then it will alert something
more like Received click event: 42.

Huh?! What happened to the event object in the second case? I said
Prototype took care of passing it as the first argument. . . . That’s right,
but bind() will fail to pass this first argument through if you provide
specific arguments. They will be prepended, as usual. Let’s change our
display() method to show its complete argument list:

Download prototype/events/methods_bind_list.js

var Displayer = {
intro: 'Received click event: ',

display: function() {
alert($A(arguments).inspect());

}
};

document.observe('click', Displayer.display.bind(Displayer));
document.observe('click', Displayer.display.bind(Displayer, 42));

// Clicking on the doc will yield the two following alert strings
// in Firefox:
// 1. "[[object MouseEvent]]"
// 2. "[42, [object MouseEvent]]"

This is the kind of use case in which we should use bindAsEventLis-

tener(), which guarantees that the event object is first, then puts what-
ever arguments we provided it, and then adds the arguments passed
when the event occurs. Here is our adapted code:

Download prototype/events/methods_bAEL.js

var Displayer = {
display: function() {

alert($A(arguments).inspect());
}

};

document.observe('click',
Displayer.display.bindAsEventListener(Displayer));

document.observe('click',
Displayer.display.bindAsEventListener(Displayer, 42));

// Clicking on the doc will yield the two following alert strings
// in Firefox:
// 1. "[[object MouseEvent]]"
// 2. "[[object MouseEvent], 42]"

http://media.pragprog.com/titles/cppsu/code/prototype/events/methods_bind_list.js
http://media.pragprog.com/titles/cppsu/code/prototype/events/methods_bAEL.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=115

EVENT 116

OK, that’s better, but there is still another common pitfall that lies in
ambush, ready to jump at your code and slice its throat when you least
expect it. Consider this, where you decide to pass the handler argument
to stopObserving(), for clarity’s sake, and do it the following way:

Download prototype/events/bound_stop.js

var Displayer = {
count: 0,

display: function(e) {
if (++this.count >= 3)

document.stopObserving('click', this.display.bind(this));
alert('Received click event: ' + e + ' (' + this.count + ')');

}
};

document.observe('click', Displayer.display.bind(Displayer));

OK, run this, and then start clicking. Once, twice, a third time. . . . What
happens on the fourth click? Damn! It still works! Did we fall victim to a
fencepost error? Not so. We just called stopObserving() using a different

listener from the one we had used when calling observe(). The thing
is, to perform their magic, binding methods return a fresh anonymous
method wrapping the original one. Every time you bind, you get a new
method.

Depending on your situation, there are two solutions for this. If you
want to unregister only that specific handler, you’ll need to cache it
before registering and then use the cached version on the second call
too, like so:
Download prototype/events/bound_cached.js

var Displayer = {
count: 0,

_display: function(e) {
if (++this.count >= 3)

document.stopObserving('click', this.display);
alert('Received click event: ' + e + ' (' + this.count + ')');

}
};

Displayer.display = Displayer._display.bind(Displayer);

document.observe('click', Displayer.display);

On the other hand, if you can afford to unregister all handlers for this
event on this element (say you got only one, which is the most common
case), just do away with the second argument altogether.

http://media.pragprog.com/titles/cppsu/code/prototype/events/bound_stop.js
http://media.pragprog.com/titles/cppsu/code/prototype/events/bound_cached.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=116

EVENT 117

Note that if Displayer was not a singleton but an actual type, which could
be instantiated, we wouldn’t have to define display() externally. For
instance, here is a version using Prototype’s class definition scheme:

Download prototype/events/prototypish.js

var Displayer = Class.create({
count: 0,

initialize: function() {
this.display = this._display.bind(this);

},

_display: function(e) {
if (++this.count >= 3)

document.stopObserving('click', this.display);
alert('Received click event: ' + e + ' (' + this.count + ')');

}
});

document.observe('click', new Displayer().display);

Listener Caching and Internet Explorer Memory Leaks

Every time you register an event listener, the description of this regis-
tration (all the arguments you passed to observe()) goes into a reposi-
tory. The reason for this is that Internet Explorer has been known to
exhibit serious memory leaks when event listeners are not explicitly
detached. Prototype makes it easy on the web developer by automati-
cally reacting to page unloading (an event that happens when the tab or
window is closed) to go through this repository and automatically call
stopObserving() for each previous registration. This is a sort of ad hoc,
Internet Explorer–only garbage collector.

A Quick Primer on Event Propagation

When an event fires up, it is triggered on the elements that registered
a listener for it. That sounds simple, but it’s incomplete and barely half
the story anyway.

An event always remembers the actual element on which it happened.
By “on,” I mean geographically on. Keyboard events obviously happen
on whichever visual component currently has the focus (most often an
input field, but it could very well be a link, for instance), but mouse
events are associated with whichever element was “on top” (appeared
above any other) right under the mouse cursor. This is commonly re-
ferred to as the source element.

http://media.pragprog.com/titles/cppsu/code/prototype/events/prototypish.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=117

EVENT 118

The W3C defines a target property for this, while Internet Explorer calls
it srcElement (which, admittedly, is a rather fitting name).

Event Bubbling

Once it is first triggered, an event propagates. The default propagation
mode, which is also the only one Internet Explorer supports,6 is called
bubbling. The idea is simple: listeners relevant to the event are trig-
gered from the source element outward. Consider the following HTML

document body:

Download prototype/events/propagation_doc.html

<body>

<h1>Event propagation</h1>

<p>There are essentially two propagation modes:</p>

<li id="bubbler">Bubbling: inside out
Capture: outside in (not supported by Internet

Explorer)

</body>

Let’s now assume we have the following script in there:

Download prototype/events/bubbling.js

function showEvent(e, reg) {
alert(e.type + ' from ' + Event.element(e).tagName + ' (' + reg + ')');

}

document.observe('dom:loaded', function() {
document.observe('click', showEvent.bindAsEventListener(this, 'doc'));
$('bubbler').observe('click', showEvent.bindAsEventListener(this,

'bubbler'));
});

If you click anywhere but inside the first list element, you’ll get only one
message. For instance, click the background of the page, and you’ll get
something like click from HTML (doc). Click in the territory of the second
list element, and you’ll get click from LI (doc), and so on. Although you
are not clicking the document itself (it’s not quite possible, because the
whole surface is actually its child node, the HTML document node), the
listener registered on the document gets invoked.

6. And can’t be cleanly emulated, which is why Prototype 1.6 dropped the related API
elements.

http://media.pragprog.com/titles/cppsu/code/prototype/events/propagation_doc.html
http://media.pragprog.com/titles/cppsu/code/prototype/events/bubbling.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=118

EVENT 119

That’s one consequence of bubbling, and it’s very useful; it lets us
define generic event listeners capable of dealing with the actual ele-
ments the event was triggered on, which helps avoid code duplication
(and sometimes helps reduce the amount of listeners you’re registering,
which has a significant positive impact on your page’s setup time).

Another important advantage of leveraging bubbling is that you can
tweak the elements inside your container as much as you need, without
having to re-register the handlers for them. You didn’t register previous
handlers on the elements you’re replacing, removing, or adding to; you
registered it on the container, which is still there and will be glad to grab
the bubbling events originated from new or updated elements inside it.

Now click the first list element. You get two messages. First you get
something like click from LI (bubbler) and then click from LI (doc). The
order in which you registered the listeners is irrelevant; it’s where you
click that counts. The first listener from the click target outward is the
bubbler-registered one, and then the event bubbles up to the document
level.

Note that you can stop this propagation at any level by calling the
proper method on the event object. The unified Prototype way of doing
this is event.stop().

The event will simply not bubble up (it will also cancel its default behav-
ior; if you don’t want it to, use event.stopPropagation() instead, which
Prototype guarantees even on Internet Explorer). This is useful when
your listener takes definitive action for the event and there is no need
to let listeners higher up the document hierarchy pay attention to it.

Event Capture

Event capture is the second form propagation can take, and it lets you
implement local censorship on events. Basically, whenever an event
occurs, any listener registered in capture mode gets triggered in se-
quence, from the outside inward. Any listener that stops propagation
effectively censors the event; it gets trumped, shot, chopped to bits,
seasoned, and thrown to the dogs your browser keeps in a small pen
next to the garbage collector.

This can be a powerful tool (for example, to implement “glass panes”
over the whole UI, which could be nice for fake modal dialog boxes);
alas, it is currently not supported by Internet Explorer, which essen-
tially means nobody can risk using it on anything other than an intra-

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=119

EVENT 120

net web app where they control what browser is used. That’s why
(again) Prototype 1.6 dropped support for it entirely, so as not to mis-
lead developers into thinking it emulated such propagation on Internet
Explorer. Some day perhaps. . . .

The Duality of event.stop

event.stop()
event.stopPropagation()
event.preventDefault()

There are two things you can do on an event that relate to what happens 1.6

next with it: you can stop its propagation, and you can prevent the
browser from applying the default behavior for this event.

Many events have an associated default behavior. For instance, a sub-

mit event on a form triggers submission (ahem) of the form. A click

event on a link navigates to the link’s destination, and so on. Obviously,
when you register a client-side form-checking method as a listener for
a form’s submit event, you want to inhibit the default behavior if your
checks fail. So-called smart pop-ups unobtrusively listen to their link’s
click event to open it in a pop-up window, at which point navigation
should not take place in the link’s window. The DOM Level 2 Events
specification endows event objects with a specific method for this: pre-

ventDefault(). As we saw earlier, Internet Explorer doesn’t support it,
but Prototype smooths that over and guarantees it’s there.

Because these two behaviors—stopping propagation and preventing de-
fault behavior—are often indissociable, stop() does both. It calls the
event’s stopPropagation() and preventDefault() methods. It’s a nifty little
shortcut.

Getting Information About the Event

There’s a whole world of information you might want to extract for the
current event: what element it was triggered on, what the key being
pressed or released was, what modifier keys are active, what are the
coordinates of the mouse cursor, and so on. Not all of this is easy to
grab in a cross-browser way, but some of it is.

Getting Elements for the Event

event.element() → HTMLElement
event.findElement(selector) → HTMLElement
event.relatedTarget

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=120

EVENT 121

To get the source element, you can simply use Prototype’s element()
function, passing it the event object. As of Prototype 1.5.1.1, it will
make sure the returned element is extended, too.

The W3C-compliant currentTarget property is not normalized, because
you don’t really need it. From version 1.6 on, your handler executes, by
default, in the scope of the element you registered it on. this can be used
in lieu of currentTarget. Let’s go back to our previous bubbling example.
We have two click listeners, one registered at the document level and
one at the first list item’s level (the one with id="bubbler"). Say you click
the Bubbling element. For both listeners, element() will
return the element. But this will return the first list item for one
and the document for the other.

However, most of the time you can get by with just retrieving, say, “the
closest <p> ancestor of the source element.” This is a breeze with Pro-
totype with the findElement() method:

Download prototype/events/findElement.js

function hideSurroundingParagraph(e) {
e.stop();
var p = e.findElement('p');
if (p)

$(p).hide();
}

Starting with Prototype 1.5.1.1, this can take not just a simple tag name
as its second argument but also a CSS selector expression just like
what you’d use with Element.up() (which is now used internally), so the
whole panoply of Selector-supported syntaxes is available.

Prototype now normalizes the W3C target property, which is the node 1.6

that actually received the event, but you’ll usually go through event.

element() instead to guard against the few odd cases where target would
return a text node and make sure the returned element is extended.

Finally, Prototype 1.6 normalizes Mozilla’s custom relatedTarget prop- 1.6

erty, which provides a secondary element for specific events, mostly the
standard mouseover and mouseout events. When the primary element
for these two are the element being entered and exited, respectively,
relatedTarget works conversely. It provides, respectively, the element
that was just exited or entered (entering an element usually means
exiting another one, and conversely, at least from a visual standpoint).

http://media.pragprog.com/titles/cppsu/code/prototype/events/findElement.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=121

EVENT 122

Mouse Information

event.pointerX() → Number
event.pointerY() → Number
event.isLeftClick() → Boolean
event.isMiddleClick() → Boolean
event.isRightClick() → Boolean

Mouse coordinates are a complex thing. The official specification for
DOM Level 2 Mouse Events defines two sets of coordinates: client and
screen. That’s fairly clear, but screen coordinates are mostly useless to
the web app, and client ones (relative to the viewport) are far less useful
than page coordinates (relative to the document itself, unaffected by
scrolling).

Prototype provides two methods you can use, pointerX() and pointerY(),
which do provide page coordinates. This makes nifty stuff like drag and
drop or visual effects much easier to achieve. If you need client-based
coordinates, the clientX and clientY properties of the event object are
fairly portable.

Even something apparently as simple as the mouse button being
pressed or released is tricky. W3C mandates a button property, theo-
retically ranging from zero (left) to 2 (right),7 but Internet Explorer pro-
vides a generic which property, whose button-related values range from
1 to 3. There are many other issues surrounding mouse click, such as
different events being fired for right-clicking and button emulation on
single-button devices.

This quickly becomes a mess, so Prototype provides three methods:
isLeftClick(), isMiddleClick(), and isRightClick().

Keyboard Information

Finally, you may need to retrieve keyboard information about the event.
Prototype provides a standardized set of keyboard codes through
KEY_xxx constants in the Event namespace.

The easy part first: looking up modifier keys. Traditionally, we consider
only Ctrl , Alt , and Shift (although some keyboards provide a Meta

key, which might be mapped to the Windows key or the Esc key). The
state of these modifier keys can be rather reliably examined, whether
on a mouse or a keyboard event, by using three event object properties:
respectively ctrlKey, altKey, and shiftKey. These are booleans, set to true

7. Obviously, this is mirrored if the user’s mouse is configured for the left-handed.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=122

EVENT 123

when the corresponding key is pressed. There is no portable way of
determining laterality (all these keys usually exist on both sides of the
keyboard), something DOM Level 3 Events will more than address with
its future keyLocation field.

Now for the tough part: determining which key was pressed. It depends
on no less than three contextual parameters:

• What your browser is (ouch!)

• Whether you’re after a character key (for example, A or 6) or not
(for example, PageDown or Esc).

• Whether you’re listening to a key movement event (keydown or
keyup) or a character-producing event (keypress).

If you’re on Internet Explorer, are handling a key movement event, or
are dealing with noncharacter keys, you’re going to look at the event
object’s keyCode property, which holds the Unicode value for the key.

On the other hand, if you’re not on Internet Explorer, are handling a
character-producing event, and are interested in character keys, you’ll
look exclusively at the charCode property, which holds the Unicode
value for the character. Both properties are never both set on the same
event.

If you think carefully about this, there’s a lesson to be learned: never

rely on keypress, because this opens the gate to a browser-compatibil-
ity nightmare. Always use keydown and keyup, along with the event’s
keyCode property. That’s portable.

Finally, here is the current set of keyCode constants provided by Pro-
totype in the Event namespace: KEY_BACKSPACE, KEY_DELETE, KEY_DOWN,
KEY_END, KEY_ESC, KEY_HOME, KEY_INSERT, KEY_LEFT, KEY_PAGEDOWN,
KEY_PAGEUP, KEY_RETURN, KEY_RIGHT, KEY_TAB, and KEY_UP. This is by no
means an exhaustive list (obviously!); this is just a list compiled from
the needs of Prototype and script.aculo.us over time.

As an interesting side note, know that the future DOM Level 3 Events
specification chooses a more generic way, equipping keyboard events
with a keyIdentifier property, which is a normative string identifier for
the key. The specification, currently at the working draft level, defines
a comprehensive set of 196 key identifiers.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=123

EVENT 124

Firing Custom Events

Prototype 1.6 introduces custom events, which are events with a name- 1.6

spaced name (that is, a name with two components separated by a
colon delimiter, as in widget:activated) that you can fire on any DOM
element, which bubble as regular DOM events and are equipped with
the usual normalized properties and methods.

Prototype will soon bundle a series of built-in custom events to make
several lifecycle maintenance tasks easier (for example, react to DOM
fragments being updated or removed, react to drag and drops in better
ways, and so on). So far, you can still use this facility for adding your
own events to DOM elements.

element.fire(eventName [, memo = { }]) → Event

To fire a custom event on an element, simply call the fire() method on
it, possibly passing any data object you want to attach to the event (it
will be accessible through the event object’s memo property). The event
then triggers on the element and bubbles like any regular event. It is
detected normally by registered observers, can be canceled, and so on.

To steal an example from the release notes, imagine you have a title
element somewhere, and every time the title is changed, you’d like some
visual behavior to happen (say, a highlight effect). You could define a
custom event for this element (let’s call it title:changed) and register the
proper listener for it.

Assuming the following XHTML fragment:

<div id="container">
<h1>Release notes</h1>
...

</div>

. . . we’d use the following code to register a listener for our custom
event:

$('container').observe('title:changed', function(event) {
this.highlight({ duration: 0.5 });

});

As you can see, it is no different from our usual handlers. Now when
some code, somewhere, changes that title (perhaps from a script in an
Ajax response), it would just need to conclude its edit with the following
line:

$('title').fire('title:changed');

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=124

THE EVENTS HALL OF FAME 125

That’s it! If we wanted to make the highlight duration controllable, we
could handle an option in the event’s data object, something like this:

$('container').observe('title:changed', function(event) {
this.highlight({ duration: event.memo.duration || 0.5 });

});
...
$('title').fire('title:changed', { duration: 2 });

6.2 The Events Hall of Fame

Here are a few choice events you’ll very likely find extremely useful in
real-world web applications.

load

Applicable mostly to window.

This triggers when the full contents of the document (including all
external resources) are loaded. Often, though, this is a bit late for you
to bind all required listeners to the DOM elements; you’ll want to use
custom DOM-specific load events for this, such as Prototype’s custom
dom:loaded event, described in Section 6.1, The Art of Observing Events,
on page 112.

submit

Applicable to <form>.

This is triggered when the user, or the script, attempts to submit a
form, whatever the means (for example, hitting the Return key while in
a form field that does not capture it, clicking the submission button,
or invoking the form element’s submit() method). The event’s source
element is always the form itself. The default action submits the form:
canceling it (for instance, because client-side checks of input data failed
or because the form was quietly switched over to Ajax processing) pre-
vents submission.

click

Applicable to most elements.

This is a sequence of mousedown + mouseup that happened over the
element on which the event was registered (the mouse might have
moved in the meantime). This is not specific to the left (or, more accu-
rately, “primary”) button. You can right-click or even middle-click. The

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=125

THE EVENTS HALL OF FAME 126

default action is usually clear (the most common case is the click over a
link, which normally navigates to this link; smart pop-ups disable this
after having ensured the link was opened in a pop-up window).

mousedown and mouseup

Applicable to most elements.

A button of the mouse was pressed or released, respectively. A click will
generate, in this order, the events mousedown, mouseup, and click.

mouseover, mousemove, and mouseout

Applicable to most elements.

The mouse cursor entered, hovered on, and exited the element’s sur-
face, respectively. Yes, mouseover is very poorly named. Remember that
most “rollover” effects (that alter an element’s aspect while the mouse
cursor is over it) can be more efficiently achieved through judicious
use of CSS. Also remember that mouseover and mouseout can leverage
Prototype’s guarantee for the event’s relatedTarget property.

keydown and keyup

Applicable to most elements (through bubbling).

A key was pressed or released, respectively. This is where you use the
event object’s keyCode property. A great many keystrokes have default
behaviors that are often browser-dependent.

change

Applicable to <input>, <select>, and <textarea>.

This one is a bit peculiar. It’s supposed to trigger only when the element
loses focus and its value changed since it last had gained the focus. This
works pretty much that way on <input> and <textarea>, but things
can be different for <select>, especially if it renders as a drop-down list
(which is the default case, if you do not provide it with a size= attribute
greater than 1).

In this latter context, this event may well trigger whenever you change
the selected value, either through the keyboard or through the mouse.
Because of this, triggering large content changes (such as page reloads)
on this event goes against accessibility, because people relying on the
keyboard or assistive technologies might not be able to select a distant
option in one pass.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=126

REACTING TO FORM-RELATED CONTENT CHANGES 127

6.3 Reacting to Form-Related Content Changes

When working with Ajax, you often find yourself monitoring the changes
on a form field or even the whole form. Whenever a field value changes,
you whip up some Ajax stuff in reaction.

It is in fact a frequent need, and Prototype caters to it through two
tailor-made classes, aptly named Form.EventObserver and Form.Element.

EventObserver (because of the aliasing of Form.Element, this latter class
can also be used as Field.EventObserver).

Form.EventObserver
new Form.EventObserver(form, callback)

This class lets you instantly react to any change-related event in a form
that resulted in the form’s overall data (the values of all its fields) having
changed. It will then invoke the callback method you provided when
you created the observer, passing it two arguments: the form and its
serialized data.

Change-related events are determined on a per-field basis, as described
in the next section. A Form.EventObserver essentially creates and man-
ages Form.Element.EventObserver instances for all fields in the form at
construction time. Note that this has an interesting consequence. Fields
added dynamically to the form after the observer is created are not

taken into account.

For details on how the data get serialized, see Section 8.3, Serializing

Fields and Whole Forms, on page 179.

Form.Element.EventObserver
new Form.Element.EventObserver(field, callback)

This second class lets you instantly react when a field’s value changes
(based on the click event for radio buttons and checkboxes and on
the change event for other field types). The callback then gets invoked
with two arguments: the field and its value. For further details on
how the value is represented (this can get interesting on fields such
as multiple-selection listboxes), see Section 8.3, Shape Shifters: The

Changing Nature of Field Values, on page 178.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=127

REACTING TO FORM-RELATED CONTENT CHANGES 128

What We Just Learned

Events are probably the most critical block of dynamic web apps, and
Prototype has a lot to offer smoothing them out. The take-away points
from this chapter are as follows:

• The whole event machinery lies in the Event namespace.

• The events world in web development is essentially split in two
factions: on the one hand, Internet Explorer, and on the other
hand, pretty much every other browser and the W3C. Prototype’s
unified API lets us write code for both sides only once.

• Prototype 1.6 overhauled the entire event system, addressing
many long-standing requests and wish lists.

• All event objects are extended to feature the namespace’s methods
directly. You go e.stop() instead of Event.stop(e), for instance.

• The three key methods to manage behavior on elements and the
document itself are observe(), stopObserving(), and fire().

• An event handler will run, by default, in the context of the element
it was registered on (using observe()). It’s bound to it, and this will
refer to that element. If the handler was already bound, it retains
its original binding.

• Event handlers are always passed the event object as their first
argument.

• In addition to regular browser and DOM events, Prototype lets you
observe and fire custom events, which among other things helps
to decouple your scripts.

• Prototype supports bubbling only, because it would not be able to
cleanly emulate capture on Internet Explorer.

• The standard load event, on the window object, triggers late—only
once all the resources in the page, including style sheets, images,
Flash animations and scripts, have loaded. To quickly slap behav-
ior onto your DOM, just wait for it to load (which is pretty fast)
using the custom dom:loaded event on document.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=128

REACTING TO FORM-RELATED CONTENT CHANGES 129

Neuron Workout

Here are a few puzzlers to help you digest these new skills:

• Why do we need element() when our handler is bound to the ele-
ment we called observe() on?

• What’s the better alternative to doing individual observe() calls
with the same handler on a series of similar elements?

• So, we’ve got element(). Why do we need findElement() then? If it
weren’t there, how could we easily emulate it?

• If we could use event capture in addition to bubbling, what sce-
narios would it be useful in?

• Can you find a use case where bindAsEventListener() is absolutely
necessary (as in cannot be emulated in a reasonably concise way)?

• What’s the best way to guarantee that a <form> won’t be submit-
ted to the server if our script decides it shouldn’t?

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=129

Chapter 7

Playing with the
DOM Is Finally Fun!

When writing modern web applications, you find yourself doing a lot

of DOM manipulation. Traversing the DOM, fetching elements, show-
ing and hiding them, replacing fragments of the document with new
(X)HTML contents, fiddling with CSS class names. . . this is what we
web developers do.

Unfortunately, if we stick with the raw standards (such as DOM Level
2), we find ourselves tragically underequiped. The tools of the trade
were judged and found wanting. It feels like building a skyscraper with
cardboard and string.

But you’re using Prototype now.

True to its aim, Prototype comes with plenty of nifty tools you can use
to tweak the DOM. At the heart of it is the notion of DOM extension. The
idea is simple: one way or another, you can get “extended” versions of
the original DOM nodes, and these versions are way easier to play with
than their bare-bones counterparts. At the time of this writing, there
are 45+ extension-provided methods in there.

7.1 Extending DOM Elements

Let’s first focus on the net result for the web developer: fetching an
element through the $() function (which we saw in Section 3.2, Quick

Fetching of Smart Elements with $, on page 42) guarantees that what
you get is the extended version of the original DOM element.

EXTENDING DOM ELEMENTS 131

An extended element is a DOM element that also features all the meth-
ods we will see in the next section (plus extra ones if it’s a form or
form field element, as we’ll see in Chapter 8, Form Management, on
page 173). It is not a fresh object, distinct from the original DOM node.
It’s the same node but augmented with Prototype’s extensions.

I could discourse for pages about Prototype’s extension mechanism,
but this would be slightly beyond the scope of this book. So instead of
entering into the nitty-gritty details of stuff like Element.Methods, Ele-

ment.Methods.Simulated, or Element._attributeTranslations, let me answer
the most common questions first.

Speed Cost

On browsers providing DOM element types with a prototype, the cost is
close to zero. Prototype automatically extends the relevant prototypes
at loading time, which is blazing fast. This is, most notably, the case
of all Gecko-based browsers (and hence Firefox), Opera (at least from
version 9), Konqueror, and Safari (although specific versions of Safari
may handle this in a specific way, the particulars are addressed by
Prototype, and the speed cost is roughly identical).

For browsers with no such support (for example, Internet Explorer),
the element is extended on the fly the first time it is requested as an
extended element (either through the $() function or through a direct
call to Element.extend(), which your own code should never need to
do). Such an extension request can very well happen inside Prototype’s
code, because numerous methods in Prototype return extended ele-
ments. The element is then marked as extended, and there will be no
further cost associated with requesting it as an extended element.

However, on-the-fly element extension is not a trivial cost in itself, and
when applied over a large number of elements (depending on your envi-
ronment, this can be anywhere between 100 and 1,000 elements), the
speed hit can be noticeable. So, you should refrain from needlessly
relying on $() (or other methods that guarantee extended results) when
working with very large sets of elements. All extended methods can be
called indirectly on “raw” elements (but because they will use $() over
the element internally, what may have been raw before is now extended
anyway. . .).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=131

ELEMENT, YOUR NEW BEST FRIEND 132

What If These Methods Exist Natively?

Simple as Sunday: they’re left as is. Prototype’s method extensions
apply only when there is no native version present in order to maxi-
mize execution speed.

7.2 Element, Your New Best Friend

Your gateway to DOM extension is the Element namespace. It contains
the DOM extension machinery and the repositories for the extra meth-
ods (mostly Element.Methods).

Calling the Methods

All those methods can be used in two ways:

• As vanilla functions, which can be passed any DOM element (in-
cluding, most important, nonextended ones) as their first argu-
ment. The easiest way is to call them through the Element name-
space, like this:

Element.remove(elt);
Element.next(elt, 'li');

• As methods over extended elements, which certainly feels more
like object-oriented programming:

$(elt).remove();
$(elt).next('li');

All mutative methods return their original element extended. A muta-
tive method alters the element in some way. Methods returning ele-
ments (for example, fetching the descendant elements of the one passed
as first argument) return extended elements, too. This makes method
chaining easy:

$(elt).next('li').remove();

Building a Staff Manager

To get familiar with most methods provided through DOM extension,
we’ll build a complete example that heavily relies on it. The idea is
to have a simple web page that lets us describe people and groups of
people. Groups can be nested to an arbitrary depth.

Our page lets us see the whole staff using a tree representation, on
the left, and lets us create new groups and people, as well as rename
existing ones, through a small editor zone next to the tree. Naturally, all

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=132

ELEMENT, YOUR NEW BEST FRIEND 133

Figure 7.1: Our finished screen

groups in the tree can be collapsed and expanded. All nodes can also
be checked using a plain checkbox. This opens the door to further use
of the data (for example, we could use this to select to whom to send an
e-mail).

The completed screen looks like Figure 7.1. Note that we provide a high-
lighted representation of the selected node. To build this tool, we will
need to follow several steps:

1. Create the HTML file for our screen.

2. Create a JavaScript representation of our data tree.

3. Write a function that takes the JavaScript representation of a per-
son or group and inserts the corresponding DOM fragment in the
document.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=133

ELEMENT, YOUR NEW BEST FRIEND 134

4. Handle clicks anywhere in the tree to deal with group togglers
(those little +/- signs that let us expand or collapse groups) but
also select (or deselect) nodes.

5. Maintain editor state depending on the currently selected node
(buttons may be disabled or enabled, information needs to be pre-
filled when a node gets selected).

6. Handle uses of the form on the right in order to deal with node
creation, renaming, or removal.

Of course, we’ll do all this with the proper double take of polish, making
sure the user experience is as smooth as possible and trying to leverage
Prototype’s features as much as possible.

Because the primary goal of this chapter is to acquaint you with Proto-
type’s DOM extensions, we will not add an extra layer of complexity by
using Ajax to deal with server-side data. However, in a later chapter, we
will come back to this example and turn it into an actual client/server
application, using Ajax for a snappy user experience. Data will not
reside only as JavaScript objects on the client side but be stored on the
server side. This will let us tinker away with form serialization methods
and most Ajax-related utilities.

Laying the Groundwork: Our HTML Page

The markup for our screen is fairly simple: a title, proper definition of
charset, binding on the style sheets and scripts, and two zones (the tree
and the editor form). Here you go:

Download prototype/dom/people.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Organizing your staff</title>
<link rel="stylesheet" type="text/css" href="people.css" />
<script type="text/javascript" src="../../prototype.js"></script>
<script type="text/javascript" src="people.js"></script>

</head>

<body>

<h1>Organizing your staff</h1>

<div id="tree">
<h2>Your staff</h2>
<form id="staff">

</form>

</div>

http://media.pragprog.com/titles/cppsu/code/prototype/dom/people.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=134

ELEMENT, YOUR NEW BEST FRIEND 135

<div id="props">
<h2>Item properties</h2>
<form id="editor">

<p>

<label for="edtName" accesskey="N">Name:</label>
<input type="text" id="edtName" />

</p>

<p>

<input type="checkbox" id="chkIsGroup" />
<label for="chkIsGroup" id="lblIsGroup"
accesskey="G">Is a group?</label>

</p>

<p>

<input type="button" id="btnRemove" value="Remove"
accesskey="R" />

<input type="button" id="btnAddChild" value="Add as child"
accesskey="C" />

<input type="submit" id="btnSubmit" value="Create" />
</p>

</form>

</div>

</body>

</html>

We use a <form> element in the tree because we’re going to put check-
boxes in there and strict HTML mandates that form fields be located
in forms (which rather makes sense). We also nest a element
because in our tree, all group-like levels (be it the root level, like here,
or a regular group level) use a to contain their children.

This is because we’re going to represent our tree with proper semantic
markup: using nested lists. Since we have no specific ordering require-
ments, we use instead of . Each item in such a list is a ,
inside which all item contents (including sublists) are located.

The markup for our editor form is fairly short as well: a text field, a
checkbox, and three buttons (two regular ones that need to be specifi-
cally activated, which will trigger the removal of the currently selected
element and the creation of a new node below this same element, re-
spectively, and a submission button, which is activated whenever the
user hits the Return key in the text field or the checkbox in addition to
plain old clicking. . .). That submission button either creates an element
at root level (when no element is selected) or renames the currently
selected element. This makes for faster batch-oriented operation.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=135

ELEMENT, YOUR NEW BEST FRIEND 136

So far, with no styling, the page is a mess. Let’s add some CSS magic:

Download prototype/dom/people.css

Line 1 body { font-family: sans-serif; font-size: small; }
- h1 { color: navy; font-size: x-large; font-weight: normal; }
- h2 {
- color: green; font-size: larger;
5 border-bottom: 1px solid green; margin: 0 0 0.5em;
- }
- img { border: 0; }
-

- #tree {
10 width: 25em; height: 30em; overflow: auto; float: left;

- border: 1px solid #444; background: #eee; padding: 0.5em;
- cursor: default;
- }
-

15 #props {
- width: 25em; height: 10em; margin-left: 27em;
- border: 1px solid #444; background: #eee; padding: 0.5em;
- }
-

20 #tree ul {
- list-style-type: none;
- margin: 0; padding: 0;
- }
- #tree ul ul { padding-left: 1.3em; }

25 #tree li { padding-left: 0.1em; margin: 0.4em 0; }
- #tree span { padding: 5px; }
-

- span.group { font-weight: bold; }
-

30 #tree span.person { font-weight: normal; margin-left: 16px; }
-

- #tree span.selected {
- border: 1px solid #004; padding: 4px; background: #ddf;
- color: navy;

35 }
-

- #editor p { position: relative; height: 1.3em; }
- #edtName, #chkIsGroup { position: absolute; left: 4em; margin-left: 0; }
- #edtName { padding: 0 0.1em; right: 0; }

40 #edtName:focus, #edtName:active { border: 2px solid black;
- background: #ffd; }
- #lblIsGroup { position: absolute; left: 6.3em; }

Some of this is not immediately useful, because it relates to elements
that will be created dynamically by script to represent tree nodes (those
are the lines 24 to 35). The rest is styling as usual. Our page is now
ready for life to be breathed into it, thanks to scripting.

http://media.pragprog.com/titles/cppsu/code/prototype/dom/people.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=136

ELEMENT, YOUR NEW BEST FRIEND 137

Representing the Staff: Our Staff Object

We’ll put most of the functionality of staff management into a custom
object, which we’ll call, quite simply, Staff. Inside it, we’ll put many
methods, plus the actual data structure, tucked neatly in a nodes field.
It is an array of “tree nodes,” each of which is a simple object with at
least two properties: id and name.

The id property matches the id= attribute of the elements repre-
senting the tree node in the screen and is of the form itemXXX , where
XXX is an incrementally generated integer. The name property holds
the tree node’s name, its visible label.

If a tree node is actually a group, it also features a children property,
which is an array. Such an array holds tree node objects for anything
inside the group, and so on and so forth, recursively.

Let us start by defining a default tree with data for the staff of an imagi-
nary company, ACME.1 This goes like this:

Download prototype/dom/fragments/people_1.js

var Staff = {
nodes: [

{ id: 'item1', name: 'ACME',
children: [
{ id: 'item11', name: 'IT',

children: [
{ id: 'item111', name: 'Sébastien Gruhier' },
{ id: 'item112', name: 'Alexis Jaubert' },
{ id: 'item113', name: 'Guillaume Réan' }

] },
{ id: 'item12', name: 'HR',

children: [
{ id: 'item121', name: 'Sandrine Daspet' }

] },
{ id: 'item13', name: 'Xavier Borderie' }

] },
]

}; // Staff

Here we are: our staff is represented in Staff.nodes. The next step is to
turn this data into actual tree nodes on the screen. . . .

1. Boy, that’s groundbreaking.

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_1.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=137

ELEMENT, YOUR NEW BEST FRIEND 138

Walking Around: Moving Across the DOM
down([selector = '*'] [, index = 0]) → HTMLElement
firstDescendant() → HTMLElement
next([selector = '*'] [, index = 0]) → HTMLElement
previous([selector = '*'] [, index = 0]) → HTMLElement
up([selector = '*'] [, index = 0]) → HTMLElement

To build and manipulate DOM fragments based on this JavaScript data
structure, we need to learn about two categories of methods in Element:
those that let us walk the DOM easily and those that let us alter the
contents of elements.

Bare-bones DOM walking is quite the nightmare: the properties pro-
vided by the W3C specification—firstChild, lastChild, childNodes, previous-

Sibling, and nextSibling—work only at the node level, not at the element
level. The immediate consequence of this low-level attitude is that we
end up walking through empty text nodes produced by markup format-
ting (for example, line breaks and indentation), comment nodes, entity
references, and so forth. This is indeed unfortunate, because in the
vast majority of cases, we concern ourselves only with elements. Not
only that, but we usually want to reach for a specific kind of element
(for example, a or <a> element).

Prototype extends DOM elements with methods that let us do just that
(it also lets us look at whole element chains in all directions, as we’ll
see in Section 7.2, Meeting the Family: Ancestors, Children, Siblings. . . ,
on page 160). These are named up(), down(), next(), and previous(), and
all share they same signature:

• With no argument, they get you to the closest element in their
direction.

• With a string argument, they interpret it as a CSS selector, relying
on the amazing capabilities of the Selector class, which we will
explore in greater depth on page 167. A common form of selector
in this context is a simple tag name.

• With an integer argument, they get you to the indexth element in
their direction.

• With two arguments, a string and an integer, they get you to the
indexth element among those obtained by the selector, counting
from the current element outward.

There is also an optimized method for a common use case, which just
needs the first child element, with no additional requirement. It’s cov-
ered by firstDescendant().

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=138

ELEMENT, YOUR NEW BEST FRIEND 139

This makes for numerous possibilities, so let me illuminate this with a
few examples. Let us assume the following document:

Download prototype/dom/walking.html

<body>

<h1 id="title">Johnny Walker</h1>
<ul id="list">

<li id="item1">Hey there
<li id="item2">

<p id="p2_1">OK, so here I walk.</p>
<p id="p2_2">And walk again….</p>

</body>

Here are a few calls and their results:

Download prototype/dom/walking.js

$('item1').up() // => #list
$('item1').up(1) // => body
$('item1').up().previous() // => #title
$('item1').next() // => #item2
$('item1').previous() // => undefined
$('item1').down() // => undefined
$('item2').down() // => #p2_1
$('list').down('p') // => #p2_1
$('list').down('p', 1) // => #p2_2

Note that when no element is found, you get undefined.

Replacing Contents and Removing Elements
cleanWhitespace() → HTMLElement
remove() → HTMLElement
replace(content) → HTMLElement
update(content) → HTMLElement

In order to create DOM fragments for our JavaScript “node” objects
conveniently, we need another toolset focusing on altering the con-
tents of DOM elements. When we limit ourselves with methods from
the W3C DOM specifications, we need to build every tiny detail by hand,
which is quickly cumbersome. True, script.aculo.us provides a Builder

class, which can come in handy, but it can also be pretty verbose to
use (although it’s far nicer than raw DOM manipulation, as we will
see in Chapter 17, Building DOM Fragments the Easy Way: Builder, on
page 343).

http://media.pragprog.com/titles/cppsu/code/prototype/dom/walking.html
http://media.pragprog.com/titles/cppsu/code/prototype/dom/walking.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=139

ELEMENT, YOUR NEW BEST FRIEND 140

What we have here are methods designed to work with multiple kinds
of input for content:

An (X)HTML text
You will most commonly have (X)HTML fragments as fodder for
insertion or replacement. More often than not, you’re getting them
as responses from the server after an Ajax call. Their processing
is described in the next section. Before version 1.6, only this form
was acceptable.

An object featuring a toElement() method
The result of calling this method is used instead of the original
object. Such a method must return a DOM element or fragment.

A DOM element or fragment
It is used directly.

An object featuring a toHTML() method
The result of calling this method is used as direct XHTML text
would be. We actually rely internally on Object.toHTML(), as out-
lined in Section 4.1, Miscellanea, on page 58, so if a code mistake
ends up in passing something else, we get fallback behavior.

The fundamental methods are replace() and update(). The difference
between the two is critical. replace() actually replaces the element you
are calling it on, but update() replaces only its contents. For instance,
consider the following DOM fragment:

<div id="container"><p>This is an example</p></div>

Here are two distinct calls and the resulting DOMs:

$('container').update('<h1>Don\'t cross the streams!</h1>');
// DOM: <div id="container"><h1>Don't cross the streams!</h1></div>
$('container').replace('<h1>Don\'t cross the streams!</h1>');
// DOM: <h1>Don't cross the streams!</h1>

Aside from these, we have a convenience remove() method, which sim-
ply takes the element out of the DOM, and a cleanWhitespace() method,
which scours the element’s DOM fragment to expunge any text node
with only whitespace in it. This can be handy when you go from a HTML
template with some indenting or line breaks and they end up messing
with your styling.

OK, we’re all set to bring this JavaScript tree to visual life! Let’s first
add a method to our Staff object that does produce a DOM fragment for
any given node. To do this, we’ll need to leverage the Template class we

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=140

ELEMENT, YOUR NEW BEST FRIEND 141

will cover in Section 10.4, Templating Made Easy, on page 233, with
two templates: one for the people and one for the groups:

Download prototype/dom/fragments/people_2.js

Line 1 var Staff = {
- _templates: {
- person: new Template(
- '' +
5 '<input type="checkbox" name="item[]" value="#{id}" />' +
- '#{name}'),
- group: new Template(
- '' +
- '' +

10 '' +
- '<input type="checkbox" name="item[]" value="#{id}" />' +
- '#{name}' +
- '')
- },

15

- nodes: [
- // ...
-],
-

20 createDOMFragment: function(parentId, node) {
- var element = $(document.createElement('li'));
- element.id = node.id;
- var tpl = this._templates[node.children ? 'group' : 'person'];
- var escapedNode = { id: node.id, name: node.name.escapeHTML() };

25 element.update(tpl.evaluate(escapedNode));
- $(parentId).down('ul').appendChild(element);
- element.down('input').checked = node.checked;
- return node;
- }

30 }; // Staff

We start by putting two Template objects in a “private” field (as the initial
underscore convention implies). Both these fragments are intended to
be the whole initial contents of the element for our new tree node.
Note the embedded around the name part, which will make it
easier for us to rename the node later. We are going to create the
element the regular way and use update() on it to fill it in.

That “regular” way appears in createDOMFragment(), on line 20. It’s a
simple document.createElement('li'). We wrap it in a $() call to make sure
we get the extended version of the element.

Then we start leveraging the magic of Prototype:

1. Line 23 selects the appropriate Template object, depending on the
node’s nature. We already saw that a node representing a group

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_2.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=141

ELEMENT, YOUR NEW BEST FRIEND 142

features a children property, which will otherwise be undefined

(thereby boolean-equivalent to false).

2. On line 24, we produce a template-oriented version of the node,
with just id and label, this latter field being HTML-escaped to pre-
vent markup injection.

3. We can then evaluate the template around this object, on line 25,
and inject the resulting HTML into the newly created element.
Notice it doesn’t have to be present in the whole page’s DOM at this
point.

4. A little more walking lets us grab the parent node (which is either
a element or the root <form>), walk down to find its child-
containing , and add our DOM fragment as its last child (that
is, at the end of its existing contents).

5. Time for a walk: we need to update the status of the checkbox
in the node, depending on the presence (and value) of a checked

property in the JavaScript node, which is what we do on line 27. So
far, none of our default nodes features such a property, which is
equivalent to featuring one with a value of false. So, all our check-
boxes here will be unchecked for the basic tree.

I’ll bet you’re dying to try this out, so let’s add another little method,
specifically designed to initialize our view with the default state of our
nodes field:

Download prototype/dom/fragments/people_3.js

Line 1 var Staff = {
- // ...
-

- createDOMFragment: function(parentId, node) {
5 // ...
- },
-

- init: function(id, nodes) {
- id = id || 'staff';

10 nodes = nodes || this.nodes;
- nodes.each(function(n) {
- n.container = nodes;
- this.createDOMFragment(id, n);
- if (n.children)

15 this.init(n.id, n.children);
- }.bind(this));
- }
- }; // Staff

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_3.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=142

ELEMENT, YOUR NEW BEST FRIEND 143

The new init() method recursively injects our default node tree into our
web page. There are a couple things to look at here:

• Notice the || idiom at the beginning of the init() function (from line
9). It’s a common way to provide default values for arguments
where a false-equivalent value is invalid.2 Either there is a valid
value passed or the argument is missing, and we use the operand
on the right as its value. These two lines make sure that calling
init() with no arguments will start working at the root level of the
tree (staff is the id= of our <form>, remember?), both in the view
and in our JavaScript structure.

• You may be intrigued by this container property we’re tweaking
on line 12. This is because we want to make sure all JavaScript
nodes keep a reference on their container node. We’ll need that to
properly handle node removal.

• There’s also an important line here. Line 16 contains a call to
bind(). Without it, our anonymous function would be unbound and
could not find its methods (it uses this.createDOMFragments and
this.init). Explicitly binding it to our this avoids such nasty surprises.

Rubber, meet road: save it all, refresh your web page in your browser
of choice, fire up a JavaScript console (or better yet in Firefox, use
Firebug’s console), and try it:

⇐ Staff.init()

If you got it all right, you should see the whole tree appear as if by
magic! Figure 7.2, on the next page, illustrates this.

Handling Events
observe(eventName, handler) → HTMLElement
stopObserving([eventName [, handler]]) → HTMLElement

Well, our little staff project is moving along nicely. Still, that manual
JavaScript call will not cut it with the HR people, I’m afraid.

We would need to make it automatically happen once the page is ready.
And as long as we’re binding event listeners here, now that we are
equipped with the knowledge to create DOM fragments based on our
JavaScript nodes, we could deal with form submission (as well as this
Remove button, too).

2. Remember that zero is false-equivalent. If it’s acceptable as an argument, you can’t
rely on this idiom.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=143

ELEMENT, YOUR NEW BEST FRIEND 144

Figure 7.2: Manually injecting our initial tree

So, let’s start by equipping our Staff object with two methods to create a
new node or rename the currently selected one and some ID-generating
machinery. We also need to keep track of the currently selected node.
For now, we have no way to select a node, but when we do, creating a
node will add it as a child to the selected one.

Download prototype/dom/fragments/people_4.js

var Staff = {
// _templates...

_currentId: 1000,

selected: null,

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_4.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=144

ELEMENT, YOUR NEW BEST FRIEND 145

// nodes...

create: function(name, isGroup) {
var container = this.selected ? this.selected.children : this.nodes;
var node = { id: 'item' + this.genId(), name: name,

container: container };
if (isGroup)

node.children = [];
container.push(node);
return this.createDOMFragment(

this.selected ? this.selected.id : 'staff', node);
},

// createDOMFragment...

genId: function() {
return ++this._currentId;

},

init: function() {
// ...

},

update: function() {
this.selected.label = $F('edtName');
$(this.selected.id).down('span', 1).update(

this.selected.label.escapeHTML());
}

}; // Staff

The create() code is quite simple. First, we determine what’s the con-
tainer for our new JavaScript node: either the root one or the selected
node’s children property (if we’re creating a group, we also need to pro-
vide it with its own children container). Then, we create the node simply
by initializing it as an anonymous object. ID generation is delegated
to a tiny genId() routine in case we need to refactor it at some point.
Finally, once the node is created and added to its container, we reuse
our beloved createDOMFragment() to add it, either below the selected
node or at the root level.

Update is much simpler, because we are just renaming the currently
selected node (we decided not to let a person node become a group
node or the other way around). The $F() function will give us the text
field’s value, which we can use to update the JavaScript node. Then, all
that is left to do is update the contents of the name-wrapping ,
which is the second, in document order, inside the element (recall
indices in DOM-walking methods start at zero).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=145

ELEMENT, YOUR NEW BEST FRIEND 146

Well, the data model is ready. Now let’s bind this to our view:

Download prototype/dom/fragments/people_5.js

// Staff...

function processForm(e, addChild) {
e.stop();
if (Staff.selected && !addChild)

Staff.update($F('edtName'));
else

Staff.create($F('edtName'), $('chkIsGroup').checked);
} // processForm

document.observe('dom:loaded', function() {
Staff.init();
$('editor').observe('submit', processForm);
$('btnAddChild').observe('click',

processForm.bindAsEventListener(this, true));
});

There are a few items of interest in this code. The idea is that process-

Form() deals with both the submission button and the Add as child

button. How to differentiate? We could use the event’s source element
and check its ID, but I thought this was a nice way to introduce a
real-world example of bindAsEventListener().

Here’s the deal: when the submission button is clicked, processForm()
gets invoked with only its event object as an argument (this is auto-
matically provided). Its addChild argument is undefined and therefore
is equivalent to false. This submission button is intended to always be
available (except when the text field is empty, but we’ll get to that in
due time).

On the other hand, when the Add as child button is clicked, process-

Form() gets invoked with its event argument and a second argument (in
our case, addChild set to true). This is what bindAsEventListener() is for,
my friend.

So, we end up with the following use cases:

• No selected element: branching on else, creating a new element
(which will, then, be added at the root level of the tree)

• Selected element, regular submission button (which we will soon
make sure then reads Rename): branching on if, updating the ele-
ment (which, as we saw, is just a renaming indeed)

• Selected element, Add as child button: branching on else, creating
a new element (which will appear below the selected one)

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_5.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=146

ELEMENT, YOUR NEW BEST FRIEND 147

Also note that we triggered the default tree injection, too. This whole
event registration business happens when the page is loaded so as to
make sure we have the whole basic DOM available to us and can bind
event handlers without problems.

To move ahead, we need to be able to select elements, which requires us
to dynamically alter the CSS class name set of elements. From then on,
we’ll be able to adjust the form’s look and behavior depending on the
selection state, and we’ll also be ready to implement element removal.

Tweaking CSS Class Names
addClassName(className) → HTMLElement
hasClassName(className) → Boolean
removeClassName(className) → HTMLElement
toggleClassName(className) → HTMLElement

It’s really no big deal, or so it seems—the set of CSS classes pertain-
ing to an element is stored as a whitespace-separated list in its class=

attribute, which is accessible through its className property in Java-
Script.

The trick is that since it’s a string concatenation and not some form of
container, we keep having to pull some string-fu to work with it. That
is why Prototype provides these tricks for you.3

The names are self-explanatory: addClassName() makes sure a given
class name is in the set (without hurting any existing class name in
there), removeClassName() makes sure it gets out, hasClassName() tests
whether it’s in, and toggleClassName() removes it if it’s there or adds it
if it’s missing.

Knowing this, we can start dealing with clicks on our tree zone. Creating
an individual handler for all items in there would be wasteful. We can
leverage event bubbling and attach only one handler at the tree level,
which will get all click events happening somewhere in it. However, we
need to be careful about which clicks we’re talking about:

• Clicks on checkboxes are left for the browser to deal with (they will
toggle the checkbox status). We’re not interfering with this.

3. Until version 1.6, it used to rely internally on a tiny Element.ClassNames class, which
made for a rather heavy-handed execution of these CSS manipulations. It’s now depre-
cated, along with the classNames() method, and these manipulations are implemented
with optimized string manipulation.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=147

ELEMENT, YOUR NEW BEST FRIEND 148

• Clicks on the links surrounding the toggler images (which are,
incidentally, the only links in the tree) will, later, actually toggle
the relevant group’s visibility. We don’t know everything we have
to know just yet in order to do that.

• Clicks anywhere else must fall either below the actual tree or
somewhere in the screen space of a element that represents
an item. We then need to select this item.

This makes for quite a few code additions:

Download prototype/dom/fragments/people_6.js

Line 1 var Staff = {
- // templates, nodes, createDOMFragment...
-

- find: function(id, nodes) {
5 nodes = nodes || this.nodes;
- var result;
- nodes.each(function(n) {
- result = n.id == id ? n : n.children && this.find(id, n.children);
- if (result)

10 throw $break;
- }.bind(this));
- return result;
- },
-

15 // genId, init...
-

- select: function(id) {
- if (this.selected)
- $(this.selected.id).down('span').removeClassName('selected');

20 this.selected = (this.selected && this.selected.id == id
- ? null : this.find(id));
- if (this.selected) {
- var elt = $(id);
- elt.down('span').addClassName('selected');

25 }
- this.updateEditor();
- return this.selected;
- },
-

30 update: function() {
- // ...
- },
-

- updateEditor: function() {
35 if (!this.selected) {

- $('edtName').value = '';
- $('chkIsGroup').enable().checked = false;
- $('btnSubmit').value = 'Create';

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_6.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=148

ELEMENT, YOUR NEW BEST FRIEND 149

- $('btnRemove', 'btnAddChild', 'btnSubmit').invoke('disable');
40 } else {

- $('edtName').value = this.selected.name;
- var isGroup = this.selected.children;
- $('chkIsGroup').checked = isGroup;
- $('btnSubmit').value = 'Rename';

45 $('btnRemove').enable();
- $('btnAddChild', 'chkIsGroup').invoke(
- isGroup ? 'enable' : 'disable');
- }
- $('edtName').activate();

50 }
- }; // Staff

Finding a JavaScript node in our custom-made JavaScript tree is going
to be a recurrent need. We address it with a find() method (starting on
line 4), which recursively browses our data structure and returns either
a node object or undefined. It’s intended to be called with a simple ID.

Visually selecting a node requires us to do two things, so look at the
code for select(), starting on line 17. We start by catering to the current
selection, if any. We need to deselect it. This just means we’ll remove
selected from its CSS class name set. Then, we can find the JavaScript
node for the new selection, assign it to the selected field, add selected

to its classes, and update the state of the editor form on the right to
reflect the new state of things.

The condition over calling find() provides a nice extra touch—clicking
the current selection simply deselects it. This lets us add new nodes at
root level any time, which is nice.

The updateEditor() function is pretty straightforward, although slightly
bulky. If there is no selected node, we reset the form and disable all
buttons (this is because the Add as child button would be redundant
over Create, and this latter one will have to wait for the user to type a
valid name in order to become enabled). On the other hand, a selected
node will see its name and group quality reflected in the form; the sub-
mit button will be labeled Rename, and Remove will become enabled,
as will Add as child if the selection is a group node. Note, however,
that if the selection is a person node, it should not be possible to make
it become a group, and we cannot add a group node as a child to it.
Therefore, we disable the checkbox.

That’s it for the staff logic, but we need to listen for clicks in the tree
area now. That’s what we do with the following handler, attached at
page-loading time, as usual:

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=149

ELEMENT, YOUR NEW BEST FRIEND 150

Download prototype/dom/fragments/people_7.js

Line 1 function handleTreeClick(e) {
- var elt = e.element();
- if (elt.tagName == 'INPUT')
- return;
5 e.stop();
- if (elt.tagName == 'IMG')
- elt = elt.up('a');
- if (elt.tagName == 'A') {
- // Some toggle code, coming soon!

10 return;
- }
- // Other click. Let's select if we're on a valid item!
- if ('LI' != elt.tagName)
- elt = elt.up('li');

15 if (!elt)
- return;
- Staff.select(elt.id);
- } // handleTreeClick
-

20 // processForm...
-

- document.observe('dom:loaded', function() {
- Staff.init();
- Staff.updateEditor();

25 $('tree').observe('click', handleTreeClick);
- $('editor').observe('submit', processForm);
- $('btnAddChild').observe('click',
- processForm.bindAsEventListener(this, true));
- new Field.Observer('edtName', 0.3, function() {

30 $('btnSubmit').disabled = $F('edtName').blank();
- });
- });

We use the event’s element() method to know on what element the click
occurred, wrapping it in a $() call to get the sweet candy of DOM exten-
sions. Clicking checkboxes should be left alone. We let go of INPUT -
related clicks. Otherwise, this click is ours to deal with. We start by
stopping the event so it won’t bubble up and trigger further handlers.

If we clicked toggler images, we’ll just go up the DOM toward their con-
taining link. We can then deal with such clicks in a uniform manner
(which will be detailed later, when we have learned enough about play-
ing with elements’ visibility). Any other target element means we clicked
either somewhere nonspecial in a tree node (that is, in a element’s
area) or outside any tree node (for example, empty space in the tree
area). This is what the tests from line 13 take care of.

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_7.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=150

ELEMENT, YOUR NEW BEST FRIEND 151

Eventually, if we reach the method’s final line, we’re on a valid item. We
need to select it, which we delegate to our dear Staff.select(). Binding
these event handlers requires a few extra lines in our page-load setup
code. First, note we make sure our editor form starts out in a state
consistent with our policy by calling Staff.updateEditor() up front. We
then go ahead and bind our handler to click events in the tree zone.

As a final touch (remember how I mentioned polish?), we’re going to
leverage a small tool that we’ll better explore later, Field.Observer, start-
ing on line 29. This lets us watch out for changes of value in a given
form field at regular intervals. We decide to keep an eye on the text field
and adjust the submission button’s state (enabled or disabled) based
on it. If the value is blank (that is, if it contains only whitespace or is
actually empty), the submission button is disabled. That’s a simple UI
rule: never let your users believe they can activate something only to
tell them “no” when they do. To be responsive enough to typing, without
hogging the browser with our checking, we go for a 0.3" interval; check-
ing on the name three times a second sounds good enough, doesn’t
it?

OK, there you go: node selection, form maintenance, node creation,
and node renaming! This is great, but removal sort of screams to be
implemented here; can’t you hear? And indeed, now that selection is
implemented, there’s no reason not to answer its plea. So off we go:

Download prototype/dom/fragments/people_8.js

var Staff = {
// everything up to init...

removeSelected: function() {
if (!this.selected)

throw 'No selection to remove';
var container = this.selected.container;
container = container.without(this.selected);
var elt = $(this.selected.id);
var previous = elt.previous('li');
if (!previous)

previous = elt.up('li');
elt.remove();
this.selected = null;
if (previous)

this.select(previous.id);
else

this.updateEditor();
},

// select, update...
}; // Staff

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_8.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=151

ELEMENT, YOUR NEW BEST FRIEND 152

// ...

document.observe('dom:loaded', function() {
// ...
$('btnRemove').observe('click', Staff.removeSelected.bind(Staff));
// ...

});

Our new Staff method, removeSelected(), needs no argument. It can
grab the selected node from the selected field. Because it relies on a
proper this reference, we must remember to properly bind it when mak-
ing it an event listener. Because it doesn’t care for the event object as
its first argument, a simple bind() is sufficient.

This is where the few lines we added earlier to maintain a container

property in all JavaScript nodes pay off. Thanks to that, we can update
the container (it is the array containing our node) to avoid stray ref-
erences that would wreak havoc in our application’s behavior. Then
there’s some boilerplate algorithm to determine which element to select
after the removal. It has to be the previous one, in a previous-and-up
traversal. The usual stuff. Let’s not forget to reset the selection at the
proper moment and to update the editor explicitly if there was no new
selection.

Well, my friend, that’s some meaty JavaScript already! All that’s left is
the group toggling, letting us collapse and expand the group nodes in
our tree. This is actually a rather light task, but to tackle it, we need to
learn about playing with elements’ visibility.

Peek-a-Boo: Hiding, Showing, and Checking Visibility
hide() → HTMLElement
show() → HTMLElement
toggle() → HTMLElement
visible() → Boolean

Prototype provides elements with four methods to deal with their vis-
ibility. More exactly, these methods deal with the CSS display prop-
erty. Hiding an element means setting this property to none. Showing
it again is achieved by restoring the property to whatever it was before
that. When dealing with these methods, you can be in one of two sit-
uations. If your element is in the normal flow and is visible, you don’t
have anything extra to do. However, if you plan on hiding an element
that uses a specific value for its display property or if you need to hide
the element from the start, you must specify the original property value
in an inline style (a style= attribute on the HTML element).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=152

ELEMENT, YOUR NEW BEST FRIEND 153

Joe Asks. . .

display? Is That All You’re Looking At?!

Simply relying on the CSS display property can indeed seem
sloppy. After all, for an element to actually be visible, a num-
ber of things need to be verified—not only display but also
visibility, positioning, opacity, overflow control, and all of this
recursively through the container chain. . . .

You get the idea: it’s a flippin’ nightmare! To obtain an
authoritative answer on whether our element is, indeed, vis-
ible, we would have to come up with some serious Java-
Script/DOM mojo, which would be incredibly complex and
likely inefficient, not to mention how we would have to battle
against browser compatibility.

So yes, like many other libraries, Prototype checks only on
display. And believe it or not, that’s actually enough for most
cases. Plus, that’s super fast.

Yes, this is an intrusion of appearance in contents. This is a breach of
the separation of concerns. This is lame. Yes. But this is a necessary
evil, because there currently is no reliable, cross-browser way to grab
the property’s specified value, if it is not specified inline.

This is an issue most Prototype and script.aculo.us beginners stumble
upon. If your element has anything other than the default value for its
display property and you plan to use hide/show methods or effects on it,
you must set its CSS display property through an inline style= attribute.
Repeat after me: inline attribute. Let it sink in.

