
Prepared exclusively for Trieu Nguyen

What readers are saying about

Stripes. . . and Java Web Development Is Fun Again

This book is a must for anyone using Stripes, novice or pro. The

author has done a great job of explaining the basics as well as the

details of Stripes’ amazing features while showing how to build a real-

life application. A novice developer can get up to speed fast, keeping

with Stripes’ pragmatic approach to development: “It doesn’t have to

be hard.” As the chapters progress, you will gain thorough knowledge

of all the Stripes features. What really impressed me was the author’s

dedication to giving you full examples of all the possible variations;

you’re not left thinking, “If I just knew how to use that feature.” If you

want to know how to use a Stripes feature, look it up in this book—it’s

definitely covered. Stripes...and Java Web Development Is Fun Again

will be on my work desk from now on.

Jeppe Cramon

Chief Architect, TigerTeam

This book is really engaging. Since I’m familiar with Stripes, I enjoyed

learning about many lesser-known nuances that Stripes provides—

and those tasty little nuggets kept me reading. This book delivers a

comprehensive understanding of the intellectual and technical aspects

of Stripes. It has served to cement my appreciation for Stripes.

Brandon Goodin

Coauthor, iBATIS in Action

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

At first I thought this book would be merely a welcome dead-tree ref-

erence for our team of self-proclaimed veteran Stripes developers.

But somewhere along the way Frederic Daoud managed to greatly

impress and humble me with his experience and in-depth knowledge

of Stripes.

With its clear and well-structured chapters, the content is thorough

and fast-moving. The text flows naturally from topic to topic and from

chapter to chapter. The code is good, clear, and readable. The tone is

personal and light, like the author is casually chatting with us, the

readers. This was very appealing to me, having read truckloads of dry,

almost scientific comp-sci books. And even I, as a long-time Stripes

user, learned some things I didn’t know.

Jasper Fontaine

Lead Developer, Codegap

As a Stripes committer, I learned a good bit from reading this book.

For example, the explanation of how checkboxes are handled is very

informative. In fact, I might print it out and hang it above my desk!

Even seasoned Stripes developers get confused by that sometimes.

Thanks, Frederic.

Ben Gunter

Committer, The Stripes Framework

I changed several of my practices after reading this book. The book

contains some really great ideas, and I really was surprised I learned

so much from it!

Aaron Porter

Committer, The Stripes Framework

This is a valuable resource to both newcomers and experienced

Stripes developers. Although Stripes is very easy to use, this is the

book I wish I had read when I got started! Having used Stripes for

more than a year, I still found many great tips that will help me

improve and simplify my code.

Chris Herron

Freelance Java Developer

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Stripes
. . . and Java Web Development Is Fun Again

Frederic Daoud

with Tim Fennell

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Frederic Daoud.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-21-2

ISBN-13: 978-1-934356-21-0

Printed on acid-free paper.

P1.0 printing, October 2008

Version: 2009-4-20

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.pragprog.com

To Nadia.

You are the love of my life

and the woman of my dreams.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Contents
1 Introduction 13

1.1 What Can Stripes Do for You? 15

1.2 Getting the Most Out of This Book 16

1.3 Acknowledgments . 19

I Learning the Controls 21

2 Stripes 101: Getting Started 22

2.1 Setting Up a Stripes Application 22

2.2 Hello, Stripes! . 27

2.3 Binding to Action Beans 36

2.4 Wrapping Up . 39

3 The Core: Action Beans and JSPs 40

3.1 Let’s CRUD . 41

3.2 Writing a Base for a Stripes Application 43

3.3 Displaying Data with Action Beans and JSPs 46

3.4 Parameterized Links . 52

3.5 Displaying Messages to the User 57

3.6 Creating Forms . 60

3.7 Use a Forward or a Redirect? 67

4 Validating User Input 70

4.1 Stripes Validation Concepts 70

4.2 Using Built-in Validations 76

4.3 When You Need More: Custom Validation Methods . . 88

5 There’s More to Life Than Strings: Working with Data Types 98

5.1 Type Conversion Concepts 98

5.2 Built-in Type Converters 100

5.3 Formatting . 107

5.4 Working with Custom Data Types 110

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CONTENTS 10

6 Customizing Stripes Messages 121

6.1 Customizing Information Messages 121

6.2 Customizing Error Messages 124

6.3 Changing the Text of Error Messages 131

6.4 Creating Messages for Custom Errors 138

7 Reusable Layouts 141

7.1 Basic Stripes Layout Concepts 142

7.2 Putting Layouts to Work: Decorators 146

7.3 Using View Helpers . 156

7.4 If You’re Used to Tiles or SiteMesh 161

II Revving Up 165

8 Adding Form Input Controls 166

8.1 Checkboxes . 167

8.2 Select Boxes . 170

8.3 Image Buttons and Text Areas 174

8.4 Using Cross-page Controls 178

8.5 Radio Buttons . 180

9 Advanced Features Made Easy 183

9.1 Managing Session Data 183

9.2 Altering Form Values in the Action Bean 188

9.3 Using Indexed Properties 191

9.4 Working with Files . 195

10 Registering and Logging In 203

10.1 The Registration Page . 203

10.2 Adding Password and Confirm Password Boxes 205

10.3 Dealing with a Bunch of Required Fields 207

10.4 Using Validation Metadata 208

10.5 Creating a Wizard . 210

10.6 The Login Page . 216

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=10

CONTENTS 11

11 Parlez-Vous Français? Making It Multilingual 218

11.1 Offering an Application in Multiple Languages 218

11.2 Translating the Text of an Application 221

11.3 Switching Between Languages 233

11.4 Using Different Resource Bundles 236

III In High Gear 244

12 Completing the Stack 245

12.1 Persistence with Stripersist, JPA, and Hibernate 245

12.2 Dependency Injection with Spring 261

12.3 Automated Testing with Mock Objects 267

13 Tapping into Stripes 277

13.1 Houston: Exception Handling 277

13.2 Customizing URL Bindings 283

13.3 Everything Is Possible: Interceptors 294

13.4 Interceptor Example: Adding Support for Guice 299

13.5 Another Interceptor Example: Ensuring Login 302

13.6 The Stripes Life Cycle in More Detail 304

14 It’s a Dangerous World: Adding Security 307

14.1 Controlling Parameter Binding 307

14.2 Preventing Cross-site Scripting Attacks 311

14.3 Using Encryption . 313

14.4 Ensuring the User Is Logged In 315

14.5 Showing Users Their Data, Not Other People’s 319

14.6 Using Roles . 321

15 Using JavaScript and Ajax 336

15.1 Using JavaScriptResolution 337

15.2 Working with Ajax Requests and Responses 341

15.3 Ajaxifying the Webmail Application 351

15.4 Adding Client-Side Validation 360

A Configuration Reference 369

A.1 Required Configuration 369

A.2 Extensions . 370

A.3 Settings . 376

A.4 Interceptors . 378

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=11

CONTENTS 12

B Resources 379

B.1 Stripes Online Resources 379

B.2 Stripes Dependencies . 379

B.3 Third-Party Frameworks, Libraries, and Tools 380

B.4 Development Tools . 381

B.5 Bibliography . 381

Index 382

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=12

Everything should be made as simple as possible, but not

one bit simpler.

Albert Einstein

Chapter 1

Introduction
Welcome to Stripes!

Stripes is a framework that makes developing Java web applications

easier. How? It eliminates much of the configuration that traditionally

has been associated with Java web development. Goodbye, XML hell!

When Tim Fennell created Stripes in 2005, he decided to leverage the

features introduced in Java 5, such as annotations and generic types,

to remove the need for XML configuration files. In fact, the only XML file

that you’ll need is the standard web.xml file that kick starts any Java

web application.

But Stripes isn’t just about reducing configuration. Have you ever used

a framework and felt you had to do too much work for the framework

compared to what the framework gave you in return? Have you ever

received very reasonable requirements from a client but then had to

fight with the framework to get the application to meet those require-

ments? Have you ever stopped and thought, “It’s not normal for these

things to be so complicated”?

Stripes is about making things simple for you, the programmer. While

you develop your application, you’ll notice how Stripes adapts to your

code—a lot more than you have to adapt your code to Stripes. You

spend your time writing your application, not reshaping your code in

strange ways just to meet a framework’s restrictions. Stripes is about

making your work more enjoyable. Tim’s tag line for Stripes says it all:

“Java web development doesn’t have to suck.”

Everything in Stripes aims to be as straightforward and practical as

possible. Web development inevitably involves many repetitive low-level

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CHAPTER 1. INTRODUCTION 14

tasks; Stripes takes care of those so that you can concentrate instead

on writing clear, concise, readable, and maintainable code.

Let’s briefly discuss some of the characteristics of Stripes. Stripes is

a Model-View-Controller (MVC) framework and is mostly present in

the controller and view parts. Stripes interacts with your model but

does not intrude—your model stays independent of anything Stripes-

specific. Stripes happily transfers data between your model and the

controller/view without asking you to describe anything in some con-

figuration file or do any other form of “framework hand-holding.”

Stripes is not a “full-stack” framework; it works with your model but lets

you decide how to map your model to a database. Plenty of high-quality

frameworks exist for that, and the Stripes developers do not see value

in duplicating those efforts. Moreover, not only do you probably already

have a favorite solution for model-database mapping, but perhaps you

even use different frameworks depending on the application. Stripes

sees the value in that and does not tie you to a single solution. Stripes is

very lightweight that way—it doesn’t reinvent the wheel for everything,

and it won’t require that you learn a completely different paradigm.

Stripes just focuses on the web part of web application development.

Stripes developers are very careful to avoid the “scope creep” pitfall.

It’s easily understandable that you’d want to add every single feature

requested by users—you want to please them. In the long run, you’re

actually doing users a disservice because the number of features ex-

plodes, leading to a bloated, hard-to-understand, and hard-to-maintain

framework. With a never-ending list of classes and methods, too many

tags, and a ton of attributes, a framework becomes tedious to use.

Stripes stays focused on a core set of features. At the same time, Stripes

is very simple to extend so that you can easily add anything you need.

Stripes is an action-based framework. It acknowledges the stateless

nature of HTTP and does its best to get the most out of it. HTTP is

based on a request-response cycle: when the user clicks something

in the browser, a request is made to the web application, which does

its work and provides a response. The browser is refreshed with the

results, and the cycle is complete. Stripes shapes itself to fit into this

request-response cycle. A request is translated into an action, which

triggers a Java method that does the work and returns a result. The

framework interprets the result and provides the appropriate response.

By using plain requests and responses, Stripes stays transparent and

makes it easy to plug in third-party libraries and Ajax frameworks.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=14

WHAT CAN STRIPES DO FOR YOU? 15

Another nice thing about Stripes is that you need to learn only a few

basic concepts to get started. You can go a long way with a small set of

features and can leave the advanced stuff for later. When your applica-

tions become more sophisticated, you can learn how to get more out of

Stripes. This cuts down on complexity when you start using the frame-

work, because you don’t need to learn too many things at once before

you get some gratification.

What truly makes Stripes a joy to work with is that it helps you with-

out getting in your way. You can actually wrap your head around the

framework and understand what it is doing. When you run into a situ-

ation where you need something special, you can tap in and tinker to

get the required result. Stripes is not a big magic black box that works

“only if used as intended” and for which the warranty is void if you tear

off the sticker and open the box.

1.1 What Can Stripes Do for You?

So if Stripes is so small and simple, what does it actually do? Plenty.

Here’s a quick feature summary:

• Smart binding: Stripes goes a long way to bind URLs, parameters,

and events from HTTP to Java so that your code remains sim-

ple and straightforward. The names in your view templates match

the names of your Java classes, methods, and properties, so the

association between the two is very clear.

• Autoloading: Stripes automatically discovers and loads your

Stripes-related classes, so you can add, rename, and remove clas-

ses without worrying about keeping any configuration files (XML

or otherwise) in sync.

• Validation: Stripes provides a powerful validation mechanism that

is based on annotations.

• Type conversion and formatting: Stripes gives you strong type sup-

port by automatically converting between Strings and common Java

types and making it easy to add your own data types to its con-

version system.

• Layouts: With three tags from its tag library, Stripes gives you

a simple and powerful reusable layout mechanism. You guessed

it—no configuration files involved here either.

• Localization: Stripes tags have a default resource bundle lookup

strategy so that localization is simply a matter of following the

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=15

GETTING THE MOST OUT OF THIS BOOK 16

convention and adding key-label pairs in a resource bundle.

• Exception handling: When an exception goes all the way up the

stack without being handled, the servlet container shows a big

ugly exception page. You don’t want your users to see that! Stripes

lets you show specific error pages for the exception types that you

care about and has a general “catchall” error page for all other

exceptions.

• Interceptors: When handling a request, Stripes goes through sev-

eral life-cycle stages before providing a response. Interceptors let

you write code that is called before or after any of these stages,

making it easy to alter the flow, change the data, and so on. Inter-

ceptors are a great way of plugging in custom behavior.

• Customizable URLs: Stripes takes care of all the URL binding for

you, so you can write your whole application without ever bother-

ing with URLs. However, if you need specific URL patterns, Stripes

lets you do that too.

• Easy Ajax integration: With the simple and transparent request-

response nature of Stripes, you can Ajaxify your applications by

using your favorite Ajax framework as a front end and Stripes as

a back end.

• Testing: Stripes comes with a built-in set of mock objects that

help you write automated unit tests to make sure your application

works as expected.

• Easy extension and customization: Stripes is designed in a modu-

lar fashion with many areas to hook into. You can plug in different

behavior for any part of the framework. Extensibility is an area

where Stripes really shines, and if you’re not used to being able

to easily insert custom code into a framework, you’re in for a real

treat.

1.2 Getting the Most Out of This Book

Here is some information that will help you get the most out of this

book.

What You Should Already Know

I assume you know the basics of Java web application development,

including compiling Java code, creating a web application, packaging

a WAR file, and deploying to a servlet container. You should also be

familiar with JSPs and the Expression Language (EL).

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=16

GETTING THE MOST OUT OF THIS BOOK 17

If you need a refresher, you’ll find a myriad of tutorials and examples

on the Net. Here are a few good places to start:

The Java Tutorial http://java.sun.com/javaee5/docs/tutorial/doc/bnadr.html

The web application section of the Java Tutorial

JSP Syntax Reference. . .
. . . http://java.sun.com/products/jsp/syntax/2.0/syntaxref20.html

Handy reference on JSP syntax, EL expressions, directives, and standard JSP

tags

Java with Passion! . http://www.javapassion.com/j2ee

Sang Shin’s online course for learning Java web application development

NetBeans Tutorialhttp://www.netbeans.org/kb/trails/web.html

A tutorial for creating web applications with the NetBeans IDE

Eclipse Tutorial. . .
. . . http://www.eclipse.org/webtools/community/tutorials/BuildJ2EEWebApp/BuildJ2EEWebApp.html

A tutorial for creating web applications with the Eclipse IDE

Getting the Source Code

This book comes with a lot of source code so that you can learn Stripes

by example. Of course, the text contains code snippets along with expla-

nations. Although I’ve done my best to include enough context around

the code shown in the book so that it makes sense, I didn’t want to

bombard you with pages upon pages of code listings. When you want

to see the full source and navigate through the code at your mind’s

desire, the best thing to do is to download the source package and use

your favorite text editor or IDE. While you’re at it, there’s a good chance

you’ll want to try a few things of your own. Go ahead—that’s a great

way to learn.

You can download the source code from this location:

http://www.pragprog.com/titles/fdstr/source_code

Conventions

I use a few simple conventions in this book, which you’ll recognize if

you’ve read other books by the Pragmatic Programmers.

Live Code

The majority of code snippets in the book are extracted from fully

functional examples. When that’s the case, a bar before the code

contains the path to the source file.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://java.sun.com/javaee5/docs/tutorial/doc/bnadr.html
http://java.sun.com/products/jsp/syntax/2.0/syntaxref20.html
http://www.javapassion.com/j2ee
http://www.netbeans.org/kb/trails/web.html
http://www.eclipse.org/webtools/community/tutorials/BuildJ2EEWebApp/BuildJ2EEWebApp.html
http://www.pragprog.com/titles/fdstr/source_code
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=17

GETTING THE MOST OUT OF THIS BOOK 18

For example:

Download getting_started/web/WEB-INF/jsp/hello.jsp

<p>

Date and time: ${actionBean.date}

</p>

If you’ve downloaded the source code package, you’ll find the file

using that path. If you’re reading the PDF version of this book with

a PDF viewer that supports hyperlinks, it’s even easier: just click

the bar, and the code will appear in a browser window. If your

browser mistakenly tries to interpret the file as HTML, just view

the page source, and you’ll see the real code.

Joe Asks...

Joe, the mythical developer, sometimes pops up to ask questions

about what I’m discussing in the text. I answer these questions as

I go along.

Tim Says...

Tim Fennell, who created Stripes, has some wisdom to share every

now and then. Look for these Tim Says... sidebars to read his

rationale, recommendations, and colour (he’s English, so he spells

it with a u) commentary.

Road Map

This book is organized in three parts. Part I is about learning the differ-

ent parts of Stripes and how they work. After setting up a development

environment and getting a “Hello, World!” example running to make

sure everything works, you start building the sample application that

you’ll keep improving throughout the book. In Part II, you are ready to

use Stripes to add more sophisticated functionality to the application.

By Part III, you’ll move on to some of the more advanced features of

Stripes and will also learn how to integrate third-party libraries such

as Hibernate, Spring, Guice, JUnit, and jQuery.

Stripes Version

This book covers Stripes 1.5. If you are using a previous version of

Stripes, consider upgrading to 1.5 for your next project because this

version has many interesting new features that make developing with

Stripes even more enjoyable.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/getting_started/web/WEB-INF/jsp/hello.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=18

ACKNOWLEDGMENTS 19

1.3 Acknowledgments

Writing this book has been a very fulfilling, challenging, enlighten-

ing, and rewarding experience. I have several people to thank. With-

out them, my lifelong dream of writing a computer book (admittedly, a

geek’s dream) would not have come true.

Dear Nadia, being married to you has made me happier than I could

ever imagine. You never stop believing in me, and for that I’ll always

be grateful. You are a wonderful wife, a fantastic mother, and the most

beautiful person I have ever known. I love you.

Lily Nadine, thank you for being such a bright, active, bouncing, laughing,

happy baby. Every day, you bring us a tremendous amount of joy.

Merci Papa et Maman, Wasfi et Viva, d’être des parents si merveilleux.

Vous faites toujours tout pour moi et j’en suis très reconnaissant. Merci

à vous deux d’avoir chacun eu le courage de surmonter de graves prob-

lèmes de santé. Je vous admire. Que Dieu vous bénisse.

Thank you, Tim Fennell, for creating such an excellent framework. I

was actually able to read and understand all the source code! You truly

did a fantastic job. Thank you for collaborating with me on this book,

contributing the Tim Says... boxes, reviewing my work, making sugges-

tions for improvement, and answering my questions. Thank you also

for welcoming me as a Stripes committer. Finally, thank you for being

such a great person. Being brilliant and humble at the same time is a

rare and terrific combination.

Thank you, Andy Hunt and Dave Thomas, the Pragmatic Program-

mers, for giving this book a chance in the first place. Special thanks

to Dave for being patient with all the back-and-forth for the book cover

and to Andy for offering advice and always answering my questions so

promptly and helpfully.

Thank you, Jackie Carter, for tirelessly reviewing my work, offering

advice, always being positive, and helping me make this book better.

Thank you, Tony George and Steve Francisco, for reviewing my early

drafts back when I had not yet found a publisher. You dedicated your

free time to help me, and I truly appreciate it.

Thank you, Ben Gunter, for answering all my questions and for con-

tributing such great features to Stripes.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=19

ACKNOWLEDGMENTS 20

Thank you, Aaron Porter, Chris Herron, Ben Gunter, Brandon Goodin,

Jasper Fontaine, Tim Fennell, and Jeppe Cramon, for participating in

the book’s technical review.

Thank you, Remi Vankeisbelck, Will Hartung, Jasper Fontaine, and

Jeppe Cramon, for reviewing my outline and offering your suggestions.

Thank you, Aaron Porter, for contributing Stripersist and the client-

side validation code and agreeing to having them featured in this book.

Special thanks for your patience in answering all my questions!

Thank you, Oscar Westra van Holthe-Kind, for contributing the Stripes

security package.

Thank you, Martijn Dashorst and Eelco Hillenius, for answering my

questions and offering advice on undertaking the tremendous challenge

of writing a computer book.

Finally, thank you, Stripers, for forming such a bright, helpful, dyna-

mic, lively, and friendly community. That’s what Stripes is all about.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=20

Part I

Learning the Controls

21
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

It is a mistake to try to look too far ahead. The chain of

destiny can only be grasped one link at a time.

Sir Winston Churchill

Chapter 2

Stripes 101:
Getting Started

The best way to get started with a framework is to dive in and get a

simple example up and running. So, let’s do that.

2.1 Setting Up a Stripes Application

First, you will need to set up a Stripes web application development

environment:

1. Install the development tools.

2. Install the Stripes framework and dependencies.

3. Configure the web application to use Stripes.

This is a one-time job. You’ll be able to reuse this environment for all of

the book’s examples as well as your own masterpieces.

The Development Tools

Install the following development tools. Note that every version number

is a minimum version—higher versions should work as well. You are

probably already familiar with these tools. If not, refer to the installation

instructions on the indicated website.

• Java Development Kit (JDK), version 1.5: http://java.sun.com.

• A servlet container that supports Servlet 2.4 and JSP 2.0. There

are several; here are just a few examples:

– Jetty version 5.0: http://jetty.mortbay.com

– Resin version 3.0: http://www.caucho.com

– Tomcat version 5.5: http://tomcat.apache.org

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://java.sun.com
http://jetty.mortbay.com
http://www.caucho.com
http://tomcat.apache.org

SETTING UP A STRIPES APPLICATION 23

Using Third-Party Libraries with Stripes

Stripes has very few dependencies. However, as you build
more sophisticated applications, you’ll probably want to add
other libraries—to manage database transactions, for exam-
ple. Instead of being a full-stack framework, Stripes is designed
to integrate well with third-party libraries so that you are free to
choose the best tools for your applications.

• (Optional) Apache Ant, version 1.7.0: http://ant.apache.org, if you

want to use the build scripts that come with the book’s sample

code.

• A text editor or an IDE to work with the source code. I’m sure

you already have some favorites. Mine are VIM1, Eclipse2, and

NetBeans3.

Once all the tools are installed, create a web application. This can

involve a wizard in your IDE or just creating a project directory with

subdirectories for the source code and web application files. If you want

the easy way out, just use the book’s source code.

Stripes Framework and Dependencies

Next, get the Stripes distribution, version 1.5 or higher, from http://www.

stripesframework.org. You’ll need to copy the required JAR files into the

WEB-INF/lib directory of your web application:

• stripes.jar: The Stripes framework, of course

• commons-logging.jar: Required by Stripes

You’ll also need to copy StripesResources.properties to a location that’s on

the web application’s class path, such as the WEB-INF/classes directory.

The Java Standard Tag Library (JSTL) is not a Stripes requirement,

but it’s very useful when developing Stripes applications with JSPs, as

you’ll see throughout the book’s examples. To install the JSTL, copy the

following two JARs from http://jakarta.apache.org/taglibs (or the book’s

sample code) to your WEB-INF/lib directory:

• jstl.jar

• standard.jar

1. http://www.vim.org

2. http://www.eclipse.org

3. http://www.netbeans.org

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://ant.apache.org
http://www.stripesframework.org
http://www.stripesframework.org
http://jakarta.apache.org/taglibs
http://www.vim.org
http://www.eclipse.org
http://www.netbeans.org
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=23

SETTING UP A STRIPES APPLICATION 24

The web.xml Configuration

Finally, as with any standard Java web application, you’ll need the WEB-

INF/web.xml file. This is where you configure the web application to use

Stripes. The two elements that handle incoming requests are the Stripes

filter and the dispatcher servlet. Here is how you set them up in web.xml:

Download getting_started/web/WEB-INF/web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

>
Ê <filter>

<filter-name>StripesFilter</filter-name>

<filter-class>

net.sourceforge.stripes.controller.StripesFilter

</filter-class>

<init-param>

Ë <param-name>ActionResolver.Packages</param-name>

<param-value>stripesbook.action</param-value>

</init-param>

</filter>

Ì <servlet>

<servlet-name>DispatcherServlet</servlet-name>

<servlet-class>

net.sourceforge.stripes.controller.DispatcherServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

Í <filter-mapping>

<filter-name>StripesFilter</filter-name>

<servlet-name>DispatcherServlet</servlet-name>

<dispatcher>REQUEST</dispatcher>

<dispatcher>FORWARD</dispatcher>

</filter-mapping>

Î <servlet-mapping>

<servlet-name>DispatcherServlet</servlet-name>

<url-pattern>*.action</url-pattern>

</servlet-mapping>

Ï <welcome-file-list>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

</web-app>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/getting_started/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=24

SETTING UP A STRIPES APPLICATION 25

That’s a lot of XML, but don’t worry—you have to do this only once,

and then you can use this configuration as a base for every Stripes

application you write. You’ll need only to edit web.xml to enable some of

Stripes’ more advanced features, and even then it’s the “once and for

all” type of configuration. You won’t have to work with XML files—or

any other configuration files—for everyday work.

Here’s what is now set up in this web.xml file:

Ê The Stripes filter declaration.

Ë A parameter to the Stripes filter. More details on this in a minute.

Ì The dispatcher servlet declaration.

Í A mapping to make the Stripes filter intercept all requests that go

through the dispatcher servlet.

Î A mapping that makes the dispatcher servlet handle all .action

requests.

Ï This says to use index.jsp as a default file when the user accesses

the application with the base URL, such as http://localhost:8080/

getting_started. We’ll see how that works a little later.

Have a look at an illustration of this configuration in Figure 2.1, on the

following page. All .action requests are intercepted by the Stripes filter

and then handled by the dispatcher servlet that looks for the action

bean that is bound to the URL. Stripes instantiates the action bean and

uses it to handle the request. The action bean can produce a response

directly or forward to a JSP, which in turn produces the response.

A value for the ActionResolver.Packages initialization parameter is given

to the Stripes filter in Ë. As promised, let’s take a closer look at what

this parameter does.

The Search for Action Beans

Action beans are the basic building blocks of a Stripes application.

Because they are so essential, Stripes automatically loads them at

startup by scanning the class path. But it does need a starting point:

at least one package root from which to begin the search. So, you must

choose the package(s) in which you’ll be placing your action beans and

indicate the package roots, separated by commas, using the Stripes fil-

ter’s ActionResolver.Packages initialization parameter. For each package Specifying the Action-

Resolver.Packages para-

meter is mandatory.root, Stripes will examine the classes in that package and all subpack-

ages. Every action bean that it finds will be registered.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://localhost:8080/getting_started
http://localhost:8080/getting_started
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=25

SETTING UP A STRIPES APPLICATION 26

Browser

StripesFilter

request *.action

JSP
response

DispatcherServlet

request *.action

Action Bean

response forward

Figure 2.1: A minimal Stripes configuration

All action beans in the examples will be in the stripesbook.action package.

So, this package is indicated at Ë in the web.xml file. Using stripesbook

would also work, but being as specific as possible down the package

hierarchy reduces the number of classes to be examined and speeds

up the startup process.

I really like this feature of Stripes. You configure the packages for your

action beans once and for all, and then you’re free to add, rename, and

remove as many action beans as you want. As long as you use one of

those packages, you don’t have to worry about editing a configuration

file. Add an action bean, and Stripes will automatically load it. Remove

an action bean, and you don’t have to remember to remove something

in a configuration file to keep things “in sync.” Working with action

beans is the most frequent thing you’re doing in a Stripes application,

so freeing you of configuration annoyances saves you a lot of time and

effort.

That is all the setup and configuration you need. You’re now ready to

write some application code.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=26

HELLO, STRIPES! 27

Figure 2.2: A greeting from Stripes

2.2 Hello, Stripes!

As a “Hello, World!” example, we’ll use the page shown in Figure 2.2.

When you start the application, the page displays the current date and

time. The two links at the bottom update the display: the first link

refreshes the current date and time, and the second link displays a

random date and time instead.

Although this example does not do much, it will help you get started

with Stripes. By displaying the current date and time, you’ll learn how

to obtain data from an action bean and display it in a JSP. Having two

links shows you how to trigger different event handlers on the action

bean. You’ll gain a clear understanding of how the view (JSP) and the

controller (action bean) work together. Of course, let’s not forget the

benefit of getting a Stripes application up and running in the first place!

You’ve already set up a web application skeleton. All you need to get

this example working is one action bean (HelloActionBean) and one JSP

(hello.jsp). The file structure of the complete example will look like this:

WEB-INF/lib/stripes.jar

WEB-INF/lib/commons-logging.jar

WEB-INF/lib/jstl.jar

WEB-INF/lib/standard.jar

WEB-INF/web.xml

WEB-INF/classes/StripesResources.properties

WEB-INF/classes/stripesbook/action/HelloActionBean.class

WEB-INF/jsp/hello.jsp

index.jsp

Let’s write the HelloActionBean class.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=27

HELLO, STRIPES! 28

Writing the Action Bean

The action bean provides the date to be displayed and changes it when

the user clicks one of the links. Action beans, action beans, all this

talk about action beans, but what exactly is an action bean, in terms

of code? It’s a Java class that implements the ActionBean interface:

public interface ActionBean {

public void setContext(ActionBeanContext context);

public ActionBeanContext getContext();

}

This is just a getter and a setter method for the ActionBeanContext,

which contains the current request and response objects along with

other useful information about the current request. Stripes takes care

of providing the ActionBeanContext to action beans, so you can always

count on having easy access to this information in your action beans

by calling getContext().

Often, within an application, you’ll write an abstract base class that

implements the ActionBean interface and have your concrete action

beans extend this base class. This also gives you a single place for

adding any code that you want to make available to all your action

beans.

There is only one action bean in this simple example, so we won’t bother

creating a separate abstract base class. Let’s look at the code for Hel-

loActionBean:

Download getting_started/src/stripesbook/action/HelloActionBean.java

package stripesbook.action;

import java.util.Date;

import java.util.Random;

import net.sourceforge.stripes.action.ActionBean;

import net.sourceforge.stripes.action.ActionBeanContext;

import net.sourceforge.stripes.action.DefaultHandler;

import net.sourceforge.stripes.action.ForwardResolution;

import net.sourceforge.stripes.action.Resolution;

Ê public class HelloActionBean implements ActionBean {

private ActionBeanContext ctx;

public ActionBeanContext getContext() { return ctx; }

public void setContext(ActionBeanContext ctx) { this.ctx = ctx; }

Ë private Date date;

public Date getDate() {

return date;

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/getting_started/src/stripesbook/action/HelloActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=28

HELLO, STRIPES! 29

@DefaultHandler
Ì public Resolution currentDate() {

date = new Date();

return new ForwardResolution(VIEW);

}

public Resolution randomDate() {

long max = System.currentTimeMillis();

long random = new Random().nextLong() % max;

date = new Date(random);

return new ForwardResolution(VIEW);

}

private static final String VIEW = "/WEB-INF/jsp/hello.jsp";

}

The class implements the ActionBean interface (Ê) with a standard get-

ter and setter. Next, the date property is defined at Ë. The JSP will

access this property using the Expression Language (EL) to display the

date. Finally, the currentDate() event handler (Ì) refreshes the current

date, while randomDate() produces a random date. Both event handlers

set the date property and then forward to /WEB-INF/jsp/hello.jsp using a

ForwardResolution. The next step is to create the hello.jsp file.

Writing the JSP

The hello.jsp file is responsible for displaying the page that we see in Fig-

ure 2.2, on page 27. Most of it is plain HTML, but there two interesting

parts: displaying the date and time and creating links that trigger event

handlers on the action bean.

Let’s look at the source for hello.jsp:

Download getting_started/web/WEB-INF/jsp/hello.jsp

<%@page contentType="text/html;charset=ISO-8859-1" language="java"%>

<%@taglib prefix="s" uri="http://stripes.sourceforge.net/stripes.tld"%>

<%@taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Hello, Stripes!</title>

</head>

<body>

<h3>Hello, Stripes!</h3>

<p>

Date and time:

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/getting_started/web/WEB-INF/jsp/hello.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=29

HELLO, STRIPES! 30

Ê <fmt:formatDate type="both" dateStyle="full"

value="${actionBean.date}"/>

</p>

<p>

Ë <s:link beanclass="stripesbook.action.HelloActionBean"

event="currentDate">

Show the current date and time

</s:link> |

<s:link beanclass="stripesbook.action.HelloActionBean"

event="randomDate">

Show a random date and time

</s:link>

</p>

</body>

</html>

After the standard page directive that declares the page as a Java JSP,

the taglib directives import the Stripes tag library and the JSTL’s for-

matting tags. I’ll use the prefix s to represent the Stripes tag library;

most people use either s or stripes. The fmt prefix is standard for the

JSTL’s formatting tags.

The code at Ê displays the value of the date property from HelloAction-

Bean. The ${actionBean.date} expression calls the getDate() method on

the current action bean, and the <fmt:formatDate> tag formats the

result by displaying both the date and the time in full.

At Ë, the <s:link> tag creates a link to the currentDate() event handler

of HelloActionBean. Notice how clear this is in the tag: the beanclass=

attribute contains the fully qualified class name of the action bean,

and event= tells us the name of the method. The link to randomDate()

is created in the same way. When we read this code, we know exactly

which class and method is called by each link.

Just like that, we’ve made two types of bindings from the JSP to the

action bean: reading data and triggering an event handler, as illustrated

in Figure 2.3, on page 32. That was simple, wasn’t it? We have links

that are bound to event handlers on HelloActionBean, which change the

date and redisplay the page by returning a forward resolution back to

hello.jsp. Let’s talk a little more about these two key concepts: event

handlers and resolutions.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=30

HELLO, STRIPES! 31

Tim Says. . .

JSP Schmay Ess Pee

That’s the response a lot of people have to JSP these days. But
the fact that most Stripes applications use JSP (as do the exam-
ples in this book) shouldn’t put you off. I’ll tell you now, JSP isn’t
nearly as bad as its haters would have you believe. It’s true that
JSP 1.0 was pretty darn awful and that it got only moderately
better with version 1.1. At that point, many developers wrote
JSP off entirely and stopped paying attention.

Modern JSP development is a different story. With the introduc-
tion of the JSP Expression Language (nowadays just “the Expres-
sion Language,” or EL), the JSP Standard Tag Library (JSTL), and
JSP tag files (essentially custom tags written as JSP fragments),
JSP has moved past being painful and ugly to being a com-
petent and usable view technology. It is now easy to develop
pages without ever resorting to scriptlets!

A singular advantage of JSP over almost every other view tech-
nology out there today is by far and away better documenta-
tion, examples, and tool support. Every major IDE has a built-in
JSP editor, and there are hundreds of articles and books about
how to do JSP development. Chances are that developers on
your team and developers you interview are already familiar
with JSP—you won’t find such a large pool of developers famil-
iar with other templating systems.

And if you really, truly cannot stomach the thought of using JSP,
Stripes works equally well with FreeMarker.∗

∗. http://www.freemarker.org. See http://www.stripesframework.org/display/stripes/FreeMarker+with+Stripes

for instructions on using FreeMarker with Stripes.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.freemarker.org
http://www.stripesframework.org/display/stripes/FreeMarker+with+Stripes
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=31

HELLO, STRIPES! 32

hello.jsp

${actionBean.date}

<s:link

beanclass="stripesbook.action.HelloActionBean"

event="randomDate">

stripesbook/action/HelloActionBean.java

public Date getDate()

public Resolution randomDate()

Figure 2.3: Binding a JSP to an action bean

Event Handlers

The currentDate() and randomDate() methods in the action bean are

event handlers. But what makes Stripes recognize these methods? We

didn’t declare them in a configuration file. The method names don’t

have a special prefix or suffix. It’s all in the method signature. An event

handler is a method that does the following:

• Is declared as public

• Returns a Resolution

• Takes no parameters

• Is defined in an action bean

We choose the name of the method, and that becomes the name of the

event handler. In HelloActionBean, the two event handlers are named

currentDate and randomDate.

When we start the application and the initial request is made to Hel-

loActionBean, how does Stripes know which event handler to execute?

Here’s where the notion of a default event handler comes in. When no

event handler is specified (either because of a plain URL or with an

<s:link> tag with no event= attribute), the default event handler is trig-

gered. Stripes treats an event handler as the default when

• the event handler is annotated with @DefaultHandler, and

• the event handler is the only one defined in the action bean.
Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=32

HELLO, STRIPES! 33

Joe Asks. . .

Where Does ${actionBean} Come From?

This is a feature that Stripes provides—it sets the action bean
that has handled the current event as the “actionBean” request-
scope attribute. This means that in your JSPs, you can always
refer to the current action bean using ${actionBean}. From there,
you can access the action bean’s properties using standard
EL expressions such as ${actionBean.date}. Because Stripes cre-
ates new instances of action beans for every request, it’s quite
appropriate to store request-related values in action bean
properties.

With more than one event handler and no @DefaultHandler annotation,

Stripes won’t know which one is the default and will throw an exception.

In the example, @DefaultHandler is on currentDate().

There’s nothing wrong with using the @DefaultHandler annotation on an

event handler that happens to be the only one defined in an action

bean. In fact, consider it good practice, since it clearly marks the intent

and saves us from forgetting to specify it if we decide later to add other

event handlers to the action bean.

On the other hand, do not annotate more than one event handler with

@DefaultHandler in the same action bean—you’ll get an exception.

After an event handler has done its work, it returns a resolution. What’s

a resolution, besides something that people have at New Year’s and

abandon a few weeks later?

Resolutions

A resolution tells Stripes what to do next in response to the current

request. An example of a resolution is to forward to a JSP, which is what

the event handlers of HelloActionBean do by returning a ForwardResolution

to /WEB-INF/jsp/hello.jsp.

In terms of actual code, Resolution is a one-method interface:

public interface Resolution {

void execute(HttpServletRequest request,

HttpServletResponse response)

throws Exception;

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=33

HELLO, STRIPES! 34

Tim Says. . .

What’s with These Resolution Classes and Hard-Coded
Paths to Pages?

You might be wondering why we return instances of the Resolution

interface directly instead of returning symbols or codes like "SUCCESS"

and "FAILURE". Also, is it a bad idea to have paths to JSPs right there

in the action bean? The simple answer is that we do things this way

because it’s simpler, it’s easier, and it allows you to do more things with-

out jumping through hoops.

If we were using result codes instead of Resolutions when writing action

beans, we would also have to edit a configuration file to set up the

result codes and the pages to which they map. That’s another file that

would have to be kept in sync with our beans; we’d have to be care-

ful that our bean name and result codes always match between two

places.

Returning instances of the Resolution interface avoids this and at the

same time makes debugging and maintenance much simpler. When

you observe a problem with a page, you can find the action bean

class from the URL in your browser via the URL binding rules that we

discuss in Section 2.3, Binding to Action Beans, on page 36. When you

look at that class, you can see what it’s doing and immediately see

which page it forwards to without having to look in yet another file and

match up a result code to a page name.

That’s not all, though! The most important reason is that this provides a

clean and cohesive interface for sending a response to the client that

doesn’t require the action bean to conform to an interface or put data

onto a special stack just to pass it to the Resolution. If you want to add

parameters to a forward or stream back a custom data type to the

client, it’s as easy as this:

// Send a forward with additional arbitrary parameters
return new ForwardResolution("/foo.jsp").addParameter("foo", bar);

// Send back a stream of an arbitrary content type
return new StreamingResolution("image/png", inputStream);

In my experience, most action beans deal with only one or two pages,

and most pages are owned and forwarded to by a single action bean.

As a result, even if you hard-code JSP names in your action bean,

you’re usually hard-coding them in only one place each and not scat-

tering the same name in lots of places. If you still would prefer to central-

ize your JSP names, it’s perfectly simple to move them into a page con-

stants class and reference the constants instead—and since it’s code,

you’ll still be able to click right through in your favorite IDE.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=34

HELLO, STRIPES! 35

You usually don’t need to implement the Resolution interface yourself;

most of the time you’ll find a ready-to-use Stripes implementation that

does what you need:

ForwardResolution

Forwards to a path, such as a JSP, or to another action bean.

RedirectResolution

The same as a ForwardResolution but uses a client-side redirect

instead of a forward.

StreamingResolution

Streams data directly back to the client, for example, to produce a

binary file.

JavaScriptResolution

Converts a Java object to JavaScript code that is sent back to

the client and is suitable for decoding using the JavaScript eval()

function. This is particularly useful when using Ajax.

ErrorResolution

Sends an HTTP error message back to the client, using a status

code and an optional error message.

That gives you an idea of what types of resolutions are provided by

Stripes. We’ll discuss them in more detail as we use them in examples.

Running the Example

To run the example, package the web application that you’ve so dili-

gently created, and deploy it to your servlet container. Or, if you have

just been reading along without typing anything, you can always take

the easy way out and use the book’s source code. Just go to the get-

ting_started subdirectory of the source code bundle, and run ant. The

example will be packaged into a WAR file, ready to be deployed. After

starting your servlet container, use http://localhost:8080/getting_started to

run this chapter’s example.4 You should see the page shown in Fig-

ure 2.2, on page 27. Try clicking the links to change the displayed date

and time.

4. Open the index.html file in the root directory of source code bundle to get an index of

all the examples.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://localhost:8080/getting_started
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=35

BINDING TO ACTION BEANS 36

When running the example, we used the <welcome-file> parameter in

web.xml to set the default path to index.jsp. This file is a one-liner that

forwards to /Hello.action:

Download getting_started/web/index.jsp

<jsp:forward page="/Hello.action"/>

This path targets HelloActionBean. Remember that we created links to

HelloActionBean with the <s:link> tag. If you look at the generated HTML

code for those links, you will see that they also point to /Hello.action.

So, the question is, how is the path, /Hello.action, connected to the class

stripesbook.action.HelloActionBean?

2.3 Binding to Action Beans

Stripes doesn’t bother you with URLs and instead lets you work with

action bean class names. Behind the scenes, Stripes takes care of gen-

erating URLs and binding them with action beans. That’s great, but

there’s no need to be left in the dark about how URLs and action beans

are connected. So, let’s discuss that briefly.

Remember that Stripes searches the class path at startup, looking for

action beans. The fully qualified class name of each action bean that

it finds is associated to a URL. Here are the steps involved to carry

out this mapping, with the binding of stripesbook.action.HelloActionBean

to /Hello.action as an example:

1. Start with the fully qualified class name of the action bean.

• stripesbook.action.HelloActionBean

2. Remove the package prefix up to and including any of the following

package names: action, stripes, web, or www.

• HelloActionBean

3. If present, remove the class name suffix Action, Bean, or Action-

Bean.

• Hello

4. Convert the package and class name to a path by prefixing with a

forward slash and changing all periods to forward slashes.

• /Hello

5. Append the .action suffix.

• /Hello.action

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/getting_started/web/index.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=36

BINDING TO ACTION BEANS 37

Action Bean Class Default URL Binding

a.web.users.UserActionBean /users/User.action

a.b.UserAction /a/b/User.action

www.a.b.UserBean /a/b/User.action

web.a.actions.User /a/actions/User.action

theweb.ActionBeanImpl /theweb/ActionBeanImpl.action

a.b.stripes.ActionBean /.action

Figure 2.4: URL binding examples

This mechanism is called URL binding. When a request arrives, Stripes

looks at the URL and searches for the corresponding action bean in the

mapping that was constructed during the binding process.

In Figure 2.4, we can see a few more examples of action bean class

names and their corresponding URL bindings.

If you’re not happy with default URL binding pattern, don’t fret. We’ll

see how it can be changed in Section 13.2, Customizing URL Bindings,

on page 283.

Using the href Attribute

When creating a link with <s:link>, we connected the link to an action

bean by indicating the fully qualified class name of the action bean in

the tag’s beanclass= attribute:

<s:link beanclass="stripesbook.action.HelloActionBean"

event="randomDate">

Show a random date and time

</s:link>

We can also use URL bindings directly, such as /Hello.action, with the

href= attribute. In this case, we would have created the link like this:

<s:link href="/Hello.action" event="randomDate">

Show a random date and time

</s:link>

Notice that we did not need to put the context path at the beginning of

the URL. The href= attribute of the <s:link> tag automatically does this

for us. In most cases, using the beanclass= attribute is preferable:

• It clearly states which action bean is the target.

• It makes your code independent of URL binding details.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=37

BINDING TO ACTION BEANS 38

Mind the Context Path!

When you deploy web applications to a servlet container, the
context path distinguishes one application from another. With
Jetty and Tomcat, for example, an application deployed by
placing the myapp.war file in the /webapps directory has a con-
text path of /myapp. You can then access the root of the web
application with http://localhost:8080/myapp.

Avoid using the same name for the context path of your
web application and for the first part of the package
name that contains your action beans—for example, a
context path named /myapp and an action bean named
myapp.mymodule.ui.MyActionBean. This will cause problems with
the URL binding mechanism.

If you must use the same name for the context path and
the first package name, place your action beans in a pack-
age that includes one of the names that are truncated by
the URL binding strategy (action, stripes, web, or www), such as
myapp.mymodule.ui.stripes.MyActionBean.

• If you decide to move or rename the action bean, modern IDEs will

catch the beanclass= references in the refactoring process.

Nevertheless, it’s useful to understand how URL binding works. For

example, you might need to create links to action beans within non-

Stripes tags or from an application that uses a different framework.

The Preaction Pattern

A good practice in a Stripes application is to use what is known as

the preaction pattern. This consists of always having requests go to

action beans rather than directly to JSPs. We did this in the example—

both links target HelloActionBean using the beanclass= attribute of the

<s:link> tag. There are no direct links to hello.jsp. In fact, we made sure

of that by placing the JSP file in the /WEB-INF/jsp directory. In Java web

applications, files anywhere under /WEB-INF cannot be accessed by the

browser.

Using the preaction pattern has the following advantages:

• Ensures that the current action bean will be available in the JSP

using ${actionBean}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://localhost:8080/myapp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=38

WRAPPING UP 39

• Routes requests through action beans, involving the full Stripes

request-response life cycle and giving us more control over what

happens between the stages of this life cycle

• Restricts the URLs used to access the application, making it easier

to control security

• Targets action beans instead of JSPs, making our code refer to

class names instead of URLs

2.4 Wrapping Up

You now have a working development environment and a Stripes appli-

cation up and running. I hope you’ve gained a better understanding of

the basics of Stripes by looking at the action bean and JSP code.

Here are a few things to notice after completing this exercise:

• Setting up a Stripes application does not stray from the standard

procedure for a Java web application, and Stripes has very few

dependencies.

• Stripes requires very little configuration. You just need to set up

the Stripes modules in the standard web.xml file and indicate the

root(s) of the packages that contain your action beans.

• You can add, remove, and rename action beans without having to

make changes to the configuration. Stripes will automatically find

and load your action beans, as long as they are in a package or

subpackage of the roots you’ve configured.

• Day-to-day work involves action beans and JSPs, not configura-

tion files.

• Your JSPs can link to action beans by class name, making the

association crystal clear and shielding your code from the details

of URL binding.

• The ${actionBean} expression allows you to generically refer to the

current action bean and to its properties.

• You can trigger event handlers on action beans by writing a meth-

od that has the appropriate signature and referring to the name of

the method in the JSP.

In the next chapter, we’ll discover more about action beans, JSPs, and

how they work together. We’ll learn how to create HTML forms with

Stripes. We’ll also start the main sample application that we’ll be work-

ing on for the remainder of the book.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=39

Action is eloquence.

William Shakespeare

Chapter 3

The Core:
Action Beans and JSPs

When you’re developing a Stripes application, you will find that most

of the work is done in action beans and view templates (JSPs in this

book’s examples). You use action beans to perform operations and JSPs

to show the results.

JSPs also give the user an interface to submit requests, and action

beans handle these requests and provide responses. Since action beans

and JSPs play such important roles, we’ll take a closer look at how they

work and interact. We also begin building a “webmail” application in

this chapter. This is the sample application that we’ll use for the rest of

the book.

Why a webmail application?

• It’s a very familiar application (everyone uses email nowadays), so

the features that we’ll implement will feel intuitive.

• We can easily think of many ways to improve the application.

Adding features is a great way to learn more about Stripes and

gain practical experience.

• There are just too many shopping cart applications out there.

• The market for online pet stores is saturated.

We’ll start with the contact list, which contains people with their names,

email addresses, phone numbers, and birth dates. Three pages are

involved: a Contact List page with a summary of all contacts in a table,

a Contact View page that shows a contact’s complete information, and

a Contact Form page for creating and updating contacts. How you can

navigate from one page to another is illustrated in Figure 3.1, on the

following page.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

LET’S CRUD 41

Contact List delete

Contact View

view

back

to

list

Contact Form

create,

update

save,

cancel

update

Figure 3.1: The contact list, view, and form pages

3.1 Let’s CRUD

Just about every web application that does something useful is a CRUD

application: it Creates, Reads, Updates, and Deletes data. Here, the

data is the contact information. Implementing a CRUD application is a

great way to learn more about how a framework works, and you’ll see

how easy it is to build this application with Stripes.

As we saw in Chapter 1, Introduction, Stripes is an MVC framework that

provides support in the controller and view layers. But first, we need a

model. This is not part of Stripes, but every application needs at least

one class to represent the model—the contacts, in our case.

The Model Layer

We’ll use a simple Contact class to represent a contact. This is a typical

model class with properties for the contact’s information. It also has

an id property that uniquely identifies a contact object and makes it

easy to write the equals() and hashCode() methods. These methods are

important because Java uses them when comparing one object with

another, adding objects to collections, and so on. Finally, Contact has

a toString() method so that objects are displayed with the person’s first

and last names.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=41

LET’S CRUD 42

Here is the code for the Contact class:1

Download email_01/src/stripesbook/model/Contact.java

package stripesbook.model;

public class Contact {

private Integer id;

private String firstName;

private String lastName;

private String email;

private String phoneNumber;

private Date birthDate;

/* Getters and setters... */

@Override

public boolean equals(Object obj) {

try { return id.equals(((Contact) obj).getId()); }

catch (Exception exc) { return false; }

}

@Override

public int hashCode() {

return 31 + ((id == null) ? 0 : id.hashCode());

}

@Override

public String toString() {

return String.format("%s %s", firstName, lastName);

}

}

The Data Access Layer

Now that we have a model, we need to make it easy for action beans

(the controller) to work with this model. The approach I like to use is

the Data Access Object (DAO). This is basically an object with methods

to create, read, update, and delete model objects. Action beans don’t

need to know how objects get stored and retrieved, and the DAO hides

these implementation details.

Since we might want to use different ways of managing model objects,

we’ll use an interface to define the DAO methods. Action beans call

methods on this interface and do not need to change if we decide to

swap implementations.

1. To reduce “noise,” I leave out the import statements in code listings from this point on.

Most of the time, I also omit getter and setter methods.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_01/src/stripesbook/model/Contact.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=42

WRITING A BASE FOR A STRIPES APPLICATION 43

We’ll call this interface ContactDao:

Download email_01/src/stripesbook/dao/ContactDao.java

package stripesbook.dao;

public interface ContactDao {

public List<Contact> read();

public Contact read(Integer id);

public void save(Contact contact);

public void delete(Integer id);

}

You can retrieve all contacts in a list, or you can retrieve a single con-

tact by ID. The save() method combines both creating and updating a

contact. This way, you don’t need to worry about whether a contact is

new or existing. Just call save() and let the DAO figure it out. Finally,

you can delete a contact by ID.

Now we need an implementation of ContactDao. I don’t want to bog you

down with the details of setting up a database, a JDBC abstraction

layer, and so on. So to keep things simple, I wrote a MockContactDao

class that manages objects in memory using plain Java data structures.

The code is not important (you can always go check it out if you’re

curious). All you need to know here is that MockContactDao.getInstance()

gives you a working implementation of ContactDao.2

We’re done with the model and data access layers. Now it’s time to

return to Stripes and write some code that supports the action beans

and JSPs that we’ll be adding as we build the webmail application.

3.2 Writing a Base for a Stripes Application

In the “Hello, Stripes!” example from Chapter 2, Stripes 101: Getting

Started, we wrote a very simple application just to get your feet wet. But

when you write more complex Stripes applications with several action

beans and JSPs, you’ll want a base of reusable code: a base class for

the action beans, a JSP for the tag libraries, and a JSP for a common

page layout. You need to write this code only once, and it’s worth the

trouble: you’ll benefit each time you add an action bean or a JSP, as well

as when you need to add or modify behavior for the whole application.

2. We’ll look at using DAOs that connect to databases in Section 12.1, Persistence with

Stripersist, JPA, and Hibernate, on page 245.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_01/src/stripesbook/dao/ContactDao.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=43

WRITING A BASE FOR A STRIPES APPLICATION 44

Support for Action Beans

A base class for action beans implements the ActionBean interface:

Download email_01/src/stripesbook/action/BaseActionBean.java

package stripesbook.action;

public abstract class BaseActionBean implements ActionBean {

private ActionBeanContext actionBeanContext;

public ActionBeanContext getContext() {

return actionBeanContext;

}

public void setContext(ActionBeanContext actionBeanContext) {

this.actionBeanContext = actionBeanContext;

}

}

When you add an action bean, you can just extend this class and get

on with your business. BaseActionBean is also the place to put any other

common code that you might want to reuse in all action beans.

Support for JSPs

For JSPs, it’s nice to have all the tag library declarations in one place,

such as in this taglibs.jsp file:

Download email_01/web/WEB-INF/jsp/common/taglibs.jsp

<%@taglib prefix="s" uri="http://stripes.sourceforge.net/stripes.tld"%>

<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<%@taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"%>

<c:set var="contextPath" value="${pageContext.request.contextPath}"/>

Besides importing the Stripes tag library and the JSTL, I’ve added

a shortcut to the context path. Being a lazy typist, I prefer to use

${contextPath} whenever I need the context path, instead of ${pageCon-

text.request.contextPath}.

Now, we get the tag libraries and the context path shortcut in a JSP

with just one line:

<%@include file="/WEB-INF/jsp/common/taglibs.jsp"%>

Finally, you’ll appreciate having a JSP that provides a layout that’s

reused for every page of the application. It saves you from copying and

pasting boilerplate HTML code and gives your pages a consistent look

and feel.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_01/src/stripesbook/action/BaseActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_01/web/WEB-INF/jsp/common/taglibs.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=44

WRITING A BASE FOR A STRIPES APPLICATION 45

In Chapter 7, Reusable Layouts, on page 141, we’ll talk all about the

Stripes layout mechanism, but here’s a quick introduction. All we need

is three tags:

• <s:layout-definition> in some.jsp

This identifies some.jsp as a reusable layout.

• <s:layout-render name="/path/to/some.jsp"> in another.jsp

This indicates that another.jsp uses the some.jsp layout to render a

page.

• <s:layout-component name="someName">

Within <s:layout-definition>, this tag says, “Put the contents of

the someName component here.” But within <layout-render>, it

means this: “Here is the contents of the someName component.”

The renderer sends contents to the definition, and the definition

decides where to place it within the layout. The other way for a ren-

derer to send something to a definition is with arbitrary attributes.

<s:layout-render name="..." title="My Title"> gives the definition a

title attribute with a value of My Title. The definition can use ${title}

to place this value in the layout.

That’s a fair amount of theory, but it’s really quite simple. Have a look at

the code for layout_main.jsp, which we’ll use for the webmail application:

Download email_01/web/WEB-INF/jsp/common/layout_main.jsp

<%@page contentType="text/html;charset=ISO-8859-1" language="java"%>

<%@include file="/WEB-INF/jsp/common/taglibs.jsp"%>

<s:layout-definition>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

Ê <title>${title}</title>

<link rel="stylesheet" type="text/css"
Ë href="${contextPath}/css/style.css">

</head>

<body>

<div id="header">

Ì ${title}

</div>

<div id="body">

Í <s:layout-component name="body"/>

</div>

</body>

</html>

</s:layout-definition>

The <s:layout-definition> tag declares this JSP as a reusable layout.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_01/web/WEB-INF/jsp/common/layout_main.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=45

DISPLAYING DATA WITH ACTION BEANS AND JSPS 46

Each page specifies a title, which the layout places at Ê and Ì, and

a body, which is placed at Í. The layout provides a common HTML

structure and imports style.css (a cascading style sheet) at Ë using that

convenient ${contextPath} shortcut I mentioned earlier.

With the layout_main.jsp file, we’ve created the page declaration, header,

CSS file, and body structure for every page of the application. Instead

of repeating all that code each time we add a JSP, we render the layout

and need to specify only the title and the body contents. For example,

this JSP:

<%@include file="/WEB-INF/jsp/common/taglibs.jsp"%>

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="My Title">

<s:layout-component name="body">

My page content

</s:layout-component>

</s:layout-render>

produces the following result:

<html>

<head>

<title>My Title</title>

<link rel="stylesheet" type="text/css"

href="/myapp/css/style.css"/>

</head>

<body>

<div id="header">

My Title

</div>

<div id="body">

My page content

</div>

</body>

</html>

Pretty cool, no? Let’s take a quick break here, and you can have a cold

glass or hot cup of your favorite drink. Then we’ll write the action bean

and JSP for retrieving and displaying the contact list.

3.3 Displaying Data with Action Beans and JSPs

Let’s display the list of contacts in a table. The best way to do this in

Stripes is to write an action bean that obtains the list from the DAO

and makes it available in a getter method. Then it’s easy to write a JSP

that retrieves the list from the action bean and renders it in an HTML

table. That’s all we need, clean and simple.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=46

DISPLAYING DATA WITH ACTION BEANS AND JSPS 47

The Contact List Action Bean

We’ll name the action bean that retrieves the list of contacts ContactList-

ActionBean. The default event handler forwards to the JSP, and a get-

ter method returns the list of contacts by calling read() on ContactDao

(implemented by MockContactDao):

Download email_01/src/stripesbook/action/ContactListActionBean.java

package stripesbook.action;

public class ContactListActionBean extends BaseActionBean {

private static final String LIST="/WEB-INF/jsp/contact_list.jsp";

private ContactDao contactDao = MockContactDao.getInstance();

@DefaultHandler

public Resolution list() {

return new ForwardResolution(LIST);

}

public List<Contact> getContacts() {

return contactDao.read();

}

}

The Contact List JSP

ContactListActionBean forwards to contact_list.jsp, which renders an HTML

table by iterating over the list of contacts and creating a table row for

each contact:

Download email_01/web/WEB-INF/jsp/contact_list.jsp

<%@include file="/WEB-INF/jsp/common/taglibs.jsp"%>

Ê <s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="Contact List">

<s:layout-component name="body">

<table>

<tr>

<th>First name</th>

<th>Last name</th>

<th>Email</th>

</tr>

Ë <c:forEach var="contact" items="${actionBean.contacts}">

<tr>

<td>${contact.firstName}</td>

<td>${contact.lastName}</td>

<td>${contact.email}</td>

</tr>

</c:forEach>

</table>

</s:layout-component>

</s:layout-render>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_01/src/stripesbook/action/ContactListActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_01/web/WEB-INF/jsp/contact_list.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=47

DISPLAYING DATA WITH ACTION BEANS AND JSPS 48

At Ê we’re using the layout that we created earlier, with “Contact List”

as the page’s title. The page’s body is the content between the <s:layout-

component> tags.

After some standard table-rendering HTML, at Ë we retrieve the list

of contacts from the action bean with ${actionBean.contacts} and loop

using the JSTL’s <c:forEach> tag. Each individual contact is placed in

the contact variable. We can then create rows of data and display the

contact information by accessing the properties of contact.

Putting It All Together

Combining everything that we’ve created so far, we can obtain the con-

tact list with the /ContactList.action URL. This triggers the default event

handler of ContactListActionBean, which forwards to contact_list.jsp. In

this JSP, the action bean is available via ${actionBean}, so ${action-

Bean.contacts} calls getContacts() and obtains the list of contacts, which

is then displayed in a table. This sequence is illustrated in Figure 3.2,

on the next page, and the resulting table is shown in Figure 3.3, on

page 50.

As you can see, the MockContactDao comes with batteries included—it

is prepopulated with a list of ten contacts.3

So far so good. But you’ve probably noticed that the table looks rather

bland. Let’s pretty it up.

Using Display Tag

Display Tag (http://displaytag.sourceforge.net/) is a library for creating

HTML tables. It is not part of Stripes, and it isn’t required in order

to use Stripes. But we’ll use it as an example of how easy it is to inte-

grate a third-party library that does what we want instead of having

to write the code ourselves. Display Tag automatically makes the data

sortable by clicking the column headers and adds CSS classes so that

we can shade odd and even rows in different colors. The code in the

JSP becomes even simpler—we get more for less.

To use Display Tag, add its required JAR files to the /WEB-INF/lib direc-

tory, and declare the library in taglibs.jsp:

Download email_02/web/WEB-INF/jsp/common/taglibs.jsp

<%@taglib prefix="d" uri="http://displaytag.sf.net"%>

3. The names are fictitious. They were obtained using the Random Name Generator

(http://www.xtra-rant.com/gennames).

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://displaytag.sourceforge.net/
http://media.pragprog.com/titles/fdstr/code/email_02/web/WEB-INF/jsp/common/taglibs.jsp
http://www.xtra-rant.com/gennames
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=48

DISPLAYING DATA WITH ACTION BEANS AND JSPS 49

Browser

ContactListActionBean.java

String LIST="/WEB-INF/jsp/contact_list.jsp";

@DefaultHandler

public Resolution list() {

return new ForwardResolution(LIST);

}

public List<Contact> getContacts()

/ContactList.action

contact_list.jsp

<table>

...

<c:forEach items="${actionBean.contacts}" ...>

...

</table>

Figure 3.2: Displaying the contact list

In contact_list.jsp, we can now use <d:table> and <d:column> from Dis-

play Tag to render the table of contacts:

Download email_02/web/WEB-INF/jsp/contact_list.jsp

<%@include file="/WEB-INF/jsp/common/taglibs.jsp"%>

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="Contact List">

<s:layout-component name="body">

<d:table name="${actionBean.contacts}" id="contact" requestURI=""

defaultsort="1">

<d:column title="Last name" property="lastName"

sortable="true"/>

<d:column title="First name" property="firstName"

sortable="true"/>

<d:column title="Email" property="email" sortable="true"/>

</d:table>

</s:layout-component>

</s:layout-render>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_02/web/WEB-INF/jsp/contact_list.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=49

DISPLAYING DATA WITH ACTION BEANS AND JSPS 50

Figure 3.3: The list of contacts in a basic table

The code is more compact and more powerful. The <d:table> tag takes

the list of objects from name= and places each object in the variable

indicated in id=. The empty requestURI="" parameter is necessary so that

the sorting URLs constructed by the Display Tag build on the Stripes

URL. The table is now sortable by column and is sorted by the first

column by default with defaultsort="1".

Each <d:column> tag adds a column to the table, with the given title=

and the data coming from the property= of each object. Each column is

made sortable by adding sortable="true".

Shading Alternate Rows

Display Tag adds class="odd" or class="even" to the <tr> tags that it

generates. To shade these rows in different colors, you just have to

style them in the CSS file.

For example:

Download email_02/web/css/style.css

tr.odd {

background-color: #E5F5E5;

}

tr.even {

background-color: #FFFFFF;

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_02/web/css/style.css
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=50

DISPLAYING DATA WITH ACTION BEANS AND JSPS 51

Joe Asks. . .

Doesn’t Stripes Have a Table Tag or Something?

Displaying HTML tables is a common task. Many libraries exist to
make it a breeze to create tables with sophisticated features.
In light of this, Stripes does not reinvent the wheel. Instead, it is
designed for easy integration of third-party libraries.

In that spirit, you can use Display Tag to jazz up your tables.
There are other libraries, of course, such as JMesa (http://code.

google.com/p/jmesa) and ValueList (http://valuelist.sourceforge.

net), to name a few.

Highlighting the Sorted Column

Display Tag also adds classes to <th> tags according to the currently

sorted column and the sort direction. Let’s highlight this column with a

gradient shading, with the direction of the gradient indicating the sort

direction. After creating the ascending and descending gradient images,

this code styles the columns:

Download email_02/web/css/style.css

th.sorted {

background-color: #EECCAA;

}

th.order1 {

background-image: url(../images/gradient_asc.png);

}

th.order2 {

background-image: url(../images/gradient_desc.png);

}

Our Display Tag–powered table is now as shown in Figure 3.4, on

the next page. We livened up the table with very little effort. Although

there’s nothing wrong with generating HTML tables yourself, it’s nice to

know that you can easily integrate your favorite library to do the work

for you.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://code.google.com/p/jmesa
http://code.google.com/p/jmesa
http://valuelist.sourceforge.net
http://valuelist.sourceforge.net
http://media.pragprog.com/titles/fdstr/code/email_02/web/css/style.css
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=51

PARAMETERIZED LINKS 52

Figure 3.4: The contact list in a Display Tag table

3.4 Parameterized Links

Let’s return to Stripes. We’ll add the View and Delete links next to each

contact in the last column of the table (Figure 3.5, on the following

page).

Back on page 30, we saw how to create links with <s:link> and how to

trigger an action bean’s event handler with the beanclass= and event=

attributes. Now, the links in each row of the table views or deletes the

corresponding contact. How do we indicate the target contact for each

link? With parameters.

Adding Parameters to Links

Parameterized links are powerful because they provide additional infor-

mation that the action bean can then use. Stripes makes it easy to

add parameters to links: add a property on the action bean and an

<s:param> tag within <s:link> in the JSP. We can add as many param-

eters as we need; we indicate the name= and value= of each parameter

in the <s:param> tag. When the user clicks the link, Stripes binds

each parameter value to the corresponding property on the action bean

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=52

PARAMETERIZED LINKS 53

Figure 3.5: Adding View and Delete links

before invoking the event handler, as illustrated in Figure 3.6, on the

following page.

To send the contact ID as a parameter for the View and Delete links,

add a column to the table like this:

Download email_03/web/WEB-INF/jsp/contact_list.jsp

<d:column title="Action">

<s:link beanclass="stripesbook.action.ContactListActionBean"

event="view">

<s:param name="contactId" value="${contact.id}"/>

View

</s:link> |

<s:link beanclass="stripesbook.action.ContactListActionBean"

event="delete">

<s:param name="contactId" value="${contact.id}"/>

Delete

</s:link>

</d:column>

Clicking either link first calls setContactId(Integer) on the action bean

and supplies the contact ID as a parameter. It then calls the event

handler.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_03/web/WEB-INF/jsp/contact_list.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=53

PARAMETERIZED LINKS 54

contact_list.jsp

<s:link beanclass="${actionBean.class}"

event="delete">

<s:param name="contactId"

value="${contact.id}"/>

Delete

</s:link>

ContactListActionBean.java

public void setContactId(Integer id)

public Resolution delete()

Figure 3.6: Binding a link parameter

Viewing Contact Information Details

Clicking the View link brings the user to a page that shows the contact

information details, as shown in Figure 3.7, on page 56. We’ll need to

add code in ContactListActionBean to receive the parameter, retrieve the

contact, and forward to the view:

Download email_03/src/stripesbook/action/ContactListActionBean.java

private static final String VIEW="/WEB-INF/jsp/contact_view.jsp";

public Resolution view() {

return new ForwardResolution(VIEW);

}

private Integer contactId;

public void setContactId(Integer id) {

contactId = id;

}

public Contact getContact() {

return contactDao.read(contactId);

}

Notice that the contactId property is of type Integer, even though all

parameters that come from an HTTP request are limited to the String

type. Stripes automatically converts the parameter to an Integer for us.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_03/src/stripesbook/action/ContactListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=54

PARAMETERIZED LINKS 55

The beanclass Attribute Also Accepts a Class

We’re using a String value in the beanclass= attribute to indicate
the fully qualified class name of the action bean. Another way
is to use an expression that resolves to the actual Class of the
action bean.

For example, you could use ${actionBean.class} to refer to the
class of the current action bean:

<s:link beanclass="${actionBean.class}" .../>

This dynamically refers to the current action bean when trigger-
ing event handlers, opening the door to using the same JSP for
more than one action bean. The JSP doesn’t need to “know”
which action bean is being used.

Dynamic magic is nice, but there is a drawback. When you
are reading JSP code and you see beanclass="stripesbook.

action.ContactListActionBean", you know exactly which action
bean handles the request. But beanclass="${actionBean.class}"

just tells you “the current action bean.” It’s not obvious which
action bean is associated to the JSP—and there could even
be more than one.

This is great—no need to manually convert String parameters to prim-

itive types and their wrapper classes. Just declare the property using

the desired type in the action bean, and Stripes uses a type converter

to do the necessary conversion.

Now it’s simple to retrieve the selected contact by using the DAO and

the contact ID parameter. The JSP can now read the contact with

${actionBean.contact}.

The contact_view.jsp source is quite straightforward. It displays the in-

formation for the selected contact and adds a link at the bottom to

return to the contact list:

Download email_03/web/WEB-INF/jsp/contact_view.jsp

<%@include file="/WEB-INF/jsp/common/taglibs.jsp"%>

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="Contact Information">

<s:layout-component name="body">

<table class="view">

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_03/web/WEB-INF/jsp/contact_view.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=55

PARAMETERIZED LINKS 56

Figure 3.7: Viewing the full contact information

<tr>

<td class="label">First name:</td>

<td class="value">${actionBean.contact.firstName}</td>

</tr>

<tr>

<td class="label">Last name:</td>

<td class="value">${actionBean.contact.lastName}</td>

</tr>

<tr>

<td class="label">Email:</td>

<td class="value">${actionBean.contact.email}</td>

</tr>

<tr>

<td class="label">Phone number:</td>

<td class="value">${actionBean.contact.phoneNumber}</td>

</tr>

<tr>

<td class="label">Birth date:</td>

<td class="value">${actionBean.contact.birthDate}</td>

</tr>

</table>

<p>

<s:link beanclass="stripesbook.action.ContactListActionBean">

Back to List

</s:link>

</p>

</s:layout-component>

</s:layout-render>

Excellent. Since the contact list and contact view pages are so closely

related, we were able to combine the code for both pages in the same

action bean and add the contact view page with just a JSP.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=56

DISPLAYING MESSAGES TO THE USER 57

Deleting Contacts

To delete the contact when the user clicks the Delete link, we just need

a delete() event handler in ContactListActionBean:

Download email_03/src/stripesbook/action/ContactListActionBean.java

public Resolution delete() {

contactDao.delete(contactId);

return new RedirectResolution(getClass());

}

After deleting the contact, we are using a RedirectResolution to the action

bean instead of a ForwardResolution to the JSP. I’ll explain this in Sec-

tion 3.7, The Redirect-After-Side-Effect Pattern, on page 67.

3.5 Displaying Messages to the User

When the user clicks a Delete link, the contact is immediately deleted.

