Practical Programming for
Biological Data

formatics
Programming

Using Python

O’REILLY" Mitchell L Model

Python/Programming Languages

Bioinformatics Programming Using Python

Powerful, flexible, and easy to use, Python is an ideal language
for building software tools and applications for life science
research and development. This unique book shows you how to
program with Python, using code examples taken directly from

“ Mitchell Model has done the
bioinformatics community
a real service. In biology,
already an information-
heavy science, new
generations of sequencers
have opened the floodgates
of data. The Python
programming techniques
introduced here will enable
you to transform that data
into knowledge.”

bioinformatics. In a short time, you'll be using sophisticated
techniques and Python modules that are particularly effective for
bioinformatics programming.

Bioinformatics Programming Using Python is perfect for anyone
involved with bioinformatics—researchers, support staff, students,
and software developers interested in writing bioinformatics
applications. You'll find it useful whether you already use Python,
write code in another language, or have no programming
experience at all. It's an excellent self-instruction tool, as well

as a handy reference when facing the challenges of real-life
programming tasks.

B Become familiar with Python's fundamentals, including —JimTisdall
ways to develop simple applications Author of Beginning Perl
for Bioinformatics

®m Learn how to use Python modules for pattern matching,
structured text processing, online data retrieval, and
database access

Mitchell L Model has been
focused on bioinformatics for
15 years and has worked with
a wide range of platforms,
languages, technologies, and
domains. As an independent
consultant, he provides train-
ing, mentoring, tools, and
support to software develop-
ment groups learning new
technologies and practices.

m Discover generalized patterns that cover a large
proportion of how Python code is used in bioinformatics

® Learn how to apply the principles and techniques of
object-oriented programming

m Benefit from the “tips and traps” section in each chapter

»+> Free online edition

9

Sa fa rl for 45 days with purchase of

Books Online this book. Details on last page.

O’REILLY*"

oreilly.com

US $59.99 CAN $74.99
ISBN: 978-0-596-15450-9

LA g

780596"154509

Bioinformatics Programming Using Python

Bioinformatics Programming
Using Python

Mitchell L Model

O’REILLY"

Beijing - Cambridge - Farnham - KdIn - Sebastopol + Taipei - Tokyo

Bioinformatics Programming Using Python
by Mitchell L Model

Copyright © 2010 Mitchell L Model. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Indexer: Lucie Haskins

Production Editor: Sarah Schneider Cover Designer: Karen Montgomery
Copyeditor: Rachel Head Interior Designer: David Futato
Proofreader: Sada Preisch lllustrator: Robert Romano
Printing History:

December 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Bioinformatics Pro-
gramming Using Python, the image of a brown rat, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

RepKover.
===F= This book uses RepKover, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15450-9
(M]
1259959883

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Preface

Primitivesoovvviiiiiiiiinin,

Simple Values
Booleans
Integers
Floats
Strings
Expressions
Numeric Operators
Logical Operations
String Operations
Calls
Compound Expressions
Tips, Traps, and Tracebacks
Tips
Traps
Tracebacks

Names, Functions, and Modules

Assigning Names

Defining Functions
Function Parameters
Comments and Documentation
Assertions
Default Parameter Values

Using Modules
Importing
Python Files

Tips, Traps, and Tracebacks
Tips

Table of Contents

N W

................................. 21

23
24
27
28
30
32
34
34
38
40
40

Traps 45

Tracebacks 46

3. Qollectionseiiiiii 47
Sets 48
Sequences 51
Strings, Bytes, and Bytearrays 53
Ranges 60
Tuples 61
Lists 62
Mappings 66
Dictionaries 67
Streams 72
Files 73
Generators 78
Collection-Related Expression Features 79
Comprehensions 79
Functional Parameters 89
Tips, Traps, and Tracebacks 94
Tips 94
Traps 96
Tracebacks 97

4. Control Statementscooviiiiiiiiiiiiiiiiiiii i 99
Conditionals 101
Loops 104
Simple Loop Examples 105
Initialization of Loop Values 106
Looping Forever 107
Loops with Guard Conditions 109
Iterations 111
Iteration Statements 111
Kinds of Iterations 113
Exception Handlers 134
Python Errors 136
Exception Handling Statements 138
Raising Exceptions 141
Extended Examples 143
Extracting Information from an HTML File 143
The Grand Unified Bioinformatics File Parser 146
Parsing GenBank Files 148
Translating RNA Sequences 151
Constructing a Table from a Text File 155

vi | Table of Contents

Tips, Traps, and Tracebacks
Tips
Traps
Tracebacks

TP

Defining Classes
Instance Attributes
Class Attributes
Class and Method Relationships
Decomposition
Inheritance
Tips, Traps, and Tracebacks
Tips
Traps
Tracebacks

