
this print for content only—size & color not accurate spine = 0.7904" 416 page count

Books for professionals by professionals®

Foundations of Agile Python Development
Dear Reader,

Python is your chosen development language. You love its power, clarity, and
interactivity. But what is the best way to build and maintain Python applications?
How can you blend its unique strengths with the best of agile methods to reach
still higher levels of productivity and quality? And, at a practical level, where
are the tools to automate it all? In this book, I give answers to these questions,
backed up by a wealth of down-to-earth examples and working code.

The short development cycles of agile projects require far more automation
than traditional processes. There’s simply no way to have a two-week release
cycle if development involves a day of integration, a week of QA, and three days
for production deployment. You must automate to succeed. But all too often,
the best-known tools are language specific. For this reason, this book gives you
a complete set of open source tools to turbocharge your Python projects, and
shows you how to integrate them into a smoothly functioning whole.

Eclipse and Pydev make an excellent Python IDE. Python ships with an
xUnit-based unit-testing framework. Nose is great for running tests, supplemented
by PyFit for functional testing. Setuptools is your build harness and packaging
mechanism, with functionality similar to Maven in Java. Subversion provides a
place to store your code, and Buildbot is an ideal continuous integration server.
What makes this book different from others is that I show you how to tie all of
these pieces together into one continuous tool chain that builds your software
from start to finish—fast!

While the information I present is steeped in the language of agile develop-
ment, the details are not limited to that approach. This book is as much about
release engineering in Python as it is about agile development.

Jeff Younker

US $42.99

Shelve in
Python

User level:
Intermediate–Advanced

Younker
Foundations of Agile Python Developm

ent

The EXPERT’s VOIce® in Open Source

Foundations of

Agile Python
Development

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

Jeff Younker

Companion
eBook Available

THE APRESS ROADMAP

Beginning Python:
From Novice to Professional

Foundations of Python
Network Programming

Foundations of
Agile Python Development

Dive into Python

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-981-5
ISBN-10: 1-59059-981-0

9 781590 599815

54299

Python, agile project methods, and a
comprehensive open source tool chain!

Jeff Younker

Foundations of Agile
Python Development

9810FM.qxd 6/3/08 2:37 PM Page i

Foundations of Agile Python Development

Copyright © 2008 by Jeff Younker

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-981-5

ISBN-10 (pbk): 1-59059-981-0

ISBN-13 (electronic): 978-1-4302-0636-1

ISBN-10 (electronic): 1-4302-0636-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tom Welsh
Technical Reviewer: Will McGugan
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Susannah Davidson Pfalzer
Copy Editor: Damon Larson
Associate Production Director: Kari Brooks-Copony
Production Editor: Elizabeth Berry
Compositor: Dina Quan
Proofreaders: Nancy Bell, April Eddy
Indexer: John Collin
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

9810FM.qxd 6/3/08 2:37 PM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

Contents at a Glance

About the Author . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

Introduction. xix

■CHAPTER 1 What Is Agile Development? . 1

■CHAPTER 2 The IDE: Eclipsing the Command Line . 21

■CHAPTER 3 Revision Control: Subverting Your Code . 41

■CHAPTER 4 Setuptools: Harnessing Your Code . 81

■CHAPTER 5 A Build for Every Check-In . 103

■CHAPTER 6 Testing: The Horse and the Cart . 139

■CHAPTER 7 Test-Driven Development and Impostors . 175

■CHAPTER 8 Everybody Needs Feedback . 233

■CHAPTER 9 Databases . 263

■CHAPTER 10 Web Testing . 309

■CHAPTER 11 Functional Testing . 339

■INDEX . 369

iii

9810FM.qxd 6/3/08 2:37 PM Page iii

9810FM.qxd 6/3/08 2:37 PM Page iv

Contents

About the Author . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

Introduction. xix

■CHAPTER 1 What Is Agile Development? . 1

Why More Methodologies? . 1

A Little History . 3

Planning and Agile Development . 4

What Are Agile Methods?. 4

Pair Programming . 5

User Stories . 7

The System Metaphor. 8

On-Site Customers . 8

Unit Tests . 9

Test-Driven Development. 10

Refactoring . 11

Simple Design . 12

Collective Code Ownership . 12

Short Iterations. 13

Continuous Reflection . 15

Continuous Integration . 16

Documentation . 17

Summary. 18

■CHAPTER 2 The IDE: Eclipsing the Command Line . 21

Installing Eclipse . 23

Installing Plug-Ins . 25

Installing and Configuring Pydev. 31

Your First Project . 32

Looking Under the Hood. 38

Paying for More Functionality . 39

Summary . 40 v

9810FM.qxd 6/3/08 2:37 PM Page v

■CHAPTER 3 Revision Control: Subverting Your Code. 41

Revision Control Phylum. 42

What Subversion Does for You . 43

Getting Subverted . 44

Working with Your Subverted Code . 47

Examining Files . 49

Adding Files . 50

Copying and Moving Files . 51

Deleting Files . 52

Reverting Changes. 53

Modifying a File . 53

Updating Your Working Copy. 54

Conflicting Changes . 55

Subverting Eclipse. 59

Sharing Your Subverted Project . 59

Importing from Subversion. 60

Working with a Subverted Eclipse . 64

The Team Repository View. 65

Adding a File . 68

Committing Changes. 70

Editing a File . 71

Reverting Changes. 72

Resolving Conflicts . 73

Deleting Files . 76

Moving Files . 77

Renaming Files. 77

Copying Files . 78

Reverting Moves, Renames, and Copies . 79

Summary. 79

■CHAPTER 4 Setuptools: Harnessing Your Code. 81

The Project: A Simple RSS Reader . 81

Python Modules . 82

The Old Way . 83

The New Way: Cooking with Eggs . 84

Some Notes About Building Multiple Versions . 85

Installing Setuptools . 86

Getting Started with Setuptools . 87

Building the Project . 88

■CONTENTSvi

9810FM.qxd 6/3/08 2:37 PM Page vi

Installing Executables . 91

Dependencies . 92

Think Globally, Install Locally . 94

Removing an Existing Package: Undoing Your Hard Work 95

Installing from the Local Copy . 96

Fixing Options with setup.cfg . 97

Bootstrapping Setuptools . 97

Subverting Subversion: What Shouldn’t Be Versioned 98

The Easy Way with Eclipse. 100

Checking in Changes: Not Losing It . 100

Working in Development Mode . 100

Summary. 102

■CHAPTER 5 A Build for Every Check-In . 103

Buildbot Architecture . 104

Installing Buildbot . 104

Configuring the Build System . 106

Mastering Buildbot . 107

Enslaving Buildbot . 112

Hooking Up Source Control . 116

Using the Source . 119

Subversion to Buildbot, Over . 121

A Python for Every Builder . 122

Finally, a Real Build Succeeds . 124

Installing the Build. 125

Supporting Python 2.4 Builds . 128

Ensuring Local Dependency Processing . 132

Keeping Up Appearances . 134

Summary. 136

■CHAPTER 6 Testing: The Horse and the Cart . 139

Unit Testing . 141

The Problems with Not Unit Testing. 142

Pessimism . 143

Test-Driven Development . 146

Knowing Your Unit Tests . 147

unittest and Nose . 148

A Simple RSS Reader . 149

The First Tests . 151

■CONTENTS vii

9810FM.qxd 6/3/08 2:37 PM Page vii

Finding Tests with Nose . 159

Skipping Slow Tests . 160

Integrating the Tests into the Environment . 162

Running Tests After Every Change . 163

Running the Complete Test Suite in Development. 167

Buildbot with Unit Tests . 171

Summary. 173

■CHAPTER 7 Test-Driven Development and Impostors 175

Moving Beyond Acceptance Tests . 175

Renaming . 183

Overriding Existing Methods: Monkeypatching . 185

Monkeypatching and Imports . 186

The Changes Go Live. 188

Using Data Files . 189

Isolation. 190

Rolling Your Own . 192

Python Quirks. 193

Mocking Libraries . 193

Aggregating Two Feeds . 194

A Simple pMock Example . 195

Implementing with pMock . 196

Test: Defining combine_feeds. 196

Test: Defining add_single_feed . 197

Refactoring: Extracting AggregateFeed . 198

Refactoring: Moving add_single_feed . 199

Test: Defining create_entry . 200

Test: Ensuring That AggregateFeed Creates a
FeedEntry Factory. 200

Test: Defining add . 201

Test: AggregateFeed.entries Is Always Initialized to a Set 201

Test: Defining FeedEntry.from_parsed_feed 202

Test: Defining feed_entry_listing . 202

Test: Defining feeds_from_urls. 203

Test: AggregateFeed Initializes the FeedParser Factory 203

Test: Defining from_urls. 204

Refactoring: Reimplementing from_urls . 204

Refactoring: Condensing Some Tests . 206

■CONTENTSviii

9810FM.qxd 6/3/08 2:37 PM Page viii

Test: Formatting Feed Entry Listings . 207

Test: Defining print_entry_listings . 208

Test: FeedWriter Initializes the stdout Attribute 209

Test: Empty AggregateFeeds Generate No Output. 209

Test: Defining is_empty . 210

Test: Defining new_main . 210

Test: The Application Initializes Dependencies. 211

Refactoring: Making new_main the New main2 212

A Simple PyMock Example . 212

Monkeypatching. 214

Saying the Same Thing Differently . 214

Implementing with PyMock . 215

Test: from_urls and Mocking External Modules. 216

Test: Defining add_single_feed . 217

Refactoring: Moving Methods to a New Object 218

Refactoring: Moving add_single_feed . 218

Refactoring: Moving from_urls() . 219

Test: create_entry() and Mocking Class Constructors. 220

Tests: Defining add and AggregateFeed.__init__ 221

Test: Defining FeedEntry.__init__ . 222

Test: Defining listing . 222

Test: entry_listings Should Be Sorted . 223

Test: Defining print_entry_listings . 224

Test: print_entry_listings Should Do Nothing with
Empty Feeds . 225

Test: is_empty and the Unproven Test . 226

Test: new_main, Hooking It All Together. 226

Test: RSReader Initialization . 227

Finishing Up: Activating the New Functionality. 227

Other pMock and PyMock Features . 228

Raising Exceptions with pMock. 228

Raising Exceptions with PyMock. 228

Playback Counts with pMock. 229

Playback Counts with PyMock. 229

Mocking Attribute Setters with PyMock. 229

Mocking Generators with PyMock . 230

Using PyMock with unittest . 230

Summary . 231

■CONTENTS ix

9810FM.qxd 6/3/08 2:37 PM Page ix

■CHAPTER 8 Everybody Needs Feedback . 233

Measuring Software Quality . 235

Measurements . 236

Quantitative Measurements: How Much Is That Doggie
in the Window?. 237

Code Coverage. 237

Complexity Measurements . 239

Velocity: When Are We Done? . 242

Qualitative Measurements: It’s a Shih Tzu! . 243

Coding Conventions . 244

Welcome Back to Python . 246

Never Try to Fix a Social Problem with a Technical Solution. 248

Code Reviews. 249

Renaming . 250

Communication . 250

Technological Feedback: Bad Programmer, No Cookie 251

Coercion at the Keyboard. 251

When Code Is Submitted . 256

Buildbot and Coverage . 258

Summary. 261

■CHAPTER 9 Databases . 263

A New Religion. 263

Blurring the Boundaries . 264

Concealing Data Access. 265

Object-Relational Mappers . 265

The Active Record Pattern . 266

The Data Mapper Pattern . 266

The Unit of Work Pattern . 266

Python ORMs . 267

SQLObject . 267

SQLAlchemy . 283

Building the Database. 296

Testing. 297

Refactorings . 298

■CONTENTSx

9810FM.qxd 6/3/08 2:37 PM Page x

Migrations. 298

The Instructions . 299

Numbering Migrations and Playing Them Back 299

Where to Put the Migration Mechanism. 300

DBMigrate: A Migration Mechanism. 300

Summary. 306

■CHAPTER 10 Web Testing . 309

Really Simple Primer. 309

HTML . 310

CSS. 311

XML . 311

URI and URL . 311

HTTP. 312

JavaScript . 312

Web Servers and Web Applications . 312

WSGI. 314

Using the write Callback. 315

WSGI Middleware . 316

Testing Web Applications. 316

Graphics and Images . 317

Markup . 317

Testing JavaScript . 320

Using JsUnit . 321

Running a Test . 322

How It Works . 326

Connoisseur of the Undefined . 327

Adding a Little More Realism. 328

Manipulating the DOM . 328

Aggregating Tests . 335

Running Tests by URL. 336

Summary . 337

■CONTENTS xi

9810FM.qxd 6/3/08 2:37 PM Page xi

■CHAPTER 11 Functional Testing . 339

Running Acceptance Tests . 339

PyFit . 340

Writing Requirements . 341

A Simple PyFit Example . 344

Giving the Acceptance Tests a Home. 346

Your First FIT. 346

FIT into Buildbot. 353

Preparing the Slave . 353

Run New Builder, Run! . 354

Making the Reports Available . 358

Getting Regular Builds . 366

What’s Left? . 367

Summary. 367

■INDEX . 369

■CONTENTSxii

9810FM.qxd 6/3/08 2:37 PM Page xii

About the Author

■JEFF YOUNKER is chief engineer of Data-Pipes (www.data-pipes.com/). His
educational background carefully avoided computers, but he was drawn
in anyway. Most of his misguided adulthood has been spent in large
installation systems administration, tool smithing, and release engineer-
ing, with a peculiar obsession involving both monitoring and rapid
deployment. Over the last several years, he’s had the pleasure of working
with Python full time. Having escaped Texas nearly a decade ago, he now
lives in gray and rainy Northern California. When not suffering monitor-

induced radiation burns, Jeff likes to do anything that doesn’t involve a roof, unless the roof
has been top-roped or covers a machine shop.

xiii

9810FM.qxd 6/3/08 2:37 PM Page xiii

http://www.data-pipes.com

9810FM.qxd 6/3/08 2:37 PM Page xiv

About the Technical Reviewer

■WILL McGUGAN is a software developer and author currently working in
London on a social networking site for games built with Django. See his
blog at www.willmcgugan.com/ for more information on Will’s work and
open source projects.

xv

9810FM.qxd 6/3/08 2:37 PM Page xv

http://www.willmcgugan.com

9810FM.qxd 6/3/08 2:37 PM Page xvi

Acknowledgments

I’d like to thank Apress and Jason Gilmore for giving me the opportunity to write this book.
Thanks to Tom Welsh for the unfaltering criticism that has made it something more than my
incoherent ravings. I thank Susannah Davidson Pfalzer for playing midwife to Jason’s child
after he left the Apress family. This has been a huge undertaking. If I had really understood the
magnitude, I might not have started to begin with, but Susannah kept everything on track and
graciously coped with the events in my life impinging on the schedule.

Thanks to Will McGugan for the many improvements he made in the code, and for his
meticulous attention to detail. Damon Larson did an amazing job turning my technobabble
into coherent English. It was wonderful working with Liz Berry in the last few weeks of mad-
ness as the disjointed word-processed files turned into something that looks suspiciously like
a book.

A whole slew of friends came out of the woodwork as they discovered that I was writing
this book, and I was astonished to discover that they actually wanted to help. The last half of
this book is much richer for the efforts of Matt Ho, Jacob Hoffman-Andrews, Nancy Hunting-
ford, Rachel McConnell, and Erik Ziko.

In particular, Matt Ho’s assistance with Chapter 11 was indispensable. I don’t know if I
could have finished this book on time without the days we spent in his living room. At a point
where I was completely lost, his advice made the path clear. I wish we’d talked much earlier in
the process.

My business partner David Birkhead bought time with our customers to give me an
opportunity to finish this project, and I owe him a huge debt for that. He’s been hugely sup-
portive outside of our business relationship, too. I have to thank our customers Cynthia
Walston and David Alban for being so supportive and accommodating during the last month
of this process.

I owe a huge debt of gratitude to my father, William James Younker, who passed away
somewhere around Chapter 5. No matter how poor my family was, he always saw to it that I
had the tools to follow my curiosity. I wish I could show him this book you’re reading. At least
I’ll get to show it to my mother, Hallie Younker, who did an astoundingly good job of bringing
me up given the circumstances that enveloped our lives.

I’d like to thank my teachers, too—I had some amazing ones. I’d like to thank Adréa Shaw
for giving me such wonderful anecdotes about Baylor College of Medicine. I remember the
soft glow of the electron microscope fondly. I’d like to thank David Raikow. He writes more
than anyone I know, and his advice kept me moving along when I got stuck. I’d like to give my
thanks to Ethyl the Dog, too. She was remarkably good at alleviating writer’s block.

I’ve received support in other ways, as well. Roxanne Williams and Sören Ragsdale lent me
technical assistance when necessary. Blair Miller kept me from going insane and from time to
time made sure that I stayed fed. Scott Calvert, Gwen Perry, and David Cutler made sure that I
wasn’t completely isolated from my friends. Kathryn Keslosky’s assistance with revisions was
immensely helpful.

xvii

9810FM.qxd 6/3/08 2:37 PM Page xvii

My dear friends Jaron and Cherry Rothkop made sure that my time in Toledo was bear-
able. Clare and John Vrakking put up with my mental absence from our first Christmas
together in over a decade. I’m sorry this book didn’t let me make Passover this year. Finally, I
don’t know if I could have completed this book without Amy Woodward’s love and support.
Her calming voice and compassionate words kept me from coming unglued when I became
immobilized by the seemingly unending tide of drafts and revisions. She assisted me emotion-
ally and materially, and she believed in me more than I believed in myself at times. I owe her a
debt of gratitude that I don’t know if I can ever repay. A thousand love songs do her no justice.

■ACKNOWLEDGMENTSxviii

9810FM.qxd 6/3/08 2:37 PM Page xviii

Introduction

If you’re embarking on a Python development project, then you should buy this book—there’s
nothing quite like it. I know this because I was looking for it last year, and I couldn’t find it.
This book introduces the tools you’ll need to get started on agile projects in Python, and
unlike any other book out there, it shows you how to tie them all together.

Sure, there are many good books on agile development. A lot of them cover the develop-
ment processes in great detail, and this is a good thing. Agile development is very much about
human interactions and the environment surrounding software development, but there is a
whole ecology of tooling to make everything work at a practical level.

Agile development eschews extensive up-front specification, and it anticipates that the
product will constantly change, but it puts in place rigorous checks to compensate for antici-
pated change. Testing is an integral part of agile development from the very start, and it is
pursued with ferocious rigor. You need software tools to facilitate testing.

Agile projects have very short release cycles, and this has implications for tooling, too.
There’s no way to have two-week release cycles if it takes you days to integrate changes, days
to perform QA, and days to package and deploy the software. This means that agile develop-
ment puts a high value on build and release automation.

While agile development techniques can be applied to any project, both testing tools and
build automation tend to be very language specific. These tools do exist in Python. They’re
widely available, and by and large they’re free, too, but the documentation tends to be . . .
um . . . spotty. And while there may be documentation on the individual tools, the documenta-
tion telling you how to tie these tools together is usually sparse to nonexistent. This book
provides that missing documentation.

Who This Book Is For
This book is written for a person who knows how to program and is already familiar with
Python. If you have some Python under your belt and you’re thinking of starting a new project,
but you don’t know how to get started, then this book is for you. If you’re an experienced
Python programmer and you want to give this agile stuff a whirl, then this book is for you. If
you’re a release engineer who has been thrown headlong into the world of Python, then this
book is for you, too. If you’re brand new to programming or don’t really know Python, this is
not the best book to start with. There are some wonderful books out there that will introduce
you to the language, but this isn’t one of them.

xix

9810FM.qxd 6/3/08 2:37 PM Page xix

What’s Really in Here?
Each chapter in this book addresses a different aspect of tooling in an agile development envi-
ronment. These are collected roughly into two parts, with the first focusing on basic tooling,
and the second focusing on specific practices. If you’re already familiar with Subversion,
Setuptools, and Buildbot, then you should have no problem jumping between Chapters 6
through 11. If you’re not, then you’ll want to look at the earlier chapters first.

Chapter 1: What Is Agile Development?
Chapter 1 provides an overview of the methods that characterize agile development method-
ologies, with a focus on those not directly related to tooling.

Chapter 2: The IDE: Eclipsing the Command Line
This book uses the command line throughout, but modern IDEs provide many benefits. This
chapter introduces you to Python development using Eclipse and the Pydev plug-in.

Chapter 3: Revision Control: Subverting Your Code
A revision control system is part of the core infrastructure for any agile development environ-
ment. Subversion is an excellent choice. I show you how to use it from the command line and
from Eclipse using the Subversive plug-in.

Chapter 4: Setuptools: Harnessing Your Code
You can’t replicate your work for testing purposes without some sort of a framework. In
Python, a natural choice is Setuptools, which provides a solid basis for automated builds.

Chapter 5: A Build for Every Check-In
Automated build systems form the core of a continuous integration system. Here I introduce
Buildbot, an excellent system that happens to be written in Python. It ensures that the code
you check in builds correctly.

Chapter 6: Testing: The Horse and the Cart
Unit testing ensures that your code runs as you expect it to, and it prevents regression
(reappearance of old bugs) when you change existing code. I introduce the unit-testing pack-
ages unittest and Nose, and I show how to use Nose to run tests from within Eclipse and
Setuptools. Finally, I show how to link them into Buildbot.

Chapter 7: Test-Driven Development and Impostors
Test-driven development (TDD) is the practice of writing tests before writing the code they
test. Imposters (a.k.a. mock objects) provide a powerful unit-testing technique to isolate units
of code. I examine two mock object frameworks, pMock and PyMock, and I work through a
sizable example to show how TDD, refactoring, and imposters are used, and how they affect
the code that you produce with them.

■INTRODUCTIONxx

9810FM.qxd 6/3/08 2:37 PM Page xx

Chapter 8: Everybody Needs Feedback
Improving your code requires feedback—useful information that sometimes comes from your
coworkers, and sometimes from software. Accurate feedback requires standards. This chapter
looks at code coverage, complexity measures, and development velocity. It also examines cod-
ing standards, how they can be enforced from within Eclipse, and how you can prevent bad
code from reaching your repository by using Subversion pre-commit hooks.

Chapter 9: Databases
Databases are very widely used these days, and they pose their own special challenges for
agile development. This chapter examines the object-relational mappers SQLObject and
SQLAlchemy, and then examines how to version databases using the DBMigrate tool.

Chapter 10: Web Testing
The web is everywhere, and web development has its own set of issues. This chapter examines
general approaches to testing web applications, and introduces HTML/XML verification using
ElementTree and BeautifulSoup. It also looks into JavaScript unit testing with JsUnit.

Chapter 11: Functional Testing
This chapter examines functional testing with a particular emphasis on acceptance testing
using PyFit. The chapter shows how to use PyFit, and more importantly, how to tie PyFit into
Setuptools and Buildbot. (In my view, this alone is worth the price of the book.)

Contacting Me
Finally, please don’t hesitate to give me feedback on the book at any time. This is my first book,
my writing ability has improved immensely as the book has progressed, and I now have a
much better understanding of what I wanted to say than when I started. I’ll try to improve
any sections that people find lacking and publish them to this book’s web page at http://www.
apress.com/book/view/9781590599815. Additional materials may be available on my blog
(www.theblobshop.com/blog) under the tag famip. I’ll present more information in these loca-
tions as it becomes available. This pertains but is not limited to notes about anything that I’ve
fouled up, new thoughts, and additional materials that I think you may find useful.

■INTRODUCTION xxi

9810FM.qxd 6/3/08 2:37 PM Page xxi

http://www
http://www.theblobshop.com/blog

9810FM.qxd 6/3/08 2:37 PM Page xxii

What Is Agile Development?

Agile development is a term given to an entire class of iterative development methodologies.
Their unifying characteristic is a focus on short development cycles, on the scale of weeks
rather than months. Each development cycle, referred to as an iteration or sprint, produces a
working product. This chapter introduces the motivations for the movement to agile software
development and surveys the practices that commonly constitute these methodologies.

These practices, in the order to be discussed, are as follows:

• Pair programming

• User stories

• The system metaphor

• On-site customers

• Unit tests

• Test-driven development (TDD)

• Refactoring

• Simple design

• Short iterations

• Collective code ownership

• Continuous reflection

• Continuous integration

• Documentation

Why More Methodologies?
Some projects succeed and some projects fail. This happens regardless of what development
methods are used. Development is about much more than simply the techniques that are
used. Good development depends upon a strong grounding in reality; not everything can be
known before a project starts, and this must be taken into account when planning. Some of
these new facts will be minor, and some will be major.

1

C H A P T E R 1

9810ch01.qxd 5/19/08 4:04 PM Page 1

Accommodating major new facts often requires hard choices to be made; making these
hard decisions requires sound judgment, and even then, the sound judgments are sometimes
wrong. Making these judgments requires guts and integrity; a project leader who is unwilling
to stand up and tell the truth potentially sacrifices the development organization’s well-being,
the product’s quality, and possibly the whole organization’s long-term viability. This holds true
no matter how the project is developed.

These days, the waterfall methodology is a favorite whipping boy. If you’re advocating
something strongly, then it helps to have something else to demonize, and many agilists have
fastened upon the waterfall methodology for that purpose. There’s a lot of software out there
that has been developed nominally using the waterfall method; whether the engineering staff
actually followed the documents is open to question. The waterfall methodology reflects the
aspirations of many toward producing better software, and it reflects the best understanding
that was available at the time, but there are valid criticisms that have been leveled against it:

It assumes that all change can be predicted and described up front. Software is created to
serve a purpose, but if the conditions in the world change, then development needs to
change to reflect the new realities. This often happens in the middle of a project. A new
disruptive technology is released. New versions of interoperating software are released,
altering dependencies and interactions; the new software has features that duplicate
functionality being implemented or changes how the existing functionality works. New
competitors may come into the market, or the regulatory environment may change. The
world is simply too complicated to anticipate all changes up front.

Exploratory tasks that should be part of development are pushed into the design phase.
Many judgments about suitability can only be addressed through the creation of proto-
types. Many times, determining how something can be designed most effectively requires
building a substantial part of it. Why should this effort be wasted?

The waterfall methodology also assumes that documentation can be sufficient to
describe a system. There are fields with far more detailed and elaborate documentation
systems than are found in software development; mathematics, medicine, and the law are
three examples. Nobody in these fields has the hubris to say that documentation alone is
sufficient for achieving understanding. Instead, they recognize that a person cannot
become an expert without tutelage.

A software specification detailed enough to unambiguously describe the system is spe-
cific enough to be translated automatically to software. Such a process simply pushes the
effort of coding into design, yet if this is done without feedback from operating models,
the design will have errors.

Agile methods emphasize accommodating change, group communication, and iterative
design and development. They attempt to cast off excess process. Some of it is just jettisoned;
some of it is replaced by other practices. Agile methodologies range from extreme program-
ming (XP), which focuses almost exclusively on the developer and development techniques,
to the Dynamic Systems Development Method (DSDM), which focuses almost completely on
processes—but they all have similarities.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT?2

9810ch01.qxd 5/19/08 4:04 PM Page 2

A Little History
Although the term agile, as it relates to software development, dates from early 2001, agile
methodologies have been in use for much longer. They used to be called iterative methodolo-
gies. Today’s particular bunch were called lightweight development methodologies before the
Manifesto for Agile Software Development was produced in February, 2001. (Seems someone
didn’t like being called a lightweight!)

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left

more.1

—Manifesto for Agile Software Development

A few years ago, people looked on agile development practices with great suspicion. The
term was almost ridiculed in some circles. These days there is more respect paid, and these
practices are making significant inroads. Most organizations I’ve worked with have flirted with
agile methods. Developers are learning what works, either on their own projects or from expe-
riences at other companies, and agile practices are spreading, often under the radar of the
larger development organization.

Arguably, the wider adoption of agile methods reflects an underlying change in tech-
nology. This change began in the early ’80s with the wide-scale introduction of personal com-
puters. At that point, computing power was expensive and people’s time was comparatively
cheap. Experiments and prototyping were unknown. The ability to run hundreds or thousands
of tests in a few seconds was fantasy. The idea of setting up and tearing down a SQL database
in memory was absurd. A generation has passed, and that relationship has reversed. Develop-
ment methods are finally catching up with the changes in technology, and the lessons learned
from physical manufacturing in the ’80s and ’90s are also being felt.

While the various agile techniques are useful on their own, they have strong synergistic
effects. One practice enables another to be used more effectively, so the payoff from using
them in combination is often larger than for using them separately. I’ve tried to note such
interactions in this chapter.

This chapter aims to show you what those methods are. I’ll try to explain how they tie
together. Some that relate to process won’t be covered in this book, but those relating to tools
will be. These are the same practices that are easiest to bring in the back door as a developer.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT? 3

1. The Manifesto for Agile Software Development is available at http://agilemanifesto.org/. The
authors are Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. It may be freely
copied in any form, but only through to this notice.

9810ch01.qxd 5/19/08 4:04 PM Page 3

http://agilemanifesto.org

Planning and Agile Development
Proponents of agile development methods often give short shrift to planning. I feel this is an
overreaction to “big design up front” (BDUF), a practice often condemned by agile advocates.
Planning is critical to any project. At the very least, the development team needs to know the
broad scope and the intended form of the finished product; for example, a hosted solution is
very different from shrink-wrapped software. It is important to defer coding until you have a
basic grasp of what you are trying to build.

Agile methods aren’t a license to go flying off in any direction. The admonition that an
agile team should have expertise in the problem domain is often underplayed. This require-
ment for experience allows advocates to underplay the role of planning, because if you’ve
built it once before, you’ve already invested the effort in planning once, and doing the same
thing again is a slam dunk. In the more interesting and challenging cases, this is not true. At
these times, it pays to sit down and think about the voyage you’re embarking upon and the
path that will take you to your destination. Failure to do this leads to failure.

I’ve been witness to an agile project that reached a dead end. The architecture the team
had evolved couldn’t cope with the new requirements. The team scrapped what they had
done, and they launched into the process of rewriting the application. Rather than building in
the desired architecture from the beginning, they dogmatically pursued the same evolutionary
process that they had used the first time. Unsurprisingly, they ended up at the same dead end
again. (To be fair, the outcome was foreseen by at least one Cassandra on the team, but she
was ignored.) Eventually, they dug themselves out, but at the expense of quite a bit of devel-
oper time.

This leads to a conjecture that some recent work supports: agile development methods
are excellent tools for producing locally optimal designs, but on their own they are insufficient
to produce globally optimal designs. Development techniques are no substitute for a thor-
ough understanding of the problem domain. You still need experts, and you still need to
comprehend the big picture.

What Are Agile Methods?
Agile methods are a collection of different techniques that can be used in conjunction to
achieve high software quality and accurate estimates of time and material with shorter devel-
opment cycles. The laundry list includes pair programming, user stories, TDD, refactoring,
simple design, rapid turnaround/short iterations, continuous integration, a consistent system
metaphor, on-site customers, collective code ownership, continual readjustment of the devel-
opment process, and believe it or not, documentation. The things relating to specific tools will
be covered deeply in this book, but those relating to process will only be touched upon lightly.

The first insight into agile methods is that all software development is software mainte-
nance. Feature development and feature maintenance are one and the same. Your software
should always be functional. It may not have the full functionality of the finished application,
but it should always be runnable and installable.

The second major insight is that source code is not a product. It is a blueprint for a prod-
uct. The final product is packaged object code, or in some environments live code running on
production hardware. What goes into the process is a design, and what comes out of the com-
piler or the interpreter is the product. A single project may in fact produce multiple programs
or multiple packagings for different architectures.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT?4

9810ch01.qxd 5/19/08 4:04 PM Page 4

This is a somewhat provocative statement, but there is a good deal of literature to back
it up.

It seems less absurd when you examine how other manufacturing processes are becom-
ing more like software. Once upon a time, design was only a small part of producing an ornate
steel scrollwork grill. Production required days if not weeks of work. The pattern was drawn or
scraped into the metal. The metal was heated, banged out, banged back into shape, and then
reheated. This was done over and over, and the process proceeded inch by inch. When com-
pleted, each edge had to be filed down to smoothness.

The process has gotten faster over the last 200 years. Oxyacetylene torches easily make
gross cuts, eliminating the need to heat and reheat. Angle grinders dramatically sped up the
filing process. Plasma cutters made gross cuts even easier; cutting steel with a plasma cutter is
like cutting warm butter with a steak knife, but it’s still a manufacturing skill requiring hand-
eye coordination.

Today there are computer-controlled cutting tables. You feed in a blueprint, load a sheet
of metal, and press a button, and a few minutes later the grillwork is complete. Design has
become the primary activity.

Writing software is not producing new features, but instead designing them. Similarly,
rewriting existing software is really redesigning old features. Every software developer is also
an architect. The two roles are one and the same. Producing software becomes an entirely
automatic process that is often maintained by specialists (often referred to as release
engineers).

So what are these methods about? Well, I’m going to start with one that I don’t cover else-
where in this book: pair programming.

Pair Programming
Pair programming is the most controversial of the bunch. Quite simply put, most program-
mers aren’t that productive. Let’s face it, programming is lonely, and we’re social creatures. So
programmers end up wasting half their day. They spend time reading e-mail, whether per-
sonal or company. They surf the Web. They fall into conversations with coworkers. To some
extent, they are just trying to engage with other human beings.

Working alone with a computer has a strange effect on the human mind. The computer
gives rewards and feedback, but it doesn’t engage our limbic system—that layer of gray matter
that distinguishes the mammalian brain from that of a reptile. It’s what allows us to be caring
parents and friends; it’s what lets us feel another’s pain or love. Frequently, programmers find
themselves in strange state of mind; many programmers I know refer to it simply as code
space. As a profession, we don’t talk about it much. It’s a place isolated from the rest of the
human race. It takes time to come back from code space, often hours, and those are the hours
that we have to spend with our families and friends.

Put two programmers together and their work becomes a social activity. They work
together. They don’t get stuck, they keep each other from being distracted, they don’t go into
code space, and they’re happier at the end of the day. At worst, you haven’t lost any productiv-
ity, and you’ve increased employee morale.

Pair programming arguably improves code quality. It works because it is a form of con-
stant code review. Code reviews are a process in which programmers review and make
suggestions about another developer’s code. Code reviews have been found to consistently

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT? 5

9810ch01.qxd 5/19/08 4:04 PM Page 5

decrease the number of bugs per thousand lines of code, and they have been found to be
more effective at doing this than any other single measure.

Pair programming transfers knowledge between team members. In typical development
environments, programmer-to-programmer learning is limited to brief exchanges. Those
exchanges may be meetings in the break room, conversations in the hall, or formal meetings.
In pair programming, the exchanges extend through the entire day. When people spend time
together asking questions, they get to know each other. They lower their barriers, and they’re
willing to ask stupid questions that they’d otherwise spend all day researching.

A bullpen layout is often used with pair programming to facilitate exchanges between
programmers. In a bullpen, there is no obstacle between you and the next person. There is
nothing to stand between you and the person to your left when you need to ask a question.
If you need help from someone who knows a given section of code, you can turn around and
ask them.

A word often used in conjunction with pair programming is collocation. It refers to teams
that are in the same location and can freely exchange ideas. It should be noted that a team
that shares a single floor or building is not necessarily regarded as collocated. If there are
physical barriers between programmers, then they are isolated. Walls impede the free
exchange of ideas and information. The classic barrier is the cube wall.

This immediately brings to mind an office brimming with noise and distractions.
Classically, these are death to programmer productivity, but in unpaired environments, pro-
grammers are trying to isolate themselves from other human beings. This isn’t the case when
pairing.

It’s not that excessive noise and distractions aren’t a problem with pair programming. It’s
that the programmers are engaged with their partners. As a species, we’re very good at carry-
ing on conversations with other people and ignoring our larger environment. When we’re
doing that, it takes much more to interrupt the flow of thoughts. Think of all the wonderful
conversations that people have in restaurants and cafes. We can play immensely engaging
games in such environments; chess and bridge come to mind. If the volume gets too high,
then concentration will break down, but the environment has to get really raucous for that to
happen. You want to work in a cafe rather than a night club, but that still leaves a wide range
of environmental choices.

In any development organization, there is a huge amount of information stored in the
heads of the developers. That knowledge will never be completely transferred to paper or bits.
To do so would take more time and money than is available. Think of the difficulty of main-
taining someone else’s code when they are no longer around. What they could answer in
seconds will take you minutes or hours to fathom out.

Code bases are full of questionable constructs. Pairing serves to spread the explanations
from person to person. In order to understand what one person is doing, the other has to ask
these questions.

Pairs are fluid. Programmers pair with different programmers every few days. This
spreads the knowledge around. Knowledge spreads like a virus. One person knows something
in the beginning. They pair with someone. Now two people know. They move on to different
pairs, and now four people now know. The more pairings you have, the more it spreads. This
protects the development group from the loss of any one programmer.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT?6

9810ch01.qxd 5/19/08 4:04 PM Page 6

■Caution Viruses spread like viruses too. Presenteeism and pair programming are a bad combination.
If you’re pairing and you get sick, then please go home and rest. The rest of us want to stay well.

All professions involve a large element of social learning. Lawyers and doctors have
internships in which they engage with mentors and peers. In some medical schools, people
work together in teams. Mathematicians, members of the classic loner profession, actually
spend a huge amount of time in front of blackboards hashing out ideas together. Coffee fuels
them, but it’s usually flavored with chalk dust. Pair programming recognizes our natural
strengths as social creatures and works with them.

User Stories
User stories are short descriptions of features to be written. They describe a small piece of
functionality that can be broken down into tasks whose durations can be quickly estimated.
They should fit on an index card (see Figure 1-1). They determine what we are going to pro-
duce. If it’s not in a user story, we shouldn’t be coding it. In a perfect world, user stories would
determine every feature that goes into the software.

Figure 1-1. Card with a user story

User stories are produced in conjunction with the customer. They are a distillation of
everything the customer knows. More importantly, they are the distillation of what the cus-
tomer wants and what can be produced by the programmers. It is important for programmers
and management to be involved in their creation, as they provide a technical check on cus-
tomers’ wild dreams. It is important that the dreams be those of the customer, though, as the
programmers probably don’t have as firm a grasp on the business problems as they’d like to
believe.

Some user stories are produced just by the development organization. These relate to the
internals of the software. They may describe a new data structure (say, a B-tree) or module
(perhaps an object store) to be created.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT? 7

9810ch01.qxd 5/19/08 4:04 PM Page 7

User stories alone are often insufficient to specify the software’s behavior fully. At those
frequent points where clarification and elaboration are required, the on-site customer should
be consulted. This results in a direct transfer of knowledge from the customer to the coder,
bypassing the interpretation that would be imposed by more formal documentation.

The principal difference between a user story and a use case is that the effort required to
complete a user story can be easily estimated.

The System Metaphor
The system metaphor allows you to talk about your design in a consistent and unambiguous
way. There is just one way that the code, the developers, the managers, and the customers talk
about the design. When everyone speaks the same vocabulary, meetings and discussions flow
smoothly. (We’ve all been in those interminable meetings where everyone goes back and
forth, confused over what a handful of words mean.)

The system metaphor should be used throughout the project. It should be used when dis-
cussing the project, in the user stories, and throughout the code base.

A variable or a function with a name that conflicts with the system metaphor should be
treated as a bug. There is a children’s game called telephone (also known as Chinese whis-
pers). In it, a group of children sit in a line or a circle. The person at the beginning whispers a
short phrase or sentence into the ear of the person next to them. That person repeats the
phrase to the next person, and this continues until the phrase reaches the end, where the last
person announces it. After the first person stops laughing at how far the phrase has been
transmuted, they tell the group what the starting phrase was. Rarely if ever does a phrase
make it through the line intact.

Naming things is a bit like the game of telephone. You look for a name that is close, dis-
tinctive, and appropriate. The further your base name is from the system metaphor, the
further your new names are going to be from that. The meaning drifts, and eventually it
becomes unintelligible to everyone except you. When someone returns to your code six
months from now, they’re going to be lost in the mess of unfamiliar terminology. That some-
one may be you. Therefore, names inconsistent with the system metaphor should be fixed
immediately, and you should refer to the system metaphor when even slightly in doubt.

Automatic refactoring tools in a modern IDE (integrated development environment) help
with changing names across the system. The process is almost magical. Chapter 7 will cover
the use of refactoring tools in the Eclipse IDE.

On-Site Customers
On-site customers allow you to get feedback from someone who will actually use the product.
Nothing tells you that a feature is off track as fast as a user saying, “What’s that for?” When you
have questions about what a user story means (of course, written in terms of the system
metaphor), you can get an answer from the customer rather than guessing.

Few specifications are ever complete, particularly when the specification is written on
3 ✕ 5 index cards. The job of the programmer is to turn rough specifications into precise and
unambiguous instructions. Much of that translation is based on knowledge about how the
computer works, but much of it is based on domain knowledge, and that knowledge belongs
to the customer.

Having a customer available saves the programmer from having to make guesses about
the domain. Making guesses is expensive. A wrong guess is a bug. It is a well-substantiated

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT?8

9810ch01.qxd 5/19/08 4:04 PM Page 8

observation that the further a bug makes it through the development process, the more
expensive it is to fix.

The customer also serves as broad functional QA. She gets to see things along the way.
She can catch situations where the developers and customer didn’t communicate quite well
enough. This prevents functional misapprehensions (bugs) from getting further into the
development process.

The customer and the development team should communicate using the system
metaphor. If they don’t, then confusion can ensue, and the developers can produce the
wrong thing.

Having the customer on site speeds up this process of interaction. The programmers don’t
have to wait for the customer to get back to them. If the programmers have to wait, then they
lose their train of thought or have to switch tasks. This takes time. The easier it is for the pro-
grammer to get hold of the customer, the more likely he is to do it.

In the real world, we sometimes have disagreeable customers, or customers who feel that
interacting with the development team is a distraction from their real work. Often they have
been burned in the past. Short iterations of work help with this because the customer gets
feedback. Good old-fashioned social engineering can help too. Never underestimate the
power of a random thoughtful gift.

The more familiar the programmers are with the customer, the more likely they are to go
to the customer for assistance. The more familiar the customer is with the programmers, the
more likely she is to be happy to offer assistance. It is important that the customer and the
programmers feel comfortable with each other. For this reason, among others, the customer
should be included in the development group’s work and social activities as much as possible.

Unit Tests
Unit tests are also called programmer tests. These are the tests that you write to verify the
operation of your code. These tests aren’t at the level of features. They are at the level of meth-
ods and functions. They allow you to check assertions during development, like, “If I pass in
an empty list, does this function raise an exception?” Or, “If I pass in an unknown user, does
this method return False?”

One of the joys of working with an interactive language is getting rapid feedback. You type
a command, and you can see its output. You can verify that it’s what you expected. You make a
change to a program, you run the program, and you can immediately see the result. In nonin-
teractive languages, you write a small program just to test the new functionality. You run the
test programs, and in your mind you check that the result is what you expect. You conclude
that the code worked, and you move on to the next chunk of code.

Unit testing formalizes that. You put all of those little test programs in a common place.
Instead of checking the results manually, you write code to check the results. You package all
of that up inside a harness to run the tests and report all their results. This way, you have a
record of everything that you expect the code to do, and you can verify conformance at any
point by rerunning the tests.

Unit tests should be pervasive. If your code isn’t being tested, then you don’t actually
know that it is working. You trust that it is working, but you have no precise means of verifying
this. Unit tests provide that means. They need to be pervasive because many bugs are non-
local.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT? 9

9810ch01.qxd 5/19/08 4:04 PM Page 9

Code in one section of the code base can interact with code in another section of the code
base. If you’re not testing the entire code base, then you can miss these far-flung effects. These
errors pile up, and soon you reach a situation that is referred to as “playing whack-a-mole.”2

The cause is often an underlying set of bugs elsewhere in the code. Pervasive unit tests let you
see all of the problems at once.

Unit tests should be run after every change. Bugs interact, and the number of interactions
doesn’t increase linearly. One bug doesn’t gives you one error. Two bugs don’t necessarily give
you two errors. They can give you four errors or more. Three bugs can give you eight or more.
This is where the whack-a-mole situation comes from. Every time you make a change, you can
introduce a bug. Running unit tests immediately after you make a change allows you to see a
new bug as soon as it is created and before it has a chance to interact with other bugs. Fixing
the bug is quick and cheap at that point. The more changes between runs of the unit test, the
harder it will be to fix the resulting bugs.

Unit testing intersects with regression testing. Regression tests identify bugs that have
been seen before and that have been fixed. Unit tests are a means of accomplishing regression
testing, but they serve a larger purpose. When writing new features, the primary goals of unit
testing are confirming expected behavior and identifying bugs resulting from the new func-
tionality. Unit test runs should be fast. If test runs take too long, then programmers won’t run
the tests as often. As noted previously, the less often the unit tests are run, the more errors will
accumulate. The more errors that accumulate, the more expensive they are to fix and the more
time is spent fixing them.

Unit tests shouldn’t be too pervasive. Each unit test has a maintenance cost associated
with it. If you change the code it tests, then the unit test will need to be changed. If more than
one unit test examines a section of code, then all of the tests will need to be updated. This can
quickly become onerous, and once it become onerous, developers will tend to stop maintain-
ing the tests.

Unit tests shouldn’t traverse code outside of the unit being tested. When this happens, a
change in one package can cause a cascade of unit test failures. All of these tests need to be
fixed before the test suite runs correctly again. A simple trip next door becomes an expedition.
Finally, limiting the number of tests and depth of their reach promotes fast unit test runs.
There are fewer of them, and they are doing less work.

In Python, we have many tools to assist with writing unit tests. Two of the most common
are unittest and Nose. I'll show these to you in Chapter 6. unittest, which is older, is based on
a classic design called xUnit. Knowledge of unittest will carry over to many other languages.
Nose subsumes unittest, and provides a mechanism for running many tests. I’ll show you how
these test frameworks can be automatically run both in the local development environment
and by automated build systems.

Mock object frameworks allow you to separate packages and classes from resources that
they depend on. Limiting the scope of your tests is much harder without them.

Test-Driven Development
Test-driven development (TDD) turns unit testing on its head. All programmers know what
they expect code to do before they write it; TDD makes these expectations concrete. It has a

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT?10

2. Named after the game where moles pop out of holes, and you whack them with a hammer as fast as
you can, but as soon as you do, they pop up somewhere else.

9810ch01.qxd 5/19/08 4:04 PM Page 10

unique yet satisfying rhythm. You write the test. You run the test, and it should fail. You write
the fragment of code being tested. You run the test, and now it should succeed. At every step,
you’re performing experiments to verify that your code operates as you expect.

TDD is done at a very fine granularity. You don’t write all of the tests for the program. You
just write the test for the next few lines. Many of these tests will be thrown away in the end
because they test intermediate states in the program’s evolution. Writing the tests at a fine
granularity results in methods that are very small and possess very limited functionality. The
same happens with classes.

At every step of the program’s development, you have to think about how you are going to
test the results. The data on which each method depends must be passed to that method as
part of the test. Each data transfer tends to take effort, so you tend to create fewer of them. You
have to test all the side effects, so you produce fewer of them. You have to test the classes in
isolation, so you produce lightly coupled classes.

In general, big nasty methods and classes produce big nasty tests. Writing nasty tests is
painful, so developers don’t do that. Writing cleaner code becomes the path of least resistance.
Simply put, designing for testing forces us to produce better code. And because we write the
test before writing the code, we end up with close to 100 percent testing coverage.

I took the opportunity to do an experiment at work once. I was working on two sets of
scripts—one was a new script, and one was maintenance on one of our nastiest, longest-
running, and most problematic pieces of code. I wrote the virgin scripts without TDD. I made
the overhaul of the nasty scripts using TDD. The nasty scripts ended up working fairly pain-
lessly on the first try, and subsequent changes were utterly painless. The new code wasn’t bad,
but it wasn’t nearly as robust. I would hate to see what it’s like today.

Refactoring
Refactoring is the practice of simplifying and clarifying code at every opportunity. It focuses on
changes that alter the structure of the code without altering the meaning. I find refactoring
quite fun, but it’s dangerous if you don’t have unit tests in place. Without unit tests, you don’t
know if you’ve unintentionally altered the meaning.

In some sense, refactoring is one of the most well-understood areas of software develop-
ment. It is described extensively in the literature. Refactorings have names and precise
definitions. Some refactorings are done with an eye to improving readability, some are done
with an eye toward removing redundancy and duplication (known to some as “the death of
code”), and some are done to improve modularity. Most are limited in scope.

Refactorings should be limited to small localized changes. Large refactorings tend to
affect many files, classes, and methods, and entail changes to many unrelated pieces of code.
They can break everything they touch, and they require rewriting many unit tests. I have per-
sonally seen a large one-shot reorganization go quite awry. It consumed over a week of a
medium-sized development organization’s time. Large reorganizations across the entire code
base are risky.

Refactoring is the daily bread of agile programming. It’s the primary tool in producing
simple designs. Whenever we encounter a chunk of code that doesn’t smell right, we refactor
until the smell goes away. I’ll cover refactoring in more detail in Chapters 6 and 7.

Refactorings are so well understood that many are downright mechanical in nature. As
such, they can be done with the assistance of tools. Most IDEs these days include tools to help
with refactoring. The tools are much better established in statically typed languages, since

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT? 11

9810ch01.qxd 5/19/08 4:04 PM Page 11

more of the structure and semantics of the code can be inferred, but tools for Python are get-
ting better. Eclipse running Pydev, which I’ll show you in Chapter 2, has some of the best
refactoring tools available for Python.

The presence of automatic refactorings is one of the primary reasons for switching to an
IDE; this alone nearly drove me to abandon Emacs for Eclipse. At first, you’re likely to be a
little put off by using them. They seem a bit clunky, but they’re worth persisting in and learn-
ing how to use correctly.

Simple Design
Simple design is about fulfilling the requirements of the user stories and no more. Your code is
the design, and the design should be as simple as possible, but no simpler. Simple design is
not an admonition that design is bad, or that some up-front design isn’t necessary. It is an
admonition that too much up-front design is bad. How much is a matter of judgment and
experience. Simple design encompasses a number of principles, many with cute acronyms.

The first principle is don’t repeat yourself (DRY). There should be one and only one source
of truth for any fact or assertion in your program. If there is more than one, then someone will
eventually end up changing one and not the other. And if they don’t catch that, then it can
lead to mysterious bugs, and in the worst cases it leads to architectural mistakes. Replicated
functionality is the death of good code. When you find duplicated code, refactor!

The second principle is you’re not going to need it (YAGNI). Useless code is expensive.
Every little feature and whiz-bang gizmo has a cost associated with it, and that cost carries
into the future forever. It makes the code base complicated. It derails your delivery schedule.
It keeps you from going running at lunch, makes you late picking up the kids, and delays you
from cooking dinner for your wife. Is that cool generalization of the argument-processing
code you might use the next time you reuse this code really worth it? Probably not. You can
write it when you actually need it three months from now. This afternoon, you’ve got better
things to do, like completing that user story and then playing in the snow with your sweetie.

The third principle is better raw than wrong. Simple, direct, blunt communication is bet-
ter than anything else. You should make your intent clear. Don’t mince words. Don’t look for
the most elegant way of saying things. Just say things simply and directly.

The fourth principle is do the simplest thing that could possibly work. You can make it
more complicated and robust later. That clever code is generally harder to maintain. It takes
more work to write, and it takes more work to test. It’s a waste of time. Make the unit tests
pass, and get on to the next feature. Be Hemingway, don’t be Melville (Melville was paid by
the word).

Collective Code Ownership
Collective code ownership is about who fixes what. It is based on the idea that individuals
should not maintain ownership of sections of code. It is one giant code base. When there are
problems, everyone should feel empowered to go right in and fix the code.