This could be a little more forgiving. Since deleting a contact is such a

drastic operation, we want the user to confirm before proceeding—just

in case the user had a twitch and clicked the link by mistake.

“Are You Sure?” Messages

To ask for confirmation before proceeding, we can use the onclick=

attribute in the link. This and other standard HTML attributes are

accepted by Stripes tags as “pass-through,” meaning that the attribute

and its value are rendered as is. Clicking the link executes the Java-

Script code provided in onclick=:

Download email_04/web/WEB-INF/jsp/contact_list.jsp

<s:link beanclass="stripesbook.action.ContactListActionBean"

event="delete"

onclick="return confirm('Delete ${contact}?');">

<s:param name="contactId" value="${contact.id}"/>

Delete

</s:link>

This asks the user to confirm the operation using the dialog box shown

in Figure 3.8, on the next page. Notice that we used ${contact} to include

the name of the contact in the message that appears in the dialog box.

This is nicer than a catchall message such as “Delete the selected con-

tact?” because we also confirm which contact to delete.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_03/src/stripesbook/action/ContactListActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_04/web/WEB-INF/jsp/contact_list.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=57

DISPLAYING MESSAGES TO THE USER 58

Figure 3.8: Dialog box to confirm before delete

Information Messages

OK, so we’ve added a message before deleting a contact. It’d be nice to

also add a message after deleting to inform the user that the operation

was successful.

Stripes provides a simple mechanism for displaying information mes-

sages. It is a two-step process:

1. Add messages to the action bean context.

2. Display them in the view.

Adding Messages to the Context

The ActionBeanContext contains a list of information messages. We can

retrieve the list via getMessages() and add messages with add(Message).

Here’s how we add a message to confirm that a contact was deleted:

Download email_04/src/stripesbook/action/ContactListActionBean.java

public Resolution delete() {

Contact deleted = contactDao.read(contactId);

contactDao.delete(contactId);

getContext().getMessages().add(

new SimpleMessage("Deleted {0}.", deleted)

);

return new RedirectResolution(getClass());

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_04/src/stripesbook/action/ContactListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=58

DISPLAYING MESSAGES TO THE USER 59

Figure 3.9: Confirmation message after deleting a contact

The add() method requires an object that implements the Message in-

terface. Stripes provides classes that fit most needs—we’re using Sim-

pleMessage, which provides a constructor that accepts parameters to

be used when building the message. The parameters are replaced with

values using the standard Java text-formatting syntax. Here we put the

contact’s name at the {0} placeholder in the message.

Displaying Messages in the View

Once we’ve added messages to the ActionBeanContext’s list, we can dis-

play them in the view with the <s:messages/> tag. For example, we

can place this tag before the table in contact_list.jsp:

...

<s:layout-component name="body">

<s:messages/>

<d:table ...>

...

Now, when the user deletes a contact, an information message is dis-

played as in Figure 3.9.

Not bad at all. We have the Contact List and Contact View pages work-

ing and linked together, and we’re able to delete contacts directly in

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=59

CREATING FORMS 60

Joe Asks. . .

What If I Don’t Like How Messages Are Displayed?

By default, information messages are displayed in a plain
unordered list (and tags). We’ll see how to cus-
tomize this format in Chapter 6, Customizing Stripes Messages,
on page 121.

the contact list. Let’s see about creating new contacts and updating

existing contacts with the Contact Form page.

3.6 Creating Forms

Forms are a breeze to create in Stripes. There is a Stripes tag for every

type of input field (text field, radio button, and so on) and for submit

buttons. Using these tags instead of plain HTML gives you extra fea-

tures such as repopulating the inputs, highlighting them when they

are in error, and supporting localization.

When the user submits a form, Stripes binds the values in the form

fields to the corresponding properties in the action bean and triggers

the event handler associated with the submit button. You can have

multiple submit buttons without having to do anything special to figure

out which button the user clicked: each button triggers its own event

handler on the action bean.

Input fields have to be associated to properties of an action bean, but

you don’t have to copy the properties of a model object to the action

bean. Instead, you put the model object directly in the action bean and

use nested properties.

For example, you can add a Contact property in ContactListActionBean

and create a text field associated with the contact’s first name with

<s:text name="contact.firstName"/>. To set the value, Stripes calls getCon-

tact().setFirstName() on the action bean. You don’t even have to worry

about a NullPointerException. If getContact() returns null, Stripes creates a

new Contact object for you. This saves you a great deal of code because

you don’t have to copy each model property in the action bean and

transfer information back and forth. If your model objects use other

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=60

CREATING FORMS 61

Figure 3.10: The contact form

model objects, that’s no problem either—Stripes happily uses deeply

nested properties, such as "contact.address.street.name". Let’s put all this

to work and build a form for contacts.

Creating a Blank Form

The <s:form> tag creates a form associated with the action bean indi-

cated in its beanclass= attribute. Within the tag, we add input fields

with tags such as <s:text>, <s:radio>, and every other type of input.

These tags all have a name= attribute in which we put the name of the

action bean property that receives the user’s input. To complete the

form, we add one or more submit buttons with the <s:submit> tag and

the name= of the event handler associated with the button.

Have a look at the following code. This creates the form shown in Fig-

ure 3.10:

Download email_05/web/WEB-INF/jsp/contact_form.jsp

Ê <s:form beanclass="stripesbook.action.ContactFormActionBean">

<table class="form">

<tr>

<td>Email:</td>
Ë <td><s:text name="contact.email"/></td>

</tr>

<tr>

<td>First name:</td>

<td><s:text name="contact.firstName"/></td>

</tr>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_05/web/WEB-INF/jsp/contact_form.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=61

CREATING FORMS 62

<tr>

<td>Last name:</td>

<td><s:text name="contact.lastName"/></td>

</tr>

<tr>

<td>Phone number:</td>

<td><s:text name="contact.phoneNumber"/></td>

</tr>

<tr>

<td>Birth date:</td>

<td><s:text name="contact.birthDate"/></td>

</tr>

<tr>

<td> </td>

<td>
Ì <s:submit name="save" value="Save"/>

<s:submit name="cancel" value="Cancel"/>

</td>

</tr>

</table>

</s:form>

At Ê, we’re creating a form associated with the ContactFormActionBean

class, which we’ll be writing shortly. Starting at Ë, the text input fields

for the contact’s information are created with the <s:text> tag and

name= attributes for the properties of the Contact class. The submit

buttons (Ì) call either save() or cancel() on the action bean according

to which one the user clicked. The value= attribute is the button’s label.

Notice how there is a very clean and clear relationship between the

JSP and the action bean. The action bean’s class name is indicated in

the form tag’s beanclass= attribute, each input’s name= corresponds to

an action bean property, and each submit button’s name= is an action

bean’s event handler.

Let’s create the ContactFormActionBean to handle the form submission.

We’ll need the following:

• A default event handler that forwards to contact_form.jsp

• The save() and cancel() event handlers

• The contactId and contact properties

• The ContactDao to save the contact

Looking at those last two points, you’ll realize that the ContactListAction-

Bean class already has the contact properties and DAO. You probably

don’t like copying and pasting code any more than I do, so let’s do a

little refactoring.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=62

CREATING FORMS 63

BaseActionBean

ContactBaseActionBean

- Integer contactId

- Contact contact

- ContactDao contactDao

ContactListActionBean

- Resolution list()

- Resolution view()

- Resolution delete()

- List<Contact> contacts

ContactFormActionBean

- Resolution form()

- Resolution save()

- Resolution cancel()

Figure 3.11: Action bean class diagram

Check out Figure 3.11. We’ll create the ContactBaseActionBean class and

put the common code in there. Then, ContactListActionBean and Contact-

FormActionBean can inherit from it.

Here is the ContactBaseActionBean class:

Download email_05/src/stripesbook/action/ContactBaseActionBean.java

package stripesbook.action;

public abstract class ContactBaseActionBean extends BaseActionBean {

private ContactDao contactDao = MockContactDao.getInstance();

protected ContactDao getContactDao() {

return contactDao;

}

private Integer contactId;

public Integer getContactId() {

return contactId;

}

public void setContactId(Integer id) {

contactId = id;

}

private Contact contact;

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_05/src/stripesbook/action/ContactBaseActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=63

CREATING FORMS 64

public Contact getContact() {

if (contactId != null) {

return contactDao.read(contactId);

}

return contact;

}

public void setContact(Contact contact) {

this.contact = contact;

}

}

The code in the ContactFormActionBean class is now lean and mean:

Download email_05/src/stripesbook/action/ContactFormActionBean.java

package stripesbook.action;

public class ContactFormActionBean extends ContactBaseActionBean {

private static final String FORM="/WEB-INF/jsp/contact_form.jsp";

@DefaultHandler
Ê public Resolution form() {

return new ForwardResolution(FORM);

}
Ë public Resolution save() {

Contact contact = getContact();

getContactDao().save(contact);

getContext().getMessages().add(

new SimpleMessage("{0} has been saved.", contact)

);

return new RedirectResolution(ContactListActionBean.class);

}
Ì public Resolution cancel() {

getContext().getMessages().add(

new SimpleMessage("Action cancelled.")

);

return new RedirectResolution(ContactListActionBean.class);

}

}

The default event handler at Ê forwards to contact_form.jsp. When the

user clicks the Save button, save() is called (Ë) and uses the DAO to

save the contact. It then adds an information message to the list and

redirects to ContactListActionBean, which displays the messages and the

table of contacts. The event handler for the Cancel button (Ì) just adds

an information message and redirects to the contact list without saving

the contact.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_05/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=64

CREATING FORMS 65

Figure 3.12: After creating a contact

To send the user from the contact list to the form, add a Create a New

Contact link in contact_list.jsp:

Download email_05/web/WEB-INF/jsp/contact_list.jsp

<s:link beanclass="stripesbook.action.ContactFormActionBean">

Create a New Contact

</s:link>

The result of using the form to create a new contact fictitiously named

Kaylyn Shallenberger is shown in Figure 3.12.

There’s only one more thing we need to do: add the Update links in the

Action column.

Updating Information with a Prepopulated Form

Clicking the Update link should open the contact form prepopulated

with the selected contact’s information, as in Figure 3.13, on the next

page. First, create the link with the selected contact’s ID as a parameter:

Download email_05/web/WEB-INF/jsp/contact_list.jsp

<s:link beanclass="stripesbook.action.ContactFormActionBean">

<s:param name="contactId" value="${contact.id}"/>

Update

</s:link>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_05/web/WEB-INF/jsp/contact_list.jsp
http://media.pragprog.com/titles/fdstr/code/email_05/web/WEB-INF/jsp/contact_list.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=65

CREATING FORMS 66

Figure 3.13: Prepopulated form

Remember that the getContact() method in ContactBaseActionBean al-

ready retrieves the selected contact if the contact ID parameter was

provided:

Download email_05/src/stripesbook/action/ContactBaseActionBean.java

public Contact getContact() {

if (contactId != null) {

return contactDao.read(contactId);

}

return contact;

}

The nice thing with the Stripes input tags is that they also read from

the property in the name= attribute. So by making the selected contact

available through getContact(), the inputs prepopulate themselves with

the contact information such as "contact.firstName", "contact.lastName",

and so on.

Just like that, we’re almost there. To get the form to work for updating

an existing contact, we need to resubmit the contact ID parameter that

was sent with the Update link.

A hidden input does the trick:

Download email_05/web/WEB-INF/jsp/contact_form.jsp

<s:form beanclass="stripesbook.action.ContactFormActionBean">

<div><s:hidden name="contact.id"/></div>

<table class="form">

The input obtains its value just like the other inputs and becomes a

parameter when the form is submitted. It took very little code to add the

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_05/src/stripesbook/action/ContactBaseActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_05/web/WEB-INF/jsp/contact_form.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=66

USE A FORWARD OR A REDIRECT? 67

How Tags and Attributes Invoke Action Beans

We’ve used several tags and attributes to invoke methods on
action beans. Here’s a summary of what we’ve seen so far:

Tag and Attribute Invocation on Action Bean
<s:link beanclass="pkg.Name"> pkg.Name’s default event handler
<s:link event="eventName"> public Resolution eventName()

<s:link href="URL"> Action bean bound to URL

<s:param name="property"> setProperty(value)

<s:form beanclass="pkg.Name"> pkg.Name’s default event handler
<s:form action="URL"> Action bean bound to URL

<s:hidden name="property"> setProperty(value)

<s:text name="property"> setProperty(value)

<s:submit name="eventName"> public Resolution eventName()

Update link and get inputs that autopopulate themselves, and before

we know it, the contact form is complete.

3.7 Use a Forward or a Redirect?

After creating, updating, or deleting a contact, we’re returning a Redi-

rectResolution to ContactListActionBean instead of a ForwardResolution to

contact_list.jsp. Why? Let’s discuss the difference between the two reso-

lutions and how to decide which one to use.

The Redirect-After-Side-Effect Pattern

The first thing to notice is the create, update, and delete operations all

have side effects—they change the state of the data on the server.

Suppose that we returned a ForwardResolution to a contact_list.jsp after

the user has deleted a contact. Looking at Figure 3.14, on the following

page, we see that the last request is “delete this contact.” The prob-

lem is that if the user clicks the browser’s Reload button, the “delete

this contact” request will be sent again, causing an error because the

contact has already been deleted.

In general, it is a bad idea to use a forward after any request that should

not be resubmitted by hitting Reload . Imagine a request that makes a

purchase with the user’s credit card. You wouldn’t want to repeatedly

charge the credit card!

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=67

USE A FORWARD OR A REDIRECT? 68

Browser
ContactListActionBean

delete()

request: delete

JSP

forwardresponse

Figure 3.14: Using a forward after a delete request

Browser
ContactListActionBean

delete()

request: delete

Browser

redirect

ContactListActionBean

list()

request: (default)

JSP

forwardresponse

Figure 3.15: Using a redirect after a delete request

The “redirect after side effect” pattern comes to the rescue. Also known

as “redirect after post” or “post/redirect/get,” it involves sending a

redirect—a response that instructs the browser to issue a new request

that does not modify any data. According to Figure 3.15, we’re redirect-

ing to the default event handler of the action bean, which just displays

the contact list. Clicking Reload is harmless: the request that is re-sent

is the request to view the contact list, which has no side effect.

Using a redirect prevents unsafe behavior and eliminates those annoy-

ing “The page you are trying to view contains POSTDATA. . . ” pop-up

warnings. Get in the habit of using redirects to default event handlers

of action beans at the end of event handlers that modify the state of

the server. Of course, those default event handlers should do read-only

operations.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=68

USE A FORWARD OR A REDIRECT? 69

Joe Asks. . .

Why Can’t I Redirect to a JSP?

A forward to a JSP is part of the response to the initial request,
which was a request to an action bean. A redirect tells the
browser to send a new request. Redirecting to a JSP is like link-
ing directly to a JSP and breaks the pattern that we discussed
in Section 2.3, The Preaction Pattern, on page 38.

The Flash Scope

Redirecting introduces a new problem. If you provide information to

the view using attributes in the request scope, those attributes are

kept only for that request. But because the response is a redirect,

the browser issues a second request, for which those attributes are

no longer available.

To solve this problem, Stripes provides what is called the flash scope.

The flash scope stores attributes available for the current request and

the following request. This mechanism provides a bridge for attributes

when using a redirect.

Stripes uses the flash scope where appropriate. For example, the mes-

sages that you add to ActionBeanContext are stored in the flash scope.

When you return a RedirectResolution from an event handler, you can

display the messages in the view with the <s:messages/> tag because

Stripes automatically makes them available for you in the flash scope.

The Story So Far

Using action beans and JSPs as building blocks, you can easily add fea-

tures to a web application with parameterized links, forms, messages,

reusable layouts, and even third-party JSP libraries.

We now have a good start to the webmail application, with a working

contact list. In the next chapter, we’ll improve it by adding some user

input validation.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=69

Freedom is not worth having if it does not include the

freedom to make mistakes.

Mahatma Gandhi

Chapter 4

Validating User Input
If you played around with the contact form that we created in the pre-

vious chapter, you probably realized that there is no validation on the

input. The user can enter just about any data on the form, or no input

at all, and submit it. The application will not complain about invalid or

missing values.

Adding validation to your forms is essential to recovering gracefully

from invalid input and keeping your model free of corrupted data. As

you’ll see, Stripes gives you easy-to-use built-in validations and a sim-

ple way to gain full control for those more complex validations.

4.1 Stripes Validation Concepts

In Stripes, validations are defined with annotations in an action bean.

Using annotations gives you the advantage of being concise, compiled

(so you know right away if there’s a typo), and autocompleted by IDEs.

Best of all, your validation rules are defined right there next to the

property, not off in some separate template or configuration file.

To add validation to an action bean property, annotate it with @Validate. @Validate annotations

work only when used in

an action bean.You can annotate either the field (even if it is private), the getter method,

or the setter method associated to the property. Using attributes of

@Validate, you specify the validation criteria.

Let’s look at a simple example. Suppose we have an age property in an

action bean and a corresponding text field in a form. We could make

this field required and validate that the age entered by the user is at

least eighteen, with this annotation:

@Validate(required=true, minvalue=18)

private Integer age;

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

STRIPES VALIDATION CONCEPTS 71

Browser

Action Bean

request

Validation

parameter
binding

Return to source page,
display error messages

validation
errors

Execute event handler

no validation
errors

Figure 4.1: The validation sequence

We now have a clearly defined validation for the age property. Submit-

ting the form with the Age field left blank, or filled in with a value less

than eighteen, produces a validation error. As illustrated in Figure 4.1,

Stripes does not execute the intended event handler when a validation

error occurs. Instead, the user is sent back to the form that was sub-

mitted. This way, we can safely save data in the event handler method

because we know that Stripes won’t call it if the data is invalid. All

we need to do is to add the <s:errors> tag to our JSP to display error

messages, and we’re done!

Nested Properties

@Validate works only in an action bean. Annotating properties of a plain

model class won’t work, because Stripes doesn’t go searching for anno-

tations in model classes. Does this mean you have to copy properties

from a model class to an action bean? Of course not—that wouldn’t be

very Stripesy! Just like forms, validations support nested properties.1

1. Remember that a nested property is a property of a property, such as getPer-

son().getAge().

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=71

STRIPES VALIDATION CONCEPTS 72

Pick One Place for @Validate

For a given property, make sure to put the @Validate annotation
on exactly one of either the field, the getter method, or the
setter method. @Validate annotations in multiple places for the
same property will cause a big ol’ nasty exception to be thrown
at you.

To make your code easier to read, be consistent. Once you’ve
chosen where to put validations (say, on the setter method),
use the same place for all properties if possible.

Suppose we have a Person property in an action bean, and suppose the

Person class has an age property. As in the previous example, the age

is a required field with a minimum of eighteen. We can’t do this:

// This won't work

public class Person {

@Validate(required=true, minvalue=18)

private int age;

}

Instead, put @Validate inside a @ValidateNestedProperties annotation on

the Person property of the action bean, like this:

public class MyActionBean implements ActionBean {

@ValidateNestedProperties({

@Validate(field="age", required=true, minvalue=18)

})

private Person person;

}

When @Validate is within @ValidateNestedProperties, indicate the field

being validated with the field= attribute. You can add multiple @Validate

annotations to @ValidateNestedProperties, one for each nested property

being validated. Fields can be deeply nested, as in field="hair.color.rgb",

so there’s no limit to how far into your model you can go when you’re

adding validations.

Built-in Validations

Stripes offers several built-in validations with attributes of @Validate:

• Required field

• Length of the input

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=72

STRIPES VALIDATION CONCEPTS 73

Tim Says. . .

Using Public Fields with Stripes Is Not a Bad Thing

Stripes can access action bean properties in two different ways. The

most common way is through getter and setter methods, but Stripes

will also work directly with public fields. These two ways are completely

equivalent to Stripes. Using a public field is more compact—you don’t

need to write boilerplate getter and setter methods for each property.

So, why wouldn’t you use public fields?

Other than for constants, using public fields in Java has been looked

down upon for a long time. The reason is encapsulation. Forcing client

code to use methods to get and set properties allows you to change

how the property is stored and retrieved without impacting client code.

When a public field is used, you have to change all client code to use

the getter method. Another benefit of using methods is that it allows

you to do extra things when the value is read or set (increment a

counter, log a message, and so on).

If method access is so good, why not just use methods? In my experi-

ence, most property accessors in action beans do nothing more than

just get or set an instance field. If that’s the case, then the argument

that you can “do something extra” is pretty irrelevant! Most often, the

only access to these properties is by methods in the declaring class

and by Stripes. But Stripes doesn’t need the encapsulation; if you use

a public field today and then decide tomorrow that you want to use

methods, you can simply make the field private, add the methods, and

recompile. Stripes will immediately switch to using the methods instead

of the field. You can even make some properties public and others pri-

vate with methods in the same action bean.

If you can get over the mental hurdle of using public properties, you’ll

soon find it much more concise to write (and read) this:∗

public Date birthDate;

instead of:

private Date birthDate;

public Date getBirthDate() {
return birthDate;

}
public Date setBirthDate(Date birthDate) {

this.birthDate = birthDate;
}

∗. If you want to display the property in a JSP with an EL expression such as
${actionBean.birthDate}, you still have to provide a getter method to satisfy the
JSP specification.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=73

STRIPES VALIDATION CONCEPTS 74

Attribute Type Description

field= String Name of nested field to validate.

required= boolean true indicates a required field.

on= String[] Event handlers for which to apply required=true.

minlength= int Minimum length of input.

maxlength= int Maximum length of input.

expression= String EL expression to validate the input.

mask= String Regular expression that the input must match.

minvalue= double Minimum numerical value of input

maxvalue= double Maximum numerical value of input.

converter= Class Type converter to use on the input.

trim= boolean Trim input before validating; true by default.

label= String Label to be displayed to the user.

ignore= boolean true indicates not to bind the parameter.

encrypted= boolean true encrypts the parameter to prevent injected values.

Figure 4.2: The @Validate attributes

• Validation with an EL expression

• Matching a regular expression mask

• Minimum and maximum numerical value

Other validations are implemented as “pseudo” type converters. Pseudo

because the type conversion is from String to String, so the type is not

really converted. But when any type conversion occurs, the input is

validated. Stripes uses this trick to validate two String input formats:

• Email addresses

• Credit card numbers

In Figure 4.2, we can see the complete list of @Validate attributes. We’ll

use most of these attributes in the examples of this chapter. We’ll see

how to use the label= in Chapter 6, Customizing Stripes Messages, on

page 121. The ignore= and encrypted= attributes are discussed in Chap-

ter 14, It’s a Dangerous World: Adding Security, on page 307.

Controlling Validation Execution

When a request arrives at an action bean, Stripes considers all valida-

tions you’ve added, no matter which event handler is the target. With

event handlers that require different validations, you’ll want to control

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=74

STRIPES VALIDATION CONCEPTS 75

for which event handlers the validations are executed. For example, an

Age field might be required for the buyBeer() event handler, but not for

buyMilk().

One way to control validations is by specifying, in the on= attribute,

the event handlers for which to enforce required="true", such as @Val-

idate(required="true", on="buyBeer") for the age property. The other way

is to turn off all validations for an event handler by annotating it with

@DontValidate. You’d want to do this for an event handler that doesn’t do

anything with the input, such as a cancel() method that just sends the

user back to the previous page. With @DontValidate, the user is allowed

to enter garbage in the fields and then cancel the form.

The subtleties of how on= and @DontValidate work have tripped up many

Stripes users, including myself when I first started using the frame-

work. But it’s really not complicated; I have summed it up into two

rules. Read them carefully, and you’ll understand how Stripes decides

whether to execute the validations for a given field:

• Rule #1: If the user has filled in a value for the field, it is validated

regardless of the required= and on= attributes.

• Rule #2: If the user has left the field blank, the only validation that

is executed, if present, is required=true.

The idea behind these rules is simple. If the user has entered a value for

a field, it must be validated to prevent invalid values from corrupting

the model. On the other hand, the user shouldn’t be scolded for not

filling out an optional field. So, the only possible error for a blank field

is that the field is required.

Understanding this rationale is important to control the execution of

validations. For example, ContactFormActionBean from the previous

chapter had three event handlers:

• form(), which is called when the user arrives at the form

• save(), which handles the form submission and saves the contact

information

• cancel(), which is also a form submission but for which no infor-

mation is saved.

After adding validations in ContactFormActionBean, you need to con-

trol validation execution. For form(), the user is just arriving at the

form, and no values have been entered yet. So, all fields are blank.

The optional fields will not be validated, but the required fields will. It

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=75

USING BUILT -IN VALIDATIONS 76

wouldn’t be nice to welcome the user to the form with validation error

messages! With on="save", required-field validations are restricted to

save() and so do not cause errors in form().

Once in the form, the user may very well enter invalid values and then

click the Cancel button. You need to turn off all validations by anno-

tating cancel() with @DontValidate so that the user will be allowed to

cancel the form even if the input is not valid.

Whew. . . enough theory. Let’s look at some examples.

4.2 Using Built-in Validations

Let’s get back to our webmail application. We have a form to enter a

contact’s information, displayed by contact_form.jsp:

Download email_06/web/WEB-INF/jsp/contact_form.jsp

<s:form beanclass="${actionBean.class}">

<div><s:hidden name="contact.id"/></div>

<table class="form">

<tr>

<td>Email:</td>

<td>

<s:text name="contact.email" class="required"/>

</td>

</tr>

<!--Same for First and Last name, Phone number, Birth date-->

<tr>

<td> </td>

<td>

<s:submit name="save" value="Save"/>

<s:submit name="cancel" value="Cancel"/>

</td>

</tr>

</table>

</s:form>

ContactFormActionBean sends the user to the form and handles the form

submission:

Download email_06/src/stripesbook/action/ContactFormActionBean.java

package stripesbook.action;

public class ContactFormActionBean extends ContactBaseActionBean {

private static final String FORM="/WEB-INF/jsp/contact_form.jsp";

@DefaultHandler

public Resolution form() {

return new ForwardResolution(FORM);

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_06/web/WEB-INF/jsp/contact_form.jsp
http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=76

USING BUILT -IN VALIDATIONS 77

public Resolution save() {

Contact contact = getContact();

getContactDao().save(contact);

getContext().getMessages().add(

new SimpleMessage("{0} has been saved.", contact)

);

return new RedirectResolution(ContactListActionBean.class);

}

public Resolution cancel() {

getContext().getMessages().add(

new SimpleMessage("Action cancelled.")

);

return new RedirectResolution(ContactListActionBean.class);

}

}

We’ll now add some validations to this form.

Making a Field Required

Let’s begin by making the contact’s email address a required field. First,

it’s better to let the user know up front about required fields. One way is

to make the field border thicker by adding a "required" class and styling

it in the CSS file:

Download email_06/web/WEB-INF/jsp/contact_form.jsp

<s:text name="contact.email" class="required"/>

Download email_06/web/css/style.css

input.required {

border-width: 2px;

}

Next, adding @ValidateNestedProperties with @Validate(field="email") to con-

tact validates the "contact.email" nested property. Remember that the

contact property moved to the parent ContactBaseActionBean, so the val-

idation must override either the getter or the setter method in Contact-

FormActionBean:

Download email_06/src/stripesbook/action/ContactFormActionBean.java

@ValidateNestedProperties({

@Validate(field="email", required=true, on="save")

})

@Override

public void setContact(Contact contact) {

super.setContact(contact);

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_06/web/WEB-INF/jsp/contact_form.jsp
http://media.pragprog.com/titles/fdstr/code/email_06/web/css/style.css
http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=77

USING BUILT -IN VALIDATIONS 78

Figure 4.3: A validation error for a required field

As we discussed, the on="save" restricts the validation to the save()

event handler. Now, if the user saves the form with the email field left

blank, a validation error occurs, and Stripes redisplays contact_form.jsp.

To show the error message to the user as in Figure 4.3, add the

<s:errors/> tag:

Download email_06/web/WEB-INF/jsp/contact_form.jsp

<s:form beanclass="${actionBean.class}">

<s:errors/>

<div><s:hidden name="contact.id"/></div>

<table class="form">

Just like information messages, Stripes has a default way of displaying

error messages: with a header message followed by the validation errors

in a numbered list. A reasonable effort is made to construct error mes-

sages using the name of the field and the type of validation that failed,

so we get something quite decent just by adding the <s:errors/> tag. In

Chapter 6, Customizing Stripes Messages, on page 121, we’ll talk about

how to customize both the text and the presentation of error messages.

Email Addresses

We’ve made the email a required field, but this validates only that the

user entered something in the field. It does not actually validate what

the user entered. How about making sure that the email format is valid?

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_06/web/WEB-INF/jsp/contact_form.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=78

USING BUILT -IN VALIDATIONS 79

Joe Asks. . .

Where Should I Put the <s:errors/> Tag?

Placing <s:errors/> within the <s:form> tag displays the error
messages associated with that form. When you have more than
one form in a single page, you can display the errors for each
form or place the <s:errors/> outside the <s:form> tag to dis-
play the error messages that occurred in the current action
bean.

I mentioned that in Stripes validations can be implemented as type con-

verters. To use a type converter, you indicate its class in the converter=

attribute of @Validate. The EmailTypeConverter validates that the input is

of email address format, so we can use it with converter= to validate the

contact email:

Download email_06/src/stripesbook/action/ContactFormActionBean.java

@ValidateNestedProperties({

@Validate(field="email", required=true, on="save",

converter=EmailTypeConverter.class)

})

@Override

public void setContact(Contact contact) {

super.setContact(contact);

}

The EmailTypeConverter uses JavaMail to validate the email address, so

we’ll have to add the library to the WEB-INF/lib directory. Unless you

are using Java 6, you will also have to add the JavaBeans Activation

Framework:

WEB-INF/lib/javamail.jar

WEB-INF/lib/activation.jar

Now, entering an invalid email address such as “hello” displays this

error message: “The value (hello) entered is not a valid email address.”

Limiting the Length of Input

Let’s add validation rules for the first and last name fields. These fields

are optional, but if a value is entered, we’ll enforce these restrictions:

• The first name cannot exceed twenty-five characters.

• The last name cannot exceed forty characters.

• The last name must be at least two characters.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=79

USING BUILT -IN VALIDATIONS 80

Required Fields and the on Parameter

You can restrict the required=true validation to a list of event
handlers, such as on={"save", "update"}. Another option is to spec-
ify the event handler(s) for which not to apply the valida-
tion using the ! negation symbol. For example, on="!save" exe-
cutes the required=true validation for every event handler of the
action bean except save(). You can also use a list with nega-
tions, as in on={"!save", "!update"}.

Do not mix “positive” and “negative” event handler names in
the on= attribute, such as on={"save", "!update"}, because logi-
cally it doesn’t make sense. (Think about it.)

As we can see in the following code, it’s very simple to add these vali-

dations with the minlength= and maxlength= attributes:

Download email_06/src/stripesbook/action/ContactFormActionBean.java

@ValidateNestedProperties({

/* previous validations... */

@Validate(field="firstName", maxlength=25),

@Validate(field="lastName", minlength=2, maxlength=40)

})

Since the first and last name fields are optional, each validation is exe-

cuted only if the user enters a value for that field. Now, entering a single

character in the last name field produces the error shown in Figure 4.4,

on the next page. Notice that Stripes used the value of minlength= to

make the message more helpful.

As a bonus, Stripes automatically generates the maxlength= attribute in

the form’s HTML <input> tags to match the value in the maxlength=

attribute of @Validate:

<tr>

<td>First name:</td>

<td><input maxlength="25" type="text" name="contact.firstName"/></td>

</tr>

<tr>

<td>Last name:</td>

<td><input maxlength="40" type="text" name="contact.lastName"/></td>

</tr>

Any decent browser stops accepting characters in the text field after the

maximum length has been reached.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=80

USING BUILT -IN VALIDATIONS 81

Figure 4.4: A validation error for minimum input length

Of course, the validation in the action bean is still executed—we can’t

rely only on client-side validation, because users could sent input in

other ways than using the form. It’s still nice to immediately let the

well-intentioned user know when they’ve reached the limit as they are

typing a value into the text field.

Another nice feature is that Stripes does not stop at the first encoun-

tered validation error. Instead, as many errors as possible are accumu-

lated during the validation process to provide more information to the

user.

Validating with EL Expressions

We can also validate user input by using an EL expression in the expres-

sion= attribute of @Validate. The boolean value of the expression deter-

mines whether the validation passed. This gives us an easy way to add

a validation based on a conditional expression.

Within the expression, we can refer to the field that we are validating

using the keyword this and to other properties of the action bean by their

names. The action bean context, the request scope, and the session

scopes are available with context, request, and session.

The birth date already benefits from the implicit validation of converting

the input to a java.util.Date. Now that we’ve added the <s:errors/> tag to

the JSP, the user sees an error message after entering an invalid date.

Let’s use an expression to also validate that the birth date in the contact

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=81

USING BUILT -IN VALIDATIONS 82

form is before the current date. In other words, no unborn people in the

contact list, please!

The key to this validation is that the current date is not a static value.

So, we add a simple method in the action bean to provide it:

Download email_06/src/stripesbook/action/ContactFormActionBean.java

public Date getToday() {

return new Date();

}

Now, using an expression makes it a cinch to validate that the birth

date is in the past:

Download email_06/src/stripesbook/action/ContactFormActionBean.java

@ValidateNestedProperties({

/* previous validations... */

@Validate(field="birthDate", expression="${this < today}")

})

In the expression ${this < today}, this refers to the birthDate property, and

today calls getToday() to obtain the current date.

Armed with this validation, submitting the form with a birth date in the

future, such as 2040-01-27,2 causes the action bean to return the error

“The value supplied (Fri Jan 27 00:00:00 EST 2040) for field Contact

Birth Date is invalid.”

As you can see, using expressions gives you a concise and effective

way of adding validations that are based on other fields or on values

produced by any helper method.

Using Regular Expression Masks

Another way to validate user input is to use a regular expression mask.3

To be considered valid, the entire input must match the mask. By plac-

ing the regular expression in the mask= attribute of @Validate, you can

validate patterns that would otherwise require gobs of tedious code.

Consider the “Phone number” field in the contact form. For the sake of

the example, let’s say that the phone number should be in the format

used in North America: a three-digit area code, followed by a three-digit

2. I’ll be happy, but very surprised, if someone reads this book after 2040!
3. Refer to the java.util.regex.Pattern Javadocs for the regular expression syntax that

Stripes uses.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/action/ContactFormActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=82

USING BUILT -IN VALIDATIONS 83

Using ${ } in Expressions

Enclose the validation expression within ${ }, or don’t—the
choice is yours. Indeed, expression="this < today" and expres-

sion="${this < today}" are equivalent. Stripes automatically adds
${ } for you if you leave it out.

Personally, I prefer using ${ } because I find it makes it clearer
that an EL expression is being used. Whichever format you
choose, being consistent will certainly make your code more
readable.

prefix and a four-digit suffix, as in (654) 456-4567. To be lenient with our

users, we’ll allow some flexibility with the input format:

• The parentheses around the area code are optional.

• The separators between each part of the phone number can be

hyphens, periods, or spaces, or they can be omitted altogether.

For example, all these phone numbers are acceptable:

(654) 456-4567 654-456-4567 654 456 4567 654.456.4567

(654)456 4567 6544564567 654 4564567 654.456-4567

Adding this validation is easy by building a regular expression mask

with the following constructs:

• \(? and \)? to represent an optional opening and closing paren-

thesis

• [-.]? to accept an optional hyphen, period or space

• \d to represent a digit

• {N} to indicate the previous construct repeated N times

With these constructs, we can validate the phone number by adding

the following mask. Since the regular expression is in a Java String, we

have to use \\ to represent \.

Download email_06/src/stripesbook/action/ContactFormActionBean.java

@ValidateNestedProperties({

/* previous validations... */

@Validate(field="phoneNumber",

mask="\\(?\\d{3}\\)?[-.]?\\d{3}[-.]?\\d{4}")

})

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=83

USING BUILT -IN VALIDATIONS 84

\\(? \\d{3} \\)? [-.]? \\d{3} [-.]? \\d{4}

Optional opening and

closing parentheses

Optional hyphen, period,

or space

3 digits 4 digits

Figure 4.5: A regular expression to validate a phone number

OK, regular expressions are rarely pleasing to the eye, so I’ve tried to

make it clearer by breaking it down as shown in Figure 4.5.

The entire input must match the regular expression, so incomplete

phone numbers are also rejected. An example of entering an invalid

phone number is shown in Figure 4.6, on the next page.

We’ve added a fairly sophisticated validation for the phone number with

a @Validate annotation and a regular expression mask. Think about how

much more code we’d need to implement this validation by parsing the

input string ourselves!

The Cancel Button

The last thing we need to do in the contact form is to turn all validations

off for the Cancel button. Otherwise, canceling the form won’t work if

there are any invalid values that were entered by the user. We just need

to add the @DontValidate annotation to the cancel() event handler:

Download email_06/src/stripesbook/action/ContactFormActionBean.java

@DontValidate

public Resolution cancel() {

getContext().getMessages().add(

new SimpleMessage("Action cancelled.")

);

return new RedirectResolution(ContactListActionBean.class);

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=84

USING BUILT -IN VALIDATIONS 85

Figure 4.6: A validation error using a regular expression mask

Pretty good. We’ve added validation to the contact form, and all we

needed were annotations in the action bean and a single <s:errors/>

tag in the JSP.

We didn’t use the minimum/maximum numerical value and credit card

validations in the contact form because we don’t have any fields that

are relevant to those validations. Nevertheless, let’s look at them briefly

before continuing.

Minimum and Maximum Numerical Values

Stripes provides validation of minimum and maximum numerical val-

ues with the minvalue= and maxvalue= attributes of @Validate. These

attributes accept values of type double, and they work for properties

of any primitive numerical type as well as all subclasses of Number.

Suppose you wanted to restrict some field to a value between 0 and 7,

inclusive. You would use this:

@Validate(minvalue=0, maxvalue=7)

private int someField;

Now, entering an invalid value for this field would give an error message

such as this:

• “The minimum allowed value for Some Field is 0.”

• “The maximum allowed value for Some Field is 7.”

Again, Stripes is smart enough to use the values that we specify in the

minvalue= and maxvalue= attributes to construct the error messages.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=85

USING BUILT -IN VALIDATIONS 86

A Note About Trimming Input

After some discussion, the Stripes community agreed that user
input should be trimmed before validating. This makes vali-
dations such as required fields, minimum length, and so on,
behave as most developers expect: entering two spaces in a
required field should not be valid, and it shouldn’t pass a min-

length=2 validation.

Because trimming the input is so often desirable, it is the default
behavior in Stripes. You can disable trimming for a field by anno-
tating it with @Validate(trim=false).

Credit Card Numbers

CreditCardTypeConverter checks that the input could be a valid credit

card number, without actually connecting to anything to check whether

an account with that number actually exists. Here’s what the type con-

verter does:

• Starts by removing all nondigit characters from the input

• Checks that the card corresponds to AMEX, Diners Club, Discover

Card, enRoute, JCB, MasterCard, or Visa, based on the prefixes

and the number of digits that these cards use

• Validates the Luhn algorithm4 on the number

CreditCardTypeConverter is similar to EmailTypeConverter in that it val-

idates the input without converting it to a different type. To use it,

just add @Validate(converter=CreditCardTypeConverter.class) on the “Credit

card number” field.

How Stripes Processes Built-in Validations

Now that we’ve seen examples of each built-in validation, let’s take a

closer look at how Stripes executes these validations. I’ve illustrated

the process in Figure 4.7, on the following page. Validations are run

on a list of fields, which initially contains every field. After performing

a validation, only the fields that are valid are kept in the list for the

next validation. The validations are arranged in order such that later

validations are worth running only if previous validations have passed.

Validation errors are accumulated and made available for the JSP to

display with <s:errors/>.

4. See http://en.wikipedia.org/wiki/Luhn if you really want to know how that works.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://en.wikipedia.org/wiki/Luhn
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=86

USING BUILT -IN VALIDATIONS 87

Start

validation

@Validate(required=true)

@Validate(minlength=)

@Validate(maxlength=)

@Validate(mask=)

valid elds

Type Conversion

valid elds

@Validate(minvalue=)

@Validate(maxvalue=)

valid Number

elds

@Validate(expression=)

valid

non-Number

elds

valid elds

Custom validation methods

Figure 4.7: Processing validations in order of priority

In the middle of the diagram, notice the box labeled “Type Conversion.”

I’ve briefly touched on the subject that Stripes performs type conver-

sion for all basic data types. If the type conversion passes and the prop-

erty type extends Number, then the minimum and maximum numerical

value validations are executed. We’ll talk about type conversion in more

detail in Chapter 5, There’s More to Life Than Strings: Working with Data

Types, on page 98.

After processing all built-in validations, Stripes moves on to custom

validation methods. This is where you get to do pretty much anything

you need to do to validate the input.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=87

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 88

4.3 When You Need More: Custom Validation Methods

Sometimes you want to perform validations other than those provided

by the attributes of @Validate. Perhaps the validation is a complex mul-

tistep process that is best implemented in code. Perhaps the validation

requires accessing a database. Whatever the reason, you can imple-

ment a validation using an arbitrary block of code called a validation

method.

By annotating a method in an action bean with @ValidationMethod, you

tell Stripes to invoke it during the validation process. Stripes is pretty

flexible about the signature of the method—you can use any name,

return any type, and throw any exception. The only requirements are

that the method be public and accept either no parameters or one

parameter of type ValidationErrors.

In a validation method, you signal errors by adding them to Validation-

Errors. You can use the object passed to the method if you have included

it as a parameter or obtain it from the action bean context:

@ValidationMethod

public void validateSomething(ValidationErrors errors) {

// Perform validation

// If validation errors occur, add them to 'errors'

}

@ValidationMethod

public void validateSomethingElse() {

// Perform validation

ValidationErrors errors =

getContext().getValidationErrors();

// If validation errors occur, add them to 'errors'

}

To add an error to ValidationErrors, create an object that implements the

ValidationError interface. Stripes offers some ready-to-use implementa-

tions, such as the SimpleError class, which works much like the Sim-

pleMessage class that we’ve used to display information messages. The

constructor accepts the message string and an optional list of param-

eters. These parameters replace standard Java MessageFormat tokens,

starting at {2}. Indeed, the {0} and {1} tokens are reserved for the name of

the field and the value entered by the user. What’s nice is that you can

use {0} and {1} in the message without having to provide those parame-

ters yourself.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=88

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 89

For example:

new SimpleError("Invalid input");

new SimpleError("For field {0}, the value {1} is not valid");

new SimpleError("{1} is not valid because {2}", someText);

Once you’ve created a validation error, you can associate it to a spe-

cific field using the field name such as "age" or "contact.firstName", or

you can make it a global error. Add the error to ValidationErrors with the

appropriate method:

• void add(String field, ValidationError error)

• void addGlobalError(ValidationError error)

After adding errors to the list, you can display them in the JSP with the

<s:errors/> tag just like built-in validation error messages. As we’ll see

in Chapter 6, Customizing Stripes Messages, on page 121, you can also

display errors next to their associated fields and display global errors

at the top.

Restricting Validation Methods to Specific Event Handlers

@ValidationMethod accepts the on= attribute to restrict the validation to

specific event handlers:

// on the "save" and "update" event handlers

@ValidationMethod(on={"save", "update"})

// on every event handler except "save"

@ValidationMethod(on="!save")

Just like the on= attribute of @Validate, this lets you control the event

handlers for which your validation methods are executed.

Continue or Stop Validation When There Are Previous Errors?

Stripes invokes validation methods after all @Validates have been pro-

cessed and the inputs have been bound to the action bean’s proper-

ties. By default, Stripes does not invoke a validation method if errors

occurred during the execution of previous validations, including @Vali-

dates as well as @ValidationMethods of higher priority. The idea is that

you know every previous validation has passed when executing a given

validation method.

You can control this behavior with the when= attribute of @Validation-

Method. This indicates whether to execute the validation method when

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=89

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 90

there are previous validation errors. The value must be a ValidationState,

which is an enum with these possible values:

• ALWAYS: Executes the validation method even if there are previous

validation errors

• NO_ERRORS: Executes the validation method only if there are no

previous validation errors

• DEFAULT: Uses the default behavior of the application

For example, this validation method will be executed regardless of pre-

vious errors:

@ValidationMethod(when=ValidationState.ALWAYS)

public void validateSomething(ValidationErrors errors) {

// ...

}

The default value of when= is, not surprisingly, ValidationState.DEFAULT.

This means “use the application’s default,” and that default is Validation-

State.NO_ERRORS. You can change the “application default” to Validation-

State.ALWAYS by adding an initialization parameter to the Stripes filter

in web.xml:

<filter>

<filter-name>StripesFilter</filter-name>

<filter-class>

net.sourceforge.stripes.controller.StripesFilter

</filter-class>

<!-- ... -->

<init-param>

<param-name>Validation.InvokeValidateWhenErrorsExist</param-name>

<param-value>true</param-value>

</init-param>

</filter>

With this configuration, validation methods will always be executed by

default. To execute a validation method only if there are no previous

errors, you’d have to explicitly add when=ValidationState.NO_ERRORS to

@ValidationMethod.

Whether you are changing the default or using the when= attribute,

when you execute a validation method even if previous errors have

occurred, the fields could contain invalid values or even be null. Keep

that in mind when writing the code for a validation method that will

always be executed.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=90

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 91

Executing Validation Methods in a Specific Order

When you define two or more validation methods in an action bean,

you may need to execute them in a specific order. The priority= attribute

of @ValidationMethod lets you indicate an int value that determines the

method’s priority. Stripes executes the validation methods in numerical

order of priority, as in -1, 0, 1, 2. The default value of priority= is 0.

If two or more methods have the same priority, the tiebreaker is the

alphabetical order of the methods’ names.

Let’s look at an example using the following validation methods:

@ValidationMethod(priority=0)

public void extraValidation()

@ValidationMethod

public void checkAge()

@ValidationMethod(priority=1)

public void anotherValidation()

@ValidationMethod(priority=-1)

public void youMustValidateThis()

During the validation process, Stripes executes these methods in the

following order:

1. youMustValidateThis() (priority of -1)

2. checkAge() (priority of 0 by default, first in alphabetical order)

3. extraValidation() (priority of 0, second in alphabetical order)

4. anotherValidation() (priority of 1)

Knowing that the default Stripes behavior is to stop executing validation

methods when a validation error has occurred, you can use priorities

to simplify your validation methods. Strategically order your methods

so that later methods rely on earlier methods having passed validation.

That way, you can structure your validation code in a logical sequence

and avoid having to do null checks and other such prevalidations.

Example: A Validation Method to Ensure Unique Email Addresses

Let’s return to the contact form for an example of a validation method.

In the form, the email address is a required field, and we’ve validated

the format of the user’s input. Let’s take it one step further by validating

that the email address is not already used by another contact.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=91

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 92

Tim Says. . .

Use the Minimum Number of Validation Methods Neces-
sary to Get the Job Done

Stripes will happily invoke any number of validation methods in
a single Action Bean. As Freddy has shown, there are mech-
anisms for coordinating the ordering of the validation meth-
ods and whether they should be executed when errors already
exist. So, you might be thinking that the best thing to do is to
have a method for each custom validation you want to write
and then let Stripes execute them in order. In my experience,
though, it’s often easier to write and maintain action beans
where custom validations are grouped into as few methods as
possible—often only one.

The main reason is that, for Java developers, it’s always going
to be more natural to understand the flow of code in a single
method than to understand the rules used by a framework for
ordering the execution of a set of methods. For example, it is
fairly obvious when the following pseudo-code executes and
what it does:

@ValidationMethod
public void validateUniqueFields(ValidationErrors errors) {

if (username != null && userDao.exists(username)) // add error
if (email != null && userDao.emailExists(email)) // add error
if (username != null && password != null

&& password.indexOf(userName) >= 0)) // add error
}

The preceding code is reasonably compact, and anyone famil-
iar with Java will be able to tell what it does: all three valida-
tions are run, in order, regardless of whether preceding checks
in the same method failed. By contrast, the following code
requires much deeper knowledge of Stripes to determine the
same information:

@ValidationMethod public void validateUniqueUsername() {...}
@ValidationMethod public void validateUniqueEmail() {...}
@ValidationMethod public void validateUsernameNotInPassword() {...}

The previous code, with method bodies filled out, will also be
much less compact. The one time it does make sense to start
splitting custom validations into multiple methods is when you
have multiple events that require either overlapping or com-
pletely different validations. In these cases, you will find it best
to split the validations into methods that can be shared across
events without duplicating the code.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=92

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 93

First, pull out the ContactDao interface, and add a method to search

for a contact by email address:

Download email_06/src/stripesbook/dao/ContactDao.java

package stripesbook.dao;

public interface ContactDao {

public List<Contact> read();

public Contact read(Integer id);

public void save(Contact contact);

public void delete(Integer id);

public Contact findByEmail(String email);

}

Next, assume that the code for this method is in the MockContactDao

class. Again, don’t bother with the implementation details.

Now, since we need to query the DAO to perform the unique email

validation, implement a validation method in ContactFormActionBean:

Download email_06/src/stripesbook/action/ContactFormActionBean.java

@ValidationMethod(on="save")

public void validateEmailUnique(ValidationErrors errors) {

String email = getContact().getEmail();

Contact other = getContactDao().findByEmail(email);

if (other != null && !other.equals(getContact())) {

errors.add("contact.email", new SimpleError(

"{1} is already used by {2}.", other));

}

}

We’ll want to use on="save" so that the validation method will be exe-

cuted only for the save() event handler of ContactFormActionBean.

This method is executed only if there are no previous errors. This is

handy because there’s no point in checking whether the email is already

in use if the email input is omitted or if the format is invalid.

Using the contact DAO to find the contact that has the entered email

address, the code flags a validation error if a contact was found and is

different from the one being updated in the form. Using {1} and {2}, the

email address and the name of the other contact are included in the

error message.

Now, if the user enters an email that is already in use by another con-

tact, we’ll get the result shown in Figure 4.8, on the next page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/dao/ContactDao.java
http://media.pragprog.com/titles/fdstr/code/email_06/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=93

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 94

Figure 4.8: An error detected by a validation method

The Final Step: What to Do About Validation Errors?

When there are errors at the end of the validation process, the default

behavior is to send the user back where they came from instead of

executing the event handler. The list of errors is made available to the

view page.

We can gain control of what happens in the presence of validation errors

by having the action bean implement the ValidationErrorHandler interface,

which has one method:

public interface ValidationErrorHandler {

Resolution handleValidationErrors(ValidationErrors errors)

throws Exception;

}

This method is called after the validation process if at least one valida-

tion error occurred and the list of errors is passed as a parameter. In

the method, we can do pretty much anything, including the following:

• Change the list by adding, modifying, or deleting errors

• Change properties in the action bean

• Make calls to a DAO, and so on

We can also decide what happens next:

• If we return a Resolution, it is executed directly instead of returning

to the source page.

• If we return null and the list of errors is not empty, the user is

returned to the source page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=94

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 95

Source Page Resolution

To determine the page from which a request came from,
Stripes calls the getSourcePageResolution() method of the Action-

BeanContext class. This method uses the _sourcePage request
parameter, which is automatically generated by Stripes.

• If we delete all errors from the list and return null, it’s as if those

errors never happened. Only in this case is the event handler exe-

cuted.

For example:

public class MyActionBean extends BaseActionBean

implements ValidationErrorHandler

{

Resolution handleValidationErrors(ValidationErrors errors) {

if (specialSituation) {

return new ForwardResolution("/WEB-INF/jsp/special.jsp");

}

if (bypassErrors) {

errors.clear();

}

return null;

}

}

If the specialSituation flag is true, the user is sent directly to special.jsp.

If the bypassErrors flag is true, the event handler is executed because the

list of errors is emptied before returning null. If neither flag is true, the

user is sent back to the source page because the method returns null

but the list still contains errors.

The custom methods part of the validation process is summarized in

Figure 4.9, on the following page. With validation methods and the han-

dleValidationErrors() method of the ValidationErrorHandler interface, we have

full control over what happens after the built-in validations have been

executed. We can run custom validation methods and control what hap-

pens when errors have occurred.

Validation in the Event Handler

Finally, we may encounter situations where the validation that we want

to perform just doesn’t fit anywhere in the validation process.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=95

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 96

Previous validation errors?

when=ValidationState?

yes

call methods

annotated with

@ValidationMethod

no

ALWAYS

ValidationErrorHandler {

Resolution handleValidationErrors(

ValidationErrors errors);

}

NO_ERRORS

errors

Execute

event handler

no errors

no errors

use returned Resolution

or getSourcePage()

errors

Figure 4.9: Custom validation methods

For example, we might be adding a record in a database and we won’t

know whether there is a duplication error until the operation returns

or throws an exception:

try {

database.add(record);

// all is well

}

catch (DuplicateRecordException) {

// validation error: duplicate record

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=96

WHEN YOU NEED MORE: CUSTOM VALIDATION METHODS 97

Validation for operations such as adding a record to a database belongs

in an event handler, not in a validation method. Since event handlers

return a Resolution, it’s up to us to send the user back where they came

from in case of a validation error. As we can see, it’s quite straightfor-

ward with the action bean context:

public Resolution add() {

try {

database.add(record);

return new RedirectResolution(ListActionBean.class);

}

catch (DuplicateRecordException) {

getContext().getValidationErrors().addGlobalError(

new SimpleError("Add error: duplicate record"));

return getContext().getSourcePageResolution();

}

}

With built-in validations, validation methods, error handlers, and val-

idation in event handlers, Stripes gives us many tools to validate user

input. We can use them to keep your model clean of invalid data, let

our users know about the errors that occurred, and give them a chance

to fix the input and resubmit the form.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=97

Think like a wise man, but communicate in the language of

the people.

William Butler Yeats

Chapter 5

There’s More to Life Than Strings:
Working with Data Types

When a client submits an HTTP request, all parameters are limited to

the String type. We certainly don’t want our action bean properties to

suffer from this limitation; we want properties that can be of any type.

When request parameters are bound to action bean properties, some

work has to be done to convert the String parameter to the property’s

data type. This is what Stripes calls type conversion.

Going the other way, the information that action beans provide are of

any data type but must be converted to a String to be displayed to the

client. Stripes refers to this as formatting.

When developing applications, we want to use the data types that are

best suited to our business model. We also want to let our users express

their input in a format that is most natural to them. With type conver-

sion and formatting, we can bridge the gap between these two require-

ments. Stripes makes it easy to work with any data type, including

adding support for our own custom types.

5.1 Type Conversion Concepts

Look at Figure 5.1, on the next page. When the name=value request

parameter is bound to the name property of type T in the action bean,

Stripes needs to know how to convert "value" from String to T. This is

where a type converter is used. A type converter is simply an imple-

mentation of the TypeConverter<T> interface:

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

TYPE CONVERSION CONCEPTS 99

Browser

String

"value"

request

name=value

TypeConverter<T> T

ActionBean

setName(T)

Figure 5.1: Type conversion

public interface TypeConverter<T> {

void setLocale(Locale locale);

T convert(String input, Class<? extends T> targetType,

Collection<ValidationError> errors);

}

Stripes gives type converters the user’s locale so that the type con-

version can be done in a locale-sensitive manner, if necessary. Then,

Stripes calls the convert() method with the String input parameter from

the request, the action bean property type, and a list of validation

errors. If the type conversion fails, the converter adds an error mes-

sage to the list and returns null. If all goes well, the method returns the

value converted to the T type, and Stripes sets the action bean property

with this value.

Out of the box, Stripes automatically uses built-in type converters for

basic data types:

• byte, Byte, short, Short, int, Integer, long, Long, java.math.BigInteger

• float, Float, double, Double, java.math.BigDecimal

• java.util.Date

• boolean, Boolean

• char, Character

• enum

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=99

BUILT -IN TYPE CONVERTERS 100

We get type conversion for action bean properties of these types, includ-

ing nested properties, without having to do anything special. We just

declare the action bean property with its type, and Stripes does the

conversion for us. Let’s take a closer look at how these built-in type

converters work.

5.2 Built-in Type Converters

The types for which Stripes does automatic conversion boil down to

these: numbers, dates, booleans, characters, and enumerations. Learn-

ing how these type converters work will help you understand why cer-

tain inputs are successfully converted while others cause a validation

error.

Working with Numbers

For the numerical types—byte, short, int, long, float, double, their wrapper

classes, BigDecimal, and BigInteger—the type converters use a common

strategy for improving their chances of parsing the String input into a

number:

1. Remove the currency symbol, if present. The currency symbol is

the current locale’s if available and otherwise the dollar sign ($).

2. If parentheses surround the input, such as (42), replace them with

a leading negation sign as in -42.

After performing these operations, the number type converters then use

Java’s built-in NumberFormat with the user’s locale to attempt parsing

the input into a Number. If parsing fails, a validation error occurs, the

user is sent back to the form, and we can display the error message

with the <s:errors/> tag.

Byte, Short, Integer, Long, BigInteger

The type converters for whole number types accept valid numerical val-

ues within the accepted range of the target type, as shown in Figure 5.2,

on the following page. These type converters do not accept decimals in

the input.

Float, Double, BigDecimal

The type converters for the decimal number types follow the same rules

as their whole number cousins, except that they accept decimals. If the

number of decimals exceeds the precision of the target type, rounding is

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=100

BUILT -IN TYPE CONVERTERS 101

Primitive Type Wrapper Class Minimum Maximum

byte Byte –128 127

short Short –32768 32767

int Integer –231 231 – 1

long Long –263 263 – 1

float Float 2−149 (2–2−23) × 2127

double Double 2−1074 (2–2−52) × 21023

Figure 5.2: Min and max values for number types

done at the last accepted decimal position. The input must also respect

the minimum and maximum values from Figure 5.2.

Working with Dates

The date type converter attempts to parse the input to obtain a Date,

with help from Java’s DateFormat and a series of locale-sensitive format

patterns.

Just like the number type converters, the date type converter does some

preprocessing operations before trying to parse the input:

1. Replace all dashes (-), slashes (/), periods (.), and commas (,) with

spaces.

2. Collapse any sequences of two or more spaces to a single space.

3. If the result at this point is a string that contains two parts sepa-

rated by a space, assume that these are the day and month (or the

month and day). Since the year is required for any of the format

patterns to succeed, append a space and the current year to at

least give the input a chance of being parsed successfully.

By accepting any of - / . , as a separator but preprocessing the input

to replace the separators with spaces, the converter knows that at this

point the input is a date with the fields separated by a single space. It

becomes easy to match different date format patterns that also use a

space character as a separator, while allowing other separators in the

input.

Now that the date type converter is ready to parse the input, it tries

these date formats in order, using the first one that works.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=101

BUILT -IN TYPE CONVERTERS 102

Format Example (Varies According to Locale)

DateFormat.SHORT 1 27 07

DateFormat.MEDIUM Jan 27 2007

DateFormat.LONG January 27 2007

d MMM yy 27 Jan 07

yyyy M d 2007 01 27

yyyy MMM d 2007 Jan 27

EEE MMM dd HH:mm:ss zzz yyyy Sat Jan 27 07:27:00 EST 2007

If all formats fail, the converter produces a validation error.

Using Different Date Format Patterns

It’s easy to configure the date type converter to use different date format

patterns. For example, we might want to use a pattern that reads the

date and the time. Looking at the default date formats, the only one

that includes the time is EEE MMM dd HH:mm:ss zzz yyyy, which is quite

tedious for the user to type!

To configure a list of date format patterns that will replace the defaults

for the date type converter—and for all date fields of the application—

add a line to the StripesResources.properties file. Using the stripes.dateType-

Converter.formatStrings key, define a comma-separated list of date format

patterns in order of priority. For example: Use a space to separate

the date parts when

defining a format

pattern.

stripes.dateTypeConverter.formatStrings=yyyy M d HH:mm, yyyy M d

The first pattern parses both the date and the time, while the second

pattern parses just the date. This makes it easy for the user to enter

the date and the time, while also allowing only the date to be entered.

Enumerated Types

Stripes also provides a type converter for working with enumerated

types (types defined with enum). The converter takes a String input and

produces an enum of type T using Enum.valueOf(T, input). For this to work,

the input must exactly match the identifier used to declare the enum

constant in the type T.

For example, given an enumerated type:

public enum Gender {

Female,

Male

}

the input would have to be either "Female" or "Male" (case sensitive) to

be converted to the Gender type.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=102

BUILT -IN TYPE CONVERTERS 103

Joe Asks. . .

What If I Want a Specific Separator in a Date Pattern?

The default behavior of the date type converter is to allow any
of - / . , as separators. You can change this if you prefer to
require a specific separator in a date pattern, as in yyyy-MM-dd.

When the date type converter preprocesses the input,
it uses a regular expression pattern and replaces all
matches by a single space. The default pattern matches
the - / . , characters. You can change this pattern by
adding a line in the StripesResources.properties file with the
stripes.dateTypeConverter.preProcessPattern key:

stripes.dateTypeConverter.preProcessPattern=\\s+

With this pattern, sequences of one or more spaces are
matched and replaced by a single space, but other charac-
ters are left intact, and you can use a specific separator in the
date pattern:

stripes.dateTypeConverter.formatStrings=yyyy-M-d

Boolean Values

Boolean properties are also supported. The type converter accepts cer-

tain values to mean true, and any other input produces false. So, this

type converter never causes a validation error—any input is accepted

and will produce either true or false.

The following values (case insensitive) are recognized as meaning true:

• true

• t

• yes

• y

• on

• 1, or any other whole number greater than zero

Anything else will be converted to false.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=103

BUILT -IN TYPE CONVERTERS 104

Single Characters

Last (and perhaps least) of the built-in type converters is the character

type converter. It just takes the first character in the input String to

produce a char or a Character. So, "Hello" will be converted to ’H’.

Other Provided Type Converters

The type converters we’ve seen so far are used automatically. Stripes

also provides a few other type converters that do the conversion only if

we specifically tell Stripes to use them. These additional type converters

are as follows:

• EmailTypeConverter

• CreditCardTypeConverter

• PercentageTypeConverter

• OneToManyTypeConverter

To indicate we want one of these type converters to convert the input

for a given property, we annotate the property with @Validate(converter=

TheTypeConverter.class). For example:

// Use EmailTypeConverter for this property

@Validate(converter=EmailTypeConverter.class)

public String email;

We saw EmailTypeConverter in Section 4.2, Email Addresses, on page 78

and CreditCardTypeConverter in Section 4.2, Credit Card Numbers, on

page 86. Let us now look at PercentageTypeConverter and OneToMany-

TypeConverter.

PercentageTypeConverter

PercentageTypeConverter works on a property of decimal type: float, Float,

double, Double, or BigDecimal. The input string is considered as a per-

centage, with or without a percent symbol (%). The numerical result is

the value of the input divided by 100.

PercentageTypeConverter preprocesses the input just like the other deci-

mal type converters. For example, it accepts all these inputs to produce

the corresponding results, as we can see in the table on the next page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=104

BUILT -IN TYPE CONVERTERS 105

Input Result

"72%" 0.72

"72 %" 0.72

"-84" -0.84

"0.5" 0.005

"(45%)" -0.45

"(45)" -0.45

The One-to-Many Type Converter

The OneToManyTypeConverter is a nifty type converter that accepts a list

of values in one String input and converts them into a Collection<T>, con-

verting each individual value to T. For example, if you declare the prop-

erty to be a Collection<Long>, each value will be converted to a Long and

added to the collection. If you just use Collection without declaring the

type <T> of the individual items, Stripes uses String by default.

Each value in the input string has to be separated by either of the

following:

• One or more spaces

• A comma followed by one or more spaces

Note that a comma alone is not treated as a separator by OneToMany-

TypeConverter, because a comma could be used within a single value,

such as a thousands separator in a numerical value.

Instead of type converting the input string, OneToManyTypeConverter

extracts the values and passes each individual value to the type con-

verter for the type inside the collection. For example, using OneToMany-

TypeConverter on a List<Long> property will use the LongTypeConverter to

convert each value to a Long and will put all the values in List.

Although OneToManyTypeConverter does not produce any validation

errors, it does transmit any errors that occur when converting the indi-

vidual values.

Here are some examples of inputs and results:

Input Property Type Result

"a b c d" List<String> ["a", "b", "c", "d"]

"a, b, c" List<String> ["a", "b", "c"]

"a,b,c d, e" List<String> ["a,b,c", "d", "e"]

"1, 2.5, -3 4" List<Double> [1.0, 2.5, -3.0, 4.0]

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=105

BUILT -IN TYPE CONVERTERS 106

Tim Says. . .

Type Converters Can Return More Than One Type!

When you implement a TypeConverter, you implement it for a
specific type T. You may have noticed that the main method
you implement has a slightly different signature, though:

T convert(String in, Class<? extends T> targetType, ...);

Providing the target type at invocation time allows Stripes to
ask TypeConverter for instances of T, any subclasses of T, or, if
T is an interface, implementations of T. When performing type
conversion, Stripes will identify the declared type of a property
and supply it to the type converter.

This is how both PercentageTypeConverter and OneToManyType-

Converter know what type to return. PercentageTypeConverter

implements TypeConverter<Number>, but it can return, when
asked, floats, doubles, and BigDecimals. Since it returns a num-
ber between 0 and 1, it throws an exception if requested to
convert to any other numeric type. Similarly, the OneToMany-

TypeConverter class implements TypeConverter<Object> and can
return collections of any type for which the system has a regis-
tered TypeConverter.

Stripes will ask converters for subtypes only if you use a prop-
erty in your action bean for which Stripes doesn’t have a Type-

Converter registered but can find a TypeConverter for a super-
class. Using this approach you can develop some pretty pow-
erful type converters. For example, if your domain objects all
extend from a base class or implement a common interface,
you can write a single TypeConverter to look them up from an ID
property.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=106

FORMATTING 107

Stripes offers solid built-in type conversion support. Let’s discuss how

to convert data types to Strings: formatting.

5.3 Formatting

Formatting is type conversion in the opposite direction. An object of

type T must be converted to a String to be displayed to the user. There’s

always the toString() method, but Stripes gives us a more powerful way.

With formatters, the value can easily be displayed in different ways and

can do so in a locale-sensitive manner as well.

As shown in Figure 5.3, on the following page, a formatter is an imple-

mentation of the Formatter<T> interface and returns a String for a given

object of type T. Formatters are called upon when we use Stripes tags

that support formatted values, such as <s:format> and <s:text>. When

the tag refers to a property of type T, Stripes uses a Formatter<T> imple-

mentation to convert the property’s value to a String, which is returned

to the tag.

Here is the Formatter<T> interface:

public interface Formatter<T> {

void setLocale(Locale locale);

void setFormatType(String formatType);

void setFormatPattern(String formatPattern);

void init();

String format(T input);

}

Along with the user’s locale, a formatter is given a type and a pat-

tern with the formatType= and formatPattern= attributes of format-aware

Stripes tags. The type indicates what to display, as in "date", "time", and

"datetime" for the Stripes Date formatter. The pattern describes how to

display the value, such as "short", "medium", "long", and "full".

Let’s look at the formatters provided by Stripes.

Built-in Formatters

Stripes comes with built-in formatters for Dates, all Number types, and

enumerated types. The date and number formatters support differ-

ent format types, named patterns, and arbitrary patterns using the

Java SimpleDateFormat and DecimalFormat syntax. The result is format-

ted according to the user’s locale.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=107

FORMATTING 108

JSP

<s:format

value="${actionBean.name}"/>

Action Bean

public T getName()

TFormatter<T>String

Figure 5.3: Formatting

Dates

Examples are sometimes worth 1,000 explanations. Here are the differ-

ent combinations of the format types and format patterns understood

by the date formatter, with the results of formatting a value of March 2,

2008 at 2:42 PM EST:

Pattern/Type "date" "time"

"short" 3/2/08 2:42 PM

"medium" Mar 2, 2008 2:42:00 PM

"long" March 2, 2008 2:42:00 PM EST

"full" Sunday, March 2, 2008 2:42:00 PM EST

Pattern/Type "datetime"

"short" 3/2/08 2:42 PM

"medium" Mar 2, 2008 2:42:00 PM

"long" March 2, 2008 2:42:00 PM EST

"full" Sunday, March 2, 2008 2:42:00 PM EST

The formatPattern= may also be any pattern that is understood by Simple-

DateFormat, such as "yyyy-MM-dd HH:mm", which would return "2008-03-02

14:42" in the previous example.

Numbers

The following are the different format types and patterns understood

by the number formatter, with the results of formatting a value of

2468.24682468:

Pattern/Type "number" "percentage" "currency"

"plain" 2468.247 246825% $2468.25

"integer" 2,468 246,825% $2,468

"decimal" 2,468.246825 246,824.682468% $2,468.246825

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=108

FORMATTING 109

You can also use a DecimalFormat-compatible format pattern, such as

"#,##0.0" to produce "2,468.2".

Enumerated Types

Stripes also has a formatter for enumerated types, EnumFormatter, which

simply uses Enum.name() to return a result. This is always the name of

the enum constant—the locale, format type, and format pattern are not

used by this formatter.

Objects

Finally, when Stripes has no specific formatter for a type T, the fallback

is to just call the toString() method. This way, formatting always pro-

duces a String even if Stripes doesn’t know anything about the type T,

because toString() is defined on Object, the parent of all Java classes.

Using Formatters

The Stripes tags that accept the formatType= and formatPattern= attri-

butes, such as <s:format> and <s:text>, use formatters to display val-

ues. Both formatType= and formatPattern= are optional attributes, so for-

matters either have a default value or do not use these attributes. Let’s

look at an example of using a formatter.

In the contact form of the webmail application, the user can enter the

contact’s birth date. This date is displayed in the contact view and also

redisplayed in the form when updating an existing contact.

Without formatting, a birth date entered by the user as 1982-08-30 is

displayed in the contact view as Mon Aug 30 00:00:00 EDT 1982 and in the

contact form’s text field as 8/30/82.

Let’s use the date formatter to display the contact birth date in the yyyy-

MM-dd format, both in the contact view and in the contact form. In the

contact view, we can do this with the <s:format> tag:

Download email_07/web/WEB-INF/jsp/contact_view.jsp

<td class="label">Birth date:</td>

<td class="value">

<s:format value="${actionBean.contact.birthDate}"

formatPattern="yyyy-MM-dd"/>

</td>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_07/web/WEB-INF/jsp/contact_view.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=109

WORKING WITH CUSTOM DATA TYPES 110

The date is displayed in the contact form using the same formatPattern=

in the <s:text> tag:

Download email_07/web/WEB-INF/jsp/contact_form.jsp

<td>Birth date:</td>

<td>

<s:text name="contact.birthDate"

formatPattern="yyyy-MM-dd"/>

</td>

The birth date is now displayed in a consistent format.