Utilities o ovnenii ittt ittt eeas

System Environment
Dates and Times: datetime
System Information
Command-Line Utilities
Communications
The Filesystem
Operating System Interface: os
Manipulating Paths: os.path
Filename Expansion: fnmatch and glob
Shell Utilities: shutil
Comparing Files and Directories
Working with Text
Formatting Blocks of Text: textwrap
String Utilities: string
Comma- and Tab-Separated Formats: csv
String-Based Reading and Writing: io
Persistent Storage
Persistent Text: dbm
Persistent Objects: pickle
Keyed Persistent Object Storage: shelve
Debugging Tools
Tips, Traps, and Tracebacks
Tips
Traps
Tracebacks

160
160
162
163

.................... 165

166
168
179
186
186
194
205
205
207
208

................... 209

209
209
212
217
223
226
226
229
232
234
235
238
238
240
241
242
243
243
247
248
249
253
253
254
255

Table of Contents | vii

7. PatternMatchingcoiviiniiiiiiiiii ittt ittt
Fundamental Syntax
Fixed-Length Matching
Variable-Length Matching
Greedy Versus Nongreedy Matching
Grouping and Disjunction
The Actions of the re Module
Functions
Flags
Methods
Results of re Functions and Methods
Match Object Fields
Match Object Methods
Putting It All Together: Examples
Some Quick Examples
Extracting Descriptions from Sequence Files
Extracting Entries From Sequence Files
Tips, Traps, and Tracebacks
Tips
Traps
Tracebacks

8. Structured TeXtcooviiiiiiiii i i
HTML
Simple HTML Processing
Structured HTML Processing
XML
The Nature of XML
An XML File for a Complete Genome
The ElementTree Module
Event-Based Processing
expat
Tips, Traps, and Tracebacks
Tips
Traps
Tracebacks

9. WebProgrammingc.oviiniiiiiiininiienenereeieneenennennnns
Manipulating URLs: urllib.parse
Disassembling URLs
Assembling URLs
Opening Web Pages: webbrowser
Module Functions

258
259
262
263
264
265
265
266
268
269
269
269
270
270
272
274
283
283
284
285

287
287
289
297
300
300
302
303
310
317
322
322
323
323

325
325
326
327
328
328

viii | Table of Contents

10.

1.

Constructing and Submitting Queries

Constructing and Viewing an HTML Page
Web Clients

Making the URLs in a Response Absolute

Constructing an HTML Page of Extracted Links

Downloading a Web Page’s Linked Files
Web Servers

Sockets and Servers

Cal

Simple Web Applications
Tips, Traps, and Tracebacks

Tips

Traps

Tracebacks

Relational Databasescccvvvvirinrennennennns

Representation in Relational Databases

Database Tables

A Restriction Enzyme Database
Using Relational Data

SQL Basics

SQL Queries

Querying the Database from a Web Page
Tips, Traps, and Tracebacks

Tips

Traps

Tracebacks

Structured Graphics ..ot

Introduction to Graphics Programming
Concepts
GUI Toolkits

Structured Graphics with tkinter
tkinter Fundamentals
Examples

Structured Graphics with SVG
SVG File Contents
Examples

Tips, Traps, and Tracebacks
Tips
Traps
Tracebacks

329
330
331
332
333
334
337
337
343
348
354
355
357
358

................... 359

360
360
365
370
371
380
392
395
395
398
398

................... 399

399
400
404
406
406
411
431
432
436
444
444
445
447

Table of Contents | ix

X | Table of Contents

Preface

This preface provides information I expect will be important for someone reading and
using this book. The first part introduces the book itself. The second talks about
Python. The third part contains other notes of various kinds.

Introduction

I would like to begin with some comments about this book, the field of bioinformatics,
and the kinds of people I think will find it useful.