Having one or two people lording control over a code fiefdom transforms it into a bottle-
neck. We’ve all experienced this: it may be good code, and it may be bad code, but it’s not our
code. At one time or another, we’ve found a bug in someone else’s fiefdom. Or we’ve needed a
new feature. Or we’ve needed to interface to their fiefdom in a way that just wasn’t intended.
We need them to make a change, and they’re not available. They may be busy on a critical
project. They may be on vacation. They may not like us, and they may be exercising control.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT?12

9810ch01.qxd 5/19/08 4:04 PM Page 12

The only choices are to wait for them to become available or to fix the problem from the
outside. I’ve seen far too many warts accumulate because people didn’t want to dip into a
chunk of code. Many lines of logic could be created to handle erroneous results from a buggy
package when a one-line fix would be sufficient within the package itself. Sometimes argu-
ments have to be converted to strange formats and then converted back when it would be
easier to add a new input type to a case statement inside the module. Or even worse, an
entirely new framework has to be adopted because nobody wants to fix the performance
problems inside somebody else’s package. (Yes, I actually did see this happen. And it was a
two-line fix that needed to be made.) In every case, fixing the problem from the outside is the
wrong solution.

If everyone is making improvements to the code base as a whole, then the code base
shouldn’t go rotten. When a developer finds something that smells, they are authorized to find
that smell and fix it. They are not just authorized to do this; they are expected to. At every
opportunity, they are expected to refactor stale code that affects their current task.

Other agile practices facilitate collective code ownership. Pair programming breeds
familiarity with the code base as a whole. It forces programmers to give up sole control of
their fiefdoms. Unit tests allow you to make changes with confidence. Frequent refactorings
of the code base keep it from going smelly, and this encourages developers to continue to
maintain it.

Short Iterations
Short iterations serve multiple purposes. They allow you to deliver a working product to your
customer at regular intervals. They allow you to see how accurate your estimates are on a reg-
ular basis. Finally, they give you an opportunity to regularly reexamine your development
processes. You get to plan for the future and look back at the past while everything is still fresh
in your mind. Note that shorter iterations are not necessarily better. Time spans in the range
of two weeks to one month seem to be values that people work with successfully.

Producing a functional product on a regular basis allows your customer to judge the out-
come. Since you’ve produced a small number of features, the customer can examine all of
them quickly. The review’s coverage is complete. The review is kept short, so the customer is
fresh and observant all the way through. His feedback is likely to be detailed and thorough.
Miscommunications about his intent will be caught. He won’t get to the point where he’ll say,
“*O$#&! it, it’s good enough.” The customer will be more satisfied with the final product as a
result.

With a large number of features, some will invariably be skipped, and if they are not, the
review becomes a painful slog. People are likely to get tired and bored, and tired and bored
people get sloppy. Sloppy behavior results in inadequately reviewed features. Design bugs will
be missed, or features won’t be quite what was intended. These inadequacies will progress fur-
ther into the development cycles, and may eventually be released in production software. The
further they get into the development cycle, the more expensive fixing them will be.

If the iterations are short, there will never be a grand moment of shock for the customer
when she asks, “What on earth did you build? That’s not what I’ve asked for.” (It’s even less
likely if your customer was on-site and interacting with you.) There may be times when the
customer says, “That’s not quite what I asked for. How about doing it like this?” and she con-
tinues to describe what she needs.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT? 13

9810ch01.qxd 5/19/08 4:04 PM Page 13

The review should be a pleasant experience for everyone. Keeping the number of new
features to a minimum helps with this. The less pleasant a review, the more likely it is be put
off, and the less effort is likely to be put into it. Keeping down the number of reviewed features
keeps the review short and pleasant, and that keeps the customer happy.

In a classic waterfall process, estimates are made months out. On a ten-month project, a
20 percent underestimate is a two-month delay. This is the difference between finishing at
Halloween and being stuck at work for Thanksgiving, Hanukkah, Christmas, and New Year.

Agile projects make short-term estimates. On a two-week iteration, a 20 percent under-
estimate is only two work days. After the iteration is done, you get to produce another set of
estimates. The causes of your delays will have happened days ago. The events that are going to
happen in the next few weeks are likely to be known. Your estimates should be more accurate
because of this, and you’ll have many opportunities to learn from your misjudgments. Fewer
inaccuracies should creep in, and you’ll have many chances to tune the estimates before they
damage the project.

Compare this with long-term estimates. The causes of inaccuracies are likely to have hap-
pened months ago. It will be hard to remember them when trying to learn how to estimate for
the next project. You’re not going to get many opportunities to learn how to estimate either.
Many unforeseen events are likely to happen over the course of the new estimates, too. On a
one-year project, it’s likely that someone on your team may meet the love of their life, have a
midlife crisis, or have a close relative die. These will all impact the project estimates.

Having accurate short-term estimates allows development leads to combat scope creep.
When new features are requested, their effects on the schedule can be quickly and accurately
determined. Management can be presented with this information, and they can be given
options as to which features will have to be dropped in order to accomplish the new tasks. If
estimates have been fed back to management throughout the development process, then they
will have trust in the truth of these judgments. With long time spans between estimates, it is
too easy for management to lose touch with the realities of software development and the
direct effect that their actions can have on the process.

Iterations should produce a full product. All aspects of the production process should be
exercised. There should be a working build, the build should be packaged, and that package
should be deployed. It should go through all release tests, including load testing. If this has not
happened, then there are surprises waiting for you. In places where I’ve worked, these have
included

• A product that can’t be deployed to production.

• An online product that only supports a few users on massive production hardware.

• A massive online system in which nobody asked the question, “How do we bill
customers?”

All of these resulted in massive employee overtime and schedule slips. They were huge
emergencies, and they reflected very poorly on the development organization. Had any of
these projects used short iteration processes that moved from development through to pro-
duction deployment, then these issues would have been caught.

Producing short iterations depends on automation. This automation chain runs from the
developer’s desk to the production facility. Human interaction should only be required at
points where human judgment is required.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT?14

9810ch01.qxd 5/19/08 4:04 PM Page 14

Manual processes should be avoided, because they are error prone. We’re not built for
doing the same thing over and over again. We get bored, and when we get bored we make mis-
takes. Mistakes take time and effort to find and fix. This causes unpredictability in estimates
and scheduling.

Manual processes result in nonconformity. Each person invariably interprets instructions
in a slightly different way, and every person makes mistakes. The result is that manual
processes always introduce varying results. A netmask may be recorded incorrectly, the soft-
ware may be copied to the wrong directory, or files might be named in a way that subtly
invalidates chosen conventions. Automation must be able to cope with this variation, and this
is a daunting task. Some might say that it is an impossible task. The amount of work involved
in making the software flexible enough to handle these variations is often far larger than sim-
ply automating the manual processes.

People are slow. People are unpredictable. People are limited in the amount of work they
can perform. People don’t scale. Automation is how we get around these issues. Automation
itself has the potential to go horribly wrong, though, and this is why it has to be exercised as
part of the build process. The same automation should be used in development as is used in
production. That way, the build process itself verifies the integrity of the automation.

Much of this book is about building that automation chain. It shows how your develop-
ment environment can automatically run your tests. It shows how to build your changes
automatically, how to package your application, and how to upgrade your database schemas
repeatedly and reliably. All of these facilitate short iterations.

Continuous Reflection
Continuous reflection is the ongoing analysis of the development process. The development
process is not something that is set in stone. At every opportunity it should be subjected to
scrutiny and refined. There should be just enough process and no more. This reflection is
often done at the end or beginning of an iteration.

Process exists to coordinate activities between people. It has benefits, and it has costs.
Within an organization, it protects some parts from abuse by others, setting boundaries and
responsibilities. It provides a framework for communication, and it’s also the communication
itself, allowing large numbers of people to work together in ways that they might otherwise
not. At the grandest scale, there are international treaties and processes for dispute resolution
that coordinate certain activities for billions of people. At the other end are simple rules for
individuals greeting one another on the street.

Within a development organization, processes often set expectations between manage-
ment and development. They define who is doing work, what sort of work they are doing, how
that work will be performed, and when the work will be done. This gives a degree of pre-
dictability and transparency.

Process often exists to coordinate activities between groups. It lets QA know what devel-
opment intends to deliver. It lets development know when QA needs the first release. It lets
release engineering know when it should schedule a deployment test, and it lets system opera-
tions know when they should schedule the deployment. In these cases, it replaces clear
communication and personal relationships between groups. With large groups this is neces-
sary. With smaller groups it may not be.

It also gives each party a means of lowering their risks if something goes wrong. Even
though a project may fail, the documents mandated by the process can be used to show that

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT? 15

9810ch01.qxd 5/19/08 4:04 PM Page 15

expectations were met. When this happens, something is wrong with the organization. The
process has become more important than actual accomplishments.

Too much process is maddening. People can see when formal processes impede work
rather than facilitating it. They begin to resent the time they spend on the process, and it
becomes a point of frustration. If the process takes away responsibilities, then they often feel
powerless. They will feel even more powerless if they can’t alter or bypass the process. There is
little in the world that is as devastating to mental health as a high-stress environment in which
people feel they have little control.

At best, the onerous process will be circumvented and become nothing more than a small
waste of people’s time. At worst, it will become a point of contention that will breed employee
dissatisfaction and lead to turnover.

The only thing worse than too much process is no process at all. When no expectations
are set, when no procedures are defined, or when anything goes if you ask nicely enough, the
development process can run off the rails. People head in different directions. Individuals
become points of control, and losing them can then be devastating to the organization.

Agile development processes try to find the sweet spot between these two extremes, and
continuous reflection is the means. At the end of every iteration, the development teams look
at their processes. If something is giving benefit, then it can be kept. If it has more cost than
benefit, then it can be abandoned by the group. If there is not enough process, then the mini-
mal amount of process necessary can be self-imposed. There is clear discussion so that
everyone knows why the process exists and why it is retained. The team members are left
with a feeling of control.

Agile teams feel they can get away with less process. The focus on automation reduces
the number of people needed. That reduces the need for coordination. The frequent feedback
from the short iterations increases visibility into the development process. It also produces
more accurate estimates, increasing predictability. Pairing and collocation reduce the need for
formal exchanges and meetings. Thus the various agile processes compensate for the reduced
process load and, in doing so, actually accomplish some of the very goals that more formal
processes strive to achieve.

Continuous Integration
Continuous integration is one of the most general practices. Code lives in the source reposi-
tory. The longer your code is away from this repository, the further it will diverge from the
repository version. When the code is merged back in, you will find bugs. The odds of any two
changes conflicting go up nonlinearly, so the longer you wait, the more conflicts you will find.
Resolving conflicts will become more painful, and more unit tests will have to be rewritten.

The solution is checking your code into the repository as frequently as possible. Every
hour your code is out of the repository is another hour in which it can diverge from other
developers’ work. Every day your code is out of the repository means another day’s salary that
has been sunk into untracked changes. Should your machine crash, those changes will be lost,
and that money and (more importantly) development time will also be lost.

These submissions should not break the build, nor should they break the application.
Developers need to have a way to verify that they haven’t broken the build. They need to do
this in their development environment. The obvious choice is running the build and unit tests
locally. Optimally, this should be the same build that is run for production, as every difference
is a possible source of failure. The code should always compile, and all of the unit tests should
succeed before code is checked into the source code repository.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT?16

9810ch01.qxd 5/19/08 4:04 PM Page 16

There should be one source code repository for a project. All of the project’s code should
be checked in here. All artifacts necessary to produce the build should be included, too. This
includes build scripts, tool scripts, properties files, installation scripts, third-party libraries,
tests, and tool configurations (e.g., IDE configuration files).

The repository itself can enforce certain policy decisions. Submission triggers that vali-
date code can be placed in the repository. If a file is not successfully validated, then the code
submission will fail. Frequent validations include style analysis and syntactic analysis. With
Python programs, style analysis checks frequently verify correct whitespacing. Syntactic
analysis can be as simple as verifying that the file parses successfully. While the checks are
being performed, submissions to the repository are blocked, so submission validation does
not extend to significant functional checks.

Builds should happen automatically and as frequently as resources will allow. This is done
to discover bugs as soon as possible. At the very least, builds should be run nightly, but with
today’s computing resources, there is very little reason not to run a build whenever new
source code is added to the repository.

No human intervention should be necessary to go from source to finished and tested
product. The build system should check out a clean copy from revision control, and then build
from it. This ensures that the build does not depend on previously generated artifacts, and it
tests that the build can be done on a machine other than the developer’s desktop. This also
goes a long way to ensuring that any developer can sync the code tree down to a new
machine, issue a single build command, and have the build succeed. This allows desktops to
be replaced quickly in case of failure, and it helps new developers on a project to come up to
speed quickly.

The build should test all components, construction of the database, and initialization of
any external services. The build must run all of the unit tests. Any unit test failures should
cause the build to fail. I’ll argue that a minimal set of functional tests should be run, but these
may be restricted to certain kinds of builds. Often these are referred to as official builds.

Build failures should be quickly communicated to the team so that they can be quickly
fixed. Typically, this entire process will be done on dedicated build machines, so a remote
notification system should be used. This might be mail, chat, or some external means of noti-
fication (such as a lava lamp or a siren).

Much of this book focuses on continuous integration in Python. The package Setuptools
forms the core of a replicable build system in Python. It provides dependency management,
building, packaging, and a test harness. The testing package Nose will actually run the unit
tests. The unit tests will run both from the build and from within the Eclipse IDE. A set of
custom scripts will handle database management. The repository we’ll be using is called Sub-
version. We’ll validate Python source with Subversion triggers. Finally, we’ll set up a build
server using Buildbot.

Documentation
Documentation should be minimal. It should be limited to that which is necessary to ensure
that participants in the development process can communicate. You should probably keep
your system metaphor available somewhere. You should have the documentation necessary
so that your system can be used and maintained.

You do not need extensive design documentation. The code is the design. You don’t need
extensive commenting. The code and unit tests should be clear and readable. Extensive design

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT? 17

9810ch01.qxd 5/19/08 4:04 PM Page 17

documentation is the pinnacle violation of DRY. The impression of the design invariably falls
out of sync with the reality of the design.

These practices have a common focus. They are about predictability. They are about mini-
mizing waste, both in process and in design effort, and continuous feedback to identify the
sources of waste.

While it’s important to understand how these techniques fit together, we’re not going to
be looking at all of them. Our focus is going to be those agile techniques that are abetted by
supporting software. These areas are continuous integration, TDD, unit tests, refactoring, and
simple design. None of the products we’re looking at are commercial. Like Python, they’re
open source of one sort or another. These products (and the corresponding chapters they’re
covered in) are as follows:

• Eclipse (Chapter 2), an IDE

• Pydev (Chapter 2), a Python Eclipse component

• Subversion (Chapter 3), a revision control system

• Setuptools (Chapter 4), a build harness

• Buildbot (Chapter 5), a continuous build system

• Nose (Chapter 6), a test runner

• pMock (Chapter 7), a mock object framework

• PyMock (Chapter 7), another mock object framework

• SQLObject (Chapter 9), an object-relational mapper

• SQLAlchemy (Chapter 9), another object-relational mapper

• JSUnit (Chapter 10), a JavaScript unit testing tool

• PyFit (Chapter 11), a functional testing tool

Summary
In this chapter, I have introduced the methods that constitute much of agile development.
You’ve seen how they tie together and how they assist each other. Some of these methods
relate to process, but many have more to do with concrete programming practices. Some are
strictly developer tasks, and others are often seen as part of release engineering. By now, you
probably realize that many agile methods aren’t so alien. If you’re a professional developer,
you’ve probably used several of them, quite possibly automated builds and unit tests.

Much of what you will learn here can be taken back to work. If you decide to do that, then
be careful. The word agile scares some people. Even though the techniques are hardly earth
shattering in their novelty, the term has become a four-letter word in some places; it turns
people off immediately.

If you’re a developer, and you decide to bring an agile method into work, then treat it
like a strange and somewhat skittish pet. Bring it into work, show it around your desk, let
it become comfortable with its immediate surroundings, and let it interact with the local

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT?18

9810ch01.qxd 5/19/08 4:04 PM Page 18

environment. If it seems to be happy with you and your code base, then introduce it to some
of your more inquisitive coworkers. Let them play with your friend. When it becomes at home
and comfortable, see if it expands its home range on its own. Once it’s comfortably ensconced
in the new home, then bring in one of its friends in a similar way.

If you’re in management, it is often best to lead your team gently into the new practices.
While many find the prospect exciting, some will be skeptical. Saying, “We’re going agile now”
is a good way to lose face. Find a developer or team that is interested in trying out the tech-
niques. Choose a practice with a low barrier to entry and a high payback for the effort, and get
the developer or group to try it out as a pilot. There will be teething problems, so don’t talk it
up until the practice has proven itself. Changes are always most successful if the developers
believe they instituted the changes themselves. If the practice succeeds, make sure that the
developers involved get the credit. If it fails, take the responsibility yourself.

I use the command line for much of the material in this book but, whenever possible, I try
to present the same material within an IDE. too. You can certainly do agile development with-
out an IDE, but there are some tasks that are far more difficult. One that springs immediately
to mind is refactoring.

In the next chapter, I’ll show you the Eclipse IDE and how to set it up with the tools that
we’ll be using throughout the rest of this book.

CHAPTER 1 ■ WHAT IS AGILE DEVELOPMENT? 19

9810ch01.qxd 5/19/08 4:04 PM Page 19

9810ch01.qxd 5/19/08 4:04 PM Page 20

The IDE: Eclipsing the
Command Line

There are two main ways you can work with Python: through the command line or through
an IDE. Both have their distinct advantages and disadvantages. I’m not going to give short
shrift to either, but this chapter is mostly about using the Eclipse IDE to work with Python.

To truly take advantage of agile development methodologies, chances are you’re going
to want to use an IDE. IDEs offer a range of features that are at best poorly implemented in
command-line tools. A short list includes a wealth of code navigation features, intuitive auto-
completion, refactoring support, revision control integration, automatic builds, polished
debugging, integration with unit testing tools, language-aware editors, jobs contexts, and
ticket system integration. All of these features are useful, but when integrated they deliver
more than the sum of their parts.

I’ve chosen the Eclipse IDE for the purposes of this book. Eclipse has a number of things
going for it. It’s free, it’s widely used (I’ve seen it in most companies I’ve visited), and it’s avail-
able on just about any platform you could desire (I’m almost certain that it will run on HP
calculators these days). It’s extensible, and it has Python support. It also has a few features
that others lack, notably a job system called Mylyn (formerly known as Mylar—the name has
changed, but the functionality remains the same). It also has a plug-in architecture that allows
users to write custom extensions.

WHAT IS A JOB MANAGEMENT SYSTEM, AND WHY DO I NEED ONE?

A large project will have hundreds or thousands of files. Typically, each task that you work on will have only a
small subset of these open at a time. You’ll be working on a few tasks on and off, and you may have to go
back and forth between them. These tasks will have few if any files in common, so you’ll either end up with
many tens of editors open or spend a great deal of time opening and closing them to keep your workspace
clean.

Even though you’ll have many files open, you’ll typically only reference a few classes or methods.
Eclipse offers navigation panes to help locate specific program elements such as files, classes, methods, and
functions; but when working with a large program, finding a specific element is still troublesome. It’s a bit
like finding one particular piece in a big box of Lego parts.

21

C H A P T E R 2

9810ch02.qxd 5/15/08 11:04 AM Page 21

Mylyn addresses both of these issues. It defines tasks, which represent units of work. These tasks may
be defined locally, or they may reference external tickets in a defect-tracking system such as Bugzilla or Jira.
One task is active at a time. Mylyn tracks program elements as you work on them, and it associates these
with the active task. This collection of elements is referred to as the context.

When you activate a new task, the current task is deactivated. All of the editors associated with it are
closed, and all of the editors associated with the newly activated task are opened. It also restricts navigation
panes to show only those packages, directories, files, classes, methods, and functions that are associated
with the active task. This filtering is turned on and off on a pane-by-pane basis by toggling an icon in the
pane’s menu bar.

In addition to context, tasks also have associated planning information. This information includes prior-
ity, severity, and scheduling data such as expected delivery date. Although not perfect, Mylyn is a major
innovation in IDE interfaces.

A large ecosystem has grown up around Eclipse and its plug-in architecture. There are
plug-ins for just about every imaginable task. Examples include style checking, C and C++
compilers, database tools, revision control, web server integration, spelling, and hundreds of
others.

The plug-ins I’m interested in showing are Mylyn, Pydev, Pydev Extensions, Subversive,
and SQLExplorer. Eclipse is natively a Java development environment. Pydev is a free plug-in
that teaches Eclipse to work with Python. Pydev Extensions is a commercial addition to Pydev
that does even more, and I find it well worth the small price. Subversive allows Eclipse to work
with the Subversion source code repository, making simple revision control tasks almost
transparent. Finally, SQLExplorer lets you browse and query databases and their schemas. I’ll
come back to Subversive in Chapter 3 and SQLExplorer in Chapter 9, but for now we’re going
to look at Pydev.

From all the glowing statements I’ve made, you might get the impression that Eclipse is
the only game in town. It’s not. There are a number of other good choices out there. Most are
not free, but they are comparatively low cost. The ones worth noting are Wingware’s Wing IDE
(www.wingware.com/), ActiveState’s Komodo (www.activestate.com/), and in the Microsoft Win-
dows world, the .NET development environment. I wish I could include JetBrains IntelliJ IDEA
in here, but until someone produces a mature Python plug-in for it, we’re out of luck.

Eclipse feels a little clunky compared to these others. It has all the features of its competi-
tors, but the interface is a little less polished. Having made my disparaging comments, I’m still
going to use Eclipse. There are mind-boggling numbers of plug-ins available, and with the
right ones, it does what you’ll need it to do.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE22

9810ch02.qxd 5/15/08 11:04 AM Page 22

http://www.wingware.com
http://www.activestate.com

Installing Eclipse
Having decided on Eclipse, the first step is to get it onto your system. Eclipse lives at
www.eclipse.org/. The download URL (as of this writing) is www.eclipse.org/downloads/.
You’ll want to get the package called Eclipse Classic. This gives you the kitchen sink.

■Warning The Pydev plug-in can’t cope with spaces in the workspace path, so you should ensure that it
does not contain any.

Start Eclipse once you’ve downloaded and installed it. When Eclipse starts up, it will ask
you for a workspace location (as shown in Figure 2-1). This is the directory tree in which
Eclipse will store all of its data. The workspace isn’t a shared resource, so it should be within
your home directory. It should be easily backed up, easily remembered, and quickly accessible
from the command line. I personally choose the default. (On my Mac, that’s /Users/jeff/
Documents/workspace.)

Figure 2-1. Selecting the workspace root

Eclipse will grind for a while as it starts up and creates your workspace. It will bring you to
the initial landing page, shown in Figure 2-2. This page only shows up until you’ve created a
project, so you won’t see it very often.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE 23

9810ch02.qxd 5/15/08 11:04 AM Page 23

http://www.eclipse.org
http://www.eclipse.org/downloads

Figure 2-2. The startup screen, which you probably won’t see again

On the right side is an arrow heading into the distance. This takes you to the workbench.
The workbench is where everything happens in Eclipse. It is shown in Figure 2-3.

Now that you can see what Eclipse looks like, it’s time for some explanation of the major
pieces. Within the workbench are perspectives. Perspectives are dedicated to some particular
kind of task. Examples include Java development, debugging, source code repository, and
plug-in development. The perspective is indicated in the tab at the top right of the window.
By default, Eclipse opens into the Java perspective.

The little glyph to the right of the Java indicator allows you to select a different perspec-
tive. Once you open a perspective, it stays active, and its icon stays in the tab. By default, the
tab is a little small. As you switch between perspectives to perform different tasks, it will
quickly fill up, making it harder to switch back to previously used perspectives. You can rem-
edy this by grabbing the tab’s left edge and dragging it further to the left, making room for
additional icons. This demonstrates a general principle of Eclipse’s interface: pretty much
everything can be moved or rearranged.

The smaller panes are called views. Views do specific functions within a given perspective.
Examples are showing console output, viewing outlines, and editing files. You can rearrange
the views to your heart’s content. You can do this by grabbing the tab and dragging it to
another spot within the perspective, or you can drag it onto the desktop, and it will become
a free-floating window.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE24

9810ch02.qxd 5/15/08 11:04 AM Page 24

Figure 2-3. The empty workbench

We’re working in Python, so the Java perspective isn’t going to do us much good. We need
a plug-in that teaches Eclipse to work with our language. This plug-in is called Pydev. We could
hop into installing Pydev right away, but it has some features that depend on another plug-in
you’re eventually going to want to use. That plug-in is called Mylyn. It is absolutely generic in
its installation, so it makes a good example. The process for installing Mylyn and Pydev is
much the same.

Installing Plug-Ins
Eclipse plug-ins are published on little web sites known as update sites, and are very easy to
install. You give Eclipse the URL for an update site, and it sucks down the plug-in and installs
it. Be careful though—don’t confuse the web site for a plug-in with its update site. The web
site for Mylyn is www.eclipse.org/mylyn, while the update site is located at http://download.
eclipse.org/tools/mylyn/update/e3.3.

Start the installation process by selecting Help ➤ Software Updates ➤ Find and Install.
This brings up the Install/Update window, shown in Figure 2-4.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE 25

9810ch02.qxd 5/15/08 11:04 AM Page 25

http://www.eclipse.org/mylyn
http://download

Figure 2-4. The first screen of the Install/Update wizard

Select “Search for new features to install,” and then click Next. The resulting dialog, shown
in Figure 2-5, lets you add a new update site.

Figure 2-5. Choosing features to install

Click the New Remote Site button on the right. This takes you to a dialog with two fields
(shown in Figure 2-6).

Figure 2-6. Creating a new feature

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE26

9810ch02.qxd 5/15/08 11:04 AM Page 26

Fill them in as shown in the figure, and click OK. (Note that the URL is bigger than the
window and has been cropped a bit.) You’ll be taken back to the Install window, as shown in
Figure 2-7.

Figure 2-7. Choosing the newly created Mylyn update site

The Mylyn site should be highlighted. When you click Finish, Eclipse will download all of
the selected updates.

Eclipse will grind for a moment or two while it queries the update site. Assuming that it is
successful, it will bring you to the Search Results screen, shown in Figure 2-8.

It’s possible to have more than one result, so you have an opportunity to select which
plug-ins you want to install (and which parts of which plug-ins if you so desire). Select Mylyn,
as shown in the Figure 2-8, and click Next. This takes you to the Feature License screen, shown
in Figure 2-9.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE 27

9810ch02.qxd 5/15/08 11:04 AM Page 27

Figure 2-8. Choosing from the (only) returned update site

Figure 2-9. Accepting the license agreements

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE28

9810ch02.qxd 5/15/08 11:04 AM Page 28

Read the license agreements, and if you agree, click “I accept the terms in the license
agreements.” Then click Next. That will take you (finally) to the Installation screen, shown in
Figure 2-10.

Figure 2-10. The components will be downloaded.

The Installation screen gives you a chance to change where the components are located.
Don’t be tempted. Click Finish, and Mylyn will start downloading and installing. You’ll see the
dialog shown in Figure 2-11.

Figure 2-11. The update downloading

The installation will progress for a while. At some point, the process will halt, and you will
see the window shown in Figure 2-12.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE 29

9810ch02.qxd 5/15/08 11:04 AM Page 29

Figure 2-12. Verifying the unsigned plug-in

This screen is called Feature Verification, but it’s really complaining about the Mylyn
package being unsigned. You should get used to this. While cryptographic signing of features
is a neat idea, it doesn’t happen much. Just click Install All.

A few windows will flit by as Mylyn is installed, and once it’s complete, Eclipse will ask if
you want to apply the changes or restart (see Figure 2-13).

Figure 2-13. Installation complete

Choose Yes to restart Eclipse. When it restarts, it will go to the Eclipse overview, which is
shown in Figure 2-14. In the middle of the top bar is the folder over arrow, which will take you
back to the workspace. Go there and rejoice in your new accomplishment. Your Eclipse instal-
lation has just grown a new capability, even if you haven’t used it yet.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE30

9810ch02.qxd 5/15/08 11:04 AM Page 30

Figure 2-14. The Overview screen after the installation has completed

Installing and Configuring Pydev
Mylyn is installed once Eclipse restarts. Installing Pydev is the next step. The Pydev web site is
http://pydev.sourceforge.net/. The Pydev update site is http://pydev.sourceforge.net/
updates/. Follow the same procedure as with Mylyn.

Once Pydev is installed, it must be configured. Out of the box, it doesn’t know where
Python is located, so the first step is configuring the Python interpreter. If you’re on Linux,
then the Python interpreter will probably be located in /usr/bin/python; if you’re on OS X, it
will probably be located in /Library/Frameworks/Python.framework/Versions/2.5/bin/python;
and if you’re on Windows, it will probably be in C:\Python25.

There are three steps. First, open Window ➤ Preferences ➤ Interpreter ➤ Python. Second,
enter the path you previously chose. Third, choose the paths to be in your System Python
path. You should not select folders that will be used in your project, but when starting out, that
shouldn’t be a problem. By default, it only checks the correct paths, so you’ll only need to
worry when you start doing more complicated things.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE 31

9810ch02.qxd 5/15/08 11:04 AM Page 31

http://pydev.sourceforge.net
http://pydev.sourceforge.net

■Note The Python path is a series of directories that are searched when packages are imported. The
PYTHONPATH variable contains additional directories that are searched.

When you click OK, it should process through the libraries very quickly, and you should
find yourself back at the Python Interpreters screen (shown in Figure 2-15).

Figure 2-15. The Python interpreters have been set.

The system PYTHONPATH box has been filled in with the values from the browser, and so has
the “Forced builtin libs” box. You should see “__builtin__” and a slew of other libraries with
underscore-prefix names.

When you click OK, you’ll see a window entitled Progress Information, and you’ll watch a
thousand or two module names go flying by as Pydev builds its cache.

Your First Project
At this point, you can start working on a project. Choose File ➤ New ➤ Project. From there,
you can select Pydev ➤ Pydev Project. You should see the window shown in Figure 2-16.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE32

9810ch02.qxd 5/15/08 11:04 AM Page 32

Figure 2-16. Starting a new project

Enter agile in the “Project name” field. Choose “python 2.5” from the list of project types.
(For those of you wondering about the “jython 2.1” option, Jython is a Java-based Python
interpreter. I’m not using it in this book.) The final option, labeled “Create default ‘src’ folder
and add it to the pythonpath?” should remain checked.

Source folders are Eclipse directories that contain code. They are automatically added to
the Python interpreter’s path. To do any development, you need at least one in your project,
but it is possible to leave this box unchecked. If you do, then you’ll have to add the directories
later. You could click Next at this point to reference code in other modules, but we’re not doing
that in our current project, so click Finish, which will return you to the workbench, as shown
in Figure 2-17.

On the left-hand side in a pane entitled Pydev Package Explorer, you’ll now see a blue
folder entitled agile. If you open it, you’ll see the src folder inside. (You should also note that,
up in the right-hand corner, the active icon in the perspective tab shows you are in the Pydev
perspective.)

Now you’ve done the grunt work of setting up a project, and you’re at the point where you
can start working with Python. You’re going to create a Python class called examples.hello.
world.Greet. Pydev calls library directories packages, and it calls source files modules. You’ll
create the package structure, and then create the module.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE 33

9810ch02.qxd 5/15/08 11:04 AM Page 33

Figure 2-17. The workbench with your new project

Right-click the src directory and select New ➤ Pydev Package. This brings up a window
with two fields, as shown in Figure 2-18.

Figure 2-18. Creating a new project

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE34

9810ch02.qxd 5/15/08 11:04 AM Page 34

The two fields are Source Folder and Name. Source Folder is already filled in with
/agile/src, and Name is empty; enter the package name examples.greetings as shown previ-
ously, and then click Finish. This creates the named packages and all of the __init__.py files,
and takes you back to the workbench, as shown in Figure 2-19.

Figure 2-19. The new packages have been created.

Now you’ll create the module examples.greetings.standard. Right-click the greetings
package in the Package Explorer on the left side of the workspace. Select New ➤ Pydev Module.
That will bring up the (unnamed) module creation window, shown in Figure 2-20.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE 35

9810ch02.qxd 5/15/08 11:04 AM Page 35

Figure 2-20. Choosing the module name

The window has three fields: Source Folder, Package, and Name. The first two are filled in
for you. Enter standard into the Name field, and then click Finish. You will be taken back to
the workbench, which should look something like Figure 2-21.

Figure 2-21. The module has been created.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE36

9810ch02.qxd 5/15/08 11:04 AM Page 36

You’ll notice that standard.py shows up in the Package Explorer on the left, and that the
editor in the center pane is open to this file. Click into that window and enter the following
program:

#!/usr/bin/python

class HelloWorld(object):

def main(self):
print "Hello World!"

if __name__ == '__main__':
HelloWorld().main()

You’ll notice several things while you type, the most interesting of which is that Pydev
makes guesses about what you’re about to type. In the case of the def main, it makes the cor-
rect guess, but it doesn’t move the cursor. You can either continue typing, or you can accept
Pydev’s guess by pressing Ctrl+Enter. After you enter and save this text, the workspace will
look something like Figure 2-22.

Figure 2-22. The HelloWorld class has been created.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE 37

9810ch02.qxd 5/15/08 11:04 AM Page 37

As you typed, Pydev also updated the Package Explorer on the left and the Outline view
on the right. You can use both to navigate through your program. Double-clicking any node in
the Package Explorer opens an editor for the corresponding file. The cursor is positioned at
the point in the program that the node in the explorer represents. The Outline view to the right
shows the elements corresponding to the currently active editor. Clicking any element in the
Outline view will also take you to the corresponding definition.

Running the program is easy. Right-click inside the text editor, or from the context menu
select Run As ➤ 4 Python Run. The program’s output will appear in a Console view at the bot-
tom of the workspace. You can also bring up the same menu by right-clicking the standard.py
module in the Package Explorer window.

Looking Under the Hood
Many external tools interact with the code stored in Eclipse. In order to work with them, it is
necessary to understand how Eclipse lays out its directories. To begin, you'll need to change
directories to the root of your Eclipse workspace; on my machine, it is ~/Documents/workspace.
From there, we’ll go on a brief tour. (My machine’s name is phytoplankton and my username
is jeff.)

phytoplankton:~ jeff$ cd ~/Documents/workspace
phytoplankton:~/Documents/workspace jeff$ ls -aF

. ./ ../. .metadata agile/

The directory .metadata contains all of your Eclipse preferences and system-wide config-
uration data. We really don’t care much about the details of this directory. The directory agile
is of more interest. It contains the project that we are working with, so we’ll take a look inside
there.

phytoplankton:~/Documents/workspace jeff$ cd agile
phytoplankton:~/Documents/workspace/agile jeff$ ls -aF

./ ../ .project .pydevproject src/

Besides the ubiquitous . and .., there are three filesystem entries here: two files and one
directory. The file .project contains the Eclipse configuration information for the project. The
file .pydevproject contains the project configuration information for Pydev. Both are XML
files, and they are specific to the project.

■Note Under the UNIX filesystem, every directory has two subdirectories. The directory named . (one
period) is the current directory. The directory named .. is the parent directory. These are shown, but they
are ignored during this discussion.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE38

9810ch02.qxd 5/15/08 11:04 AM Page 38

The directory src is the source folder you defined when the project was created. It con-
tains the Python packages and modules that you defined. They’re just normal Python library
directories with __init__.py files and .py files.

phytoplankton:~/Documents/workspace/agile jeff$ cd src
phytoplankton:~/Documents/workspace/agile/src jeff$ ls -aF

./ ../ examples/

phytoplankton:~/Documents/workspace/agile/src jeff$ ls -aF examples

./ ../ __init__.py greetings/

phytoplankton:~/Documents/workspace/agile/src jeff$ ls -aF examples/greetings

./ ../ __init__.py standard.py

These are just normal Python files organized just like you’d expect. If you set the
PYTHONPATH to the root of the source directory (~/Documents/workspace/agile/src) you can
develop from the command line using the same files. In fact you’re going to be doing that
often in the coming chapters.

Paying for More Functionality
At this point, I’d suggest trying out Pydev Extensions. If you end up using Eclipse for Python
development (as I hope you do), then it is a worthwhile investment. It gives you a number of
features missing from the free version of Pydev, most of them relating to much-improved code
analysis. Notably, it includes a much better “go to definition of function” feature for navigating
your code.

Pydev uses an external program (Bicycle Repair Man) that has trouble with class methods,
but Pydev Extensions improves upon this. It does real-time code analysis, and its results are
superior to those of vanilla Pydev. It offers auto-management of imports and much better
code completion. It offers a wider variety of refactorings and the ability to do remote debug-
ging. I could go on, but I’ll let you explore on your own.

The extensions have a 30-day free trial. They continue working after the trial is over, but
they nag you every couple of hours, suggesting that you should buy a copy. The nagging isn’t a
hindrance to your work, but it is sufficiently annoying that you’ll probably give in and buy the
software just to make the messages go away. The web site for Pydev Extensions is http://
fabioz.com/pydev/. The download site is www.fabioz.com/pydev/updates/. The extensions
install from the update site, just as with Mylyn and Pydev.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE 39

9810ch02.qxd 5/15/08 11:04 AM Page 39

http://fabioz.com/pydev
http://fabioz.com/pydev
http://www.fabioz.com/pydev/updates

Summary
Eclipse is an increasingly popular IDE that offers many advantages over the command line. It’s
free, and it has an open plug-in architecture that is being exploited by many component pro-
ducers. There are plug-ins available for a plethora of purposes, many of which are relevant to
this book.

Plug-ins are easily loaded from within Eclipse itself. You’ve done this with several so far.
Mylyn is the most detailed example of the procedure, but more significantly we’ve installed
the Pydev plug-in and configured it.

Pydev turns Eclipse into a Python development environment. It acts as a sophisticated
wrapper around the system Python installations. It includes everything users have come to
expect from an IDE, providing structural browsers, integrated editors, and code completion.
It has a number of features that haven’t been examined, as well. These include unit testing
support, an integrated graphical debugger, remote debugging, and refactoring support.

There is a slew of additional features that are added by Pydev Extensions. It’s free for
30 days, so it’s worth looking at. If you decide the features aren’t worth the money, then you
can turn Pydev Extensions off again through the plug-in management screens.

Now that I’ve introduced a basic working environment, I’ll examine revision control and
source repositories. Revision control is the technology that underlies the agile practice of
continuous integration. The source repository is where file revisions are stored, and it is the
location where all the group’s development work resides. It is the means by which members’
changes are integrated on a daily basis, and it serves as the source of all truth for the code
base. Users get the most recent code from here, and so does all of the build automation.

Subversion is the revision control system examined in this book. It’s free, and it’s in com-
mon use. It’s a favorite with developers, and it is far superior to its predecessor, CVS. It can be
run locally or as a remote service. In the next chapter you’ll learn how to use it both from the
command line and from within Eclipse using the Subversive plug-in.

CHAPTER 2 ■ THE IDE: ECLIPSING THE COMMAND LINE40

9810ch02.qxd 5/15/08 11:04 AM Page 40

Revision Control: Subverting
Your Code

A t one point or another in your days as a developer, chances are you’ve mistakenly deleted
an important file. It happens. Sometimes the problem is worse than you thought; for instance,
you might not even be sure what files you deleted. Or perhaps your brilliant idea for a new fea-
ture has horribly broken the code base. Making matters worse, your changes were spread
across multiple files, and now it’s unclear how to return to the previous state. Version control
can remedy all of these problems by coordinating the life cycle of all files in your project,
allowing you to not only recover mistakenly deleted code, but actually revert back to earlier
versions.

Version control can go well beyond simple file management and recovery, though; it also
plays a crucial role in managing changes made in environments where multiple developers
might be simultaneously working with the code. Sure, each of you could make copies of the
code base and yell over the cubicle wall, “Hey, I’m working on tools.py right now, don’t touch
it.” But sooner or later, you’ll nonetheless overwrite each other’s changes. It gets worse when
you’re not within earshot, or even the same time zone.

Revision control helps this situation by acting as a moderator and a single source of truth.
Either by gating access or merging changes, it prevents you from stepping on each other’s toes.
Revision control keeps track of what changes were made, and further, it keeps track of who
made them.

Revision control also lets you work on multiple versions of the code at the same time,
allowing you to test out that ambitious new feature without interfering with the stable version.
This encourages all sorts of efficiencies, allowing one developer to add new features for an
upcoming release while another developer works on security fixes for the current release.
When you are ready, the changes can be merged back together.

The benefits of coordination aren’t limited to humans, though. You can configure your
build process to execute against the source repository and cause the build to begin anew any
time somebody checks in new code.

You can also use revision control to enforce policy. For instance, you can prevent users
from checking in changes to certain branches of the tree, analyze code before allowing it to be
submitted, ensure that all Python code has proper whitespacing, or require that all Python
files are syntactically correct. All of this is made possible by revision control.

Subversion is one of the most widely used revision control systems available. In this chap-
ter, I’ll show you how to use Subversion to manage your code on your local machine, both
from the command line and from within Eclipse via the Subversive plug-in. The examples

41

C H A P T E R 3

9810ch03.qxd 5/15/08 11:09 AM Page 41

include such common operations as adding, editing, and removing files, but they also include
operations that don’t immediately spring to mind. Among these are comparing your local
changes with those in the revision system, retrieving others’ work from the repository, and
resolving conflicts between changes you have made and changes that others have made.

Revision Control Phylum
We can look at revision control systems in a couple of broad aspects. The most significant of
these is distributed vs. centralized. Another is availability. Is the repository available locally or
remotely? I’m not even going to mention revision control systems that are local. Many of the
practices in this book are intended to scale up to multiple machines, so a local repository just
doesn’t work for us.

Centralized revision control systems have been around forever. They access a single logi-
cal repository that is physically stored on one or more systems. Most commercial systems are
centralized, and centralized systems seem to be the most mature. Examples of centralized
revision control systems are CVS, Visual SourceSafe, Subversion, Perforce, and ClearCase.

Distributed revision control systems are the new kid on the block. To date, their most
highly visible implementations have been related to operating system kernel development.
Both Linux and Solaris use the distributed repository Git, which was created to support devel-
opment of Linux. Examples of distributed revision control systems are Darcs (darcs.net/),
BitKeeper (www.bitkeeper.com/), Mercurial (www.selenic.com/mercurial/wiki/), Git (git.or.
cz/), and Bazaar (bazaar-vcs.org/). They’re pretty cool in some conceptual ways, but many
release engineering professionals look on them warily. Despite their complexities, kernels are
still simple and well-understood entities compared to many enterprise systems, and distrib-
uted version control systems have yet to prove themselves in the more complicated enterprise
environments.

If you look on the Web, you’ll see vociferous arguments about which kind of revision
control system is better. Much of this seems to be driven by people’s experience with CVS.
Advantages are touted for distributed revision control that when examined closely boil down
to “Our software doesn’t suck like CVS.” Claims are made about branch creation, labeling, or
merging that boil down to “CVS did it like this. CVS is a centralized revision control system.
Therefore, all centralized revision control systems do it like this.” Examples of where this logic
is applied include branching and merging. Almost never are the free systems compared to the
commercial systems.

The commercial systems are impressive. In general, they’re more mature and feature rich
than the free systems. They offer administrative controls and reporting that is missing from
the free systems. They do branching and merging well, too. Perforce particularly shines in this
area, and its integration tools are impressive. However, we’re not going to be using Perforce in
this book.

We’ll be using Subversion. The choice is driven by a number of factors. First, Subversion is
widely used. As with Eclipse, there is a large ecology of tools associated with it. The tools we’ve
worked with and will be working with later easily integrate with it. And it’s free.

Subversion supports atomic commits of multiple files. There is a global revision counter
allowing you step back to any specific point in the repository’s history. It supports labeling and
branching. If some of these terms don’t make sense to you right now, they will shortly.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE42

9810ch03.qxd 5/15/08 11:09 AM Page 42

http://www.bitkeeper.com
http://www.selenic.com/mercurial/wiki

What Subversion Does for You
Subversion stores your code on a central server in a repository. The repository acts much like a
filesystem. Clients can connect to the filesystem and read and write files. What makes the
repository special is that every change ever made to any file in the repository is available. Even
information such as renaming files or directories is tracked.

Clients aren’t limited to looking at the most recent changes. They can ask for specific revi-
sions of a file, or information like, “who made the third change last Thursday?” This is where
the real utility of a revision control system comes from.

A user checks out code from the repository, makes changes of one sort or another, and
then submits those changes back to the repository. Multiple users can be doing this at the
same time. Two or more users can check out the same file and edit it, and when the file
changes are submitted, they’ll have to resolve any conflicts. This resolution is called merging.

The overall process is called edit-and-merge. Contrast this with the other approach, called
exclusive locking. In this scheme, only one person gets to have a file open for edit at any time.
While it saves the possible work of merging changes, it can bring development to a halt. It
turns out that in practice, edit-and-merge is the least disruptive.

What happens if two users try to submit changes at the same time? One goes first. In Sub-
version, groups of files are submitted together. The submissions are a single atomic action.
While CVS has interfaces that allow you to submit multiple files at once, each file is an individ-
ual submit. Two users can submit sets of files, and their changes will be interleaved. This can
never happen with Subversion.

Subversion maintains a global revision counter that is incremented with every submis-
sion. It increases monotonically, and it can be thought of as describing the state of the
repository at any point in time. While it may not seem like much, having this counter is
remarkably useful for labeling builds and releases.

Subversion stores working copies of the files on your disk. It stores the the information
describing these working copies on your local system too. This contrasts with other systems
that store this state on a server. Subversion doesn’t need to contact the server to find out the
current state of your files, allowing you to work remotely without a network connection. The
bad news is that you must be connected to rename or copy files, which takes away from
the joy.

The local state is stored in directories named .svn (just like CVS uses .cvs directories).
There is one in every directory checked out from Subversion. Many refer to these directories
as “droppings.” The .svn directories carry virgin copies of all files in your working copy. This
way, the more frequently invoked commands, such as diff and revert, can be run without
accessing the central repository.

Frequently, there is a need to work on multiple differing copies of a project. Consider a
software product that has an installed base of users. At most points in a software product’s life,
there will be multiple activities going on. Some developers will be working on new features for
upcoming releases. Other developers will be working on high-priority repairs for customers
who have already installed the product. The new features will destabilize the codeline and
often mask the bugs that are reported by customers. They’ll also introduce many new bugs,
particularly early in the development cycle. High-priority bug fixes must be made to code that
mirrors the release code as closely as possible so that the customer doesn’t receive a version of
the product that is broken in yet more new and interesting ways.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 43

9810ch03.qxd 5/15/08 11:09 AM Page 43

Sadly, both the new development and bug fixes must be performed simultaneously. This
is done by creating copies of the program. One copy is used for the new work, and the other is
used only for the bug fixes. These copies are referred to as branches. Branches are independent
but related copies of a program. A new branch can be made whenever simultaneous but con-
flicting changes must be made to a program.

In practice, managing branching is one of the primary jobs of a revision control system.
As branches proliferate, it is necessary to have some way of referring to them. This is done
with labels. Labels are names attached to branches at a particular point in time. They let you
precisely and concisely specify a version of a program.

The new release will require the bug fixes from the maintenance branch, so the branches
will need to be recombined. This process is called merging. This is an important part of branch
management. Merging takes the changes from one branch and combines them with another
branch. A surprisingly large part of the process can be automated, and the results work a sur-
prisingly large percentage of the time, but ensuring that they work requires good tests, and the
process almost always requires some developer intervention.

Subversion supports branching—that’s the good news. The bad news is that merging sup-
port is very new. It was just added in version 1.5, and it has yet to be widely deployed.

That brings us to labeling. Subversion supports labeling. Kinda. Labeling is just branching
to a different place. The good news is that we have the global revision counter, which allows us
to bypass labeling to some degree.

Getting Subverted
The first step is installing Subversion. Subversion is available from http://subversion.tigris.
org/. If you’re running on Linux and you installed your system with development tools
included, then the odds are good that you’ve already got Subversion installed. If Subversion
is not installed, chances are that packaged binaries can be located for your system at
http://subversion.tigris.org/project_packages.html, and if worse comes to worst, the
source code is also available there.

Once Subversion is installed, the first step in creating your repository is initializing the
database on your Subversion server:

phytoplankton:~ jeff$ svnadmin create /usr/local/svn/repos

This creates the Subversion database in the directory /usr/local/svn/repos. There are
two ways of storing this information. One is on the filesystem, and the other is in Berkeley DB
database files. The default is within the filesystem, and unless you have good reason to do
otherwise, I suggest taking the default. You can find more information in Practical Subversion,
Second Edition, by Daniel Berlin and Garret Rooney (Apress, 2006). The directory structure
that will be created looks something the following:

$ ls -F /usr/local/svn/repos

README.txt dav/ format locks/
conf/ db/ hooks/

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE44

9810ch03.qxd 5/15/08 11:09 AM Page 44

http://subversion.tigris.org/project_packages.html

■Note You may need to create the directory /usr/local/svn before you can run this command, and you
may also need to set your permissions appropriately. I had to change ownership to my own account. If I were
running this in production, it would be owned by the svn user.

Subversion repositories can be accessed in multiple ways. The path to and within the
repository is specified using a URL (see Figure 3-1). The URL scheme (the part before the first
colon) specifies the access protocol. This can be through the local filesystem, HTTP or HTTPS,
SSH, or Subversion’s own protocol.

The scheme you use will depend on the server that you’re accessing. The easiest is the file
protocol. It can only be used when you’re on the same machine as the Subversion server. The
HTTP and HTTPS protocols require the use of Apache. You gain a huge amount of flexibility in
access control by using Apache, but the setup is more complex. The Subversion protocol is
somewhere in between. It uses a dedicated server that is very easy to set up, and it offers some
level of access control. The protocol is faster than using HTTP or HTTPS for large projects.
We’re going to be using the file protocol for the examples in this section of the book.

Figure 3-1. Parts of a Subversion URL

The process of loading a project into Subversion involves several steps. The first is the
creation of a repository, which you’ve already done. A repository can hold any number of proj-
ects, and these projects can be organized in any number of ways. You have to decide how
you’re going to do that. Then you have to create those directories, and finally you’ll be able to
import the project into Subversion.

In most working environments, there are multiple projects within a single repository. This
requires some level of organization. Generally, these projects have a mainline containing the
gold version of the code. They have a number of branches where conflicting work is performed,
and they have a place for tags. (Tag is Subversion’s term for a label.) By convention, the main
codeline is stored in a directory called trunk, branches are stored in a directory named
branches, and tags are stored in a directory named tags. We’ll stick with that convention.

There are two common conventions for organizing projects. One is project major, and the
other is project minor. In project major, each project has its own trunk, branches, and tags
directories. In project minor, the repository has top-level trunk, branches, and tags directories.
Beneath each of these is a directory for each project, as shown in Figure 3-2.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 45

9810ch03.qxd 5/15/08 11:09 AM Page 45

Figure 3-2. Project major and project minor organization

I prefer project major organization. It makes it easy to identify what belongs to a project,
it makes access control easier to manage, and it allows you to move your project about with
very few commands. Our project is named agile. With project major organization, our directo-
ries structure will look like this:

/usr/local/svn/repos/agile
/usr/local/svn/repos/agile/trunk
/usr/local/svn/repos/agile/branches
/usr/local/svn/repos/agile/tags

You create this with the command svn mkdir. Once you’ve created the directories, you
can look at them with the svn list command:

phytoplankton:~ jeff$ svn mkdir file:///usr/local/svn/repos/agile \
-m "creating the internal organization for the project 'agile'"

Committed revision 1.

phytoplankton:~ jeff$ svn list file:///usr/local/svn/repos/agile
phytoplankton:~ jeff$ svn mkdir \ file:///usr/local/svn/repos/agile/trunk ➥

file:///usr/local/svn/repos/agile/branches \ file:///usr/local/svn/repos/agile➥

/tags -m "creating the internal organization for the project 'agile'"

Committed revision 2.

phytoplankton:~ jeff$ svn list file:///usr/local/svn/repos/agile

branches/
tags/
trunk/

Now you can import the mainline into the depot. This is done with the import command.
The import command takes three arguments:

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE46

9810ch03.qxd 5/15/08 11:09 AM Page 46

file:///usr/local/svn/repos/agile
file:///usr/local/svn/repos/agile
file:///usr/local/svn/repos/agile/trunk
file:///usr/local/svn/repos/agile/branches
file:///usr/local/svn/repos/agile�
file:///usr/local/svn/repos/agile

• Agile is the imported directory.