We can still let the user enter the birth date using the default pat-

terns accepted by the date type converter. If we wanted to enforce the

Year-Month-Day pattern for user input, we’d just add one line to the

StripesResource.properties file:

Download email_07/res/StripesResources.properties

stripes.dateTypeConverter.formatStrings=yyyy M d

That’s all well and good for built-in type conversion and formatting, but

what about using our own data types? That’s coming up next, after this

word from your local station. (That’s your cue to get up, stretch, and go

grab something from the refrigerator.)

5.4 Working with Custom Data Types

The Stripes type conversion and formatting mechanisms make it easy to

add support for custom data types. Let’s see how this works by adding a

PhoneNumber data type in the contact information of the webmail appli-

cation.

Implementing a Type Converter

The contact form supports many variations of input for the contact’s

phone number. The value is stored in a String exactly as entered by the

user. We might end up with values such as 654-456-4567, (654) 567-5678,

654 234.2345, and so on. It’d be nice to continue accepting these different

input formats but store the value in the model in a format-independent

way. A phone number has an area code, a prefix, and a suffix. We can

use a simple PhoneNumber class.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_07/web/WEB-INF/jsp/contact_form.jsp
http://media.pragprog.com/titles/fdstr/code/email_07/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=110

WORKING WITH CUSTOM DATA TYPES 111

Download email_07/src/stripesbook/model/PhoneNumber.java

package stripesbook.model;

public class PhoneNumber {

private String areaCode;

private String prefix;

private String suffix;

public PhoneNumber() {

}

public PhoneNumber(String areaCode, String prefix, String suffix) {

this.areaCode = areaCode;

this.prefix = prefix;

this.suffix = suffix;

}

/* Getters and setters... */

}

This makes it a lot easier to work with phone numbers, such as find-

ing all contacts that are in a given area code. We can just look at the

areaCode property and not worry about the format in which the user

entered the phone number.

The first thing to do is to change the phone number property in the

Contact class from String to PhoneNumber:

Download email_07/src/stripesbook/model/Contact.java

private PhoneNumber phoneNumber;

public PhoneNumber getPhoneNumber() {

return phoneNumber;

}

public void setPhoneNumber(PhoneNumber phoneNumber) {

this.phoneNumber = phoneNumber;

}

A type converter must create a PhoneNumber object from an input String.

This calls for an implementation of TypeConverter<PhoneNumber>:

Download email_07/src/stripesbook/ext/PhoneNumberTypeConverter.java

package stripesbook.ext;

public class PhoneNumberTypeConverter

implements TypeConverter<PhoneNumber>

{

private static final Pattern pattern = Pattern.compile(

"\\(?(\\d{3})\\)?[-.]?(\\d{3})[-.]?(\\d{4})");

public PhoneNumber convert(String input,

Class<? extends PhoneNumber> type,

Collection<ValidationError> errors)

{

PhoneNumber result = null;

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_07/src/stripesbook/model/PhoneNumber.java
http://media.pragprog.com/titles/fdstr/code/email_07/src/stripesbook/model/Contact.java
http://media.pragprog.com/titles/fdstr/code/email_07/src/stripesbook/ext/PhoneNumberTypeConverter.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=111

WORKING WITH CUSTOM DATA TYPES 112

Matcher matcher = pattern.matcher(input);

if (matcher.matches()) {

result = new PhoneNumber(

matcher.group(1), matcher.group(2), matcher.group(3));

}

else {

errors.add(new SimpleError("{1} is not a valid {0}"));

}

return result;

}

public void setLocale(Locale locale) {

}

}

The regular expression pattern is from the mask= attribute of the phone

number validation in Section 4.2, Using Regular Expression Masks, on

page 82. Grouping with parentheses around the digits for the area code,

prefix, and suffix (see Figure 5.4, on the following page) makes it easy to

extract those parts of the phone number and construct a PhoneNumber

object. If the input does not match the regular expression, a validation

error is added to the list of errors.

We’re using SimpleError here, which is fine for our purposes at this point.

However, we can create validation errors without hard-coding the mes-

sage in the code but rather by having the message in a resource bundle.

We’ll see how it’s done in Chapter 6, Customizing Stripes Messages, on

page 121.

Now that we have a type converter for phone numbers, how do we use

it? First, remove the mask= attribute from @Validate since the phone

number validation has been moved to the type converter. Next, use the

converter= attribute.

@ValidateNestedProperties({

@Validate(field="phoneNumber",

converter=PhoneNumberTypeConverter.class)

// (removed mask="...")

// (other validations...)

})

@Override

public void setContact(Contact contact) {

super.setContact(contact);

}

We can also tell Stripes to use PhoneNumberTypeConverter by default for

every PhoneNumber property. All we have to do is configure a package

for extensions (see the sidebar on page 115) and put the PhoneNum-

berTypeConverter class in that package. Now we can use PhoneNumber

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=112

WORKING WITH CUSTOM DATA TYPES 113

\\(? (\\d{3}) \\)? [-.]? (\\d{3}) [-.]? (\\d{4})

Grouping

Figure 5.4: Using grouping in a regular expression

properties, and Stripes will automatically use the phone number type

converter. We can still override the default for a given property by using

the converter= attribute.

Implementing a Formatter

With a type converter for the PhoneNumber data type, we’re halfway

there. Let’s implement a formatter, with two format types:

• "dashes": NNN-NNN-NNNN

• "parens": (NNN) NNN-NNNN

With a default value for the format type (say, "dashes"), the formatType=

attribute will be optional. The formatPattern= attribute will not be used.

Here is the resulting PhoneNumberFormatter:

Download email_07/src/stripesbook/ext/PhoneNumberFormatter.java

package stripesbook.ext;

public class PhoneNumberFormatter implements Formatter<PhoneNumber> {

private String formatType = "dashes";

public void setFormatType(String formatType) {

this.formatType = formatType;

}

public void setLocale(Locale locale) { }

public void setFormatPattern(String formatPattern) { }

public void init() { }

public String format(PhoneNumber phoneNumber) {

String format = null;

if ("dashes".equalsIgnoreCase(formatType)) {

format = "%s-%s-%s";

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_07/src/stripesbook/ext/PhoneNumberFormatter.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=113

WORKING WITH CUSTOM DATA TYPES 114

else if ("parens".equalsIgnoreCase(formatType)) {

format = "(%s) %s-%s";

}

else {

throw new StripesRuntimeException(String.format(

"Invalid phone number formatType: %s. Valid values "

+ "are 'dashes' and 'parens'.", formatType));

}

return String.format(format, phoneNumber.getAreaCode(),

phoneNumber.getPrefix(), phoneNumber.getSuffix());

}

}

PhoneNumber objects can now be formatted with <s:format>, using for-

matType="dashes" or formatType="parens". Since the formatter is in an

extension package, it will be loaded by Stripes. We can display phone

numbers in the contact view and in the text field of the contact form in

a consistent format, no matter how the phone number was entered by

the user. For example:

Download email_07/web/WEB-INF/jsp/contact_view.jsp

<td class="label">Phone number:</td>

<td class="value">

<s:format formatType="dashes"

value="${actionBean.contact.phoneNumber}"/>

</td>

Download email_07/web/WEB-INF/jsp/contact_form.jsp

<td>Phone number:</td>

<td>

<s:text name="contact.phoneNumber" formatType="dashes"/>

</td>

The formatType= attribute could also have been omitted to use the for-

matter’s default.

Using a Different Date Pattern Just for One Field

Back on page 102, we discussed changing the patterns for the date

type converter, which affects all date input fields in the application.

But what if we want to use a different pattern just for one field? For

example, we might have a field where we expect the user to enter a time

with no date, such as "10:30". We want to use the "HH:mm" pattern for

that field without changing the patterns used for other date fields.

In a case like this, we’re better off creating a separate type converter

that parses the time only and not configuring it as an automatically

loaded extension so that it doesn’t replace the default type converter.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_07/web/WEB-INF/jsp/contact_view.jsp
http://media.pragprog.com/titles/fdstr/code/email_07/web/WEB-INF/jsp/contact_form.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=114

WORKING WITH CUSTOM DATA TYPES 115

Stripes Extensions

Custom type converters, custom formatters, and many other
custom components are collectively known in Stripes as exten-
sions. To minimize configuration, Stripes gives you a way to set,
once and for all, the packages that contain your extensions.
Stripes automatically loads all extensions found in these pack-
ages and their subpackages. So, you can add, remove, and
rename your extensions without changing the configuration, as
long as the packages still correspond to the ones you config-
ured.

To indicate the packages for your extensions, give the Stripes
filter a value for the Extension.Packages parameter in web.xml:

Download email_07/web/WEB-INF/web.xml

<filter>
<filter-name>StripesFilter</filter-name>
<filter-class>

net.sourceforge.stripes.controller.StripesFilter
</filter-class>
<!-- ... -->
<init-param>

<param-name>Extension.Packages</param-name>
<param-value>stripesbook.ext</param-value>

</init-param>
</filter>

The Extension.Packages parameter works much like the ActionRe-

solver.Packages, except that the package roots are for exten-
sions instead of action beans. With the previous configuration,
all extensions found in stripesbook.ext or any subpackage will
automatically be loaded. You can specify several packages
by separating them with commas.

In the packages you have configured as extension packages,
you can still have nonextension classes. Stripes simply ignores
those classes during the extension autoloading process. On the
other hand, if you have an extension class in one of the exten-
sion packages and you’d like to tell Stripes not to load it, chang-
ing its package is not the only way to do that—you can also
annotate the class with @DontAutoLoad.

Stripes defines key functionalities with interfaces so that you
can easily provide custom behavior by plugging in your own
extensions. We’ll discover the other extensible parts of Stripes
throughout the rest of the book.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_07/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=115

WORKING WITH CUSTOM DATA TYPES 116

Tim Says. . .

One Class Can Implement Both TypeConverter and
Formatter

It is possible, and often desirable, to have a single class imple-
ment both the TypeConverter and Formatter interfaces. Type con-
version and formatting are really two sides of the same coin—
the processes of going from String to something more strongly
typed and back again.

Keeping all the code in one place can cut down on clutter
(fewer classes) and make maintenance simpler—if you modify
the target type, you can review a single class instead of two
to see whether changes are required. In addition, since you will
be dealing with the same classes, there may be common code
that can be more easily shared between the methods doing
type conversion and formatting. Lastly, since both interfaces
share the same setLocale(Locale) method, writing one class that
implements both means you have one less method to write!

Creating a custom type converter for Date is easily done by extending

DateTypeConverter. Earlier we saw that this converter does some pre-

processing and uses a series of formats to parse the input. These oper-

ations are implemented as protected methods so that subclasses can

easily make changes to the behavior:

protected Pattern getPreProcessPattern()

protected String preProcessInput(String input)

protected String checkAndAppendYear(String input)

protected String[] getFormatStrings()

protected DateFormat[] getDateFormats()

A TimeTypeConverter only has to override getFormatStrings() to return the

"HH:mm" format:

Download data_types/src/stripesbook/opt/TimeTypeConverter.java

package stripesbook.opt;

public class TimeTypeConverter extends DateTypeConverter {

private static final String[] TIME_FORMAT = { "HH:mm" };

@Override

protected String[] getFormatStrings() {

return TIME_FORMAT;

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/data_types/src/stripesbook/opt/TimeTypeConverter.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=116

WORKING WITH CUSTOM DATA TYPES 117

To make sure TimeTypeConverter is not an automatically loaded exten-

sion, either it can be in a different package than an extension package,

such as the stripesbook.opt package used earlier, or it can be in an exten-

sion package and annotated with @DontAutoLoad. We can now use Time-

TypeConverter only on demand by annotating the property associated

with the time field:

Download data_types/src/stripesbook/action/DataTypesActionBean.java

@Validate(converter=TimeTypeConverter.class)

private Date time;

Using a Type Converter and Formatter to Load Model Objects

A great way of using type converters and formatters is to load model

objects. Right now Contact objects are loaded from the contact DAO

using the contact’s ID. This works fine but requires separate contactId

and contact properties in the action bean.

The contactId property can be removed by implementing a type con-

verter that takes the contact ID as an input and returns the corre-

sponding Contact object with help from the contact DAO. With a for-

matter that does the opposite—takes a Contact object and returns the

contact ID—the Contact type can then be used directly, and JSPs can

use a contact parameter as follows:

Download email_07/web/WEB-INF/jsp/contact_list.jsp

<s:param name="contact" value="${contact}"/>

The ContactTypeConverter uses the String input as a contact ID and calls

ContactDao to return the corresponding Contact object:

Download email_07/src/stripesbook/ext/ContactTypeConverter.java

package stripesbook.ext;

public class ContactTypeConverter implements TypeConverter<Contact> {

private ContactDao contactDao = MockContactDao.getInstance();

public Contact convert(String string,

Class<? extends Contact> type,

Collection<ValidationError> errors)

{

try {

return contactDao.read(new Integer(string));

}

catch (Exception exc) {

errors.add(new SimpleError(

"The contact ID {1} is not valid."));

return null;

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/data_types/src/stripesbook/action/DataTypesActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_07/web/WEB-INF/jsp/contact_list.jsp
http://media.pragprog.com/titles/fdstr/code/email_07/src/stripesbook/ext/ContactTypeConverter.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=117

WORKING WITH CUSTOM DATA TYPES 118

public void setLocale(Locale locale) { }

}

Being in an extension package, the type converter will automatically be

loaded. Just like that, we have support for the Contact class, as shown

in Figure 5.5, on the following page.

The ContactFormatter’s task of returning a String from a Contact is very

simple:

Download email_07/src/stripesbook/ext/ContactFormatter.java

package stripesbook.ext;

public class ContactFormatter implements Formatter<Contact> {

public String format(Contact contact) {

return String.valueOf(contact.getId());

}

public void init() { }

public void setLocale(Locale locale) { }

public void setFormatType(String type) { }

public void setFormatPattern(String pattern) { }

}

We can now work directly with Contact objects in action beans and

JSPs, with the logic of going from String to Contact and back to String

being encapsulated in the type converter and formatter.

Using Constructor and toString

We’ve seen how Stripes type converters and formatters give us a place

for the code that converts a String to T and back to String. Using type

converters keeps the logic separate from the T class and enables us to

use Stripes validation errors. Formatters are powerful because we can

define different format types and patterns and easily format according

to the user’s locale.

Despite all these advantages, sometimes we need only the bare mini-

mum for a data type.

I’ll let you in on a dirty little secret. If Stripes doesn’t find a type con-

verter for a type T—either built-in, specified in @Validate(converter=), or

located in an extension package—it tries one last resort. If a T(String)

constructor is defined in the class T, Stripes uses it to create an instance

of T, passing the input as a parameter to the constructor.

So, to get type conversion and formatting with the least amount of code,

we can use a constructor that accepts one argument of type String for

type conversion and the toString() method for formatting, both directly

in the model class.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_07/src/stripesbook/ext/ContactFormatter.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=118

WORKING WITH CUSTOM DATA TYPES 119

Browser

String

"5"

request

contact=5

TypeConverter<Contact>

Contact

ActionBean

setContact(Contact)

Figure 5.5: Using a type converter to load a contact

Here is an example with the PhoneNumber class:

package stripesbook.model;

public class PhoneNumber {

private int areaCode;

private int prefix;

private int suffix;

private static final Pattern pattern = Pattern.compile(

"\\(?(\\d{3})\\)?[-.]?(\\d{3})[-.]?(\\d{4})");

public PhoneNumber() {

}

public PhoneNumber(int areaCode, int prefix, int suffix) {

this.areaCode = areaCode;

this.prefix = prefix;

this.suffix = suffix;

}

// Stripes will use this for String -> PhoneNumber type conversion

public PhoneNumber(String input) {

if (input != null) {

Matcher matcher = pattern.matcher(input);

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=119

WORKING WITH CUSTOM DATA TYPES 120

if (matcher.matches()) {

areaCode = Integer.parseInt(matcher.group(1));

prefix = Integer.parseInt(matcher.group(2));

suffix = Integer.parseInt(matcher.group(3));

}

else {

// This exception will only get logged

throw new IllegalArgumentException(input +

" is not a valid phone number.");

}

}

}

/* Getters and setters... */

// Stripes will use this for PhoneNumber -> String formatting

public String toString() {

// Only one format can be supported

return String.format("%s-%s-%s", areaCode, prefix, suffix);

}

}

That’s all we need to support the PhoneNumber data type. Although

quick, this strategy is also limited: we can’t signal validation errors in

the constructor, and any exception we throw will not be propagated by

Stripes. Invalid input will just leave the target property unbound. We

can’t use different format types and patterns in the toString() method,

and it’s more tedious to obtain the user’s locale if the formatting should

be locale-sensitive.

Most of the time you’ll want to use type converters and formatters, but

it’s nice to know that for basic requirements, you can get it all done

directly in the data type class.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=120

When I’m working on a problem, I never think about

beauty. I think only how to solve the problem. But when I

have finished, if the solution is not beautiful, I know it is

wrong.

R. Buckminster Fuller

Chapter 6

Customizing Stripes Messages
When displaying information messages to the user, you decide on the

text and show the messages with the <s:messages/> tag. Stripes has

a default way of displaying these messages.

For error messages, Stripes not only has a default display but also takes

care of constructing the text.

Although that’s pretty good bang for your buck, you can also change

these defaults to display messages exactly like you want by doing the

following:

• Customizing the appearance of information and error messages

• Displaying error messages in a group or individually next to cor-

responding fields

• Customizing how fields that are in error are highlighted

• Changing the text of error messages

Let’s start with the customization of information messages.

6.1 Customizing Information Messages

When you add the <s:messages/> tag to a JSP, Stripes follows these

steps to render information messages:

1. Display a header.

2. Render something before the message.

3. Write the message text.

4. Render something after the message.

5. Repeat steps 2 to 4 for each message.

6. Display a footer.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CUSTOMIZING INFORMATION MESSAGES 122

<ul class="messages">

 Message 1

 Message 2

footer

header

before

Message
after

Message

Figure 6.1: Constructing the display of information messages

The default is to display the messages in a bulleted list, using the HTML

code shown in Figure 6.1. An example of the result is illustrated in

Figure 6.2, on the following page. This is the message that we created

in Section 3.5, Information Messages, on page 58. After the user deletes

a contact, the message confirms that the operation was successful.

If you like the bulleted list but just want to change its look, you can use

the "messages" class that Stripes adds to the tag to style the list

with CSS code.

You can also change the HTML code for each part of the informa-

tion message display by modifying the following entries in the Stripes-

Resources.properties file:

• stripes.messages.header

• stripes.messages.beforeMessage

• stripes.messages.afterMessage

• stripes.messages.footer

For example, let’s display information messages in a box with an icon

and a shaded background, as in Figure 6.3, on page 124.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=122

CUSTOMIZING INFORMATION MESSAGES 123

Figure 6.2: The default display of information messages

With the icon image file in images/info.gif, the following code will generate

the message box:

Download email_08/res/StripesResources.properties

stripes.messages.header=<div class="messages">\

stripes.messages.beforeMessage=<p>

stripes.messages.afterMessage=</p>

stripes.messages.footer=</div>

The following CSS code displays the box with a border, a shaded back-

ground, and the message text in bold:

Download email_08/web/css/style.css

div.messages {

display: block;

border: 2px solid #008800;

margin-bottom: 8px;

background-color: #CCFFCC;

}

div.messages p {

font-weight: bold;

color: #008800;

margin: 0;

}

As we can see, customizing the display of messages is just a matter

of changing a few entries in the properties file. We can also use style

classes and customize the appearance with CSS code.

Any part that Stripes uses to construct the code (header, beforeMessage,

afterMessage, and footer) can be left blank. For example, we could use

stripes.messages.footer= if we don’t need a footer.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_08/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_08/web/css/style.css
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=123

CUSTOMIZING ERROR MESSAGES 124

Figure 6.3: Customizing the display of information messages

6.2 Customizing Error Messages

Error messages can be customized in the same way as information mes-

sages, but they also support additional features. They can be displayed

in a group or individually next to the input field associated with the

error. The labels and input fields that are in error can be highlighted.

The message text can be modified. With all these features, we can dis-

play error messages so that they fit in well with the look and feel of our

web application.

Error Messages in a Group

Much like the <s:messages/> tag, the <s:errors/> tag generates HTML

code using the values defined in StripesResources.properties. The keys

start with stripes.errors and have the default values shown in the fol-

lowing code. This displays error messages as in the example shown in

Figure 6.4, on the next page.

Download email_07/res/StripesResources.properties

stripes.errors.header=<div style="color:#b72222; font-weight: bold">\

Please fix the following errors:</div>

stripes.errors.beforeError=<li style="color: #b72222;">

stripes.errors.afterError=

stripes.errors.footer=

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_07/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=124

CUSTOMIZING ERROR MESSAGES 125

Figure 6.4: The default display of error messages

Let’s modify these values to display error messages in a box with an

error icon, as illustrated in Figure 6.5, on the following page:

Download email_08/res/StripesResources.properties

stripes.errors.header=<div class="errors">\

stripes.errors.beforeError=<p>

stripes.errors.afterError=</p>

stripes.errors.footer=</div>

Download email_08/web/css/style.css

div.errors {

display: block;

border: 2px solid #880000;

margin-bottom: 8px;

background-color: #FFDDDD;

}

div.errors p {

font-weight: bold;

color: #880000;

margin: 0;

}

As we can see, we did that much in the same manner as we changed

the display of information messages.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_08/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_08/web/css/style.css
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=125

CUSTOMIZING ERROR MESSAGES 126

Figure 6.5: Customizing the display of error messages

Error Messages Next to Fields

Stripes makes it easy to display error messages individually, next to

each corresponding field, as in Figure 6.6, on the next page. This is

nice because the user doesn’t have to read the error messages at the

top and then scan down the form to figure out to which field each

message refers.

If you indicate the name of a field in the field= attribute of the <s:errors>

tag, only the error messages for that field will be displayed. The value

for field= must match the name= attribute of the corresponding input

field. For example, this would display error messages concerning the

contact’s email next to the email field:

<td>Email:</td>

<td><s:text name="contact.email"/></td>

<td><s:errors field="contact.email"/></td>

After adding <s:errors> tags with the field= attribute next to each input

field, we can remove the <s:errors/> tag at the top. Now, to display the

messages with the error icon, the entries that start with stripes.fieldErrors

must be modified:

Download email_09/res/StripesResources.properties

stripes.fieldErrors.header=

stripes.fieldErrors.beforeError=\

stripes.fieldErrors.afterError=

stripes.fieldErrors.footer=

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_09/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=126

CUSTOMIZING ERROR MESSAGES 127

Figure 6.6: Displaying error messages next to input fields

We can use the error class on the tag to display the error text

in bold and red:

Download email_09/web/css/style.css

span.error {

font-weight: bold;

color: #880000;

padding: 8px;

}

This will display error messages as in Figure 6.6.

Highlighting Errors

Stripes automatically adds class="error" to labels and input fields that

are in error, as long as they are created with Stripes tags. We’re already

using the <s:text> tag for the text fields; we need to use an <s:label>

tag to take advantage of this feature for labels. To associate a label to an

input field, place the name of the field in the for= attribute of <s:label>.

For example:

Download email_10/web/WEB-INF/jsp/contact_form.jsp

<tr>

<td><s:label for="contact.email">Email:</s:label></td>

<td>

<s:text name="contact.email" class="required"/>

</td>

<td><s:errors field="contact.email"/></td>

</tr>

<%-- same for other fields --%>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_09/web/css/style.css
http://media.pragprog.com/titles/fdstr/code/email_10/web/WEB-INF/jsp/contact_form.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=127

CUSTOMIZING ERROR MESSAGES 128

Joe Asks. . .

How Can I Display Error Messages in More Than One Way?

Changing the values in the StripesResources.properties file sets
the display of error messages for the whole application. We
can override these settings in a page by nesting the <s:errors-
header>, <s:individual-error>, and <s:errors-footer> tags within
<s:errors>:

<s:errors>
<s:errors-header>code for header goes here</s:errors-header>
code before each message goes here
<s:individual-error/>
code after each message goes here
<s:errors-footer>code for footer goes here</s:errors-footer>

</s:errors>

For example, if we wanted to keep the Stripes defaults in Stripes-

Resources.properties and use the error box just for the contact
form, we would have replaced the <s:errors/> tag in con-

tact_form.jsp with this:

<s:errors>
<s:errors-header>

<div class="errors">

</s:errors-header>
<p>

<s:individual-error/>
</p>
<s:errors-footer>

</div>
</s:errors-footer>

</s:errors>

We can customize field-specific error messages in the same
way—just specify the field= attribute in the <s:errors> tag.

This gives us the possibility of having the most-often used error
message display configured in StripesResources.properties and still
have as many different ways of displaying error messages as we
need.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=128

CUSTOMIZING ERROR MESSAGES 129

Combining Global and Field-Specific Errors

You can create error messages that are not associated with a
specific field with the addGlobalError() method of the Validation-

Errors class. These global errors will not be displayed if you have
only <s:errors field="..."/> tags. Adding the plain <s:errors/> tag
displays global errors but duplicates the field-specific error mes-
sages. To combine the display of global and field errors, add
the globalErrorsOnly="true" attribute to the <s:errors/> tag. This
way, you can display global errors in a group and field-specific
errors next to fields:

<s:form ...>
<s:errors globalErrorsOnly="true"/>
...
<td>Email:</td>
<td><s:text name="contact.email"/></td>
<td><s:errors field="contact.email"/></td>
...

</s:form>

Highlighting the labels and text fields that are in error is now a simple

matter of some CSS code:

Download email_10/web/css/style.css

input.error {

border: 2px solid #880000;

background-color: #FFDDDD;

}

label.error {

color: #880000;

font-weight: bold;

text-decoration: underline;

}

This will highlight errors as shown in Figure 6.7, on the next page.

Notice that both the labels and the fields that are in error are high-

lighted.

If the error class is not enough to highlight tags as we require, we can

take full control of how tags are rendered when they are in error by

implementing the TagErrorRenderer interface:

public interface TagErrorRenderer {

void init(InputTagSupport tag);

void doBeforeStartTag();

void doAfterEndTag();

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_10/web/css/style.css
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=129

CUSTOMIZING ERROR MESSAGES 130

Figure 6.7: Highlighting labels and input fields for errors

The DefaultTagErrorRenderer adds the class="error" attribute to tags that

are in error. If the tag already had another class= defined, such as

"myClass", the renderer produces class="error myClass" to preserve any

previously specified CSS classes.

Suppose we want to display ** after tags that are in error, as illustrated

in Figure 6.8, on the following page. We can do this with a simple imple-

mentation of TagErrorRenderer:

Download email_11/src/stripesbook/ext/MyTagErrorRenderer.java

package stripesbook.ext;

public class MyTagErrorRenderer implements TagErrorRenderer {

private InputTagSupport tag;

public void init(InputTagSupport atag) { tag = atag; }

public void doBeforeStartTag() { }

public void doAfterEndTag() {

try { tag.getPageContext().getOut().write("**"); }

catch (IOException exc)

{ throw new StripesRuntimeException(exc); }

}

}

TagErrorRenderer implementations are Stripes extensions, so having the

MyTagErrorRenderer class in the stripesbook.ext package is enough to have

it automatically loaded by Stripes. Remember that on page 115 we con-

figured stripesbook.ext in web.xml as an extension package with the Exten-

sion.Packages parameter.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_11/src/stripesbook/ext/MyTagErrorRenderer.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=130

CHANGING THE TEXT OF ERROR MESSAGES 131

Figure 6.8: Using a tag error renderer

6.3 Changing the Text of Error Messages

When a validation error occurs, Stripes constructs an error message

based on the type of validation that failed, the name of the field, and

the value entered by the user. Although this gives messages that are

quite reasonable, we can change the text in two ways: by changing

the field label and keeping the rest of the text or by changing the text

completely. Let’s start with using different field labels.

Changing Field Labels

Stripes constructs a field label by taking the name of the field and sepa-

rating words based on dots (.) and uppercase letters. For example, "con-

tact.phoneNumber" becomes "Contact Phone Number". This label replaces

the {0} token in an error message, while {1} is replaced by the value

entered by the user. So if the user enters 555 in the contact.phoneNumber

field, the following message:

{1} is not a valid {0}

becomes the following:

555 is not a valid Contact Phone Number.

The label you want to appear in an error message may not corre-

spond to the name of the property. I’m sure you don’t want to change

property names just for labeling purposes. Instead, you can use the

label= attribute of @Validate, or you can define the label in the StripesRe-

sources.properties file. Let’s see how each technique works by changing

the labels for the fields of the Contact class.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=131

CHANGING THE TEXT OF ERROR MESSAGES 132

Accessing the List of Messages

The <s:messages> and <s:errors> tags take care of displaying
messages for you. However, nothing stops you from accessing
the list of messages directly and doing whatever you want with
it. Messages are stored in ActionBeanContext and are available
with getMessages() for information messages and getValidation-

Errors() for error messages, so you can easily access them in a
JSP with an expression. For example:

<c:if test="${not empty actionBean.context.messages}">
There are ${fn:length(actionBean.context.messages)}
information messages.

</c:if>

<c:if test="${not empty actionBean.context.validationErrors}">
There are ${fn:length(actionBean.context.validationErrors)}
error messages.

</c:if>

The first way is to add label= attributes to @Validate annotations:

Download email_12/src/stripesbook/action/ContactFormActionBean.java

@ValidateNestedProperties({

@Validate(field="firstName", maxlength=25, label="Given name"),

@Validate(field="lastName", minlength=2, maxlength=40,

label="Surname"),

@Validate(field="email", required=true, on="save",

converter=EmailTypeConverter.class, label="E-mail"),

@Validate(field="birthDate", expression="${this < today}",

label="Date of birth"),

@Validate(field="phoneNumber", label="Telephone number")

})

@Override

public void setContact(Contact contact) {

super.setContact(contact);

}

These labels will be used for {0} tokens in error messages. Now, the

following:

{1} is not a valid {0}

will be displayed as this:

555 is not a valid Telephone number.

Field labels are also used in the <s:label> tag. Back on page 127, we

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_12/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=132

CHANGING THE TEXT OF ERROR MESSAGES 133

discussed using <s:label> for labels so that Stripes would automati-

cally highlight them when the corresponding field was in error. Now

that the text is in @Validate(label=), there’s no need to repeat it in the

body of the <s:label> tag. We can remove the text from the body and

use empty <s:label/> tags:

Download email_12/web/WEB-INF/jsp/contact_form.jsp

<td><s:label for="contact.phoneNumber"/>:</td>

<td>

<s:text name="contact.phoneNumber" formatType="dashes"/>

</td>

<td><s:errors field="contact.phoneNumber"/></td>

Stripes automatically uses the label that we defined in @Validate(label=)

as the text of the <s:label/> tag. In the previous example, Telephone

number: will appear in front of the text field. The label will be displayed

normally when all is well and will be highlighted when the field is in

error.

Using the label= attribute is quick and easy but limited. The text is not

localizable, and the labels are limited to the form linked to the action

bean—the contact form, in this example.

The second way of changing field labels that are used in error messages

and the <s:label/> tag is with the resource bundle. This method, which

overrides any existing @Validate(label="...") definitions, allows you to use

the labels everywhere in the application. They also make the labels

localizable, as we’ll see in Chapter 11, Parlez-Vous Français? Making It

Multilingual, on page 218. We define a field label by using the field name

as a key in StripesResources.properties:

Download email_13/res/StripesResources.properties

contact.firstName=FIRST NAME

contact.lastName=LAST NAME

contact.email=EMAIL

contact.phoneNumber=PHONE NUMBER

contact.birthDate=BIRTH DATE

This would display field labels in uppercase letters. We can now use

these labels everywhere—for example, in the contact view with empty

<s:label/> tags:

Download email_13/web/WEB-INF/jsp/contact_view.jsp

<tr>

<td class="label"><s:label for="contact.firstName"/>:</td>

<td class="value">${actionBean.contact.firstName}</td>

</tr>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_12/web/WEB-INF/jsp/contact_form.jsp
http://media.pragprog.com/titles/fdstr/code/email_13/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_13/web/WEB-INF/jsp/contact_view.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=133

CHANGING THE TEXT OF ERROR MESSAGES 134

Now, field labels are defined in one place and reused in the contact

view, in the contact form, and in error messages. Nice!

With labels in resource bundles, we can still use different labels for

fields that are in different forms but have the same name. Just put the

package and class name of the action bean in front of the field name,

as in the following:

Download email_14/res/StripesResources.properties

stripesbook.action.ContactFormActionBean.contact.firstName=FIRST NAME

stripesbook.action.ContactFormActionBean.contact.lastName=LAST NAME

stripesbook.action.ContactFormActionBean.contact.email=EMAIL

stripesbook.action.ContactFormActionBean.contact.phoneNumber=PHONE NUMBER

stripesbook.action.ContactFormActionBean.contact.birthDate=BIRTH DATE

contact.firstName=first name

contact.lastName=last name

contact.email=email

contact.phoneNumber=phone number

contact.birthDate=birth date

This would use uppercase labels in the contact form and lowercase

labels everywhere else.

Changing the Error Message Text

If changing field labels is not enough to get the error messages that we

want, we can change the text completely. By default, Stripes looks for

an error message in the StripesResources.properties file. When a validation

error occurs, Stripes uses several keys to search for the correspond-

ing message. The keys go from more specific to more general, making it

possible to have very specific messages as well as general-purpose mes-

sages. The StripesResources.properties file you copied over from the Stripes

distribution contains messages for all possible errors that Stripes pro-

duces, using the most general key.

We can change the text either by overriding the Stripes default or by

providing a message using a more specific key. Let’s talk a bit more

about these keys.

To build the list of search keys, Stripes uses different combinations of

the following values:

actionBeanFullName: The fully qualified name of the action bean class,

as in stripesbook.action.ContactFormActionBean.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_14/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=134

CHANGING THE TEXT OF ERROR MESSAGES 135

fieldName: The name of the field that is in error. This name corre-

sponds to the name= attribute of the form control, such as con-

tact.firstName.

errorName: The name associated with the type of validation that caused

the error. Each built-in validation has a specific errorName. For

example, the errorName for @Validate(required=true) is valueNotPre-

sent.

defaultScope: Like errorName, the defaultScope is associated with a

type of validation, such as validation.required for @Validate(required=

true).

Here are the combinations of these values that Stripes uses when it

searches through the resource bundle:

actionBeanFullName.fieldName.errorName

actionBeanFullName.fieldName.errorMessage

fieldName.errorName

fieldName.errorMessage

actionBeanFullName.errorName

actionBeanFullName.errorMessage

defaultScope.errorName

For example, when a @Validate(required=true) validation fails for the con-

tact.email field in stripesbook.action.ContactFormActionBean, Stripes

searches for the following keys:

stripesbook.action.ContactFormActionBean.contact.email.valueNotPresent

stripesbook.action.ContactFormActionBean.contact.email.errorMessage

contact.email.valueNotPresent

contact.email.errorMessage

stripesbook.action.ContactFormActionBean.valueNotPresent

stripesbook.action.ContactFormActionBean.errorMessage

validation.required.valueNotPresent

Stripes uses the first matching key or throws an exception if no key is

found. As mentioned earlier, StripesResources.properties comes with mes-

sages for every built-in validation using the last key in the search list,

defaultScope.errorName.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=135

CHANGING THE TEXT OF ERROR MESSAGES 136

The following table shows the defaultScope and errorName for each

built-in validation and type converter:

Validation defaultScope errorName

required=true validation.required valueNotPresent

minlength=N validation.minlength valueTooShort

maxlength=N validation.maxlength valueTooLong

minvalue=N validation.minvalue valueBelowMinimum

maxvalue=N validation.maxvalue valueAboveMaximum

mask="M" validation.mask valueDoesNotMatch

expression="E" validation.expression valueFailedExpression

Type Converter

DateTypeConverter converter.date invalidDate

EmailTypeConverter converter.email invalidEmail

EnumeratedTypeConverter converter.enum notAnEnumeratedValue

NumberTypeConverter1 converter.number invalidNumber

NumberTypeConverter converter.type2 outOfRange

PercentageTypeConverter converter.number invalidNumber

PercentageTypeConverter converter.type outOfRange

To change the text of an error message, change the corresponding entry

in the StripesResources.properties file, or add a new entry. We can use

a key that is as specific or as general as we want. For example, the

following

stripesbook.action.ContactFormActionBean.contact.email.valueNotPresent

is most specific, while the following

validation.required.valueNotPresent

is most general. We can use the {0} and {1} tokens to include the field

label and the value entered by the user in the error message text.

Certain validators and type converters provide additional parameters,

starting at {2}, as shown here in the table on the next page.

1. Number refers to each number type converter: ByteTypeConverter, IntegerTypeConverter,

and so on.
2. type refers to the number type, as in converter.byte, converter.integer, and so on.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=136

CHANGING THE TEXT OF ERROR MESSAGES 137

Validator/Type Converter {2} {3}

minlength=N N

maxlength=N N

minvalue=N N

maxvalue=N N

NumberTypeConverter3 range minimum range maximum

For example, the @Validate(minvalue=N) validation provides the value

for N. If the user enters 15 in an Age field for which you have @Vali-

date(minvalue=18), we could use this:

{1} is below the minimum {0} of {2}

to produce the following error message:

15 is below the minimum age of 18

Let’s change the error messages in the contact form. For example, if the

user enters a date in the future, such as 2040-01-27, the error message

is currently as follows:

The value supplied (Fri Jan 27 00:00:00 EST 2040) for field Birth date is

invalid.

This message is quite long and doesn’t say why the birth date is invalid.

The errorName for an expression= validation is valueFailedExpression. Using

the contact.birthDate.valueFailedExpression key, the message can be

changed to a less intimidating and more informative message:

Download email_15/res/StripesResources.properties

contact.birthDate.valueFailedExpression=The birth date is in the future.

Using the field names and error names, we can customize the text for

the other error messages as well:

Download email_15/res/StripesResources.properties

contact.firstName.valueTooLong=The first name cannot exceed {2} characters.

contact.lastName.valueTooShort=The last name must be at least {2} characters.

contact.lastName.valueTooLong=The last name cannot exceed {2} characters.

contact.email.valueNotPresent=The email address is required.

contact.birthDate.invalidDate=The birth date is not valid.

3. Provided when an outOfRange error occurs.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_15/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_15/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=137

CREATING MESSAGES FOR CUSTOM ERRORS 138

6.4 Creating Messages for Custom Errors

Back on page 111, we created a PhoneNumberTypeConverter class to con-

vert an input String to a PhoneNumber. If the input was not valid, we

created an error. The error message was directly in the code:

Download email_12/src/stripesbook/ext/PhoneNumberTypeConverter.java

errors.add(new SimpleError("{1} is not a valid {0}"));

With all other error messages in the StripesResources.properties file, it’d be

a shame not to have messages for custom errors in there as well. Say

we wanted to use the following key:

contact.phoneNumber.invalid

To use the message defined with this key, we can simply use the Local-

izableError class. This class allows us to specify a resource bundle key

instead of a hard-coded message. For example:

errors.add(

new LocalizableError("contact.phoneNumber.invalid");

Now we can define the error message in StripesResources.properties with

all the other error messages:

Download email_15/res/StripesResources.properties

contact.phoneNumber.invalid=The phone number is not valid.

That’s fine when you are creating errors that are specific to our appli-

cation. But PhoneNumberTypeConverter is useful for any phone number

field, not just the one in the contact form. In fact, word of your phone

number type converter has spread around the office, and people from

other departments have asked us whether they could use it in their

applications.

The problem right now is that we’re limited to the same error message

for every phone number field. What if other developers use PhoneNum-

berTypeConverter in more than one form and need different error mes-

sages in each form?

The ScopedLocalizableError class is specifically designed for use in type

converters such as PhoneNumberTypeConverter. It takes advantage of

the key lookup mechanism, just like the type converters provided by

Stripes.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_12/src/stripesbook/ext/PhoneNumberTypeConverter.java
http://media.pragprog.com/titles/fdstr/code/email_15/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=138

CREATING MESSAGES FOR CUSTOM ERRORS 139

Tim Says. . .

Make Judicious Use of ScopedLocalizableError

At first glance, the ScopedLocalizableError class might look rather
complicated. That’s because ScopedLocalizableError is designed
exclusively for use in TypeConverters. Of course, like any class,
you can use it elsewhere if you need to—I’ve just never found it
useful outside of writing TypeConverters.

But when you write your own TypeConverters, you should
always use ScopedLocalizableError, never SimpleError or Localiz-

ableError. Doing so ensures that your custom TypeConverter will
work just like Stripes’ built-in ones and make it easy to customize
the error message as appropriate when you use your new con-
verter. At first this might not seem like a big deal—“I’m using
my custom converter on only one page,” you say. Doing it right
from the beginning will mean that when you do need to use
your type converter somewhere else—or better yet someone
else on your team needs to—it’ll be ready to go, and there’ll
be no temptation to replicate code or do something quick and
dirty.

To get our custom error messages to be part of that mechanism, we

specify the defaultScope and errorName for our type converter in the

constructor of the ScopedLocalizableError class:

Download email_15/src/stripesbook/ext/PhoneNumberTypeConverter.java

errors.add(

new ScopedLocalizableError("converter.phoneNumber", "invalid"));

Now Stripes will search all the different key combinations that we saw

on page 135. We can define a different error message for a specific form

by using a key that includes the action bean name or field name.

The best part is that the error message we added earlier with the con-

tact.phoneNumber.invalid key still works. Indeed, fieldName.errorName is

among the list of keys that Stripes uses in the search. Since fieldName

is contact.phoneNumber in the contact form and we defined errorName to

be invalid when we created the ScopedLocalizableError, contact.phoneNum-

ber.invalid will match.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_15/src/stripesbook/ext/PhoneNumberTypeConverter.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=139

CREATING MESSAGES FOR CUSTOM ERRORS 140

Finally, to make PhoneNumberTypeConverter easy to reuse, we would pro-

vide a general error message with the converter.phoneNumber.invalid key

in the StripesResources.properties file. That’s the last key in the search,

and defining a message with that key would make sure that Stripes

uses it by default. Our type converter now works right out of the box!

Wrapping Up

Stripes gives you a reasonable display of information and error mes-

sages with minimal effort. If the defaults do not suit you, you can cus-

tomize just about everything about how you present messages to your

users. Using entries in the StripesResources.properties file and a touch of

CSS goes a long way.

So, what’s next? When we started building the sample application in

Chapter 3, The Core: Action Beans and JSPs, we touched on the topic

of reusable layouts. It’s time to discuss them in more detail.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=140

I don’t think necessity is the mother of invention—invention,

in my opinion, arises directly from idleness, possibly also

from laziness. To save oneself trouble.

Agatha Christie

Chapter 7

Reusable Layouts
Web applications are typically composed of several pages. As soon as

you have more than one page in your application, you’ll notice that

some parts are the same for every page: the HTML header code, the

title, the footer, and so on. You certainly don’t want to copy and paste

those parts in every page and then have the nightmare of maintaining

all that duplicated code. Reusable layouts to the rescue: you put the

common parts in one place and reuse them in as many pages as you

like. Then, when you want to make a change to the header, for example,

you have only one file to edit. All pages that use this file will automat-

ically inherit the change. This makes it easier to maintain consistency

in your application—no more “Oops, how come the new header appears

only in some pages but not others?”

Having one place for static code is only half the story. You also want to

be able to assemble your pages with dynamic content that comes from

each page. You need a way of saying “The title goes here, the body of

the page goes there. . . whatever they may be.” Each page specifies its

own content for the title, body, and so on, and the layout assembles all

the parts together to produce the final result.

Stripes gives you a simple and powerful reusable layout system. You

don’t need to install any additional libraries to use it, and you won’t

have to create and maintain any configuration files either!

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

BASIC STRIPES LAYOUT CONCEPTS 142

layout.jsp

<s:layout-definition>

Header: ${title}

<div><s:layout-component name="body"/></div>

Footer

</s:layout-definition>

renderer.jsp

<s:layout-render name="/layout.jsp" title="My Title">

<s:layout-component name="body">

Hello, reusable layout

</s:layout-component>

</s:layout-render>

Header: My Title

<div>Hello, reusable layout</div>

Footer

result

Figure 7.1: The Stripes reusable layout tags

7.1 Basic Stripes Layout Concepts

Look at the example illustrated in Figure 7.1. Stripes reusable layouts

come down to three tags and four concepts:

Layout: A template that can be reused for multiple pages. To indicate

that a JSP defines a layout, just wrap the contents with opening

and closing <s:layout-definition> tags.

Renderer: A page that uses a layout to produce a result. Use the

<s:layout-render> tag with the path to the layout JSP in the

name= attribute to render the layout. Starting with a forward slash

(/), write the path relative to the web application’s root directory.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=142

BASIC STRIPES LAYOUT CONCEPTS 143

Component: A building block for layouts and renderers. In a layout,

add a component to indicate where to put a block of content. In a

renderer, use a component to say what goes in that block. In both

cases, use the <s:layout-component> tag with matching name=

attributes.1

Attribute: You can optionally add arbitrary attributes to the <s:layout-

render> tag and place their values in the layout with the name of

the attribute within ${ }. If you have something=somevalue in the

<s:layout-render> tag, using ${something} in the layout produces

somevalue.

That’s it! Everything gets done with three tags. When you look at a

JSP, you can tell right away whether it is a layout by the <s:layout-

definition> tag. You also know that a JSP is rendering a layout when

you see the <s:layout-render> tag, and the path to the layout JSP

is right there in the name= attribute. The <s:layout-component> tags

determine the layout-related content. It’s all there. No need to go fishing

around in configuration files to figure out what’s going on.

You can think of layouts as abstract classes. They contain code that

can be reused, and components are like abstract methods. Renderers

are concrete subclasses that implement these methods by providing

content for components.

Just like abstract classes cannot be instantiated, layouts cannot be

used on their own to produce a result. Indeed, if you forward to a

<s:layout-definition> JSP, you’ll get an exception. To produce a result,

you must use a renderer—a concrete implementation.

Providing Default Content

Sometimes you might find you’re using the same content for a com-

ponent in most (but not all) pages. Instead of copying and pasting the

same content in those pages, you can use that content as a default

for the component in the layout. This is like having a default imple-

mentation of a method in an abstract class, which can optionally be

overridden by a subclass. To do this, put the default content in the

1. Get in the habit of using valid Java identifiers as component names—no dashes, no

spaces. . . you get the picture. Although the name "body-content" will work in a basic layout,

it can cause errors that are difficult to track down when using the more advanced layout

techniques that we’ll talk about later in the chapter. Save yourself trouble, and use either

underscores or CamelCase to separate words in the names of your layout components.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=143

BASIC STRIPES LAYOUT CONCEPTS 144

body of the <s:layout-component> tag used in the layout. You can still

override the content in a renderer, but you can omit the component

altogether in all those pages that use the default content.

For example, this layout has three components: part1, part2, and part3:

Download reusable_layouts/web/default_content/layout.jsp

<s:layout-definition>

Header

<div>

<s:layout-component name="part1">

Default Part 1

</s:layout-component>

</div>

<div>

<s:layout-component name="part2">

Default Part 2

</s:layout-component>

</div>

<div><s:layout-component name="part3"/></div>

Footer

</s:layout-definition>

The following renderer renders the layout:

Download reusable_layouts/web/default_content/renderer.jsp

<s:layout-render name="/default_content/layout.jsp">

<s:layout-component name="part2">

My Part 2

</s:layout-component>

</s:layout-render>

And produces the following:

Header

Default Part 1

My Part 2

Footer

The renderer does not provide content for part1, so the layout’s default

is used. The renderer’s content overrides the layout’s default for part2.

For the part3 component, neither the layout nor the renderer provides

content. Layouts are more forgiving than abstract classes here: empty

components don’t cause errors; they are just left blank.

Using Attributes

Besides the <s:layout-component> tag, a renderer can also send con-

tent to a layout with dynamic attributes of the <s:layout-render> tag.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/default_content/layout.jsp
http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/default_content/renderer.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=144

BASIC STRIPES LAYOUT CONCEPTS 145

For example, look at the following layout and renderer:

Download reusable_layouts/web/attributes/layout.jsp

<s:layout-definition>

Ê Header: ${title}

<div><s:layout-component name="body"/></div>

<div>

Objects:

Ë <c:forEach var="object" items="${objects}">

${object}

</c:forEach>

</div>

Footer

</s:layout-definition>

Download reusable_layouts/web/attributes/renderer.jsp

Ê <s:layout-render name="/attributes/layout.jsp" title="My Title"
Ë objects="${pageContext.request.parameterMap}">

<s:layout-component name="body">

Hello, reusable layout

</s:layout-component>

</s:layout-render>

At Ê in renderer.jsp, the title attribute has the value "My Title". The layout

can put this value in the page using the attribute name within ${ }, as

in ${title} at Ê in layout.jsp. Attributes are not components, so <s:layout-

component name="title"/> won’t work in the layout to display "My Title".

As you can see, attributes are more concise and are good for short

content. They also give you a way to send types other than String from

a renderer to a layout. At Ë in renderer.jsp, the objects attribute is a

Map<String,String[]>, and the layout receives a value of that type. In this

example, the layout iterates over the values of the list in Ë of layout.jsp

and outputs each item. With these request parameters:

dir=example&files=one&files=two

renderer.jsp produces the following:

Header: My Title

Hello, reusable layout

Objects:

o dir=[example]

o files=[one, two]

Footer

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/attributes/layout.jsp
http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/attributes/renderer.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=145

PUTTING LAYOUTS TO WORK: DECORATORS 146

Joe Asks. . .

Should I Use Components or Attributes?

You can use either components or attributes in renderers.
Choosing between them depends on the content you are
sending to the layout:

• For multiple lines of content, you must use a component.

• For non-String content, you must use an attribute.

It also depends on how you place the content in the layout:

• If the content is placed in the layout with a component,
the renderer must use a component to provide the con-
tent.

• If the renderer specifies content with an attribute, the lay-
out must use ${ } to place the content.

• Whether the renderer uses a component or an attribute,
the layout can use ${ } to place the content.

You’ll find that using components for blocks of content, and
attributes for short content or parameter-like values, generally
works out well.

The <s:layout-render> tag does not know in advance the names of

the attributes you will use, so it actually supports dynamic attributes.

This allows you to choose whatever attribute names you want to send

parameters from a renderer to a layout.

7.2 Putting Layouts to Work: Decorators

Now that we’ve seen the building blocks of Stripes reusable layouts,

let’s put them to work beyond the “Hello, reusable layout” examples.

With layout decorators, we can create a rich set of layouts for the pages

of your applications.

A powerful way of using layouts is to build a layout “hierarchy,” where

we start with a base layout at the top that contains what’s common

to all pages and add more layouts that contain parts that are used in

subsets of pages. Each additional layout is a decorator, because it uses

another layout higher up in the hierarchy and “decorates” it by adding

more parts.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=146

PUTTING LAYOUTS TO WORK: DECORATORS 147

Take the layout.jsp file from Figure 7.1, on page 142, for example. Say

we are using this layout in many pages of our application, but now we

need to add several new pages that will have ads and a menu. We want

to create a layout for this without changing the original layout because

not all pages should have the ads and the menu. You don’t want to

copy and paste the original layout either, because that would give us

an unpleasant WET feeling.2

A great way to solve this problem is to define a new layout that uses

the original layout.jsp as a base and adds sections on the left and right

for the ads and adds the menu on the left of the body, as shown here:

Download reusable_layouts/web/ads_and_menu/layout_decorator.jsp

<s:layout-definition>

<table>

<tr>

<td>Ads Left</td>

<td>

<s:layout-render name="/ads_and_menu/layout.jsp">

<s:layout-component name="body">

<table>

<tr>

<td>Menu</td>

<td>${body}</td>

</tr>

</table>

</s:layout-component>

</s:layout-render>

</td>

<td>Ads Right</td>

</tr>

</table>

</s:layout-definition>

Here, layout_decorator.jsp is both a layout and a renderer: it is a layout

with sections for the ads, and it is a renderer of layout.jsp. The "body"

component is decorated by adding a menu on the left.

Now, the only difference in renderer.jsp is that it renders layout_decorator.

jsp instead of layout.jsp.

2. Write Everything Twice! Write Everything Twice! WET is the opposite of the better-

known DRY, which stands for Don’t Repeat Yourself. Thomas and Hunt’s The Pragmatic

Programmer: From Journeyman to Master [HT00] discusses the importance of DRY in

detail.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/ads_and_menu/layout_decorator.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=147

PUTTING LAYOUTS TO WORK: DECORATORS 148

Download reusable_layouts/web/ads_and_menu/renderer.jsp

<s:layout-render name="/ads_and_menu/layout_decorator.jsp">

<s:layout-component name="body">

Hello, reusable layout

</s:layout-component>

</s:layout-render>

which produces a page with ads and a menu:

Ads Left Ads Right

Header

Footer

Menu Hello, reusable layout

The thing to watch for in a layout decorator is the role of the <s:layout-

component> tag. Look at the nearest parent layout tag to determine the

role. Within <s:layout-render>, the component provides content to the

layout being rendered; within <s:layout-definition>, the component is

a placeholder for content provided by a renderer.

In layout_decorator.jsp, the <s:layout-component> tag is nested in

<s:layout-render>, so it sends content to layout.jsp. The question is this

then: how do we render the content provided by renderer.jsp for the "body"

component? A-ha—with ${body}. This is how we can both provide con-

tent to the layout and render content received from the renderer for the

same component.

Adding Components

Layout decorators are not limited to adding static content and decorat-

ing the components of the parent layout. You can also add components

to the layout decorator so that renderers can provide different content

for those new components.

Taking the previous example, say you wanted to turn the menu part

into a "menu" component so that pages can have different menus. You

cannot use the <s:layout-component> tag because it is nested within

<s:layout-render> and will send content for the "menu" component to

layout.jsp (which will cheerfully ignore it).

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/ads_and_menu/renderer.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=148

PUTTING LAYOUTS TO WORK: DECORATORS 149

Again, the solution is to use ${menu}:

Download reusable_layouts/web/ads_and_menu_component/layout_decorator.jsp

<s:layout-definition>

<table>

<tr>

<td><s:layout-component name="adsLeft"/></td>

<td>

<s:layout-render name="/ads_and_menu_component/layout.jsp">

<s:layout-component name="body">

<table>

<tr>

<td>${menu}</td>

<td>${body}</td>

</tr>

</table>

</s:layout-component>

</s:layout-render>

</td>

<td><s:layout-component name="adsRight"/></td>

</tr>

</table>

</s:layout-definition>

Now, the renderer can provide its own menu with the "menu" compo-

nent. Looking again at the previous listing, you see that you can also

turn the ads on the left and right into components. In this case, the par-

ent layout tag is <s:layout-definition>, so you can use the <s:layout-

component> tag for these components—"adsLeft" and "adsRight".3 The

content for these components is now also provided by each renderer.

For example, the following:

Download reusable_layouts/web/ads_and_menu_component/renderer.jsp

<s:layout-render name="/ads_and_menu_component/layout_decorator.jsp">

<s:layout-component name="body">

Hello, reusable layout

</s:layout-component>

<s:layout-component name="menu">

My Menu

</s:layout-component>

<s:layout-component name="adsLeft">

My Ads Left

</s:layout-component>

<s:layout-component name="adsRight">

My Ads Right

</s:layout-component>

</s:layout-render>

3. Note that you could still use ${adsLeft} and ${adsRight} here—in this case, it would be

up to you to choose the notation that you prefer.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/ads_and_menu_component/layout_decorator.jsp
http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/ads_and_menu_component/renderer.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=149

PUTTING LAYOUTS TO WORK: DECORATORS 150

produces this:

My Ads Left My Ads Right

Header

Footer

My Menu Hello, reusable layout

Notice that the order in which we specify components in a renderer does

not matter—what matters is where the layout places the components

within the template.

Default Content in Layout Decorators

The components in the last layout_decorator.jsp are "adsLeft", "menu",

"body", and "adsRight". We can also provide default content for these

components. It’s straightforward for "adsLeft" and "adsRight": just add

the default in the body of the <s:layout-component> tag. But how

do we provide a default for "menu" and "body", where we can’t use the

<s:layout-component> tag?

Remember a component can also be placed in the layout using the com-

ponent name within ${ }, such as ${menu} and ${body}. That’s because

components are in the JSP’s context. We can set a value in the same

context with the JSTL’s <c:set> tag, as shown here:

Download reusable_layouts/web/default_content_in_decorators/layout_decorator.jsp

<c:set var="menu">Default Menu</c:set>

<c:set var="body">Default Body</c:set>

<s:layout-definition>

<table>

<tr><td>

<s:layout-component name="adsLeft">

Default Ads left

</s:layout-component>

</td><td>

<s:layout-render name="/default_content_in_decorators/layout.jsp">

<s:layout-component name="body">

<table><tr>

<td>${menu}</td>

<td>${body}</td>

</tr></table>

</s:layout-component>

</s:layout-render>

</td><td>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/default_content_in_decorators/layout_decorator.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=150

PUTTING LAYOUTS TO WORK: DECORATORS 151

<s:layout-component name="adsRight">

Default Ads right

</s:layout-component>

</td></tr>

</table>

</s:layout-definition>

By placing the <c:set> tags before the <s:layout-definition> tag, we

are setting values that act as defaults. Indeed, these values are used

unless they are overridden by the renderer’s own values.

Now, this renderer:

Download reusable_layouts/web/default_content_in_decorators/renderer.jsp

<s:layout-render name="/default_content_in_decorators/layout_decorator.jsp">

<s:layout-component name="body">

Hello, reusable layout

</s:layout-component>

<s:layout-component name="adsRight">

My Ads Right

</s:layout-component>

</s:layout-render>

produces the following:

Default Ads Left My Ads Right

Header

Footer

Default Menu Hello, reusable layout

As we can see, setting default values with <c:set> gives us the same

behavior as with <s:layout-component>: defaults are used unless over-

ridden by the renderer. It’s also with <c:set> that we can have defaults

for values provided by renderers in attributes, as in <s:layout-render

name="/layout.jsp" title="My Title">. We would use <c:set var="title">Default

title</c:set> to have a default title in layout.jsp.

Adding Pages to the Webmail Application

Let’s use layout decorators to add pages to the webmail application.

Skeletons of these pages are shown in Figure 7.2, on page 153. We’ll

start adding content to the pages in the next chapter—for now, let’s

focus on the layouts.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/reusable_layouts/web/default_content_in_decorators/renderer.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=151

PUTTING LAYOUTS TO WORK: DECORATORS 152

Layouts Are Flexible

The name of the layout in the <s:layout-render> tag does not
have to be a static value. For example, you might like to render
different layouts according to the user’s preference or depend-
ing on whether the user has guest or administrator access rights.
You can use a runtime value as the name of the layout, as fol-
lows:

<s:layout-render name="${someValue}">...</s:layout-render>

You can now write code that uses whatever criteria that you
need to dynamically set the value of the someValue variable to
the path and name of the layout file.

Another nice layout feature is that you can specify a compo-
nent only once in a renderer but use that component multiple
times in the layout. For example, you might want to have the
list of links that a renderer provides both at the top and at the
bottom of a layout. There’s no problem with placing the same
component in more than one location in the layout.

When the user arrives at the application, the Login page appears. If the

user doesn’t already have an account, the Registration page is available

to create one.

Once inside the application, a menu at the top divides the pages into

three sections: Messages, Contact List (which we’ve already imple-

mented), and Compose. Notice that the Login and Registration pages

just have a welcome message in place of the menu.

The pages of the Message List section, which include the list of mes-

sages and the detailed view of a message, have an additional feature:

the list of folders is shown on the left part of the page.

To support these variants of what’s included in a page, we will use

a structure of three layouts: layout_main.jsp, layout_menu.jsp, and lay-

out_folders.jsp. As you can see in Figure 7.3, on page 154, each lay-

out builds on the previous layout. The base layout is layout_main.jsp. It

shows the page title on the top-left corner of the page and has a menu

component to show a menu next to the title. By default, the text Wel-

come to Stripes Webmail is displayed in place of the menu. The main

part of the page is the body component.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=152

PUTTING LAYOUTS TO WORK: DECORATORS 153

Figure 7.2: Adding pages to the webmail application

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=153

PUTTING LAYOUTS TO WORK: DECORATORS 154

layout_main.jsp

${title} <s:layout-component name="menu">

Welcome to Stripes Webmail

</s:layout-component>

<s:layout-component name="body"/>

layout_menu.jsp

<s:layout-component name="menu">

(Menu goes here)

</s:layout-component>

layout_folders.jsp

<s:layout-component name="body">

Folders ${body}

</s:layout-component>

Figure 7.3: Using three layouts for the webmail application

Next, layout_menu.jsp decorates layout_main.jsp to add the menu. The

menu component contains the real menu that is shown to the user once

they have logged in.

Finally, layout_folders.jsp decorates layout_menu.jsp to add the list of fold-

ers on the left side of the body content.

First, here’s what the interesting part of layout_main.jsp looks like:

Download email_16/web/WEB-INF/jsp/common/layout_main.jsp

<div id="header">

${title}

<s:layout-component name="menu">

Welcome to Stripes Webmail

</s:layout-component>

</div>

<div id="body">

<s:layout-component name="body"/>

</div>

Each renderer provides a page title and a body. The "menu" component

is placed next to the page title and contains Welcome to Stripes WebMail

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_16/web/WEB-INF/jsp/common/layout_main.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=154

PUTTING LAYOUTS TO WORK: DECORATORS 155

as a default. The Login and Registration pages can use layout_main.jsp

without providing the "menu" component.

Next, the layout_menu.jsp file uses layout_main.jsp and provides the "menu"

component:

Download email_16/web/WEB-INF/jsp/common/layout_menu.jsp

<s:layout-definition>

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="${title}">

<s:layout-component name="menu">

(menu will go here)

</s:layout-component>

<s:layout-component name="body">${body}</s:layout-component>

</s:layout-render>

</s:layout-definition>

Notice that the content for the "title" attribute and "body" component

must be taken from the renderer and sent to the layout even if they are

not modified; otherwise, the content from the renderer would be lost.

Indeed, when a JSP “A” renders a layout “B” and “B” renders another

layout “C,” content is not automatically transmitted from “A” to “C”—it

is the responsibility of “B” to do so.

Finally, layout_folders.jsp uses layout_menu.jsp and decorates the "body"

component to add the folders on the left:

Download email_16/web/WEB-INF/jsp/common/layout_folders.jsp

<s:layout-definition>

<s:layout-render name="/WEB-INF/jsp/common/layout_menu.jsp"

title="${title}" currentSection="${currentSection}">

<s:layout-component name="body">

<div id="folders">

(folders go here)

</div>

<div id="main">

${body}

</div>

</s:layout-component>

</s:layout-render>

</s:layout-definition>

This brings us to another interesting feature that we want in sophisti-

cated reusable layouts. The menu and folders are in layouts and used

in multiple pages, but their content is not static. It changes constantly:

the menu switches the highlighted section according to what the user

selects, and the folders are updated as messages are added, moved,

and deleted.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_16/web/WEB-INF/jsp/common/layout_menu.jsp
http://media.pragprog.com/titles/fdstr/code/email_16/web/WEB-INF/jsp/common/layout_folders.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=155

USING VIEW HELPERS 156

View helpers are awesome for dynamic content in reusable layouts.

Let’s break for a short walk and some fresh air before looking at view

helpers.

7.3 Using View Helpers

When you’re creating a view by writing a JSP, you have access to the

current action bean with ${actionBean} and can use the information

it provides to build the view. However, sometimes you’ll find that the

code to provide the data you need doesn’t belong in the current action

bean. This is often the case when working with layouts, because you’re

creating a view that will be reused across several pages. The current

action bean will be different on each page. In these situations, you’ll

want to use a view helper.

Using a Simple Bean as a View Helper

A view helper is a block of Java code that is independent of the current

action bean and makes your life easier when you’re building dynamic

parts of a view. You write the Java code that does the work and then

use the results in the JSP to create the view. Let’s look at a simple

example of how it’s done.

At the bottom of Figure 7.2, on page 153, we see that both the Message

List and Message Details pages have a table on the left. The table shows

the folders with the number of messages in each folder. We need the list

of folders in layout_folders.jsp to create the table.

Say we have a Folder class to represent a folder:

Download email_16/src/stripesbook/model/Folder.java

package stripesbook.model;

public class Folder extends ModelBase {

private String name;

private int numberOfMessages;

/* getters and setters... */

}

Suppose we have a FolderDao implementation that provides the list of

folders with its read() method. We need a block of code that retrieves

the list and makes it available to the JSP. That doesn’t belong in any

specific action bean, so we write a view helper.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_16/src/stripesbook/model/Folder.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=156

USING VIEW HELPERS 157

Download email_16/src/stripesbook/view/FoldersViewHelper.java

package stripesbook.view;

public class FoldersViewHelper {

private FolderDao folderDao = MockFolderDao.getInstance();

public List<Folder> getFolders() {

return folderDao.read();

}

}

This is similar to providing the list of contacts with the getContacts()

method in ContactListActionBean, as we did back in Section 3.3, The Con-

tact List Action Bean, on page 47. So, what’s the difference? Although

the contact list is displayed in a page, the list of folders is shown in

a layout and used across multiple pages. No specific action bean is

associated with displaying the list of folders. In fact, you don’t need an

action bean—just the previous FoldersViewHelper class is enough.

To use FoldersViewHelper in layout_folders.jsp, create an instance with the

<jsp:useBean> tag, and assign it to a variable with the id= attribute:

Download email_16/web/WEB-INF/jsp/common/layout_folders.jsp

<jsp:useBean class="stripesbook.view.FoldersViewHelper" id="folders"/>

We can now use ${folders} to refer to FoldersViewHelper. Creating the list

of folders in a table becomes a simple task:

Download email_16/web/WEB-INF/jsp/common/layout_folders.jsp

<div id="folders">

<d:table name="${folders.folders}">

<d:column property="name"/>

<d:column property="numberOfMessages" title="Messages"/>

</d:table>

</div>

Voilà. That was easy. Using view helpers can help us modularize func-

tionality in self-contained blocks of code that we can use to keep JSP

code simple and concise.

This works well for simple beans such as FoldersViewHelper, but if we

need the added benefits of action beans, such as having the action

bean context, access to event handlers, and so on, we can use the

<s:useActionBean> as a replacement for <jsp:useBean>. Specify the

class name in the beanclass= attribute instead of class=, and make sure

the bean implements ActionBean, of course. If we want to execute an

event, we add the event= attribute with the name of the event handler.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_16/src/stripesbook/view/FoldersViewHelper.java
http://media.pragprog.com/titles/fdstr/code/email_16/web/WEB-INF/jsp/common/layout_folders.jsp
http://media.pragprog.com/titles/fdstr/code/email_16/web/WEB-INF/jsp/common/layout_folders.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=157

USING VIEW HELPERS 158

We can even execute the resolution returned by the event handler with

executeResolution="true".

Using an Action Bean-JSP Combination as a View Helper

Sometimes you’ll find that after you’ve modularized the Java code in a

view helper class, you’d like to do the same for the block of JSP code

that uses it. The code that we used earlier to create the table of folders

was only a few lines long. But if you’re doing a significant amount of

work, you may prefer to extract that block of code into a separate JSP

and keep the original JSP from getting too lengthy.

To accomplish this, you can write a view helper as an action bean–JSP

combination. The action bean is a view helper class and has a default

event handler that forwards to a JSP. The JSP contains the block of view

code that uses the information provided by the action bean to produce

the desired portion of the view. You can then “embed” the result in the

original JSP.

Let’s see how that technique works by using it to implement the menu

that appears at the top of each page:

We’ll start with the MenuViewHelper action bean. It defines the sections

of the application (Messages, Contact List, and Compose) and makes

them available in a getter method. It also has a property to hold the

currently selected section:

Download email_16/src/stripesbook/action/MenuViewHelper.java

package stripesbook.action;

public class MenuViewHelper extends BaseActionBean {

public Section[] getSections() {

return Section.values();

}

private Section currentSection;

public Section getCurrentSection() {

return currentSection;

}

public void setCurrentSection(Section currentSection) {

this.currentSection = currentSection;

}

@DefaultHandler

public Resolution view() {

return new ForwardResolution("/WEB-INF/jsp/common/menu.jsp");

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_16/src/stripesbook/action/MenuViewHelper.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=158

USING VIEW HELPERS 159

public enum Section {

MessageList("Messages", MessageListActionBean.class),

ContactList("Contact List", ContactListActionBean.class),

Compose("Compose", MessageComposeActionBean.class);

private String text, beanclass;

Section(String text, Class<? extends ActionBean> beanclass) {

this.text = text;

this.beanclass = beanclass.getName();

}

public String getText() { return text; }

public String getBeanclass() { return beanclass; }

}

}

The default event handler forwards to menu.jsp. This is where we display

the menu:

Download email_16/web/WEB-INF/jsp/common/menu.jsp

<c:forEach var="section" items="${actionBean.sections}">

<c:choose>

Ê <c:when test="${section eq actionBean.currentSection}">

${section.text}

</c:when>

<c:otherwise>
Ë <s:link beanclass="${section.beanclass}" class="sectionLink">

${section.text}

</s:link>

</c:otherwise>

</c:choose>

</c:forEach>

The JSP goes through the sections provided by MenuViewHelper. The test

at Ê determines whether the section is currently selected and displays a

highlighted label in that case. Otherwise, a link to the section is created

at Ë, using the action bean class name and text. With the event omitted,

the link uses the default event handler of the action bean.

The menu view helper is now ready to use. How do we embed it in the

"menu" component of layout_menu.jsp? The standard JSP tag

<jsp:include> issues a request and includes the response within the

original JSP.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_16/web/WEB-INF/jsp/common/menu.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=159

USING VIEW HELPERS 160

<jsp:include page="${url}"/>

Action Bean

MenuViewHelper

menu.jsp

result

Figure 7.4: Using a view helper

That’s exactly what we need:

Download email_16/web/WEB-INF/jsp/common/layout_menu.jsp

<s:layout-component name="menu">

<s:url var="url" beanclass="stripesbook.action.MenuViewHelper"

prependContext="false">

<s:param name="currentSection" value="${currentSection}"/>

</s:url>

<jsp:include page="${url}"/>

</s:layout-component>

The URL is bound to the MenuViewHelper action bean. Its default event

handler forwards to menu.jsp, which displays the menu. The result is

put back in place of the <jsp:include> tag, as illustrated in Figure 7.4.

Notice that we have to use a URL in the <jsp:include> tag because it’s a

JSP tag, not a Stripes tag. But we can still continue to use action bean

class names instead of URLs. The <s:url> tag constructs the URL for

an action bean and stores it in a variable. We can then pass the value

to the <jsp:include> tag.

The prependContext="false" attribute is necessary because <s:url>

prepends the application context to the URL by default, and the URL

passed to the <jsp:include> tag should not include the application

context.