So, now that we know this, we can complete our staff management
example application. It only needs its toggling capability to be wrapped
up; let’s get on with it:

Download prototype/dom/fragments/people_9.js

Line 1 var Staff = {
- // ...
-

- createDOMFragment: function(parentId, node) {
5 // ...
- element.down('input').checked = node.checked;

http://media.pragprog.com/titles/cppsu/code/prototype/dom/fragments/people_9.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=153

ELEMENT, YOUR NEW BEST FRIEND 154

- this.makeVisible(node.id);

- return node;
- },

10

- // find, genId, init
-

- makeVisible: function(id) {
- var elt = $(id);

15 // Open all containing groups
- while (elt = elt.up('ul'))
- if (!elt.visible())
- this.toggle(elt.up('li').id);
- },

20

- // removeSelected
-

- select: function(id) {
- // ...

25 if (this.selected) {
- var elt = $(id);
- elt.down('span').addClassName('selected');
- this.makeVisible(id);

- }
30 // ...

- },
-

- toggle: function(id) {
- var elt = $(id);

35 var group = elt.down('ul');
- var toggler = elt.down('img');
- var groupIsVisible = group.toggle().visible();
- toggler.src = 'group_' + (groupIsVisible ? 'open' : 'closed') +
- '.gif';

40 toggler.alt = (groupIsVisible ? '-' : '+');
- toggler.up('a').title = 'Click to ' +
- (groupIsVisible ? 'collapse' : 'expand');
- },
-

45 // update, updateEditor
- }; // Staff
-

- function handleTreeClick(e) {
- // ...

50 if (elt.tagName == 'A') {
- Staff.toggle(elt.up('li').id);

- return;
- }
- // ...

55 } // handleTreeClick
-

- // ...

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=154

ELEMENT, YOUR NEW BEST FRIEND 155

Let’s start with the toggle code. Our toggle() method starts on line 33.
It goes like this: we get the and grab the holding the group in
it and the used to display the plus or minus icon. We can toggle
the group (the) and immediately check whether it’s now visible.
All that’s left to do is adjust the image’s source file and alternative text
(let’s think about accessibility here, you never know. . .), as well as the
link’s title (used, for instance, to display tooltips when the mouse hovers
on the link’s area for a short time).

Of course, our method is useless if we don’t call it somewhere. This is
what we do in our handleTreeClick() handler, as you can see on line 51.

Being able to toggle groups on and off raises questions about selection
and node creation. Adding a node as a child of a collapsed group would
be invisible, unless we make the node visible by expanding its parent
group. More generally, creating a node (or selecting it) by code, which
means it could be any node, at any depth within the tree, should make
this node visible.

So, let’s start by writing a simple makeVisible() method (starting on line
13) that recursively expands any parent group of the node passed to
it. Then we just need to call it when a DOM fragment is created (on
line 7), catering to programmatic node creation, and when a node is
programmatically selected (on line 28).

We’ve been very brave. We’re done with our (slightly long-winded, but,
hey, doesn’t this small page feel snappy?!) full example. There are still
a host of features provided by DOM extension, though, so we’ll quickly
fly through them in the following pages.

Inserting New Contents

Inserting new contents in the DOM is a common need, especially when
using Ajax. Here are a few scenarios that keep popping up when devel-
oping web apps:

• There’s this Ajax processing you do that needs to have some place
to put its error messages when something gets borked.

• The user adds an item by filling in a form, which is then submitted
through Ajax. What comes back from the server is the polished
XHTML fragment that now needs to find its place at the bottom
of the item list (perhaps a shopping cart or a comments listing). A
highlight effect would be nice, too, but we’ll get to that later.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=155

ELEMENT, YOUR NEW BEST FRIEND 156

• You’ve got this cool web-based chat application (who said “Camp-
fire?”), and as new dialogue comes in, it needs to be appended to
the room transcript.

• Your message list displays incoming e-mail from most recent to
oldest, conforming with the user’s preferences. As you routinely
check for new messages, you suddenly need to put the fresh ones
at the top of the list.

You see? It’s all over the place.

Lightweight DOM Element Creation

new Element(tagName [, attributes]) → HTMLElement

Version 1.6 introduces a lightweight DOM element creator, which is a
trimmed-down version of script.aculo.us’s Builder facility. It lets you cre-
ate elements in a straightforward manner by simply invoking Element

as a constructor, with at least a tag name (the case is irrelevant) and
possibly a hash-like object containing the attributes. For instance:

var header = new Element('h1', { id: 'mainTitle', lang: 'fr' });
header.appendChild(document.createTextNode('La construction facile'));

You will get details on the syntax for the attributes argument in the de-
scription of the writeAttributes() method on page 166.

Replacing vs. Inserting

There are really two categories of contents alteration:

• Contents replacement: you want to replace an element’s contents
or the element itself. This is done through this element’s update()
and replace() methods, respectively, which were described in Sec-
tion 7.2, Replacing Contents and Removing Elements, on page 139.

• Contents insertion: you need to squeeze new contents some place.
This is what the insertion methods are about.

You could, of course, craft your own code by hand by using the DOM
interfaces (those in DOM Level 2 Core and DOM Level 2 HTML, for
instance), but you’ll quickly find that cross-browser issues actually
are legion. There is, naturally, a large set of problems with Internet
Explorer, especially when playing inside <table> elements. But this is
only a facet of the troubles you’ll get in.

That is why Prototype takes care of all the cross-browser tricks for you,
be it for contents replacement or contents insertion. Believe me, you’re
better off using the Prototype methods than embarking on a lonely cru-
sade through such barren lands.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=156

ELEMENT, YOUR NEW BEST FRIEND 157

How Is Our XHTML Fragment Processed?

The same way hedgehogs mate: with great care (and a hearty spirit). The
general idea (for both update()/replace() and the insertion methods) is
as follows:

1. The fragment is stripped of its <script> elements, which are kept
aside.

2. The stripped fragment is inserted, taking care of the cross-browser
issues and potential pitfalls.

3. The scripts originally in the fragment get evaluated; at this point,
the elements in the fragment are indeed part of the page’s DOM,
so they are accessible through regular scripting.

At this point, you may roar in outrage at the mere thought of inline
<script> tags. But in an Ajax context, this is the only way4 for the
server to send both page contents and the companion scripting. A com-
mon use case is that of a new item to be appended to a list and then
subjected to a highlight effect (you know, this yellow fade thing you
keep seeing now and then), or you could make the new content drag-
gable or otherwise script-enabled.

As a warning note, you should always use JavaScript <script> ele-
ments (that is, not some other scripting language, such as Internet
Explorer’s proprietary VBScript). This is because Prototype will extract
the tags and evaluate only their contents (not the tag itself), assuming
they are JavaScript.

So, How Do We Insert Stuff?

Version 1.6 provides two new methods that cater to the usual needs,
replacing the now-deprecated Insertion object:

insert(content) → HTMLElement
insert({ pos: content [, . . .] }) → HTMLElement
wrap([wrapper = 'div'] [, attributes]) → WrapperHTMLElement

insert() inserts contents before, at the top of, at the bottom of (the
default), or after the reference element. This is a replacement of the
former Insertion namespace.

4. Well, not quite so, but other ways would have you pull some mean coding and config-
uration tricks, so I figure they’re just not worth it, compared to how convenient the inline
<script> approach is here. . . .

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=157

ELEMENT, YOUR NEW BEST FRIEND 158

There are two ways to invoke it. If you simply pass some content (with
the same possible values as for replace() or update(), which we dis-
cussed in Section 7.2, Replacing Contents and Removing Elements, on
page 139), it will get inserted at the bottom of the container, but if you
pass an object with position-named properties, you can insert content
at up to four positions all in one call. The properties of the object you
pass are named before, top, bottom, and after, and their possible values
were discussed in detail a few sections back.

wrap() wraps the current element with the passed one (the passed con-
tents replaces the current element, which is then added as the contents’
last child). You can specify the wrapper element as an existing element
or a tag name, or you can leave it to the default (a new <div> element).
You can also pass attributes for the wrapper element, using an attribute
hash, which will be applied even when you specify an existing element
as the wrapper. Note that you could pass just attributes, which would
be applied to a new <div> (which I refrain from doing in the next exam-
ple, for the sake of readability). Finally, note that wrap() returns the
wrapper element, not the original one. Although this is not very consis-
tent with the rest of the API, intensive real-world use showed this to be
the more intuitive (and the more useful) way to go.

To better visualize the various insertion types, let’s try them on a demo
page. Our page body contains the reference element:

Download prototype/insertions/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insertion</title>
<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="demo.js"></script>

</head>

<body>

<h1>Insertion methods</h1>

<div id="ref">Reference element</div>

</body>

</html>

http://media.pragprog.com/titles/cppsu/code/prototype/insertions/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=158

ELEMENT, YOUR NEW BEST FRIEND 159

Then a small script will use all four insertions at page load time, using
both invocation syntaxes. This also demonstrates inline scripts:

Download prototype/insertions/demo.js

Line 1 function demoAllInsertions() {
- // Default syntax
- $('ref').insert('<div class="element bottom">' +
- '<code>bottom</code></div>');
5 // Advanced syntax
- $('ref').insert({
- before: '<div class="element before"><code>before</code></div>',
- top: '<div class="element top"><code>top</code></div>',
- after: '<div class="element after"><code>after</code></div>'

10 });
- // A bit of inline scripting?
- $('ref').wrap('div', { className: 'element wrap' });
- $('ref').insert({ top:
- '<div class="element top" id="scripted">Such a nice book</div>' +

15 '<script type="text/javascript">' +
- '$("scripted").update("Such a great book!")' +
- '<\/script>' });
- } // demoAllInsertions
-

20 document.observe('dom:loaded', demoAllInsertions);

Notice the escaping of </script> on line 17: this is because such a
script would otherwise not be parsed properly if you used it in an inline
<script> element (although it would work just fine using unobtrusive
JavaScript).

Finally, a little bit of styling will make things stand out better:

Download prototype/insertions/demo.css

code, tt { font-size: 115%; color: green; }

#ref, .element {
border: 1px solid gray;
padding: 1ex; width: 30ex;
background: #ffd;
text-align: center;

}

.element { background: #dfd; width: 28ex; }

.element.top, .element.before { margin-bottom: 1ex; }

.element.bottom, .element.after { margin-top: 1ex; }

.element.wrap { background: #ddf; width: 32ex; }

The result, loading the page, looks like Figure 7.3, on the next page.

http://media.pragprog.com/titles/cppsu/code/prototype/insertions/demo.js
http://media.pragprog.com/titles/cppsu/code/prototype/insertions/demo.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=159

ELEMENT, YOUR NEW BEST FRIEND 160

Figure 7.3: Demonstrating the insertion methods

Meeting the Family: Ancestors, Children, Siblings. . .
adjacent(expression...) → [HTMLElement, ...]
ancestors() → [HTMLElement, ...]
childElements() → [HTMLElement, ...]
descendantOf(ancestor) → Boolean
descendants() → [HTMLElement, ...]
empty() → Boolean
nextSiblings() → [HTMLElement, ...]
previousSiblings() → [HTMLElement, ...]
siblings() → [HTMLElement, ...]

Besides regular DOM walking (with methods such as up()), Prototype
can gather entire node chains for you and deal with common lookup
cases. It is important to note that these focus on elements. You won’t
get any text node, entity reference node, or whatnot.

The methods ancestors(), descendants(), previousSiblings(), and next-

Siblings() fetch the whole chain of elements you get in the four usual
directions: upward, downward, before, and after your node, respec-
tively. A convenience siblings() shortcut returns the whole list of your
sibling elements, in document order. Finally, childElements() is a one-
level-down narrowing of descendants(), returning only elements that
are direct children of your element.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=160

ELEMENT, YOUR NEW BEST FRIEND 161

More recently introduced, adjacent() lets you fetch all siblings (and
their children) that match the CSS selectors you’re passing as argu-
ments. Technically, those selectors behave exactly like those passed to
Selector#findChildElements() (see Section 7.3, Selector, on page 167 for
details). The current node is, obviously, left out even if it matches; it’s
not adjacent to itself!

Selecting Elements with CSS
match(selector) → Boolean
select/getElementsBySelector(selector...) → [HTMLElement, ...]

These methods let you fetch descendant elements by class name or
using a full CSS selector (as handled by Prototype’s Selector class,
discussed on page 167). The match() method lets you quickly check
whether the current element matches a given selector.

Selectors for select() (formerly known as getElementsBySelector()) are
expressed as strings, in the same way as for Selector.findChildElements(),
which will be discussed later in this chapter. Note, however, that this
method is not used much. Most of the time you’ll find yourself going
with the $$() utility function instead; it’s just faster and more concise.

Tweaking Individual Style Properties
getStyle(propertyName) → value
setStyle({ name: value [, . . .] } | CSSPropertiesString) → HTMLElement

Prototype provides elements with a uniform access to style properties
(DOM properties representing CSS properties), smoothing over many a
browser compatibility issue (and trust me, in this specific area, com-
patibility issues are legion).

First, getStyle() retrieves the specified (or failing that, computed) value
for a specific CSS property. You can use the CSS syntax (hyphen-
separated, as in border-width) or the DOM syntax (camelized, as in
borderWidth). Since the DOM syntax is the one ending up being used,
providing it directly makes for faster processing. If the property cannot
be retrieved or is set to auto, you’ll get a null.

In a general manner, refrain from using CSS shorthand names for prop-
erties. Use detailed names as per the DOM Level 2 Style specification.

Not backward-compatible

with 1.5.x!

Second, setStyle() lets you set any number of style properties at once by
simply passing a “hash” of properties as the first argument. Since ver-
sion 1.6, the property names must be camel-cased (for example, font-

Size, not font-size) when using the “hash” form, and you can use an

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=161

ELEMENT, YOUR NEW BEST FRIEND 162

alternate form as a regular CSS property set (exactly like what you
would type in an inline style= attribute).

Here are examples of the two call forms:

elt.setStyle('font-size: 12px;');
elt.setStyle({ fontSize: '12px' });
elt.setStyle('font-size: 12px; color: #444');
elt.setStyle({ fontSize: '12px', color: '#444' });

As a very noticeable browser compatibility effort, both methods provide
uniform access to the CSS opacity property, despite Internet Explorer
6 not supporting it. Prototype will work with Internet Explorer’s propri-
etary filter capability to emulate it.

Positioning

Prototype extends DOM elements with many position-related methods
that let you obtain an element’s position (within a variety of coordinate
systems) and play with the element’s position-related aspects.

All of these methods are intensively used inside visual features such
as the visual effects and drag-and-drop facilities in script.aculo.us, but
this doesn’t mean your own code will never need them. In case you do
need them, I include them here.

Until Prototype 1.6, these methods were available through the Position

namespace and suffered from inconsistent naming. A recent effort was
made to clean this up.

In the following syntax, the PositionInfo type is basically a two-views
object. For backward compatibility, it acts as a two-item array (with
indices 0 and 1), holding the left and top coordinates, respectively. In
the newer way, it also holds these data in two properties, named left

and top. Also note that all coordinates are expressed as numbers, in
pixels.

cumulativeOffset() → PositionInfo
cumulativeScrollOffset() → PositionInfo
positionedOffset() → PositionInfo
viewportOffset() → PositionInfo
getOffsetParent() → HTMLElement
absolutize() → HTMLElement
relativize() → HTMLElement
clonePosition(source [, options]) → PositionInfo

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=162

ELEMENT, YOUR NEW BEST FRIEND 163

The whole set of methods ending with -Offset returns a coordinate set.
Depending on the coordinate system you’re interested in, you’ll pick
one or the other:

• cumulativeOffset() returns the position in the document’s system
(from the document’s top-left corner, regardless of scrolling).

• cumulativeScrollOffset() provides the total scroll offsets of an ele-
ment; that is, if this element’s parent chain contains more than
one scrolled container, we cumulate scroll offsets. So if our ele-
ment is in a <form> that is in a scrolled <div> that is in the
scrolled document, we’ll take both the document’s scrolling and
the <div>’s scrolling into account to compute these offsets.

• positionedOffset() returns the position in the system of the posi-
tioning container system (see getOffsetParent() a few lines later).

• viewportOffset() returns the position in the viewport (the visible
part of the document), which is useful to detect, say, that the
element is getting over the visible edges of the document. Start-
ing with version 1.6, Prototype provides nifty access to viewport
dimensions through the document.viewport object. Check out Sec-
tion 10.5, Querying the Current Viewport, on page 238 for further
details.

getOffsetParent() returns the positioning container of the element. Every
positioned element (be it relative or absolute positioning) has a posi-
tioning container, which is defined by a nontrivial set of rules in the
CSS specification, as the “CSS-containing block.”

Sometimes you need to take an element and start manipulating it like it
is positioned in a certain way (usually relative or absolute). And perhaps
it is not positioned that way yet. You can make it positioned according
to your needs without changing its visible position (which would cause
a rather troubling sudden movement) by using either absolutize() or
relativize().

Finally, clonePosition() lets you apply the positioning of another element
to yours. However, getting the same positioning may not be what you
had in mind. You more likely want a derivative positioning, such as
“just put me below it, with the same width and its original height” (this
is what happens, for instance, with the list of suggestions in script.acu-
lo.us’s autocompletion feature).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=163

ELEMENT, YOUR NEW BEST FRIEND 164

Joe Asks. . .

Positioning Container? What Are the Ground Rules Here?

The full details are at http://www.w3.org/TR/CSS21/visudet.html#containing-block-details.
To make a long story short and ignoring a few edge cases,
it goes like this:

• If you’re relatively positioned, it’s the content area of
your nearest block-level ancestor.

• If you’re fixed, it’s the viewport itself.

• If you’re absolutely positioned, it’s usually the padding
edge (that is, immediately inside the border) of your
nearest positioned ancestor (regardless of its position-
ing being relative, fixed, or absolute).

So, the options argument lets you specify which properties you want
to clone, using booleans named setLeft, setTop, setWidth, and setHeight.
They all default to true. You can also specify an offset from your source
element’s position using the offsetLeft and offsetTop properties (they both
default to zero).

For instance, script.aculo.us’s Autocompleter.Base code does something
like the following:

update.clonePosition(element, {
setHeight: false,
offsetTop: element.offsetHeight

});

This positions the suggestion list (update) right below the text field,
with the same width as the text field but retaining its original height.

Figure 7.4, on the next page, attempts to convey the interrelations of
the -Offset methods.

The source code archive for this book contains, in code/prototype/dom/

positioning, a live example that reproduces Figure 7.4 and lets you inter-
actively play with scrolls. Hovering on the colored zones will update the
results of all four offset methods in a top-right display.

http://www.w3.org/TR/CSS21/visudet.html#containing-block-details
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=164

ELEMENT, YOUR NEW BEST FRIEND 165

Figure 7.4: Positioning properties

More Visual Aspects
getDimensions() → { width: Number, height: Number }
getHeight() → Number
getWidth() → Number
makeClipping() → HTMLElement
makePositioned() → HTMLElement
scrollTo() → HTMLElement
undoClipping() → HTMLElement
undoPositioned() → HTMLElement

Those are a host of position-related methods. The most common ones
are getDimensions(), which returns an object with both a width and a
height property, plus getHeight() and getWidth(), when you need only
one dimension. The others deal with making the element a CSS-con-

taining block (makePositioned(), necessary to apply several visual effects)
or restricting an element’s rendering to a part of it.

Aside from this, the scrollTo() method is more humble. It simply has the
viewport scroll so that the element appears at the top of it, much as if
the user had clicked a link to this element’s ID.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=165

ELEMENT, YOUR NEW BEST FRIEND 166

Miscellanea
hasAttribute(attrName) → Boolean
identify() → ElementID
inspect() → String
readAttribute(attrName) → String
writeAttribute(attrName [, attrValue = true]) → HTMLElement
writeAttribute({ attrName: attrValue [, . . .] }) → HTMLElement
Node.xxx_NODE

Prototype provides a portable, reliable version of hasAttribute(), which
is sometimes missing (case in point, Internet Explorer). There is also
a readAttribute() method, extensively used by Prototype itself, which
provides a portable way of accessing numerous DOM properties rep-
resenting HTML attributes and dealing with naming or semantics dis-
crepancies from one browser to the next (for example, when working
with name= attributes). Both methods take an HTML attribute name.

Version 1.6 introduces the converse operation with writeAttribute() that
takes either a single attribute’s name and value or a hash-like object
with properties for each attribute to set. It takes care of false and null

values by removing the attribute altogether; conversely, true values,
used to express the presence of a “flag” attribute (such as disabled=

or selected=), follow XHTML guidelines by setting the attribute’s value
to its own name (for example, selected="selected"). Other attributes are
set without value tweaking.

Do note the attribute names are HTML names, not DOM property names
(for example, class instead of className, or for instead of htmlFor). writeAttribute allows

both, though.

Also new in version 1.6, the identify() method makes sure the element
has a unique ID. Either it already has an id= attribute and it is returned
untouched or it lacks one, and a unique attribute, of the form anony-

mous_element_X (where X is a unique integer), is generated and as-
signed to the attribute. This is useful when you need to refer to the
element later by its ID, say, through a generated script or something.

As another effort to help smooth over browser differences, Prototype 1.6
guarantees that the node type constants exist in the Node namespace
(this is normally provided by the W3C DOM), so you get, for instance,
Node.ELEMENT_NODE and Node.TEXT_NODE (and the ten other constants).
We use this internally to avoid “magic numbers” in the Prototype code
base, and if you ever dabble with node types, so should you!

We’ve already seen many inspect() methods. This one is actually pretty
nice. It provides a markup representation of the element with its id=

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=166

SELECTOR 167

and class= attributes, if any. For instance, a paragraph with an ID of
intro and a CSS class name set of hush and fancy will render as <p

id="intro" class="hush fancy"> (although the actual order of attributes may
vary from one browser to the next).

My friend, you deserve a break. You’ve been through the humongous
set of DOM extensions provided by Element and are still here to tell the
tale. I salute you. But this chapter is not quite finished yet, though;
here’s the tasty Selector class to look at and a few nice debugging tips
to learn.

7.3 Selector

Selector is the hidden power of $$(), which we covered extensively in
Section 3.4, $$ Searches with Style, on page 45. What $$() actually does
is simply call Selector.findChildElements() over the whole document, with
its arguments as the selectors.

And indeed, in the vast (very vast!) majority of times, you’ll just need
to go with $$() instead of manually building Selector objects. It’s the
easier way, and you won’t take a speed hit because you went for the
convenience method. In fact, the only reason you would want to work
with Selector directly is if you keep reusing the same selectors over and
over again. Then you’ll probably want to squeeze more performance out
of your script by analyzing those selectors only once and keeping the
resulting Selector objects close at hand.

Before plunging in, remember that all elements returned by a selector
are guaranteed extended. Because good things should come in twos.

new Selector(expression) → Selector
sel.findElements([root = document]) → [HTMLElement, ...]
sel.inspect() → String
sel.match(element) → Boolean
sel.toString() → String
Selector.matchElements(elements, expression) → [HTMLElement, ...]
Selector.findElement(elements [, expression = '*'] [, index = 0]) → HTMLElement
Selector.findChildElements(element, expression...) → [HTMLElement, ...]

“Precompiling” a selector to tuck it away for later use is as simple as cre-
ating it. Just use new, and pass it a full CSS expression (not a rule with
commas, though; that would require multiple selectors, which is what
Selector.findChildElements() does). If the browser supports DOM Level 3
XPath, Selector will leverage it to achieve blazing speed. Otherwise, it
will revert to an optimized DOM/JavaScript code base.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=167

DEBUGGING OUR DOM-RELATED CODE 168

Using an existing Selector object for DOM queries is mostly done via
its findElements() method, which you can contextualize by passing a
specific element as the root for your search (otherwise you’ll query the
whole document). You can also check whether any given element in the
DOM matches your selector by using the match() method.

There’s also the usual duet of string representation methods: toString()
returns the original CSS expression passed at construction time, and
inspect() returns slightly more debug-oriented text—this same expres-
sion surrounded by #<Selector: and >.

When you have no Selector object handy, you can still have needs
beyond a simple $$() call. Those needs are addressed by Selector.

matchElements(), which filters an existing element set to return only
those matching the passed expression, and Selector.findElement(), which
goes one step further by extracting a specific element from such a
resultset.

Astoundingly shrewd readers (yes, that’s you, too) will have noticed
that Selector.findElement() shares its second and third parameters with
Element’s DOM-walking methods, such as up(), which we saw in Sec-
tion 7.2, Walking Around: Moving Across the DOM, on page 138. The
reason is obvious: those methods all rely on Selector.findElement() when
they get passed an expression argument, simply passing the proper ele-
ment line as the first argument (for instance, up() uses ancestors()). It
all comes together and makes some solid sense, wouldn’t you say?

Also note, Selector.findChildElements() takes a root element ($$() passes
it the whole document) and an array of expressions. It then returns the
full set of nodes matching those expressions, with no duplicates.

7.4 Debugging Our DOM-Related Code

Debugging DOM-related code the traditional way feels like you’re stum-
bling blindfolded in a large room full of echoes. There are basic steps
you can take to see the light, or at least get a clearer picture of what
you’re dealing with.

Using Firebug

Let’s start with the easiest way. If you’re using Firefox (and you should

develop on Firefox first and then test with other majors browsers!), use

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=168

DEBUGGING OUR DOM-RELATED CODE 169

the DOM inspector (and other DOM-related features) in the Firebug5

extension. This lets you see the actual DOM as nested markup, modify
some of it on the fly, highlight corresponding elements in the rendered
page, and explore DOM objects and all their properties.

The main tool for this is the HTML tab, which represents your doc-
ument’s DOM as markup source code, lets you expand and collapse
it, select it, highlight in the web page whatever element you’re mousing
over in the source pane, see and tweak the current element’s CSS prop-
erties (with a special view for its layout-related properties), and view its
actual DOM object in detail.

Some of these features are illustrated in Figure 7.5, on the following
page, and in Figure 7.6, on the next page.

Using DOM Inspectors

Most browsers feature some sort of a DOM inspector, either available
directly or through some extra plug-in. Firefox has one out of the box
(provided you select it at installation or, on Linux, install the proper
package), which is reasonably good (see Figure 7.7, on page 171).

Internet Explorer has nothing to offer by itself, but the Internet Explorer
Developer Toolbar, a browser add-on, provides a host of features target-
ing most web developer needs, including inspectors for the DOM, CSS
style sheets, and more.

Safari 2 has a hidden Debug menu, which can easily be revealed:

1. Shut Safari down entirely (close all windows, and close the appli-
cation menu).

2. Open a terminal.

3. Type defaults write com.apple.Safari IncludeDebugMenu 1.

4. There! Launch Safari again, and behold its gorgeous Debug menu.

And WebKit (which means, by extension, the upcoming Safari 3) comes
with a full-blown, nicely polished debugger, plus a DOM inspector and
a network monitor. (Now we’re talking!)

Finally, Opera provides only a detailed, filter-capable message window,
with no extra developer tools. When it comes to DOM debugging, you’re
pretty much on your own. However, Opera has excellent W3C DOM
support. If your code works on Firefox and Safari, there is extremely
little chance it would bork on Opera.

5. http://getfirebug.com

http://getfirebug.com
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=169

DEBUGGING OUR DOM-RELATED CODE 170

Figure 7.5: Firebug’s DOM inspector in action

Figure 7.6: Alternate views in Firebug’s DOM inspector

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=170

DEBUGGING OUR DOM-RELATED CODE 171

Figure 7.7: The DOM inspector in Firefox

Last-Resort Debugging

If you find yourself in such a tight spot as having to debug DOM issues
with no developer tool whatsoever in your browser (what the heck are
you doing!?), you can at least use Prototype’s DOM abilities to construct
DOM source representations and either alert() those (which can quickly
become a nightmare) or log them into an ad hoc element on your web
page (such as a <div> with a style along the lines of position: absolute;

width: 15em; height: 30em; right: 1em; top: 1em; border: 1px solid black;

background: silver; opacity: 0.5; overflow: auto; font-family: monospace;

padding: 0.2em;).

You can then walk the DOM node using the methods we saw earlier on
page 138 and on page 160, build small representations with inspect(),
escape the whole thing using escapeHTML() on the String, and add the
resulting text at the bottom of the log by wrapping it in a <p> and
using an insertion (as we saw in Section 7.2, Inserting New Contents,
on page 155).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=171

DEBUGGING OUR DOM-RELATED CODE 172

What We Just Learned

There’s a lot to grok in this chapter; DOM extension is at the heart of
Prototype and is one of the major reasons why it’s so nice to use. Let’s
quickly go over the central points we explored:

• DOM extension is the process of slapping extra methods on DOM
elements to be used as any native DOM method. Prototype pro-
vides tons of such methods out of the box and a mechanism to
add your own (Element.addMethods()).

• The speed cost of DOM extension is almost null (a few milliseconds
at script load to update the prototypes for the DOM elements) on
many browsers and slower on Internet Explorer (which doesn’t
feature prototypes for DOM interfaces). Still, it’s very reasonable
and has an excellent cost/benefit ratio (usually less than a mil-
lisecond to equip your element with many power tools).

• The extension propagates. The starting point is often a call to $(),
which returns a guaranteed extended element. Every extended
method, when returning one or more elements, guarantees their
extension. And element-related methods in the event system also
return the extended versions.

• All mutative methods (methods that alter the element) return the
element itself, so you can chain-call (for example, like this:
element.update(’cool’).highlight()).

• Areas where DOM extension radically shortens your code include
DOM traversal, DOM extraction, DOM construction, CSS class
processing, and positioning. And that’s not even all. . . .

• The Selector API, which is the basis for the well-loved $$() utility
function, lets you extract DOM elements based on the full com-
plement of CSS 3 selectors, regardless of your browser’s actual
support for CSS.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=172

Chapter 8

Form Management
Although this is technically part of Prototype’s DOM extensions, I feel
that form manipulation is a topic unto itself. Prototype indeed equips
forms, and form fields, with many extra methods in addition to the
generic element extensions. Because forms are such an important part
of web app development, I decided to cover these extensions in a specific
chapter.

Form.Element vs. Field

First, note that the “official” namespace for methods grafted upon form
elements is, quite unsurprisingly, Form.Element. However, as this is a
somewhat long name, it is aliased to Field. I prefer this shorter version
over the more verbose one. So in this book, I use Field in my code and
examples. It’s just more concise and no less expressive.

8.1 Toward a Better User Interface

Savvy web developers put increasing effort into the design of the forms
in their apps. Proper markup (with an emphasis on semantics and
accessibility) is a major step, as is proper styling, which lets us do
things like highlight the focused field or clearly mark incorrect or in-
complete fields. With a dollop of scripting, we can also provide timely,
contextual help on field semantics.

This is all well and good, but two key aspects of form ergonomy need
your sweet care, too: form navigation (that is, how the user can go from
one field to the next or previous one) and proper management of field
enablement.

TOWARD A BETTER USER INTERFACE 174

Navigation is important not only for users with special needs or mouse-
less devices. Users will automatically intuit navigation from the form’s
layout. They will form expectations on the order of navigation for your
fields, and efficient ones will want to be able to use the keyboard to tab
through your fields even if there is a mouse at hand. Failing to meet
their navigational expectations can lead to a lot of frustration.

Management of field enablement has many ramifications, too. When-
ever a field is enabled, it should be enabled for a good reason. Con-
versely, whenever a field should not be touched, make sure it cannot

be touched. Disable it for the time being.

Properly disabling fields (including buttons) when they are irrelevant or
inoperant is a much better way to go than just leaving them enabled and
then responding to their activation with some “Not just now” message,
or worse—doing nothing.

Dealing with Focus and Value Selection

Let’s start with the fundamentals: giving a field the focus (making it
the primary target of keyboard activity). Users may expect, at least
for certain text fields, that they will automatically select their textual
contents when focused. Maybe the optimal ergonomy for this particu-
lar app screen requires such a thing for massive, batch-mode use, for
instance. Whenever there is a clearly dominant use case on a text field
where preselecting the contents is nice, you should do it.

fieldElt.activate() → fieldElt
fieldElt.clear() → fieldElt
Field.focus(fieldElt) → fieldElt
fieldElt.present() → Boolean
Field.select(fieldElt) → fieldElt

Field elements already feature native focus() and select() methods.
Those do not return the original field, however, which means you can-
not easily call-chain:

// NONE OF THIS WILL WORK!
$('edtLogin').focus().setStyle({ backgroundColor: '#ffd' });
$('edtLogin').focus().select();

Call-chaining is a very nice card to have up your sleeve in order to write
more concise code, which is why Prototype makes most of its DOM
extensions call-chain-friendly and, in our specific case here, provides
two “static” methods. This preserves the original methods and their
semantics but still provides a chain-enabled variant:

Field.focus('edtLogin').select();

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=174

TOWARD A BETTER USER INTERFACE 175

Because focusing a field, and then selecting its textual contents, is such
a recurrent need, Prototype equips fields with a new method called acti-

vate(). It first focuses the field, and then if it’s an appropriate field type
(for example, an <input> with type="input" or a <textarea>), it selects
its contents.

As for the value itself, present() tests that it is not empty (a regular
empty string), and clear(), well, clears the value.

As we discussed earlier, a clean, intuitive keyboard navigation path
across form fields is important. This usually relies on proper document
ordering and well-chosen tabindex= attribute values, but from a script-
ing point of view, there is more to do.

formElt.findFirstElement() → fieldElt
formElt.focusFirstElement() → formElt
Form.reset(formElt) → form

A common best practice for most web app screens with a main form
mandates that we focus this form’s first element when the page is
loaded so as to get the user in a position to immediately use it, without
having to click the element or tab their way to it.

Of course, the concept of a “first” element is more complex than it
sounds. Is it the first element in document order or the first one once
the layout is applied? Or maybe the form layout obeys customs or legal
requirements that make it have a few fields first that are generally left
untouched and the first field that should get the focus appears fur-
ther down? We’d usually mark this with a proper tabindex=, but then
should “first” follow those attributes? And what about element enable-
ment? Should we ignore disabled elements? What about visibility?

These are the kinds of questions you start asking yourself, and a few
months later your loved ones will find you drooling and babbling in
tongues, all rolled up in a fetal position in a dark corner under your
desk. Allow me to rescue your endangered sanity by detailing how find-

FirstElement(), which you call on the containing <form>, goes about it:

1. The method starts by getting all fields in the form that are nei-
ther of a hidden type (not to be confused with styling, which we
blissfully ignore1) nor disabled.

2. Then we look for the smallest value of the tabindex= attribute
among the remaining elements.

1. As we discussed in the Joe Asks. . . on page 153, dealing with this would be practically
infeasible.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=175

TOWARD A BETTER USER INTERFACE 176

3. If we find one, we use the resulting field.

4. Otherwise, we use the first <input>, <select>, or <textarea> we
get, in document order.

In practice, this algorithm maps rather well to the intuitive notion of
the “first” element.

Since most of the time we want to grab the first element to give it focus
(and select its textual contents, if appropriate), Prototype rolls in a con-
venience method for this: focusFirstElement(), which is a neat combina-
tion of findFirstElement() and activate().

Finally, again for the sake of call-chaining, there is a “static” variant
of the native reset() method for forms, which returns the original form
element (something the native method may or may not do). Recall that
resetting a form does not mean clearing it. It means resetting all fields
to the values defined in the original markup.

Enabling and Disabling Elements
fieldElt.disable() → fieldElt
fieldElt.enable() → fieldElt
formElt.disable() → formElt
formElt.enable() → formElt

We discussed earlier how important it is to disable any UI element that
is, in fact, useless at the moment. Maybe this is a Delete button for
items in a list, where no items are currently selected. Or maybe this is
a form submission button, and the form is currently being sent (either
through Ajax or the regular way; that’s irrelevant). Perhaps you’re deal-
ing with a Clear button for a shopping cart, which is indeed currently
empty.

Whatever the business logic, if your UI element should not be used at
this point in time, it should not be usable. Users will expect, and rightly
so, that UI elements available to them should perform properly, instead
of burping message dialogs with notifications such as “Sorry, can’t do
that now.”

Prototype endows form fields with two methods, enable() and disable(),
that alter the disabled DOM property. It makes certain that the element
loses focus before being disabled, because this can be an issue in a few
browsers.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=176

LOOKING AT FORM FIELDS 177

Disabled? Let It Show!

A few browsers do not efficiently display disabled elements;
for instance, Konqueror and Internet Explorer do not alter
the font color of disabled drop-down listboxes or the back-
ground color of disabled flat listboxes or multiline text fields
(and single-line too, on Internet Explorer). Opera does not
alter the background color of checkboxes and radio but-
tons. Such lackings make it impossible for the user to under-
stand at a glance that part of the UI is off-limits.

This can be fixed quickly with a bit of CSS styling. If you’re
targeting CSS 2–compatible browsers, just use something like
this:

*[disabled] { background-color: #ccc; color: gray; }

(CSS 3 would even let us use *:disabled, but do you really
want to exclude Internet Explorer for another decade?)

If you must support browsers that do not feature CSS 2
attribute selectors, you will need to equip your disabled ele-
ments with specific class names, too. This can be done easily
with Prototype’s magic:

$('myForm).select('*:disabled').invoke('addClassName',
'disabled');

//...and later on, re-enabling...
$('myForm').select('.disabled').invoke('removeClassName',

'disabled');

There is also a common use case where you need to disable an entire
form (or enable it). Well, that’s a piece of cake—just use the same meth-
ods over the form itself, instead of specific elements.

8.2 Looking at Form Fields

formElt.getElements() → [fieldElt, ...]
formElt.getInputs([typeName] [, name]) → [fieldElt, ...]

We often need to grab some or all of the elements in a specific form.
Even inside Prototype, this is a common task: to disable or enable all
the fields, to find the first one, or to serialize the form or determine
whether anything has changed since the last time we looked. . . .

The catchall approach is to use getElements(), which returns all fields
in the form, in document order. This includes <input> tags having

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=177

SUBMITTING FORMS THROUGH AJAX 178

type="hidden", disabled fields, and so on. However, <button> fields are
omitted; only <input>, <select>, and <textarea> tags are taken into
account.

If you need to be more surgical about it (which is a good thing), you
can go with getInputs(). This one is designed specifically for those cases
where you need to fetch <input> fields, usually with a specific type=,
name=, or both.

For this second method to work properly, you’d better stick to lowercase
(official XHTML) type names in your markup, your DOM generation
code, and your getInputs() calls. In the same vein, name filtering is case-
sensitive. If you need to filter on name but not on type, simply pass null

as the first argument. Elements are returned in document order.

Here’s a common use case: do you want to check whether any of the
checkboxes with name="answer" is, indeed, checked? There you go:

if ($('myForm').getInputs('checkbox', 'answer').pluck('checked').any())
// ...

However, if you need more advanced filtering, you’ll have a simpler time
using methods such as $$() or select(). For instance, assuming your
required fields all have Req in their id= attributes, you could check
(naively, because this relies on empty strings, not blank strings) that
they’re all filled in like this:

if ($('myForm').select('*[name*="Req"]').invoke('present').all())
// Missing fields!

Whatever the method you used, all returned elements are extended for
your DOM extension pleasure.

8.3 Submitting Forms Through Ajax

Indeed, Ajax-based form submission is at the heart of the new gener-
ation of web applications, so if you haven’t got on board yet, it’s about
time. I’ll help you in, don’t worry. But before plunging into Ajax (some-
thing we’ll do in detail in Chapter 9, Ajax Has Never Been So Easy, on
page 186), we need to consider what’s in a form?

Shape Shifters: The Changing Nature of Field Values
fieldElt.getValue() → value | [value, ...]
fieldElt.setValue(value | [value, ...]) → HTMLElement

Depending on the nature of a field, its value can take one of two forms:
a single value (usually a string or, for checkboxes and radio buttons,

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=178

SUBMITTING FORMS THROUGH AJAX 179

a boolean) or an array of values. This second variant happens in only
one situation: listboxes with multiple selections enabled (<select multi-

ple=multiple">).

Now for those pesky details that you will wonder about at least once:

• Unchecked radio buttons and checkboxes yield the value null. Oth-
erwise, they yield their value property, which is based on their
value= attribute (you should always specify this attribute, which
has no normalized default value).

• Other <input> elements yield their value property, based on user
interaction (full text contents for text fields, for instance).

• Single-selection listboxes (drop-down or flat) yield the value of the
selected option in a DOM-compliant way (Internet Explorer would
otherwise fail to use the option’s text if no value= attribute were
specified).

• Multiple-selection listboxes yield an array of option values, ob-
tained in a DOM-compliant way in the document order of the rel-
evant <option> elements.

Version 1.6 introduces the reverse operation, setValue(), which lets you
set a field’s value using the same value syntax you’d get as a result of
getValue(). It relies on the same internal mechanisms, so consistency
is guaranteed. This comes in handy when you need to populate a form
dynamically (perhaps from JSON data fetched through Ajax).

One last thing: remember the $F() utility function is actually an alias of
getValue().

Serializing Fields and Whole Forms

Getting a single field’s value in a unified way is nice enough, but most
of the time you’ll need to take some or all of the fields in a form, mash
them together into some reliable string representation, and send that
over to the server side.

How Can I Serialize Then?

To serialize, just use a nice method from Prototype, of course. And you
have a few to choose from, depending on your use case:

fieldElt.serialize() → String
formElt.serialize([options]) → String | hashObj
Form.serializeElements(elements, [options]) → String | hashObj

Let’s start simple, with the serialization of only one field. All fields fea-
ture a serialize() method, which either returns an empty string (if the

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=179

SUBMITTING FORMS THROUGH AJAX 180

Joe Asks. . .

Why Should I Serialize?

You use serialization when you captured information thanks
to a form field (or a whole form) and now need to send this
data over the wire in some suitable format. And Prototype’s
serialization plays nicely with HTTP.

When a form is submitted the regular way, the browser takes
care of this for you. When you take over, you’re a bit more
on your own. Serialization becomes your business, not the
browser’s anymore.

You can do this from an HTML page in two ways: with a
GET request, using URL-encoded parameters right in the URL
(as in /myapp/users/list?filter=john&details=yes), or with a POST
request, using parameters in the request body. The default
format for these is, indeed, the very same URL-encoding you
would use in a GET request. It is the format attached to the
MIME type application/x-www-form-urlencoded, which rules
supreme on the Web.

That is why our serialization methods use that format. If you
need something else (say, XML or JSON), you can easily
grab the form fields you’re interested in—which is what we
learned to do in the previous section—and cook it up just
to your taste (a pinch of basil would be nice). It can be as
simple as this:

Object.toJSON($(ourForm).serialize(true))

Calling serialize(true) returns a hash-like object instead of the
default serialized string. The generic Object.toJSON() mecha-
nism will easily process this vanilla object. But for most cases,
you should be happy with the default serialization. After all,
this is what most server-side technologies natively work with.

/myapp/users/list?filter=john&details=yes
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=180

SUBMITTING FORMS THROUGH AJAX 181

field value is undefined, which should almost never happen except for
files) or returns a name=value string, with its two parts properly URL-
encoded.

Now, here’s the nitty-gritty, which mostly boils down to regular HTML
form serialization:

• Values are based on the getValue() method we discussed earlier.

• Fields with null values will be handled as if their value were an
empty string.

• Fields with undefined values will be serialized with only their name
as key (no = sign).

• Fields with array values (that is, multiple-selection listboxes) get
serialized as if there were multiple fields with this same name, one
per value.

The two other methods are closely related and deal with serializing
part or all of a form. Calling serialize() on a form simply forwards to
Form.serializeElements() using all elements in the form (except for
type="submit" elements, where only one will be used, which is by default
the first one).

Most of the time you’re happy with a URL-encoded string represen-
tation, which is what you get by default. If you pass a hash option
with the value true, you’ll get the resulting hash object (not actually
a Hash instance, just a vanilla JavaScript object) back, containing all
field names and values, which you can then use to build your own
serialization.

By default, if there are multiple type="submit" fields, only the first one
in document order will be serialized. You can change that by specifying
the value of the name= attribute for the submission field you want to
serialize. Just specify it as the submit option.

For instance, the following call:

$('myForm').serialize({ hash: true, submit: 'delete' })

. . . will return a serialization hash (not a preencoded string), having
used the name="delete" submit field instead of the first one in the form.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=181

SUBMITTING FORMS THROUGH AJAX 182

What About File Fields?

When a form contains a file field (<input> with type="file"),
traditional serialization cannot happen anymore. Instead of
using regular URL-style encoding, the form must be transmit-
ted as multipart/form-data and encode the file bytes in a
specific MIME part.

Manually creating this multipart encoding would not be dif-
ficult, but JavaScript security prevents it from accessing the
contents of local files directly (unless you tinker with it, which
is beyond most user’s abilities or access rights). Because of
this, Prototype cannot use actual Ajax for sending local files.

The usual workaround for this is to use a hidden <iframe> as
the target for the <form> and submit the form the regular
way. Once the <iframe> is done loading the result, we can
access it through scripting. This is rather old-school and a bit
ugly, but so far this is all we have.

Note than a later version of Prototype may autoswitch
to such a technique when you’re trying to Ajaxify a
form with file fields. In the meantime, you can find
detailed walkthroughs for this on many web pages, such as
http://www.webtoolkit.info/ajax-file-upload.html (and a Google
search on Ajax file upload will yield tons of other options).

Streamlining Ajax Forms with request

This chapter is about forms, not Ajax. We will dive into the details (and
multiple options) of Ajax processing in Chapter 9, Ajax Has Never Been

So Easy, on page 186. But there is a form-specific Ajax facility, which
we’ll look at quickly here. It appeared in Prototype 1.5.1 and aims at
streamlining a very common use case: take a regular form, complete
with method= and action=, and submit it over Ajax.

formElt.request([options]) → Ajax.Request

You’ll have to refer to Section 9.2, Options Common to All Ajax Objects,
on page 201 for all the details on the wealth of available options. Just
know that this simple call (for example, $(’myForm’).request()) submits
your form through Ajax, using its attributes to determine the HTTP verb

http://www.webtoolkit.info/ajax-file-upload.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=182

KEEPING AN EYE ON FORMS AND FIELDS 183

(GET or POST) and the target URL.2 You can use this to unobtrusively
turn your forms over to Ajax when JavaScript is enabled:

document.observe('contentloaded', function() {
$$('form').invoke('observe', 'submit', function(e) {

e.stop();
$(Event.element(e)).request();

});
});

This covers a common idiom but is certainly not sufficient for all situ-
ations. For more advanced needs, you will have to manually use Ajax.

Request and its flock.

8.4 Keeping an Eye on Forms and Fields

In Section 6.3, Reacting to Form-Related Content Changes, on page 127,
we discovered event-based observers for forms and fields. Whenever an
event was triggered to herald a possible value change on a field (or
somewhere in a form), these observers would verify that a change had
indeed occurred and, if satisfied, would trigger a callback.

Such an approach is not always satisfactory: change-related events
trigger late (usually when the field loses focus), too late for some uses
(such as autocompletion or on-the-fly validation). Enter time-based
observers:

new Form.Observer(formElt, interval, callback)
new Field.Observer(fieldElt, interval, callback)
observer.stop()

These observers work the same way, but they require an interval or
period (expressed in seconds, with fractional numbers allowed), which
determines how often they will check up on the data they’re observing
(field observers check up on a single field, and form observers check up
on the whole set of values within the form, relying on serialization for
it). Aside from this, the rules do not change. As soon as there actually is
a new value (including, obviously, the first time it checks), the callback
is triggered.

We used a time-based field observer in our consolidated example in
Chapter 7, Playing with the DOM Is Finally Fun!, on page 130, in order
to enable or disable buttons based on whether a text field was blank.

2. Starting with Prototype 1.6, if <form> features no action= attribute or an empty one,
the current URL will be used.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=183

KEEPING AN EYE ON FORMS AND FIELDS 184

Waiting for the field to lose its focus was inadequate. The user might
click the enabled button only to find it suddenly disabled because by
clicking, the text field would lose its focus. Visual feedback needed to
take place earlier and be live. The resulting code was confoundingly
simple:

new Field.Observer('edtName', 0.3, function() {
$('btnSubmit').disabled = $F('edtName').blank();

});

Checking every 0.3" is definitely live enough (the user won’t have to
consciously wait after they type to see the UI get updated) but large
enough an interval not to hog the processor.

Since Prototype 1.6, these observer classes descend from PeriodicalExe- 1.6

cuter, so they inherit its stop() method, which lets you put the observer
to rest.

What We Just Learned

Here are the main take-away points about Prototype’s form-related fea-
tures:

• The features operate at two levels: full forms (the Form namespace)
and individual fields (the Field namespace, which is an alias of
Form.Element).

• Most methods in these namespaces appear as additional exten-
sions on the relevant DOM elements.

• Most of the API deals with value retrieval and setting, either indi-
vidually through getValue() and setValue() or at the form’s level
through such methods as serialize().

• Prototype smooths over cross-browser inconsistencies in field
value retrieval (on such issues as no-value-attribute list elements
or elements that can be toggled) and provides a powerful value-
setting mechanism that helps implement dynamic form filling.

• Form serialization is handy for Ajax submission of the data, but
common cases can be automated one step further using the
request() method.

• Interval-based observers let us react quickly to changes in a form
or individual field to implement dynamic behavior (such as en-
abling or disabling parts of the UI based on the current form data).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=184

KEEPING AN EYE ON FORMS AND FIELDS 185

Neuron Workout

• How would you implement an equivalent of Field.Observer using
PeriodicalExecuter3 directly? What about Form.Observer?

• Write a method that takes all the radio buttons with a given field
name and toggles their availability (enables or disables them, de-
pending on their state).

3. For details on this class, see Section 10.3, Periodical Execution Without Risk of Reen-

trance, on page 231.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=185

Chapter 9

Ajax Has Never Been So Easy
In another book, I might have to explain to you what Ajax is, why it is
useful, and why it is not just a fad. But not here. This is a book about
Prototype and script.aculo.us, which are big on Ajax. If you have this
book, chances are extremely good you know what Ajax is well enough
and have embraced the opportunities it offers. So in essence, you’re
sold on the idea of Ajax. If you have no idea what it is, you can catch
up quickly on the Web, such as at http://en.wikipedia.org/wiki/AJAX or
http://developer.mozilla.org/en/docs/AJAX.

But you’re probably dying to know more about it and about how Proto-
type and script.aculo.us let you use it to best effect.

As for script.aculo.us, it does provide wonderful little Ajax-based con-
trols, such as an autocompleted text field. Many common Ajax-related
use cases (for example, sorting a list and persisting its new order server-
side) will be best approached using script.aculo.us stuff, so we will
delay such examples until a later chapter.

But when it comes to Prototype itself, there’s a lot to have fun with.
Because simply listing and explaining the classes, options, and call-
backs would probably be a bit dry, I decided to lace this chapter with
several core implementations of actual web app features you’re likely
to need on real-world projects. Those are the “Get It” sections in this
chapter. They do their best to illustrate most of the API.

9.1 Before We Start. . .

Yes, you’re giddy with anticipation. I know, I can’t wait to show you this
stuff, too. But before we get on with Prototype objects and let the magic
flow, there are a few general issues I’d like to talk to you about.

http://en.wikipedia.org/wiki/AJAX
http://developer.mozilla.org/en/docs/AJAX

BEFORE WE START. . . 187

Technical Limitations You Should Know About

There are essentially two constraints in Ajax: the SOP and the two-
request limit.

The Same Origin Policy (SOP) essentially mandates that Ajax requests
cannot access another fully qualified domain than the page from which
they’re running. You can’t even access the same domain on another
port. This makes a lot of sense, securitywise, because this would open
a Pandora’s box of cross-site scripting (XSS) attacks. Imagine a malevo-
lent script running on a sensitive intranet page that could use its priv-
ileged position to access confidential data and then silently send those
over to its author’s cracking domain. . . . Not good.

The SOP is all about XSS (how’s that for a geek phrase?) and also pre-
scribes what other documents in the browser a given script is allowed
to access (for example, explore or modify their DOM). Originated in
Netscape Communicator 2.0, this approach is widely supported by
modern browsers (although as usual, Internet Explorer acts the lone
wolf on this). You’ll find a great description of the SOP, and links to more
detailed resources, on the ever-useful Wikipedia: http://en.wikipedia.org/wiki/Same_origin_policy.

The second general issue you need to keep in mind when designing
Ajax-based pages, especially if you intend to use Ajax heavily, is the
infamous two-request limit. This is a recommendation in the defining
standard for us kids: HTTP/1.1. It is described in RFC 2616, and sec-
tion 8.1.41 clearly states that “a single-user client SHOULD NOT main-
tain more than 2 connections with any server or proxy. [. . .] This is
intended to improve HTTP response time and avoid congestion.”

Most modern browsers abide by this rule, including Internet Explorer.
True, you can tweak this, but this requires manual client-side config-
uration (for Internet Explorer, you would have to tweak a registry key,
and Firefox would have you tinker at internal options using about:config).
In short, unless you have an absolute need for more simultaneous
request, have servers that can indeed handle the resulting load, and
have enough control over the whole browser base (as in an intranet),
you can forget using more than two connections at once.

This works for any request, incidentally. When the browser fetches
external resources for your web page, such as images, CSS files, script
files, and the like, it follows this guideline as well. Have a look at Fire-

1. http://tools.ietf.org/html/rfc2616#section-8.1.4

http://en.wikipedia.org/wiki/Same_origin_policy
about:config
http://tools.ietf.org/html/rfc2616#section-8.1.4
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=187

BEFORE WE START. . . 188

Figure 9.1: The two-request limit in action at http://prototypejs.org

bug’s Net tab for the home page of Prototype’s official site, shown in
Figure 9.1. Notice how there are never more than two resources being
loaded at any given time.

There are workarounds, of course, such as tinkering with <iframe>

to create the illusion of multiple “users” (from a HTTP/1.1 standpoint),
playing with server-side configuration and DNS mapping to alias multi-
ple subdomains over the same server, and distributing requests across
such domains (which brings quite a few issues though, such as being
careful with cookies and the SOP). Still, I believe 99.9% of the UI needs
for web applications should be properly covered despite the two-request
limit, especially with a fast server.

Under the Hood: A Quick XHR Primer

We’re entering a critical topic, and I believe a bit of background wouldn’t
hurt, both on the path that led to today’s situation and on the technical
tidbits.

A Tiny Bit of History

Ajax is all about a small object named XMLHttpRequest.2 And because
good men put credit where it’s due, I find it important to state that
this one was invented by none other than Microsoft. It first appeared
in Internet Explorer 5.0, all the way back in 1999. The first compatible
implementation appeared in Mozilla 1.0 in 2002, and now every major
browser (including Firefox, Safari, Opera, and Konqueror) plus a few

2. Well, technically, on some occasions you’ll have to revert to ugly <iframe> tricks, but
hey!

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=188

BEFORE WE START. . . 189

smaller players (for example, iCab) feature it with a rather good com-
patibility. All those compatible implementations are exposed as a native
JavaScript object.

Although originally a proprietary technology, XMLHttpRequest was
deemed of sufficient interest to now be specified by a W3C recommen-
dation,3 which at the time of this writing is about to enter a second
(!) Last Call phase and should become an official standard sometime
before 2007 ends. This working draft is already used as the basis for
interoperability by implementations in all the major browsers.

XMLHttpRequest was originally exposed to the script as an ActiveX and
remained so until Internet Explorer 7.0, which finally provides it as a
native JavaScript object, thereby adopting a unified model with other
browsers and making it available to security-conscious environments.

The Life and Works of XHR

In the rest of this book, we’ll mostly use the shorter XHR abbrevia-
tion for it. An XHR object has the following life cycle (normative states
appear in italics):

1. You create it. It’s uninitialized.

2. You open a connection to the server side. It’s open.

3. If necessary, you set request headers according to your needs.

4. You send the request (and any body contents for the HTTP request
you may need to include). It becomes sent.

5. The server side starts responding. Your object is now receiving.

6. You’re done getting all of the response. It is now loaded.

This is the official life cycle, but legacy implementations, which are
still the most widespread ones, may differ slightly. As we’ll see in Sec-
tion 9.2, Hooking Up Our Code: Ajax Callbacks, on page 203, Proto-
type defines a series of callbacks for state changes and events mapping
to the official states, plus a few ones. But not all those callbacks are
“guaranteed.” Some of them may not fire with the same semantics on
all browsers or sometimes not fire at all; I even see occasional reports
of callbacks firing in a different order, although reproducing these odd-
ities often proves challenging. Fortunately, the key ones (especially the
completion-related ones) are safe.

3. http://www.w3.org/TR/XMLHttpRequest/

http://www.w3.org/TR/XMLHttpRequest/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=189

BEFORE WE START. . . 190

Should We Reuse Our XHR Objects?

Although in Prototype this translates to “Should we reuse our Ajax.*

objects?” the question is just as valid. These are network connections
we’re talking about. Such an object has a nontrivial creation and ini-
tialization cost, and we may want to reuse them in order to speed things
up.

Well, let me give you some perspective.

First, from a technical standpoint, reuse is not free of issues, depending
on the browser you’re on, the way you manipulate the original methods
of the XHR object, and a few other points. So, it’s not as simple as
simply keeping a reference on it and ending up calling open() and send()
again and again.

Second, this is UI we’re talking about. You’re using Ajax to smooth
things up, to make your UI snappier, to avoid full-page reload, and to
interact more richly with the user. The time constraints we face here
are user time, where a satisfactory response delay is of the order of one
second. Plus, we’re bound by this two-request limit anyway. Overusing
XHR objects will end up delaying most of them, resulting in the opposite
effect: increased latency.

For the overall scheme of things, the setup cost for an XHR object (and
thus, for an Ajax.* object in Prototype) is fairly negligible. If your UI is
properly designed (especially from an ergonomy perspective), you’ll be
well in the clear with creating such objects when you need them and
discarding the references afterward.

Response Types: XHTML, XML, JS, JSON. . .

Yes, the X in Ajax stands for XML. That’s right. That’s also far from real
use, as far as I can see when reading the 30-some daily posts on the
official Prototype help list,4 used by 4,000+ people.

The simple truth is this: most Ajax responses provide (X)HTML frag-
ments, JavaScript, or both. This includes JavaScript Object Notation
(JSON)5 responses.

“Pure XML” (by which I mean not XHTML, but other XML dialects)
responses are quite the rare thing. In my humble opinion, this is be-
cause the main reason for XML responses was structured data, and

4. http://groups.google.com/group/rubyonrails-spinoffs

5. http://json.org

http://groups.google.com/group/rubyonrails-spinoffs
http://json.org
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=190

BEFORE WE START. . . 191

we get this in a far more convenient format with JSON. All we have
to do is eval() it, and we get an immediately usable JavaScript object
representing all our data! That sure beats the living crap out of DOM
traversal.

Here are a few guidelines to help you decide what format to use, de-
pending on your circumstances:

• You just dealt with creating or updating an item, which is part of a
displayed list that needs to show the new or updated item? Use an
item-level template to produce its XHTML fragment, and send it
back for client-side insertion in the page. You can append a small
inline script to it that will trigger some attention-getter effect (such
as a highlight).

• You’re being polled so the server keep track of things? Rely on
HTTP status codes and minimalistic contents for the response’s
text proper (perhaps a simple number or text or a more structured
JSON representation).

• Your only response is JavaScript code (for example, effect trigger-
ing)? Instead of returning an HTML-typed response with a
<script> tag, use a JavaScript MIME type (the most common
one being text/javascript), and put the raw JavaScript code in the
response body. It will be evaluated automatically by the requester
object. This constitutes, by far, the easiest way to return dynamic
behavior from the server side so your client page executes it.

• You have no idea what I’m talking about? Just read on and grab
the examples.

JSON and Prototype: Like Peas in a Pod. . . Now

When Prototype 1.5.0 was released in January 2007, the help list began
receiving a lot of buzz about issues people were having with their Ajax
features being broken all of a sudden. As it turned out, Prototype’s Ajax
request header mechanism relied on JavaScript’s for. . . in loop, which
iterates over all the properties of an object. The object used here was a
local anonymous one, which sounded safe enough.

Well, it was safe until some loaded script breaks the ground rules and
starts expanding Object.prototype: then we get in trouble. That is what,
unfortunately, the “official” JSON library, json.js, does. The thing is,
when you get interested in JSON, you go to its official site, discover
there’s a library all waiting for you, and grab it! It’s too bad it comes

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=191

HITTING THE ROAD: AJAX.REQUEST 192

with this major misbehavior. Of course, this impacts users who rely on
higher-level frameworks that provided the same (or same kind of) code,
such as Rico. All in all, that’s a lot of people.