About This Book

The purpose of this book is to show the reader how to use the Python programming
language to facilitate and automate the wide variety of data manipulation tasks en-
countered in life science research and development. It is designed to be accessible to
readers with a range of interests and backgrounds, both scientific and technical. It
emphasizes practical programming, using meaningful examples of useful code. In ad-
dition to meeting the needs of individual readers, it can also be used as a textbook for
a one-semester upper-level undergraduate or graduate-level course.

The book differs from traditional introductory programming texts in a variety of ways.
It does not attempt to detail every possible variation of the mechanisms it describes,
emphasizing instead the most frequently used. It offers an introduction to Python pro-
gramming that is more rapid and in some ways more superficial than what would be
found in a text devoted solely to Python or introductory programming. At the same
time, it includes some advanced features, techniques, and topics that are often omitted
from entry-level Python books. These are included because of their wide applicability
in bioinformatics programming, and they are used extensively in the book’s examples.

Python’s installation includes a large selection of optional components called
“modules.” Python books usually cover a small selection of the most generally useful
modules, and perhaps some others in less detail. Having bioinformatics
programming as this book’s target had some interesting effects on the choice of which
modules to discuss, and at what depth. The modules (or parts of modules) that are

Xi

covered in this book are the ones that are most likely to be particularly valuable in
bioinformatics programming. In some cases the discussions are more substantial than
would be found in a generic Python book, and many of the modules covered here appear
in few other books. Chapter 6, in particular, describes a large number of narrowly
focused “utility” modules.

The remaining chapters focus on particular areas of programming technology: pattern
matching, processing structured text (HTML and XML), web programming (opening
web pages, programming HT TP requests, interacting with web servers, etc.), relational
databases (SQL), and structured graphics (Tk and SVG). They each introduce one or
two modules that are essential for working with these technologies, but the chapters
have a much larger scope than simply describing those modules.

Unlike many technical books, this one really should be read linearly. Even in the later
chapters, which deal extensively with particular kinds of programming work, examples
will often use material from an earlier chapter. In most places the text says that and
provides cross-references to earlier examples, so you’ll at least know when you’ve en-
countered something that depends on earlier material. If you do jump from one place
to another, these will provide a path back to what you’ve missed.

Each chapter ends with a special “Tips, Traps, and Tracebacks” section. The tips pro-
vide guidance for applying the concepts, mechanisms, and techniques discussed in the
chapter. In earlier chapters, many of the tips also provide advice and recommendations
for learning Python, using development tools, and organizing programs. The traps are
details, warnings, and clarifications regarding common sources of confusion or error
for Python programmers (especially new ones). You’ll soon learn what a traceback is;
for now it is enough to say that they are error messages likely to be encountered when
writing code based on the chapter’s material.

About Bioinformatics

Any title with the word “bioinformatics” in it is intrinsically ambiguous. There are (at
least) three quite different kinds of activities that fall within this term’s wide scope.
Both the nature of the work performed and the educational backgrounds and technical
talents of the people who perform these various activities differ significantly. The three
main areas of bioinformatics are:

Computational biology
Concerned with the development of algorithms for mining biological data and
modeling biological phenomena

Software development
Focused on writing software to implement computational biology algorithms,
visualize complex data, and support research and development activity, with par-
ticular attention to the challenges of organizing, searching, and manipulating
enormous quantities of biological data

xii | Preface

Life science research and development
Focused on the application of the tools and results provided by the other two areas
to probe the processes of life

This book is designed to teach you bioinformatics software development. There is no
computational biology here: no statistics, formulas, equations—not even explanations
of the algorithms that underlie commonly used informatics software. The book’s ex-
amples are all based on the kind of data life science researchers work with and what
they do with it.

The book focuses on practical data management and manipulation tasks. The term
“data” has a wide scope here, including not only the contents of databases but also the
contents of text files, web pages, and other information sources. Examples focus on
genomics, an area that, relative to others, is more mature and easier to introduce to
people new to the scientific content of bioinformatics, as well as dealing with data that
is more amenable to representation and manipulation in software. Also, and not inci-
dentally, it is the part of bioinformatics with which the author is most familiar.

About the Reader

This book assumes no prior programming experience. Its introduction to and use of
Python are completely self-contained. Even if you do have some programming experi-
ence, the nature of Python and the book’s presentation of technical matter won’t nec-
essarily relate directly to anything you’ve learned before: you too might find much to
explore here.