• The file: URL is the destination in trunk.

• The -m option is the commit comment.

The contents of the directory agile will be loaded into the Subversion trunk. The direc-
tory agile itself will be omitted:

phytoplankton:~ jeff$ cd ~/ws
phytoplankton:~/ws jeff$ svn import agile \
file:///usr/local/svn/repos/agile/trunk \
-m "Initial import of our the 'agile' trunk"

Adding agile/.project
Adding agile/src
Adding agile/src/examples
Adding agile/src/examples/__init__.py
Adding agile/src/examples/greetings
Adding agile/src/examples/greetings/__init__.py
Adding agile/src/examples/greetings/standard.py
Adding agile/.pydevproject

Committed revision 3.

phytoplankton:~/ws jeff$ svn list \ file:///usr/local/svn/repos/agile/trunk

.project

.pydevproject
src/

You have imported the .project and .pydevproject files that Eclipse created. These files
are as important as any other source files. As you create larger and more complicated projects,
these files will contain more and more information that you don’t want to lose. When a devel-
oper checks out a file from Subversion the first time, they will be able to import it directly into
Eclipse. They’ll be working on the code rather than figuring out how get the code to build
under Eclipse.

Working with Your Subverted Code
At this point, you’ve imported your code into Subversion, but you don’t have a working version
on your local machine. You can’t add new files, edit files, delete files, or update from the repos-
itory until you get a local copy.

Your local copy can’t be pulled directly into your workspace directory. Subversion will
detect that the files already exist. You need to do one of two things: either move aside your
current project directory or pull the code down into your existing directory. In this case,
choosing a new project is what you’ll do next:

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 47

9810ch03.qxd 5/15/08 11:09 AM Page 47

file:///usr/local/svn/repos/agile/trunk
file:///usr/local/svn/repos/agile/trunk

phytoplankton:~/ws jeff$ svn checkout \ file:///usr/local/svn/repos/agile/trunk ➥

hello

A hello/.project
A hello/src
A hello/src/examples
A hello/src/examples/__init__.py
A hello/src/examples/greetings
A hello/src/examples/greetings/__init__.py
A hello/src/examples/greetings/standard.py
A hello/.pydevproject
Checked out revision 3.

phytoplankton:~/ws jeff$ ls -la hello

total 16
drwxr-xr-x 6 jeff jeff 204 Oct 2 18:51 .
drwxr-xr-x 5 jeff jeff 170 Oct 2 18:51 ..
-rw-r--r-- 1 jeff jeff 359 Oct 2 18:51 .project
-rw-r--r-- 1 jeff jeff 307 Oct 2 18:51 .pydevproject
drwxr-xr-x 8 jeff jeff 272 Oct 2 18:51 .svn
drwxr-xr-x 4 jeff jeff 136 Oct 2 18:51 src

The first thing to notice is the .svn directory. Each directory checked out from Subversion
will contain one. This is where Subversion stores information describing the state of your local
system. It contains a record of each file that has been checked out and a copy of that file.

You’ve already seen how to perform a few common operations. You’ve made directories in
the repository; you’ve listed the contents of a directory; and you’ve looked at the contents of a
file. I’ll run through the rest of the operations you’ll routinely perform with Subversion. These
are the operations that every user needs. They include the following:

• Examining your working copy

• Adding a file

• Deleting a file

• Reverting a file

• Committing changes

• Editing a file

• Comparing a file against the repository

• Updating your working copy

• Resolving conflicts during a submission

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE48

9810ch03.qxd 5/15/08 11:09 AM Page 48

file:///usr/local/svn/repos/agile/trunk

These operations form the core of what you’ll be doing from day to day. They will carry
over almost directly to the Eclipse interface. We’ll start by examining the files.

Examining Files
There are two commands that are used to examine the state of your workspace. They are svn
info and svn status. svn info works on individual files and directories. svn status works on
your workspace as a whole. svn status is used more frequently than svn info, but there are
times when you need information that is only available through svn info, so we’ll start there.

phytoplankton:~/ws jeff$ cd hello
phytoplankton:~/ws/hello jeff$ svn info

Path: .
URL: file:///usr/local/svn/repos/agile/hello
Repository Root: file:///usr/local/svn/repos
Repository UUID: 74a71bd7-8c3b-0410-b727-f8ad94e0a8f0
Revision: 3
Node Kind: directory
Schedule: normal
Last Changed Author: jeff
Last Changed Rev: 3
Last Changed Date: 2007-10-02 18:46:37 -0700 (Tue, 02 Oct 2007)

phytoplankton:~/ws/hello jeff$ svn info .project

Path: .project
Name: .project
URL: file:///usr/local/svn/repos/agile/hello/.project
Repository Root: file:///usr/local/svn/repos
Repository UUID: 74a71bd7-8c3b-0410-b727-f8ad94e0a8f0
Revision: 3
Node Kind: file
Schedule: normal
Last Changed Author: jeff
Last Changed Rev: 3
Last Changed Date: 2007-10-02 18:46:37 -0700 (Tue, 02 Oct 2007)
Text Last Updated: 2007-10-02 18:51:35 -0700 (Tue, 02 Oct 2007)
Checksum: 97703150e87f434355444a9f07b6750b

Notice that Subversion tracks the directory itself. This is reported in the Node Kind field.
This differs from some other version control systems that only track files. The really important
field here is Revision. It lets you know what edition of a file the system thinks you have. You
can get this information for all files using the svn status command.

Run without arguments, svn status reports changed files that have not been committed.
You have no changed files at this moment, so it would report nothing. You’re interested in
seeing the verbose output, which shows all files. You turn this on with the -v flag:

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 49

9810ch03.qxd 5/15/08 11:09 AM Page 49

file:///usr/local/svn/repos/agile/hello
file:///usr/local/svn/repos
file:///usr/local/svn/repos/agile/hello/.project
file:///usr/local/svn/repos

phytoplankton:~/ws/hello jeff$ svn status -v

3 3 jeff .
3 3 jeff .project
3 3 jeff src
3 3 jeff src/examples
3 3 jeff src/examples/__init__.py
3 3 jeff src/examples/greetings
3 3 jeff src/examples/.../__init__.py
3 3 jeff src/examples/.../standard.py
3 3 jeff .pydevproject

You can’t tell easily, but there are a number of blank fields ahead of the first numbers. The
four remaining fields are the working revision, the head revision, the author committing that
head revision, and finally the path to the file. This information will become more interesting
as you work. Now that you know how to look at your workspace, you can move on to making
changes.

Adding Files
Suppose that you’ve created a new file named src/examples/common.py, and you want to add
this file to the repository. You do this with the svn add command. It works pretty much as
you’d expect. We’ll look at its effects using the svn status command:

phytoplankton:~/ws/hello jeff$ svn add src/examples/common.py

A src/examples/common.py

phytoplankton:~/ws/hello jeff$ svn status

A src/examples/common.py

phytoplankton:~/ws/hello jeff$ svn status -v

...
3 3 jeff src/examples

A 0 ? ? src/examples/common.py
3 3 jeff src/examples/__init__.py

...

Notice that status -v shows an A, which denotes a file to be added. It shows that the
current revision is 0, which denotes that there’s no revision on the client and that the head
revision and head author don’t exist. This demonstrates something important about Subver-
sion. Adding a file doesn’t immediately add the file to the repository. It adds it to the list of
pending changes. In SVN parlance, this is known as scheduling an add for commit. You have to
use svn commit to complete the addition.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE50

9810ch03.qxd 5/15/08 11:09 AM Page 50

phytoplankton:~/ws/hello jeff$ svn commit -m "Adding common code for all greetings"

Adding src/examples/common.py
Transmitting file data .
Committed revision 4.

phytoplankton:~/ws/hello jeff$ svn status -v

...
3 3 jeff src/examples
4 4 jeff src/examples/common.py
3 3 jeff src/examples/__init__.py

...

Now that the change is committed, you can see that the file has been added to the reposi-
tory. The file was committed in revision 4, and you have that revision in your working copy.

Copying and Moving Files
Unlike several other revision control systems, Subversion has simple commands for copying
and moving files. These commands maintain revision history and ancestry between the
source and destinations. We’ll copy common.py to shared.py:

$ cd src/examples
$ svn copy common.py shared.py

A shared.py

$ svn status

A + shared.py

$ svn commit -m "Copying common.py to shared.py"

Adding examples/shared.py

Committed revision 5.

You’ll notice that svn status returns A +. The + indicates that revision history is being
maintained from the original to the copy. A similar process happens with a move:

$ svn move shared.py unshared.py

A unshared.py
D shared.py

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 51

9810ch03.qxd 5/15/08 11:09 AM Page 51

$ svn status

A + unshared.py
D shared.py

$ svn commit -m "Moving shared.py to unshared.py"

Deleting examples/shared.py
Adding examples/unshared.py

Committed revision 6.

In this case, there are two changes that are performed. The line beginning with A + indi-
cates that unshared.py was added while maintaining history, and the line beginning with D
indicates that the original file shared.py was deleted.

This is also the first time you’ve seen multiple changes at once. Unlike CVS, both of these
changes are performed in a single atomic transaction. At no point is there a moment where
both files exist. To the outside world, it is as if the copy and delete happened simultaneously.

Deleting Files
The svn delete command schedules files for removal. The svn status command shows these
prefixed with D. These changes become permanent when they are committed.

$ svn delete common.py unshared.py

D common.py
D unshared.py

$ svn status

D common.py
D unshared.py

$ svn commit -m "Removing common.py and unshared.py"

Deleting examples/common.py
Deleting examples/unshared.py

Committed revision 7.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE52

9810ch03.qxd 5/15/08 11:09 AM Page 52

Reverting Changes
Now is a good moment to examine what is happening on the file system when we delete a file.
We’re going to delete __init__.py. Don’t worry too much, though—we’re going to resurrect it.

$ ls

__init__.py greetings

$ svn delete __init__.py

D __init__.py

$ svn status

D __init__.py

$ ls

greetings.py

The important thing to notice at this point is that the operation has already taken place
on the filesystem. Subversion makes the changes to the working copy before they are commit-
ted to the repository. Your working copy is what the repository will look like after you commit
your changes. Now we’re going to undo those changes:

$ svn revert __init__.py

Reverted '__init__.py'

$ svn status
$ ls

__init__.py greetings

As you can see, __init__.py has been restored to the working copy. This resurrected copy
was pulled from the .svn directory contained within the working directory. The delete was
also removed from the pending changes listed by svn status. revert works for all kinds of
local changes, including adds, copies, moves, deletes, and modifications.

Modifying a File
Making changes to existing files is the real meat of daily work. It is not necessary to explicitly
open a file in Subversion. All files are considered to be fair game for editing. We’ve made some
changes to the file src/examples/greetings/standard.py. svn status shows that we’ve modi-
fied the file:

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 53

9810ch03.qxd 5/15/08 11:09 AM Page 53

$ svn status

M greetings/standard.py

The M indicates that the file has been modified. This is determined by comparing the
working copy with the stored revision in one of the .svn directories. Because it is performed
against a locally stored copy, you can run this even if you’re disconnected from the server. You
can find out what changes were made by using the svn diff command:

$ svn diff greetings/standard.py

Index: greetings/standard.py
--- greetings/standard.py (revision 7)
+++ greetings/standard.py (working copy)
@@ -1,6 +1,7 @@
#!/usr/bin/python

class HelloWorld(object):
"""Simple hello world example"""

def main(self):
print "Hello World!"

The diff shows that the comment """Simple hello world example""" was added. As with
the status request, the diff is done against the locally stored copy, and it can be performed
even when disconnected from the server. If you were dissatisfied with the changes, you could
revert them using svn revert, but you’re satisfied, so you commit it:

$ svn commit -m "Adding doc string to HelloWorld"

Sending examples/greetings/standard.py
Transmitting file data .
Committed revision 8.

Updating Your Working Copy
Outside of your local development environment there will be multiple people working with
the repository. The code will be changing. The longer your project stays out of the trunk, the
further it will diverge from the code in the repository. It is important to get these changes into
your working copy. It is best to do this before committing changes. This is done with the svn
update command.

Now suppose that someone has edited the file standard.py since you did. Another devel-
oper modified the file and it was committed as revision 9. You can find this out using the
command svn status -u:

$ svn status -u

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE54

9810ch03.qxd 5/15/08 11:09 AM Page 54

* 8 src/examples/greetings/standard.py
Status against revision: 9

This shows that your working copy of standard.py is out of date. This is indicated by the *
in the first column. The 8 indicates that you have revision 8, and the line Status against
revision: 9 indicates that revision 9 is the most recent revision.

You can look at the differences using svn diff -r BASE:HEAD. This shows all the differing
files reported in svn status -u.

$ svn diff -r BASE:HEAD

Index: src/examples/greetings/standard.py
===
--- src/examples/greetings/standard.py (working copy)
+++ src/examples/greetings/standard.py (revision 8)
@@ -4,6 +4,8 @@

"""Simple hello world example"""

def main(self):
+ """Someone else added a comment here"""
+

print "Hello World!"

if __name__ == '__main__':

You can pull down the most recent revision with the svn update command. With no argu-
ments, this pulls down all updates to your working copy.

$ svn update

U src/examples/greetings/standard.py
Updated to revision 9.

Conflicting Changes
Now I’ll make a change to standard.py. It will return an exit code upon completion. The new
lines are displayed in bold.

#!/usr/bin/python

import sys

class HelloWorld(object):
"""Simple hello world example"""

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 55

9810ch03.qxd 5/15/08 11:09 AM Page 55

def main(self):
"""Print message and terminate with exit code 0"""

print "Hello World!"
sys.exit(0)

if __name__ == '__main__':
HelloWorld().main()

While this change was made, another developer submitted revision 10. Revision 10
changes the doc string for main().

$ svn commit -m "Exit codes are explicitly returned"

Sending src/examples/greetings/standard.py
svn: Commit failed (details follow):
svn: Out of date: '/agile2/trunk/src/examples/greetings/standard.py' in ➥

transaction '10-1'

This is the usual way that you’ll discover something has changed. You’ll try to submit and
it will fail. Nothing has changed on the filesystem, though. You’ve just been warned that the
commit couldn’t happen. You can use the commands svn status -u and svn diff -r
BASE:HEAD to see what has changed.

There is another command that lets you look at the changes to be committed. This com-
mand is svn log -r BASE:HEAD. It shows the changes between the base revision (from your last
update) and the head revision in the repository:

phytoplankton:~/ws/agile jeff$ svn log -r BASE:HEAD

--
r9 | doug | 2007-10-09 13:08:23 -0700 (Tue, 09 Oct 2007) | 1 line

Added doc string to HelloWorld.main()
--
r10 | doug | 2007-10-09 13:08:25 -0700 (Tue, 09 Oct 2007) | 1 line

Updated doc string for HelloWorld.main()
--

svn status will show that standard.py is the only file that changed, and svn diff will
show that the comment is correct. Now you have to merge the changes together. You do this
with the commands svn update and svn merge:

phytoplankton:/tmp/am1/src/examples/greetings jeff$ svn update

C standard.py
Updated to revision 10.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE56

9810ch03.qxd 5/15/08 11:09 AM Page 56

This brings down the most recent changes, as before—but notice the status line for
standard.py. It begins with C, which indicates a conflict. You have to resolve the changes. Sub-
version has created four versions of the conflicting file that will be helpful in this process.

phytoplankton:/tmp/am1/src/examples/greetings jeff$ ls

__init__.py standard.py standard.py.mine
standard.py.r10 standard.py.r9

• standard.py is the candidate merge.

• standard.py.mine is the version that I just made.

• standard.py.r9 is the virgin working copy before I made my changes in
standard.py.mine.

• standard.py.r10 is the conflicting head revision.

The really important file here is standard.py, the candidate merge. The other files exist for
use with external diff tools.

In the candidate merge, Subversion has spliced together your version and the head revi-
sion. Lines that have changed in one but not the other have been added to the file. The
changed lines replace the unchanged lines. Generally, changes that don’t overlap lines don’t
overlap in functionality, so simply splicing in the changed sections is a surprisingly effective
algorithm for automatically merging code. The resulting code functions in most cases. In fact,
it’s eerie how often the merged code results in a functioning program.

The problem arises with lines that have changed in both files. There’s no automatic way to
merge together these conflicting blocks. When this happens, Subversion defers to the devel-
oper’s judgment. The conflicting blocks of lines are both included in the merge candidate
standard.py. They are separated with markers indicating their source. Your copy is first, and
the head revision is second. It is up to you to make the appropriate changes.

$ more standard.py

#!/usr/bin/python

import sys

class HelloWorld(object):
"""Simple hello world example"""

def main(self):
<<<<<<< .mine

"""Print message and terminate with exit code 0"""
=======

"""Someone updated the doc string"""
>>>>>>> .r10

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 57

9810ch03.qxd 5/15/08 11:09 AM Page 57

print "Hello World!"
sys.exit(0)

if __name__ == '__main__':
HelloWorld().main()

You’ll edit standard.py until it looks like you want it to, and then you’ll tell Subversion that
the merge is complete using the command svn resolved. Once Subversion knows that you’ve
resolved the conflicting files, you can submit the changes.

$ vi standard.py

[... resolve conflict manually...]

$ more

#!/usr/bin/python
...

def main(self):
"""Print message and terminate with exit code 0"""

print "Hello World!"
...

$ svn resolved standard.py

Resolved conflicted state of 'standard.py'

$ svn commit -m "Exit codes are explicitly returned"

Sending greetings/standard.py
Transmitting file data .
Committed revision 11.

Merging code can be one of the more onerous tasks. The longer between merges, the
more changes accumulate. The more changes that accumulate, the more likely conflicts are to
arise. The more conflicts you have at any one time, the more work to be done when merging.
The more changes that have been made, the likelier functionality is to break, too.

The key to keeping merges simple is to merge often. The agile practice of continuous inte-
gration is based on this observation. Updating your code from the code base should be done
daily if not more often. Your changes to the code base should also be committed daily if not
more often. This eliminates the painful and error-prone integration phase from development.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE58

9810ch03.qxd 5/15/08 11:09 AM Page 58

There are times when those merges, no matter how small, will result in incorrectly func-
tioning code. A comprehensive automated test harness can catch these errors. The agile
practice of comprehensive unit testing provides this safety net.

Merging using a text editor can be one of the more confusing things to be done, particu-
larly with more than one or two conflicts. Along with reporting status information, this is an
area where GUI tools and slick interfaces come into their own.

Subverting Eclipse
Eclipse talks to revision control systems. In Eclipse terminology, a project under revision
control is a shared project. Revision control plug-ins are referred to as team providers. The
team provider we’ll be using is called Subversive. The Subversive web site is located at
www.polarion.org/index.php?page=overview&project=subversive, and the update site is
located at www.polarion.org/projects/subversive/download/1.1/update-site/. There are sev-
eral optional components in this package that depend upon other plug-ins that you may not
have installed. By default, they are selected. In order to install Subversive, you must either
install these plug-ins or deselect the optional components.

■Note Subversive is likely to become the standard Subversion team provider for Eclipse, and by the time
you read this, it may ship with Eclipse.

Sharing Your Subverted Project
There are several ways of getting your project into Eclipse:

• Importing directly from Subversion.

• Importing a project that has already been checked out via the command line.

• Sharing a project that has already been checked out.

• Exporting your project directly to Subversion.

• Adding sharing to a project that has not been yet been checked out. (Sadly, this is
broken for file:/// URLs in Subversive.)

You’re going to import your project directly from Subversion. This is the most frequent
way that you’ll operate. It ensures that you have a clean environment, and it’s easy to do. In
Chapter 2, you set up Eclipse with your test project, named agile. You imported that project
into Subversion, checked it out in another location, and made a number of changes. Those
changes are in Subversion, but they’re not in the workspace for agile. When you import the
project, you’re going to choose to overwrite that project.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 59

9810ch03.qxd 5/15/08 11:09 AM Page 59

http://www.polarion.org/index.php?page=overview&project=subversive
http://www.polarion.org/projects/subversive/download/1.1/update-site
file:///URLs

You can import your project directly from Subversion because the .project file is checked
in. The .project file contains the name of the project. This makes it a little trickier to import
multiple versions of the same project, but it goes a long way toward ensuring that every devel-
oper has a consistently named environment. There is often a deep desire to customize project
names, but consistent naming becomes important in projects where many developers work
together. This is particularly true with pair programming. In such situations, developers will
end up working on someone else’s machine at least half of the time. Having to figure out the
local namings adds unnecessary hassle and often subtly frustrates one of the pair.

Importing from Subversion
Once you’ve installed Subversive and restarted Eclipse, you can import from the repository.
Select File ➤ Import, which will bring up the Import project window, shown in Figure 3-3.

Figure 3-3. Importing an existing project

Select SVN ➤ Projects from SVN, and then click the Next button. This will take you to the
repository selection screen, shown in Figure 3-4.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE60

9810ch03.qxd 5/15/08 11:09 AM Page 60

Figure 3-4. Checkout from SVN

If a repository had already existed, then you could select it from the list. Since you’ve
never accessed this repository location before, you’ll have to create a new one. Choose the
“Create a new repository location” radio button, and click Next. This takes you to the screen
shown in Figure 3-5, where you’ll define the repository location.

Figure 3-5. Defining the repository location

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 61

9810ch03.qxd 5/15/08 11:09 AM Page 61

You should fill in the URL with the path to the local repository, which is file:///usr/
local/svn/repos. File repositories require almost no additional information, so no extra work
needs to be done. If you were using SSH, HTTP, or HTTPS as transports, then you could con-
figure authentication information at this point. For HTTP and HTTPS, a proxy server can also
be defined. The one relevant tab is labeled Advanced. It allows you to configure settings for
repository structure determination.

Once you’ve filled in the URL as pictured, click Next, which will take you to a repository
browser, as shown in Figure 3-6.

Figure 3-6. Selecting the agile project’s trunk

Note the glyphs beside “trunk,” “branches,” and “tags.” Subversive understands the
common conventions used with Subversion. If you’re importing and exporting projects, Sub-
version often makes the correct guess about project major vs. project minor organization. The
revision numbers are beside each node.

You’re going to import the trunk. Select “agile” ➤ “trunk,” and then click Finish. Eclipse
now gives you an opportunity to decide how you’re going to import your project. The window
is shown in Figure 3-7.

There are two options available. One is checking out as a project into an existing folder.
This might make sense in a project where multiple repositories are being used. You might use
this at a company where documentation and source code are kept in different parts of the
repository or in different repositories. (I’m not a fan of separating code from documentation,
but I’ve seen it done on more occasions than not.)

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE62

9810ch03.qxd 5/15/08 11:09 AM Page 62

file:///usr

Figure 3-7. Checking out the project

The other option is checking out the project as a new project with the specified name. At
this point, you could rename the project, but you won’t be doing that. You’ll choose the default
name “agile” and clobber the existing project. As noted earlier, this name is extracted from the
.project file in Subversion. Click Finish. Subversive detects the impending clobbering, and
gives you an opportunity to back out. The open window is shown in Figure 3-8.

Figure 3-8. Verifying that you want to overwrite the agile project

At this point, you definitely want to overwrite the existing agile project. Check the “agile”
check box and complete the importation by clicking OK. For a few seconds, you’ll see a
progress bar as the projects are reshuffled and the new project is imported. You’ll then return
to the workbench, as shown in Figure 3-9.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 63

9810ch03.qxd 5/15/08 11:09 AM Page 63

Figure 3-9. The workbench with the agile project imported

Activity has happened in the Console view and in the Pydev Package Explorer view. The
Console view shows the output from the Subversion checkout. Subversive gives a verbose
accounting of its actions. It shows both the command-line equivalent of the operation it
performed and the output from the operation. You could replicate its operations on the
command line if you wanted to.

The Pydev Package Explore looks different than before. Beside the project name is the
URL of its repository. Beside each node is the revision number, and each icon has a small
yellow glyph that indicates that the node is shared from Subversion. Other team providers
use other glyphs. Additional glyphs show up to indicate other status changes. Those will be
covered in the next section of this chapter.

Working with a Subverted Eclipse
Many operations in Eclipse are directly tied to Subversion. Deleting a module or package
under Subversion control will delete the file from Subversion. Copying or renaming a module
or package will cause the corresponding copy or move.

Surprisingly, some operations that you’d expect to be tied into Subversion are not. Creat-
ing a new file, module, or package does not automatically add the file to Subversion. More
perplexingly, revert is only half done. Reverting operations that create new files will leave the
newly created files in your workspace while restoring the old files. Move and rename both do
this as well. These issues might be fixed by the time this you read this, however.

It’s useful to be able to see what state your working copy is in with respect to the reposi-
tory, and Subversive excels at this. This is done through the team repository view.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE64

9810ch03.qxd 5/15/08 11:09 AM Page 64

The Team Repository View
The team repository view supplants most of the Subversion status operations we looked at
earlier in the chapter. It shows how the repository is different from your working copy, and
how your working copy is different from the repository. It can combine those views showing
all changes, or it can show only files with conflicts. It can show the aggregate changes, or it can
break the differences down by revision.

Open the repository view by choosing the menu item Window ➤ Open View ➤ Other. This
will bring up the window shown in Figure 3-10.

Figure 3-10. Selecting a view

Select Team ➤ Synchronize from the menu and click OK. This takes you back to the work-
bench, where you’ll see Synchronize in the bottom pane, as in Figure 3-11. It’s blocking the
Console view. You can toggle back and forth between the two by clicking the tabs, but for the
upcoming examples, you’ll want to see both views simultaneously. Fortunately, all views in
Eclipse can be moved.

Figure 3-11. The newly opened Synchronize view

You manipulate views by grabbing their named tabs and dragging them to a desired loca-
tion. As you do this, a bounding box will show where the view will be repositioned. The other

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 65

9810ch03.qxd 5/15/08 11:09 AM Page 65

panes in the workbench will be resized to accommodate the change. If you drag it into a list of
other tabs, it will join the set. If you drag a view onto the desktop, it will become a free-floating
window.

You’re going to split the lower view in two. Grab the Synchronize tab and drag it all the
way to the right edge. At some point, the display will show a box that splits the pane in two,
and the cursor will turn into an arrow pointing to the right. Let go of the tab at that point, and
you should have two panes, as shown in Figure 3-12.

Figure 3-12. Now the views are side by side.

You can further adjust the proportions by grabbing the divider between the two views and
dragging it left or right. You can adjust the height of both sets of views by grabbing the upper
dividing bar and moving it up or down.

Notice the three colored arrows at the bottom of the screen. These only show up when the
Synchronize view is active. They relate to the number of changes that have been made since
the last update. The number beside the blue arrow indicates changes that have been made in
the repository. The number beside the gray arrow indicates changes in your working copy. The
number beside the red arrow indicates the number of places in which conflicting changes
exist in both the repository and your local working copy.

The view’s main area contains a tree browser showing the outstanding changes, as shown
in Figure 3-13.

Figure 3-13. The Synchronize view with outstanding changes

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE66

9810ch03.qxd 5/15/08 11:09 AM Page 66

Double-clicking a file node will bring up a diff viewer among the editor windows. The
viewer shows the differences between your local copy and the repository copy. Along the top
side of the bar there are a number of icons. I’ll run through them from left to right:

Workbench-between-repository: This icon is entitled Synchronize SVN (/agile). When
clicked, it updates the view with the most recent information from both the local working
copy and the repository. The first time you do this, it also asks if you want to open the
Team Synchronizing perspective. You’ll be using the Synchronize view within the Pydev
view, so choose No. Make sure to choose “Remember my decision” so that you won’t be
asked this every time you want to see what has changed. You can always open the Team
Synchronizing perspective manually.

Pushpin: When active, this icon pins the window in place. Pinning is a generic Eclipse
feature. Normally, a view with new information spontaneously pops to the front. Pinned
views stay on top even if other views have new information.

Down arrow: This icon advances to the next displayed change. When it advances, it opens
up a diff view among the editors. This view shows two versions of a file side by side. The
differences between the two files are highlighted with bounding boxes. We’ll look at the
diff view when we get to merging later in this chapter.

Up arrow: This icon advances to the previous displayed change. Other than that, it works
the same as the down arrow.

Boxed minus: This collapses all of the tree nodes in the main area of the view.

Boxed plus: This expands all of the tree nodes in the main area of the view.

Left arrow pointing to a workbench glyph: This limits the main area to new changes in the
repository. When selected, the main area shows the changes that have been committed
to the repository but have not been updated into the local copy. These are referred to as
incoming changes.

Right arrow pointing to a repository glyph: This limits the main area to changes on the
local copy. When selected, the main area shows only those changes that have been made
locally but have not been committed to the repository.

Left and right arrows over workbench and repository glyphs: This icon shows all the
changes that must be made. This includes both incoming changes from the repository
and uncommitted local changes.

Double-ended red arrow: This indicates that you want to limit the view to files with
conflicts.

Green arrow pointing away from a repository glyph: This pulls down all incoming changes.

Red arrow pointing into a repository glyph: This triggers a commit of all outstanding
changes in the local copy.

Delta over a list: This alters the presentation of the view. Normally, all incoming changes
are bundled together into one list. When this icon is active, the view is organized by revi-
sion number.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 67

9810ch03.qxd 5/15/08 11:09 AM Page 67

Upside-down white triangle: This is a standard Eclipse icon. It indicates that this view has
a menu. You select the menu by clicking the icon. The menu contains a number of selec-
tions, but the two most interesting are Presentation and Schedule. Presentation allows
you to select the format in which changes are presented (the default is compressed tree
format). Schedule allows you to select how frequently Subversive will update the view. The
default is to never update automatically. I use the Schedule option to update several times
an hour for local projects and once a day for remote public projects.

Adding a File
You’ve already learned how to create a new Python module in Chapter 2. Create one now
called examples.common. It doesn’t matter what’s in the module at the moment. Your Pydev
Package Explorer should look something like Figure 3-14.

Figure 3-14. examples.common.py created and added, but not committed

The question mark glyph indicates that Subversion doesn’t know about this file yet. You
should take a look at the Synchronize view, though. You’ll see that it shows up as an uncom-
mitted change. Which of these is right? The answer is that both are right. Is there a bug?
Possibly.

Subversive recognizes that the new file exists, and it assumes that you want to commit it.
The Synchronize view reflects what Subversive thinks will happen. The Pydev Package
Explorer reflects what Subversion reports.

If you commit from Eclipse, then the new file will be included. If you submit from the
command line, then the file will not be included in the submission. My personal feeling is that
Subversive should perform the add for you when it sees the new file, so that svn commit will
check in the same files as Subversive does.

If you’re just working within Eclipse, then Subversive’s behavior works well. If you switch
between Eclipse and the command line, then Subversive’s behavior can lead to problems.
Command-line tools won’t know about the new files you intend to add. In that case, you
should add the files explicitly.

Bring up the context menu by right-clicking common.py in the Package Explorer. Select
Team ➤ Add to Version Control. This will bring up a window presenting a list of files to add,
as shown in Figure 3-15.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE68

9810ch03.qxd 5/15/08 11:10 AM Page 68

Figure 3-15. Adding a file to Subversion

Click the OK button. Eclipse will add all the checked files from this window; in this case,
just common.py. The Console view should show something akin to the following messages:

*** Add to Version Control
svn add "/Users/jeff/ws/agile/src/examples/common.py"
A /Users/jeff/ws/agile/src/examples/common.py
*** Ok (took 00:00.121)

The Pydev Package Explorer should have been altered, and should look something like
Figure 3-16. There is a clock glyph on common.py. There is also a > preceding the name. The
clock glyph indicates that the file has been scheduled for commission, and the > indicates that
the node contains a change. The clock applies to just this file, but the > ripples up through the
directory tree. If a directory contains a file or a directory with a change, then it is marked, too.

Figure 3-16. Subversion now knows about common.py.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 69

9810ch03.qxd 5/15/08 11:10 AM Page 69

Committing Changes
There are two primary ways of committing changes to Subversion. The first is by selecting
individual files and using the context menu. The second is through the Synchronize view. Both
paths will take you to the Commit window (shown in Figure 3-17).

Individual file selection can be done in any place that shows files. Typically, this will be
through the Pydev Package Explorer or the Synchronize view. You’ll use the Package Explorer
for this example. Select common.py from the Package Explorer, right-click to bring up the con-
text menu, and select Team ➤ Commit. This will bring up the Commit window.

The selected files will be shown in the lower portion of the window. When checked, they
will be included in the commit. Instead of choosing individual files, you can also select a
package or folder from the view. All new files contained within that package or folder will
be selected for addition. All files contained in any subpackages or subfolders will be similarly
selected.

Figure 3-17. The Commit window

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE70

9810ch03.qxd 5/15/08 11:10 AM Page 70

The upper portion of the window contains the commit message. You can’t commit with-
out one. There are a number of options to help with generating the message. The menu bar
below allows you to choose from previously entered comments or from predefined templates.
You will find the previously defined messages useful when resubmitting failed commits. Tem-
plates are useful when setting up default messages for common tasks.

Below that is the “Paste selected names” button. Clicking it will copy in the names of any
files selected in the lower window. It copies those names into the comment field, one name
per line. It’s a real time and effort saver when you’re putting together a commit message, and it
helps to prevent misspellings from retyping.

When you’re done composing the commit message, click OK. The console should spew
out something close to the following message:

*** Commit
svn commit "/Users/jeff/ws/agile/src/examples/common.py" -N ➥

-m "The empty common.py file is being used to demonstrate ➥

adding and reverting."
A ws/agile/src/examples/common.py
Transmitting file data: ws/agile/src/examples/common.py
Committed revision 12
*** Ok (took 00:01.054)

You can also submit all pending changes through the Synchronize view. On the left-hand
side of the menu bar is a red arrow pointing at a repository glyph. Clicking this icon will bring
up the Commit window (shown in Figure 3-17), but this time all scheduled changes will be
included in the file list.

Editing a File
Editing is the easiest operation. Just open an editor and go to town. The complications come
when it is time to submit. Subversive and the Synchronize view make it easy to anticipate con-
flicts, though.

You can see this by making changes to the previously added common.py file. Adding a doc
string like """A sample edit""" will suffice. Notice that when you type, there are no changes
in the synchronization window. This is because you haven’t saved the changes to the filesys-
tem yet. That’s indicated by a little * in the editor tab and just to the left of the file name.
Once you save the file, the marker will go away, and the screen should look something like
Figure 3-18.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 71

9810ch03.qxd 5/15/08 11:10 AM Page 71

Figure 3-18. A simple sample edit

Within instants after you save the change, the Synchronize view will update with the
modifications. Subversive also updates the Pydev Package Explorer with change markers
cascading from common.py up through all of the containers.

Reverting Changes
You have already seen how files can be committed using the context menu. You’ve seen how
this works from different windows and how an entire tree can be selected by choosing the par-
ent container. The same user interface mechanisms hold true for reverting files.

You’re going to revert the edits made previously. Select common.py from either the Pydev
Package Explorer or the Synchronize view, or just right-click in the editor for common.py. Bring
up the context menu by right-clicking, and select Team ➤ Revert. This will bring up the Revert
window, shown in Figure 3-19.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE72

9810ch03.qxd 5/15/08 11:10 AM Page 72

Figure 3-19. The Revert window

At this point, you can deselect any files that you erroneously chose. This might happen if
you selected a directory containing many files. In this case, only the file you chose should be
selected. Click OK, and you should see a message similar to the following:

*** Revert
svn revert "/Users/jeff//ws/agile/src/examples/common.py" -R ➥

Reverted /Users/jeff/ws/agile/src/examples/common.py
*** Ok (took 00:01.003)

Your change should be gone, and the change markers should vanish from the Pydev Pack-
age Explorer. The common.py editor should be blank, and the Synchronize view should report
the following: No changes in 'SVN (/agile/src/examples)'.

Resolving Conflicts
Suppose that someone else has made a change while you were editing standard.py. Once
again, you’ve both changed the comment line for standard.HelloWorld.main(). This time, the
other user has committed their change before you have. When you attempt to submit, you see
the window shown in Figure 3-20.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 73

9810ch03.qxd 5/15/08 11:10 AM Page 73

Figure 3-20. The commit operation failed.

Clicking the Advanced button will show the details of the failure. The message that follows
shows up more or less identically in both the failure details and the Console view:

*** Commit
svn commit "/Users/jeff/ws/agile/src/examples/greetings/standard.py" ➥

-m "Updating doc string."
M /Users/jeff/ws/agile/src/examples/greetings/standard.py
Transaction is out of date
svn: Commit failed (details follow):
svn: Out of date: '/agile/trunk/src/examples/greetings/standard.py' ➥

in transaction '13-1'

*** Error (took 00:01.122)

Here, you can see that you’re in conflict with transaction 13. You can get more informa-
tion from the Synchronize view, but you need to refresh it. You can do this by clicking the
leftmost icon in the view’s toolbar, after which the view will update and show one conflict
(see Figure 3-21).

Figure 3-21. One conflict shown in the Synchronize view

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE74

9810ch03.qxd 5/15/08 11:10 AM Page 74

The conflicting file is revision 13, and you can see that it was committed by doug. Double-
clicking the file name will bring up the Text Compare editor, as shown in Figure 3-22. You can
see from Figure 3-22 that there is a difference in whitespacing on one line.

Figure 3-22. Showing conflicts between files

You can update your code in one of two ways. You can choose a directory tree from an
explorer and then select Team ➤ Update from the context menu to bring over a subset of
changes, or you can use the update button in the Synchronize view to bring over all the
changes. The update button is the third icon from the right. The icon is a little green arrow
pointing away from a repository glyph. After you click the button, you’ll be asked to confirm
that you really want to bring over these changes. You do, so you can agree. A lot happens at
this point. First, the update log messages appear in the console:

*** Update
svn update "/Users/jeff/ws/agile/src/examples/greetings/standard.py" -r HEAD
C /Users/jeff/ws/agile/src/examples/greetings/standard.py
At revision 13
*** Warning (took 00:00.584)

Subversion creates the four versions of the changed file, as in the command-line example.
These show up in the Pydev Package Explorer view. In that same view, the repository glyph
next to standard.py turns red to indicate that the file is in conflict. The Text Compare editor
loads the candidate merge of standard.py, and you can see the conflict markers. The conflict
markers prevent the file from parsing as legal Python, so you’ll see a chain of red error marker
glyphs on the lower left-hand corners of each node in the Synchronize view. You can see all of
this in Figure 3-23 (if you look closely).

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 75

9810ch03.qxd 5/15/08 11:10 AM Page 75

Figure 3-23. The workbench with conflicting files

Subversive understands that the three additional files are related to the conflict. It does
not treat them as outbound changes, and they do not show up in the Synchronize view.

Open up an editor for standard.py and make the desired changes. After the changes are
made, it’s time to mark the file as resolved. This can be done from the context menu in an
explorer view or from the context menu in the Synchronize view. From an explorer, the menu
option is Team ➤ Mark as Merged, and from the Synchronize view, the menu option is Mark as
Merged—either choice works. After one is selected, Eclipse will grind away for a second or
two. You’ll see a progress bar, and afterward the conflicts will disappear from the Synchronize
view to be replaced by a normal pending update marker.

At this point, you can safely commit the changes. Your previous commit comment will be
accessible from the drop-down menu on the Commit window, so there is no need to retype it,
although you will have an opportunity to edit it.

Deleting Files
Files can be selected for deletion using pretty much any tree browser or through the file’s edi-
tor window. Selecting a directory will delete all of its contents, too. File selection is exactly the
same as with adding, reverting, or committing. It’s only a little different when you choose to
delete the selection.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE76

9810ch03.qxd 5/15/08 11:10 AM Page 76

Deleting files can be done in three ways. One is to bring up the context menu and select
Delete. Another is to select Edit ➤ Delete from the main menu. Finally, you can press the
Delete key.

Once you confirm your deletion, the files will be removed. You should see a log message
in the console similar to this:

*** Delete
svn delete "/Users/jeff/ws/agile/src/examples/common.py" ➥

--force
D /Users/jeff/ws/agile/src/examples/common.py
*** Ok (took 00:00.099)

At this point, the selection is scheduled for deletion, and it should show up in the Syn-
chronize view. The icon beside the file name indicates the scheduling. It is a little outbound
arrow glyph containing a minus sign indicating that the file will be removed.

Moving Files
Files and directories can be moved from one directory to another. This is done by selecting the
candidate files from an explorer and either choosing Move from the context menu or Edit ➤

Move from the main menu. This will bring up a file browser to select the destination directory.
When Eclipse moves the files, Subversive will schedule a series of adds and deletes to per-

form the move. The message for moving a single file should look similar to the following:

*** Move
A /Users/jeff/ws/agile/src/examples/greetings/common.py
D /Users/jeff/ws/agile/src/examples/common.py
*** Ok (took 00:01.093)

The add operation maintains history between the original files and the new files. Each
add and delete will show up in the Synchronize view.

Renaming Files
Only one file at a time can be renamed. You can select a file from an explorer view, and then
you can choose either Rename from the context menu or Edit ➤ Rename from the main
menu. This brings up a window that allows you to select a new name. Subversive treats the
rename exactly as it treats a move; a similar message shows up in the console window:

** Move
A /Users/jeff/ws/agile/src/examples/uncommon.py
D /Users/jeff/ws/agile/src/examples/common.py
*** Ok (took 00:00.152)

The difference between copying and renaming is just the interface to the command.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 77

9810ch03.qxd 5/15/08 11:10 AM Page 77

Copying Files
Normally in Eclipse, you use the copy and paste operations to copy files. This is a no-no when
using Subversion and many other source control systems. Subversion needs to maintain the
history of a copied file. Because copy and paste are separate operations, that information is
lost. Subversive gets around this by providing a special copy operation in the Team menu.

Copying files from one directory to another is much like moving files. The files to be
copied are selected from an explorer, and then the copy operation is selected. From the con-
text menu, you select Team ➤ Copy To, which brings up the screen shown in Figure 3-24.

Figure 3-24. Copying a file

The destination is selected from the tree browser as when moving files, but there are sev-
eral other options. As with move, you select a destination directory. Subversive normally uses
the Subversion copy command, which tracks history. You can see this in the console:

*** Copy
svn copy "/Users/jeff/ws/agile/src/examples/common.py" "/Users/jeff/ws/agile/➥

src/common.py"
A /Users/jeff/ws/agile/src/common.py
*** Ok (took 00:01.330)

You can specify a new name at this point. If you are copying a single file and you rename
it, then the destination file will be placed into the destination directory with the new name.
If you are copying more than one file and you specify a new name, then something else hap-
pens. A directory with the new name is created in the destination directory. The files are then
copied into this new subdirectory. You can see this in the console as src/examples/__init__.
py and src/examples/common.py are copied into src and renamed to stuff:

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE78

9810ch03.qxd 5/15/08 11:10 AM Page 78

*** Copy
svn add "/Users/jeff/ws/agile/src/stuff" -N ➥

A /Users/jeff/ws/agile/src/stuff
svn copy "/Users/jeff/ws/agile/src/examples/__init__.py" ➥

"/Users/jeff/ws/agile/src/stuff/__init__.py"
A /Users/jeff/ws/agile/src/stuff/__init__.py
svn copy "/Users/jeff/ws/agile/src/examples/common.py" ➥

"/Users/jeff/ws/agile/src/stuff/common.py"
A /Users/jeff/ws/agile/src/stuff/common.py
*** Ok (took 00:01.878)

You can look at this as an obscure way of copying files into a new directory.
You can also turn off resource history. Normally, Subversive tracks the parentage between

the original and its copy. Most of the time you want to keep this information, but there are
times when you don’t; for example, you might be using a piece of example or demo code as a
starting point for real work. You don’t really care that you started with the example code. In
these cases, you can turn off the resource history.

If you copy a single file without revision history, then the file is added to the filesystem in
the new destination. You will see no Subversion messages in the console. If you rename a sin-
gle file without revision history, then it will be added to the filesystem with the new name. You
will see no Subversion messages in the console. If you try to rename multiple files without
revision history, then something bad happens. You’ll see an attempted copy message and an
error message in the console. As of Subversive 1.1.7, copying multiple files while renaming
without revision history is broken. Hopefully, this case will be fixed by the time you read this.

Reverting Moves, Renames, and Copies
Reverting a move, rename, or a copy doesn’t work the way you might expect it to. Reverting a
moved, renamed, or copied file will only undo the Subversion operations creating that file. It
won’t remove the file from the local filesystem. You’ll have to delete the new files manually, or
else they will be added during the next commit. Reverting the new file also won’t undo the
operations affecting the original file or files either. For a rename or move, you’ll have to revert
the deletes manually. Reverting an entire directory or using the Synchronize view makes
things easier.

Summary
There is no reason not to use a revision control system. There is no reason to lose code. Revi-
sion control systems are common and many are free. They provide a shared repository that
allows you to look at your code at any point in time. They should serve as the shared reposi-
tory for all development sources on any project. All developers submit their changes to the
repository, and they receive one another’s changes through the repository.

Although there are many revision control systems out there, I’ve focused on Subversion.
Subversion is a free revision control system based around the edit-and-merge paradigm. It
supports network access, a topic that will be examined in more detail in Chapter 5. Commits

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE 79

9810ch03.qxd 5/15/08 11:10 AM Page 79

are atomic and ordered through a global, monotonically increasing revision number. All work
in Subversion is done in a local working copy until the changes are committed.

You saw how to work with Subversion from the command line and through Eclipse. This
included setting up a repository, obtaining an initial set of files, and performing day-to-day
operations such as adding, editing, deleting, copying, and moving files. In addition, you
learned how to maintain consistency between the repository and the working copy on your
local machine. Differences between the two can be examined, conflicts can be resolved, and
undesired changes can be reverted.

Now that you know how to work with Subversion and Eclipse, it is time to start building
a real project. There will be many problems to address. The project will need to be built,
deployed, and packaged. The packages need to be tracked and versioned, and unit tests must
be run over and over again. After all this, the code is deployed into the development environ-
ment to see how it interacts with the rest of the Python installation.

This could be done from scratch. Reams of Python code could be written. It might even
make a fun project if you’re into that sort of thing. Fortunately, though, it has already been
done with a package called Setuptools. In the next chapter, I’ll be showing you how to use it.
It accomplishes all the things described here and more.

CHAPTER 3 ■ REVISION CONTROL: SUBVERTING YOUR CODE80

9810ch03.qxd 5/15/08 11:10 AM Page 80

Setuptools: Harnessing
Your Code

This chapter focuses on replicable builds—a small but vital part of continuous integration.
If a build can’t be replicated, then test harnesses lose their efficacy. If one build differs from
another build of the same code, then it is possible for tests to succeed against one build while
failing against another, and testing loses its meaning. In the worst case, if a build can’t be
replicated, then it can become well-nigh impossible to diagnose and fix bugs in a consistent
manner.

Avoiding manual configuration is the key to replicable builds. This isn’t a slight against
developers. People are prone to errors, while computers are not. Every manual step is an
opportunity for error and inconsistency, and every error and inconsistency is an opportunity
for the build to subtly fail. Again and again, this point will drive the design of the harness that
ties the disparate pieces of the build together.

The harness will be built using the package Setuptools. Setuptools supersedes Python’s
own Distutils library, but as of Python 2.5, it is still a third-party package. Obtaining and
installing Setuptools with Python 2.5 and earlier is demonstrated in this chapter.

Setuptools uses distributable packages called eggs. Eggs are self-contained packages. They
fulfill a similar role to RPMs in the Linux world, or GEMs in Ruby installations. I’ll describe
eggs and demonstrate how to build and install them, along with the steps involved in
installing binaries. The mystery of version numbering will be explained, too.

When complete, the demonstration project can be built on any machine with no more
than a stock Python installation. All dependent packages are bundled with it, including
Setuptools itself. The harness produced here is generic and can be used in any project. This
chapter’s work will prepare you for the subsequent chapter on automated builds.

The Project: A Simple RSS Reader
For the next few chapters, we’re going to be building a single project. It’s a simple RSS reader.
RSS stands for Really Simple Syndication. It is a protocol for publishing frequently updated
content such as news stories, magazine articles, and podcasts. It will be a simple command
line tool showing which articles have been recently updated.

This chapter and the next don’t demand much functionality—just enough to verify build-
ing and installation—so the program isn’t going to be very exciting. In fact, it won’t be much
more than Hello World, but it will run, and throughout the book it will grow. This way of doing

81

C H A P T E R 4

9810ch04.qxd 5/19/08 3:59 PM Page 81

things isn’t just convenient for me. It also demonstrates the right way to go about developing a
program.

Continuous integration demands that a program be built, installed, executed, and tested
throughout development. This guarantees that it is deployable from the start. By moving
deployment into the middle of the development process, continuous integration buffers the
sudden shock that often arises when a product finally migrates to an operational environ-
ment.

Optimally, the build, installation, execution, and tests are performed after every commit.
This catches errors as soon as they hit the source repository, and it isolates errors to a specific
code revision. Since the changes are submitted at least daily, the amount of code to be
debugged is kept to a minimum. This minimizes the cost of fixing each bug by finding it early
and isolating it to small sets of changes.

This leads to a style of development in which programs evolve from the simplest imple-
mentation to a fully featured application. I’ll start with the most embryonic of RSS readers,
and I’ll eventually come to something much more interesting and functional. This primordial
RSS reader will be structured almost identically to the Hello World program in Chapter 3. The
source code will reside in a directory called src, and src will reside in the top level of the
Eclipse project.

Initially, we’ll have two files: src/rsreader/__init__.py and src/rsreader/app.py.
__init__.py is empty, and app.py reads as follows:

import sys

def main():
print "OK" # give us some feedback
return 0 # exit code

if __name__ == '__main__':
sys.exit(main())

This project should be checked into your source repository as svn:///usr/local/svn/
repos/rsreader/trunk.

Python Modules
Python bundles common code as packages. Python packages and modules map to directories
and files. The presence of the file __init__.py within a directory denotes that the directory is a
Python package. Each package contains child packages and modules, and every child package
has its own __init__.py file.

Python supports multiple package trees. These are located through the Python path vari-
able. Within Python, this variable is sys.path. It contains a list of directories. Each directory
is the root of another tree of packages. You can specify additional packages when Python starts
using the PYTHONPATH environment variable. On UNIX systems, PYTHONPATH is a colon-sepa-
rated directory list. On Windows systems, the directories are separated by semicolons.

By default, the Python path includes two sets of directories: one contains the standard
Python library or packages, and the other contains a directory called site-packages, in which
nonstandard packages are installed. This begs the question of how those nonstandard pack-
ages are installed.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE82

9810ch04.qxd 5/19/08 3:59 PM Page 82

svn:///usr/local/svn

The Old Way
You’ve probably installed Python packages before. You locate a package somewhere on the
Internet, and it is stored in an archived file of some sort. You expand the archive, change
directories into the root of the unpacked package, and run the command python setup.py
install. The results are something like this:

running install
running build
running build_py
running install_lib
creating /Users/jeff/Library/Python/2.5/site-packages/rsreader
copying build/lib/rsreader/__init__.py -> /Users/jeff/Library/➥

Python/2.5/site-packages/rsreader
copying build/lib/rsreader/app.py -> /Users/jeff/Library/➥

Python/2.5/site-packages/rsreader
byte-compiling /Users/jeff/Library/Python/2.5/site-packages/➥

rsreader/__init__.py to __init__.pyc
byte-compiling /Users/jeff/Library/Python/2.5/site-packages/➥

rsreader/app.py to app.pyc
running install_egg_info
Writing /Users/jeff/Library/Python/2.5/site-packages/➥

RSReader-0.1-py2.5.egg-info

setup.py invokes a standard package named Distutils, which provides methods to build
and install packages. In the Python world, it fulfills many of the same roles that Make, Ant, and
Rake do with other languages.

Note how the files are installed. They are copied directly into site-packages. This direc-
tory is created when Python is installed, and the packages installed here are available to all
Python programs using the same interpreter.

This causes problems, though. If two packages install the same file, then the second
installation will fail. If two packages have a module called math.limits, then their files will be
intermingled.

You could create a second installation root and put that directory into the per-user
PYTHONPATH environment variable, but you’d have to do that for all users. You have to manage
the separate install directories and the PYTHONPATH entries. It quickly becomes error prone. It
might seem like this condition is rare, but it happens frequently—whenever a different version
of the same package is installed.