Prototype 1.5.1 decided to retain the occasional for. . . in loop, which
should never break when other scripts behave, but it implemented
JSON support (and credit for that mostly goes to Tobie Langel). It intro-
duced built-in, comprehensive JSON support, from JSON parsing to
JSON building, all of which is described in Section 4.7, Full-Spectrum

JSON Support, on page 82.

Prototype 1.6 also introduces a host of new JSON-related options for
requests, plus the new Ajax.Response object, which do a terrific job sim-
plifying JSON processing in an Ajax context. You have Tobie Langel to
thank for that.

9.2 Hitting the Road: Ajax.Request

We’re not going to dive into the details of raw XHR objects. There’s
just no point. With Prototype, you’ll never need to touch these objects
directly, at least not until they’re done with the whole request/response
thing. So, why bother? We’re much better off focusing on the features
and objects Prototype offers us.

Ajax.Request is the fundamental requester object. The other ones all
depend on it. It’s the heart of Prototype’s Ajax support. Using it is
fairly simple: just create the object with the proper arguments and
options, and off it goes, querying your server side and dealing with
the response! You usually won’t even need to store the object reference
(as we discussed in Section 9.1, Should We Reuse Our XHR Objects?,
on page 190).

new Ajax.Request(url [, options])

I tried to make this as lively as possible, because there is a lot to
discover and learn. So, we’ll go through an actual application feature
example first and then go through the common options and callbacks
all Ajax.* objects share.

Get It: Geometry Persistence

Our first example will use Ajax to implement geometry persistence. In
a less formal tone, we’re trying to keep widgets tucked somewhere from
one page view to the next, OK? Here’s how it goes:

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=192

HITTING THE ROAD: AJAX.REQUEST 193

• The server side holds the “geometry” of each widget. To keep things
simple and the code concise enough, we’ll assume that they do
have a default position and that the user can only move them, not
resize them.

• The server side is used to produce the initial page view, which is
necessary in order for page views to restore any previously per-
sisted geometry.

• Whenever a widget is moved, we react to the move’s ending by
synchronizing the server-side storage. To do that, we use a simple
Ajax request containing the geometry of all widgets.

We’re going to use Ruby scripts to provide a server side for all our Ajax-
enabled examples. You may panic a bit at this if you don’t know a thing
about Ruby or have never used it yourself before. As Douglas Adams
would say, Don’t Panic. It’s a walk in the park. Head over to the few
pages in Appendix C, on page 414, and then come back ready to play;
it’s quick and painless—it’s even fun!

To keep things simple, there’s no actual database here—only global
variables storing both the widgets’ contents (title and text) and their
geometry. Here goes the server script:

Download prototype/ajax/geometry/server.rb

Line 1 #! /usr/bin/env ruby
-

- require 'cgi'
- require 'erb'
5 require 'webrick'
- include WEBrick
-

- template_text = File.read('index.rhtml')
- template = ERB.new(template_text)

10

- server = HTTPServer.new(:Port => 8042)
- server.mount('/', HTTPServlet::FileHandler, '.')
-

- LABELS = [
15 { :title => 'Some widget',

- :text => 'This is a widget' },
- { :title => 'Some other widget',
- :text => "This is another widget.\nIt's just bigger, you know." },
- { :title => 'Yet another widget',

20 :text => 'This is a third widget. It\'s actually quite small.' }
-]
-

- $geometry = [

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/geometry/server.rb
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=193

HITTING THE ROAD: AJAX.REQUEST 194

- { :left => 20, :top => 100, :zIndex => 1},
25 { :left => 220, :top => 160, :zIndex => 2},

- { :left => 400, :top => 130, :zIndex => 3}
-]
-

- server.mount_proc('/home') do |request, response|
30 response['Content-Type'] = 'text/html'

- response.body = template.result(binding)
- end

-

- server.mount_proc('/geometry') do |request, response|
35 params = request.query

- $geometry.each_with_index do |pos, index|
- [:top, :left, :zIndex].each { |key|
- pos[key] = params[key.to_s + index.to_s].to_i
- }

40 end

- response.body = 'OK.'
- end

-

- trap('INT') { server.shutdown }
45

- server.start

I use ERb, a prominent templating engine in Ruby, to deal with tem-
plate text, which is the template for our whole page. Looking at the
parameter analysis snippet starting at line 36, you can see that we
expect a set of three parameters for each widget, with each parame-
ter being suffixed with the widget’s numerical index. Our client side
will take care of building this parameter string properly. It could look
something like this:

left0=100&top0=50&zIndex0=1&left1=224&top1=100&zIndex1=2. . .

The template for the whole page is fairly simple. It just uses a loop over
LABELS to produce properly styled XHTML fragments with an adequate
title and contents. It’s nothing too fancy:

Download prototype/ajax/geometry/index.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Drag it up!</title>
<link rel="stylesheet" type="text/css" href="geometry.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript"

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/geometry/index.rhtml
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=194

HITTING THE ROAD: AJAX.REQUEST 195

src="scriptaculous.js?load=effects,dragdrop"></script>
<script type="text/javascript" src="geometry.js"></script>

</head>

<body>

<h1>Drag it up!</h1>
<%
LABELS.each_with_index do |labels, index|

pos = $geometry[index]
style = "top: #{pos[:top]}px; left: #{pos[:left]}px; "
style += "z-index: #{pos[:zIndex]};"

%>
<div id="win<%= index %>" class="widget" style="<%= style %>">

<h2><%= labels[:title] %></h2>
<% labels[:text].each_line do |line| %>
<p><%= line %></p>
<% end %>

</div>

<% end %>
</body>

</html>

Of course, this will require a dollop of CSS styling to look any good:

Download prototype/ajax/geometry/geometry.css

.widget {
position: absolute; top: 5em; width: 15em;
border: 0.25em solid gray; background: silver;
padding: 1em 0.5em 0.5em;
overflow: auto;

}

.widget h2 {
position: absolute;
top: 0; left: 0; right: 0; height: 1.5em;
font-size: inherit; line-height: 1.5em;
margin: 0; padding: 0 0.2ex;
background: gray; cursor: move;

}

#win0 {
border-color: red; background: #fdd;
height: 8em; left: 2em;

}

#win0 h2 { background: #f99; color: maroon; }

#win1 {
border-color: green; background: #dfd;
left: 20em; height: 10em;

}

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/geometry/geometry.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=195

HITTING THE ROAD: AJAX.REQUEST 196

Figure 9.2: Our initial view. Looking good!

#win1 h2 { background: #9f9; color: #080; }

#win2 {
border-color: blue; background: #ddf;
left: 38em; height: 6em;

}

#win2 h2 { background: #99f; color: #008; }

Well, before we start hurling some JavaScript-fu at this, we might as
well check out the initial state to verify we set it up properly. Get a shell
in this example’s directory, and start your server:

$ ruby server.rb

[2007-03-09 23:19:49] INFO WEBrick 1.3.1
[2007-03-09 23:19:49] INFO ruby 1.8.5 (2006-08-25) [i486-linux]
[2007-03-09 23:19:55] INFO WEBrick::HTTPServer#start: pid=24720 port=8042

OK, let’s fire up our trusty browser and navigate to http://localhost:8042/home

(don’t forget the /home at the end, or you’ll get no response or even a
mistaken binary download attempt). We should get something like Fig-
ure 9.2.

http://localhost:8042/home
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=196

HITTING THE ROAD: AJAX.REQUEST 197

The XHTML fragment for our widgets looks like this:

<div id="win0" class="widget"
style="top: 100px; left: 20px; z-index: 1;">
<h2>Some widget</h2>
<p>This is a widget</p>

</div>

<div id="win1" class="widget"
style="top: 160px; left: 220px; z-index: 2;">
<h2>Some other widget</h2>
<p>This is another widget. </p>

<p>It's just bigger, you know.</p>
</div>

<div id="win2" class="widget"
style="top: 130px; left: 400px; z-index: 3;">
<h2>Yet another widget</h2>
<p>This is a third widget. It's actually quite small.</p>

</div>

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=197

HITTING THE ROAD: AJAX.REQUEST 198

Now for the JavaScript. We’ll resort to some script.aculo.us mojo to
bring off the drag and drop. When the page is done loading, we create
Draggable objects6 over every widget, using its internal <h2> as a han-
dle (dragging by the title bar is a natural UI reflex for most folks). We’ll
also register a global drag-and-drop observer to react to drags ending
by firing up an Ajax request.

It doesn’t even take 40 lines of JavaScript to cover the whole process:

Download prototype/ajax/geometry/geometry.js

Line 1 function bindWidgets() {
- var widgets = $$('.widget');
- widgets.each(function(w) {
- var handle = w.down('h2');
5 handle.observe('mousedown', function() {
- raiseWidget(widgets, w);
- });
- new Draggable(w, { handle: handle, zindex: false });
- });

10 } // bindWidgets
-

- function raiseWidget(widgets, widget) {
- var widgetZIndex = widget.getStyle('zIndex');
- widgets.each(function(w) {

15 var zI = w.getStyle('zIndex');
- if (zI > widgetZIndex)
- w.setStyle({ zIndex: zI - 1 });
- });
- widget.setStyle({ zIndex: widgets.length });

20 } // raiseWidget
-

- function syncGeometryOnServer() {
- var widgets = $$('.widget');
- var params = {};

25 widgets.each(function(w, index) {
- var pos = Position.cumulativeOffset(w);
- params['left' + index] = pos[0];
- params['top' + index] = pos[1];
- params['zIndex' + index] = w.getStyle('zIndex');

30 });
- new Ajax.Request('/geometry', { parameters: params });
- } // syncGeometryOnServer
-

- Draggables.addObserver({ onEnd: syncGeometryOnServer });
35

- document.observe('dom:loaded', bindWidgets);

6. We’ll explore Draggable in detail later in this book, in Section 15.1, Dragging Stuff

Around, on page 283.

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/geometry/geometry.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=198

HITTING THE ROAD: AJAX.REQUEST 199

The bindWidgets() method iterates over our widgets (any element with
class="widget"), isolates the <h2> in there, and does two things:

• It makes the widget draggable by creating a new Draggable object
over it.

• It attaches an extra behavior to the handle’s mousedown event:
raiseWidget().

The raiseWidget() method is a nice touch we add to make widgets behave
more like actual windows: the idea is to make sure the last one clicked
or dragged is on top and stays there once the click or drag is over. The
default Draggable behavior would temporarily raise the element’s zIndex

during the drag and restore it once dropped, which won’t do. Plus, this
would require an actual drag, and casual clicks would not bring the
widget to the front.

So, what we do here is react to mouse buttons being pressed over a
widget drag handle by rearranging zIndex properties so the current one
comes naturally on top while preserving the remaining ordering. The
algorithm for this is simple enough: take all “higher” widgets one notch
down, and then get our own on top.

The actual Ajax magic happens on line 31. This is where we create an
Ajax.Request object. Creating it will automatically trigger the request
proper. Because this is our first example, the call is concise. Only the
target URL (look at our server script to see it listens for /geometry

requests in order to process updates) and the parameters for it. It will
use default values for all other options, which especially means we’re
going POST on this one. The parameters will be transmitted as the
request’s body in the usual URL-encoded format.

The last trick is, of course, to build these parameters. To avoid tweak-
ing URL-encoded stuff, we’ll use the ability of the parameters option
to take an object that it then uses as a hash of parameters. Building
such an object is simple enough, as the code starting at line 25 demon-
strates. For each widget, grab its absolute position, and then add the
corresponding properties to the parameters object.

Let’s drag our widgets a few times. Firebug’s Ajax monitoring tells us
about the requests that let the server side know what’s going on, as you
can see in Figure 9.3, on the following page.

Now just try refreshing the page. Or better: shut down your browser
(but leave your server script running). Then fire it back up, and navigate

/geometry
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=199

HITTING THE ROAD: AJAX.REQUEST 200

Figure 9.3: A few drags and their telltale Ajax requests

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=200

HITTING THE ROAD: AJAX.REQUEST 201

again to the page (feel free to vacuum your cache before). You end up
with a preserved layout! That’s it! Persistent geometry!

Options Common to All Ajax Objects

Now that we went through a full, integrated example, I believe the time
has come to take a look at the nice range of options you get with all
Ajax requesters.

asynchronous

Setting this to false results in synchronous requests, which are
requests that will essentially freeze the script until a response has
been fully received. That’s rather bad form. Avoid it. I mean it.

Defaults to true.

contentType

This is the format of your request data. If you don’t plan on using
the default (which is what the browser would send for both POST
and GET requests), change it accordingly so the server side doesn’t
have to guess. For instance, you may want to send your data as
an XML document or as Base64-encoded binary data.

Defaults to application/x-www-form-urlencoded.

encoding

The character encoding for your request. This is best left un-
touched, unless you do run into weird encoding issues, but that
would usually be because you haven’t gone UTF-8 the whole way.
And mark my words: sooner or later, you’ll have to do so. So, you
might as well start now and get some mileage.

Defaults to UTF-8.

evalJS

This controls automatic JavaScript evaluation. Before Prototype
1.6

1.6, whenever you got a response with a JavaScript content type
(we’ll describe that later in this chapter), your response’s body
was regarded as JavaScript and eval’d automatically. We now pro-
vide some control over that through this new option. It defaults to
true, which preserves usual behavior. But you can set it to false,
disabling JavaScript evaluation entirely, or you can go berserk
and set it to ’force’, asking for JavaScript evaluation regardless of

content type. This latter mode is mostly for the poor guys among
us who use a server-side technology so bad it won’t let them cus-

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=201

HITTING THE ROAD: AJAX.REQUEST 202

tomize their response handlers (I suggest a minute of silence for
them).

evalJSON

Also introduced in Prototype 1.6, this new option controls whether
1.6

to enable automatic JSON evaluation, evaluating the response
body as JSON and storing the resulting object in the response
object’s responseJSON property. It defaults to true, and just like
evalJS, it can also be false or ’force’, with the same semantics. The
JSON content type is application/json. Also see sanitizeJSON.

method

The HTTP method used. Current implementations guarantee only
the two methods allowed by HTML forms: get and post. The W3C
recommendation for XMLHttpRequest, however, acknowledging the
ever-growing interest of REST, mandates that compatible imple-
mentations support all six methods defined by HTTP/1.1, includ-
ing for instance put and delete. Currently, using such values (that
is, anything but get or post) will trigger one of the very few Rails-
specific behaviors of Prototype. It will actually use post and will
include a _method parameter in the data, with the original value.
This circumvents the fact that browsers such as Safari and Inter-
net Explorer do not yet accept these HTTP methods for XMLHttp-

Request.

Defaults to post.

parameters

The parameters to be sent by the request, specified either as a
hash-like object (quite the convenient way and the one we used
in our geometry persistence example) or as a predigested, URL-
encoded string.

Defaults to the empty string.

postBody

The request body data if you’re using the post method. Because
not providing it will use parameters instead and because it does
not allow using a hash-like object but requires a properly URL-
encoded query string, I advise you to use parameters whenever
you don’t need another representation for your data.

No default value.

requestHeaders

The headers sent with your request. It is best to pass a hash-like

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=202

HITTING THE ROAD: AJAX.REQUEST 203

object. For backward compatibility, you can also pass an array of
values, with even indices for header names and odd indices for
header values. However, support for this might be discontinued in
later releases, and it’s also a more cryptic way to go, so I advise you
to go the hash-object way. The default set contains the following
headers:

• X-Requested-With: XMLHttpRequest

• X-Prototype-Version: Whatever version you’re using (for exam-
ple, 1.6.0)

• Accept: text/javascript, text/html, application/xml, text/xml,

and */*

• Content-Type: Built based on the contentType and encoding

options

sanitizeJSON

Introduced in Prototype 1.6, this is the companion option to eval-
1.6

JSON. It controls whether JSON evaluation (be it the X-JSON

header or the response body) goes through sanity checks before
being evaluated. This delegates to String’s extended evalJSON()
method, shown on page 84.

Hooking Up Our Code: Ajax Callbacks

Aside from options proper, you can pass, in the options object, call-
backs to be called at specific times in the request’s life cycle. Prototype
defines quite a handful of those, but beware: XHR-level callbacks are
not quite “guaranteed,” meaning they may not work consistently across
browsers, because the W3C specification has not yet been finalized,
much less widely implemented. Such callbacks are emphasized when
listed.

Note that all callbacks, when defined on an individual requester like 1.6

this, are called with two arguments: the current state of the Ajax re-
sponse (an Ajax.Response object) and the evaluation of the X-JSON

header, if any (this one can be null, especially prior to response com-
pletion). The onException callback, however, gets different arguments:
the requester object and the exception object.

The Ajax.Response object you get lets you access your response’s data in
a comfortable, portable way, smoothing over some issues with the tim-
ing restrictions of calling specific methods on the underlying XHR object
(for example, header-related ones) and taking special care of JSON han-
dling (because of its rising popularity). We’ll explore it in greater depth
later in this chapter.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=203

HITTING THE ROAD: AJAX.REQUEST 204

Ajax.Response and Backward Compatibility

Tobie, who’s responsible for the Ajax.Response refactoring,
made sure the code remained backward compatible. This is
why these objects feature the same crucial properties, such
as transport and readyState.

However, there are many more properties designed to help
you manipulate the response in a more portable, type-
oriented way. You should get familiar with headerJSON and
responseJSON, for instance.

Callbacks are listed here in chronological order, instead of lexicograph-
ical order. I thought you’d like to find both the callback’s timing and
the definition in the same place.

onCreate

The object was created, with its request about to be prepared and
sent.

onUninitialized(not guaranteed)

The XHR was just created.

onLoading(not guaranteed)

The XHR is being set up, with its connection open.

onLoaded(not guaranteed)

The XHR is set up, with its connection open, and is ready to send
data.

onInteractive(not guaranteed)

The XHR has sent its request, and it is now receiving parts of the
response.

onFailure

The response was received, its HTTP status code is not considered
successful (see next callback), and it doesn’t have a dedicated call-
back in place (see onXYZ).

onSuccess

The response was received, its HTTP status code is considered
successful (it’s in the 200–299 range), and it does not have a ded-
icated callback in place (see the next callback).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=204

HITTING THE ROAD: AJAX.REQUEST 205

onXYZ

The response was received, and its HTTP status code is XYZ. You
usually won’t define such surgical callbacks for successful codes,
but you may want to deal in a special way with, say, codes like
302 or 404. . . .7

onComplete

As you can derive from the three previous callbacks’ definitions,
they are mutually exclusive. When a request is complete, however,
you do end up getting onComplete triggered (this is even shielded
against exceptions in the specific callbacks that occur before, for
example, onSuccess).

onException

This can actually happen at just about any point in the request
life cycle. When something goes wrong, it’s triggered. The second
argument is the exception object.

Other Things Our Ajax.Request Can Do

There are a few more things your requester can do for you, which can
be of assistance in your callbacks’ code. . . .

Every requester has a success() method that implements the success/
failure logic (it returns a boolean) used for callback selection. There’s
also a getHeader(name) method that lets you grab a response header
easily and returns null if the header is missing or something borks.

An important feature is automatic JavaScript evaluation. When a re-
sponse consists entirely of JavaScript, the best way for the server to
send it is to put the raw script in the response body and advertise the
response’s content type as JavaScript. Prototype recognizes all accepted
values for the response’s Content-Type header (anything with a main
type of text or application and a subtype of javascript or ecmascript,
possibly prefixed with x-).

When such a response is received, the requesters will automatically
eval() it. Pay attention to the timing. This occurs after specific callbacks
(onSuccess, onFailure, and onXYZ), but before the generic onComplete.
The evaluation logic is wrapped in the evalResponse() method.

7. For further details on the HTTP status codes, see the HTTP/1.1 RFC at
http://tools.ietf.org/html/rfc2616.

http://tools.ietf.org/html/rfc2616
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=205

HITTING THE ROAD: AJAX.REQUEST 206

This is a very powerful mechanism and easy to leverage from the server
side. Rails has RJS templates, for instance, but any good server tech-
nology, as long as it has the ability to encode objects to JSON, can
quickly whip up similar plumbing. For instance, a recent Rails app of
mine features the following template:

page["fee_price_#{@att.id}"].update(format_price(@att.fee_price)).
highlight

page['total_price'].update(format_price(@att.registration.total_price)).
highlight

This can result in the following JavaScript code being returned to the
server (with the proper JavaScript MIME type, which is key to automatic
evaluation):

$('fee_price_42').update('100€').highlight();
$('total_price').update('250€').highlight();

Dealing with Ajax.Response

Starting with Prototype 1.6, the first argument to all callbacks (save for
onException) is an Ajax.Response object that represents, well, your Ajax
response. This object exhibits the following properties and methods,
which make it at once backward compatible, safer to use (read: better
dealing with exceptions and timing constraints), and more powerful:

getAllHeaders()
This is an exception-safe version of getAllResponseHeaders(). It will
return null instead of propagating the exception.

getAllResponseHeaders()
This forwards to the native method of the same name on the
underlying XHR object. It returns all the response headers as a
single, protocol-extracted string. But if you’re not yet far along
enough (in other words, you didn’t receive all the response head-
ers over the wire yet), this raises an INVALID_STATE_ERR exception.

getHeader(name)

This is the same method as available on Ajax requesters, which I
described in the previous section.

getResponseHeader(name)

This forwards to the native method of the same name on the
underlying XHR object. It returns the value for the given header
or null if the header doesn’t exist in the response. However, if
you’re not far along in receiving the response yet, you’ll get an

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=206

HITTING THE ROAD: AJAX.REQUEST 207

INVALID_STATE_ERR exception (as opposed to getHeader(), which will
swallow the exception and return a null).

headerJSON

This is a new property introduced in 1.6. It contains the evaluation
of the X-JSON header, if any (otherwise it is either undefined or
null, depending on how far along the response reception you are). I
advise you to rely on this property instead of the second argument
to most callbacks, because the latter is likely to be deprecated in
later versions of Prototype.

readyState

This mirrors the native property of the same name on the underly-
ing XHR object. Just remember that 4 means we’re done receiving
the response.

responseJSON

This is a new property introduced in 1.6. Based on the JSON-
related options (refer to on page 201), this interprets a JSON re-
sponse body. This is a distinct thing from the X-JSON header,
and it was one of the prominent JSON-related feature requests for
Prototype.

responseText

This is a safe version of the native property of the same name.
It starts out undefined, then gets read at every state change until
completion, and is guaranteed non-null. If it’s not there yet on the
underlying XHR object, you will see an empty string. This saves
you from special-casing your code.

responseXML

This is available only once the response completes. This property
is either a valid XML document or null. Whether it’s interpreted
from the response’s body is decided by the underlying XHR object
according to spec (which essentially means you’ll have to send a
response with a valid XML MIME type8).

status

This returns the underlying XHR object’s property of the same
name (or zero if it’s unavailable just yet), which is the HTTP re-
sponse code.

8. This is essentially a type ending with either /xml or +xml. . . .

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=207

STREAMLINING: AJAX.UPDATER 208

statusText

This is the status text going with the HTTP response status code
or the empty string if this text is unavailable yet.

transport

This is the underlying XHR object. This is mostly provided for
backward compatibility of your scripts, but I advise you strongly
to migrate your code so it uses the response object’s methods and
properties instead of going raw like this. They’re more portable,
less exception-prone, and overall smarter.

9.3 Streamlining: Ajax.Updater

OK, that was for the common ground and the simple requests. Yet a
common need for Ajax requests is to get some XHTML fragment back
and inject it into our page. This fragment either replaces existing con-
tents or is inserted somewhere. That’s the whole idea of Ajax.Updater.
The creation takes one more argument, which actually appears first—
the container element(s) for the returned fragment.

new Ajax.Updater(container, url [, options])

We’ll demonstrate this through a search example that will use two new
options, specific to updaters.

Get It: Ajax Search

We’re going to put together an Ajax-based search. Because I don’t want
you to have to set up a data source to search through, we’ll just use the
libraries available to your Ruby server script. As an added perk, that
means you have a decent shot at getting exactly the results you see in
the book (or close enough, anyway).

The idea is simple: our page has a search field, we type a small text in it,
and we hit the Search button, which sends an Ajax request. The server
returns an XHTML fragment holding the search results (say, a simple
 list), which we display in a predefined “search results” element.

First, we need a search page:

Download prototype/ajax/search1/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/search1/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=208

STREAMLINING: AJAX.UPDATER 209

<title>Ruby library AJAX search</title>
<link rel="stylesheet" type="text/css" href="search.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="effects.js"></script>
<script type="text/javascript" src="search.js"></script>

</head>

<body>

<h1>Ruby library AJAX search</h1>

<form id="searchForm" method="get" action="/search">
<fieldset>

<legend>Your search</legend>
<p>

<label for="edtSearch" accesskey="S">Your search</label>
<input type="text" id="edtSearch" name="q" />

</p>

<p><input type="submit" value="Search!" /></p>
</fieldset>

</form>

<div id="results"></div>
</body>

</html>

A pinch of CSS will help:
Download prototype/ajax/search1/search.css

#searchForm fieldset, #results {
width: 30em; margin: 1em auto; padding: 0.5em;

}
#searchForm fieldset { background: #ddd; }
#edtSearch { width: 20em; padding: 0 0.2ex; }
#edtSearch:active, #edtSearch:focus {

background: #ffd; border: 2px solid black;
}
#results {

border: 1px solid green; background: #dfd; color: #040;
}
#results ul { margin: 0; padding-left: 1em; }
#results li { font-family: monospace; }

Now the server script and our stage will be ready for the star, Java-
Script, to make its entrance:
Download prototype/ajax/search1/server.rb

#! /usr/bin/env ruby

require 'cgi'
require 'erb'
require 'webrick'
include WEBrick

template_text = File.read('results.rhtml')

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/search1/search.css
http://media.pragprog.com/titles/cppsu/code/prototype/ajax/search1/server.rb
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=209

STREAMLINING: AJAX.UPDATER 210

template = ERB.new(template_text)

server = HTTPServer.new(:Port => 8042)
server.mount('/', HTTPServlet::FileHandler, '.')

def get_search_results(q)
suffix = "/*#{Regexp.escape(q)}*.rb"
$LOAD_PATH.map { |dir|

Dir.glob(dir + suffix, File::FNM_CASEFOLD).map { |f|
File.basename(f, '.rb')

}
}.flatten.sort.uniq

end

server.mount_proc('/search') do |request, response|
q = request.query['q'] || ''
results = get_search_results(q)
response['Content-Type'] = 'text/html'
response.body = template.result(binding)

end

trap('INT') { server.shutdown }

server.start

The get_search_results() method warrants some explanation. In these
very few lines, we explore all the directories in which Ruby loads its
standard libraries, grabbing for each one the list of Ruby files contain-
ing our query text, regardless of case. The filenames are purged of their
path part, leaving only the basename, with no extension.

The preliminary result is an array of arrays of names (one array per
library directory). We flatten it, sort, and remove potential duplicates.
Our library name list is ready to be served!

There is, indeed, one last touch—the results template file, which is sim-
ple enough:

Download prototype/ajax/search1/results.rhtml

<% if results.empty? %>
<p>No result found. Sorry!</p>
<% else %>

<% results.each do |lib| %>
<%= lib %>

<% end %>

<% end %>

OK, now for the script. The idea is simple: intercept regular form sub-
mission to route it through Ajax instead, and dump the response text

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/search1/results.rhtml
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=210

STREAMLINING: AJAX.UPDATER 211

Figure 9.4: Our initial view. Ready to search?

(the XHTML fragment produced by our template) into the results sec-
tion. Here it is:

Download prototype/ajax/search1/search.js

function bindForm() {
$('searchForm').observe('submit', function(e) {

e.stop();
new Ajax.Updater('results', this.action, {

method: 'get', parameters: this.serialize()
});

});
} // bindForm

document.observe('dom:loaded', bindForm);

Yes, that’s all there is to it. You’ll have to find another excuse to suck
your client’s wallet dry. Now run the server script, and navigate to
http://localhost:8042. You should see the initial page, as in Figure 9.4.

Type in a query—say, “el”—and hit Return or activate the submission
button. The page does not reload, but you should see results (or a no-
results message, depending on your query) appear in the results zone,
as in Figure 9.5, on the following page.

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/search1/search.js
http://localhost:8042
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=211

STREAMLINING: AJAX.UPDATER 212

Figure 9.5: Search results for “el”

That’s nice, isn’t it? I know, I know, you’ll want to play with it for a
while. Suit yourself. Call the colleagues over and boast (wait a minute,
hadn’t you done that an hour ago with the geometry thing?). Rejoice.
Prototype is here, and life is good. Try submitting an empty search if
you want to see all the libraries.

It’s time we look at the two new options Ajax.Updater has over Ajax.

Requester yet. One of them is called evalScripts. Set to true, it will make
sure any <script> tag in your returned fragment gets evaluated (once
the rest of the fragment is present in the DOM). You see, by default,
inline scripts are excised from your fragment, just in case. To make
sure they’re evaluated, just turn on evalScripts. Note they will be run
as JavaScript through eval() (but you weren’t planning on burping out
VBScript stuff, were you?).

Let’s add a bit of spice to our search view by initially hiding the search
zone and have it roll down on the first results display, shall we?

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=212

STREAMLINING: AJAX.UPDATER 213

We’ll just need to fix the initial view so the results area has an inline
style effectively masking it:

<div id="results" style="display: none;"></div>

We also need to alter our template so that it now features, at the tail
end of it, the inline script:

<script type="text/javascript">
var results = $('results');
if (!results.visible())

new Effect.BlindDown(results);
</script>

And finally, we need to adjust the options set for our request so that
scripts are evaluated:

new Ajax.Updater('results', this.action, {
method: 'get', parameters: this.serialize(), evalScripts: true

});

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=213

STREAMLINING: AJAX.UPDATER 214

OK, stop your server, and then run it again (it needs to load the update
template for the results). Refresh the view. You’ll note the results area
is invisible at first. Type a query, and trigger the search: the results
appear using a “blind down” effect. Isn’t it nice?

There’s another option we can use now, the last one for updaters: inser-

tion. So far, our fragments have replaced the contents of their container
(using Element.update(), which we saw on page 139). What if we need to
aggregate successive fragments instead? For instance, we could want
to keep a log of the searches we make, with the latest one on top. To
do this, the insertion option lets you specify one of the Insertion objects,
which we explored in Section 7.2, Inserting New Contents, on page 155.

It’s easy as pie. Let’s first update our template so it now includes our
query (because we’ll have multiple result sets, we might need to see
which query yielded the results). We’ll also adjust the final script so it
triggers an effect on the whole results zone the first time and then on
the inserted fragment the next time:

Download prototype/ajax/search3/results.rhtml

<% id = "results_#{Time.now.to_i}_#{rand 42}" %>
<div id="<%= id %>" style="display: none;">

<h2>Results for «<%= q %>»:</h2>
<% if results.empty? %>

<p>No result found. Sorry!</p>
<% else %>

<% results.each do |lib| %>
<%= lib %>

<% end %>

<% end %>
</div>

<script type="text/javascript">
var results = $('results');
if (!results.visible()) {

$('<%= id %>').show();
new Effect.BlindDown(results);

} else
new Effect.BlindDown('<%= id %>');

</script>

Then we just need to adjust our script to use the proper option. We’ll
go for latest on top, so we’ll use Insertion.Top:

new Ajax.Updater('results', this.action, {
method: 'get', parameters: this.serialize(), evalScripts: true,
insertion: 'top'

});

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/search3/results.rhtml
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=214

POLLING: AJAX.PERIODICALUPDATER 215

Again, stop and then restart your server and refresh your page. Then
start making a few queries. . . . Does this rock or what? I mean, come
on, we wrote a grand total of 110 lines of source code, including CSS
and static HTML!

As a final note, there is another nice feature I haven’t mentioned yet:
the container option can be more than just an ID or DOM reference.
Sometimes you need to differentiate between success and failure. You
want to put the result somewhere in one case and somewhere else in
the other case. Or maybe you don’t want to update anything on fail-
ure. You just care about success. For both these situations, you can
use an object for the container option, with at least a success property
(identifying the container for successful requests) and possibly a failure

property, too. This saves you the trouble of reverting to an Ajax.Request

with a custom, tedious onComplete handler, for instance.

9.4 Polling: Ajax.PeriodicalUpdater

If you need periodical updating, the easiest way is to go with Ajax.

PeriodicalUpdater. It’s not, properly speaking, a specialized version of
Ajax.Updater, though. It’s a convenience object that uses a fresh Ajax.

Updater periodically to save you the bother. And it also has a few more
tricks.

Get It: Live Logged-In List

To demonstrate this one, we’ll implement a simple application feature:
a logged-in user list. You know, like the kind of list you’d want on a
community portal’s home page or next to the transcript of a chat room.
The server maintains a list of the active, or logged-in, users. The client
page polls it now and then keeps the displayed list current. To keep
things simple and DRY,9 we’ll use the same template for the list when
it’s part of the full page and when it’s sent as an XHTML fragment.

Our server side will simulate a frequently changing user list. It features
two URLs, one for the full page and one for the updated list only:

Download prototype/ajax/live_users/server.rb

#! /usr/bin/env ruby

require 'cgi'
require 'erb'

9. So you Don’t Repeat Yourself...

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/live_users/server.rb
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=215

POLLING: AJAX.PERIODICALUPDATER 216

require 'webrick'
include WEBrick

full_template = ERB.new(File.read('index.rhtml'))
list_template = ERB.new(File.read('users.rhtml'))

server = HTTPServer.new(:Port => 8042)
server.mount('/', HTTPServlet::FileHandler, '.')

ALL_USERS = [
'Dan Webb', 'Élodie Jaubert', 'Justin Palmer', 'Mislav Marohnic',
'Scott Raymond', 'Andrew Dupont', 'Seth Dillingham'

]

$users = ALL_USERS.select { rand(4) == 0 }.sort

server.mount_proc('/home') do |request, response|
response['Content-Type'] = 'text/html; charset=UTF-8'
users_list = list_template.result(binding)
response.body = full_template.result(binding)

end

server.mount_proc('/users') do |request, response|
$users.reject! { rand(4) == 0 }
$users.concat(ALL_USERS.select { rand(4) == 0 }).sort!.uniq!
response['Content-Type'] = 'text/html; charset=UTF-8'
response.body = list_template.result(binding)

end

trap('INT') { server.shutdown }

server.start

Because default updating will use Element.update() and because we do
not fall prey to divitis (putting unnecessary <div> tags in the page), we’ll
keep the element there all the time and update only its contents.
So, the main template goes like this:

Download prototype/ajax/live_users/index.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Live logged-in users list</title>
<link rel="stylesheet" type="text/css" href="live.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="live.js"></script>

</head>

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/live_users/index.rhtml
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=216

POLLING: AJAX.PERIODICALUPDATER 217

<body>

<h1>Live logged-in users list</h1>

<ul id="userList">
<%= users_list %>

</body>

</html>

And the list template goes like this:

Download prototype/ajax/live_users/users.rhtml

<% $users.each do |user| %>
<%= user %>

<% end %>

The styling is very minimal, just so our example doesn’t look too bad:

Download prototype/ajax/live_users/live.css

#userList {
width: 15em; margin: 1em 0; padding: 0.25em;
border: 1px solid navy; background: #ddf; color: navy;
list-style-type: none;

}

And because Ajax.PeriodicalUpdater fits our need so well, the script
remains concise:

Download prototype/ajax/live_users/live.js

document.observe('dom:loaded', function() {
new Ajax.PeriodicalUpdater('userList', '/users',

{ method: 'get', frequency: 3 });
});

Because getting an updated list does not modify the application state
(well, in our simulation it does, but in a real application it wouldn’t)
and because we believe in REST and proper HTTP verb usage, we make
sure to use a get request. We also use a new option, frequency, which
states the interval, in seconds, between two updates.10

The default interval is two seconds, but I used three here as an exam-
ple of using the option. Floating-point values are allowed, naturally.
Remember that we use seconds here, not milliseconds.

10. Yes, it should have been called interval or, for the purists, period, because it’s actually
the opposite of a frequency. I know.

http://media.pragprog.com/titles/cppsu/code/prototype/ajax/live_users/users.rhtml
http://media.pragprog.com/titles/cppsu/code/prototype/ajax/live_users/live.css
http://media.pragprog.com/titles/cppsu/code/prototype/ajax/live_users/live.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=217

POLLING: AJAX.PERIODICALUPDATER 218

OK, run the server, navigate to http://localhost:8042/home, and keep
looking. If you want to look under the hood, use Firefox and Firebug’s
XHR monitoring. It just works!

Pure JavaScript? Consider the Alternative

When you return only pure JavaScript, having to provide a container
that you will update with exactly zero text, since the script you wrapped
in a <script> tag got stripped out for separate eval() processing, can
sound a bit overkill, not to say cumbersome.

On the other hand, it’s very easy to do. Just put a dummy hidden
 somewhere, or whatever. Still, for those of you who, like me,
feel it’s not the right way to do, consider the marriage of a PeriodicalExe-

cuter and a Ajax.Request, when you’d send the raw script back with the
proper Content-Type header. There’s no noticeable workload difference,
but it’s certainly less roundabout.

A Few More Tricks Up Your Sleeve

Besides its frequency option, Ajax.PeriodicalUpdater also features a
rather advanced option called decay. Sometimes, the longer a result
stays unchanged, the less often you want to check. In such situations,
setting decay to values greater than 1 (its default) will do the trick
nicely.

Here is the idea: whenever the response text changes from the last
time (which obviously happens on the first request, at any rate), the
next request is scheduled frequency seconds later. But every time the
response comes back unchanged, the scheduling is multiplied by
decay. Incidentally, this means decay values less than 1 result in ever-
quickening checks, which will quickly saturate the browser (ouch!).

The official API page at http://prototypejs.org/api/ajax/periodicalUpdater

has a nice table illustrating how decay impacts the scheduling of suc-
cessive requests. Check it out for further details. But remember, this
is for slightly edge cases. Most of the time, you’re good to go without
needing it.

Also know that you can stop, and later resume, the scheduling of re-
quests. The methods stop() and start() are there just for this. This comes
in handy when you provide your user with a way to toggle a particular
periodical behavior on the fly. By the way, the onComplete callback has
different semantics here. It doesn’t fire on every Ajax request, but when
the periodical update system “completes,” which means it stops, it will

http://localhost:8042/home
http://prototypejs.org/api/ajax/periodicalUpdater
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=218

MONITORING AJAX ACTIVITY: AJAX.RESPONDERS 219

get called only, therefore, when/if you call stop() (which you may call
from within the update function to terminate periodical update based
on “internal,” business-oriented rules).

9.5 Monitoring Ajax Activity: Ajax.Responders

When doing Ajax, something we often need to do is monitor Ajax activ-
ity globally for all requests happening in our page. The most common
reason for this is to maintain a status indicator (often the famous “spin-
ner”) that is visible while at least one Ajax request is going on, hiding it
when the last live one is over. Such indicators are helpful in setting the
user’s expectations.

The easiest way to go about this is to use the global Ajax.Responders

object. This object gets notified about every life cycle event of every
request made by the Ajax.* objects. It has all the usual callbacks.

The two methods you’ll be interested in are register() and unregister()
(mostly the first one). You simply pass a listener object—something
with all the callbacks you need. Prototype uses such a listener to main-
tain Ajax.activeRequestCount, which, nicely enough, tells you how many
requests are going on at any given time.

Assuming you have something in your page like this (along with proper
styling, probably):

. . . making this indicator systematically visible while Ajax is going on
would be as simple as this:

Ajax.Responders.register({
onCreate: function() { $('spinner').show(); },
onComplete: function() {

if (0 == Ajax.activeRequestCount)
$('spinner').hide();

}
});

Nice and easy. . . .

9.6 Debugging Ajax

When you’re doing Ajax work, it can quickly become frustrating not to
see what’s sent and what’s received as a response. The tiniest glitch

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=219

AJAX CONSIDERED HARMFUL? THINKING ABOUT ACCESSIBILITY AND ERGONOMY 220

can ruin the proper behavior of your app, and with no peek into the
Ajax exchange, you’re left waving your hands in the dark.

Some people take out the pile hammer and fire up network sniffers like
Ethereal (renamed Wireshark in 2006). I find this approach extremely
cumbersome, not to mention that it slows the whole thing down. Tools
such as these are so powerful that they become quite unwieldy, and
we’re more the agile crowd anyway.

Once again, Firebug to the rescue! It features a Show XMLHttpRequests

option for its console that lets you track what’s going on. We already
saw such tracking in action on Figure 9.3, on page 200, for instance.
This is, really, your best bet. Of course, if your Ajax works just fine on
Firefox but is buggy on another browser, you’ll have to find something
else.

As far as I know, easy Ajax tracing is not in tools such as the Internet
Explorer Developer Toolbar, and it is not featured by Opera or Safari,
to name only those. So, selective network sniffing might be your only
choice. But remember that if you get your Ajax request right on one
browser (say, Firefox), chances are breakage in other browsers is more
of a JavaScript or DOM issue. Standard debugging tools, especially
JavaScript debuggers, are likely to be the help you need then.

9.7 Ajax Considered Harmful? Thinking About Accessibility and

Ergonomy

Before we move ahead, I would very much like to talk a bit about acces-
sibility, not only pertaining to Ajax but also to JavaScript more gen-
erally. This falls a bit outside the scope of this book, so I’ll try to be
concise yet useful.

Most people think accessibility and scripting (especially Ajax) are intrin-
sically not reconcilable. This is patently untrue. As with most things,
best practices go a long way toward having your cake and eating it.
There is no titanic effort here—just proper habits to make yours.

Not Using JavaScript? No Problem!

Unless you are working on an intranet-style application where you
have control over the browsers, you cannot always afford to require
JavaScript. Except perhaps for applications where JavaScript-powered
features are key to your product’s value (such as most 37signals appli-
cations, one could argue), JavaScript should always be used to improve

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=220

AJAX CONSIDERED HARMFUL? THINKING ABOUT ACCESSIBILITY AND ERGONOMY 221

usability, not to implement it. A classic example is providing navigation
(or other important actions) only through clicks over otherwise passive
elements (such as images or <div> elements). With no JavaScript, your
elements are inert. Functionality is lost.

Having no JavaScript at hand is more frequent than you think. A lot
of mobile users (using phones, PDAs, and so on) or those equipped
with alternative browsing systems (such as a screen reader) still have
no JavaScript or have a very limited implementation of it. JavaScript
could also be technically available but be disabled by a stringent system
administrator.

Even if JavaScript is there and enabled, requiring complex manipu-
lations from your users is inaccessible. Many cannot use a pointing
device (for example, a mouse) with good precision, or cannot wield one
at all, because of some motor handicap; they may also find it difficult to
press complex keyboard shortcuts. Even with no handicap, many may
use a browsing device with a limited or absent keyboard (think mobile
phones or PDAs) and possibly no efficient pointing mechanism. On the
whole, people with one form of handicap or another (cognitive, visual,
motor, and so on) make up more than 15% of web users, which means
tens of millions of people worldwide. You can’t just exclude them.

The key to better accessibility here is to embrace unobtrusive Java-

Script. Have your page work (even if not too fabulously from a usability
standpoint) with no script whatsoever (ideally, with no CSS whatso-
ever!), and then use separate scripting to hook into regular events (for
example, form submission, link activation) to make it behave in a more
comfortable way, saving the user’s time and effort. Starting with bare-
bones stuff and progressively applying feature augmentations through
JavaScript and Ajax, in an unobtrusive way, is referred to as progres-

sive enhancement.

Ergonomical Ajax: Taking the Right Approach

What’s true for JavaScript obviously still stands for Ajax. Jeremy Keith,
of DOM Scripting fame, refers to progressive enhancement through Ajax
as Hijax.11 Yet Ajax accessibility is not just about technical availability
and graceful degradation. On the Web, users have a different set of

expectations than they do on “desktop” applications.

Most people still expect a web page not to behave quite like a regular
application screen. They’re not quite alert to your page doing requests

11. http://domscripting.com/blog/display/41

http://domscripting.com/blog/display/41
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=221

AJAX CONSIDERED HARMFUL? THINKING ABOUT ACCESSIBILITY AND ERGONOMY 222

in the background, changing fragments of its contents on the fly, allow-
ing drag and drop of elements, and the like. You’ll have to make all this
very explicit for them so they don’t get confused.

Sometimes using Ajax doesn’t make sense at all from an ergonomi-
cal standpoint. It messes with browser history, and most users are
very fond of their Back buttons. Using Ajax to go from one step of
a process to another does not alter the history, and improper usage
of the Back feature can yield all sorts of issues, not to mention such
states are not automatically bookmarkable. You’d need to provide cus-
tom URLs for those (think Google Maps). Another common mistake is
to autosend forms as they’re filled in, which is not always proper. Some
forms should wait for manual submission, if only to let the user change
their mind, go back and finish later, cancel the process, and so on.

Here are a few ground rules, tips, and tricks you can use to make your
shiny, wizardy pages more accessible:

• If your site is public-facing, state clearly right from the home
page that you use Ajax and JavaScript. Link to a small page that
describes, in simple, clear copy, why you use them and what
ergonomical expectations the user should have because of this.
Setting expectations is a simple but critical thing.

• Doing Ajax? Make sure there’s a visible indicator of it (for example,
the famous spinner12). If this means the user should not manipu-
late parts of your UI, don’t let them try. Disable the relevant parts
during the Ajax processing.

• Using drag and drop? Make it obvious! Use a small text hint or
perhaps small icons when the mouse is over a draggable element.
For instance, to-do lists in 37signals’ products use the second
approach, as illustrated in Figure 9.6, on the following page.

• Reloading a small part of a page? Make sure the user notices:
use a highlight effect, and perhaps play a sound. The fragment
might not be visible at this moment because of its viewport size
and scrolling issues.

• Doing periodical updates? The extra mile would be to let users
turn that into manual triggering, which helps people with screen
readers or cognitive handicaps. In the same vein, letting such
users request an actual message box (think alert(), which screen

12. Need one? Check out http://www.napyfab.com/ajax-indicators/, or quickly get a tailored
one at http://www.ajaxload.info/.

http://www.napyfab.com/ajax-indicators/
http://www.ajaxload.info/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=222

AJAX CONSIDERED HARMFUL? THINKING ABOUT ACCESSIBILITY AND ERGONOMY 223

Figure 9.6: Accessible drag and drop (Basecamp): make it obvious!

readers will properly react to, as opposed to pseudo-windows)
when content is updated on the page can be very helpful. The
extreme case here is to let them toggle Ajax off entirely for your
page, reverting to vanilla, manual, full-page reloading.

What We Just Learned

Ajax is a core skill for Web 2.0 development, and Prototype provides
a hell of a lot in this regard. Let’s briefly review what we saw in this
chapter:

• First, we saw how Ajax was not always the best solution for the
problem: it could degrade ease of use instead of improving it. Ajax-
ifying a page should always be done with great care and be thor-
oughly tested in various performance and accessibility contexts.

• Prototype’s Ajax features are entirely based on one class: Ajax.

Request. Make sure you understand it well and know all its fea-
tures.

• Synchronous requests (sometimes dubbed SJAX) should be avoi-
ded at all costs. They’re most likely to freeze the browser, effec-
tively defeating, in a big way, the purpose of Ajax.

• JSON should be your preferred format for data-only exchanges.
Just forget XML. It’s too much of a bother to parse on the client
side, and it’s verbose and hence bandwidth-heavy.

• Whenever possible, prefer the hash form of the parameters option
to its predigested query string variant. The object form is easier to
tweak and maintain.

• Prototype emulates HTTP verbs outside of get and post by revert-
ing to post and using an extra _method field in the request.

• You should not rely on nonguaranteed, intermediate-state call-
backs.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=223

AJAX CONSIDERED HARMFUL? THINKING ABOUT ACCESSIBILITY AND ERGONOMY 224

• The Ajax.Response object passed as the first argument to the call-
backs is the gateway to all the response lookups and examina-
tion you might need. It automatically parses JavaScript and JSON
results.

• Ajax.Updater is perfect for the common use case of an Ajax request
returning a document fragment and can handle different updated
locations depending on the response’s error state (based on HTTP
response codes). It can also insert the new fragment instead of
replacing an existing one with it.

• When your periodical Ajax requests do not return a fragment but
pure JavaScript, you’ll probably be better off with a PeriodicalExe-

cuter over regular Ajax.Request objects.

• Ajax.Responders lets you implement global callbacks that are trig-
gered for all your requests. It’s especially useful for global visual
indicators and centralized processing (such as logging and error
reporting).

Neuron Workout

Ready to gear up? Start with these small assignments:

• What’s the best way to return a document fragment on which
scripting must be applied?

• Say you use Ajax to add items to a task list. Each task item con-
tains a checkbox, and you need to react to that checkbox being
clicked to put the item in the “pending” or “done” list. The easiest
solution does not use inline <script> tags in your Ajax responses
and is more efficient to boot. What is it?

• Create a sign-up form that reacts to the user typing a login by live-
checking whether that login is available; if it’s not, it styles the field
accordingly, displays a message, and disables the submit button.
If it is available, it does the opposite. Use a simple server-side
script in whatever language you like, with a static list of already-
taken logins, to help you test it. Also make sure the lookup interval
is not so small it hogs the browser.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=224

Chapter 10

More Useful Helper Objects
Prototype dazzles with all the shiny new stuff we saw, but there’s more
yet to marvel at. Hashes, value ranges, periodical yet nonreentrant code
execution, string templating, and browser features—these may be less
important than, say, collections, DOM manipulation, events handling,
and Ajax, but they sure can come in handy.

10.1 Storing Values in a Hash

Hash was completely rewritten for Prototype 1.6. If you used it in previ-
ous versions, pay special attention!

Many languages feature an associative array type. You know, it has
some unique keys, which can be just about anything and are associated
with values. It’s common (and just about indispensable) in scripting
languages such as PHP, Perl, or Ruby, and it can also be found in
libraries tied to more static languages such as Java (think java.util.Map)
or C++ (think std::map). Prototype just calls them hashes and offers a
Hash type.

JavaScript makes hashes really easy. Any object can be treated as a
hash. It is inherently possible to iterate through an object’s properties
(using the for. . . in loop), add and remove properties to an object, change
property values, and so on. Properties are also intrinsically unique. But
then, you may ask, if objects make such great hashes as it is, why
would we need a specific Hash type? Good question, my dear, astute
reader.

STORING VALUES IN A HASH 226

Well, Hash exists to wrap this basic behavior with a few layers of nice
features, such as being able to mix Enumerable in, easily fetching keys
or values, merging hashes, and converting to a query string (which
comes in handy more often than you may think).

Creating a Hash
$H([obj]) → Hash
new Hash([obj]) → Hash

We already saw one way to create a hash: the $H() utility function,
described in Section 3.7, $H Makes a Hash of Things, on page 50. The
other way is to use a vanilla class creation syntax such as new Hash()

or, if you need to start with a given set of properties and values, new

Hash(basicObject). Both syntaxes are absolutely equivalent and always
return a fresh, new object.

Hash Maintenance: Tinkering with Keys and Values

Now that we have a hash in our hands, what can we do with it? Well,
we want to store, fetch, and remove associations in there. That’s what
the accessor methods are for.

get(propName) → propValue
set(propName, propValue) → samePropValue
unset(propName) → propValue

The names of these methods are rather self-explanatory: set() lets you
create or replace an association in the hash, get() lets you fetch it (and
returns, quite naturally, undefined if the association does not exist), and
unset() makes sure an association is not there anymore, returning the
former association’s value, if any.

Note that set() returns the new value, not the old one (in the same spirit
as JavaScript assignment). This lets you reuse the call in an assignment
or method call, as in if (h.set(’blah’, value)) or v = h.set(’blah’, value) +

42. . . .

If you need to do more powerful stuff, it’s either Prototype’s way or the
hard way. Here’s what becomes available with our beloved library:

each(iterator) → Hash
index(value) → firstKey
keys() → Array
merge(obj) → newHash
update(obj) → Hash
values() → Array

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=226

STORING VALUES IN A HASH 227

Before we explore these, remember that Hash mixes Enumerable in.
Beware, though—the results you’ll get are, still, expressed as arrays,
not “subhashes.” In this regard, this is not exactly like mixins in Ruby.

I mentioned the each() method in the method list because you may
want to know in what order the iteration proceeds. The answer is,
quite simply, that depends. It relies on JavaScript’s native for...in loop,
which means the iteration order is mostly browser-dependent (ECMA-
262 clearly states that “an Object is an unordered collection of proper-
ties”). So, you should not rely on a specific order for your algorithms to
work.

Also note that the first argument to your iterator is actually a pair
object, with two properties: key and value. It also behaves as an array,
with the name at index 0 and the value at index 1, exposing it to all
native and extra methods for Array. You thus iterate on map entries,
not on map keys.

Here’s a short example:

Download prototype/new/hash_each.js

var lib = $H({ version: 1.5, author: 'Sam Stephenson' });
lib.each(function(pair) {

alert(pair.key + ' = "' + pair.value + '"');
});
// Alerts, in non-guaranteed order, 'version = "1.5"' and
// 'author = "Sam Stephenson"'.

Hashes let you get a list of the keys or values, also ordered based on
the native for...in loop. Since these are returned as arrays, they’re enu-
merable as well, which is rather handy.

You can decide to merge two hashes by using merge(). The idea is
that the hash you’re calling merge() on has lower priority than the one
passed as an argument. When the merge is done, you get a new hash
that has all properties from both, with the argument’s values when
there is a property name conflict.

Note that the argument doesn’t need to be a Hash. It will get passed
to $H() prior to use. If you do not want a new hash object but want to
update the original hash, use update() instead of merge().

Finally, you can get the first key (in native iteration order) associated
with a given value by using the index() method.

http://media.pragprog.com/titles/cppsu/code/prototype/new/hash_each.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=227

STORING VALUES IN A HASH 228

A combined example should help:

Download prototype/new/hash_tinkering.js

Line 1 var lib = $H({ name: 'Prototype', version: 1.5 });
- lib.keys().sort()
- // -> ['name', 'version']
- lib.values().sort()
5 // -> [1.5, 'Prototype']
-

- lib.update({ version: '1.5.1', author: 'sam' });
- lib.invoke('join', ' = ').sort().join(', ')
- // -> 'author = sam, name = Prototype, version = 1.5.1'

10

- lib.index('sam')
- // -> 'author'
-

- lib.unset('author')
15 // -> 'sam'

-

- lib.keys().sort()
- // -> ['name',' version']
-

20 $H().keys()
- // -> []

You may be puzzled by the nifty trick on line 8:

lib.invoke('join', ' = ').sort().join(', ')

Here’s how it works:

1. First, remember that on hashes, each() iterates over key/value
pairs, which are, first and foremost, arrays. The first element is
the key name, and the second is the value.

2. So when we call invoke() here, we actually produce an array based
on the hash, with one string representation per original key/value
pair, which has the form key = value.

3. Next, we sort the resulting array and produce a unique string out
of it with the native join() method, using a comma and a space
between each property representation.

This is the kind of line that makes me love Prototype. It just makes me
feel warm and fuzzy. JavaScript is cool again.

Looking at Our Hash and Turning It into Something Else

There’s little left to say about Hash. It’s mostly about converting hashes
to string representations. We’ve got two of those: debug-oriented form
and URL-like serialization.

http://media.pragprog.com/titles/cppsu/code/prototype/new/hash_tinkering.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=228

STORING VALUES IN A HASH 229

inspect() → String
toObject/toTemplateReplacements() → Object
toQueryString() → String

We already covered inspect() many times. In the case of Hash, it provides
a fully custom representation, as shown in the next code example, a few
paragraphs down.

If you need raw access to the storage container for the associations, you
can use the toObject() converter. It will likely mostly be used through
its toTemplateReplacements() alias in order to use a Hash as any regular
object in the context of templating, which we’ll discuss in Section 10.4,
Templating Made Easy, on page 233.

Another common use of hashes is to structure parameters later used
for an HTTP request (either directly or, more often, through Ajax). We
then need to serialize these properties as parameters in a URI-encoded
way (indeed, be it a GET or a POST request, the default format for data
is URL-encoding). You can do this on existing Hash instances by simply
invoking toQueryString() on them, or reuse the algorithm for any Java-
Script object by passing them as arguments to Object.toQueryString().

Here are a few details on the serialization process: properties whose
value is undefined are serialized without value (just their name), prop-
erties with value null are deemed empty, properties with Array values get
serialized once per array element, and all names and values obviously
get encoded using JavaScript’s native encodeURIComponent() method.
The order is, as always with Hash, dependent on the native for...in loop.

Incidentally, note that toQueryString() is essentially reciprocal to String’s
parseQuery() method, which we covered earlier in Section 4.5, Convert-

ing and Extracting: toQueryParams, parseQuery, toArray, and inspect,
on page 75.

It’s time for an example, wouldn’t you say?

Download prototype/new/hash_strings.js

$H({ name: 'Prototype', version: 1.5 }).inspect()
// -> "<#Hash:{name: 'Prototype', version: 1.5}>" // Order not guaranteed

$H({ action: 'ship', order_id: 123, fees: ['f1', 'f2'],
'label': 'a demo' }).toQueryString()

// -> 'action=ship&order_id=123&fees=f1&fees=f2&label=a%20demo'

$H().toQueryString()
// -> ''

http://media.pragprog.com/titles/cppsu/code/prototype/new/hash_strings.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=229

EXPRESSING RANGES OF. . . WELL, ANYTHING YOU WANT! 230

// "Class method" variant on any object: use the Object namespace instead.
Object.toQueryString({ foo:'bar' })
// -> 'foo=bar'

And that’s it for hashes. Simple fellas, really. They’re nifty without too
much overhead. You’ve got to like them.

10.2 Expressing Ranges of. . . Well, Anything You Want!

Talking about nice simple guys, meet ObjectRange. This is the class
behind the $R() utility function, which we saw in Section 3.8, Handling

Ranges with $R, on page 50. This class simply represents a range of
values, which can be of any type amenable to ranges. OK, so what
exactly makes a type amenable to ranges?

Well, in short, it just has to have a succ() method. When you call it on
a value, you get the next value. That’s it. Prototype puts such a method
in Number and String, so out of the box, you can have number ranges
and string ranges. The former is actually much more used (and useful)
than the latter.

Ranges mix in Enumerable, which is the salient point about them. It lets
you iterate easily, slap them on existing sequences with methods such
as zip(), or easily convert them to an array (since Enumerable provides
ranges with a generic implementation of toArray()).

Creating Ranges

Oh, that’s a walk in the park:

$R(start, end [, exclusive = false])
new ObjectRange(start, end [, exclusive = false])

For once, there is absolutely no distinction whatsoever between the
utility function and its vanilla constructor counterpart. They share the
same semantics.

Range Iteration

Ranges iterate from the start value to the end value, calling succ() on
the current value to get the next one. If the exclusive parameter is set to
true, the end value is skipped; the iteration will stop right before it.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=230

PERIODICAL EXECUTION WITHOUT RISK OF REENTRANCE 231

Have a look at this:

Download prototype/new/range_combined.js

$A($R(1, 5)).join(', ')
// -> '1, 2, 3, 4, 5'

$R(1, 5).zip(['one', 'two', 'three', 'four', 'five'], function(tuple) {
return tuple.join(' = ');

})
// -> ['1 = one', '2 = two', '3 = three', '4 = four', '5 = five']

$A($R('a', 'e'))
// -> ['a', 'b', 'c', 'd', 'e'], no surprise there

$A($R('ax', 'ba'))
// -> Ouch! Humongous array, starting as
// ['ax', 'ay', 'az', 'a{', 'a|', 'a}', 'a~'...]

Beware of String-based ranges. As described on page 69, the succ()
method does not stop with alphabetical boundaries (which would be
infeasible in an internationalized context) but goes all the way across
the character table, which, in JavaScript, is Unicode).

Range Inclusion

Ranges come with only one specific method:

include(value) → Boolean

This is pretty self-explanatory. It tells you whether the value is included
in the range (taking the exclusive initialization parameter into account,
obviously). Note, however, that this relies on the existence of a < oper-
ator between values of the range. This is likely not to work so well on
custom value objects that feature just the succ() method. . . .