The book also assumes no particular knowledge of or experience in bioinformatics or
any of the scientific fields to which it relates. It uses real examples from real biological
data, and while nearly all of the topics should be familiar to anyone working in the
field, there’s nothing conceptually daunting about them. Fundamentally, the goal here
is to teach you how to write programs that manipulate data.

This book was written with several audiences in mind:

* Life scientists
* Life sciences students, both undergraduate and graduate
* Technical staff supporting life science research

* Software developers interested in the use of Python in the life sciences
To each of these groups, I offer an introductory message:

Scientists
Presumably you are reading this book because you’ve found yourself doing, or
wanting to do, some programming to support your work, but you lack the com-
puter science or software engineering background to do it as well as you’d like.
The book’s introduction to Python programming is straightforward, and its

Preface | xiii

examples are drawn from bioinformatics. You should find the book readable even
if you are just curious about programming and don’t plan to do any yourself.

Students
This book could serve as a textbook for a one-semester course in bioinformatics
programming or an equivalent independent study effort. If you are majoring in a
life science, the technical competence you can gain from this book will enable you
to make significant contributions to the projects in which you participate. If you
are majoring in computer science or software engineering but are intrigued by
bioinformatics, this book will give you an opportunity to apply your technical
education in that field. In any case, nothing in the book should be intimidating to
any student with a basic background either in one of the life sciences or in
computing.

Technical staff
You’re probably already doing some work managing and manipulating data in
support of life science research and development, and you may be accustomed to
writing small scripts and performing system maintenance tasks. Perhaps you’re
frustrated by the limits of your knowledge of computing techniques. Regardless,
you have developed an interest in the science and technology of bioinformatics.
You want to learn more about those fields and develop your skills in working with
biological data. Whatever your training and responsibilities, you should find this
book both approachable and helpful.

Programmers

Bioinformatics software differs from most other software in important, though
hard to pin down, ways. Python also differs from other programming languages in
ways that you will probably find intriguing. This book moves quickly into signifi-
cant technical material—it does not follow the pattern of a traditional kind of
“Programming in...” or “Learning...” or “Introduction to...” book. Though it
makes no attempt to provide a bioinformatics primer, the book includes sufficient
examples and explanations to intrigue programmers curious about the field and
its unusual software needs.

I would like to point out to computer scientists and experienced soft-
ware developers who may read this book that some very particular
choices were made for the purposes of presentation to its intended au-
dience. At the risk of sounding arrogant, I assure you that these are
backed by deep theoretical knowledge, extensive experience, and a full
awareness of alternatives. These choices were made with the intention
of simplifying technical vocabulary and presenting as clear and uniform
a view of Python programming as possible. They also were based on the
assumption that most people making use of what they learn in this book
will not move on to more advanced programming or large-scale software
development.

xiv | Preface

Some things that will appear strange to anyone with significant programming experi-
ence are in reality true to a pure “Pythonic” approach. It is delightful to have the
opportunity to write in this vocabulary without the need to accommodate more tradi-
tional terminology.

The most significant example of this is that the word “variable” is never used in the
context of assignment statements or function calls. Python does not assign values to
variables in the way that traditional “values in a box” languages do. Instead, like some
of the languages that influenced its design, what Python does is assign names to values.
The assignment statement should be read from left to right as assigning a name to an
existing value. This is a very real distinction that goes beyond the ways languages such
as Java and C++ refer to objects through pointer-valued variables.

Another aspect of the book’s heavily Pythonic approach is its routine use of compre-
hensions. Approached by someone familiar with other languages, these can appear
quite mysterious. For someone learning Python as a first language, though, they can
be more natural and easier to use than the corresponding combinations of assignments,
tests, and loops or iterations.

Python

This section introduces the Python language and gives instructions for installing and
running Python on your machine.

Some Context

There are many kinds of programming languages, with different purposes, styles, in-
tended uses, etc. Professional programmers often spend large portions of their careers
working with a single language, or perhaps a few similar ones. As a result, they are often
unaware of the many ways and levels at which programming languages can differ. For
educational and professional development purposes, it can be extremely valuable for
programmers to encounter languages that are fundamentally different from the ones
with which they are familiar.