Distutils doesn’t track the installed files either. It can’t tell you which files are associated
with which packages. If you want to remove a package, you’ll have sort through the site-
packages directories (or your own private installation directories), tracking down the neces-
sary files.

Nor does Distutils manage dependencies. There is no automatic way to retrieve depend-
ent packages. Users spend much of their time chasing down dependent packages and
installing each dependency in turn. Frequently, the dependencies will have their own
dependencies, and a recursive cycle of frustration sets in.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 83

9810ch04.qxd 5/19/08 3:59 PM Page 83

The New Way: Cooking with Eggs
Python eggs address these installation problems. In concept, they are very close to Java JAR
files. All of the files in a package are packed together into a directory with a distinctive name,
and they are bundled with a set of metadata. This includes data such as author, version, URL,
and dependencies.

Package version, Python version, and platform information are part of an egg’s name. The
name is constructed in a standard way. The package PyMock version 1.5 for Python 2.5 on OS
X 10.3 would be named pymock-1.5-py2.5-macosx-10.3.egg. Two eggs are the same only if they
have the same name, so multiple eggs can be installed at the same time. Eggs can be installed
as an expanded directory tree or as zipped packages. Both zipped and unzipped eggs can be
intermingled in the same directories. Installing an egg is as simple as placing it into a directory
in the PYTHONPATH. Removing one is as simple as removing the egg directory or ZIP file from the
PYTHONPATH. You could install them yourself, but Setuptools provides a comprehensive system
for managing them. In this way, it is similar to Perl’s CPAN packages, Ruby’s RubyGems, and
Java’s Maven.

The system includes retrieval from remote repositories. The standard Python repository
is called the cheese shop. Setuptools makes heroic efforts to find the latest version of the
requested package. It looks for closely matching names, and it iterates through every version
it finds, looking for the most recent stable version. It searches the local filesystem and the
Python repositories. Setuptools follows dependencies, too. It will search to the ends of the
earth to find and install the dependent packages, thus eliminating one of the huge headaches
of installing Distutils-based packages.

WHY THE CHEESE SHOP?

The cheese shop is a reference to a Monty Python sketch. In the sketch, a soon-to-be-frustrated customer
enters a cheese shop and proceeds to ask for a staggering variety of cheeses, only to be told one by one that
none of them are available. Even cheddar is missing.

Watching Setuptools and easy_install attempt to intuit the name of a package from an inaccurate
specification without a version number quickly brings this sketch to mind. It helps to pass the time if you
imagine Setuptools speaking with John Cleese’s voice.

Setuptools includes commands to build, package, and install your code. It installs both
libraries and executables. It also includes commands to run tests and to upload information
about your code to the cheese shop.

Setuptools does have some deficiencies. It has a very narrow conception of what consti-
tutes a build. It is not nearly as flexible as Make, Ant, or Rake. Those systems are configured
using specialized Turing-complete programming languages. (Ant has even been used to make
a simple video game.) Setuptools is configured with a Python dictionary. This makes it easy to
use for simple cases, but leaves something to be desired when trying to achieve more ambi-
tious goals.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE84

9810ch04.qxd 5/19/08 3:59 PM Page 84

Some Notes About Building Multiple Versions
One of the primary goals of continuous integration is a replicable build. When you build a
given version of the software, you should produce the same end product every time the build
is performed. And multiple builds will inevitably be performed. Developers will build the
product on their local boxes. The continuous integration system will produce test builds on a
build farm. A final production packaging system may produce a further build.

Each build version is tagged with a unique tag denoting a specific build of a software
product. Each build is dependent upon specific versions of external packages. Building the
same version of software on two different machines of the same architecture and OS should
always produce the same result. If they do not, then it is possible to produce software that suc-
cessfully builds and runs in one environment, but fails to build or run successfully in another.
You might be able to produce a running version of your product in development, but the
version built in the production environment might be broken, with the resulting defective
software being shipped to customers. I have personally witnessed this.

Preventing this syndrome is a principal goal of continuous integration. It is avoided by
means of replicable builds. These ensure that what reaches production is the same as what
was produced in development, and thus that two developers working on the same code are
working with the same set of bugs.

Most software products depend upon other packages. Different versions of different
packages have different bugs. This is nearly obvious, but something else is slightly less obvious:
the software you build has different bugs when run with different dependent packages. It is
therefore necessary to tightly control the versions of dependent packages in your build envi-
ronments. This is complicated if multiple packages are being built on the same machine.
There are several solutions to the problem.

The virtual Python solution involves making a copy of the complete Python installation
for each product and environment on your machine. The copy is made using symbolic links,
so it doesn’t consume much space. This works for some Python installations, but there are
others, such as Apple’s Mac OS X, that are far too good at figuring out where they should look
for files. The links don’t fool Python. Windows systems don’t have well-supported symbolic
links, so you’re out of luck there, too.

The path manipulation solution is the granddaddy of them all, and it’s been possible from
the beginning. The PYTHONPATH environment variable is altered when you are working on your
project. It points to a local directory containing the packages you’ve installed. It works every-
where, but it takes a bit of maintenance. You need to create a mechanism to switch the path,
and more importantly, the installation path must be specified every time a package is added.
It has the advantages that it can be made to work on any platform and it doesn’t require access
to the root Python installation.

I prefer the location path manipulation solution. It involves altering Python’s search
path to add local site-packages directories. This requires the creation of two files: the file
altinstall.pth within the global site-packages directory, and the file pydistutils.cfg in
your home directory. These files alter the Python package search paths.

On UNIX systems, the file ~/.pydistutils.cfg is created in your home directory. If you’re
on Windows, then the situation is more complicated. The corresponding file is named
%HOME%/pydistutils.cfg, but it is consulted only if the HOME environment variable is defined.
This is not a standard Windows environment variable, so you’ll probably have to define it
yourself using the command set HOME=%HOMEDRIVE%\%HOMEPATH%.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 85

9810ch04.qxd 5/19/08 3:59 PM Page 85

This mechanism has the disadvantage that it requires a change to the shared site-
packages directory. This is probably limited to root or an administrator, but it only needs to be
done once. Once accomplished, anyone can add their own packages without affecting the
larger site. The change eliminates an entire category of requests from users, so convincing IT
to do it shouldn’t be terribly difficult.

Python’s site package mechanism is implemented by the standard site package. Once
upon a time, accessing site-specific packages required manually importing the site package.
These days, the import is handled automatically. A code fragment uses site to add a site
package to add per-user site directories. The incantation to do this is as follows:

import os, site; ➥

site.addsitedir(os.path.expanduser('~/lib/python2.5'))

You should add to the altinstall.pth file in the global site-packages directory. The site
package uses .pth files to locate packages. These files normally contain one line per package
added, and they are automatically executed when found in the search path. This handles
locating the packages.

The second file is ~/.distutils.cfg (%HOME%\distutils.cfg on Windows). It tells Distutils
and Setuptools where to install packages. It is a Windows-style configuration file. This file
should contain the following:

[install]
install_lib = ~/lib/python2.5
install_scripts = ~/bin

On the Mac using OS X, the first part of this procedure has already been done for you.
OS X ships with the preconfigured per-user site directory ~/Library/python/$py_version_
short/site-packages, but it is necessary to tell Setuptools about it using the file
~/.pydistutils.cfg. The file should contain this stanza:

[install]
install_lib = ~/Library/python/$py_version_short/site-packages
install_scripts = ~/bin

On any UNIX variant, you should ensure that ~/bin is in your shell’s search path.

Installing Setuptools
Setuptools is distributed as an egg. As of version 2.5, Python doesn’t natively read eggs, so
there is a “chicken-and-egg” problem. This can be circumvented with a bootstrap program
named ez_setup.py, which is available at http://peak.telecommunity.com/dist/ez_setup.py.
Once downloaded, it is run as follows:

$ python ez_setup.py

Downloading http://pypi.python.org/packages/2.5/s/setuptools/➥

setuptools-0.6c7-py2.5.egg
Processing setuptools-0.6c7-py2.5.egg
Copying setuptools-0.6c7-py2.5.egg to /Users/jeff/Library/Python/2.5/site-packages

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE86

9810ch04.qxd 5/19/08 3:59 PM Page 86

http://peak.telecommunity.com/dist/ez_setup.py
http://pypi.python.org/packages/2.5/s/setuptools/�

Adding setuptools 0.6c7 to easy-install.pth file
Installing easy_install script to /Users/jeff/binInstalling easy_install-2.5➥

script to /Users/jeff/bin
Installed /Users/jeff/Library/Python/2.5/site-packages/➥

setuptools-0.6c7-py2.5.egg
Processing dependencies for setuptools==0.6c7
Finished processing dependencies for setuptools==0.6c7

ez_setup.py uses HTTP to locate and download the latest version of Setuptools. You can
work around this if your access is blocked. ez_setup.py installs from a local egg file if one is
found. You copy the appropriate egg from http://pypi.python.org/pypi/setuptools using
your tools of choice, and you place it in the same directory as ez_setup.py. Then you run
ez_setup.py as before.

Setuptools installs a program called ~/bin/easy_install (assuming you’ve created a local
site-packages directory). From this point forward, all Setuptools-based packages can be
installed with easy_install, including new versions of Setuptools. You’ll see more of
ez_setup.py later in this chapter when packaging is discussed.

Getting Started with Setuptools
Setuptools is driven by the program setup.py. This file is created by hand. There’s nothing
special about the file name—it is chosen by convention, but it’s a very strong convention. If
you’ve used Distutils, then you’re already familiar with the process. Setuptools just adds a
variety of new keywords. The minimal setup.py for this project looks like this:

from setuptools import setup, find_packages
setup(

basic package data
name = "RSReader",
version = "0.1",

package structure
packages=find_packages('src'),
package_dir={'':'src'},

)

A minimal setup.py must contain enough information to create an egg. This includes the
name of the egg, the version of the egg, the packages that will be contained within the egg,
and the directories containing those packages.

The name attribute should be unique and identify your project clearly. It shouldn’t contain
spaces. In this case, it is RSReader.

The version attribute labels the generated package. The version is not an opaque number.
Setuptools goes to great lengths to interpret it, and it does a surprisingly good job, using it to
distinguish between releases of the same package. When installing from remote repositories, it
determines the most recent egg by using the version; and when installing dependencies, it
uses the version number to locate compatible eggs. Code can even request importation of a
specific package version.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 87

9810ch04.qxd 5/19/08 3:59 PM Page 87

http://pypi.python.org/pypi/setuptools

In general, version numbers are broken into development and release. Both 5.6 and 0.1
are considered to be base versions. They are the earliest released build of a given version. Base
versions are ordered with respect to each other, and they are ordered in the way that you’d
expect. Version 5.6 is later than version 1.1.3, and version 1.1.3 is later than version 0.2.

Version 5.6a is a development version of 5.6, and it is earlier than the base version. 5.6p1
is a later release than 5.6. In general, a base version followed by a string between a and e inclu-
sive is considered a development version. A base version followed by a string starting with f
(for final) or higher is considered a release version later than the base version. The exception
is a version like 5.6rc4, which is considered to be the same as 5.6c4.

There is another caveat: additional version numbers after a dash are considered to be
development versions. That is, 5.6-r33 is considered to be earlier than 5.6. This scheme is typi-
cally used with version-controlled development. Setuptools’s heuristics are quite good, and
you have to go to great lengths to cook up a version that it doesn’t interpret sensibly.

The packages directive lists the packages to be added. It names the packages, but it doesn’t
determine where they are located in the directory structure. Package paths can be specified
explicitly, but the values need to be updated every time a different version is added, removed,
or changed. Like all manual processes, this is error prone. The manual step is eliminated using
the find_packages function.

find_packages searches through a set of directories looking for packages. It identifies
them by the __init__.py file in their root directories. By default, it searches for these in the top
level of the project, but this is inappropriate for RSReader, as the packages reside in the src
subdirectory. find_packages needs to know this, hence find_packages('src'). You can include
as many package directories as you like in a project, but I try to keep these to an absolute min-
imum. I reserve the top level for build harness files—adding source directories clutters up that
top level without much benefit.

The find_packages function also accepts a list of excluded files. This list is specified with
the keyword argument exclude. It consists of a combination of specific names and regular
expressions. Right now, nothing is excluded, but this feature will be used when setting up unit
tests in Chapter 8.

The package_dir directive maps package names to directories. The mappings are speci-
fied with a dictionary. The keys are package names, and the values are directories specified
relative to the project’s top-level directory. The root of all Python packages is specified with an
empty string (""); in this project, it is in the directory src.

Building the Project
The simple setup.py is enough to build the project. Building the project creates a working
directory named build at the top level. The completed build artifacts are placed here.

$ python ./setup.py build

running build
running build_py
creating build
creating build/lib
creating build/lib/rsreader

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE88

9810ch04.qxd 5/19/08 3:59 PM Page 88

copying src/rsreader/__init__.py -> build/lib/rsreader
copying src/rsreader/app.py -> build/lib/rsreader

$ ls -lF

total 696
drwxr-xr-x 3 jeff jeff 102 Nov 7 12:25 build/
-rw-r--r-- 1 jeff jeff 2238 Nov 7 12:14 setup.py
drwxr-xr-x 5 jeff jeff 170 Nov 6 20:45 src/

Interpreting the build output is easier if you understand how Setuptools and Distutils are
structured. The command build is implemented as a module within Setuptools. The setup
function locates the command and then executes it. All commands can be run directly from
setup.py, but many can be invoked by other Setuptools commands, and this happens here.

When Setuptools executes a command, it prints the message running command_name. The
output shows the build command invoking build_py. build_py knows how to build pure
Python packages. There is another build module, build_ext, that knows how to build Python
extensions, but no extensions are built in this example, so build_ext isn’t invoked.

The subsequent output comes from build_py. You can see that it creates the directories
build, build/lib, and build/lib/rsreader. You can also see that it copies the files __init__.py
and app.py to the appropriate destinations.

At this point, the project builds, but it is not available to the system at large. To install the
package, you run python setup.py install. This installs rsreader into the local site-packages
directory configured earlier in this chapter.

$ python setup.py install

running install
running bdist_egg
running egg_info
creating src/RSReader.egg-info
writing src/RSReader.egg-info/PKG-INFO
writing top-level names to src/RSReader.egg-info/top_level.txt
writing dependency_links to src/RSReader.egg-info/dependency_links.txt
writing manifest file 'src/RSReader.egg-info/SOURCES.txt'
writing manifest file 'src/RSReader.egg-info/SOURCES.txt'
installing library code to build/bdist.macosx-10.3-fat/egg
running install_lib
running build_py
creating build
creating build/lib
creating build/lib/rsreader
copying src/rsreader/__init__.py -> build/lib/rsreader
copying src/rsreader/app.py -> build/lib/rsreader
creating build/bdist.macosx-10.3-fat
creating build/bdist.macosx-10.3-fat/egg
creating build/bdist.macosx-10.3-fat/egg/rsreader

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 89

9810ch04.qxd 5/19/08 3:59 PM Page 89

copying build/lib/rsreader/__init__.py -> build/bdist.macosx-10.3-fat/egg/rsreader
copying build/lib/rsreader/app.py -> build/bdist.macosx-10.3-fat/egg/rsreader
byte-compiling build/bdist.macosx-10.3-fat/egg/rsreader/__init__.py to __init__.pyc
byte-compiling build/bdist.macosx-10.3-fat/egg/rsreader/app.py to app.pyc
creating build/bdist.macosx-10.3-fat/egg/EGG-INFO
copying src/RSReader.egg-info/PKG-INFO -> build/bdist.macosx-10.3-fat/egg/➥

EGG-INFO
copying src/RSReader.egg-info/SOURCES.txt -> build/bdist.macosx-10.3-fat/egg/➥

EGG-INFO
copying src/RSReader.egg-info/dependency_links.txt -> build/bdist.macosx-10.3-fat/➥

egg/EGG-INFO
copying src/RSReader.egg-info/top_level.txt -> build/bdist.macosx-10.3-fat/egg/➥

EGG-INFO
zip_safe flag not set; analyzing archive contents...
creating dist
creating 'dist/RSReader-0.1-py2.5.egg' and adding 'build/bdist.macosx-10.3-fat/➥

egg' to it
removing 'build/bdist.macosx-10.3-fat/egg' (and everything under it)
Processing RSReader-0.1-py2.5.egg
Copying RSReader-0.1-py2.5.egg to /Users/jeff/Library/Python/2.5/site-packages
Adding RSReader 0.1 to easy-install.pth file

Installed /Users/jeff/Library/Python/2.5/site-packages/RSReader-0.1-py2.5.egg
Processing dependencies for RSReader==0.1
Finished processing dependencies for RSReader==0.1

You can see that install invokes four commands: bdist_egg, egg_info, install_lib, and
build_py:

running install
running bdist_egg
running egg_info
creating src/RSReader.egg-info
...
installing library code to build/bdist.macosx-10.3-fat/egg
running install_lib
running build_py
creating build
...

install uses bdist_egg to produce a binary distribution for the package. bdist_egg calls
egg_info and install_lib. The latter in turn calls build_py to produce a new build of the
package to be bundled and installed.

egg_info produces a description of the egg. Among the files produced by egg_info are a
list of dependencies and a manifest listing all the files in the egg. install_lib takes the prod-
ucts of build_py and copies them into an assembly area where they are finally packaged up by
bdist_egg. In the very end, the egg is moved into place by install.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE90

9810ch04.qxd 5/19/08 3:59 PM Page 90

When the process is complete, you’re left with a new dist directory at the top level. This
contains the newly constructed egg file along with any previously constructed versions.

Each step can be invoked from the command line, and all can be configured independ-
ently. This is done through a file called setup.cfg. Later in this chapter, this file will be used to
modify installation locations.

Installing Executables
The RSReader application has been installed into site-packages. It can be executed with
Python using the -m option, as in the previous section. What you want is an executable. Exe-
cutables are specified in setup.py with entry points, which can also specify rendezvous points
for plug-ins.

The entry_points attribute describes the entry points. It is a dictionary of lists. The keys
denote the kind of entry point, and the values name entry points and map each of them to a
Python function. Executables are denoted with the console_scripts and gui_scripts keys.
setup.py now looks like this:

from setuptools import setup, find_packages
setup(

basic package data
name = "RSReader",
version = "0.1",

package structure
packages=find_packages('src'),
package_dir={'':'src'},

install the rsreader executable
entry_points = {

'console_scripts': [
'rsreader = rsreader.app:main'
]

},
)

This entry_points stanza installs one executable. It will be named rsreader on UNIX sys-
tems. On Windows systems, it will be named rsreader.exe. Running this program will execute
the function rsreader.app.main(). Note that the definition contains a colon between the
package path and the function name.

The executable will be installed into the Python scripts directory ~/bin as configured in
~/.distutils.cfg. The location is reported in the output of python setup.py install:

$ python setup.py install

running install
running bdist_egg
...
Copying RSReader-0.1-py2.5.egg to /Users/jeff/Library/Python/2.5/site-packages

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 91

9810ch04.qxd 5/19/08 3:59 PM Page 91

RSReader 0.1 is already the active version in easy-install.pth
Installing rsreader script to /Users/jeff/bin

Installed /Users/jeff/Library/Python/2.5/site-packages/RSReader-0.1-py2.5.egg
Processing dependencies for RSReader==0.1
Finished processing dependencies for RSReader==0.1

Dependencies
Setuptools manages dependencies. It locates appropriate versions of dependent packages,
downloads them, and installs them. It searches and retrieves them from remote or local
sources.

Dependencies are managed with the external_requirements attribute, which is a list of
dependency expression strings. The simplest dependency expression is an unadorned pack-
age name. Setuptools then searches for the latest version of that package. The meaning of
“latest” is determined using the rules described in the “Getting Started with Setuptools” sec-
tion earlier in this chapter.

More complex dependency expressions have a package name on the left-hand side, a
version on the right-hand side, and a comparison operator between them. The expression
docutils >= 3.4 means, “Get package Docutils version 3.4 or later.” Reproducibility is the pri-
mary goal, so this project will demand specific versions.

from setuptools import setup, find_packages
setup(

basic package data
name = "RSReader",
version = "0.1",

package structure
packages=find_packages('src'),
package_dir={'':'src'},

install the rsreader executable
entry_points = {

'console_scripts': [
'rsreader = rsreader.app:main'
]

},
install_requires = [

'docutils == 0.4',
],

)

$ python setup.py install

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE92

9810ch04.qxd 5/19/08 3:59 PM Page 92

running install
running bdist_egg
...

Installed /Users/jeff/Library/Python/2.5/site-packages/RSRead➥

er-0.1-py2.5.egg
Processing dependencies for RSReader==0.1
Searching for docutils==0.4
Reading http://pypi.python.org/simple/docutils/
Reading http://docutils.sourceforge.net/
Best match: docutils 0.4
Downloading http://prdownloads.sourceforge.net/docutils/docu➥

tils-0.4.tar.gz?download
Processing docutils-0.4.tar.gz
Running docutils-0.4/setup.py -q bdist_egg --dist-dir /tmp/easy_install-ebwmnZ/➥

docutils-0.4/egg-dist-tmp-UqTwxP
"optparse" module already present; ignoring extras/optparse.py.
"textwrap" module already present; ignoring extras/textwrap.py.
zip_safe flag not set; analyzing archive contents...
docutils.parsers.rst.directives.misc: module references __file__
docutils.writers.html4css1.__init__: module references __file__
docutils.writers.newlatex2e.__init__: module references __file__
docutils.writers.pep_html.__init__: module references __file__
docutils.writers.s5_html.__init__: module references __file__
Adding docutils 0.4 to easy-install.pth file
Installing rst2html.py script to /Users/jeff/bin
Installing rst2latex.py script to /Users/jeff/bin
Installing rst2newlatex.py script to /Users/jeff/bin
Installing rst2pseudoxml.py script to /Users/jeff/bin
Installing rst2s5.py script to /Users/jeff/bin
Installing rst2xml.py script to /Users/jeff/bin

Installed /Users/jeff/Library/Python/2.5/site-packages/docu➥

tils-0.4-py2.5.egg
Finished processing dependencies for RSReader==0.1

The first line displayed in bold announces that Setuptools is processing the dependencies
for your RSReader package. The next shows that it is searching for the dependency you
specified. It searches for the package at pypi.python.org. pypi.python.org catalogs Python
modules, but it doesn’t store them. It has a reference to each module’s download site.

Setuptools doesn’t search other catalogs, indicating that it found the package’s descrip-
tion at pypi.python.org. Instead, it follows the reference to docutils.sourceforge.net, and
there it searches for a download link to the correct file version. It finds that link, and it down-
loads the file from http://prdownloads.sourceforge.net. Take note of the URL in the output;
it will be important in the next section.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 93

9810ch04.qxd 5/19/08 3:59 PM Page 93

http://pypi.python.org/simple/docutils
http://docutils.sourceforge.net
http://prdownloads.sourceforge.net/docutils/docu�
http://prdownloads.sourceforge.net

Once the file is downloaded, Setuptools announces the processing of the package. The
name docutils-0.4.tar.gz indicates that the file is a TAR archive compressed with the gzip
algorithm. The output shows that it is automatically uncompressed, unpacked, and installed
using Docutils’s own setup.py. The intermediate product is stored in a temporary directory
that is removed at the end of the process.

There are no required dependencies for this version of Docutils, but there are optional
ones. The output indicates that these optional dependencies (optparse and textwrap) are
already present. There are a few warning messages, and then a series of installation messages
as a group of executables are installed. These executables convert from a text format called
RST to other documentation formats.

■Note You’ve seen the message zip_safe flag not set; analyzing archive contents... sev-
eral times now. It is an advisory warning. It indicates that Setuptools is not creating a zipped egg. Although
Setuptools can do this instead of producing expanded directory trees, the feature can sometimes cause
problems, and by default it is turned off.

Think Globally, Install Locally
Setuptools does a great job of finding packages on the Net. Sometimes I’m frightened at how
good a job it does, but sometimes it fails. An author’s download server may go offline. The
package might get deleted. A version you depend on may no longer be available, and instead a
broken version may take its place. An author might replace one version with another subtly
different version with the same version number. More frequently, your Internet connection
may go south.

All of these situations have the same result: the build can’t be replicated. The project may
not even be buildable. These aren’t academic situations either—it has happened to me within
the last two weeks.

The solution uses a local copy of the dependent package. That copy is checked into source
control along with the project code. Setuptools is then directed to use that copy with the
--find-links option.

I’ll create a directory in the project called thirdparty. The file docutils-0.4.tar.gz is
downloaded into thirdparty from the URL http://prdownloads.sourceforge.net/docutils/
docutils-0.4.tar.gz?download. This location was gleaned from python setup.py install’s
output.

$ mkdir thirdparty
$ cd thirdparty
$ curl -L -o docutils-0.4.tar.gz http://prdownloads.sourceforge.net/docutils➥

/docutils-0.4.tar.gz?download

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 1208k 100 1208k 0 0 72013 0 0:00:17 0:00:17 --:--:-- 73992

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE94

9810ch04.qxd 5/19/08 3:59 PM Page 94

http://prdownloads.sourceforge.net/docutils
http://prdownloads.sourceforge.net/docutils�

f$ ls -lF

total 2424
-rw-r--r-- 1 jeff jeff 1237801 Nov 8 13:34 docutils-0.4.tar.gz

Removing an Existing Package: Undoing Your Hard Work
To demonstrate the repository, it is necessary to remove the Docutils module over and over
again. Unfortunately, this is the hardest thing to do with Setuptools—the process is only par-
tially supported. It has three steps: the entry specifying the default version must be removed
from site-packages/easy_install.pth, the egg must be removed from site-packages, and the
installed binaries must be removed.

The entry in site-packages/easy_install.pth is removed with the command python
setup.py easy_install:

$ python setup.py easy_install -m 'docutils==0.4'

running easy_install
Searching for docutils==0.4
Best match: docutils 0.4
Processing docutils-0.4-py2.5.egg
Removing docutils 0.4 from easy-install.pth file
Installing rst2html.py script to /Users/jeff/bin
Installing rst2latex.py script to /Users/jeff/bin
Installing rst2newlatex.py script to /Users/jeff/bin
Installing rst2pseudoxml.py script to /Users/jeff/bin
Installing rst2s5.py script to /Users/jeff/bin
Installing rst2xml.py script to /Users/jeff/bin

Using /Users/jeff/Library/Python/2.5/site-packages/docutils-0.4-py2.5.egg

Because this distribution was installed --multi-version, before you can➥

import modules from this package in an application, you will need to 'import➥

pkg_resources' and then use a 'require()' call similar to one of these➥

examples, in order to select the desired version:

pkg_resources.require("docutils") # latest installed version
pkg_resources.require("docutils==0.4") # this exact version
pkg_resources.require("docutils>=0.4") # this version or higher

Processing dependencies for docutils
Finished processing dependencies for docutils

The -m option reinstalls the package in multi-version mode. In this mode, all programs
must explicitly request the version of the package they require, but it has the desired side
effect of removing this package’s entry from site-packages/easy_install.pth. It also has the

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 95

9810ch04.qxd 5/19/08 3:59 PM Page 95

happy side effect of telling you exactly what you need to do in the next two steps. It tells you
where the egg is, what scripts have been installed, and where they were installed to.

The egg is deleted:

$ rm -rf /Users/jeff/Library/python/2.5/site-packages/doc➥

utils-0.4-py2.5.egg

Then the binaries are deleted:

$ rm /Users/jeff/bin/rst2html.py
$ rm /Users/jeff/bin/rst2latex.py
$ rm /Users/jeff/bin/rst2newlatex.py
$ rm /Users/jeff/bin/rst2pseudoxml.py
$ rm /Users/jeff/bin/rst2s5.py
$ rm /Users/jeff/bin/rst2xml.py

Installing from the Local Copy
I’ll demonstrate the process using the easy_install command. easy_install is the Setuptools
component that installs eggs.

$ cd ..
$ python setup.py easy_install --find-links thirdparty 'docutils==0.4'

running easy_install
Searching for docutils==0.4
Best match: docutils 0.4
Processing docutils-0.4.tar.gz
Running docutils-0.4/setup.py -q bdist_egg --dist-dir➥

/tmp/easy_install-LMZVog/docutils-0.4/egg-dist-tmp-Xkl2d6
"optparse" module already present; ignoring extras/optparse.py.
"textwrap" module already present; ignoring extras/textwrap.py.
zip_safe flag not set; analyzing archive contents...
docutils.parsers.rst.directives.misc: module references __file__
...

Installed /Users/jeff/Library/Python/2.5/site-packages/docutils-0.4-py2.5.egg
Processing dependencies for docutils==0.4
Finished processing dependencies for docutils==0.4

The output shows no external searching. Instead, the file was taken from the local reposi-
tory, which is what you want. There is a problem, though: this argument only works with
easy_install. There is no similar command-line option for the install command, but there
is another mechanism that will work.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE96

9810ch04.qxd 5/19/08 3:59 PM Page 96

Fixing Options with setup.cfg
Setuptools uses an optional configuration file named setup.cfg to configure values for
options. The values set in this file work if a command is called directly by the user or if it is
called indirectly through another command.

The file setup.cfg lives in the root directory of the project. The format is the standard
Windows option file with stanzas that have bracketed section names. The section names are
the same as the commands they configure.

In this case, the command name is easy_install, the option name is find-links, and the
value is thirdparty. This can be added to the file by hand, or via Setuptools itself:

$ python setup.py setopt --command easy_install --option find_links➥

--set-value thirdparty

running setopt
Writing setup.cfg

$ cat setup.cfg

[easy_install]
find_links = thirdparty

The file can be edited by hand, but using Setuptools has an advantage. Setuptools merges
the property setting into the existing setup.cfg, so existing settings made by hand or script are
left intact.

The repository should be used every time setup.py is invoked, so the file should be put
under version control and checked in. From time to time, developers may need to make tem-
porary customizations, but these shouldn’t be checked in. If such modifications are checked
in, the changes are usually caught by the continuous build system (the subject of the next
chapter).

Bootstrapping Setuptools
You’ve put a great deal of effort into setting up a new development environment easily and
reproducibly. However, there is one small problem: when the project is synched down to a
completely virgin Python installation, it is necessary to install Setuptools using ez_setup.py
before you can run your build script setup.py.

Luckily, Setuptools provides a way around this. Copy the ez_setup.py program (remem-
ber ez_setup.py from earlier in this chapter?) into the top-level directory of the project, and
add the following lines to the very top of setup.py:

from ez_setup import use_setuptools
use_setuptools(version='0.6c7')

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 97

9810ch04.qxd 5/19/08 3:59 PM Page 97

At this point, running setup.py will download and install Setuptools if it isn’t already pres-
ent. You are still dependent on a network connection, but you can solve this problem, too. If
ez_setup.py finds a Setuptools egg in the current directory, then it will install from there.
Copying the Setuptools egg from site-packages into the top-level project directory will
suffice:

$ cp -rp ~/Library/Python/2.5/site-packages/setuptools-0.6c7-py2.5.egg

It’s possible to test the whole process by deleting everything in site-packages, and then
running python setup.py install. Indeed, this is what the build system will be doing in the
next chapter. After the first run, the top-level directory should look something like this:

$ ls -lF

drwxr-xr-x 4 jeff jeff 136 Nov 7 13:51 build/
drwxr-xr-x 3 jeff jeff 102 Nov 7 13:51 dist/
-rw-r--r-- 1 jeff jeff 8960 Oct 27 23:20 ez_setup.py
-rw-r--r-- 1 jeff jeff 9189 Nov 7 13:50 ez_setup.pyc
-rw-r--r-- 1 jeff jeff 40 Nov 8 23:05 setup.cfg
-rw-r--r-- 1 jeff jeff 1201 Nov 8 22:56 setup.py
-rw-r--r-- 1 jeff jeff 322831 Oct 27 23:40 setuptools-0.6c7-➥

py2.5.egg
drwxr-xr-x 5 jeff jeff 170 Nov 7 13:51 src/
drwxr-xr-x 4 jeff jeff 136 Nov 8 13:34 thirdparty/

Subverting Subversion: What Shouldn’t Be
Versioned
The harness has created directories and files that should not be managed by Subversion. The
build and dist directories contain ephemeral build artifacts generated by Setuptools. These
can be regenerated at any time. Developers expect to customize setup.cfg, and their individ-
ual changes shouldn’t be checked in. Required values in the file are generated by setup.py
anyhow.

These files are reported by svn status. They could be ignored, but they clutter the output,
and cluttered output is hard to understand. Compiled Python files are reported, too. svn
status prefixes these unversioned files with ?.

$ svn status

? build
? dist
? ez_setup.py
? ez_setup.pyc
? setuptools-0.6c7-py2.5.egg
? setup.py
? setup.cfg

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE98

9810ch04.qxd 5/19/08 3:59 PM Page 98

? thirdparty/docutils-0.4.tar.gz
? configure.py
...

In CVS, these would be ignored via a .cvsignore file. Subversion doesn’t use files to track
this information. Its system is based on a more general mechanism called properties. Proper-
ties associate bits of metadata with files and directories. The metadata consists of key/value
pairs. In this case, the metadata key is svn:ignore and the value is a list of patterns separated
by newlines.

Newlines complicate setting the property. The clearest way to set multiple values for
svn:ignore from the command line is using a temporary file. In this example, it is /tmp/
ignore.txt, and it has the following three lines:

build
dist
*.pyc

The svn:ignore property is then set with svn propset, and the file is fed into svn propset
via the -F option. Finally, the temporary file /tmp/ignore.txt is deleted.

$ svn proplist .
$ svn propset svn:ignore -F /tmp/ignore.txt .
$ rm /tmp/ignore.txt
$ svn status

M .
? ez_setup.py
? setuptools-0.6c7-py2.5.egg
? setup.py
? thirdparty/docutils-0.4.tar.gz
...

$ svn status --no-ignore

I build
I dist
I ez_setup.pyc

The svn:ignore list is attached to the top-level project directory. Property changes must
be committed just like any other file modification. Since the changes are in source control,
they affect all other developers. As they update their working copies with svn update, the
build, dist, and *.pyc files will disappear from Subversion’s reports:

$ svn commit -m "added build, dist, and *.pyc to svn:ignore" .

Sending .
Committed revision 16.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 99

9810ch04.qxd 5/19/08 3:59 PM Page 99

The Easy Way with Eclipse
The same changes can be made using Eclipse and Subversive. The file or directory to be
ignored is highlighted in the Package Explorer, and the context menu is brought up. Team ➤
“Add to svn:ignore” is selected, and it brings up the window shown in Figure 4-1.

Figure 4-1. Adding a file to svn:ignore

The selected radio button, “Resource(s) by name,” is the desired choice, as it chooses the
full name of the file. Then you can click OK to add the selected file to svn:ignore. If you'd
selected the file ez_setup.pyc then the "Wildcard extension" option would add the pattern
*.pyc to svn:ignore, and the “Custom pattern” option would add the pattern specified in
the text box below.

Subversive combines each new setting with the previous ones, eliminating one of the
major headaches of managing svn:ignore from the command line. The drawback is that Sub-
versive has no direct support for removing files from svn:ignore. You'll have to go back to the
command line for that.

Checking in Changes: Not Losing It
At this point, quite a few changes have been made, and they need to be checked in. The files
in question are setup.py, ez_setup.py, thirdparty (and all its contents), configure.py, and
setuptools-0.6c7-py2.5.egg. These are to be placed under Subversion’s control.

Working in Development Mode
RSReader was installed earlier in this chapter. Its contents are available to every other Python
module in our environment, but we are actively developing it. Each change made should be
available to other packages. It is possible to install the package after every change. This is
feasible for small packages, but it begins to slow down development with larger packages.
Besides, it’s a manual step, and at some point it will be forgotten, with frustrating results.

Setuptools provides a way around this called development mode. Putting a package in
development creates a link file in site-packages and a special entry in the easy-install.pth

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE100

9810ch04.qxd 5/19/08 3:59 PM Page 100

file that lists the packages managed by easy_install. These redirect imports to your project
directory instead of site-packages.

$ python -m rsreader.app

OK

I’ll change the message printed by src/rsreader/app.py. The main entry point becomes

...
def main():

print "SPAM!" # give us some feedback
return 0 # exit code

...

The module is run again to demonstrate that the change has had no effect:

$ python -m rsreader.app

OK

$ python setup.py develop

running develop
running egg_info
writing src/RSReader.egg-info/PKG-INFO
writing top-level names to src/RSReader.egg-info/top_level.txt
writing dependency_links to src/RSReader.egg-info/dependency_links.txt
writing manifest file 'src/RSReader.egg-info/SOURCES.txt'
running build_ext
Creating /Users/jeff/Library/Python/2.5/site-packages/RSReader.egg-link (link to➥

src)
Removing RSReader 0.1 from easy-install.pth file
Adding RSReader 0.1 to easy-install.pth file

Installed /private/tmp/rsreader/src
Processing dependencies for RSReader==0.1
Finished processing dependencies for RSReader==0.1

The new link entry now points to the project directory. If you run the verification com-
mand, you can see that the change is picked up:

$ python -m rsreader.app

SPAM!

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE 101

9810ch04.qxd 5/19/08 3:59 PM Page 101

Finally, the print statement is changed from SPAM! back to OK, and you can verify that the
change has taken effect:

$ python -m rsreader.app

OK

Summary
This chapter began with a project that will be developed throughout this book. It is a simple
command-line RSS reader, implemented in only the most minimal fashion—the focus is on
the harness surrounding it. This harness is constructed using Setuptools rather than the
Python standard library Distutils, but the project builds from source on a machine with a
stock Python installation. No work is required other than running python setup.py install.

Distutils and Setuptools are closely related. Distutils is the stock package for managing
Python packages. It is limited in its capabilities. Setuptools is an evolution of Distutils that
uses a new package format called eggs. The combination of Setuptools and eggs eliminates
many shortcomings of Distutils.

Development and build environments need to be as free from interference as possible.
Packages installed by other users or software on a system may cause unnoticed conflicts. This
possibility is eliminated through the use of several techniques such as virtual Python installa-
tions or per-user site-packages and bin directories.

Setuptools is not a standard package, so it must be obtained and installed. Setuptools-
based packages can be configured to bootstrap Setuptools, and the harness does this.

Setuptools manages external dependencies. It makes best-effort attempts at locating
dependent packages. By default, it searches many sites on the Internet, but it can be config-
ured to check local resources preferentially. Depending on third parties with potentially flaky
resources is anathema to replicable builds, so the harness uses locally stored eggs. The search
locations are overridden using a setup.cfg file. This file is checked into source control along
with the rest of the project.

Sometimes it is necessary to remove a package, and doing so is fairly straightforward.
Several build and artifact directories are generated while building and installing the

project. These files need to be excluded from revision control.
Setuptools’s development mode links the development environment directly into

site-packages so that changes there are directly reflected in the Python installation.
Now that I’ve shown you how to build and install your code using Setuptools, in the next

chapter I’ll show you how this can be done automatically using Buildbot.

CHAPTER 4 ■ SETUPTOOLS: HARNESSING YOUR CODE102

9810ch04.qxd 5/19/08 3:59 PM Page 102

A Build for Every Check-In

Agile development focuses on catching bugs as soon as they are introduced. Optimally, the
bugs are caught before changes are checked in, but there are classes of bugs that are expensive
for the developer to verify. They happen infrequently, they are hassle to check for, and they
can be painful to track down. The most visible relate to integration, platform dependencies,
and external package dependencies.

The build must work on a freshly installed system, and it must contain everything that it
needs to build itself. Products must frequently work with multiple versions of Python and
across multiple platforms. A unit-testing module I maintain works with both Python 2.4 and
2.5, while another product I maintain is expected to work on any UNIX variant and Microsoft
Windows.

Verifying these conditions before committing changes is expensive. It potentially involves
many steps and a commitment of time that is guaranteed to break a programmer’s flow. Just
supporting one UNIX variant, Microsoft Windows, and two Python versions involves perform-
ing four sets of clean builds for every commit.

To make matters worse, most changes aren’t going to cause these things to fail. With a
mature product, the tests are likely to succeed dozens upon dozens of times before finally
catching a failure. People aren’t good at performing repetitive checks for infrequent failures—
even more so when it derails their thought processes and they have to sit around waiting for
the results. Eventually, vigilance lapses, a bug of this sort sneaks through, and it isn’t found
until deployment time. This frequently brings about a cascade of other failures.

Build servers address these problems. Rather than holding the developer responsible for
verifying the correctness of the code on every system targeted, the job is given over to an auto-
mated system that is responsible for performing clean builds after every commit. Changes are
validated immediately, and in case of failure, notifications are sent to the concerned parties.
The build servers provide confidence that the software can always be built.

Many different build servers are available—both free and commercial. Among the more
well known are CruiseControl and Anthill. This book focuses on Buildbot, an open source sys-
tem written in Python. It supports build farms, in which builds are distributed to a number of
client machines that then perform the builds and communicate the results back to the server.
It has a centralized reporting system, and it is easily configured and extended using Python.

103

C H A P T E R 5

9810ch05.qxd 5/20/08 4:51 PM Page 103

Buildbot Architecture
Buildbot is a common open build system. It is written in Python, but it will build anything.
It uses a master-and-slave architecture. The central build master controls one or more build
slaves. Builds are triggered by the master, and performed on the slaves. The slaves can be of a
different architecture than the master. The slaves report build results to the master, and the
master reports them to the users. The master contains a minimal web server showing the real-
time build telemetry.

There are multiple options for triggering builds. The master can do it periodically, pro-
ducing a nightly or hourly build. More interestingly, the master can be triggered to perform
builds whenever new changes are committed.

The system demonstrated in this chapter contains a master, a slave, and a remote Subver-
sion repository. The three systems are named buildmaster, slave-lnx01, and source. On my
systems, these are DNS aliases for the underlying hosts. The slave performs builds against
both Python 2.4 and 2.5., and these builds are triggered automatically after each commit.

Dedicated users will be created to run both Buildbot and Subversion. On the build sys-
tems, the application Buildbot will be run as the user build; and on the source server,
Subversion will be run as the user svn.

ALIASING HOSTS

On my network, the names buildmaster, slave-lnx01, and source are aliases for the two hosts
phytoplankton and agile. buildmaster and source are aliases for phytoplankton, and
slave-lnx01 is an alias for agile. The names refer to the service being provided, not the underlying host.
This way, the service can be moved to another host without disrupting clients (both human and machine).

I might do this if I wanted to move agile to a real box rather than running it under a VM, as I currently
do. I might also do this if phytoplankton died, or if the load of running the repository became too much for
this one system to bear.

Installing Buildbot
Buildbot itself is a Setuptools package. It can be downloaded and installed using easy_install,
but it is built on top of Twisted, which is “an event-driven networking engine.” Twisted pro-
vides the bulk of the networking infrastructure for Buildbot. It’s best to install Twisted before
installing Buildbot.

Twisted is built with Distutils, and it must be installed carefully in multiple steps. It has its
own dependency on a package called Zope Interface, which provides a limited typing system
for Python. You could spend time chasing this package down, but that’s not necessary, as it’s
bundled with Twisted. However, although it is bundled, it must be installed manually before
Twisted.

I’ll start by demonstrating how to install Buildbot on buildmaster. You’ll be installing spe-
cial Python installations just for the build slave’s use, so it doesn’t matter much where Buildbot
and its dependencies are installed. I’m going to use the primary system installation:

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN104

9810ch05.qxd 5/20/08 4:51 PM Page 104

$ curl -L -o Twisted-2.5.0.tar.bz2 ➥

http://tmrc.mit.edu/mirror/twisted/Twisted/2.5/Twisted-2.5.0.tar.bz2

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 2683k 100 2683k 0 0 741k 0 0:00:03 0:00:03 --:--:-- 787k

$ bunzip2 Twisted-2.5.0.tar.bz2
$ tar xvf Twisted-2.5.0.tar

Twisted-2.5.0/
Twisted-2.5.0/TwistedConch-0.8.0/
...
Twisted-2.5.0/LICENSE
Twisted-2.5.0/setup.py

$ cd Twisted-2.5.0
$ ls -F

LICENSE TwistedMail-0.4.0/ TwistedWords-0.5.0/
README TwistedNames-0.4.0/ setup.py*
TwistedConch-0.8.0/ TwistedNews-0.3.0/ zope.interface-3.3.0/
TwistedCore-2.5.0/ TwistedRunner-0.2.0/
TwistedLore-0.3.0/ TwistedWeb-0.7.0/

$ cd zope.interface-3.3.0
$ sudo python ./setup.py install

running install
running bdist_egg
...
Processing dependencies for zope.interface==3.3.0
Finished processing dependencies for zope.interface==3.3.0

■Warning With most packages, running install correctly invokes build, but that has not been my
experience with Twisted. It is necessary to run build and install separately.

$ cd ..
$ python ./setup.py install

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 105

9810ch05.qxd 5/20/08 4:51 PM Page 105

http://tmrc.mit.edu/mirror/twisted/Twisted/2.5/Twisted-2.5.0.tar.bz2

running install
running build
...
byte-compiling /usr/lib/python2.5/site-packages/twisted/➥

news/test/test_nntp.py to test_nntp.pyc
byte-compiling /usr/lib/python2.5/site-packages/twisted/➥

plugins/twisted_news.py to twisted_news.pyc

At this point, Twisted is installed, and Buildbot can now be installed. Buildbot is installed
with easy_install, which is part of Setuptools. If it hasn’t been installed yet, then you’ll need
to do this first. See Chapter 4 for more information.

There is one catch, though. Buildbot has contributed programs that are shipped with it,
but that are not installed by easy_install. You’ll use one later, so you’ll want the source pack-
age to remain on the system. The build directory option -b specifies a directory where the
installation is staged from. When easy_install completes, this directory will be left behind
and the component files will be accessible.

$ easy_install -b /tmp/bbinst buildbot

Searching for buildbot
Reading http://pypi.python.org/simple/buildbot/
...
Installed /Users/jeff/Library/Python/2.5/site-packages/➥

buildbot-0.7.6-py2.5.egg
Processing dependencies for buildbot
Finished processing dependencies for buildbot

$ buildbot --version

Buildbot version: 0.7.6
Twisted version: 2.5.0

The identical process must now be performed on all machines communicating with
Buildbot. This includes the Subversion host, too. Once the installations are complete, the
master and slave can then be configured.

Configuring the Build System
As outlined earlier, there are two build hosts in our system: the Buildbot master, named
buildmaster, and the Buildbot slave, named slave-lnx01. Buildbot runs on both systems as a
dedicated user, which you’ll name build. This provides administrative and security benefits.
Startup configuration can be kept within the user’s account. The user build has limited rights,
so any compromises of the Buildbot server will be limited to build’s account, and any miscon-
figurations will be limited by filesystem permissions.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN106

9810ch05.qxd 5/20/08 4:51 PM Page 106

http://pypi.python.org/simple/buildbot

When a Buildbot slave starts, it contacts the build master. It needs three pieces of infor-
mation to do this. First, it needs the name of the build master so that it can find it on the
network. The port identifies the Buildbot instance running on the build master, and the pass-
word authenticates the slave to the master. The master must know which port to listen on, and
it must know the password that slaves will present.

In the environment discussed here, the build master runs on the host buildmaster listen-
ing on port 4484 for the password Fo74gh18 from instance rsreader-full-py2.5. The build
server instances run from within the directory /usr/local/buildbot. RSReader is the project
started in Chapter 4. The master lives in /usr/local/buildbot/master/rsreader, and the slave
lives in /usr/local/buildbot/slave/rsreader. This directory structure allows you to intermix
independent Buildbot instances for different projects on the same machines.

Setting up communications between the master and the slave is the first goal. Retrieving
source code or performing a build is pointless until the two servers can speak to each other.

Mastering Buildbot
The build master is configured before the slave, as the slave’s status is determined through its
interactions with the build master. Creating the build user and the directories are the first
steps.

■Tip If you’re trying to install Buildbot on Windows systems, it is started with buildbot.bat. This script is
installed into \Python25\scripts. Unfortunately, it has a hard-coded reference to a nonexistent script in
\Python23. This reference will need to be changed by hand.

$ useradd buid
$ sudo mkdir -p /usr/local/buildbot/master/rsreader
$ sudo chown build:build /usr/local/buildbot/master/rsreader

The next steps are performed as the newly created user build. They create the basic
configuration files for a master.

$ su - build
$ buildbot create-master /usr/local/buildbot/master/rsreader

updating existing installation
chdir /usr/local/buildbot/master/rsreader
creating master.cfg.sample
populating public_html/
creating Makefile.sample
buildmaster configured in /usr/local/buildbot/master/rsreader

$ ls -F /usr/local/buildbot/master/rsreader

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 107

9810ch05.qxd 5/20/08 4:51 PM Page 107

Makefile.sample buildbot.tac
master.cfg.sample public_html/

Once upon a time (Buildbot 0.6.5 and earlier), makefiles were used to start and stop
Buildbot. This mechanism has been superseded by the buildbot command in current ver-
sions. Makefiles can still be used to override the startup process, but that’s voodoo that I won’t
address, so you can safely forget that Makefile.sample exists.

Buildbot.tac is only of marginally more interest. It is used by the buildbot command to
start the server. Essentially, it defines if this server is a client or a slave. It is necessary to Build-
bot’s operation, but you should never have to touch it.

The public_html directory is the document root for the build master’s internal web server.
It supplies the static content that will be served to your browser. Customizations to Buildbot’s
appearance go here, but they are strictly optional.

Of far more interest is master.cfg.sample. It is the template for the file master.cfg, which
defines most of the master’s behavior. It is a Python source file defining a single dictionary
named BuildmasterConfig. This dictionary describes almost everything about the build mas-
ter and the build process that ever needs changing. Much of this chapter is devoted to writing
this file.

You’ll start off with a minimal master.cfg. It defines the BuildmasterConfig dictionary and
aliases it to the variable c. This is done to improve readability and save keystrokes (although
rumors of an impending keystroke shortage have been determined to be false by reputable
authorities).

This is the dictionary that the buildmaster pays attention
to. We also use a shorter alias to save typing.
c = BuildmasterConfig = {}

Next is the slaves property, which defines a list of BuildSlave objects. Each of these con-
tains the name of a slave and the password that will be used to secure that connection. All
slaves talk to the master on a single port, and the name is necessary to distinguish them from
one another. Every slave has its own password, too. A separate password allows slaves to be
controlled by different individuals without compromising the security of other slaves. In our
case, we have one slave named rsreader-linux, and its password is Fo74gh18.

####### BUILDSLAVES

from buildbot.buildslave import BuildSlave
c['slaves'] = [BuildSlave("slave-lnx01", "Fo74gh18")]

The master listens for connections over a single port. The slavePortnum property defines
this. This number is arbitrary, but it should be above 1024, as lower port numbers are reserved
as rendezvous locations for well-known services (like mail) and web traffic. In our configura-
tion, it will be 4484.

'slavePortnum' defines the TCP port to listen on. This must match the value
configured into the buildslaves (with their --master option)

c['slavePortnum'] = 4484

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN108

9810ch05.qxd 5/20/08 4:51 PM Page 108

When the source code changes, a build will be triggered. The build master needs to know
how to find changes. Various classes within buildbot.changes supply these behaviors. The
class PBChangeSource implements a listener that sits on slavePortnum and waits for externally
generated change notifications. When it receives an appropriate notification, it triggers a
build. In a few sections, you’ll configure Subversion to send these notifications.

####### CHANGE SOURCES

from buildbot.changes.pb import PBChangeSource
c['change_source'] = PBChangeSource()

The schedulers property defines when builds are launched. It is a list of scheduler objects.
These tie a scheduling policy to a builder that actually performs the build. You’re going to
schedule one build for Python 2.5. The scheduler will work on any branch, and it will run
when there have been no more changes for 60 seconds.

####### SCHEDULERS

c['schedulers'] = []
c['schedulers'].append(Scheduler(name="rsreader",

branch=None,
treeStableTimer=60,
builderNames=["rsreader-full-py2.5"]))

Build factories describe the nitty-gritty details of building the application. They construct
the instructions run by slaves. I shall be spending a lot of time on build factories, but right now
a simple factory will suffice to test communication between the master and slave. The simple
builder factory f1 prints the message build was run.