10.3 Periodical Execution Without Risk of Reentrance

Sometimes you need to periodically call a function. Maybe you need to
poll the server for updates, maybe you’re doing some autosave feature,
or maybe you’re dealing with some time-related UI effect and haven’t
found a suitable treat in libraries such as script.aculo.us or the Proto-
type Window Class.1 You just want the periodical call thing.

1. http://prototype-window.xilinus.com

http://media.pragprog.com/titles/cppsu/code/prototype/new/range_combined.js
http://prototype-window.xilinus.com
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=231

PERIODICAL EXECUTION WITHOUT RISK OF REENTRANCE 232

This could easily be achieved with the native setInterval() and clearInter-

val() methods on the window object, but this has several drawbacks:

• This requires you to take care of the nitty-gritty details of timer
handles yourself, which essentially means you’re going to either
pollute the global namespace or create your own namespace-like
object to hold it.

• This does not prevent you from getting your callback function
called while its prior call is still processing, which can be annoying
if it deals with UI interaction (for example, a prompt(), confirm(), or
custom dialog call for the user to deal with).

With PeriodicalUpdater, you get the following benefits:

• Your callback function never gets called again while it is still pro-
cessing; there’s an internal flag preventing double calling.

• It encapsulates the timer handling mechanism into a neat object.

• You can stop the periodical execution at any time by calling the
stop() method on the periodical executer object.

new PeriodicalExecuter(callback, intervalInSecs) → PeriodicalExecuter
pe.stop()

Note that your callback will get called with the PeriodicalExecuter object
as its argument (letting you stop it from inside the function) and that
the interval is expressed in seconds (obviously, you can use a floating-
point value, such as 0.75).

Just look at this example code:

Download prototype/new/periodicalExecuter.js

// Campfire style :-)
new PeriodicalExecuter(pollChatRoom, 3);

new PeriodicalExecuter(function(pe) {
if (!confirm('Want me to annoy you again later?'))

pe.stop();
}, 5);
// Note that there won't be a stack of such messages if the user takes
// too long answering to the question...

var gCallCount = 0;
new PeriodicalExecuter(function(pe) {

if (++gCallCount > 3)
pe.stop();

else

alert(gCallCount);
}, 1);
// Will only alert 1, 2 and 3, then the PE stops.

http://media.pragprog.com/titles/cppsu/code/prototype/new/periodicalExecuter.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=232

TEMPLATING MADE EASY 233

10.4 Templating Made Easy

Prototype 1.5 introduced a new object dedicated to template-based
string creation: Template. It lets you pluck properties from an object
and insert them in a template string. It’s also useful when you have a
group of similar objects and you need to produce formatted output for
these objects, maybe inside a loop.

You would then typically resort to concatenating string literals with
the object’s fields. There’s nothing wrong with the previous approach,
except that it is hard to visualize the output immediately just by glanc-
ing at the concatenation expression.

The Template class provides a much nicer and clearer way of achieving
this formatting:

new Template(templateText [, pattern = Template.Pattern]) → Template
template.evaluate(scopeObject) → String

By default, the template syntax used by Template is akin to Ruby’s
string syntax. You can embed fields from the scope object with a #{field-

Name} fragment. Because arrays have numerical properties, you can
use this syntax for vanilla arrays as well, using #{0} for the first ele-
ment, #{1} for the second one, and so forth. Here’s a first example:

Download prototype/new/template_simple.js

var people = [
{ name: 'Élodie Jaubert', field: 'Heritage management',

role: 'my fiancée' },
{ name: 'Seth Dillingham', field: 'Web development',

role: 'a fellow Core' }
];
var tpl = new Template('#{name} works in #{field} and is #{role}.');

people.each(function(person) {
alert(tpl.evaluate(person));

}
// Alerts
// "Seth Dillingham works in Web development and is a fellow Core.",
// then "Élodie Jaubert works in Heritage management and is my fiancée."

Since Prototype 1.6, you can actually use more advanced syntax in
expansion blocks (the #{...} thing). You’re not limited to a field name
anymore but can walk down the properties using dot notation (a.b) or
square bracket indexing (a[b]). In this second case, however, quotes for
the key are not only unnecessary but will be handled literally.

http://media.pragprog.com/titles/cppsu/code/prototype/new/template_simple.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=233

TEMPLATING MADE EASY 234

Here are a few examples:

Download prototype/new/template_advanced.js

var people = [
{ name: 'Élodie Jaubert',

interests: ['heritage', 'culture', 'music'] },
{ name: 'Seth Dillingham' }

];
var tpl = new Template(

'#{length} people. #{0.name} likes #{0.interests[2], ' +
'among other things.');

tpl.evaluate(people)
// => '2 people. Élodie likes music, among other things.'
// You can use [] or . indifferently, except when the prop name is
// empty or contains a dot: then you need the square brackets.

Prototype also caters to the few use cases where the scope object for
your templating is not exactly what you’d like. Perhaps it provides
some information you need through a method instead of a property,
for instance. For these cases, you can equip your object with a to-

TemplateReplacements() method, which should return an alternate rep-
resentation of your object, that will be used for the templating. Consider
the following:

Download prototype/new/template_ttr.js

var student = {
name: 'John',
grades: [10, 12, 13.5, 8, 16],

average: function() {
return this.grades.inject(0, function(acc, g) { return acc + g }) /

this.grades.length;
},
highest: function() { return this.grades.max(); },
lowest: function() { return this.grades.min(); },

toTemplateReplacements: function() {
var result = Object.clone(this), student = this;
['average', 'highest', 'lowest'].each(function(methodName) {

result[methodName] = student[methodName]();
});
return result;

}
};

var tpl = new Template(
'#{name} averages at #{average} (lowest: #{lowest})');

tpl.evaluate(student);
// => 'John averages at 11.9 (lowest: 8)'

http://media.pragprog.com/titles/cppsu/code/prototype/new/template_advanced.js
http://media.pragprog.com/titles/cppsu/code/prototype/new/template_ttr.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=234

TEMPLATING MADE EASY 235

Finally, note that you can use the reserved #{...} syntax as a literal by
simply escaping the first character: \#{...}. This is actually not an abso-
lute truth, because it depends on the template pattern being properly
defined.

Indeed, if you look closely at the syntax block I used for the Template

constructor, you notice that there is a second, optional pattern argu-
ment, which defaults to Template.Pattern. What is that? Well, quite sim-
ply, this is a regular expression used to search the template text for
dynamic fragments and “parse” those fragments in order to provide the
templating engine with proper information.

The default pattern, Template.Pattern, looks like this:

/(∧|.|\r|\n)(#\{(.*?)\})/

To better understand it, you need to know that a valid template pattern
must identify at least three groups, which is done using paired paren-
theses:

• The character, or anchor, positioned immediately before the dyna-
mic fragment. This is used to detect backslash escaping (yes, it
has to be a backslash). This part of the template never needs to
change. It’s (∧|.|\r|\n).

• The full dynamic fragment, including its opening and closing de-
limiters; the default pattern uses (#\{(.*?)\}) (recall that curly
braces, square brackets, and parentheses, among other charac-
ters, are special characters in JavaScript’s regular expressions.
To use them as literals, you must escape them, which is why we
use \{ and \} here).

• The property name part, which is the dynamic fragment stripped
of its delimiters. This part seldom changes and is generally (.*?).

So if you insist on using another template syntax, you can provide your
own pattern. Say you’ve sloshed too long in the swamps of ASP to easily
shed the <%=...%> syntax. You can cater to this sorry need by using the
appropriate pattern:

Download prototype/new/template_custom.js

var people = [
{ name: 'Bill Gates', style: 'ASP' },
{ name: 'Andrew Dupont', style: 'Ruby' }

];

var ASP_SYNTAX = /(^|.|\r|\n)(<%=\s*(\w+)\s*=>)/;

http://media.pragprog.com/titles/cppsu/code/prototype/new/template_custom.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=235

EXAMINING THE CURRENT BROWSER AND PROTOTYPE LIBRARY 236

var tpl = new Template('<%= name %> prefers <%= style %> syntax.',
ASP_SYNTAX);

people.each(function(person) {
alert(tpl.evaluate(person));

});
// Alerts "Bill Gates prefers ASP syntax.",
// then "Andrew Dupont prefers Ruby syntax."

10.5 Examining the Current Browser and Prototype Library

Before taking on the real gem (Enumerable), let’s start at an easy loping
pace with Prototype. This is actually a namespace. Remember names-
paces? We discussed them in Section 2.4, Objects, Namespaces, and

Modules, on page 37. Quite simply, Prototype is not for instantiation. It
is just a named repository for several methods and pseudoconstants.
This is where you get information about the version of your Prototype
library, details about browser support for specific features, and generic
iterators that might come in handy now and then.

Version Information

Any Prototype library lets you access its exact version through Proto-

type.Version. It is a full version string, such as 1.5.1 or 1.6.0_pre0. It is
especially useful when you are writing a library based on Prototype and
need to test for dependency upon a specific minimum version.

For instance, script.aculo.us (which we will explore in the next part of
this book) checks that it is run based upon a sufficiently recent version
of Prototype (on which it depends entirely) in its scriptaculous.js file with
code like this:

Download prototype/new/prototype_version.js

// Extracted from script.aculo.us 1.8.0
if((typeof Prototype=='undefined') ||

(typeof Element == 'undefined') ||
(typeof Element.Methods=='undefined') ||
(convertVersionString(Prototype.Version) <
convertVersionString(Scriptaculous.REQUIRED_PROTOTYPE)))

throw("script.aculo.us requires the Prototype JavaScript framework >= " +
Scriptaculous.REQUIRED_PROTOTYPE);

Incidentally, know that Prototype follows a rather usual version naming
scheme:

• The earliest stages of a given version are preversions and use an
incremental _pre suffix (for example, _pre0).

http://media.pragprog.com/titles/cppsu/code/prototype/new/prototype_version.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=236

EXAMINING THE CURRENT BROWSER AND PROTOTYPE LIBRARY 237

• Getting close to release, we go Release Candidate, with incremen-
tal _rc suffixes. For instance, the last stage of Prototype before 1.5
was 1.5.0_rc2.

• Finally, public releases have no suffix (but three numbers still).

So far, prereleases and release candidates were available only through
the Subversion repository (and embedded in script.aculo.us). This
strategy may well change now that the official site has been fully re-
vamped, though. Keep an eye on the download page,2 but remember,
such releases are mostly for testing and playing around with upcom-
ing features. They can have failing tests, performance issues, unstable
parts, and the like.

Browser Features

Whenever Prototype finds itself in repetitive need of a given browser
feature detection, it ends up detecting it once and for all and putting the
result in the Prototype.BrowserFeatures namespace. There are currently
three aspects in there, all of which are booleans:

XPath

Whether the browser supports DOM Level 3 XPath, which is used
for tremendously boosting several DOM retrievals (such as $$()
and select()).

ElementExtensions

Whether the browser provides JavaScript prototypes for DOM ele-
ments, enabling direct extension. This speeds up the whole DOM
extension mechanism and therefore speeds up Prototype code in
general. See Chapter 7, Playing with the DOM Is Finally Fun!, on
page 130 for the whole story.

SpecificElementExtensions

Whether the browser uses a common prototype for all DOM ele-
ments (as Safari seems to do at the time of this writing). When this
is the case, the DOM extension mechanism compensates accord-
ingly to perform direct extension anyway.

Browsers (Firefox, Safari, and So On)

You will also find a Prototype.Browser namespace, which holds boolean
constants for most major browsers or rendering engines, letting your

2. http://prototypejs.org/download

http://prototypejs.org/download
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=237

EXAMINING THE CURRENT BROWSER AND PROTOTYPE LIBRARY 238

script detect the current browser in a legible, concise way. At this point,
the following booleans are defined in it: IE, Opera, WebKitMobileSafari

(which basically means the iPhone or the iPod Touch), and Gecko.

As you can see, this is so far pretty much for internal use, although I
can certainly imagine Prototype “add-ons” leveraging this information
for better integration. At any rate, more browser-related information
may well come up in later releases, such as browser identification, SVG
support, and <canvas> support. . . . So keep a sharp eye out!

Querying the Current Viewport

Sometimes we need to get the dimensions of the viewport itself, not the
browser window. The viewport, as you probably know, is the render-
ing surface for the document. It is what’s left in the window once we
put in the menus, toolbars, scroll bars, status bars, and so on. This
surface is much more interesting to us, for our scripts, than the win-
dow’s dimensions, especially since the relation between viewport size
and window size varies depending on the amount of “chrome” (UI com-
ponents) present.

Starting with Prototype 1.6, a new object is maintained, called docu- 1.6

ment.viewport, equipped with four neat methods:

document.viewport.getDimensions() → { width: Number, height: Number }
document.viewport.getHeight() → Number
document.viewport.getWidth() → Number
document.viewport.getScrollOffsets() → { left: Number, top: Number }

The signatures are pretty much self-explanatory. As a reminder, scroll

offsets are the shifting operated by the scroll bars (which means, inci-
dentally, that they’re never negative).

Boilerplate Functions

To make most iterator arguments optional in Enumerable’s methods,
Prototype defines an “identity” iterator, which is a function that simply
returns its first argument, untouched. It’s called Prototype.K(). Take the
min() method, for instance; you can call it either with no argument (in
which case it will compare the elements directly) or with an iterator of
yours (which will be used to compute the values then being compared).
Thanks to Prototype.K(), the code for this alternative is pretty simple:

value = (iterator || Prototype.K)(value, index);

Another area for boilerplate functions is Prototype’s Ajax requesters.
These offer a variety of callback hooks to let your code react to the

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=238

EXAMINING THE CURRENT BROWSER AND PROTOTYPE LIBRARY 239

many phases of an Ajax communication (including errors and spe-
cific types of successful responses). In order not to bother with an if

test of the presence of a given callback, the code just reverts to an
empty function (a function that, literally, does nothing at all): Proto-

type.emptyFunction() (note the lowercase e). Here is a line from Proto-
type’s Ajax state-handling code:

(this.options['on' + state] || Prototype.emptyFunction)(transport, json);

You might find yourself needing such functions to simplify your code or
allow for optional function-typed arguments in your methods.

What We Just Learned

Although less prominent, the features in this chapter do help make our
code efforts easier. We should especially remember that. . .

• Hash provides a few methods to explicitly process a regular object
as a hash, mostly by looking at its keys and values as datasets
and enumerating on them. It also features a nice inspect(), when
regular objects would spew out some unusable string such as
“[Object].”

• Hashes also provide the URL-encoding and decoding facilities in
Prototype.

• Ranges are mostly used to represent integer ranges, such as $R(1,

100), and are useful in conjunction with many Enumerable oper-
ations (for instance, we can use them to index items in another
enumeration, perhaps using a zip() call). But essentially anything
with a succ() method is range-compatible, so there can be some
pretty creative uses out there.

• The Template class provides a robust, simple templating mecha-
nism to inject object properties, however complex, into a text pat-
tern. Remember that one-shot templating is easier to do with a
call to String’s interpolate(), too.

• The Prototype library itself can be “inspected” by using the Proto-

type namespace to get the library’s version and look at the run-
ning browser’s type and behavioral capabilities (such as XPath
support).

• With Prototype 1.6, you now get support for viewport information,
letting you know how big it is and how far it’s being scrolled.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=239

EXAMINING THE CURRENT BROWSER AND PROTOTYPE LIBRARY 240

Neuron Workout

Here are a few suggestions for bite-size code snippets to fiddle with:

• Produce a sorted list of all the properties in an object.

• Reduce it to methods only.

• Reduce it instead to nonmethod properties that are strings and
whose names begin with a vowel.

• Change String#succ() so it wraps at the end of the ASCII alpha-
bet; for example, "wiz".succ() yields "wja" instead of "wi{". Check out
$A($R(’abc’, ’bzz’)) then.

• If necessary, adjust it to wrap over from 9 to 0, and from Z to A,
too.

And that’s a wrap! We’ve gone through all that Prototype has to offer.
Before moving over to script.aculo.us, I’ll just remind you of a few per-
formance issues in the next chapter, just so you don’t fall prey to unex-
pected sluggishness.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=240

There is nothing so useless as doing efficiently that which

should not be done at all.

Peter F. Drucker

Chapter 11

Performance Considerations
11.1 Element Extension and the $ Function

If you’re running on a browser that does not feature native DOM ele-
ment prototypes (for example, Internet Explorer), extending elements
unnecessarily can have some performance impact. Such extensions are
not always easy to spot in your code. A lot of Prototype methods auto-
matically extend their arguments, for instance, or the elements they
return. Just look at all the calls to $() in the source.

Still, in most cases this is not a real issue. Here are the two main
reasons why:

• Element extension happens at most once per element. Attempting
to extend an already extended element has a much lower cost
(basically, just the function call cost).

• Element extension is, in itself, not a complex process. It mostly
means copying a bunch of properties from one object to the ele-
ment. To become noticeable from a user’s perspective, it would
have to operate on hundreds, if not thousands, of unextended ele-
ments.

If you really need to work over a vast amount of elements without
extending all of them, you can still revert to a regular loop over these
elements, and either use a namespaced syntax when calling “extended”
methods on them (for example, Element.hide(elt)) or extend only those
you’re interested in (by manually calling Element.extend() on them).

On the other hand, many Prototype features will automatically extend
their element-based results. Most notably, the almighty $$(), which

ITERATIONS VS. REGULAR LOOPS 242

is so helpful in extracting elements from the DOM based on complex
criteria, systematically extends the elements it returns. Most element-
returning methods added by DOM extension (for example, up()) return
extended elements. So, you had better think about how you use
descendants().

11.2 Iterations vs. Regular Loops

Using iterator methods (methods that will take a function as an argu-
ment and invoke this function for some or all of a collection of elements)
basically means that at some point the collection’s _each() method is
called, and it will call your iterator. That, already, has a slight cost
(double function call, with the maintenance of the closures). But the
wrapper each() also needs to maintain a try/catch block to deal with
the $break exception, which has a significant impact.

Generally, you shouldn’t worry too much about loop performance using
iterators. Unless you’re iterating over an exceptionally large collection,
you’re in the clear. However, sometimes you do need to squeeze every
last bit of speed you can get. There is, then, no other alternative than
writing your iteration code by hand. Make sure you do it right, then.
Cache the collection length, avoid declaring too many variables in the
loop block, and so on. Here’s a typical “fast” loop:

var item;
for (var i = 0, l = data.length; i != l; ++i) {

item = data[i];
// Process item

}

First, it declares item outside the loop scope, so there’s no allocation/
release cost for every iteration. Second, it caches the collection’s length,
which avoids evaluating it at every turn. Third (and least important), it
uses the prefix ++ operator, which avoids cloning its operand.

It would appear that another approach, grabbing length and then using
something like a while (l- -) loop, can squeeze even more juice out of
an array iteration. But the aesthetics of it just make me nauseous.
Still, it’s worth a mention—maybe it does shave off more than a few
nanoseconds off the for version, should you need it.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=242

OBSOLETE EVENT HANDLERS 243

11.3 Obsolete Event Handlers

A frequent concern is about the memory cost of large amounts of event
observers. When you navigate outside the page, you may risk memory
leakage on Internet Explorer, if Prototype did not take special care of
this browser by manually detaching all the observers previously defined
by the library. On the other hand, you may have registered numer-
ous observers on a page fragment that gets replaced or removed. What
then?

Indeed, you would need to do some manual bookkeeping over your
observers, because there currently is no simple way to decommission
all the observers on a DOM fragment (although you can now easily
decommission all those on a single element). This is tedious, not to
mention it’s very impractical. Many observers are internal to Prototype
objects, and your user code has no easy means of accessing those ref-
erences.

One thing you can do is minimize the amount of observers you have.
I often see people write code that creates tons of elements (say, a tree
representation) and attach individual observers on each, for the same
event. That’s just ludicrous. Event bubbling lets us define a single han-
dler at the container level and use the event’s source element concept
to handle the specific item we’re dealing with. This goes a long way
toward dramatically reducing the observer count. For a detailed exam-
ple of this, look at how we did it with the staff tree on page 149.

11.4 Recent Speed Boosts You Should Know About

Every release of Prototype brings with it a handful of speed improve-
ments that can sometimes be quite dramatic. Warnings that were once
good advice become obsolete. Here are a few speed boosts in 1.5.1 that
you should know about:

Selectors are blazing fast!
Andrew Dupont (and, to a lesser degree, yours truly) did a full
rewrite of the Selector class, with some heavy inspiration from
Jack Slocum’s DomQuery and a healthy dose of XPath-fu.

Because of this, everything based on Selector (most notably $$()
and the DOM traversal extensions) is now blazing fast. Really,
at the time of this writing, it’s eating everyone’s lunch. Andrew

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=243

SMALL IS BEAUTIFUL 244

maintains a comparison bench on his website1 for you to check
this out.

Iterators are faster.
The $continue thing is not supported anymore in iterations. Use
a simple return in your callback instead. Not only is it faster than
throwing an exception, but this strips one level of exception han-
dling from the iterator, which results in a significant boost of all
iterator methods.

Array’s uniq() is much faster.
It used to rely on concat(), which meant it had a quadratic cost.
It has been rewritten to use a single array and work in linear time
if the array is already sorted.

Style manipulations are faster.
The element methods getStyle() and setStyle() are getting faster
with just about every release.

HTML escaping is much faster.
String’s escapeHTML() method is now significantly faster, because
it does not create DOM nodes anymore.

11.5 Small Is Beautiful

Stay lean, stay lithe. Don’t churn out megabytes of markup, and don’t
pre-include all the scripts you’ll ever need. Use Ajax for on-demand
replacements, content loading, and so on. Improve your mastery of
semantic markup and CSS to trim the fat off your DOMs. Quicker to
load, quicker to run, quicker to script!

1. http://andrewdupont.net/test/double-dollar/

http://andrewdupont.net/test/double-dollar/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=244

Chapter 12

Wrapping Up
Before we close this Prototype part and move on to script.aculo.us, I’d
like to take you through a consolidated example that brings together
quite a few of the features we’ve seen so far. Instead of a pure-text con-
clusion paragraph, I think this will serve better as an executive sum-
mary of sorts.

12.1 Building a Fancy Task List

Let’s say we need to create a small web page that lets us add to a small
task list by entering short task descriptions. The page is designed to
use Ajax when JavaScript is enabled, dynamically retrieving XHTML
fragments representing the new task and adding it to the current task
list. There should also be, for the hell of it, two links that let us select,
or deselect, all current task list items. The page would look like this:

Download prototype/fireworks/fireworks.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>A combined example of using Prototype…</title>
<link rel="stylesheet" type="text/css" href="fireworks.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="fireworks.js"></script>

</head>

<body>

<h1>A combined example of using Prototype</h1>

http://media.pragprog.com/titles/cppsu/code/prototype/fireworks/fireworks.html

LAYING THE GROUNDWORK 246

<form id="addForm" method="post" action="/tasks">
<fieldset>

<legend>Add task</legend>
<p>

<label for="taskText" accesskey="T">Text:</label>
<input type="text" id="taskText" name="text" />

</p>

<p><input type="submit" value="New task!" /></p>
</fieldset>

</form>

<p id="progress" style="display: none;">Adding task…</p>

<h2>Task list</h2>

<p id="selectors">
Select all ·
Deselect all

</p>

<ul id="tasks">

</body>

</html>

With a tiny bit of CSS, this would look like Figure 12.1, on the next
page.

12.2 Laying the Groundwork

Let’s whip up a small Ruby script to act as server. For the sake of
brevity, we will not have it handle both Ajax and non-Ajax cases. We’ll
assume the POST requests come through Ajax and return only the rel-
evant page fragment:

Download prototype/fireworks/fireworks.rb

#! /usr/bin/env ruby

require 'cgi'
require 'erb'
require 'webrick'
include WEBrick

template_text = File.read('task.rhtml')
task = ERB.new(template_text)
taskId = 0

server = HTTPServer.new(:Port => 8042)

http://media.pragprog.com/titles/cppsu/code/prototype/fireworks/fireworks.rb
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=246

LAYING THE GROUNDWORK 247

Figure 12.1: An empty task list

server.mount('/', HTTPServlet::FileHandler, '.')

server.mount_proc('/tasks') do |request, response|
params = CGI::parse(request.body)
text = CGI::escapeHTML(params['text'][0])
taskId += 1
Simulate random processing time (0-2 seconds)
sleep 2*rand
Return XHTML fragment
response['Content-Type'] = 'text/html'
response.body = task.result(binding)

end

trap('INT') { server.shutdown }

server.start

The fragment template is short and to the point:

Download prototype/fireworks/task.rhtml

<input type="checkbox" id="chk<%= taskId %>" />
<label for="chk<%= taskId %>"><%= text %></label>

http://media.pragprog.com/titles/cppsu/code/prototype/fireworks/task.rhtml
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=247

IT TAKES ONLY 40 LINES: THE JAVASCRIPT CODE 248

12.3 It Takes Only 40 Lines: The JavaScript Code

Now that we laid the groundwork, just look at the whole script required
to make the UI work:

Download prototype/fireworks/fireworks.js

Line 1 function bindUI() {
- $('addForm').observe('submit', routeToAJAX);
- $('selectAll').observe('click',
- toggleAll.bindAsEventListener(this, true));
5 $('deselectAll').observe('click',
- toggleAll.bindAsEventListener(this, false));
- } // bindUI
-

- function toggleAll(event, doSelect) {
10 event.stop();

- $('tasks').select('input[type=checkbox]').each(function(box) {
- box.checked = doSelect;
- });
- } // toggleAll

15

- Ajax.Responders.register({
- onCreate: function() {
- $('progress').show();
- },

20 onComplete: function() {
- if (0 == Ajax.activeRequestCount)
- $('progress').hide();
- }
- });

25

- function routeToAJAX(event) {
- event.stop();
- var form = event.element();
- new Ajax.Updater('tasks', form.action, {

30 parameters: Form.serialize(form),
- insertion: 'bottom',
- onLoading: function() { $('addForm').disable(); },
- onComplete: function() {
- $('addForm').enable();

35 $('taskText').clear().focus();
- }
- });
- } // routeToAJAX
-

40 document.observe('dom:loaded', bindUI);

That’s it! That’s all there is.

http://media.pragprog.com/titles/cppsu/code/prototype/fireworks/fireworks.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=248

IT TAKES ONLY 40 LINES: THE JAVASCRIPT CODE 249

Figure 12.2: Our list after typing three items

When using Firefox, Firebug lets us easily track Ajax exchanges in its
console, as you can see in Figure 12.3, on the following page.

I’ll just give you a few quick comments in case you need to brush up on
some of the features we learned:

• The bindUI() function on line 1 registers event handlers on form
submission (to route the call through Ajax) and for clicks on the
toggler links.

• Thanks to binding methods as in line 4, we can pass predefined
arguments to the unique handler: true for the selection link and
false for the deselection one. This is looked up by the toggler func-
tion through its doSelect argument.

• Thanks to the select() utility function (see line 11), grabbing ele-
ments based on CSS selectors is easy. It is, definitely, one of the
most useful (and most used) utility functions in Prototype.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=249

IT TAKES ONLY 40 LINES: THE JAVASCRIPT CODE 250

Figure 12.3: Ajax tracing in Firebug’s console

• Thanks to Ajax.Responders, we can register global listeners over
Ajax, maintaining the display of a progress indicator.

• From line 29 on, the true fireworks begin. This Ajax.Updater in-
stantiation triggers an Ajax request based on the original form,
disabling the form while the request is processed; inserts the
resulting XHTML fragment at the bottom of the list; and sets the
input field back up for the next input!

Let’s try this. If you had a running WEBrick server, stop it by hitting
Ctrl+C in its console, and then go to our current example directory
and run the server for this example the usual way. For instance, on
Windows use something like this:

C:\Spinoffs\prototype\fireworks> ruby fireworks.rb

Then navigate to the proper URL: http://localhost:8042/fireworks.html.

And indeed, this works! Typing a few texts and submitting the form trig-
gers Ajax communications that return XHTML fragments then added to
the list, as shown in Figure 12.2, on the previous page.

Thanks to our server script’s simulating processing delays, we can
actually see the progress indicator being toggled on and off by our
global responder. This is illustrated by Figure 12.4, on the following
page.

This is nontrivial stuff, and yet look how concise this code is! It’s
portable, it’s maintainable, it’s rather readable, and it does all that
work. . . . There’s only one question left really: when do you leverage
what you learned in this part of the book to apply the same scripting-fu
to your projects?

http://localhost:8042/fireworks.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=250

IT TAKES ONLY 40 LINES: THE JAVASCRIPT CODE 251

Figure 12.4: The progress indicator and the disabled form

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=251

Part II

script.aculo.us

It’s about the user interface, baby!

script.aculo.us tag line

Chapter 13

Discovering script.aculo.us
We now have some serious Prototype knowledge under our belts. We
are ready to write excellent web-based user interfaces. There are two
more things that would probably help:

• Generic visual features, such as animated effects (for example,
fades, moves, resizes) and drag and drop. Those are relevant in
most user interfaces, whether they remain “web-style” or try to
mimic a “desktop-like” look.

• Controls! Reusable visual components for your application
screens. Most widgets come with one or more predefined look-and-
feels, which means you would probably have to use their library
throughout your user interface.

We can go widget shopping later, but we’ll find that script.aculo.us pro-
vides us with a great array of visual features with a few widgets thrown
in for good measure. Originally part of Prototype itself, it split off pretty
quickly and took on a life of its own. Still, Thomas Fuchs, its Vienna-
based creator, has been extremely active in Prototype too and shares
the commit rights with Sam.

13.1 The Modules of script.aculo.us

Unlike Prototype, script.aculo.us is divided into modules, each with
its own JavaScript file. The modules are arranged by theme. Don’t be
overwhelmed. Most script.aculo.us users use only the first two of these
modules:

Animated effects
This is the mother lode. The effects module comes with more than
twenty-five visual effects, seven transition modes (that alter how

THE MODULES OF SCRIPT.ACULO.US 254

Which Version of script.aculo.us?

This book documents script.aculo.us 1.8, the last version in
the 1.x tree, which was released in sync with Prototype 1.6.
The next version of script.aculo.us, 2.0, is currently scheduled
for a complete rewrite of the effects and dragdrop modules;
however, fear not—the external API will likely be similar, and
if it changes too much, you can expect an update (or new
edition) of this book to release quickly on its heels.

the effect goes from start to finish over time), and effect queues
(which let you create advanced effect sequences), enough to cover
most of your needs. Even if you found it lacking, adding new
effects is easy enough.

Drag and drop
You will use the dragdrop module to make any element draggable,
turn it into a drop zone, or even make entire series of elements
sortable so you can rearrange them by dragging and dropping—a
killer improvement on list sorting.

Autocompleters and in-place editing
This module makes it easy to slap an autocompletion facility over
regular text fields, which can come from the server side (through
Ajax) or from a preloaded set of possibilities. You can also make
just about any text or collection of items editable in-place by sim-
ply clicking it. A specific UI will appear and notify the server side
when the editing is done so it can be persisted.

Sliders
A slider is a sort of small rail, or track, along which you can slide a
handle. It translates into a numerical value. With script.aculo.us,
you can create such sliders with a lot of control: define bound-
aries, restrict possible positions to specific values, use multiple
handles (for instance, to define ranges), and so on.

On the other hand, customizing the aspect of your sliders will
be possible only to a certain extent, which is a necessary limita-
tion with such complex UI elements, when they are created using
XHTML.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=254

USING SCRIPT.ACULO.US IN YOUR PAGES 255

DOM builder
This is a developer tool that eases DOM creation considerably.
When building DOM fragments, not only are the raw W3C inter-
faces rather bland and unwieldy, they are not flawlessly supported
across browsers! There are issues with <select> tags or their con-
tents, with table-related elements, with name= attributes on spe-
cific tags, with attribute whose names are JavaScript keywords,
and so on.

This object lets you specify DOM fragments in a simple way,
smoothing over such discrepancies and issues.

Sound!
Version 1.7.1 introduced a sound system that lets you play sounds
easily, queue them up, use multiple tracks, and so on. It does not
require Flash and relies on your browser’s native audio capabili-
ties, usually provided through widely spread plug-ins.

Efficient use of short sounds can be a really nice feature for appli-
cations that need to grab the user’s attention even when the page
is not visible (moved aside, hidden behind another window, re-
duced to the task bar, or simply not the active tab).

13.2 Using script.aculo.us in Your Pages

First, you’ll need to download a recent version. Thomas keeps pushing
new releases pretty frequently on the official website, so just head to
http://script.aculo.us/ and grab the latest archive. It includes the min-
imal version of Prototype that this particular release relies on. If you
have an earlier Prototype release, either use the one that comes with
script.aculo.us or update your copy to a more recent one.

You will need to load Prototype first and script.aculo.us second. The
shortest way to do this uses two <script> elements, like this:

<script type="text/javascript" src=".../prototype.js"></script>
<script type="text/javascript" src=".../scriptaculous.js"></script>

However, this will end up loading all the modules, which need to be
available in the same directory as scriptaculous.js. This is uselessly
wasteful. Most of the time, you need only a couple modules. So, be
nice on your bandwidth, your users, and everyone by just loading the
modules you need.

http://script.aculo.us/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=255

USING SCRIPT.ACULO.US IN YOUR PAGES 256

There is a special syntax you can use for this when loading script.acu-
lo.us—just list the modules you need in the load parameter:

<script type="text/javascript" src=".../prototype.js"></script>
<script type="text/javascript"
src=".../scriptaculous.js?load=effects,dragdrop"></script>

The module names are the base names of the additional .js files provided
with script.aculo.us. Order might sometimes be significant. Just look
inside scriptaculous.js for the order it uses when loading them all by
default.

Thomas advises that in production, you should include all the separate
files directly, in proper order, and leave scriptaculous.js alone, because
it’s just a convenience loader. The most efficient delivery would be a
concatenated .js file sent with gzipping enabled.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=256

Chapter 14

Visual Effects
Animated effects are a huge part of why people use script.aculo.us.
They are split in two groups: the core effects and the combined ones.
Combined effects usually rely on the parallel, synchronized execution
of other effects. Because such an execution is readily available, creating
your own combined effects is very easy.

We’ll start with core effects and list the options that are part of the
core effect machinery (which means they are available to all effects).
Then we’ll list the combined effects and their specific options. We will
then spend some time on the important topic of effect queues, currently
far too underknown and underused, which makes all the difference
between a newbie and an effects master. Finally, we’ll show how to
create your own effects.

To use the effects capabilities of script.aculo.us, you’ll need to load the
effects module. So, your minimum loading for script.aculo.us will look
like this:

<script type="text/javascript" src="effects.js"></script>

Note that script.aculo.us relies heavily on Prototype, so you would go
something like this:

<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="effects.js"></script>

14.1 What Are Those Effects, and Why Should We Use Them?

Well, there are plenty of reasons to use effects.

Sometimes you need to bring part of your web page to the user’s atten-
tion, and visual cues, such as background fade-overs, opacity pulses,

WHAT ARE THOSE EFFECTS, AND WHY SHOULD WE USE THEM? 258

growing or shrinking, might be nice. Other times, you’re just trying to
fine-tune the introduction, or removal, of contents; gradually revealing
or hiding it (be it by adjusting opacity or by sliding in or out of view)
looks and feels better than abruptly displaying or stripping it. You may
also want to help users perceive a relocation by gradually moving con-
tents from its origin to its destination.

Effects let you do this, and much more, in a uniform, straightforward
way. They offer a wide range of standard options and callbacks to help
you tailor their execution to your needs. Each specific effect usually
provides even more options (for instance, Effect.Highlight, being all about
gradually changing the background’s color, lets you specify the colors
to begin and finish with).

Using effects appropriately can give your web applications a whole new
degree of polish and can contribute to the ergonomy of Ajax-powered
pages, where there may be minute changes to the contents in locations
the user is not necessarily focusing on just then.

Before diving into the myriad options, callbacks, and tweaks surround-
ing the effects system, I’ll introduce you to the core effects so you can
get a feel of it quickly. However, we first need to learn how to start an
effect.

Starting an Effect

A lot of people get this wrong, so pay attention. The proper way to start a
core effect is usually with the new operator. This is because otherwise,
you’re using the effect as a function, called in your main code flow,
which will prevent multiple effects from properly running in parallel.

Depending on your preferences, you can use one of two syntaxes:

new Effect.EffectName(element [, requiredArgs] [, options]) → Effect
extElement.visualEffect('EffectName' [, requiredArgs] [, options]) → extElement

These two syntaxes are technically equivalent. Choosing between the
two is mostly about your personal sense of code aesthetics. If you look
at effect triggering as an external action over an element, you’ll probably
find the former syntax more intuitive. On the other hand, if we regard
effects as extra capabilities of elements, then using the visualEffect()
may feel more natural.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=258

CORE EFFECTS 259

Here are two equivalent calls, so you can see how the syntaxes are
related, which are very much interchangeable:

new Effect.Scale('title', 200, { scaleY: false, scaleContent: false });
$('title').visualEffect('Scale', 200,

{ scaleY: false, scaleContent: false });

14.2 Core Effects

Let’s start by looking at the core effects. I know we haven’t yet looked
into the generic options, common to all effects, but there are so many,
plus callbacks, that you would be drowned in details without having
seen actual effects yet!

So when you see a reference to a common option, such as from, to, or
duration, don’t worry—it’s usually not important enough to disrupt your
understanding of the effect, and if you need details, just look inside
Section 14.3, Diving into Effects, on page 265 for details on the options
and callbacks you’re wondering about.

Effect.Highlight

Widely known as the Yellow Fade Technique (YFT) effect. This
lets you have a background color fade-over, with customizable
starting and ending colors. It’s ideal to bring the user’s atten-
tion to a freshly updated fragment of the page (for example, by
an Ajax.Updater).

Its specific options include startcolor, endcolor, and revertcolor. The
two last ones default to the element’s background color (if it can
be determined) or, failing that, white. The starting color defaults to
#ffff99, equivalent to #ff9, which is a light yellow. The color fade-
over will go from startcolor to endcolor, and once the effect is done,
the background color will be reset to revertcolor.

By default, the background image, if any, will be removed during
the effect. If you want to have it persist, set the keepBackgroundIm-

age option to true.

Because this is such a commonly used effect, there is a special
convenience shortcut that lets you trigger this effect on elements
with a shorter syntax than the two usual ones:

extElement.highlight([options]) → extElement

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=259

CORE EFFECTS 260

So, triggering it with all the defaults can be as simple as this:

$('resultMessage').highlight();

Effect.Move

Slides an element over to a new position (expressed either as abso-
lute coordinates or as relative offsets), both vertically and horizon-
tally.

Its specific options are x and y, both defaulting to zero, which
are either absolute coordinates or relative offsets from the cur-
rent position. You can tell which by setting the mode option to
either absolute or relative (its default).

Effect.Opacity

Gradually changes an element’s opacity to a given level. This relies
on Prototype’s opacity-related methods to work around the nu-
merous cross-browser kinks.

This effect starts with the element’s current opacity unless the
from option is defined and ends with an opacity defined by the to

option, defaulting to 1.0.

Effect.Parallel

The mechanism for running effects in synchronized parallel mode.
If you don’t need synchronization (effects starting and ending at
the same time), simply run them independently.

You specify the effects as a first argument to the constructor, pass-
ing in an array of the effects to be run synchronously. Those effect
objects must have been created with their sync option set to true.
The call goes like this:

new Effect.Parallel([
new Effect.Opacity('notice', { sync: true }),
new Effect.Scale('notice', 100, { sync: true, scaleFrom: 50 })

], { duration: 2 });

Note that the effects do not necessarily pertain to the same ele-
ment; however, there is only one duration (or fps rate, for that
matter)—the one set at the Effect.Parallel level; synchronized effects
will all step ahead in unison.

Effect.Scale

Gradually scales an element up or down, possibly on only one axis
(horizontal or vertical). It features a number of specific options:

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=260

CORE EFFECTS 261

• scaleX and scaleY, defaulting to true, determine whether scal-
ing occurs in the given direction.

• scaleContent defaults to true and activates scaling of the ele-
ment’s content, not just its container box.

• scaleFromCenter lets you rescale not from the top-left corner
but from the center (so the element appears to grow outward
or shrink inward). This is disabled by default.

• scaleFrom lets you start with the element scaled already at a
specific percentage of its original size. This defaults to 100,
obviously.

You noticed, I’m sure, there is no scaleTo option. This is because
Effect.Scale uses a required argument to obtain its target size,
expressed, like the scaleFrom option, as a percentage of its orig-
inal size. The call goes like this:

new Effect.Scale('greeter', 200, { scaleFromCenter: true });

Here is a small example combining Effect.Opacity and Effect.Scale

through an Effect.Parallel. The result is illustrated through the
montage in Figure 14.1, on the following page.

Download scriptaculous/effects/parallel1/demo.js

new Effect.Parallel([
new Effect.Opacity('demo', { sync: true, from: 1, to: 0.33 }),
new Effect.Scale('demo', 150, { sync: true,

scaleFromCenter: true })
], { duration: 2 });

We could make the element hide once shrunk, for example by
using afterFinish, which is rather intuitive:

Download scriptaculous/effects/parallel2/demo.js

new Effect.Parallel([
new Effect.Opacity('demo', { sync: true, from: 1, to: 0.33 }),
new Effect.Scale('demo', 150, { sync: true,

scaleFromCenter: true })
], { duration: 2, afterFinish: function() {

$('demo').hide();
}});

Effect.Tween

Introduced in version 1.8, this effect encapsulates any progres-
sive series of settings, be it by assigning a property, calling a
method, or even calling a callback function you would provide. It

http://media.pragprog.com/titles/cppsu/code/scriptaculous/effects/parallel1/demo.js
http://media.pragprog.com/titles/cppsu/code/scriptaculous/effects/parallel2/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=261

CORE EFFECTS 262

Figure 14.1: Synchronized parallel use of opacity and scale

is a generic machinery that will become more prominently used in
version 2.0 (and already powers the combined effect Effect.ScrollTo).
Its syntax is rather custom:

new Effect.Tween(obj, from, to [, options], propertyOrMethodName)
new Effect.Tween(obj, from, to [, options], callback)

The idea is simple: at periodical intervals (for each “frame” of the
effect), it will use intermediate values (somewhere between from

and to), in sequence, for assigning a property, calling a method, or
calling your callback function.

It’s sort of PeriodicalExecuter on steroids.

Let’s consider a few examples:

new Effect.Tween('edtGain', 1, 20, 'value');

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=262

CORE EFFECTS 263

Assuming the element with an id= of edtGain is some form field, its
value property will be set from 1 to 20 using default effect param-
eters (up to 100 frames, or steps, in 1 second).

new Effect.Tween('edtGain', 1, 20, { fps: 10, duration: 2 }, 'value');

This call features the option hash (do note that it appears before

the final argument), which makes it here so that there are exactly
twenty frames over two seconds (therefore using only integer val-
ues during the effect).

new Effect.Tween('notice', 30, 120, 'setHeight');

Because setHeight is a method on the DOM element, the method
will be called (instead of a property assignment).

var notice = $('notice'), color = notice.getStyle('backgroundColor');
var blue = parseInt((color.match(/\d+/) || '')[2], 10) || 0;
var rgb;
new Effect.Tween(notice, 0, 255, function(rg) {

rgb = [rg, rg, blue].inject('#', function(acc, comp) {
return acc + comp.toColorPart();

});
notice.setStyle({ backgroundColor: rgb });

});

And this last one quickly ramps up the yellow tone of the element’s
background (from absent to full bright). As you can see, Tween is
pretty generic and versatile.

Effect.Morph

Quite the big gun, introduced in version 1.7. This takes a set of
CSS properties and gradually migrates the element’s relevant style
values to these targets. Mighty!

This effect takes a single specific option, named style. For the sake
of convenience, you can express your target style definition in
three ways:

• As a CSS class name. The element will then morph toward
the style specification for this class name.

• As an inline style specification (think style= attribute values).

• As a hash of CSS properties. Both official (hyphen-based) and
camelized (for example, borderStyle) syntaxes are allowed for
the property names.

And that’s not all there is about convenience! Thomas anticipates
so much use of this effect that extended elements get a specific

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=263

CORE EFFECTS 264

Figure 14.2: The almighty Effect.Morph in action

morph() method, with the style as the first argument and possible
options as the second. Here are examples of all three argument
syntaxes:

extElement.morph('erroneous'); // CSS class name
extElement.morph(

'color: maroon; background: #fdd; border-color: maroon;');
extElement.morph({

width: '50ex', height: '10em',
backgroundColor: '#ddf', color: '#009',
borderWidth: '1em', borderColor: '#009',
opacity: '1'

}, { duration: 2 });

You can see a montage of how the last call behaves in Figure 14.2.
It may not render too well on the black-and-white paper version of
this book, but check out the source code archive!

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=264

DIVING INTO EFFECTS 265

This works best for color- and length-related properties (plus
opacity) but can be used for just about anything. Color target
properties cannot use color names but must use a rgb(r, g, b),
#rgb, or #rrggbb form. However, properties that cannot be gradu-
ally modified (for example, font-style or text-decoration) will be set to
their target value only when the morph terminates. In a more gen-
eral manner, not all CSS shorthands are allowed. It will depend on
your browser’s level of support for DOM Level 2 Style. Test care-
fully.

A note of warning, though: at the time of this writing, if proper-
ties are specified through CSS rules instead of inline styles (CSS
rules being best practice), they will be retrieved as computed val-
ues, thus in pixels. Such values will be used as the starting point
of your effect, but they will use your target values’ units (indeed,
there is no simple way to convert this alternate-unit value to a
pixel-based value). So when you morph length values (for exam-
ple, marginTop or borderLeftWidth), either put the initial values in
inline style= attributes or use pixel units. Thomas may have fig-
ured out some DOM Style–fu by the time this book is released,
but better safe than sorry. Try it to be sure. A similar warning
goes for property values, which need to be strings at this time.
Note how we set opacity to ’1’ instead of just 1.

As you can see, with these building blocks available, just about any-
thing can be done. Once you can change an element’s position, size,
and opacity and then run such changes in synchronized parallel mode,
you’re all set!

14.3 Diving into Effects

Before going ahead with combined effects, we need to review generic
options and callbacks that are available on all effects. Many of those
were alluded to in the prior section, so it’s time you get the nitty-gritty
details.

Common Effect Options

Effects come with a number of standard options. Knowing them is one
of the keys to successful effects usage (and something too few develop-
ers take the time to learn).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=265

DIVING INTO EFFECTS 266

When: delay and queue

The rule of thumb is this: an effect starts as soon as it is created.
You can delay it by using the delay option, which is in seconds and
which defaults to 0.0. As we’ll see later in Section 14.5, Unlocking the

Cool Factor: Effect Queues, on page 272, effects are put in queues upon
creation. The default value for queue, parallel, has them start as soon
as the delay expires; there are, however, several other possible values,
as well as the ability to create custom queues, too.

How Fast: duration, fps, sync, and transition

Effects are animated through a series of steps, or frames, spread over
a given duration. By default, they run over a duration of 1.0 second, at
a rate of up to 100 frames per second (fps). The effect engine adjusts
depending on the performance of the user’s computer. Note that 25 fps
is fast enough for the human eye to see a fluid animation.

Frames are not necessarily spread evenly across the duration of the
effect. For most effects, a linear distribution would actually not look
too good. As we will see in a moment, script.aculo.us lets you spec-
ify, through the transition option, one of eight possible “transitions,”
which are simple functions determining how to get from one position
(in the time window of the effect) to the next. The default transition is
Effect.Transitions.

sinoidal, which basically makes the effect start up slowly, quicken, and
then slow back down at the end. It’s usually the best setting.

Finally, sync is both related to effect start and effect progress. In order
to run effects in synchronized parallel mode (inside an Effect.Parallel, as
we’ll see in a moment), you need to make sure all synchronized effects
have their sync option set to true.

Cutting Corners: from and to

By default, an effect goes from a starting position of zero to a final
position of one. You can have it start ahead or stop short by adjusting
its from and to options. This is mostly used for effects where these
options represent extreme points of the effect’s action. For instance,
with Effect.Opacity, position zero is full transparence, and position one
is full opacity.

Note that from can also be greater than to. The effect will then run
“backward,” so to speak.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=266

DIVING INTO EFFECTS 267

Common Effect Callbacks

All effects provide seven standard callbacks that we can use to hook
custom behavior into the effect’s processing. They are usually arranged
in before/after pairs, and their names contain the name of the effect’s
method that is wrapped between the two callbacks.

1. beforeStart occurs right before the effect is scheduled to start (right
before it is queued up for execution). At this point, all of the effect’s
internal properties have been defined but not yet adjusted by
queue control. This is mostly useful when writing custom effects.
Note that there is no after variant, because no useful case for it
has emerged yet.

2. beforeSetup and afterSetup occur around the setup() call, which
happens when the effect renders for the first time, after any delay
or queue-caused wait has expired. Effect creators use this method
to perform whatever element alterations they need for their effect
to work (for example, make the element positioned, give it a layout
container, and so on). Using beforeSetup is often handy.

3. beforeUpdate and afterUpdate are triggered around every single
frame rendering, including the first one.

4. beforeFinish and afterFinish occur around effect finalization; afterFin-

ish is often used instead of a custom queue when there are only
two effects to queue or when you need an effect to complete before
running some more code.

Bouncy or Smooth? Effect “Transitions"

Most script.aculo.us users don’t realize that effects are equipped with
a transition mode. As I mentioned earlier, a transition is a function that
gets the effect from one step to the next, by turning a time position (from
zero to one) into another one, used by update(), which does the actual
rendering. By tweaking transition functions, we can obtain pretty funky
visual variants over any effect.

The transition option is usually assigned one of the eight transition func-
tions in the Effect.Transitions namespace. It defaults to the sinoidal() func-
tion. As a special alias, setting it to false is equivalent to selecting the
linear() function.

Understanding the code of these functions may sometimes be rather
daunting, especially if you always hated trigonometry. To save you the

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=267

DIVING INTO EFFECTS 268

trouble, here’s a quick rundown on what impact the functions have on
the series of rendering positions for the effect:

Function Impact

flicker Randomly picks from the 25% last frames, thus flickering.

full Effect disabler of sorts—sticks with the final frame. This is
used in synchronized parallel effects to ensure one of them
is fully effective immediately. It’s also handy, at debug time,
to quickly “enable” the result of an effect.

linear Goes from start to finish at a steady pace. For most anima-
tions (especially moving and scaling), this is actually not
too aesthetic. It doesn’t feel natural; it feels rather dull.

none The other effect disabler—sticks with the first frame. Tech-
nically, the same effect can be achieved with a full transition
over swapped values for the from and to options; it’s very
much a question of personal aesthetics and logic whether
you use full or none. During debugging, it’s handy to leave
an effect in code while disabling it for a while.

pulse Accelerates the effect so it runs fully more than one time
in its lifetime. By default, it uses five pulses, but you can
use bind() to pass it another count. For instance, the com-
bined Effect.Pulsate essentially relies on Effect.Opacity with
a rather crafty use of this transition.

reverse Reverses the effect. This has it go from its final frame to its
first one.

sinoidal The default transition. This has the effect start and finish
slowly but accelerate in between. This is aesthetically more
pleasing for most effects, such as movements and scalings.

spring The latest addition. Specifically targeted at effects such as
Effect.Move, this lets the effect “overshoot” a bit and then
bounce back and forth around the final position, finally
stabilizing on it. This is especially nice for giving a slightly
bouncy feel to reverting a drag and drop, for instance.

For examples of custom, third-party transitions, see Ken Snyder’s
script.aculo.us port of Robert Penner’s easing library, as reported at
http://giancarlo.dimassa.net/2007/07/11.

http://giancarlo.dimassa.net/2007/07/11
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=268

COMBINED EFFECTS 269

14.4 Combined Effects

Based on core effects, script.aculo.us provides a number of combined
effects, which cater to most common needs. We won’t show examples
of these, but you’ll see combined demos on the documentation site.1 I’ll
just list them as they stand at the time of this writing, with a few notes
about specific options they may have.

Triggering a Combined Effect

Unlike core effects, the new operator is superfluous here. The functions
for combined effects are not constructors. On the other hand, they all
benefit from a shortcut syntax that makes them available as methods
on extended elements (starting with script.aculo.us 1.7.1). So, you can
use any of the two following syntaxes:

Effect.CombinedEffectName(element [, options])
extElement.combinedEffectName([options]) → extElement

Do note that a few combined effects are left out of this latter shortcut
syntax because they would conflict with existing extended methods or
were deemed irrelevant for this shortcut use. These are Event, ScrollTo,
and Transform.

Smooth Operators

Effect.Fade/Effect.Appear

These make an element fade away or fade in, respectively. Fading
out will start, by default, with the element’s current opacity; when
the effect is over, the element is hidden, and its original opacity is
restored. Fading in starts by making sure that the element is dis-
played and starts with its original opacity if it already was. These
effects obviously rely on the Opacity core effect.

Sliding In and Out

Effect.BlindUp/Effect.BlindDown

These roll up (or down, respectively) a surface on which the ele-
ment is supposed to be displayed. The element’s contents are left
untouched and do not move. Only its surface shrinks upward or
expands downward. Note that using BlindDown will work even if
the element is not “rolled up” then, and the other way around.

1. http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo

http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=269

COMBINED EFFECTS 270

Effect.SlideUp/Effect.SlideDown

These are content-sliding variants of the “blind” effects. These
look like the blinds are being slid down or up, so the contents
move along. However, this requires that the element’s contents
are wrapped in an additional container, say, a <div>. You can’t
just put the contents in the element affected by the effect, as you
would on, for instance, BlindDown.

Effect.DropOut

This opens a trap under the element, in which it falls while fading
out. That’s a nasty way to die (especially because the trap, being
invisible, leaves no evidence whatsoever).

Creative In and Outs

Most of these are based on the Scale core effect.

Effect.Grow/Effect.Shrink

These make the element expand in (from size zero) or shrivel away
(and stay hidden, although with restored properties, as usual).
This relies on several core effects, most importantly Scale and
Move. There is a specific option, called direction, that defines in
which direction the expansion or contraction takes place. It de-
faults to center but can also be any of the box corners: top-left,
top-right, bottom-right, and bottom-left.

Effect.Puff

This taps a magical wand and has the element disappear in a
cloud of smoke. Well, almost—it expands to twice its size while
fading away, which is just as good.

Effect.SwitchOff

So, your element is on a good ol’ TV, and you’re switching it off.
It’ll shrink away much like things did back then—with a flickering,
quick contraction toward the center.

Effect.Squish

This has the element shrivel away with no specific positioning.
For most elements for which the point of reference is their top-left
corner, it’ll contract toward that point.

Effect.Fold

This is a two-phase shrink. First it shrinks vertically, until only a
tiny, 5-pixel bar is left, and then left-wise. Content is not scaled
along. Think of it as folding a napkin. Sort of.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=270

COMBINED EFFECTS 271

Attention Getters

Effect.Pulsate

“It is alive!” Your element will fade out and then in several times
(customize with the pulses option, defaulting to 5) over two sec-
onds. This is one of the favorites, along with the simpler Highlight.

Effect.Shake

This one feels a tad more toyish. It shakes the element right and
left three times over half a second. It’s a nice way to highlight a
form field that doesn’t pass validation. Starting with version 1.8,
it now features extra duration and distance options.

Effect.ScrollTo

This is the animated equivalent of Element.scrollTo(). It gradually
scrolls the viewport so the element comes into view. You can add
an extra scrolling with the offset option (expressed in pixels).

Miscellanea

Effect.Event

This is just a code placeholder. You would use its afterFinish call-
back to plug in some code. This is mostly useful in complex effect
queues to lace actual effects with custom code.

Effect.Transform

Dreaming about Effect.Morph heavy lifting? This one lets you define
multiple morph-related effects (called tracks), which will be run
in parallel. The good thing is that it’s reusable! Here’s an exam-
ple, pulled straight out of script.aculo.us’s change log (although
slightly simplified):

// set up transformation
var transformation = new Effect.Transform([

{ 'div.morphing': 'font-size: 20px; padding-left: 40em' },
{ 'blah' : 'warning' }

], { duration: 0.5 });
// play transformation (can be called more than once)
transformation.play();

Three More Things You Should Know. . .

• Remember that because of reliance on methods such as Element.

hide() and Element.show(), you will have to style initially hidden
elements with an inline style="display: none" attribute. Using a CSS
rule will not work. The element will remain hidden.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=271

UNLOCKING THE COOL FACTOR: EFFECT QUEUES 272

• A lot of effects will have trouble with table-related elements (mostly
<tr>, <th>, and <td>) on Internet Explorer. More often than not,
making sure your rows are properly wrapped in a <tbody> (or
<thead> or <tfoot>) will help.

• If you hit performance issues (typically frame drops), it’s usu-
ally a symptom that your DOM trees are way too complex and/or
that you’re relying on a lot of opacity play. Several browsers (most
notably, on Macs, Firefox, and Safari 2) get sluggish in such sit-
uations. Reducing opacity-based effects, or the amount of effects
running at the same time, usually helps a lot.

14.5 Unlocking the Cool Factor: Effect Queues

Chaining effects is a common need; maybe you want an element to fade
in, and then you want to highlight it. Or perhaps it should pulsate and
finally fade out. Such cases can be well enough handled by manually
defining the afterFinish callback.

However, consider more advanced cases. One question that keeps pop-
ping up on the support mailing list sounds like this: “I have this list
of items, and when I mouse over them, I’d like their picture to change
with a fade-out + fade-in (not a crossfade).”

Although the requirements seem difficult, the code for it is quite simple.
Sure, it doesn’t rely on manually chaining effects using afterFinish. That
works mostly when you know the effect list in advance and doesn’t scale
very well from a readability standpoint.

No, the answer lies with effect queues. Effect queues let you define mul-
tiple queues in which to put effects. You don’t have to put them at the
end of the queue, either. You can ask them to zip all the way to the
front, for instance.

Using the Global Queue

So far, we haven’t used the queue option in our effects. It defaults to
’parallel’. When its value is a string, it is assumed to be a position
specification in the global queue (quite simply, the queue whose name
is ’global’).

Queues are stored in the Effect.Queues repository and are accessed
through its get() method, passing in the queue name. When adding an

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=272

UNLOCKING THE COOL FACTOR: EFFECT QUEUES 273

effect to a queue, you can specify a position, which will be interpreted
as follows:

• parallel will have the effect start the next time the queue processes
its effects.

• front puts the effect before any pending effect in the queue, delay-
ing them accordingly.

• end puts the effect at the end of the queue, obviously. It will trigger
after all the effects currently in the queue are done.

• with-last schedules the effect to start with the last pending effect
currently in the queue, if any (if there is no pending effect, it will
start after all running effects in the queue are over).

Queues process their effects at a rather high frequency, currently up to
100Hz, which is, in my humble opinion, faster than needed. The human
eye is tricked into seeing continuity from 25Hz, and even the sharpest
eyes cannot detect frames faster than 50Hz (although I’m quite certain
I’ll find hardcore gamers2 who will swear they need more). This does
mean you need to watch the order in which you queue stuff up. It
should be the intended order of execution, whenever possible.

So when you specify any of these values for the queue option (once
again, parallel is the default), you use the global queue, which is fitting
for most purposes. For instance, maybe we want to react to an Ajax
update in failure mode by morphing the updated panel to a given CSS
class and then pulsating it:

var updater = new Ajax.Updater('feedback', '/user/update', {
parameters: $('userForm').serialize(),
onComplete: function() {

if (!updater.success()) {
$('feedback').morph('errors').pulsate({ queue: 'end' });

}
}

});

Custom Queues: Shifting Gears

This is all well and good, but it won’t quite cut it when you need to deal
with independent queues for several objects. For instance, the fade-
change-fade sequence we mentioned earlier, which is a common use

2. Especially first-person-shooter gamers (which is ironic, because the abbreviation also
spells FPS. Um. . . .)

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=273

EFFECT HELPERS 274

case, won’t work with a global queue for all the items in the list. Each
item needs its own queue.

The solution is to use scoped queues. Instead of just using a position
string for your queue option, provide an object with two properties:
scope, which identifies your queue, and position, which is your position
string.