With <jsp:useBean>, <s:useActionBean>, and the <s:url>/

<jsp:include>/action bean/JSP combination, we have powerful ways

of providing view helpers and building dynamic reusable layouts.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_16/web/WEB-INF/jsp/common/layout_menu.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=160

IF YOU’RE USED TO TILES OR SITEMESH 161

Now that all the layouts are ready, each page of the application can use

the appropriate layout (layout_main.jsp, layout_menu.jsp, or layout_folders.

jsp), providing a title, the section to which it belongs, and a body. For

example, the Message List page would be as follows:

Download email_16/web/WEB-INF/jsp/message_list.jsp

<s:layout-render name="/WEB-INF/jsp/common/layout_folders.jsp"

title="Message List" currentSection="MessageList">

<s:layout-component name="body">

Message list goes here

</s:layout-component>

</s:layout-render>

to produce the following:

As we can see, layouts give us a way to organize the reusable parts of

our view code and concentrate on the specific content of each page.

7.4 If You’re Used to Tiles or SiteMesh

Stripes comes with an easy-to-use, full-featured reusable layout mech-

anism. But if you’re already using Tiles or SiteMesh and you’re not

ready to switch, you can still use one of those frameworks for your lay-

outs within a Stripes application. Although I won’t go into the details

of using either of these frameworks, I’ll tell you what you need to do to

integrate them with Stripes.

Tiles

Apache Tiles4 became popular as part of the Struts web application

framework and has since been extracted into a stand-alone framework.

Configuring Tiles for use with Stripes doesn’t involve any special tricks.

4. http://tiles.apache.org/

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_16/web/WEB-INF/jsp/message_list.jsp
http://tiles.apache.org/
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=161

IF YOU’RE USED TO TILES OR SITEMESH 162

Just add TilesListener to web.xml as you would do to use Tiles with any

other Java web application:

Download email_17/web/WEB-INF/web.xml

<listener>

<listener-class>

org.apache.tiles.web.startup.TilesListener

</listener-class>

</listener>

Of course, you’ll need to add the Tiles JARs and dependencies to /WEB-

INF/lib:

commons-beanutils-1.7.0.jar

commons-digester-1.8.jar

commons-logging-api-1.1.jar

tiles-api-2.0.5.jar

tiles-core-2.0.5.jar

tiles-jsp-2.0.5.jar

Optionally, you can add the TilesDispatch servlet:

Download email_17/web/WEB-INF/web.xml

<servlet>

<servlet-name>TilesDispatch</servlet-name>

<servlet-class>

org.apache.tiles.web.util.TilesDispatchServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>TilesDispatch</servlet-name>

<url-pattern>*.tiles</url-pattern>

</servlet-mapping>

This allows you to use URLs that end in .tiles, and they will automat-

ically be resolved to the names of the definitions that you use in the

tiles.xml file. For example, in ContactListActionBean, you would return a

path such as "/contact_list.tiles" instead of "/WEB-INF/jsp/contact_list.jsp":

Download email_17/src/stripesbook/action/ContactListActionBean.java

package stripesbook.action;

public class ContactListActionBean extends ContactBaseActionBean {

private static final String LIST="/contact_list.tiles";

private static final String VIEW="/contact_view.tiles";

@DefaultHandler

public Resolution list() {

return new ForwardResolution(LIST);

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_17/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fdstr/code/email_17/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fdstr/code/email_17/src/stripesbook/action/ContactListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=162

IF YOU’RE USED TO TILES OR SITEMESH 163

public Resolution view() {

return new ForwardResolution(VIEW);

}

/* ... */

}

You then define the contact_list and contact_view layouts in tiles.xml:

Download email_17/web/WEB-INF/tiles.xml

<!DOCTYPE tiles-definitions PUBLIC

"-//Apache Software Foundation//DTD Tiles Configuration 2.0//EN"

"http://tiles.apache.org/dtds/tiles-config_2_0.dtd">

<tiles-definitions>

<definition name="layout_main"

template="/WEB-INF/jsp/common/layout_main.jsp"/>

<definition name="contact_list" extends="layout_main">

<put-attribute name="title" value="Contact List"/>

<put-attribute name="currentSection" value="ContactList"/>

<put-attribute name="body" value="/WEB-INF/jsp/contact_list.jsp"/>

</definition>

<definition name="contact_view" extends="layout_main">

<put-attribute name="title" value="Contact Information"/>

<put-attribute name="currentSection" value="ContactList"/>

<put-attribute name="body" value="/WEB-INF/jsp/contact_view.jsp"/>

</definition>

</tiles-definitions>

Tiles will take care of mapping the URL to the definition and assembling

layout to construct the page.

Like I said earlier, I won’t go into any more detail about using Tiles.

The point here is that its integration with Stripes is easy and straight-

forward. You’ll find a complete working example in the book’s sample

code.

SiteMesh

OpenSymphony SiteMesh5 is another layout framework that has its

share of users. Because of the way it works, its integration with Stripes

is not quite as straightforward as Tiles. After adding the sitemesh.jar file

to /WEB-INF/lib, you’ll need to do some configuration in web.xml.

5. http://www.opensymphony.com/sitemesh/

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_17/web/WEB-INF/tiles.xml
http://www.opensymphony.com/sitemesh/
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=163

IF YOU’RE USED TO TILES OR SITEMESH 164

First, add the SiteMesh filter at the top of the file, before all other

elements:

Download email_18/web/WEB-INF/web.xml

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

>

<filter>

<filter-name>SiteMesh</filter-name>

<filter-class>

com.opensymphony.module.sitemesh.filter.PageFilter

</filter-class>

</filter>

<filter-mapping>

<filter-name>SiteMesh</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

<!-- ... -->

Next, add the INCLUDE and ERROR dispatchers to the Stripes filter:

Download email_18/web/WEB-INF/web.xml

<filter-mapping>

<filter-name>StripesFilter</filter-name>

<servlet-name>DispatcherServlet</servlet-name>

<dispatcher>REQUEST</dispatcher>

<dispatcher>FORWARD</dispatcher>

<dispatcher>INCLUDE</dispatcher>

<dispatcher>ERROR</dispatcher>

</filter-mapping>

Finally, add a mapping for *.jsp to the Stripes filter:

Download email_18/web/WEB-INF/web.xml

<filter-mapping>

<filter-name>StripesFilter</filter-name>

<url-pattern>*.jsp</url-pattern>

<dispatcher>REQUEST</dispatcher>

<dispatcher>FORWARD</dispatcher>

<dispatcher>INCLUDE</dispatcher>

<dispatcher>ERROR</dispatcher>

</filter-mapping>

SiteMesh is now ready. Discussing how SiteMesh works is outside the

scope of this book (had to use that “outside the scope” phrase, didn’t

I?), but, again, you’ll find a working example in the book’s sample code.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_18/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fdstr/code/email_18/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fdstr/code/email_18/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=164

Part II

Revving Up

165
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

I do not fear computers. I fear the lack of them.

Isaac Asimov

Chapter 8

Adding Form Input Controls
Fasten your seat belt, because the next few chapters will be fast-paced.

We’re going to crank up the webmail application by giving life to the

pages that we laid out in the previous chapter and using all kinds of

nifty Stripes features. We’ll start with the three pages that deal with

email messages: the Message List, Message Details, and Message Com-

pose pages.

The Message List page shows the messages that are in a folder. Each

message has a link that displays the text of the message in the Mes-

sage Details page. The user can write and send emails in the Message

Compose page.

There’s a lot going on in these pages. In this chapter, we’ll concentrate

on using the different types of form input controls—checkboxes, radio

buttons, and so on. In the next chapter, we’ll discuss the other features

that we need to finish implementing the three message pages.

A few supporting classes—model classes, a DAO, and type converters—

are involved here, but I don’t want to spend too much time and space

discussing the details because they don’t involve anything we haven’t

seen before. So, let’s briefly discuss the essentials. The classes involved

in supplying information about folders and messages are illustrated in

Figure 8.1, on the next page.

• The Folder model class represents a folder and contains a List of Mes-

sage objects, which contain the information concerning an indi-

vidual message: who it’s from, the subject, the message text, and

so on.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CHECKBOXES 167

FolderDao Folder
provides

Message
contains List of

FolderTypeConverter MessageTypeConverter

Id

"1"

Id

"1"

Figure 8.1: Folders and messages

• The FolderDao interface defines methods to manage folders and the

messages they contain. MockFolderDao is an implementation that

contains a few fictitious messages so that we see something when

trying the example.

• FolderTypeConverter converts a String ID to a Folder, while Message-

TypeConverter does the same for a Message. With these type con-

verters, we can use ID parameters in forms and the Folder and

Message property types in action beans. We discussed this tech-

nique in Section 5.4, Using a Type Converter and Formatter to Load

Model Objects, on page 117.

Let’s get to using form input controls, starting with checkboxes.

8.1 Checkboxes

The Message List page, shown in Figure 8.2, on the next page, allows

the user to select a folder on the left and view the messages that are in

that folder. The list of messages includes links to view the details of a

message. There’s also a column of checkboxes on the left, allowing the

user to select messages. With the controls at the bottom, the user can

delete the selected messages or move them to a different folder.

The MessageListActionBean class is the action bean associated to this

page, with a default event handler that forwards to message_list.jsp. This

JSP renders the page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=167

CHECKBOXES 168

Figure 8.2: The Message List page

To create the column of checkboxes in the message list, we’ll use the

<s:checkbox> tag:

Download email_19/web/WEB-INF/jsp/message_list.jsp

<s:form beanclass="stripesbook.action.MessageListActionBean">

<d:table name="${folder.messages}" requestURI="" id="message"

pagesize="10" defaultsort="2" defaultorder="descending">

<d:column>

<s:checkbox name="selectedMessages" value="${message.id}"/>

</d:column>

<!-- ... -->

</d:table>

</s:form>

The checkboxes are bound to the selectedMessages property of Message-

ListActionBean. For every checkbox that the user checks, the value that’s

in the value= attribute will be sent as input—in this case, the ID of the

corresponding message.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_list.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=168

CHECKBOXES 169

Stripes Form Input Tags

All Stripes form input tags use the name= attribute to bind the
value of the input to an action bean property. Also note that
these tags must always be nested within an <s:form> tag.

Using Stripes form input tags gives Stripes a chance to do sev-
eral things for you, such as automatically populating the fields
with existing data. This works both for updating the properties
of an existing object and for redisplaying a form when valida-
tion errors have occurred. Other goodies include adding the
maxlength= attribute to a text field when the corresponding
property has a maxlength= validation, using model objects to
generate options in a select box (as we’ll see in this chapter),
and looking up labels in resource bundles (explored in Chap-
ter 11, Parlez-Vous Français? Making It Multilingual.)

Finally, the Stripes input tags also support all HTML attributes.
The attributes for which Stripes has no use are passed through
without modification. Yes, this includes the class= attribute—you
don’t have to use styleClass=, cssClass=, or any other renamed
attribute like some other frameworks require you to do.

We can use a List<Message> property in order to receive all the selected

messages:1

Download email_19/src/stripesbook/action/MessageListActionBean.java

private List<Message> selectedMessages;

public List<Message> getSelectedMessages() {

return selectedMessages;

}

public void setSelectedMessages(List<Message> selectedMessages) {

this.selectedMessages = selectedMessages;

}

When the user submits the form, selectedMessages will contain the mes-

sages that the user checked. It’s very simple, then, to do something with

these messages in an event handler.

1. This is one of several ways to use checkboxes. I explain the different ways in the

sidebar on page 171.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=169

SELECT BOXES 170

For example, with the Delete button associated to the delete() event

handler, here’s how we would delete the selected messages:

Download email_19/src/stripesbook/action/MessageListActionBean.java

public Resolution delete() {

for (Message message : selectedMessages) {

folderDao.deleteMessage(message);

}

return new RedirectResolution(getClass());

}

private FolderDao folderDao = MockFolderDao.getInstance();

Making sure that at least one message is selected is easy too. When

no checkbox is checked, the corresponding property on the action bean

will be null. So, all we have to do is make selectedMessages a required

field:

Download email_19/src/stripesbook/action/MessageListActionBean.java

@Validate(required=true, on={"delete", "moveToFolder"})

private List<Message> selectedMessages;

Let’s not forget to display the potential error message to the user! Sim-

ply adding an <s:errors> tag under the message table and an error

message in the resource bundle does the trick:

Download email_19/web/WEB-INF/jsp/message_list.jsp

<div><s:errors field="selectedMessages"/></div>

Download email_19/res/StripesResources.properties

selectedMessages.valueNotPresent=You must select at least one message.

Now, clicking the Delete button with no selected checkbox gives an

error message, as shown here:

8.2 Select Boxes

To move the selected messages to a different folder, the user must first

select a folder. For that, we’ll add a select box to the left of the Move

button:

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageListActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageListActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_list.jsp
http://media.pragprog.com/titles/fdstr/code/email_19/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=170

SELECT BOXES 171

A Bit More About How Checkboxes Work

In Stripes you can use checkboxes with different types of prop-
erties in the action bean: with an individual property, a Collec-

tion, or a Map.

• With an individual property:

<s:checkbox name="property" value="value1"/>

T property;

If the checkbox is checked, property is set to value1 with
the usual type conversion to the type T. If the checkbox
is unchecked, property is set to its default value: null for
Object, false for boolean, 0 for int, and so on.

• With a Collection property:

<s:checkbox name="property" value="value1"/>
<s:checkbox name="property" value="value2"/>
...
<s:checkbox name="property" value="valueN"/>

Collection<T> property;

For each checked checkbox, the corresponding value
(value1, value2, . . .) is added to the property collection.
Again, values are converted to the type T.

If no checkbox is checked, property is set to null.

• With a Map property:

<s:checkbox name="property.key1" value="value1"/>
<s:checkbox name="property.key2" value="value2"/>
...
<s:checkbox name="property.keyN" value="valueN"/>

Map<K,V> property;

If at least one checkbox is checked, the property map
contains every key: key1, key2, . . . , keyN. For each key,
the value is the corresponding value1, value2, and so on,
if the checkbox is checked or is null if the checkbox is
unchecked.

Type conversion occurs for converting both keys to K and
values to V.

If no checkbox is checked, property is set to null.

No matter how you use checkboxes, the value= attribute of the
<s:checkbox> tag is optional. If omitted, the default value is
true.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=171

SELECT BOXES 172

The <s:select> tag creates a select box that allows a single selection

by default. Stripes offers helper tags that generate the options of the

select box from a Collection, an enum, or a Map. In our case, we want

the options to be the list of folders. We can obtain this list from the

FoldersViewHelper class that we wrote on page 156. Here’s the code to

create the select box:

Download email_19/web/WEB-INF/jsp/common/message_action.jsp

<jsp:useBean class="stripesbook.view.FoldersViewHelper" id="folders"/>

Move to folder:

<s:select name="selectedFolder">

<s:option value="">Select a folder...</s:option>

<s:options-collection collection="${folders.folders}"

value="id" label="name"/>

</s:select>

<s:submit name="moveToFolder" value="Move"/>

<s:errors field="selectedFolder"/>

By using <s:options-collection> within <s:select>, we can easily gen-

erate options from the list of folders. Each option has a value and a

label obtained by calling the value= and label= properties on each object

of the collection. Here, getId() and getName() are called on each Folder

object. The user sees the name of the folder as each option of the select

box, and the folder’s ID is set on the selectedFolder property of the action

bean.

Also notice the first option, labeled “Select a folder....” The <s:option>

tag creates a single option that’s added to the select box. But we don’t

want this option to be a valid selection—we’re just using it so that the

user sees the “Select a folder...” message in the select box. We can use

value="" so that the option sends the empty string as a value. Since

Stripes treats empty strings as null, the select box acts like a blank input

field when the “Select a folder...” option is selected. By making select-

edFolder a required field with @Validate(required=true, on="moveToFolder"),

clicking Move without selecting a folder will show an error message:

This way of distinguishing the first option as a message to the user (and

not a valid option) is much more elegant than putting a value of -1 or

some other “magic number” for that option. Our code is not polluted

with checks for this special value in the action bean and the manual

creation of a required-field validation error. Using an empty string and

making the field required with @Validate fits in very naturally into the

Stripes validation mechanism.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/common/message_action.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=172

SELECT BOXES 173

Figure 8.3: The Message Compose page

Using Multiple Selection Boxes

Select boxes can also allow the user to select more than one item at a

time. For example, the Message Compose page, shown in Figure 8.3,

has a select box on the right side that contains the list of contacts. The

user can easily add recipients by selecting the contacts and clicking

one of the arrow buttons.

To allow multiple selection in the select box, add multiple="true" to the

<s:select> tag and, optionally, the size= attribute to indicate how many

rows to show at a time.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=173

IMAGE BUTTONS AND TEXT AREAS 174

Download email_19/web/WEB-INF/jsp/message_compose.jsp

<jsp:useBean class="stripesbook.action.ContactListActionBean"

id="contacts"/>

<!-- ... -->

<s:form beanclass="stripesbook.action.MessageComposeActionBean">

<!-- ... -->

<s:select name="contacts" multiple="true" size="7">

<s:options-collection collection="${contacts.contacts}"

value="id" sort="firstName"/>

</s:select>

<!-- ... -->

</s:form>

</s:layout-component>

Inside <s:select>, the <s:options-collection> tag generates options

from the list of contacts obtained from ContactListActionBean. Notice that

you can use the sort= attribute to indicate the property by which to sort

the objects of the collection. We’re sorting the contacts by their first

name.

A multiple-selection box acts much like a series of checkboxes that are

bound to a Collection property. In this case, the selected contacts are

bound to the contacts property of the MessageComposeActionBean class:

Download email_19/src/stripesbook/action/MessageComposeActionBean.java

private List<Contact> contacts;

public List<Contact> getContacts() {

return contacts;

}

public void setContacts(List<Contact> contacts) {

this.contacts = contacts;

}

Stripes automatically puts the selected contacts in the list so that we

can add them to the To, Cc, or Bcc field.

8.3 Image Buttons and Text Areas

Continuing with the Message Compose page, let’s add the image but-

tons with arrows that are next to the contact list select box and add the

text area where the user can compose the text of the message.

Using Image Buttons

The <s:image> tag creates an image button that invokes the action

bean event handler indicated in the name= attribute.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_compose.jsp
http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageComposeActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=174

IMAGE BUTTONS AND TEXT AREAS 175

More Select Box Features

Besides the <s:options-collection> tag, you can also use
<s:options-map> and <s:options-enumeration> to generate
options in a select box from a Map and an enum, respectively.
With <s:options-map>, the collection of values is the map’s set
of Map.Entry objects, as obtained from entrySet(). For <s:options-
enumeration>, specify the enumeration in the enum= attribute
to generate options based on the values defined by the enu-
meration.

With all three <s:options-xx> tags, you can also use the group=

attribute to generate <optgroup/> tags within a select box. This
groups options together with a different label for each group.
For example, say the Folder class had a type property. With two
folders named Inbox and Reference having the Received type
and with two folders named Outbox and Archive having the Sent
type, you could use group="type" to group folders by their type:

<s:select name="selectedFolder">
<s:options-collection collection="${actionBean.folders}"

value="id" label="name" group="type"/>
</s:select>

This would generate a select box, as shown here:

Here’s one more tip. If you have a collection of objects from
which you want to generate options in a select box but want to
display labels in different formats without polluting your model
class with formatting code, you can always implement a For-

matter with the different format types and patterns you need.
Then, you can generate the options with the plain <s:option>

tag and use <s:format> to format the label in different ways.
For example:

<s:select name="...">
<c:forEach items="${someCollection}" var="item">
<s:option value="${item.id}">
<s:format value="${item}" formatType="..." formatPattern="..."/>

</s:option>
</c:forEach>

</s:select>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=175

IMAGE BUTTONS AND TEXT AREAS 176

The src= attribute contains the path to the image:

Download email_19/web/WEB-INF/jsp/message_compose.jsp

<c:set var="arrow" value="/images/arrow.png"/>

<tr>

<th>To:</th>

<td><s:text name="message.to" size="60"/></td>

<td><s:image name="addTo" src="${arrow}"/></td>

</tr>

<tr>

<th>Cc:</th>

<td><s:text name="message.cc" size="60"/></td>

<td><s:image name="addCc" src="${arrow}"/></td>

</tr>

<tr>

<th>Bcc:</th>

<td><s:text name="message.bcc" size="60"/></td>

<td><s:image name="addBcc" src="${arrow}"/></td>

</tr>

This generates <input type="image" ...> tags. So, what does the <s:image>

tag do for us? It adds the application context path in front of the image

path and gives us the ability to look up images and alternate text in

localized resource bundles, as we’ll see in Section 11.2, Localizing Image

Buttons, on page 232.

When the user clicks an arrow button, the selected contacts are added

to the addresses that are in the field next to the button. But the user

may have also entered other addresses directly in the text field. Com-

bining the input of the text field with the input from the select box is

somewhat tricky; we’ll discuss this in the next chapter. Let’s continue

working with form input controls.

Adding the text area for the message text is a one-liner with the tag

<s:textarea>:

Download email_19/web/WEB-INF/jsp/message_compose.jsp

<s:textarea name="message.text" cols="87" rows="12"/>

Again, using the Stripes equivalent instead of the plain HTML tag has

the benefit of automatically repopulating the value—we don’t want the

user to lose the text if the form is submitted and a validation error

occurs.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_compose.jsp
http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_compose.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=176

IMAGE BUTTONS AND TEXT AREAS 177

Tim Says. . .

Input Tags Mimic the HTML Tags As Closely As Possible

Stripes input tags try very hard to mimic their HTML counterparts
as closely as possible. This means that, in general, if you already
know how to use HTML input, select, textarea, form tags, and so
on, then you should feel right at home with the Stripes tags.
Even the class attribute for specifying CSS classes is the same.

There are, of course, some deviations. First is one you may
have already noticed—where in HTML you would write <input

type="X">, in Stripes you write <s:X>. For example, you would
write <s:radio> instead of <input type="radio">. The main reason
for doing this is to make your life easier—each of the differ-
ent input types has different required and permitted attributes.
Making them separate tags allows the set of fields to be val-
idated at compile time and checked by most popular IDEs.
Keeping them as one tag would lead to unhelpful code com-
pletion and more runtime errors.

In addition, several Stripes tags add attributes to the list sup-
ported by their HTML equivalents. This is done to allow you to
activate additional functionality offered by Stripes. For exam-
ple, the beanclass attribute on the Stripes form tag allows you
to specify the action bean class to target instead of having
to specify the URL, and the format* attributes on the input tags
allow you to specify how values should be formatted when writ-
ten to the page.

Lastly, as Freddy discusses, there are several “helper” tags that
have no equivalent in HTML that help produce things such as
lists of options from collections and enumerations.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=177

USING CROSS-PAGE CONTROLS 178

Figure 8.4: The Message Details page

8.4 Using Cross-page Controls

The Message Details page (shown in Figure 8.4) appears when the user

clicks a message subject on the Message List page. There’s nothing

spectacular about the Message Details page, but what’s interesting is

that the controls at the bottom are the same as in the Message List

page; the only difference is that deleting or moving to a folder applies

to the currently displayed message rather than a series of messages

checked off in the Message List page. Let’s see how we can define the

controls in one place and reuse them in these two different contexts.

We’ll start by putting the controls in a separate JSP (message_action.jsp)

under the common directory since it’s being used in more than one

place:

Download email_19/web/WEB-INF/jsp/common/message_action.jsp

<jsp:useBean class="stripesbook.view.FoldersViewHelper" id="folders"/>

<div id="action">

<s:submit name="delete" value="Delete"/>

Move to folder:

<s:select name="selectedFolder">

<s:option value="">Select a folder...</s:option>

<s:options-collection collection="${folders.folders}"

value="id" label="name"/>

</s:select>

<s:submit name="moveToFolder" value="Move"/>

<s:errors field="selectedFolder"/>

</div>

This code will be included in message_list.jsp and message_details.jsp with

the <%@include%> directive. Unlike <jsp:include/>, <%@include%>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/common/message_action.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=178

USING CROSS-PAGE CONTROLS 179

does not execute a request to the target; rather, it pulls the source code

into the JSP at the location of the directive:

Download email_19/web/WEB-INF/jsp/message_list.jsp

<s:form beanclass="stripesbook.action.MessageListActionBean">

<d:table ...>

<!-- ... -->

<d:column>

<s:checkbox name="selectedMessages" value="${message.id}"/>

</d:column>

<!-- ... -->

</d:table>

<c:if test="${not empty folder.messages}">

<div><s:errors field="selectedMessages"/></div>

<%@include file="/WEB-INF/jsp/common/message_action.jsp"%>

</c:if>

</s:form>

Download email_19/web/WEB-INF/jsp/message_details.jsp

<s:form beanclass="stripesbook.action.MessageListActionBean">

<%@include file="/WEB-INF/jsp/common/message_action.jsp"%>

<div>

<s:hidden name="selectedMessages"

value="${actionBean.message.id}"/>

</div>

</s:form>

Notice that in both cases the included code becomes nested within an

<s:form> tag. Indeed, the code from message_action.jsp is not valid on its

own, because it contains form input controls with no parent <s:form>

tag.

For the Message List page, the controls are included only if the folder is

not empty; it doesn’t make sense to have controls for deleting or moving

messages when no messages are being displayed in the page!

For the Message Details page, the user does not have to select messages

because the controls apply to the currently displayed message. But we

do need a parameter to indicate this message; the <s:hidden> tag takes

care of that.

The great thing about doing this, besides reusing the message_action.jsp

code in two different contexts, is that we don’t even need to change

anything in MessageListActionBean. Both forms submit the selectedMes-

sages parameter to a property of type List<Message>. The Message Details

page happens to submit only one value. The event handlers for delet-

ing and moving messages work the same either way: they iterate over

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_list.jsp
http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_details.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=179

RADIO BUTTONS 180

the list of selected messages, as we can see in the complete source for

MessageListActionBean:

Download email_19/src/stripesbook/action/MessageListActionBean.java

package stripesbook.action;

public class MessageListActionBean extends BaseActionBean {

private static final String LIST="/WEB-INF/jsp/message_list.jsp";

@DefaultHandler

public Resolution list() {

return new ForwardResolution(LIST);

}

public Resolution delete() {

for (Message message : selectedMessages) {

folderDao.deleteMessage(message);

}

return new RedirectResolution(getClass());

}

public Resolution moveToFolder() {

for (Message message : selectedMessages) {

folderDao.addMessage(message, selectedFolder);

}

return new RedirectResolution(getClass());

}

@Validate(required=true, on={"delete", "moveToFolder"})

private List<Message> selectedMessages;

public List<Message> getSelectedMessages() {

return selectedMessages;

}

public void setSelectedMessages(List<Message> selectedMessages) {

this.selectedMessages = selectedMessages;

}

@Validate(required=true, on="moveToFolder")

private Folder selectedFolder;

public Folder getSelectedFolder() {

return selectedFolder;

}

public void setSelectedFolder(Folder selectedFolder) {

this.selectedFolder = selectedFolder;

}

private FolderDao folderDao = MockFolderDao.getInstance();

}

8.5 Radio Buttons

To wrap up our discussion of form input controls, let’s use radio but-

tons to add a feature to the Contact Form page: entering the contact’s

gender, as shown in Figure 8.5, on the next page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=180

RADIO BUTTONS 181

Figure 8.5: Using radio buttons for the contact’s gender

We’ll need a Gender property in the Contact class:

Download email_19/src/stripesbook/model/Gender.java

package stripesbook.model;

public enum Gender {

Female,

Male

}

Download email_19/src/stripesbook/model/Contact.java

package stripesbook.model;

public class Contact extends ModelBase {

/* ... */

private Gender gender;

/* ... */

public Gender getGender() {

return gender;

}

public void setGender(Gender gender) {

this.gender = gender;

}

}

The value the user enters for the gender must be either Female or Male,

case sensitive. It’s much easier and less error-prone for the user to

choose a radio button than having to type those values in a text field.

Also, radio buttons allow only one selection, making them appropriate

for the gender property.

The <s:radio> tag creates a radio button. Its name= attribute serves

an additional purpose besides containing the name of the action bean

property: it also groups buttons that have the same name. Only one

radio button from a group can be selected at a time.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/model/Gender.java
http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/model/Contact.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=181

RADIO BUTTONS 182

Since we added the gender property to the Contact class, the name= of

each radio button will be contact.gender. We just need ContactFormAc-

tionBean to supply the possible values for the gender:

Download email_19/src/stripesbook/action/ContactFormActionBean.java

public Gender[] getGenders() {

return Gender.values();

}

This makes it easy to create the radio buttons for the gender in con-

tact_form.jsp:

Download email_19/web/WEB-INF/jsp/contact_form.jsp

<c:forEach var="gender" items="${actionBean.genders}">

<s:radio name="contact.gender" value="${gender}"/>${gender}

</c:forEach>

In the value= attribute is the actual value to submit as input to the

action bean property if the radio button is selected. This is the same

as if the user had typed that value in a text field. The value can be

different from the label that is shown next to the radio button; in fact,

notice that the label is not part of the <s:radio> tag at all. You can

display the label wherever you want.

The radio buttons for the gender now appear in the contact form, as

shown here:

What’s Next?

We learned about the different types of form input controls and how

they work with Stripes tags and action bean properties. Along the way,

we got quite a lot done in the webmail application. In the next chap-

ter, we’ll finish implementing the features of the Message List, Message

Details, and Message Compose pages.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/ContactFormActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/contact_form.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=182

Nothing in life is to be feared; it is only to be understood.

Now is the time to understand more, so that we may fear

less.

Marie Curie

Chapter 9

Advanced Features Made Easy
The webmail application is moving along nicely. Let’s finishing imple-

menting the three message pages.

9.1 Managing Session Data

In the list of folders that appears on the left of the Message List and

Message Details pages, the currently selected folder is indicated with

an arrow next to the name of the folder, as we can see in Figure 9.1.

We need a place to store the currently selected Folder object. As the user

navigates in different pages of the application, it’d be nice to remember

the last selected folder so that we show its contents when the user

returns to the Message List page.

Such per-user state information is usually stored in the session. If

you’ve worked with the Servlet API’s HttpSession interface before, you

know that things can get messy when you litter your code with calls

to setAttribute() and getAttribute(). Both these methods require us to use

Figure 9.1: Showing the currently selected folder

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

MANAGING SESSION DATA 184

an arbitrary key, so we’ll have to declare constants somewhere in our

code. The session returns the data as an Object, so we have to cast that

back to our original data type. For example:

// Current folder

Folder folder = ...;

// Key used to store the folder

String FOLDER = "folder";

// Store the folder in the session

HttpSession session = request.getSession();

session.setAttribute(FOLDER, folder);

// Retrieve the folder from the session

// Needs a cast because getAttribute() returns Object

folder = (Folder) session.getAttribute(FOLDER);

Ugh. That’s not pretty. It’s nevertheless necessary if we’re going to use

the session. But we can hide this code in the back of the closet and

rarely have to look at it again. Stripes provides a clean solution for

session-related code with the ActionBeanContext class. As you know,

this object is always available in action beans via the getContext()

method. Also, ActionBeanContext provides getRequest() to obtain the cur-

rent request and, from there, the session. All this makes ActionBeanCon-

text the perfect place to encapsulate the code that deals with HttpSession

and to shield the rest of the application from constants, casts, and ugly

goblins.

By creating a class that extends ActionBeanContext, we can add meth-

ods that manage objects in the session. A custom ActionBeanContext

subclass is considered an extension, so Stripes loads it automatically

if we put the class in a package that we configured with the Exten-

sion.Packages parameter in web.xml.1

The following MyActionBeanContext class stores and retrieves the cur-

rent Folder object using the session, taking care of setting a default

when no previous selection exists.

1. See the sidebar on page 115 if you need a refresher on Stripes extensions.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=184

MANAGING SESSION DATA 185

Download email_19/src/stripesbook/ext/MyActionBeanContext.java

package stripesbook.ext;

public class MyActionBeanContext extends ActionBeanContext {

private static final String FOLDER = "folder";

public void setCurrentFolder(Folder folder) {

setCurrent(FOLDER, folder);

}

public Folder getCurrentFolder() {

Folder folder = MockFolderDao.getInstance().read().get(0);

return getCurrent(FOLDER, folder);

}

protected void setCurrent(String key, Object value) {

getRequest().getSession().setAttribute(key, value);

}

@SuppressWarnings("unchecked")

protected <T> T getCurrent(String key, T defaultValue) {

T value = (T) getRequest().getSession().getAttribute(key);

if (value == null) {

value = defaultValue;

setCurrent(key, value);

}

return value;

}

}

All we need to do now is adjust the getter and setter methods in BaseAc-

tionBean so that they use MyActionBeanContext. That way, the cast of

ActionBeanContext to MyActionBeanContext is done in only one place:

Download email_19/src/stripesbook/action/BaseActionBean.java

package stripesbook.action;

public abstract class BaseActionBean implements ActionBean {

private MyActionBeanContext context;

public MyActionBeanContext getContext() {

return context;

}

public void setContext(ActionBeanContext context) {

this.context = (MyActionBeanContext) context;

}

}

Notice that we’re using a feature introduced in the JDK 1.5, which

is to allow overriding a method (getContext()) and returning an object

whose type (MyActionBeanContext) is a subclass of the type returned by

the superclass (ActionBeanContext). This removes the need for casting

to MyActionBeanContext elsewhere in the code—the only cast is in the

setContext() method.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/ext/MyActionBeanContext.java
http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/BaseActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=185

MANAGING SESSION DATA 186

It’s now very clean and simple to retrieve the currently selected folder.

Action beans can call getContext().getCurrentFolder(), and JSPs can use

${actionBean.context.currentFolder}. Neither has to bother with the

session-tinkering details.

The layout_folders.jsp file can now display the list of folders, using the

currently selected folder to determine where to place the arrow:

Download email_19/web/WEB-INF/jsp/common/layout_folders.jsp

<jsp:useBean class="stripesbook.view.FoldersViewHelper" id="folders"/>

<!-- ... -->

<s:layout-definition>

<!-- ... -->

<div id="folders">

<d:table name="${folders.folders}" id="folder">

<d:column title="Name">

<s:link

beanclass="stripesbook.action.MessageListActionBean">

<s:param name="folder" value="${folder.id}"/>

${folder.name}

</s:link>

<c:if test="${actionBean.context.currentFolder eq folder}">

<img src="${contextPath}/images/arrow.png"

style="border: none; vertical-align: bottom"/>

</c:if>

</d:column>

<d:column title="Messages" style="text-align: right">

${fn:length(folder.messages)}

</d:column>

</d:table>

</div>

<!-- ... -->

</s:layout-definition>

We’ve also created links on the names of the folders. Clicking a folder

name changes the selected folder and displays the messages it con-

tains. This has to work across all pages that use layout_folders.jsp, so

we add the setter method that changes the currently selected folder in

BaseActionBean:

Download email_19/src/stripesbook/action/BaseActionBean.java

public void setFolder(Folder folder) {

getContext().setCurrentFolder(folder);

}

Now the currently selected folder will be changed with the <s:param>

tag that we used, with the folder= parameter name and the folder Id as

a value. With a type converter, the Id is automatically converted to a

Folder object.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/common/layout_folders.jsp
http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/BaseActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=186

MANAGING SESSION DATA 187

Joe Asks. . .

Why Not Just Use a context.currentFolder Parameter to
Change the Currently Selected Folder?

We added a setter method on BaseActionBean to set the cur-
rently selected folder on the MyActionBeanContext object:

public void setFolder(Folder folder) {
getContext().setCurrentFolder(folder);

}

The folder is retrieved in the JSP with ${action-

Bean.context.currentFolder}, so why not use the same parameter
to change the value, like this?

<s:link ...>
<s:param name="context.currentFolder" value="${folder.id}"/>
...

</s:link>

This won’t work because setting a value on an ActionBean-

Context object from a request parameter is blocked by Stripes
for security purposes. Indeed, ActionBeanContext contains all
the information concerning the current request and response,
so it would be unsafe to allow users to bind into this object
with context.xx parameters. Imagine what would happen if
any user could gain administrator access just by adding con-

text.user.admin=true to the end of a URL! Binding indirectly, as we
did for the currently selected folder, ensures that nothing funny
is going on behind your back.

The message_list.jsp file renders the layout_folder.jsp layout to include the

list of folders and uses ${actionBean.context.currentFolder} to obtain the

current folder and display the messages that it contains:

Download email_19/web/WEB-INF/jsp/message_list.jsp

<c:set var="folder" value="${actionBean.context.currentFolder}"/>

<s:layout-render name="/WEB-INF/jsp/common/layout_folders.jsp"

title="Message List" currentSection="MessageList">

<s:layout-component name="body">

<d:table name="${folder.messages}" requestURI="" id="message"

pagesize="10" defaultsort="2" defaultorder="descending">

<d:column title="Date" sortable="true">

<s:format value="${message.date}"

formatPattern="yyyy-MM-dd HH:mm"/>

</d:column>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_list.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=187

ALTERING FORM VALUES IN THE ACTION BEAN 188

<d:column property="from" sortable="true"/>

<d:column property="to" sortable="true"/>

<d:column title="Subject" sortable="true">

<s:link

beanclass="stripesbook.action.MessageDetailsActionBean">

<s:param name="message" value="${message.id}"/>

${message.subject}

</s:link>

</d:column>

</d:table>

</s:layout-component>

</s:layout-render>

The folder list is now fully functional, and we’re just getting warmed

up.

9.2 Altering Form Values in the Action Bean

Remember that in the Message Compose page we had a list of contacts

in a select box and arrow buttons to add the selected contacts to the

list of recipients:

Each arrow button invokes an event handler that builds a string from

the text field and the selected contacts. It’s tempting to just change the

value of the message’s to, from, or bcc property in the action bean and

expect the new value to show up in the corresponding text field:

Download email_19/src/stripesbook/action/MessageComposeActionBean.java

public Resolution addTo() {

getMessage().setTo(getRecipientString(getMessage().getTo()));

return new ForwardResolution(COMPOSE);

}

public Resolution addCc() {

getMessage().setCc(getRecipientString(getMessage().getCc()));

return new ForwardResolution(COMPOSE);

}

public Resolution addBcc() {

getMessage().setBcc(getRecipientString(getMessage().getBcc()));

return new ForwardResolution(COMPOSE);

}

private String getRecipientString(String previous) {

if (contacts != null) {

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageComposeActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=188

ALTERING FORM VALUES IN THE ACTION BEAN 189

StringBuilder result = new StringBuilder();

for (Contact contact : contacts) {

result.append(contact).append(',');

}

result.setLength(result.length() - 1);

String recpt = (previous == null) ? "" : previous + ",";

return recpt + result.toString();

}

return previous;

}

This code looks fine, but it won’t work! Well, not yet, anyway, and I’ll

tell you why. To decide how to populate a form input field, Stripes uses

a population strategy, which is an extension represented by the Popula-

tionStrategy interface. Out of the box, Stripes uses the DefaultPopulation-

Strategy, which prefers values from request parameters to values from

action bean properties when populating a form input field. Consider

this scenario, in which the user does the following:

• Types Fred in the To field

• Selects Daniel Greene from the contact box

• Clicks the arrow button next to the To field

The request parameters will be as follows:

message.to=Fred

contacts=(ID of Daniel Greene)

In the addTo() event handler, our clever code combines the two param-

eters to set the message.to action bean property to Fred, Daniel Greene.

But the message.to= request parameter is still “Fred,” and that’s the

value used by Stripes to populate the To text field.

So, what’s a developer to do? Stripes provides an alternate population

strategy, BeanFirstPopulationStrategy, which looks at the action bean prop-

erty before the request parameter. That’s what we want. Since it is a

Stripes extension, we just have to create a class that extends BeanFirst-

PopulationStrategy and add it to our extension package, stripesbook.ext:

Download email_19/src/stripesbook/ext/MyPopulationStrategy.java

package stripesbook.ext;

public class MyPopulationStrategy extends BeanFirstPopulationStrategy{

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/ext/MyPopulationStrategy.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=189

ALTERING FORM VALUES IN THE ACTION BEAN 190

Tim Says. . .

ActionBeanContext Isn’t Limited to HttpSession

Freddy covered an example of using the action bean context
to insulate the rest of your code from accessing things that are
stored in HttpSession. In my opinion, an even greater benefit is
that because your code is insulated from the implementation
details, you can actually change how you store and access
items without any impact.

Let’s say, for example, that your HttpSession object is getting too
big—you’re storing too much in it. In such a situation you might
choose another strategy: store some identifier in a cookie and
then look up the actual object when needed. The following is
an example of how you might do that, and no caller will ever
know the difference:

package stripesbook.ext;
public class MyActionBeanContext extends ActionBeanContext {

private static final String FOLDER = "folder";
private Folder currentFolder = null;

public void setCurrentFolder(Folder folder) {
Cookie c = new Cookie(FOLDER, String.valueOf(folder.getId()))
getResponse().addCookie(c);

}
public Folder getCurrentFolder() {

if (this.currentFolder == null) {
Cookie c = findCookie(FOLDER);
int id = (c != null) Integer.parseInt(c.getValue()) : 0;
this.currentFolder = MockFolderDao.getInstance().read(id);

}
return this.currentFolder;

}
private Cookie findCookie(String name) {

for (Cookie c : getRequest().getCookies()) {
if (c.getName().equals(name)) {

return c;
}

}
return null;

}
}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=190

USING INDEXED PROPERTIES 191

Joe Asks. . .

Why Isn’t BeanFirstPopulationStrategy Used by Default?

Why indeed? After all, it combines the best of both worlds: it
uses values you’ve set on action bean properties, and it falls
back to request parameters. It’s certainly a good choice for
new Stripes applications. However, because BeanFirstPopulation-

Strategy wasn’t introduced until Stripes 1.4, making it the default
would risk breaking backward compatibility in ways that would
be very difficult to track down. Perhaps a future version of
Stripes will make BeanFirstPopulationStrategy the default—with a
big loud warning about backward incompatibility—but as of
Stripes 1.5, you have to tell Stripes to use it.

MyPopulationStrategy is just an empty class, but since it extends BeanFirst-

PopulationStrategy, the effect is indeed to load this population strategy.2

Just like that, Stripes uses the value that we set in the action bean

property to populate the text field. Our code combines recipients from

the text field, and the select box now works.

9.3 Using Indexed Properties

The Message Compose page includes fields for uploading files as attach-

ments, as shown in Figure 9.2, on the following page.

The user can upload up to four files at a time. After clicking the Upload

button, the files are attached, and the user can upload more files.

Before we get to uploading files, we need to discuss how Stripes makes

it easy to manage a series of fields like we have for the attachments.

Notice that we’re (arbitrarily) using four fields at a time—but we cer-

tainly don’t need four properties in the action bean.

Whenever we’re dealing with a series of rows of input fields that we

want to bind to the same property of an action bean, we’ll want to use

what Stripes calls indexed properties.

2. You can also use a configuration parameter instead of an empty class; see the sidebar

on the following page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=191

USING INDEXED PROPERTIES 192

Using an Empty Class or a Configuration Parameter to Load a
Stripes Extension

We added an empty class that extends BeanFirstPopulationStrat-

egy as a way of loading a Stripes extension. I like using this trick
because no additional configuration is involved, all extensions
are together in an extension package, and I’ll have a class
ready if I need to customize the population strategy. If you don’t
like this empty class idea, you can use a configuration param-
eter in web.xml instead:

<filter>
<filter-name>StripesFilter</filter-name>
<filter-class>

net.sourceforge.stripes.controller.StripesFilter
</filter-class>
<!-- ... -->
<!-- Configure the population strategy -->
<init-param>

<param-name>PopulationStrategy.Class</param-name>
<param-value>

net.sourceforge.stripes.tag.BeanFirstPopulationStrategy
</param-value>

</init-param>
</filter>

In fact, you always have the choice of getting Stripes to load
an extension either by adding it to an extension package or
by configuring it explicitly with a web.xml parameter. For a com-
plete list of configuration parameters, check out Appendix A,
on page 369.

Figure 9.2: Fields for uploading attachments

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=192

USING INDEXED PROPERTIES 193

Figure 9.3: Using rows of input fields

Here’s how it works: we use square brackets and indices in the name=

of the field:

Download email_19/web/WEB-INF/jsp/message_compose.jsp

<c:forEach var="index" begin="0" end="3">

<div><s:file name="attachments[${index}]"/></div>

</c:forEach>

The previous code generates fields with the following names:

attachments[0]

attachments[1]

attachments[2]

attachments[3]

The fields are bound to a single attachments property of type List on the

action bean. Stripes will populate the list with the items entered by the

user, stopping at the last field that contains a value. For example, if the

user enters "picture.jpg" in the second field, attachments will contain [null,

"attachments"]. This keeps the items in order while omitting needless

trailing null values.

Indexed properties work well with nested properties, too. If we have

a form with rows of fields to create Contact objects as illustrated in

Figure 9.3, we could use a loop and generate the following field names:

contacts[0].email contacts[2].email

contacts[0].firstName contacts[2].firstName

contacts[0].lastName contacts[2].lastName

contacts[1].email contacts[3].email

contacts[1].firstName contacts[3].firstName

contacts[1].lastName contacts[3].lastName

We could then bind these fields to a single contacts property of type

List<Contact>. Without indexed properties, we’d need as many properties

on the action bean as we have in the form (contact1, contact2, contact3,

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_compose.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=193

USING INDEXED PROPERTIES 194

and contact4), and we’d have to assemble the list of contacts ourselves.

Indexed properties make it all much easier.

What’s even cooler about indexed properties is that Stripes is smart

enough to ignore rows that are left completely empty. In the example

from Figure 9.3, on the preceding page, say we made email a required

field. In a row where the user enters a first name but no email, Stripes

would trigger a validation error. But in other rows where the user left

all the fields blank, Stripes would just ignore the row altogether. This

way, we can make the email a required field without forcing the user to

fill in every row of fields.

We can also use a Map to work with indexed properties. In that case,

the value between the square brackets, [], is the key in the map. Since

order does not matter in a map, only the fields filled in by the user will

generate key-value pairs in the map. Even if the user enters a value in

the second field and leaves the first field blank, the map will not contain

any null entries.

Finally, we can use more than one level of indexed properties. For exam-

ple, with an action bean property named contacts of type Map<String,List

<Contact>>, we could use these indexed properties:

contacts['to'][0].email

contacts['to'][1].email

contacts['to'][2].email

contacts['cc'][0].email

contacts['cc'][1].email

contacts['cc'][2].email

If the user enters values in the fields such that the parameters have

these values:

contacts['to'][0].email=fred@stripesbook.org

contacts['to'][1].email=nadia@stripesbook.org

contacts['cc'][0].email=lily@stripesbook.org

then the contacts property in the action bean would be populated as

follows:

contacts = {

"to" = [

Contact(email=fred@stripesbook.org),

Contact(email=nadia@stripesbook.org)

],

"cc" = [

Contact(email=lily@stripesbook.org)

]

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=194

WORKING WITH FILES 195

9.4 Working with Files

Whew! Now that we’ve covered all that theory about indexed properties,

let’s get back to uploading files. We’ll also discuss streaming them back

to the user when viewing an email that contains attachments.

Uploading Files

Uploading files is somewhat problematic in any web application due

to a few quirks in the HTTP specification. The multipart/form-data MIME

type allows submitting a request that includes one or more files, but the

parts can arrive in any order. For example, a file may be sent before the

request parameters. This means the file must be received completely

before getting the rest of the request data and having all the information

needed to process the request.3

Because of this limitation, all the request data must be processed before

being able to set properties and call an event handler on an action bean.

To be able to give the action bean access to the uploaded files, these are

saved in a temporary directory on the server’s disk. After the request

data processing is complete, the event handler is called and is given

access to the files that were saved on disk.

Fortunately, Stripes shields us from most of these nasty details. We can

add the controls for uploading a file with the <s:file> tag in a JSP and

retrieve the file in an action bean with a property of type FileBean. We

can read the file and process it, or we can just save it to a directory and

filename of your choice.

Let’s see how this works by adding support for uploading attachments

on the Message Compose page. First, we add the controls in the JSP

with the <s:file> tag:

Download email_19/web/WEB-INF/jsp/message_compose.jsp

<div>Attachments:</div>

<div><s:errors field="attachments"/></div>

<div class="left">

<c:forEach var="index" begin="0" end="3">

<div><s:file name="attachments[${index}]"/></div>

</c:forEach>

</div>

<div class="left">

<s:submit name="upload" value="Upload"/>

</div>

3. See http://tools.ietf.org/html/rfc2388 for more information on the multipart/form-data MIME

type.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_compose.jsp
http://tools.ietf.org/html/rfc2388
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=195

WORKING WITH FILES 196

This creates the controls that we saw in Figure 9.2, on page 192. We’re

using indexed properties, so we’ll use the List<FileBean> type for the

attachments property in the action bean:

Download email_19/src/stripesbook/action/MessageComposeActionBean.java

private List<FileBean> attachments;

public List<FileBean> getAttachments() {

return attachments;

}

public void setAttachments(List<FileBean> attachments) {

this.attachments = attachments;

}

The FileBean class gives us access to the file that was saved in a tem-

porary directory when an uploaded file was received. To use a FileBean

object, we can either:

• Read the file as an input stream by calling getInputStream(), or as

a reader with getReader(), and then delete the temporary file by

calling delete().

• Save the file in a location of your choice by calling save(File). In

this case, the temporary file is moved (not copied) to the directory

and filename that you specify, so there’s no need to call delete().

If you mistakenly call delete() anyway, don’t worry—Stripes will

realize that the temporary file is already gone and will just ignore

the method call.

In our case, we just want to save the file in a directory designated to

contain attachments. Here, then, is the upload() event handler that is

invoked when the user clicks the Upload button:

Download email_19/src/stripesbook/action/MessageComposeActionBean.java

public Resolution upload() throws Exception {
Ê if (attachments != null) {

for (FileBean attachment : attachments) {
Ë if (attachment != null) {
Ì if (attachment.getSize() > 0) {

addAttachment(attachment);

}

else {

ValidationError error = new SimpleError(

attachment.getFileName()

+ " is not a valid file.");

getContext().getValidationErrors().add(

"attachments", error);

}

}

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageComposeActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageComposeActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=196

WORKING WITH FILES 197

return new ForwardResolution(COMPOSE);

}

private void addAttachment(FileBean fileBean) throws Exception {

Attachment attachment = new Attachment();

attachment.setFileName(fileBean.getFileName());

attachment.setContentType(fileBean.getContentType());

attachment.setSize(fileBean.getSize());

attachmentDao.save(attachment);
Í fileBean.save(new File(attachmentDao.getFilePath(attachment)));

getMessage().addAttachment(attachment);

}

We have to guard against a few nulls and zeroes. First, we must check

that the attachments property is not null (Ê), because the user may have

clicked the Upload button without filling in any of the attachments

fields. Since attachments are not required fields, we just do nothing in

this case.

Next, when looping through the items in the list, we have to make sure

the FileBean object is not null (Ë). The user may have entered a filename

in the second attachment field but left the first one blank. As we saw

earlier regarding the use of indexed properties with lists, the first item

would be null in this case.

Finally, if the user enters an invalid file path in the attachment field, a

FileBean object of size 0 appears in the list. So, we check for that (Ì) and

produce a validation error if we encounter a zero-sized FileBean.

When all is well and good, the uploaded file is added to the email as an

Attachment object, which is a simple representation of an attachment:

Download email_19/src/stripesbook/model/Attachment.java

package stripesbook.model;

public class Attachment extends ModelBase {

private String fileName;

private long size;

private String contentType;

/* getters and setters... */

}

At Í, the actual file is saved in a directory on the server. The attachment

DAO takes care of the details of managing the directories and filenames

used for attachments.

Meanwhile back on the Message Compose page, the user has uploaded

attachments. They are shown with an icon, which, when clicked, will

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/model/Attachment.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=197

WORKING WITH FILES 198

Figure 9.4: Showing attachments with delete buttons

delete the attachment from the message, as illustrated in Figure 9.4.

Here is the code that displays the attachments in the page:

Download email_19/web/WEB-INF/jsp/message_compose.jsp

<s:hidden id="deleteIndex" name="deleteIndex"/>

<c:forEach items="${actionBean.message.attachments}"

var="attach" varStatus="loop">

<s:image name="deleteAttachment" src="/images/delete.gif"

onclick="getElementById('deleteIndex').value=${loop.index}"

style="border: none; vertical-align: bottom"/>

${attach.fileName} (${attach.size} bytes)

</c:forEach>

Notice that we have a variable number of attachments, but every delete

image button is bound to the same deleteAttachment() event handler.

We need a parameter to indicate which attachment to delete, so we’ve

added a deleteIndex hidden input. This parameter is set to the attach-

ment index in the onclick= attribute. The code in the action bean deletes

the attachment from the email, and the DAO takes care of deleting the

file from the disk.4

Download email_19/src/stripesbook/action/MessageComposeActionBean.java

public Resolution deleteAttachment() throws Exception {

Attachment attachment =

getMessage().getAttachments().remove(deleteIndex);

attachmentDao.delete(attachment.getId());

return new ForwardResolution(COMPOSE);

}

4. Deleting items by index is fine here because we don’t have more than one user com-

posing the same email message. However, if you’re modifying data that can be accessed

simultaneously by multiple users, it’s dangerous to use list indices because deleting an

item changes the indices of all subsequence items. Use map keys instead, because delet-

ing an entry does not affect the other keys.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_compose.jsp
http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageComposeActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=198

WORKING WITH FILES 199

private int deleteIndex;

public int getDeleteIndex() {

return deleteIndex;

}

public void setDeleteIndex(int deleteIndex) {

this.deleteIndex = deleteIndex;

}

The Message Compose page now supports uploading attachments.

Before we move on to streaming the files back to the user when viewing

an email that has attachments, we need to talk about one more thing

regarding file uploads.

To avoid malicious users from causing harm to your web application

by uploading extremely large files, Stripes imposes a default maximum

size of 10MB. This is the total size of the request data, including all

uploaded files, request parameters, request headers—everything.5 You

can change the maximum allowed size by adding a parameter to the

Stripes filter in web.xml:

<init-param>

<param-name>FileUpload.MaximumPostSize</param-name>

<param-value>5M</param-value>

</init-param>

This would set the limit to 5MB. You can use K, M, or G (uppercase

or lowercase) as a suffix to indicate kilobytes, megabytes, or gigabytes.

Without a suffix, the value is assumed to be in bytes. If you use a suffix,

make sure not to put any spaces between the value and the suffix. Also

note that any extra characters after the suffix are ignored. This means

that you could, as a matter of preference, use 5MB instead of 5M.

Streaming Files

Now that the webmail supports uploading files as attachments, we

should also allow users to download attachments when they view a

message.

We’ll start by displaying the attachments on the Message Details page.

This is fairly straightforward—we just need to loop through the attach-

ments and display each one with a link to an event handler on the

action bean.

5. This is another limitation of the HTTP specification. Before processing a request, the

only information that’s available is the total size of the request data.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=199

WORKING WITH FILES 200

Parsing multipart/form-data

Correctly parsing data that arrives in the multipart/form-data

MIME type is surprisingly difficult. Instead of reinventing the
wheel, Stripes delegates this unpleasant piece of work to third-
party libraries that have already solved the problem. The Stripes
distribution includes two such libraries: Apache Commons File-
Upload∗ and COS.†

Stripes automatically uses the implementation that it finds in
the class path. To use Commons File Upload, copy commons-

fileupload.jar and commons-io.jar to the WEB-INF/lib directory. For
COS, use cos.jar. If Stripes finds both libraries, Commons FileU-
pload is chosen.

So, how do you decide between Commons FileUpload and
COS? Basically, the advantage of COS is that it’s only one JAR
file instead of two. However, the license for Commons FileU-
pload is more permissive; it caches small files in memory instead
of writing them to disk, improving performance; and, unlike
COS, Commons FileUpload is still being maintained.

Of course, if you know of another implementation, you can
plug it in. The strategy for handling multipart form data is
represented in Stripes by the MultipartWrapper interface. This is
an extension, so placing your implementation in an extension
package would have Stripes use it automatically.

∗. http://jakarta.apache.org/commons/fileupload/

†. http://servlets.com/cos/

Download email_19/web/WEB-INF/jsp/message_details.jsp

<c:if test="${not empty actionBean.message.attachments}">

<div>Attachments:</div>

<div>

<c:forEach var="attachment"

items="${actionBean.message.attachments}">

<s:link event="downloadAttachment"

beanclass="stripesbook.action.MessageDetailsActionBean">

<s:param name="attachmentId" value="${attachment.id}"/>

${attachment.fileName}

</s:link>

(${attachment.size} bytes)

</c:forEach>

</div>

</c:if>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://jakarta.apache.org/commons/fileupload/
http://servlets.com/cos/
http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/message_details.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=200

WORKING WITH FILES 201

Figure 9.5: Displaying attachments with links to download the files

This displays the attachments, as shown in Figure 9.5. When the user

clicks a filename, Stripes sets the attachmentId parameter and calls the

downloadAttachment() event handler of MessageDetailsActionBean.

We now need to stream the file to the user. We can send binary data

as a response to the browser by returning a StreamingResolution from an

event handler. StreamingResolution requires a content type and the data

to be sent. We can also set the filename that will be suggested to the

user when prompted to save the file. In our case, everything is provided

by the attachment:

Download email_19/src/stripesbook/action/MessageDetailsActionBean.java

public Integer attachmentId;

public Resolution downloadAttachment() throws Exception {

Attachment attachment = attachmentDao.read(attachmentId);

String fileName = attachment.getFileName();

String filePath = attachmentDao.getFilePath(attachment);

return new StreamingResolution(attachment.getContentType(),

new FileInputStream(filePath)).setFilename(fileName);

}

private AttachmentDao attachmentDao =

MockAttachmentDao.getInstance();

The constructors of the StreamingResolution class accept the data in the

form of an InputStream, a Reader, or a String. You can also build the data

yourself by subclassing StreamingResolution and overriding the

stream(HttpServletResponse) method. For example:

return new StreamingResolution(contentType) {

protected void stream(HttpServletResponse resp) throws Exception {

OutputStream output = resp.getOutputStream();

output.write(data);

}

}.setFilename("some_file.ext");

Wrapping Up

Wow. We used many new Stripes features to finish the Message List,

Message Details, and Message Compose pages of the webmail applica-
Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/MessageDetailsActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=201

WORKING WITH FILES 202

tion. I think it’s time for a break, don’t you? An ice cream cone or a hot

chocolate would hit the spot, depending on the season. . . . When you’re

ready, we’ll implement the two remaining pages: the Registration and

Login pages.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=202

Everything you can imagine is real.

Pablo Picasso

Chapter 10

Registering and Logging In
We now have a fairly complete webmail application, but we don’t have

anything that creates user accounts and asks the user to log in. Let’s

add those features with the Registration and Login pages. We’ll learn a

few more Stripes techniques along the way.

10.1 The Registration Page

The first thing a user will have to do to use the webmail application is

to create an account using the Registration page, shown in Figure 10.1.

Figure 10.1: The Registration page

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

THE REGISTRATION PAGE 204

Figure 10.2: Registration confirmation page

To represent a user in the application, we’ll use a simple User model

class:

Download email_19/src/stripesbook/model/User.java

package stripesbook.model;

public class User extends ModelBase {

private String firstName;

private String lastName;

private String username;

private String password;

private List<String> aliases;

/* getters and setters... */

}

With this class, we can identify users when they log in with their user-

name and password. The application uses the primary email as the

username and allows the user to create up to five aliases, which are dif-

ferent email addresses that point to the same account. That way, a user

can tell his buddies that his email address is dannyboy@stripesbook.org

but give potential business clients daniel.greene@stripesbook.org instead.

Once the user fills in all the fields and clicks the Continue button,

the application validates that the primary email isn’t already taken

by another user. Of course, the password and confirm password must

match. If all is well, the next page of the registration process appears.

That next page depends on how many aliases the user has chosen. If the

user decided on zero aliases, the registration is complete, and we show

the confirmation page (Figure 10.2). With one or more aliases, the next

page allows the user to enter those aliases, as shown in Figure 10.3, on

the following page, and then we show the confirmation page.

We have several interesting features to implement for the registration

process, so let’s get to work.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/model/User.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=204

ADDING PASSWORD AND CONFIRM PASSWORD BOXES 205

Figure 10.3: Registration page to enter email aliases

10.2 Adding Password and Confirm Password Boxes

The registration page includes a text box to enter the password. To

make sure no one who is spying over the user’s shoulder can see the

password, the field shows all characters as asterisks (*):

To create such a text box with Stripes, just use <s:password> instead

of <s:text>. Here’s a first look at the registration JSP:

Download email_19/web/WEB-INF/jsp/register.jsp

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="Registration">

<s:layout-component name="body">

<p>Register to create an account:</p>

<s:form beanclass="stripesbook.action.RegisterActionBean">

<table class="form">

<!-- s:text fields for first, last and user name... -->

<tr>

<td><s:label for="user.password"/>:</td>

<td><s:password name="user.password"/></td>

</tr>

<tr>

<td><s:label for="confirmPassword"/>:</td>

<td><s:password name="confirmPassword"/></td>

</tr>

<!-- rest of the form... -->

</table>

</s:form>

</s:layout-component>

</s:layout-render>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/register.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=205

ADDING PASSWORD AND CONFIRM PASSWORD BOXES 206

Since the user is choosing a password and does not see the text in the

password box, we ask the user to retype the password in the “Confirm

password” box as a double-check. Confirming the password is done

only at registration time. Therefore, we should define the confirmPass-

word property in the action bean, not in the User class. Here, then, is a

starting point for RegisterActionBean:

Download email_19/src/stripesbook/action/RegisterActionBean.java

package stripesbook.action;

public class RegisterActionBean extends BaseActionBean {

private static final String VIEW = "/WEB-INF/jsp/register.jsp";

@DefaultHandler

@DontValidate

public Resolution view() {

return new ForwardResolution(VIEW);

}

@ValidateNestedProperties({

@Validate(field="firstName", required=true),

@Validate(field="lastName", required=true),

@Validate(field="username", required=true),

@Validate(field="password", required=true)

})

private User user;

public User getUser() {

return user;

}

public void setUser(User user) {

this.user = user;

}

@Validate(required=true)

private String confirmPassword;

public String getConfirmPassword() {

return confirmPassword;

}

public void setConfirmPassword(String confirmPassword) {

this.confirmPassword = confirmPassword;

}

@Validate(required=true, minvalue=0, maxvalue=5)

private Integer numberOfAliases;

public Integer getNumberOfAliases() {

return numberOfAliases;

}

public void setNumberOfAliases(Integer numberOfAliases) {

this.numberOfAliases = numberOfAliases;

}

@ValidationMethod

public void validateUsernameAndPasswords(ValidationErrors errors){

String username = user.getUsername();

if (userDao.findByUsername(username) != null) {

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/RegisterActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=206

DEALING WITH A BUNCH OF REQUIRED FIELDS 207

errors.addGlobalError(

new SimpleError(username + " is already taken."));

}

if (!user.getPassword().equals(confirmPassword)) {

errors.addGlobalError(

new SimpleError("The passwords do not match."));

}

}

private UserDao userDao = MockUserDao.getInstance();

}

In the validation method, we make sure the username is not already

taken by someone else and that the password and confirm password

fields match.

As we can see, all fields are required. That will work fine as is, but with

six fields in total, a blank form will bombard the user with error mes-

sages. We can do something about that by hooking into the validation

process.

10.3 Dealing with a Bunch of Required Fields

Right now, there’ll be as many error messages in the registration form

as there are missing fields. That can add up to a lot of error messages.

Instead, we can put one general error message at the top of the form

and just highlight the missing fields, as illustrated in Figure 10.4, on

the next page.

Doing this is surprisingly easy. First, the action bean implements Val-

idationErrorHandler so that its handleValidationErrors() method is called at

the end of the validation process. Next, that method checks for the pres-

ence of any field errors, which can be only required-field errors in this

case. If there’s at least one field error, the method adds a global error:

Download email_19/src/stripesbook/action/RegisterActionBean.java

public class RegisterActionBean extends BaseActionBean

implements ValidationErrorHandler

{

public Resolution handleValidationErrors(ValidationErrors errors){

if (errors.hasFieldErrors()) {

errors.addGlobalError(

new SimpleError("All fields are required."));

}

return null;

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/RegisterActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=207

USING VALIDATION METADATA 208

Figure 10.4: Highlighting required fields with just one message at the

top

Finally, we display the global error message above the form:

Download email_19/web/WEB-INF/jsp/register.jsp

<p>Register to create an account:</p>

<s:errors globalErrorsOnly="true"/>

<s:form beanclass="stripesbook.action.RegisterActionBean">

Without any other <s:errors> tag in the page, individual required-field

error messages are not shown—just the global message. The field errors

still cause Stripes to add class="error" to the corresponding input fields.

By having a style for this class in the CSS file, the missing fields are

automatically highlighted. That’s it. We don’t have to change anything

else in the JSP. Beautiful.

10.4 Using Validation Metadata

At the bottom of the registration page, the user chooses how many email

aliases they want to create. This must be a number between 0 and 5.

That’s easy enough to validate in the action bean:

Download email_19/src/stripesbook/action/RegisterActionBean.java

@Validate(required=true, minvalue=0, maxvalue=5)

private Integer numberOfAliases;

We could let users enter the number of aliases in a text box, but they

would get a validation error if they entered an invalid number or a value

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/register.jsp
http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/RegisterActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=208

USING VALIDATION METADATA 209

outside the allowed range. A select box makes the valid choices more

obvious and reduces the chance of error:

We’ll generate a select box by looping from 0 to 5 in a <c:forEach>

tag and generating an option for each value of the loop. We could use

begin=0 and end=5 in the <c:forEach> tag, but that doesn’t feel right.

We’d be duplicating the minimum and maximum values specified in the

validation. If we change minvalue= or maxvalue= in @Validate, we’d have

to remember to go in the JSP and change the values in begin= and end=

as well.

There’s a better way. Stripes provides information about validations at

runtime with the ValidationMetadata interface. By retrieving this infor-

mation for the numberOfAliases field, we can make the minimum and

maximum values dynamically available for the JSP to retrieve:

Download email_19/src/stripesbook/action/RegisterActionBean.java

public int getMinAliases() {

return getAliasValidation().minvalue().intValue();

}

public int getMaxAliases() {

return getAliasValidation().maxvalue().intValue();

}

private ValidationMetadata getAliasValidation() {

return StripesFilter.getConfiguration()

.getValidationMetadataProvider()

.getValidationMetadata(getClass())

.get("numberOfAliases");

}

We’re now ready to create the select box with the <s:select> tag and

nested <s:option> tags:

Download email_19/web/WEB-INF/jsp/register.jsp

<s:select name="numberOfAliases">

<s:option value="" label="How many aliases?"/>

<c:forEach begin="${actionBean.minAliases}"

var="index" end="${actionBean.maxAliases}">

<s:option value="${index}" label="${index}"/>

</c:forEach>

</s:select>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/RegisterActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/register.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=209

CREATING A WIZARD 210

By using the validation information instead of hard-coded values in the

JSP, we can change the minimum and maximum allowed number of

aliases in the action bean’s validation and sleep well at night. The JSP

automatically uses the new values when generating the options in the

select box.

10.5 Creating a Wizard

After the user has filled in all fields and chosen to have one or more

aliases, the second page of registration appears. In Figure 10.3, on

page 205, we can see this page after the user selected four aliases.

After filling out the aliases, the user sees a page confirming that reg-

istration is complete. If the user chooses zero aliases, the registration

process goes straight to the confirmation page.

We want the registration form to alter its flow according to the user

input, and in the case of entering aliases, we want to create a form

where the number of text fields depends on what the user chose in the

previous page.

A form broken up into two or more pages is called a wizard. Wizards

are useful for forms that involve multiple steps, such as our registration

process, and can also be used just to break up a form that includes a

large number of fields. In the latter situation, you avoid intimidating the

user with a big daunting form that endlessly scrolls down the screen.

Splitting a form across a few pages makes it easier to digest.

In Figure 10.5, on the next page, we can see the flow for our registration

wizard. Notice that with a wizard, the same action bean handles all the

pages of a wizard. Here, RegisterActionBean handles requests from both

register.jsp and aliases.jsp, as well as the initial request from elsewhere in

the application to arrive at the registration process (labeled Start in the

diagram) and the redirect requests from the register() and save() event

handlers.

Let’s take it one step at a time. First, linking to RegisterActionBean calls

its default event handler, which forwards to register.jsp:

Download email_19/src/stripesbook/action/RegisterActionBean.java

private static final String VIEW = "/WEB-INF/jsp/register.jsp";

@DefaultHandler

@DontValidate

public Resolution view() {

return new ForwardResolution(VIEW);

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/RegisterActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=210

CREATING A WIZARD 211

Start

RegisterActionBean

view()
register.jsp

RegisterActionBean

register()

Continue

aliases.jsp
numberOfAliases > 0

RegisterActionBean

done()

numberOfAliases == 0

redirect

RegisterActionBean

save()

Continue

redirect

reg_complete.jsp

Figure 10.5: Registration wizard flow

The form in register.jsp contains the input fields for the first page of the

wizard:

Download email_19/web/WEB-INF/jsp/register.jsp

<s:form beanclass="stripesbook.action.RegisterActionBean">

<table class="form">

<!-- input fields... -->

<tr>

<td></td>

<td>

<s:submit name="register" value="Continue"/>

<s:submit name="cancel" value="Cancel"/>

</td>

</tr>

</table>

</s:form>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/register.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=211

CREATING A WIZARD 212

Once the user has filled in the fields and clicked the Continue button,

the register() event handler decides on the next page:

Download email_19/src/stripesbook/action/RegisterActionBean.java

private static final String ALIASES = "/WEB-INF/jsp/aliases.jsp";

private static final String DONE = "/WEB-INF/jsp/reg_complete.jsp";

public Resolution register() {

if (numberOfAliases > 0) {

return new ForwardResolution(ALIASES);

}

return save();

}

public Resolution save() {

userDao.save(user);

return new RedirectResolution(getClass(), "done");

}

@DontValidate

public Resolution done() {

return new ForwardResolution(DONE);

}

@DontValidate

public Resolution cancel() {

return new RedirectResolution(LoginActionBean.class);

}

If the user has chosen to have one or more aliases, the action bean

forwards to aliases.jsp, which displays the form for the user to fill out

the aliases:

Download email_19/web/WEB-INF/jsp/aliases.jsp

<p>Enter your email aliases:</p>

<s:form beanclass="stripesbook.action.RegisterActionBean">

<s:errors/>

<table class="form">

<c:forEach begin="0" end="${actionBean.numberOfAliases - 1}"

var="index">

<tr>

<td>

<s:label for="user.aliases[${index}]"/> ${index + 1}:

</td>

<td><s:text name="user.aliases[${index}]"/></td>

<td>@stripesbook.org</td>

</tr>

</c:forEach>

<tr>

<td></td>

<td>

<s:submit name="save" value="Continue"/>

<s:submit name="cancel" value="Cancel"/>

</td>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/RegisterActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/aliases.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=212

CREATING A WIZARD 213

</tr>

</table>

</s:form>

RegisterActionBean includes a validation method to validate the aliases:

Download email_19/src/stripesbook/action/RegisterActionBean.java

@ValidationMethod(on="save")

public void validateAliases(ValidationErrors errors) {

if (sizeOf(user.getAliases()) != numberOfAliases) {

errors.addGlobalError(

new SimpleError("Please enter all aliases."));

}

else {

for (String alias : user.getAliases()) {

if (alias == null) {

errors.addGlobalError(

new SimpleError("Please enter all aliases."));

break;

}

if (userDao.findByUsername(alias) != null) {

errors.addGlobalError(

new SimpleError(alias + " is already taken."));

}

}

}

}

public Resolution handleValidationErrors(ValidationErrors errors){

if (errors.hasFieldErrors()) {

errors.addGlobalError(

new SimpleError("All fields are required."));

}

return null;

}

private int sizeOf(List<?> list) {

return (list == null ? 0 : list.size());

}

/* ... */

private UserDao userDao = MockUserDao.getInstance();

}

Once the registration process is complete, either because the user has

filled out the aliases or chosen to have no aliases, the action bean redi-

rects to its done() event handler, which forwards to reg_complete.jsp:

Download email_19/web/WEB-INF/jsp/reg_complete.jsp

<p>Registration complete!</p>

You may now

<s:link beanclass="stripesbook.action.LoginActionBean">

login

</s:link>.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/RegisterActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_19/web/WEB-INF/jsp/reg_complete.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=213

CREATING A WIZARD 214

Everything is fairly straightforward about the registration process, ex-

cept for two issues that are raised by wizard forms:

1. With required fields on the different pages of a wizard, how do

we prevent the required fields that are in page 2 from causing

validation errors when the user submits the form that’s on page 1?