####### BUILDERS

from buildbot.process import factory
from buildbot.steps.shell import ShellCommand

f1 = factory.BuildFactory()
f1.addStep(ShellCommand(command="echo 'build was run'"))

The builders property contains a list of builders. A builder is a dictionary associating the
builder’s name, the slave it runs on, and a builder factory. It also names the build directory. In
this case, the builder is named buildbot-full-py2.5, and it runs on the slave slave-lnx01 in
the directory full-py2.5 using the builder factory f1. The build directory is relative to the
Buildbot root. In this case, the full path to the builder will be /usr/local/buildbot/slave/
rsreader/full-py2.5.

b1 = {'name': "rsreader-full-py2.5",
'slavename': "slave-lnx01",
'builddir': "full-py2.5",
'factory': f,
}

c['builders'] = [b1]

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 109

9810ch05.qxd 5/20/08 4:51 PM Page 109

The status property controls how build results are reported. We are implementing two.
The html.WebStatus class implements a page referred to as the waterfall display, which shows
the entire build system’s recent activity. The web server port is configured with the http_port
keyword. Here it’s being configured to listen on port 8010.

The class mail.MailNotifier sends e-mail when a build fails. It is inventive and persistent
in its actions. There are other notification classes, with the words.IRC class being perhaps the
most interesting of those not being used in this example.

####### STATUS TARGETS

c['status'] = []

from buildbot.status.html import WebStatus
c['status'].append(WebStatus(http_port=8010))

from buildbot.status.mail import MailNotifier
c['status'].append(MailNotifier(

fromaddr="buildbot@phytoplankton.theblobshop.com",
extraRecipients=["builds@theblobshop.com"],
sendToInterestedUsers=False))

The properties projectName, projectUrl, and buildbotUrl configure communications
with the user. The project name is used on the waterfall page. The project URL is the link from
the waterfall page to the project’s web site. BuildbotURL is the base URL to reach the Buildbot
web server configured in the status property. Buildbot can’t determine this URL on its own, so
it must be configured here.

####### PROJECT IDENTITY

c['projectName'] = "RSReader"
c['projectURL'] = "http://www.theblobshop.com/rsreader"
c['buildbotURL'] = "http://buildmaster.theblobshop.com:8010/"

At this point, you can start the build master:

$ buildbot start /usr/local/buildbot/master/rsreader

Following twistd.log until startup finished..
2008-05-12 11:21:47-0700 [-] Log opened.
…
2008-05-12 11:21:47-0700 [-] BuildMaster listening on port tcp:4484
2008-05-12 11:21:47-0700 [-] configuration update started
2008-05-12 11:21:47-0700 [-] configuration update complete
The buildmaster appears to have (re)started correctly.

The messages indicate that Buildbot started correctly. In previous versions, the startup
messages were untrustworthy and you often had to search through the file twistd.log in the
application directory to determine if the reported status was accurate. This seems to have
been remedied as of Buildbot 0.7.7. The landing screen is shown in Figure 5-1.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN110

9810ch05.qxd 5/20/08 4:51 PM Page 110

mailto:buildbot@phytoplankton.theblobshop.com
mailto:builds@theblobshop.com
http://www.theblobshop.com/rsreader
http://buildmaster.theblobshop.com:8010

Figure 5-1. The Buildbot landing page on the host buildmaster and port 8010

Clicking the first link title, Waterfall Display, takes you to the page shown in Figure 5-2,
which is a timeline. The top of the page represents now, and the screen extends down into the
past. Each column represents a builder and the activity taking place. The builder’s creation
and the master’s startup are both represented, so the display conveys information about the
system’s gross state, reducing the need to search through twistd.log. The red box at the top
indicates that the build slave for build-full-py2.5 is offline.

Figure 5-2. The Buildbot waterfall display

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 111

9810ch05.qxd 5/20/08 4:51 PM Page 111

The properties projectName and projectUrl are used to produce the RSReader links at the
top and bottom of the waterfall display. Clicking on either one is sufficient to verify the correct
values. At this point, the basic server configuration is complete, and there is one last step.

The server must be started at reboot. Once upon a time, it was necessary to write a startup
script and insert it into /etc/init.d on UNIX systems and create a few magically named sym-
bolic links in the /etc/rc directories. These days, processes can be started from cron at reboot
by adding the following line to the build user’s crontab with the command crontab -e:

@reboot /path/to/buildbot start /usr/local/buildbot/master/rsreader

This technique should work on most modern UNIX systems, as well as Mac OS X. Cron
doesn’t have access to your full shell environment, so it is important to use the full path to the
buildbot executable. Your shell may be able to locate buildbot when you are logged in, but it
may not be able to when run from cron’s extremely limited environment.

Enslaving Buildbot
In grand strokes, creating a basic Buildbot slave is similar to creating a master, but much sim-
pler in the initial details. If running on a separate system, as in this example, then Buildbot
must be installed first. Then the build user and Buildbot directories are created, a slave
instance is created, the configuration files are updated, and Buildbot is started. In this test
environment, the slave runs on slave-lnx01.

$ useradd build
$ sudo mkdir /usr/local/buildbot/slave/rsreader
$ sudo chown build:build /usr/local/buildbot/slave/rsreader

After creating the build directories, the client is configured from build’s account on
slave-lnx01. Four pieces of information are necessary. The slave contacts the Buildbot master
using the master’s host name and port. In this case, the host name is buildmaster and the port
is 4484. The slave identifies itself with a unique name. (The host name is insufficient, as there
can be more than one slave running on a single host.) This is the name referred to on the
master in both the builder definition and the slaves property. Finally, the slave needs the
password to secure the connection. The BuildSlave object in master.cfg defines it; in this
case, it’s Fo74gh18.

$ su - build
$ buildbot create-slave /usr/local/buildbot/slave/rsreader ➥

buildmaster:4484 rsreader-linux Fo74gh18

updating existing installation
chdir /usr/local/buildbot/slave/rsreader
creating Makefile.sample
mkdir /usr/local/buildbot/slave/rsreader/info
Creating info/admin, you need to edit it appropriately
Creating info/host, you need to edit it appropriately
Please edit the files in /usr/local/buildbot/slave/rsreader/info appropriately.
buildslave configured in /usr/local/buildbot/slave/rsreader

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN112

9810ch05.qxd 5/20/08 4:51 PM Page 112

$ cd /usr/local/buildbot/slave/rsreader
$ ls -F

buildbot.tac info/ Makefile.sample

$ ls -F info

admin host

Buildbot.tac and Makefile.sample are analogous to those files on the build master.
Buildbot uses Buildbot.tac to start the slave, but the slave’s configuration is also in this file.
Changes to the four configuration parameters can be made here. As with the master,
Makefile.sample is a vestigial file lingering from previous generations of Buildbot.

The files in the info directory are of more interest. They are both text files containing
information that is sent to the build master. info/admin contains this Buildbot administrator’s
name and e-mail address, while info/host contains a description of the slave.

The default for info/admin is Your Name Here <admin@youraddress.invalid>. In my envi-
ronment, it is set to Jeff Younker <buildmaster@theblobshop.com>. The description in
slave-lnx01’s info/host file reads Produces pure Python 2.5 builds. info/host is just a text
file, and the information is to make your life, and the life of everyone who uses your build sys-
tem, a little bit brighter and clearer, so make the description concise and informative. With
these changes in place, the client can be started.

$ buildbot start /usr/local/buildbot/slave/rsreader

Following twistd.log until startup finished..
2007/11/27 02:18 -0700 [-] Log opened.
2007/11/27 02:18 -0700 [-] twistd 2.5.0 (/usr/bin/python 2.5.0) starting up
2007/11/27 02:18 -0700 [-] reactor class: ➥

<class 'twisted.internet.selectreactor.SelectReactor'>
2007/11/27 02:18 -0700 [-] Loading buildbot.tac...
2007/11/27 02:18 -0700 [-] Creating BuildSlave
2007/11/27 02:18 -0700 [-] Loaded.
2007/11/27 02:18 -0700 [-] Starting factory <buildbot.slave.bot.BotFactory➥

instance at 0xa0e484c>
2007/11/27 02:18 -0700 [broker,client] message from master: attached
The buildslave appears to have (re)started correctly.

The build slave has started and connected to the build master, which you can see on the
waterfall display in Figure 5-3.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 113

9810ch05.qxd 5/20/08 4:51 PM Page 113

mailto:admin@youraddress.invalid
mailto:buildmaster@theblobshop.com

Figure 5-3. The slave has successfully connected with the master.

At this point, basic connectivity has been established and a build can be triggered with
the command buildbot sendchange:

$ buildbot sendchange --master buildmaster:4484 -u jeff -n 30 setup.py

change sent successfully

The file name is arbitrary, but the change number specified with -n (in this case 30) is not.
The project branch (rsreader/trunk in this case) must exist at this revision, or else the build
will fail.

The waterfall display immediately shows that the change has been received, and it shows
a countdown timer until the build starts. Any changes submitted in this window will reset the
timer. This is shown in Figure 5-4.

While the message is being, run the step is rendered in yellow. Once it completes, the step
is rendered in green. If the step had failed, it would be red, and if an exception had been
encountered, it would be purple. Once the timer expires, the build runs and the slave echoes
its message. The output, shown in Figure 5-5, links from the build step.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN114

9810ch05.qxd 5/20/08 4:51 PM Page 114

Figure 5-4. The first build has been triggered.

Figure 5-5. The echo step output

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 115

9810ch05.qxd 5/20/08 4:51 PM Page 115

Information about the step is rendered in blue, and the actual output is rendered in black.
It’s clear that there is far more information about the step than actual output:

• The command run by the build step is shown in the first line.

• The present working directory follows. It indicates where the command runs from.

• The entire shell environment is displayed. Incorrect environment settings are a com-
mon source of build errors, so having this information recorded and available assists
with debugging build problems.

• The command’s output follows the environment. There’s only one line in this case.

• The command’s exit code is shown last. As with any UNIX shell command, 0 indicates
success.

Hooking Up Source Control
The build master and build slave are now on separate hosts. They both need access to the Sub-
version repository. Until now, Subversion has been accessed directly through the filesystem,
but this will no longer work. However, this isn’t a simple choice. Subversion can be accessed
remotely via a bewildering spectrum of methods. Repositories can be accessed through the
Subversion network server, through WebDAV and the Apache web server, or by tunneling over
a shell transport such as SSH. Enumerating the pros and cons of each approach would consti-
tute a chapter’s worth of material in itself.

I’m going to choose one pair of methods and stick with them, but if you’d like more infor-
mation, then I encourage you to consult Practical Subversion, Second Edition, by Daniel Berlin
and Garrett Rooney (Apress, 2006). The good news is that if you choose another method, then
the changes on the client amount to nothing more than changing a URL.

For the rest of the book, I’m choosing a combination of svnserve running as a daemon for
read-only access and svnserve over SSH for write access. This is a common configuration in
which anyone can check out files anonymously, but committing changes requires a login and
therefore authentication.

Committers need accounts on the Subversion server and write access to the Subversion
repository. Authorization is done with group permissions. The repository tree is writable by
the Subversion group, and all committers are members of that group. In this book, that group
will be named svn.

Files created through svnserve over SSH are owned by the committer, but they must be
writable by the Subversion group. svnserve sets the appropriate permissions, but those are
affected by the user’s umask. The umask turns off selected permissions when files are written.
More frequently than not, the user’s default umask turns off group write permissions, and it is
therefore necessary to override it.

You do this with a wrapper script that replaces svnserve. The wrapper script sets the
umask to 002 (which turns off writing by others) and calls the original svnserve while passing
along all the arguments it received:

$ sudo mv /usr/local/bin/svnserve /usr/local/bin/svnserve-stock
$ sudo vi /usr/local/bin/svnserve

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN116

9810ch05.qxd 5/20/08 4:51 PM Page 116

... set up the file as below ...

$ cat /usr/local/bin/svnserve

#!/bin/sh
umask 002
exec /usr/local/bin/svnserve-stock "$@"

$ sudo chmod a+x /usr/local/bin/svnserve

Now you’ll create the user svn and change the ownership of the permissions of the Sub-
version repository. Remember that the repository is located in /usr/local/svn/repos.

$ sudo /usr/sbin/useradd svn
$ sudo chown svn:svn /usr/local/svn/repos
$ sudo chmod g+rw /usr/local/svn/repos

You can now start the Subversion server. The --daemon option tells the server to start as a
daemon. The -r option tells it where to find the repository. It must be started from the Subver-
sion user’s account.

$ sudo -u svn /usr/local/bin/svnserve --daemon -r /usr/local/svn/repos

The Subversion server is now listening for requests on port 3690. Subversion clients use
file:/// URLs to access the local filesystem, and they access svnserve using svn:// URLs. The
local URL for the RSReader project is file:///usr/local/svn/repos/rsreader, and it maps to
the remote URL svn://source/rsreader. The source component is the host name and the
rsreader component is the path relative to the Subversion server’s root.

You can verify the status with the svn info command:

$ svn info svn://source/rsreader

Path: rsreader
URL: svn://source/rsreader
Repository Root: svn://source
Repository UUID: e56658fc-2c3c-0410-b453-f6f88bcaf20d
Revision: 30
Node Kind: directory
Last Changed Author: jeff
Last Changed Rev: 30
Last Changed Date: 2007-11-20 13:38:06 -0800 (Tue, 20 Nov 2007)

Finally, it’s necessary to add committers to the Subversion group. On my system, there are
only two users to worry about: jeff and doug. On Linux systems, the usermod command adds
users to groups.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 117

9810ch05.qxd 5/20/08 4:51 PM Page 117

file:///URLs
svn://URLs
file:///usr/local/svn/repos/rsreader
svn://source/rsreader
svn://source/rsreader
svn://source/rsreader
svn://source

$ sudo /usr/sbin/usermod -G svn jeff
$ sudo /usr/sbin/usermod -G svn doug

The depot is now ready for testing with Subversion over SSH. This access method runs
svnserve on the repository machine, so it is a local access protocol like the file:///. The full
directory path is used, yielding svn+ssh://source/usr/local/svn/repos/rsreader. Testing this
from the command line shows that the URL is valid:

$ svn info svn+ssh://source/usr/local/svn/repos/rsreader

Password:

Path: rsreader
URL: svn+ssh://source/usr/local/svn/repos/rsreader
Repository Root: svn+ssh://source/usr/local/svn/repos
Repository UUID: e56658fc-2c3c-0410-b453-f6f88bcaf20d
Revision: 30
Node Kind: directory
Last Changed Author: jeff
Last Changed Rev: 30
Last Changed Date: 2007-11-20 13:38:06 -0800 (Tue, 20 Nov 2007)

Your password is requested before every new connection, but this can be circumvented
using SSH keys. Setting up SSH trust relationships isn’t very complicated, but it’s outside the
scope of this book. Tutorials can be found online, and a good one is provided by Linux Journal
at www.linuxjournal.com/article/8759.

The output indicates that the repository is available, but we know that there is already a
copy on the development machine that was checked out from the old file URL. The copy could
just be abandoned, but if changes have already been made, then that course of action would
be unpalatable. It would be better if there were a way of informing Subversion of the change in
locations. The svn switch command does just that. The --relocate option maps the URLs
from one location to another, transforming file:/// URLs into svn+ssh:// URLs. That step is
performed on the development box, not the Subversion server.

$ svn switch --relocate file:/// svn+ssh://source/

Password:

Eclipse automatically recognizes the change in location. The next time Subversion is
accessed, Subversive will ask for your credentials, but it may be necessary to open and close
the project to get Subversive to correctly display the new URL next to the project.

The final step in setting up Subversion is ensuring that svnserve will start when the host
machine reboots. As with Buildbot, you do this by putting an appropriate entry in the Subver-
sion user’s crontab. On my Subversion server, it looks like this:

$ sudo -u svn crontab -l

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN118

9810ch05.qxd 5/20/08 4:51 PM Page 118

ssh://source/usr/local/svn/repos/rsreader
ssh://source/usr/local/svn/repos/rsreader
ssh://source/usr/local/svn/repos/rsreader
ssh://source/usr/local/svn/repos
http://www.linuxjournal.com/article/8759
file:///URLs
ssh://URLs
ssh://URLs
file:///svn+source

@reboot /usr/local/bin/svnserve --daemon -r /usr/local/svn/repos

Using the Source
The Subversion repository is now available across the network, so the build slave can now
obtain the source code. You add the SVN step to the builder factory f1 in buildmaster’s
master.cfg. Currently, the relevant section reads as follows:

from buildbot.process import factory
from buildbot.steps.shell import ShellCommand

f1 = factory.BuildFactory()
f1.addStep(ShellCommand(command="echo 'build was run'"))

The SVN build step pulls down code from the repository. The baseURL points to the
Subversion repository. The baseURL is concatenated with the branch, so the trailing slash is
important. As configured, this branch defaults to trunk. The SVN step checks out a fresh copy
each time when clobber mode is selected.

from buildbot.process import factory
from buildbot.steps.source import SVN

f1 = factory.BuildFactory()
f1.addStep(SVN, baseURL="svn://source/rsreader/",

defaultBranch="trunk",
mode="clobber",
timeout=3600)

You reconfigure the build master using the command buildbot reconfig. This bypasses
the need to restart Buildbot. Any error will be reported in twistd.log, and Buildbot will con-
tinue running with the old configuration.

$ sudo -u build buildbot reconfig /usr/local/buildbot/master/rsreader

sending SIGHUP to process 2152
2008-05-05 15:59:56-0700 [-] loading configuration from /usr/local/buildbot/master
…
Reconfiguration appears to have completed successfully.

The reconfiguration is reflected in the waterfall display too. This is shown in Figure 5-6.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 119

9810ch05.qxd 5/20/08 4:51 PM Page 119

svn://source/rsreader

Figure 5-6. Successful reconfiguration

If all is configured correctly, then the next build will retrieve the source code from the
repository. The build is again triggered using buildbot sendchange, and the waterfall display is
monitored. If everything worked, then the SVN step will appear, and once it completes, it will
be green, as shown in Figure 5-7.

Figure 5-7. The slave successfully checks out code.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN120

9810ch05.qxd 5/20/08 4:51 PM Page 120

The successful checkout indicates that the reconfiguration was successful, that all the
parameters are correct, and that the build slave can retrieve code from Subversion. It is useful
to note that the checkout message in the SVN step includes the revision number; in this case
revision 30 (r30).

Subversion to Buildbot, Over
Subversion should send notifications to Buildbot when changes are committed. This is done
with hooks. Hooks are programs triggered by events in Subversion. The events are commits,
locking, and revision property changes, and there are hooks for several steps in each kind of
event. The commit event is the interesting one for our purpose.

The commit process has three hooks. The start-commit hook is called before the commit
transaction is created. The pre-commit hook is called after the commit transaction has been
created, but before it has been submitted. Both of these hooks can abort the commit. The
post-commit hook is called after a successful commit, and it is the one of interest. It takes the
repository path and the created revision as arguments, and its return code is ignored.

The hook sends notifications using svn_buildbot.py. This program ships in the Buildbot
contrib directory. Recall that you installed Buildbot with easy_install -b /tmp/bbinst
buildbot, and that left a copy of the full package in /tmp/bbinst. You can copy svn_buildbot.py
from there to the Subversion directories.

The hooks themselves are stored in the directory /usr/local/svn/repos/hooks. As
shipped, the directory contains templates demonstrating how each hook is used. The post-
commit hook is named /usr/local/svn/repos/hooks/post-commit, and it must be executable.

$ sudo -u svn mkdir /usr/local/svn/bin
$ sudo -u svn cp /tmp/bbinst/buildbot/contrib/svn_buildbot.py➥

/usr/local/svn/bin/
$ sudo -u svn vi /usr/local/svn/repos/hooks/post-commit

...some editing...

$ sudo -u svn chmod a+x /usr/local/svn/repos/hooks/post-commit
$ cat /usr/local/svn/repos/hooks/post-commit

#!/bin/sh
REPOS="$1"
REV="$2"
MASTER=buildmaster
PORT=4484
/usr/local/svn/bin/svn_buildbot.py --repository "$REPOS" \

--revision "$REV" \
--bbserver $MASTER \
--bbport $PORT

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 121

9810ch05.qxd 5/20/08 4:51 PM Page 121

The final step is testing the hook by submitting a change to the codeline and then check-
ing the result on the waterfall display, as shown in Figure 5-8. This is done on the development
machine:

$ cat " " >> setup.py
$ svn commit -m "Just a minor change to trigger a build"

Password:

Sending setup.py
Transmitting file data .
Committed revision 31.

Figure 5-8. The build was successfully triggered by a Subversion submission.

A Python for Every Builder
I haven’t said this for a while, so I’ll say it again. The goal is to produce a clean build every
time. This requires removing all packages and installed scripts from the Python installation.
The easiest way of preventing builders from stepping on each other is to provide each one
with its own interpreter. Some people may disagree with me, but disk space is cheap, and the
cleansing process is straightforward and easily automated.

Python is installed into the build slave’s root directory. The Python version is explicitly
named so that multiple Python versions can be installed in the same build slave. In this case,
the Python build prefix will be /usr/local/buildbot/slave/rsreader/full-py2.5/python2.5.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN122

9810ch05.qxd 5/20/08 4:51 PM Page 122

The decision not to track the minor version is a conscious one. If there comes a point where
the minor Python revisions are important, then I will track them.

$ curl -L -o Python-2.5.1.tgz http://www.python.org/ftp/➥

python/2.5.1/Python-2.5.1.tgz

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 10.5M 100 10.5M 0 0 31388 0 0:05:52 0:05:52 --:--:-- 49899

$ tar xvfz Python-2.5.1.tgz

Python-2.5.1/
Python-2.5.1/Python/
...
Python-2.5.1/pyconfig.h.in
Python-2.5.1/install-sh

$ cd Python-2.5.1
$./configure --prefix=/usr/local/buildbot/slave/rsreader/full-py2.5/python2.5

checking MACHDEP... linux2
checking EXTRAPLATDIR...
... many minutes pass ...
creating Modules/Setup.local
creating Makefile

$ make

gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -O3 -Wall➥

-Wstrict-prototypes -I. -I./Include -DPy_BUILD_CORE➥

-o Modules/python.o ./Modules/python.c
... many more minutes pass ...
changing mode of build/scripts-2.5/idle from 664 to 775
changing mode of build/scripts-2.5/smtpd.py from 664 to 775

$ make test

case $MAKEFLAGS in \
-s) CC='gcc -pthread' LDSHARED='gcc -pthread -shared'➥

OPT='-DNDEBUG -g -O3 -Wall -Wstrict-prototypes' ./python -E
...

test_timeout test_urllib2net test_urllibnet test_winreg
test_winsound test_zipfile64

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 123

9810ch05.qxd 5/20/08 4:51 PM Page 123

http://www.python.org/ftp/�

$ make install

/usr/bin/install -c python /usr/local/buildbot/slave/rsreader/full-py2.5/➥

python2.5/bin/python2.5
if test -f libpython2.5.so; then \
...
/usr/bin/install -c -m 644 ./Misc/python.man \

/usr/local/buildbot/slave/rsreader/python2.5/man/man1/python.1

Finally, a Real Build Succeeds
Builds are produced using the Compile step. The Compile step will run the statement python
setup.py build as if run from the command line. However, it should use the private Python
interpreter installed in the previous section. Absolute paths are out of the question. The build
clients may be rearranged in the future, or they may be relocated by others with good reasons
for placing them elsewhere, so relative paths should be used. There are many paths to keep
straight, so they’re summarized in Table 5-1.

Table 5-1. Paths Used on the Slave

Path Description

/usr/local/buildbot/slave/rsreader The build slave’s root directory

/usr/local/buildbot/slave/rsreader/ The builder directory defined in master.cfg
full-py2.5

/usr/local/buildbot/slave/rsreader/ The build directory where the builder factory
full-py2.5/build runs

/usr/local/buildbot/slave/rsreader/ The slave’s local Python 2.5 installation
full-py2.5/python2.5

/usr/.../full-py2.5/python2.5/bin/python The Python interpreter

/usr/.../full-py2.5/python2.5/lib/ Locally installed packages
python2.5/site-packages

/usr/.../full-py2.5/python2.5/site-bin Locally installed executables

../python2.5/bin/python The relative path from the build directory to
the interpreter

../python2.5/lib/python2.5/site-packages The relative path from the build directory to
the locally installed packages

../python2.5/site-bin The relative path from the build directory to
the locally installed executables

The SVN step checks out the code into the directory full-py2.5/build relative to the
slave’s directory. The builder directory, full-py2.5, is specified in the builder’s definition in
master.cfg, and the last subdirectory is always build. The builder executes in this directory.
The relative path from the build directory to the locally installed Python 2.5 interpreter is
../python2.5/bin/python.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN124

9810ch05.qxd 5/20/08 4:51 PM Page 124

After adding the new step, the relevant section of master.cfg looks like this:

from buildbot.process import factory
from buildbot.steps.source import SVN
from buildbot.steps.shell import Compile

f1 = factory.BuildFactory()
f1.addStep(SVN, baseURL="svn://repos/rsreader/",

defaultBranch="trunk",
mode="clobber",
timeout=3600)

f1.addStep(Compile, command=["../python2.5/bin/python",
"./setup.py",
"build"])

You reconfigure Buildbot and trigger a build with buildbot sendchange, and the change is
reflected in the waterfall display. Figure 5-9 shows the completed build.

Figure 5-9. The build step succeeds.

Installing the Build
The Install step will generate executables. By default, these executables will be placed into
the local Python bin directory along with the Python interpreter and other stock tools. The
build will need to remove the generated artifacts—however, separating them from the preex-
isting tools is problematic. Fortunately, you can specify a different directory for executables
with the --install-script option. This is not an issue for packages, as they are installed into
site-packages. It contains no stock Python files, so it can be cleansed with impunity.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 125

9810ch05.qxd 5/20/08 4:51 PM Page 125

svn://repos/rsreader

from buildbot.process import factory
from buildbot.steps.source import SVN
from buildbot.steps.shell import Compile, ShellCommand

f1 = factory.BuildFactory()
f1.addStep(SVN, baseURL="svn://repos/rsreader/",

defaultBranch="trunk",
mode="clobber",
timeout=3600)

f1.addStep(ShellCommand, command=["mkdir",
"../python2.5/site-bin"])

f1.addStep(Compile, command=["../python2.5/bin/python",
"./setup.py",
"build"])

f1.addStep(Compile, command=["../python2.5/bin/python",
"./setup.py",
"install",
"--install-scripts",
"../python2.5/site-bin"])

The Install step output shown in Figure 5-9 indicates that the docutils package was
installed. Triggering the build a second time yields the log shown in Figure 5-10. It shows that
docutils was not actually installed. Instead, the previous installation was used. This may seem
a pedantic point, but I’ve encountered many situations in which a clean install would fail for
one reason or another, but subsequent installations would succeed. It’s not an acceptable
answer to simply tell your customer, “Just reinstall it, and it will work.” Each build should yield
a clean result.

The build code functions, but it is getting messy. The build code is going to be around as
long as the application—perhaps even longer. There is a tendency to neglect build configura-
tions and build code. Normal programming practices aren’t applied, and eventually the code
rots under the weight of neglect. Changes to build code are easy to make if they’re small, and
the key to keeping them small is making the changes as the need is recognized.

Both the path to python and the path to the site-bin directory are replicated. We’ll extract
them into constants. This is refactoring—changing the structure of code to improve readabil-
ity and maintainability without altering its function. Refactoring is best done when the code
can be tested. Fortunately, the build configuration code has a built-in test and test harness,
which is the build system itself. If you can’t make a build, then your configuration changes are
broken.

from buildbot.process import factory
from buildbot.steps.source import SVN
from buildbot.steps.shell import Compile, Install, ShellCommand

python = "../python2.5/bin/python"
site_bin = "../python2.5/site-bin"

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN126

9810ch05.qxd 5/20/08 4:51 PM Page 126

svn://repos/rsreader

f1 = factory.BuildFactory()
f1.addStep(SVN, baseURL="svn://repos/rsreader/",

defaultBranch="trunk",
mode="clobber",
timeout=3600)

f1.addStep(ShellCommand, command=["mkdir", build_bin])
f1.addStep(Compile, command=[python, "./setup.py", "build"])
f1.addStep(Compile, command=[python, "./setup.py", "install",

"--install-scripts", site-bin])

Here, we’re saving master.cfg, reconfiguring Buildbot, and triggering a build. The results
are the same, which is good and bad. It’s good because we’ve verified your changes, and they
work as expected. It’s bad because the old build is still installed, so the installation directories
python2.5/lib/2.5/site-packages and python2.5/site-bin must be removed and recreated.

from buildbot.process import factory
from buildbot.steps.source import SVN
from buildbot.steps.shell import Compile, ShellCommand

python = "../python2.5/bin/python"
site_bin = "../python2.5/site-bin"
site_pkgs = "../python2.5/lib/python2.5/site-packages"

f1 = factory.BuildFactory()
f1.addStep(SVN, baseURL="svn://repos/rsreader/",

defaultBranch="trunk
mode="clobber",
timeout=3600)

f1.addStep(ShellCommand, command=["rm", "-rf", site_pkgs])
f1.addStep(ShellCommand, command=["mkdir", site_pkgs])
f1.addStep(ShellCommand, command=["rm", "-rf", site_bin])
f1.addStep(ShellCommand, command=["mkdir", site_bin])
f1.addStep(Compile, command=[python, "./setup.py", "build"])
f1.addStep(Compile, command=[python, "./setup.py", "install",

"--install-scripts", site_bin])

Once again, we’re saving the changes, reconfiguring Buildbot, and triggering a build.
The waterfall display is shown in Figure 5-10. It clearly shows the new step and the last step’s
output—it is clear that the packages have been freshly installed.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 127

9810ch05.qxd 5/20/08 4:51 PM Page 127

svn://repos/rsreader
svn://repos/rsreader

Figure 5-10. A complete clean build

Supporting Python 2.4 Builds
This chapter’s ultimate goal is supporting both Python 2.4 and Python 2.5, and we’re getting
very close. Python 2.4 must be installed, a new scheduler added, and a new builder defined.
The master configuration must also be refactored along the way.

Installing Python 2.4 is precisely analogous to installing Python 2.5. It is placed in a direc-
tory named python2.4, directly beneath the slave’s root directory. Supplying the new directory
to the ./configure step is the only change in procedure.

$ curl -L -o Python-2.4.4.tgz http://www.python.org/ftp/python/2.4.4/➥

Python-2.4.4.tgz

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 10.5M 100 10.5M 0 0 31388 0 0:05:52 0:05:52 --:--:-- 49899

$ tar xvfz Python-2.4.4.tgz

Python-2.4.4/
Python-2.4.4/Python/
...
Python-2.4.4/pyconfig.h.in
Python-2.4.4/install-sh

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN128

9810ch05.qxd 5/20/08 4:51 PM Page 128

http://www.python.org/ftp/python/2.4.4/�

$ cd Python-2.4.4
$./configure --prefix=/usr/local/buildbot/slave/rsreader/full-py2.4/python2.4

checking MACHDEP... linux2
checking EXTRAPLATDIR...
... many minutes pass ...
creating Modules/Setup.local
creating Makefile

$ make; make test; make install

gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -O3 -Wall➥

-Wstrict-prototypes -I. -I./Include -DPy_BUILD_CORE➥

-o Modules/python.o ./Modules/python.c
... many more minutes pass ...
changing mode of build/scripts-2.4/idle from 664 to 775
changing mode of build/scripts-2.4/smtpd.py from 664 to 775

There are three things that must be done to a new builder. First, the factory producing it
must be created. Then it must be created using that factory. Finally, the builder has to be
scheduled. In this case, the process amounts to little more than duplicating the Python 2.5
definitions and changing the version number to 2.4, although some new constants will need
to be created along the way.

The clarity-to-maintainability ratio for the scheduler and builder sections clearly favors
duplication. Just as clearly, the clarity-to-maintainability ratio militates against duplicating
the builder factory definition. It doubles the number of constants and the number of lines. If
the build process is modified, it will need to be modified in both places, and I guarantee it will
be modified before the chapter is out. There is much to be gained from refactoring here.

You’ll encapsulate the builder factory in a function. That function will take the Python
version as its argument, and it will return a builder factory for that Python version. Along the
way, you’ll extract many of the constants into functions.

The changes are made in two parts. You’ll refactor the builder and builder factory and test
them. Then the new 2.4 builder and schedulers will be added. This isolates the changes in
each step, making debugging much easier.

####### BUILDERS

from buildbot.process import factory
from buildbot.steps.source import SVN
from buildbot.steps.shell import Compile, ShellCommand

def python_(version):
return "../python%s/bin/python" % version

def site_bin_(version):
return "../python%s/site-bin" % version

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 129

9810ch05.qxd 5/20/08 4:51 PM Page 129

def site_pkgs_(version):
subst = {'v': version}
path = "../python%(v)s/lib/python%(v)s/site-packages"
return path % subst

def pythonBuilder(version):
python = python_(version)
site_bin = site_bin_(version)
site_pkgs = site_pkgs_(version)

f = factory.BuildFactory()
f.addStep(SVN, baseURL="svn://repos/rsreader/",

defaultBranch="trunk",
mode="clobber",
timeout=3600)

f.addStep(ShellCommand, command=["rm", "-rf", site_pkgs])
f.addStep(ShellCommand, command=["mkdir", site_pkgs])
f.addStep(ShellCommand, command=["rm", "-rf", site_bin])
f.addStep(ShellCommand, command=["mkdir", site_bin])
f.addStep(Compile, command=[python, "./setup.py", "build"])
f.addStep(Compile, command=[python, "./setup.py", "install",

"--install-scripts", site_bin])
return f

b1 = {'name': "buildbot-full-py2.5",
'slavename': "rsreader-linux",
'builddir': "full-py2.5",
'factory': pythonBuilder('2.5'),
}

You’ve now parameterized the builder factory. A reconfiguration and rebuild verifies that
it works correctly. Now that you’ve made these changes, the Python 2.4 builder can be added.
You’ll add the schedule, define the builder, and add the builder to the builders property:

####### SCHEDULERS

from buildbot.scheduler import Scheduler
c['schedulers'] = []
c['schedulers'].append(Scheduler(name="rsreader under python 2.5",

branch=None,
treeStableTimer=60,
builderNames=["buildbot-full-py2.5"]))

c['schedulers'].append(Scheduler(name="rsreader under python 2.4",
branch=None,
treeStableTimer=60,
builderNames=["buildbot-full-py2.4"]))

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN130

9810ch05.qxd 5/20/08 4:51 PM Page 130

svn://repos/rsreader

...

####### BUILDERS

...

b1 = {'name': "buildbot-full-py2.5",
'slavename': "rsreader-linux",
'builddir': "full-py2.5",
'factory': pythonBuilder('2.5'),
}

b2 = {'name': "buildbot-full-py2.4",
'slavename': "rsreader-linux",
'builddir': "full-py2.4",
'factory': pythonBuilder('2.4'),
}

c['builders'] = [b1, b2]

This time when you run the build, the second builder shows up in a second column, as in
Figure 5-11.

Figure 5-11. Simultaneous Python 2.4 and 2.5 builds

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 131

9810ch05.qxd 5/20/08 4:51 PM Page 131

The second builder executes in parallel with the first. There are differences that are imme-
diately apparent. The build step takes much longer under 2.4 than under 2.5. If you look at the
log, the reason for this should quickly become clear: ez_setup.py is not using the locally pro-
vided copy of Setuptools; it is downloading Setuptools from the network instead.

Ensuring Local Dependency Processing
In Chapter 6, which deals with unit testing, I introduce a package called Nose. It will be a
required dependency for RSReader. Adding it now gives me an opportunity to demonstrate
how to restrict dependencies to local installation. This is done through easy_install’s --
allow-hosts option. If the option is defined, then easy_install will only download eggs from
servers whose host name matches its pattern. No hosts are matched if the pattern is "None", so
this effectively blocks all external access.

The Setuptools install command calls easy_install to process missing dependencies. It
is the easy_install command that observes the allow-hosts option. Unfortunately, install
knows nothing about the --allow-hosts option, and there is no way to hand the option
directly from install to easy_install. However, it can be specified in the project’s setup.cfg
file.

The build server should always enforce this option to catch missing packages. It could be
set in setup.cfg within the codeline—and indeed it may always be—but if it is removed, then
the install will silently retrieve the packages from the network. Instead, we’ll use the command
setup.py setopt to fix the value before each build begins:

f = factory.BuildFactory()
f.addStep(SVN, baseURL="svn://repos/rsreader/",

defaultBranch="trunk",
mode="clobber",
timeout=3600)

f.addStep(ShellCommand, command=["rm", "-rf", site_pkgs])
f.addStep(ShellCommand, command=["mkdir", site_pkgs])
f.addStep(ShellCommand, command=["rm", "-rf", site_bin])
f.addStep(ShellCommand, command=["mkdir", site_bin])
f.addStep(ShellCommand,

command=[python, "./setup.py", "setopt",
""--command", "easy_install",
"--option", "allow-hosts",
"--set-value", "None"])

f.addStep(Compile, command=[python, "./setup.py", "build"])
f.addStep(Compile, command=[python, "./setup.py", "install",

"--install-scripts", site_bin])

As always, when you make a change, you should perform a test build. Remember that the
goal is ensuring build failures when a required package is missing. To check this, you add a
requirement to the project’s setup.py file without supplying the package in the project’s
thirdparty directory.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN132

9810ch05.qxd 5/20/08 4:51 PM Page 132

svn://repos/rsreader

install_requires = [
'docutils == 0.4',
'nose == 0.10.0',
],

You commit this change to Subversion, and it automatically triggers a build. The installa-
tion step fails, as in Figure 5-12. The failed step’s output indicates that the package could not
be located locally. As hoped, a missing package results in a build failure.

Figure 5-12. The Install step fails when a dependency is missing.

You download nose from http://somethingaboutorange.com/mrl/projects/nose/
nose-0.10.0.tar.gz, and check the compressed archive into the thirdparty directory. You
commit the change, and a build happens automatically. This time the build succeeds, as
shown in Figure 5-13.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 133

9810ch05.qxd 5/20/08 4:51 PM Page 133

http://somethingaboutorange.com/mrl/projects/nose

Figure 5-13. The Install step succeeds when the dependency package is added.

Keeping Up Appearances
The waterfall display records the name of each step in gory detail. That detailed information is
available from each step’s output. The information presented in the waterfall display should
be understandable at a glance. The only step with an immediately clear meaning is Compile.
The description presented for each step should be equally succinct and precise.

You accomplish this by modifying a pair of keyword properties in each build step. The
message contained in the description keyword is shown while a step is in progress, and
the message contained in the descriptionDone keyword is shown when a step is complete.
We can add these keywords to each step to increase the waterfall display’s clarity:

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN134

9810ch05.qxd 5/20/08 4:51 PM Page 134

f = factory.BuildFactory()
f.addStep(SVN, baseURL="svn://repos/rsreader/",

defaultBranch="trunk",
mode="clobber",
timeout=3600)

f.addStep(ShellCommand,
command=["rm", "-rf", site_pkgs],
description="removing old site-packages",
descriptionDone="site-packages removed")

f.addStep(ShellCommand,
command=["mkdir", site_pkgs],
description="creating new site-packages",
descriptionDone="site-packages created")

f.addStep(ShellCommand,
command=["rm", "-rf", site_bin],
description="removing old site-bin",
description="site-bin removed")

f.addStep(ShellCommand,
command=["mkdir", site_bin],
description="creating new site-bin",
descriptionDone="site-bin created")

f.addStep(ShellCommand,
command=[python, "./setup.py", "setopt",

""--command", "easy_install",
"--option", "allow-hosts",
"--set-value", "None"],

description="Setting allow-hosts to None",
descriptionDone="Allow-hosts set to None")

f.addStep(Compile, command=[python, "./setup.py", "build"])
f.addStep(ShellCommand,

command=[python, "./setup.py", "install",
"--install-scripts", site_bin],

description="Installing",
descriptionDone="Installed")

return f

The resulting waterfall display is shown in Figure 5-14. The labels are more concise and
informative, and the resulting display uses less space. When using many builders, this can
become a significant factor. It gives me a warm, fuzzy feeling, too, and that counts for a lot.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 135

9810ch05.qxd 5/20/08 4:51 PM Page 135

svn://repos/rsreader

Figure 5-14. More readable step descriptions

Summary
Clean, repeatable builds are an easily achievable outcome using an external build system.
Buildbot is one such system. A Buildbot system consists of four components: the Subversion
server, the Buildbot master, one or more Buildbot slaves, and the development environments.
A remotely accessible Subversion repository allows these roles to be distributed to many hosts.

Buildbot is implemented on top of Twisted. Buildbot and Twisted must be installed on the
Buildbot master, the Buildbot slaves, and the Subversion repository server. It is not necessary
to install it on the developers’ machines. The Subversion repository triggers builds whenever
code is committed. This is done through a post-commit hook.

The build master controls and configures build slaves, which are the machines that per-
form builds. The Buildbot master finds out about unprocessed changes through change
sources. Schedulers trigger builders when certain conditions are satisfied. A builder ties
together a builder factory and a build slave, and it defines a directory where the build will be
performed. Builder factories generate the steps to perform a build, and a build step is an
action that performs one step of a build.

Build steps include actions such as synching source from a repository, compiling an
application, and installing the compiled application.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN136

9810ch05.qxd 5/20/08 4:51 PM Page 136

The system I discussed uses per-builder Python installations. These allow the build
system to completely remove all installed packages and executables when a new build is per-
formed, and this is done without impacting the rest of the system. This allows the build to
verify that completely clean installations are self-contained.

Buildbot has additional capabilities you can configure. Among these is the ability to run
unit tests for each build. I haven’t demonstrated this yet, but I will in the next chapter, which
covers the basics of unit testing.

CHAPTER 5 ■ A BUILD FOR EVERY CHECK-IN 137

9810ch05.qxd 5/20/08 4:51 PM Page 137

9810ch05.qxd 5/20/08 4:51 PM Page 138

Testing: The Horse and
the Cart

This chapter describes unit testing and test-driven development (TDD); it focuses primarily
on the infrastructure supporting those practices. I’ll expose you to the practices themselves,
but only to the extent necessary to appreciate the infrastructure. Along the way, I’ll introduce
the crudest flavors of agile design, and lead you through the development of a set of accept-
ance tests for the RSReader application introduced in Chapter 5. This lays the groundwork for
Chapter 7, where we’ll explore the TDD process and the individual techniques involved.

All of this begs the question, “What are unit tests?” Unit tests verify the behavior of small
sections of a program in isolation from the assembled system. Unit tests fall into two broad
categories: programmer tests and customer tests. What they test distinguishes them from each
other.

Programmer tests prove that the code does what the programmer expects it to do. They
verify that the code works. They typically verify behavior of individual methods in isolation,
and they peer deeply into the mechanisms of the code. They are used solely by developers,
and they are not be confused with customer tests.

Customer tests (a.k.a. acceptance tests) prove that the code behaves as the customer
expects. They verify that the code works correctly. They typically verify behavior at the level of
classes and complete interfaces. They don’t generally specify how results are obtained; they
instead focus on what results are obtained. They are not necessarily written by programmers,
and they are used by everyone in the development chain. Developers use them to verify that
they are building the right thing, and customers use them to verify that the right thing was
built.

In a perfect world, specifications would be received as customer tests. Alas, this doesn’t
happen often in our imperfect world. Instead, developers are called upon to flesh out the
design of the program in conjunction with the customer. Designs are received as only the
coarsest of descriptions, and a conversation is carried out, resulting in detailed information
that is used to formulate customer tests.

Unit testing can be contrasted with other kinds of testing. Those other kinds fall into the
categories of functional testing and performance testing.

Functional testing verifies that the complete application behaves as expected. Functional
testing is usually performed by the QA department. In an agile environment, the QA process is
directly integrated into the development process. It verifies what the customer sees, and it
examines bugs resulting from emergent behaviors, real-life data sets, or long runtimes.

139

C H A P T E R 6

9810ch06.qxd 5/22/08 4:20 PM Page 139

Functional tests are concerned with the internal construction of an application only to
the extent that it impinges upon application-level behaviors. Testers don’t care if the applica-
tion was written using an array of drunken monkeys typing on IBM Selectric typewriters run
through a bank of badly tuned analog synthesizers before finally being dumped into the
source repository. Indeed, some testers might argue that this process would produce better
results.

Functional testing falls into four broad categories: exploratory testing, acceptance testing,
integration testing, and performance testing. Exploratory testing looks for new bugs. It’s an
inventive and sadistic discipline that requires a creative mindset and deep wells of pessimism.
Sometimes it involves testers pounding the application until they find some unanticipated sit-
uation that reveals an unnoticed bug. Sometimes it involves locating and reproducing bugs
reported from the field. It is an interactive process of discovery that terminates with test cases
characterizing the discovered bugs.

Acceptance testing verifies that the program meets the customer’s expectations. Accep-
tance tests are written in conjunction with the customer, with the customer supplying the
domain-specific knowledge, and the developers supplying a concrete implementation. In the
best cases, they supplant formal requirements, technical design documents, and testing plans.
They will be covered in detail in Chapter 11.

Integration testing verifies that the components of the system interact correctly when they
are combined. Integration testing is not necessarily an end-to-end test of the application, but
instead verifies blocks larger than a single unit. The tools and techniques borrow heavily from
both unit testing and acceptance testing, and many tests in both acceptance and unit test
suites can often be characterized as integration tests.

Regression testing verifies that bugs previously discovered by exploratory testing have
been fixed, or that they have not been reintroduced. The regression tests themselves are the
products of exploratory testing. Regression testing is generally automated. The test coverage
is extensive, and the whole test suite is run against builds on a frequent basis.

Performance testing is the other broad category of functional testing. It looks at the overall
resource utilization of a live system, and it looks at interactions with deployed resources. It’s
done with a stable system that resembles a production environment as closely as possible.

Performance testing is an umbrella term encompassing three different but closely related
kinds of testing. The first is what performance testers themselves refer to as performance test-
ing. The two other kinds are stress testing and load testing. The goal of performance testing is
not to find bugs, but to find and eliminate bottlenecks. It also establishes a baseline for future
regression testing.

Load testing pushes a system to its limits. Extreme but expected loads are fed to the sys-
tem. It is made to operate for long periods of time, and performance is observed. Load testing
is also called volume testing or endurance testing. The goal is not to break the system, but to
see how it responds under extreme conditions.

Stress testing pushes a system beyond its limits. Stress testing seeks to overwhelm the sys-
tem by feeding it absurdly large tasks or by disabling portions of the system. A 50 GB e-mail
attachment may be sent to a system with only 25 GB of storage, or the database may be shut
down in the middle of a transaction. There is a method to this madness: ensuring recoverabil-
ity. Recoverable systems fail and recover gracefully rather than keeling over disastrously. This
characteristic is important in online systems.

Sadly, performance testing isn’t within this book’s scope. Functional testing, and specifi-
cally acceptance testing, will be given its due in Chapter 11.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART140

9810ch06.qxd 5/22/08 4:20 PM Page 140

Unit Testing
The focus in this chapter is on programmer tests. From this point forward, I shall use the
terms unit test and programmer test interchangeably. If I need to refer to customer tests, I’ll
name them explicitly.

So why unit testing? Simply put, unit testing makes your life easier. You’ll spend less time
debugging and documenting, and it results in better designs. These are broad claims, so I’ll
spend some time backing them up.

Developers resort to debugging when a bug’s location can’t be easily deduced. Extensive
unit tests exercise components of the system separately. This catches many bugs that would
otherwise appear once the lower layers of a system are called by higher layers. The tests rigor-
ously exercise the capabilities of a code module, and at the same time operate at a fine
granularity to expose the location of a bug without resorting to a debugger.

This does not mean that debuggers are useless or superfluous, but that they are used less
frequently and in fewer situations. Debuggers become an exploratory tool for creating missing
unit tests, and for locating integration defects.

Unit tests document intent by specifying a method’s inputs and outputs. They specify the
exceptional cases and expected behaviors, and they outline how each method interacts with
the rest of the system. As long as the tests are kept up to date, they will always match the soft-
ware they purport to describe. Unlike other forms of documentation, this coherence can be
verified through automation.

Perhaps the most far-fetched claim is that unit tests improve software designs. Most pro-
grammers can recognize a good design when they see it, although they may not be able to
articulate why it is good. What makes a good design? Good designs are highly cohesive and
loosely coupled.

Cohesion attempts to measure how tightly focused a software module is. A module in
which each function or method focuses on completing part of a single task, and in which the
module as a whole performs a single well-defined task on closely related sets of data, is said to
be highly cohesive. High cohesion promotes encapsulation, but it often results in high cou-
pling between methods.

Coupling concerns the connections between modules. In a loosely coupled system, there
are few interactions between modules, with each depending only on a few other modules.
The points where these dependencies are introduced are often explicit. Instead of being hard-
coded, objects are passed into methods and functions. This limits the “ripple effect” where
changes to one module result in changes to many other modules.

Unit testing improves designs by making the costs of bad design explicit to the program-
mer as the software is written. Complicated software with low cohesion and tight coupling
requires more tests than simple software with high cohesion and loose coupling. Without unit
tests, the costs of the poor design are borne by QA, operations, and customers. With unit tests,
the costs are borne by the programmers. Unit tests require time and effort to write, and at
their best programmers are lazy and proud folk.1 They don’t want to spend time writing need-
less tests.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 141

1. Laziness is defined by Larry Wall as the quality that makes you go to great effort to reduce overall
energy expenditure. It makes you write labor-saving programs that other people will find useful, and
document what you wrote so you don’t have to answer so many questions about it.

9810ch06.qxd 5/22/08 4:20 PM Page 141

Unit tests make low cohesion visible through the costs of test setup. Low cohesion
increases the number of setup tasks performed in a test. In a functionally cohesive module, it
is usually only necessary to set up a few different sets of test conditions. The code to set up
such a condition is called a test fixture. In a random or functionally cohesive module, many
more fixtures are required by comparison. Each fixture is code that must be written, and time
and effort that must be expended.

The more dependencies on external modules, the more setup is required for tests, and the
more tests must be written. Each different class of inputs has to be tested, and each different
class of input is yet another test to be written.

Methods with many inputs frequently have complicated logic, and each path through a
method has to be tested. A single execution path mandates one test, and from there it gets
worse. Each if-then statement increases the number of tests by two. Complicated loop bodies
increase setup costs. The number of classes of output from a method also increases the num-
ber of tests to be performed as each kind of value returned and exception raised must be
tested.

In a tightly coupled system, individual tests must reference many modules. The test writer
expends effort setting up fixtures for each test. Over and over, the programmer confronts the
external dependencies. The tests get ugly and the fixtures proliferate. The cost of tight cou-
pling becomes apparent. A simple quantitative analysis shows the difference in testing effort
between two designs.

Consider two methods named get_urls() that implement the same functionality. One
has multiple return types, and the other always returns lists. In the first case, the method can
return None, a single URL, or a nonempty array of URLs. We’ll need at least three tests for this
method—one for each distinct return value.

Now consider a method that consumes results from get_urls(). I’ll call it
get_content(url_list). It must be tested with three separate inputs—one for each return
type from get_urls(). To test this pair of methods, we’ll have created six tests.

Contrast this with an implementation of get_urls() that returns only the empty array []
or a nonempty array of URLs. Testing get_urls() requires only two tests.

The associated definition for get_content(url_list) is correspondingly smaller, too. It
just has to handle arrays, so it only requires one test, which brings the total to three. This is
half the number of the first implementation, so it is immediately clear which interface is more
complicated. What before seemed like a relatively innocuous choice now seems much less so.

Unit testing works with a programmer’s natural proclivities toward laziness, impatience,
and pride. It also improves design by facilitating refactoring.

Refactorings alter the structure of the code without altering its function. They are used to
improve existing code. They are applied serially, and the unit tests are run after each one. If the
behavior of the system has changed in unanticipated ways, then the test suite breaks. Without
unit tests, the programmer must take it as an article of faith that the program’s behavior is
unchanged. This is foolish with your own code, and nearly insane with another’s.