How about a nice example? Let’s take this item list we mentioned:

<ul id="topics" class="topics">
<li id="item_js">JavaScript
<li id="item_proto">Prototype
<li id="item_scripty">script.aculo.us

OK, now if we provide some mouseover/mouseout machinery so that
going in triggers a black-and-white image and going out goes back to
the normal version of the image, the core code for implementing the
transition looks like this:

Download scriptaculous/effects/queues/demo.js

var queue = { scope: element.id, position: 'end' };
element.visualEffect('Opacity', { to: 0.1, duration: FADE_DURATION,

queue: queue });
new Effect.Event({ queue: queue, afterFinish: function() {

element.setStyle({backgroundImage: url});
}});
element.visualEffect('Opacity', { from: 0.1, to: 1,

duration: FADE_DURATION, queue: queue });

Note the queue definition. It uses a unique scope, based on the suffix
of the source element’s ID; all effects defined are stored in that queue
by using their queue option. Since queues are separate, we can trigger
parallel sequences on multiple items while retaining sequential execu-
tion for the effects at the item level.

Finally, note that you can enforce a limit to the events in a queue at
any given time by using an extra property for your queue option object:
limit. This can be useful to prevent rapid-fire clicking from queuing up a
huge amount of Ajax requests, for instance, when only a few ones make
sense from an ergonomical standpoint.

14.6 Effect Helpers

Thomas acknowledges very common use cases now and then, swooping
in with a nice little helper. Over time, the following surfaced:

http://media.pragprog.com/titles/cppsu/code/scriptaculous/effects/queues/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=274

EFFECT HELPERS 275

Effect.toggle()
When hiding elements, you often show them back. And hide them
again. And so forth. Because you often toggle visibility, usually
with one of the Fade/Appear, BlindUp/BlindDown, or SlideUp/
SlideDown sets, the convenience Effect.toggle() is here to make it
shorter. Calling it on an element will check whether it’s hidden
(read: its display CSS property is set to none) and call the appro-
priate effect based on that.

Effect.toggle(elt [, family = 'appear'])

The allowed families are, logically enough, appear, blind, and
slide. Note you don’t have to actually use these in pairs. An ele-
ment toggled off using the slide family, for instance, can perfectly
be brought back using blind.

Effect.multiple()
This is one Flash killer. It applies any effect, in delayed sequence,
over a series of elements. For instance, you could use it with
Effect.Fade over the items in a list, to have them fade away progres-
sively, from first to last, each beginning to fade out shortly after
the previous one. This is governed by the generic delay option,
plus the specific (though ill-named) speed option, which expresses
the internal delay between two consecutive elements, in seconds.
It defaults to 0.1".

You can pass elements in a variety of ways:

Effect.multiple(element, effect [, options])
Effect.multiple([element, ...], effect [, options])
Effect.multiple(NodeList, effect [, options])

When a single element is passed, its childNodes property is used.

The really neat use of this is when you have text where each char-
acter is a separate element (for example, a of its own). You
can then pull off awesome progressive text fades, for instance. Of
course, marking this up is a bore. That is why we have. . .

Effect.tagifyText()
This one is mostly a support function for multiple(). It takes all the
text child nodes of an element and replaces them with the proper
 (taking care of a few styling issues). Making regular text
ready for multiple() magic becomes a snap. Here’s a short example:

Effect.tagifyText('heading'); // just once
Effect.multiple('heading', Effect.Highlight); // any time

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=275

HOW TO CREATE OUR OWN EFFECTS 276

Figure 14.3: Who needs Flash anyway?

Beware: many effects end up with actually hiding the element.
When applied in sequence over the characters of an element, this
can result in weird, left-shifting behavior. You may then want to
short-circuit the internal finalizer of these effects. Make sure this
has no undesirable side effect, but when you’re ready, it should
look something like this:

Effect.multiple('heading', Effect.Fade, {
speed: 0.05, afterFinishInternal: Prototype.emptyFunction });

The source code for this book comes with a detailed example that
lets you pick among five effects and try it. Figure 14.3 shows a
montage of how this looks with Fade.

There are also several helpers that are more targeted at effect authors.
We’ll discover that now.

14.7 How to Create Our Own Effects

Writing custom effects is a skill that can range from simple combina-
tions to aping the code of existing combined effects to truly displaying
some script.aculo.us-fu. Covering all of it is beyond the scope of this
chapter, but I’d like to give you a few pointers anyway so that you can
start on a clear trail.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=276

HOW TO CREATE OUR OWN EFFECTS 277

Before digging in, understand the dependencies for your custom effects.
As script.aculo.us changes, you will need to test your work against
the new releases. As a matter of fact, script.aculo.us 2.0 will have a
completely rewritten effects engine, which should not, however, stop
the 1.8 version from working.

What’s an Effect to Do?

Most effects are supposed to derive from the Effect.Base class. They
can then use this base to hook up their specific logic for initialization,
rendering, and finalization.

An effect has a number of properties, mostly for internal use, that con-
stitute its state. Many of them are going to be very useful to you when
writing your own effects, especially for the rendering logic, so let me
quickly describe them:

Property Description

currentFrame As we saw in Section 14.3, How Fast: duration, fps,

sync, and transition, on page 266, an effect’s anima-
tion is divided into frames. Every frame gets rendered
at most once (frames may be skipped because of CPU
hogging or debugging breakpoints, for instance). The
amount of frames depends on the duration of the effect
(duration option, defaults to 1) and its frames per second
ratio (fps option). The first actual frame is 1.

finishOn The moment (expressed in milliseconds since the
epoch, the usual numerical form of times) at which
the effect should finish (based on delay and duration

options).
fromToDelta The difference between the to and from options. You

normally never have to deal with it yourself; render()
uses it to create a proper evolution of your rendering
positions.

options The options passed at construction time, possibly
adjusted by the initialize() method.

position Your current rendering position, as a floating-point
number between 0 and 13 (same scale as the from and
to options). It’s automatically adjusted by render(), prior
to triggering update callbacks.

3. Although on a few transitions, such as Spring, it may exceed 1 at some point.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=277

HOW TO CREATE OUR OWN EFFECTS 278

Property Description

startOn The moment (expressed in milliseconds since the epoch,
the usual numerical form of times) at which the effect
should start (based on the delay option).

state A string that tells where your effect stands in its life cycle.
The possible values are idle (not started yet), running, and
finished.

totalFrames The total amount of frames for the effect, based on its
duration and fps options. By way of consequence, this is
the maximum amount of calls to your update() method.

totalTime The duration of your effect, in milliseconds. It’s based on
the duration option.

Note that it is possible to short-circuit an effect, abruptly stopping it
where it stands, by calling its cancel() method. This does not trigger
the finish callbacks.

Speaking of callbacks, in order to let users of your shiny new effect use
them, you will not hook them up for internal processing. The effect
machinery lets you define identical callbacks with the Internal pre-
fix (for example, afterFinishInternal()), which are called right before the
“public” ones. This is where you should put code that doesn’t fit in the
clear-cut methods you can redefine.

The execution of an effect is sequenced as follows, codewise:

1. The usual initialize() method is called. It’s all yours. You must end
it with a call to start(), passing it the options hash.

2. start() takes care of all the boilerplate setup. Before scheduling
your effect in the proper queue, it triggers the beforeStart() call-
back.

3. As soon as the effect is scheduled for execution, its loop() method
kicks in, which verifies that it should still run (it might be over-
due) and, if not, takes it straight to the finish line. Otherwise, it
computes its regular position and frame number and delegates to
render().

4. render() takes care of the setup callbacks on the first rendering,
calling your optional setup() method between the two, and then
delegates to the effect’s chosen transition to adjust the rendering
position. It then calls your optional update() method with it.

5. The effect has reached its end time. It renders its final position,
it gets decommissioned from the effect queue, and your optional
finish() method is called between the two finish callbacks.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=278

HOW TO CREATE OUR OWN EFFECTS 279

The following methods are an integral part of the effect system, so you
never override them: start(), loop(), render() (it would, anyway, be rede-
fined dynamically by start()), and cancel().

On the other hand, the following methods are undefined by default and
are designed for you to define according to your effect’s logic. They are
all optional, because their usefulness entirely depends on your effect’s
nature:

1. setup() is called before the first actual rendering.

2. update(pos) is called for every rendering, with a position adjusted
by the transition function. It’s where you put the actual frame-
creating code. For instance, if you look at this method for the core
Effect.Opacity, it simply goes like this:
update: function(position) {

this.element.setOpacity(position);
}

3. finish() is called after the last rendering and after the effect has
been decommissioned from its queue. You’ll mostly use it when
your effect is supposed to restore some state on its element(s). For
instance, numerous official effects that end up hiding an element
they transformed do hide it and then restore its original style.

Helpers for the Effect Author

You’ll find many helper methods in effects.js that take care of several
little tricks you might need to pull off when writing effects (after all,
Thomas did). First, element extensions gain more methods still:

• getInlineOpacity() returns the CSS opacity property from the ele-
ment’s inline style= attribute or the empty string if there is no such
property.

• forceRerendering() forces the browser to render the element again
by doing a flash DOM update and revert on its contents, which
can be useful to circumvent the occasional odd browser-rendering
bug.

• setContentZoom(percent) alters the element’s font size by the given
factor (expressed as percents, for example, 120 to zoom up 20%).

Our beloved String also gets a couple helpers:

• parseColor([default]) turns the string representation of a CSS color
into the six-digit CSS form (#rrggbb). This can start from the same
form, the three-digit form, or the developed form (rgb(r, g, b)). If the

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=279

HOW TO CREATE OUR OWN EFFECTS 280

string is not deemed valid, it will return the method’s argument,
or failing one, will return itself.

• parseStyle() takes a CSS property list (for example, the value of
an inline style= attribute) and turns it into a hash object with the
corresponding properties.

An Example: Effect.Wave

Thomas demonstrated custom effects creation at RailsConf US 2007
with this Effect.Wave class. It makes the characters in an element’s
text slide up and down to create a wave effect. This is a nice example
because it relies only on the two critical methods, setup() and update(),
with no internal callbacks or other extra tricks.

Download scriptaculous/effects/wave/demo.js

Line 1 Effect.Wave = Class.create(Effect.Base, {
- initialize: function(element) {
- this.element = $(element);
- this.start(arguments[1] || {});
5 },
-

- setup: function(){
- Effect.tagifyText(this.element);
- this.chars = this.element.childElements();

10 },
-

- update: function(position) {
- var factor = position < 0.5 ? position * 2 : (1 - position) * 2;
- var topPos;

15 this.chars.each(function(character, index) {
- topPos = Math.sin(position * ((index % 20) + 1)) * 30 * factor;
- character.setStyle({ top: Math.round(topPos) + 'px' });
- });
- }

20 });

This code illustrates a number of common practices in writing your own
effect:

• On line 3, we extend the element we’re supposed to operate on and
cache this in a property. This way, we can use extended methods
on it throughout our code without wondering whether we need to
extend it on the fly.

• It is essential to remember passing our options argument, if any,
to the start() method, as on line 4. If we fail to, all the generic
options (for example, to or duration) will stop working! Of course,

http://media.pragprog.com/titles/cppsu/code/scriptaculous/effects/wave/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=280

HOW TO CREATE OUR OWN EFFECTS 281

Figure 14.4: Effect.Wave in action

if no options argument was passed, we substitute an empty hash
instead.

• Right when the effect is about to render its first frame, on line
8, we replace its text with individual, per-character ele-
ments using tagifyText() (which we know from on page 275). This
lets us grab all these s on line 9. We might as well cache
the result of this DOM exploration, because we don’t much care
whether it changes while the effect takes place.

Then it’s just a matter of playing with a sine function to compute the
vertical positions of each letter, one frame after another. There are a
lot of magic numbers in this function, but don’t be put off. This is just
the result of tweaking and adjusting until it felt cool; there’s nothing
mandatory or mission critical in there. . . .

The effect at work can be seen in Figure 14.4.

Where to Start?

First, you’ll find many user contributions (of varying quality) on the offi-
cial site in the script.aculo.us “Treasure Chest:” http://wiki.script.aculo.us/scriptaculous/show/EffectsT

You’ll find several nice additions in there, such as Effect.DropIn, Effect.Bounce,
extra transition functions, and more.

Second, a good idea is to go through the source code of effects.js. By
studying the code for official effects, you can understand a lot and get
inspired by the wizardry Thomas pulls off now and then.

http://wiki.script.aculo.us/scriptaculous/show/EffectsTreasureChest
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=281

HOW TO CREATE OUR OWN EFFECTS 282

What We Just Learned

Effects are a prominent part of script.aculo.us and a rather rich API.
Let’s quickly summarize what we covered in this chapter:

• There are two kinds of effects: core and combined. The seven core
effects are created using the new operator, but combined ones are
called like regular functions.

• Most effects apply to a single element and can take a hash of
options, many of which are common to all effects.

• By default, effects run immediately upon creation; therefore, they
execute in parallel, although not necessarily in sync.

• To run multiple effects in perfect sync, we need to wrap them in
an Effect.Parallel call and set their individual sync options to true.

• Effects can also be arranged in queues, with the queue option.

• Transitions control the variation of speed across the effect’s dura-
tion. The default transition, Effect.Transitions.sinoidal, has a “natu-
ral” feel to it by accelerating slightly after the beginning and decel-
erating again shortly before the end.

• A few effect helpers facilitate common usage patterns, such as
applying the same effect on multiple elements with a small delay
between each trigger.

• We can create our own effects and add them to the library.

Neuron Workout

Here are a few questions to ponder and suggestions for code practice:

• Say we have half a dozen items (effects and custom code snippets)
we want to queue up like pearls on a string. What’s the best option
here? afterFinish callbacks or a custom queue? Why?

• How would you queue two effects with a two-second pause be-
tween the end of the first effect and the beginning of the second
one?

• Write horizontal blind effects (Effect.BlindLeft and Effect.BlindRight).

• How could we turn any effect into a permanent loop?

And that’s it for effects. It’s a fascinating thing, no doubt, and one of
the main reasons people use script.aculo.us. The other main developer
magnet is the support for drag and drop, including its use to reorder
elements on the page. That’s what we’ll dive in next.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=282

Chapter 15

Drag and Drop
A huge part of what people envision when they think “Web 2.0 inter-
face” is drag and drop. Moving blocks around in a customizable portal
page, resizing elements, putting items in a shopping cart, and reorder-
ing items in a list—it all comes down to dragging and dropping. For-
tunately, script.aculo.us comes with strong support for this capability,
easing integration into our own web applications.

To use script.aculo.us’s dragging capabilities, you’ll need to load the
dragdrop module, which requires the effects module. So your minimum
loading for script.aculo.us will look like this:

<script type="text/javascript"
src="scriptaculous.js?load=effects,dragdrop"></script>

15.1 Dragging Stuff Around

Let’s start with the basics: making an element draggable and dragging
it around. We’ll then see how we can react to various stages of the drag
and look at the numerous aspects that can be customized.

Also, remember that we did use simple drag and drop in Section 9.2,
Get It: Geometry Persistence, on page 192, so you’ll find example code
there as well.

Making an Element Draggable

OK, first things first: making an element draggable. It can be as simple
as instantiating a Draggable object over it (or its ID, as usual):

new Draggable(element);

DRAGGING STUFF AROUND 284

If you need to remove dragging capability later, you’ll have to keep the
reference tucked somewhere and call its destroy() method when its time
has come.

Let’s create an example that we’ll build upon as we discover new op-
tions. We’ll draw a small checkerboard and put a nice, spiffy Tux (you
know, the Linux mascot) on it. (This particular Tux looks lovely but a
bit overweight, so dragging sounds appropriate.)

Create a new directory, and then copy the usual prototype.js, scriptacu-

lous.js, and effects.js files, plus dragdrop.js. Here’s our HTML page:

Download scriptaculous/dragdrop/board/step1/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Playing with draggables</title>
<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript"
src="scriptaculous.js?load=effects,dragdrop"></script>

<script type="text/javascript" src="demo.js"></script>
</head>

<body>

<h1>Playing with Draggables</h1>

<div id="board">

</div>

<form>

<p>

<input type="checkbox" id="chkDraggable" checked="checked" />
<label for="chkDraggable" accesskey="D">Tux is draggable</label>

</p>

</form>

</body>

</html>

We’ll create the board cells dynamically. First, this spares us from
tedious markup in the board element; second, this opens the door to
custom event handling and other scripting tricks later, should we feel
like it. Every cell will be a element in the board’s <div>, with
an id= attribute containing the cell class and, alternatively, the white

or black class.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step1/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=284

DRAGGING STUFF AROUND 285

We’ll also want to demonstrate how to cancel dragging functionality by
destroying the Draggable object. That’s what our bottom checkbox is
for. Here’s the whole script:

Download scriptaculous/dragdrop/board/step1/demo.js

Line 1 var gTux;
-

- function drawBoard(cols, rows) {
- var board = $('board');
5 for (var row = 0; row < rows; ++row)
- for (var col = 0; col < cols; ++col) {
- var cell = new Element('span', {
- 'class': 'cell ' + (1 == (row + col) % 2 ? 'white' : 'black') });
- board.appendChild(cell);

10 }
- } // drawBoard
-

- function toggleTux() {
- if (gTux) {

15 gTux.element.setStyle({ cursor: 'default' });
- gTux.destroy();
- gTux = null;
- return;
- }

20 gTux = new Draggable('piece');
- gTux.element.setStyle({ cursor: '' });
- } // toggleTux
-

- document.observe('dom:loaded', function() {
25 $('chkDraggable').observe('click', toggleTux);

- drawBoard(3, 3);
- toggleTux();
- });

The drawBoard() function, starting on line 3, takes care of creating the
cell elements and putting them in the board’s <div>. Notice how it uses
Element’s constructor syntax (on line 7) to easily build the DOM node.

The toggleTux() function is responsible for either making the Tux drag-
gable or removing draggability. It stores the reference in the gTux vari-
able. We’re going for the most basic creation here. Just look at line 20.
Disabling draggability is as easy as a destroy() call, which you can see
on line 16.

Figure 15.1, on the following page, shows a montage of various dragging
stages of this first implementation.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step1/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=285

DRAGGING STUFF AROUND 286

Figure 15.1: Tux dragging about

Try unchecking the box. You will now notice the cursor no longer indi-
cates dragging capability, and attempting to drag Tux is rewarded by
resonant failure. Checking the box again restores the penguin’s fleet-
ness of feet.

As basic usage goes, here are a few things you should know:

• You can always interrupt a drag by pressing the Esc key.

• During drag, the element’s opacity moves to 70%. Its original opac-
ity is restored when the drag ends.

• By default, the whole element is made draggable. Holding the
“left” (that is, main) mouse button over any part of it will trig-
ger the drag. You can restrict this to part of the element’s con-
tents through the handle option, which we’ll discuss in a moment.
It’s commonly used to drag through a title bar or a corner, for
instance.

• If your element needs to be both draggable and clickable, trigger-
ing drag as soon as the mouse button is down can be a problem
and result in disruptive ergonomy. You can use the delay option,
discussed later, to require the button to stay down for a given time
before the drag actually happens (it will catch up on the mouse
movement in the meantime, if necessary).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=286

DRAGGING STUFF AROUND 287

Interacting with the Drag: Callbacks

Draggables come with a few callbacks, some of which are reserved
for local use (being passed in the draggable object’s options) and are
marked in the next table with an asterisk (*). We’ll see “global” use in
Section 15.5, Monitoring Drags, on page 301.

When used locally, all callbacks take the Draggable object as the first
argument and the event object as the second argument. Also note that
when you have a Draggable reference in hand, you can get the element
itself using its element property.

Callback Description

onStart The drag starts. The start effect, if any, has not
been applied yet, but any other preliminary work
(cloning, position adjustments, and so on) was per-
formed already.

onDrag The drag is going on. While in drag state, the element is
about to be moved in order to reflect mouse movement.

change* This occurs immediately after having moved the element
in response to mouse movement.

onDropped* The element was just successfully dropped on a defined
drop zone somewhere. We’ll talk more about drop zones
starting on page 301.

onEnd The drag is freshly over. Finalization (revert effect,
reverting, and end effect, if any) is about to start.

Let’s demonstrate callbacks by adding a highlight CSS class to our
board while the drag is going on and by building a position log of our
Tux as it gets dropped on cells. We’ll use the chess notation of cells:
rows numbered from A, top to bottom, and columns numbered from 1,
left to right. Tux is deemed to be on the cell where its top-left corner
stands.

First, we need to add an element for the log. An ordered list seems
pretty appropriate from a semantic standpoint:

Download scriptaculous/dragdrop/board/step2/index.html

<div id="board">

<ol id="log">

</div>

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step2/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=287

DRAGGING STUFF AROUND 288

The style sheet needs the corresponding adjustments:

Download scriptaculous/dragdrop/board/step2/demo.css

#board.tuxMoving { background-color: #f77; }

#log {
position: absolute; left: 212px; top: 0; height: 202px; width: 10em;
font-family: sans-serif; font-size: smaller; color: #555;
overflow: auto;

}

Finally, we’ll rework part of our script:

Download scriptaculous/dragdrop/board/step2/demo.js

Line 1 function getTuxCell(tux) {
- var pos = tux.positionedOffset();
- return [(pos.left / 64).floor(), (pos.top / 64).floor()];
- } // getTuxCell
5

- function toggleTux() {
- if (gTux) {
- gTux.element.setStyle({ cursor: 'default' });
- gTux.destroy();

10 gTux = null;
- return;
- };
- gTux = new Draggable('piece', {
- onStart: function() {

15 $('board').addClassName('tuxMoving');
- },
- onEnd: function(d) {
- $('board').removeClassName('tuxMoving');
- var pos = getTuxCell(d.element);

20 pos = 'ABC'.charAt(pos[1]) + (pos[0] + 1);
- $('log').insert('Tux to ' + pos + '');
- }
- });
- gTux.element.setStyle({ cursor: '' });

25 } // toggleTux

The getTuxCell() function converts our Tux’s position within the board’s
confines (which includes the padding) to a cell number. It’s not entirely

accurate but will do until we rework it later for better movement con-
straints.

Starting on line 14, notice how our creation call has grown, with its
two new callbacks: onStart (which turns on the board highlighting) and
onEnd (which turns the highlighting off, computes the cell’s name, and
adds it to the log).

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step2/demo.css
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step2/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=288

CONTROLLING HOW IT STARTS, WHERE IT GOES, & HOW IT ENDS 289

Figure 15.2: Callbacks: highlighting and logging

Figure 15.2, shows the highlighted board (red background around the
cells) during drag, and the state of the right-side log after a few move-
ments.

15.2 Controlling How It Starts, Where It Goes, & How It Ends

Drags use effects at three points: starting, ending, and reverting—if
there is one. We’ll consider reverting first, which can be interesting for
our examples.

A reverting draggable element will move to its original position when
released. By default, draggable elements do not revert, but you can
enable this systematically or based on custom condition code. You can
also customize the default reverting movement.

In our example, we’d like our Tux to revert whenever it’s dropped out-
side the board. We’d also want this revert to last a bit longer than the
default movement, and to add an extra twist, we’ll use the bouncy spring

transition for the reverting movement so that Tux overshoots its orig-
inal location and bounces back and forth around it for a short time
before stabilizing.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=289

CONTROLLING HOW IT STARTS, WHERE IT GOES, & HOW IT ENDS 290

The two options governing revert are as follows:

Option Description

revert Whether to revert the drag (bring the element back to its
original position) when the mouse button is released. This
can be a boolean, a function, or the special value ’failure’,
which reverts when there was no successful drop. This
defaults to false.

reverteffect The effect to be used for the revert animation. This
defaults to a properly defined Effect.Move. It takes three
arguments: the dragged element and the dragging’s hori-
zontal and vertical offsets.

We’ll equip our Tux element with an expando isOut() function. This will
serve us well as a value for the revert option and will help us prevent
logging of the movement if we decided to revert it.

This leaves our markup and styling untouched. The creation of our
Draggable object, however, features two more options:

Download scriptaculous/dragdrop/board/step3/demo.js

Line 1 var range = $R(0, 2);
- $('piece').isOut = function() {
- var pos = getTuxCell(this);
- return !(range.include(pos[0]) && range.include(pos[1]));
5 };
- gTux = new Draggable('piece', {
- revert: $('piece').isOut.bind($('piece')),
- reverteffect: function(tux, top_offset, left_offset) {
- var secs = Math.sqrt((top_offset^2).abs() +

10 (left_offset^2).abs()) * 0.06;
- new Effect.Move(tux, {
- x: -left_offset, y: -top_offset, duration: secs,
- queue: { scope: '_draggable', position: 'end' },
- transition: Effect.Transitions.spring

15 });
- },
- onStart: function() {
- $('board').addClassName('tuxMoving');
- },

20 onEnd: function(d) {
- $('board').removeClassName('tuxMoving');
- if (d.element.isOut()) return;
- var pos = getTuxCell(d.element);
- pos = 'ABC'.charAt(pos[1]) + (pos[0] + 1);

25 $('log').insert('Tux to ' + pos + '');
- }
- });

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step3/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=290

CONTROLLING HOW IT STARTS, WHERE IT GOES, & HOW IT ENDS 291

The isOut() method takes advantage of an ObjectRange instance to eas-
ily check that the computed cell for Tux is within board boundaries (0
to 2 on both axes).

Notice how we take care to bind it on line 7. If we didn’t do that and
simply passed $(’piece’).isOut, we’d lose the binding, and once invoked,
its this would evaluate to the calling context (in this particular case,
certainly not our Tux element). The revert function is actually passed
the dragged element, but that would make for less elegant calling in
the onEnd callback, so explicit binding it is!

The code for the reverteffect callback, starting on line 8, is fairly com-
plex, but it’s actually lifted straight from the default code in dragdrop.js.
Only its duration is altered (using a factor of 0.06 instead of 0.02, giving
us more time to savor the effect) and its transition (instead of relying
on the default sinoidal one, it uses spring).

Finally, note how we reuse isOut() within onEnd, on line 22, to avoid log-
ging an invalid, reverted movement. Because we’re calling the method
directly on the proper object, there’s no need to bind. Its this reference
will match the object it’s called on.

I’d be hard-pressed to illustrate the resulting effect on a printed snap-
shot. Just save, reload (make sure you bypass your cache if necessary),
and try dragging Tux onto the board and then outside (far outside, be
bold!) the board. Observe the spring. Love it. Play for a while, and call
your buddies over to your desk. Then on to more options!

I mentioned effects were allowed for revert, but they’re also allowed
at drag start and drag end. As we saw, those default to playing with
opacity (what’s too bad is they also maintain an internal state to avoid
multiple drag initiations on the same object, which should never occur
anyway). The two options for these callbacks are as follows:

Option Description

endeffect The visual effect to apply on the element when the drag is
completely done. This defaults to bringing its opacity back
to its original value in 0.2".

starteffect The visual effect to apply to the element when the drag
starts. If the default end effect applies, this defaults to
bringing the element’s opacity to 70% in 0.2".

If you need to keep full opacity, for instance, just set the endeffect

property to something equivalent to false (for example, false indeed, or
null). This will automatically disable the default start effect, too.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=291

CONTROLLING HOW IT STARTS, WHERE IT GOES, & HOW IT ENDS 292

On drag start, the element is also pushed “up,” from a 3D perspective,
to be “closer” to the eye of the user; this is done by adjusting its CSS z-

index property, according to the zindex option. The end of drag restores
the original setting.

Option Description

zindex The z-index (“layer”) of the element while being dragged. This
defaults to 1,000 in order to be sure it’s above anything else.
When manually dealing with such layer ordering, you may
want to set it to false, as we did in Section 9.2, Get It: Geometry

Persistence, on page 192.

Finally, in certain circumstances, you may not want the drag to be
initiated immediately (that is, as soon as the main mouse button is
pressed). Perhaps your element is also clickable, and you don’t want a
regular click to trigger a drag as well. To this end, the delay option lets
you specify a duration, in milliseconds,1 for the main mouse button to
remain pressed before the drag is triggered. Naturally, this defaults to
zero, but setting it to values as small as 500 can make all the difference
in the world.

Option Description

delay How long the button should be down before we actually start
dragging. This is in seconds, and it defaults to zero. The drag
will align on the mouse pointer when the delay expires. If
the button is released before the delay is over, no drag is
attempted.

Controlling How the Draggable Element Moves

By default, the user can drag your element all over the place. This is fine
for many situations, but there are cases where you’d like to constrain
how the element moves. There are basically two needs you may have,
perhaps combined, too:

• The element must not move on a pixel basis but by larger incre-
ments (say, by 10-pixel steps). These increments are not neces-
sarily the same horizontally and vertically.

• The element must not move outside a given bounding box (its con-
tainer element, for instance, or some arbitrary box you defined).

1. This is actually the only duration-related option in all of Prototype and script.aculo.us
that is in milliseconds, not in seconds.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=292

CONTROLLING HOW IT STARTS, WHERE IT GOES, & HOW IT ENDS 293

Both these needs are addressed with the snap option, which defaults to
false, meaning there is no constraint.

Option Description

snap Governs the smoothness and boundaries of the drag. By
default, the drag is pixel-fine and roams freely all over the
place. You may need to specify a “resolution” for the drag (for
example, moving by 25-pixel steps), limit the drag to a specific
screen region (for example, the container element), or both.

Sticking to a Grid

By setting snap to a positive integer value, you’ll make your element
move only by steps of this size, both vertically and horizontally. Proto-
type will monitor actual mouse movements to determine just when to
update the element’s actual position. For instance, the following code
makes the element with id="item1" draggable by 15-pixel steps:

new Draggable('item1', { snap: 15 });

Should you need a different “grid size” for horizontal and vertical move-
ment, just specify two pixel sizes in an array. The following example
uses 15-pixel horizontal steps but 5-pixel vertical ones:

new Draggable('item1', { snap: [15, 5] });

This could force our Tux to move on a cell-by-cell basis, staying cleanly
aligned. However, that doesn’t prevent it from venturing outside the
board (at which point it would revert, granted).

Limiting the Movement to a Given Area

However, the real power of snap is revealed only when assigning to it
a function that adjusts raw coordinates according to your needs. Such
a function takes three arguments: the x and y positions and the Drag-

gable object itself (in case you need to share it across draggable items).

Using such a function is the only way to apply boundaries to the drag’s
movement. For instance, here’s a code snippet that makes sure the
element with id="item1" does not stray outside a (0,0)-(100,50) box:

new Draggable('item1', {
snap: function(x, y) {

return [
x < 0 ? 0 : (x > 100 ? 100 : x),
y < 0 ? 0 : (y > 50 ? 50 : y)];

}
});

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=293

CONTROLLING HOW IT STARTS, WHERE IT GOES, & HOW IT ENDS 294

And here’s a more advanced example forcing it to remain within its
container object:

new Draggable('item1', {
snap: function(x, y, draggable) {

function constrain(n, lower, upper) {
if (n > upper) return upper;
return (n < lower ? lower : n);

};
elementDims = draggable.element.getDimensions();
parentDims = Element.getDimensions(draggable.element.parentNode);
return [

constrain(x, 0, parentDims.width - elementDims.width),
constrain(y, 0, parentDims.height - elementDims.height)];

}
});

The possibilities are numerous, but these two cases cover most of them
(and, I like to think, provide inspiration for your custom needs).

When it comes to our Tux, what we’d like is a combined snap. It would
prevent it from straying outside the board (which we can do simply by
checking that it’s not “out”) and force it to stay aligned on cells. As
an added benefit (although whether that is a benefit is very much a
subjective call), because Tux will stay penned on the board, we can get
rid of the revert code!

As before, our markup and styling remains untouched. Only the script-
ing evolves—to the following creation call:

Download scriptaculous/dragdrop/board/step4/demo.js

Line 1 gTux = new Draggable('piece', {
- snap: function(x, y) {
- return [x, y].map(function(coord) {
- coord = ((coord - 4) / 64).round();
5 return (coord < 0 ? 0 : (coord > 2 ? 2 : coord)) * 64 + 4;
- });
- },
- onStart: function() {
- $('board').addClassName('tuxMoving');

10 },
- onEnd: function(d) {
- $('board').removeClassName('tuxMoving');
- var pos = getTuxCell(d.element);
- pos = 'ABC'.charAt(pos[1]) + (pos[0] + 1);

15 $('log').insert('Tux to ' + pos + '');
- }
- });

Notice a creative use of map() on line 3, which applies the same trans-
form to both our coordinates. This time we do adjust accurately, taking

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step4/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=294

CONTROLLING HOW IT STARTS, WHERE IT GOES, & HOW IT ENDS 295

into account the 4-pixel padding of the board and using round() to align
on the nearest cell, not necessarily the one to the left and top of Tux.
You’ll probably recognize the double-ternary code for value bounding
we used earlier in Section 15.2, Limiting the Movement to a Given Area,
on page 293.

Once again, snapshots would be useless. Save, refresh, and play with
Tux. You’ll see it’s now nicely constrained to stay aligned over cells and
stick within the board.

There is a final movement-related option, which comes in handy when
all you need is to restrict movement to a single axis (something that is
done implicitly by many script.aculo.us features, such as reorderable
containers or sliders, which we’ll discover in later chapters).

Option Description

constraint Whether to limit how the element is moved by dragging
or not. This defaults to false but can also be ’horizontal’ or
’vertical’. This is cumulative to more fine-grained control
with snap. It’s handy when you just need to restrict the
movement axis.

Drag Handles

Often enough, you won’t want the whole surface of the element to trig-
ger the drag. Common UI conventions assign this role to a part of the
element, such as a widget’s title bar or specific spots along the element’s
edge. We’ll refer to such a part as a drag handle.

By default, as we’ve seen, the whole element is the handle. However, we
can change that with the handle option. We can either pass it the DOM
reference of the handle element (which is, quite likely, a descendant
element of the dragged one) or pass a string. In the latter case, script.-
aculo.us will try to use it as a CSS class first, within the context of the
dragged element. If that yields no descendant element, it will be used
as an id= value. If it still yields nothing, the handle option is silently
ignored (so watch out for typos in its value).

Option Description

handle Identification of a restricted area of the element to use for
initiating drags. Defaults to false, which means drag can be
initiated from anywhere on the element’s surface. This can
also be a DOM reference, an ID, or a CSS class name.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=295

CONTROLLING HOW IT STARTS, WHERE IT GOES, & HOW IT ENDS 296

The CSS class variant is useful when you’re applying the same Drag-

gable construction code to multiple elements. You cannot repeat an id=,
but you can certainly use the same class in multiple constructs.

Say our Tux doesn’t like us grabbing it all over and dragging it around
(this guy has its pride, you know). So perhaps we’d drag only its feet (is
that any better from a pride standpoint? Hmmm.).

What we need here is to put a transparent element over these feet and
make that element the handle. So, let’s modify our markup, styling,
and scripting quickly:

Download scriptaculous/dragdrop/board/step5/index.html

Download scriptaculous/dragdrop/board/step5/demo.css

#pieceHandle {
position: absolute; left: 8px; top: 53px; width: 48px; height: 8px;
cursor: move;

}

Download scriptaculous/dragdrop/board/step5/demo.js

function toggleTux() {
if (gTux) {

gTux.handle.setStyle({ cursor: 'default' });
gTux.destroy();
gTux = null;
return;

}
gTux = new Draggable('piece', {

handle: 'pieceHandle',
snap: function(x, y) {

return [x, y].map(function(coord) {
coord = ((coord - 4) / 64).round();
return (coord < 0 ? 0 : (coord > 2 ? 2 : coord)) * 64 + 4;

});
},
onStart: function() {

$('board').addClassName('tuxMoving');
},
onEnd: function(d) {

$('board').removeClassName('tuxMoving');
var pos = getTuxCell(d.element);
pos = 'ABC'.charAt(pos[1]) + (pos[0] + 1);
$('log').insert('Tux to ' + pos + '');

}
});
gTux.handle.setStyle({ cursor: '' });

} // toggleTux

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step5/index.html
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step5/demo.css
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/board/step5/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=296

GHOSTING 297

Notice we changed the manual cursor changes so they pertain to the
feet-covering , not the whole Tux anymore. Save, refresh, and
try it. You can’t drag Tux anywhere except on its feet anymore!

Naturally, handle is useful in more serious contexts, too. The most com-
mon use cases are title bars or resizing handles in widgets and windows
for reordering items in a list (à la Ta-da Lists).

15.3 Ghosting

When you’re dragging to express an actual movement of data (for exam-
ple, taking an item out of a “excluded” list into a “included” list), regular
drag is fine and proper. In other contexts, dragging may be a means of
assigning a specific status to a piece of data. Perhaps you’re putting an
item in your shopping cart; this doesn’t mean the item is not in stock
anymore and available for further shopping. Or perhaps the element
represents one of a few building blocks for a sequence, and you can
drag such elements repeatedly on some sort of sequence container to
build the sequence itself.

Or you may just not want the original element to move out of its original
position, because this would cause a reflow that you could consider
useless until there is an actual drop.

For this kind of situation, you can arrange to drag a temporary clone
of the draggable element; this clone is called a ghost, so the option for
it is ghosting, which defaults to false. By simply setting it to true, you’ll
get to drag a ghost of the element instead of the element itself. This
doesn’t change anything about other aspects of the drag (for example,
movement constraints, reverting, or effects). When you’re done with the
drag, you can use callback hooks to manipulate the original element if
need be.

Option Description

ghosting Whether to use ghosting, that is, dragging a clone of the
element instead of the original one. This defaults to false.

Note that ghosting doesn’t make a lot of sense unless you’re dealing
with specific drop locations or drop-related actions. We’ll deal with
dropping in the next major section. In the meantime, Figure 15.3, on
the following page illustrates what a ghosting-enabled drag looks like.
You will find the example in the source code archive for this book in
scriptaculous/dragdrop/ghosting.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=297

DRAGGING AND SCROLLING 298

Figure 15.3: A drag with ghosting enabled

15.4 Dragging and Scrolling

Option Description

scroll Identifies the scroll container, if any. This is used for
autoscrolling. If defined and the drag reaches the bor-
ders of the container’s viewport, it will scroll automat-
ically based on factors defined in the two next options.
This can be any element (or its ID) or the window

object.
scrollSensitivity The threshold for autoscrolling, in pixels from the

edges of the scroll container. This defaults to 20.
scrollSpeed The autoscrolling speed, in pixels per second. This

is used as a basis for the actual scroll speed, which
depends on how close to the container’s edge (or how
far over the edge) the mouse cursor is. This defaults to
15.

When ramping up to advanced UIs, you’ll sometimes find yourself need-
ing to let the user drag stuff around within scrollable containers. The
simplest case is when the web page itself is higher (or wider) than the
window’s viewport (the part of the window that renders your page) and
your user needs to drag somewhere on the page that is not currently
visible.

You may also have a scrollable container somewhere within the page (a
<div> with overflow="auto", perhaps), in which elements can be
dragged.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=298

DRAGGING AND SCROLLING 299

By default, script.aculo.us’s dragging systems will not deal with this.
But you can have them detect that your cursor is on the edges of
such a container and have it scroll accordingly to let the user reach the
intended drop location. This simply requires setting the scroll variable
so it references the container element, either by ID or by direct refer-
ence. If you’re working with the whole viewport, set it to the predefined
window object.

However, this also means you cannot have an element drag inside its
scrolling container (with autoscrolling) and be able to “drag out” of it.

You can adjust edge detection and scroll speed using the two com-
panion options: scrollSensitivity, which determines how close to the con-
tainer’s edges the cursor must get to trigger autoscrolling (defaults to
20 pixels), and scrollSpeed, which states how fast autoscrolling will go,
in pixels per second (defaults to 15). This is actually a basis for com-
puting the actual speed, which will increase as the cursor gets closer
to—or even go over—the edges.

Here’s a simple XHTML page to demo this feature:

Download scriptaculous/dragdrop/autoscroll/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Auto-scrolling in action</title>
<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript"
src="scriptaculous.js?load=effects,dragdrop"></script>

<script type="text/javascript" src="demo.js"></script>
</head>

<body>

<h1>Auto-scrolling in action</h1>

<div id="container">
<p>This is a simple paragraph just so we fill this thing</p>
<p id="queen">Drag this around!</p>
<p>This is yet another filler paragraph, just for kicks.</p>

</div>

</body>

</html>

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/autoscroll/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=299

DRAGGING AND SCROLLING 300

Figure 15.4: Autoscrolling in action

A dollop of CSS will make it clearer for us to play with:

Download scriptaculous/dragdrop/autoscroll/demo.css

h1 { font-size: 1.5em; }

#container {
overflow: auto; width: 10em; height: 7em; padding: 0.5em;
border: 1px solid black;

}

#container p { margin: 0 0 0.5em; }

#queen { background-color: #ddd; cursor: move; }

The script for it is very simple:

Download scriptaculous/dragdrop/autoscroll/demo.js

document.observe('dom:loaded', function() {
new Draggable('queen', { scroll: 'container' });

});

Figure 15.4 is a montage attempting to show you this in action.

Autoscrolling can be particularly useful when dealing with sortable
lists, which we’ll dive deeper into starting at Section 15.8, Sorting with

Drag and Drop, on page 307.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/autoscroll/demo.css
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/autoscroll/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=300

MONITORING DRAGS 301

15.5 Monitoring Drags

Should you need to monitor dragging activity throughout your page,
you can use the observer facility provided by the global Draggables

object. All drag activity passes through it, and it is always happy to
let you know.

All you need to do is register your own observer object by passing it
to Draggables.addObserver(). Your observer can implement any of the
three callbacks described as available globally in Section 15.1, Interact-

ing with the Drag: Callbacks, on page 287: onStart (the drag just started),
onDrag (the position is about to change), and onEnd (the drag has just
concluded).

All callbacks get passed three arguments: the callback name (in case
you share a callback across multiple events), Draggable object (in case
you share a callback across multiple elements), and the event object
itself.

Astute readers (that’s all of you) will have remembered that we used this
global monitoring facility in our geometry persistence example, back on
on page 198. We used it to monitor drops so we could persist window
positions (“geometry”) on the server side through Ajax.

15.6 Dropping Stuff

So far we just dragged stuff around with no special place to put them
down. Although this can be sufficient for certain applications, most of
the time we don’t let our users just shuffle the UI. Items are usually
supposed to be dropped on specific locations: a task list, a shopping
cart, and so on.

Much as you can make elements draggable by creating a Draggable

object on them, you can turn elements into drop zones by registering
them with Droppables.

A Simple Drop Zone

So, you have this element that should act as a drop zone. Fine. Just
call Droppables.add() on it. This can be as simple as the following:

Droppables.add('dropZoneId');

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=301

CUSTOMIZING DROP BEHAVIOR 302

However, the actual syntax is as follows:

Droppables.add(element [, options])

There are many options, which we’ll discover in a moment. The impor-
tant thing is, once your element is a drop zone, dragging will interact
with it. Your element will get notified when something is dragged over
it or dropped on it, for instance. And dropping an element on a drop
zone triggers a new callback, onDropped, just before the usual onEnd

callback.

By default, your drop zone will accept any element for dropping. It’s
very liberal about what you drop in its lap. Naturally, we’ll be able to
tailor all this to your needs, as we’ll see in the next section.

15.7 Customizing Drop Behavior

Just as you can take a draggable element and strip its dragging ability,
you can take a drop zone and turn it back into a regular element, using
the Droppables.remove() method. Just pass it your element.

Not Letting Everybody In

A common need is to be picky about which elements you accept on a
particular drop zone. In a nontrivial UI, you may well have several kinds
of draggable elements, each category being droppable at specific loca-
tions. You can specify this with two options: accept and containment.

• accept takes a CSS class name and requires any draggable ele-
ment to have it among its CSS classes in order to be “cleared for
landing.” This offers maximum flexibility for your dropping policy,
and it lets you flag any element, regardless of its tag name or ori-
gin in the document. You can also pass in an array of CSS class
names.

• containment spares you manual CSS class assignment when all
acceptable elements come from the same container (which is very
frequently). Just specify the id= of their container element, and
only they will be allowed to drop. Like with accept, you can pass
either a single value or an array of values. Because the values here
are elements, you can pass, as always, either id= values or direct
DOM references.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=302

CUSTOMIZING DROP BEHAVIOR 303

Naturally, you can further refine your dropping policy by mixing both
options together.

To demonstrate this, we’ll build a simple shopping cart. To keep things
simple, we’ll stay on the client side, but notifying the server is as simple
as creating an Ajax.Request in the drop zone’s onDrop callback.

Our simple shopping cart will feature several items we can put (as many
times as we’d like) in our shopping cart. We can also decide to put
stuff out of the shopping cart by dropping them into the trash can.
Obviously, there would be no point in dragging buyable items directly to
the trash, and we won’t let the user drag cart items back onto buyable
items.

So, let’s mock up a massively discounted (and massively reduced) ver-
sion of the Pragmatic Bookshelf’s online store. The XHTML page looks
like this:

Download scriptaculous/dragdrop/cart1/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Discount bookshelf</title>
<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript"
src="scriptaculous.js?load=effects,dragdrop"></script>

<script type="text/javascript" src="demo.js"></script>
</head>

<body>

<h1>Discount bookshelf</h1>

<div id="products">

</div>

<h2>Your cart:</h2>

<div id="cart"></div>
<p id="trash"></p>
</body>

</html>

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/cart1/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=303

CUSTOMIZING DROP BEHAVIOR 304

We’ll need a bit of CSS for this to work:

Download scriptaculous/dragdrop/cart1/demo.css

h1 { font-size: 1.5em; }

#products { margin-bottom: 20px; height: 180px; }

.product, #cart img { cursor: move; }

#cart {
width: 350px; height: 100px; padding: 1ex;
border: 1px solid #fa0;
font-family: sans-serif; color: gray;

}

#trash {
width: 64px; margin: 0; padding: 1ex;
border: 2px dotted white;
/* Internet Explorer doesn't know transparent... */

}

Now for the script. It’s actually rather concise:

Download scriptaculous/dragdrop/cart1/demo.js

Line 1 document.observe('dom:loaded', function() {
- $$('.product').each(function(book) {
- new Draggable(book, { revert: true });
- });
5 Droppables.add('cart', { //
- accept: 'product', onDrop: function(book) {
- var bought = new Element('img');
- bought.src = book.readAttribute('src').replace('.', '_tiny.');
- new Draggable(bought, { revert: true });

10 $('cart').appendChild(bought);
- }
- });
- Droppables.add('trash', {
- containment: 'cart', onDrop: function(bought) {

15 bought.remove();
- }
- });
- });

We start by making all elements with the product CSS class draggable,
on line 3. Then we proceed to create two drop zones. The first one is
the cart, which accepts only those elements with a product CSS class,
as required by the accept option on line 6. The second one is the trash
can, which accepts only those elements originating from the shopping
cart. This is what the containment option says on line 14.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/cart1/demo.css
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/cart1/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=304

CUSTOMIZING DROP BEHAVIOR 305

Figure 15.5: Several steps of our cart working

Note how we create small, draggable elements to populate the
cart but still let the user take them away to the trash can. On line
9, we create Draggable objects for them, with the revert option, which
will have them slide back into place unless they’re properly dropped. In
such a case, we’ll simply remove them from the DOM.

If you were to implement this with a server notification, the server side
would probably compute the new representation of the whole cart, and
you’d use Ajax.Updater over the cart container.

Figure 15.5 shows a montage of our shopping cart on load (empty), dur-
ing cart addition, and during trashing (a few additions and trashings in
between were skipped).

If you’re using multiple drop zones and they happen to overlap, you
must be careful about the order in which you’re creating them. Check
out Section 15.9, Creating Droppables in the Right Order, on page 320
for details.

Reacting to Drag

A few options let you exert finer control over how the drop zone reacts
to dragged elements hovering over it.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=305

CUSTOMIZING DROP BEHAVIOR 306

A useful one is hoverclass, which lets you specify an extra CSS class that
is slapped on the drop zone when it is hovered over by an acceptable
draggable element (not when the element is deemed unacceptable for
dropping). This lets you make it obvious, visually, that the drop can be
made. We could adjust our shopping cart CSS like this:

Download scriptaculous/dragdrop/cart2/demo.css

#cart.dropAllowed { background: #ffd; }

#trash.readyToTrash { border-color: red; }

And then, we change our script to add the relevant hoverclass options:

Download scriptaculous/dragdrop/cart2/demo.js

document.observe('dom:loaded', function() {
$$('.product').each(function(book) {

new Draggable(book, { revert: true });
});
Droppables.add('cart', {

accept: 'product', hoverclass: 'dropAllowed',
onDrop: function(book) {

var bought = new Element('img');
bought.src = book.readAttribute('src').replace('.', '_tiny.');
new Draggable(bought, { revert: true });
$('cart').appendChild(bought);

}
});
Droppables.add('trash', {

containment: 'cart', hoverclass: 'readyToTrash',
onDrop: function(bought) {

bought.remove();
}

});
});

Figure 15.6, on the next page, shows these options in action, both for
the cart and the trash can.

By the way, in addition to the onDrop callback, there’s also a onHover

callback that gets fired on a drop zone, with three arguments: the
dragged element, the drop zone element, and an overlap factor. (You can
safely ignore this last one, though. It’s mostly for Sortable purposes.)

Also remember that Draggable elements can have a onDropped call-
back, as I mentioned on page 287, which is fired whenever the drag-
gable element is released on a drop zone that had accepted it. This
takes the draggable element as its sole argument and triggers after the
zone’s onDrop callback.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/cart2/demo.css
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/cart2/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=306

SORTING WITH DRAG AND DROP 307

Figure 15.6: hoverclass on drop zones

Finally, I’d like to mention this little-used option you can put on Drag-

gable when you intend to work with drop zones:

Option Description

quiet Whether to wait until drop to check whether dropping is
allowed and work with the drop zone. This defaults to false,
so drop zones interact with the drag on the fly. If you have a
truckload of drop zones, enabling it can help improve perfor-
mance.

15.8 Sorting with Drag and Drop

By using Draggable and Droppables, you can achieve just about any
drag-and-drop need you may have.

One of the most common needs is to provide the user with the ability
to reorder elements (such as items in a list) by dragging them. Without
drag and drop, reordering can be a nightmare of clicking arrow glyphs
or similar buttons and can take a while to go through. For users, it does
seem to take forever, which is a sure sign your reordering is not going
to be used much. Mouse support is a big help here, letting users sim-
ply drag items in their final position. However, this particular feature
calls for quite a hefty amount of advanced code (if you want to make
it reusable), which is why script.aculo.us provides extended reordering
support out of the box through the Sortable class.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=307

SORTING WITH DRAG AND DROP 308

I Want a Sortable List, Now!

Yes, I can feel it from where I sit. So, let’s go for a simple example.
We’ll just define a regular ordered list and make it sortable, leaving all
options (for they are numerous) to their defaults. Our XHTML page has
the usual structure, and the body looks like this:

Download scriptaculous/dragdrop/sortable1/index.html

<h1>You ought to love these guys</h1>

<ol id="guys">
<li id="guy_1">Arnaud Berthomier
<li id="guy_2">Élodie Jaubert
<li id="guy_3">Justin Palmer
<li id="guy_4">Rick Olson
<li id="guy_5">Thomas Fuchs

We’ll keep the styling to almost nothing:

Download scriptaculous/dragdrop/sortable1/demo.css

h1 { font-size: 1.5em; }
li { cursor: move; }

We’ll just need a pinch of scripting, based on the following method:

Sortable.create(element [, options])

The scripting goes like this:

Download scriptaculous/dragdrop/sortable1/demo.js

document.observe('dom:loaded', function() {
Sortable.create('guys');

});

That’s it. Honest! Figure 15.7, on the next page, shows various stages
of toying around with the list through drag and drop.

And it’s not just for or containers, either. You’ll be able to
use this for just about any elements within a given container. We’ll see
how to customize this in a few moments with the options.

Getting the Items’ Order

As the user reorders the elements in your sortable container, you’ll
probably want to get the current ordering now and then, perhaps to
store it on the server.

Sortable.serialize(element [, options]) → URLEncodedString

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable1/index.html
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable1/demo.css
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable1/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=308

SORTING WITH DRAG AND DROP 309

Figure 15.7: Dead-simple list sorting

It produces a URL-encoded representation of the current ordering,
based on the id= attributes for the container and the ordered elements.
The default rule is as follows:

• The container’s id= attribute is used as field name, suffixed with []

(this makes things easy on server layers based on PHP or Rails, for
instance, and poses no discomfort to other technologies). If that’s
unsatisfactory to you, you can override this by passing a name

option (it will still be suffixed with square brackets).

• The id= attributes for the ordered elements (Sortable uses
children by default) are used to extract field values. They are
analyzed using a regular expression, which defaults to Sortable.

SERIALIZE_RULE; I’ll spare you the details, but this means your id=

attributes need to be of the form xxx_yyy, and the second part
(everything after the first underscore) will be used as a value.

So, let’s take our previous example. We had the following list:

Download scriptaculous/dragdrop/sortable1/index.html

<h1>You ought to love these guys</h1>

<ol id="guys">
<li id="guy_1">Arnaud Berthomier
<li id="guy_2">Élodie Jaubert
<li id="guy_3">Justin Palmer
<li id="guy_4">Rick Olson
<li id="guy_5">Thomas Fuchs

Now let’s assume the user moved Élodie in first position and Thomas
in fourth, as shown on Figure 15.7.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable1/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=309

SORTING WITH DRAG AND DROP 310

Here are a couple serialization calls and their results:

Sortable.serialize('guys')
// -> 'guys[]=2&guys[]=1&guys[]=3&guys[]=5&guys[]=4'

Sortable.serialize('guys', { name: 'users' })
// -> 'users[]=2&users[]=1&users[]=3&users[]=5&users[]=4'

The default requirement for id= structure is usually just fine, but you
might need to cater to other formats. Perhaps you need to use hyphens
instead of underscores or take the whole id= instead of just a part?

You can do this by providing a custom format option, which must be a
regular expression object isolating the desired part as the first captured
group.2 Note that you can define this option once and for all when
creating the Sortable object, too. It doesn’t have to be defined every time
you call serialize().

Let’s suppose we have the following list:

<ol id="subs">
<li id="sub123">Wired
<li id="sub456">456 Berea St.
<li id="sub789">A List Apart

These id= attributes do not match the default format option, and we
would end up with a useless result: subs[]=&subs[]=&subs[]=. But we
can provide a custom format, either at creation time or, as in the fol-
lowing script, when serializing:

Sortable.serialize('subs', { format: /^sub(\d+)/ })
// -> 'subs[]=123&subs[]=456&subs[]=789'

Keeping Posted with Two Callbacks

When you let your users reorder elements, you want to be notified when
they do. There are actually two distinct situations here:

• An element is being dragged and gets into a new position; it’s not
being dropped yet, so it might end up being dropped in its original
position eventually. Still, the onChange callback is notified, with
the dragged element as an argument.

2. In regexes, a captured group is a group of characters delimited by parentheses (unless
the opening parenthesis is immediately followed by ?:, in which case the group is noncap-
turing). They are numbered starting from 1 and are useful to individually grab parts of
the matched string, perhaps to reuse them later in the search pattern or in a replacement
pattern.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=310

SORTING WITH DRAG AND DROP 311

• An element was dragged and dropped, and the ordering actually
changed compared to before the drag. The onUpdate callback is
fired, with the container element as argument.

A small note about just when an element “changes position” in the list
while being dragged: it requires the mouse cursor itself to be dragged
beyond half the hovered element, in the dragging direction (for instance,
if you’re dragging vertically, the mouse cursor must go beyond half the
height of the hovered element). That’s pretty intuitive behavior for most
users.

Let’s augment our previous example to get the hang of just when these
callbacks get called. We’ll just add two notification zones below the
element, like this:

Download scriptaculous/dragdrop/sortable2/index.html

<p id="changeNotification"></p>
<p id="updateNotification"></p>

Now let’s change our Sortable creation to register two callbacks:

Download scriptaculous/dragdrop/sortable2/demo.js

Line 1 document.observe('dom:loaded', function() {
- var changeEffect;
- Sortable.create('guys', {
- onChange: function(item) {
5 var list = Sortable.options(item).element;
- $('changeNotification').update(Sortable.serialize(list).escapeHTML());
- if (changeEffect) changeEffect.cancel();
- changeEffect = new Effect.Highlight('changeNotification',
- { restorecolor: 'transparent' });

10 },
- onUpdate: function(list) {
- $('updateNotification').update(Sortable.serialize(list).escapeHTML());
- $('updateNotification').highlight({ startcolor: '#99ff99' });
- }

15 });
- });

Notice the trick on line 5. The argument we receive is the dragged
element that just changed position, but we cannot use this on Sortable.

serialize(). We need the container on which we called Sortable.create().
Naturally, we could just pass the id= of the container, or the reference
to it, but the code here is more generic and dynamically retrieves the
container for the element we pass.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable2/index.html
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable2/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=311

SORTING WITH DRAG AND DROP 312

Figure 15.8: onChange and onUpdate in action

We also avoid multiple highlight effects going on concurrently when the
user drags too fast across the list, and we make sure any highlight
finishes with a transparency instead of whatever degree of yellowness
was current (because of a previous highlight going on) when the latest
onChange() callback happened.

Figure 15.8 shows various states of the page as we drag an item around
and finally release it. Releasing it on its original position does not fire
onUpdate, because the final order is unchanged.

Binding to Ajax

Of course, onUpdate is a prime candidate for triggering Ajax notifica-
tions to the server, for instance when the user reorders a to-do list
or some other data set. Combining Ajax.Request and Sortable.serialize

makes live persistence simple enough:

Sortable.create('tasks', {
onUpdate: function(list) {

new Ajax.Request('/tasklist/1', {
parameters: Sortable.serialize(list)

});
}

});

Note that if your server side is RESTful, you’ll probably want to add the
method: ’put’ option, because you’re updating data, not creating it.

Reordering with Horizontal Layouts

So far we’ve used list reordering in a vertical layout, and you may have
noticed, when trying our examples, that the dragging won’t let you move
items horizontally; only vertical movement is rendered.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=312

SORTING WITH DRAG AND DROP 313

This behavior is controlled by the constraint option, which defaults here
to vertical. And indeed, for most cases, it’s a reasonable constraint.

But your list might be horizontally displayed, in which case you’ll need
to constrain movement accordingly. You may even have multiple lists
and need to swap elements between them, a frequent use case we’ll
illustrate later in this chapter, at which point you’ll need to remove
movement constraints altogether.

To address all three cases, constraint has three possible values, which
we already listed back when looking at Draggable options: ’vertical’ (the
default), ’horizontal’, and false (no constraint at all).

Also note that Sortable relies on its overlap option to determine whether
a dragged element should change position in the list. When using a
constrained layout (that is, a constraint option that is not false), overlap

should use a matching value.

Let’s see a quick example of a horizontal layout. We’ll take the following
XHTML list:

Download scriptaculous/dragdrop/sortable3/index.html

<ol id="guys">
<li id="guy_1">Alexis Toulotte
<li id="guy_2">Amir Jaballah
<li id="guy_3">Anne-Julie Peschaud
<li id="guy_4">Élodie Jaubert
<li id="guy_5">Erin Odenweller

Then we’ll style it so as to obtain a horizontality:

Download scriptaculous/dragdrop/sortable3/demo.css

h1 { font-size: 1.5em; }
#guys {

list-style-type: none;
padding: 0;

}
#guys li {

float: left; cursor: move;
margin-left: 1em; padding: 0.2em; width: 10em;
border: 0.05em solid gray; background: #ddd;
text-align: center;

}

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable3/index.html
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable3/demo.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=313

SORTING WITH DRAG AND DROP 314

Figure 15.9: Horizontal reordering

Finally, we’ll adjust our scripting so it takes horizontality into account:

Download scriptaculous/dragdrop/sortable3/demo.js

document.observe('dom:loaded', function() {
Sortable.create('guys', { constraint: 'horizontal',

overlap: 'horizontal' });
});

Notice how we take care to synchronize the constraint and overlap op-
tions in a single-direction reordering like this? Figure 15.9 uses a mon-
tage to illustrate reordering in action on such a list.

Sorting More Than Regular Lists

You’re absolutely not required to use list markup (that is, , ,
and) in order to get reordering capabilities. Sortable lets you specify
the tag identifying which child elements of your container are up for
dragging.

You can express this primarily with the tag option, which defaults to
’li’. All child elements with the tag name you provide are then taken into
account. For instance, say you have the following markup:

<div id="avatars">

</div>

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable3/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=314

SORTING WITH DRAG AND DROP 315

To let your users reorder the elements in your <div> container, you’d
need code like this:

Sortable.create('avatars', { tag: 'img' });

Perhaps you need to restrict this, however, to only a subset of these
children, in which case you can also define the only option. It defaults
to false, which disables it. You can set it to either a single CSS class
name or an array of CSS class names to precisely select which children
elements are to be used.