2. When the user has submitted the form on page 1 and moves on

to page 2, how do we “remember” the values that were submitted

on page 1? Where do we store the accumulated values so that we

can retrieve them and save everything at the end of the wizard?

Fortunately, Stripes has built-in support for wizards and deals with

these issues for us. The first thing you have to do is add the @Wizard

annotation to the action bean class:

@Wizard

public class RegisterActionBean ...

As illustrated in Figure 10.6, on the following page, we have forms in

register.jsp and aliases.jsp that are associated to RegisterActionBean. When

Stripes sees an <s:form> tag for which the action bean is annotated

with @Wizard, it generates some special values in the form to keep track

of what’s going on between each page of the wizard. When a form is

submitted, Stripes detects which input fields were in the form and does

not generate required-field validation errors for fields that are not in

the form. That takes care of issue #1. For issue #2, Stripes generates

hidden inputs that contain all the values that have been submitted in

the previous pages of the wizard so that they are “carried over” as the

user goes through the pages of the wizard. When the user submits the

the last page, it’s as if the user had submitted one big form with all the

input fields filled in. You can save the data in the action bean just like

you would for a regular single-page form.

That’s a lot going on behind the scenes, but from our point of view, all

we had to do was add one annotation, and the wizard is almost ready.

Looking again at Figure 10.6, on the next page, notice that the view()

and done() events are not called from a form. Indeed, view() is called

from a plain link to RegisterActionBean (to start the process), and done()

is called from a redirect after saving the registration data.

When an event handler of a @Wizard action bean is called, Stripes looks

for the special values that it generated within the <s:form> tag. To pre-

vent malicious users from bypassing the wizard process, Stripes throws

an exception if those special values are missing. But we can still tell

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=214

CREATING A WIZARD 215

register.jsp

<s:form

beanclass="stripesbook.action.RegisterActionBean">

<s:submit name="register"/>

</s:form>

@Wizard public class RegisterActionBean

public Resolution view()

public Resolution register()

public Resolution save()

public Resolution done()

aliases.jsp

<s:form

beanclass="stripesbook.action.RegisterActionBean">

<s:submit name="save"/>

</s:form>

Figure 10.6: register() and save() are associated to a form; view() and

done() are not.

Stripes that some event handlers are allowed to be called from outside

a wizard form. These special events are called start events, and you

indicate their names in the @Wizard annotation:

Download email_19/src/stripesbook/action/RegisterActionBean.java

@Wizard(startEvents={"view","done"})

public class RegisterActionBean extends BaseActionBean

implements ValidationErrorHandler

{

/* ... */

}

Now, view() and done() will not cause Stripes to throw an exception.

Our registration wizard is complete!

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/RegisterActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=215

THE LOGIN PAGE 216

Joe Asks. . .

What About Going Back to the Previous Page?

If we want to allow the user to go back to the previous page in a
wizard, we have to take into account that the default behavior
is to perform validation on the data that the user entered in the
current page before invoking the event handler that sends the
user to the previous page. If the user entered invalid data or did
not fill in required fields, validation errors will occur.

To let the user go back without forcing them to enter valid data
in the current page, we have to “manually” adjust the valida-
tions with the on= attribute of @Validate or with @DontValidate on
the event handler.

Of course, if the user goes back to the previous page using
the browser’s Back button, any values that they entered on the
current page will be lost. Hitting Back does not send any data
to the server, so there’s not much we can do about that!

10.6 The Login Page

After registering, the user is ready to log in at the page shown in Fig-

ure 10.7, on the following page.

After tackling that registration wizard, this page seems so simple that

you could implement it with your eyes closed. In fact, the only part

that’s worth a look is the validation of the username and password:

Download email_19/src/stripesbook/action/LoginActionBean.java

@ValidationMethod

public void validateUser(ValidationErrors errors) {

User user = userDao.findByUsername(username);

if (user == null) {

errors.add("username",

new SimpleError("The primary email was not found."));

}

else if (!user.getPassword().equals(password)) {

errors.add("password",

new SimpleError("The password is incorrect."));

}

}

private UserDao userDao = MockUserDao.getInstance();

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/LoginActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=216

THE LOGIN PAGE 217

Figure 10.7: The Login page

Besides being required fields, the username must exist, and the pass-

word must match. This logic is in a validation method because it in-

volves querying the user DAO. Notice that the code checks for the exis-

tence of the username first and then verifies the password. This way,

we can tell the user specifically which of the username or password is

incorrect after a failed login.

At this point, we have a fairly complete webmail application. We still

need to address security issues and could add some polish by grace-

fully handling any exceptions that might occur. We’ve been using mock

DAOs—we should eventually move on to using a real database. We’ll

cover all those topics—and more—in Part III. Before getting to that, let’s

see how we can make the application available in multiple languages.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=217

We have really everything in common with America

nowadays except, of course, language.

Oscar Wilde

Chapter 11

Parlez-Vous Français?
Making It Multilingual

The webmail application is shaping up nicely. With its crisp design,

amazing set of features, and outstanding user friendliness, the calls

have been pouring in asking for its release to the public. Users from all

over the world will be using the application! With such global exposure,

it’d be nice to offer the interface in different languages. In this chapter,

we’ll discuss everything related to making an application available in

more than one language, and we’ll be translating the webmail applica-

tion to French as an example.

11.1 Offering an Application in Multiple Languages

Several tools are at your disposal for making the translation of an appli-

cation into other languages as painless as possible. At the heart of the

process are Java’s Locale and ResourceBundle classes. A locale repre-

sents a language, a country, a region, a culture. . . everything you would

consider when you want to present information to a user in the manner

that’s most natural for them. A resource bundle contains all the locale-

specific information and isolates it from the rest of the code. This makes

it easier not only to support multiple languages but also to add more

languages later.

Locales and Resource Bundles

A locale is represented by several parameters, but let’s keep things sim-

ple and just use the language. Languages are represented by two-letter

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

OFFERING AN APPLICATION IN MULTIPLE LANGUAGES 219

codes, such as en for English and fr for French.1 Using new Locale("fr")

would create a locale for French.

A resource bundle has a unique base name and multiple files, one for

each locale. When the resource bundle named MyBundle is used and

the language is French, Java automatically looks for MyBundle_fr in the

class path. If it doesn’t find it, it uses MyBundle as a default.

The file can be implemented in different ways but always contains a set

of key-value pairs. The implementation that we’ll use is the .properties

file; in fact, you’ve already seen the Stripes default resource bundle,

StripesResources.properties. In a multilingual application, you would have

resource bundle files such as the following:

StripesResources_fr.properties // French

StripesResources_es.properties // Spanish

StripesResources_it.properties // Italian

StripesResources.properties // default (English, in our case)

Each file would contain the same keys but with values translated in the

specific language. For example, StripesResources.properties might contain

this:

greeting=Hello

and StripesResources_fr.properties would have this:

greeting=Bonjour

That’s pretty simple. Now that we have the basics of locales and re-

source bundles down, let’s see what we have to do in Stripes to make

the application available in French with a StripesResources_fr.properties

file. First, we need to let Stripes know about our localization plans.

Configuring the List of Supported Locales

When a request arrives at Stripes, the headers contain the list of the

user’s preferred locales, as configured in their browser. Stripes com-

pares this to the list of locales supported by the application and chooses

the best match. By default, a Stripes application supports one locale:

the system’s default, which is English in our case. So, the first thing

we have to do is set the list of supported locales to English and French

using the language codes.

1. See Javadocs for the java.util.Locale class for more details on language codes and the

other parameters you can use for a locale.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=219

OFFERING AN APPLICATION IN MULTIPLE LANGUAGES 220

Locales and Character Encodings

We can be more specific when configuring locales with the
LocalePicker.Locales parameter by appending a country to the
language. For example, fr_FR and fr_CA both designate French
while distinguishing between France and Canada. We can also
append a variant: es_ES_Traditional indicates traditional Spanish
from Spain. Again, refer to the java.util.Locale Javadocs for com-
plete information on these parameters.

At the end of a locale, we can also append a colon (:) and
indicate a character encoding. For example, de:UTF-8 specifies
the German locale with UTF-8 character encoding.

In JSPs, we can specify the character encoding with the
pageEncoding= attribute of the page directive:

<%@page pageEncoding="UTF-8" %>

A top-level <s:layout-definition> JSP is a good place for setting
the character encoding for all JSPs.

This is configured with the Stripes filter’s LocalePicker.Locales parameter

in web.xml:

Download email_20/web/WEB-INF/web.xml

<filter>

<filter-name>StripesFilter</filter-name>

<filter-class>

net.sourceforge.stripes.controller.StripesFilter

</filter-class>

<!-- other init params... -->

<init-param>

<param-name>LocalePicker.Locales</param-name>

<param-value>en,fr</param-value>

</init-param>

</filter>

Now, if a user accesses the application with French as their preferred

language, Stripes will use the French locale and therefore the Stripes-

Resources_fr.properties file. Right now it won’t find it and fall back on

StripesResources.properties, still showing the application in English! So,

the next step is to create the StripesResources_fr.properties file and learn

what keys Stripes uses when searching for localized values.

Let’s use the Login page as an example. After submitting the page with

an existing primary email but with an incorrect password, you get the

screen shown in Figure 11.1, on the next page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=220

TRANSLATING THE TEXT OF AN APPLICATION 221

Figure 11.1: The Login page in English

The text we see on this page comes from three sources:

• Form field labels: This includes the “Primary email” and “Pass-

word” labels as well as the Login button.

• Error and information messages: In this case, this is “The pass-

word is incorrect.”

• Free-form text: Basically, that’s all the other text we see in the

page.

11.2 Translating the Text of an Application

Let us now see how Stripes looks up resource bundle keys for the three

sources of text.

Translating Form Field Labels

Stripes looks up form field labels in the Form field bundle, which is in

StripesResources by default.

We’ve seen how the <s:label> tag can be used to look up the text for a

field label in the resource bundle. For example, if the contact.firstName

field is in the stripesbook.action.ContactFormActionBean and we use

<s:label for="contact.firstName"> in the JSP, Stripes looks for a label in

this order of priority:

1. In the resource bundle, using the key:

stripesbook.action.ContactFormActionBean.contact.firstName

2. In the resource bundle, using the key:

contact.firstName

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=221

TRANSLATING THE TEXT OF AN APPLICATION 222

3. In the Java code:

@Validate(label="whatever is here")

4. In the JSP:

<s:label for="contact.firstName">whatever is here</s:label>

Options 1 and 2 are the most interesting to us, because we can just

use the key in the resource bundle file for each language. Option 3 is

a hard-coded string and cannot be made available in more than one

language. We can use option 4 with the <fmt:message> tag within the

body of the <s:label> tag if we can’t use either of the keys from options

1 and 2.

We already had <s:label> tags in login.jsp to use the resource bundle for

the field labels:

Download email_20/web/WEB-INF/jsp/login.jsp

<s:form beanclass="stripesbook.action.LoginActionBean">

<s:errors/>

<table class="form">

<tr>

<td><s:label for="username"/>:</td>

<td><s:text name="username"/></td>

<td>@stripesbook.org</td>

</tr>

<tr>

<td><s:label for="password"/>:</td>

<td><s:password name="password"/></td>

</tr>

<tr>

<td></td>

<td><s:submit name="login"/></td>

</tr>

</table>

</s:form>

To use the resource bundle keys for the Login button, we didn’t add

any code—in fact, we removed code! How’s that for getting more for

less? We previously had the value= attribute for the label of the button.

Omitting this attribute causes Stripes to use the value in name= to look

up the button label in the resource bundle in the same way as field

labels. Now, adding the following entries in the resource bundles will

make the field and button labels available in English and French:

Download email_20/res/StripesResources.properties

stripesbook.action.LoginActionBean.username=Primary email

stripesbook.action.LoginActionBean.password=Password

stripesbook.action.LoginActionBean.login=Login

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/web/WEB-INF/jsp/login.jsp
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=222

TRANSLATING THE TEXT OF AN APPLICATION 223

Download email_20/res/StripesResources_fr.properties

stripesbook.action.LoginActionBean.username=Courriel principal

stripesbook.action.LoginActionBean.password=Mot de passe

stripesbook.action.LoginActionBean.login=Envoyer

The nice thing about the resource bundle keys that Stripes uses is that

we can keep your keys organized with the action bean class name prefix

and use keys without the prefix for text that is the same across more

than one action bean. For example, the following resource bundle entry:

cancel=Cancel

would label all <s:submit name="cancel"/> buttons with “Cancel.” If all

these buttons will be labeled “Cancel,” why repeat the same text as

many times as there are action beans? Furthermore, we can still over-

ride this and use a different label in a specific page. If we wanted to use

“Abort” instead of “Cancel” on the Register page, we would add this:

stripesbook.action.RegisterActionBean.cancel=Abort

since this key has priority over the previous, nonprefixed key.

Translating Error and Information Messages

For error and information messages, Stripes looks in the error message

bundle for the text to be displayed, which is also in StripesResources by

default. The classes involved in creating localized messages are Local-

izableMessage, LocalizableError, and ScopedLocalizableError, as shown in

Figure 11.2, on the following page, with their relationship to the other

Stripes message classes.

We’ve seen how LocalizableError and ScopedLocalizableError work in Sec-

tion 6.3, Changing the Error Message Text, on page 134. Both classes

look for messages in the resource bundle with a series of keys based on

the action bean and the nature of the error. We already have key-value

pairs for these messages in StripesResources.properties, so we just have to

use the same keys and translate the text in StripesResources_fr.properties.

Here are some examples:

Download email_20/res/StripesResources.properties

validation.required.valueNotPresent={0} is a required field

contact.lastName.valueTooShort=\

The last name must be at least {2} characters.

contact.birthDate.invalidDate=The birth date is not valid.

contact.birthDate.valueFailedExpression=\

The birth date is in the future.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=223

TRANSLATING THE TEXT OF AN APPLICATION 224

<<interface>>

Message

<<interface>>

ValidationError
SimpleMessage

SimpleError LocalizableMessage

LocalizableError

ScopedLocalizableError

Figure 11.2: The Stripes message classes

Download email_20/res/StripesResources_fr.properties

validation.required.valueNotPresent={0} est un champ requis

contact.lastName.valueTooShort=\

Le nom de famille doit avoir au moins {2} caract\u00e8res.

contact.birthDate.invalidDate=La date de naissance n''est pas valide.

contact.birthDate.valueFailedExpression=\

La date de naissance est dans le futur.

That funny \u00e8 sequence in the French text is a Unicode escape.

Java .properties files allow only the ISO8859-1 character encoding, but

you can get Unicode characters using \unnnn, where nnnn is the hex-

adecimal value of the character. For example, \u00e8 represents the è

character. You’ll find a chart of Unicode characters at http://mindprod.

com/jgloss/ascii.html.

That’s great for all the error messages that are generated automatically,

but what about the ones that we created ourselves?

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://mindprod.com/jgloss/ascii.html
http://mindprod.com/jgloss/ascii.html
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=224

TRANSLATING THE TEXT OF AN APPLICATION 225

Remember that we used the SimpleError class, such as these messages

in the LoginActionBean:

Download email_19/src/stripesbook/action/LoginActionBean.java

@ValidationMethod

public void validateUser(ValidationErrors errors) {

User user = userDao.findByUsername(username);

if (user == null) {

errors.add("username",

new SimpleError("The primary email was not found."));

}

else if (!user.getPassword().equals(password)) {

errors.add("password",

new SimpleError("The password is incorrect."));

}

}

The text is hard-coded in the Java code. To make the text translatable,

we use LocalizableError, and pass in the resource bundle key:

Download email_20/src/stripesbook/action/LoginActionBean.java

@ValidationMethod

public void validateUser(ValidationErrors errors) {

User user = userDao.findByUsername(username);

if (user == null) {

errors.add("username",

new LocalizableError("primaryEmailNotFound"));

}

else if (!user.getPassword().equals(password)) {

errors.add("password",

new LocalizableError("passwordIncorrect"));

}

}

This allows us to take the text out of the Java code and move it to

resource bundles, making it ready to be translated. Stripes automati-

cally tries keys with the action bean class name prefix before trying pre-

fixless keys, so we can use the same patterns as with form field labels.

Deciding to use the prefixes, we now have the messages in English

and French in StripesResources.properties and StripesResources_fr.properties

as follows:

Download email_20/res/StripesResources.properties

stripesbook.action.LoginActionBean.primaryEmailNotFound=\

The primary email was not found.

stripesbook.action.LoginActionBean.passwordIncorrect=\

The password is incorrect.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_19/src/stripesbook/action/LoginActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_20/src/stripesbook/action/LoginActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=225

TRANSLATING THE TEXT OF AN APPLICATION 226

Download email_20/res/StripesResources_fr.properties

stripesbook.action.LoginActionBean.primaryEmailNotFound=\

Le courriel principal n''existe pas.

stripesbook.action.LoginActionBean.passwordIncorrect=\

Le mot de passe est incorrect.

The constructor for LocalizableError also accepts an optional list of para-

meters that replaces tokens starting at {2}.2 For example, the error mes-

sage on the Register page for a username that is already taken uses the

LocalizableError class as follows:

Download email_20/src/stripesbook/action/RegisterActionBean.java

if (userDao.findByUsername(username) != null) {

errors.addGlobalError(

new LocalizableError("usernameAlreadyTaken", username));

}

The messages are now translated in the resource bundles:

Download email_20/res/StripesResources.properties

stripesbook.action.RegisterActionBean.usernameAlreadyTaken=\

{2} is already taken.

Download email_20/res/StripesResources_fr.properties

stripesbook.action.RegisterActionBean.usernameAlreadyTaken=\

{2} est d\u00e9j\u00e0 pris.

Making information messages translatable works in a similar way. In-

stead of using the SimpleMessage class and hard-coded text, use Localiz-

ableMessage and resource bundle keys:

Download email_20/src/stripesbook/action/ContactFormActionBean.java

public Resolution save() {

Contact contact = getContact();

getContactDao().save(contact);

getContext().getMessages().add(

new LocalizableMessage(getClass().getName()+".contactSaved",

contact)

);

return new RedirectResolution(ContactListActionBean.class);

}

@DontValidate

public Resolution cancel() {

getContext().getMessages().add(

new LocalizableMessage(getClass().getName()+".actionCancelled")

);

return new RedirectResolution(ContactListActionBean.class);

}

2. Remember that {0} and {1} are reserved for the field name and the value entered by

the user.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://media.pragprog.com/titles/fdstr/code/email_20/src/stripesbook/action/RegisterActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://media.pragprog.com/titles/fdstr/code/email_20/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=226

TRANSLATING THE TEXT OF AN APPLICATION 227

Download email_20/res/StripesResources.properties

stripesbook.action.ContactFormActionBean.contactSaved=\

{0} has been saved.

stripesbook.action.ContactFormActionBean.actionCancelled=\

Action cancelled.

Download email_20/res/StripesResources_fr.properties

stripesbook.action.ContactFormActionBean.contactSaved=\

{0} a \u00e9t\u00e9 enregistr\u00e9(e).

stripesbook.action.ContactFormActionBean.actionCancelled=\

Action annul\u00e9e.

Notice the two ways in which information messages differ from error

messages:

• Since there is no field name and value entered by the user, tokens

for replacing parameters in the text start at {0}.

• Stripes doesn’t add the action bean class name prefix, so the

resource bundle key is just used as is. We’re adding the class

name prefix ourselves so that the keys consistently use the same

pattern as for error messages. Doing this is, of course, completely

optional.

Translating Free-Form Text

What’s left to translate is the free-form text. Stripes stays out of this one

because the JSTL already provides the <fmt:message> tag for retrieving

text from a resource bundle. For example, <fmt:message key="hello"/> dis-

plays the text for the hello key. You can also store the text in a variable

with the var= attribute, as in <fmt:message key="hello" var="greeting"/>, and

display it later in the JSP with ${greeting}.

The JSTL, however, doesn’t know that we’re using StripesResources. Add

the following context parameter at the top of web.xml to tell the JSTL to

use StripesResources as the default resource bundle:

Download email_20/web/WEB-INF/web.xml

<context-param>

<param-name>

javax.servlet.jsp.jstl.fmt.localizationContext

</param-name>

<param-value>StripesResources</param-value>

</context-param>

You can now use the <fmt:message> tag with corresponding key-value

pairs in the StripesResources resource bundle. As with the LocalizableMes-

sage class, you choose arbitrary keys, and they are used as is, without

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://media.pragprog.com/titles/fdstr/code/email_20/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=227

TRANSLATING THE TEXT OF AN APPLICATION 228

a prefix. Let’s say that we still want to prefix the keys with the action

bean class name. Adding ${actionBean.class.name} in front of the key will

do it:3

Download email_20/web/WEB-INF/jsp/common/taglibs.jsp

<c:set var="contextPath" value="${pageContext.request.contextPath}"/>

<c:set var="prefix" value="${actionBean.class.name}"/>

Download email_20/web/WEB-INF/jsp/login.jsp

<fmt:message var="title" key="${prefix}.title"/>

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="${title}">

<s:layout-component name="body">

<p><fmt:message key="${prefix}.pleaseLogin"/>:</p>

<s:form beanclass="stripesbook.action.LoginActionBean">

<!-- same as before... -->

</s:form>

<s:link beanclass="stripesbook.action.RegisterActionBean">

<fmt:message key="${prefix}.register"/>

</s:link>

<fmt:message key="${prefix}.toCreateAnAccount"/>.

</s:layout-component>

</s:layout-render>

The translated text is in the resource bundles:

Download email_20/res/StripesResources.properties

stripesbook.action.LoginActionBean.title=Login

stripesbook.action.LoginActionBean.pleaseLogin=Please login

stripesbook.action.LoginActionBean.toCreateAnAccount=\

to create an account

stripesbook.action.LoginActionBean.register=Register

Download email_20/res/StripesResources_fr.properties

stripesbook.action.LoginActionBean.title=Identification

stripesbook.action.LoginActionBean.pleaseLogin=Veuillez vous identifier

stripesbook.action.LoginActionBean.toCreateAnAccount=\

pour cr\u00e9er un compte

stripesbook.action.LoginActionBean.register=Enregistrez-vous

All the text for the Login page is now translated in StripesResources_fr.

properties, and the page is available in French, as shown in Figure 11.3,

on the following page.

3. Using the action bean prefix is, of course, totally optional. You can also use plain

keys.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/web/WEB-INF/jsp/common/taglibs.jsp
http://media.pragprog.com/titles/fdstr/code/email_20/web/WEB-INF/jsp/login.jsp
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=228

TRANSLATING THE TEXT OF AN APPLICATION 229

Figure 11.3: The Login page in French

Translating the Other Parts of the Application

Back on page 158, we created a view helper that manages the menu

displayed at the top:

The label for each menu item was hard-coded in the Section enumera-

tion; we now need to make it translatable. We can do that by removing

the text and replacing it with a resource bundle text key. We’ll build

the key using a section. prefix followed by the name of the enumeration

constant:

Download email_20/src/stripesbook/action/MenuViewHelper.java

public enum Section {

MessageList(MessageListActionBean.class),

ContactList(ContactListActionBean.class),

Compose(MessageComposeActionBean.class);

private String textKey, beanclass;

Section(Class<? extends ActionBean> beanclass) {

this.textKey = "section." + name();

this.beanclass = beanclass.getName();

}

public String getTextKey() { return textKey; }

public String getBeanclass() { return beanclass; }

}

The JSP that displays the menu is easily adapted by retrieving the text

from the resource bundle using the text key provided by each section.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/src/stripesbook/action/MenuViewHelper.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=229

TRANSLATING THE TEXT OF AN APPLICATION 230

Joe Asks. . .

Do I Use One or Two Single Quotes in the .properties Files?

For form field labels and free-form text, use a single quote as
follows:

message=That's a great idea!

However, for error and information messages, you need to use
two single quotes:

message=That''s a great idea!

As you can see in Figure 11.2, on page 224, all message classes
inherit from SimpleMessage, which uses Java’s MessageFormat

class to produce the message. MessageFormat requires a sin-
gle quote to be escaped with another single quote, because
a single quote on its own has a special meaning. Refer to the
MessageFormat Javadocs for more details.

Download email_20/web/WEB-INF/jsp/common/menu.jsp

<c:forEach var="section" items="${actionBean.sections}">

<fmt:message var="text" key="${section.textKey}"/>

<c:choose>

<c:when test="${section eq actionBean.currentSection}">

${text}

</c:when>

<c:otherwise>

<s:link beanclass="${section.beanclass}" class="sectionLink">

${text}

</s:link>

</c:otherwise>

</c:choose>

</c:forEach>

We can now place the translated text in the resource bundles:

Download email_20/res/StripesResources.properties

section.MessageList=Messages

section.ContactList=Contact List

section.Compose=Compose

Download email_20/res/StripesResources_fr.properties

section.MessageList=Messages

section.ContactList=Liste des contacts

section.Compose=Composition

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/web/WEB-INF/jsp/common/menu.jsp
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=230

TRANSLATING THE TEXT OF AN APPLICATION 231

We’ve seen how to translate the three types of text (form field labels,

error/information messages, and free-form text). Lather, rinse, and re-

peat for each page, and you have a fully translated French webmail

application! Well, almost. The only thing we haven’t seen so far is how

to localize certain types of input controls, so let’s discuss them briefly.

Localizing Radio Buttons

In the previous chapter, we added radio buttons for the gender in the

contact form:

Stripes doesn’t generate labels for radio buttons; they are just text after

the <s:radio> tag. You can use the <fmt:message> tag and use the

value of the gender object with ${gender} to build the key:

Download email_20/web/WEB-INF/jsp/contact_form.jsp

<c:forEach var="gender" items="${actionBean.genders}">

<s:radio name="contact.gender" value="${gender}"/>

<fmt:message key="${prefix}.${gender}"/>

</c:forEach>

Now you can put the text in the resource bundles as follows:

Download email_20/res/StripesResources.properties

stripesbook.action.ContactFormActionBean.Female=Female

stripesbook.action.ContactFormActionBean.Male=Male

Download email_20/res/StripesResources_fr.properties

stripesbook.action.ContactFormActionBean.Female=F\u00e9minin

stripesbook.action.ContactFormActionBean.Male=Masculin

The radio buttons are now translated:

Localizing Select Boxes

For select boxes with options generated by Stripes with <s:options-

enumeration>, <s:options-collection>, or <s:options-map>, you can

add entries in the resource bundle with the keys that Stripes uses to

look up localized labels. For example, we used <s:options-collection>

to render a select box with the list of Folder objects.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/web/WEB-INF/jsp/contact_form.jsp
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=231

TRANSLATING THE TEXT OF AN APPLICATION 232

Download email_20/web/WEB-INF/jsp/common/message_action.jsp

<s:select name="selectedFolder">

<s:option value="">

<fmt:message key="messageList.selectAFolder"/>...

</s:option>

<s:options-collection collection="${folders.folders}"

value="id" label="name"/>

</s:select>

For each Folder, Stripes calls getId() for the value and getName() for the

label. To look up localized labels, Stripes looks for a key that starts with

the class name (Folder), optionally prefixed by the package (stripesbook.

action), and followed either by the string returned by getName() or by

getId(). Using the class name without the package, followed by the name

of the folder, we get the following entries in the resource bundles:

Download email_20/res/StripesResources.properties

Folder.Inbox=Inbox

Folder.Sent=Sent

Folder.Reference=Reference

Folder.Trash=Trash

Download email_20/res/StripesResources_fr.properties

Folder.Inbox=R\u00e9ception

Folder.Sent=Envoi

Folder.Reference=R\u00e9f\u00e9rence

Folder.Trash=Poubelle

That’s all we need to translate the options in the select box. Options

rendered by <s:options-enumeration> and <s:options-map> work es-

sentially in the same way: the class name with or without the package

prefix, followed by the label or the value. If we had used a select box for

the gender and <s:options-enumeration> to generate options from the

Gender enumeration, we could have added these entries in the French

resource bundle:

stripesbook.model.Gender.Female=F\u00e9minin

stripesbook.model.Gender.Male=Masculin

Localizing Image Buttons

One last type of input control that it is worth mentioning while talking

about localization is the image button. If we’re using localized images,

you can use the resource bundle to get the <s:image> tag to use the

image associated to the current locale. As with other input controls, the

key is the same as the name= attribute of the tag, optionally prefixed

with the action bean class name. To indicate the path to the image,

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/web/WEB-INF/jsp/common/message_action.jsp
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=232

SWITCHING BETWEEN LANGUAGES 233

append the .src suffix to the key; for the alternate text, use the .alt suffix.

For example:

stripesbook.action.MessageComposeActionBean.addTo.src=images/fr/arrow.png

stripesbook.action.MessageComposeActionBean.addTo.alt=Ajouter

11.3 Switching Between Languages

Although the application now automatically appears in French if that’s

the user’s preferred language, we might also want to let the user choose

the language directly in the application. This could be a link at the bot-

tom of the page, as illustrated in Figure 11.4, on page 235.4 This saves

the user from having to change the browser’s settings and caters to

those bilingual users who might feel like switching languages accord-

ing to their mood.

One way to implement this feature is to use a request parameter that

tells the application what locale to use, such as locale=fr. This value is

stored in the session and used until the user switches the language

again.

To make this possible, we’ll need an extension to the Stripes module

called the locale picker. On each request, Stripes uses an implementa-

tion of the LocalePicker interface to determine the locale and character

encoding:

public interface LocalePicker extends ConfigurableComponent {

public Locale pickLocale(HttpServletRequest request);

public String pickCharacterEncoding(HttpServletRequest request,

Locale locale);

}

The default implementation looks in the request for a list of preferred

locales and compares it to the list of locales supported by the applica-

tion, as we discussed earlier. We can extend the default class and add

the behavior of first looking for the locale= parameter in the request and

in the session before falling back to the behavior of the parent class.

4. Of course, if the application became available in more than two languages, we’d use

something else: several links, a select box, or what have you. Right now we’ll stick to a

single link that switches between English and French.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=233

SWITCHING BETWEEN LANGUAGES 234

Download email_20/src/stripesbook/ext/MyLocalePicker.java

package stripesbook.ext;

public class MyLocalePicker extends DefaultLocalePicker {

public static final String LOCALE = "locale";

@Override

public Locale pickLocale(HttpServletRequest request) {

HttpSession session = request.getSession();

// Look in the request.

String locale = request.getParameter(LOCALE);

if (locale != null) {

session.setAttribute(LOCALE, locale);

}

// Not found in the request? Look in the session.

else {

locale = (String) session.getAttribute(LOCALE);

}

// Use the locale if found.

if (locale != null) {

return new Locale(locale);

}

// Otherwise, use the default.

return super.pickLocale(request);

}

}

In the pickLocale() method, the locale= request parameter has priority

for choosing the locale. Next comes the last selected locale, which is

stored in the session. Finally, when the user first accesses the applica-

tion, the method falls back to the default behavior of using the value

supplied by the browser until the user clicks the link to change the

language.

Again, we can just add MyLocalePicker to the stripesbook.ext package, and

it will automatically be loaded by Stripes because we designated this

package in web.xml as the package for Stripes extensions. Gotta love

that!

Now we can add a link to switch from one language to the other at the

bottom of each page by adding this code to layout_main.jsp:

Download email_20/web/WEB-INF/jsp/common/layout_main.jsp

<fmt:message var="otherLocale" key="layout.otherLocale"/>

<s:link href="${actionBean.lastUrl}">

<s:param name="locale" value="${otherLocale}"/>

<fmt:message key="layout.otherLanguage"/>

</s:link>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/src/stripesbook/ext/MyLocalePicker.java
http://media.pragprog.com/titles/fdstr/code/email_20/web/WEB-INF/jsp/common/layout_main.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=234

SWITCHING BETWEEN LANGUAGES 235

Figure 11.4: The Login page with a link to switch languages

Since this link is displayed in every page of the application, it just

resubmits the previous request with the locale= parameter tacked on

at the end. By adding a getLastUrl() to BaseActionBean, we can obtain the

URL with ${actionBean.lastUrl}. Indeed, different action beans are used

in different pages, but they all extend BaseActionBean, making it the

appropriate place to add the helper method.

All that’s left is to add the entries in the resource bundles. We just have

to be careful not to get mixed up: the values in the English resource

bundle refer to French, and vice versa:

Download email_20/res/StripesResources.properties

layout.otherLanguage=Version fran\u00e7aise

layout.otherLocale=fr

Download email_20/res/StripesResources_fr.properties

layout.otherLanguage=English version

layout.otherLocale=en

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_20/res/StripesResources_fr.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=235

USING DIFFERENT RESOURCE BUNDLES 236

We now have a link, as shown in Figure 11.4, on the preceding page,

which appears on every page and automatically switches whatever page

the user is on to the other language. We needed only a custom locale

picker, a link in the layout JSP, the text in the resource bundles, and

a helper method to the base action bean. This is all thanks to the

“pluggability” of Stripes, its layout mechanism, dynamic ${actionBean}

attribute, and easy-to-use localization!

11.4 Using Different Resource Bundles

So far, we’ve used the default StripesResources bundle for all localized

text. Although using action bean class name prefixes helps in keep-

ing the keys organized, you might prefer to have separate bundles for

form field names, messages, and free-form text. Or you might want to

continue using just one bundle but use a different name. Whatever

the reason, let’s look at how you can change the name of the resource

bundle used for each type of text. As a bonus, we’ll also look at how

we can gain full control over the localization strategy, implementing a

one-resource-bundle-per-action-bean convention as an example.

Changing the Names of the Resource Bundles

Remember that localized text comes from three sources. You can

change the resource bundle name for all three sources independently—

it’s up to you to decide whether you want the same or different bundles

for each source. Let’s look at an example of the latter. Instead of Stripes-

Resources, we’ll use the following:

• fieldLabels for the form field labels

• errors for the error and information messages

• text for the free-form text

Let’s also put the resource bundles under the translations directory in-

stead of in the root as with StripesResources.

We already know how to specify the resource bundle for free-form text

with the JSTL context parameter. To change the Stripes resource bun-

dles, use initialization parameters to the Stripes filter, as shown here:

Download email_21/web/WEB-INF/web.xml

<context-param>

<param-name>

javax.servlet.jsp.jstl.fmt.localizationContext

</param-name>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_21/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=236

USING DIFFERENT RESOURCE BUNDLES 237

<param-value>translations/text</param-value>

</context-param>

<filter>

<filter-name>StripesFilter</filter-name>

<filter-class>

net.sourceforge.stripes.controller.StripesFilter

</filter-class>

<!-- other init params...-->

<init-param>

<param-name>

LocalizationBundleFactory.FieldNameBundle

</param-name>

<param-value>translations/fieldLabels</param-value>

</init-param>

<init-param>

<param-name>

LocalizationBundleFactory.ErrorMessageBundle

</param-name>

<param-value>translations/errors</param-value>

</init-param>

</filter>

The resource bundle files must now be under translations within the class

path. For example:

/WEB-INF/classes/translations/errors.properties

/WEB-INF/classes/translations/errors_fr.properties

/WEB-INF/classes/translations/fieldNames.properties

/WEB-INF/classes/translations/fieldNames_fr.properties

/WEB-INF/classes/translations/text.properties

/WEB-INF/classes/translations/text_fr.properties

This gives us the possibility of using separate resource bundles for each

type of text and putting the files in the directories of our choice. Of

course, we can also use these configuration parameters to change the

name of the resource bundle from StripesResources to something else,

but we can use the same name for all three and use just one resource

bundle for all localized text.

Implementing a One-Resource-Bundle-per-Action-Bean

Convention

By implementing our own subclass of ResourceBundle, we can implement

just about any localization strategy you want. Let’s look at how that

would work if we decided to organize resource bundles by using one

bundle for each action bean. The convention might be that the base

name of the resource bundle is the same as the package and class

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=237

USING DIFFERENT RESOURCE BUNDLES 238

stripesbook.action.ContactFormActionBean.contact.firstName

MyResourceBundle

stripesbook.action.ContactFormActionBean contact.firstName

bundle

name
key

stripesbook/action/ContactFormActionBean.properties

contact.firstName=First name

Figure 11.5: Using a custom resource bundle

name of the action bean. For example, the resource bundle files for the

following:

stripesbook.action.ContactFormActionBean

would look like this:

stripesbook/action/ContactFormActionBean.properties

stripesbook/action/ContactFormActionBean_fr.properties

As usual, the files would have to be found in the classpath, such as

under the WEB-INF/classes directory.

The trick here is that the name of the resource bundle has to be deter-

mined “on the fly” according to the class name at the beginning of the

key. We need a custom ResourceBundle (MyResourceBundle, say) that looks

at the key, extracts the class name and uses it as a resource bundle

name, and looks up the value using the rest of the key, as illustrated

in Figure 11.5.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=238

USING DIFFERENT RESOURCE BUNDLES 239

The two methods you have to override when subclassing ResourceBundle

are getKeys() and handleGetObject(). Here, then, is the code for MyRe-

sourceBundle:

Download email_22/src/stripesbook/ext/MyResourceBundle.java

package stripesbook.ext;

public class MyResourceBundle extends ResourceBundle {

private Locale locale;

public MyResourceBundle(Locale locale) {

this.locale = locale;

}

@Override

public Enumeration<String> getKeys() {

return null;

}

@Override

protected Object handleGetObject(String fullKey) {

Object result = null;

// Look for a class name in the full key

for (int i = fullKey.length() - 1; i > 0; i--) {

if (fullKey.charAt(i) == '.') {

String className = fullKey.substring(0, i);

try {

Class.forName(className);

// Found a class name, use the rest as a key

String key = fullKey.substring(i + 1);

result = getResult(locale, className, key);

}

catch (ClassNotFoundException exc) {

}

}

}

if (result == null) {

// Found nothing, try the application's default bundle

String name=DefaultLocalizationBundleFactory.BUNDLE_NAME;

result = getResult(locale, name, fullKey);

}

return result;

}

// Just returns null if the bundle or the key is not found,

// instead of throwing an exception.

private String getResult(Locale loc, String name, String key) {

String result = null;

ResourceBundle bundle = ResourceBundle.getBundle(name, loc);

if (bundle != null) {

try { result = bundle.getString(key); }

catch (MissingResourceException exc) { }

}

return result;

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_22/src/stripesbook/ext/MyResourceBundle.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=239

USING DIFFERENT RESOURCE BUNDLES 240

This is actually a fake resource bundle (or, to put it more elegantly,

a decorator), because it intercepts the call to handleGetObject() and

dynamically delegates to the “real” resource bundle using the class

name contained in the key. That’s why getKeys() returns null: MyRe-

sourceBundle doesn’t have any keys of its own.

If nothing is found when looking for a class name or for a key in

the class name bundle, MyResourceBundle looks in the default Stripes

resource bundle. This way, you can use StripesResources for text that

is not associated with any specific action bean. You can also put keys

without a class name and use them as a default for the whole appli-

cation, overriding them in action bean bundles if necessary. Using our

earlier example, where you had buttons labeled “Cancel” throughout

the application, but wanted to use “Abort” on the Register page, you

would have cancel=Cancel in StripesResources and cancel=Abort in the

stripesbook/action/RegisterActionBean bundle.

We’ve already done most of the work to support our “modular” resource

bundles. We now have to tell Stripes to use MyResourceBundle. Although

packaged in stripesbook.ext, MyResourceBundle is not a Stripes extension,

just a custom ResourceBundle. The Stripes extension for changing the

ResourceBundle implementation is the LocalizationBundleFactory interface,

which has a method for the form field bundle and one for the error

message bundle. We’ll return MyResourceBundle for both:

Download email_22/src/stripesbook/ext/MyLocalizationBundleFactory.java

package stripesbook.ext;

public class MyLocalizationBundleFactory

implements LocalizationBundleFactory

{

public ResourceBundle getFormFieldBundle(Locale locale) {

return new MyResourceBundle(locale);

}

public ResourceBundle getErrorMessageBundle(Locale locale) {

return new MyResourceBundle(locale);

}

public void init(Configuration configuration) { }

}

What about the free-form text, which is handled by the JSTL? How

do we tell the JSTL to use MyResourceBundle? We could do that (with

<fmt:setBundle>), but then we’d have to make sure to prefix every key

with the action bean class name, since the JSTL does not do that auto-

matically. That’s too much work, isn’t it? There’s an easier way. We can

set the JSTL bundle to the class name of the current action bean with

a one-liner added to the end of taglibs.jsp.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_22/src/stripesbook/ext/MyLocalizationBundleFactory.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=240

USING DIFFERENT RESOURCE BUNDLES 241

Download email_22/web/WEB-INF/jsp/common/taglibs.jsp

<fmt:setBundle basename="${actionBean.class.name}"/>

Every page already uses taglibs.jsp, so just like that, we’ve set the bundle

globally. Now the JSTL will dynamically use the action bean class as a

base name for its resource bundle. That’s it—we don’t even need the

javax.servlet.jsp.jstl.fmt.localizationContext context parameter in web.xml in

this case.

With this nifty maneuver, the <fmt:message> keys in the JSPs don’t

need a prefix. For example, in the Login page, we now have this:

Download email_22/web/WEB-INF/jsp/login.jsp

<fmt:message var="title" key="title"/>

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="${title}">

<s:layout-component name="body">

<p><fmt:message key="pleaseLogin"/>:</p>

<!-- ... -->

<s:link beanclass="stripesbook.action.RegisterActionBean">

<fmt:message key="register"/>

</s:link> <fmt:message key="toCreateAnAccount"/>.

</s:layout-component>

</s:layout-render>

Since the page is associated to stripesbook.action.LoginActionBean, that

becomes the resource bundle for the localized text:

Download email_22/res/stripesbook/action/LoginActionBean.properties

title=Login

pleaseLogin=Please login

register=Register

toCreateAnAccount=to create an account

Download email_22/res/stripesbook/action/LoginActionBean_fr.properties

title=Identification

pleaseLogin=Veuillez vous identifier

register=Enregistrez-vous

toCreateAnAccount=pour cr\u00e9er un compte

Very clean. The keys are concise, and the resources are grouped to-

gether with the action bean class in matching .properties files.

The only exception to this resource bundle pattern is using StripesRe-

sources for free-form text not associated with a specific action bean,

such as in the layout JSPs. In those cases, add <fmt:setBundle base-

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_22/web/WEB-INF/jsp/common/taglibs.jsp
http://media.pragprog.com/titles/fdstr/code/email_22/web/WEB-INF/jsp/login.jsp
http://media.pragprog.com/titles/fdstr/code/email_22/res/stripesbook/action/LoginActionBean.properties
http://media.pragprog.com/titles/fdstr/code/email_22/res/stripesbook/action/LoginActionBean_fr.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=241

USING DIFFERENT RESOURCE BUNDLES 242

name="StripesResources"/> in the layout JSP after the taglib import, and

the text will come from StripesResources. For example:

Download email_22/web/WEB-INF/jsp/common/layout_main.jsp

<%@include file="/WEB-INF/jsp/common/taglibs.jsp"%>

<fmt:setBundle basename="StripesResources"/>

<s:layout-definition>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<!-- ... -->

<s:layout-component name="menu">

<fmt:message key="layout.welcome"/>

</s:layout-component>

<!-- ... -->

</html>

</s:layout-definition>

Those keys will now be found in the StripesResources bundle:

Download email_22/res/StripesResources.properties

layout.welcome=Welcome to Stripes Webmail

Download email_22/res/StripesResources_fr.properties

layout.welcome=Bienvenue au WebCourriel Stripes

You can also use the StripesResources bundle in this manner for a JSP

that’s being used by more than one action bean. By doing this, you

avoid having to duplicate the keys used by that JSP in each action

bean’s corresponding .properties file.

Très Bien!

Supporting multiple languages in an application doesn’t have to be a

complicated task. Using the Stripes key lookup patterns and resource

bundles (either the defaults or your own), you can make your appli-

cations available in multiple languages without a Herculean effort. As

your application grows, you can keep your translated text organized,

whether it’s in one or more resource bundles. You can also implement

your own resource bundle strategy—the choice is yours.

Regardless of how we organize your resource bundles, all localized text

is isolated from the rest of the code. We still have one JSP per page,

no matter in how many languages we translate the application. Adding

another language at a later stage is not a problem either—we need only

to add the locale code to the list of supported languages and translate

the resource bundles.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_22/web/WEB-INF/jsp/common/layout_main.jsp
http://media.pragprog.com/titles/fdstr/code/email_22/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_22/res/StripesResources_fr.properties
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=242

USING DIFFERENT RESOURCE BUNDLES 243

Tim Says. . .

Localized Text Storage—Isn’t That a Pain?

Stripes makes it relatively easy (or at least, I hope less painful) to
localize an application and support more than one language.
But one area we know is a little weak is supporting different
structures for storing all your localized text. Freddy showed an
inventive solution—breaking up the resource bundle using a
decorator—but it did feel a bit like a hack.

Wouldn’t it be nice to be able to store your localized text in
a database or in a set of files structured how you choose?
Although Stripes 1.5 relies on two ResourceBundles for the entire
application, we are looking to change things around for the
next version. At that time we hope to “hide” the entire process
of finding localized text behind a pluggable component so that
other strategies can be plugged in with minimal effort—just like
in other parts of Stripes. Most likely such a component will be
given access to the action bean, the current locale, and one
or more keys in order to provide the localized text.

Until that time, if you want to store localized text in a different
way than Stripes wants it, you have two options. The first is to do
something like Freddy did and implement your own Resource-

Bundle to look for text in different places. The second option is
to store the text however you like and use your build system
to pull it all together into the two resource bundles that Stripes
wants.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=243

Part III

In High Gear

244
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Friendships make prosperity more shining and lessens

adversity by dividing and sharing it.

Cicero

Chapter 12

Completing the Stack
Stripes is a very “friendly” framework in the sense that it makes the

integration of third-party libraries quite simple. In this chapter, we’ll

look at inviting a few friends to the party: Java Persistence API (JPA),

Hibernate, Spring, and JUnit. We’ll store the model data of our webmail

application in a real database, make it easier to swap DAO implemen-

tations by using dependency injection, and write some automated unit

tests.

12.1 Persistence with Stripersist, JPA, and Hibernate

So far, we’ve been using mock DAOs to store the webmail data. This was

on purpose so that you could focus on learning core aspects of Stripes

without getting distracted by database issues. Now that you’ve acquired

a considerable amount of Stripes knowledge, it’s time to complete the

stack from the model to the database.

You can make the link between Java model objects and a database in

many ways: using plain JDBC, using a library that facilitates the inter-

action with JDBC but places the responsibility of writing SQL on you,

using an Object-Relational Mapping (ORM) framework, and so on. Each

solution has its advantages and disadvantages. I can’t possibly demon-

strate every possibility, and I won’t debate the pros and cons of each.

Rather, I’ll show you an ORM example with JPA and Hibernate.1 I chose

this combination because JPA is Sun’s standard persistence specifica-

tion and because there’s a library specifically designed to integrate JPA

1. These live at http://java.sun.com/javaee/technologies/persistence.jsp and

http://www.hibernate.org.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://java.sun.com/javaee/technologies/persistence.jsp
http://www.hibernate.org

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 246

with Stripes. Now, since JPA is only a specification, you also need an

implementation; I chose Hibernate because it’s widely used. I don’t use

anything Hibernate-specific in the sample code, so things should work

the same if you decided to replace Hibernate with any other JPA imple-

mentation, such as OpenJPA (http://openjpa.apache.org) or JPOX (http://

www.jpox.org).

Aaron Porter, Stripes committer, smart developer, and all-around nice

guy, wrote a library that facilitates the integration of JPA in Stripes,

named Stripersist.2 Crack your knuckles, we’re going to set up a data-

base and use JPA, Hibernate, and Stripersist to implement the persis-

tence of the webmail application model data.

Setting Up a Database

Of course, we’ll need a database to get started. Any database that has

a JDBC driver will do, such as Postgres (http://www.postgresql.com) and

MySQL (http://www.mysql.com). If you’re using a commercial database,

chances are that they provide a JDBC driver as well.

I use HSQLDB (http://www.hsqldb.org) for the sample application because

setting it up is extremely simple. I also like that it comes with a GUI

so that you can browse the database and poke around. If you have

Ant installed, you can just go to the directory where you unpacked the

source code bundle and start the database server using this:

ant dbstart

Launching the GUI (shown in Figure 12.1, on the following page) is also

very easy:

ant dbgui

Finally, to shut down the server, use the following:

ant dbstop

When running the examples that use the database, make sure to start

the database server before launching the web application.

Setting Up JPA, Hibernate, and Stripersist

Now that the database is ready, the next step is to set up JPA, Hiber-

nate, and Stripersist. You’ll find all the required JAR files in the lib/

hibernate and lib/stripersist directories of the sample code bundle.

2. Stripersist is part of the Stripes-Stuff project at http://www.stripes-stuff.org.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://openjpa.apache.org
http://www.jpox.org
http://www.jpox.org
http://www.postgresql.com
http://www.mysql.com
http://www.hsqldb.org
http://www.stripes-stuff.org
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=246

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 247

Figure 12.1: The HSQLDB GUI client

The Ant build script automatically builds the WAR files with all the

required JARs.

The JPA configuration is placed in the WEB-INF/classes/META-INF/

persistence.xml file. This is where you tell JPA to use Hibernate and con-

figure Hibernate to use the HSQLDB database:

Download email_23/res/META-INF/persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"

version="1.0">

<persistence-unit name="stripes_webmail">

<!-- Tell JPA to use Hibernate -->

<provider>org.hibernate.ejb.HibernatePersistence</provider>

<!-- Hibernate settings -->

<properties>

<!-- Autodetect entity classes -->

<property name="hibernate.archive.autodetection" value="class"/>

<!-- Automatically create the SQL schema -->

<property name="hibernate.hbm2ddl.auto" value="create"/>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/res/META-INF/persistence.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=247

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 248

<!-- Tell Hibernate to use HSQLDB -->

<property name="hibernate.dialect"

value="org.hibernate.dialect.HSQLDialect"/>

<property name="hibernate.connection.driver_class"

value="org.hsqldb.jdbcDriver"/>

<!-- Configure the JDBC database connection -->

<property name="hibernate.connection.url"

value="jdbc:hsqldb:hsql://localhost:9001/webmail"/>

<property name="hibernate.connection.username" value="sa"/>

<property name="hibernate.connection.password" value=""/>

<property name="jdbc.batch_size" value="0"/>

<!-- Configure the connection pool -->

<property name="hibernate.c3p0.min_size" value="5"/>

<property name="hibernate.c3p0.max_size" value="20"/>

<property name="hibernate.c3p0.timeout" value="300"/>

<property name="hibernate.c3p0.max_statements" value="50"/>

<property name="hibernate.c3p0.idle_test_period" value="3000"/>

</properties>

</persistence-unit>

</persistence>

Setting up Stripersist is a one-liner in the web.xml file. Add the Striper-

sist package to the list of Stripes extension packages:

Download email_23/web/WEB-INF/web.xml

<init-param>

<param-name>Extension.Packages</param-name>

<param-value>

stripesbook.ext,

org.stripesstuff.stripersist

</param-value>

</init-param>

You’re ready to go!

Using JPA Annotations in the Model

Now that the database, JPA, Hibernate, and Stripersist are rearing to

work for us, the next step is to tell JPA about our model classes, which

we’ve been gradually adding to the application throughout most of the

book. JPA provides several annotations that we add to classes and

properties so that JPA can figure out how to do the mapping between

the model and database tables.

Let’s have a global view of our webmail application’s model. As illus-

trated in Figure 12.2, on the next page, there are users, aliases,

contacts, folders, messages, and attachments. We have to let JPA know
Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=248

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 249

User

Alias

0..*

1

Contact

0..*

1

Folder

0..*

1

Message

0..*

1

Attachment

0..*

1

Figure 12.2: The webmail application model classes

about these model classes. which the JPA calls entities. Add the @Entity

annotation on each model class:

Download email_23/src/stripesbook/model/User.java

@Entity

public class User extends ModelBase {

Entities are managed by JPA and also discovered by Stripersist. We’ll

see what Stripersist does for us in the next section. Let’s finish anno-

tating the model for JPA.

Each model class has a property that uniquely identifies individual

objects. The @Id annotation must be added to that property for each

entity. Rather than repeat this property in each model class, we can

use an abstract base class:

Download email_23/src/stripesbook/model/ModelBase.java

@MappedSuperclass

public abstract class ModelBase {

@Id

@GeneratedValue

private Integer id;

public Integer getId() { return id; }

public void setId(Integer id) { this.id = id; }

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/model/User.java
http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/model/ModelBase.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=249

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 250

ModelBase is not itself an entity. By using @MappedSuperclass, JPA will

add its properties to each @Entity subclass. The @Id and @Generated-

Value annotations indicate that id is the identifier property and its val-

ues should be automatically generated by the database. This is inher-

ited by each of our model classes because they all extend ModelBase.

Look again at Figure 12.2, on the preceding page. We’ve identified the

entities, and now we need to establish the relationships between them.

If we work our way from the top to the bottom of the diagram, all entities

have zero or more of the entity below: a user has zero or more folders, a

folder has zero or more messages, and so on. JPA refers to these types

of relationships as one-to-many if you’re reading the diagram from top

to bottom or many-to-one if you’re going from bottom to top.

JPA provides the @OneToMany and @ManyToOne annotations to describe

these relationships. The User class has a @OneToMany relationship with

the Contact class, and the Contact class has a @ManyToOne relation-

ship with the User class. We indicate these relationships by adding the

annotations to the properties:

Download email_23/src/stripesbook/model/User.java

@Entity

public class User extends ModelBase {

@OneToMany(mappedBy="user")

private Set<Contact> contacts;

/* Getters and setters... */

}

Notice that the mappedBy= attribute of @OneToMany corresponds to the

name of the property in the Contact class that refers to the User:

Download email_23/src/stripesbook/model/Contact.java

@Entity

public class Contact extends ModelBase {

@ManyToOne

private User user;

/* Getters and setters... */

}

We’ve identified the other side of the relationship with @ManyToOne on

the user property of the Contact class. After doing the same for the other

relationships between entities, we’re done with adding JPA annotations

to the model.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/model/User.java
http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/model/Contact.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=250

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 251

When the application starts, Hibernate generates and executes SQL

commands to create the database schema. The tables automatically

contain columns that correspond to the properties of the entity classes

as well as extra columns to manage the one-to-many/many-to-one rela-

tionships. The data is moved between the database and the model

classes, in both directions, without requiring us to write a single line of

SQL. And that’s not all—Stripersist allows us to use our entity classes

directly, taking care of reading objects from the database for us. Let’s

talk about that in more detail.

Stripersist Type Conversion and Formatting

Stripersist registers entity classes and does type conversion for them on

the fly. The type converter finds the @Id property on each @Entity class

(or @MappedSuperclass) and uses it to convert a String to an entity class

by loading the corresponding object from the database. Stripersist also

creates formatters that do the opposite, which is to produce a String

from the model object’s @Id.

We discussed writing type converters to load model objects from ID

parameters back in Section 5.4, Using a Type Converter and Formatter

to Load Model Objects, on page 117. With Stripersist, we don’t need

to do this ourselves; Stripersist’s type converter does it automatically.

Here’s how it works. Say we have a Contact class with an @Id property

of type ID. Refer to Figure 12.3, on the following page:

1. A request comes in with a someContact=5 parameter to be bound to

an action bean’s someContact property of type Contact. Since Con-

tact has the @Entity annotation, Stripersist’s TypeConverter<Entity>

is invoked.

2. The type converter finds the @Id property on the Contact class and

determines its type, ID.

3. Stripersist asks Stripes for a type converter for ID and calls its

convert() method with the String parameter "5".

4. The type converter returns the converted id value of type ID. This

works automatically if Stripes has a built-in type converter for the

ID type; otherwise, we need to provide our own.

5. The type converter then calls the JPA EntityManager’s find() method

with the converted id object.

6. The EntityManager loads the Contact object from the database and

returns it.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=251

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 252

Stripersist

Request

TypeConverter<Entity>

(1)

someContact=5

@Entity

public class Contact {

@Id

ID idProperty;

}

(2)

find @Id

TypeConverter<ID>

(3)

convert("5")

EntityManager.find(Contact.class, id)

(5)

call

(4)

return id

(6)

return contact

Action Bean

Contact someContact;

(7)

setSomeContact(contact)

Figure 12.3: The Stripersist entity type converter

7. Finally, Stripersist’s type converter returns the Contact object,

which is set on the someContact property of the action bean.

All this work that Stripersist does means we can use entity classes

directly. For example, remember how the contact form allowed the user

to update an existing contact. We needed a hidden field in the form

to identify the contact; now, we don’t need to manually write a type

converter or a formatter to support that. We can just use a Contact

property on the action bean directly in the <s:hidden> tag:

Download email_23/web/WEB-INF/jsp/contact_form.jsp

<div><s:hidden name="contact"/></div>

This produces a parameter with the value of the @Id property of the

Contact object that is being updated. When the user submits the form,

that value will be converted to a Contact object. Voilà! You can now use

ID parameters for all entities: User, Folder, Message, and so on.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/web/WEB-INF/jsp/contact_form.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=252

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 253

Using Stripersist and JPA in the DAOs

We’ve gotten pretty far already. We now need to write the code that

creates, updates, and deletes model objects, as well as reads them by

something else than their @Id. The DAOs are the perfect place for this

code. Remember our generic DAO interface:

Download email_23/src/stripesbook/dao/Dao.java

package stripesbook.dao;

public interface Dao<T,ID extends Serializable> {

public List<T> read();

public T read(ID id);

public void save(T t);

public void delete(T t);

public void commit();

}

The mock DAOs that we were previously using just assumed an ID

property of type Integer. Now that we’re using the @Id annotation to

indicate the ID property, we have to be a little more flexible. That’s

why the Dao interface is generic not only for the model type T but also

the type of the ID property, ID. JPA requires @Id property types to be

Serializable, which is why the Dao imposes this restriction.

The DAO interface also includes a commit() method so that transactions

can be committed. More about this very shortly. Because the methods

in the Dao interface are common to all model objects, it makes sense

to write an abstract base class that provides a generic implementation

for any type. Each specific DAO extends this base class and needs to

provide only what is specific to the corresponding model class.

Let’s create the BaseDaoImpl class and use a little bit of Java generics

magic to detect the model class that the DAO is dealing with:

Download email_23/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java

package stripesbook.dao.impl.stripersist;

public abstract class BaseDaoImpl<T,ID extends Serializable>

implements Dao<T,ID>

{

private Class<T> entityClass;

@SuppressWarnings("unchecked")

public BaseDaoImpl() {

entityClass = (Class<T>)

((ParameterizedType) getClass().getGenericSuperclass())

.getActualTypeArguments()[0];

}

/* methods... */

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/dao/Dao.java
http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=253

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 254

When a concrete DAO subclass is instantiated, entityClass will contain

the specific model class. This is very handy to write the rest of the

BaseDaoImpl code in a generic fashion. For example, here’s how we

implement the read methods:

Download email_23/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java

@SuppressWarnings("unchecked")

public List<T> read() {

return Stripersist.getEntityManager()

.createQuery("from " + entityClass.getName())

.getResultList();

}

public T read(ID id) {

return Stripersist.getEntityManager().find(entityClass, id);

}

There are a few things going on here. First, Stripersist.getEntityManager()

returns an implementation of the JPA’s EntityManager interface that we

can use to work with the database. JPA requires you to create an Entity-

ManagerFactory (normally at application startup), use it to create an Enti-

tyManager, close() the EntityManager when you’re done with it, and close()

the EntityManagerFactory when the application shuts down. Stripersist

takes care of all that housekeeping for you!

Next, the entity’s class name is dynamically added to the query passed

to createQuery() in order to retrieve the list of objects for that entity.

Finally, EntityManager provides a method to retrieve an entity object by

its ID, which is used in the read(ID) method.

Note that we called Stripersist.getEntityManager() with no parameters. This

works because we defined only one persistence unit in the persistence.xml

file:

<persistence-unit name="stripes_webmail">

...

</persistence-unit>

With more than one persistence unit, we would pass the name of the

persistence unit as a parameter, as in Stripersist.getEntityManager("stripes_

webmail").

At this point, we’re only reading objects. We also need to create, update,

and delete objects. Unlike reading, these operations involve changing

the database. You are no doubt familiar with database transactions;

in a nutshell, a transaction is a way to group one or more operations

for which it is important that either all or none of the operations go

through to the database. The typical example is a bank transaction that

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=254

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 255

involves transferring money from one account to another. Two opera-

tions are involved: withdrawing from one account and depositing to the

other account. These must both go through or both be canceled. Other-

wise, what happens if the withdrawal works but the deposit fails? The

account holder loses the money.

To prevent that from happening, the transaction begins, the withdrawal

and deposit operations are carried out, and only if all goes well is the

transaction committed to the database. If something goes wrong during

the operations, the transaction is rolled back, and the database is left

unchanged.

With JPA, you are responsible for beginning, committing, and rolling

back transactions. But hold on—Stripersist already does two out three

of those for you. Every time you call Stripersist.getEntityManager(), Striper-

sist begins the transaction (unless it’s already active). At the very end

of each request, Stripersist automatically rolls back the transaction if

it wasn’t committed. So, all you really need to do is to commit trans-

actions after modifying the database and make sure to use a Redirec-

tResolution, as we discussed Section 3.7, The Redirect-After-Side-Effect

Pattern, on page 67.

We’re now ready to implement the save() and delete() methods in the

base DAO:

Download email_23/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java

@SuppressWarnings("unchecked")

public void save(T object) {

Stripersist.getEntityManager().persist(object);

}

public void delete(T object) {

Stripersist.getEntityManager().remove(object);

}

public void commit() {

Stripersist.getEntityManager().getTransaction().commit();

}

Wow, after all that theory, there’s not much to the code, is there? In

both methods, Stripersist.getEntityManager() implicitly begins a transac-

tion. We either save or delete the model object (which JPA calls persist()

and remove()), and the client code is responsible for committing the

transaction with a call to commit() on the Dao interface. Done and done!

Our base DAO now fully implements the generic DAO interface. Before

moving on to the specific DAOs, let’s add a couple of convenience meth-

ods to the base for finding objects that match a given field.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=255

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 256

Download email_23/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java

@SuppressWarnings("unchecked")

public T findBy(String fieldName, Object value) {

Query query = Stripersist.getEntityManager()

.createQuery(getQuery(fieldName, null))

.setParameter(fieldName, value);

return getSingleResult(query);

}

@SuppressWarnings("unchecked")

public T findBy(String fieldName, Object value, User user) {

Query query = Stripersist.getEntityManager()

.createQuery(getQuery(fieldName, user))

.setParameter(fieldName, value)

.setParameter("user", user);

return getSingleResult(query);

}

private String getQuery(String fieldName, User user){

String query =

"from " + entityClass.getName() + " t " +

"where t." + fieldName + " = :" + fieldName;

if (user == null) {

return query;

}

return query + " and t.user = :user";

}

@SuppressWarnings("unchecked")

private T getSingleResult(Query query) {

try {

return (T) query.getSingleResult();

}

catch (NonUniqueResultException exc) {

return (T) query.getResultList().get(0);

}

catch (NoResultException exc) {

return null;

}

}

These two findBy() methods find an object according to a specified field.

Unlike the first method, the second method constrains the search to

a specific user. Both methods use a query constructed with the JPA

query syntax, which looks similar to SQL but supports, among other

things, named parameters that start with a colon (:).

With this code in the base DAO, it’s now very easy to implement the

subclasses by extending the base and implementing the methods de-

fined in each specific DAO interface. For example, remember that the

ContactDao interface added the findByEmail() method.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=256

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 257

More About JPA

Going into a more in-depth discussion about JPA annotations,
the JPA query language, and other JPA classes is—wait for it—
outside the scope of this book. See Part V of The Java EE 5
Tutorial [JBC+06] for detailed explanations about everything
related to using JPA.

Download email_23/src/stripesbook/dao/ContactDao.java

package stripesbook.dao;

public interface ContactDao extends Dao<Contact,Integer> {

public Contact findByEmail(String email, User user);

}

The implementation is trivial:

Download email_23/src/stripesbook/dao/impl/stripersist/ContactDaoImpl.java

package stripesbook.dao.impl.stripersist;

public class ContactDaoImpl extends BaseDaoImpl<Contact,Integer>

implements ContactDao

{

public Contact findByEmail(String email, User user) {

return findBy("email", email, user);

}

}

Our DAOs can now use Stripersist and JPA very easily, and the rest of

the application can use the DAOs as before without being exposed to

the details of the persistence layer.

Using the DAOs

We can now use the DAOs in the action beans. The BaseActionBean is a

convenient place to create instances that all action beans can use:

Download email_23/src/stripesbook/action/BaseActionBean.java

public abstract class BaseActionBean implements ActionBean {

protected AttachmentDao attachmentDao = new AttachmentDaoImpl();

protected ContactDao contactDao = new ContactDaoImpl();

protected FolderDao folderDao = new FolderDaoImpl();

protected MessageDao messageDao = new MessageDaoImpl();

protected UserDao userDao = new UserDaoImpl();

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/dao/ContactDao.java
http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/dao/impl/stripersist/ContactDaoImpl.java
http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/action/BaseActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=257

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 258

Since everything revolves around the user, it’s also convenient to have

a getUser() method in BaseActionBean that returns the current user:

Download email_23/src/stripesbook/action/BaseActionBean.java

protected User getUser() {

return getContext().getUser();

}

Since the session is used to remember the current user, the method

delegates to the action bean context, MyActionBeanContext, which stores

the user ID in the session and retrieves the User object with help from

the UserDao:

Download email_23/src/stripesbook/ext/MyActionBeanContext.java

private UserDao userDao = new UserDaoImpl();

public void setUser(User user) {

setCurrent(USER, user.getId());

}

public User getUser() {

Integer userId = getCurrent(USER, null);

return userDao.read(userId);

}

Action beans now have easy access to the current user as well as all

the DAOs. For example, here’s how the ContactFormActionBean saves a

contact:

Download email_23/src/stripesbook/action/ContactFormActionBean.java

public Resolution save() {

Contact contact = getContact();

contact.setUser(getUser());

contactDao.save(contact);

contactDao.commit();

getContext().getMessages().add(

getLocalizableMessage("contactSaved", contact)

);

return new RedirectResolution(ContactListActionBean.class);

}

Notice the call to commit() after saving the contact. Commits are done

in action beans (or wherever the DAOs are used), not in the DAOs them-

selves, so that multiple objects can be created, updated, or deleted

within a single transaction.

The webmail application is now using a real database. Our model has a

few annotations, our DAOs are simple, and we’re not tied to any specific

JPA implementation. Life is good.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/action/BaseActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/ext/MyActionBeanContext.java
http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/action/ContactFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=258

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 259

Stripersist and Security

Stripersist is very powerful but also very dangerous if you’re not
careful. Users should not be allowed to arbitrarily send values to
the properties of objects that are connected to the JPA Entity-

Manager, because a call to commit() saves all modifications to
associated objects.

Fortunately, you can avoid trouble by restricting which proper-
ties are allowed to be bound, as we’ll discuss in Section 14.1,
Controlling Parameter Binding, on page 307.

The StripersistInit Interface

Stripersist provides one more feature: the StripersistInit interface, which

is handy when you want to use Stripersist for code that needs to run at

application startup. By implementing that interface and the init() and

by placing your class in an extension package, your code will automati-

cally be executed after Stripersist has finished loading. We’ll talk about

StripersistInit in more detail when we use it in Section 14.6, Using Roles,

on page 321.

“But I Want to Use Native Hibernate/OpenJPA/JPOX/Etc.!”

Although working with JPA means your code is independent of the

underlying implementation, you might be ready to concede that gener-

icity in exchange for using the extras that your implementation provides

beyond JPA.

For example, Hibernate has a query-by-criteria API that can sometimes

be nicer to work with than constructing String queries. To use criteria,

you need to obtain a Hibernate Session. The JPA’s EntityManager inter-

face provides the getDelegate() method specifically for that purpose: to

obtain the underlying implementation. In theBaseDaoImpl class, you can

add a method to obtain the Hibernate Session:

Download email_24/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java

protected Session getSession() {

return (Session) Stripersist.getEntityManager().getDelegate();

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_24/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=259

PERSISTENCE WITH STRIPERSIST, JPA, AND HIBERNATE 260

From the Session, you can do whatever you want with Hibernate’s native

API, including queries by criteria. For example, you can simplify the

findBy() methods:3

Download email_24/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java

package stripesbook.dao.impl.stripersist;

import static org.hibernate.criterion.Restrictions.*;

public abstract class BaseDaoImpl<T,ID extends Serializable>

implements Dao<T,ID>

{

/* other methods... */

@SuppressWarnings("unchecked")

public T findBy(String fieldName, Object value) {

Criteria criteria = getSession().createCriteria(entityClass)

.add(eq(fieldName, value));

return getSingleResult(criteria);

}

@SuppressWarnings("unchecked")

public T findBy(String fieldName, Object value, User user) {

Criteria criteria = getSession().createCriteria(entityClass)

.add(and(

eq(fieldName, value),

eq("user", user)

));

return getSingleResult(criteria);

}

@SuppressWarnings("unchecked")

private T getSingleResult(Criteria criteria) {

try {

return (T) criteria.uniqueResult();

}

catch (HibernateException exc) {

return (T) criteria.list().get(0);

}

}

}

It’s nice to know that you can work with your JPA implementation’s

native classes if you’re more comfortable using them. Stripersist will

continue to work as before, but make sure you still use JPA annotations

on your model classes so that Stripersist finds them.