The Problems with Not Unit Testing
I make the bald-faced assertion that no programmer completely understands any system
of nontrivial complexity. If that programmer existed, then he would produce completely
bug-free code. I’ve yet to see that in practice, but absence of evidence is not evidence of

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART142

9810ch06.qxd 5/22/08 4:20 PM Page 142

absence, so that person might exist. Instead, I think that programmers understand most of
the salient features of their own code, and this is good enough in the real world.

What about working with another programmer’s code? While you may understand the
salient features of your code, you must often guess at the salient features of another’s. Even
when she documents her intent, things that were obvious to her may be perplexing to you.
You don’t have access to her thoughts. The design trade-offs are often opaque. The reasons for
putting this method here or splitting out that method there may be historical or related to
obscure performance issues. You just don’t know for sure. Without unit tests or well-written
comments, this can lead to pathological situations.

I’ve worked on a system where great edifices were constructed around old, baroque code
because nobody dared change it. The original authors were gone, and nobody understood
those sections of the code base. If the old code broke, then production could be taken down.
There was no way to verify that refactorings left the old functionality unaltered, so those sec-
tions of code were left unchanged. Scope for projects was narrowly restricted to certain
components, even if changes were best made in other components. Refactoring old code
was strongly avoided.

It was the opposite of the ideal of collective code ownership, and it was driven by fear of
breaking another’s code. An executable test harness written by the authors would have veri-
fied when changes broke the application. With this facility, we could have updated the code
with much less fear. Unit tests are a key to collective code ownership, and the key to confident
and successful refactorings.

Code that isn’t refactored constantly rots. It accumulates warts. It sprouts methods in
inappropriate places. New methods duplicate functionality. The meanings of method and
variable names drift, even though the names stay the same. At best, the inappropriate names
are amusing, and at worst misleading.

Without refactoring, local bugs don’t stay restricted to their neighborhoods. This stems
from the layering of code. Code is written in layers. The layers are structural or temporal.
Structural layering is reflected in the architecture of the system. Raw device IO calls are
invoked from buffered IO calls. The buffered IO calls are built into streams, and applications
sip from the streams. Temporal layering is reflected in the times at which features are created.
The methods created today are dependent upon the methods that were written earlier. In
either case, each layer is built upon the assumption that lower layers function correctly.

The new layers call upon previous layers in new and unusual ways, and these ways
uncover existing but undiscovered bugs. These bugs must be fixed, but this frequently means
that overlaying code must be modified in turn. This process can continue up through the lay-
ers as each in turn must be altered to accommodate the changes below them. The more tightly
coupled the components are, the further and wider the changes will ripple through the sys-
tem. It leads to the effect known as collateral damage (a.k.a. whack-a-mole), where fixing a
bug in one place causes new bugs in another.

Pessimism
There are a variety of reasons that people condemn unit testing or excuse themselves from the
practice. Some I’ve read of, but most I’ve encountered in the real world, and I recount those
here.

One common complaint is that unit tests take too long to write. This implies that the proj-
ect will take longer to produce if unit tests are written. But in reality, the time spent on unit

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 143

9810ch06.qxd 5/22/08 4:20 PM Page 143

testing is recouped in savings from other places. Much less time is spent debugging, and much
less time is spent in QA. Extensively unit-tested projects have fewer bugs. Consequently, less
developer and QA time is spent on repairing broken features, and more time is spent produc-
ing new features.

Some developers say that writing tests is not their job. What is a developer’s job then? It
isn’t simply to write code. A developer’s job is to produce working and completely debugged
code that can be maintained as cheaply as possible. If unit tests are the best means to achieve
that goal, then writing unit tests is part of the developer’s job.

More than once I’ve heard a developer say that they can’t test the code because they don’t
know how it’s supposed to behave. If you don’t know how the code is supposed to behave,
then how do you know what the next line should do? If you really don’t know what the code is
supposed to do, then now probably isn’t the best time to be writing it. Time would be better
spent understanding what the problem is, and if you’re lucky, there may even be a solution
that doesn’t involve writing code.

Sometimes it is said that unit tests can’t be used because the employer won’t let unit tests
be run against the live system. Those employers are smart. Unit tests are for the development
environment. They are the programmer’s tools. Functional tests can run against a live system,
but they certainly shouldn’t be running against a production system.

The cry of “But it compiles!” is sometimes heard. It’s hard to believe that it’s heard, but it is
from time to time. Lots of bad code compiles. Infinite loops compile. Pointless assignments
compile. Pretty much every interesting bug comes from code that compiles.

More often, the complaint is made that the tests take too long to run. This has some valid-
ity, and there are interesting solutions. Unit tests should be fast. Hundreds should run in a
second. Some unit tests take longer, and these can be run less frequently. They can be deferred
until check-in, but the official build must always run them.

If the tests still take too long, then it is worth spending development resources on making
them go faster. This is an area ripe for improvement. Test runners are still in their infancy, and
there is much low-hanging fruit that has yet to be picked.

“We tried and it didn’t work” is the complaint with the most validity. There are many indi-
vidual reasons that unit testing fails, but they all come down to one common cause. The
practice fails unless the tests provide more perceived reliability than they cost in maintenance
and creation combined. The costs can be measured in effort, frustration, time, or money.
People won’t maintain the tests if the tests are deemed unreliable, and they won’t maintain
the tests unless they see the benefits in improved reliability.

Why does unit testing fail? Sometimes people attempt to write comprehensive unit tests
for existing code. Creating unit tests for existing code is hard. Existing code is often unsuited
to testing. There are large methods with many execution paths. There are a plethora of argu-
ments feeding into functions and a plethora of result classes coming out. As I mentioned
when discussing design, these lead to larger numbers of tests, and those tests tend to be more
complicated.

Existing code often provides few points where connections to other parts of the system
can be severed, and severing these links is critical for reducing test complexity. Without such
access points, the subject code must be instrumented in involved and Byzantine ways. Figur-
ing out how to do this is a major part of harnessing existing code. It is often easier just to
rewrite the code than to figure out a way to sever these dependencies or instrument the inter-
nals of a method.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART144

9810ch06.qxd 5/22/08 4:20 PM Page 144

Tests for existing code are written long after the code is written. The programmer is in a
different state of mind, and it takes time and effort to get back to that mental state where the
code was written. Details will have been forgotten and must be deduced or rediscovered. It’s
even worse when someone else wrote the code. The original state of mind is in another’s head
and completely inaccessible. The intent can only be imperfectly intuited.

There are tools that produce unit tests from finished code, but they have several prob-
lems. The tests they produce aren’t necessarily simple. They are as opaque, or perhaps more
opaque, than the methods being tested. As documentation, they leave something to be
desired, as they’re not written with the intent to inform the reader. Even worse, they will
falsely ensure the validity of broken code. Consider this code fragment:

a = a + y
a = a + y

The statement is clearly duplicated. This code is probably wrong, but currently many gen-
erators will produce a unit test that validates it.

An effort focused on unit testing unmodified existing code is likely to fail. Unit testing’s
big benefits accrue when writing new code. Efforts are more likely to succeed when they focus
on adding unit tests for sections of code as they change.

Sometimes failure extends from a limited suite of unit tests. A test suite may be limited in
both extent and execution frequency. If so, bugs will slip through and the tests will lose much
of their value. In this context, extent refers to coverage within a tested section. Testing cover-
age should be as complete as possible where unit tests are used. Tested areas with sparse
coverage leak bugs, and this engenders distrust.

When fixing problems, all locations evidencing new bugs must be unit tested. Every mole
that pops out of its hole must be whacked. Fixing the whack-a-mole problem is a major bene-
fit that developers can see. If the mole holes aren’t packed shut, the moles will pop out again,
so each bug fix should include an associated unit test to prevent its regression in future modi-
fications.

Failure to properly fix broken unit tests is at the root of many testing effort failures.
Broken tests must be fixed, not disabled or gutted.2 If the test is failing because the associated
functionality has been removed, then gutting a unit test is acceptable; but gutting because you
don’t want to expend the effort to fix it robs tests of their effectiveness. There was clearly a bug,
and it has been ignored. The bug will come back, and someone will have to track it down
again. The lesson often taken home is that unit tests have failed to catch a bug.

Why do people gut unit tests? There are situations in which it can reasonably be done, but
they are all tantamount to admitting failure and falling back to a position where the testing
effort can regroup. In other cases, it is a social problem. Simply put, it is socially acceptable in
the development organization to do this. The way to solve the problem is by bringing social
pressures to bear.

Sometimes the testing effort fails because the test suite isn’t run often enough, or it’s not
run automatically. Much of unit testing’s utility comes through finding bugs immediately after
they are introduced. The longer the time between a change and its effect, the harder it is to
associate the two. If the tests are not run automatically, then they won’t be run much of the

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 145

2. A test is gutted when its body is removed, leaving a stub that does nothing.

9810ch06.qxd 5/22/08 4:20 PM Page 145

time, as people have a natural inclination not to spend effort on something that repeatedly
produces nonresults or isn’t seen to have immediate benefits.

Unit tests that run only on the developer’s system or the build system lead toward failure.
Developers must be able to run the tests at will on their own development boxes, and the
build system must be able to run them in the official clean build environment. If developers
can’t run the unit tests on their local systems, then they will have difficulty writing the tests. If
the build system can’t run the tests, then the build system can’t enforce development policies.

When used correctly, unit test failures should indicate that the code is broken. If unit test
failures do not carry this meaning, then they will not be maintained. This meaning is enforced
through build failures. The build must succeed only when all unit tests pass. If this cannot
be counted on, then it is a severe strike against a successful unit-testing effort.

Test-Driven Development
As noted previously, a unit-testing effort will fail unless the tests provide more perceived relia-
bility than the combined costs of maintenance and creation. There are two clear ways to
ensure this. Perceived utility can be increased, or the costs of maintenance and creation can
be decreased. The practices of TDD address both.

TDD is a style with unique characteristics. Perhaps most glaringly, tests are written before
the tested code. The first time you encounter this, it takes a while to wrap your mind around it.
“How can I do that?” was my first thought, but upon reflection, it is obvious that you always
know what the next line of code is going to do. You can’t write it until you know what it is going
to do. The trick is to put that expectation into test code before writing the code that fulfills it.

TDD uses very small development cycles. Tests aren’t written for entire functions. They
are written incrementally as the functions are composed. If the chunks get too large, a test-
driven developer can always back down to a smaller chunk.

The cycles have a distinct four-part rhythm. A test is written, and then it is executed to
verify that it fails. A test that succeeds at this point tells you nothing about your new code.
(Every day I encounter one that works when I don’t expect it to.) After the test fails, the associ-
ated code is written, and then the test is run again. This time it should pass. If it passes, then
the process begins anew.

The tests themselves determine what you write. You only write enough code to pass the
test, and the code you write should always be the simplest possible thing that makes the test
succeed. Frequently this will be a constant. When you do this religiously, little superfluous
functionality results.

No code is allowed to go into production unless it has associated tests. This rule isn’t as
onerous as it sounds. If you follow the previously listed practices then this happens naturally.

The tests are run automatically. In the developer’s environment, the tests you run may be
limited to those that execute with lightning speed (i.e., most tests). When you perform a full
build, all tests are executed. This happens in both the developer’s environment and the official
build environment. A full build is not considered successful unless all unit tests succeed.

The official build runs automatically when new code is available. You’ve already seen how
this is done with Buildbot, and I’ll expand the configuration developed in Chapter 5 to include
running tests. The force of public humiliation is often harnessed to ensure compliance. Failed
builds are widely reported, and the results are highly visible. You often accomplish this
through mailing lists, or a visible device such as a warning light or lava lamp.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART146

9810ch06.qxd 5/22/08 4:20 PM Page 146

Local test execution can also be automated. This is done through two possible mecha-
nisms. A custom process that watches the source tree is one such option, and another uses the
IDE itself, configuring it to run tests when the project changes.

The code is constantly refactored. When simple implementations aren’t sufficient, you
replace them. As you create additional functionality, you slot it into dummied implementa-
tions. Whenever you encounter duplicate functionality, you remove it. Whenever you
encounter code smells, the offending stink is freshened.

These practices interact to eliminate many of the problems encountered with unit testing.
They speed up unit testing and improve the tests’ accuracy. The tests for the code are written
at the same time the code is written. There are no personnel or temporal gaps between the
code and the tests. The tests’ coverage is exhaustive, as no code is produced without an associ-
ated set of tests. The tests don’t go stale, as they are invoked automatically, and the build fails if
any tests fail. The automatic builds ensure that bugs are found very soon after they are intro-
duced, vastly improving the suite’s value.

The tests are delivered with the finished system. They provide documentation of the sys-
tem’s components. Unlike written documents, the tests are verifiable, they’re accurate, and
they don’t fall out of sync with the code. Since the tests are the primary documentation source,
as much effort is placed into their construction as is placed into the primary application.

Knowing Your Unit Tests
A unit test must assert success or failure. Python provides a ready-made command.
The Python assert expression takes one argument: a Boolean expression. It raises an
AssertionErrror if the expression is False. If it is True, then the execution continues on.
The following code shows a simple assertion:

>>> a = 2
>>> assert a == 2
>>> assert a == 3

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AssertionError

You clarify the test by creating a more specialized assertion:

>>> def assertEquals(x, y):
... assert x == y
...
>>> a = 2
>>> assertEquals(a, 2)
>>> assertEquals(a, 3)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in assertEquals

AssertionError

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 147

9810ch06.qxd 5/22/08 4:20 PM Page 147

Unit tests follow a very formulaic structure. The test conditions are prepared, and any
needed fixtures are created. The subject call is performed, the behavior is verified, and finally
the test fixtures are cleanly destroyed. A test might look like this:

def testSettingEmployeeNameShouldWork():
x = create_persistent_employee()
x.set_name("bob")
assertEquals("bob", x.get_name)
x.destroy_self()

The next question is where the unit tests should go. There are two reasonable choices: the
tests can be placed with the code they test or in an isolated package. I personally prefer the
former, but the latter has performance advantages and organizational benefits. The tools to
run unit tests often search directories for test packages. For large projects, this overhead
causes delays, and I’d rather sidestep the issue to begin with.

unittest and Nose
There are several packages for unit testing with Python. They all support the four-part test
structure described previously, and they all provide a standard set of features. They all group
tests, run tests, and report test results. Surprisingly, test running is the most distinctive feature
among the Python unit-testing frameworks.

There are two clear winners in the Python unit-testing world: unittest and Nose. unittest
ships with Python, and Nose is a third-party package. Pydev provides support for unittest, but
not for Nose. Nose, on the other hand, is a far better test runner than unittest, and it under-
stands how to run the other’s test cases.

Like Java’s jUnit test framework, unittest is based upon Smalltalk’s xUnit. Detailed infor-
mation on its development and design can be found in Kent Beck’s book Test-Driven
Development: By Example (Addison-Wesley, 2002).

Tests are grouped into TestCase classes, modules (files), and TestSuite classes. The tests
are methods within these classes, and the method names identify them as tests. If a method
name begins with the string test, then it is a test—so testy, testicular, and testosterone are
all valid test methods. Test fixtures are set up and torn down at the level of TestCase classes.
TestCase classes can be aggregated with TestSuite classes, and the resulting suites can be
further aggregated. Both TestCase and TestSuite classes are instantiated and executed by
TestRunner objects. Implicit in all of this are modules, which are the Python files containing
the tests. I never create TestSuite classes, and instead rely on the implicit grouping within
a file.

Pydev knows how to execute unittest test objects, and any Python file can be treated as a
unit test. Test discovery and execution are unittest’s big failings. It is possible to build up a
giant unit test suite, tying together TestSuite after TestSuite, but this is time-consuming. An
easier approach depends upon file-naming conventions and directory crawling. Despite these
deficiencies, I’ll be using unittest for the first few examples. It’s very widely used, and familiar-
ity with its architecture will carry over to other languages.3

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART148

3. Notably, it carries over to JavaScript testing with JSUnit in Chapter 10.

9810ch06.qxd 5/22/08 4:20 PM Page 148

Nose is based on an earlier package named PyTest. Nose bills itself primarily as a test
discovery and execution framework. It searches directory trees for modules that look like
tests. It determines what is and is not a test module by applying a regular expression
(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep) to the file name. If the string [Tt]est is found
after a word boundary, then the file is treated as a test.4 Nose recognizes unittest.TestCase
classes, and knows how to run and interpret their results. TestCase classes are identified by
type rather than by a naming convention.

Nose’s native tests are functions within modules, and they are identified by name using
the same pattern used to recognize files. Nose provides fixture setup and tear-down at both
the module level and function level. It has a plug-in architecture, and many features of the
core package are implemented as plug-ins.

A Simple RSS Reader
The project introduced in Chapter 4 is a simple command-line RSS reader (a.k.a. aggregator).
As noted, RSS is a way of distributing content that is frequently updated. Examples include
new articles, blog postings, podcasts, build results, and comic strips. A single source is referred
to as a feed. An aggregator is a program that pulls down one or more RSS feeds and interleaves
them. The one constructed here will be very simple. The two feeds we’ll be using are from two
of my favorite comic strips: xkcd and PVPonline.

RSS feeds are XML documents. There are actually three closely related standards: RSS,
RSS 2.0, and Atom. They’re more alike than different, but they’re all slightly incompatible. In
all three cases, the feeds are composed of dated items. Each item designates a chunk of con-
tent. Feed locations are specified with URLs, and the documents are typically retrieved over
HTTP.

You could write software to retrieve an RSS feed and parse it, but others have already
done that work. The well-recognized package FeedParser is one. It is retrieved with
easy_install:

$ easy_install FeedParser

Searching for FeedParser
Reading http://pypi.python.org/simple/FeedParser/
Best match: feedparser 4.1
...
Processing dependencies for FeedParser
Finished processing dependencies for FeedParser

The package parses RSS feeds through several means. They can be retrieved and read
remotely through a URL, and they can be read from an open Python file object, a local file
name, or a raw XML document that can be passed in as a string. The parsed feed appears as
a queryable data structure with a dict-like interface:

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 149

4. The default test pattern recognizes Test.py, Testerosa.py, a_test.py, and testosterone.py, but not
CamelCaseTest.py or mistested.py. You can set the pattern with the -m option.

9810ch06.qxd 5/22/08 4:20 PM Page 149

http://pypi.python.org/simple/FeedParser

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART150

>>> import feedparser
>>> d = feedparser.parse('http://www.xkcd.com/rss.xml')
>>> print d['feed']['title']

xkcd.com

>>> print len(d['items'])

2

>>> print [x['title'] for x in d['items']]

[u'Python', u'Far Away']

>>> print [x['date'] for x in d['items']]

[u'Wed, 05 Dec 2007 05:00:00 -0000', u'Mon, 03 Dec 2007➥

05:00:00 -0000']

The project is ill defined at this point, so I’m going to describe it a bit more concretely.
We’ll start simply and add more features as the project develops. For now, I just want to know
if a new comic strip is available when I log in. (I find it really depressing to get the Asia Times
feed in the morning, and comics make me happy.)

Let’s make a story. User stories describe new features. They take the place of large require-
ments documents. They are only two or three sentences long and have just enough detail for a
developer to make a ballpark estimate of how long it will take to implement. They’re initially
created by the customer, they’re devoid of technical mumbo jumbo, and they’re typically
jotted down on a note card, as in Figure 6-1.

Figure 6-1. A user story on a 3 ✕ 5 notecard

Developers go back to the customer when work begins on the story. Further details are
hashed out between the two of them, ensuring that the developer really understands what
the customer wants, with no intermediate document separating their perceptions. This dis-
cussion’s outcomes drive acceptance test creation. The acceptance tests document the
discussion’s conclusions in a verifiable way.

9810ch06.qxd 5/22/08 4:20 PM Page 150

http://www.xkcd.com/rss.xml

In this case, I’m both the customer and the programmer. After a lengthy discussion with
myself, I decide that I want to run the command with a single URL or a file name and have it
output a list of articles. The user story shown on the card in Figure 6-1 reads, “Bob views the
titles & dates from the feed at xkcd.com.” After hashing things out with the customer, it turns
out that he expects a run to look something like this:

$ rsreader http://www.xkcd.com/rss.xml

Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away

I ask the customer (me), “What should this look like when I don’t supply any arguments?”
And the customer says, “Well, I expect it to do nothing.”

And the developer (me) asks, “And if it encounters errors?”
“Well, I really don’t care about that. I’m a Python programmer. I’ll deal with the excep-

tions,” replies the customer, “and for that matter, I don’t care if I even see the errors.”
“OK, what if more than one URL is supplied?”
“You can just ignore that for the moment.”
“Cool. Sounds like I’ve got enough to go on,” and remembering that maintaining good

relations with the customer is important, I ask, “How about grabbing a bite for lunch at China
Garlic?”

“Great idea,” the customer replies.
We now have material for a few acceptance tests. The morning’s work is done, and I go to

lunch with myself and we both have a beer.

The First Tests
In the previous chapter, you wrote a tiny fragment of code for your application. It’s a stub
method that prints “woof.” It exists solely to allow Setuptools to install an application. The
project (as seen from Eclipse) is shown in Figure 6-2.

Figure 6-2. RSReader as last visited

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 151

9810ch06.qxd 5/22/08 4:20 PM Page 151

http://www.xkcd.com/rss.xml

Instead of intermixing test code and application code, the test code is placed into a
separate package hierarchy. The package is test, and there is also a test module called
test.test_application.py. This can be done from the command line or from Eclipse. The
added files and directories are shown in Figure 6-3.

Figure 6-3. RSReader with the unit test skeleton added

RSReader takes in data from URLs or files. The acceptance tests shouldn’t depend on
external resources, so the first acceptance tests should read from a file. They will expect a spe-
cific output, and this output will be hard-coded. The method rsreader.application.main() is
the application entry point defined in setup.py. You need to see what a failing test looks like
before you can appreciate a successful one, so the first test case initially calls self.fail():

from unittest import TestCase

class AcceptanceTests(TestCase):

def test_should_get_one_URL_and_print_output(self):
self.fail()

The test is run through the Eclipse menus. The test module is selected from the Package
Explorer pane, or the appropriate editor is selected. With the focus on the module, the Run
menu is selected from either the application menu or the context menu. From the application
menu, the option is Run ➤ Run As ➤ “Python unit-test,” and from the context menu, it is Run
As ➤ “Python unit-test.” Once run, the console window will report the following:

Finding files... ['/Users/jeff/workspace/rsreader/src/test/test_application.py']➥

... done
Importing test modules ... done.

test_should_get_one_URL_and_print_output➥

(test_application.AcceptanceTests) ... FAIL

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART152

9810ch06.qxd 5/22/08 4:20 PM Page 152

==
FAIL: testShouldGetOneURLAndPrintOutput (test_application.AcceptanceTests)
--
Traceback (most recent call last):
File "/Users/jeff/workspace/rsreader/src/test/test_application.py",➥

line 6, in testShouldGetOneURLAndPrintOutput
self.fail()

AssertionError

--
Ran 1 test in 0.000s

The output shows that one test was run, and it took less than 1 ms. As expected, the test
failed.

This example starts with a bang; a very complicated bang. Feeding input into the program
and reading the output is the most complicated thing done in this chapter. The print state-
ment writes to sys.stdout. The test should capture sys.stdout, and then compare the output
with the expectations.

sys.stdout contains a file-like object. The test replaces this object with a StringIO
instance. StringIO is a file-like object that accumulates written information in a string. This
string’s value can be extracted and compared with the expected value.

Care must be taken when doing this. If the old value of sys.stdout is not restored, then it
will be lost, and no more output will be reported. Instead of going to the console, the output
will accumulate in the inaccessible StringIO object. A first pass looks something like this:

import StringIO
import sys
from unittest import TestCase

from rsreader.application import main

class AcceptanceTests(TestCase):

def test_should_get_one_URL_and_print_output(self):
printed_items = \

"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

old_value_of_stdout = sys.stdout
try:

sys.stdout = StringIO.StringIO()
main()
self.assertEquals(printed_items + "\n",

sys.stdout.getvalue())
finally:

sys.stdout = old_value_of_stdout

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 153

9810ch06.qxd 5/22/08 4:20 PM Page 153

The core statements of the test are in bold. When run, this test fails as expected. The
important line of output reads as follows:

AssertionError: 'Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com:➥

Python\nMon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away\n' !=➥

'woof\n'

As hoped, the printed_items list does not match the recorded output. The test shows
that the output, woof, was indeed captured, though. The most questionable part of the test
mechanics has been checked.

The test isn’t complete, though. The URL needs to be passed in through sys.argv.
sys.argv is a list, and the first argument of the list is always the name of the program—that’s
just how it works. The single URL will be the second element in the list. sys.argv is also a
global variable, so it needs the same treatment as sys.stdout:

class AcceptanceTests(TestCase):

def test_should_get_one_URL_and_print_output(self):
printed_items = \

"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

old_value_of_stdout = sys.stdout
old_value_of_argv = sys.argv
try:

sys.stdout = StringIO.StringIO()
sys.argv = ["unused_prog_name", "xkcd.rss.xml"]
main()
self.assertEquals(printed_items + "\n",

sys.stdout.getvalue())
finally:

sys.stdout = old_value_of_stdout
sys.argv = old_value_of_argv

Running the method shows the same results as before—the test fails with an equality
mismatch.

The test method is complete. Now, what is the simplest possible way to make the code
pass the test? The simplest way is by faking the results. The new code is shown in bold.

def main():
xkcd_items = \

"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

print xkcd_items

This change is saved, and the test case is run again:

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART154

9810ch06.qxd 5/22/08 4:20 PM Page 154

Finding files... ['/Users/jeff/Documents/ws/rsreader/src/test/➥

test_application.py'] ... done
Importing test modules ... done.

test_should_get_one_URL_and_print_output➥

(test_application.AcceptanceTests) ... ok

--
Ran 1 test in 0.000s

OK

The test case has become pretty gruesome. Fixtures are set up, and if the setup succeeds,
then they must be torn down afterward. This is part of the standard pattern described earlier,
though, and unittest addresses these situations. It provides a mechanism to remove this code
from the test case. This uses the magical setUp(self) and tearDown(self) methods. If defined,
they are called at the beginning and end of every unit test. TearDown() will only be skipped
under one condition, and that is when setUp() is defined yet fails. In that case, the entire test
is abandoned.

I’ll demonstrate the refactoring in two steps. First, the sys.stdout code will be moved into
the setUp() and tearDown() methods, and then the sys.argv code will be moved to them:

class AcceptanceTests(TestCase):

def setUp(self):
self.old_value_of_stdout = sys.stdout
sys.stdout = StringIO.StringIO()

def tearDown(self):
sys.stdout = self.old_value_of_stdout

def test_should_get_one_URL_and_print_output(self):
printed_items = \

"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

old_value_of_argv = sys.argv
try:

sys.argv = ["unused_prog_name", "xkcd.rss.xml"]
main()
self.assertEquals(printed_items + "\n",

sys.stdout.getvalue())
finally:

sys.argv = old_value_of_argv

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 155

9810ch06.qxd 5/22/08 4:20 PM Page 155

Running this test succeeds. With the assurance that nothing is broken, the second refac-
toring is performed:

class AcceptanceTests(TestCase):

def setUp(self):
self.old_value_of_stdout = sys.stdout
sys.stdout = StringIO.StringIO()
self.old_value_of_argv = sys.argv

def tearDown(self):
sys.stdout = self.old_value_of_stdout
sys.argv = self.old_value_of_argv

def test_should_get_one_URL_and_print_output(self):
printed_items = \

"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

sys.argv = ["unused_prog_name", "xkcd.rss.xml"]
main()
self.assertEquals(printed_items + "\n", sys.stdout.getvalue())

Running the test again demonstrates that nothing has changed. The test still passes, and
the test is notably cleaner. The try block has been removed, and the test method retains only
code related to the test itself.

The next test focuses on empty input. Casting back to the use case discussion, there
should be no output when there are no URLs or files specified. The test for that condition is
quite compact:

def test_no_urls_should_print_nothing(self):
sys.argv = ["unused_prog_name"]
main()
self.assertEquals("", sys.stdout.getvalue())

Running the test produces the following output:

Importing test modules ... done.

test_no_urls_should_print_nothing➥

(test_application.AcceptanceTests) ... FAIL
test_should_get_one_URL_and_print_output➥

(test_application.AcceptanceTests) ... ok

==
FAIL: test_no_urls_should_print_nothing (test_application.AcceptanceTests)
--
Traceback (most recent call last):

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART156

9810ch06.qxd 5/22/08 4:20 PM Page 156

File "/Users/jeff/Documents/ws/rsreader/src/test/test_application.py",➥

line 30, in test_no_urls_should_print_nothing
self.assertEquals("\n", sys.stdout.getvalue())

AssertionError: '\n' != 'Wed, 05 Dec 2007 05:00:00 -0000:➥

xkcd.com: Python\nMon, 03 Dec 2007 05:00:00 -0000: xkcd.com:➥

Far Away\n'

--
Ran 2 tests in 0.000s

FAILED (failures=1)

Summaries for both tests are shown. It is clear that the new test failed, while the old test
succeeded. The new test failed because the hard-coded output is a constant. The main routine
needs to be changed. It should print nothing when no user arguments are passed. main() only
needs to distinguish between two options, so we fake it a little more:

def main():
xkcd_items = \

"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

if len(sys.argv) == 2:
print xkcd_items

The tests are run, and the second test now passes. There is a third acceptance test that
was discussed. In that case, more than two feeds are passed in, but only the first is reported.
The new test case reads as follows:

def test_many_urls_should_print_first_results(self):
printed_items = \

"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

sys.argv = ["unused_prog_name", "xkcd.rss.xml", "excess"]
main()
self.assertEquals(printed_items + "\n", sys.stdout.getvalue())

The test is run, and it fails. It fails because the main() method explicitly checks for a length
of 2. In all other cases, it prints nothing. This is corrected by checking for any nonempty user
argument list:

def main():
xkcd_items = \

"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

if sys.argv[1:]:
print xkcd_items

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 157

9810ch06.qxd 5/22/08 4:20 PM Page 157

With this change, all three acceptance tests pass. There is now a solid framework for
writing the rest of the application. At this point, the application can be installed with python
./setup.py install, or the local installation can be put into development mode with python
./setup.py develop, and the application runs. This can be verified from the command line.
It’s running in a brain-dead, bogus, dirt-simple way, but it can be refined into useful function-
ality from there.

$ rsreader
$ rsreader xkcd.rss

Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away

$ rsreader xkcd.rss something.useless

Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away

There are still things to clean up. Tests will have to be rewritten in the future, so they must
be maintainable. Tests serve as documentation, too, so they must also be readable. They obey
the same rules as the application code, and if refactoring is neglected, then the tests will rot.

There are two duplications within the tests. The constant printed_items can be lifted out
of the first and third tests, and the lines comparing the captured sys.stdout can be extracted
into a new method, which I’ll call assertStdoutEquals. After these refactorings, the tests look
like this:

class AcceptanceTests(TestCase):

printed_items = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

def setUp(self):
self.old_value_of_stdout = sys.stdout
sys.stdout = StringIO.StringIO()
self.old_value_of_argv = sys.argv

def tearDown(self):
sys.stdout = self.old_value_of_stdout
sys.argv = self.old_value_of_argv

def test_should_get_one_URL_and_print_output(self):
sys.argv = ["unused_prog_name", "xkcd.rss.xml"]
main()
self.assertStdoutEquals(self.printed_items + "\n")

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART158

9810ch06.qxd 5/22/08 4:20 PM Page 158

def test_no_urls_should_print_nothing(self):
sys.argv = ["unused_prog_name"]
main()
self.assertStdoutEquals("")

def test_many_urls_should_print_first_results(self):
sys.argv = ["unused_prog_name", "xkcd.rss.xml", "excess"]
main()
self.assertStdoutEquals(self.printed_items + "\n")

def assertStdoutEquals(self, expected_output):
self.assertEquals(expected_output, sys.stdout.getvalue())

These tests are run, they still execute, and the application still runs. The smell of duplica-
tion has been removed, but there are still things to be done before work can begin on the rest
of the application.

Finding Tests with Nose
Running tests manually within Eclipse is fine for a brief tutorial, but it doesn’t cut it for day-to-
day work. Triggering the tests takes time and attention, and it breaks flow. This is a no-no.
Tests should run automatically in the local development environment, and they must run
automatically in the official build environment.

Running the unit tests cannot be automated unless it can be done from the command
line. unittest does this very poorly, but that’s all right. As noted earlier in this chapter, the Nose
test package is much better at doing this.

The Nose test runner is nosetests. By default, it searches for tests starting in the current
working directory. It identifies tests by name, and it only searches for them in valid Python
packages. The search begins in a directory, and it extends recursively into any subdirectories
that contain __init__.py files. Nose runs unittest TestCase classes, so we can use it to run the
current acceptance tests from the command line. The next few lines are executed from the
project root:

$ nosetests

...
--
Ran 3 tests in 0.048s

OK

Other directories are specified using the -w switch. This is particularly useful when work-
ing on a large project where searching for packages consumes a noticeable amount of time, or
when for one reason or another, Nose is being run from a working directory that is not the
project root.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 159

9810ch06.qxd 5/22/08 4:20 PM Page 159

$ nosetests -w src/test

...
--
Ran 3 tests in 0.048s

OK

By default, nosetests is quiet. It prints one dot for each successful test. An F is printed if a
test assertion fails, and an E is printed if a test has an error that prevents it from running to
completion. Stack traces are printed when a test fails or errors out. Developers quickly acquire
an addiction to watching the little dots stream across the page.

Nose is made more vociferous using the -v switch. Instead of printing a string of dots, it
prints one line for each test. It prints the test name and test module, or the doc string followed
by a status that may be one of ok, fail, or error.

$ nosetests -w src/test -v

test_many_urls_should_print_first_results (test.test_application.➥

AcceptanceTests) ... ok
test_no_urls_should_print_nothing (test.test_application.➥

AcceptanceTests) ... ok
test_should_get_one_URL_and_print_output (test.test_application.➥

AcceptanceTests) ... ok

--
Ran 3 tests in 0.002s

Nose also intercepts stdout and stderr, which sometimes isn’t desired. Sometimes you’ll
need to see messages propagated by other modules, and other times you’ll want to watch
debugging messages you’ve inserted. At times like these, you can turn off output capture with
the -s switch.

Skipping Slow Tests
The majority of tests in a test suite will run in a matter of seconds, but a small minority will
take seconds or tens of seconds. This is far too long for the development environment. As long
as the continuous build system takes up the slack, and as long as code is committed regularly,
it is usually a win to skip these slow tests for most runs.

Nose provides the facility to do this through attribute tags. Attribute Tags are bits of meta-
data attached to test methods. In actuality, they’re just additional attributes. I’ll add the
following test to demonstrate the feature:

def test_simulates_performing_a_timeout(self):
import time
time.sleep(5)

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART160

9810ch06.qxd 5/22/08 4:20 PM Page 160

Running nosetests shows that the test runs, and it is clear that it significantly lengthens
the suite’s runtime:

$ nosetests -w src/test

....
--
Ran 4 tests in 5.004s

OK

The next code snippet shows the slow test with a tag attached:

def test_simulates_performing_a_timeout(self):
import time
time.sleep(5)

test_simulates_performing_a_timeout.slow = True

nosetests’s -a option gives the tags meaning. It runs all tests matching an expression:

$ nosetests -w src/test -a slow

.
--
Ran 1 test in 5.003s

OK

This is exactly the opposite of what you wanted. The option can be negated by prefixing it
with an exclamation point. Most shells attach meaning to !, so it must be escaped with a back-
slash:

$ nosetests -w src/test -a \!slow

...
--
Ran 3 tests in 0.002s

OK

This is the desired result. Using attribute tags, the slow tests are designated, and they are
skipped with the -a option, but the specification is pretty ugly. Fortunately, Python’s
decorators come to the rescue.

Decorators were introduced in Python 2.4. They are functions that (in the simplest case)
take a function as input and return a function as output. They are used to modify existing
methods. The most familiar usage specifies class methods. The following code defines a
decorator that sets the slow attribute to True:

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 161

9810ch06.qxd 5/22/08 4:20 PM Page 161

def slow(f):
f.slow = True
return f

Using this decorator, the tagged test becomes

@slow
def test_simulates_performing_a_timeout(self):

import time
time.sleep(5)

I find this definition much clearer, and running the previous Nose command proves that
it works.

The -a option is implemented through a standard Nose plug-in named attrib. It has
more features than I’ve demonstrated so far. In addition to testing a tag’s existence, the tag’s
value may be checked for equality or inequality. The tag’s value may also be a sequence. In this
case, the tag expression checks for membership. This behavior is summarized in Table 6-1.

Table 6-1. Tag Expressions

Tag Option Tag on Class Executed by Tests?

-a slow test.slow = True Yes

-a slow test.slow = False No

-a slow test No

-a \!slow test.slow = True No

-a \!slow test.slow = False Yes

-a \!slow test Yes

-a slow=a test.slow="a" Yes

-a slow=a test.slow="b" No

-a slow=a test No

-a slow=a test.slow = ["a", "b"] Yes

-a slow=a test.slow = ["b"] No

-a slow=\!a test.slow = ["a"] No

-a slow=\!a test.slow="a" No

-a slow\!=a test.slow="a" No

-a slow=\!a test Yes

Integrating the Tests into the Environment
There are three times unit tests need to be run. First, they need to be run when changes are
saved in the development environment. The test run should be fast, so this set of tests is
restricted to those that run in a matter of seconds. Sometimes this means restricting them to a
local area of the project, but often it means simply skipping those that take too long to run.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART162

9810ch06.qxd 5/22/08 4:20 PM Page 162

The full unit test suite should be run before changes are committed. This ensures that the
code submitted works completely in the developer’s environment. It catches bugs that show
up in slow tests, and prevents them from reaching the shared codeline. It gives developers
confidence that their changes won’t break the build.

Finally, the official build system must run the complete unit test suite as part of every
build, and the build must fail if any unit tests fail. This ensures that all tests pass in a clean
environment. This also provides a mechanism to police unit-testing policy. Purely social pres-
sures help, but the humiliation of a broken build is the big stick.

Running Tests After Every Change
Eclipse contains a mechanism intended to produce incremental builds. Eclipse activates
builders when projects change. Builders take a list of changes since their last invocation, and
then perform an update task. This may be an extension to Eclipse or a program run external to
the IDE. The builder mechanism is a hook to run the unit tests after every change.

Additional builders are defined from the project properties menu. The project properties
are accessed through the application menu or the context menu when the project is selected
in the Package Explorer. From the application menu, the menu item is Project ➤ Properties.
From the context menu, the menu item is Properties. This opens the window shown in
Figure 6-4.

Figure 6-4. The project properties window

The Builders menu item is selected from the menu on the left, which brings up the panel
shown. Clicking the New button brings up the window shown in Figure 6-5, from which the
kind of builder is chosen.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 163

9810ch06.qxd 5/22/08 4:20 PM Page 163

Figure 6-5. Choosing the kind of external builder to create

Out of the box, Eclipse offers two choices: Ant Builder and Program. Ant Builder calls
Java’s Ant build tool, and it understands how to parse the output, giving much more interest-
ing output. I personally work on one mostly Python project that uses Ant as a build harness for
historical reasons, but I prefer to use Setuptools when given the chance.

Ant is not being used in this project, though. Instead, tests are run through Nose, so the
generic Program option is the correct choice. Clicking the OK button brings up the builder
properties window, shown in Figure 6-6.

Figure 6-6. The builder properties window

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART164

9810ch06.qxd 5/22/08 4:20 PM Page 164

The builder requires a name, so I’ll call it Unit Tests. This name is for human consump-
tion, and it has no significance to the IDE. In the Main tab, there are three fields to be filled in:

Location: This is the path to the nosetests binary. On UNIX systems, this can be found
by executing the command which nosetests. On my Mac OS X system, the path is
/Users/jeff/bin/nosetests, as specified by my ~/.pydistutils.cfg file.

Working Directory: This is the top-level project directory. This is specified using the
Eclipse variable expression ${workspace_loc:/rsreader}. Using the Browse Workspace
button to select this directory gives the same results.

Arguments: In this field, four options are passed: -w src/test -v -s -a \!slow. The
option -w src/test specifies that Nose should only look for tests in the test directory. The
option -v yields verbose output, showing all the tests, and the -s option ensures that any
interesting output is sent to the console. The -a \!slow option specifies that only fast
tests will be run (i.e., tests not marked as slow).

By default, the builder is only invoked after a clean build and during manual builds. For
this purpose, it should be run when autobuilds are triggered, which happens after any change
to the project. This setting is changed on the Build Options tab, which is shown in Figure 6-7.

Figure 6-7. The Build Options tab

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 165

9810ch06.qxd 5/22/08 4:20 PM Page 165

In Figure 6-7, the “During auto builds” check box has already been selected. It is the last
selected check box in the window. If the unit tests take too long to execute, or you find that
they interrupt your flow too much, then they may be backgrounded by default. This option is
just below the console settings at the top. A console should always be allocated so that the
results are clearly visible, and this is also the default.

With this change, the builder definition is complete. Clicking the OK button closes the
builder properties window, and the focus returns to the project properties window shown in
Figure 6-8.

Figure 6-8. The Unit Tests builder is defined and active.

The Unit Tests builder is now available in the Builders list, and the check box to its left
indicates that it is active. The order in the window determines when each builder is invoked,
with the first invoked at the top and the last invoked at the bottom. You can reorder the list by
selecting a builder and using the Up and Down buttons to change its position in the list.

Clicking OK saves the changes. This constitutes a change in the project, so the new
builder launches immediately, and the test output is shown in the console, as in Figure 6-9.

Figure 6-9. The console showing the Unit Tests builder output

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART166

9810ch06.qxd 5/22/08 4:20 PM Page 166

Running the Complete Test Suite in Development
The complete test suite should be run before changes are committed. This is done through
the build harness. This complete test suite check can be triggered from the command line or
through Eclipse on demand. The changes to the harness are minimal and restricted to one
line in setup.py.

Setuptools supports running unit tests through the command setup.py test. This com-
mand builds the package locally, and then runs a specified set of tests against this local
installation. The tests are specified through the test_suite property. Nose provides a test
collector that plugs into this property. The change to setup.py is shown here:

...
install_requires = [

'docutils == 0.4',
'nose == 0.10.0',
],

use nose to run tests
test_suite='nose.collector',

metadata for upload to PyPI
...

Notice that setup.py already requires Nose, so it is always guaranteed to be there. The
dependency could have been specified through the tests_require property. This property
specifies packages that will only be installed for testing. Had Nose been installed through
those routes, it would not be generally available for development work. Nose isn’t required
for production, but it doesn’t hurt to bundle it along, and it makes it much easier to set up a
development environment.

$ python ./setup.py test

running test
running egg_info
writing requirements to src/RSReader.egg-info/requires.txt
writing src/RSReader.egg-info/PKG-INFO
writing top-level names to src/RSReader.egg-info/top_level.txt
writing dependency_links to src/RSReader.egg-info/dependency_links.txt
writing entry points to src/RSReader.egg-info/entry_points.txt
writing manifest file 'src/RSReader.egg-info/SOURCES.txt'
running build_ext
test_many_urls_should_print_first_results (test.test_application.➥

AcceptanceTests) ... ok
test_no_urls_should_print_nothing (test.test_application.➥

AcceptanceTests) ... ok
test_should_get_one_URL_and_print_output (test.test_application.➥

AcceptanceTests) ... ok

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 167

9810ch06.qxd 5/22/08 4:20 PM Page 167

--
Ran 3 tests in 0.014s

OK

The next step makes the full test run available through Eclipse. Eclipse can run arbitrary
programs from within the IDE and report the results. Eclipse calls these programs external
tools. External tools are created and run through the application menu or the external tools
button and drop-down on the toolbar. The external tools option is the little green play button
with a toolbox in the lower-right-hand corner. It is shown in Figure 6-10.

Figure 6-10. The external tools button on the toolbar

You create a new external tool through the application menu by selecting the Run ➤
External Tools ➤ External Tools Dialog menu item. From the drop-down button, the menu
item is External Tools Dialog. This brings up the dialog shown in Figure 6-11.

Figure 6-11. The External Tools dialog

The right half of the window contains basic instructions for getting started. The symbols
there refer to the toolbar on the left. As with builders, there are two categories. One invokes
Java’s Ant and interprets the results, and the other executes arbitrary programs such as
Python.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART168

9810ch06.qxd 5/22/08 4:20 PM Page 168

Clicking the leftmost icon on the toolbar or double-clicking the Program menu item
creates a new program configuration and replaces the instructions with an editing panel. This
is shown in Figure 6-12.

Figure 6-12. Defining a new external tool

This window has strong similarities to the builder definition window. In fact, the Main
pane is identical, except that the name defaults to New_configuration. In this case, the name
for the new configuration will be “Run full unit test suite.”

Location: This points to the Python interpreter.

Workspace Directory: This points to the top-level project directory. As with the Unit Tests
builder, this is specified using the Eclipse variable ${workspace_loc:/rsreader}.

Arguments : The arguments to Python are ./setup.py test.

The Common tab allows several options to be specified. It is shown in Figure 6-13, with
the values described in the following list selected.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 169

9810ch06.qxd 5/22/08 4:20 PM Page 169

Figure 6-13. The Common tab for the external tool

Save as: This section determines if the tool definition is stored in the local Eclipse configu-
ration or in the project configuration. Unless your site has a common location for the
Python binary, then I advise leaving it as “Local file.”

Console Encoding: This sets the console character encoding. As in Figure 6-13, the default
should be left untouched.

Display in favorites menu: Checking the External Tools check box in this section places
this definition into the External Tools menu. This is what we desire, so the check box is
checked.

Standard Input and Output: This section chooses the input and output locations. The
default allocates a console, and this is what we want.

Once the settings are chosen, you can click the Apply button, which creates the external
tool entry. Nothing more remains to be done, so you can click the Close button, which will
close the External Tools window and return focus to the workbench. The new task can be run
from either the application menu or the external tools drop-down. On the main menu bar, the
path is Run ➤ External Tools ➤ “1 Run full test suite,” and from the drop-down it is just “1 Run
full test suite.” The output is shown in the console, as in Figure 6-14.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART170

9810ch06.qxd 5/22/08 4:20 PM Page 170

Figure 6-14. Output of “Run full test suite”

Buildbot with Unit Tests
The fast build suite runs automatically before each update, and the developer can run the full
test suite when needed. Buildbot needs to run the full suite every time it produces a build. As
with the external build task just shown, Buildbot calls python ./setup.py test.

Conveniently, setup.py test returns a meaningful exit code. On UNIX systems, it returns
a zero value for success and a nonzero value for failure. Success is defined as all unit tests
passing, and failure is defined as one or more unit tests failing. The ShellCommand build steps
interpret these exit codes in the same way. The change to master.cfg is one line.

def pythonBuilder(version):
python = python_(version)
site_bin = site_bin_(version)
site_pkgs = site_pkgs_(version)
...
f.addStep(ShellCommand,

command=[python, "./setup.py", "install",
"--install-scripts", site_bin],

description="Installing",
descriptionDone="Installed")

f.addStep(ShellCommand,
command=[python, "./setup.py", "test"],
description="Running unit tests",
descriptionDone="Unit tests run")

return f

The change is saved, and the Buildbot master is reconfigured:

$ buildbot reconfig /usr/local/buildbot/master/rsreader

sending SIGHUP to process 786
...
Reconfiguration appears to have completed successfully.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 171

9810ch06.qxd 5/22/08 4:20 PM Page 171

Committing the recent changes causes a build, or, if the changes have already been com-
mitted, then a build can be triggered from the command line. The resulting successful build is
shown in Figure 6-15.

Figure 6-15. The test step succeeds when all tests succeed.

The build succeeds, but it must be proven to fail. You can easily do this by adding a test
that always fails. You commit the change, it triggers a build, and the build fails. The unsuccess-
ful build is shown in Figure 6-16.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART172

9810ch06.qxd 5/22/08 4:20 PM Page 172

Figure 6-16. The test step fails when a unit test fails.

Summary
Unit tests verify the behavior of the tested code. They ensure that the code works as the pro-
grammer expects. This distinguishes them from customer or acceptance tests that determine
if the code works as the user expects. Unit tests are written by programmers and for program-
mers. They serve as living documentation that can be programmatically verified. Concrete
unit-testing benefits include fewer bugs, less debugging, live documentation, increased confi-
dence in refactoring, and better designs on small scales.

Test-driven-development (TDD) is a collection of self-reinforcing practices. Tests are writ-
ten before the code. Tests and code are written in very short cycles—sometimes just a single
line of code. Only enough code is written to make a test pass, and no code goes to production
without associated tests. The unit tests are executed automatically, and the build fails unless
all tests succeed. The code base is constantly refactored, and there are no restrictions on
where those refactorings lead. Finally, when the product ships, the tests ship with it.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART 173

9810ch06.qxd 5/22/08 4:20 PM Page 173

Designs should be driven by the customer. Minimalist communication methods should
be used to specify designs, and interaction with the on-site customer should be emphasized.

Unit tests have a common structure. They are based around assertions that report
whether a test has succeeded or failed. The tests themselves have four parts: fixture setup,
execution, result verification, and fixture tear-down.

Two common Python frameworks for writing, executing, and reporting unit tests are
unittest and Nose. unittest is a stock Python package modeled on Smalltalk’s xUnit testing
framework. Nose is very good at unit test discovery and execution. It is quite extensible, and it
knows how to run unittest tests. It is the basis for automating unit test execution. In the devel-
opment environment, it can be run after every change using Eclipse external builders to
execute only fast-running tests. It takes only a single line to connect Nose to Setuptools’s
testing facility, and this in turn allows the tests to be run from Buildbot.

Attributes can be used to label test methods, and Nose can use those attributes to drive
test execution. One very useful example is skipping slow tests. This is often done when run-
ning in the local development environment. Setting attributes can be simplified by using
Python decorators.

The next chapter is very much a continuation of this one. It fleshes out the RSReader
application using TDD techniques, and focuses on the process of writing a program using
TDD and refactoring.

CHAPTER 6 ■ TESTING: THE HORSE AND THE CART174

9810ch06.qxd 5/22/08 4:20 PM Page 174

Test-Driven Development and
Impostors

The previous chapter looked at the tools supporting TDD, but said little about TDD itself.
This chapter will use several lengthy examples to show how tests are written, and along the
way, you’ll get to see how refactorings are performed. We’ll also take a quick look at IDE
refactoring support.

A consistent theme is code isolation through impostors. Impostors, or test doubles, are
among the most powerful unit-testing techniques available. There is a strong temptation to
overuse them, but this can result in overspecified tests.

Impostors are painful to produce by hand, but there are several packages that minimize
this pain. Most fall into one of two categories based on how expectations are specified. One
uses a domain-specific language, and the other uses a record-replay model. I examine a repre-
sentative from each camp: pMock and PyMock.

We’ll examine these packages in detail in the second half of the chapter, which presents
two substantial examples. The same code will be implemented with pMock in the first exam-
ple and with PyMock in the second example. Along the way, I’ll discuss a few tests and
demonstrate a few refactorings.1 Each package imbues the resulting code with a distinct
character, and we’ll explore these effects.

Moving Beyond Acceptance Tests
Currently, all the logic for the reader application resides within the main() method. That’s OK,
though, because it’s all a sham anyway. Iterative design methods focus on taking whatever
functional or semifunctional code you have and fleshing it out a little more. The process con-
tinues until at some point the code no longer perpetrates a sham, and it stands on its own.

The main() method is a hook between Setuptools and our application class. Currently,
there is no application class, so what little exists is contained in this method. The next steps
create the application class and move the logic from main().

Where do the new tests go? If they’re application tests, then they should go into
test_application.py. However, this file already contains a number of acceptance tests.

175

C H A P T E R 7

1. Here, I’m using the word few in a strictly mathematical sense. That is to say that it’s smaller than the
set of integers. Since there can be only zero, one, or many items, it follows that many is larger than the
integers. Therefore, few is smaller than many (for all the good that does anyone).