We can try this easily; let’s take our previous page and change the list
definition to the following markup:

Download scriptaculous/dragdrop/sortable4/index.html

<div id="chapter">
<p>This stays on top.</p>
<p class="orderable">This can, on the other hand.</p>
<p class="orderable">And this too!</p>
<p class="moveIt">You can reorder this one.</p>
<p>This stays at bottom.</p>

</div>

Now all we need to do is change our Sortable creation to this:

Download scriptaculous/dragdrop/sortable4/demo.js

document.observe('dom:loaded', function() {
Sortable.create('chapter', { tag: 'p', only: ['orderable', 'moveIt'] });

});

There! We can drag all but the two outermost paragraphs, because they
do not match any of the CSS classes we specified for the only option.

Version 1.7.2 introduced a new option, called elements, which lets you
specify exactly which child elements you want to reorder, and only those
will be taken into account. When you do know, beforehand, which ele-
ments will need to be draggable for reordering, this is by far the fastest
way to initialize your Sortable object. It skips any sort of DOM traversal
or CSS-based selection.

The elements option is originally disabled (by being set to false), so you
would enable it by assigning it with an array of elements (for example,
the result of a $$() call). As usual, any item in this array can be either
a string with the element’s id= value or the element’s DOM reference.

Naturally, if this option is enabled, it supersedes any other means of
defining child elements for reordering.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable4/index.html
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable4/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=315

SORTING WITH DRAG AND DROP 316

Reordering Trees!

Sometimes you’re not dealing with linear lists (or list equivalents) but
element trees, with containers inside items inside containers inside. . . .
In short, these are nested lists.

Dealing with this efficiently and correctly is by no means a simple
task; script.aculo.us does provide a tree-handling feature, which is still
somewhat experimental, but seems to hold up pretty well to real-world
use. You need to create a Sortable object only on the outermost con-
tainer, but you must pass the proper options, including two specific
ones: tree and treeTag.

The tree option is simply a boolean flag used to activate alternative
behaviors in the Sortable internals in order to deal with tree-like ele-
ment structures. Set it to true in order to deal with nested containers.

The treeTag option lets you specify which tag you rely on for containers.
This assumes all containers, outermost or nested, use the same tag.
This defaults to ’ul’, but you can change it for your needs (for example,
’ol’ or ’div’).

To put credit where it’s due, I should mention that most of the tree
support code was contributed by Sammi Williams.

You can look at a fairly good demonstration of sortable trees at work in
the corresponding functional test page within your script.aculo.us dis-
tribution: test/functional/sortable_tree_test.html. Also note that the seri-
alized form of a tree is slightly different than for linear lists in order to
account for the nesting.

A Classic: Two Lists Mixing It Up

Users often need to drag elements back and forth between multiple
lists. This is interesting because it requires a specific setup for several
options:

• constraint will likely be set to false in order to let our users drag
elements in both directions.

• containment, inherited from Droppable options, will probably be
used to restrict acceptance of drops from our own list and a few
other ones, not just from anywhere.

• dropOnEmpty will be useful if we want a list to still accept items
from the outside once we depopulated it entirely. This will imple-
ment drop logic but may not be sufficient. If our container has

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=316

SORTING WITH DRAG AND DROP 317

no specific style ensuring it has a nonzero size when empty, there
won’t be a single pixel to drop on when all items are gone. We’ll
use onUpdate callbacks to toggle a specific CSS class on empty
lists in order to ensure they’re visible even when empty and can
thus be dropped items on.

Let’s take a page similar to our previous examples, but we’ll use two
lists this time:

Download scriptaculous/dragdrop/sortable_multiple/index.html

<ul id="paris">
Diane Mellini
Élodie Jaubert
Valérie Savalle

<ul id="world">
Dan Webb
Justin Palmer
Scott Raymond

We’ll throw in some styling to make it easier on the eyes:

Download scriptaculous/dragdrop/sortable_multiple/demo.css

h1 { font-size: 1.5em; }

ul {
position: absolute; top: 4em; padding: 0;
list-style-type: none; width: 10em;

}

li {
height: 2em; cursor: move;
line-height: 2em; text-align: center;
margin-bottom: 0.5em;
border: 1px solid gray;
background: #ff9;

}

ul.empty { height: 2em; border: 1px solid silver; background: #ddd; }

#paris { left: 2em; }

#world { left: 18em; }

#world li { background: #9f9; }

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable_multiple/index.html
http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable_multiple/demo.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=317

SORTING WITH DRAG AND DROP 318

Finally, we just need a few lines of script:

Download scriptaculous/dragdrop/sortable_multiple/demo.js

document.observe('dom:loaded', function() {
var options = {

constraint: false, containment: ['paris', 'world'],
dropOnEmpty: true, onUpdate: function(list) {

var methodStart = list.down('li') ? 'remove' : 'add';
list[methodStart + 'ClassName']('empty');

}
};
Sortable.create('paris', options);
Sortable.create('world', options);

});

Figure 15.10, on the following page shows a montage of several stages
in using these lists. Play with it, and notice how items change con-
tainers past a certain overlap threshold and what happens when a list
becomes empty (or goes from empty to one element). Isn’t it cool?

Using Regular Drag-and-Drop Options with Sortable

Internally, Sortable works with the two core objects: Draggable and
Droppables. It astutely combines both features to achieve this reorder-
ing capability. From a developer perspective, this means you can cus-
tomize a lot of things by using options you would normally pass to new

Draggable or Droppables.add.

Of course, Sortable may need to ensure certain options have specific val-
ues, but most of them are passed untouched to the underlying objects.
Here’s a quick rundown. Refer to the description of these options earlier
in this chapter for further details.

• Underlying Draggable objects take the following options into
account: constraint, delay, ghosting, handle, scroll, scrollSpeed, and
scrollSensitivity. In addition, effects (starteffect, reverteffect, and end-

effect) are used if you do provide a function (if you attempt to dis-
able them by using false, for instance, that will be ignored). In the
same spirit, a non-null zindex option will be used.

• Underlying Droppable objects take the following options into
account: containment, hoverclass, and overlap.

Version 1.7.2 introduced a special optimization with regard to the han-

dle option, though. It is similar to the new elements option. When you
know exactly which elements should serve as handles, you can pass an
array of these elements through the handles option. They will be used in

http://media.pragprog.com/titles/cppsu/code/scriptaculous/dragdrop/sortable_multiple/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=318

COMMON PITFALLS 319

Figure 15.10: Multiple lists at various stages

ascending order on whatever elements are deemed eligible for reorder-
ing (see Section 15.8, Sorting More Than Regular Lists, on page 314 for
details on that).

As usual, you can pass in the array either id= values or direct DOM ref-
erences. The handles option defaults to false, which effectively disables
it. When enabled, it supersedes the regular handle option.

15.9 Common Pitfalls

Drag and drop generally works just fine, but you should be on the
lookout for a few common issues. It’s quite possible to inadvertently
misuse it.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=319

COMMON PITFALLS 320

Removing or Replacing a DOM Fragment

You must be extra careful when removing fragments of the DOM con-
taining elements that were drop zones (by extension, this also applies
to Sortable elements).

Whenever you drag elements around, script.aculo.us will loop through
its internal drop zone list to find geographical matches. Having drop
zones in this list that are not in the DOM anymore can cause several
issues, but the dominant one is a painful freeze of the browser.

Prototype Core is currently working on implementing custom events,
which would let Thomas jump in and make sure script.aculo.us auto-
matically mops up relevant drop zones, but for now you have to take
care of the cleanup yourself. So, be on the lookout for DOM removals
and replacements (for example, Ajax.Updater processing) that wipe out
sections of the DOM where drop zones are registered. Be sure to unreg-
ister them as soon as possible (it’s OK to do this after the replacement
happened, as long as the user didn’t get a chance to initiate a drag in
between).

More generally, it pays to try to stay lean with the Draggable objects,
Droppables-registered elements, and Sortable objects you keep around.
For instance, if you have a very large set of items that are potentially

draggable, use lazy initialization over those that the user appears to
want to drag. Only make those draggable, on the fly. You’ll notice a
significant speedup! For further details, search through the archives of
the Spinoffs mailing list.3

The cleanup methods are as follows:

draggable.destroy()
Droppables.remove(element)
Sortable.destroy(element)

Creating Droppables in the Right Order

A common mistake is to create drop zones in the inappropriate order.
When a draggable element hovers the document, it will iterate through
the drop zone list in registration order, and the first one to match will
be used, regardless of layering (the z-index property).

3. http://groups.google.com/group/rubyonrails-spinoffs

http://groups.google.com/group/rubyonrails-spinoffs
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=320

COMMON PITFALLS 321

So if you have a drop zone B that is located “inside” a drop zone A but
A was registered before B, you’re in trouble, because B will never get a
hold on your element; only A will.

There is actually one case where script.aculo.us will still behave prop-
erly despite this—when B is a descendant element of A in the DOM. But
if you’re playing with unrelated elements put where they are through
specific positioning, you need to tread carefully.

The rule of thumb to avoid this is simple. Always register your drop
zones from the inside outward, instead of the other way around. It
may appear counterintuitive, because we’re used to the outside-inward
order because of DOM creation, but we need to think about it from
a layering standpoint: the foremost zone first and then working away
toward the background.

What We Just Learned

As you can see, in barely 30KB of uncompressed JavaScript, script.acu-
lo.us provides an incredible wealth of features for dragging and drop-
ping, thanks to a few core objects and a wealth of options that cater
to just about every need. This part of the library truly opens the doors
to significant improvements of the user experience in our web applica-
tions.

Let’s recap what we just saw:

• Making an element draggable is as simple as doing a new Drag-

gable over it.

• Draggable supports a wealth of options to control movement and
behavior.

• Any element can become a drop zone, that is, a surface that reacts
to a dragging operation hovering over it and dropping onto it. We
just need to do a Droppables.add over the element. Options let us
filter out unwanted drops.

• An observer mechanism lets us globally monitor drag and drops
in our page.

• Because drag and drop is a great way to sort items and sorting is
a common need, we have the Sortable class, which enables drag-
based reordering of any series of elements.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=321

COMMON PITFALLS 322

• We need to look out for DOM removal of elements that were made
draggable or droppable and to be cautious about the order of cre-
ation of our drop zones.

Neuron Workout

Here are some issues we should think about. . .

• What happens when we dynamically add an item to an already
sortable list? Does it participate in the reordering? Why?

• How can we fix this? In general, how should we react to the con-
tents of a sortable sequence being changed?

• When should we use constraint instead of going all the way with
snap?

• What kind of optimizations can you imagine for situations where
a sortable list has a very large set of elements (say, thousands)?

script.aculo.us doesn’t stop there. It goes on to provide autocompletion
for text zones, in-place editing, and even sliders, as we’ll see in the
following chapters.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=322

Chapter 16

Autocompletion
Autocompletion is one of those features that suddenly popped up on a
popular site and soon became an obvious one to have. It’s immensely
useful to help your users zero in on existing values, which reduces their
time to task completion (no multiple round-trips for the whole page in
order to get the spelling right or refine the search, for instance), allevi-
ates your need to process such suboptimal submissions, and generally
makes everyone happier.

So, how do we use it in our apps? Thanks to script.aculo.us’s built-
in autocompletion facility, making any text field autocompletable is a
snap, be it from a client-side data source or through Ajax.

You’ll need the controls.js module, which contains the autocompletion
classes but also effects.js (the default behavior for showing and hiding
the autocompletion list relies on quick appear/fade effects). So, your
script.aculo.us loading will look, at minimum, like this:

<script type="text/javascript"
src="scriptaculous?load=effects,controls"></script>

16.1 The Basics

Out of the box, script.aculo.us supports two sources for autocomple-
tion:

• Local sources (string arrays in your web page’s scripts)

• Remote sources (obtained through Ajax)

Depending on the source you’re planning to use, you’ll instantiate Auto-

completer.Local or Ajax.Autocompleter, respectively. Although equipped
with specific options, these two objects share a large feature set and
provide a uniform user experience.

THE BASICS 324

There are four things you’ll always pass to these objects when building
them:

• The text field you want to make autocompletable. As usual, you
can pass the field itself or the value of its id= attribute.

• The container for autocompletion choices, which will end up hold-
ing a / list of options to pick from. Again, pass the ele-
ment directly or its id=. This element is most often a simple <div>.

• The data source, which will be expressed, depending on the source
type, as a JavaScript array of strings or as a URL to the remote
source.

• Finally, the options. As always, they’re provided as a hash of sorts,
and both autocompletion objects can make do with no custom
option; there are suitable defaults for everything.

The shared feature set and behavior is put in the base object for every-
thing autocomplete-related: Autocompleter.Base. You’ll probably never
need to use it in your code, even if you’re building a custom autocom-
pletion widget (you’ll more likely extend one of the specific objects).

Built-in Behaviors

Autocompleter.Base goes to great lengths to make it as easy as possible
on you by providing a lot of proper default behaviors. Note in particular
the following:

Automatic container configuration
You don’t need to do anything special to your container for auto-
completion choices. You’ll usually just put a <div> in the markup,
with an id= and, likely, a dedicated CSS class.

When you build your autocompletion object, this container will
automatically be hidden; when it’s time to display choices in it,
it will automatically be positioned absolutely if need be and then
aligned and resized below the text field (it will retain any height
you may have specified, however). It then fades in quickly (0.15").
When a choice is selected or the completion is aborted, it auto-
matically fades out just as fast.

In the same spirit, your text field’s autocomplete= attribute will be
turned off automatically to prevent conflict between the browser’s
native autocompletion feature and script.aculo.us’s.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=324

LOCAL AUTOCOMPLETION 325

Using the keyboard and mouse
Once a list of choices is displayed, it automatically reacts to the
keyboard and mouse to help you pick an option as easily as
possible:

• The Up and Down keys change the selected option (and wrap
at the limits of the list). Hovering the mouse over options auto-
matically changes the selected option to the one below the
cursor.

• Pressing Tab or Return , or clicking an option, confirms its
selection and completes the text field accordingly. The list is
then hidden.

• Pressing Esc or moving the focus away from the text field
cancels completion, hiding the list.

Options You’ll Get No Matter What

Whatever the source mode, you’ll always get at least the following three
options:

autoSelect

Determines whether to automatically accept the autocompletion
choice when it’s the only one. Defaults to false (indeed, in many
situations, this can be confusing to the user).

frequency

This option lets you specify the interval, in seconds, between two
attempts at autocompleting the input. It defaults to 0.4, which is
reasonably fast from a user’s standpoint.

minChars

Determines how many characters need to be typed before auto-
completion kicks in. This is useful when relying on a data source
that has so many values that choices would be too numerous
based on only a few characters. Still, it defaults to 1.

16.2 Local Autocompletion

Let’s start here with the simplest setup: a data source provided by a
JavaScript array in our own script. Create a directory for this, and
put the necessary JavaScript files in it—prototype.js and scriptaculous.js,
of course, but also effects.js and controls.js, which we will need for our
demonstration.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=325

LOCAL AUTOCOMPLETION 326

Our XHTML page is simple enough:

Download scriptaculous/autocomplete/local/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Local autocompletion</title>
<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript"
src="scriptaculous.js?load=effects,controls"></script>

<script type="text/javascript" src="demo.js"></script>
</head>

<body>

<h1>Local autocompletion</h1>

<form>

<p>

<label for="edtContact" accesskey="C">Contact</label>
<input type="text" id="edtContact" name="contact" />
<div id="contactChoices" class="autocomplete"></div>

</p>

</form>

</body>

</html>

Note how we just need to provide a bare-bones <div> as a container for
the choice list. We do provide a CSS class name for it, though, because
we plan to add custom styling later; for now, however, we don’t need
any special styling in demo.css.

On to the scripting:

Download scriptaculous/autocomplete/local/demo.js

var girls = [
'Anne-Julie Peschaud', 'Audrey Guillemenot', 'Aurore Jaballah',
'Clotilde Michel', 'Corinne Dillingham', 'Diane Mellini',
'Élodie Jaubert', 'Erin Odenweller', 'Jes "Canllaith" Hall',
'Laurie Fatoux', 'Sandrine Daspet', 'Serpil Uren',
'Valérie Savalle'

];

document.observe('dom:loaded', function() {
new Autocompleter.Local('edtContact', 'contactChoices', girls);

});

http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/local/index.html
http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/local/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=326

LOCAL AUTOCOMPLETION 327

Figure 16.1: Two autocompletions, no styling

There! No options, no fluff—just the input field, its completion con-
tainer, and the data source. The whole construction syntax is actually
as follows:

new Autocompleter.Local(field, container, dataSource [, options])

Let’s fire up our trusty browser and open the page. Figure 16.1 shows
various stages of completion as we type initials. You’ll notice that de
spite the matched typing being conveniently set apart with a

tag, the whole thing looks rather bare. The local completion process
builds a nice, semantically correct unordered list (), but the lack
of styling makes us look pretty dumb. So, let’s fix this:

Download scriptaculous/autocomplete/local/demo.css

h1 { font-size: 1.5em; }

div.autocomplete {
position: absolute;
width: 250px; /* will be adjusted by script.aculo.us */
background-color: white; border: 1px solid #888;
margin: 0px; padding: 0px;

}
div.autocomplete ul {

list-style-type: none; margin: 0px; padding: 0px;
}
div.autocomplete ul li.selected { background-color: #ff9;}
div.autocomplete ul li {

list-style-type: none; display: block;
font-family: sans-serif; font-size: smaller; color: #444;
margin: 0; padding: 0.1em; height: 1.5em; line-height: 1.5em;
cursor: pointer;

}

http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/local/demo.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=327

LOCAL AUTOCOMPLETION 328

Figure 16.2: Same views, with “standard” styling

A couple notes about this:

• The autocomplete class is not a mandatory name. You can use
whatever class name you like on the <div> element in your mark-
up (the element that will act as a container for your suggestions).

• On the other hand, the selected class is a “magic” name. script.-
aculo.us will apply this class automatically to the currently selec-
ted suggestion (and update this as the user moves the selection,
obviously).

Refresh the page and try again. It should look more like Figure 16.2.
That’s much better indeed!

Customizing Local Completion

The first thing you can adjust is the maximum amount of visible choices
(above which you’d have to scroll). It defaults to 10, but you can adjust
this with the choices option.

The focus of local-completion options is the completion algorithm itself.
By default, the search will be as follows:

• Partial: it searches for the typed text at the beginning of any word

in the completion choices. You can search only at the beginning of
the whole choice text by setting the partialSearch option to false.

Also note that partial search will trigger only once a given amount
of characters has been typed. This defaults to 2, which you can

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=328

LOCAL AUTOCOMPLETION 329

adjust with the partialChars option. Do not confuse partialChars

with minChars. The latter has precedence, given that no completion
whatsoever will trigger below its value. However, when the amount
of typed characters is greater than or equal to minChars but below
partialChars, you’ll get a nonpartial search (beginning of full-choice
text only).

• Prefix-only: only beginnings (of words or full texts) will be looked
up. It’s generally the better way, but should you want to search
anywhere in the choice text, set the fullSearch option to true.

• Case-insensitive, which you can change by setting the ignoreCase

option to false.

I should also mention that the actual completion algorithm is per-
formed by a method reference by the selector option. Such a method
gets passed the current Autocompleter.Local instance and is responsi-
ble for building the appropriate / markup and returning it.
The default value for this option implements all the options discussed
in this section, and you should generally not need to implement your
own.

Changing the List of Completions

Every so often, someone will pop up on the mailing list asking how they
can change the list of completions for a local autocompleter without
destroying it and constructing it anew.

There’s no official support for this, but so far the reference to your
JavaScript array has always been stored in an array option in the Auto-

completer.Local object. Changing this property to reference your new
array of choices does the trick:

var ac = new Autocompleter.Local('edtContact', 'contactChoices', girls);
// ...
// And when you'd want to switch to another list of choices:
ac.options.array = guys;

Once again, this is not officially supported, because array is not inten-
ded to be part of a “public” API, but it has been untouched since
the object first appeared in script.aculo.us and certainly works well
enough.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=329

GETTING AJAXY 330

16.3 Getting Ajaxy

The other data source mode available is, of course, Ajax, which lets
you get completion choices from a remote source (your server side).
The construction syntax is similar to the local variant, except the data
source is not specified as a JavaScript array anymore but as the URL
to your server-side completion logic:

new Ajax.Autocompleter(element, container, url [, options])

Your server side gets passed one parameter, which defaults to the input
field’s name= attribute and holds the typed characters. The server code
is then responsible for producing a list of completion choices using the
same format built internally by local completion: an unordered list of
choices, expressed as a element with its items.

Automatically Displaying an Indicator

Because we’re going through Ajax and having a round-trip to the server
side, completion might not be instantaneous. As always, letting the user
know processing is going on behind the scenes is a good idea. When
dealing manually with such objects as Ajax.Updater, we had to manually
show and hide an indicator element on our page from the onCreate and
onComplete callbacks. This indicator element was usually an

somewhere, holding a spinner or progress bar of some sort.

Autocompleter.Base acknowledges this common need with a custom
indicator option that holds the DOM reference or ID of our indicator ele-
ment and will automatically show and hide it appropriately. The option
is originally undefined, and whenever it is false-equivalent, it is simply
ignored. It’s available to all autocompleters, but local completion rarely
needs it, being usually fast enough. . . .

A First Example

Let’s work up a simple Ajax example. We’ll need all the stuff from our
local demo, but we’ll adjust the web page’s title and heading and the
demo script. The new web page says this:

Download scriptaculous/autocomplete/ajax/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>AJAX autocompletion</title>

http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/ajax/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=330

GETTING AJAXY 331

<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript"
src="scriptaculous.js?load=effects,controls"></script>

<script type="text/javascript" src="demo.js"></script>
</head>

<body>

<h1>AJAX autocompletion</h1>

<form>

<p>

<label for="edtLibName" accesskey="L">Ruby library</label>
<input type="text" id="edtLibName" name="libName" />
<div id="libChoices" class="autocomplete"></div>

</p>

</form>

</body>

</html>

And the script simply goes like this:

Download scriptaculous/autocomplete/ajax/demo.js

document.observe('dom:loaded', function() {
new Ajax.Autocompleter('edtLibName', 'libChoices', '/completions');

});

Now we need a server side to access this page and serve the data source
URL (/completions). As always, we’ll get by with a short Ruby script. To
give it some appeal, I suggest we have it complete on all installed Ruby
libraries:

Download scriptaculous/autocomplete/ajax/server.rb

Line 1 #! /usr/bin/env ruby
-

- require 'cgi'
- require 'erb'
5 require 'webrick'
- include WEBrick
-

- template_text = File.read('suggestions.rhtml')
- suggestions = ERB.new(template_text)

10

- server = HTTPServer.new(:Port => 8042)
- server.mount('/', HTTPServlet::FileHandler, '.')
-

- server.mount_proc('/completions') do |request, response|
15 name_start = request.query['libName']

- suffix = "/#{Regexp.escape(name_start)}*.rb"

http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/ajax/demo.js
/completions
http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/ajax/server.rb
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=331

GETTING AJAXY 332

- libs = $LOAD_PATH.map { |dir|
- Dir.glob(dir + suffix, File::FNM_CASEFOLD).map { |f|
- File.basename(f, '.rb')

20 }
- }.flatten.sort.uniq
- response['Content-Type'] = 'text/html'
- response.body = suggestions.result(binding)
- end

25

- trap('INT') { server.shutdown }
-

- server.start

For the non-Rubyists among you, this code probably calls for a few
explanations:

• The escaping on line 16 lets us type any character that would hold
a special meaning for filename globbing (such as ? or *) without
messing up the file searching algorithm.

• In Ruby, the $LOAD_PATH variable (used on line 17) holds all the
directories in the file system where Ruby libraries are known to be
found. We’ll take each such directory and produce a list of libraries
based on the Ruby files each contains.

• The per-directory file search actually happens on line 18, with the
Dir.glob() method. It produces a list of filenames, which our map()
strips of their directory and extension, leaving only the base library
name.

• In the end we get an array of arrays of strings, which we want to
turn into a flat, sorted array with no duplicates. That’s what the
chained calls on line 21 do.

This is one of these small code pieces that makes me love Ruby. If you’re
a Java, .NET, or PHP person (just to name a few prevalent technologies),
just compare it to the equivalent code in your language. . . . I mean, this
is expressive (that is, both concise and very readable)!

The suggestions.rhtml template file is rather concise, too:

Download scriptaculous/autocomplete/ajax/suggestions.rhtml

<% libs.each do |lib| %>
<%= lib %>

<% end %>

Time to try it. Shut down any running server script you may still have,
and run this one (the usual ruby server.rb command line). Then navigate

http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/ajax/suggestions.rhtml
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=332

GETTING AJAXY 333

Figure 16.3: Ajax completion over Ruby libraries

to http://localhost:8042/, and type a letter. You’ll get something like the
results in Figure 16.3.

I’ll let you play around a bit with all of the alphabet. I know, you can’t
help it; I know the libraries, and I still couldn’t refrain from trying it out
myself.

Customizing the Request Parameters

You can specify a method option for the underlying Ajax.Request object.
It does default to ’post’, as usual, but you may want to make that a
’get’. After all, you’re only fetching data.

You can tweak the parameters sent to the server side in a variety of
ways:

• A single parameter contains the currently typed text; its name
defaults to the input field’s name= attribute. You can change this
parameter’s name with the paramName option.

• If you want to dynamically craft the passed parameters, you can
provide a callback method with the callback (ahem) option. It will
get passed both the input field and the current parameter text. It
returns the new parameter text (properly encoded, like any query
string in a URL).

• You can specify static parameters to be passed no matter what
(cumulative to the result of a potential callback result) with the
parameters option, which must be a properly encoded query string
fragment.

http://localhost:8042/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=333

USING RICH-MARKUP CHOICES 334

For instance, here’s a call that would pass a dynamic timestamp and a
couple static extra parameters to the default parameter:

new Ajax.Autocompleter('edtLibName', 'libChoices', '/completions', {
method: 'get',
parameters: 'static1=value1',
callback: function(editor, paramText) {

return paramText + '&stamp=' + new Date().getTime();
}

});

Assuming an input field with name="libName", completion on typing
“ab” would issue a request URL something like the following:

GET /completions?libName=ab&stamp=1178039580757&static1=value1

As you can see, you can tailor the underlying request to your needs
with no hassle.

16.4 Using Rich-Markup Choices

So far we’ve stayed basic in our content model. Our options used only
raw text within the confines of their element. Often enough, how-
ever, we’ll want to provide the user with more than just one text; addi-
tional details could be useful, such as images, dates, and whatnot.

The trouble is, autocompletion will collect all text nodes within the
selected . As an example, the following markup:

Élodie Jaubert

Heritage consultant

. . . would produce the completion text “Élodie JaubertHeritage consul-
tant.” Damn. What is a web developer to do? Well, you have two options
to deal with rich contents in your list items.

The first option is that you can embrace conventions and mark any
accessory text with the CSS class informal. Any element with this class
will automatically get ignored. The previous markup could be adjusted
easily:

Élodie Jaubert

Heritage consultant

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=334

AUTOCOMPLETING MULTIPLE VALUES IN ONE FIELD 335

That was easy. However, this quickly gets ugly when your content model
gets rich enough. All elements but the one with your intended comple-
tion text are marked with this CSS class, which feels bloated. So, you
can turn the idea on its head and specify a CSS class to identify the
elements you want to include. This is done with the select option. The
markup could go like this:

Élodie Jaubert
<div class="job">Heritage consultant</div>
<div class="email">heritage@example.com</div>
<div class="cell">Cell: (478) 555-1234</div>

The autocompleter construction would then just need to state (here for
Ajax completion) the following:

new Ajax.Autocompleter('edtContact', 'contactChoices', '/completions', {
select: 'contactName'

});

We’ll go through a combined example in a moment.

Note that both ways of selecting completion contents are mutually ex-
clusive. If you specify a select option, informal classes won’t be taken
into account, and the elements they tag will still be included if within a
selected container element. For instance, with the previous completion
constructor call, the following markup:

<div class="contactName">
Élodie Jaubert
 Oops!

</div>

. . . would indeed produce “Élodie Jaubert Oops!”

16.5 Autocompleting Multiple Values in One Field

Autocompleting needs not be restricted to only one value per field. You
may very well let the user type multiple values, usually separated by
one or more characters among a predefined list of separators (for exam-
ple, commas, spaces, or line breaks). Perhaps you’re offering to free-
type a list of tags for an article or image or want to help with the typing
of keywords for a search.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=335

AUTOCOMPLETING MULTIPLE VALUES IN ONE FIELD 336

The option that lets you deal with this is tokens. You just need to set it
to an array of delimiter characters, and the completion mechanism will
automatically work with the latest token (text part)—either the only one
or the one past the latest delimiter. It’s especially useful when you’re
working with a multiple-line field and want to work on a per-line basis,
because you need to put only the newline character (’\n’) in the allowed
separators.

tokens defaults to an empty array, effectively disabling the multiple-
value mode. If you need only one delimiter character, you can set it to
a single string; you don’t have to bother with a single-element array.

Let’s adapt our Ajax completion example to use a few more options,
including tokens. We’ll adjust our web page to use a multiline input
field, that is, a <textarea>:

Download scriptaculous/autocomplete/advanced/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Advanced autocompletion</title>
<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript"
src="scriptaculous.js?load=effects,controls"></script>

<script type="text/javascript" src="demo.js"></script>
</head>

<body>

<h1>Advanced autocompletion</h1>

<form>

<p>

<label for="edtLibNames" accesskey="L">Ruby libraries</label>

<textarea type="text" id="edtLibNames" name="libNames"></textarea>
<div id="libChoices" class="autocomplete"></div>

</p>

</form>

</body>

</html>

Notice that we adjusted the id= and name= attributes accordingly. On
the server side, we’d like to provide richer content, with not only library
names but, for each one, its last modification time and its file size in
bytes. To store all these data, we’ll create a simple LibInfo class and use

http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/advanced/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=336

AUTOCOMPLETING MULTIPLE VALUES IN ONE FIELD 337

its constructor to extract all the necessary information from the original
File object:

Download scriptaculous/autocomplete/advanced/server.rb

Line 1 #! /usr/bin/env ruby
-

- require 'cgi'
- require 'erb'
5 require 'webrick'
- include WEBrick
-

- class LibInfo
- attr_reader :name, :mtime, :size

10

- def initialize(name)
- @name = File.basename(name, '.rb')
- @mtime = File.mtime(name)
- @size = File.size(name)

15 end

-

- def <=>(other)
- self.name <=> other.name
- end

20 end

-

- template_text = File.read('suggestions.rhtml')
- suggestions = ERB.new(template_text)
-

25 server = HTTPServer.new(:Port => 8042)
- server.mount('/', HTTPServlet::FileHandler, '.')
-

- server.mount_proc('/completions') do |request, response|
- name_start = request.query['libName']

30 suffix = "/#{Regexp.escape(name_start)}*.rb"
- libs = $LOAD_PATH.map { |dir|
- Dir.glob(dir + suffix, File::FNM_CASEFOLD).map { |f| LibInfo.new(f) }
- }.flatten.sort.uniq
- response['Content-Type'] = 'text/html'

35 response.body = suggestions.result(binding)
- end

-

- trap('INT') { server.shutdown }
-

40 server.start

The <=>() method on line 17 is probably very weird-looking to the non-
Rubyists among you. We call it the “Tie Fighter” operator. It’s used for
sorting, as a comparator between two LibInfo objects. It simply makes
sure they’re sorted by name. On line 32, notice that we simply map
every File object we get to a new LibInfo object.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/advanced/server.rb
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=337

AUTOCOMPLETING MULTIPLE VALUES IN ONE FIELD 338

The new suggestions template is adjusted accordingly:

Download scriptaculous/autocomplete/advanced/suggestions.rhtml

<% libs.each do |lib| %>

<div class="libName"><%= lib.name %></div>
<div class="libMTime"><%= lib.mtime.strftime(

'%m/%d/%Y %H:%M:%S') %></div>
<div class="libSize"><%= lib.size %> bytes</div>

<% end %>

We rely on the usual strftime() method (well known to C and PHP devel-
opers, for instance) to format the modification time. Of course, these
new CSS classes call for custom styling, and the container needs
a bit of revamping to comfortably host this extra information:

Download scriptaculous/autocomplete/advanced/demo.css

h1 { font-size: 1.5em; }

div.autocomplete {
position: absolute;
width: 250px; /* will be adjusted by script.aculo.us */
background-color: white; border: 1px solid #888;
margin: 0px; padding: 0px;

}
div.autocomplete ul {

list-style-type: none; margin: 0px; padding: 0px;
}
div.autocomplete ul li.selected { background-color: #ff9;}
div.autocomplete ul li {

list-style-type: none; display: block;
font-family: sans-serif; font-size: smaller; color: #444;
margin: 0; padding: 0.1em; height: 3.5em;
cursor: pointer;

}
#edtLibNames {

border: 0.1em solid gray; padding: 0.1em; height: 4em;
}
div.libMTime, div.libSize {

font-size: 80%;
color: #444;

}

div.libMTime {
margin: 0.2ex 0 0 2ex;

}

http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/advanced/suggestions.rhtml
http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/advanced/demo.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=338

REACTING TO COMPLETION WITH CALLBACKS 339

div.libName {
font-weight: bold;

}

div.libSize {
margin: 0 0 0.5em 2ex;

}

Finally, we need to adjust our Ajax.Autocompleter call to make use of
these new options. It’s still fairly concise:

Download scriptaculous/autocomplete/advanced/demo.js

document.observe('dom:loaded', function() {
new Ajax.Autocompleter('edtLibNames', 'libChoices', '/completions', {

method: 'get', paramName: 'libName',
tokens: [',', '\n'], select: 'libName'

});
});

Notice that this time, we make a cleaner use of HTTP methods by using
a GET, which is more appropriate to data fetching. Because our input
field’s original name (its name= attribute) is now a plural, but we’re
completing a single name, we also override the parameter name used
in the Ajax completion calls.

To allow multiple values both on a per-line basis and on the same
line (by using commas), we define a two-element tokens option. And
to only use the library’s name (not its details) for the completion, we
specify a CSS class name for the content fragment holding the data
we’re interested in.

Well, how about testing it? Stop any running server script, run this one,
load it up with no cache in your browser (still http://localhost:8042/), and
start typing values, accepting completions, going multiline, or using
commas. . . . In the end, you should get results like the montage in
Figure 16.4, on the next page.

16.6 Reacting to Completion with Callbacks

Autocompleters come with a few callbacks that let you customize how
the completion list is revealed or hidden, get notified once a comple-
tion gets used, or even replace the standard text extraction mechanism
when a completion is selected.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/autocomplete/advanced/demo.js
http://localhost:8042/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=339

REACTING TO COMPLETION WITH CALLBACKS 340

Figure 16.4: Advanced completion: tokens and rich contents

Here’s a quick rundown, in chronological (triggering) order:

onShow

In charge of positioning and revealing the choice list. You should
rarely need to change it. The default behavior positions the com-
pletion container under the input field, aligns its width, and makes
it fade in pretty fast (0.15") with a Effect.Appear. This takes two
arguments: the input field and the completion container (the two
first arguments you passed at construction time).

updateElement

In charge of reacting to a completion choice being accepted in
order to actually complete the input field’s value. This is very sel-
dom overridden, because it replaces the default behavior, which
is responsible for a hell of a lot—dealing with richly structured
contents (the informal class and the select option), handling tok-
enization (tokens option), actually updating the input field’s value,
and eventually calling the afterUpdateElement callback.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=340

REACTING TO COMPLETION WITH CALLBACKS 341

If you define this, you’re very much on your own. Most options
and behaviors are dealt with by the default processing, which your
callback replaces entirely. You would get only one argument: the
accepted element (but you would run bound to the auto-
completer object, so you could access, say, this.options and this.

element).

In short, be careful with this!

afterUpdateElement

Undoubtedly the most-often used callback. It is triggered by the
default updateElement behavior once the value was completed by
an accepted choice. It takes two arguments: the input field and the
accepted element. This is what lets you react to completions
in the easiest manner.

onHide

In charge of taking the choice list away. Just like onShow, it’s
rarely overridden. The default behavior just fades out in 0.15 sec-
ond. It takes the same arguments as onShow.

What We Just Learned

Providing dynamic completion of text input, be it from a page-local or,
more often, remote data source through Ajax, is a breeze with script.-
aculo.us. Our completion items can be content-rich, and we can hook
onto the completion extraction process when an item is picked so as
to complete more than just the visible editor. Use cases for completion-
assisted input are numerous and sometimes unexpected. Be on the
lookout for situations where they can help your users!

Here’s a quick recap:

• The most common form of autocompletion is through Ajax, thanks
to Ajax.Autocompleter. However, a local variant, based on Java-
Script arrays embedded in our code, is also possible.

• We can easily tune when and how the completion process triggers
by adjusting a few options, such as minChars and frequency.

• Ajax-based completion requires a / structure as a re-
sponse, but the contents of the list items can be as rich as we
need. Options let us easily extract only part of the selected item
for the actual text completion.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=341

REACTING TO COMPLETION WITH CALLBACKS 342

• Callbacks let us augment the basic completion process. For exam-
ple, we can grab hidden data from the selected element to populate
both visual and hidden form fields.

• It is possible to complete not just one but multiple values in a
single field, thanks to the tokens option.

Neuron Workout

Time to think harder!

• When is it more practical to rely on the informal CSS class as
opposed to specifying a select option?

• What situations can you see where local completion is a good fit?

• How could we tweak an Ajax.Autocompleter call so that it can deal
with a resultset that is not a / structure? For example,
how could we complete based on an Atom feed or an XML export
of a MySQL schema?

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=342

Chapter 17

Building DOM Fragments
the Easy Way: Builder

Frequently, you need to inject some new content into your page’s docu-
ment. Depending on the complexity of the content and potential brow-
ser quirks, you’ll choose between three ways to do this:

• If producing the markup text for your contents is easy enough,
you’ll usually want to go with Element extension methods such
as insert(), replace(), or update(). We covered these back in Sec-
tion 7.2, Replacing vs. Inserting, on page 156.

However, because such methods internally rely (most of the time)
on the innerHTML property, which is currently not quite standard-
ized/normative and has a few issues on Firefox (prior to version
2, if I’m not mistaken), you may hit browser inconsistencies once
in a while (especially when dealing with <select> and <option> in
my humble experience). In some cases, you may also find it easier
(or more natural) to manually build the DOM elements instead of
composing XHTML markup.

• When manual element construction is what you’re going for,
simple needs can be addressed by the new Element(...) syntax we
discussed in Section 7.2, Lightweight DOM Element Creation, on
page 156. Unfortunately, this facility currently will not let you
specify text or nested elements as content for the element you
are creating. You are limited to the element’s tag name and its
attribute list.

BUILDING EXPLICITLY 344

• That leaves us with a large array of use cases, where we need to
create actual DOM trees (or just hit a snag with innerHTML-based
ways and need to revert to good ol’ DOM interfaces under the
hood).

This is what Builder is for.

It lets you quickly specify the construction of DOM fragments, to
any depth and degree of complexity you’d need, with a rather con-
cise, expressive syntax.

You’ll need the builder.js module. So, your script.aculo.us loading will
look, at minimum, like this:

<script type="text/javascript" src="builder.js"></script>

17.1 Building Explicitly

Let’s start with the fundamental building block: Builder.node(). You can
call it in a variety of ways, but using a single statement block requires
some thinking to decipher it, so I’ll use one line per variant:

Builder.node(tagName) → Element
Builder.node(tagName, attributes) → Element
Builder.node(tagName, text | child | [child, ...]) → Element
Builder.node(tagName, attributes, text | child | [child, ...]) → Element

Starting Easy: Just One Element

This is the safest way and lets you explicitly specify every tag name,
attribute, and parent-child relationship. You always start by passing a
tag name. If you stop there, you’ll get a rather raw element, but this is,
in many subtle ways, superior to the usual document.createElement()
call you would normally do with the DOM. Indeed, there are stealthy
bugs across browsers when you attempt to create, out of the blue, cer-
tain HTML elements this way.

Builder.node() tries a variety of approaches, based on the innerHTML

property and synthetic parent nodes, using document.createElement()
only as a fallback. This results in maximum portability, with one excep-
tion. In Firefox prior to version 1.5, you will not be able to create
<optgroup> and <option> elements this way, because of an acknowl-
edged Firefox bug. But then, Firefox users usually have at least version
1.5. . . .

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=344

BUILDING EXPLICITLY 345

Of course, Builder.node() does not stop at the tag name but lets you
specify attributes, simple text as element contents, or one or more chil-
dren elements (which can, naturally, be Builder.node() calls themselves).

Attributes are provided as a hash, usually an anonymous object. When
the property name is a JavaScript reserved word (two cases come to
mind: class= and for=), you will have to use the DOM property name
instead (respectively className and htmlFor). Otherwise, use the attri-
bute names in the case mandated by your document’s DTD (for exam-
ple, lowercase for XHTML). There are a number of issues with native
attribute manipulation, which are smoothed over, once again, by the
method’s algorithm.

With attributes available, Builder.node() is already way more interest-
ing than document.createElement(), which does not support shorthand
attribute creation in its official syntax. Here are a few example calls:

Builder.node('a', { href: 'http://script.aculo.us' })
Builder.node('label', { htmlFor: 'edtLogin', accesskey: 'L' })
Builder.node('p', { className: 'intro' })

When you create a nonempty element that has a textual content, you
just need to pass the text as the last argument:

// Text child
Builder.node('h1', 'Builder rules')
// Attributes, text child
Builder.node('a', { href: 'http://prototypejs.org' }, 'Prototype!')

Elements Within Elements

Textual contents are nice, but you may very well want to quickly create
a small DOM fragment, with nested elements and all. If there’s only one
child node, just pass it directly, be it text or another element; if there
are many, pass an array. A few examples will be clearer than further
explanations, I guess:

// Element child
Builder.node('h1', Builder.node('code', 'Builder'))
// Multiple children
Builder.node('h1', [Builder.node('code', 'Builder'), ' rules'])
// Attributes, element child
Builder.node('p', { className: 'submission' },

Builder.node('input', { type: 'submit', value: 'Sign in' }))
// Attributes, multiple children
Builder.node('a',

{ href: 'http://prototypejs.org/api/ajax/update' },
[Builder.node('code', 'Ajax.Updater'), ' documentation'])

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=345

BUILDING EXPLICITLY 346

In the source code archive for this book, you’ll find a demo page that
lets you dynamically try all these example calls. You’ll find it in the
code/scriptaculous/builder directory in the archive. By using a DOM
inspector such as Firebug’s, you’ll be able to inspect the DOM for the
resulting elements easily enough.

Method Dumping: Still Explicit, But Shorter

If you feel like shortening your code and if your personal sense of code
aesthetics tolerates it, you can equip any object, including the global
scope (that is, the window object) with convenience methods for just
about every XHTML tag. These convenience methods are really just
wrappers around Builder.node(), with the first argument prefilled.

For instance, instead of doing this:

Builder.node('h1', Builder.node('code', 'Builder'))

. . . you would do this:

H1(CODE('Builder'))

In the same vein, the following snippet:

Builder.node('h1', [Builder.node('code', 'Builder'), ' rules'])

. . . would become this:

H1([CODE('Builder'), ' rules'])

As a final example, the two following calls:

Builder.node('p', { className: 'submission' },
Builder.node('input', { type: 'submit', value: 'Sign in' }))

Builder.node('a',
{ href: 'http://prototypejs.org/api/ajax/update' },
[Builder.node('code', 'Ajax.Updater'), ' documentation'])

. . . would be turned into this:

P({ className: 'submission' }, INPUT({ type: 'submit',
value: 'Sign in'}))

A({ href: 'http://prototypejs.org/api/ajax/update' },
[CODE('Ajax.Updater'), 'documentation'])

So, how do we achieve this? Simply by calling Builder.dump()—just once,
at some point before we start using these shortcuts. The method takes
an optional scope argument:

Builder.build([scope = window])

So, calling it with no argument sprinkles the global scope with those
uppercase methods. Uppercase was chosen so the risk of conflict with

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=346

USING AN (X)HTML REPRESENTATION 347

existing methods would be lower; indeed, if a method exists in the scope
with one of the “dumped” names, it will be overridden by the node-
building one.

But you can refrain from polluting the global namespace and still gain
some concision by using an object of your choice as the namespace.
Just look at the following code:

var B = {}
Builder.dump(B);
B.H1(B.CODE('Builder'))

When using dump(), I certainly prefer this way. . . . You can even simply
alias to Builder so as to keep a uniform interface:

var B = Builder;
Builder.dump(B);
B.H1('Builder') // <=> B.node('h1', 'Builder')

17.2 Using an (X)HTML Representation

I personally like the structured way of Builder.node(), which is retained
by the shortcuts you can get through Builder.dump(), but sometimes the
fragment you’re looking to build is way shorter to express using XHTML
syntax. For instance, consider the following simple fragment:

<h1 id="intro">Introduction to the <code>Builder</code> object</h1>

Then look at its building, either with node() or convenience methods:

Builder.node('h1', { id: 'intro' }, [
'Introduction to the ', Builder.node('code', 'Builder'), ' object'])

// or...
H1({ id: 'intro' }, ['Introduction to the ', CODE('Builder'), ' object'])

Sure, anyone can argue about the relative merits of each variant, but
when you do find yourself needing—or wanting—to work based on an
XHTML fragment, you can use Builder.build():

Builder.build(html) → Element

There’s one gotcha: the fragment you pass must use an overall con-
tainer element. If it has many top-level elements, you’ll get only the
first one. Here’s an example:

// Single container element: OK
Builder.build(

'<h1 id="intro">Introduction to the <code>Builder</code> object</h1>')
// Multiple top-level elements: woops! We'll only get the <h1> back!
Builder.build('<h1>Intro</h1><p>So the story goes…</p>')

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=347

USING AN (X)HTML REPRESENTATION 348

Builder.build() works very much like Element.update(), which we dis-
cussed on page 139, except it doesn’t need an element to work inside
of. Indeed, it does entirely rely on Element.update(), which it uses on
a temporary <div> it creates outside the page’s DOM. So, whatever
Element.update() can deal with, Builder.build() can.

Wow, after the power tools we covered in the previous chapters, this one
was quick enough to walk through. Refreshing, wouldn’t you say? Just
the right length for a public-transport commute. . . . The next chapter
is about in-place editing, which lets us take just about any text on our
pages, edit it on the fly, and save it through Ajax. It’s so Web 2.0!

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=348

Chapter 18

In-Place Editing
18.1 What’s In-Place Editing Exactly?

In-place editing is about taking noneditable content, such as a <p>,
<h1>, or <div>, and letting the user edit its contents by simply clicking
it. This turns the static element into an editable zone (either single-
line or multiline) and pops up submit and cancel buttons (or links,
depending on your options) for the user to commit or roll back the
modification. It then synchronizes the edit on the server side through
Ajax and makes the element noneditable again.

In-place editing is one of the hallmarks of Web 2.0–style applications,
which aim to make the user more and more participative in the contents
and reduce the barrier to contribution and writing. You could use it for
customizing the title of a per-user portal page, editing “notes” sprinkled
throughout the screen space by the user, and so on.

What script.aculo.us Brings to the Table

Two classes focus on in-place editing: Ajax.InPlaceEditor and Ajax.

InPlaceCollectionEditor. The former one is the most commonly used and
relies on free-typing text fields for content modification. The latter one,
which specializes the former, limits the options by using a drop-down
list from which our users can pick the value they want.

As their names imply, both use Ajax to synchronize the new content
on the server. Both come with a wealth of options that give you fine-
grained control over the look and feel of the resulting UI. We’ll tackle
these capabilities by theme in the following sections.

WHAT’S IN-PLACE EDITING EXACTLY? 350

Careful About Versions: Code Refactoring

In version 1.8, the two classes responsible for in-place edit-
ing underwent massive refactoring, and their public API
changed a bit, especially where available options and call-
backs are concerned.

The former code was mostly a third-party contribution, which
so far had worked well enough. Unfortunately, the code
had then grown organically and had not kept very well in
sync with new, better Prototypish ways. It had become a
rather haphazard collection of methods with more than a
few inconsistencies and odd behaviors under specific cir-
cumstances. Hence, it was refactored; it was close to a full
rewrite.

Step by Step with In-Place Editors

Before diving in with examples and the numerous features, I think it’s
better if we take a moment to stand back and get the big picture. Here’s
a surface rundown on the successive stages of an in-place editor’s life:

1. First, you make an element in-place editable. As always with
script.aculo.us, it’s the job of a single call, in our case the con-
struction of the proper wrapper object based on the relevant ele-
ment.

2. From then on, when users hover over our element with the mouse,
a few features mark this element as in-place editable. All of these
are customizable to your needs, but here are the defaults:

• Hovering in immediately highlights the element.

• Lingering will display the element’s title= in a tooltip, which is
set by default to Click to edit.

• Hovering out dehighlights with a quick fade-out (aesthetics,
my friend, aesthetics. . .).

3. Clicking the element enters edit mode. A proper <form> is created
on the fly, with an appropriate editor UI (for example, a single-line
text field, a drop-down list of possible choices, submission and
cancellation buttons or links, and so on). Although rarely used,
an option exists to bind click and hovering listeners to another
element instead of the content-containing element, if you want to
dissociate them.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=350

WHAT’S IN-PLACE EDITING EXACTLY? 351

If you use an alternate form of the contents on the server side and
just generate its XHTML representation to produce this content,
you can elect to load the “source” text through Ajax and have the
user edit this original content (for example, Textile1 or Markdown2

text instead of actual XHTML).

4. Editing takes place. In regular mode, hitting Return (on single-
line editors) or triggering the submission control (button or link)
commits it; conversely, hitting Esc or triggering the cancellation
control reverts it.

However, you may elect not to have any OK/cancel controls. Sub-
mitting takes place when hitting Return or getting out of the field
(for example, by clicking elsewhere or hitting Tab), and reverting is
still bound to Esc . This is a popular behavior, because it unclut-
ters the editing area.

5. If the editing is canceled, the original content is restored. If it’s
committed, the editing UI goes away and is replaced by a message
stating that the modification is being saved; when the modification
is saved, the original element reappears, with updated content. If
you used an alternate syntax for the edited content, the server
will have sent the XHTML conversion for your static element to
use instead of the “source” text.

6. The element undergoes a quick highlight effect to state its recent
modification.

We’ll explore these steps, and the various options and callbacks avail-
able for our customizing pleasure, in the following sections.

Using in-Place Editors in Our Code

You’ll need the controls.js module, which also contains, as you’ll no
doubt recall, the autocompletion stuff. Because default behaviors for
in-place editing heavily rely on the Effect.Highlight object, you’ll also
need to include effects.js. So your script.aculo.us loading will look, at
minimum, like this:

<script type="text/javascript"
src="scriptaculous.js?load=effects,controls"></script>

1. http://www.textism.com/tools/textile/

2. http://daringfireball.net/projects/markdown/

http://www.textism.com/tools/textile/
http://daringfireball.net/projects/markdown/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=351

A SIMPLE EXAMPLE 352

18.2 A Simple Example

It’s time we start playing with this. We’ll need the usual files: Prototype,
the required script.aculo.us modules and the loader, and our custom
CSS and JavaScript files. Because we are talking about in-place editing,
that means we expect the user to be able to modify content that will
later be served again. So, we’ll use template files and serve our demo
page dynamically, instead of with a static index.html file.

For starters, here is our template file, index.rhtml:

Download scriptaculous/ipe/simple/index.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Simple in-place editing</title>
<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript"
src="scriptaculous.js?load=effects,controls"></script>

<script type="text/javascript" src="demo.js"></script>
</head>

<body>

<h1>Simple in-place editing</h1>

<p id="freeZone"><%= editableHTML %></p>

</body>

</html>

The CSS could just as well be missing, because it retains only our usual
<h1> downplay:

Download scriptaculous/ipe/simple/demo.css

h1 { font-size: 1.5em; }

We’ll go with all the defaults here, so activating in-place editing will be
extremely concise:

Download scriptaculous/ipe/simple/demo.js

document.observe('dom:loaded', function() {
new Ajax.InPlaceEditor('freeZone', '/update');

});

Neat, isn’t it? It’s short and to the point. The constructor syntax is
actually the following:

new Ajax.InPlaceEditor(element, url [, options])

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/simple/index.rhtml
http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/simple/demo.css
http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/simple/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=352

A SIMPLE EXAMPLE 353

. . . but we don’t use any options yet. The final piece for our puzzle is
the server script, of course. Here it is:
Download scriptaculous/ipe/simple/server.rb

Line 1 #! /usr/bin/env ruby
-

- require 'cgi'
- require 'erb'
5 require 'webrick'
- include WEBrick
-

- template_text = File.read('index.rhtml')
- template = ERB.new(template_text)

10

- server = HTTPServer.new(:Port => 8042)
- server.mount('/', HTTPServlet::FileHandler, '.')
-

- editableHTML =
15 'Click here to edit with <code>Ajax.InPlaceEditor</code>…'

-

- server.mount_proc('/home') do |request, response|
- response['Content-Type'] = 'text/html'
- response.body = template.result(binding)

20 end

-

- server.mount_proc('/update') do |request, response|
- editableHTML = request.query['value']
- response.body = editableHTML

25 end

-

- trap('INT') { server.shutdown }
-

- server.start

Note the default content, on line 15. More important, note the code
on line 24. This round-trip is a bit overkill here, because we do not
use any alternative syntax for the content, and the client side could go
with the raw content typed in by the user. But we went with all the
defaults, which assume the server will return the final content. After
all, even with no alternative syntax, we could very well strip specific
tags, or limit the length, or whatever. It’s your code on the server. You
can implement whatever validation logic you want!

Now that we have everything in place, kill any running example server
you may still have around, and run this the usual way (ruby server.rb).
Figure 18.1, on the next page, is a montage of the successive stages in
using our simple in-place editor: basic, hovering, editing, and edited.
You won’t notice the “saving” stage because we’re running against a
local server that, not doing anything long, responds too fast for this
step to linger at all.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/simple/server.rb
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=353

HOW CAN WE TWEAK THE AJAX PERSISTENCE? 354

Figure 18.1: Simple in-place editing in action

18.3 How Can We Tweak the Ajax Persistence?

First, we need to know what the defaults are. Basically, we rely on a call
to Ajax.Updater, with our element as the success container, no specific
Ajax options (so all the defaults of Ajax.Updater apply; for instance, we’re
using asynchronous post), and two parameters: a value parameter with
our editable field’s value and an editorId parameter with the id= of our
original element (unless it doesn’t have any, in which case this second
parameter is absent).

We can customize quite a handful of things here:

• We can change the name of the parameter holding the field’s value
using the paramName option (defaults to ’value’).

• We can change the whole series of parameters (except for the edi-

torId one, which is handled internally) by replacing the default call-

back, er, callback, with our own. The default one simply goes like
this:
function(form) {

return Form.serialize(form);
}

We can provide our own logic. It will actually be passed two argu-
ments: the synthesized <form> element and the editable field’s
value (as retrieved by the $F() method, which we discussed on
page 49). Using this, you could add any extra parameters you
need, transform the passed value, and so on.

• You can provide any options you want for the Ajax call with the
ajaxOptions option, which defaults to the following simple set:
{evalScripts: true}.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=354

CUSTOMIZING THE APPEARANCE 355

• Finally, you can tell the in-place editing mechanism that the server
won’t return a finalized markup by setting the htmlResponse option
to false (defaults to true). The system will then revert to using an
Ajax.Request object, which can still autoevaluate JavaScript-typed
results (see Section 9.2, Other Things Our Ajax.Request Can Do,
on page 205 for more details on this). More generally, you can
pass your own callbacks (for example, onComplete to deal with
any response text you’d send). Such a callback must be specified
at the regular options level, not in ajaxOptions.

18.4 Customizing the Appearance

There’s a lot you can do to tailor the appearance of in-place editors to
your needs: buttons or links (or none!), additional texts, styling, exter-
nal controls, and callbacks that let you add custom logic, including
visual effects, to various stages of the editor’s life cycle.

Buttons vs. Links

As you noticed, by default, you get an OK button and a cancel link.
This is the original choice, made back when the dinosaurs still roamed
the earth. You can customize this in a variety of ways:

• The okControl and cancelControl options each can take three val-
ues: ’button’, ’link’, and false. The latter choice removes the respec-
tive widget, pure and simple. Respective defaults are, obviously
enough, ’button’ and ’link’.

• You can change the text of the buttons or links with the okText and
cancelText options, which default to ’ok’ and ’cancel’, respectively.

• You can go bare and strip both controls, which leaves you with
the keyboard hooks on Return and Esc . This alone, however,
is a risky choice, because plenty of users may not hit any of
these keys. So, you can make sure the modification is commit-
ted as soon as the focus leaves the editable field (for example, our
user clicks elsewhere). Simply set the submitOnBlur option to true

(defaults to false). Of course, if this option is enabled, OK/cancel
controls become entirely useless; clicking them would first cause
a focus loss, which would immediately trigger submission of the
new content anyway.

We’ll see variants based on these options, and a few more, in the fol-
lowing section.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=355

CUSTOMIZING THE APPEARANCE 356

Additional Text

In addition to adjusting how submission and cancellation are triggered,
you can insert custom text before, between, and after the OK and cancel
controls:

• textBeforeControls appears before the first visible control.

• textBetweenControls appears between the OK and cancel controls,
but only if both are visible.

• textAfterControls appears after the last visible control.

All three options default to the empty string.

As long as we’re talking about text-related options, you can customize
the tooltip displayed when the mouse lingers over the static element.
Just change the value of the clickToEditText option, which defaults to
Click to edit.

Finally, you can change the text that appears, however briefly, while
the new content is being saved through Ajax. Use the savingText option
for this, which defaults to Saving....

Let’s test a fair number of these options to see what the results look
like. We’ll have a number of editors here, so we need to adjust our
server script in order to maintain not one, but multiple, contents:

Download scriptaculous/ipe/variants/server.rb

#! /usr/bin/env ruby

require 'cgi'
require 'erb'
require 'webrick'
include WEBrick

template_text = File.read('index.rhtml')
template = ERB.new(template_text)

server = HTTPServer.new(:Port => 8042)
server.mount('/', HTTPServlet::FileHandler, '.')

editableHTMLs = [
'Andrew Dupont',
'Mislav Marohnitextquotesinglec',
'Thomas Fuchs',
'Tobie Langel'

]

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/variants/server.rb
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=356

CUSTOMIZING THE APPEARANCE 357

server.mount_proc('/home') do |request, response|
response['Content-Type'] = 'text/html'
response.body = template.result(binding)

end

server.mount_proc('/update') do |request, response|
sentContent = request.query['value']
request.query['editorId'] =~ /^freeZone(\d+)$/
index = $1.to_i - 1
editableHTMLs[index] = sentContent
sleep 2 if index == 3 # Simulate lag so we can see the custom text...
response.body = sentContent

end

trap('INT') { server.shutdown }

server.start

Notice how the automatically added editorId parameter makes it easy to
persist multiple contents. We won’t have anything special to do in the
JavaScript to get that.

The template for our page adjusts accordingly:

Download scriptaculous/ipe/variants/index.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Variants on in-place editing</title>
<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript"
src="scriptaculous.js?load=effects,controls"></script>

<script type="text/javascript" src="demo.js"></script>
</head>

<body>

<h1>Variants on in-place editing</h1>
<% editableHTMLs.each_with_index do |html, index| %>
<p id="freeZone<%= index + 1 %>" class="editable"><%= html %></p>
<% end %>
</body>

</html>

We don’t apply any styling yet (that will be the topic of our next section),
but we need to adjust the scripting in order to create in-place editors
for each paragraph, with various option sets.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/variants/index.rhtml
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=357

CUSTOMIZING THE APPEARANCE 358

Figure 18.2: Fiddling with controls and texts

Here’s how we do that:

Download scriptaculous/ipe/variants/demo.js

document.observe('dom:loaded', function() {
new Ajax.InPlaceEditor('freeZone1', '/update', {

cancelControl: 'button' });
new Ajax.InPlaceEditor('freeZone2', '/update', {

okControl: 'link', textBetweenControls: ' '
});
new Ajax.InPlaceEditor('freeZone3', '/update', {

textBeforeControls: '[', textBetweenControls: ' - ',
textAfterControls: ']'

});
new Ajax.InPlaceEditor('freeZone4', '/update', {

clickToEditText: 'You\'d better click on this!',
savingText: 'Hang on a second, I\'m saving this...'