The effects of such an encounter are similar to learning a foreign human language from
a different culture or language family. Learning Portuguese when you know Spanish is
not much of a mental stretch. Learning Russian when you are a native English speaker
is. Similarly, learning Java is quite easy for experienced C++ programmers, but learning
Lisp, Smalltalk, ML, or Perl would be a completely different experience.

Broadly speaking, programming languages embody combinations of four paradigms.
Some were designed with the intention of staying within the bounds of just one, or
perhaps two. Others mix multiple paradigms, although in these cases one is usually
dominant. The paradigms are:

Preface | xv

Procedural
This is the traditional kind of programming language in which computation is
described as a series of steps to be executed by the computer, along with a few
mechanisms for branching, repetition, and subroutine calling. It dates back to the
earliest days of computing and is still a core aspect of most modern languages,
including those designed for other paradigms.

Declarative
Declarative programming is based on statements of facts and logical deduction
systems that derive further facts from those. The primary embodiment of the logic
programming paradigm is Prolog, a language used fairly widely in Artificial Intel-
ligence (Al) research and applications starting in the 1980s. As a purely logic-based
language, Prolog expresses computation as a series of predicate calculus assertions,
in effect creating a puzzle for the system to solve.

Functional
In a purely functional language, all computation is expressed as function calls. In
a truly pure language there aren’t even any variable assignments, just function
parameters. Lisp was the earliest functional programming language, dating back
to 1958. Its name is an acronym for “LISt Processing language,” a reference to the
kind of data structure on which it is based.

Lisp became the dominant language of Al in the 1960s and still plays a major role
in Al research and applications. The language has evolved substantially from its
early beginnings and spawned many implementations and dialects, although most
of these disappeared as hardware platforms and operating systems became more
standardized in the 1980s.

A huge standardization effort combining ideas from several major dialects and a
great many extensions, including a complete object-oriented (see below) compo-
nent, was undertaken in the late 1980s. This effort resulted in the now-dominant
CommonlLisp.” Two important dialects with long histories and extensive current
use are Scheme and Emacs Lisp, the scripting language for the Emacs editor. Other
functional programming languages in current use are ML and Haskell.

Object-oriented
Object-oriented programming was invented in the late 1960s, developed in the
research community in the 1970s, and incorporated into languages that spread
widely into both academic and commercial environments in the 1980s (primarily
Smalltalk, Objective-C, and C++). In the 1990s this paradigm became a key part
of modern software development approaches. Smalltalk and Lisp continued to be
used, C++ became dominant, and Java was introduced. Mac OS X, though built
on a Unix-like kernel, uses Objective-C for upper layers of the system, especially
the user interface, as do applications built for Mac OS X. JavaScript, used primarily
to program web browser actions, is another object-oriented language. Once a

* See http://www.lispworks.com/documentation/HyperSpec/Body/01_ab.htm.

xvi | Preface

http://www.lispworks.com/documentation/HyperSpec/Body/01_ab.htm

radical innovation, object-oriented programming is today very much a mainstream
paradigm.

Another dimension that distinguishes programming languages is their primary inten-
ded use. There have been languages focused on string matching, languages designed
for embedded devices, languages meant to be easy to learn, languages built for efficient
execution, languages designed for portability, languages that could be used interac-
tively, languages based largely on list data structures, and many other kinds.

Language designers, whether consciously or not, make choices in these and other
dimensions. Subsequent evolutions of their languages are subject to market forces,
intellectual trends, hardware developments, and so on. These influences may help a
language mature and reach a wider audience. They may also steer the language in
directions somewhat different from those originally intended.

The Python Language

Simply put, Python is a beautiful language. It is effective for everything from teaching
new programmers to advanced computer science study, from simple scripts to sophis-
ticated advanced applications. It has always had some purchase in bioinformatics, and
in recent years its popularity has been increasing rapidly. One goal of this book is to
help significantly expand Python’s use for bioinformatics programming.

Python features a syntax in which the ends of statements are marked only by the end
of a line, and statements that form part of a compound statement are indented relative
to the lines of code that introduce them. The semicolons or keywords that end state-
ments and the braces that group statements in other languages are entirely absent.