3. Notice the static import of Restrictions.*, which makes it possible to write code such as

and(eq(...), eq(...)). Of course, you could also choose not to use static imports and write

Restrictions.and(Restrictions.eq(...), Restrictions.eq(...)) instead.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_24/src/stripesbook/dao/impl/stripersist/BaseDaoImpl.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=260

DEPENDENCY INJECTION WITH SPRING 261

Other Resources

Stripersist makes it easy to use a JPA implementation. If JPA is al-

together not for you, using another solution to communicate data

between your Java model and a database—be it iBATIS (http://www.

ibatis.org), Cayenne (http://cayenne.apache.org), or even plain JDBC—

wouldn’t be difficult with Stripes. Using a DAO layer is all about hiding

the implementation details from the client code. You would write your

DAOs to use iBATIS, and Stripes would call the DAOs without being

affected by what framework is used to do the work. The only difference

is that you wouldn’t benefit from the transaction support, type conver-

sion, and formatting that Stripersist provides; you’d have to implement

that yourself.

12.2 Dependency Injection with Spring

When you have a class that depends on the services of another class,

such as an action bean needing a DAO, you can just create an instance

of the dependency with the new operator. This approach is simple and

easy to follow; you see which class is being used to satisfy the depen-

dency directly in the code. We’ve been doing this so far. For example,

BaseActionBean contains the implementations of the DAOs:

Download email_23/src/stripesbook/action/BaseActionBean.java

public abstract class BaseActionBean implements ActionBean {

protected AttachmentDao attachmentDao = new AttachmentDaoImpl();

protected ContactDao contactDao = new ContactDaoImpl();

protected FolderDao folderDao = new FolderDaoImpl();

protected MessageDao messageDao = new MessageDaoImpl();

protected UserDao userDao = new UserDaoImpl();

}

Although this approach is simple and straightforward, it is also limited.

We’re using DAO interfaces so that we can easily swap implementations

without affecting the calling code. But using a different implementation

means hunting down the places where we’re creating new instances,

replacing them with the alternative implementation and recompiling.

What we gain in simplicity, we lose in flexibility (which is how these

things often go).

Dependency injection is the concept of providing, from the outside, im-

plementations to classes that need them. This way, classes have ref-

erences only to interfaces, and not to any specific implementation.

Using this technique, BaseActionBean would have references only to

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.ibatis.org
http://www.ibatis.org
http://cayenne.apache.org
http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/action/BaseActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=261

DEPENDENCY INJECTION WITH SPRING 262

AttachmentDao, ContactDao, and so on. You would then configure which

implementations you’d like to use in a dependency injection frame-

work. The framework takes care of “wiring up” classes and their depen-

dencies for you. It becomes much easier to use different implementa-

tions, because you need to change only the configuration. Moreover,

you can use different configurations for different situations, making

testing much easier, as we’ll see in the next section. All of this leaves

your code much more flexible because you have only references to

interfaces. The trade-off is more complexity; you no longer see which

implementations are being used when you’re reading the code. You

have to look at the configuration of the dependency injection frame-

work to figure it out.

We’ll look at the support that Stripes provides for dependency injec-

tion (DI) with Spring (http://www.springframework.org). Guice (http://code.

google.com/p/google-guice) is another popular choice; since Stripes

does not have built-in support for Guice, we’ll take the opportunity

to implement it ourselves as an exercise in Section 13.4, Interceptor

Example: Adding Support for Guice, on page 299.

Setting Up Spring

Because Spring provides many other services besides dependency in-

jection, the distribution comes with several JAR files so that you can

use only what you need. In our case, we need spring-core.jar, spring-

beans.jar, spring-context.jar, and spring-web.jar to use the DI container and

the web application context loader. You can also take the easy way out

and just use the spring.jar file, which includes everything.

Next, set up the Spring context loader listener in web.xml:

Download email_25/web/WEB-INF/web.xml

<listener>

<listener-class>

org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

Spring’s ContextLoaderListener automatically loads the default Spring

configuration file, WEB-INF/applicationContext.xml,4 when the web appli-

cation starts up.

4. You can also use different configuration files by indicating them in the contextCon-

figLocation context parameter.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.springframework.org
http://code.google.com/p/google-guice
http://code.google.com/p/google-guice
http://media.pragprog.com/titles/fdstr/code/email_25/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=262

DEPENDENCY INJECTION WITH SPRING 263

Here’s how we set up this file to get Spring to load components into its

container from our stripesbook.dao.impl.stripersist package:

Download email_25/web/WEB-INF/applicationContext.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:context="http://www.springframework.org/schema/context"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-2.5.xsd">

<context:component-scan

base-package="stripesbook.dao.impl.stripersist"/>

</beans>

Boy, that’s a lot of cruft in the XML header, isn’t it? Oh, well. Looking

past that, we see a single element where we’re telling Spring to scan

a package and look for components. Now, we need give Spring a clue

about these components, which are our DAO implementations. Spring

provides four annotations to do this. @Component indicates a compo-

nent in general, while @Repository, @Service, and @Controller more pre-

cisely specify a persistence-, service-, or presentation-layer component.

@Repository is what we want since the DAOs are in the persistence layer,

so we use that annotation in the DAO implementation classes:

Download email_25/src/stripesbook/dao/impl/stripersist/ContactDaoImpl.java

@Repository("contactDao")

public class ContactDaoImpl extends BaseDaoImpl<Contact,Integer>

implements ContactDao

We’re telling Spring that ContactDaoImpl is a persistence-layer compo-

nent named contactDao. We’ll do the same for the other DAOs:

Download email_25/src/stripesbook/dao/impl/stripersist/AttachmentDaoImpl.java

@Repository("attachmentDao")

public class AttachmentDaoImpl extends BaseDaoImpl<Attachment,Integer>

implements AttachmentDao

Download email_25/src/stripesbook/dao/impl/stripersist/FolderDaoImpl.java

@Repository("folderDao")

public class FolderDaoImpl extends BaseDaoImpl<Folder,Integer>

implements FolderDao

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_25/web/WEB-INF/applicationContext.xml
http://media.pragprog.com/titles/fdstr/code/email_25/src/stripesbook/dao/impl/stripersist/ContactDaoImpl.java
http://media.pragprog.com/titles/fdstr/code/email_25/src/stripesbook/dao/impl/stripersist/AttachmentDaoImpl.java
http://media.pragprog.com/titles/fdstr/code/email_25/src/stripesbook/dao/impl/stripersist/FolderDaoImpl.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=263

DEPENDENCY INJECTION WITH SPRING 264

Download email_25/src/stripesbook/dao/impl/stripersist/MessageDaoImpl.java

@Repository("messageDao")

public class MessageDaoImpl extends BaseDaoImpl<Message,Integer>

implements MessageDao

Download email_25/src/stripesbook/dao/impl/stripersist/UserDaoImpl.java

@Repository("userDao")

public class UserDaoImpl extends BaseDaoImpl<User,Integer>

implements UserDao

{

Finally, we must configure Stripes to use its Spring interceptor5 by

adding net.sourceforge.stripes.integration.spring to the list of extension

packages:

Download email_25/web/WEB-INF/web.xml

<init-param>

<param-name>Extension.Packages</param-name>

<param-value>

stripesbook.ext,

org.stripesstuff.stripersist,

net.sourceforge.stripes.integration.spring

</param-value>

</init-param>

We’re now ready to use our Spring-managed DAOs.

Injecting the DAOs in the Action Beans

Remember that we previously had direct references to the implementa-

tions of the DAOs in BaseActionBean. We can now get Stripes to inject

the dependencies by retrieving them from the components loaded by

Spring. We need only to add the @SpringBean annotation:

Download email_25/src/stripesbook/action/BaseActionBean.java

public abstract class BaseActionBean implements ActionBean {

@SpringBean protected AttachmentDao attachmentDao;

@SpringBean protected ContactDao contactDao;

@SpringBean protected FolderDao folderDao;

@SpringBean protected MessageDao messageDao;

@SpringBean protected UserDao userDao;

}

An empty @SpringBean annotation uses a naming convention. Stripes

looks for the Spring-managed component with the same name as the

5. Don’t worry about what an interceptor is for now. We’ll discuss that topic in Sec-

tion 13.3, Everything Is Possible: Interceptors, on page 294.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_25/src/stripesbook/dao/impl/stripersist/MessageDaoImpl.java
http://media.pragprog.com/titles/fdstr/code/email_25/src/stripesbook/dao/impl/stripersist/UserDaoImpl.java
http://media.pragprog.com/titles/fdstr/code/email_25/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fdstr/code/email_25/src/stripesbook/action/BaseActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=264

DEPENDENCY INJECTION WITH SPRING 265

property: attachmentDao, contactDao, folderDao, messageDao, and user-

Dao. These match the names that we used in the @Repository annota-

tions. We can also specify the name in the @SpringBean annotation:

@SpringBean("myContactDao")

protected ContactDao contactDao;

In this case, Stripes uses the name myContactDao instead of the name

of the property. Again, the name must match the name that we use

in the @Repository annotation of the corresponding component so that

Stripes can find it, so we’d have to use myContactDao there as well.

Now, BaseActionBean is coded only against the DAO interfaces. Spring

takes care of loading the implementations, and Stripes sets them on

the action bean. If you want to use a different set of implementations,

all you have to do is change the package in applicationContext.xml. You

don’t have to change BaseActionBean or recompile any code. In Sec-

tion 12.3, Testing with Spring and Injected Mock Objects, on page 272,

we’ll see how we can use this flexibility to load the “real” set of DAO

implementations when running the application and use a set of mocks

when executing automated tests.

Injecting Dependencies in Other Stripes Objects

@SpringBean indicates where to inject a Spring-managed dependency.

Stripes does this automatically for action beans, but not for other

Stripes objects such as the action bean context, type converters, for-

matters, and so on. In the webmail application, we need DAOs in MyAc-

tionBeanContext:

Download email_23/src/stripesbook/ext/MyActionBeanContext.java

public class MyActionBeanContext extends ActionBeanContext {

private FolderDao folderDao = new FolderDaoImpl();

private UserDao userDao = new UserDaoImpl();

}

How do we inject Spring-managed dependencies in there? I could tell

you that we can just refactor MyActionBeanContext so that it doesn’t

depend on any DAOs. That would involve moving code between MyAc-

tionBeanContext and BaseActionBean and modifying a few JSPs that cur-

rently obtain information from MyActionBeanContext. Sure, that would

work, but I’d be punting on the issue, wouldn’t I? No, let’s face the

problem and see how we can use DI on MyActionBeanContext.

We already know that a custom action bean context is a Stripes exten-

sion. The module that Stripes uses to create instances of the action

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_23/src/stripesbook/ext/MyActionBeanContext.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=265

DEPENDENCY INJECTION WITH SPRING 266

bean context is also a Stripes extension, called the action bean context

factory. We can easily extend the Stripes default implementation, obtain

the action bean context object that it creates, and inject dependen-

cies before returning it. Stripes provides a convenient SpringHelper.inject-

Beans() method to detect @SpringBean annotations and then inject

dependencies:

Download email_25/src/stripesbook/ext/MyActionBeanContextFactory.java

package stripesbook.ext;

public class MyActionBeanContextFactory

extends DefaultActionBeanContextFactory

{

@Override

public ActionBeanContext getContextInstance(

HttpServletRequest req, HttpServletResponse resp)

throws ServletException

{

ActionBeanContext actionBeanContext

= super.getContextInstance(req, resp);

ServletContext servletContext =

StripesFilter.getConfiguration().getServletContext();

SpringHelper.injectBeans(actionBeanContext, servletContext);

return actionBeanContext;

}

}

@SpringBean now works in MyActionBeanContext:

Download email_25/src/stripesbook/ext/MyActionBeanContext.java

public class MyActionBeanContext extends ActionBeanContext {

@SpringBean private FolderDao folderDao;

@SpringBean private UserDao userDao;

}

We can also use this technique to inject Spring dependencies into other

non-action-bean Stripes objects—type converters, formatters, and so

on. Subclass the Stripes default factory, call the superclass method to

create the object, and use SpringHelper.injectBeans() on the object before

returning it. Besides a ServletContext object, injectBeans() also accepts

an ActionBeanContext or a Spring ApplicationContext to be able to load

the components from Spring.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_25/src/stripesbook/ext/MyActionBeanContextFactory.java
http://media.pragprog.com/titles/fdstr/code/email_25/src/stripesbook/ext/MyActionBeanContext.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=266

AUTOMATED TESTING WITH MOCK OBJECTS 267

Other Resources

@SpringBean works to inject dependencies by annotating either a prop-

erty or a setter method. This type of dependency injection is called

setter-based, because the object is first created with a zero-parameter

constructor, and then dependencies are injected on its properties.

Constructor-based DI, on the other hand, injects dependencies via para-

meters of the class’s constructor.

Stripes supports only setter-based injection because action beans are

created with a zero-parameter constructor. Stripes-Spring, available at

http://www.silvermindsoftware.com/stripes, is a Stripes plug-in that adds

support for constructor-based dependency injection on action beans.

Constructor-based DI has the following advantages:

• It makes a class’s dependencies more obvious because they are

all in the constructor, rather than scattered in properties or setter

methods.

• Once the dependencies have been injected via the constructor,

they can be made immutable by not providing a setter method.

Check out the Stripes-Spring project if you’d like to use constructor-

based DI on action beans.

12.3 Automated Testing with Mock Objects

Have you ever felt uneasy at the thought of making a change to your

code because you were worried about the impact on the rest of the

application? Felt weary of having to retest everything? Felt unsettled

because you might have missed something? Writing automated tests

can help you feel more confident about changing, refactoring, and im-

proving your code.6

Stripes comes with a set of mock objects that allow you to write auto-

mated tests for the action beans of your web applications. These mocks

simulate most of what happens in a servlet container so that you can

easily exercise the different functionalities that revolve around action

beans, including the following:

• Submitting a form and verifying the results

6. The benefits and methodology of test-driven development are thoroughly discussed in

Kent Beck’s Test Driven Development: By Example [Bec02].

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.silvermindsoftware.com/stripes
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=267

AUTOMATED TESTING WITH MOCK OBJECTS 268

• Checking the presence or absence of validation errors

• Confirming that type conversion is working properly

• Verifying which URL is being returned

• Testing URL binding

We’ll start with a testing framework, JUnit, available at http://www.junit.

org. You can run JUnit in a variety of ways: with Ant, with your IDE,

or as a stand-alone program. You’ll find that the book’s source code

bundle is set up to run the tests with Ant. No matter how you run the

tests, the code remains the same.

For example, the following is a “Hello, World!” test: annotating a method

with @Test tells JUnit to run it as a test, and the Assert class contains

methods to test for many different kinds of conditions.7

Download email_26/src/stripesbook/test/basic/HelloWorldTest.java

package stripesbook.test.basic;

import org.junit.Test;

import static org.junit.Assert.*;

public class HelloWorldTest {

@Test

public void testHello() {

String expected = "HELLO";

String result = "hello".toUpperCase();

assertEquals(expected, result);

}

}

With that minimal introduction to JUnit, we’re now ready to write some

Stripes test code.

Testing with Stripes Mocks

Stripes provides a rich set of classes that mock the different parts

of the Servlet API (HTTP request, response, and so on). Although we

can use each part individually, most of the time it’s easier to use the

higher-level MockRoundtrip object and let it take care of managing the

request, response, and other underlying parts. Using MockRoundtrip

involves three steps:

1. Set up a MockServletContext object with parameters much like the

ones in the web.xml file. We need to do this only once for all the

tests that run within the same context.

7. I’ll be using only basic JUnit code here. See Thomas and Hunt’s Pragmatic Unit Testing

in Java with JUnit [HT03] for more advanced JUnit techniques.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.junit.org
http://www.junit.org
http://media.pragprog.com/titles/fdstr/code/email_26/src/stripesbook/test/basic/HelloWorldTest.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=268

AUTOMATED TESTING WITH MOCK OBJECTS 269

Joe Asks. . .

What If I Prefer TestNG?

I’m using JUnit for the automated testing examples, but this is
just an arbitrary choice. TestNG is also popular (in fact, it is used
to test Stripes itself). If you prefer TestNG (or any other testing
framework, for that matter), you can use it instead of JUnit sim-
ply by replacing the libraries and adapting the test code. The
Stripes mock objects have no dependencies on any particular
testing framework. In fact, they are not even tied to Stripes; you
could technically use them to test independent servlet con-
tainer artifacts, such as external filters and servlets.

2. If our tests require the use of a session, create a MockHttpSession

object.

3. Use a MockRoundtrip object to simulate a request (link with or with-

out parameters, form submission, . . .) to an action bean, and ver-

ify the results. If we created a MockHttpSession object, attach it to

MockRoundtrip.

Let’s write a couple of automated tests for the contact form as an exam-

ple. We begin with a method marked as @BeforeClass so that JUnit will

run it only once, before running all the @Test methods.

Download email_26/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java

package stripesbook.test.stripesmock;

public class ContactFormActionBeanTest {

private static MockServletContext mockServletContext;

private static MockHttpSession mockSession;

@BeforeClass

public static void setup() throws Exception {

mockServletContext = new MockServletContext("webmail");

Map<String,String> params = new HashMap<String,String>();

params.put("ActionResolver.Packages", "stripesbook.action");

params.put("Extension.Packages", "stripesbook.ext,"

+ "org.stripesstuff.stripersist");
Ê mockServletContext.addFilter(StripesFilter.class,

"StripesFilter", params);

mockServletContext.setServlet(DispatcherServlet.class,

"DispatcherServlet", null);

Ë mockSession = new MockHttpSession(mockServletContext);

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_26/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=269

AUTOMATED TESTING WITH MOCK OBJECTS 270

The MockServletContext accepts one or more filters, but only one servlet

at a time. Starting at Ê, we’ve added the Stripes filter with its parame-

ters and the dispatcher servlet. We do not have to set up any mappings

because all requests go through all filters and the servlet of a Mock-

ServletContext.

Stripes also provides a mock object to simulate the session, Mock-

HttpSession, but it is not used unless you create an instance. This is

done at Ë.

Next, we need a user to be logged in for the tests to run properly. This

involves creating a mock user, courtesy of MockDataLoaderActionBean

(a convenience action bean that loads mock data for testing purposes),

and logging in with LoginActionBean:

Download email_26/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java

// Load mock user

MockRoundtrip trip = new MockRoundtrip(mockServletContext,

MockDataLoaderActionBean.class, mockSession);

trip.execute();

// Login mock user

trip = new MockRoundtrip(mockServletContext,

LoginActionBean.class, mockSession);

trip.setParameter("username", "freddy");

trip.setParameter("password", "nadia");

trip.execute("login");

As we can see, using the MockRoundtrip class is pretty simple. Indicate

the action bean to which we want to submit the request, attach a ses-

sion if needed, set the parameters we want to send, and call execute().

Every test that we add will now benefit from this setup. Let’s write a

test and learn more about MockRoundtrip.

Let’s say we want to test the submission of a blank contact form. Since

the email field is required, this should result in a validation error. Here

is the test method:

Download email_26/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java

@Test

public void testEmailRequired() throws Exception {

MockRoundtrip trip = new MockRoundtrip(mockServletContext,

ContactFormActionBean.class, mockSession);

trip.execute("save");

ContactFormActionBean bean =

trip.getActionBean(ContactFormActionBean.class);

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_26/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java
http://media.pragprog.com/titles/fdstr/code/email_26/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=270

AUTOMATED TESTING WITH MOCK OBJECTS 271

assertEquals(1,

bean.getContext().getValidationErrors().size());

assertEquals(MockRoundtrip.DEFAULT_SOURCE_PAGE,

trip.getDestination());

}

Notice that to invoke an event handler, we just need to add its name as a

parameter. After calling execute() on MockRoundtrip, we can retrieve the

action bean and verify whatever we need to—in this case, the number

of validation errors. MockRoundtrip also returns the destination, which

is the source page in this case because a validation error occurred.

Testing a valid contact form (that is, with the email field filled in) is

similar. In this case, we test for the destination to be back to the contact

list. While we’re at it, we’ll also verify that type conversion for the phone

number is working properly:

Download email_26/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java

@Test

public void testSaveValid() throws Exception {

MockRoundtrip trip = new MockRoundtrip(mockServletContext,

ContactFormActionBean.class, mockSession);

trip.setParameter("contact.email", "test@test.com");

trip.setParameter("contact.phoneNumber", "654-456-4567");

trip.execute("save");

ContactFormActionBean bean =

trip.getActionBean(ContactFormActionBean.class);

assertEquals(0,

bean.getContext().getValidationErrors().size());

PhoneNumber pn = bean.getContact().getPhoneNumber();

assertEquals("654", pn.getAreaCode());

assertEquals("456", pn.getPrefix());

assertEquals("4567", pn.getSuffix());

assertTrue(

trip.getDestination().startsWith("/ContactList.action"));

}

We’re checking the destination URL; conveniently, getDestination() re-

turns the URL regardless of it being a forward or a redirect. We can also

use getForwardUrl() or getRedirectUrl() to not only test the destination but

also specifically verify which type of response was returned.

Finally, we can also use URLs instead of action beans to test requests

with MockRoundtrip. Simply specify the URL in the constructor, as in

new MockRoundtrip(mockServletContext, "/ContactForm.action").

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_26/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=271

AUTOMATED TESTING WITH MOCK OBJECTS 272

Testing with Spring and Injected Mock Objects

The tests that we’ve written so far involve the complete application,

including Stripersist, JPA, Hibernate, and the HSQLDB database. It’s

good to be able to test everything, but it also makes our tests depend

on the complete chain being up and running. It’d be nice to be able to

test certain things even if, say, the database isn’t available.

We were previously using a set of mock DAOs to simulate a database.

We can bring those back and use them so that tests become indepen-

dent of the database and the persistence layer. Doing this is easy with

the Spring dependency injection version of the application that we cre-

ated in Section 12.2, Dependency Injection with Spring, on page 261.

First, we reconfigure the extension packages in the Stripes filter, remov-

ing Stripersist and adding the Stripes interceptor for Spring DI:

Download email_27/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java

params.put("Extension.Packages", "stripesbook.ext,"

+ "net.sourceforge.stripes.integration.spring");

Next, we create a separate Spring configuration file, applicationContext-

test.xml, for which we use the mock DAO package:

Download email_27/web/WEB-INF/applicationContext-test.xml

<beans xmlns="http://www.springframework.org/schema/beans"

...>

<context:component-scan base-package="stripesbook.dao.mock"/>

</beans>

By telling Spring to use applicationContext-test.xml instead of the default

applicationContext.xml, Spring will load the mock DAOs instead of their

Stripersist counterparts. Configuring a different Spring configuration

file is done with the contextConfigLocation context parameter:

Download email_27/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java

mockServletContext.addInitParameter("contextConfigLocation",

"/WEB-INF/applicationContext-test.xml");

ContextLoaderListener springContextLoader =

new ContextLoaderListener();

springContextLoader.contextInitialized(

new ServletContextEvent(mockServletContext));

Notice that after adding the context parameter, we added the Spring

context loader listener as well, just like we had to do in the web.xml file.

The tests we wrote previously can be run without any change. The dif-

ference is that this version allows the tests to execute independently of

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_27/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java
http://media.pragprog.com/titles/fdstr/code/email_27/web/WEB-INF/applicationContext-test.xml
http://media.pragprog.com/titles/fdstr/code/email_27/src/stripesbook/test/stripesmock/ContactFormActionBeanTest.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=272

AUTOMATED TESTING WITH MOCK OBJECTS 273

the database and the persistence layer. What’s more, we left the original

applicationContext.xml and web.xml unchanged. We have a neat separa-

tion between the application code and the test code.

Out-of-Container Testing with Mockito

Getting our tests to be executable without depending on the database

or the persistence layer is nice, as is using the Stripes mock objects

because we can test action bean features. However, you might like some

of your tests to be even more “stand-alone,” meaning that you can test

a class in isolation without having to set up the Stripes mock objects.

For example, consider testing the phone number type converter by

itself. We can write tests for the convert() method without any depen-

dencies:

Download email_27/src/stripesbook/test/plainmock/PhoneNumberTypeConverterTest.java

package stripesbook.test.plainmock;

import static org.junit.Assert.*;

public class PhoneNumberTypeConverterTest {

private TypeConverter<PhoneNumber> typeConverter;

private Collection<ValidationError> errors;

@Before

public void setup() {

typeConverter = new PhoneNumberTypeConverterFormatter();

errors = new ArrayList<ValidationError>();

}

@Test

public void testValidPhoneNumber() {

PhoneNumber phoneNumber = typeConverter.convert(

"(555) 444.6667", PhoneNumber.class, errors);

assertEquals(0, errors.size());

assertEquals("555", phoneNumber.getAreaCode());

assertEquals("444", phoneNumber.getPrefix());

assertEquals("6667", phoneNumber.getSuffix());

}

@Test

public void testInvalidPhoneNumber() {

PhoneNumber phoneNumber = typeConverter.convert(

" 55 444.667 ", PhoneNumber.class, errors);

assertNull(phoneNumber);

assertEquals(1, errors.size());

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_27/src/stripesbook/test/plainmock/PhoneNumberTypeConverterTest.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=273

AUTOMATED TESTING WITH MOCK OBJECTS 274

That worked because the phone number type converter doesn’t use

anything other than the String input and the list of errors that we pro-

vide, both of which are simple to create. But what about a class that

depends on objects that are not so easy to create, such as the MyLo-

calePicker, which needs an HttpServletRequest and an HttpSession?

Download email_27/src/stripesbook/ext/MyLocalePicker.java

package stripesbook.ext;

public class MyLocalePicker extends DefaultLocalePicker {

public static final String LOCALE = "locale";

@Override

public Locale pickLocale(HttpServletRequest request) {

HttpSession session = request.getSession();

// Look in the request.

String locale = request.getParameter(LOCALE);

if (locale != null) {

session.setAttribute(LOCALE, locale);

}

// Not found in the request? Look in the session.

else {

locale = (String) session.getAttribute(LOCALE);

}

// Use the locale if found.

if (locale != null) {

return new Locale(locale);

}

// Otherwise, use the default.

return super.pickLocale(request);

}

}

Say we wanted to test the pickLocale() method according to different

scenarios of what’s in the request and what’s in the session. It’s not so

simple to create mock implementations of HttpServletRequest and HttpSes-

sion. Many libraries exist to help us avoid having to create mock objects

by hand. One such library is Mockito, available at http://www.mockito.

org. Mockito is very simple to use and mocks just about any interface

or class. When we mock an interface or a class, for example, Mockito

will create a mock on the fly that responds to methods without throwing

any exceptions. Furthermore, we can instruct Mockito to return specific

values from method calls so that we can set up the mock according to

the test we want to execute.

Let’s see how that works to test MyLocalePicker. Say we wanted to test

that pickLocale() returns the French locale if the locale=fr request para-

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_27/src/stripesbook/ext/MyLocalePicker.java
http://www.mockito.org
http://www.mockito.org
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=274

AUTOMATED TESTING WITH MOCK OBJECTS 275

meter is present. First, we set up the mocks in the @Before method so

that it is executed before each test method:

Download email_27/src/stripesbook/test/plainmock/MyLocalePickerTest.java

package stripesbook.test.plainmock;

import static org.junit.Assert.*;

import static org.mockito.Mockito.*;

public class MyLocalePickerTest {

private LocalePicker localePicker;

private HttpServletRequest req;

private HttpSession session;

@Before

public void setup() {

localePicker = new MyLocalePicker();

req = mock(HttpServletRequest.class);

session = mock(HttpSession.class);

stub(req.getSession()).toReturn(session);

}

}

Now, we can test different scenarios by getting Mockito to stub the

request and session methods to return specific values and testing that

MyLocalePicker returns the correct Locale. Here’s how we verify the result

when the request contains "fr":

Download email_27/src/stripesbook/test/plainmock/MyLocalePickerTest.java

@Test

public void testLocaleFrInRequest() {

stub(req.getParameter(MyLocalePicker.LOCALE)).toReturn("fr");

Locale locale = localePicker.pickLocale(req);

assertEquals(Locale.FRENCH, locale);

}

Testing the result with a value of "fr" in the session instead of the request

is done in a similar manner:

Download email_27/src/stripesbook/test/plainmock/MyLocalePickerTest.java

@Test

public void testLocaleFrInSession() {

stub(session.getAttribute(MyLocalePicker.LOCALE)).toReturn("fr");

Locale locale = localePicker.pickLocale(req);

assertEquals(Locale.FRENCH, locale);

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_27/src/stripesbook/test/plainmock/MyLocalePickerTest.java
http://media.pragprog.com/titles/fdstr/code/email_27/src/stripesbook/test/plainmock/MyLocalePickerTest.java
http://media.pragprog.com/titles/fdstr/code/email_27/src/stripesbook/test/plainmock/MyLocalePickerTest.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=275

AUTOMATED TESTING WITH MOCK OBJECTS 276

Finally, we can test that a value in the request overrides a value in the

session:

Download email_27/src/stripesbook/test/plainmock/MyLocalePickerTest.java

@Test

public void testLocaleInRequestOverridesSession() {

stub(session.getAttribute(MyLocalePicker.LOCALE)).toReturn("fr");

stub(req.getParameter(MyLocalePicker.LOCALE)).toReturn("en");

Locale locale = localePicker.pickLocale(req);

assertEquals(Locale.ENGLISH, locale);

}

Wrapping Up

You took the webmail application to the next level in this chapter. Now,

you’re using a real database, you can use dependency injection if that

suits you, and you can write automated tests that involve various levels

of the stack.

After you’ve let the ideas from this chapter simmer and perhaps have

played around with the examples and tried different things, you’re

ready to continue learning more techniques and add some polish to

the application. Onward and upward!

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_27/src/stripesbook/test/plainmock/MyLocalePickerTest.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=276

One doesn’t discover new lands without consenting to lose

sight of the shore for a very long time.

Andre Gide

Chapter 13

Tapping into Stripes
Are you ready? It’s time to kick it up another notch. We’ll tap into

the inner workings of Stripes: take control of exceptions, which occur

sooner or later in any application; customize URL bindings so that you

can change the format of your application’s URLs; and learn about

interceptors, which allow you to do just about anything during Stripes’

request-response life cycle.

13.1 Houston: Exception Handling

The webmail application runs quite smoothly when all is well, but what

if Something Bad happens? As a simple example, what if the user types

an invalid URL, such as /Admin.action? A big exception page appears,

such as the one shown in Figure 13.1, on the following page, complete

with an HTTP error code and a nasty stack trace, that’s what! We don’t

want users to see that.

The ExceptionHandler Interface

The Stripes extension that lets us decide what to do with uncaught

exceptions is the ExceptionHandler interface. Its handle() method is called

by Stripes with the unhandled exception, the request, and then the

response.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

HOUSTON: EXCEPTION HANDLING 278

Figure 13.1: A typical generic exception page

Here’s how we can implement a simple exception handler that logs the

exception and forwards to a nicer page:

Download email_28/src/stripesbook/ext/MyExceptionHandler.java

package stripesbook.ext;

public class MyExceptionHandler implements ExceptionHandler {

private static final String VIEW = "/WEB-INF/jsp/exception.jsp";

private static final Log log =

Log.getInstance(MyExceptionHandler.class);

public void handle(Throwable exc, HttpServletRequest req,

HttpServletResponse resp)

throws ServletException, IOException

{

log.error(exc);

req.getRequestDispatcher(VIEW).forward(req, resp);

}

public void init(Configuration configuration) { }

}

MyExceptionHandler will be loaded by Stripes because it is in an exten-

sion package that’s configured in web.xml. ExceptionHandler is one of the

many extension interfaces that inherits from ConfigurableComponent,

an interface that defines the init(Configuration) method. Stripes calls this

method after creating an instance of the extension, allowing you to per-

form any necessary one-time initialization. For MyExceptionHandler, the

init() method is left blank. The handle() method forwards to exception.jsp,

which is a simple page with an error message and a link to start over.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_28/src/stripesbook/ext/MyExceptionHandler.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=278

HOUSTON: EXCEPTION HANDLING 279

Figure 13.2: A nicer way of recovering from an exception

Download email_28/web/WEB-INF/jsp/exception.jsp

<fmt:message var="title" key="exception.title"/>

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="${title}">

<s:layout-component name="body">

<p>

<fmt:message key="exception.message"/>

</p>

<s:link href="/">

<fmt:message key="exception.startOver"/>

</s:link>

</s:layout-component>

</s:layout-render>

Going to /Admin.action now displays the page shown in Figure 13.2.

Ahh, much nicer!

Extending DefaultExceptionHandler

Stripes also provides the DefaultExceptionHandler class, which we can

extend and benefit from a few niceties. First, we can return a Resolution

after the exception-handling code, which makes it simpler to redirect

to another action bean, add request parameters, and so on. Second,

with DefaultExceptionHandler we can handle different types of exceptions

very easily. Just add a method that accepts exactly three parameters:

the exception type, the HttpServletRequest, and the HttpServletResponse.

When an exception occurs, Stripes automatically uses the method that

handles the specific exception type or the closest match going up the

exception’s class hierarchy. This lets us have a method that generically

handles Throwable (the top of the exception hierarchy) for all exceptions

and adds methods that handle more specific exceptions in different

ways.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_28/web/WEB-INF/jsp/exception.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=279

HOUSTON: EXCEPTION HANDLING 280

We can extend DefaultExceptionHandler and add a method that handles

Throwable, using a ForwardResolution to display the exception page:

Download email_29/src/stripesbook/ext/MyExceptionHandler.java

package stripesbook.ext;

public class MyExceptionHandler extends DefaultExceptionHandler {

private static final String VIEW = "/WEB-INF/jsp/exception.jsp";

private static final Log log =

Log.getInstance(MyExceptionHandler.class);

public Resolution catchAll(Throwable exc, HttpServletRequest req,

HttpServletResponse resp)

{

log.error(exc);

return new ForwardResolution(VIEW);

}

}

The name of the method can be whatever we want. What’s important is

that the method be public and accept the three parameters. Returning

a Resolution is optional.

Now, we can easily add handler methods for specific exceptions. For

example, the exception thrown when trying the /Admin.action URL is

actually an ActionBeanNotFoundException. In that case, we can use Error-

Resolution to return an HTTP error code back to the client: the infamous

404. HttpServletResponse contains constants for error codes, so we’ll use

that:

Download email_29/src/stripesbook/ext/MyExceptionHandler.java

public Resolution catchActionBeanNotFound(

ActionBeanNotFoundException exc,

HttpServletRequest req, HttpServletResponse resp)

{

return new ErrorResolution(HttpServletResponse.SC_NOT_FOUND);

}

Next, we’ll configure the application to use not_found.jsp for the 404 error

code:

Download email_29/web/WEB-INF/web.xml

<error-page>

<error-code>404</error-code>

<location>/WEB-INF/jsp/not_found.jsp</location>

</error-page>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_29/src/stripesbook/ext/MyExceptionHandler.java
http://media.pragprog.com/titles/fdstr/code/email_29/src/stripesbook/ext/MyExceptionHandler.java
http://media.pragprog.com/titles/fdstr/code/email_29/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=280

HOUSTON: EXCEPTION HANDLING 281

Figure 13.3: Page shown for an invalid path

Download email_29/web/WEB-INF/jsp/not_found.jsp

<fmt:message var="title" key="exception.title"/>

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="${title}">

<s:layout-component name="body">

<p style="color: red">

<fmt:message key="exception.not_found.message"/>

</p>

<s:link href="/">

<fmt:message key="exception.startOver"/>

</s:link>

</s:layout-component>

</s:layout-render>

Now, when the user enters /Admin.action, the page in Figure 13.3 will

appear.

At this point you might be wondering, why return an ErrorResolution with

the 404 code and configure web.xml to display not_found.jsp, instead of

just returning a ForwardResolution to not_found.jsp? The answer is that

we now handle all invalid URLs, not just the ones go through Stripes.

No matter whether the user enters /Admin.action or /something.else, the

not_found.jsp page will be displayed.

As a final example of how we can use specific exception handling to

make our webmail application “smarter,” let’s catch the exception that

is thrown when the user is composing a message and uploads an at-

tachment that exceeds the file size limit. We saw on page 199 that

the default maximum file upload size is 10MB. If the user uploads

a larger total size, Stripes throws a FileUploadLimitExceededException,

which includes the maximum and posted sizes. We can recover from

this exception and go back to the message compose page, sending the

size information as parameters.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_29/web/WEB-INF/jsp/not_found.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=281

HOUSTON: EXCEPTION HANDLING 282

Download email_29/src/stripesbook/ext/MyExceptionHandler.java

public Resolution catchAttachmentsTooBig(

FileUploadLimitExceededException exc,

HttpServletRequest req, HttpServletResponse resp)

{

return new RedirectResolution(MessageComposeActionBean.class,

"recover")

.addParameter("maximumSize", exc.getMaximum())

.addParameter("postedSize", exc.getPosted());

}

This will set the maximumSize and postedSize parameters and call the

recover() event handler. So, we add properties for the parameters and a

recover() method in MessageComposeActionBean:

Download email_29/src/stripesbook/action/MessageComposeActionBean.java

public Resolution recover() {

ValidationError error = new LocalizableError(

"maximumUpload", postedSize, maximumSize);

getContext().getValidationErrors().add("attachments", error);

return new ForwardResolution(COMPOSE);

}

public long maximumSize, postedSize;

We add the error message text in the resource bundle and the

<s:errors> tag in the JSP:

Download email_29/res/StripesResources.properties

stripesbook.action.MessageComposeActionBean.maximumUpload=\

Total attachment size ({2} bytes) exceeds the limit ({3} bytes).

Download email_29/web/WEB-INF/jsp/message_compose.jsp

<div><fmt:message key="messageCompose.attachments"/>:</div>

<div><s:errors field="attachments"/></div>

<div class="left">

<c:forEach var="index" begin="0" end="3">

<div><s:file name="attachments[${index}]"/></div>

</c:forEach>

</div>

The user will now see the informative message shown in Figure 13.4,

on the following page, and the user will have a chance to try again,

instead of being sent to a generic error page. That plan came together

rather nicely, wouldn’t you say?

We now have a place where we can neatly recover from exceptions. Let’s

continue our quest to master the inner workings of Stripes and move

on to the intricate details of URL bindings.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_29/src/stripesbook/ext/MyExceptionHandler.java
http://media.pragprog.com/titles/fdstr/code/email_29/src/stripesbook/action/MessageComposeActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_29/res/StripesResources.properties
http://media.pragprog.com/titles/fdstr/code/email_29/web/WEB-INF/jsp/message_compose.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=282

CUSTOMIZING URL BINDINGS 283

Figure 13.4: Error message for exceeding the upload size limit

DelegatingExceptionHandler for Multiple Exception-Handling
Classes

Most of the time a single class that extends DefaultException-

Handler is a good way of centralizing your exception-handling
code in one place. Nevertheless, you’re not out of luck if you
need more than one exception-handling class. Stripes includes
DelegatingExceptionHandler to do exactly that; see Section A.2,
ExceptionHandler.Class, on page 372 for more details.

13.2 Customizing URL Bindings

So far, we’ve been developing the webmail application, learning Stripes,

and adding features, without bothering much with URLs. That has

a nice feel to it—work with action bean class names, event handler

names, and parameter names, and let Stripes figure out all the URL

business.

That’s all well and good, but you, your boss, your customer, or an

Unstoppable Force of Nature might decide that the URLs in your appli-

cation must be changed. Stripes, not being a dictator, lets you change

the default URL binding convention and adapt it to your requirements.

You can change anything you like, from a minor tweak in the con-

vention to completely replacing the default strategy with your own.

The ActionResolver interface defines several methods that Stripes uses

for URL binding. The default implementation, NameBasedActionResolver,

contains protected methods that make it easy to customize different

parts of the binding convention.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=283

CUSTOMIZING URL BINDINGS 284

http:// localhost :8080 /email /ContactList.action ?view=&contact=5

Server name Context path Parameters

Protocol Port number Stripes binding

Figure 13.5: The different parts of a URL

Before diving in, let’s make sure we’re on the same page when talking

about URLs. A complete URL might look like this:

http://localhost:8080/email/ContactList.action?view=&contact=5

The different parts of this URL are shown in Figure 13.5. We’ll be

working with the part labeled Stripes binding; keep in mind that URL

bindings in Stripes do not include the application context path or the

request parameters in the ?param1=value1¶m2=value2 format (but,

as we’ll see, we can still embed request parameters within the Stripes

binding).

Using @UrlBinding

Let’s start with a simple example. We can specify the URL binding for

an action bean with the @UrlBinding annotation:

@UrlBinding("/something/Something.action")

public class MessageListActionBean implements ActionBean

This binds the /something/Something.action URL to MessageListActionBean,

regardless of the action bean’s package and class name. When changing

URL bindings this way, we still need to use the .action suffix because

that’s the URL mapping configured in web.xml:

Download email_29/web/WEB-INF/web.xml

<servlet-mapping>

<servlet-name>DispatcherServlet</servlet-name>

<url-pattern>*.action</url-pattern>

</servlet-mapping>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_29/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=284

CUSTOMIZING URL BINDINGS 285

When changing URL bindings, always make sure they still correspond

to the configured mapping in web.xml. If they do not, Stripes is out of

the picture, and all bets are off!

Changing the .action Extension

Say we are developing the webmail application for A Beautiful Com-

pany, Inc. The owners are so proud of the company name that they

want you to use the .abc extension for all URLs in the application. Our

task consists of changing the default suffix that Stripes uses, .action,

to .abc.

How much time do we need to do this? A couple of weeks? A couple of

days? An hour?

Well, we can scratch our heads, look troubled, sigh, and tell our boss

that we’ll try to get it done within a week. The truth is that it won’t take

us more than a few minutes. All we need to do is change the mapping

of the dispatcher servlet in the web.xml file:

Download email_30/web/WEB-INF/web.xml

<servlet-mapping>

<servlet-name>DispatcherServlet</servlet-name>

<url-pattern>*.abc</url-pattern>

</servlet-mapping>

and override the getBindingSuffix() method of NameBasedActionResolver:

Download email_30/src/stripesbook/ext/MyActionResolver.java

package stripesbook.ext;

public class MyActionResolver extends NameBasedActionResolver {

@Override

protected String getBindingSuffix() {

return ".abc";

}

}

That’s it, we’ve completed the task. The whole application now proudly

uses the .abc suffix in its URLs. Let’s go ahead and get the bonus points

from our boss for finishing way before the deadline.

Changing the Package Prefixes and Action Bean Suffixes

NameBasedActionResolver has two other protected methods that we can

override to further customize URL binding. Remember that when bind-

ing an action bean to a URL, the package name up to and including any

of action, stripes, web, or www is truncated. You can override getBasePa-

ckages() and return a different set of names.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_30/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fdstr/code/email_30/src/stripesbook/ext/MyActionResolver.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=285

CUSTOMIZING URL BINDINGS 286

The DefaultViewActionBean for Going Straight to JSPs

If you’ve been using the “preaction” pattern that we discussed
way back on page 38, you always make sure that requests first
go through an action bean before being forwarded to a JSP.

For a “stand-alone” JSP that doesn’t need an action bean, you
don’t have to create an action bean just to forward to the JSP.
Stripes has an internal DefaultViewActionBean that tries to find a
JSP, according to a default set of patterns, if the URL did not
match any existing action beans.

For the /path/SomeView.action URL, Stripes looks for the following
JSPs, in order, and uses the first one that it finds:

• /path/SomeView.jsp

• /path/someView.jsp

• /path/some_view.jsp

If none of the paths matches an existing JSP, then you get the
usual ActionBeanNotFoundException.

We’ve been putting our JSPs under /WEB-INF/jsp. Prepending this
to each path that Stripes attempts is a simple matter of overrid-
ing a method in NameBasedActionResolver:

Download defaultview/src/stripesbook/ext/MyActionResolver.java

package stripesbook.ext;
public class MyActionResolver extends NameBasedActionResolver {

@Override
protected List<String> getFindViewAttempts(String url) {

List<String> defaultViews =
super.getFindViewAttempts(url);

List<String> customViews =
new ArrayList<String>(defaultViews.size());

for (String view : defaultViews) {
customViews.add("/WEB-INF/jsp" + view);

}
return customViews;

}
}

You can further customize what happens when an action bean
is not found by overriding the findView() and handleActionBean-

NotFound() methods of NameBasedActionResolver.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/defaultview/src/stripesbook/ext/MyActionResolver.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=286

CUSTOMIZING URL BINDINGS 287

Stripes also truncates a list of suffixes from the action bean class name.

Order is important here, because if a suffix is found at the end of the

name, it is removed, and the truncated name is used when checking

for the next suffix in the list. To understand this better, let’s look at the

default list of suffixes:

1. "Bean"

2. "Action"

Stripes first removes "Bean" from the end of the class name or leaves the

name unchanged if it does not end in "Bean". Next, it removes "Action"

from the end of the resulting name from the previous step. Again, the

name is left unchanged if it doesn’t end in "Action". So, for example:

• "LoginActionBean" → "Login".

"LoginActionBean" becomes "LoginAction" (remove "Bean") and then

becomes "Login" (remove "Action").

• "LoginBean" → "Login".

"LoginBean" becomes "Login" (remove "Bean") and then remains "Login"

(unchanged since it doesn’t end in "Action").

• "LoginBeanAction" → "LoginBean".

"LoginBeanAction" remains "LoginBeanAction" (unchanged since it

doesn’t end in "Bean"), then becomes "LoginBean" (remove "Action").

• "LoginActionBeanTest" → "LoginActionBeanTest".

"LoginActionBeanTest" remains "LoginActionBeanTest" (unchanged

since it doesn’t end in "Bean") and again remains "LoginActionBean-

Test" (unchanged since it doesn’t end in "Action").

• "LoginController" → "LoginController" remains unchanged as in the

previous example.

So, you see how having "Bean" and "Action", in that order, works to

remove just "Bean", just "Action", or "ActionBean" from the end of the

action bean class name. To change the list of suffixes, override the

getActionBeanSuffixes() method of NameBasedActionResolver.

Clean URLs with a Prefix

“Clean” URLs have become popular, because they are more meaningful

to the user, hide some of your implementation details, are more search-

engine friendly, and are just plain better lookin’.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=287

CUSTOMIZING URL BINDINGS 288

For example, instead of this:

/ContactList.action?view=&contact=7

we might have this:

/action/contact_list/view/7

Notice the “cleanliness” of the second URL compared to the first: no

extension, no question mark, no ampersand, no equal sign. The first

thing we need to do to use these clean URLs is change the mapping of

the Stripes dispatcher servlet in the web.xml file from a suffix, such as

.action, to a prefix, such as /action:

Download email_31/web/WEB-INF/web.xml

<servlet-mapping>

<servlet-name>DispatcherServlet</servlet-name>

<url-pattern>/action/*</url-pattern>

</servlet-mapping>

With this mapping, Stripes handles all URLs with the /action prefix.

Next, we’ll make the corresponding changes in NameBasedActionResolver

by overriding getBindingSuffix() and getUrlBinding(). At a minimum, get-

BindingSuffix() must return an empty string, and getUrlBinding() must call

super.getUrlBinding() and add the "/action" prefix to the result. Just for

fun, we’ll also convert the URL binding to all lowercase with under-

scores:

Download email_31/src/stripesbook/ext/MyActionResolver.java

package stripesbook.ext;

public class MyActionResolver extends NameBasedActionResolver {

@Override

protected String getBindingSuffix() {

return "";

}

@Override

protected String getUrlBinding(String actionBeanName) {

String result = super.getUrlBinding(actionBeanName);

result = convertToLowerCaseWithUnderscores(result);

return "/action" + result;

}

private String convertToLowerCaseWithUnderscores(String string) {

StringBuilder builder = new StringBuilder();

for (int i = 0, t = string.length(); i < t; i++) {

char ch = string.charAt(i);

if (Character.isUpperCase(ch)) {

ch = Character.toLowerCase(ch);

if (i > 1) {

builder.append('_');

}

}

builder.append(ch);

}
Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_31/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fdstr/code/email_31/src/stripesbook/ext/MyActionResolver.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=288

CUSTOMIZING URL BINDINGS 289

return builder.toString();

}

}

With that in place, MessageListActionBean is bound to the following:

/action/message_list

We now have cleaner default URL bindings. It’s a good start, but param-

eters still show up at the end, like this:

/action/message_list?folder=1

To continue the cleanup, we need to use @UrlBinding and embed param-

eters within the URL. To embed a parameter, put its name between { }

within the binding:

Download email_31/src/stripesbook/action/MessageListActionBean.java

@UrlBinding("/action/message_list/{folder}")

public class MessageListActionBean extends BaseActionBean {

The folder parameter now appears as this:

/action/message_list/1

Hello, clean URLs!

But wait, there’s more. When we embed a parameter in a URL, we can

optionally specify a default value for the parameter. That value will be

used if the parameter is omitted from the request URL. For example,

the following binding will use a folder parameter with a value of 1 if the

request URL is /action/message_list:

@UrlBinding("/action/message_list/{folder=1}")

public class MessageListActionBean extends BaseActionBean {

Besides parameters, event names can also be embedded in the URL. For

example, ContactListActionBean has the list event to see the contact list,

and it has the view event to view the details of a specific contact. The

special {$event} parameter embeds the event name in the URL binding:

Download email_31/src/stripesbook/action/ContactListActionBean.java

@UrlBinding("/action/contact_list/{$event}/{contact}")

public class ContactListActionBean extends ContactBaseActionBean {

These clean URLs now work with ContactListActionBean:

/action/contact_list/list (contact parameter is not used)

/action/contact_list/view/1 (view the details of contact 1)

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_31/src/stripesbook/action/MessageListActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_31/src/stripesbook/action/ContactListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=289

CUSTOMIZING URL BINDINGS 290

Clean URLs Without a Prefix

Normally, we need to map a prefix (or a suffix) in web.xml to deter-

mine which URLs will be handled by Stripes. It’s not a Stripes-specific

thing; it’s a basic Servlet specification requirement. Mapping all URLs

to Stripes with /* is usually a bad idea, because some URLs target non-

Stripes resources, such as images, CSS files, JavaScript files, static

.html files, and so on.

In the previous example, we used the /action prefix to differentiate

requests that should go to Stripes from all other requests. So, we had

URL bindings such as this:

/action/contact_list/...

/action/message_list/...

/action/register/...

That’s pretty clean, but that Unstoppable Force of Nature might return

and demand the removal of that /action prefix so that URLs are even

simpler:

/contact_list/...

/message_list/...

/register/...

So, now what? Without a common prefix, how do we map URLs to

Stripes in web.xml? We could map each prefix, such as /contact_list/*,

/message_list/*, and so on. But that’s way too painful, and it could come

back and bite us later if we happen to have an image file under /con-

tact_list/icon.gif, for example.

Have no fear. We can get prefixless clean URLs, without tedious config-

uration and without having to worry about static files conflicting with

Stripes bindings. Ben Gunter, the Stripes committer who implemented

clean URL support, had one more trick up his sleeve to address this

requirement.

Ben came up with the clever DynamicMappingFilter to which we can map

all URLs with /*. The filter takes into account that some requests target

non-Stripes resources. Using DynamicMappingFilter, instead of this:

/action/contact_list/view/5

we can use this:

/contact_list/view/5

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=290

CUSTOMIZING URL BINDINGS 291

It doesn’t get much cleaner than that. Here’s a summary of what Dynam-

icMappingFilter does to achieve the magic:

• If the request does not produce an error, then the URL matches an

existing static file. Let the request go through untouched in this

case.

• If the request results in a 404 error (not found), send the request to

the action bean that is bound to the URL. This becomes a regular

Stripes-handled request. If no action bean is found, send along

the 404 error.

• If the request produces any other error, send the error through.

Want to take the DynamicMappingFilter out for a spin? We just need to

make a few changes to web.xml:

• Remove the DispatcherServlet definition.

• Remove the StripesFilter and DispatcherServlet URL mappings.

• Add the DynamicMappingFilter, and map it to /*.

With these changes, the core of the web.xml file becomes the following:

Download email_32/web/WEB-INF/web.xml

<filter>

<filter-name>StripesFilter</filter-name>

<filter-class>

net.sourceforge.stripes.controller.StripesFilter

</filter-class>

<!-- same init-params as before... -->

</filter>

<filter>

<filter-name>DynamicMappingFilter</filter-name>

<filter-class>

net.sourceforge.stripes.controller.DynamicMappingFilter

</filter-class>

</filter>

<filter-mapping>

<filter-name>DynamicMappingFilter</filter-name>

<url-pattern>/*</url-pattern>

<dispatcher>REQUEST</dispatcher>

<dispatcher>FORWARD</dispatcher>

<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_32/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=291

CUSTOMIZING URL BINDINGS 292

To continue using the clean URL convention of converting the path to

lowercase with underscores, use the same MyActionResolver extension

as on page 288, but return the URL without the "/action" prefix.1

The URL bindings are now the same as before but without the /action

prefix. For example, here is the URL binding for the contact list:

Download email_32/src/stripesbook/action/ContactListActionBean.java

@UrlBinding("/contact_list/{$event}/{contact}")

public class ContactListActionBean extends ContactBaseActionBean {

As we can see, we can customize URL bindings in just about any way

we want and keep our boss, our customers, and those Unstoppable

Forces of Nature happy.

Specifying the Event Name

Let’s look at one last thing concerning URLs: the different ways that an

event name can be mapped from a URL to an event handler method. By

convention, the name of an event handler corresponds to the name of

the method, as follows:

public Resolution view()

The name of this event handler is view. If we need to use an event

handler name that does not correspond to the method name, we can

set a different name with the @HandlesEvent annotation:

@HandlesEvent("visualize")

public Resolution view()

This would cause the visualize event to be handled by the view() method.

As for specifying event names in URLs, we have several options. Know-

ing how this works is useful when we’re testing and want to manually

type a URL and is particularly important when working with Ajax, as

we’ll see in Chapter 15, Using JavaScript and Ajax. So, here are the

different ways of indicating an event name:

• Include a request parameter with the same name as the event

name. This is what Stripes does by default, as follows:

/ContactList.action?view=&contact=5

1. Again, the lowercase-with-underscores convention is optional. To use clean URLs, the

bare minimum is either to override getBindingSuffix() and return an empty string so that

".action" is not used or to annotate every action bean with @UrlBinding.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_32/src/stripesbook/action/ContactListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=292

CUSTOMIZING URL BINDINGS 293

Tim Says. . .

Don’t Violate Conventions with @UrlBinding

By default, Stripes will create URLs for all action beans such that
they all follow a consistent convention. Freddy has shown you
how to modify that convention to suit your own needs and how
to use @UrlBinding to both implement clean URLs and override
conventions with specific URLs. In my opinion, even when using
@UrlBinding to implement clean URLs, you should try your hardest
to stick to your URL naming convention!

When developing, it’s helpful to be able to see a class name
and immediately know what its URL will look like. For example,
you see a class called awesome.SuperDuperActionBean, and you
know it’ll map to /awesome/super_duper, not to some other URL
like /worlds_best_bean. But this isn’t such a big deal—if you know
the class name, you can always check the class to get its URL,
right?

The better reason is this: when testing your application and
something goes wrong, it’s very handy to be able to look at
the URL and be able to guess the action bean that’s being
called. In this case, if the URL doesn’t follow your convention,
then you have to search your entire project to figure out which
action bean you want. Speaking from experience, this can be
time-consuming and frustrating!

This calls the view event handler. Do not include more than one

parameter that matches an event name; otherwise, Stripes will

complain!

Notice that the value of the parameter is ignored, so it can be

anything or nothing at all.

• Embed the event name in the URL by using {$event} in @UrlBinding,

and construct the URL accordingly.

• Append a slash (/) and the event name after the part of the URL

that binds to the action bean. For example, if the action bean

is bound to /action/contact_list, /action/contact_list/view targets the

view event handler. This is equivalent to the following:

@UrlBinding("/action/contact_list/${event}")

except that we don’t need to add the annotation.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=293

EVERYTHING IS POSSIBLE: INTERCEPTORS 294

• Include a request parameter with the same name as the event

name and ".x" added at the end, as in "view.x". This is supported

because HTML image maps generate parameters in this format.

• Include a request parameter with the special name _eventName

(defined by StripesConstants.URL_KEY_EVENT_NAME) and the event

name as the value. For example:

/ContactList.action?_eventName=view&contact=5

The _eventName parameter overrides all of these event name-

resolving criteria. This becomes important when we want to sub-

mit Ajax requests, as we’ll see on page 345.

URL bindings now hold no secrets. When you’re ready for some more

tinkering under the Stripes hood, roll up your sleeves because we’re

going to discuss how to use interceptors to tap into every stage of the

Stripes life cycle.

13.3 Everything Is Possible: Interceptors

Stripes goes through several life-cycle stages when handling a request.

Each stage is clearly defined and does specific tasks. When all is said

and done, a resolution is executed or an exception is thrown.

Not every request goes through every life-cycle stage; the sequence may

be interrupted by things like validation errors, exceptions, or (drum roll,

please) interceptors.

Interceptors are blocks of code that are executed before or after a life-

cycle stage (or both). After they are done with their poking around, they

can let the life-cycle sequence continue, or they can interrupt the flow.

Interceptors are a very clean and powerful way to implement features

that apply to every request of an application or even just the requests

targeted at a specific action bean. Before learning how to implement an

interceptor, it’s worth knowing the Stripes life-cycle stages.

The Stripes Life-Cycle Stages

The LifecycleStage enumeration defines the eight Stripes life-cycle

stages. Here they are along with a summary of what happens at each

stage:

1. RequestInit: The request is about to be handled.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=294

EVERYTHING IS POSSIBLE: INTERCEPTORS 295

2. ActionBeanResolution: The action bean that is targeted by the re-

quest is determined from the URL.

3. HandlerResolution: The name of the event and the event handler

method are resolved from the URL and request parameters.

4. BindingAndValidation: The request parameters are bound to the cor-

responding properties of the action bean, with validation and type

conversion.

5. CustomValidation: The custom validation methods are executed.

Also, the handleValidationErrors() is called if the action bean imple-

ments ValidationErrorHandler.

6. EventHandling: The event handler method is executed.

7. ResolutionExecution: The resolution that was returned from any of

the preceding stages is executed, producing a response to the

client.

8. RequestComplete: This final stage is executed in a finally block to

make sure that it always runs, even if an exception is thrown.

For stages 4–6, the usual rules of validation apply: a validation error

normally means event handling won’t be executed, and custom valida-

tion depends on previous validations as explained in Section 4.3, Con-

tinue or Stop Validation When There Are Previous Errors?, on page 89.

Besides exceptions and validation errors, the other way that life-cycle

stages can be interrupted is by an interceptor. If, at any stage, a resolu-

tion is returned, the life cycle immediately skips to ResolutionExecution.

This is how the flow can be altered.

Let’s learn a bit more about interceptors and how we can tinker with

The Flow of Things.

Implementing Before/After Methods

To execute code before or after one or more life-cycle stages, we must

first decide whether we want the code to apply to just one action bean

or to the whole application. Let’s start with the former case. By adding

a method to an action bean and annotating the method with @Before or

@After, it will be executed before or after the life-cycle stages we specify:

@Before(stages=LifecycleStage.BindingAndValidation)

public void interceptor1() {

// do something before binding and validation

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=295

EVERYTHING IS POSSIBLE: INTERCEPTORS 296

@After(stages={LifecycleStage.EventHandling,LifecycleStage.RequestComplete})

private void interceptor2() {

// do something after event handling and also after request complete

}

@Before

protected Resolution interceptor3() {

// do something before the default stage: event handling

if (someCondition) {

// interrupt the flow by returning a resolution

// event handling will not execute in this case

return new RedirectResolution(...);

}

// do not interrupt the flow

return null;

}

@Before

@After

public int interceptor4() {

// Do something before and after event handling

// Any returned values that are not resolutions are ignored

return 42;

}

@Before(on="save")

public int interceptor5() {

// Do something before event handling, but only for the "save" event

}

Notice the following aspects illustrated in the previous examples:

• Interceptor methods can be named anything, have any access

modifier (private, public, and so on), return anything (more on this

in the next point), but cannot accept any parameters.

• The method can be void or return any type. If the method returns

a resolution, the life-cycle sequence is interrupted, and that reso-

lution is executed. Any other returned value is ignored.

• You specify which life-cycle stages to intercept in the stages= attri-

bute of @Before and @After. The default stage is EventHandling.

@Before cannot be run before RequestInit or ActionBeanResolution,

and @After cannot be run after RequestInit, all for the same reason:

the action bean does not yet exist at those points in time!

• A method can be annotated with both @Before and @After.

• We can restrict an interceptor method to specific events by indi-

cating the event names in the on= attribute, either positively as in

on={"save", "update"} or negatively as in on="!delete".

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=296

EVERYTHING IS POSSIBLE: INTERCEPTORS 297

That’s a neat way to intercept execution for a specific action bean. We

can also write an interceptor that runs for the whole application.

Implementing Interceptors

For a global interceptor, implement the Interceptor interface, and either

place the class in an extension package or configure it in the web.xml

file.

The Interceptor interface is simple:

public interface Interceptor {

Resolution intercept(ExecutionContext context) throws Exception;

}

To indicate the life-cycle stages that we want to intercept, we annotate

our class with @Intercepts. For example:

@Intercepts(LifecycleStage.ActionBeanResolution)

public class MyInterceptor implements Interceptor {

public Resolution intercept(ExecutionContext context) {

// ...

}

}

Instead of using @Before or @After to indicate whether our interceptor

code should run before or after the life-cycle stages, we call proceed()

on the ExecutionContext object that’s passed to the intercept() method.

That executes the life-cycle stage. So, the code we put around the call

to proceed() is executed before or after, accordingly:

@Intercepts(LifecycleStage.ActionBeanResolution)

public class MyInterceptor implements Interceptor {

public Resolution intercept(ExecutionContext context)

// proceed() can throw an Exception so we have to declare it

throws Exception

{

// do something before

Resolution resolution = context.proceed();

// do something after

return resolution;

}

}

Notice how proceed() returns a resolution; returning that value from

intercept() effectively lets the life-cycle sequence continue normally. If,

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=297

EVERYTHING IS POSSIBLE: INTERCEPTORS 298

on the other hand, we want to interrupt the flow, we would return a

different resolution from intercept().

As we are writing code in the intercept() method, the ExecutionContext

object gives us information we can use as we want, including the

following:

• The current life-cycle stage, which is useful when we’re intercept-

ing more than one stage

• The action bean context, which is available at every stage

• The action bean, which becomes available after the ActionBeanRes-

olution stage

• The event handler Method object, available after the HandlerReso-

lution stage; at this point, we can also retrieve the event handler

name by calling getEventName() on the action bean context

• The ValidationErrors from the action bean context, after the Bindin-

gAndValidation stage

• The current Resolution, which is normally null until either a valida-

tion error occurs or the EventHandling stage has completed

If we also need configuration information, we can have our intercep-

tor class implement the ConfigurableComponent interface. Stripes will

automatically call the init(Configuration) after creating an instance of our

interceptor.

In What Order Are Interceptors Executed?

If we have more than one interceptor that runs on the same life-cycle

stage, the order in which they are executed may or may not be impor-

tant to us. If the order matters, we must know that interceptors loaded

by the Stripes extension packages mechanism are executed in no guar-

anteed order. We’re not out of luck, though. To control the order, we

move our interceptors to a nonextension package (or annotate them

with @DontAutoLoad) and configure them in web.xml file, in the desired

order:

<filter>

<filter-name>StripesFilter</filter-name>

<filter-class>

net.sourceforge.stripes.controller.StripesFilter

</filter-class>

<!-- other init params... -->

<init-param>

<param-name>Interceptor.Classes</param-name>

<param-value>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=298

INTERCEPTOR EXAMPLE: ADDING SUPPORT FOR GUICE 299

stripesbook.nonext.Interceptor1,

stripesbook.nonext.Interceptor2,

stripesbook.nonext.Interceptor3

</param-value>

</init-param>

</filter>

Let’s say that those three interceptors all run both before and after the

same life-cycle stage. Suppose further we also have a @Before and an

@After method in the action bean for the same life-cycle stage. If there

are no interruptions, things happen in the following order:

1. @Before

2. Interceptor1, before

3. Interceptor2, before

4. Interceptor3, before

5. Interceptor3, after

6. Interceptor2, after

7. Interceptor1, after

8. @After

13.4 Interceptor Example: Adding Support for Guice

In Section 12.2, Dependency Injection with Spring, on page 261, we

looked at using Spring for dependency injection. Guice (http://code.

google.com/p/google-guice) is another DI container, for which Stripes

does not have built-in support (at least not in the latest version of

Stripes as of this writing). We’ll add support for Guice DI using an

interceptor. Tapping into Stripes and “guicing” up action beans is sur-

prisingly easy!

The life-cycle stage that interests us is the ActionBeanResolution stage.

Stripes creates an instance of the action bean during this stage, and the

action bean context has already been manufactured. We can intercept

both objects and inject Guice-annotated dependencies into them before

they are returned:

Download email_33/src/stripesbook/ext/guice/interceptor/GuiceInterceptor.java

package stripesbook.ext.guice.interceptor;

@Intercepts(LifecycleStage.ActionBeanResolution)

public class GuiceInterceptor

implements Interceptor, ConfigurableComponent

{

/* ... */

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://code.google.com/p/google-guice
http://code.google.com/p/google-guice
http://media.pragprog.com/titles/fdstr/code/email_33/src/stripesbook/ext/guice/interceptor/GuiceInterceptor.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=299

INTERCEPTOR EXAMPLE: ADDING SUPPORT FOR GUICE 300

public Resolution intercept(ExecutionContext context)

throws Exception

{

injector.injectMembers(context.getActionBeanContext());

Resolution resolution = context.proceed();

injector.injectMembers(context.getActionBean());

return resolution;

}

}

That’s all there is to it! Well, almost. The injector we see there is a Guice

Injector object, which is configured with one or more Guice Modules. In

a nutshell, a Module is a Java class that tells Guice which implemen-

tations to use for which interfaces. Then, dependencies are injected by

annotating properties with Guice’s @Inject annotation.

Here’s how we create a Module that wires up our DAOs:

Download email_33/src/stripesbook/ext/guice/config/GuiceConfigModule.java

package stripesbook.ext.guice.config;

public class GuiceConfigModule extends AbstractModule {

@Override

protected void configure() {

bind(AttachmentDao.class).to(AttachmentDaoImpl.class);

bind(ContactDao.class).to(ContactDaoImpl.class);

bind(FolderDao.class).to(FolderDaoImpl.class);

bind(MessageDao.class).to(MessageDaoImpl.class);

bind(UserDao.class).to(UserDaoImpl.class);

}

}

That’s pretty straightforward. Next, we have to get our interceptor to

load up this Module and use it to create an Injector. A simple solution is

to piggyback onto the Stripes extensions mechanism: drop our Module

into an extension package, and have our interceptor automatically find

it. Using the Configuration that Stripes passes to the init() method, we

can call getBootstrapPropertyResolver() and from there use one of several

utility methods that returns the classes that are compatible with the

class or interface that we specify:

Download email_33/src/stripesbook/ext/guice/interceptor/GuiceInterceptor.java

package stripesbook.ext.guice.interceptor;

@Intercepts(LifecycleStage.ActionBeanResolution)

public class GuiceInterceptor

implements Interceptor, ConfigurableComponent

{

public static final String MODULES = "Guice.Modules";

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_33/src/stripesbook/ext/guice/config/GuiceConfigModule.java
http://media.pragprog.com/titles/fdstr/code/email_33/src/stripesbook/ext/guice/interceptor/GuiceInterceptor.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=300

INTERCEPTOR EXAMPLE: ADDING SUPPORT FOR GUICE 301

private static Injector injector;

private static final Log log =

Log.getInstance(GuiceInterceptor.class);

public void init(Configuration config) throws Exception {

List<Class<? extends Module>> moduleClasses =

config.getBootstrapPropertyResolver()

.getClassPropertyList(MODULES, Module.class);

int size = moduleClasses.size();

if (size > 0) {

List<Module> modules = new ArrayList<Module>(size);

for (Class<? extends Module> cls : moduleClasses) {

modules.add(cls.newInstance());

}

injector = Guice.createInjector(modules);

log.info("Created Guice injector with modules: ",

moduleClasses);

}

else {

injector = Guice.createInjector();

}

}

public static Injector getInjector() {

return injector;

}

}

What this does is look for a list of Module classes configured in web.xml

as an init parameter to the Stripes filter with the name Guice.Modules. If

there is no such parameter, then Stripes looks for classes that imple-

ment Module in the extension packages. That way, we have the option

of using an extension package or a parameter in web.xml, just like all

the other Stripes extensions.

Once we have the list of Module classes, it’s simple to create instances

and use them to configure the Guice injector. We then use the injector

in the intercept() method that we wrote earlier to inject dependencies in

the action bean context and in the action bean. The injector is in a static

member to give easy access to it via GuiceInterceptor.getInjector(), but

otherwise it wouldn’t need to be since Stripes creates only one instance

of each interceptor.

Now that we have defined the Guice configuration and implemented the

Guice interceptor, we can use dependency injection on action beans

and the action bean context by tagging properties with Guice’s @Inject

annotation.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=301

ANOTHER INTERCEPTOR EXAMPLE: ENSURING LOGIN 302

Download email_33/src/stripesbook/action/BaseActionBean.java

public abstract class BaseActionBean implements ActionBean {

@Inject protected AttachmentDao attachmentDao;

@Inject protected ContactDao contactDao;

@Inject protected FolderDao folderDao;

@Inject protected MessageDao messageDao;

@Inject protected UserDao userDao;

}

Download email_33/src/stripesbook/ext/MyActionBeanContext.java

public class MyActionBeanContext extends ActionBeanContext {

@Inject protected FolderDao folderDao;

@Inject protected UserDao userDao;

}

That’s all there is to it. To inject dependencies on other Stripes objects,

we’d use the same technique as we did for Spring on page 265: subclass

the default factory, retrieve the object, and inject the dependencies.