});
});

Figure 18.2 captures the state of our page with all editors enabled,
save for the last one, which is saving (the server script simulates a two-
second processing for this one, leaving us enough time to notice the
custom text).

CSS Classes, Colors, and Other Style Properties

In-place editors are a kind of widget, since they actually produce UI
components on the page (the editor, its OK/cancel controls, and so on).
And widgets would be no good if they could not properly adapt to your
application’s visual identity. Fortunately, you can rely on numerous
CSS classes and several options to tune the editors’ appearance.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/variants/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=358

CUSTOMIZING THE APPEARANCE 359

The following CSS classes are defined, which you can then define as
you want in your style sheet:

• inplaceeditor-form applies to the dynamically created forms that
wrap the edition controls.

• editor_ok_button and editor_ok_link are used for OK controls, de-
pending on the type.

• editor_cancel_button and editor_cancel_link are used for cancel
controls.

• editor_field is used for the editor itself (in other words, the <input>
or <textarea>).

• inplaceeditor-saving is used for the saving message, and we’ll see
later that inplaceeditor-loading is used for the loading message
when your editor uses an alternate text.

You can use your own class names for several of these but not all (and
at some future point, you won’t be able to change these names at all, as
I’ll discuss in a moment). Currently, the following options are available
for specifying custom class names:

• hoverClassName applies to editable elements when the mouse hov-
ers over them in noneditable mode. It has no default value.

• formClassName is for the wrapper forms and defaults to
inplaceeditor-form.

• loadingClassName is for the loading status message, when you edit
alternate text instead of the raw content. It defaults to
inplaceeditor-loading.

• savingClassName is for the saving status message. It defaults to
inplaceeditor-saving.

Finally, note that there is a size property, which lets you specify the
“size” of the single-line editor field, as per the old size= attribute. Most
of the time, you’ll resort to CSS instead, which is much more flexible
and accurate.

Let’s adapt our previous example to use these styles. The CSS file grows
a bit to become this:

Download scriptaculous/ipe/styled/demo.css

h1 { font-size: 1.5em; }

.editable.hovered {
border: 1px dashed #880;

}

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/styled/demo.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=359

CUSTOMIZING THE APPEARANCE 360

form.first {
border: 3px solid silver;
background: #ddd;
padding: 0.5em;
margin-bottom: 1em;

}

.inplaceeditor-saving {
height: 16px; padding-left: 20px;
background: url(/spinner.gif) no-repeat left center;
font: italic smaller/16px sans-serif; color: gray;

}

Notice how it uses custom CSS classes, such as hovered and first,
along with default ones such as inplaceeditor-saving. The script adapts
accordingly:

Download scriptaculous/ipe/styled/demo.js

document.observe('dom:loaded', function() {
new Ajax.InPlaceEditor('freeZone1', '/update', {

hoverClassName: 'hovered', formClassName: 'first'
});
new Ajax.InPlaceEditor('freeZone2', '/update', {

hoverClassName: 'hovered'
});
new Ajax.InPlaceEditor('freeZone3', '/update', {

hoverClassName: 'hovered'
});
new Ajax.InPlaceEditor('freeZone4', '/update', {

hoverClassName: 'hovered',
savingText: 'Hang on, I\'m saving this...'

});
});

There’s nothing fancy here. And the server side remains unchanged.
Now reload the example, making sure to bypass the browser’s cache to
use the latest script and style sheet (on Firefox and Mozilla browsers,
holding Shift while hitting the Refresh button will do that), and you’ll
notice the new styling when hovering on paragraphs, activating the edi-
tor for the first one, or saving the last one. Figure 18.3, on the next page
shows all these changes in one shot.

How Can We Use Different Styles for Different Editors?

You noticed that not all CSS class names could be customized, and I
alluded to the fact that in some future version of script.aculo.us, the
custom-class options will be stripped altogether.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/styled/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=360

CUSTOMIZING THE APPEARANCE 361

Figure 18.3: Styling editors

This is because you can achieve full customization results on a per-
editor basis without these options. Each editor has its own form, and
each form has an id= attribute.

So, you could rely on the same classes but within different ID contexts,
which CSS makes easy to specify. The only question is, what’s an edi-
tor’s form ID?

The single “bad case” is the one where your original element has no ID,
and the options don’t include formId. Then the form won’t have an ID,
and you won’t be able to tell it apart.

Now let’s say your original element has an ID, and you didn’t spec-
ify a formId option (just like we did so far). Then the wrapper form’s
ID is your element’s suffixed by -inplaceeditor (for instance, over <p

id="freeZone1">, you’ll get a <form> with id="freeZone1-inplaceeditor").
Note that if such an element already has the resulting ID, the ID won’t
be used.

Finally, you can specify your own form ID using the formId option.
Just pass whichever form ID you want. Be careful, though—this does
not mean the system will build an editor within an existing <form>!
You will get a fresh <form> no matter what, right where the original
element was.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=361

CUSTOMIZING THE APPEARANCE 362

Pitching In with Callbacks

Ajax.InPlaceEditor lets you hook in at all important times in order to
customize the behavior of the widget. The following are all the defined
callbacks in (somewhat) chronological order:

onEnterHover

Triggered when the mouse starts hovering over the element (be-
cause it is still in noneditable mode). This defaults to setting its
inline style’s background color to Ajax.InPlaceEditor.DefaultOptions.

highlightColor, which originally is #ffff99 (the usual light yellow).
This takes the element as its single argument.

onLeaveHover

Triggered when the mouse stops hovering over the element (it gets
out of the element’s “airspace”). This defaults to fading out the
highlight color toward Ajax.InPlaceEditor.DefaultOptions.

highlightEndColor (which originally is #ffffff , a full white) and finally
restoring the original background color, if any. This takes the ele-
ment as its single argument.

onEnterEditMode

The editor UI was just created and activated. The semantics
changed slightly compared to before the refactoring, where this
got triggered before the editor UI was created. This takes the ele-
ment as its single argument.

onFailure

An error occurred in the saving Ajax call. This defaults to show-
ing an error message that includes the response’s text stripped
bare of markup tags. This takes at least one argument: the XML-

HttpRequest object that was used. If htmlResponse is true (its default
value), the element will be passed as the second argument.

onComplete

The saving Ajax call completed, with or without error. This takes
at least one argument—the XMLHttpRequest object that was used.
If htmlResponse is true (its default value), the element will be passed
as the second argument.

onLeaveEditMode

The element is visible again and updated if no error came up. This
takes the element as its single argument.

As a minor note, before the recent refactoring of Ajax.InPlaceEditor, back-
ground images in the various CSS classes (especially the loading- and

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=362

DEALING WITH MULTIPLE LINES 363

saving-related ones) got ignored after the first use. This was because of
a tiny misconfiguration of internal Effect.Highlight objects, which is now
fixed. You can provide background images again, as our latest CSS file
and as Figure 18.3 demonstrate.

Using an External Control

Perhaps you want to provide an obvious means of editing. Indeed, for
most users, it is not at all self-evident that your element is editable
in-place: titles, paragraphs, and their lot are usually fairly static. By
default, only the element itself reacts to hovering and clicking, but you
may want to use “sidekicks” such as an associated Edit link or button,
which will loudly (and proudly) proclaim to your users that something
can be edited here.

If you want to use such associated controls, you’ll be happy with the
externalControl option. Just have it reference the element (directly or
by ID, as usual) that’s supposed to react to hovering and clicks. The
element itself still reacts, but so does your associated component.

You may also want to require the user to click this external control
in order to trigger the editing mode. By default, both the original ele-
ment and the external control would work. You can use the external-

ControlOnly option to limit triggering to the external control.

Changing Default Options

There are a lot of defaults, and they may just not suit you all that well.
For instance, perhaps all your failure callbacks should behave the same
way. . . just not the default one. Or you’d like to get rid of highlights
entirely. Or something.

To let you change these defaults, they are all centralized in the Ajax.

InPlaceEditor.DefaultOptions object. You can alter them, and whenever
you create a new Ajax.InPlaceEditor, it will use the current state of this
object as defaults. Of course, the specific options you pass for this con-
struction override the current defaults, as usual.

18.5 Dealing with Multiple Lines

So far we’ve used single-line editor fields. But sometimes the element
you make in-place editable holds quite a lot of markup, and multiple-
line editing would be preferable. How can we do this?

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=363

EDITING ALTERNATIVE TEXT 364

Well, it all hinges on two things: the rows option and whether there
are line breaks (\r or \n: carriage returns or linefeed characters) in the
content to edit.

If rows is at its default of 1 and there are no line breaks, you’ll get
a single-line editor (an <input> element with type="text"). But if there
are line breaks or rows is set to greater than 1, you’ll get multiple-
line editing. If rows is 1, it is ignored in favor of the value stored in
Ajax.InPlaceEditor.DefaultOptions.rowsAuto, which originally is 3.

The rows option governs the height of multiple-line editors; their width
is governed by the cols option, which, lacking a default, is assumed to
be 40 if missing. The reason there is no default value is that if there is
no size option to set the width of single-line editors but there is a cols

option, it will be used for single-line editors too. This is intended to help
homogenize the width of a given editor over time, whether the content
has multiple lines or not.

You should also know that when a multiple-line editor (technically a
<textarea>) is used, OK and cancel controls will appear below it, not
next to it; a
 element will be added right after the editor.

In a general manner, the logic for deciding when to use single- or
multiple-line editors, along with how the content was transformed prior
to putting it in the editors, has changed significantly during the refac-
toring. The new behavior is not entirely backward compatible but is
thought to be much more useful and flexible.

18.6 Editing Alternative Text

OK, now for a very cool moment—you can actually have your users edit
alternate content, instead of the raw markup inside the element. For
instance, perhaps you’re building some sort of wiki; although it’s ren-
dered as XHTML, you’re using some simpler markup, such as Textile or
Markdown, for the source text of articles and sections. The server side
renders these into the XHTML seen on your pages but stores content
using the simpler syntax.

You can do this all the way by having your in-place editors load the
alternate—“source”—content when being activated and benefit from the
default htmlResponse mode in order to get the corresponding XHTML
from the server side when saving to it.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=364

EDITING ALTERNATIVE TEXT 365

All you need to do is use the loadTextURL option to specify the URL
required to load the alternate content. It will automatically be passed an
extra editorId parameter, just like the saving operation detailed in Sec-
tion 18.3, How Can We Tweak the Ajax Persistence?, on page 354. How-
ever, it will use a GET method by default, instead of POST (as opposed
to the behavior prior to the recent refactoring), unless your ajaxOptions

option explicitly contains a method option that says otherwise.

When loading alternate text, the editor’s content is temporarily set to
the text specified in the loadingText option, which defaults to Loading...,
and the editor and submission systems (Return key, OK control) are
disabled. The whole form can be styled, during loading, with the CSS
class specified in loadingClassName, which defaults to inplaceeditor-

loading.3

As soon as the alternate content is retrieved, it is put in the editor, and
the whole editor UI is enabled again.

This certainly calls for an example. Textile and Markdown are both
readily available as gems (Ruby packages) but are not part of the stan-
dard Ruby library, and I do not want to take you through the steps of
gem installation for this example, so we’ll make do without these neat
markup libraries. We’ll just assume that empty lines delimit paragraphs
and that triple percent signs (%%%) are to be interpreted as explicit line
breaks (which will become
 tags followed by a line break).

So, let’s copy over our original example, with only one simple in-place
editor. We’ll need three actions: one to serve the full page, one to serve
the source markup for the editable element, and one to save it and
return the XHTML equivalent. The resulting server script is as follows:

Download scriptaculous/ipe/alternate/server.rb

Line 1 #! /usr/bin/env ruby
-

- require 'cgi'
- require 'erb'
5 require 'webrick'
- include WEBrick
-

- template_text = File.read('index.rhtml')
- template = ERB.new(template_text)

10

3. Beware of the difference of targets between loadingClassName, which applies to the
whole editing form, and savingClassName, which applies only to your original element
whose content is, at this point, only the saving message.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/alternate/server.rb
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=365

EDITING ALTERNATIVE TEXT 366

- server = HTTPServer.new(:Port => 8042)
- server.mount('/', HTTPServlet::FileHandler, '.')
-

- source = 'Some basic text'
15

- def xhtml_convert(text)
- '<p>' +
- text.gsub(/(?:\r|\n){2,}/, "</p>\n<p>").gsub('%%%', "
\n") +
- '</p>'

20 end

-

- server.mount_proc('/home') do |request, response|
- response['Content-Type'] = 'text/html'
- xhtmlVersion = xhtml_convert(source)

25 response.body = template.result(binding)
- end

-

- server.mount_proc('/source') do |request, response|
- sleep 2 # Darn we're slow...

30 response['Content-Type'] = 'text/plain'
- response.body = source
- end

-

- server.mount_proc('/update') do |request, response|
35 sleep 2 # Darn we're slow...

- source = request.query['value']
- response.body = xhtml_convert(source)
- end

-

40 trap('INT') { server.shutdown }
-

- server.start

Note how we simulate loading and saving times, so you can easily see
these steps in the browser. The tiny xhtml_convert() method starting on
line 16 implements our small conversion algorithm.

The CSS will also change to use some styling for the loading and saving
messages:

Download scriptaculous/ipe/alternate/demo.css

h1 { font-size: 1.5em; }

.inplaceeditor-loading { background: #ddd; color: gray; }

.inplaceeditor-saving {
height: 16px; padding-left: 20px;
background: url(/spinner.gif) no-repeat left center;
font: italic smaller/16px sans-serif; color: gray;

}

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/alternate/demo.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=366

DISABLING IN-PLACE EDITING 367

Figure 18.4: Using alternate text

Finally, we’ll adjust the script so it relies on alternate text:

Download scriptaculous/ipe/alternate/demo.js

document.observe('dom:loaded', function() {
new Ajax.InPlaceEditor('freeZone', '/update', {

loadingText: 'Fetching source text...',
savingText: 'Saving and getting markup...',
loadTextURL: '/source'

});
});

Now let’s kill any running server, launch this one, and reload our page
(with a healthy cache bypass). Figure 18.4 shows a montage of the
various stages for the first edition.

The stages are represented from left to right and from top to bottom.
Note that because we now have line breaks in the final content, next
time we edit we’ll end up using a multiple-line editor. And because
we did not specify an explicit rows option, we’ll get the default 3, as
explained earlier. Figure 18.5, on the following page shows the stages
of a second editing attempt, with line breaks in the original content.

18.7 Disabling In-Place Editing

As usual, script.aculo.us provides you with the means to stop using
a feature over an element. In this case, you can strip in-place editing

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/alternate/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=367

OFFERING A LIST OF VALUES INSTEAD OF TEXT TYPING 368

Figure 18.5: Editing content with line breaks

capabilities from an element by simply calling the destroy() method on
the Ajax.InPlaceEditor object:

ipe.destroy()

The former name for this method, dispose(), is still available as an alias
but is deprecated.

18.8 Offering a List of Values Instead of Text Typing

There are situations where we’d like to let our users change an ele-
ment’s content, but they should select among a series of possibilities.
These choices would be presented as a single-selection drop-down list,
based on a <select> tag.

To let you do this easily, script.aculo.us comes with a special subclass
of Ajax.InPlaceEditor, called Ajax.InPlaceCollectionEditor. It builds exactly
the same way:

new Ajax.InPlaceCollectionEditor(element, savingURL [, options])

It’s otherwise used in an identical manner as Ajax.InPlaceEditor, except
you get a few more options:

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=368

OFFERING A LIST OF VALUES INSTEAD OF TEXT TYPING 369

collection

A list of options to pick from. This means you’re statically defining
these options in the script (perhaps you’re generating the script
dynamically, but mostly you won’t). This has to be an array, or
something convertible through an array (as defined in Section 3.5,
$A, the Collection Unifier, on page 47).

The array can contain simple values, which will be used as both
the <option> tag’s value= attribute and its textual content, or two-
item arrays, where the first item is the value= attribute and the
second item is the textual content. We’ll see examples in a minute.

loadCollectionURL

In many cases you’ll either have a static, client-side list definition
(through the collection option) or fetch it dynamically from the
server. You can do this with loadCollectionURL, which points to a
URL that will be called with the usual automatic editorId parame-
ter and must return a JavaScript array that fits the description for
the collection option. This array will then be evaluated and used
as if it had been passed directly.

loadCollectionText

The text to be shown in the pending drop-down while the list of
choices is being fetched. This is similar to the role of loadingText

for loadTextURL. This defaults to Loading choices....

The former value option was deprecated, because it basically makes no
sense. Either the content (alternate or direct, depending on your set-
tings) matches one of the option values, and that option will be selected;
or there is no match, and the first option will be selected.

Let’s look at a simple example, which fetches its list of options dynam-
ically from the server. The styling is as minimalistic as ever:

Download scriptaculous/ipe/collection/demo.css

h1 { font-size: 1.5em; }

The scripting is also very brief:

Download scriptaculous/ipe/collection/demo.js

document.observe('dom:loaded', function() {
new Ajax.InPlaceCollectionEditor('name', '/update', {

loadCollectionURL: '/names'
});

});

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/collection/demo.css
http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/collection/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=369

OFFERING A LIST OF VALUES INSTEAD OF TEXT TYPING 370

Now, our server must provide the /names action for the choice list,
which is expressed like the collection option, as a JavaScript array.
We’ll artificially delay the loading of options and the saving of the edited
content so as to be able to see these steps.

Download scriptaculous/ipe/collection/server.rb

#! /usr/bin/env ruby

require 'cgi'
require 'erb'
require 'webrick'
include WEBrick

template_text = File.read('index.rhtml')
template = ERB.new(template_text)

server = HTTPServer.new(:Port => 8042)
server.mount('/', HTTPServlet::FileHandler, '.')

options = %w(Seth Corinne Lauren)
content = options[0]

server.mount_proc('/home') do |request, response|
response['Content-Type'] = 'text/html'
response.body = template.result(binding)

end

server.mount_proc('/names') do |request, response|
sleep 1 # Simulate slow option fetching...
response['Content-Type'] = 'text/plain' # No need for auto JS eval...
response.body = '[' + options.map { |s| s.inspect() }.join(', ') + ']'

end

server.mount_proc('/update') do |request, response|
sleep 1 # Simulate slow option saving...
content = request.query['value']
response.body = content

end

trap('INT') { server.shutdown }

server.start

Firing up this new server and refreshing our browser on http://localhost:8042/home

(bypassing the cache, as always), we can now use list-assisted content
choice, as demonstrated by the montage in Figure 18.6, on the following
page.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/ipe/collection/server.rb
http://localhost:8042/home
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=370

OFFERING A LIST OF VALUES INSTEAD OF TEXT TYPING 371

Figure 18.6: Editing with a choice list

This class was massively overhauled in the recent refactoring, because
the former implementation suffered from quite a number of issues. The
API has changed a bit, especially regarding option names, the process-
ing of alternate content, and the dynamic fetching of the option list
(something that was simply not possible before).

Well, that’s about it for in-place editing. If you used it in the past, do
remember that it got through a complete rewrite for script.aculo.us 1.8,
and the API changed a bit. Ajax.InPlaceCollectionEditor, in particular,
became much more usable, and latent holes were plugged, making the
whole thing more robust.

What We Just Learned

Despite the numerous features and possible tweaks, in-place editing is
not a very complex subject. It boils down to these key points:

• In-place editing is mostly about the Ajax.InPlaceEditor class. There
is also a dropbox-based, predefined-values variant using Ajax.

InPlaceCollectionEditor.

• Both were rewritten in 2007 to clean up their code base and add
functionality. This rewrite changed parts of the API, especially the
options.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=371

OFFERING A LIST OF VALUES INSTEAD OF TEXT TYPING 372

• Editing mode is triggered by clicking, either on the editable zone
itself (by default) or on a specified external control.

• We can use an alternate text representation, fetched through Ajax
and reprocessed by the server when saving, to spare the user the
need to understand HTML.

• Options provide fine control over every detail of the appearance.

• The Ajax requests sent to the server are highly customizable via
many options and callbacks. An extra editorId parameter is always
added in case the server code for several editors can be made
generic.

Neuron Workout

• What set of options would let us implement “unobtrusive in-place
editing,” where clicking, say, titles would make them editable with
no visual clutter and just clicking outside it or pressing the Return

key would save to the server and revert to noneditable mode?

• Let’s consider the following scenario:

– We have a site with a home page that features one of the
articles among those we have stored away in the News section.

– We’re viewing the home page in “design mode,” which lets us
click a small Edit link or icon next to the featured article’s
title.

– When that control is clicked, the current article is replaced by
a drop-down list of the available article titles.

– We pick a title, we click a OK button or something, and the
newly selected article comes in.

How would we go about using our in-place editing capabilities to
achieve this?

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=372

Chapter 19

Sliders
Sliders are thin tracks with one or more handles on them that the user
can drag along the track. The goal of a slider is to provide an alternative
input method for defining a numerical value; the slider represents a
range, and sliding a handle along the track defines a value within this
range.

Figure 19.1 provides an overview of what sliders can look like, with
a rather simple look. Internally, they are implemented by <div> and
 elements that we define, so the styling is entirely up to us. It
will easily fit whatever design our page already uses.

Figure 19.1: A variety of possible sliders

CREATING A SIMPLE SLIDER 374

We’ll need the slider.js module, which contains the Control.Slider class.
There is no dependency on other script.aculo.us modules. So, our
script.aculo.us loading will look, at minimum, like this:

<script type="text/javascript" src="slider.js"></script>

19.1 Creating a Simple Slider

Let’s start with a slider somewhere that lets the user define a numerical
value within a given range.

Creating a slider is, as usual, a matter of constructing a custom object
over a few existing elements in your page’s DOM. You’ll need two ele-
ments here: one for the handle and one for the track.

new Control.Slider(handle, track [, options])

The track element is usually a <div>, and the handle element is a
<div> or within the track element. Both can be passed either
by their id= or by direct DOM references, as usual.

Let’s imagine the following XHTML fragment:

<div id="track1" class="track" style="width: 20em;">
<div id="handle1" class="handle" style="width: 0.5em;"></div>

</div>

Creating a basic, all-defaults slider would simply require this:

new Control.Slider('handle1', 'track1');

To try this, we’ll create a simple demonstration that will let us experi-
ment with the orientation of the slider (its axis, horizontal or vertical),
the definition of a preset value, and range customization.

Our “test bench,” index.html, will look like this:

Download scriptaculous/slider/simple/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Simple sliders</title>
<link rel="stylesheet" type="text/css" href="demo.css" />
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="slider.js"></script>
<script type="text/javascript" src="demo.js"></script>

</head>

<body>

http://media.pragprog.com/titles/cppsu/code/scriptaculous/slider/simple/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=374

CREATING A SIMPLE SLIDER 375

<h1>Simple sliders</h1>
<div id="track1" class="track" style="width: 20em;">

<div id="handle1" class="handle" style="width: 0.5em;"></div>
</div>

<p id="sliding"></p>
<p id="changed"></p>

<div id="track2" class="track vertical"
style="position: absolute; left: 25em; top: 3em;">
<div id="handle2" class="handle" style="height: 0.5em;"></div>

</div>

</body>

</html>

Notice we’ll need to bring in prototype.js, scriptaculous.js (unless you pre-
fer loading individual script.aculo.us modules individually, as we could
very well do here), and slider.js.

You can also see we put two <p> elements, which will provide us with
feedback on the operation of the sliders, and indeed we put two sliders

in there, one horizontal and one vertical.

We’ll also define a rather all-purpose style sheet for our sliders, which
will use font-size-based dimensions, letting our UI adjust to the user’s
zooming in or out:

Download scriptaculous/slider/simple/demo.css

h1 { font-size: 1.5em; }

.track {
background-color: #aaa;
position: relative;
height: 0.5em; width: 10em;
cursor: pointer; z-index: 0;

}
.handle {

background-color: red;
position: absolute;
height: 1em; width: 0.25em; top: -0.25em;
cursor: move; z-index: 2;

}
.track.vertical { width: 0.5em; height: 10em; }
.track.vertical .handle {

width: 1em; height: 0.25em; top: 0; left: -0.25em; }

These styles are fairly reusable. Notice how we offset the handles
slightly in the proper direction (using either left or top) so that they
appear “centered” on the track, not tacked to one side of it.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/slider/simple/demo.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=375

CUSTOMIZING THE BASICS 376

Figure 19.2: Initial state of our simple sliders

19.2 Customizing the Basics

We’ll start playing with two options that let us change the slider’s ori-
entation and its initial value:

axis

This lets us define whether the slider is horizontal (default) or ver-

tical. This setting constrains the dragging movement of the handle
on the proper axis.

sliderValue

This determines the initial position of the handle, which defaults
to the beginning of the range. This range defaults to [0;1], mean-
ing we start at zero. Our vertical slider will start in the middle,
therefore at 0.5.

So here’s our current slider creation code:

document.observe('dom:loaded', function() {
new Control.Slider('handle1', 'track1');
new Control.Slider('handle2', 'track2', {

axis: 'vertical', sliderValue: 0.5 });
});

Figure 19.2, shows the initial state of our sliders. Go ahead, drag the
handles! Don’t forget to release the dragging within the document, lest it

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=376

CUSTOMIZING THE BASICS 377

not be detected and, when you’d hover the mouse again, keep dragging
your handle (this won’t happen in all browsers but still is an issue).
Now, when we’re dragging handles around, we’d like to know which
position that is; after all, we generally use sliders as an alternate input
method for numerical values. It’s only fair that our users know which
value they’re setting. This can be done with the two available callbacks:

onSlide

Triggered whenever the handle is moved

onChange

Triggered when the mouse button is finally released, ending the
dragging of the handle

Both callbacks take two arguments: the value of the slider (expressed
as a value within the range, so by default it will be between zero and
one) and the slider object itself (the Control.Slider instance, not the track
or handle element).

Do note that you can access such properties of the slider object as
track and handle, which refer to the extended DOM elements for these
two parts of the UI.

To demonstrate callbacks at work, we’ll define two simple functions that
update each of our two feedback paragraphs, and then we’ll use these
callbacks in our two sliders. To avoid defining these functions twice,
we’ll put them in a local object and reuse them in our Control.Slider

definitions. Here’s the new script:

document.observe('dom:loaded', function() {
var callbacks = {

onSlide: function(value, slider) {
$('sliding').update(slider.track.id + ' sliding to ' +
value.toFixed(3));

},
onChange: function(value, slider) {

$('changed').update(slider.track.id + '\'s value changed to ' +
value.toFixed(3));

}
};
new Control.Slider('handle1', 'track1', {

onSlide: callbacks.onSlide, onChange: callbacks.onChange
});
new Control.Slider('handle2', 'track2', {

axis: 'vertical', sliderValue: 0.5,
onSlide: callbacks.onSlide, onChange: callbacks.onChange

});
});

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=377

RESTRICTING RANGE OR ALLOWED VALUES 378

Figure 19.3: Feedback messages thanks to callbacks

Notice how we can access slider.track.id from our callback to differentiate
the messages depending on which slider was manipulated.

Reload the page and start sliding around. It should look something
like Figure 19.3. You may wonder how it is that on this snapshot, the
second message refers to track2 but the first one still refers to track1.
Isn’t sliding supposed to happen before finally setting a value? Well,
not quite. You see, sliders let you click directly on the track to bring the
handle right where you clicked. It’s a convenient trick. In such a case,
the handle was not dragged and there was no sliding, but the value was
changed.

19.3 Restricting Range or Allowed Values

Most of the time, you’ll probably need to work on a different range that
holds some business meaning in the context of your page. Perhaps it’s
a percentage and should go from 0 to 100. Perhaps it’s a minimum age,
which should start around 3 and not exceed 21. Whatever the reason,
you may need to customize the range, which is done with the range

option.

range

Expressed as an ObjectRange object (the result of a $R() call),
defines the range of acceptable values from one end of the slider
to the other. This defaults to $R(0, 1).

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=378

RESTRICTING RANGE OR ALLOWED VALUES 379

Figure 19.4: A custom range on our first slider

Let’s adjust our script so that the first slider (the horizontal one) works
on a range from 3 to 21, for instance:

Download scriptaculous/slider/simple/demo.js

new Control.Slider('handle1', 'track1', {
range: $R(3, 21),
onSlide: callbacks.onSlide, onChange: callbacks.onChange

});

Reload and play with this first slider. The boundaries should be clearly
expressed in the feedback paragraphs, as shown in the montage in
Figure 19.4.

That’s it for the ranges, but this doesn’t always cut it. Sometimes you
need to allow only a discrete series of values, not a quasilinear progres-
sion from one boundary to the other.

Say you’re dealing with integers only, perhaps for the difficulty level of
an online game, or the zoom factor of an image viewer, or the amount
of tiles to a side you want for a map display. Letting the user free-range
between boundary values won’t do. You need specific values only! This
is done with the values option:

values

An Enumerable of allowed values, which is ignored if false-equiva-
lent (and it does default to false)

http://media.pragprog.com/titles/cppsu/code/scriptaculous/slider/simple/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=379

RESTRICTING RANGE OR ALLOWED VALUES 380

Warning: Always Sync range with values!

At the time of this writing, the computing of handle positions
is entirely based on the range option. When using values, if
you leave range to its default (zero to one), your handles may
very well appear way off the track.

Conversely, if you use a range larger than the extreme values
you’re allowing, portions of the track won’t be accessible to
your handles.

So when using values, I recommend you make sure range
uses the two extreme values. For instance:

new Control.Slider('handle1', 'track1', {
range: $R(3, 10), values: $R(3, 10) // other options here...

});

So, let’s say we want to use a slider to let our users choose an integer
from 3 to 10, inclusive. We could do this with the following call:

new Control.Slider('handle1', 'track1', {
values: $R(3, 10), range: $R(3, 10)

});

Keep in mind the difference between these options’ behaviors: values

uses the range’s enumerated values, which will be apart from each
other by exactly one (as Number#succ() uses an increment of one), and
only these values will be allowed. On the other hand, range cares only
about the minimum and maximum values, which Control.Slider uses to
compute handle positions over the track.

When values is defined, sliding the handles will “stick” to the nearest
allowed positions as you’re dragging.

Of course, you don’t have to use a regular series of values. It can be
much more. . . personal:

new Control.Slider('handle1', 'track1', { values: [1, 5, 38, 46] });

Still, this may be a bit unwieldy for the user. It’s better then to use a
regular series and map the raw values to those you need by using, for
instance, one-to-one mapping between both arrays.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=380

TWEAKING AN EXISTING SLIDER AND ADDING CONTROLS 381

19.4 Tweaking an Existing Slider and Adding Controls

There are a few things you can do to a slider once it’s up and running.
For instance, you can disable it and enable it later (which is useful
when you use it as part of a form, because it won’t be disabled auto-
matically by Form#disable(), for instance). The methods for this are sim-
ply setEnabled() and setDisabled(). You can check whether it’s disabled
by looking at the value for its disabled property.

You can also programmatically change the value of a slider by using set-

Value(value). If you need to specify a delta instead of an actually value,
use setValueBy(delta). This lets you easily implement external controls,
such as arrow links or buttons. You’ll find an example of this in script.-
aculo.us’s sliders functional test in test/functional/slider_test.html.

Finally, as always with script.aculo.us controls, you can take back their
features by destroying the control object. The method for this here is
dispose().

19.5 Defining Multiple Values

A great feature of sliders lets you use multiple handles on a single track,
which allows your users to define multiple values on a single slider.

The trick is to provide an alternative syntax for the sliderValue and han-

dle options. They can take arrays, too. Each handle will be preset to the
original value that matches it, on a one-to-one basis, in sliderValue.

The value-setting methods, setValue and setValueBy, also take an optio-
nal second argument that is the index (starting at zero) of the handle
whose value is being assigned. Instead of the single value property, you
would use the values property, an array indexed in the same order as
the handles.

Your slider control maintains two properties for this: activeHandle and
activeHandleIdx. The latest used handle (be it by clicking, dragging, or
programmatic value setting) is the only one featuring a selected CSS
class, which lets you set it visually apart.

Finally, note that you can prevent handles from crossing each other
(when dragging, you could prevent a handle from moving across an-
other one). This is enabled with the restricted option, which you just
need to set to true.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=381

DEFINING MULTIPLE VALUES 382

Figure 19.5: Multiple handles and values

Here’s an example XHTML fragment:

Download scriptaculous/slider/multiple/index.html

<div id="track1" class="track" style="width: 20em;">
<div id="handle1" class="handle" style="width: 0.5em;"></div>
<div id="handle2" class="handle"
style="width: 0.5em; background: blue;"></div>

<div id="handle3" class="handle"
style="width: 0.5em; background: green;"></div>

</div>

And here’s the corresponding construction call:

Download scriptaculous/slider/multiple/demo.js

new Control.Slider(['handle1', 'handle2', 'handle3'],
'track1', {
range: $R(1, 11), values: $R(1, 11),
sliderValue: [3, 6, 9],
onSlide: callbacks.onSlide, onChange: callbacks.onChange

});

In code/scriptaculous/slider/multiple, the source code archive contains
an example page that is visible, after a couple clicks and drags, in Fig-
ure 19.5. You’ll find more examples in script.aculo.us’s sliders func-
tional test page, located in the archive at test/functional/slider_test.html.

There’s a last feature I’d like to mention, which lets you add a visual
hint that you’re using sliders to define ranges (generally adjacent ones):
spans. By styling these elements (usually ones), you give a
visual cue as to the ranges being defined, instead of relying on the
uniform color of the track.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/slider/multiple/index.html
http://media.pragprog.com/titles/cppsu/code/scriptaculous/slider/multiple/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=382

DEFINING MULTIPLE VALUES 383

Advanced Sliders and Opera

When you get advanced with sliders, you may end up hav-
ing minor visual quirks running on Opera. Opera is not, after
all, officially supported yet, and although just about every
code in this book runs just fine on it, sliders may get a bit
quirky here and there.

By interleaving span elements with your handle elements (all of this
within your track’s <div>), you can ask Control.Slider to adjust their
positions and dimensions so they stick to surrounding handles. This is
most often used in conjunction with “restricted” handle movement (in
which handle order is preserved over time, because handles cannot be
dragged across each other).

Three properties are involved here:

spans

An array of elements (or their id= values, as always), usually
s, in ascending range order (that is, the first is
between the first and second handle, the second lies be-
tween the second and third handle, and so on). This defaults to
false, which disables the feature.

startSpan

Optional initial range, appearing between the beginning of the
track and the first handle. This defaults to null.

endSpan

Optional final range, appearing between the last track and the end
of the track. This defaults to null.

Here’s an example XHTML fragment:

Download scriptaculous/slider/spans/index.html

<div id="track1" class="track" style="width: 20em;">
<div id="handle1" class="handle" style="width: 0.5em;"></div>

<div id="handle2" class="handle"
style="width: 0.5em; background: blue;"></div>

<div id="handle3" class="handle"
style="width: 0.5em; background: green;"></div>

</div>

http://media.pragprog.com/titles/cppsu/code/scriptaculous/slider/spans/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=383

DEFINING MULTIPLE VALUES 384

Figure 19.6: Multiple handles and spans

And here’s the corresponding construction call:

Download scriptaculous/slider/spans/demo.js

new Control.Slider(['handle1', 'handle2', 'handle3'],
'track1', {
range: $R(1, 11), values: $R(1, 11),
sliderValue: [3, 6, 9],
spans: ['range1', 'range2'], restricted: true,
onSlide: callbacks.onSlide, onChange: callbacks.onChange

});

This will require an extra dollop of CSS:

Download scriptaculous/slider/spans/demo.css

.handle.selected { outline: 2px solid black; z-index: 3; }

.track .range {
position: absolute; height: 0.5em; width: 0.5em; z-index: 1; }

See code/scriptaculous/slider/spans for an example page; playing with it
can yield something like Figure 19.6. You’ll find more examples, yet
again, in script.aculo.us’s sliders functional test page.

Neuron Workout

How about a pop quiz?

• We’re building a shopping site for home appliances (for example,
fridges, ovens, and washing machines) for a client. She tells us
she would like to offer users the possibility of quickly specifying

http://media.pragprog.com/titles/cppsu/code/scriptaculous/slider/spans/demo.js
http://media.pragprog.com/titles/cppsu/code/scriptaculous/slider/spans/demo.css
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=384

DEFINING MULTIPLE VALUES 385

a minimum and maximum price they’re willing to pay as an extra
criterion in the form they’re using to sift through the catalog. How
could we use a single slider to implement this? Think about the
details of price feedback (showing the range being created) and
integrating with the form that’s going to be sent to the server.

• Say we have a thumbnail gallery of photographs. How could we
use a slider to dynamically set thumbnail size?

• Create a small function that, given a hash of (value × label) pairs,
creates a fixed-size slider that uses only those values and displays
the matching label in an associated element as the user moves the
handle along.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=385

Chapter 20

Sound Without Flash
Version 1.7 of script.aculo.us introduced a new tiny module that lets
you play sounds in your web pages without having to resort to an
embedded, Flash-based player. The upshot is, well, you don’t need
Flash. That means you do not need to load a Flash sound-playing object
in addition to your sound file(s). The potential issue, however, is that
this module assumes your browser can natively process the sound file
(for example, a MP3 file).

20.1 Where Does It Work?

This module works wherever your browser has native (or plug-in-based)
support for the sound files you’re using, which are assumed to be based
on the MPEG audio layer (the most common variant nowadays being
MP3). This essentially means the following situations:

• On OS X, you’re good to go. Every browser on OS X benefits from
the platform’s QuickTime support for sound files. It Just Works.

• On Windows, it works natively on Internet Explorer; otherwise,
you usually need the QuickTime plug-in installed; it has pretty
good market penetration (especially since, recently, it has been
bundled with Windows versions of iTunes and Safari), although
it’s perhaps not quite as ubiquitous as Flash.

• On Linux, as always, it all depends on which packages were in-
stalled by the system’s administrator. But then, it’s as true for
QuickTime as it is for Flash, and all major distributions have
packages for both.

HOW DO WE PLAY SOUNDS? 387

20.2 How Do We Play Sounds?

First, you need to load the sound module, just like you would load any
other script.aculo.us module, for instance, using the loader system:

<script type="text/javascript" src="sound.js"></script>

Then, all you need to do in your code is something as simple as this:

Sound.play('sounds/myeffect.mp3');

That’s it! This alone plays your sound now (the module does not support
looping). As you might expect, there can be a bit more to it, though. The
full syntax goes like this:

Sound.disable()
Sound.enable()
Sound.play(url [, options])

The disable() and enable() methods globally toggle whether play() calls
are actually processed. They do not impact previously made calls; any
ongoing sound keeps going. They impact only future calls to play().
They’re the obvious way to implement a user-togglable Mute feature.

The core method is, expectedly, play(). At the minimum, you provide
the URL of your sound file. The module will assume your file format
is related to MPEG audio, so you should use MP3, for instance. The
options parameter is a hash of options, as usual, and Sound supports
two of those: track and replace. We’ll explore them now.

20.3 Playing Multiple Sounds on Multiple Tracks

The sound module lets you play multiple sounds in parallel and group
them as tracks. Whenever you ask for a new sound to play, you can
put it into a specific group (or track), and either add it to the currently
playing sounds of that track or make it replace the whole track.

The track Option

By default, sounds are added to the default track, named global. They
also add to the track, which means they do not replace the currently
running sounds. They start playing over whatever sound is currently
playing.

To specify sound groups, use the track option. You can use whatever
names you want for the tracks, as long as you observe XHTML’s id=

syntax requirements. This is because your track name will become

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=387

PLAYING MULTIPLE SOUNDS ON MULTIPLE TRACKS 388

part of the id= for the DOM element responsible for playing the sound.
You would likely use such names as effects, notifications, music, or
ambience.

Note that, currently, grouping sounds in tracks is useful only when
you need to replace them with another sound, as described in the next
section.

The replace Option

Sometimes you may want a new sound to replace any currently run-
ning sound in its track. Perhaps you’re signaling the end of a process
and that process was made “audible” through the use of a little tune or
something; or perhaps you have “ambient” sounds that reflect the cur-
rent visual theme or universe, and the user just switched to another
theme, which you need to reflect not only visually but also audibly. In
this case, you can use the replace option and set it to true (it defaults
to false). All currently running sounds in the track will then be stopped,
and your new sound will start.

In the source code archive for this book, you will find a few free sound
effect files in the code/scriptaculous/sound directory:

effect_crowd_....mp3

Crowd sound effects: applause, excitement, and three laughs

ambience_....mp3

Ambient sounds: an outdoor café, a simple tune, rain falling and
surf crashing on the shore

Let’s quickly put together a simple demo that’ll let us play any ambience
sound one at a time and layer as many sound effects as we need on top
of that. Create a directory for the demo, and then whip up the following
HTML file:

Download scriptaculous/sound/index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Sounding out</title>
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="sound.js"></script>
<script type="text/javascript" src="demo.js"></script>

</head>

<body>

http://media.pragprog.com/titles/cppsu/code/scriptaculous/sound/index.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=388

PLAYING MULTIPLE SOUNDS ON MULTIPLE TRACKS 389

<h1>Sounding out with script.aculo.us</h1>

<h2>Sound effects</h2>

<ul id="effects">
Applause
Excitement
Laugh #1
Laugh #2
Laugh #3

<h2>Ambience</h2>

<ul id="ambience">
Outdoor café
A simple tune
Rainfall
Surf crashing on the

shore

</body>

</html>

Don’t forget to put prototype.js and sound.js in there, too. Finally, we’ll
put the script together. It’s very simple indeed:

Download scriptaculous/sound/demo.js

function playAmbience(e) {
e.stop();
Sound.play(e.findElement('a').href, { track: 'ambience',

replace: true });
}

function playEffect(e) {
e.stop();
Sound.play(e.findElement('a').href, { track: 'effects' });

}

document.observe('dom:loaded', function() {
$('effects').select('a').invoke('observe', 'click', playEffect);
$('ambience').select('a').invoke('observe', 'click', playAmbience);

});

Technically, we could have left the ambience sounds on the default,
global track, but it’s always best to put special-purpose sounds in their
own track so we can manipulate them separately.

http://media.pragprog.com/titles/cppsu/code/scriptaculous/sound/demo.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=389

PLAYING MULTIPLE SOUNDS ON MULTIPLE TRACKS 390

OK, now start by clicking an ambience sound, say, the simple tune (it
stands out better than the other ambience sounds once we start layer-
ing effects over it). Then start clicking a short effect, perhaps the first
laugh. When it’s done, try a longer one (for example, the applause), and
start heavy-clicking to layer multiple effects. Once we’re all sounded
up, change the ambience. Because we specified replace: true, the tune
stops and gets replaced by the new ambience.

And that’s all there is to the sound module for now. It’s really simple,
as you can plainly see from our script. But it sure can help to comple-
ment your UI with appropriate, well-used audio feedback (think chat
windows, event dashboards, and the like). Be careful not to clutter the
audio space with too much sound, though. . . .

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=390

Appendix A

Extending and Contributing
It doesn’t take long before you end up with complicated scripts pro-
viding complex functionality. You might very well need to complement
Prototype’s features with your own, either in separate objects or by
extending existing ones. In this appendix, you’ll see how to extend Pro-
totype objects and how to contribute back.

A.1 Building Over: Classes, Inheritance, and DOM Extension

First you need to understand the object system in Prototype. As you
may know, JavaScript is not a class-based language, with the usual
class/object dichotomy and the usual class inheritance reflexes and
habits. No. JavaScript is a prototype-based language.

Getting into the details of how this actually works would be way beyond
the scope of this chapter, or even this book. You’ll find excellent arti-
cles about prototypes and other JavaScript OO issues (such as how
to encode public, private, and “privileged” methods, as well as “static”
members) on the websites of several JavaScript gurus, such as Douglas
Crockford and Dean Edwards:

• http://javascript.crockford.com/prototypal.html

• http://javascript.crockford.com/private.html

• http://www.litotes.demon.co.uk/js_info/private_static.html

• http://dean.edwards.name/base/

However, we can simulate the traditional OO concepts, such as the
class/object dichotomy, inheritance, mixins, and so on, using regular
JavaScript and a healthy dose of syntactic sugar provided by Prototype.

http://javascript.crockford.com/prototypal.html
http://javascript.crockford.com/private.html
http://www.litotes.demon.co.uk/js_info/private_static.html
http://dean.edwards.name/base/

BUILDING OVER: CLASSES, INHERITANCE, AND DOM EXTENSION 392

What “Classes” Actually Are in JavaScript

The main point to remember is that there are no classes per se, only
objects. Every object is created based on a constructor function (which
most people call a class so as not to lose their sanity too quickly). Func-
tions are objects, too (like numbers and regular expressions, by the
way). Every object has a prototype, which defines properties (includ-
ing methods) shared by all instances of this object—yes, I actually said
“instances of this object.” Get a grip.

So when you’re defining methods in a constructor function’s prototype,
for instance, you’re defining methods for all the instances obtained by
using the new operator on this function (for example, new String (or
string literals) and new Array (or array literals). This is exactly what Pro-
totype does to existing constructor functions to extend the capabilities
of native JavaScript objects.

The reason I’m not diving more into the details is that Prototype does
most of it its own way, which is much simpler and feels more like tradi-
tional OO programming. It has been profoundly redesigned in version
1.6 and now features more convenient syntax and properly simulates
inheritance and mixins.

Defining a New Class

The Prototype way of creating a class still relies on Class.create(), al-
though the syntax has been enriched. The full syntax, which lets you
define a superclass when you want to, is as follows:
Class.create([superclass] [, Module...]> [, { instanceMethod<ldots/> }]) → Class

Because all arguments are optional, you can indeed call it with no argu-
ment, as you used to do in, say, Prototype 1.5. You would then add the
instance methods later. However, why keep with the old, two-phase,
kludgy way when we can now put the instance methods right in the
call? Here’s an example class creation:

Download prototype/classes/creation.js

var Animal = Class.create({
initialize: function(name) {

this.name = name;
},
eat: function(food) {

return this.say('Yum!');
},
say: function(msg) {

return this.name + ': ' + msg;
}

});

http://media.pragprog.com/titles/cppsu/code/prototype/classes/creation.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=392

BUILDING OVER: CLASSES, INHERITANCE, AND DOM EXTENSION 393

Class Mechanism: 1.6 Changed Everything!

If you had already created your own classes in versions of
Prototype prior to 1.6, your code should still work in this new
version. However, to fully leverage the new capabilities (such
as inheritance), you’ll need to migrate your code to the new,
extended syntaxes. The former dichotomy (Class.create() /
Object.extend()) is not the way to go anymore.

The following pattern:

var Loader = Class.create();
Object.extend(Loader.prototype, {

initialize: ...,
otherInstanceMethod: ...

});
Object.extend(Loader, {

staticMethod1: ...,
staticMethod2: ...

});

. . . would still work but should now read as follows:

var Loader = Class.create({
initialize: ...,
otherInstanceMethod: ...

});
Object.extend(Loader, {

staticMethod1: ...,
staticMethod2: ...

});

Note that the initialize() method is not mandatory anymore. If you don’t
have construction-time behavior in your class, you can now skip it (it
will be stubbed out by Prototype.emptyFunction).

Our simple class can now be used in a straightforward manner:

Download prototype/classes/creation.js

var fido = new Animal('Fido');
fido.name
// => 'Fido'
fido.say('Hi')
// => 'Fido: Hi'
fido.eat('bone');
// => 'Fido: Yum!'

http://media.pragprog.com/titles/cppsu/code/prototype/classes/creation.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=393

BUILDING OVER: CLASSES, INHERITANCE, AND DOM EXTENSION 394

Modules are also sets of instance methods, so you can specify modules
to mix in, not just a literal set of custom methods for your class:

var Dequeue = Class.create(Enumerable, {
// dequeue methods

});

Naturally, you can combine both a parent class and modules:

var ChildClass = Class.create(ParentClass, Enumerable, MyCoolModule, {
// child's instance methods

});

Inheriting from Another Class

This was a sore point of the former versions. “Traditional” inheritance
in JavaScript is implemented in a rather disturbing fashion—by reas-
signing the prototype of the constructor function for the subclass. This
can quickly lead to headaches for the nonexpert, so Prototype hides all
this complexity from you. When you want to define a class as a subclass
of another one, you simply pass the superclass as the first argument to
Class.create(), before the mixins and set of instance methods.

Let’s look at an example:

Download prototype/classes/extend.js

var Cat = Class.create(Animal, {
eat: function($super, food) {

if (food instanceof Mouse) return $super(food);
return this.say('Yuck! I only eat mice.');

}
});

var Mouse = Class.create(Animal); // Dumb subclass

And that’s all there is to it! Note how we didn’t even need to declare
initialize() this time. We automatically inherit it from Animal, and because
we do not need to augment the inherited behavior for it, we don’t need
to override it.

Overriding a Method and Calling the Inherited One

I’m sure you noticed the $super first parameter to eat(). This is a specific
name that Prototype detects. When you prepend your method’s signa-
ture with it, you’ll get passed the inherited version of the method as
argument, which you can then call when you need it. If you don’t need
to invoke the inherited version, just don’t declare this first argument.

http://media.pragprog.com/titles/cppsu/code/prototype/classes/extend.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=394

BUILDING OVER: CLASSES, INHERITANCE, AND DOM EXTENSION 395

Here’s an example use:

Download prototype/classes/extend.js

var fido = new Animal('Fido');
var tom = new Cat('Tom');
var jerry = new Mouse('Jerry');
tom.say('Hi')
// => 'Tom: Hi'
jerry.eat('cheese')
// => 'Jerry: Yum!'
tom.eat(fido)
// => 'Tom: Yuck! I only eat mice.'
tom.eat('bone')
// => 'Tom: Yuck! I only eat mice.'
tom.eat(jerry)
// => 'Tom: Yum!'

Isn’t life beautiful now? As a final note on inheritance, I’d like to give
due credit, on behalf of the Prototype Core team, to those whose work
and research inspired the API and implementation; prominently, we
benefited from the excellent works by Dean Edwards and Alex Arnell.
As for Core, this new goodness is mostly the work of Mislav and Andrew,
with Sam shooting them a withering glare whenever their suggested
names and syntaxes were too outlandish.

Adding More Instance Properties and Methods
klass.addMethods({ instanceMethod<ldots/> }) → klass

Once a class is created, it is possible to add more instance properties
(including methods) to it using its addMethods() class method. Here’s
an example:

Download prototype/classes/extend.js

Cat.addMethods({
purr: function() { return this.say('Rrrrrr...'); }

});
tom.purr();
// => 'Tom: Rrrrrr...'

Incidentally, this lets you mix modules in, too, because modules are
just sets of instance methods (and possibly other properties). Still, you’ll
generally mix modules in at creation time.

http://media.pragprog.com/titles/cppsu/code/prototype/classes/extend.js
http://media.pragprog.com/titles/cppsu/code/prototype/classes/extend.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=395

BUILDING OVER: CLASSES, INHERITANCE, AND DOM EXTENSION 396

Adding Static Properties and Methods
Object.extend(klass, { staticMethod<ldots/> }) → klass

Adding static properties (and thus methods) to a class is just one case
of adding properties to an object (remember that in JavaScript, classes
are functions, and functions are objects), so we can use the regular
Object.extend() mechanism.

You could use it like this, for instance:

Download prototype/classes/extend.js

var Animal = Class.create({
initialize: function(name) {

Animal.newInstance();
this.name = name;

},
eat: function(food) {

return this.say('Yum!');
},
say: function(msg) {

return this.name + ': ' + msg;
}

});

Object.extend(Animal, {
instanceCount: 0,
newInstance: function() { ++this.instanceCount; }

});

It is likely that Prototype 1.6.1 will provide a more integrated mecha-
nism for specifying class methods and properties, though, especially at
creation time.

Automatic Class Properties

Prototype maintains three properties for you that open the door to pow-
erful introspection:

obj.constructor → Class
class.superclass → Class
class.subclasses → [Class, ...]

Theoretically, every object has a native constructor property that refers
to its constructor function, which basically means its class. However,
there are a few issues across browsers with this property, so Prototype
overwrites it to guarantee its value is correct.

http://media.pragprog.com/titles/cppsu/code/prototype/classes/extend.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=396

BUILDING OVER: CLASSES, INHERITANCE, AND DOM EXTENSION 397

Prototype also adds two new properties. First, every class features a
superclass property, which refers to its parent class (or null if there is no
parent class, which means the class was created with no parent class
first argument passed to Class.create()).

Second, every class also features a subclasses property, which is an
array of references to the classes that extend the current class. This
property is never null, much less undefined. At worst, it’s an empty array.
Whenever a class is created by extension of another, it registers itself
in its parent’s subclasses property. Using these two properties, you can
see it’s fairly easy to walk a class hierarchy.

Here’s a series of expressions based on our previous code:

Download prototype/classes/extend.js

tom.constructor == Cat // => true
tom.constructor.superclass == Animal // => true
Cat.superclass == Animal // => true
Animal.superclass // => null
Animal.subclasses.length // => 2
Animal.subclasses.first() == Cat // => true
Animal.subclasses.last() == Mouse // => true
Cat.subclasses // => []

Extending DOM Elements

If you want to equip DOM elements with even more methods than Proto-
type already does, you need to work with Element.addMethods(). It lets
you add methods to all elements or elements with specific tag names
(say, <form> or <input> elements alone).

Element.addMethods([tagNameOrNames,] methods)

The first, optional argument is a single tag name or an array of tag
names. The mandatory argument is a hash-like object with the methods
inside.

Each method you define must take the element as its first argument.
It does not have the guarantee that this will be bound to the element.
The extension mechanism will let you invoke these methods without
that first argument, right on the extended elements. But you can also
invoke them directly, passing an unextended element to them.

I advise you against directly hacking Prototype’s original method repos-
itories (such as Element.Methods). Use your own repositories, and per-
form the addMethods() call with it.

http://media.pragprog.com/titles/cppsu/code/prototype/classes/extend.js
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=397

CONTRIBUTING! 398

Say you want to add a convenience pulsate() shortcut that would basi-
cally be a prefilled call on script.aculo.us’s generic addition, visualEf-

fect(). You’d go like this:

YourLib.Element.Methods = {
pulsate: function(element, options) {

return $(element).pulsate(options);
}

};

Element.addMethods(YourLib.Element.Methods);

That would be a generic extension. Now suppose you need to add a
markAsRequired() method to form fields. It would be more like this:

YourLib.Field.Methods = {
markAsRequired: function(element) {

element = $(element);
element.addClassName('required');
var lbl = $$('label[for="' + element.id + '"]').reduce();
if (lbl) lbl.addClassName('required');

}
}

Element.addMethods($w('input textarea select'), YourLib.Field.Methods);

Do not confuse Element.addMethods() with the addMethods() facility
you get on custom classes. They share the same name but are otherwise
unrelated.

A.2 Contributing!

You’ll find a quick rundown on the official site, written by our enthusi-
ast Prototype Core member Mislav Marohnić: http://prototypejs.org/contribute.
This section has a lot in common with it but tries to get into slightly
deeper detail now and then.

So, Prototype changed your life, uh? I know, I can relate.

Whenever you code with Prototype, a warm fuzzy feeling comes over
you, and you think “Life is so much better now. Those guys rule. I wish
I could give something back to the community.”

There you go.

http://prototypejs.org/contribute
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=398

CONTRIBUTING! 399

There are a lot of ways you can help and share your (however newly
acquired) Prototype skills. Here are the main ones:

• Subscribe to the support list,1 and start answering questions.
Avoid guessing too wildly, but you don’t need to be absolutely
authoritative either. If you miss a detail when replying, someone
will likely chime in with a quick fix.

• Start browsing the Trac, which is where everybody files bug re-
ports and enhancement requests. You can start with hunting
down duplicate or invalid tickets. If you do notice as-yet unre-
ported issues that you can easily reproduce, feel free to submit
bug reports, too.

• Learn to use the Subversion repository, so as to play with “Pro-
totype Edge,” the latest state of the library. This is important in
order to know what’s cooking and to help closing incoming tickets
when they’re now fixed, for instance.

• Shift into third gear, and start writing patches! This will require
mastering the unit test library that Prototype relies on, because
patches need to come with a full complement of tests to be accep-
ted. You’ll have to test on as many browsers as you can, too. But
once your patches start making it in, you’ll likely find it addictive
(and contributor glory is at hand!).

Because Trac and Subversion are the two pivotal tools of contributing
to Prototype, I’ll spend a few pages giving you as many useful pointers
as I can about how we expect contributors to use them. This should
help you contribute in the most efficient (and appreciated) manner.

Staying on Top of Things: Trac

Trac is a tracking system that lets people file bug reports and enhance-
ment requests. It also has a lot of nice features, such as document
sharing, reports (custom queries over the ticket database that can be
saved and reused at will), and a wonderful integration with version con-
trol systems such as Subversion.

Prototype shares a Trac (and a Subversion server, actually) with Ruby
on Rails (remember that although backend-agnostic, Prototype and
script.aculo.us are, originally, Rails spin-offs). The basic URL is
http://dev.rubyonrails.org.

1. http://groups.google.com/group/rubyonrails-spinoffs

http://dev.rubyonrails.org
http://groups.google.com/group/rubyonrails-spinoffs
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=399

CONTRIBUTING! 400

Figure A.1: The Trac timeline

Anybody can browse tickets, do searches, and the like. However, only
authenticated users can modify tickets (for example, add a comment,
attach a file, close the ticket, reopen it) and create new ones. Getting a
user account is simple enough. Use the Register link on the top-right
corner of the Trac’s home page, and sign up. When you come to Trac
later, don’t forget to log in first (there’s a Login link in the same area).

Browsing the Trac

The Trac is mostly tickets, plus terse information about past and up-
coming milestones. Those are Rails milestones, so they’re not directly
related to Prototype.

You can see the latest ticket activity by looking at the timeline (http://dev.rubyonrails.org/timeline),
which displays everything that happened in a given timeframe. By default,
it lists just about everything (changes to tickets and milestones, Sub-
version commits—called changesets) in the past seven days, but you
can customize this thanks to a little pad on the right side, as displayed
in Figure A.1.

http://dev.rubyonrails.org/timeline
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=400

CONTRIBUTING! 401

Figure A.2: A Trac ticket

You can also zero in on tickets that fall within a specific category. In
Trac, categories are mostly represented by reports, which are prede-
fined search criteria. Our Trac features a bunch of such reports, acces-
sible through the View Tickets link. For instance, report #22 contains
all the pending patches for Prototype and script.aculo.us. They’re usu-
ally in need of further review or complementary tests. That’s a great
place to start helping.

A Trac ticket looks like Figure A.2. It features a summary, a descrip-
tion, comments, attached files, and a whole bunch of properties. The
most important ones are the Type (for example, defect or enhance-
ment), the Component (which in our case will always be Prototype or
script.aculo.us), and the Severity.

Searching the Trac

Sometimes you just need to find specific tickets in the Trac. There are
several ways to do that quickly:

• If you’re looking for a specific ticket, you can just type its number,
preceded by a hash sign (#), in the top-right search box. That will

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=401

CONTRIBUTING! 402

take you right to it. Übergeeks actually use their browser history to
bring up a recent ticket URL (something like http://dev.rubyonrails.org/ticket/7417)
and replace the number in it so as to avoid having to load a Trac
page before.

• If you’re just looking to filter down on reports, just load the appro-
priate report, either by first going to their list page (the View Tick-
ets link) or by playing it hard and using a direct URL, such as
http://dev.rubyonrails.org/report/22.

• Advanced searches with complex criteria will need to use the “Cus-
tom query” feature, accessible through a link in the top-right
corner of the report pages or directly at http://dev.rubyonrails.org/query.
This lets you define custom filters on any ticket property.

Keeping Posted

A great thing about Trac is that most of its report-like pages have a
related RSS feed. This is true not only for the timeline, reports, or even
individual tickets but also for any custom query you could create!

Just look at the bottom of the page for a Download in other formats

section. You can get several variants in there and always an RSS feed.
By putting it in your favorite aggregator, you’re certain not to miss a
thing!

A word of caution about this, though, when it comes to the Timeline
feed. By default, it is configured to load a maximum of 50 items, going
at most 90 days back. The URL you’ll get for it is simple enough to
customize, in case you want it to be more (or less) comprehensive than
the default settings.