9810ch07.qxd 6/3/08 2:08 PM Page 175

The two should be separate, so the existing file should be copied to acceptance_tests.py.
From Eclipse, this is done by selecting test_application.py in an explorer view, and then
choosing Team ➤ Copy To from the context menu. From the command line, it is copied with
svn copy.

The application tests are implemented as native Nose tests. Nose tests are functions
within a module (a.k.a. a .py file). The test modules import assertions from the package
nose.tools:

from nose.tools import *

'''Test the application class RSReader'''

The new application class is named rsreader.application.RSReader. You move the func-
tionality from rsreader.application.main into rsreader.application.RSReader.main. At this
point, you don’t need to create any tests, since the code is a direct product of refactoring. The
file test_application.py becomes nothing more than a holder for your unwritten tests.

This class RSReader has the single method main(). The application’s main() function
creates an instance of RSReader and then delegates it to the instance’s main(argv) method:

def main():
RSReader().main(sys.argv)

class RSReader(object):

xkcd_items = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

def main(self, argv):
if argv[1:]:

print self.xkcd_items

The program outputs one line for each RSS item. The line contains the item’s date, the
feed’s title, and the item’s title. This is a neatly sized functional chunk. It is one action, and it
has a well-defined input and output. The test assertion looks something like this:

assert_equals(expected_line, computed_line)

You should hard-code the expectation. It’s already been done in the acceptance tests, so
you can lift it verbatim from there.

expected_line = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python"""
assert_equals(expected_line, computed_line)

The method listing_from_item(item, feed) computes the expected_line. It uses the
date, feed name, and comic title. You could pass these in directly, but that would expose the
inner workings of the method to the callers.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS176

9810ch07.qxd 6/3/08 2:08 PM Page 176

expected_line = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python"""

computed_line = RSReader().listing_from_item(item, feed)
assert_equals(expected_line, computed_line)

So what do items and feeds look like? The values will be coming from FeedParser. As
recounted in Chapter 6, they’re both dictionaries.

expected_line = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python"""

item = {'date': "Wed, 05 Dec 2007 05:00:00 -0000",
'title': "Python"}

feed = {'feed': {'title': "xkcd.com"}}
computed_line = RSReader().listing_from_item(feed, title)
assert_equals(expected_line, computed_line)

This shows the structure of the test, but it ignores the surrounding module. Here is the
listing in its larger context:

from nose.tools import *

from rsreader.application import RSReader

'''Test the application class RSReader'''

def test_listing_from_item():
expected_line = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python"""
item = {'date': "Wed, 05 Dec 2007 05:00:00 -0000",

'title': "Python"}
feed = {'feed': {'title': "xkcd.com"}}
computed_line = RSReader().listing_from_item(feed, title)
assert_equals(expected_line, computed_line)

The method list_from_item() hasn’t been defined yet. When you run the test, it fails with
an error indicating this. The interesting part of the error message is the following:

test.test_application.test_list_from_item ... ERROR

==
ERROR: test.test_application.test_list_from_item
--
Traceback (most recent call last):
File "/Users/jeff/Library/Python/2.5/site-packages/➥

nose-0.10.0-py2.5.egg/nose/case.py", line 202, in runTest
self.test(*self.arg)

File "/Users/jeff/Documents/ws/rsreader/src/test/test_application.py",➥

line 13, in test_listing_from_item

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 177

9810ch07.qxd 6/3/08 2:08 PM Page 177

computed_line = RSReader().listing_from_item(item, feed)
AttributeError: 'RSReader' object has no attribute 'listing_from_item'

--
Ran 4 tests in 0.003s

FAILED (errors=1)

This technique is called relying on the compiler. The compiler often knows what is wrong,
and running the tests gives it an opportunity to check the application. Following the com-
piler’s suggestion, you define the method missing from application.py:

def listing_from_item(self, feed, item):
return None

The test runs to completion this time, but it fails:

FAIL: test.test_application.test_listing_from_item
--
Traceback (most recent call last):
File "/Users/jeff/Library/Python/2.5/site-packages/➥

nose-0.10.0-py2.5.egg/nose/case.py", line 202, in runTest
self.test(*self.arg)

File "/Users/jeff/Documents/ws/rsreader/src/test/test_application.py", ➥

line 16, in test_listing_from_item
assert_equals(expected_line, computed_line)

AssertionError: 'Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python' != None

--

Now that you’re sure the test is checking the right thing, you can write the method body:

def list_from_item(self, feed, item):
subst = (item['date'], feed['feed']['title'], item['title'])
return "%s: %s: %s" % subst

When you run the test again, it succeeds:

test_many_urls_should_print_first_results➥

(test.acceptance_tests.AcceptanceTests) ... ok
test_no_urls_should_print_nothing➥

(test.acceptance_tests.AcceptanceTests) ... ok
test_should_get_one_URL_and_print_output➥

(test.acceptance_tests.AcceptanceTests) ... ok
test.test_application.testing_list_from_item ... ok

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS178

9810ch07.qxd 6/3/08 2:08 PM Page 178

--
Ran 4 tests in 0.002s

OK

The description of this process takes two pages and several minutes to read. It seems to
be a great deal of work, but actually performing it takes a matter of seconds. At the end, there
is a well-tested function running in isolation from the rest of the system.

What needs to be done next? The output from all the items in the feed needs to be
combined. You need to know what this output will look like. You’ve already defined this in
acceptance_tests.py:

printed_items = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

Whenever possible, the same test data should be used. When requirements change, the
test data is likely to change. Every location with unique test data will need to be modified
independently, and each change is an opportunity to introduce new errors.

This time, you’ll build up the test as in the previous example. This is the last time that I’ll
work through this process in so much detail. The assertion in this test is nearly identical to the
one in the previous test:

printed_items = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

assert_equals(printed_items, computed_items)

The function computes the printed_items from the feed and the feed’s items. The list of
items is directly accessible from the feed object, so it is the only thing that needs to be passed
in. The name that immediately comes to my mind is feed_listing(). The test line is as follows:

printed_items = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

computed_items = RSReader().feed_listing(feed)
assert_equals(printed_items, computed_items)

The feed has two items. The items are indexed by the key 'entries':

printed_items = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

items = [{'date': "Wed, 05 Dec 2007 05:00:00 -0000",
'title': "Python"},
{'date': "Mon, 03 Dec 2007 05:00:00 -0000",
'title': "Far Away"}]

feed = {'feed': {'title': "xkcd.com"}, 'entries': items}
computed_items = RSReader().feed_listing(feed)
assert_equals(printed_items, computed_items)

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 179

9810ch07.qxd 6/3/08 2:08 PM Page 179

Here’s the whole test function:

def test_feed_listing(self):
printed_items = \

"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

items = [{'date': "Wed, 05 Dec 2007 05:00:00 -0000",
'title': "Python"},
{'date': "Mon, 03 Dec 2007 05:00:00 -0000",
'title': "Far Away"}]

feed = {'feed': {'title': "xkcd.com"}, 'entries': items}
computed_items = RSReader().feed_listing(feed)
assert_equals(printed_items, computed_items)

When you run the test, it complains that the method feed_listing() isn’t defined. That’s
OK, though—that’s what the compiler is for. However, if you’re using Eclipse and Pydev, then
you don’t have to depend on the compiler for this feedback. The editor window will show a red
stop sign in the left margin. Defining the missing method and then saving the change will
make this go away.

The first definition you supply for feed_listing() should cause the assertion to fail. This
proves that the test catches erroneous results.

def feed_listing(self, feed):
return None

Running the test again results in a failure rather than an error, so you now know that the
test works. Now you can create a successful definition. The simplest possible implementation
returns a string constant. That constant is already defined: xkcd_items.

def feed_listing(self, feed):
return self.xkcd_items

Now run the test again, and it should succeed. Now that it works, you can fill in the body
with a more general implementation:

def feed_listing(self, feed):
item_listings = [self.listing_for_item(feed, x) for x

in feed['entries']]
return "\n".join(item_listings)

When I ran this test on my system, it succeeded. However, there was an error. Several
minutes after I submitted this change, I received a failure notice from my Windows Buildbot
(which I set up while you weren’t looking). The error indicates that the line separator is wrong
on the Windows system. There, the value is \r\n rather than the \n used on UNIX systems. The
solution is to use os.linesep instead of a hard-coded value:

import os
...
def feed_listing(self, feed):

item_listings = [self.listing_for_item(feed, x) for x

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS180

9810ch07.qxd 6/3/08 2:08 PM Page 180

in feed['entries']]
return os.linesep.join(item_listings)

At this point, you’ll notice several things—there’s a fair bit of duplication in the test data:

• xkcd_items is present in both acceptance_tests.py and application_tests.py.

• The feed items are partially duplicated in both application tests.

• The feed definition is partially duplicated in both application tests.

• The output data is partially duplicated in both tests.

As it stands, any changes in the expected results will require changes in each test function.
Indeed, a change in the expected output will require changes not only in multiple functions,
but in multiple files. Any changes in the data structure’s input will also require changes in each
test function.

In the first step, you’ll extract the test data from test_feed_listing:

printed_items = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

def test_feed_listing(self):
items = [{'date': "Wed, 05 Dec 2007 05:00:00 -0000",

'title': "Python"},
{'date': "Mon, 03 Dec 2007 05:00:00 -0000",
'title': "Far Away"}]

feed = {'feed': {'title': "xkcd.com"}, 'entries': items}
computed_items = RSReader().feed_listing(feed)
assert_equals(printed_items, computed_items)

You save the change and run the test, and it should succeed. The line defining
printed_items is identical in both acceptance_tests.py and application_tests.py,
so the definition can and should be moved to a common location. That module will be
test.shared_data:

$ ls tests -Fa

__init__.py acceptance_tests.pyc application_tests.pyc
__init__.pyc acceptance_tests.py application_tests.py
shared_data.py

$ cat shared_data.py

"""Data common to both acceptance tests and application tests"""

__all__ = ['printed_items']

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 181

9810ch07.qxd 6/3/08 2:08 PM Page 181

printed_items = \
"""Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away"""

$ cat acceptance_tests.py

...
from tests.shared_data import *
...

$ cat application_tests.py

...
from tests.shared_data import *
...

The __all__ definition explicitly defines the module’s exports. This prevents extraneous
definitions from polluting client namespaces when wildcard imports are performed. Declaring
this attribute is considered to be a polite Python programming practice.

The refactoring performed here is called triangulation. It is a method for creating shared
code. A common implementation is not created at the outset. Instead, the code performing
similar functions is added in both places. Both implementations are rewritten to be identical,
and this precisely duplicated code is then extracted from both locations and placed into a new
definition.

This sidesteps the ambiguity of what the common code might be by providing a concrete
demonstration. If the common code couldn’t be extracted, then it would have been a waste of
time to try to identify it at the outset.

The test test_listing_for_item uses a subset of printed_items. This function tests indi-
vidual lines of output, so it’s used to break the printed_items list into a list of strings:

expected_items = [
"Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python",
"Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away""",

]
printed_items = os.linesep.join(item_listings)

You save the change to shared_data.py, run the tests, and the tests succeed. This verifies
that the data used in test_feed_listing() has not changed. Now that the data is in a more
useful form, you can change the references within test_listing_for_item(). You remove the
definition, and the assertion now uses expected_items.

def test_listing_from_item():
item = {'date': "Wed, 05 Dec 2007 05:00:00 -0000",

'title': "Python"}
feed = {'title': "xkcd.com"}
computed_line = RSReader().listing_from_item(feed, item)
assert_equals(expected_items[0], computed_line)

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS182

9810ch07.qxd 6/3/08 2:08 PM Page 182

You run the test, and it succeeds. The expectations have been refactored, so it is now time
to move on to the test fixtures. The values needed by test_listing_from_item() are already
defined in test_feed_listing(), so you’ll extract them from that function and remove them
from the other:

from tests.shared_data import *

items = [{'date': "Wed, 05 Dec 2007 05:00:00 -0000",
'title': "Python"},
{'date': "Mon, 03 Dec 2007 05:00:00 -0000",
'title': "Far Away"}]

feed = {'feed': {'title': "xkcd.com"}, 'entries': items}

def test_feed_listing(self):
computed_items = RSReader().feed_listing(feed)
assert_equals(printed_items, computed_items)

def test_listing_from_item():
computed_line = RSReader().listing_from_item(feed, items[0])
assert_equals(expected_items[0], computed_line)

Renaming
Looking over the tests, it seems that there is still at least one smell. The name printed_items
isn’t exactly accurate. It’s the expected output from reading xkcd, so xkcd_output is a more
accurate name. This will mandate changes in several locations, but this process is about to
become much less onerous. The important thing for the names is that they are consistent.

Inaccurate or awkward names are anathema. They make it hard to communicate and rea-
son about the code. Each new term is a new definition to learn. Whenever a reader encounters
a new definition, she has to figure out what it really means. That breaks the flow, so the more
inconsistent the terminology, the more difficult it is to review the code. Readability is vital, so
it is important to correct misleading names.

Traditionally, this has been difficult. Defective names are scattered about the code base. It
helps if the code is loosely coupled, as this limits the scope of the changes; unit tests help to
ensure that the changes are valid, too, but neither does anything to reduce the drudgery of
find-and-replace. This is another area where IDEs shine.

Pydev understands the structure of the code. It can tell the difference between a function
foo and an attribute foo. It can distinguish between method foo in class X and method foo in
class Y, too. This means that it can rename intelligently.

This capability is available from the refactoring menu, which is available from either the
main menu bar or the context menu. To rename a program element, you select its text in an
editor. In this case, you’re renaming the variable printed_items. From the main menu bar,
select Refactoring ➤ Rename. (It’s the same from the context menu.) There are also keyboard
accelerators available for this, and they’re useful to know.

Choosing the Rename menu item brings up the window shown in Figure 7-1. Enter the
new name xkcd_output.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 183

9810ch07.qxd 6/3/08 2:08 PM Page 183

Figure 7-1. The Rename refactoring window

At this point, you can preview the changes by clicking the Preview button. This brings up
the refactoring preview window shown in Figure 7-2.

Figure 7-2. The refactoring preview window

Each candidate refactoring can be viewed and independently selected or unselected
though the check box to its left. Pydev not only checks the code proper, but it checks string
literals and comments, too, so the preview is often a necessary step, even with simple
renames.

I find it edifying to see how many places the refactoring touches the program. It reminds
me how the refactored code is distributed throughout the program, and it conveys an impres-
sion of how tightly coupled the code is.

When satisfied, click OK, and the refactoring will proceed. After a few seconds, the
selected changes will be complete.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS184

9810ch07.qxd 6/3/08 2:08 PM Page 184

Overriding Existing Methods: Monkeypatching
The code turning a feed object into text has been written. The next step converts URLs into
feed objects. This is the magic that FeedParser provides. The test harness doesn’t have control
over network connections, and the Net at large can’t be controlled without some pretty
involved network hackery. More important, the tests shouldn’t be dependent on external
resources unless they’re included as part of the build.

All of these concerns can be surmounted by hacking FeedParser on the fly. Its parse rou-
tine is temporarily replaced with a function that behaves as desired. The test is defined first:

def test_feed_from_url():
url = "http://www.xkcd.com/rss.xml"
assert_equals(feed, RSReader().feed_from_url(url))

The test method runs, and it fails with an error stating that feed_from_url() has not been
defined. The method is defined as follows:

def feed_from_url(self, url):
return None

The test is run, and fails with a message indicating that feed does match the results
returned from feed_from_url(). Now for the fun stuff. A fake parse method is defined in the
test, and it is hooked into FeedParser. Before this is done, the real parse method is saved, and
after the test completes, the saved copy is restored.

import feedparser
...
def test_feed_from_url():

url = "http://www.xkcd.com/rss.xml"
def parse_stub(url): # define stub

return feed
real_parse = feedparser.parse # save real value
feedparser.parse = parse_stub # attach stub
try:

assert_equals(feed, RSReader().feed_from_url(url))
finally:

feedparser.parse = real_parse # restore real value

The test is run, and it fails in the same manner as before. Now the method is fleshed in:

import feedparser
...

def feed_from_url(self, url):
return feedparser.parse(url)

The test runs, and it succeeds.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 185

9810ch07.qxd 6/3/08 2:08 PM Page 185

http://www.xkcd.com/rss.xml
http://www.xkcd.com/rss.xml

Monkeypatching and Imports
In order for monkeypatching to work, the object overridden in the test case and the object
called from the subject must refer to the same object. This generally means one of two things.
If the subject imports the module containing the object to be overridden, then the test must
do the same. This is illustrated in Figure 7-3. If the subject imports the overridden object from
the module, then the test must import the subject module, and the reference in the subject
module must be overridden. This is reflected in Figure 7-4.

Figure 7-3. Replacing an object when the subject imports the entire module containing the object

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS186

9810ch07.qxd 6/3/08 2:08 PM Page 186

Figure 7-4. Replacing an object when the subject directly imports the object

It is tempting to import the subject module directly into the test’s namespace. However,
this does not work. Altering the test’s reference doesn’t alter the subject’s reference. It results
in the situation shown in Figure 7-5, where the test points to the mock, but the rest of the
code still points to the real object. This is why it is necessary to alter the reference to the sub-
ject module, as in Figure 7-4.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 187

9810ch07.qxd 6/3/08 2:08 PM Page 187

Figure 7-5. Why replacing an object imported directly into the test’s namespace doesn’t work

The Changes Go Live
At this point, URLs can be turned into feeds, and feeds can be turned into output. Everything
is available to make a working application. The new main() method is as follows:

def main(self, argv):
if argv[1:]:

url = argv[1]
print self.listing_from_feed(self.feed_from_url(url))

The test suite is run, and the acceptance tests fail:

test_many_urls_should_print_first_results➥

(test.acceptance_tests.AcceptanceTests) ... FAIL
test_no_urls_should_print_nothing (test.acceptance_tests.AcceptanceTests) ... ok
test_should_get_one_URL_and_print_output (test.acceptance_tests.AcceptanceTests)➥

... FAIL

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS188

9810ch07.qxd 6/3/08 2:08 PM Page 188

test.test_application.test_list_from_item ... ok
test.test_application.test_list_from_feed ... ok
test.test_application.test_list_from_url ... ok
test.test_application.test_feed_from_url ... ok

...

==
FAIL: test_should_get_one_URL_and_print_output➥

(test.acceptance_tests.AcceptanceTests)
--
Traceback (most recent call last):
File "/Users/jeff/Documents/ws/rsreader/src/test/acceptance_tests.py",➥

line 25, in test_should_get_one_URL_and_print_output
self.assertStdoutEquals(self.printed_items + "\n")

File "/Users/jeff/Documents/ws/rsreader/src/test/acceptance_tests.py",➥

line 38, in assertStdoutEquals
self.assertEquals(expected_output, sys.stdout.getvalue())

AssertionError: 'Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com:➥

Python\nMon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away\n' != '\n'

--
Ran 7 tests in 0.015s

FAILED (failures=2)

The acceptance tests are now using real code, and the test cases have a problem.

Using Data Files
The failing tests are trying to access the file xkcd.rss.xml. This file doesn’t exist, so the code
is dying. These files should contain real RSS data that has been trimmed down to produce
the expected results. I’ve done this already. You can simply download the file from www.
theblobshop.com/famip/xkcd.rss.xml to a new directory, src/test/data.

With this file in place, the tests still fail. The acceptance tests need to specify the full path
to the data file. The path is relative to the test being run, so it can be extracted from the test
module’s __file__ attribute:

import StringIO
import sys
from unittest import TestCase

from test.shared_data import *
from rsreader.application import main

module = sys.modules[__name__]
this_dir = os.path.dirname(os.path.abspath(module.__file__))

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 189

9810ch07.qxd 6/3/08 2:08 PM Page 189

http://www.theblobshop.com/famip/xkcd.rss.xml
http://www.theblobshop.com/famip/xkcd.rss.xml

xkcd_rss_xml = os.path.join(this_dir, 'data', 'xkcd.rss.xml')

class AcceptanceTests(TestCase):

def setUp(self):
self.old_value_of_stdout = sys.stdout
sys.stdout = StringIO.StringIO()
self.old_value_of_argv = sys.argv

def tearDown(self):
sys.stdout = self.old_value_of_stdout
sys.argv = self.old_value_of_argv

def test_should_get_one_URL_and_print_output(self):
sys.argv = ["unused_prog_name", xkcd_rss_xml]
main()
self.assertStdoutEquals(expected_output + "\n")

def test_no_urls_should_print_nothing(self):
sys.argv = ["unused_prog_name"]
main()
self.assertStdoutEquals("")

def test_many_urls_should_print_first_results(self):
sys.argv = ["unused_prog_name", xkcd_rss_xml, "excess"]
main()
self.assertStdoutEquals(expected_output + "\n")

def assertStdoutEquals(self, expected_output):
self.assertEquals(expected_output, sys.stdout.getvalue())

With this change in place, the tests run, and they all succeed. The first pass at the applica-
tion is complete. It can be installed and run from the command line.

Isolation
Isolating the components under test from the system at large is a major theme in unit testing.
You’ve seen this with the method feed_from_url(). It has a dependency upon the function
feedparser.parse() that was temporarily separated by the replacement of the function with
a fake implementation.

These dependencies come in three main forms:

Dependencies can be introduced to functions and methods as arguments: In the function
call f(x), the function depends upon x. The object may be passed as an argument to other
callables, methods may be invoked upon it, it may be returned, it may be raised as an
exception, or it may be captured. When captured, it may be assigned to a variable or an
attribute or bundled into a closure.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS190

9810ch07.qxd 6/3/08 2:08 PM Page 190

Dependencies can be introduced as calls to global entities: Global entities include pack-
ages, classes, and functions. In languages such as C and Java, these are static declarations,
to some extent corresponding to the type system. In Python, these are much more
dynamic. They’re first-class objects that are not only referenced through the global name-
space—they can be introduced through arguments as well. The method f(x) introduces a
dependency on the package os:

def f(filename):
x = os.listdir(filename)

Dependencies can be introduced indirectly: They are introduced as the return values from
functions and methods, as exceptions, and as values retrieved from attributes. These are
in some sense the product of the first two dependency classes. Modeling these is inherent
in accurately modeling the first.

To test in isolation, these dependencies must be broken. Choosing an appropriate design
is the best way to do this. The number of objects passed in as arguments should be restricted.
The number of globals accessed should be restricted, too, and as little should be done with
return values as possible. Even more important, side effects (assignments) should be restricted
as much as possible. However, coupling is inescapable. A class with no dependencies and no
interactions rarely does anything of interest.

The remaining dependencies are severed through a set of techniques known as mocking.
Mocking seeks to replace the external dependencies with an impostor. The impostor has just
enough functionality to allow the tested unit to function. Impostors perform a subset of these
functions:

• Fulfilling arguments

• Avoiding references to objects outside the unit

• Tracking call arguments

• Forcing return values

• Forcing exceptions

• Verifying that calls were made

• Verifying call ordering

There are four categories of impersonators:

Dummies: These are minimal objects. They are created so that the system as a whole will
run. They’re important in statically typed languages. An accessor method may store a
derived class, but no such class exists in the section of the code base under examination.
A class is derived from the abstract base class, and the required abstract methods are cre-
ated, but they do nothing, and they are never called in the test. This allows the tests to
compile. In Python, it is more common to see these in the case of conditional execution.
An argument may only be used in one branch of the conditional. If the test doesn’t exer-
cise that path, then it passes a dummy in that argument, and the dummy is never used in
the test.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 191

9810ch07.qxd 6/3/08 2:08 PM Page 191

Stubs: These are more substantial than dummies. They implement minimal behavior. In
stubs, the results of a call are hard-coded or limited to a few choices. The isolation of
feed_from_url() is a clear-cut example of this. The arguments weren’t checked, and there
weren’t any assertions about how often the method stub was called, not even to ensure
that it was called at all. Implementing any of this behavior requires coding.

Mocks: These are like stubs, but they keep track of expectations and verify that they were
met. Different arguments can produce different outcomes. Assertions are made about the
calls performed, the arguments passed, and how often those calls are performed, or even
if they are performed at all. Values returned or exceptions raised are tracked, too. Per-
forming all of this by hand is involved, so many mock object frameworks have been
created, with most using a concise declarative notation.

Fakes: These are more expansive and often more substantial than mock objects. They are
typically used to replace a resource-intensive or expansive subsystem. The subsystem
might use vast amounts of memory or time, with time typically being the important factor
for testing. The subsystem might be expansive in the sense that it depends on external
resources such as a network-locking service, an external web service, or a printer. A data-
base is the archetypical example of a faked service.

Rolling Your Own
Dummies are trivial to write in Python. Since Python doesn’t check types, an arbitrary string or
numeric value suffices in many cases.

In some cases, you’ll want to add a small amount of functionality to an existing class or
override existing functionality with dummies or stubs. In this case, the test code can create a
subclass of the subject. This is commonly done when testing a base class. It takes little effort,
but Python has another way of temporarily overriding functionality, which was shown earlier.

Monkeypatching takes an existing package, class, or callable, and temporarily replaces it
with an impostor. When the test completes, the monkeypatch is removed. This approach isn’t
easy in most statically typed languages, but it’s nearly trivial in Python. With instances created
as test fixtures, it is not necessary to restore the monkeypatch, since the change will be lost
once an individual test completes. Packages and classes are different, though. Changes to
these persist across test cases, so the old functionality must be restored.

There are several drawbacks to monkeypatching by hand. Undoing the patches requires
tracking state, and the problem isn’t straightforward—particularly when properties or sub-
classes are involved. The changes themselves require constructing the impostor, so this piles
up difficulties.

Hand-coding mocks is involved. Doing one-offs produces a huge amount of ugly setup
code. The logic within a mocked method becomes tortuous. The mocks end up with a mish-
mash of methods mapping method arguments to output values. At the same time, this
interacts with method invocation counting and verification of method execution. Any attempt
to really address the issues in a general way takes you halfway toward creating a mock object
package, and there are already plenty of those out there. It takes far less time to learn how to
use the existing ones than to write one of your own.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS192

9810ch07.qxd 6/3/08 2:08 PM Page 192

Python Quirks
In languages such as Java and C++, subclassing tends to be preferred to monkeypatching.
Although Python uses inheritance, programmers rely much more on duck typing—if it looks
like a duck and quacks like a duck, then it must be a duck. Duck typing ignores the inheritance
structure between classes, so it could be argued that monkeypatching is in some ways more
Pythonic.

In many other languages, instance variables and methods are distinct entities. There is no
way to intercept or modify assignments and access. In these languages, instance variables
directly expose the implementation of a class. Accessing instance variables forever chains a
caller to the implementation of a given object, and defeats polymorphism. Programmers are
exhorted to access instance values through getter and setter methods.

The situation is different in Python. Attribute access can be redirected through hidden
getter and setter methods, so attributes don’t directly expose the underlying implementation.
They can be changed at a later date without affecting client code, so in Python, attributes are
valid interface elements.

Python also has operator overloading. Operator overloading maps special syntactic
features onto underlying functions. In Python, array element access maps to the function
__getitem__(), and addition maps to the method __add__(). More often than not, modern
languages have some mechanism to accomplish this magic, with Java being a dogmatic
exception.

Python takes this one step further with the concept of protocols. Protocols are sequences
of special methods that are invoked to implement linguistic features. These include genera-
tors, the with statement, and comparisons. Many of Python’s more interesting linguistic
constructions can be mocked by understanding these protocols.

Mocking Libraries
Mocking libraries vary in the features they provide. The method of mock construction is the
biggest discriminator. Some packages use a domain-specific language, while others use a
record-playback model.

Domain-specific languages (DSLs) are very expressive. The constructed mocks are very
easy to read. On the downside, they tend to be very verbose for mocking operator overloading
and for specifying protocols. DSL-driven mock libraries generally descend from Java’s jMock.
It has a strong bias toward using only vanilla functions, and the descendent DSLs reflect this
bias.

Record-replay was pioneered by Java’s EasyMock. The test starts in a record mode, mock
objects are created, and the expected calls are performed on them. These calls are recorded,
the mock is put into playback mode, and the calls are played back. The approach works very
well for mocking operator overloading, but its implementation is fraught with peril. Unsur-
prisingly, the additional work required to specify results and restrictions makes the mock
setup more confusing than one might expect.

Two mocking libraries will be examined in this chapter: pMock and PyMock. pMock is a
DSL-based mocking system. It only works on vanilla functions, and its DSL is clear and con-
cise. Arguments to mocks may be constrained arbitrarily, and pMock has excellent failure
reporting. However, it is poor at handling many Pythonic features, and monkeypatching is
beyond its ken.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 193

9810ch07.qxd 6/3/08 2:08 PM Page 193

PyMock combines mocks, monkeypatching, attribute mocking, and generator emulation.
It is primarily based on the record-replay model, with a supplementary DSL. It handles gener-
ators, properties, and magic methods. One major drawback is that its failure reports are fairly
opaque.

In the next section, the example is expanded to handle multiple feeds. The process is
demonstrated using first pMock, and then PyMock.

Aggregating Two Feeds
In this example, two separate feeds need to be combined, and the items in the output must be
sorted by date. As with the previous example, the name of the feed should be included with its
title, so the individual feed items need to identify where they come from. A session might look
like this:

$ rsreader http://www.xkcd.com/rss.xml http://www.pvponline.com/rss.xml

Thu, 06 Dec 2007 06:00:36 +0000: PvPonline: Kringus Risen - Part 4
Wed, 05 Dec 2007 06:00:45 +0000: PvPonline: Kringus Risen - Part 3
Wed, 05 Dec 2007 05:00:00 -0000: xkcd.com: Python
Mon, 03 Dec 2007 05:00:00 -0000: xkcd.com: Far Away

The feeds must be retrieved separately. This is a design constraint from FeedParser. It
pulls only one at a time, and there is no way to have it combine the two feeds. Even if the
package were bypassed, this would still be a design constraint. The feeds must be parsed sepa-
rately before they can be combined. In all cases, every feed item needs to be visited once.

The feeds could be combined incrementally, but doing things incrementally tends to be
tougher than working in batches. There are multiple approaches to combining the feeds, and
they all fundamentally answer the question: how do you locate the feed associated with an
item?

One approach places the intelligence outside the feeds. One list aggregates either the
feeds or the fed items. A dictionary maps the individual items back to their parent feeds. This
can be wrapped into a single class that handles aggregation and lookup. The number of inter-
nal data structures is high, but it works.

In another approach, the FeedParser objects can be patched. A new key pointing back the
parent feed is added to each entry. This involves mucking about with the internals of code
belonging to third-party packages.

Creating a parallel set of data structures (or new classes) is yet another option. The inter-
esting aspects of the aggregated feeds are modeled, and the uninteresting ones are ignored.
The downsides are that we’re creating a duplicate object hierarchy, and it duplicates some of
the functionality in FeedParser. The upsides are that it is very easy to build using a mocking
framework, and it results in precisely the objects and classes needed for the project.

What routines are needed? The method for determining this is somewhat close to
pseudocode planning. Starting with a piece of paper, the new section of code is outlined, and
the outline is translated into a series of tests. The list isn’t complete or exhaustive—it just
serves as a starting point.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS194

9810ch07.qxd 6/3/08 2:08 PM Page 194

http://www.xkcd.com/rss.xml
http://www.pvponline.com/rss.xml

def _pending_test_new_main():
"""Hooking in new code to main"""

def _pending_test_get_feeds_from_urls():
"""Should get a feed for every URL"""

def _pending_test_combine_feeds():
"""Should combine feeds into a list of FeedEntries"""

def _pending_test_add_single_feed():
"""Should add a single feed to a set of feeds"""

def _pending_test_create_entry():
"""Create a feed item from a feed and a feed entry"""

def _pending_test_feed_listing_is_sorted():
"""Should sort the aggregate feed listing"""

def _pending_test_feed_entry_listing():
"""Should produce a correctly formatted listing from a feed entry"""

The string _pending_ prefixing each test tells those reading your code that the tests are not
complete. The starting underscore tells Nose that the function is not a test. When you begin
writing the test, the string _pending_ is removed.

A Simple pMock Example
pMock is installed with the command easy_install pmock. It’s a pure Python package, so
there’s no compilation necessary, and it should work on any system.

A simple test shows how to use pMock. The example will calculate a triangle’s perimeter:

def test_perimeter():
assert_equals(4, perimeter(triangle))

pMock imitates the triangle object:

def test_perimeter():
triangle = Mock()
assert_equals(4, perimeter(triangle))

The expected method calls triangle.side(0) and triangle.side(1) need to be modeled.
They return 1 and 3, respectively.

def test_perimeter():
triangle = Mock()
triangle.expects(once()).side(eq(0)).will(return_value(1))
triangle.expects(once()).side(eq(1)).will(return_value(3))
assert_equals(4, perimeter(triangle))

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 195

9810ch07.qxd 6/3/08 2:08 PM Page 195

Each expectation has three parts. The expects() clause determines how many times the
combination of method and arguments will be invoked. The second part determines the
method name and argument constraints. In this case, the calls have one argument, and it
must be equal to 0 or 1. eq() and same() are the most common constraints, and they are
equivalent to Python’s == and is operators. The optional will() clause determines the
method’s actions. If present, the method will either return a value or raise an exception.

The simplest method fulfilling the test is the following:

def perimeter(triangle):
return 4

When you run the test, it succeeds even though it doesn’t call the triangle’s side() methods.
You must explicitly check each mock to ensure that its expectations have been met. The call
triangle.verify() does this:

def test_perimeter():
triangle = Mock()
triangle.expects(once()).side(eq(0)).will(return_value(1))
triangle.expects(once()).side(eq(1)).will(return_value(3))
assert_equals(4, perimeter(triangle))
triangle.verify()

Now when you run it the test, it fails. The following definition satisfies the test:

def perimeter(triangle):
return triangle.side(0) + triangle.side(1)

Implementing with pMock
To use mock objects, there must be a way of introducing them into the tested code. There are
four possible ways of doing this from a test. They can be passed in class variables, they can be
assigned as instance variables, they can be passed in as arguments, or they can be introduced
from the global environment.

Test: Defining combine_feeds
Mocking calls to self poses a problem. This could be done with monkeypatching, but that’s
not a feature offered by pMock. Instead, self is passed in as a second argument, and it intro-
duces the mock. In this case, the auxiliary self is used to help aggregate the feed.

def test_combine_feeds():
""""Combine one or more feeds""""
aggregate_feed = Mock()
feeds = [Mock(), Mock()]
aggregate_feed.expects(once()).add_single_feed(same(feeds[0]))
aggregate_feed.expects(once()).add_single_feed(same(feeds[1]))
RSReader().combine_feeds(aggregate_feed, feeds)
aggregate_feed.verify()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS196

9810ch07.qxd 6/3/08 2:08 PM Page 196

The test fails. The method definition fulfilling the test is as follows:

def combine_feeds(self, aggregate_feed, feeds):
for x in feeds:

aggregate_feed.add_single_feed(x)

The test now succeeds.

Test: Defining add_single_feed
The next test is test_add_single_feed(). It verifies that add_single_feed() creates an aggre-
gate entry for each entry in the feed:

def test_add_singled_feed():
"""Should add a single feed to a set of feeds"""
entries = [Mock(), Mock()]
feed = {'entries': entries}
aggregate_feed = Mock()
aggregate_feed.expects(once()).create_entry(same(feed), same(entries[0]))
aggregate_feed.expects(once()).create_entry(same(feed), same(entries[1]))
RSReader().add_single_feed(aggregate_feed, feed)
aggregate_feed.verify()

The test fails. The method RSReader.add_single_feed() is defined:

def add_single_feed(self, feed_aggregator, feed):
for e in feed['entries']:

feed_aggregator.create_entry(e)

The test now passes. There is a problem, though. The two tests have different definitions
for add_single_feed. In the first, it is called as add_single_feed(feed). In the second, it is
called as add_single_feed(aggregator_feed, feed). In a statically typed language, the devel-
opment environment or compiler would catch this, but in Python, it is not caught. This is both
a boon and a bane. The boon is that a test can completely isolate a single method call from the
rest of the program. The bane is that a test suite with mismatched method definitions can run
successfully.

The second test’s definition is obviously the correct one, so you revise the first one. It is
also apparent that the same problem will exist for create_entry, so you fix this expectation at
the same time.

def test_combine_feeds():
""""Combine one or more feeds""""
aggregate_feed = Mock()
feeds = [Mock(), Mock()]
aggregate_feed.expects(once()).add_single_feed(same(aggregate_feed),

same(feeds[0]))
aggregate_feed.expects(once()).add_single_feed(same(aggregate_feed),

same(feeds[1]))
subject = RSReader().combine_feeds(aggregate_feed, feeds)
aggregate_feed.verify()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 197

9810ch07.qxd 6/3/08 2:08 PM Page 197

def test_add_singled_feed():
"""Should add a single feed to a set of feeds"""
entries = [Mock(), Mock()]
feed = {'entries': entries}
aggregate_feed = Mock()
aggregate_feed.expects(once()).create_entry(same(aggregate_feed),

same(feed), same(entries[0]))
aggregate_feed.expects(once()).create_entry(same(aggregate_feed),

same(feed), same(entries[1]))
RSReader().add_single_feed(aggregate_feed, feed)
aggregate_feed.verify()

And the method definitions are also changed:

def combine_feeds(self, feed_aggregator, feeds):
for f in feeds:

feed_aggregator.add_single_feed(feed_aggregator, f)

def add_single_feed(self, feed_aggregator, feed):
for e in feed['entries']:

feed_aggregator.create_entry(feed_aggregator, feed, e)

In some sense, strictly using mock objects induces a style that obviates the need for self.
It maps very closely onto languages with multimethods. While the second copy of self is
merely conceptually ugly in other languages, Python’s explicit self makes it typographically
ugly, too.

Refactoring: Extracting AggregateFeed
The second self variable serves a purpose, though. If named to reflect its usage, then it indi-
cates which class the method belongs to. If that class doesn’t exist, then it strongly suggests
that it should be created. In this case, the class is AggregateFeed.

You create the new class, and one by one you move over the methods from RSReader. First
you modify the test, and then you move the corresponding method. You repeat this process
until all the appropriate methods have been moved.

from rsreader.application import AggregateFeed, RSReader
...
def test_combine_feeds():

"""Should combine feeds into a list of FeedEntries"""
subject = AggregateFeed()
mock_feeds = [Mock(), Mock()]
aggregate_feed = Mock()
aggregate_feed.expects(once()).add_single_feed(same(aggregate_feed),

same(mock_feeds[0]))
aggregate_feed.expects(once()).add_single_feed(same(aggregate_feed),

same(mock_feeds[1]))
subject.combine_feeds(aggregate_feed, mock_feeds)
aggregate_feed.verify()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS198

9810ch07.qxd 6/3/08 2:08 PM Page 198

The test fails because the class AggregateFeed is not defined. The new class is defined:

class AggregateFeed(object):
"""Aggregates several feeds"""

pass

The tests are run, and they still fail, but this time because the method AggregateFeed.
combine_feeds() is not defined. The method is moved to the new class:

class AggregateFeed(object):
"""Aggregates several feeds"""

def combine_feeds(self, feed_aggregator, feeds):
for f in feeds:

feed_aggregator.add_single_feed(feed_aggregator, f)

Now the test succeeds. With mock objects, methods can be moved easily between classes
without breaking the entire test suite.

Refactoring: Moving add_single_feed
The process is continued with test_add_single_feed(). You alter test_add_single_feed to
create AggregateFeed as the test subject:

def test_add_single_feed():
"""Should add a single feed to a set of feeds"""
entries = [Mock(), Mock()]
feed = {'entries': entries}
aggregate_feed = Mock()
aggregate_feed.expects(once()).create_entry(same(aggregate_feed),

same(feed), same(entries[0]))
aggregate_feed.expects(once()).create_entry(same(aggregate_feed),

same(feed), same(entries[1]))
AggregateFeed().add_single_feed(aggregate_feed, feed)
aggregate_feed.verify()

The test fails. You move the method from RSReader to AggregateFeed to fix this:

class AggregateFeed(object):
"""Aggregates several feeds"""

def combine_feeds(self, feed_aggregator, feeds):
for f in feeds:

feed_aggregator.add_single_feed(feed_aggregator, f)

def add_single_feed(self, feed_aggregator, feed):
for e in feed['entries']:

feed_aggregator.create_entry(feed_aggregator, feed, e)

When you run the test it now succeeds.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 199

9810ch07.qxd 6/3/08 2:08 PM Page 199

Test: Defining create_entry
The next test is test_create_entry(). It takes an existing feed and an entry from that feed, and
converts it to the new model. The new model has not been defined. The test assumes that it
uses a factory to produce new instances. This factory is an instance variable in AggregateFeed.
The object created by the factory is added to aggregate_feed():

def test_create_entry():
"""Create a feed item from a feed and a feed entry"""
agg_feed = AggregateFeed()
agg_feed.feed_factory = Mock()
(aggregate_feed, feed, entry, converted) = (Mock(), Mock(), Mock(), Mock())
agg_feed.feed_factory.expects(once()).from_parsed_feed(same(feed),

same(entry)).will(return_value(converted))
aggregate_feed.expects(once()).add(same(converted))
agg_feed.create_entry(aggregate_feed, feed, entry)
aggregate_feed.verify()

The test fails, so you add the following code:

def create_entry(self, feed_aggregator, feed, entry):
""""Create a new feed entry and aggregate it"""
feed_aggregator.add(self.feed_factory.from_parsed_feed(feed, entry))

And now the test succeeds.

Test: Ensuring That AggregateFeed Creates a FeedEntry Factory
create_entry has given birth to three new tests:

def _pending_test_aggregate_feed_creates_factory():
"""Verify that the AggregateFeed object creates a factory when instantiated"""

def _pending_test_feed_entry_from_parsed_feed():
"""Factory method to create a new feed entry from a parsed feed"""

def _pending_test_add():
"""Add an a feed entry to the aggregate"""

Checking to see if the AggregateFeed creates a factory seems like the easiest test to me, so
we’ll tackle it first, but it does take a little consideration of the program’s larger structure.

Each entry in a feed will be represented by an instance of the class FeedEntry. The factory
could be a function or another class, but that’s probably making things a little too compli-
cated. Instead, it will be a method within FeedEntry.

from rsreader.app import AggregateFeed, FeedEntry, RSReader
...
def test_aggregate_feed_creates_factory():

"""Verify that the AggregatedFed object creates a factory
when instantiated"""

assert_equals(FeedEntry, AggregateFeed().feed_factory)

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS200

9810ch07.qxd 6/3/08 2:08 PM Page 200

The test fails because the FeedEntry class is not defined yet.

class FeedEntry(object):
"""Combines elements of a feed and a feed entry.

Allows multiple feeds to be aggregated without losing
feed specific information."""

The test now runs, but fails because AggregateFeed.__init__ is not defined.

class AggregateFeed(object):
"""Aggregates several feeds"""

def __init__(self):
self.feed_factory = FeedEntry

The test now passes.

Test: Defining add
The next test you’ll write is test_add().The add() method records the newly aggregated meth-
ods. At this point, the testing becomes very concrete.

from sets import Set
...
def test_add():

"""Add an a feed entry to the aggregate"""
entry = Mock()
subject = AggregateFeed()
subject.add(entry)
assert_equals(Set([entry]), subject.entries)

The test fails. The corresponding definition is as follows:

from sets import Set
...
def add(self, entry):

self.entries = Set([entry])

The test passes this time. This definition is fine for a single test, but it needs to be refac-
tored into something more useful.

Test: AggregateFeed.entries Is Always Initialized to a Set
The empty set should be defined when a feed is created. A new test ensures this:

def test_entries_is_always_defined():
"""The entries set should always be defined"""
assert_equals(Set(), AggregateFeed().entries)

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 201

9810ch07.qxd 6/3/08 2:08 PM Page 201

The test fails. You should modify the constructor to fulfill the expected conditions:

class AggregateFeed(object):
"""Aggregates several feeds"""

def __init__(self):
self.entries = Set()
self.feed_factory = FeedEntry

The test now succeeds. The next step is refactoring add():

def add(self, entry):
self.entries.add(entry)

The tests still succeed, so the refactoring worked.

Test: Defining FeedEntry.from_parsed_feed
Now it is time to verify the FeedEntry factory’s operation. The required feed objects already
exist within the tests, and you’ll reuse them here.

def test_feed_entry_from_parsed_feed():
"""Factory method to create a new feed entry from a parsed feed"""
feed_entry = FeedEntry.from_parsed_feed(xkcd_feed, xkcd_items[0])
assert_equals(xkcd_items[0]['date'], feed_entry.date)
assert_equals(xkcd_items[0]['title'], feed_entry.title)
assert_equals(xkcd_feed['feed']['title'], feed_entry.feed_title)

The test runs and fails. The method from_parsed_feed() is defined as follows:

@classmethod
def from_parsed_feed(cls, feed, entry):

"""Factory method producing a new object from an existing feed."""
feed_entry = FeedEntry()
feed_entry.date = entry['date']
feed_entry.feed_title = feed['feed']['title']
feed_entry.title = entry['title']
return feed_entry

Test: Defining feed_entry_listing
At this point, _pending_test_aggregate_item_listing() jumps out from the list of pending
tests. It pertains to FeedEntry, and it looks like FeedEntry has all the information needed.

def test_feed_entry_listing():
"""Should produce a correctly formatted listing from a feed entry"""
entry = FeedEntry.from_parsed_feed(xkcd_feed, xkcd_items[0])
assert_equals(xkcd_listings[0], entry.listing())

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS202

9810ch07.qxd 6/3/08 2:08 PM Page 202

The test fails. The new method, FeedEntry.listing(), is defined as follows:

def listing(self):
return "%s: %s: %s" % (self.date, self.feed_title, self.title)

The test passes, so the example is one step closer to completion.

Test: Defining feeds_from_urls
At this point, there are a few tests left. URLs must be converted into feeds, feed entries must be
converted into listings, and all of the new machinery must be hooked into the main() method.
At this point, we’ll try to finish off the AggregateFeed by focusing on the conversion of URLs to
feeds.

The test is test_get_feeds_from_urls(). URLs are converted to feeds via feedparser.
parse(). This can be viewed as a factory method. The dependency is initialized in a manner
analogous to feed_factory().

def test_get_feeds_from_urls():
"""Should get a feed for every URL"""
urls = [Mock(), Mock()]
feeds = [Mock(), Mock()]
subject = AggregateFeed()
subject.feedparser = Mock()
subject.feedparser.expects(once()).parse(same(urls[0])).will(

return_value(feeds[0]))
subject.feedparser.expects(once()).parse(same(urls[1])).will(

return_value(feeds[1]))
returned_feeds = subject.feeds_from_urls(urls)
assert_equals(feeds, returned_feeds)
subject.feedparser.verify()

The test fails. The definition fulfilling the test is as follows:

def feeds_from_urls(self, urls):
"""Get feeds from URLs"""
return [self.feedparser.parse(url) for url in urls]

The test succeeds.

Test: AggregateFeed Initializes the FeedParser Factory
The method feeds_from_urls() depends on the feedparser property being initialized, so a
test must ensure this:

def test_aggregate_feed_initializes_feed_parser():
"""Ensure AggregateFeed initializes dependency on feedparser"""
assert_equals(feedparser AggregateFeed().feedparser)

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 203

9810ch07.qxd 6/3/08 2:08 PM Page 203

The test fails. The initialization method is updated:

def __init__(self):
self.entries = Set()
self.feed_factory = FeedEntry
self.feedparser = feedparser

The test now succeeds.

Test: Defining from_urls
At this point, you should be asking yourself the following question: where does the list of feeds
get aggregated? Any time you have a question like this, it suggests that you need to write a new
test to answer the question. This test should check that the method gets feeds_from_urls()
and that it combines those feeds. The test is as follows:

def test_from_urls():
"""Should get feeds from URLS and combine them"""
urls = Mock()
aggregate_feed = Mock()
feeds = Mock()
aggregate_feed.expects(once()).feeds_from_urls(same(urls)).\

will(return_value(feeds))
aggregate_feed.expects(once()).combine_feeds(same(aggregate_feed),

same(feeds))
AggregateFeed().from_urls(aggregate_feed, urls)
aggregate_feed.verify()

The test fails, so you write the new method:

def from_urls(self, feed_aggregator, urls):
"""Produce aggregated feeds from URLs"""
feeds = feed_aggregator.feeds_from_urls(urls)
feed_aggregator.combine_feeds(feed_aggregator, feeds)

The test succeeds.

Refactoring: Reimplementing from_urls
Is there any functionality still unimplemented in AggregateFeed? For the moment, it doesn’t
appear so. However, I’m not comfortable with the code as it stands—it seems overly compli-
cated. The discomfort comes from the interactions between from_urls(), feeds_from_urls(),
and combine_feeds(). The data flow exhibits a Y shape, as shown in Figure 7-6.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS204

9810ch07.qxd 6/3/08 2:08 PM Page 204

Figure 7-6. Questionably complicated data flow

A collection of URLs is passed down one leg, it is mapped to feeds, a collection of feeds is
returned, and then the collection is fed down the other leg where another mapping is per-
formed. It results in a layer of collection manipulations. This data flow pattern can often be
transformed to a sequential set of mappings with only one iteration, as shown in Figure 7-7.

Figure 7-7. Simplified data flow

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 205

9810ch07.qxd 6/3/08 2:08 PM Page 205

This rewritten test reflects the change in data flow:

def test_from_urls():
"""Should get feeds from URLs and combine them"""
urls = [Mock(), Mock()]
feeds = [Mock(), Mock()]
subject = AggregateFeed()
aggregate_feed = Mock()
subject.feed_factory = Mock()
#
subject.feed_factory.expects(once()).parse(same(urls[0])).will(

return_value(feeds[0]))
aggregate_feed.expects(once()).add_single_feed(aggregate_feed, feeds[0])
#
subject.feed_factory.expects(once()).parse(same(urls[1])).will(

return_value(feeds[1]))
aggregate_feed.expects(once()).add_single_feed(aggregate_feed, feeds[1])
#
subject.from_url(aggregate_feed, urls)
subject.feed_factory.verify()
aggregate_feed.verify()

The test fails spectacularly. The new definition for from_urls() is as follows:

def from_urls(self, aggregate_feed, urls):
"""Produce aggregated feeds from URLs"""
for x in urls:

self.add_single_feed(aggregate_feed, self.feed_factory.parse(x))

The test passes. This definition of from_url() bypasses feeds_from_urls() and combine_
feeds(). Those two methods and the corresponding tests can be removed. The excised code
can always be retrieved from the source repository if it turns out to be needed later. (You have
been checking in the code regularly, haven’t you?)

One of the primary benefits of using mock objects is the style produced in the preceding
example. In this style, mappings are composed and the composition action itself is tested.
Without mock objects, writing for testability forces the code into a more expansive style where
mappings are performed on sequences and the resulting sequences are examined. An addi-
tional layer then coordinates those sequencing operations.

Refactoring: Condensing Some Tests
What remains to be done? The tests test_aggregate_feed_creates_factory() and test_
aggregate_feed_initializes_feed_parser() both verify that dependencies are initialized
correctly, so they can be combined. The combined test is as follows:

def test_aggregate_feed_dependency_initialization():
""""Should correctly initialize dependencies"""
assert_equals(FeedEntry, AggregateFeed().feed_factory)
assert_equals(feedparser, AggregateFeed().feedparser)

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS206

9810ch07.qxd 6/3/08 2:08 PM Page 206

The test passes. The other two tests are removed, all tests still pass, and AggregateFeed is
complete. The next set of tests examine printing.