Instead of this:

SpringHelper.injectBeans(object, context);

we’d use the following:

GuiceInterceptor.getInjector().injectMembers(object);

13.5 Another Interceptor Example: Ensuring Login

The Guice interceptor example was pretty cool in terms of implementing

Guice support, but it was rather light on the actual interceptor code:

Download email_33/src/stripesbook/ext/guice/interceptor/GuiceInterceptor.java

package stripesbook.ext.guice.interceptor;

@Intercepts(LifecycleStage.ActionBeanResolution)

public class GuiceInterceptor

implements Interceptor, ConfigurableComponent

{

/* ... */

public Resolution intercept(ExecutionContext context)

throws Exception

{

injector.injectMembers(context.getActionBeanContext());

Resolution resolution = context.proceed();

injector.injectMembers(context.getActionBean());

return resolution;

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_33/src/stripesbook/action/BaseActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_33/src/stripesbook/ext/MyActionBeanContext.java
http://media.pragprog.com/titles/fdstr/code/email_33/src/stripesbook/ext/guice/interceptor/GuiceInterceptor.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=302

ANOTHER INTERCEPTOR EXAMPLE: ENSURING LOGIN 303

Let’s look at a meatier example with a sneak preview of the next chap-

ter about adding security. One of the many things we’ll do to secure the

webmail application is to ensure that the user is logged in. An intercep-

tor is the perfect place for doing that:

Download email_34/src/stripesbook/ext/LoginInterceptor.java

package stripesbook.ext;

@Intercepts(LifecycleStage.ActionBeanResolution)

public class LoginInterceptor implements Interceptor {

@SuppressWarnings("unchecked")

private static final List<Class<? extends BaseActionBean>> ALLOW =

Arrays.asList(

LoginActionBean.class,

RegisterActionBean.class

);

public Resolution intercept(ExecutionContext execContext)

throws Exception

{

Resolution resolution = execContext.proceed();

MyActionBeanContext ctx =

(MyActionBeanContext) execContext.getActionBeanContext();

BaseActionBean actionBean = (BaseActionBean)

execContext.getActionBean();

Class<? extends ActionBean> cls = actionBean.getClass();

if (ctx.getUser() == null && !ALLOW.contains(cls)) {

resolution = new RedirectResolution(LoginActionBean.class);

}

return resolution;

}

}

Ah, now we’re doing something a little more sophisticated. The inter-

ceptor runs after the ActionBeanResolution stage so that we can retrieve

the current action bean. We also retrieve the action bean context and

check whether it contains a user—that’s how we know whether the user

has logged in.

By comparing the action bean class to a list of “allowed” action beans for

which the user doesn’t have to be logged in, we can determine whether

we need to bounce the user. If that’s the case, we interrupt the life-cycle

sequence by returning a RedirectResolution to the Login page instead of

the resolution that was returned by the proceed() method.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/ext/LoginInterceptor.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=303

THE STRIPES LIFE CYCLE IN MORE DETAIL 304

13.6 The Stripes Life Cycle in More Detail

This section contains more nitty-gritty details about what happens dur-

ing the Stripes life-cycle stages. These details are good to know when

you’re tapping deep into Stripes, but feel free to move on and come back

later if you find that all this information is a little too much to absorb

in one sitting.

So, here’s the skinny. When a request arrives, the first thing Stripes

does is create the action bean context from the factory by calling get-

ContextInstance() on the implementation of ActionBeanContextFactory (the

default is DefaultActionBeanContextFactory). The servlet context is set on

the action bean context, which is in turn set on the execution context.

Next, Stripes goes through each life-cycle stage.

RequestInit

Nothing happens here. This stage exists solely to make it easy for inter-

ceptors to do something before the request-handling starts.

ActionBeanResolution

From the request URL, Stripes determines the corresponding action

bean. The work is done by the getActionBean() method of the Action-

Resolver implementation (the default is NameBasedActionResolver). Bind-

ings defined with @UrlBinding and @HandlesEvent have priority over nam-

ing conventions. Once the action bean has been resolved, it is set as

a request attribute with the name actionBean, a constant defined in

StripesConstants.REQ_ATTR_ACTION_BEAN. The action bean is also set on

the execution context.

HandlerResolution

The action bean’s targeted event handler is resolved from the URL.

First, the getEventName() method is called on the ActionResolver imple-

mentation (the default is defined in AnnotatedClassActionResolver).2 This

method looks for the event name in the URL using the rules we saw

on page 292. Internally, Stripes also looks for the event name in the

"__stripes_event_name" request attribute (defined in StripesConstants.REQ_

ATTR_EVENT_NAME).

2. To be clear, the default ActionResolver is NameBasedAnnotationResolver, but it extends

AnnotatedClassActionResolver, and that’s where getEventName() is implemented.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=304

THE STRIPES LIFE CYCLE IN MORE DETAIL 305

Second, Stripes calls ActionResolver.getHandler() to obtain the actual

event handler Method object. If no event name was found in the pre-

vious step, this looks for a method annotated with @DefaultHandler or

for the presence of exactly one event handler method.

The event name is set on the action bean context, and the event handler

Method object is set on the execution context.

BindingAndValidation

At this stage, Stripes binds the request parameters to the corresponding

properties of the action bean, performing validation and type conver-

sion in the process. The work is done by the bind() method of the Action-

BeanPropertyBinder implementation (the default is DefaultActionBeanProp-

ertyBinder). ValidationErrors that occur are set on the action bean context.

CustomValidation

Custom validation methods (annotated with @ValidationMethod) are exe-

cuted. If no resolution is returned and the action bean implements Val-

idationErrorHandler, handleValidationErrors() is called.

EventHandling

The action bean’s event handler method is executed.

ResolutionExecution

The execute() method is called on the returned Resolution. Changing the

resolution in an interceptor that runs at this stage can be done by

calling setResolution() on the execution context before calling proceed(),

not by returning a different resolution from the intercept() method. It’s

not possible to change the resolution after this stage, because by then

it’s too late—the resolution has already been executed!

There should be a resolution when this stage executes, because if the

resolution is null, nothing happens. No response is given to the request,

and the user’s browser is left blank. Dead air. . . .

Unlike all previous life-cycle stages, the ResolutionExecution stage is exe-

cuted regardless of a previous life-cycle stage returning a resolution.

This makes sense—the resolution does have to be executed, after all.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=305

THE STRIPES LIFE CYCLE IN MORE DETAIL 306

RequestComplete

This life-cycle stage is executed at the end of the request, no matter

what. All previous stages could be interrupted by an unhandled excep-

tion, but RequestComplete is executed in a finally block to ensure that

it is called. An interceptor that executes at this stage is the perfect

place for such things as releasing database connections, cleaning up

resources, and so on.

What’s Next?

You learned a ton about how the internals of Stripes work, includ-

ing handling exceptions, customizing URL bindings, and writing code

that intercepts the handling of a request at any life-cycle stage. This is

very powerful stuff. Mastering Stripes and being able to tinker with the

insides is good news for you, the developer. On the other hand, users

messing with the insides of your application is bad news, and that’s

why we’ll address security issues next.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=306

Security is mostly a superstition. It does not exist in

nature. . . . Life is either a daring adventure or nothing.

Helen Keller

Chapter 14

It’s a Dangerous World:
Adding Security

They say that the only way to be completely, absolutely, positively, 100

percent sure that a web application is secure is by not putting it on

the Web. But that’s no fun. So, let’s give it our best shot to secure the

webmail application.

Stripes has a few mechanisms for controlling what data goes in and out

of an application. Validation and type conversion already provide some

control to protect our model and database. But that’s not enough. We

need to account for security issues by thinking about what a malicious

user might do to wreck our application and by putting up appropriate

lines of defense.

14.1 Controlling Parameter Binding

One area concerning security is parameter binding. Even if we decide

which parameters are sent in the forms and links of an application, it

doesn’t prevent users from tacking on additional parameters in URLs or

in faked-out forms. We can use a few techniques to prevent parameters

from being bound to properties.

Using @Validate(ignore=true)

By default, when a request is made to an action bean with a parameter

someName=someValue, Stripes attempts to set the someName property,

either directly or via a setter method.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CONTROLLING PARAMETER BINDING 308

However, in some situations we have setter methods in an action bean

for purposes other than receiving request parameters. Users can invoke

those methods by forging request parameters into URLs, unless we pre-

vent that from happening. First, we can change the setter method’s

access modifier to anything except public: that is, protected, private,

or no access modifier at all. If we need the method to remain public,

we have another option: tell Stripes not to bind request parameters to

the property by annotating it with @Validate(ignore=true). Stripes skips

ignored properties in the request parameter binding process.

For example, say we have these methods in an action bean:

public void setOne(String one) {

System.out.println("one=" + one);

}

@Validate(ignore=true)

public void setTwo(String two) {

System.out.println("two=" + two);

}

protected void setThree(String three) {

System.out.println("three=" + three);

}

void setFour(String four) {

System.out.println("four=" + four);

}

private void setFive(String five) {

System.out.println("five=" + five);

}

A user submits a request to the action bean with the parameters:

one=1&two=2&three=3&four=4&five=5

That results in the following output:

one=1

All other setter methods cannot be invoked by adding a parameter to

the request, since they are either marked with @Validate(ignore=true) or

marked with non-public.

Using @StrictBinding

Imagine that our registration process required users to activate their

account by calling in and validating their identity. After doing that, our

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=308

CONTROLLING PARAMETER BINDING 309

cheerful support staff would activate their account. Here’s a simplified

User class for this example:

Download security/src/stripesbook/model/User.java

package stripesbook.model;

public class User {

private String firstName;

private String lastName;

private boolean activated;

/* getters and setters... */

}

The activated flag is false by default, and the support staff sets it to

true when the user calls in and provides the appropriate information.

Of course, we wouldn’t include a user.activated field in the registration

form, but a mischievous user could forge a form and then submit user.

activated=true along with the rest of the registration information, effec-

tively bypassing our activation process.

Annotating the user.activated property with @Validate(ignore=true) solves

the problem. However, adding that to every single property that we want

to block can become cumbersome. Another annotation that comes in

handy when we want to allow certain properties and block “everything

else” is @StrictBinding. When we annotate an action bean with @StrictBind-

ing and use validations on the properties that are meant to be entered

by the user, all other properties are automatically blocked:

Download security/src/stripesbook/action/UserFormActionBean.java

package stripesbook.action;

@StrictBinding

public class UserFormActionBean extends BaseActionBean {

@ValidateNestedProperties({

@Validate(field="lastName", required=true, minlength=2),

@Validate(field="firstName", minlength=2)

})

private User user;

/* ... */

}

Now, user.activated is blocked from binding. Using @StrictBinding, this

way is convenient when we are validating all user-entered fields. All

nonvalidated fields are assumed to be for internal use only and so are

not bound by request parameters.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/security/src/stripesbook/model/User.java
http://media.pragprog.com/titles/fdstr/code/security/src/stripesbook/action/UserFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=309

CONTROLLING PARAMETER BINDING 310

That’s great when we’re validating all user-entered fields, but some-

times we want to prevent binding for some properties while still allow-

ing other properties to be bound even though they are not validated.

We have two options to achieve this.

The first option is to use an empty @Validate annotation on the property.

This effectively allows the property to be bound without performing any

actual validation.

The second option is to use the allow=, deny=, and defaultPolicy= attri-

butes of @StrictBinding so that we can control exactly which properties

are allowed and denied. In the previous example, say we weren’t using

any validation at all. We could specify which properties are allowed in

the allow= attribute:

Download security/src/stripesbook/action/UserForm2ActionBean.java

package stripesbook.action;

@StrictBinding(allow={"user.firstName", "user.lastName"})

public class UserForm2ActionBean extends BaseActionBean {

// No validation

private User user;

/* ... */

}

If there are many more allowed properties than denied properties, it

becomes more convenient to allow all properties except for those indi-

cated in the deny= attribute:

@StrictBinding(allow="user.*", deny="user.activated")

Notice the special * that matches all properties, but not nested proper-

ties. That’s convenient to allow binding at one level but prevent users

from injecting values into more deeply nested objects. If, on the other

hand, we want to allow all levels of nested properties, we use **, as in

allow="user.**".

So, what happens when a property matches both the allow= and deny=

patterns or neither? That’s when the value in the defaultPolicy= attribute

is used for the final decision. The value can be Policy.ALLOW or Policy.DENY

(DENY is the default).

In the previous example with no validated fields, the following won’t

work to block just the activated flag:

@StrictBinding(deny="user.activated")

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/security/src/stripesbook/action/UserForm2ActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=310

PREVENTING CROSS-SITE SCRIPTING ATTACKS 311

When the user.firstName parameter comes in, Stripes sees that the prop-

erty does not match the allow list or the deny list and is not validated.

Since defaultPolicy=Policy.DENY, user.firstName is denied. Instead, we must

either specify the allow= list as we did before or change the default

policy:

@StrictBinding(defaultPolicy=Policy.ALLOW, deny="user.activated")

Remember that validated values are allowed by default, so think of

them as being implicitly added to the allow= list of properties.

Another tidbit: when indicating more than one property in either of

allow= or deny=, we can use a list of strings as in the previous examples,

or we can use one string that contains the comma-separated list of

properties. So, these two are equivalent:

@StrictBinding(allow={"user.firstName", "user.lastName"})

or

@StrictBinding(allow="user.firstName, user.lastName")

Finally, be aware that to prevent security issues, using * and ** can-

not be used with partial strings. For example, we might be tempted to

use allow="user.*Name" to match user.firstName and user.lastName or to use

allow="user.info**" to match all properties and nested properties that start

with info. Those types of patterns won’t work and will just be ignored.

Using @DontBind

We already know that @DontValidate shuts off all validations, which is

useful for such event handlers as those associated with Cancel but-

tons. Although no validations error occurs, parameter binding is nev-

ertheless attempted when we use @DontValidate. For extra security, we

can block all binding for an event handler by annotating it with @Dont-

Bind. This skips the BindingAndValidation life-cycle stage altogether, and

when the event handler is called, all request parameters are ignored.

Note that @DontBind implies @DontValidate, so there’s no need to use

both annotations on the same event handler.

14.2 Preventing Cross-site Scripting Attacks

Let’s move on to another security issue. Cross-site scripting (XSS) at-

tacks consist of ill-intentioned users submitting scripts in input fields

so that when the values are displayed, the scripts are executed.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=311

PREVENTING CROSS-SITE SCRIPTING ATTACKS 312

Right now, the webmail application is vulnerable to such attacks. For

example, if we go to the contact form and use the “Last name” field to

enter this:

<script>alert('Oh no!')</script>

we’ll see an “Oh no!” message pop up every time the contact is dis-

played in the contact list or contact view pages. Not good. Allowing such

markup not only makes an application vulnerable to serious attacks

but can also wreck a page’s presentation when a user, even well-

intentioned, makes a mistake in using formatting tags. For example,

imagine what happens if a page that displays user-submitted com-

ments is sent this input:

I really like your website!

The user forgot to close the bold tag, causing everything after that com-

ment to be displayed in bold!

Fortunately, XSS attacks and other markup-related headaches are

fairly easy to prevent. The idea is to always filter user-entered values

before displaying them. The filter escapes any HTML markup so that

the following, for example,

<script>alert('Oh no!')</script>

becomes this:

<script>alert('Oh no!')</script>

and so is displayed correctly and harmlessly.

First, there is the escapeXml() method in the functions part of the stan-

dard JSP tag library:

<%@taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions"%>

${fn:escapeXml(value)}

This filters the contents of value before displaying it. To prevent XSS

attacks in our JSPs, we just need to wrap user-entered values within

fn:escapeXml(). For example, in the contact view page:

Download email_34/web/WEB-INF/jsp/contact_view.jsp

<tr>

<td class="label"><s:label for="contact.firstName"/>:</td>

<td class="value">

${fn:escapeXml(actionBean.contact.firstName)}

</td>

</tr>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_34/web/WEB-INF/jsp/contact_view.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=312

USING ENCRYPTION 313

<tr>

<td class="label"><s:label for="contact.lastName"/>:</td>

<td class="value">

${fn:escapeXml(actionBean.contact.lastName)}

</td>

</tr>

and so on for all other fields.

Second, we have to filter messages that are created by action beans and

contain values entered by the user, such as confirmation messages. If,

for example, we display “Message sent to Somebody” after the user has

sent an email, with the Somebody part being what the user entered in

the To field, it is vulnerable to XSS attacks. Stripes provides a helper

method, HtmlUtil.encode(), to filter values before they are displayed:

Download email_34/src/stripesbook/action/MessageComposeActionBean.java

getContext().getMessages().add(

getLocalizableMessage("messageSentTo",

HtmlUtil.encode(message.getTo())));

Filtering values with ${fn:escapeXml(value)} and HtmlUtil.encode() protects

your application from XSS attacks.

14.3 Using Encryption

Let’s take stock. We’ve controlled which properties are allowed to be

bound from request parameters and have filtered the values that are

entered by the user before displaying them to prevent harmful script-

ing. Next on our security to-do list: using encryption for sensitive data.

Hashing Passwords

Did you notice something when you looked at Figure 12.1, on page 247?

The password is stored in the database in clear text. Not a good idea!

What we should do is hash the password before storing it in the data-

base. That way, it won’t be usable if it falls into the wrong hands.

What we’ll do is create a PasswordTypeConverter, which converts a clear-

text password into a hashed password. The type converter will not be

in an extension package, and we’ll use it only on password fields via

@Validate(converter=PasswordTypeConverter.class). To hash the password,

we’ll use Java’s MessageDigest class and Stripes’ Base64 class.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/MessageComposeActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=313

USING ENCRYPTION 314

Download email_34/src/stripesbook/nonext/PasswordTypeConverter.java

package stripesbook.nonext;

public class PasswordTypeConverter implements TypeConverter<String> {

public String convert(String input, Class<? extends String> cls,

Collection<ValidationError> errors)

{

return hash(input);

}

public String hash(String password) {

try {

MessageDigest md = MessageDigest.getInstance("SHA-1");

byte[] bytes = md.digest(password.getBytes());

return Base64.encodeBytes(bytes);

}

catch (NoSuchAlgorithmException exc) {

throw new IllegalArgumentException(exc);

}

}

public void setLocale(Locale locale) { }

}

We’re using the SHA-1 algorithm to hash the password.1 Next, let’s tell

Stripes to use PasswordTypeConverter for the password fields:

Download email_34/src/stripesbook/action/RegisterActionBean.java

@ValidateNestedProperties({

@Validate(field="firstName", required=true),

@Validate(field="lastName", required=true),

@Validate(field="username", required=true),

@Validate(field="password", required=true,

converter=PasswordTypeConverter.class)

})

private User user;

@Validate(required=true, converter=PasswordTypeConverter.class)

private String confirmPassword;

Now, instead of "nadia", this is the value that will be stored in the

database:

Y9nEX5AlXnnpgnRsC8tAOD8gH8c=

There’s not much anyone can do with that sequence of characters!

1. See http://en.wikipedia.org/wiki/SHA for more information on SHA and other hashing

algorithms.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/nonext/PasswordTypeConverter.java
http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/RegisterActionBean.java
http://en.wikipedia.org/wiki/SHA
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=314

ENSURING THE USER IS LOGGED IN 315

A Note About Encryption Keys

By default, Stripes generates a random encryption key to
encrypt values. These values are not decryptable when you
restart the web application or if your application is deployed in
a cluster of nodes.

To make encrypted values reusable across restarts and clus-
ter nodes, you must set a specific encryption key, as explained
Section A.3, Stripes.EncryptionKey, on page 377.

Encrypting Parameters

Loading model objects from ID parameters, whether it’s with a custom

type converter or with the magic of Stripersist, is pretty cool. Unfortu-

nately, it’s also a security issue. When you see a URL such as this:

/ContactList.action?view=&contact=2

you don’t have to be a world-class hacker to figure out that this shows

the information of contact ID 2. It’s tempting to resubmit the request

with different values for the contact ID.

Such parameters can be encrypted to prevent users from submitting

random values. The encrypted=true attribute of @Validate does the work:

@Validate(encrypted=true)

private Contact contact;

Now, the contact parameter will be encrypted, as follows:

/ContactList.action?view=&contact=HaAi8A_XHzs%3D

If the user tries to submit a random value, Stripes detects that it is not

a correctly encrypted value and does not bind the parameter.

A little later, in Section 14.5, Showing Users Their Data, Not Other Peo-

ple’s, on page 319, we’ll see how we continue letting users manually

enter values for parameters while still preventing them from seeing data

that is not their own.

14.4 Ensuring the User Is Logged In

Although the webmail application starts at the Login page and requires

the user to log in before entering, we still need to prevent users who are

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=315

ENSURING THE USER IS LOGGED IN 316

not logged in from accessing pages within the application. Otherwise,

they could still enter simply by typing the appropriate URL.

We saw a sneak preview of how to do this when we discussed intercep-

tors. After the action bean has been resolved, we check whether it’s one

of the allowed action beans (Login and Register) and for the presence of

the User object in the action bean context. Here is the login interceptor

again, this time with an additional feature (can you spot it?):

Download email_34/src/stripesbook/ext/LoginInterceptor.java

package stripesbook.ext;

@Intercepts(LifecycleStage.ActionBeanResolution)

public class LoginInterceptor implements Interceptor {

@SuppressWarnings("unchecked")

private static final List<Class<? extends BaseActionBean>> ALLOW =

Arrays.asList(

LoginActionBean.class,

RegisterActionBean.class

);

public Resolution intercept(ExecutionContext execContext)

throws Exception

{

Resolution resolution = execContext.proceed();

MyActionBeanContext ctx =

(MyActionBeanContext) execContext.getActionBeanContext();

BaseActionBean actionBean = (BaseActionBean)

execContext.getActionBean();

Class<? extends ActionBean> cls = actionBean.getClass();

if (ctx.getUser() == null && !ALLOW.contains(cls)) {

resolution = new RedirectResolution(LoginActionBean.class);

if (ctx.getRequest().getMethod().equalsIgnoreCase("GET")) {

((RedirectResolution) resolution)

.addParameter("loginUrl", actionBean.getLastUrl());

}

}

return resolution;

}

}

When users who are not logged in are bounced to the Login page, the

loginUrl parameter is set to the URL that the user was trying to use.2

2. Notice the check for a GET request. Sending the user to the URL for a POST request

won’t work, because the parameters won’t be in the URL. Besides, it’s better not to reissue

a POST request after login and instead just let the user start over.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/ext/LoginInterceptor.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=316

ENSURING THE USER IS LOGGED IN 317

That way, we can send them to that page after a successful login. To

do that, we just need to add a hidden parameter for loginUrl in the login

form:

Download email_34/web/WEB-INF/jsp/login.jsp

<s:form beanclass="stripesbook.action.LoginActionBean">

<%-- ... --%>

<s:hidden name="loginUrl"/>

</s:form>

Finally, we add a loginUrl property in LoginActionBean and use it after a

successful login. If the user went straight to the Login page, there is no

loginUrl, and we send the user to the Message List page in that case.

Download email_34/src/stripesbook/action/LoginActionBean.java

public Resolution login() {

getContext().setUser(user);

if (loginUrl != null) {

return new RedirectResolution(loginUrl);

}

return new RedirectResolution(MessageListActionBean.class);

}

public String loginUrl;

Logged-in users have to be able to log out, too. It’s simple to imple-

ment a LogoutActionBean that delegates the session-handling details to

MyActionBeanContext:

Download email_34/src/stripesbook/action/LogoutActionBean.java

package stripesbook.action;

public class LogoutActionBean extends BaseActionBean {

public Resolution logout() {

getContext().logout();

return new RedirectResolution(LoginActionBean.class);

}

}

Download email_34/src/stripesbook/ext/MyActionBeanContext.java

public void logout() {

setUser(null);

HttpSession session = getRequest().getSession();

if (session != null) {

session.invalidate();

}

}

The user is removed from the action bean context, and the session is

invalidated.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_34/web/WEB-INF/jsp/login.jsp
http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/LoginActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/LogoutActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/ext/MyActionBeanContext.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=317

ENSURING THE USER IS LOGGED IN 318

Finally, we add a Logout link to the menu:

Download email_34/src/stripesbook/action/MenuViewHelper.java

public enum Section {

MessageList(MessageListActionBean.class),

ContactList(ContactListActionBean.class),

Compose(MessageComposeActionBean.class),

Logout(LogoutActionBean.class);

}

Just like that, the Logout link appears in the menu, as shown here:

Preventing Browser Page Caching

When the user logs out from, say, the Message List page, hitting the

browser’s Back button goes back to showing the list of messages—even

though the user is no longer logged in. Can we do something about

that?

The problem is that the pages within the application are being cached

by the browser. When the user clicks Back , the browser displays the

page from its cache without issuing a request to our server, and the

login interceptor doesn’t get a chance to do its work.

Fortunately, we can tell the browser not to cache certain pages by

adding HTTP headers to the response. The @HttpCache annotation does

that for us. By annotating an action bean with @HttpCache(allow=false),

the page will not be cached by the browser:

Download email_34/src/stripesbook/action/MessageListActionBean.java

@HttpCache(allow=false)

public class MessageListActionBean extends BaseActionBean {

Now, when the user logs out from the Message List page and hits the

Back button, the browser does not show a cached Message List page.

Instead, it reissues a request, and the login interceptor sends the user

to the Login page.

Besides disallowing page caching, you can also allow caching but limit

the period of time. After the limit, the page expires, and the browser

reissues a request. To do that, indicate the number of seconds in the

expires= attribute, as in @HttpCache(expires=120) to expire the page after

two minutes.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/MenuViewHelper.java
http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/MessageListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=318

SHOWING USERS Their DATA, NOT OTHER PEOPLE’S 319

Joe Asks. . .

What Happens If I Use @HttpCache(allow=false,
expires=120)?

The default value for allow= is true, which is why @Http-

Cache(expires=120) works to allow caching for two minutes. If
you set allow= to false, you are disallowing caching completely,
and whatever value that you set for the expires= attribute will be
ignored.

Action beans inherit the @HttpCache annotation from parent classes.

So, for example, we can annotate ContactBaseActionBean with @Http-

Cache(allow=false), and its subclasses, ContactListActionBean and Con-

tactFormActionBean, will not be cached.

You can also use @HttpCache on event handler methods of action beans

to have different settings for different events. When you use @HttpCache

on both an action bean class and some of its event handlers, the anno-

tation on an event handler has priority over the annotation on the class.

That way, you can put the default setting on the class and override it

as necessary on specific event handlers.

14.5 Showing Users Their Data, Not Other People’s

Being logged in is all well and good, but once users are inside, we don’t

want to let them see the folders, messages, and contacts of other users.

Earlier, in Section 14.3, Encrypting Parameters, on page 315, we saw

how we can use @Validate(encrypted=true) to prevent users from entering

random parameters. But say we wanted to keep plain parameters and

let users change them, while still making sure that they view only their

own data. Then what?

We just have to implement the logic that checks whether the data being

loaded is owned by the current user. Only if that verification passes do

we display the data to the user. In the webmail application, this applies

to folders, messages, and contacts. Each model class for those objects

provides methods to retrieve the user who owns the data; for example,

Folder has a getUser() method. If the returned User object does not match

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=319

SHOWING USERS Their DATA, NOT OTHER PEOPLE’S 320

the User that is logged in, the data is not set in the action bean and

therefore not shown to the user.

The verifications are done in each setter method, because that is what

gets called after the data has been loaded from the database. Here’s

how we prevent users from seeing other people’s folders:

Download email_34/src/stripesbook/action/BaseActionBean.java

public void setFolder(Folder folder) {

if (getUser().equals(folder.getUser())) {

getContext().setCurrentFolder(folder);

}

}

If the folder is owned by another user, it is not set as the current folder

and not shown in the JSP. Similarly, from a Message, we can get the

corresponding Folder and, from there, the owning User, and we can use

the same logic in the setter method for a Message:

Download email_34/src/stripesbook/action/MessageDetailsActionBean.java

public void setMessage(Message message) {

if (getUser().equals(message.getFolder().getUser())) {

this.message = message;

}

}

Finally, preventing users from seeing other people’s contacts works

almost in the same way, except that we also have to check that the

User is not null. Indeed, when the user is creating a new contact, set-

Contact() is called before the contact is saved so the user has not been

associated to the contact yet.

Download email_34/src/stripesbook/action/ContactBaseActionBean.java

public void setContact(Contact contact) {

User user = contact.getUser();

if (user == null || getUser().equals(user)) {

this.contact = contact;

}

}

With these checks for ownership, users cannot meddle in other peo-

ple’s business. We now have some pretty good security measures in the

webmail application.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/BaseActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/MessageDetailsActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/ContactBaseActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=320

USING ROLES 321

14.6 Using Roles

The security boundaries are very clearly defined when you’re restricting

users to viewing their own data. Each user sees their own stuff, and

that’s it. Sometimes, though, you need a more flexible way of expressing

who has access to what. One way of addressing this security issue is

to use roles, such as Administrator, Developer, User, Guest, and so on. By

assigning roles to users of your application and permitting access to

different parts according to these roles, you can easily control who gets

to see what.

Adding Roles in the Webmail Application

Let’s define two roles for the webmail application: Administrator and User.

Administrators have access to everything, and users have access only

to their own data.

To use roles, we’ll add a simple Role class in the model with a name

property:

Download email_35/src/stripesbook/model/Role.java

package stripesbook.model;

@Entity

public class Role extends ModelBase {

private String name;

public Role() {

}

public Role(String name) {

this.name = name;

}

/* getters and setters, equals, hashCode */

@Override

public String toString() {

return name;

}

}

We’ll initialize the list of roles when the application starts up. Stripersist

provides the StripersistInit interface for such tasks; just implement the

interface, place the code in the init() method, and you’re good to go:

Download email_35/src/stripesbook/ext/init/DataInit.java

package stripesbook.ext.init;

public class DataInit implements StripersistInit {

private RoleDao roleDao = new RoleDaoImpl();

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/model/Role.java
http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/ext/init/DataInit.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=321

USING ROLES 322

public void init() {

if (roleDao.read().isEmpty()) {

roleDao.save(new Role("User"));

roleDao.save(new Role("Administrator"));

roleDao.commit();

}

}

}

Stripersist finds StripersistInit implementations through the extension

packages mechanism or with the StripersistInit.Classes initialization para-

meter to StripesFilter in web.xml.

Next, we’ll add a roles property to the User class. Users can have more

than one role, and more than one user can have the same role, so it’s a

many-to-many relationship:

Download email_35/src/stripesbook/model/User.java

package stripesbook.model;

@Entity

public class User extends ModelBase {

private String firstName;

private String lastName;

private String username;

private String password;

@ManyToMany

private List<Role> roles;

/* getters and setters... */

@Override

public String toString() {

return String.format("%s %s", firstName, lastName);

}

}

The roles are ready to go.

A Page with Restricted Access

To manage assigning roles to users and demonstrate the use of roles

at the same time, let’s add a User List page, as shown in Figure 14.1,

on the following page. The page shows the users with their roles and

allows us to change which users have which roles. Only administrators

are allowed to use this page. The application loads an administrator as

a starting point; when users register, they are initially given the User

role.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/model/User.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=322

USING ROLES 323

Figure 14.1: User list page for administrators only

Here are the action bean and JSP for the User List page:

Download email_35/src/stripesbook/action/UserListActionBean.java

package stripesbook.action;

@HttpCache(allow=false)

public class UserListActionBean extends BaseActionBean {

private static final String VIEW = "/WEB-INF/jsp/user_list.jsp";

@DefaultHandler

public Resolution view() {

return new ForwardResolution(VIEW);

}

public Resolution save() {

for (User user : users) {

userDao.save(user);

}

userDao.commit();

getContext().getMessages().add(

new LocalizableMessage("userList.saved"));

return new RedirectResolution(getClass());

}

private List<User> users = userDao.read();

public List<User> getUsers() {

return users;

}

public void setUsers(List<User> users) {

this.users = users;

}

public List<Role> getRoles() {

return roleDao.read();

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/action/UserListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=323

USING ROLES 324

Download email_35/web/WEB-INF/jsp/user_list.jsp

<c:set var="index" value="0"/>

<s:form beanclass="stripesbook.action.UserListActionBean">

<d:table name="${actionBean.users}" id="user" requestURI=""

defaultsort="1" pagesize="10">

<d:column titleKey="user.lastName" sortable="true">

${fn:escapeXml(user.lastName)}

</d:column>

<d:column titleKey="user.firstName" sortable="true">

${fn:escapeXml(user.firstName)}

</d:column>

<d:column titleKey="user.email" sortable="true">

${fn:escapeXml(user.username)}@stripesbook.org

</d:column>

<d:column titleKey="user.roles">

<c:forEach var="role" items="${actionBean.roles}">

<s:checkbox name="users[${index}].roles"

value="${role}" checked="${user.roles}"/>

${role}

</c:forEach>

<c:set var="index" value="${index + 1}"/>

</d:column>

</d:table>

<s:submit name="save"/>

</s:form>

Including UserListActionBean in MenuViewHelper adds it to the menu:

Download email_35/src/stripesbook/action/MenuViewHelper.java

public enum Section {

MessageList(MessageListActionBean.class),

ContactList(ContactListActionBean.class),

Compose(MessageComposeActionBean.class),

UserList(UserListActionBean.class),

Logout(LogoutActionBean.class);

}

Now that the User List page is ready, let’s see how we restrict access to

it by requiring the Administrator role.

Restricting Access with the Stripes-Security plug-In

Oscar Westra van Holthe-Kind developed a neat plug-in called Stripes-

Security, available at http://www.stripes-stuff.org. It includes an intercep-

tor, a simple API, and a tag library to easily control authorization in

a Stripes application. It leaves the authentication up to you—we have

already covered that with our Login page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/web/WEB-INF/jsp/user_list.jsp
http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/action/MenuViewHelper.java
http://www.stripes-stuff.org
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=324

USING ROLES 325

Stripes Never Ceases to Amaze Me

So, I was building the User List page for this example and
wanted to generate checkboxes next to each user to show
which roles each user has. As I was iterating over the list of roles
provided by the action bean, I was trying to figure out how to
make the checkbox checked if the user’s list of roles contains
the current role in the iteration.

I was hoping for a contains operator or something similar in the
JSP EL so that I could write ${user.roles contains role}, but no such
luck. Then, I wrote a small JSP custom tag library with a function
so that I could use ${myfn:userHasRole(user,role)}. That involved
writing a class with a static method, declaring the tag library
in a TLD file, and importing the tag library with a taglib directive
in taglibs.jsp. As I was doing this, I was dreading having to explain
it all. . .

. . . until I had a closer look at the documentation for the Stripes
<s:checkbox> tag. It turns out that Stripes is smart enough to
recognize this often-needed functionality of having a check-
box be checked if the current value is contained in a collection.
All I had to do was put the user’s roles in the checked= attribute
and the current role in the value= attribute, like this:

<s:checkbox name="..." value="${role}" checked="${user.roles}"/>

The checkbox is checked if ${user.roles} contains ${role}. Awe-
some! No wonder I like Stripes so much. Happy with that simple
and elegant solution, I went off to get rid of all that unneeded
tag library code with a big smile on my face.

Besides that it is simple and flexible, what makes the Stripes-Security

plug-in attractive is that it supports using roles with standard Java

annotations. We’ll get to that in a minute—let’s start by setting up the

plug-in. First, add org.stripesstuff.plugin.security to the extension packages:

Download email_35/web/WEB-INF/web.xml

<init-param>

<param-name>Extension.Packages</param-name>

<param-value>

stripesbook.ext,

org.stripesstuff.stripersist,

org.stripesstuff.plugin.security

</param-value>

</init-param>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/web/WEB-INF/web.xml
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=325

USING ROLES 326

This loads the Stripes-Security plug-in’s main workhorse, implemented

as an interceptor. Next, we need an implementation of the SecurityMan-

ager interface, which defines one method to determine whether a user

is allowed access to the specified action bean and event handler:

public interface SecurityManager {

Boolean getAccessAllowed(ActionBean bean, Method handler);

}

By implementing this interface, you can pretty much use any logic you

want to control access to action beans and event handlers. Then, spec-

ify the fully qualified class name of the SecurityManager implementation

as an initialization parameter to the Stripes filter in web.xml:

<init-param>

<param-name>SecurityManager.Class</param-name>

<param-value>your.pkg.YourSecurityManager</param-value>

</init-param>

That completes the setup of the Stripes-Security plug-in. Oscar doesn’t

leave you high and dry, though. The plug-in comes with two implemen-

tations of SecurityManager: J2EESecurityManager and InstanceBasedSecuri-

tyManager.

Using J2EESecurityManager

The first implementation, J2EESecurityManager, takes advantage of the

annotations defined in Java’s JSR-250:3

@DenyAll

@PermitAll

@RolesAllowed("Administrator")

@RolesAllowed({"Administrator", "User"})

These annotations can be used on classes and event handler methods.

The first two deny and permit access for all roles, while @RolesAllowed

specifies a list of roles that are allowed access.

J2EESecurityManager reads these annotations on event handler methods

first, then on action bean classes, and finally on parent classes. Access

is granted or denied according to the following criteria, in order of

priority:

• If the @DenyAll annotation is found, access is denied.

• If the @PermitAll annotation is found, access is granted provided

that the user is authenticated.

3. JSR-250 is available as a separate API (included in the book’s source bundle) and is

standard in Java EE 5.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=326

USING ROLES 327

• If the @RolesAllowed annotation is found, access is granted if the

user has at least one of the roles listed in the annotation.

• If no annotation is found, access is granted.

To determine whether the user is authenticated and whether the user

has a given role, J2EESecurityManager defines protected methods with

default implementations:

public class J2EESecurityManager implements SecurityManager {

/* ... */

protected Boolean isUserAuthenticated(ActionBean bean, Method handler) {

return bean.getContext().getRequest().getUserPrincipal() != null;

}

protected Boolean hasRole(ActionBean bean, Method handler,

String role)

{

return bean.getContext().getRequest().isUserInRole(role);

}

}

HttpRequest.getUserPrincipal() and HttpRequest.isUserInRole(role) use the

servlet container’s configuration. In our case, however, authentication

is performed in the Login page. Roles are stored in the database and are

associated to the User object. We can subclass J2EESecurityManager and

provide our own implementation for isUserAuthenticated() and hasRole():

Download email_35/src/stripesbook/nonext/MySecurityManager.java

package stripesbook.nonext;

public class MySecurityManager extends J2EESecurityManager {

@Override

protected Boolean isUserAuthenticated(ActionBean bean, Method handler) {

return getUser(bean) != null;

}

@Override

protected boolean hasRole(ActionBean actionBean, Method handler,

String role)

{

User user = getUser(bean);

if (user != null) {

Collection<Role> roles = user.getRoles();

return roles != null && roles.contains(new Role(role));

}

return false;

}

private User getUser(ActionBean bean) {

return ((BaseActionBean) bean).getContext().getUser();

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/nonext/MySecurityManager.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=327

USING ROLES 328

Joe Asks. . .

Why Isn’t the SecurityManager Implementation Loaded via
the Extension Packages mechanism?

All classes of the Stripes-Security plug-in are in the same pack-
age. This includes, among other things, the interceptor and two
SecurityManager implementations. By adding that package to
the extensions, the interceptor is automatically loaded. But we
wouldn’t want the two SecurityManager implementations to be
loaded as well. One, there must be exactly one implementa-
tion, and two, we have to be able to provide our own.

Putting the two SecurityManager implementations in separate
packages just to solve the extension packages issue would be,
well, rather lame. Besides, you’d still have to indicate one of
those packages in web.xml, so you wouldn’t be saving any con-
figuration. Since you have to add a parameter either way, it
may as well just be the class that implements SecurityManager;
it’s clear and explicit.

We’ll tell Stripes-Security to use our security manager by configuring it

in web.xml:

Download email_35/web/WEB-INF/web.xml

<init-param>

<param-name>SecurityManager.Class</param-name>

<param-value>

stripesbook.nonext.MySecurityManager

</param-value>

</init-param>

Now that MySecurityManager is ready to go, we can use @DenyAll, @Per-

mitAll, and @RolesAllowed on action beans and event handlers to control

access rights. Here’s how we grant access to UserListActionBean only if

the user has the Administrator role:

Download email_35/src/stripesbook/action/UserListActionBean.java

@RolesAllowed("Administrator")

public class UserListActionBean extends BaseActionBean {

Just like that, people without the Administrator role are denied access

to UserListActionBean. It’s simple and straightforward, and we’re reusing

standard Java annotations instead of introducing new ones.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/action/UserListActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=328

USING ROLES 329

Figure 14.2: The 401 (Unauthorized) HTTP error code

We can even decide to remove the LoginInterceptor and instead use @Per-

mitAll on the action beans for which the user must be logged in:

@PermitAll

public class MessageListActionBean ...

@PermitAll

public class MessageDetailsActionBean ...

@PermitAll

public class MessageComposeActionBean ...

@PermitAll

public class ContactBaseActionBean ...

Note that annotating ContactBaseActionBean takes care of both Con-

tactListActionBean and ContactFormActionBean because they inherit the

annotation from the parent class.

So, what happens if unauthenticated users try to access a protected

page or if nonadministrator users link to the User List page? They are

greeted with the 401 (Unauthorized) HTTP error code, as shown in Fig-

ure 14.2.

That’s not very nice, but that’s what they get for trying to access a

forbidden page, right? Well, that’s up to you to decide. You can leave it

as is and be blunt with unauthorized users, or you can show them a

custom page. If you choose the latter, create a JSP, and configure it as

being the page for the 401 error code in web.xml:

Download email_35/web/WEB-INF/jsp/unauthorized.jsp

<%@include file="/WEB-INF/jsp/common/taglibs.jsp"%>

<fmt:message var="title" key="unauthorized.title"/>

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="${title}">

<s:layout-component name="body">

<p style="color: red">

<fmt:message key="unauthorized.message"/>

</p>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/web/WEB-INF/jsp/unauthorized.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=329

USING ROLES 330

<s:link href="/">

<fmt:message key="exception.startOver"/>

</s:link>

</s:layout-component>

</s:layout-render>

Download email_35/web/WEB-INF/web.xml

<error-page>

<error-code>401</error-code>

<location>/WEB-INF/jsp/unauthorized.jsp</location>

</error-page>

Unauthorized users now see the page in Figure 14.3, on the following

page. Of course, you can display whatever message you want in this

page. For extra security, you might prefer to be less specific and just

use a “page not found” message, thus giving potential hackers the least

possible amount of information.

If you’ve been paying attention (and I’m sure you have), you probably

noticed that by getting rid of our login interceptor, we lost the feature

of sending unauthenticated users back to the Login page with the URL

that they were trying to access. Don’t worry, we can easily put that

back. When we implement SecurityManager, we can optionally imple-

ment SecurityHandler as well and determine what to do when access has

been denied:

Download email_35/src/stripesbook/nonext/MySecurityManager.java

public class MySecurityManager

extends J2EESecurityManager

implements SecurityHandler

{

public Resolution handleAccessDenied(ActionBean bean,

Method handler)

{

if (!isUserAuthenticated(bean, handler)) {

RedirectResolution resolution =

new RedirectResolution(LoginActionBean.class);

if (bean.getContext().getRequest().getMethod()

.equalsIgnoreCase("GET"))

{

String loginUrl = ((BaseActionBean) bean).getLastUrl();

resolution.addParameter("loginUrl", loginUrl);

}

return resolution;

}

return new ErrorResolution(HttpServletResponse.SC_UNAUTHORIZED);

}

/* ... */

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/web/WEB-INF/web.xml
http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/nonext/MySecurityManager.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=330

USING ROLES 331

Figure 14.3: A nicer (but still blunt) page for unauthorized access

If the user is not authenticated, we redirect to the Login page with the

URL to use after the user logs in. So, that will work as before. On the

other hand, when access is denied to an authenticated user, there’s no

point in making them log in—we just return the 401 error code and

show the “Access Denied” page.

Using InstanceBasedSecurityManager

The second SecurityManager implementation included in Stripes-Secu-

rity is InstanceBasedSecurityManager, which extends J2EESecurityManager

and adds support for restricting areas of the application not only by

role name but also by an EL expression, like this:

@RolesAllowed("RoleName if ${expression}")

This grants access only if the user has the role RoleName and expression

evaluates to true.

Because InstanceBasedSecurityManager extends J2EESecurityManager and

overrides hasRole() to add support for EL expressions, it adds another

method, hasRoleName(), which can be overridden to provide the logic

that determines whether a user has a role. So, to extend InstanceBased-

SecurityManager and not clobber its hasRole() implementation, we have

to move our role-finding code from hasRole() to hasRoleName(). Here is

the final MySecurityManager class:

Download email_35/src/stripesbook/nonext/MySecurityManager.java

package stripesbook.nonext;

public class MySecurityManager

extends InstanceBasedSecurityManager

implements SecurityHandler

{

@Override

protected Boolean isUserAuthenticated(ActionBean bean, Method handler) {

return getUser(bean) != null;

}

@Override

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/nonext/MySecurityManager.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=331

USING ROLES 332

protected Boolean hasRoleName(ActionBean bean, Method handler,

String role)

{

User user = getUser(bean);

if (user != null) {

Collection<Role> roles = user.getRoles();

return roles != null && roles.contains(new Role(role));

}

return false;

}

public Resolution handleAccessDenied(ActionBean bean,

Method handler)

{

if (!isUserAuthenticated(bean, handler)) {

RedirectResolution resolution =

new RedirectResolution(LoginActionBean.class);

if (bean.getContext().getRequest().getMethod()

.equalsIgnoreCase("GET"))

{

String loginUrl = ((BaseActionBean) bean).getLastUrl();

resolution.addParameter("loginUrl", loginUrl);

}

return resolution;

}

return new ErrorResolution(HttpServletResponse.SC_UNAUTHORIZED);

}

private User getUser(ActionBean bean) {

return ((BaseActionBean) bean).getContext().getUser();

}

}

This allows us to do some pretty cool things with EL expressions. For

example, recall how we previously restricted users to seeing their own

data, including their own messages in MessageDetailsActionBean:

Download email_34/src/stripesbook/action/MessageDetailsActionBean.java

public void setMessage(Message message) {

if (getUser().equals(message.getFolder().getUser())) {

this.message = message;

}

}

Say we wanted to keep restricting users to their own messages but let

administrators see other users’ messages. We could accomplish that by

putting the setter method back to just a plain setter and annotating

MessageDetailsActionBean.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_34/src/stripesbook/action/MessageDetailsActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=332

USING ROLES 333

Download email_35/src/stripesbook/action/MessageDetailsActionBean.java

@RolesAllowed({

"Administrator",

"User if ${user eq message.folder.user}"

})

public class MessageDetailsActionBean extends BaseActionBean {

public void setMessage(Message message) {

this.message = message;

}

}

Administrators are granted access no matter what, and users can get

access only if the message belongs to them. How cool is that?

Hiding Restricted Content in JSPs

We’re now controlling access to action beans according to roles. For the

User List page, it seems unfair to show the link in the menu to nonad-

ministrator users, only to show them an “Access is denied” message if

they click the link.

Stripes-Security also includes a tag library so that you can show or hide

content in JSPs according to the user’s authorization. We’ll declare the

tag library in taglibs.jsp:

Download email_35/web/WEB-INF/jsp/common/taglibs.jsp

<%@taglib prefix="security"

uri="http://www.stripes-stuff.org/security.tld"%>

The library includes two tags. The <security:allowed> tag renders its

body if the user is allowed to use the default event of the current action

bean. We can also use a different action bean by indicating its ID in

the bean= attribute and can use a different event with its name in the

event= attribute:

<security:allowed>

<!--this appears only if the user is authorized access to the

default event handler of the current action bean-->

</security:allowed>

<s:useActionBean id="beanId" beanclass="..."/>

<security:allowed bean="beanId">

<!--same as above, but use the action bean who's ID is "beanId"-->

</security:allowed>

<security:allowed event="someEvent">

<!--use "someEvent" event handler of the current action bean-->

</security:allowed>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/src/stripesbook/action/MessageDetailsActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_35/web/WEB-INF/jsp/common/taglibs.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=333

USING ROLES 334

<security:allowed bean="beanId" event="someEvent">

<!--use "someEvent" event handler of "beanId" action bean-->

</security:allowed>

We want to omit the User List link from the menu when the user isn’t

allowed to see the page. Within the loop that displays the sections, we’ll

assign the target action bean to the "bean" ID and enclose the code that

renders the section within the <security:allowed> tag:

Download email_35/web/WEB-INF/jsp/common/menu.jsp

<c:forEach var="section" items="${actionBean.sections}">

<s:useActionBean id="bean" beanclass="${section.beanclass}"/>

<security:allowed bean="bean">

<fmt:message var="text" key="${section.textKey}"/>

<c:choose>

<c:when test="${section eq actionBean.currentSection}">

${text}

</c:when>

<c:otherwise>

<s:link beanclass="${section.beanclass}" class="sectionLink">

${text}

</s:link>

</c:otherwise>

</c:choose>

</security:allowed>

</c:forEach>

Now, the User List link appears in the menu only if the user is autho-

rized access to the page. In fact, the same goes for each section of the

menu. We can add more sections with security restrictions, and the

menu will automatically display the appropriate links.

The other tag in the Stripes-Security library is <security:notAllowed>,

which works just like <security:allowed> except that it renders its body

if the user is not authorized access. That way, instead of completely

hiding links from unauthorized users, we can display grayed-out plain

text:

<c:forEach var="section" items="${actionBean.sections}">

<s:useActionBean id="bean" beanclass="${section.beanclass}"/>

<fmt:message var="text" key="${section.textKey}"/>

<security:allowed bean="bean">

<%-- same as before... --%>

</security:allowed>

<security:notAllowed bean="bean">

${text}

</security:notAllowed>

</c:forEach>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_35/web/WEB-INF/jsp/common/menu.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=334

USING ROLES 335

Joe Asks. . .

What About Other Security Mechanisms for Java Applica-
tions?

The specifications for Java web applications define standard
ways of implementing security mechanisms. I prefer simpler and
more lightweight solutions such as the ones I presented in this
chapter. Nevertheless, it’s worth knowing your options. The Java
EE 5 Tutorial [JBC+06] is a good reference for all things Java
EE, including security mechanisms. I didn’t cover them because
I wanted to present solutions that are more tightly integrated
with Stripes.

Spring Security (http://www.springframework.org/spring-security)
and JSecurity (http://www.jsecurity.org) are other interesting solu-
tions for adding security to Java applications. Using them with
Stripes is not difficult, but again, I did not cover them to avoid
spending too much time on frameworks that are completely
orthogonal to Stripes.

A Sense of Security

We’ve put up several lines of defense to prevent malicious users from

harming the webmail application. We won’t be staying up at night wor-

rying about security issues.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.springframework.org/spring-security
http://www.jsecurity.org
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=335

Every day you may make progress. Every step may be

fruitful. Yet there will stretch out before you an

ever-lengthening, ever-ascending, ever-improving path. You

know you will never get to the end of the journey. But this,

so far from discouraging, only adds to the joy and glory of

the climb.

Sir Winston Churchill

Chapter 15

Using JavaScript and Ajax
Ajax (Asynchronous JavaScript and XML) is one of those buzzwords

that you simply can’t ignore these days. A little bit of Ajax can really

spice up an application by making it more responsive and fun to use.

In a nutshell, Ajax lets you issue a request that it is asynchronous

and refreshes only a portion of the current page. This contrasts with

a traditional request for which the user has to wait for the response

before doing anything else and which reloads the whole page.

Consider this simple example. You have two select boxes in a form, and

the list of choices from the second box depends on what is selected in

the first box. You want to populate the second box as soon as the selec-

tion in the first box changes. Without Ajax, the whole page is refreshed,

causing flickering and even scrolling if the boxes are near the bottom of

a long page. With Ajax, only the portion that contains the second box

is refreshed. What’s more, the user interface is not blocked during the

request-response exchange.

We’ll look at how to use Ajax with Stripes for this and many other

examples. Using Ajax without a good JavaScript library is much like

developing a web application without a good framework—possible but

much more work than necessary—so I’ll be using Prototype (http://www.

prototypejs.org) and jQuery (http://jquery.com) in the examples. If neither

of those is your favorite, have no fear—Stripes has absolutely no depen-

dency on any specific Ajax framework.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.prototypejs.org
http://www.prototypejs.org
http://jquery.com

USING JAVASCRIPTRESOLUTION 337

Figure 15.1: A simple Ajax example

15.1 Using JavaScriptResolution

We’ll start with a simple reusable layout that loads the Prototype library

and has components to put content in the <head> and <body> sec-

tions of the page:

Download ajax/web/WEB-INF/jsp/common/layout_main.jsp

<s:layout-definition>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>${title}</title>

<script src="${contextPath}/js/prototype.js"

type="text/javascript"></script>

<s:layout-component name="head"/>

</head>

<body>

<h3>${title}</h3>

<s:layout-component name="body"/>

</body>

</html>

</s:layout-definition>

We’ll put JavaScript code in the head component and the page content

in the body component.

We’re ready to try a simple Ajax example. A page with a text field is

shown in Figure 15.1. As the user types an amount, the text below

refreshes to display double the amount. This happens after each key-

stroke, without having to click the Submit Query button.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/common/layout_main.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=337

USING JAVASCRIPTRESOLUTION 338

Look at the source for the JSP, and then we’ll discuss how it all works:

Download ajax/web/WEB-INF/jsp/hello.jsp

<s:layout-render name="/WEB-INF/jsp/common/layout_main.jsp"

title="Simple AJAX example">

<s:layout-component name="head">

<script type="text/javascript">

Ê function sendMoney(control) { //

var form = control.form;

new Ajax.Request(form.action,

{ method: 'post',

parameters: form.serialize(),

onSuccess: receiveResponse

}

);

}

// xhr is the XMLHttpRequest, which is a core AJAX object
Ë function receiveResponse(xhr) { //

var result = eval(xhr.responseText);

$('iGiveYou').update(result);

}

</script>

</s:layout-component>

<s:layout-component name="body">

<p>Let me double your money!</p>

<p>

<s:form beanclass="stripesbook.action.HelloAjaxActionBean">

You give me $
Ì <s:text name="youGiveMe" onkeyup="sendMoney(this);"/>

<s:submit name="doubleMoney"/>

</s:form>

</p>

<p>

Í I give you $ back!

</p>

</s:layout-component>

</s:layout-render>

We start with a regular Stripes form and text field. At Ì, the field’s

onkeyup= event calls the sendMoney() JavaScript function defined at Ê.

Since the text field is passed as a parameter, it’s easy to retrieve the

corresponding form. Then, with Prototype’s Ajax.Request, we issue an

Ajax request to the form’s action, passing the form’s inputs as param-

eters and the name of the JavaScript function that will be called when

the server responds to the request. That function is receiveResponse (Ë),

which is passed the data that the server sent as a response. That data is

wrapped with a call to eval() to obtain the result as a JavaScript object.

Finally, the with id="iGiveYou" (Í) is updated with the value of

the result.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/hello.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=338

USING JAVASCRIPTRESOLUTION 339

So, what exactly is the data that the server sends as a response? Here

is the code for the action bean to which the form is sent:

Download ajax/src/stripesbook/action/HelloAjaxActionBean.java

package stripesbook.action;

public class HelloAjaxActionBean extends BaseActionBean {

public int youGiveMe;

public Resolution doubleMoney() {

return new JavaScriptResolution(new Integer(youGiveMe * 2));

}

}

Very simple: youGiveMe is received as a parameter, and doubleMoney()

sends a response with 2× the value. That’s the interesting part: Java-

ScriptResolution, helped behind the scenes by its buddy JavaScriptBuilder,

converts a Java object into JavaScript code and returns it as a resolu-

tion so that the data can be turned back into a JavaScript object with

the eval() function.

Remember that the Ajax request is sent as the user types characters

into the text field, without clicking the submit button. However, serial-

izing the form with form.serialize() includes the name= of the submit but-

ton, doubleMoney, in the request parameters. That causes the request

to target the doubleMoney() event handler. It’s not necessary to include

a button just to indicate which event handler we want to call; we’ll talk

about that a little later. Right now I also want to point out that if you

do click the submit button, you get to see exactly what data is sent by

the JavaScriptResolution. For example, if you enter 42, the response data

is 84;. That’s not very exciting, but that’s really all that’s needed to get

the value 84 in JavaScript.

Now that we’ve gotten our feet wet, let’s try using a model object with

JavaScriptResolution, such as an instance of this Money class:

Download ajax/src/stripesbook/model/Money.java

package stripesbook.model;

public class Money {

private int youGaveMe;

private int andIGiveYou;

public Money(int youGaveMe, int andIGiveYou) {

this.youGaveMe = youGaveMe;

this.andIGiveYou = andIGiveYou;

}

/* getters and setters... */

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/src/stripesbook/action/HelloAjaxActionBean.java
http://media.pragprog.com/titles/fdstr/code/ajax/src/stripesbook/model/Money.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=339

USING JAVASCRIPTRESOLUTION 340

Instead of just returning a plain integer value, we’ll return a Money

object that contains both the amount that the user entered (youGaveMe)

and the value given back (andIGiveYou):

Download ajax/src/stripesbook/action/JavaScriptResolutionActionBean.java

public Resolution doubleMoney() {

Money money = new Money(youGiveMe, youGiveMe * 2);

return new JavaScriptResolution(money);

}

We can display the two values in separate places by using a different

placeholder for each value:

Download ajax/web/WEB-INF/jsp/javascript_resolution.jsp

You gave me $,

and I give you $ back!

When the response is received, the JavaScript object returned by eval()

contains the same properties as the Money object. We can then refer to

these properties with the dot notation:

Download ajax/web/WEB-INF/jsp/javascript_resolution.jsp

function receiveResponse(data) {

var result = eval(data.responseText);

$('youGaveMe').update(result.youGaveMe);

$('andIGiveYou').update(result.andIGiveYou);

}

That’s very convenient. You can return rich Java model objects with

JavaScriptResolution and get them back in JavaScript. All the object’s

properties, including nested properties and circular references, are cor-

rectly converted.

If you peek under the covers to see the actual response data by using

the submit button, you’ll see something a little more involved:

var _sj_root_2050643542;

var _sj_22791880 = {andIGiveYou:84, youGaveMe:42};

_sj_root_2050643542 = _sj_22791880;

_sj_root_2050643542;

That’s somewhat scary, but remember that this is generated code that

is meant to be evaluated as a JavaScript object. If you look at the second

line, that’s where the Money object’s properties are being translated to

a JavaScript hash, which in turn lets you get the properties with the

dot notation.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/src/stripesbook/action/JavaScriptResolutionActionBean.java
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/javascript_resolution.jsp
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/javascript_resolution.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=340

WORKING WITH AJAX REQUESTS AND RESPONSES 341

15.2 Working with Ajax Requests and Responses

Using JavaScriptResolution is convenient for using JavaScript on the

client side to do something with the response to an Ajax request. You

can also transfer data in other formats, such as JSON or XML.1

However, if all you’re doing in response to an Ajax request is updating

a portion of the page, it can become cumbersome to construct HTML

in JavaScript code using the values obtained in the response. I’ll go

even further and say that doing this makes me feel like I’m back in

1998, with only servlets at my disposal and having to construct HTML

in Java code!

Fortunately, there’s a much easier way. You can send HTML fragments

in response to Ajax requests and use them directly to update a portion

of the page. What makes this very convenient is that you can construct

the HTML in a regular JSP, using all the goodness of Stripes, action

beans, and everything else you’ve learned. The only difference is that

the JSP renders a fragment instead of a complete page.

Automatic Page Portion Update

The idea of updating a page portion with the HTML fragment returned

by the server is illustrated in Figure 15.2, on page 343. Prototype’s

Ajax.Updater sends an Ajax request and automatically updates the iden-

tified element (’result’, in this example) with the response data.

Continuing the “double your money” example, say we just had an empty

element to contain the result:

Download ajax/web/WEB-INF/jsp/updater.jsp

<p>Let me double your money!</p>

<p>

<s:form beanclass="stripesbook.action.UpdaterActionBean">

You give me $

<s:text name="youGiveMe" onkeyup="sendMoney(this);"/>

<s:submit name="doubleMoney"/>

</s:form>

</p>

<p id="result"></p>

</s:layout-component>

</s:layout-render>

1. In fact, that’s why it’s “Asynchronous JavaScript and XML”; initially XML was the

main format used when transferring data in Ajax responses. Other formats have emerged

since then; besides JavaScript code such as returned by JavaScriptResolution, JavaScript

Object Notation (JSON, http://www.json.org) is also popular.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/updater.jsp
http://www.json.org
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=341

WORKING WITH AJAX REQUESTS AND RESPONSES 342

Tim Says. . .

Why Use JavaScript Instead of JSON or XML?

JavaScriptResolution generates and returns JavaScript code—
not JSON and definitely not XML. Often this leads to the ques-
tion, why not just use JSON? Or even better: JSON is a standard,
so why don’t you use it? Certainly there are advantages to
using JSON—it’s a nice compact format, and it’s pretty human-
readable. For cases where you want to send strictly hierarchical
data to the browser, JSON is great.

The main reason to use JavaScript instead is that it can han-
dle circular references properly. No declarative format can do
this, and that includes both JSON and XML. For example, if you
have a FamilyMember object that has properties that refer to its
parents and its children, you quickly end up with circular refer-
ences (for example, Freddy’s child is Lily, who’s father is Freddy).
Modern persistence technologies like JPA and Hibernate tend
to encourage these well-connected models. Using JavaScript
allows us to do the following sequentially:

1. Convert “Freddy” to a JavaScript object.

2. Convert “Lily” to a JavaScript object.

3. Link Lily in as Freddy’s child.

4. Link Freddy in as Lily’s parent.

The result is that you get a JavaScript object graph that is linked
up exactly like the object graph was on the Java side.

If you’re still worried that JSON is a standard and JavaScript isn’t,
I’ll gently remind you that JavaScript is actually specified by a
standard called ECMAScript!

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=342

WORKING WITH AJAX REQUESTS AND RESPONSES 343

Browser page

new Ajax.Updater('result', ...)

<div id="result"></div>

Server

request

response

Figure 15.2: Updating a page portion with the server’s response

The ’result’ ID is passed to the Ajax.Updater call:

Download ajax/web/WEB-INF/jsp/updater.jsp

new Ajax.Updater('result', form.action,

{ method: 'post',

parameters: form.serialize()

}

);

To respond to the request in the action bean, we can use a regular

ForwardResolution to a JSP:

Download ajax/src/stripesbook/action/UpdaterActionBean.java

package stripesbook.action;

public class UpdaterActionBean extends BaseActionBean {

private static final String RESULT = "/WEB-INF/jsp/result.jsp";

public int youGiveMe;

private Money money;

public Money getMoney() {

return money;

}

public Resolution doubleMoney() {

money = new Money(youGiveMe, youGiveMe * 2);

return new ForwardResolution(RESULT);

}

}

In result.jsp, we’ll render the fragment that is put back in the ’result’ ele-

ment. All the regular goodies are available, such as ${actionBean} to

access the action bean’s properties:

Download ajax/web/WEB-INF/jsp/result.jsp

You gave me $ ${actionBean.money.youGaveMe},

and I give you $ ${actionBean.money.andIGiveYou} back!

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/updater.jsp
http://media.pragprog.com/titles/fdstr/code/ajax/src/stripesbook/action/UpdaterActionBean.java
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/result.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=343

WORKING WITH AJAX REQUESTS AND RESPONSES 344

Figure 15.3: An Ajax form with more than one submit button

This is a simple example, but as these page fragments become more

complex, you can imagine how much easier it is to use a ForwardResolu-

tion and a JSP rather than to return raw data and construct the page

fragment in JavaScript.

Handling Multiple Submit Buttons

We’ve been issuing Ajax requests as the user is typing characters into a

text field. Sometimes it’s preferable to let the user finish entering values

and submit the form only when the user clicks a submit button, while

still using Ajax to send the request and handle the response.

Doing this with a form that has multiple submit buttons can be prob-

lematic if we’re not careful. Consider the money example with a Send

and a Cancel button, as shown in Figure 15.3.

When the form is serialized and posted, the default behavior is to in-

clude all inputs with their values, including all submit buttons no mat-

ter which one was clicked. Because Stripes relies on the parameter

name matching an event name to determine which event handler to

call, having all buttons present will wipe out the trail.

We can avoid this problem in a few ways. Prototype includes only one

submit button in the form submission if we specify it as a parameter to

form.serialize():

Download ajax/web/WEB-INF/jsp/multiple_submits.jsp

function sendMoney(control) {

var form = control.form;

new Ajax.Updater('result', form.action,

{ method: 'post',

parameters: form.serialize({submit: control.name})

}

);

return false;

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/multiple_submits.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=344

WORKING WITH AJAX REQUESTS AND RESPONSES 345

Obviously, this solution is Prototype-specific. Although your favorite

Ajax framework may also have an equivalent feature, it’s good to know

of a more general technique. One way is to include an _eventName

request parameter with the name of the event handler, as in _event-

Name=save. Stripes uses that as the event name instead of looking at

the names of the other request parameters. We saw other ways of spec-

ifying the event name in the request on page 292.

Besides taking multiple submit buttons into consideration, another

important issue with Ajax form submission is to make sure that the

JavaScript code returns false to prevent the browser from also submit-

ting the form in the traditional (non-Ajax) way. In our example, send-

Money() returns false, which becomes the return value in the onclick=

event of the submit button:

Download ajax/web/WEB-INF/jsp/multiple_submits.jsp

function sendMoney(control) {

/* ... */

return false;

}

<s:submit name="doubleMoney" value="Send"

onclick="return sendMoney(this);"/>

With these issues out of the way, we’re ready to respond differently

according to which button was clicked, Send or Cancel :

Download ajax/src/stripesbook/action/MultipleSubmitActionBean.java

private static final String RESULT = "/WEB-INF/jsp/result.jsp";

private static final String CANCEL = "/WEB-INF/jsp/cancel.jsp";

public Resolution doubleMoney() {

money = new Money(youGiveMe, youGiveMe * 2);

return new ForwardResolution(RESULT);

}

public Resolution cancel() {

return new ForwardResolution(CANCEL);

}

The result.jsp file is the same as before, but cancel.jsp gives a different

response to the user:

Download ajax/web/WEB-INF/jsp/cancel.jsp

Fine then, keep your money!

This message is displayed below the form if the user clicks the Cancel

button, as illustrated in Figure 15.4, on the next page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/multiple_submits.jsp
http://media.pragprog.com/titles/fdstr/code/ajax/src/stripesbook/action/MultipleSubmitActionBean.java
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/cancel.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=345

WORKING WITH AJAX REQUESTS AND RESPONSES 346

Figure 15.4: Response after clicking the Cancel button

Ajax and Validation Errors

When the user enters a money amount in the text field, it must be a

valid integer value. What happens if the user enters something invalid?

The whole form gets redisplayed in the ’result’ element, producing the

“double vision” effect illustrated in Figure 15.5, on the following page.

Why did this happen? Remember that when a validation error occurs,

Stripes returns to the form instead of executing the event handler. That

response is put back in the ’result’ element by our Ajax response han-

dler, so the form reappears. The validation error is not shown because

we don’t have the <s:errors/> tag in the form.

What we want to do is avoid returning the whole page and instead

return just the fragment that displays the validation errors:

Download ajax/web/WEB-INF/jsp/errors.jsp

<s:errors/>

All that’s left to do is implement ValidationErrorHandler in the action bean

to override the default behavior of returning the source page resolu-

tion when validation errors occur. Instead, we’ll return a resolution to

errors.jsp:

Download ajax/src/stripesbook/action/ErrorHandlingActionBean.java

public class ErrorHandlingActionBean extends BaseActionBean

implements ValidationErrorHandler

{

private static final String ERRORS = "/WEB-INF/jsp/errors.jsp";

public Resolution handleValidationErrors(ValidationErrors errors) {

return new ForwardResolution(ERRORS);

}

}

After submitting an invalid value, the error message is now shown

within the page, as illustrated in Figure 15.6, on the next page. That’s

much better.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/errors.jsp
http://media.pragprog.com/titles/fdstr/code/ajax/src/stripesbook/action/ErrorHandlingActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=346

WORKING WITH AJAX REQUESTS AND RESPONSES 347

Figure 15.5: Form getting redisplayed on invalid input

Figure 15.6: Showing validation errors in the Ajax response

Was That an Ajax Request?

By implementing the ValidationErrorHandler interface, you can
return a resolution to a page fragment instead of the default
getContext().getSourcePageResolution(). In this and other situa-
tions, you may want to do something different according to the
request being Ajax or non-Ajax.

One way of finding out whether you’re dealing with an Ajax
request is by looking at the X-Requested-With request header. This
header has a value of XMLHttpRequest for Ajax requests:

String header =
getContext().getRequest().getHeader("X-Requested-With");

if (header != null && header.equalsIgnoreCase("XMLHttpRequest")) {
// it's an AJAX request!

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=347

WORKING WITH AJAX REQUESTS AND RESPONSES 348

Figure 15.7: Initial form before selecting a car make

Using Partial Forms

By now you’ve realized that using Ajax and updating page fragments is

easy and fun but also introduces new challenges. Another one of these

is the use of page fragments with form input controls that are to be

inserted back into an existing form, after an Ajax request.

Consider the form in Figure 15.7, which has select boxes to choose a

car make and model. After a make is selected in the first box, an Ajax

request is sent to update the models in the second box. The result after

selecting a car make is shown in Figure 15.8, on the next page.

In Figure 15.9, on page 350, we can see how the onchange= event on

the car make select box triggers an Ajax request with the make sent

as a parameter. The server responds with the car model select box,

populated with the models that correspond to the selected car make.

The model and action bean for this example are straightforward:

Download ajax/src/stripesbook/model/Cars.java

package stripesbook.model;

public class Cars extends HashMap<String,List<String>> {

public Cars() {

put("Acura", Arrays.asList("CSX", "MDX", "TL", "TSX"));

put("Ford", Arrays.asList("Escape", "Explorer", "Focus", "Mustang"));

put("Honda", Arrays.asList("Accord", "Civic", "CR-V", "S2000"));

put("Porsche", Arrays.asList("911 Carrera", "Boxster"));

}

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/src/stripesbook/model/Cars.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=348

WORKING WITH AJAX REQUESTS AND RESPONSES 349

Figure 15.8: Car models are populated after selecting a make.

Download ajax/src/stripesbook/action/PartialFormActionBean.java

package stripesbook.action;

public class PartialFormActionBean extends BaseActionBean {

private static final String VIEW = "/WEB-INF/jsp/cars.jsp";

private static final String RESULT = "/WEB-INF/jsp/partial_form.jsp";

private Cars cars = new Cars();

public String make;

private List<String> models;

@DefaultHandler

public Resolution view() {

return new ForwardResolution(VIEW);

}

public Cars getCars() {

return cars;

}

public List<String> getModels() {

return models;

}

public Resolution updateModels() {

models = cars.get(make);

return new ForwardResolution(RESULT);

}

}

The form contains the select box with the car makes and a ’model-

Choices’ placeholder for the car models:

Download ajax/web/WEB-INF/jsp/cars.jsp

<s:form beanclass="stripesbook.action.PartialFormActionBean">

Make:

<s:select name="make" onchange="updateModels(this);">

<s:option value="" label="..."/>

<s:options-map map="${actionBean.cars}" label="key"/>

</s:select>

Model:

<s:select name="models"/>

</s:form>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/src/stripesbook/action/PartialFormActionBean.java
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/cars.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=349

WORKING WITH AJAX REQUESTS AND RESPONSES 350

Browser page

<s:form ...>

<s:select name="make" onchange="..."/>

</s:form>

Server

make

<s:select name="models">

. ...