Programmers familiar with “standard syntax” languages often find Python’s unclut-
tered syntax deeply disconcerting. New programmers have no such problem, and for
them, this simple and readable syntax is far easier to deal with than the visually arcane
constructions using punctuation (with the attendant compilation errors that must be
confronted). Traditional programmers should reconsider Python’s syntax after per-
forming this experiment:

1. Open a file containing some well-formatted code.

2. Delete all semicolons, braces, and terminal keywords such as end, endif, etc.

3. Look at the result.
To the human eye, the simplified code is easier to read—and it looks an awful lot like
Python. It turns out that the semicolons, terminal keywords, and braces are primarily
for the benefit of the compiler. They are not really necessary for human writers and

readers of program code. Python frees the programmer from the drudgery of serving
as a compiler assistant.

Python is an interesting and powerful language with respect to computing paradigms.
Its skeleton is procedural, and it has been significantly influenced by functional

Preface | xvii

programming, but it has evolved into a fundamentally object-oriented language. (There
is no declarative programming component—of the four paradigms, declarative pro-
gramming is the one least amenable to fitting together with another.) Few, if any, other
languages provide a blend like this as seamlessly and elegantly as does Python.

Installing Python

This book uses Python 3, the language’s first non-backward-compatible release. With
a few minor changes, noted where applicable, Python 2.x will work for most of the
book’s examples. There are a few notes about Python 2 in Chapters 1, 3, and 5; they
are there not just to help you if you find yourself using Python 2 for some work, but
also for when you read Python 2 code. The major exception is that print was a statement
in Python 2 but is now a function, allowing for more flexibility. Also, Python 3 reor-
ganized and renamed some of its library modules and their contents, so using Python
2.x with examples that demonstrate the use of certain modules would involve more
than a few minor changes.

Determing Which Version of Python Is Installed

Some version of Python 2 is probably installed on your computer, unless you are using
Windows. Typing the following into a command-line window (using % as an example
of a command-line prompt) will tell you which version of Python is installed as the
program called python:

% python -V
The name of the executable for Python 3 may be python3 instead of just python. You
can type this:

% python3 -V
to see if that is the case.

If you are running Python in an integrated development environment—in particular
IDLE, which is part of the Python installation—type the following at the prompt
(>>>) of its interactive shell window to get information about its version:

>>> from sys import version
>>> version

If this shows a version earlier than 3, look for another version of the IDE on your
computer, or install one that uses Python 3. (The Python installation process installs
the GUI-based IDLE for whatever version of Python is being installed.)

The current release of Python can be downloaded from http://python.org/download.
Installers are available for OS X and Windows. With most distributions of Linux, you
should be able to install Python through the usual package mechanisms. (Get help from
someone who knows how to do that if you don’t.) You can also download the source,

xviii | Preface

http://python.org/download/

unpack the archive, and, following the steps in the “Build Instructions” section of the
README file it contains, configure, “make,” and install the software.

If you are installing Python from its source code, you may need to
download, configure, make, and install several libraries that Python uses
if available. At the end of the “make” process, a list of missing optional

libraries is printed. It is not necessary to obtain all the libraries. The ones
you’ll want to have are:

* curses

e gdbm

e sqlitesf
e Tcl/Tk#

* readline

All of these should be available through standard package installers.

Running Python
You can start Python in one of two ways:

1. Type python3 on the command line.$

2. Run an IDE. Python comes with one called IDLE, which is sufficient for the work
you’ll do in this book and is a good place to start even if you eventually decide to
move on to a more sophisticated IDE.

The term Unix in this book refers to all flavors thereof, including Linux and Mac
OS X. The term command line refers to where you type commands to a “shell”’—in
particular, a Unix shell such as tcsh or bash or a Windows command window—as
opposed to typing to the Python interpreter. The term interpreter may refer to either
the interpreter running in a shell, the “Python Shell” window in IDLE, or the corre-
sponding window in whatever other development environment you might be using.

T You can find precompiled binaries for most platforms at http://sqlite.org/download.html.
T See http://www.activestate.com/activetcl.

§ On 0S X, a command-line shell is obtained by running the Terminal application, found in the Utilities folder
in the Applications folder. On most versions of Windows, a “Command Prompt” window can be opened
either by selecting Run from the Start menu and typing cmd or by selecting Accessories from the Start menu,
then the Command Prompt entry of that menu. You may also find an Open Command Line Here entry when
you right-click on a folder in a Windows Explorer window; this is perhaps the best way to start a command-
line Python interpreter in Windows because it starts Python with the selected folder as the current directory.
You may have to change your path settings to include the directory that contains the Python executable file.
On a Unix-based