Pragmatic Tickets

OK, so the next step is to contribute to the tickets. There are two things
you can do here: file new stuff and help with the triage of existing stuff.
Both are helpful, although maybe the second task is easier and perhaps
a smooth way of warming up to using Trac.

Hunting Down Invalid Tickets and Duplicates

A significant part of the work over Prototype and script.aculo.us tickets
in Trac is hunting down duplicate or invalid tickets. Helping with this
is easy enough and very useful to Prototype Core. Common cases where
tickets are invalid include the following:

• The current stable version does not exhibit the reported issue.

http://dev.rubyonrails.org/ticket/7417
http://dev.rubyonrails.org/report/22
http://dev.rubyonrails.org/query
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=402

CONTRIBUTING! 403

• The ticket requests an enhancement that is far too user-specific (it
does not look like it is generally useful and should be implemented
in the library).

• The ticket is obviously a spam of some kind.

Detecting duplicates is a bit harder, because it requires a good knowl-
edge of the existing tickets, which means you spend time now and then
keeping up-to-date on the open tickets and knowing enough of the code
base that you can determine two issues are actually the same one. For
instance, after Prototype 1.5.0 released, tickets started coming in hard
about Ajax being broken and Hash#toQueryString() not behaving prop-
erly. The two issues were actually very much related. Duplicate hunting
meant understanding this and closing all but the first such report as
duplicates.

A final note about good manners: when you do close a ticket because
you deem it a duplicate, be sure to add a comment that states which
ticket it is a duplicate of!

Completing or Creating Tickets

If you’re at all interested in contributing to Prototype and script.aculo.-
us, this section is important. It defines what a good ticket is.

A good ticket should satisfy the following requirements (most of which
are detailed later):

• It’s not a duplicate, and it is valid against the current trunk.

• Its summary is concise yet explicit and features the proper pre-
fixes.

• The description (and comments) uses proper markup, especially
for code fragments (either inline or blocks).

• The key properties (Type, Component, Severity, and to a slightly
lesser degree Priority) are properly set.

• It makes efficient use of the normalized keywords.

• It comes with a clean patch, made against the current trunk (or a
reasonably close version), provided as an attached file.

• The patch includes all relevant unit tests (and possibly functional
tests). The trunk fails these tests without the patch and passes
them, on all supported browsers, with the patch applied.

I already talked about what duplicates were and what was a sure flag
for an invalid one.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=403

CONTRIBUTING! 404

Now about the rest:

Summaries
A summary needs to be as expressive as possible. By “expressive,”
I mean both concise and informational enough. For instance, “The
Back button clears out autocompleter fields in Mozilla-based
browsers” is pretty good, but “Ajax doesn’t work” is as lame as
it gets.

Another very important part of summaries is the informal stan-
dards in place for their prefixes. You should always prefix a ticket
that comes with a patch using [PATCH]. If this patch comes with
tests, you should add [TEST]. This helps triage a lot for Prototype
Core.

Descriptions
Always use clear descriptions. Classic copy advice holds true—
simple sentences, clear punctuation, and so on. Also make sure
you use proper markup for code, be it inline (for example, variable
or method names) or as a separate block (code samples). The trick
is to wrap code between triple curly braces, like this:

The following code:

{{{
var obj = HumongousLib.dom.util.short.get('someID');
HumongousLib.effects.visual.simple.hide(obj);
}}}

...was OK, but I realized {{{$('someID').hide()}}} just rules.
Do you get a lot of switchers?

This makes it easier on the eyes of everybody.

If you’re reporting a bug or editing an existing bug report, be sure
to include clear steps for reproducing it. You may have put up
a minimalistic reproducible case online (aww, aren’t you great!),
in which case the description is an ideal place to put a link to
it. URLs get linked automatically. By the way, Trac’s automatic
number formats get detected and linked. Most notably, you can
use #ticketId, [changeSetId], and {reportId}. Use the WikiFormat-

ting link above the description zone for the full details of the avail-
able syntax.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=404

CONTRIBUTING! 405

Properties
Be sure to set all key properties with care. Type will usually be
defect (bug report) or enhancement. Component will be either Pro-

totype or script.aculo.us. Priority determines how urgent the ticket
is, while Severity determines its impact (how bad the bug is and
how deeply the enhancement impacts the code base).

Leave fields such as Milestone and Version alone; those are deci-
sions by Those Who Commit To Trunk. Also refrain from manually
assigning the ticket to someone in particular.

Keywords
Spin-offs teams have agreed on a series of normalized keywords
to use in the Keywords field that let them sort through incoming
stuff. When a ticket requires only a tiny patch (for example, a
trivial one-liner), use the keyword tiny. When the patch is well-
tested and deemed ready (possibly after multiple revisions and a
consensus in the comments) for application to the trunk, add the
ready keyword.

Patches and tests
Whatever the ticket, good patches are paramount. To have a de-
cent chance at being processed quickly, a ticket has to come with
a clean patch and a full complement of tests. The art of producing
such things is what we’ll discuss in the next section.

Edge Spin-offs: The Subversion Repository

Prototype, script.aculo.us, and everything in the Rails universe use
Subversion for version control (keeping track of all the history for all
files in the source tree). You don’t need to be a Subversion guru to con-
tribute code to Prototype and script.aculo.us, but you’ll need, at the
very least, to be able to get Prototype Edge from it.

If you know CVS, you’ll be right at home with Subversion. The basic
usage is identical. If you don’t know any of those, the website is http://subversion.tigris.org,
where you’ll find, among other things, a link to the excellent Subver-
sion book,2 available in many formats, including PDF and online HTML.
Chapters 1 and 2 should get you up and running in no time.

2. http://svnbook.red-bean.com/

http://subversion.tigris.org
http://svnbook.red-bean.com/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=405

CONTRIBUTING! 406

Getting the Latest Source Code

Prototype and script.aculo.us live in a branch of Rails’ Subversion re-
pository, located at http://svn.rubyonrails.org/rails/spinoffs/.

At the time of this writing, script.aculo.us has no branches, but Proto-
type uses the classical trunk/tags/branches split:

• The trunk is where the next version is being cooked up. It’s the
home of Prototype Edge.

• Branches provide separate areas for Prototype Core members to
tweak stuff. For instance, the selector branch is where Andrew
Dupont and I play around when pushing Selector (and therefore
$$()) forward; event is the playground for new ideas being tossed
around toward a full rewrite of the event management system; and
so on. . .).

• Tags are frozen states of the trunk that represent specific versions.
You’ll find every released version of Prototype in there, from 1.5.0
onward.

To contribute, the only thing you really need to do is check out the
trunk and later update it. To do this, you just need to grab a Subversion
client program and point it to the URL of the trunk (or higher up the
repository tree, perhaps all the way to spinoffs).

There are client programs for all tastes, from TortoiseSVN (which inte-
grates with the Windows Explorer) to the classic command-line client.
This is the one we are going to use in this chapter. Look at what is
available for your specific platform at http://subversion.tigris.org/project_packages.html,
and download and install it.

The first time, you’ll need to check out the part of the repository you
need. For instance, to check out the trunk, just open a command
prompt, go to the directory you want to check it out to, and then simply
type this:

$ svn co http://svn.rubyonrails.org/rails/spinoffs/prototype/trunk/

A trunk/test
A trunk/test/unit
A trunk/test/unit/range.html
...
A trunk/src/ajax.js
A trunk/src/form.js
A trunk/src/hash.js
A trunk/README
Checked out revision 6390.
$

http://svn.rubyonrails.org/rails/spinoffs/
http://subversion.tigris.org/project_packages.html
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=406

CONTRIBUTING! 407

Of course, you’ll get a higher version number (it rises with every com-
mit operation). You know have a trunk directory, which is bound to the
Subversion repository. To update it to the latest version, you just need
to get in there and type this:

$ svn up

U test/unit/selector.html
U Rakefile
U CHANGELOG
U src/selector.js
Updated to revision 6435.
$

There! You’re all set to work with the latest sources.

The last thing you need is a Ruby setup, with Ruby and Rake executa-
bles. You can learn how to do that in Appendix C, on page 414.

Road to Glory: Creating Patches

Writing a patch is as simple as getting into the trunk’s src directory
and changing the appropriate .js file. Once this is done, you need to
rebuild the consolidated prototype.js file. To do this, from somewhere in
the trunk’s directory tree, just type rake dist. This will build the library
file in the trunk’s dist directory. This file is used by the tests.

Working with Tests

When you’re done with a patch, make sure you run the proper test files.
Simply open them in the browsers you have handy. Passing tests go
green, and failing ones go red. This can actually be a way to contribute.
Run all the tests, find the failing ones, and go figure out what’s wrong
and fix them!

To see tests in action, just do this:

1. Fire up your trusty browser. Have it open the test/unit/array.html

file. The page loads, runs all its tests, and is done. If everything is
groovy, they all pass, as in Figure A.3, on the following page.

2. Now open src/array.js and break something! For instance, change
first() to return null instead of this[0]. Rebuild the library (rake dist,
remember?), and refresh the test page in your browser. It should
look like Figure A.4, on the next page.

3. OK, you just ruined this file. Undo by hand and rebuild, or just use
Subversion to revert to the latest checked-out version: svn revert

src/array.js.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=407

CONTRIBUTING! 408

Figure A.3: A flurry of passing tests

Figure A.4: Oops! We broke something!

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=408

CONTRIBUTING! 409

When your patch is done, make sure you provide good test coverage.
Figure out as many things as you can that seem to need tests, and then
write those tests in a way that will fail without your patch. Test with and
without your patch applied. You can even run all tests automatically by
using rake test. It runs all the tests on all the available browsers (which
some tests, like Ajax ones, require so they get a valid server side). You
can restrict it by using its BROWSERS and TESTS variables.

The test files are located in the test subdirectory, with the unit tests in
test/unit. Just look at the large inline scripts in there for inspiration on
how to add tests to the suites.

Packaging, Submitting, and Cleaning Up

All set? Then package your patch as a Subversion diff file. It’s easy,
really. Just go to the trunk’s base directory, and do something like
this:

$ svn diff > good_patch_name.diff

$

You might want to put these files outside the trunk directory. Then go
to the Trac, edit or create the proper ticket, and attach your patch to it.
Add a comment to add whatever explanations are required about this
patch. Update the summary if need be.

Also, don’t forget to revert your trunk directory to its normal state
before tackling any other work or updating it once again. Just go the
trunk’s base directory, and do this:

$ svn revert -R .

Reverted 'src/array.js'
$

Code Style Guidelines

• Indent with two spaces, not tabs. Make sure your editor of choice
doesn’t use some autofill mode that will convert given amounts of
spaces to tabs automatically.

• Use expressive variable names; n, e, or ePC won’t quite cut it.

• Use semicolons to terminate statements.

• If possible, use Unix line breaks.

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=409

CONTRIBUTING! 410

• Just look at the existing source code for inspiration about
general code architecture and layout. Avoid polluting the global
namespace as much as possible; put function-specific constants,
variables, and subfunctions in the calling function’s prototype;
and so on.

• Notice some low-hanging fruit (trivial fix about performance or
cleanliness)? Pick it!

Common Pitfalls

• First, don’t go writing a patch that will end up being considered
invalid (see earlier in this chapter about such cases). Also make
sure you’re not duplicating an existing effort.

• Make sure you revert your local repository before starting up on a
new patch so you don’t aggregate it with prior patching work.

• Make sure you update your local repository, too, so you do patch
against the latest trunk (revert before updating).

• The tests keep failing? Are you sure you rebuilt the library (rake

dist) after saving the source file?

• Make sure you test in at least two browsers, one of which must be
Firefox. If you’re on Linux, try testing on Firefox and Konqueror,
at least. If you’re on Mac OS X, use Firefox, Safari (ideally 2 and
3), and perhaps Opera. If you’re on Windows, go crazy and use
Firefox, Internet Explorer (ideally both versions 6 and 7), Opera 9
or later, and perhaps even Safari 3!

We’re looking forward to your contributions!

http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=410

Appendix B

Further Reading
B.1 Official Websites

Prototype. .http://prototypejs.org

This holds the reference API documentation, replete with examples and cross-

references. You’ll also find various tutorials and get to know Prototype Core

members. New sections open from time to time, such as a recommended books

list, a centralized listing of third-party add-ons and libraries, and so on.

script.aculo.us. .http://script.aculo.us

Although the documentation part is currently lackluster in comparison with

Prototype’s, it still holds a lot of information and a large number of demos. A

documentation effort should assemble late in 2007 to try to bring it up to par

with Prototype’s, so keep your fingers crossed.

B.2 Useful Blogs by Prototype Core Members

Andrew Dupont: Painfully Obvious http://andrewdupont.net/

Andrew has been an extremely active contributor, being the driving force behind

1.5.1’s Selector rewrite and helping with countless other topics such as style

manipulation, DOM tweaks, or the future inheritance scheme. His blog talks

not only of Prototype but also other frameworks, JavaScript, and web develop-

ment in general.

Dan Webb . http://www.danwebb.net/

The man behind so many cool things: Dan has his fingers in such acclaimed

pies as Prototype, LowPro, the JavaScript CodeHighlighter library, and the

Unobtrusive JavaScript (UJS) plug-in for Rails, just to name a few. He’s very

active in everything related to JavaScript events and speaks at a number of

top-notch conferences.

http://prototypejs.org
http://script.aculo.us
http://andrewdupont.net/
http://www.danwebb.net/

JAVASCRIPT MASTERS 412

Justin Palmer: Encytemedia http://www.encytemedia.com/

Justin spear-headed Prototype’s documentation effort around Christmas 2006

and has been an active voice in promoting the framework for a long time. When

he’s not over his head with client work, he dumps little golden nuggets of

healthy Prototype usage in his blog.

Thomas Fuchs: mir.aculo.us . http://mir.aculo.us/

The gifted creator of script.aculo.us keeps tabs on releases and release can-

didates for both his and Sam’s framework and looks at books and other

resources, too.

Tobie Langel . http://tobielangel.com/

One of the most active Core members, Tobie posts regularly about everything

Prototype and JavaScript: tips, books, new versions, other frameworks, cool

features, tutorial articles—you name it.

Yours truly: The Bungee Blog http://thebungeebook.net

So Prototype and script.aculo.us kept moving ahead after this book released? I

sure hope they did! But fear not—this book is, very likely, still very, very much

up-to-date and useful, and you can catch up on all the new tricks on this

blog. . . while waiting for the next edition!

B.3 JavaScript Masters

Dean Edwards . http://dean.edwards.name/

He Who Writes Dazzling JavaScript. Dean is revered throughout the JavaScript

world and keeps coming up with code that pushes the envelope of what the rest

of us thought possible. . . with code that sometimes makes other ninjas’ heads

hurt. This is a must-read for serious, advanced scripters.

Douglas Crockford . http://www.crockford.com/

The man behind JSON (and so much more) provides a great site chock-full with

useful information, tricks, advanced scripting, and nifty tools.

Jack Slocum. .http://www.jackslocum.com/blog/index.php

Jack’s work on YUI-Ext and DomQuery is inspirational, and great ideas keep

being exchanged between Prototype Core members and Jack, which have led

to major performance boosts and nifty features all around. His blog is full of

JavaScript news, framework reviews, and detailed examples.

John Resig . http://ejohn.org/

John is the creator of the jQuery library. Although most people see it as a

competitor to Prototype, I would more gladly say it’s great for smaller-scale

sites, with a subset of the needs Prototype covers. Still, it’s excellent code, and

John knows his stuff very well. His site overflows with great articles, blog posts,

and technical insights.

http://www.encytemedia.com/
http://mir.aculo.us/
http://tobielangel.com/
http://thebungeebook.net
http://dean.edwards.name/
http://www.crockford.com/
http://www.jackslocum.com/blog/index.php
http://ejohn.org/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=412

COMMUNITY AND NEW SITES AROUND AJAX 413

B.4 Community and New Sites Around Ajax

Ajaxian . http://ajaxian.com/

Dion Almaer and Ben Galbraith, who authored [JG06], maintain a lively

overview of the Ajax/Web 2.0 world, with numerous reviews of frameworks,

libraries, books, and articles throughout the Web. This is sort of a one-stop

shop to stay up-to-date.

B.5 ECMAScript Intimacy

Official ES4 / JS2 web page http://www.ecmascript-lang.org/

Official information, details about standard development, downloads of refer-

ence implementations, sneak peeks, and soon.

Brendan Eich: Roadmap updates. . .
. . . http://weblogs.mozillazine.org/roadmap/

Brendan, inventor of JavaScript, posts now and then about core developments

to the next version of JavaScript. With JavaScript 2.0 currently cooking, it’s a

whole new world of possibilities that is opening up.

B.6 Bibliography

[JG06] Dion Almaer Justin Gehtland, Ben Galbraith. Pragmatic

Ajax: A Web 2.0 Primer. The Pragmatic Programmers, LLC,
Raleigh, NC, and Dallas, TX, 2006.

http://ajaxian.com/
http://www.ecmascript-lang.org/
http://weblogs.mozillazine.org/roadmap/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=413

Appendix C

Installing and Using Ruby
Although Prototype and script.aculo.us are totally agnostic about the
server side, I chose to use Ruby when writing the small servers for
Ajax-based examples. The reasons for this are many:

• Using server layers such as JavaEE, ASP.NET, or PHP requires
some serious setup on your machine if it’s not already your work-
ing environment. Sure, there are tools like EasyPHP for Windows,
but that leaves out other platforms.

• JavaEE and ASP.NET require too much groundwork in order to
get a working page. There’s project creation, server configuration,
and more. And with PHP, unless you’re using EasyPHP, there’s a
lot of setup to do as well, binding it to a web server, and so on.

• I just don’t like PHP all that much, too.

• Getting the server technology up and running, in the context of
this book, should be as unobtrusive as possible. Monitoring the
server side should be easy, too, in case you mistype the scripts.
This book is about Prototype and script.aculo.us, not about
server-side technologies.

So, I chose Ruby, because it’s simple enough for non-Rubyists to grasp
quickly (or at least, get the hang of how the script works), it’s simple to
install on most platforms (when it’s not already there), and there’s zero
setup groundwork when you need a server with dynamic contents.

To run the examples in this book, you will thus need to have Ruby
installed on your machine. This is pretty easy to do, and this appendix
will show you how.

ON WINDOWS 415

C.1 On Windows

The golden way to go for Microsoft Windows is to use the 1-Click Ruby
Installer, a package maintained on RubyForge. Its home page is at
http://rubyinstaller.rubyforge.org/wiki/wiki.pl?RubyInstaller, with the latest
download (Ruby 1.8.6) at the time of this writing being accessible at
http://rubyforge.org/frs/download.php/18566/ruby186-25.exe.

This installer does not only contain Ruby but also popular tools, exten-
sions, and documentation files in various formats. If all you need is
Ruby itself, you can go with the binary download at ftp://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/r

C.2 On Linux

Well, chances are you already have Ruby installed if you’re running
Linux. It’s used by many system tools. Open a console, and try the
following command:

$ ruby -v

ruby 1.8.6 (2007-03-13 patchlevel 0) [i486-linux]

If you get a Command not found error, you don’t have it yet. But fear
not—all you need to do is install the relevant packages. Depending on
your distribution, the package system will vary, but the package name
is usually ruby. There are currently packages for Debian, Mandriva,
SuSE, Red Hat Linux, BSDs, and a number of their variants (including
Ubuntu, OpenSuSE, Fedora, and more). Slackware also gets packages
through LinuxPackages.net, for instance.

If you plan only to run the examples in this book, that’s all you need.
If you plan to tinker a bit more with Ruby, you’ll probably want irb

(interactive Ruby shell, great to try stuff out) and ri (the help browser),
too.

For instance, on Debian and its derivates (for example, Ubuntu), all you
need to do is something like this:

$ sudo apt-get install ruby irb ri

(Note that if you use Ubuntu or its derivatives, you’ll have to enable the
universe repository to get these.)

http://rubyinstaller.rubyforge.org/wiki/wiki.pl?RubyInstaller
http://rubyforge.org/frs/download.php/18566/ruby186-25.exe
ftp://ftp.ruby-lang.org/pub/ruby/binaries/mswin32/ruby-1.8.6-i386-mswin32.zip
LinuxPackages.net
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=415

ON MAC OS X 416

C.3 On Mac OS X

OS X is now in a love affair with Ruby and Ruby on Rails, which mostly
shows in Leopard (OS X 10.5, just released as this book is going to
press). Depending on the version of OS X you have, there are a bunch
of options for binaries:

• Panther (10.3), Tiger (10.4) and Leopard (10.5) have Ruby 1.8 pre-
installed; Leopard features version 1.8.6, which is the latest one
at the time of this writing.

• Jaguar (10.2): there’s a .dmg package for Ruby 1.8.2 available at
http://homepage.mac.com/discord/Ruby.

If you’re technically savvy, you can naturally elect to grab the source for
the latest version and compile it yourself: ftp://ftp.ruby-lang.org/pub/ruby/ruby-1.8.6.tar.gz.
A middle-of-the-road approach would be to use tools such as MacPorts1

or Fink2; for instance, with MacPorts, you can grab Ruby like this:

$ port install ruby

C.4 Running a Ruby Script

The universal way of running a Ruby script is simply to pass its file-
name to the ruby interpreter. For instance, you would open a command
prompt, move into the script’s directory, and invoke the interpreter on
it. For instance:

$ ruby server.rb

In all our server-side examples for this book, we use Ruby’s inclusion of
the WEBrick module in its standard library to provide us with a work-
ing, lightweight HTTP server that can still run Ruby code dynamically.
To make things simpler, WEBrick will, by default, do all its logging on
the script’s standard output, which is your console window. We can
make it very easy to stop, too. Just press Ctrl+C in the console win-
dow once it’s running.

This all makes it very easy to run a server, track its logs, and stop it,
especially when compared to other server-side solutions.

1. http://www.macports.org/

2. http://fink.sourceforge.net/

http://homepage.mac.com/discord/Ruby
ftp://ftp.ruby-lang.org/pub/ruby/ruby-1.8.6.tar.gz
http://www.macports.org/
http://fink.sourceforge.net/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=416

“BUT I DON’T KNOW A THING ABOUT RUBY!” 417

C.5 “But I Don’t Know a Thing About Ruby!”

Have no fear, have no fear. Ruby is the kind of language you can quickly
get the basics of; it follows the principle of least surprise. To newcomers,
a piece of Ruby code often does what it seems to be doing. And the code
in this book refrains from using too much Ruby-fu so as not to make
your head spin.

At any rate, if you’re interested into learning more about this wonderful
language, the prime resource to head for is the official website, which
links to everything you’ll need to quickly get on the saddle, from 20-
minute tutorials to book-length material.

The official site is at http://ruby-lang.org.

Here are some great write-ups that will take you less than an hour and
equip you with everything you need to comfortably wade through the
examples:

http://tryruby.hobix.com/

An interactive, 15-minute demo. It’s entirely online and doesn’t
require you to install Ruby first! Coming from the infamous Why
The Lucky Stiff, it’s very funny to walk through, too.

http://www.ruby-lang.org/en/documentation/quickstart/

A 20-minute intro to Ruby, which is pretty cool to help you dive in.
Like a lot of documentation on the Ruby official website, it’s avail-
able in a variety of languages, usually including English, French,
Spanish, and Japanese.

http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/

Ruby is very cool, but coming from other languages can sometimes
inhibit us with bred reflexes as to what is or is not possible and
how to achieve certain results. This write-up highlights important
points and idioms every newcomer should know in order to take
best advantage of Ruby’s syntax and possibilities.

You’ll find a lot more material, including books (sometimes very offbeat
ones, such as “Why’s (poignant) guide to Ruby”) on the documentation
page at http://www.ruby-lang.org/en/documentation/.

http://ruby-lang.org
http://tryruby.hobix.com/
http://www.ruby-lang.org/en/documentation/quickstart/
http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
http://www.ruby-lang.org/en/documentation/
http://books.pragprog.com/titles/cppsu/errata/add?pdf_page=417

Index
Symbols
$(), 29, 33, 42–44, 130, 141, 150, 241
$$(), 29, 36, 45–47, 161, 167, 168, 178,

241, 243, 315
$A(), 26, 47–49, 80, 104
$F(), 49–50, 145, 179
$H(), 50, 226, 227
$R(), 50, 230
$w(), 44
++ operator, 242
<=>(), 337
== operator, 81
| character, 44

A
absolutize(), 163
Accessibility with Ajax, 223f, 220–223
activate(), 175
Adams, Douglas, 193
addClassName(), 147
addMethods(), 105
Advanced replacing, strings, 72–73
afterUpdateElement, 341
Ajax, 186–224

accessibility and ergonomy, 223f,
220–223

Ajax.PeriodicalUpdater, polling,
215–219

Ajax.request, 192–208
geometry persistence, 196f, 200f,
192–201
options for objects, 201–205

Ajax.Responders, 219
Ajax.response, 206–208
Ajax.Updater, streamlining, 211f,

212f, 208–215
autocompletion module, 333f,

330–334
callbacks, 203–205

debugging, 220
drag and drop module, binding, 312
exercises, 224
file fields, 182
Firebug monitoring of, 199
form-related content changes and,

127
in-place editing and, 349, 354–355
indicating use of, 222n, 330
insertions, 155
logged-in user list, 215–218
overview, 223
requesters, 238
response types, 190–192
<script> tags, 157
streamlining forms with request, 182
submitting forms through, 178–183
task list example, 245, 246
technical limitations, 188f, 187–188
tracing, 220, 250f
websites for, 186
XHR overview, 188–190

alert(), 171
Aliases, 39
all(), 91, 93
Alternate class, 31
ancestors(), 160
Animated effects, see Visual effects

module
any(), 91, 93
Arrays, 77–82

collections turned into, 104
conversions, 80
empty, 81
enumerating on, 78
extractions, 81
iteration over, 52
optimizations, 82
speed and, 244

ASYNCHRONOUS 419 CREATEDOMFRAGMENT()

transformations, 78–80
asynchronous, 201
Autocompletion module, 323–342

Ajax and, 333f, 330–334
customizing request parameters,
333–334

built-in behaviors, 324–325
callbacks, 340–341
exercises, 342
local, 327f, 328f, 325–329

completion list, changing, 329
customizing, 328–329

multiple values in one field,
335–339, 340f

options, 325
overview, 254, 341
rich-markup choices, 334–335
sources for, 323–324

Autoscrolling, 299, 300f

B
bind(), 28, 60–62, 114, 115, 143, 152
bindAsEventListener(), 115, 146
Bindings, 249
bindUI(), 249
bindWidgets(), 199
$break, 89, 91, 106, 242
Browsers, 237

Ajax tracing and, 220
disabled elements and, 177
disabling, 151
DOM and speed, 131
DOM inspectors, 169
two-request limit and, 187
XHR and, 189

Bubbling, 114, 118
Builder module, 343–348

elements within elements, 345–346
method dumping, 346–347
one element, 344–345
XHTML representation, 347–348

Builder.build(), 347, 348
Builder.dump(), 346, 347
Builder.node(), 344, 346, 347
Buttons vs. links, 355

C
Call-chaining, 174
Callbacks, 267

autocompletion and, 340–341
drag and drop module, 310–312

and draggables, 289f, 287–289
in-place editing, 362–363
for sliders, 376f, 377, 378f, 378

Callbacks, Ajax, 203–205
camelize(), 70
cancel(), 278, 279
capitalize(), 70
change, 126
Checkboxes, see Forms
childElements(), 160
Classes, creating, 25
clear(), 79, 175
clearInterval(), 232
click, 125
clone(), 57, 82
clonePosition(), 163
Cloning objects, 56–58
collect(), 101, 102, 104
Collection unifier function, 47–49
Collections, 88–107

computing derived collection or
value, 99–102

custom sorts, 102–103
for Enumerable module, 107
finding elements and applying filters,

93–96
getting general information about,

91–93
grouping together, 95–99
iterating with each, 89–91

and enumerable methods, 90
enumerable context parameter,
90–91
short-circuiting enumerations,
89–90

objects and Enumerable, 105
overview, 106
turning into array or debugging

string, 104
Color, 67, 265, 279, 362
compact(), 79
concat(), 82
confirm(), 232
constraint, 295
Constructor function, 32
container, 215
contentType, 201
$continue, 90
Convention, for shortcuts, 42
create(), 145
createDOMFragment(), 141, 145

CROCKFORD 420 DRAG AND DROP MODULE

Crockford, Douglas, 83
CSS

Ajax geometry persistence example,
195

Ajax-based search and, 209
and autocompletion module, 338
autocompletion module example,

326
class names, tweaking, 147–152
color creation, 67
display property, 153
and elements for the Event, 121
in-place editing, 361f, 358–361, 366
and Prototype, 29
selecting elements with, 161
styling for staff manager example,

136
CSS selectors, 45–47
cumulativeOffset(), 163
cumulativeScrollOffset(), 163
curry(), 62, 65
Custom Events, 124–125
Custom queues, 274

D
dasherize(), 71
Debugging, 170f, 171f, 168–171

Ajax, 220
Enumerable module and, 104
Object.inspect and, 56

decay, 218
defer(), 63
delay(), 63
delay, 292
descendants(), 160
destroy(), 284, 285, 368
detect(), 93
DevMo, 77
Dir.glob(), 332
disable(), 176, 387
Display, 153
display(), 115, 117
dispose(), 368, 381
document.createElement(), 344
DOM, 130–172

builder module overview, 255
and call-chaining, 174
debugging, 170f, 171f, 168–171
and drag and drop, 320
and event listeners, 112
event-related methods in, 111

extending elements, 130–132
inspectors, 169
level 2 events, 109, 122
overview, 172
script.aculo.us builder module and,

343–348
Selector, 167–168
staff manager example, 133f,

132–167
CSS class names, 147–152
handling events, 143–147
HTML groundwork, 134–136
inserting new contents, 155–159,
160f
moving across DOM, 138–139
node chains, 160–161
object to represent staff, 137
positioning, 162–164, 165f
replacing contents and removing
elements, 139–143, 144f
selecting elements with CSS, 161
steps, 133–134
style properties, 161–162
visibility, 152–155
visual aspects, 165

down(), 138
Drag and drop module, 283–322

callbacks, 289f, 287–289
cancel dragging, 285
controlling element movement, 292
customizing dropping, 305f, 307f,

302–307
drag handles, 295–297
dropping, 301–302
exercises, 322
ghosting, 297, 298f
limiting movement, 293
making elements draggable, 286f,

283–286
monitoring drags, 301
overview, 254, 321
pitfalls, 319–321
scrolling and dragging, 300f,

298–300
sorting with, 309f, 312f, 314f, 319f,

307–319
Ajax binding, 312
callbacks, 310–312
horizontal layouts, 312–314
how it works, 318–319
lists, 308

DRAG HANDLES 421 EVENT HANDLING

multiple lists, 316–318, 319f
order of items, 308–310
setting more than lists, 314–316
trees, reordering, 316

starting, ending and reverting,
289–297

sticking to a grid, 293
Drag handles, 295–297
Draggable objects, 198
Draggables.addObserver(), 301
drawBoard(), 285
Drop zone, 301, 321
Droppables.add(), 301
Droppables.remove(), 302
Dropping, 305f, 307f, 301–307
Dupont, Andrew, 243

E
_each(), 105, 106, 242
each(), 33, 89–91, 101, 106, 227, 228,

242
eachSlice(), 90, 95, 97, 98
Edwards, Dean, 112n
Effect helpers, 274–276, 279
Effect queues, 272–274
element(), 121, 150
Element.extend(), 241
Element.update(), 216, 348
Elements

in Builder module, 345–346
enabling and disabling, 176–177
for the Event, 121
extending in DOM, 130–132
extension of, 241
grouping, 95–99
in-place editing of, 350
making draggable, 286f, 283–286
namespace (DOM extension), 133f,

132–167
removing, 139–143, 144f
selecting with CSS, 161
turning into something else,

101–102
Élodie, 19
enable(), 176, 387
encoding, 201
endeffect, 291
entries(), 104
Enumerable module, 33, 88–107

computing derived collection or
value, 99–102

custom sorts, 102–103
exercises, 107
finding elements and applying filters,

93–96
general collection information, 91–93
grouping elements and collections,

95–99
iterating with each, 89–91

context parameter, 90–91
fundamental mechanism, 90
short-circuiting enumerations,
89–90

objects and, 105
overview, 106
turning into array or debugging

string, 104
ERb, 194
Ergonomy with Ajax, 223f, 220–223
escapeHTML(), 70, 171, 244
Ethereal, 220
eval(), 191, 205, 212, 218
evalJS, 201
evalJSON, 202
evalJSON(), 84
evalResponse(), 205
evalScripts(), 75
evaluate(), 73
Event handling, 108–129

change, 126
click, 125
details on the Event, 111
Event object, 108
exercises, 129
firing custom events, 124–125
form-related content changes, 127
getting information about, 120–123
grabbing source element, 111
and Internet Explorer, 109
keyboard information, 122–123
keyCode constants, 123
keydown and keyup, 126
load, 125
methods in the DOM, 111
mouse information, 122
mousedown and mouseup, 126
mouseover, mousemove, mouseout,

126
normalized Event object, 111
observing events, 112
obsolete, 243
overview, 128

EVENT.STOP() 422 GETRESPONSEHEADER()

preventing default behavior, 110
propagation of, 117–120

Event bubbling, 118
event capture, 119

propagation of events, 110
registering an event listener, 110
in staff manager example, 143–147
submit, 125
unregistering an event listener, 110

event.stop(), 119
Executing later, 63
Exercises

for Ajax, 224
for autocompletion module, 342
for drag and drop module, 322
for Enumerable module, 107
for Event handling, 129
form management, 185
for in-place editing, 372
for objects, 240
for script.aculo.us visual effects

module, 282
for sliders, 384

Expando properties, 34
extend(), 57
Extended elements, 38, 43
extractScripts(), 75

F
Fade away/in effect, 269
Field, 173
Field enablement, 174
File fields, 182
Filters, applying, 93–96
find(), 93, 149
findAll(), 27
findAll(), 94–96
findElement(), 121
findElements(), 168
findFirstElement(), 175, 176
finish(), 278, 279
fire(), 111, 124
Firebug, 41, 56, 170, 171f, 199, 218,

220, 249, 250f
Firefox, 131, 169, 218, 220, 238, 249

innerHTML property, 343
Fireworks, 250
first(), 81, 97
firstDescendant(), 138
flatten(), 79, 100
focus(), 174

focusFirstElement(), 176
for...in, 52, 53
for...in, 191, 227
Form field function, 49–50
Form-related content changes, 127
Form.Element, 173
Form.Element.EventObserver(), 127
Form.EventObserver(), 127
Forms, 173–185

exercises, 185
file fields, 182
Form.Element vs. Field, 173
form fields, 177–178
navigation of, 173, 174
observers, 183–184
overview, 184
serializing, 179–182
streamlining Ajax forms with

request, 182
submitting through Ajax, 178–183
user interfaces, 173–177

enabling and disabling elements,
176–177
focus and value selection,
174–176

frequency, 217, 218
from(), 80
Fuchs, Thomas, 82, 253
Function binding, 58–62
Functions, 62–65

executing later, 63
prefilling arguments, 62
that look like methods, 65
wrapping, 64

G
genID(), 145
Geometry persistence, 196f, 200f,

192–201
get(), 226, 273
get_search_results(), 210
getAllHeaders(), 206
getAllResponseHeaders(), 206
getDimension(), 165
getElements(), 178
getHeader(), 206
getHeader(name), 205
getHeight(), 165
getInputs(), 178
getOffsetParent(), 163
getResponseHeader(), 206

GETSTYLE() 423 JAVASCRIPT

getStyle(), 161, 244
getTuxCell(), 288
getValue(), 179, 181
getWidth(), 165
Ghosting, 297, 298f
Global queue, 272
Global value, computing, 99–100
grep(), 94
gsub(), 72

H
handle, 295
handleTreeClick(), 155
hasAttribute(), 166
hasClassName(), 147
Hash functions, 50

creating a Hash, 226
merging, 227
serial, 181
storing values in, 225–230

headerJSON(), 207
Helper objects, see Objects
Helpers for effects, 274–276, 279
Hijax, 221
Horizontal drag and drop layouts, 314f,

312–314
hoverclass, 307f
HTML

escaping, 244
groundwork for staff manager page,

134–136
HTTP status codes, 205n

I
identify(), 166
In-place editing, 349–372

Ajax persistence, tweaking, 354–355
alternative text, 367f
of alternative text, 364–367, 368f
classes that focus on, 349
in code, 351
customizing appearance, 355–363

additional text, 358f, 356–358
buttons vs. links, 355
callbacks, 362–363
changing defaults, 363
CSS style properties, 361f,
358–361
external control, 363
styling for different editors, 361

definition, 349

disabling, 368
drop-down list for, 371f, 368–371
editing multiple lines, 363–364
example of, 352–353, 354f
exercises, 372
overview, 371
steps and stages, 350–351
versions, 350

index(), 227
indexOf(), 76, 81
inGroupsOf(), 90, 95–99
init(), 143
Initialization, 25
initialize(), 33, 278
initialize(), 277
inject(), 100
Injection, 100
insert(), 157, 343
insertBefore(), 35
inspect(), 54, 75, 80, 104, 167, 168, 171
Inspectors, DOM, 169
Integer ranges, 50
Internet Explorer, 131, 169, 238

bubbling and, 118
disabled elements and, 177
and Event handling, 109
Events handling by, 110
keyboard information and, 123
memory leaks, 117
visual table-related elements, 271
XHR and, 189

interpret(), 58
Introspecting objects, 55f, 56f, 54–56
invoke(), 28, 101, 102, 228
isLeftClick(), 122
isMiddleClick(), 122
isOut(), 290, 291
isRightClick(), 122
Iterations

with each, 89–91
ranges and, 230
vs. regular loops, 242

Iterators, 38, 244
$break, 89

J
JavaScript

Ajax geometry persistence, 198
Ajax-based search, 209
appearance of, when using

Prototype, 22–36

JAVASCRIPT DEVELOPMENT 424 MOUSE

arguments variable, 26
autocompletion module example,

327f, 328f, 325–329
and Internet Explorer, 109
obtrusive vs. unobtrusive, 112
Prototype with newer versions of, 77
prototypes in, 39–41
task list example, 249f, 248–250
working without, 221

JavaScript development, 52–87
for...in, 52–53
arrays, 77–82

conversions, 80
enumerating on, 78
extractions, 81
optimizations, 82
transformations, 78–80

cloning and extending objects, 56–58
executing later, 63
function as methods, 65
function binding, 58–62
introspecting objects, 55f, 56f, 54–56
JSON support, 83–85

converting objects from, 84
converting objects to, 83–84
security, 85

numbers, 65–68
object manipulation, 52–58
overview of, 85
prefilling arguments, 62
strings, 68–76

advanced replacing, 72–73
converting and extracting, 75–76
HTML and, 70
part-based formatting, 70
script fragments, 75
searching for contents, 76
strip, 68
stripScripts, 68
stripTags, 68
transformations for, 69
truncate, 68

wrapping, 64
JavaScript Object Notation, see JSON
join(), 228
JSON support, 83–85

converting objects from, 84
converting objects to, 83–84
evaluation, 203
security, 85
website for, 83, 190

K
Keith, Jeremy, 221
Keyboard autocompletion, 325
Keyboard information, 122–123
Keyboard navigation, 175
Keyboarding, 221
keyCode constants, 123
Keydown, 126
keys(), 54
Keyup, 126
Konqueror, 131, 177

L
Langel, Tobie, 83, 192
last(), 81
linear(), 267
Listeners

caching, 117
event bubbling and, 118
functions as, 113
methods as, 114
registering, 110
unregistering, 110
W3C mandates for, 113

load, 125
Logged-in user list, 215–218
loop(), 278
Low-tech scheduling, see Scheduling

M
makeVisible(), 155
map(), 29, 101, 295, 332
Markdown, 351, 364
match(), 94, 161, 168
max(), 103
Memory costs, 243
merge(), 227
method, 202
Method dumping in Builder module,

346–347
methodize(), 65
Methods

as listeners, 114
see also specific methods

Miller, Mathias, 112n
min(), 103, 238
Modifier keys, 122
Modules, 37–38
morph(), 264
Mouse

MOUSE CLICKS 425 PERSON CLASS EXAMPLE

and autocompletion, 325
in-place editing and, 350

Mouse clicks, 147
Mouse information, 122
Mouse navigation, 221
mousedown and mouseup, 126
Mouseout, 121
Mouseover, 121
multiple(), 275
Multiple arguments, 43

N
Namespaces, 37–38, 236
Navigation

of forms, 173, 174
with keyboards, 175
mouse clicks, 147

Navigation tools, 221
Network sniffers, 220
Neuron workout, see Exercises
new keyword, 27
new operator, 258
newElement(...), 343
newHash(), 226
next(), 138
nextSiblings(), 160
Numbers, 65–68

O
Object manipulation, 52–58

for...in, 52–53
cloning and extending, 56–58
introspecting objects, 55f, 56f, 54–56

Object-Oriented Programming (OOP),
57

Object.inspect(), 56f
Objects, 37–38, 225–240

converting from JSON, 84
converting to JSON, 83–84
draggable, 198
and Enumerable, 105–106
exercises, 240
expressing ranges, 230–231
options for Ajax, 201–205
overview, 239
periodical execution, 231–232
Prototype library and browser,

236–239
in staff management example, 137
storing values in a Hash, 225–230
templating, 233–235

XHR and, 190
Observation of events, 112
observe(), 111, 117
Observers, 183–184, 243
onChange(), 312
onComplete, 205
onCreate, 204
onException, 205
onFailure, 204
onHide, 341
onInteractive, 204
onLoaded, 204
onLoading, 204
onShow, 340
onSuccess, 204
onUninitialized, 204
onXYZ, 205
Opera, 82, 131, 169, 238

disabled elements, 177
sliders and, 383

Optional arguments, 26
Options

and Ajax objects, 201–205
for Autocompletion module, 325
for drag start and end, 291, 292
for Dragging among lists, 316
for dragging and scrolling, 298
for drop zones, 306
for dropping, 302
in-place editing, 368
in-place editing and, 359
in-place editing of multiple lines, 364
for revert, 290
for sliders, 376
for visual effects module, 265

P
parameters, 202
parseQuery(), 76
Part-based formatting, 70
partition(), 96
Penner, Robert, 268
Performance, 241–244

iterations vs. regular loops, 242
obsolete event handlers, 243
speed boosts, 243–244

Periodical execution, 231–232
Persistent geometry, 196f, 200f,

192–201
Person class example, in Prototype,

24–30

PIPE CHARACTER 426 RUBY

Pipe character, 44
play(), 387
pluck(), 27, 98, 101, 102
positionedOffset(), 163
Positioning, 162–164, 165f
postBody, 202
Pragmatic Bookshelf online store

example, 305f, 303–305
Predicate, 92
Prefilling arguments, 62
present(), 175
preventDefault(), 120
previous(), 138
previousSiblings(), 160
processForm(), 146
prompt(), 232
Propagation of events, 110, 117–120

Event bubbling, 118
Event capture, 119

Prototype
$A(), 26
aliases, 39
browser features, 237
classes, creating, 25
and CSS 3, 29
CSS parser code for, 45–47
defined, 21, 39–41
demo, 30f
description of, 21–22
Enumerable module, 33
example

playing with people, 24–30
table sorter, 32f, 30–36, 37f

extended elements, 38
initialization, 25
iterators, 38
JavaScript appearance and, 22–36
and JSON, 191
library and browser, 236–239
and Object-oriented programming,

57
objects, namespaces, modules,

37–38
optional arguments, 26
performance, 241–244
Rails-specific behaviors of, 202
running code samples, 41
speed boosts, 243–244
syntaxes supported by, 44
Table sorting library, 36
tables, 32f, 37f

task list example, 247f, 245–250
Ajax tracing in Firebug’s console,
250f
groundwork for, 246
JavaScript for, 248–250
list with three items, 249f
progress indicator, 251f

versions, 23, 109, 236
viewport, 238
web pages, enabling, 22
website for, 22
writing a Person class in, 25

Prototype Core, 320
Prototype.K(), 92, 97, 238
Pulsating effect, 271

Q
Queues for effects, 272–274
quiet, 307

R
Radio buttons, see Forms
raiseWidget(), 199
Ranges, 50, 230–231
readAttribute(), 166
readyState(), 207
reduce(), 79
RegExp.escape, 58
register, 219
relativize(), 163
remove(), 140
removeClassName(), 147
removeSelected(), 152
render(), 278
render(), 277
replace(), 140, 156, 158, 343
Request header, 191
Requester object, 192
requestHeaders, 203
reset(), 176
Resig, John, 112n
Responders with Ajax, 219
responseJSON(), 207
responseText(), 207
responseXML(), 207
reverse, 79
revert, 290
reverteffect, 290
Rich-markup choices, 334–335
Ruby, 193, 196

RUNNING CODE EXAMPLES 427 SCRIPT.ACULO.US

in autocompletion module example,
331, 332

library search example, 211f, 212f,
208–215

Textile and Markdown as gems, 365
Running code examples, 41

S
Safari, 131, 169
Same Origin Policy (SOP), 187
sanitizeJSON, 203
SAU, see script.aculo.us
scan(), 73
Scoped queues, 274
Script fragments, 75
script.aculo.us, 253–256

in-place editing
of alternative text, 364–367

autocompletion module, 323–342
Ajax and, 330–334
built-in behaviors, 324–325
callbacks, 340–341
exercises, 342
local, 325–329
multiple values in one field,
335–339
options, 325
overview, 341
rich-markup choices, 334–335
sources for, 323–324

Builder module, 343–348
in-place editing

in code, 351
downloading, 255–256
drag and drop module, 283–322

callbacks, 287–289
customizing dropping, 302
dropping, 301–302
exercises, 322
ghosting, 297
making elements draggable,
283–286
monitoring drags, 301
overview, 321
pitfalls, 319–321
scrolling and dragging, 300
sorting with, 307–319
starting, ending and reverting,
289–297

in-place editing, 349–372

Ajax persistence, tweaking,
354–355
classes that focus on, 349
customizing appearance, 355–363
definition, 349
disabling, 368
drop down list for, 368–371
example of, 352–353
exercises, 372
multiple lines, 363–364
overview, 371
steps and stages, 350–351
versions, 350

modules, overview of, 253–255
sliders, 373–385

creating, 374–375
customizing, 376–378
editing, 381
exercise, 384
multiple values, defining, 381–384
range and value restriction,
378–380
range and value syncing, 380

sound module, 386–390
compatibility, 386
loading, 387
multiple tracks, 387–390

versions of, 254
visual effects module, 257–282

callbacks for, 267
combined effects, 269–272
core effects, 259–265
creating own effects, 276–281
effect helpers, 274–276
effect queues, 272–274
effect transitions, 267–268
exercises, 282
options for, 265–266
overview, 282
reasons for use of, 257–259

script.aculo.us
in-place editing

of alternative text, 367, 368f
autocompletion module

Ajax and, 333f
local, 327, 328f
multiple values in one field, 340f

drag and drop module
callbacks, 289f
customizing dropping, 305f, 307f,
307

SCROLLING AND DRAGGING 428 STAFF MANAGER EXAMPLE

ghosting, 298f
making elements draggable, 286f
scrolling and dragging, 300f,
298–300
sorting with, 309f, 312f, 314f,
319f

in-place editing
drop down list for, 371f
example of, 354f

sliders, 373f
customizing, 376f, 378f
multiple values, defining, 382f,
384f
range and value restriction, 379f

visual effects module
creating own effects, 281f
effect helpers, 276f

Scrolling and dragging, 300f, 298–300
Scrolling effect, 271
scrollTo(), 165
Searching

$$(), 45–47
Ajax-based, 208
for contents, 76

Security and JSON, 85
select(), 94, 96, 149, 161, 174, 178, 249
Selector, 167–168
Selector.findChildElements(), 168
Selector.findElement(), 168
Selectors, 45–47, 243
serialize(), 181, 310
Serializing fields and forms, 179–182
set(), 226
setDisabled(), 381
setEnabled(), 381
setInterval(), 232
setStyle(), 162, 244
setup(), 267, 278
setValue(), 179
Shaking effect, 271
Shallow copying, 56
shift(), 26
Shortcuts in Prototype, 42–51

$(), 42–44
$A(), 47–49
$F(), 49–50
$H(), 50
$R(), 50
$$(), 45–47
$w(), 44
conventions, 42

siblings(), 160
Singleton method, 40
sinoidal(), 267
size(), 82, 93
Sliders, 373f, 373–385

creating, 374–375
customizing, 376f, 378f, 376–378
defined, 373
editing a slider, 381
exercise, 384
module overview, 254
multiple values, defining, 382f, 384f,

381–384
and Opera, 383
options, 376
properties, 383
range and value restriction, 379f,

378–380
range and value syncing, 380

Sliding in/out effect, 269
Slocum, Jack, 243
snap, 293
Snyder, Ken, 268
sort(), 103
Sortable.create(), 311
Sortable.serialize(), 311
sortBy(), 35
sortBy(), 98, 103
Sorting, 102–103
Sorting capabilities, 32
Sound module, 386–390

compatibility, 386
loading, 387
multiple tracks, 387–390

demo of, 388–390
replace Option, 388
track Option, 387

overview, 255
Source elements, 111, 118, 121
Speed, 266

autoscrolling, 299
Speed cost, 131
Staff, see Recruiting
Staff manager example, 133f, 132–167

CSS class names, 147–152
handling events, 143–147
HTML groundwork, 134–136
inserting new contents, 155–159,

160f
moving across the DOM, 138–139
node chains, 160–161

STAFF.SELECT() 429 USER INTERFACES

positioning, 162–164, 165f
replacing contents and removing

elements, 139–143, 144f
selecting elements with CSS, 161
staff object, 137
steps, 133–134
style properties, 161–162
visibility, 152–155
visual aspects, 165

Staff.select(), 151
Staff.updateEditor(), 151
start(), 218, 278, 281
starteffect, 291
status(), 207
statusText(), 208
Stephenson, Sam, 53
stop(), 120, 218, 232
stopObserving(), 111, 116, 117
strftime(), 338
Strings, 68–76

strip(), 68
stripScripts(), 68
stripTags(), 68
truncate(), 68
advanced replacing, 72–73
converting and extracting, 75–76
helpers for, 279
HTML and, 70
part-based formatting, 70
script fragments, 75
searching for content, 76
transformations for, 69

strip(), 68
stripScripts(), 68
stripTags(), 68
sub(), 72
submit, 125
succ(), 66, 69, 230
Syntax for visual effects module, 258
Syntaxes, supported by Prototype, 44

T
Table sorter example, in Prototype, 32f,

30–36, 37f
tagifyText(), 281
Task list example, 247f, 245–250

Ajax tracing in Firebug, 250f
groundwork for, 246
JavaScript code for, 248–250
list with three items, 249f
progress indicator, 251f

Template-based string creation,
233–235

Template.Pattern, 235
Templating, 141, 194
Ternary operators, 27
test(), 94
Tetlaw, Andrew, 36
Textile, 351, 364
Tie Fighter operator, 337
times(), 67
toArray(), 75, 82, 104
toColorPart(), 67
toElement(), 140
toFixed(), 65
toggle(), 153, 155
toggleClassName(), 147
toggleTux(), 285
toHTML(), 58, 140
Tokens, 335–339, 340f
toObject(), 229
toPaddedString(), 68
toQueryParams(), 76
toQueryString(), 229
toString(), 65, 94, 168
toString(), 55
toTemplateReplacements(), 229, 234
transport(), 208
Trees, reordering in drag and drop

layout, 316
truncate(), 68
Tux dragging example, 286f, 283–286
Two-request limit, 187, 188f

U
underscore(), 70
unescapeHTML(), 70
Unified event handling, see Event

handling
uniq(), 27, 79, 100, 244
unregister(), 219
unset(), 226
up(), 138
update(), 29, 65, 140, 156, 158, 227,

267, 278, 343
update(), 278
updateEditor(), 149
updateElement, 340
Updaters, 214
Updating with Ajax, 215–219
User interfaces, 173–177, 375

in-place editing and, 350, 362

UTILITY FUNCTIONS 430 WEBSITES

Utility functions, 42–51
$(), 42–44
$A(), 47–49
$F(), 49–50
$H(), 50
$$(), 45–47
$w(), 44

V
values(), 54
Vases, throwing, 53
Version 1.6, 23, 109, 225
Version information, 236
Versions

in-place editing and, 350
of script.aculo.us, 254

Viewport, 163, 238
viewportOffset(), 163
Visibility, adjusting, 152–155
Visual effects module, 257–282

callbacks for, 267
combined effects, 269–272

creative in and outs, 270
fading, 269
hidden elements, 271
pulsating, 271
scrolling, 271
shaking, 271
sliding in and out, 269

core effects, 259–265
Effect.Highlight, 259
Effect.Move, 260
Effect.Morph, 263
Effect.Morph, 264
Effect.Opacity, 260
Effect.Parallel, 260
Effect.Scale, 260
Effect.Tween, 262

creating own effects, 281f, 276–281
Effect.Wave example, 280–281
helpers for, 279
properties, 277
Treasure Chest of, 281

effect helpers, 274–276
Effect.multiple(), 275
Effect.multiple(), 276
Effect.tagifyText(), 275
Effect.toggle(), 275

effect queues, 272–274
effect transitions, 267–268
exercises, 282

from and to, 266
options for, 265–266
overview, 253, 282
reasons for use of, 257–259
speed, 266

visualEffect, 258

W
W3C

DOM walking properties, 138
Events handling and, 110
vs. Internet Explorer, 109
and listeners, 113
on positioning containers, 164
XHR recommendations, 189

W3Schools, 77
Web applications

events for, 125–126
form-related content changes, 127

Web development
forms management, 173–185

exercises, 185
form fields, 177–178
observers, 183–184
overview, 184
submitting through Ajax, 178–183
user interfaces, 173–177

observing events, 112
task list example, 247f, 245–250

Webb, Dan, 112n
Webkit, 169
Websites

for Ajax background knowledge, 186
for Ajax file uploads, 182
for Ajax indicators, 222n
for Ajax periodical updater, 218
for Andrew Dupont’s selector speed

comparison, 244
for DevMo, 77n
for DOM level 2 events, 109n
for DOM scripting, 221n
for Firebug, 29n, 56n, 169n
for Fireworks, 250
for HTTP status codes, 205n
for JSON, 83, 190n
for Markdown, 351n
for positioning containers, 164
for Prototype, 22
for Prototype downloads, 237n
for Prototype version updates, 23
for Prototype Window Class, 231n

WHITESPACE AND $W() 431 ZIP()

for Ruby on Rails Prototype help,
190n

for Ruby on Rails spinoffs, 320n
for script.aculo.us, 255
for script.aculo.us custom

transitions, 268
for script.aculo.us Treasure Chest,

281
for script.aculo.us combined effects

demos, 269n
on SOP, 187
for Table sorting library (Tetlaw), 36n
for Textile, 351n
for two-request limit, 187n
for W3C recommendations for CSS 3

selectors, 47n
for W3C XHR recommendations,

189n
for W3Schools, 77n

Whitespace and $w(), 44
Widgets, see Geometry persistence
Williams, Sammi, 316
Window binding, 59
Wireshark, 220

without(), 79
wrap(), 64, 158
Wrapping, 64
writeAttribute(), 166
writeAttributes(), 156

X
XHR, 188–190
XHTML

autocompletion module example,
326

in Builder module, 347–348
fragment for widgets, 197
fragment processing, 157

xhtml_convert(), 366
XMLHttpRequest, see XHR

Y
Yellow Fade Technique (YFT), 259

Z
zindex, 292
zip(), 95, 99, 230

	Contents
	Preface
	Introduction
	It's About Time
	What's in This Book, and How Is It Organized?
	Acknowledgments

	Prototype
	Discovering Prototype
	What Is Prototype, and What Is It Not?
	Using Prototype in Our Project
	What Does Our JavaScript Look Like When Using Prototype?
	Prototype Jargon and Concepts
	What Are Prototypes Anyway?
	Running Prototype Code Samples in This Book

	Quick Help with the Dollars
	Shortcuts Should Be Short
	Quick Fetching of Smart Elements with $
	$w, Because Array Literals Are Boring
	$$ Searches with Style
	$A, the Collection Unifier
	$F Is a Field Expert
	$H Makes a Hash of Things
	Handling Ranges with $R

	Regular JavaScript on Steroids
	Generic Object Manipulation
	Proper Function Binding
	Your Functions Actually Know More Tricks
	Numbers
	Strings
	Arrays
	Full-Spectrum JSON Support

	Advanced Collections with Enumerable
	The Core Method: Iterating with each
	Getting General Information About Our Collection
	Finding Elements and Applying Filters
	Grouping Elements and Pasting Collections Together
	Computing a Derived Collection or Value
	Order Now: Getting Extreme Values and Using Custom Sorts
	Turning Our Collection into an Array or Debugging String
	Enumerable Is Actually a Module

	Unified Event Handling
	Event
	The Events Hall of Fame
	Reacting to Form-Related Content Changes

	Playing with the DOM Is Finally Fun!
	Extending DOM Elements
	Element, Your New Best Friend
	Selector
	Debugging Our DOM-Related Code

	Form Management
	Toward a Better User Interface
	Looking at Form Fields
	Submitting Forms Through Ajax
	Keeping an Eye on Forms and Fields

	Ajax Has Never Been So Easy
	Before We Start…
	Hitting the Road: Ajax.Request
	Streamlining: Ajax.Updater
	Polling: Ajax.PeriodicalUpdater
	Monitoring Ajax Activity: Ajax.Responders
	Debugging Ajax
	Ajax Considered Harmful? Thinking About Accessibility and Ergonomy

	More Useful Helper Objects
	Storing Values in a Hash
	Expressing Ranges of…Well, Anything You Want!
	Periodical Execution Without Risk of Reentrance
	Templating Made Easy
	Examining the Current Browser and Prototype Library

	Performance Considerations
	Element Extension and the $ Function
	Iterations vs. Regular Loops
	Obsolete Event Handlers
	Recent Speed Boosts You Should Know About
	Small Is Beautiful

	Wrapping Up
	Building a Fancy Task List
	Laying the Groundwork
	It Takes Only 40 Lines: The JavaScript Code

	script.aculo.us
	Discovering script.aculo.us
	The Modules of script.aculo.us
	Using script.aculo.us in Your Pages

	Visual Effects
	What Are Those Effects, and Why Should We Use Them?
	Core Effects
	Diving into Effects
	Combined Effects
	Unlocking the Cool Factor: Effect Queues
	Effect Helpers
	How to Create Our Own Effects

	Drag and Drop
	Dragging Stuff Around
	Controlling How It Starts, Where It Goes, & How It Ends
	Ghosting
	Dragging and Scrolling
	Monitoring Drags
	Dropping Stuff
	Customizing Drop Behavior
	Sorting with Drag and Drop
	Common Pitfalls

	Autocompletion
	The Basics
	Local Autocompletion
	Getting Ajaxy
	Using Rich-Markup Choices
	Autocompleting Multiple Values in One Field
	Reacting to Completion with Callbacks

	Building DOM Fragments the Easy Way: Builder
	Building Explicitly
	Using an (X)HTML Representation

	In-Place Editing
	What's In-Place Editing Exactly?
	A Simple Example
	How Can We Tweak the Ajax Persistence?
	Customizing the Appearance
	Dealing with Multiple Lines
	Editing Alternative Text
	Disabling In-Place Editing
	Offering a List of Values Instead of Text Typing

	Sliders
	Creating a Simple Slider
	Customizing the Basics
	Restricting Range or Allowed Values
	Tweaking an Existing Slider and Adding Controls
	Defining Multiple Values

	Sound Without Flash
	Where Does It Work?
	How Do We Play Sounds?
	Playing Multiple Sounds on Multiple Tracks

	Extending and Contributing
	Building Over: Classes, Inheritance, and DOM Extension
	Contributing!

	Further Reading
	Official Websites
	Useful Blogs by Prototype Core Members
	JavaScript Masters
	Community and New Sites Around Ajax
	ECMAScript Intimacy
	Bibliography

	Installing and Using Ruby
	On Windows
	On Linux
	On Mac OS X
	Running a Ruby Script
	``But I Don't Know a Thing About Ruby!''

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