</s:select>

Figure 15.9: Using Ajax to inserting form input controls into an existing

form

When the user selects a car make, the onchange= event triggers a call to

updateModels(), which sends an Ajax request with the selected model.

The response is put back into the ’modelChoices’ element:

Download ajax/web/WEB-INF/jsp/cars.jsp

function updateModels(control) {

var form = control.form;

var params =

$H(form.serialize(true)).update({'_eventName':'updateModels'});

new Ajax.Updater('modelChoices', form.action,

{ method: 'post',

parameters: params

}

);

}

Notice how this time we’re using the _eventName request attribute to

indicate the name of the event handler. The call to Prototype’s $H() turns

the parameters into a hash, making it easy to add a key-value pair

before submitting the request.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/cars.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=350

AJAXIFYING THE WEBMAIL APPLICATION 351

The partial_form.jsp file contains the select box for the car models. Owing

to the fact that it is being put back into an already-existing form, it’s

tempting to just return the select box:

Download ajax/web/WEB-INF/jsp/partial_form.jsp

<s:select name="models">

<s:option value="" label="..."/>

<s:options-collection collection="${actionBean.models}"/>

</s:select>

The problem is that Stripes doesn’t know (or care) that we’re working

with Ajax here. When rendering partial_form.jsp, Stripes will complain

that the <s:select> tag does not have a parent <s:form> tag. We can’t

very well say, “Yes, it does; it’s sitting over there on the client side!”

On the other hand, if we wrap the select box in an <s:form> tag, we’re

going to end up with two form tags, one nested inside the other.

To create form input controls that are going back into an existing form

while still satisfying the requirement for a parent <s:form> tag, we just

have to use the partial="true" attribute:

Download ajax/web/WEB-INF/jsp/partial_form.jsp

<s:form partial="true"

beanclass="stripesbook.action.PartialFormActionBean">

<s:select name="models">

<s:option value="" label="..."/>

<s:options-collection collection="${actionBean.models}"/>

</s:select>

</s:form>

This tells Stripes not to render the HTML <form> tag or the special

hidden inputs that Stripes normally renders in a form so that we don’t

end up with duplicate form tags. The example now works as expected.

15.3 Ajaxifying the Webmail Application

For the rest of this chapter, we’ll use some Ajax in the webmail applica-

tion to spice up the Contact List page. Instead of having separate Con-

tact List, Contact Details, and Contact Form pages, we’ll have every-

thing in a single page and use Ajax to show, hide, and refresh different

portions of the page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/partial_form.jsp
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/partial_form.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=351

AJAXIFYING THE WEBMAIL APPLICATION 352

Figure 15.10: The initial Ajax Contact List page

We’ll be using jQuery for these examples, so the first thing to do is to

import the library:

Download email_36/web/WEB-INF/jsp/common/layout_main.jsp

<script type="text/javascript"

src="${contextPath}/js/jquery.js"></script>

The JSP for the contact list includes placeholders for the contact table,

contact details, and contact form, which are all page fragments that are

inserted into their respective containers:

Download email_36/web/WEB-INF/jsp/contact_list.jsp

<s:layout-render name="/WEB-INF/jsp/common/layout_menu.jsp"

title="${title}" currentSection="ContactList">

<s:layout-component name="body">

<!-- ... -->

<div id="contact_table" style="float: left">

<%@include file="/WEB-INF/jsp/parts/contact_table.jsp"%>

</div>

<div id="contact_details" style="float: left"></div>

<div style="clear: both"></div>

<div id="contact_form"></div>

</s:layout-component>

</s:layout-render>

The initial page is shown in Figure 15.10. Notice the Filter text field at

the top and the icons for the View, Update, and Delete links. All controls

will issue Ajax requests and modify portions of the page. Let’s look at

each feature, starting with the Filter field.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_36/web/WEB-INF/jsp/common/layout_main.jsp
http://media.pragprog.com/titles/fdstr/code/email_36/web/WEB-INF/jsp/contact_list.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=352

AJAXIFYING THE WEBMAIL APPLICATION 353

Figure 15.11: Filtering the contact list

Filtering the Contact List

As the user types characters in the Filter field, the contact list is fil-

tered to show only the contacts for whom either the first name or the

last name starts with the letters in the filter. An example is shown in

Figure 15.11.

We can use a plain HTML text field with an onkeyup= event:

Download email_36/web/WEB-INF/jsp/contact_list.jsp

<s:url var="url"

beanclass="stripesbook.action.ContactListActionBean"/>

<fmt:message key="contactList.filter"/>:

<input type="text" onkeyup="filterContacts(this, '${url}');"/>

The filterContacts() JavaScript method receives the text field and the

URL to ContactListActionBean. A simple Ajax request to the findByName()

event handler is made, passing the characters from the text field via the

filter parameter. The response is the page fragment with the filtered con-

tact table. It’s easy to place the fragment back with a jQuery selector:

’#contact_table’ refers to the element with id="contact_table".

Download email_36/web/js/contact_list.js

function filterContacts(field, url) {

$.get(url,

{ 'filter': $(field).val(),

'_eventName': 'findByName'

},

function(data) {

$('#contact_table').html(data);

}

);

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_36/web/WEB-INF/jsp/contact_list.jsp
http://media.pragprog.com/titles/fdstr/code/email_36/web/js/contact_list.js
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=353

AJAXIFYING THE WEBMAIL APPLICATION 354

In ContactListActionBean, we just have to receive the filter parameter and

use it to retrieve the matching contacts in the findByName() event

handler:

Download email_36/src/stripesbook/action/ContactListActionBean.java

public String filter;

public Resolution findByName() {

if (filter != null && filter.length() > 0) {

contacts = contactDao.findByName(filter, getUser());

}

return new ForwardResolution(TABLE);

}

Notice that we filter only if there is at least one character in the text

field. That way, if the user deletes everything from the text field, the

contact list goes back to being fully populated.

Finally, a simple query in the Contact DAO retrieves the list of contacts

that match the filter:

Download email_36/src/stripesbook/dao/impl/stripersist/ContactDaoImpl.java

@SuppressWarnings("unchecked")

public List<Contact> findByName(String startsWith, User user) {

return Stripersist.getEntityManager()

.createQuery("select distinct c from "

+ getEntityClass().getName() + " c "

+ "where (c.firstName like '" + startsWith + "%' or "

+ "c.lastName like '" + startsWith + "%') "

+ "and c.user = :user"

).setParameter("user", user).getResultList();

}

The contact list now changes as the user types characters in the Filter

field. Pretty spiffy!

Viewing Contact Details

To view the contact details, the user clicks the “i” icon in the column.

The contact’s information appears next to the table, as you can see in

Figure 15.12, on the next page. A small “x” lets the user remove the

details area from the page.

We used a plain HTML control for the Filter text field because there

wasn’t much to gain from using the Stripes equivalent. For the con-

tact details link, however, we can take advantage of the <s:link> tag’s

features and attach an event to the onclick= attribute.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_36/src/stripesbook/action/ContactListActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_36/src/stripesbook/dao/impl/stripersist/ContactDaoImpl.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=354

AJAXIFYING THE WEBMAIL APPLICATION 355

Figure 15.12: Viewing a contact’s details

Download email_36/web/WEB-INF/jsp/parts/contact_table.jsp

<s:link beanclass="stripesbook.action.ContactListActionBean"

event="details"

onclick="return ajaxLink(this, '#contact_details');">

<s:param name="contact" value="${contact}"/>

</s:link> |

We’re calling the JavaScript ajaxLink() function with the request URL

and the ID of the page portion to be updated with the response. Can

you guess what the ajaxLink() function looks like?

Download email_36/web/js/contact_list.js

function ajaxLink(link, update) {

$.get(link, function(data) {

$(update).html(data);

$(update).show();

});

return false;

}

This function is easily reusable; it generically submits an Ajax request

to the given link and updates the identified page portion with the frag-

ment received in the response. For the contact details link, we’re pass-

ing the contact ID with the contact parameter and calling the details()

event handler on ContactListActionBean, which forwards to contact_

details.jsp:

Download email_36/src/stripesbook/action/ContactBaseActionBean.java

public abstract class ContactBaseActionBean extends BaseActionBean {

private Contact contact;

public Contact getContact() {

return contact;

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_36/web/WEB-INF/jsp/parts/contact_table.jsp
http://media.pragprog.com/titles/fdstr/code/email_36/web/js/contact_list.js
http://media.pragprog.com/titles/fdstr/code/email_36/src/stripesbook/action/ContactBaseActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=355

AJAXIFYING THE WEBMAIL APPLICATION 356

public void setContact(Contact contact) {

User user = contact.getUser();

if (user == null || getUser().equals(user)) {

this.contact = contact;

}

}

}

Download email_36/src/stripesbook/action/ContactListActionBean.java

public class ContactListActionBean extends ContactBaseActionBean {

private static final String DETAILS =

"/WEB-INF/jsp/parts/contact_details.jsp";

public Resolution details() {

return new ForwardResolution(DETAILS);

}

}

The contact_details.jsp file renders the contact information exactly like

before, but without the surrounding page layout. The JSP also includes

the “x” icon at the bottom:

Download email_36/web/WEB-INF/jsp/parts/contact_details.jsp

<table class="view">

<tr>

<td class="label"><s:label for="contact.firstName"/>:</td>

<td class="value">

${fn:escapeXml(actionBean.contact.firstName)}

</td>

</tr>

<!-- same for other fields... -->

</table>

<a href="#" style="padding-left: 24px;"

onclick="$('#contact_details').hide();">

The fragment is put back into the #contact_details placeholder, next to

the contact table, and we get the result from Figure 15.12, on the pre-

ceding page. The user can click the “x” to remove the contact details

portion from the page.

Instant Delete

Since we’re making the contact list more clickety-click-click, let’s shun

that “Are you sure?” pop-up box and delete the contact when the user

clicks the “x” icon, instantly refreshing the contact table.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_36/src/stripesbook/action/ContactListActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_36/web/WEB-INF/jsp/parts/contact_details.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=356

AJAXIFYING THE WEBMAIL APPLICATION 357

Figure 15.13: The contact form appears below the contact table.

Download email_36/web/WEB-INF/jsp/parts/contact_table.jsp

<s:link beanclass="stripesbook.action.ContactListActionBean"

event="delete"

onclick="return ajaxLink(this, '#contact_table');">

<s:param name="contact" value="${contact}"/>

</s:link>

Notice how we’re reusing the ajaxLink() function. In fact, the delete link

is quite similar to the contact details link. We’re just using a differ-

ent event on the action bean, updating a different portion of the page

(’#contact_table’ instead of ’#contact_details’), and showing a different

icon. In the action bean, the delete() event handler deletes the contact

and returns a page fragment with the refreshed contact list table.

Ajaxifying the Contact Form

To complete the Ajaxification of the contact list, let’s make the con-

tact form appear below the table, as in Figure 15.13. The form is pre-

populated when the user updates an existing contact and is blank for

creating a new contact—same as before.

Making the contact form appear in the ’#contact_form’ placeholder

works the same way as the other Ajax links we’ve created so far:

Download email_36/web/WEB-INF/jsp/parts/contact_table.jsp

<s:link beanclass="stripesbook.action.ContactFormActionBean"

onclick="return ajaxLink(this, '#contact_form');">

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_36/web/WEB-INF/jsp/parts/contact_table.jsp
http://media.pragprog.com/titles/fdstr/code/email_36/web/WEB-INF/jsp/parts/contact_table.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=357

AJAXIFYING THE WEBMAIL APPLICATION 358

<s:param name="contact" value="${contact}"/>

</s:link> |

For creating a new contact, the link is the same but without the contact

parameter.

Now that the form is in place, rub your hands together because we’re

going to use a few neat tricks to submit the form via Ajax and handle

the response.

First, we’ll use the onclick= event on the Save button to call submitForm(),

passing the button as a parameter:

Download email_36/web/WEB-INF/jsp/parts/contact_form.jsp

<s:submit name="save" onclick="return submitForm(this);"/>

In the JavaScript code, submitForm() serializes the form and adds the

’_eventName’ parameter with the name of the button:

Download email_36/web/js/contact_form.js

function submitForm(button) {

var form = button.form;

var params = $(form).serializeArray();

params.push({name: '_eventName', value: button.name});

$.post(form.action, params, function(data) {

$('#contact_form').hide();

$('#contact_table').html(data);

});

return false;

}

After creating the parameters, the form is posted via Ajax, and the

result, which is the updated contact table, is put back into the ’#con-

tact_table’ section, while the contact form, having done its task, is hid-

den again.

There’s just one problem. . . can you figure out what it is?

What if the user submits the form with invalid input? As you know,

the default Stripes behavior in that case is to redisplay the form with

error messages. Since we’re blindly putting the response into the con-

tact table portion of the page, the table gets clobbered by a form with

validation errors.

The problem is not that we’re getting back the form instead of the

contact table; rather, it’s that we need to put the form back into the

’#contact_form’ portion instead of into ’#contact_table’. In other words,

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_36/web/WEB-INF/jsp/parts/contact_form.jsp
http://media.pragprog.com/titles/fdstr/code/email_36/web/js/contact_form.js
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=358

AJAXIFYING THE WEBMAIL APPLICATION 359

we need some way of knowing where to put the response fragment,

according to whether validation errors occurred.

My initial solution to this problem was to look for something in the

contact form fragment that isn’t in the contact table—the <form> tag,

the error CSS class, or even an HTML comment that says, “There are

validation errors!” Although this works, it’s an ugly and brittle solution.

Discussion with the friendly and talented Stripes community yielded a

more elegant solution: use a header in the HTTP response to indicate

that the form was successful. Upon receiving that header, the contact

table is refreshed as before; otherwise, the form with validation error

messages goes back into ’#contact_form’.

OK, let’s set a response header after successfully saving the contact. We

can do this in the save() event handler, before returning the ForwardRes-

olution:

Download email_36/src/stripesbook/action/ContactFormActionBean.java

public Resolution save() {

// save the contact...

getContext().getResponse().setHeader("X-Stripes-Success","true");

return new ForwardResolution(ContactListActionBean.class,

"table");

}

Adding the response header in contact_table.jsp also works:

<%= response.setHeader("X-Stripes-Success","true"); %>

I prefer adding the response in the action bean. I find that the intention

of signaling success is clearer in the save() event handler method than

it is in the JSP.

On the client side, we need to look for the response header in the Ajax

callback function. Response headers are available in the standard XHR

(XMLHttpRequest) object, which is the core object used when sending and

receiving data with Ajax. With jQuery, the XHR object is returned from

the function that sends the Ajax request—$.post, in our case. We can

look for the ’X-Stripes-Success’ with a call to getResponseHeader() on the

XHR object:

Download email_36/web/js/contact_form.js

function submitForm(button) {

var form = button.form;

var params = $(form).serializeArray();

params.push({name: '_eventName', value: button.name});

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_36/src/stripesbook/action/ContactFormActionBean.java
http://media.pragprog.com/titles/fdstr/code/email_36/web/js/contact_form.js
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=359

ADDING CLIENT -SIDE VALIDATION 360

var xhr = $.post(form.action, params, function(data) {

if (xhr.getResponseHeader('X-Stripes-Success')) {

$('#contact_form').hide();

$('#contact_table').html(data);

}

else {

$('#contact_form').html(data);

}

});

return false;

}

As you can see, upon finding the success response header, the form

is hidden, and the contact table is refreshed. If the success indicator

is not present, validation errors have occurred, and the contact form

is redisplayed with error messages. Beautiful! The contact form is fully

Ajaxified!

Hey, wait a minute, what about that Cancel button? Well, that’s almost

too easy. It just hides the form:

Download email_36/web/WEB-INF/jsp/parts/contact_form.jsp

<s:button name="cancel" onclick="$('#contact_form').hide();"/>

Now the contact form is fully Ajaxified.

15.4 Adding Client-Side Validation

With JavaScript, you can perform client-side form validation so that the

user gets feedback before posting the form to the server. Although this

does not replace server-side validation, it can improve the user’s expe-

rience by giving more immediate validation information. It also saves

bandwidth by not sending anything to the server until the form passes

the validation being performed on the client.

The Stripes-Stuff project (http://www.stripesstuff.org) includes a plug-in by

Aaron Porter that works with Stripes and jQuery to easily add client-

side validation to a Stripes form. The plug-in discovers and applies the

form’s validation criteria as the user is filling out the form. This saves

you a ton of work because you don’t have to take all the validation rules

that you’ve defined in the action bean and duplicate them in JavaScript

code. The plug-in uses the validation metadata to dynamically do the

work for you.

Back on page 209, we saw how ValidationMetadata provides runtime

validation information. The <s:field-metadata> tag complements this

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/email_36/web/WEB-INF/jsp/parts/contact_form.jsp
http://www.stripesstuff.org
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=360

ADDING CLIENT -SIDE VALIDATION 361

by translating the validation metadata into JavaScript key-value pairs,

as follows:

{

'contact.email':

{required:true,trim:true,typeConverter:'EmailTypeConverter'},

'contact.firstName':

{trim:true,maxlength:25,typeConverter:'StringTypeConverter'},

'contact.lastName':

{trim:true,minlength:2,maxlength:40,typeConverter:'StringTypeConverter'},

'contact.phoneNumber':

{typeConverter:'PhoneNumberTypeConverterFormatter'},

'contact.birthDate':

{type:'Date',trim:true,typeConverter:'DateTypeConverter'}

'contact.gender':

{typeConverter:'EnumeratedTypeConverter'},

}

The plug-in uses this information to validate the fields on the fly. Let’s

use it with the contact form as an example.

To set up the plug-in, import the JavaScript libraries, in order:

Download ajax/web/WEB-INF/jsp/client_side_validation.jsp

<script src="${contextPath}/js/jquery.js"

type="text/javascript"></script>

<script src="${contextPath}/js/jquery.validation.js"

type="text/javascript"></script>

<script src="${contextPath}/js/stripes.jquery.validation.js"

type="text/javascript"></script>

Next, right before the closing form tag, add the <s:field-metadata> tag

followed by a call to applyStripesValidation(), like this:

Download ajax/web/WEB-INF/jsp/client_side_validation.jsp

<s:form beanclass="stripesbook.action.ClientFormActionBean">

<!-- form input controls... -->

<s:field-metadata var="fmd"/>

<script type="text/javascript">

applyStripesValidation('${fmd.formId}', ${fmd});

</script>

</s:form>

The <s:field-metadata> tag places the validation metadata in the vari-

able, fmd. You can then access the information with ${fmd}, as well as

the generated form ID with ${fmd.formId}. These two pieces of informa-

tion must be passed to applyStripesValidation().

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/client_side_validation.jsp
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/client_side_validation.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=361

ADDING CLIENT -SIDE VALIDATION 362

Figure 15.14: Initial contact form with client-side validation

Finally, the default behavior of the plug-in is to add the invalid CSS

class to input controls that fail validation. So, we’ll highlight them in

the same way as we were doing with the Stripes error class:

Download ajax/web/css/style.css

input.error, input.invalid {

border-color: red;

background-color: #FFCCCC;

}

That’s all there is to it. The initial form is shown in Figure 15.14. Notice

that the Email field is highlighted because it fails validation—it is a

required field. Also, the two submit buttons, Save and Cancel , are

disabled because of the presence of validation errors.

As the user types values into the fields, these are highlighted (or not),

and the submit buttons are enabled or disabled, according to the pres-

ence or absence of validation errors. When executing JavaScript code

with each keystroke, it’s best to turn off the browser’s autocomplete fea-

ture with the autocomplete= attribute on the text fields. But wait—that

attribute is not recognized by the <s:text> tag because it’s not techni-

cally valid HTML. Are we out of luck? Of course not. Stripes includes

another version of its tag library that accepts dynamic attributes:

Download ajax/web/WEB-INF/jsp/common/taglibs.jsp

<%@taglib prefix="s-dyn"

uri="http://stripes.sourceforge.net/stripes-dynattr.tld"%>

We can keep using the original version and use this dynamic version

whenever we need unrecognized attributes:

Download ajax/web/WEB-INF/jsp/client_side_validation.jsp

<s-dyn:text id="contact.email" name="contact.email"

autocomplete="off"/>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/css/style.css
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/common/taglibs.jsp
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/client_side_validation.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=362

ADDING CLIENT -SIDE VALIDATION 363

Figure 15.15: The state of the contact form after entering some values

The form in Figure 15.15 shows the state after the user has typed some-

thing in. Notice that the “Last name” field is now in error; it is optional,

but with a minimum length of 2. Therefore, entering a single character

is not valid, and the field is in error.

The plug-in has a few limitations. Looking again at Figure 15.15, the

phone number field is not in error despite the input being invalid. That’s

because we’re using our own custom type converter, which the plug-in

doesn’t recognize. You’ll also notice that the Cancel button is disabled

even though it is associated with a @DontValidate event handler in the

action bean.

These limitations very well may have been resolved by the time you read

these lines, so check http://www.stripes-stuff.org for the latest version.

You can also pass options to the applyStripesValidation() function to cus-

tomize the behavior of the plug-in. For example, we can tell the plug-in

not to disable buttons. At the same time, we can specify the error CSS

class so that it matches the one used by Stripes:

Download ajax/web/WEB-INF/jsp/client_side_validation.jsp

var options = {

invalidClass: 'error',

disableSubmit: false

};

applyStripesValidation('${fmd.formId}', ${fmd}, options);

The form is still validated on the client side when the user submits the

form. The buttons are enabled, and a pop-up message appears if the

form is submitted with validation errors, as illustrated in Figure 15.16,

on the next page.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.stripes-stuff.org
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/client_side_validation.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=363

ADDING CLIENT -SIDE VALIDATION 364

Figure 15.16: Form being validated on the client side with a pop-up

error message

Simulating Client-Side Validation with a Little Help from the Server

Client-side validation is nice, but you saw how it does have some limi-

tations. Another strategy is to simulate client-side validation by issuing

Ajax requests as the user is filling out the form, using the responses to

show error messages instantly. The advantage of doing this is that we’re

reusing the server-side validation code; the drawback is that we’re con-

stantly sending and receiving data between the client and the server,

so we’re no longer saving bandwidth—quite the opposite. Nevertheless,

let’s have a look at this technique.

First we’ll add a call to a JavaScript method in the onkeyup= event of

the text fields:

Download ajax/web/WEB-INF/jsp/server_side_validation.jsp

<s-dyn:text id="contact.email" name="contact.email"

autocomplete="off" onkeyup="validate(this.form);"/>

We’ll also surround the <s:errors> tag with a container so that we have

a place to put validation error messages:

Download ajax/web/WEB-INF/jsp/server_side_validation.jsp

<s:errors field="contact.email"/>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/server_side_validation.jsp
http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/server_side_validation.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=364

ADDING CLIENT -SIDE VALIDATION 365

Tim Says. . .

Stripes Has Two Tag Libraries. Wait, What?

The main Stripes tag library is imported, as Freddy showed
in Chapter 2, Stripes 101: Getting Started, with the URI
http://stripes.sourceforge.net/stripes.tld. There is a second, and
largely identical, tag library that comes with Stripes that can
be imported with the URI http://stripes.sourceforge.net/stripes-

dynattr.tld. The main difference between these two tag libraries
is that the input tags in the first tag library do not support JSP
dynamic attributes, whereas the ones in the second do.

I advise everyone to use the first library almost all the time.
In fact, for several versions, we had only the first tag library. It
has the advantage of providing much better error checking.
Because the set of attributes that a tag accepts is limited to
a fixed and known set, the JSP compiler can provide compile-
time checking of attribute names, and IDEs can usually spot
errors immediately. This is especially helpful for attributes that
are just passed through to the HTML, because Stripes won’t
complain if those attributes are misspelled. For instance, if
you typed <s:text name="username" clas="important"/>, the mis-
spelling of “class” would be flagged immediately, whereas with
dynamic attributes the clas attribute would just get passed
through to the HTML. You wouldn’t be told about the typo in
the IDE, and you’d notice the problem later only when the text
field wouldn’t be displayed with the "important" class.

Despite these advantages, there are times when you need
HTML tags to have attributes that aren’t technically valid HTML.
This is quite common with Ajax or JavaScript libraries. For exam-
ple, you might want to write <s:text name="friend" autocom-

plete="off"/>. Since “autocomplete” isn’t valid HTML, the stan-
dard Stripes tag won’t let you write it. For this you have to
use the tag that supports dynamic attributes—this will pass any
unknown attributes through to the HTML.

It’s perfectly valid to import both tag libraries on the same page
(with different prefixes) and intermingle them within the same
form. That’s why my advice is to use the standard library where
possible—to get the best error checking possible—and then use
the dynamic tag library just on the tags where it is needed.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=365

ADDING CLIENT -SIDE VALIDATION 366

The validate() JavaScript function submits the form to the validate()

event handler:

Download ajax/web/WEB-INF/jsp/server_side_validation.jsp

$(document).ready(function() {

validate($('#${fmd.formId}'));

});

function validate(form) {

var params = $(form).serializeArray();

params.push({name: '_eventName', value: 'validate'});

$.post(form.action, params, function(data) {

/* ... */

});

}

The action bean implements ValidationErrorHandler and checks for an

Ajax request. In that case, the validation error messages are put in

a map and returned in a JavaScriptResolution. With no validation errors,

validate() just returns an empty map:

Download ajax/src/stripesbook/action/ServerFormActionBean.java

public Resolution validate() {

return new JavaScriptResolution(Collections.emptyMap());

}

public Resolution handleValidationErrors(ValidationErrors errors) {

String header =

getContext().getRequest().getHeader("X-Requested-With");

if (header != null && header.equalsIgnoreCase("XMLHttpRequest")) {

Map<String,List<String>> map = new HashMap<String,List<String>>();

Locale locale = getContext().getLocale();

for (String key : errors.keySet()) {

List<ValidationError> errorList = errors.get(key);

List<String> messages = new ArrayList<String>(errorList.size());

for (ValidationError error : errorList) {

messages.add(error.getMessage(locale));

}

map.put(key, messages);

}

return new JavaScriptResolution(map);

}

return null;

}

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/server_side_validation.jsp
http://media.pragprog.com/titles/fdstr/code/ajax/src/stripesbook/action/ServerFormActionBean.java
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=366

ADDING CLIENT -SIDE VALIDATION 367

Figure 15.17: Form being validated by the server side as the user types

Back on the client side, all that’s left to do is to retrieve the response

and put the error messages in their placeholders:

Download ajax/web/WEB-INF/jsp/server_side_validation.jsp

$.post(form.action, params, function(data) {

// Clear out any previous error messages

var fieldMetadata = ${fmd};

for (field in fieldMetadata) {

$(getElement(field)).empty();

}

// Display current error messages

var messages = eval(data);

for (var field in messages) {

var message = messages[field];

var element = getElement(field);

for (line in message) {

$('<p></p>').text(message[line]).appendTo(element);

}

}

});

function getElement(field) {

return '#' + field.replace(/\./g, "_");

}

Pretty simple. The only detail is that we have to change the dots to

underscores in the field name so that identifying the placeholder for

the error message works properly. Now, as you can see in Figure 15.17,

validation works even for our custom phone number type converter.

It works nicely, but it’s not perfect. We’re submitting the form at every

keystroke, so it’s not really client-side validation. However, it’s good to

know that you have different strategies to choose from when you want

to make forms more interactive.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://media.pragprog.com/titles/fdstr/code/ajax/web/WEB-INF/jsp/server_side_validation.jsp
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=367

ADDING CLIENT -SIDE VALIDATION 368

A Little Ajax, or a Lot

You’ve seen how Ajax can make your web applications more respon-

sive and more fun to use. What’s nice about Ajax is that it’s not an

all-or-nothing proposition; you can use just a little, or you can use a

lot. You don’t need to do everything at once, either; you can start by

Ajaxifying just a small part of your application and convert other parts

progressively.

I Hope You’ve Enjoyed This Book!

It always somewhat bothers me when I read a computer book and the

last chapter ends just like all the other chapters. I feel like it’s missing

some sort of closure.

So, allow me to say that I hope you’ve enjoyed reading this book and

that you’ll love developing with Stripes as much as I do. If you have

any questions, drop us a line on the Stripes mailing list. You’ll find a

friendly, helpful, and knowledgeable community. In the mood for some-

thing a little more “real time”? Drop by the #stripes IRC channel on the

freenode.net network. Hope to see you there.

Have fun with Stripes!

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=368

Appendix A

Configuration Reference
Stripes is very light on configuration: there’s actually only one required

configuration parameter. All others are optional. What’s more, by using

the Extension.Packages parameter and adding Stripes extensions to those

packages, you’ve opened the door to customizing just about everything

in Stripes without any additional configuration!

Nevertheless, you still have the option of using configuration para-

meters in web.xml to add extensions, as listed in Section A.2, Exten-

sions, on the next page. Some default implementations also accept

additional parameters; you will find those in Section A.3, Settings, on

page 376. Finally, you’ll be interested in Section A.4, Interceptors, on

page 378 if you want to change the default interceptors or if you need

your interceptors to run in a specific order.

A.1 Required Configuration

Only one configuration parameter is required by Stripes.

ActionResolver.Packages

This tells Stripes which packages to use when looking for action beans.

Indicate each package root—subpackages are automatically included,

so do not use .* at the end of the package name. For example:

<!-- Only one package root -->

<init-param>

<param-name>ActionResolver.Packages</param-name>

<param-value>stripesbook.action</param-value>

</init-param>

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

EXTENSIONS 370

<!-- Multiple package roots are separated with commas -->

<init-param>

<param-name>ActionResolver.Packages</param-name>

<param-value>

stripesbook.action,

another.pkg

</param-value>

</init-param>

A.2 Extensions

In this section, you will find the configuration parameters for Stripes

extensions: classes that implement all subinterfaces of Configurable-

Component, as well as Formatter and TypeConverter implementations. If

you specify the Extension.Packages parameter shown next, all the follow-

ing parameters are optional. Use them only if you prefer not to have

your implementation automatically loaded by the extension packages

mechanism.

Extension.Packages

This parameter is optional but highly recommended. By specifying the

packages where your Stripes extensions live, you can add, change, and

remove extensions in those packages without having to make any other

configuration changes. Stripes automatically loads all extensions from

those packages unless you’ve marked them with @DontAutoLoad.

For example:

<!-- Only one package root -->

<init-param>

<param-name>Extension.Packages</param-name>

<param-value>stripesbook.ext</param-value>

</init-param>

<!-- Multiple package roots are separated with commas -->

<init-param>

<param-name>Extension.Packages</param-name>

<param-value>

stripesbook.ext,

org.stripesstuff.stripersist

</param-value>

</init-param>

ActionBeanContextFactory.Class

This is the implementation of the ActionBeanContextFactory interface,

which is responsible for creating ActionBeanContext objects.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=370

EXTENSIONS 371

The default is DefaultActionBeanContextFactory. Here’s an example:

<init-param>

<param-name>ActionBeanContextFactory.Class</param-name>

<param-value>

stripesbook.nonext.MyActionBeanContextFactory

</param-value>

</init-param>

ActionBeanContext.Class

This is the ActionBeanContext subclass to use instead of the default

ActionBeanContext class. This is loaded by DefaultActionBeanContextFac-

tory. Here’s an example:

<init-param>

<param-name>ActionBeanContext.Class</param-name>

<param-value>stripesbook.nonext.MyActionBeanContext</param-value>

</init-param>

ActionBeanPropertyBinder.Class

This is the implementation of the ActionBeanPropertyBinder interface,

responsible for validating, type converting, and binding request param-

eters. The default is DefaultActionBeanPropertyBinder. Here’s an example:

<init-param>

<param-name>ActionBeanPropertyBinder.Class</param-name>

<param-value>

stripesbook.nonext.MyActionBeanPropertyBinder

</param-value>

</init-param>

ActionResolver.Class

This is the implementation of the ActionResolver interface, which deter-

mines the action bean and event handler method that handles a re-

quest. The default is NameBasedActionResolver. Here’s an example:

<init-param>

<param-name>ActionResolver.Class</param-name>

<param-value>stripesbook.nonext.MyActionResolver</param-value>

</init-param>

Configuration.Class

This is the implementation of the Configuration interface. The default is

RuntimeConfiguration. Note that this is the class that reads all other con-

figuration parameters. You can provide your own implementation and

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=371

EXTENSIONS 372

use whatever strategy that you like to determine the implementations

of all the modules used by Stripes. For example:

<init-param>

<param-name>Configuration.Class</param-name>

<param-value>stripesbook.nonext.MyConfiguration</param-value>

</init-param>

ExceptionHandler.Class

This is the ExceptionHandler implementation. The default is DefaultExcep-

tionHandler. An alternate implementation is also available, DelegatingEx-

ceptionHandler, which you can use with the following:

<init-param>

<param-name>ExceptionHandler.Class</param-name>

<param-value>

net.sourceforge.stripes.exception.DelegatingExceptionHandler

</param-value>

</init-param>

DelegatingExceptionHandler works much like DefaultExceptionHandler ex-

cept that you can use more than one exception-handling class. Each of

those classes must implement AutoExceptionHandler (a marker interface)

and implement methods with the same signature as exception-handling

methods in DefaultExceptionHandler:

public Resolution methodName(Type exceptionType,

HttpServletRequest request, HttpServletResponse response);

Returning a Resolution is optional; any other return type will be ignored.

DelegatingExceptionHandler discovers AutoExceptionHandler implementa-

tions via Extension.Packages, but you can also use DelegatingException-

Handler.Packages to specify different packages:

<init-param>

<param-name>DelegatingExceptionHandler.Packages</param-name>

<param-value>stripesbook.exception</param-value>

</init-param>

FormatterFactory.Class

This is the FormatterFactory implementation. A custom formatter factory

lets you control how Formatter instances are created and also allows

you to register custom formatters outside the extension packages. For

example:

<init-param>

<param-name>FormatterFactory.Class</param-name>

<param-value>stripesbook.nonext.MyFormatterFactory</param-value>

</init-param>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=372

EXTENSIONS 373

package stripesbook.nonext;

public class MyFormatterFactory extends DefaultFormatterFactory {

@Override

public void init(Configuration config) {

super.init(config);

add(MyType.class, MyTypeFormatter.class);

}

}

LocalePicker.Class

This is the implementation of the LocalePicker interface, which decides

which Locale to use for a request. The default is DefaultLocalePicker.

Here’s an example:

<init-param>

<param-name>LocalePicker.Class</param-name>

<param-value>stripesbook.nonext.MyLocalePicker</param-value>

</init-param>

LocalizationBundleFactory.Class

This is the implementation of the LocalizationBundleFactory interface,

which returns the ResourceBundle for error messages and for form field

labels. The default is DefaultLocalizationBundleFactory. Here’s an example:

<init-param>

<param-name>LocalizationBundleFactory.Class</param-name>

<param-value>

stripesbook.nonext.MyLocalizationBundleFactory

</param-value>

</init-param>

MultipartWrapperFactory.Class

This is the implementation of the MultipartWrapperFactory interface,

which is responsible for returning a MultiWrapper implementation for

a request. The default is DefaultMultipartWrapperFactory. Here’s an exam-

ple:

<init-param>

<param-name>MultipartWrapperFactory.Class</param-name>

<param-value>

stripesbook.nonext.MyMultipartWrapperFactory

</param-value>

</init-param>

MultipartWrapper.Class

This is the implementation of the MultipartWrapper interface, which

parses a multipart/form-data request. This parameter is used by Default-

MultipartWrapperFactory. The default is CommonsMultipartWrapper if you
Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=373

EXTENSIONS 374

have commons-fileupload.jar and commons-io.jar in the class path, or it’s

CosMultipartWrapper if you have cos.jar in the class path. If neither imple-

mentation can be loaded, a debugging message is logged. No exception

is thrown because not all web applications need to support file uploads.

To use a different implementation, use the following:

<init-param>

<param-name>MultipartWrapper.Class</param-name>

<param-value>stripesbook.nonext.MyMultipartWrapper</param-value>

</init-param>

PopulationStrategy.Class

This is the implementation of the PopulationStrategy interface to populate

the values of form input tags. The default is DefaultPopulationStrategy. As

we saw on page 189, the BeanFirstPopulationStrategy is a useful alterna-

tive:

<init-param>

<param-name>PopulationStrategy.Class</param-name>

<param-value>

net.sourceforge.stripes.tag.BeanFirstPopulationStrategy

</param-value>

</init-param>

TagErrorRendererFactory.Class

This is the implementation of the TagErrorRendererFactory interface,

which returns objects that implement TagErrorRenderer. The default is

DefaultTagErrorRendererFactory. Here’s an example:

<init-param>

<param-name>TagErrorRendererFactory.Class</param-name>

<param-value>

stripesbook.nonext.MyTagErrorRendererFactory

</param-value>

</init-param>

TagErrorRenderer.Class

This is the implementation of the TagErrorRenderer interface, which for-

mats form input fields when they are in error. This parameter is loaded

by DefaultTagErrorRendererFactory. The default is DefaultTagErrorRenderer.

Here’s an example:

<init-param>

<param-name>TagErrorRenderer.Class</param-name>

<param-value>stripesbook.nonext.MyTagErrorRenderer</param-value>

</init-param>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=374

EXTENSIONS 375

TypeConverterFactory.Class

This is the implementation of the TypeConverterFactory interface. The

default is DefaultTypeConverterFactory. A custom type converter factory

lets you control how TypeConverter instances are created and also allows

you to register custom type converters outside of the extension pack-

ages. For example:

<init-param>

<param-name>TypeConverterFactory.Class</param-name>

<param-value>stripesbook.nonext.MyTypeConverterFactory</param-value>

</init-param>

package stripesbook.nonext;

public class MyTypeConverterFactory

extends DefaultTypeConverterFactory

{

@Override

public void init(Configuration config) {

super.init(config);

add(MyType.class, MyTypeConverter.class);

}

@Override

public TypeConverter getTypeConverter(Class forType, Locale locale)

throws Exception

{

TypeConverter tc = super.getTypeConverter(forType, locale);

ServletContext context =

StripesFilter.getConfiguration().getServletContext();

SpringHelper.injectBeans(tc, context);

return tc;

}

}

ValidationMetadataProvider.Class

This is the implementation of the ValidationMetadataProvider interface,

which is responsible for returning ValidationMetadata for properties and

nested properties of an action bean. The default is DefaultValidationMeta-

dataProvider. Here’s an example:

<init-param>

<param-name>ValidationMetadataProvider.Class</param-name>

<param-value>

stripesbook.nonext.MyValidationMetadataProvider

</param-value>

</init-param>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=375

SETTINGS 376

A.3 Settings

The parameters in this section change the default settings for some of

the modules used by Stripes.

FileUpload.MaximumPostSize

This sets the maximum total size of the request data, including request

headers, parameters, and uploaded files. A value without a suffix is in

bytes; you can use the K, M, or G suffixes (case insensitive) to provide

a value in kilobytes, megabytes, or gigabytes. Do not put any spaces

between the value and the suffix. Any characters after the suffix are

ignored.

<init-param>

<param-name>FileUpload.MaximumPostSize</param-name>

<!-- Sets the limit to 5 MB -->

<!-- 5m, 5MB, 5megabytes, or 5242880 all have the same effect -->

<param-value>5M</param-value>

</init-param>

LocalePicker.Locales

This is a comma-separated list of locales supported by the application.

This parameter is loaded by DefaultLocalePicker. Locales can be in the ln,

ln_CN, or ln_CN:ENC format, where ln is the language, CN is the country,

and ENC is the encoding. For example:

<init-param>

<param-name>LocalePicker.Locales</param-name>

<param-value>en,fr_CA,es_MX:UTF-8</param-value>

</init-param>

LocalizationBundleFactory.ErrorMessageBundle

Loaded by DefaultLocalizationBundleFactory, this parameter indicates the

name of the resource bundle for error messages. The default is Stripes-

Resources.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=376

SETTINGS 377

Here’s an example:

<init-param>

<param-name>LocalizationBundleFactory.ErrorMessageBundle</param-name>

<param-value>path/MyErrorMessageBundle</param-value>

</init-param>

LocalizationBundleFactory.FieldNameBundle

Loaded by DefaultLocalizationBundleFactory, this parameter indicates the

name of the resource bundle for field names. The default is StripesRe-

sources. Here’s an example:

<init-param>

<param-name>LocalizationBundleFactory.FieldNameBundle</param-name>

<param-value>path/MyFieldNameBundle</param-value>

</init-param>

Stripes.DebugMode

This sets a true or false flag (the default is false) to indicate that the

application is running in debug mode. You can then retrieve this flag

with StripesFilter.getConfiguration().isDebugMode(). For example:

<init-param>

<param-name>Stripes.DebugMode</param-name>

<param-value>true</param-value>

</init-param>

Stripes.EncryptionKey

This sets the key used to encrypt values in all sessions of the web

application. You must set a key if you need encrypted values to be

decryptable across cluster nodes or after the web application restarts.

For example:

<init-param>

<param-name>Stripes.EncryptionKey</param-name>

<param-value>

some very long string used as an encryption key

</param-value>

</init-param>

You can also set the encryption key in Java code by creating an object

that implements javax.crypto.SecretKey and calling CryptoUtil.setSecretKey(

SecretKey) before any requests are made, as in a ServletContextListener.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=377

INTERCEPTORS 378

Validation.InvokeValidateWhenErrorsExist

This flag indicates whether to continue executing validation methods

when previous validations have produced errors. The default is false.

Here’s an example:

<init-param>

<param-name>Validation.InvokeValidateWhenErrorsExist</param-name>

<param-value>true</param-value>

</init-param>

A.4 Interceptors

Stripes automatically loads core interceptors. Moreover, all autodiscov-

ered interceptors are also loaded, but in an unpredictable order. You

can change these defaults with the parameters in this section.

CoreInterceptor.Classes

These are the Interceptor implementations to be automatically loaded

before any other interceptors. The defaults are BeforeAfterMethodInter-

ceptor (required to support @Before and @After), and HttpCacheIntercep-

tor (required to support @HttpCache). For example, if you wanted to

replace HttpCacheInterceptor with your own implementation, you could

use this:

<init-param>

<param-name>CoreInterceptor.Classes</param-name>

<param-value>

net.sourceforge.stripes.controller.BeforeAfterMethodInterceptor,

stripesbook.nonext.MyHttpCacheInterceptor

</param-value>

</init-param>

Interceptor.Classes

This is a comma-separated list of Interceptor implementations. Intercep-

tors will be executed in the order that you list them, unlike extension-

packaged interceptors for which the order is not guaranteed. For exam-

ple, if it’s important to execute Interceptor1 before Interceptor2, you would

use this:

<init-param>

<param-name>Interceptor.Classes</param-name>

<param-value>

stripesbook.nonext.Interceptor1,

stripesbook.nonext.Interceptor2

</param-value>

</init-param>

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=378

Appendix B

Resources
B.1 Stripes Online Resources

The Stripes Framework .http://www.stripesframework.org

This is the official Stripes Framework home page.

The Stripes Book .http://www.stripesbook.com

I use this website to talk about the book and offer more tips and tricks about

Stripes.

The Stripes Users Mailing List. . .
. . . http://news.gmane.org/gmane.comp.java.stripes.user

This is the place to go when you need help.

The Stripes Developers Mailing List. . .
. . . http://news.gmane.org/gmane.comp.java.stripes.devel

Follow this mailing list if you’re interested in what’s being developed in the

Stripes core.

Stripes Stuff .http://www.stripes-stuff.org

This is a collection of Stripes plug-ins, including Stripersist, Stripes-Security,

a JavaScript client-side validation library, and more.

Stripes-Spring . http://www.silvermindsoftware.com/stripes

This is the Stripes-Spring plug-in by Brandon Goodin.

B.2 Stripes Dependencies

Commons Logging . http://commons.apache.org/logging

This is the only strictly required Stripes dependency. Other dependencies are

needed only if you use the corresponding features, as detailed in this appendix.

Also note that all dependencies are included in the Stripes distribution, but it’s

still nice to know where they come from.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.stripesframework.org
http://www.stripesbook.com
http://news.gmane.org/gmane.comp.java.stripes.user
http://news.gmane.org/gmane.comp.java.stripes.devel
http://www.stripes-stuff.org
http://www.silvermindsoftware.com/stripes
http://commons.apache.org/logging

THIRD-PARTY FRAMEWORKS, LIBRARIES, AND TOOLS 380

Commons FileUploadhttp://commons.apache.org/fileupload

This is required if you want to use CommonsMultipartWrapper for file uploads.

You’ll also need Commons IO (http://commons.apache.org/io).

COS (com.oreilly.servlets) . http://www.servlets.com/cos

This is Jason Hunter’s file upload support. This is required if you want to use

CosMultipartWrapper for file uploads.

JavaMail . http://java.sun.com/products/javamail

This is required if you use EmailTypeConverter to validate email addresses. If

you’re not using Java 6 or newer, you’ll also need the Java Activation Frame-

work (http://java.sun.com/javase/technologies/desktop/javabeans/jaf).

B.3 Third-Party Frameworks, Libraries, and Tools

Display Tag . http://displaytag.sourceforge.net

This is a library for easy creation of feature-rich HTML tables.

Log4J. .http://logging.apache.org/log4j

This is a popular and powerful logging framework. Used in the book’s sample

code bundle.

HSQLDB . http://www.hsqldb.org

This is an easy-to-use Java database engine.

Java Persistence API (JPA). . .
. . . http://java.sun.com/javaee/technologies/persistence.jsp

This is the standard persistence-layer specification for Java EE 5.

Hibernate .http://www.hibernate.org

This is a JPA-compliant ORM (Object-Relational Mapping) tool.

Spring . http://www.springframework.org

The Spring framework includes, among other modules, a dependency injection

container.

Google Guice .http://code.google.com/p/google-guice

This is a dependency injection library.

JUnit . http://www.junit.org

This is a framework for automated unit tests.

Mockito . http://www.mockito.org

This is a library for testing with mock objects.

jQuery .http://www.jquery.com

This is a popular JavaScript and Ajax library.

Prototype. .http://www.prototypejs.org

This is another popular JavaScript and Ajax library.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://commons.apache.org/fileupload
http://commons.apache.org/io
http://www.servlets.com/cos
http://java.sun.com/products/javamail
http://java.sun.com/javase/technologies/desktop/javabeans/jaf
http://displaytag.sourceforge.net
http://logging.apache.org/log4j
http://www.hsqldb.org
http://java.sun.com/javaee/technologies/persistence.jsp
http://www.hibernate.org
http://www.springframework.org
http://code.google.com/p/google-guice
http://www.junit.org
http://www.mockito.org
http://www.jquery.com
http://www.prototypejs.org
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=380

DEVELOPMENT TOOLS 381

B.4 Development Tools

Sun Java .http://java.sun.com

This is the source for core Java development tools, including the Java Develop-

ment Kit (JDK), and Java Enterprise Edition (EE).

VIM (Vi Improved) .http://www.vim.org

This is an awesome editor. I used VIM to write this whole book, including all

the text and most of the sample code.

Ant (Another Neat Tool) . http://ant.apache.org

This is a Java build tool, used in the book’s source code bundle.

Eclipse . http://www.eclipse.org

This is the Eclipse IDE.

NetBeans .http://www.netbeans.org

This is the NetBeans IDE.

Stripes NetBeans Plug-In. . .
. . . http://plugins.netbeans.org/PluginPortal/faces/PluginDetailPage.jsp?pluginid=5115

This is a Stripes plug-in for NetBeans.

IntelliJ IDEA . http://www.jetbrains.com/idea

This is another popular IDE, IntelliJ IDEA.

IntelliStripes . http://code.google.com/p/intellistripes

This is a Stripes plug-in for IntelliJ IDEA.

B.5 Bibliography

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-

Wesley, Reading, MA, 2002.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[HT03] Andrew Hunt and David Thomas. Pragmatic Unit Testing In

Java with JUnit. The Pragmatic Programmers, LLC, Raleigh,

NC, and Dallas, TX, 2003.

[JBC+06] Eric Jendrock, Jennifer Ball, Debbie Carson, Ian Evans,

Scott Fordin, and Kim Haase. Java EE 5 Tutorial. Prentice

Hall PTR, Englewood Cliffs, NJ, third edition, 2006.

Report erratum

this copy is (P1.0 printing, October 2008)
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://java.sun.com
http://www.vim.org
http://ant.apache.org
http://www.eclipse.org
http://www.netbeans.org
http://plugins.netbeans.org/PluginPortal/faces/PluginDetailPage.jsp?pluginid=5115
http://www.jetbrains.com/idea
http://code.google.com/p/intellistripes
http://books.pragprog.com/titles/fdstr/errata/add?pdf_page=381

Index
Symbols
${ }, 83

{2}, 226

A
.action extension, 285

Action beans, 25–26

action pattern and, 38

adding, removing, renaming, 39

binding to, 32f, 36–39

class diagram, 63f

contact list, 47

context path and, 38

DAOs, injecting in, 264

data access objects and, 257–258

form values, changing, 188–192

formatting, 98

nested properties and, 60

parameterized links, binding, 53, 54f

public fields and, 73

resource bundles and, 238

Stripes life cycle and, 304

suffixes, changing, 285

support for, 43

tags and attributes for, 67

type conversion, 98

URLs and, 36, 37f, 286

validating, 70

view helpers and, 156, 158

wizard forms, 214

writing, 28–29

${actionBean}, 33

ActionBeanContext, 190

Actions, 14

add(), 59

@After, 295

Ajax, 336–368

client-side application, 362f, 363f,

364f, 367f, 360–368

example, 337f

integration with, 16

JavaScriptResolution, 337–340

requests and responses, 343f, 344f,

346f, 347f, 348f, 349f, 350f,

341–351

webmail application and, 352f, 353f,

355f, 357f, 351–360

Aliases, 204, 205f, 210, 213

Annotations, 70

Ant, 23, 381

Applications

context path, 38

Hello, World!, 27f, 27–36

setting up, 22–26

see also Layouts; Multilingual

applications; Webmail application

“Are you sure” messages, 57, 58f

Asynchronous JavaScript and XML,

see Ajax

Attachments, displaying, 198f, 201f

Attributes

vs. components, 146

dynamic, 146

flash scope and, 69

in layouts, 145

overview of, 143

Authorization, 324

Autoloading, 15

Automated testing, mock objects,

267–276

B
Base name, 219

beanclass=, 55

BeanFirstPopulationStrategy, 191

Beck, Kent, 267n

@Before, 295

Boolean values, 103

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

BROWSER PAGE CACHING 383 ENUMERATED TYPES

Browser page caching, 318

Built-in formatters, 107

Built-in type converters, 99–107

Built-in validation, 72, 78f, 81f, 84f,

85f, 87f, 76–87

cancel button, 84

credit card numbers, 86

EL expressions, 81–83

email addresses, 78–79

input length, 79–81

numerical values, 85

regular expression masks, 82–84

required fields, 77–80

Buttons, 174–176

image, 233

radio, 181f, 180–182, 231

submit, 344

C
Caching, 318

Cancel button, 84

Cayenne, 261

Checkboxes, 168f, 167–171

Clean URLs, 288, 290

close(), 254

Colons, 220, 256

Commas, 105

commit(), 253, 255, 258

Commons FileUpload, 200

Commons Logging, 379

Components

adding, 148–150

vs. attributes, 146

overview of, 143

Configuration, 369–378

extensions, 370–375

interceptors, 378

required, 369–370

settings, 376–378

Confirmation messages, 57

Constructor(String), 118

Constructor-based DI, 267

Contacts, deleting, 57

Conventions, 17

convert(), 251, 273

COS, 200, 380

Create, Read, Update, Delete, see

CRUD

Credit card numbers, 86

Cross-page controls, 178f, 177–180

Cross-site scripting attacks, 312–313

CRUD, 41–43

Curly brackets, 289

Currency symbols, 100

Custom data types, 113f, 119f,

110–120

Custom error messages, 125f, 126f,

131f, 124–132

Custom validation methods, 88–97

Customization, 16

D
DAO, see Data Access Object (DAO)

Data Access Object (DAO), 42

action beans and, 257–258

dependency injection and, 261–267

Stripersist and JPA in, 253–257

Data types, 98–120

boolean values, 103

built-in type converters, 100–107

custom types, 113f, 119f, 110–120

dates, 101

formatting, 108f, 107–110

type conversion overview, 99f,

98–100

Dates, 101, 103, 108, 114

Decorators, 153f, 154f, 146–156, 240

Default event handler, 32

DefaultExceptionHandler, 279–282

delete(), 255

Dependencies, 379

Dependency injection, 261–267

see also Guice

Development tools, 22, 381

Display Tag, 48, 51

Displaying messages, 58f, 59f, 57–60

done(), 213

@DontBind, 311

@DontValidate, 75, 311

Dot notation, 340

DRY principle, 147

Dynamic attributes, 146

E
Eclipse, 381

Eclipse Tutorial, 17

EL expression validation, 81–83

Encrypting parameters, 315

Encryption, 313–315

Encryption keys, 315

Entities, 248

Enumerated types, 102, 109

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

ERROR MESSAGES 384 INPUT CONTROLS

Error messages, 124–132

Ajax, 346, 347f

changing text of, 131–137

combining global and field-specific,

129

creating, 138–140

customizing, 126f

default display, 125f

401 HTTP, 329f, 331f

global, 129, 208

highlighting, 127

input fields and, 127f, 130f

labels for, 132

tag error renderer, 131f

translating, 223, 227

validation and, 89, 94f, 94–95

see also Exception Handling

escapeXml(), 312

Event handlers, 32–33, 89, 96

Event names, 292

Exception handling, 16, 278f, 279f,

281f, 283f, 277–283

ExceptionHandler interface, 278–279

execute(), 270, 271, 305

Extensibility, 16

Extensions, 115, 370–375

see also Custom components

F
Fennell, Tim, 13, 18

Field labels, changing, 131

Field-specific errors, 129

Fields, required, 208f, 207–208, 214

Files, working with, 198f, 201f,

195–202

find(), 251

findBy(), 256, 260

Flash scope, 69

fmt prefix tags, 30

<fmt:message>, 227

Form fields, translating, 221

Form input controls, 166–182

cross-page controls, 178f, 177–180

folders and messages, 167f

image buttons, 174–176

overview of, 168f, 166–171

radio buttons, 181f, 180–182

select boxes, 173f, 170–175

Form values, 188–192

Formatter<T>, 107

Formatting, 98, 108f, 107–110

Forms, 60–67

blank, creating, 61f, 63f, 65f, 61–65

input fields, 60

quotes in, 230

updating, 65–67

wizards for, 211f, 215f, 210–216

Forward, 68f, 67–69

401 HTTP error, 329f, 331f

Framework, for Stripes, 23, 379

G
getActionBeanSuffixes(), 287

getAttribute, 184

getBasePackages(), 285

getBindingSuffix(), 288

getID(), 232

getKeys(), 239

getName(), 232

getUrlBinding(), 288

getUser(), 320

Global errors, 129, 208

Goodin, Brandon, 379

Guice, 299–302, 380

Gunter, Ben, 290

H
handle(), 278

handleGetObject(), 239

Hashing passwords, 313

Hibernate, 247, 259, 380

href=, 37

HSQLDB, 246, 247f, 380

@HttpCache, 319

Hunter, Jason, 380

I
iBATIS, 261

Image buttons, 174–176, 233

Indexed properties, 193f, 191–194

Information messages, 122f, 123f,

121–123, 124f, 223, 227

init(), 278, 300

Input controls, 166–182

checkboxes, 167–171

cross-page controls, 178f, 177–180

folders and messages, 167f

image buttons, 174–176

overview, 166–167, 168f

radio buttons, 181f, 180–182

select boxes, 173f, 170–175

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

INPUT FIELDS 385 MOCKROUNDTRIP

Input fields, 60, 193f

Installation, for setup, 22–26

InstanceBasedSecurityManager, 331

Instant delete, 356

IntelliJ IDEA, 381

IntelliStripes, 381

intercept(), 297, 305

Interceptors, 16, 294–299

configuration of, 378

Guice support, 299–302

implementing, 297

login, 302–303

methods for, 295

order of execution, 298

Stripes life cycles and, 294

J
J Security, 335

J2EESecurityManager, 326, 328

Java Development Kit, 22

Java EE 5 Tutorial, 257

Java Standard Tag Library (JSTL), 23

Java Tutorial, 17

Java web application security, 335

Java with Passion!, 17

JavaMail, 380

JavaScriptResolution, 337–340

JavaServer Pages, see JSP

JDBC, 261

JMesa, 51

JPA, 380

alternatives to, 259–260

annotations, 249f, 248–251

configuration, 247

entities, 248

JPOX, 246

jQuery, 336, 352, 380

JSON, 342

JSP

ambivalence toward, 31

binding to action bean, 32f

contact information views, 54, 56f

contact list, 47

redirecting to, 69

restricted content, hiding, 333

support for, 44–46

URLs and, 286

view helpers and, 158

writing, Hello, World! application,

31–35

JSP Syntax Reference, 17

JUnit, 268, 380

K
Keys, 134, 136, 138, 221, 242, 315

L
Languages, see Multilingual

applications

Layouts, 15

defined, 142

flexibility of, 152

hierarchy of, 146

reusable, 141–164

components vs. attributes, 146

components, adding, 148–150

decorators, 153f, 154f, 146–156

default content, 144

overview of, 142–146

SiteMesh, 164

tags for, 142f

Tiles, 162–163

view helpers, 160f, 156–161

Life cycles, Stripes, 294, 304–306

Life-cycle stages, 294

Live code, 18

Locale picker, 233

Locales, 218, 220

Localization, 16

Log4J, 380

Login page, 217f, 216–217, 221f,

302–303, 316–319

Luhn algorithm, 86

M
Messages

adding, 58

customizing, 121–140

error messages, 125f, 126f, 127f,

130f, 131f, 124–132

error messages, changing text of,

131–137

error messages, creating, 138–140

information messages, 122f, 123f,

121–123, 124f

overview of, 121

informational, 57

Metadata, validation, 208–210

Mock objects, 267–276

Mockito, 273, 380

MockRoundTrip, 268, 270

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

MODELS 386 SCOPEDLOCALIZABLEERROR

Models, layer for webmail application,

41

Multilingual applications, 218–242

languages, switching between, 235f,

233–236

resource bundles and, 238f,

236–243

resources for, 221f, 218–221

text translations for, 224f, 229f,

221–233

multipart/form-data, 200

MVC framework, 14

MySQL, 246

N
Nested properties, 60, 71–72

NetBeans, 17, 381

Numbers, 100, 108

O
Objects, 109

on= attribute, 75, 80, 296

onclick=, 57

OneToManyTypeConverter, 105

OpenJPA, 246

OpenSymphony SiteMesh, 164

Options, 232

P
Page caching, 318

Page portion, 341, 343f

Parameter binding, 307–311

Parameterized links, 53f, 56f, 52–57

Parameters, embedding, 289

Parentheses, 100

Parsing data, 200

Partial forms, 348

Passwords

confirmation of, 206

hashing, 313

incorrect, 221f

Pattern, 107

PercentageTypeConverter, 104

persist(), 255

pickLocale(), 234, 274

Population strategy, 189

Porter, Aaron, 246, 360

Postgres, 246

Preaction pattern, 38

Prepopulated information, 65–67

Primary email, 220

proceed(), 297, 303, 305

Properties, indexed, 193f, 191–194

Prototype, 336, 380

Public fields, 73

Q
Quotes, 230

R
Radio buttons, 181f, 180–182, 231

Random Name Generator, 48

Redirect, 68f, 67–69

Redirect-after-side-effect pattern, 67

Registration page

creating, 203f, 204f, 203–204, 205f

login and, 217f, 216–217

password and confirmation boxes,

204f, 205–207

required fields, 208f, 207–208

validation metadata, 208–210

wizards for, 211f, 215f, 210–216

Regular expression masks, 82–84, 112

remove(), 255

Renderers, 142, 143

Required fields, 208f, 207–208, 214

Resolutions, 33, 34

Resource bundles, 219, 221, 223, 228,

238f, 236–243

Resources

multilingual, 221f, 218–221

online, 379

refresher resources, 16

source code, 17

for text editors, 23

Restricted access pages, 323f, 322–324

Restricted content, hiding, 333

Reusable layouts, see Layouts,

reusable

Roles, 321–335

adding, 321–322

restricted access pages, 323f,

322–324

Stripes-Security plug-in, 329f,

324–334

S
save(), 255

<s:checkbox>, 325

“Scope creep” pitfall, 14

ScopedLocalizableError, 139

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

SEARCH KEYS 387 TAG ERROR RENDERER

Search keys, 134, 136

Security, 187, 307–335

encryption, 313–315

parameter binding, 307–311

roles, 321–335

adding, 321–322

restricted access pages, 323f,

322–324

Stripes-Security plug-in, 329f,

324–334

Stripersist and, 259

user data protection, 319–320

user login, 316–319

XSS attack prevention, 312–313

<security:allowed>, 333, 334

<security:notAllowed>, 334

Select boxes, 173f, 170–175, 231

<s:errors>, 79, 346

Servlet API, 268

Servlet container, 22

Session data, 183f, 183–190

setAttribute, 184

setResolution(), 305

Setter-based DI, 267

Settings, configuration of, 376–378

<s:form>, 61, 215, 351

Side effects, 67

<s:image>, 233

Single characters, 104

SiteMesh, 164

<s:label>, 221

<s:link>, 37, 354

Smart binding, 15

Source code, 17

Source page resolution, 95

Spring

dependency injection, 261–267

resources for, 380

testing with, 272

Spring Security, 335

@SpringBean, 265, 267

Square brackets, 193, 194

<s:radio>, 61, 231

<s:select>, 351

<s:submit>, 61

Stack, completing, 245–276

alternatives to JPA, 259–260

data access objects and, 253–257

data access objects, using, 257–258

database setup, 246

dependency injection, 261–267

JPA annotations, 249f, 248–251

JPA, Hibernate, Stripersist setup,

247–248

Stripersist conversion and

formatting, 252f, 251–252

testing with mock objects, 267–276

<s:text>, 61

Streaming files, 199

@StrictBinding, 309

Stripersist, 246

conversion and formatting, 252f,

251–252

data access objects and, 253–257

security and, 259

setup, 248

StripersistInit interface, 259

Stripes

application setup, 22–26, 39

base for, writing, 43–46

benefits of, 13–15

configuration, 26f, 369–370

conventions, 17

defined, 13

dependencies, 379

development tools for, 381

features, summary of, 15–16

framework and dependencies, 23

Hello, World!, 27f, 27–36

life cycles of, 294, 304–306

mailing lists for, 379

resolution types in, 35

source code for, 17

third-party libraries and, 23

third-party tools for, 380

versions, 18

Stripes Book (website), 379

Stripes Framework, 23, 379

Stripes Stuff (website), 379

Stripes-Security plug-in, 324

Stripes-Spring plug-in, 267, 379

Stripes-Stuff, 360

Submit buttons, multiple, 344

Suffixes, 285

Sun Java, 381

T
Tables

deleting contacts, 57

highlighting sorted column, 51

shading alternate rows, 50

Tag error renderer, 131f

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

TAGS 388 WEBMAIL APPLICATION

Tags, 67

see also specific tag names

Testing, 16, 267–276

TestNG, 269

Text editors, 23

Third-party tools, 380

Tiles, 162–163

Tokens, 136, 227

Tools, third-party, 380

toString(), 118

Translating text, 224f, 229f, 221–233

Type conversion, 87, 99f

boolean values, 103

built-ins, 100–107

data types, 113f, 119f, 110–120

dates, 101

formatting, 108f, 107–110

formatting and, 15

overview of, 98–100

Type converters, 98

additional, 104

returning multiple types, 106

ScopedLocalizableError, 139

U
Unauthorized access page, 329f, 331f

Uploading files, 195

URL binding, 37f, 37, 284f, 283–294

@UrlBinding, 284, 293

URLs, clean, 288, 290

User data protection, 319–320

User input, validating, 70–97

built-ins, 72, 78f, 81f, 84f, 85f, 87f,

76–87

cancel button, 84

concepts in, 70–76

credit card numbers, 86

custom methods, 88–97

EL expressions, 81–83

email addresses, 78–79

execution, 75–76

input length, 79–81

nested properties, 71–72

numerical values, 85

regular expression marks, 82–84

required fields, 77–80

sequence, 71f

@Validate attributes, 74f

see also Login page; Registration

page

V
@Validate(ignore=true), 307, 308

@Validate, 72, 74

Validation, 15

errors in, 346, 347f

metadata, 208–210

user input, 70–97

built-ins, 72, 78f, 81f, 84f, 85f,

87f, 76–87

cancel button, 84

concepts in, 70–76

credit card numbers, 86

custom methods, 88–97

EL expressions, 81–83

email addresses, 78–79

execution, 75–76

fewest number of methods, 92

input length, 79–81

nested properties, 71–72

numerical values, min and max,

85

order of, 91

regular expression marks, 82–84

required fields, 77–80

sequence, 71f

@Validate attributes, 74f

Validation method, 88

ValueList, 51

Versions, 18

view(), 292

View helpers, 160f, 156–161

action bean–JSP combined, 158

action beans and, 156

defined, 156

VIM, 381

W
Webmail application

adding pages to, 153f, 154f, 151–156

Ajaxifying, 352f, 353f, 355f, 357f,

351–360

checkboxes, 168f, 167–171

client-side validation, 362f, 363f,

364f, 367f, 360–368

cross-page controls, 178f, 177–180

CRUD and, 41–43

display contact list, 49f, 50f, 46–51,

52f

email addresses, 78

forms, 60–67

forwards and redirects, 68f, 67–69

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

WEB.XML CONFIGURATION 389 XSS ATTACKS

image buttons, 174–176

login page, 217f, 216–217, 221f

messages, displaying to user, 58f,

59f, 57–60

model classes, 249f

overview of, 41f

parameterized links, 53f, 56f, 52–57

radio buttons, 181f, 180–182

reasons for, 40

select boxes, 173f, 170–175

translating text of, 224f, 229f,

221–233

validations for, 76–87

wizard for registration, 211f, 215f,

210–216

see also Data types; Exception

handling; Messages; Multilingual

applications; Layouts

web.xml configuration, 24–25

Westra van Holthe-Kind, Oscar, 324

WET principle, 147

Wizards, creating, 211f, 215f, 210–216

X
XML, 342

XSS attacks, 312–313

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Get Groovy
Expand your horizons with Groovy, and tame the wild Java VM.

Programming Groovy
Programming Groovy will help you learn the

necessary fundamentals of programming in Groovy.

You’ll see how to use Groovy to do advanced

programming techniques, including meta

programming, builders, unit testing with mock

objects, processing XML, working with databases

and creating your own domain-specific languages

(DSLs).

Programming Groovy: Dynamic Productivity for

the Java Developer

Venkat Subramaniam

(320 pages) ISBN: 978-1-9343560-9-8. $34.95

http://pragprog.com/titles/vslg

Groovy Recipes
See how to speed up nearly every aspect of the

development process using Groovy Recipes. Groovy

makes mundane file management tasks like

copying and renaming files trivial. Reading and

writing XML has never been easier with XmlParsers

and XmlBuilders. Breathe new life into arrays,

maps, and lists with a number of convenience

methods. Learn all about Grails, and go beyond

HTML into the world of Web Services: REST, JSON,

Atom, Podcasting, and much, much more.

Groovy Recipes: Greasing the Wheels of Java

Scott Davis

(264 pages) ISBN: 978-0-9787392-9-4. $34.95

http://pragprog.com/titles/sdgrvr

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/vslg
http://pragprog.com/titles/sdgrvr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Stripes...and Java Web Development Is Fun Again’s Home Page

http://pragprog.com/titles/fdstr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/fdstr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/fdstr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/fdstr
www.pragprog.com/catalog

	Contents
	Introduction
	What Can Stripes Do for You?
	Getting the Most Out of This Book
	Acknowledgments

	Learning the Controls
	Stripes 101: Getting Started
	Setting Up a Stripes Application
	Hello, Stripes!
	Binding to Action Beans
	Wrapping Up

	The Core: Action Beans and JSPs
	Let's CRUD
	Writing a Base for a Stripes Application
	Displaying Data with Action Beans and JSPs
	Parameterized Links
	Displaying Messages to the User
	Creating Forms
	Use a Forward or a Redirect?

	Validating User Input
	Stripes Validation Concepts
	Using Built-in Validations
	When You Need More: Custom Validation Methods

	There's More to Life Than Strings: Working with Data Types
	Type Conversion Concepts
	Built-in Type Converters
	Formatting
	Working with Custom Data Types

	Customizing Stripes Messages
	Customizing Information Messages
	Customizing Error Messages
	Changing the Text of Error Messages
	Creating Messages for Custom Errors

	Reusable Layouts
	Basic Stripes Layout Concepts
	Putting Layouts to Work: Decorators
	Using View Helpers
	If You're Used to Tiles or SiteMesh

	Revving Up
	Adding Form Input Controls
	Checkboxes
	Select Boxes
	Image Buttons and Text Areas
	Using Cross-page Controls
	Radio Buttons

	Advanced Features Made Easy
	Managing Session Data
	Altering Form Values in the Action Bean
	Using Indexed Properties
	Working with Files

	Registering and Logging In
	The Registration Page
	Adding Password and Confirm Password Boxes
	Dealing with a Bunch of Required Fields
	Using Validation Metadata
	Creating a Wizard
	The Login Page

	Parlez-Vous Français? Making It Multilingual
	Offering an Application in Multiple Languages
	Translating the Text of an Application
	Switching Between Languages
	Using Different Resource Bundles

	In High Gear
	Completing the Stack
	Persistence with Stripersist, JPA, and Hibernate
	Dependency Injection with Spring
	Automated Testing with Mock Objects

	Tapping into Stripes
	Houston: Exception Handling
	Customizing URL Bindings
	Everything Is Possible: Interceptors
	Interceptor Example: Adding Support for Guice
	Another Interceptor Example: Ensuring Login
	The Stripes Life Cycle in More Detail

	It's a Dangerous World: Adding Security
	Controlling Parameter Binding
	Preventing Cross-site Scripting Attacks
	Using Encryption
	Ensuring the User Is Logged In
	Showing Users Their Data, Not Other People's
	Using Roles

	Using JavaScript and Ajax
	Using JavaScriptResolution
	Working with Ajax Requests and Responses
	Ajaxifying the Webmail Application
	Adding Client-Side Validation

	Configuration Reference
	Required Configuration
	Extensions
	Settings
	Interceptors

	Resources
	Stripes Online Resources
	Stripes Dependencies
	Third-Party Frameworks, Libraries, and Tools
	Development Tools
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