Test: Formatting Feed Entry Listings
The printing tests should verify that individual feed listings are combined correctly, and that
an unsorted feed produces sorted listings. Most of the test data for these tests already exists, so
it is reused. Checking sorting on one key only requires two data points, so only two data points
are used. This data is not in sorted order. Printing is a distinct category of functionality, so the
printing methods will be put in a separate class.

from rsreader.application import AggregateFeed, FeedEntry, FeedWriter, RSReader
...
def test_aggregate_feed_listing_should_be_sorted():

"""Should produce a sorted listing of feed entries."""
unsorted = [FeedEntry.from_parsed_feed(xkcd_feed, xkcd_items[1]),

FeedEntry.from_parsed_feed(xkcd_feed, xkcd_items[0])]
aggregate_feed = AggregateFeed()
aggregate_feed.entries = unsorted
aggregate_listing = FeedWriter().entry_listings(aggregate_feed)
assert_equals(xkcd_output, aggregate_listing)

The test fails with an error, which reports that FeedWriter doesn’t exist.

class FeedWriter(object):
"""Prints an aggregate feed"""

def entry_listings(self, aggregate_feed):
"""Produce a sorted listing of an aggregate feed"""
return None

With FeedWriter and entry_listings() defined, the test fails with an equality mismatch.
The result is now faked:

def entry_listings(self, aggregate_feed):
"""Produce a sorted listing of an aggregate feed"""
entries = aggregate_feed.entries
return os.linesep.join([entries[1].listing(),

entries[0].listing()])

The test passes. The question is now how to sort the entries by date. The feed entries con-
tain the date as a printable string, so these can’t be compared directly. Fortunately, FeedParser
converts them into a comparable form.

The relevant field is date_parsed. You put this field into the test data, and then you modify
the FeedEntry conversion routines. The definition of xkcd_items in shared_data.py becomes
the following:

xkcd_items = [{'date': "Wed, 05 Dec 2007 05:00:00 -0000",
'date_parsed': mktime(2007, 12, 5, 5, 0, 0, 2, None),
'title': "Python"},

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 207

9810ch07.qxd 6/3/08 2:08 PM Page 207

{'date': "Mon, 03 Dec 2007 05:00:00 -0000",
'date_parsed': mktime(2007, 12, 3, 5, 0, 0, 2, None),
'title': "Far Away"}]

The tests all pass. Now test_feed_entry_from_parsed_feed() is modified:

def test_feed_entry_from_parsed_feed():
"""Factory method to create a new feed entry from a parsed feed"""
feed_entry = FeedEntry.from_parsed_feed(xkcd_feed, xkcd_items[0])
assert_equals(xkcd_items[0]['date'], feed_entry.date)
assert_equals(xkcd_items[0]['date_parsed'], feed_entry.date_parsed)
assert_equals(xkcd_items[0]['title'], feed_entry.title)
assert_equals(xkcd_feed['feed']['title'], feed_entry.feed_title)

This test fails, so you rewrite FeedEntry.from_parsed_feed() as follows:

@classmethod
def from_parsed_feed(cls, feed, entry):

""""Factory method producing a new feed entry from a feedparser entry"""
feed_entry = FeedEntry()
feed_entry.date = entry['date']
feed_entry.date_parsed = entry['date_parsed']
feed_entry.feed_title = feed['feed']['title']
feed_entry.title = entry['title']
return feed_entry

The test suite passes. You can now modify the method entry_listings() to support
sorting:

def entry_listings(self, aggregate_feed):
"""Produce a sorted listing of an aggregate feed"""
sorted_entries = sorted(aggregate_feed.entries,

key=lambda x: x.date_parsed,
reverse=True)

return os.linesep.join([x.listing() for x in sorted_entries])

The test suite still passes. Now the printing behavior must be verified.

Test: Defining print_entry_listings
print_entry_listings() takes a listing from FeedWriter and prints it to stdout. stdout will be
contained in an instance variable. The test needs to mock out both calls to FeedWriter to cap-
ture stdout, and it needs to mock out a call to FeedWriter.entry_listings(). stdout will be
contained in an instance variable.

def test_print_entry_listings():
"""Verify that a listing was printed"""
subject = FeedWriter()
(feed_writer, aggregate_feed, listings) = (Mock(), Mock(), Mock())
subject.stdout = Mock()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS208

9810ch07.qxd 6/3/08 2:08 PM Page 208

feed_writer.expects(once()).entry_listings(same(aggregate_feed)).\
will(return_value(listings))

subject.stdout.expects(once()).write(same(listings))
subject.stdout.expects(once()).write(eq(os.linesep))
subject.print_entry_listings(feed_writer, aggregate_feed)
feed_writer.verify()
subject.stdout.verify()

The test fails. The printing code is implemented:

def print_entry_listings(self, feed_writer, aggregate_feed):
"""Print listing"""
self.stdout.write(feed_writer.entry_listings(aggregate_feed))
self.stdout.write(os.linesep)

The test succeeds. FeedListing.stdout needs to be initialized, and the next test ensures this.

Test: FeedWriter Initializes the stdout Attribute
The stdout attribute must be initialized when the FeedWriter creates itself.

def test_feed_writer_intializes_stdout():
"""Ensure that feed writer initializes stdout from sys.stdout"""
assert_equals(sys.stdout, FeedWriter().stdout)

The test fails. The initialization code is written as follows:

class FeedWriter(object):
"""Prints an aggregate feed"""

def __init__(self):
self.stdout = sys.stdout

The test succeeds. The final printing test ensures that nothing is printed if there are no
entries.

Test: Empty AggregateFeeds Generate No Output
When the feeds have no items, then the program should produce no output. This test ensures
that.

def test_feed_writer_prints_nothing_with_an_empty_feed(self):
"""Empty aggregate feed should print nothing"""
subject = FeedWriter()
(feed_writer, aggregate_feed) = (Mock(), Mock())
subject.stdout = Mock()
aggregate_feed.expects(once()).is_empty().will(return_value(True))
subject.print_entry_listing(feed_writer, aggregate_feed)
aggregate_feed.verify()
subject.stdout.verify()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 209

9810ch07.qxd 6/3/08 2:08 PM Page 209

The test fails. The method is updated:

def print_entry_listings(self, feed_writer, aggregate_feed):
"""Print listing"""
if not aggregate_feed.is_empty():

self.stdout.write(feed_writer.entry_listings(aggregate_feed))
self.stdout.write(os.linesep)

The test succeeds, but test_print_entry_listing() fails because it doesn’t mock out the
call to aggregate_feed.is_empty(). The broken test now reads as follows:

def test_print_entry_listing():
"""Verify that a listing was printed"""
subject = FeedWriter()
(feed_writer, aggregate_feed, listings) = (Mock(), Mock(), Mock())
subject.stdout = Mock()
aggregate_feed.expects(once()).is_empty().will(

return_value(False))
feed_writer.expects(once()).entry_listings(same(aggregate_feed)).\

will(return_value(listings))
subject.stdout.expects(once()).write(same(listings))
subject.stdout.expects(once()).write(eq(os.linesep))
subject.print_listings(feed_writer, aggregate_feed)
feed_writer.verify()
subject.stdout.verify()

The test now succeeds. The new method AggregateFeed.is_empty() must be tested.

Test: Defining is_empty
The preceding test used the is_empty() method. This is a good time to create it.

def test_is_empty():
"""Unsure is empty works"""
aggregate_feed = AggregateFeed()
assert aggregate_feed.is_empty()
aggregate_feed.add("foo")
assert not aggregate_feed.is_empty()

The test fails, so you define is_empty() as follows:

def is_empty(self):
"""True if set is empty, and False otherwise"""
return not self.entries

The test now succeeds, and printing is complete.

Test: Defining new_main
The new_main() method must be tied into the existing program. It should get AggregateFeed
objects from a set of URLs, and then it should print them.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS210

9810ch07.qxd 6/3/08 2:08 PM Page 210

When argv is passed into the method, it contains extra information that must be
removed. The first argument is the program name, and the subsequent arguments are the
URLs to be read. This test ensures that the unneeded leading argument is stripped off.

def test_new_main():
""""Main should create a feed and print results"""
args = ["unused_program_name", "x1"]
reader = RSReader()
reader.aggregate_feed = Mock()
reader.feed_writer = Mock()
reader.aggregate_feed.expects(once()).from_urls(same(reader.aggregate_feed),

eq(["x1"]))
reader.feed_writer.expects(once()).print_listings(same(reader.aggregate_feed))
reader.new_main(args)
reader.aggregate_feed.verify()
reader.feed_writer.verify()

The test fails. The new_main() function is as follows:

def new_main(self, argv):
self.aggregate_feed.from_urls(self.aggregate_feed, argv[1:])
self.feed_writer.print_listings(self.aggregate_feed)

The test succeeds. Now you have to check that aggregate_feed and feed_writer have
been initialized.

Test: The Application Initializes Dependencies
The application needs to initialize its dependencies, and this test ensures that it does so:

def test_rsreader_initializes_dependencies():
"""RSReader should initialize dependencies"""
reader = RSReader()
assert isinstance(reader.aggregate_feed, AggregateFeed)
assert isinstance(reader.feed_writer, FeedWriter)

The test fails. The __init__ method is implemented as follows:

class RSReader(object):
"""The Application"""

def __init__(self):
self.aggregate_feed = AggregateFeed()

And the test gets a bit further. The method is expanded:

def __init__(self):
self.aggregate_feed = AggregateFeed()
self.feed_writer = FeedWriter()

And the test succeeds. At this point, the new application code is complete, but the script
is still executing the old main() method.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 211

9810ch07.qxd 6/3/08 2:08 PM Page 211

Refactoring: Making new_main the New main2

You’re now ready to make the changes active by replacing main() with new_main(). This
happens with the tests, too—you rename the test_new_main() method to test_main():

def test_main():
""""Main should create a feed and print results"""
args = ["unused_program_name", "x1"]
reader = RSReader()
reader.aggregate_feed = Mock()
reader.feed_writer = Mock()
reader.aggregate_feed.expects(once()).from_urls(same(reader.aggregate_feed),

eq(["x1"]))
reader.feed_writer.expects(once()).print_listings(same(reader.aggregate_feed))
reader.main(args)
reader.aggregate_feed.verify()
reader.feed_writer.verify()

The test fails. You fix this by renaming new_main() to main():

def main(self, argv):
self.aggregate_feed.from_urls(self.aggregate_feed, argv[1:])
self.feed_writer.print_listings(self.aggregate_feed)

The new tests all succeed, as do the acceptance tests. The old tests fail, but that’s OK since
you’re about to remove them. You should take note of the failing tests, and then remove the
extraneous code that these methods test. If more tests fail, then you may have removed too
much. If the acceptance tests still pass, then you should remove the failing tests for old func-
tionality. At this point, the program is complete.

A Simple PyMock Example
A simple test shows how PyMock is used. The example will calculate a triangle’s perimeter:

def test_perimeter():
assert_equals(4, perimeter(triangle))

PyMock must be initialized before you can use it in a function or method. This is done
with the use_pymock decorator:

@use_pymock
def test_perimeter():

assert_equals(4, perimeter(triangle))

Here, PyMock is used to imitate triangle:

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS212

2. War is the new peace. Politics is the new gossip. Pink is the new black. Whales are the new sushi.

9810ch07.qxd 6/3/08 2:08 PM Page 212

@use_pymock
def test_perimeter():

triangle = mock()
assert_equals(4, perimeter(triangle))

PyMock uses a record-replay mechanism. Expectations are set either by performing calls
exactly as they are expected to be replayed, or by describing them with a DSL similar to
pMock. I’ll demonstrate the former here:

@use_pymock
def test_perimeter():

triangle = mock()
triangle.side[0]; returns(1); once()
triangle.side[1]; returns(3); once()
assert_equals(4, perimeter(triangle))

The direct recording makes it easy to record multistep sequences. The actions here have
two steps: the property side is retrieved, and then side.__getitem__() is called.3 PyMock uses
__eq__() to compare most arguments, with mocks being the sole exception; they are com-
pared by identity. The return values and counts are specified using additional functions.

After expectations have been set, the mock is switched from record mode to replay mode:

@use_pymock
def test_perimeter():

triangle = mock()
triangle.side[0]; returns(1); once()
triangle.side[1]; returns(3); once()
replay()
assert_equals(4, perimeter(triangle))

Here’s the simplest method fulfilling the test:

def perimeter(triangle):
return 4

The test passes, but it shouldn’t. You want to verify that the triangle object was used, and
you do this by calling verify(). This function checks all recorded expectations. This contrasts
with pMock, in which the verify() method must be called for each mock that you want to
check.

def test_perimeter():
triangle = Mock()
triangle.side[0]; returns(1); once()
triangle.side[1]; returns(3); once()
replay()
assert_equals(4, perimeter(triangle))
verify()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 213

3. Every call to a mock returns a new mock unless you specify something else using returns() or
raises().

9810ch07.qxd 6/3/08 2:08 PM Page 213

Now the test fails. The following definition satisfies the test:

def perimeter(triangle):
return triangle.side[0] + triangle.side[1]

It is worth noting that the call count is optional. If it is not specified, then once() is
assumed, so the following code is equivalent to the preceding test:

def test_perimeter():
triangle = Mock()
triangle.side[0]; returns(1)
triangle.side[1]; returns(3)
replay()
assert_equals(4, perimeter(triangle))
verify()

Monkeypatching
PyMock directly supports monkeypatching existing classes, attributes, and properties. This is
one of the primary distinctions between PyMock and pMock. This allows your code to tem-
porarily override an existing package or attribute, without having to explicitly inject
dependencies. Monkeypatching is done with the override() function, as shown here:

@use_pymock
def test_dirpaths(self):

root = 'path'
listed_directories = ['one', 'two']
expected_paths = [os.path.join(root, 'one'), os.path.join(root, 'two')]
override(os, 'listdir'); os.listdir(root); returns(listed_directories)
replay()
assert_equals(expected_paths, dirpaths(root))
verify()

The definition fulfilling the test is

def dirpatch(root):
return [os.path.join(root, x) for x in os.listdir(root)]

Saying the Same Thing Differently
PyMock supports a second syntax to define expectations. It is closer to pMock’s, and it suffers
similar limitations. It is restricted to simple function calls, but it is more concise when mon-
keypatching. The previous test becomes the following:

@use_pymock
def test_dirpaths(self):

root = 'path'
listed_directories = ['one', 'two']
expected_paths = [os.path.join(root, 'one'), os.path.join(root, 'two')]

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS214

9810ch07.qxd 6/3/08 2:08 PM Page 214

override(os, 'listdir').expects(root).returns(listed_directories)
replay()
assert_equals(expected_paths, dirpaths(root))
verify()

The override expression now completely specifies the expected call. The arguments are
specified with expects(), and the return values are specified with returns().

Calls on mock objects are specified with the method() function:

def test_perimeter():
triangle = Mock()
method(triangle, 'side').expects(0).returns(1)
method(triangle, 'side').expects(1).returns(3)
replay()
assert_equals(4, perimeter(triangle))
verify()

This test specifies this function:

def perimeter(triangle):
return triangle.side(0) + triangle.side(1)

Implementing with PyMock
The implementation with PyMock largely mirrors the pMock implementation, but there are
significant differences. Monkeypatching eliminates the necessity of introducing a second vari-
able to hold the mock. Instead, the mocked method is attached directly to an instance using
the override() function. This leads to a simpler call structure.

Monkeypatching also allows tests to mock external modules in place. In cases where the
dependencies are never expected to change, this leads to a simpler application. Modules are
referenced directly rather than being referenced through variables.4

The tests will start with from_urls(). This method wasn’t in the pending tests originally
brainstormed. It was discovered along the way, but it is a good place to start. It obviates the
need for both get_feeds_from_urls() and combine_feeds(), so those pending tests are dis-
carded. test_feed_entry_listing() duplicates test_feed_listing_is_sorted(), so that will
be ignored, too. There is nothing to be gained from repeating material with no new insight, so
the list of pending tests is now as follows:

def _pending_test_new_main():
"""Hooking in new code to main"""

def _pending_test_from_urls():
"""Should retrieve feeds and add them to the aggregate"""

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 215

4. Some might say, “Rather than being injected as dependencies,” but we’re not dealing with Java here.

9810ch07.qxd 6/3/08 2:08 PM Page 215

def _pending_test_get_feeds_from_urls():
"""Should get a feed for every URL"""

def _pending_test_combine_feeds():
"""Should combine feeds into a list of FeedEntries"""

def _pending_test_add_single_feed():
"""Should add a single feed to a set of feeds"""

def _pending_test_create_entry():
"""Create a feed item from a feed and a feed entry"""

def _pending_test_feed_listing_is_sorted():
"""Should sort the aggregate feed listing"""

def _pending_test_feed_entry_listing():
"""Should produce a correctly formatted listing from a feed entry"""

Test: from_urls and Mocking External Modules
From the very beginning, you’ll make strong use of override():

import feedparser
...
@use_pymock
def test_from_urls():

"""Should retrieve feeds and add them to the aggregate"""
urls = [dummy(), dummy()]
feeds = [dummy(), dummy()]
subject = RSReader()
#
override(feedparser, 'parse').expects(urls[0]).returns(feeds[0])
override(subject, 'add_single_feed').expects(feeds[0])
#
override(feedparser, 'parse').expects(urls[1]).returns(feeds[1])
override(subject, 'add_single_feed').expects(feeds[1])
#
replay()
subject.from_urls(urls)
verify()0

The dummy() calls create dummy objects. They’re impostors with no functionality that
exist only to be used as arguments. In actuality, the objects returned from dummy() are full-
fledged mock objects—just the same as those returned from mock()—but the factory method
makes the intention clear to the test’s readers.

The test fails to execute, but defining from_urls() is insufficient. The override() function
verifies the existence of add_single_feed(), so it must be defined before the test can run:

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS216

9810ch07.qxd 6/3/08 2:08 PM Page 216

def from_urls(self, feeds):
""""Combine a set of parsed feeds"""

def add_single_feed(self, feed):
"""Add a single parsed feed"""

The test now raises a verification failure. The full definition satisfying the test is as follows:

def from_urls(self, feeds):
""""Combine a set of parsed feeds"""
for f in feeds:

self.add_single_feed(f)

def add_single_feed(self, feed):
"""Add a single parsed feed"""

The tests runs, and it succeeds.

Test: Defining add_single_feed
The next test characterizes add_single_feed().The method add_single_feed() should call
create_entry() once for each entry in the feed the caller passes in.

@use_pymock
def test_add_single_feed():

"""Should create a new entry for each entry in the feed"""
reader = RSReader()
entries = [dummy(), dummy()]
feed = mock()
feed.entries; returns(entries)
override(reader, 'create_entry').expects(entries[0])
override(reader, 'create_entry').expects(entries[1])
replay()
reader.add_single_feed(feed)
verify()

The test fails to execute because create_entry() hasn’t been defined yet. Here is a mini-
mal definition:

def add_single_feed(self, feed):
"""Add a single parsed feed"""

def create_entry(self, feed, entry):
"""Add a single entry"""

The test now fails with a verification exception. The method is defined as follows:

def add_single_feed(self, feed):
"""Add a single parsed feed"""
for x in urls:

self.add_single_feed(feedparser.parse(x))

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 217

9810ch07.qxd 6/3/08 2:08 PM Page 217

def create_entry(self, feed, entry):
"""Add a single entry"""

The test now passes.

Refactoring: Moving Methods to a New Object
At this point in the pMock example, it was clear that these methods belonged in their own
class. The explicit dependency that had to be passed in like a second self is missing. Monkey-
patching bypasses the need to inject a dependency, but it was this very dependency that made
it clear where these methods belonged.5 The trade-off is that the resulting code looks more
Pythonic and less alien.

Refactoring: Moving add_single_feed
Moving the methods to another class highlights another difference involved with gleeful
monkeypatching. Methods have to be moved in twos. One method is moved, and the monkey-
patched one is temporarily duplicated. I prefer to start with the last implemented method.
The test becomes the following:

from rsreader.app import AggregateFeed, RSReader
...
def test_add_single_feed():

"""Should create a new entry for each entry in the feed"""
subject = AggregateFeed()
entries = [dummy(), dummy()]
feed = mock()
feed.entries; returns(entries)
override(subject, 'create_entry').expects(feed, entries[0])
override(subject, 'create_entry').expects(feed, entries[1])
replay()
subject.add_single_feed(feed)

The test fails because AggregateFeed hasn’t been created. The class is created, and then
the test fails because the methods haven’t been defined. At this point, I’ll move over the meth-
ods add_single_feed() and create_entry(). The first is a complete method, while the second
is a stub. One of the implicit goals in TDD is never breaking more than one test at a time. If
other tests depended on RSReader.create_entry(), then I would leave a copy behind, and I
would only remove it after altering those tests.

class RSReader(object):
"""The Application"""

def from_urls(self, urls):
"""Transform URLS into feeds"""

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS218

5. You could restrict your usage of override() to standard library modules such as os or sys, but that
doesn’t seem to work in practice—it’s too tempting a tool.

9810ch07.qxd 6/3/08 2:08 PM Page 218

for x in urls:
self.add_single_feed(feedparser.parse(x))

def add_single_feed(self, feed):
"""Add a single parsed feed"""

class AggregateFeed(object):
"""Several parsed feeds combined"""

def add_single_feed(self, feed):
"""Add a single parsed feed"""
for e in feed.entries:

self.create_entry(feed, e)

def create_entry(self, feed, entry):
"""Add a single entry"""

The test succeeds.

Refactoring: Moving from_urls()
The method from_urls() belongs in the class AggregateFeed, so you modify test_from_urls()
to expect this change:

@use_pymock
def test_from_urls():

"""Should retrieve feeds and add them to the aggregate"""
urls = [dummy(), dummy()]
feeds = [dummy(), dummy()]
subject = AggregateFeed()
#
override(feedparser, 'parse').expects(urls[0]).returns(feeds[0])
override(subject, 'add_single_feed').expects(feeds[0])
#
override(feedparser, 'parse').expects(urls[1]).returns(feeds[1])
override(subject, 'add_single_feed').expects(feeds[1])
#
replay()
subject.from_urls(urls)
verify()

The test fails, so you move from_url() from RSReader to AggregateFeed. There are no
more tests depending on the stub method add_single_feed(), so you remove it:

class RSReader(object):
"""The Application"""

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 219

9810ch07.qxd 6/3/08 2:08 PM Page 219

class AggregateFeed(object):
"""Several parsed feeds combined"""

def from_urls(self, urls):
"""Transform URLS into feeds"""
for x in urls:

self.add_single_feed(feedparser.parse(x))

def add_single_feed(self, feed):
"""Add a single parsed feed"""
for e in feed.entries:

self.create_entry(feed, e)

def create_entry(self, feed, entry):
"""Add a single entry"""

The test succeeds.

Test: create_entry() and Mocking Class Constructors
With pMock, it was necessary to use a factory to introduce the relationship between
AggregateFeed.create_entry() and the FeedEntry objects it produces. With PyMock, the
constructor for FeedEntry is mocked out directly.

I can argue that using a factory makes for a better design by explicitly capturing the
dependency. I can also argue that it is overkill for this application. When the class is referenced
in more than one place, or when it comes time to introduce a second kind of element, then a
factory may be the better choice.

import rsreader.application
...
@use_pymock
def test_create_entry():

"""Should create an entry and add it to the collection"""
subject = AggregateFeed()
(feed, entry) = (dummy(), dummy())
new_entry = dummy()
override(rsreader.application, 'FeedEntry')\

.expects(feed, entry)\

.returns(new_entry)
override(subject, 'add').expects(new_entry)
replay()
subject.create_entry(feed, entry)
verify()

The test fails to run because FeedEntry is not defined. The definition is as follows:

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS220

9810ch07.qxd 6/3/08 2:08 PM Page 220

class FeedEntry(object):
"""Combines elements of a feed and a feed entry.
Allows multiple feeds to be aggregated without losing feed specific
information."""

The test progresses a bit further before failing with an error. It now complains that add()
isn’t defined, so you stub it out:

def create_entry(self, feed, entry):
"""Add a single entry"""

def add(self, entry):
"""Add an entry"""

The test now fails with a verification error. You complete create_entry():

def create_entry(self, feed, entry):
"""Add a single entry"""
self.add(FeedEntry(feed, entry))

def add(self, entry):
"""Add an entry"""

With this definition, the test succeeds.

Tests: Defining add and AggregateFeed.__init__
These two tests are almost exactly the same as with pMock, with only the slightest differences
between the add() implementations. I’ll just summarize them here:

from sets import Set

from nose.tools import *
from pymock import mock, override, replay, returns, verify, use_pymock

from rsreader.application import AggregateFeed, FeedEntry, RSReader

...

@use_pymock
def test_add():

"""Add an a feed entry to the aggregate"""
entry = mock()
subject = AggregateFeed()
subject.add(entry)
assert_equals(Set([entry]), subject.entries)

def test_entries_is_always_defined():
"""The entries set should always be defined"""
assert_equals(Set(), AggregateFeed().entries)

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 221

9810ch07.qxd 6/3/08 2:08 PM Page 221

The code satisfying these tests is as follows:

from sets import Set
...

def __init__(self):
self.entries = Set()

...

def add(self, entry):
"""Add to the set of entries"""
self.entries.add(entry)

With these definitions, the tests once again successfully run to completion.

Test: Defining FeedEntry.__init__
FeedEntry construction has been mocked out, but the FeedEntry constructor doesn’t exist yet.
With pMock, there is no way to mock __init__(), so the constructor was a class method. With
PyMock, you can mock __init__() directly:

def test_feed_entry_constructor():
"""Verify settings extracted from feed and entry"""
subject = FeedEntry(xkcd_feed, xkcd_items[0])
assert_equals(xkcd_items[0]['date'], subject.date)
assert_equals(xkcd_items[0]['title'], subject.title)
assert_equals(xkcd_feed['feed']['title'], subject.feed_title)

The test fails, so you redefine __init__ as follows:

def __init__(self, feed, entry):
self.date = entry['date']
self.feed_title = feed['feed']['title']
self.title = entry['title']

The test now succeeds.

Test: Defining listing
The next test ensures that feed entry listings are correctly formatted:

def test_feed_entry_listing():
"""Should produce a correctly formatted listing form a feed item"""
subject = FeedEntry(xkcd_feed, xkcd_items[0])
assert_equals(xkcd_listings[0], subject.listing())

The test fails. The code producing the correct listing is as follows:

def listing(self):
return "%s: %s: %s" % (self.date, self.feed_title, self.title)

The test succeeds.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS222

9810ch07.qxd 6/3/08 2:08 PM Page 222

Test: entry_listings Should Be Sorted
The next set of tests implement printing. The first test, and the ripple of changes resulting
from it, are nearly the same as in the pMock example. Those tests are as follows:

from rsreader.application import AggregateFeed, FeedEntry, FeedWriter, RSReader

...

def test_feed_entry_constructor():
"""Verify settings extracted from feed and entry"""
subject = FeedEntry(xkcd_feed, xkcd_items[0])
assert_equals(xkcd_items[0]['date'], subject.date)
assert_equals(xkcd_items[0]['date_parsed'], subject.date_parsed)
assert_equals(xkcd_items[0]['title'], subject.title)
assert_equals(xkcd_feed['feed']['title'], subject.feed_title)

...

def test_aggregate_feed_listing_should_be_sorted():
"""Should produce a sorted listing of feed entries."""
unsorted_entries = [FeedEntry(xkcd_feed, xkcd_items[1]),

FeedEntry(xkcd_feed, xkcd_items[0])]
aggregate_feed = AggregateFeed()
aggregate_feed.entries = unsorted_entries
assert_equals(xkcd_output, FeedWriter().entry_listings(aggregate_feed))

The following change is made to the test data:

xkcd_items = [{'date': "Wed, 05 Dec 2007 05:00:00 -0000",
'date_parsed': mktime(2007, 12, 5, 5, 0, 0, 2, None),
'title': "Python"},
{'date': "Mon, 03 Dec 2007 05:00:00 -0000",
'date_parsed': mktime(2007, 12, 3, 5, 0, 0, 2, None),
'title': "Far Away"}]

The changes and additions, made hand-in-hand with the preceding tests, are the following:

class FeedEntry(object):
"""Combines elements of a feed and a feed entry.
Allows multiple feeds to be aggregated without losing feed specific
information."""

def __init__(self, feed, entry):
self.date = entry['date']
self.date_parsed = entry['date_parsed']
self.feed_title = feed['feed']['title']
self.title = entry['title']

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 223

9810ch07.qxd 6/3/08 2:08 PM Page 223

def listing(self):
return "%s: %s: %s" % (self.date, self.feed_title, self.title)

class FeedWriter(object):
"""Prints an aggregate feed"""

def entry_listings(self, aggregate_feed):
"""Produce a sorted listing of an aggregate feed"""
sorted_entries = sorted(aggregate_feed.entries,

key=lambda x: x.date_parsed,
reverse=True)

return os.linesep.join([x.listing() for x in sorted_entries])

Once these changes have been made, the tests succeed.

Test: Defining print_entry_listings
With pMock, printing was performed through a local copy of sys.stdout, which was held in
FeedWriter.stdout. This instance variable was replaced with a mock. PyMock can easily mock
the method in situ.

def test_print_agg_feed_listing_is_printed():
"""Should print listing of feed entries"""
unsorted_entries = [FeedEntry(xkcd_feed, xkcd_items[1]),

FeedEntry(xkcd_feed, xkcd_items[0])]
aggregate_feed = AggregateFeed()
aggregate_feed.entries = unsorted_entries
override(sys.stdout, 'write').expects(xkcd_output + os.linesep)
replay()
FeedWriter().print_entry_listings(aggregate_feed)
verify()

The test fails. It reports This object can't be modified. There are some objects that
Python can’t monkeypatch. As a result, the object itself has to be mocked:

@use_pymock
def test_print_entry_listing():

"""Should print listing of feed entries"""
unsorted_entries = [FeedEntry(xkcd_feed, xkcd_items[1]),

FeedEntry(xkcd_feed, xkcd_items[0])]
aggregate_feed = AggregateFeed()
aggregate_feed.entries = unsorted_entries
override(sys, 'stdout')
method(sys.stdout, 'write').expects(xkcd_output + os.linesep)
replay()
FeedWriter().print_entry_listings(aggregate_feed)
verify()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS224

9810ch07.qxd 6/3/08 2:08 PM Page 224

The test fails because the method isn’t defined yet. The method declaration is as follows:

def print_entry_listings(self, aggregate_feed):
"""Print an entry_listing to sys.stdout"""

The test now fails in the desired way. The full definition for the method is as follows:

def print_entry_listings(self, aggregate_feed):
"""Print an entry_listing to sys.stdout"""
sys.stdout.write(self.entry_listings(aggregate_feed) + os.linesep)

The test succeeds, but the method isn’t complete.

Test: print_entry_listings Should Do Nothing
with Empty Feeds
As defined, the method will print os.linesep when the AggregateFeed is empty. It should print
nothing. This test expresses that requirement:

def test_print_entry_listing_does_nothing_with_an_empty_aggregate():
"""Ensure that nothing is printed with an empty aggregate"""
empty_aggregate_feed = AggregateFeed()
override(sys, 'stdout')
replay()
FeedWriter().print_entry_listings(empty_aggregate_feed)
verify()

This test makes use of negative assertions. No actions are defined on the mock in
sys.stdout, ensuring that an error will arise if any are performed on it. As currently defined,
print_entry_listing() always writes os.linesep to sys.stdout, so the test fails. The subject
is redefined as follows:

def print_entry_listings(self, aggregate_feed):
"""Print an entry_listing to sys.stdout"""
if not aggregate_feed.is_empty():

entry_listings = self.entry_listings(aggregate_feed)
sys.stdout.write(entry_listings + os.linesep)

Both print_entry_listings() tests now fail because the method AggregateFeed.
is_empty() doesn’t exist, so you define the method as follows:

class AggregateFeed(object):
"""Several parsed feeds combined"""

def __init__(self):
"""Define factory"""
self.entries = Set()

def is_empty(self):
"""True if empty, False otherwise"""
return not self.entries

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 225

9810ch07.qxd 6/3/08 2:08 PM Page 225

The tests now pass, but there is a problem with them.

Test: is_empty and the Unproven Test
The is_empty() method is only tested indirectly. If it is ever broken, then the malfunction will
show itself indirectly through the previous two tests. Failures should be exhibited directly, so it
needs to be tested directly:

def test_is_empty():
"""Ensure that is_empty reports emptiness as expected"""
empty_aggregate_feed = AggregateFeed()
non_empty_aggregate_feed = AggregateFeed()
non_empty_aggregate_feed.add("foo")
assert empty_aggregate_feed.is_empty() is True
assert non_empty_aggregate_feed.is_empty() is False

The test succeeds, which is a problem. It is unproved that this test fails. There are two
approaches to fixing this. One is to go back several steps and mock out is_empty(), and slowly
build up the tests. The other way is to break is_empty(), and verify that the test breaks. You do
this by changing the return value to None, running the test, verifying that it failed, changing it
to True, running the test, verifying that it failed again, and then putting back the real imple-
mentation.

This second approach is sometimes required when using automatic refactorings, particu-
larly method or class extractions. The newly created methods and classes don’t have any direct
tests, so these tests must be created de novo. You’ll often have to verify that the tests fail by
breaking the newly refactored code and then restoring it.

Test: new_main, Hooking It All Together
The test for new_main() is precisely analogous to the pMock example. It verifies that the first
argument is stripped off, and that the appropriate calls are made to the AggregateFeed and
FeedWriter objects.

@use_pymock
def test_new_main():

"""Hook components together"""
args = ["unused_program_name", "u1"]
subject = RSReader()
subject.aggregate_feed = mock()
subject.feed_writer = mock()
method(subject.aggregate_feed, 'from_urls').expects(["u1"])
method(subject.feed_writer, 'print_entry_listings').\

expects(subject.aggregate_feed)
replay()
subject.new_main(args)
verify()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS226

9810ch07.qxd 6/3/08 2:08 PM Page 226

The test fails. The method satisfying the test is as follows:

def new_main(self, argv):
"""Read argument lists and coordinate aggregates"""
self.aggregate_feed.from_urls(argv[1:])
self.feed_writer.print_entry_listings(self.aggregate_feed)

The test succeeds.

Test: RSReader Initialization
One more test remains. The new main() method depends on the two aggregates. These
dependencies must be initialized and verified. The test is as follows:

def test_rsreader_dependency_initialization():
"""Ensure that dependencies are correctly initialized"""
assert isinstance(RSReader().aggregate_feed, AggregateFeed)
assert isinstance(RSReader().feed_writer, FeedWriter)

The test fails. The method fulfilling the test is as follows:

class RSReader(object):
"""The Application"""

def __init__(self):
self.aggregate_feed = AggregateFeed()
self.feed_writer = FeedWriter()

The test succeeds.

Finishing Up: Activating the New Functionality
The new main() function is complete. The entire new application has been wired together in
parallel with the existing code. Now it is time activate it. The old test_main() is no longer
needed. It is removed, and test_new_main() is renamed to test_main(). Here’s the new test:

@use_pymock
def test_main():

"""Hook components together"""
args = ["unused_program_name", "u1"]
subject = RSReader()
subject.aggregate_feed = mock()
subject.feed_writer = mock()
method(subject.aggregate_feed, 'from_urls').expects(["u1"])
method(subject.feed_writer, 'print_entry_listings').\

expects(subject.aggregate_feed)
replay()
subject.main(args)
verify()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 227

9810ch07.qxd 6/3/08 2:08 PM Page 227

The test fails. The old main() method is removed and new_main() is renamed to main():

def main(self, argv):
"""Read argument lists and coordinate aggregates"""
self.aggregate_feed.from_urls(argv[1:])
self.feed_writer.print_entry_listings(self.aggregate_feed)

With this, thePyMock application is complete.6

Other pMock and PyMock Features
pMock and PyMock have a number of features that haven’t been covered here. Most notable
are exception mocking and playback limits. PyMock also supports setter mocking and genera-
tor mocking.

Raising Exceptions with pMock
pMock uses the raise_exception(exc) function in the will clause to declare that the method
raises an exception when played back:

def test_raising_exception():
"""Raise an exception"""
m = Mock()
m.expects(once()).whoops().will(raise_exception(Exception()))
assert_raises(Exception, m.whoops)
m.verify()

Raising Exceptions with PyMock
The PyMock equivalents are the raises(exc) method and function:

@use_pymock
def test_raising_exception():

"""Raise an exception"""
m = mock()
method(m, 'whoops').expects().raises(Exception())
replay()
assert_raises(Exception, m.whoops)
verify()

Using the direct recording interface, this same test would be the following:

@use_pymock
def test_raising_exception():

"""Raise an exception"""

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS228

6. Go take a break. Get yourself a beer. Write someone a letter. Call your friends. You deserve it. You made
it through that slog. I’m going to do the same in a few pages. I’ll catch up with you.

9810ch07.qxd 6/3/08 2:08 PM Page 228

m = mock()
m.whoops(); raises(Exception())
replay()
assert_raises(Exception, m.whoops)
verify()

Playback Counts with pMock
pMock recognizes three different calling policies: once(), at_least_once(), and never(). All
are used in the expects clause.

Playback Counts with PyMock
PyMock recognizes the following playback counts: once() (the default), one_or_more(),
zero_or_more(), set_count(int), and at_least(int). Only the last two require explanation.
The call set_count() specifies the precise number of playbacks expected, and the call
at_least() specifies the minimum number of playbacks expected.

Mocking Attribute Setters with PyMock
PyMock mocks property getting and setting using both the raw recording style and a declara-
tive style. Here are three different setter expressions:

@use_pymock
def test_setting_attributes():

"""Set attributes"""
m = mock()
m.f = 1
m.f = 2; raises(Exception())
set_attr(m, 'f', 3).once()
replay()
m.f = 1
try:

m.f = 2
except Exception:

pass
m.f = 3
verify()

Here are two getter expressions:

@use_pymock
def test_getting_attributes():

"""Get attributes"""
m = mock()
m.g; returns(1)
get_attr(m, 'h').returns(2)
replay()

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 229

9810ch07.qxd 6/3/08 2:08 PM Page 229

assert_equals(m.g == 1)
assert_equals(m.h == 2)
verify()

Mocking Generators with PyMock
With PyMock, generators are most clearly mocked with the declarative style:

@use_pymock
def testGeneratesWithRaisedTermination(self):

m = mock()
method(m, 'f').expects().generates(1, 2)
replay()
g = m.f()
assert_equals(1, g.next())
assert_equals(2, g.next())
assert_raises(StopIteration, g.next)

You specify a terminal exception using the ending keyword:

@use_pymock
def testGeneratesWithRaisedTermination(self):

m = mock()
method(m, 'f').expects().generates(1, 2, ending=StopMe())
replay()
g = m.f()
assert_equals(1, g.next())
assert_equals(2, g.next())
assert_raises(StopMe, g.next)

If you use the recording mode, the first example would be

generator(m.f(), [1, 2])

For the second example, the equivalent line would be

generator(m.f(), [1, 2], StopMe())

Using PyMock with unittest
PyMock defines a subclass of unittest.TestCase called PyMockTestCase. By subclassing it, all
test methods are automatically configured to use PyMock. There is one caveat. PyMockTestCase
uses setUp() and tearDown() to configure the mocking machinery and to restore monkey-
patches. If you have defined your own setUp() or tearDown() methods, then they must use
super to call the appropriate methods in the parent class.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS230

9810ch07.qxd 6/3/08 2:08 PM Page 230

Summary
I walked you through several TDD examples in this chapter, demonstrating how to use mock
objects in excruciating detail. Throughout the chapter, example refactorings were shown and
briefly discussed. Along the way, I briefly introduced the automatic refactoring tools available
in Pydev.

The primary focus of the chapter was on code isolation through impostors. Impostors are
test objects that replace application objects. Impostors, sometimes called test doubles, come
in four different flavors. In order of increasing complication, they are dummies, stubs, mocks,
and fakes.

Two mock object packages were introduced. They reflect the two different schools of
thought. One focuses on restricting functionality to improve design, and the other focuses on
testing ease. pMock reflects the first school of thought, and PyMock reflects the second.

pMock is modeled on Java’s jMock library. It uses a DSL to declare expectations. PyMock is
modeled on Java’s EasyMock library, although it has acquired some of jMock’s trappings. It
uses a record-replay model. Calls are specified by performing them, and then the mock is
switched into replay mode.

I compared the two packages by building the same example with each. The results were
noticeably different, reflecting the capabilities and constraints of each package. This empha-
sizes that TDD and mock objects are design tools.

One technique introduced along the way was monkeypatching. Monkeypatches replace
part of an existing object to alter that part’s behavior. I demonstrated this technique using
PyMock’s override() function extensively in the latter half of the chapter.

Using TDD leads to higher test coverage, but it’s easy to backslide. Programmers tend to
be optimists (if you weren’t, then you’d go insane), so they tend to overestimate test coverage.
The next chapter examines tools for measuring test coverage, and how to deploy them in your
development environment.

Consistent style is also important if multiple people are working on a body of code. The
next chapter also examines how to enforce these stylistic guidelines through Subversion pre-
commit triggers. In general, developers want high test coverage and consistent style, but
without feedback, errors creep into the work of even the most diligent. Automation can pro-
vide much of this feedback.

CHAPTER 7 ■ TEST-DRIVEN DEVELOPMENT AND IMPOSTORS 231

9810ch07.qxd 6/3/08 2:08 PM Page 231

9810ch07.qxd 6/3/08 2:08 PM Page 232

Everybody Needs Feedback

Developers want to write good code. However, their code tends to be worse than they
believe it is. They think their tests cover more cases than they really do, and they believe that
more of the code is exercised than really is. They tend to believe that they understand the code
better than they really do, and they believe they produce fewer bugs than they do.

This is because programmers are by and large healthy optimists. They have to be. Truly
understanding all the details in even a simple program requires years of study and experience,
so they gloss over most of the details.1

This isn’t some kind of strange, aberrant behavior. Over and over again, psychological
research has shown that normal, happy people believe that they have more control than they
really do. Depressed people seem to have an absolutely accurate view of the control they have
over situations. Does that make them better programmers? Probably not. The depressed tend
to be less creative, and they have a really hard time motivating themselves. On balance, it’s
better to be a healthy and functional human being, even if it leads to objectively unjustified
optimism.

An experienced programmer does, however, tend toward cynicism. Experience hopefully
brings an understanding of one’s faults and shortcomings. It’s not necessary to conquer your
faults, but it is necessary to see them and work with them. The first step is getting the feedback
to understand what those flaws are. A story illustrates this.

Years ago I had a dear girlfriend. She was one of the most brilliant people I’ve ever met.
She was nearing the end of her doctorate in computational molecular virology. (After that, she
headed off to veterinary school.)

There was a problem in her lab. Biochemists label things left and right—centrifuge tubes,
test tubes, beakers, Eppendorf tubes, and so on. Getting anything done in a lab requires a
Sharpie—a kind of indelible magic marker. And someone in her lab was stealing all the Sharpies.
Whenever she needed one, she’d have to go questing for markers, stalling her lab work, and
derailing her train of thought.

She railed endlessly to anyone who would listen about the inconsiderate thief who was
stealing all the lab’s Sharpies. She loved venting about it. She couldn’t figure out who it was
either, which made it all the more mysterious.

233

C H A P T E R 8

1. One of my favorite interview questions for system administrators is “Describe what happens when
you type telnet www.google.com.” No matter how deep someone goes, you can always ask more
detailed questions.

9810ch08.qxd 6/3/08 2:12 PM Page 233

http://www.google.com.%E2%80%9D

One evening she opened up a desk drawer in her bedroom, and she tossed a pen in.
Unlike most days, she looked down at the drawer. She broke down laughing, and she brought
me over to look at it. It was full of Sharpies. Tens upon tens, perhaps hundreds of them.

She was the Sharpie thief. Every day she left the lab with two or three Sharpies in her
pants. Every day she returned home, mindlessly opened the drawer, tossed the Sharpies in,
and closed it. (Her organizational instincts were incredible.) She never noticed doing it. With
this discovery, the Sharpies stopped vanishing from the lab.

The moral of this story is that feedback is incredibly important. Without the appropriate
feedback, she might never have realized that she was the source of the problem in the lab.
Without feedback, you often can’t see your own faults.

What do developers need feedback for? Well, developers have their own drawers of
Sharpies. Each person has errors they tend to commit. I double space after periods, and I have
to go back through my documents pulling them out. My editor appreciates that. I also have a
tendency to write overly complicated and general code. I have to strive for simplicity. I have
trouble choosing appropriate names, and my comments often lack enough depth. I tend to be
either too pedantic or not pedantic enough. Sometimes I use tabs by reflex, and my lines tend
to be way over 80 characters long. I tend to miss simple error checks, and I like mock objects
too much. I have to keep an eye out for these things. It’s good to have tools, procedures, and
an environment that help to prevent these from happening.

This chapter looks at several measures of quality. Some are quantitative and some are
qualitative. Among the qualitative measures are coding standards.

Fundamentally, there are two kinds of feedback for development. They are social and
environmental. Social feedback includes structured criticism through procedures such as code
reviews, and it includes cultural norms such as interpersonal communication patterns and
documentation habits. Rewards are also a kind of explicit social feedback, and I’ll talk a little
bit about them.

Environmental feedback encompasses technological gadgetry. Your project’s tooling
should give you feedback where social feedback fails. It can produce precise, focused, and
immediate feedback on small things:

• IDEs and compilers let you know when code is syntactically broken.

• The source code repository can check for malformed code and refuse to accept
submissions.

• The build system can fail the build when conditions aren’t met, which I’ve already
demonstrated in connection with unit tests in previous chapters.

This is all very important because it affects software quality. Software quality is about
keeping errors down while making the remaining errors easy to find. Put another way, it is
about making software that is easy to maintain without introducing new errors.

There has been a great deal of research into the kinds of errors that developers make.
Different studies report different results, and it’s hard to come to a firm consensus. Some
consider the hard numbers produced in this area to be highly suspect. Much effort has been
focused on classifying bugs and their relative frequencies, and some general themes have
been revealed.

The scope of most errors appears to be limited. Many are outside the domain of con-
struction. Most are the programmer’s fault, and a lot of those are typos and misspellings.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK234

9810ch08.qxd 6/3/08 2:12 PM Page 234

A recurrent theme is failure to understand the problem domain and the design of the software
itself. Happily, most errors seem to be easy to fix.

One plausible reason for the difference in quantifiable results between studies is that dif-
ferent environments, both social and technological, lead to different errors. The individuals in
the mix probably contribute, too, so it is important to build on your organization’s experience.
I suspect that collecting per-user and per-group information to build targeted defect profiles
is an area that is ripe for research and/or commercialization.

There are some practices that make errors easy to find. The first of these is an extensive
suite of tests, which I’ve already discussed in previous chapters. Tests provide feedback, but
there is further feedback about the quality of those tests, which is explored here.

Simple design, a core agile practice, focuses on building only the minimal functionality
that allows the program to meet the user’s needs. There are measures that successfully capture
and quantify various aspects of a program’s complexity.

Writing clear code helps to pinpoint errors. Clear code is written with the intention that it
will be read.2 It focuses on communicating intent to the user, with the computer as a second-
ary concern. Various tools assist in writing clear code. They check conformance with coding
standards and consistency of style.

Stylistic consistency is one of the hallmarks of easily read code. In such code, names are
chosen well, and they are chosen in a way that reflects the underlying system metaphor. Those
names and the choices they embody are propagated throughout the code base. Typographical
conventions are the same throughout, blocks are indented the same way in the same situa-
tions, spaces are added or omitted in the same manner, and so on. These choices are made in
a way that is both simple and self-consistent.

While tools can help with some aspects of these practices, human eyeballs and proce-
dural or cultural practices are often the best ways of helping to achieve these goals. The
problem with tools is determining which aspects of these practices can be measured.

Measuring Software Quality
Measurements give you feedback. Quantitative measures give you precise numbers character-
izing an attribute, while qualitative measures describe the general properties of the subject
you’re studying. They tell you what you have, but not how much of it.

Quantitative measures are appealing in that they can often be automated. They tell you a
precise value of a specific attribute, but their specificity limits their utility. The results can be
rendered graphically, making them favorites for management. (There are some people who
fall in love with anything that you put in a spreadsheet.) They invite abuse at times, and in the
wrong hands they render discussion moot, even if there is a point to be discussed.

Qualitative measures are much fuzzier, but they can often lead to greater insight. They are
judgments such as “the code stinks,” or “the style is awful.” They constrain the mind less, and
their contemplation often leads to ideas for quantitative measures. Qualitative measures don’t
lend themselves to automation, so those with a penchant for automation often give them
short shrift.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 235

2. As Tom Welsh (my editor) said, “Indeed, the more successful your code, the more times it will be
read—and by more people.”

9810ch08.qxd 6/3/08 2:12 PM Page 235

Measurements
With any measure, the first question is “What are we trying to measure?” There are several
factors characterizing the measure:

There are attributes and instruments. The underlying phenomena may be characterized
by attributes that can be measured. Those attributes are determined, and the instruments
of measurement are decided upon.

The instruments’ results must be reported. A means of storage and presentation must be
decided upon. They may be dumped into a database and analyzed, or they may be spit to
sys.stderr. The means of presentation doesn’t have to be fancy, it just has to be effective.

Often you measure to effect change. Do the chosen measurements provide effective feed-
back? Do the measurements of code complexity result in less complex code? Does a
measure of test coverage result in better test coverage? Does it tell you where the poor-
quality code resides?

Measurements often have side effects. Are your programmers now competing to see who
can get the highest cyclomatic complexity number? Are programmers just adding tests to
increase coverage instead of really testing the code? Will this cause the measure to lose its
effectiveness at identifying poor-quality code?

Before you begin measuring, there are some fundamental questions for which the
answers need to be understood:

What is the purpose of the measurement? What are you trying to accomplish? Is this for
your own use, or is it intended to change the way everyone codes? If the measurement is
for your own use, then the variance may be high, and the technique doesn’t need much
justification; you can be sloppy. If the measurement is intended to change the way every-
one codes, then you need to choose a well-understood measure, and you need to do it in
a consistent manner, as you’ll need to justify your choices.

What is the scope? How widely will this measurement be used? The wider it is applied,
the more impact it may have, both through positive control effects and unintended side
effects.

What attributes are being measured? Imprecise ideas about what is being measured are
likely to yield imprecise results.

What are the units? Unless you understand the units, you can’t determine how it relates to
other quantifiable values. Measuring an amoeba in feet is nearly useless. Measuring an
elephant in angstroms is meaningless (although it does bring up the interesting question
of where the elephant begins and ends).

What is the variability of the attribute? Unless you understand the variability of a meas-
ure, you can’t determine how accurate your measurement is.

What is the measuring instrument? Don’t use a micrometer to measure an elephant. Don’t
use a yardstick to measure an amoeba. Don’t use line counts to measure program com-
plexity. (Don’t use a bathroom scale with an elephant either. It breaks.)

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK236

9810ch08.qxd 6/3/08 2:12 PM Page 236

What are the units of the instrument? This ties in with the previous question. The units of
the instrument must be compatible with the units of the attribute.

What is the reading’s variability? Most instruments are imperfect. They have errors. Net-
work problems cause sampling problems with remote probes. Statistical profilers can
only give approximate usage reports.

How do the measurements and attributes interact? Retrieving page counts from a web
server by making an HTTP connection increases the number of hits. For small, low-traffic
web sites, this could be a problem. Measuring code coverage through execution affects
how quickly tests run. Timing tests might exhibit failures while coverage is being examined.

What are the foreseeable side effects? Are the page hits artificially inflated? Are the timing
tests dying mysteriously? Will reporting cyclomatic complexity result in an obfuscated
code competition? Will reporting code coverage cause code coverage to improve? Will you
be fired for stepping on your boss’s turf?

Quantitative Measurements: How Much Is That
Doggie in the Window?
There are common quantitative measures to which you’ve probably been exposed. These
include the following:

• Test coverage

• Source lines of code (SLOC)

• Cyclomatic complexity

• Churn

• Recorded defect rates

• Development velocity

We’ll be looking at three of these in detail: coverage, cyclomatic complexity, and develop-
ment velocity.

Code Coverage
Code coverage is a family of measurements. There are many different kinds of code coverage.
Cem Kaner covers 101 of them in his paper “Software Negligence and Testing Coverage”
(www.kaner.com/coverage.htm). With 100 percent statement coverage, all statements in a pro-
gram have been executed. This is not to say that all expressions have been executed. It is also
not the same as saying that all branches have been executed. An if-then-else statement has
been executed even if only the else block has been traversed.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 237

9810ch08.qxd 6/3/08 2:12 PM Page 237

http://www.kaner.com/coverage.htm

With 100 percent branch coverage, every branch of every statement has been executed. In
an if-then-else statement, both the then block and the else block have been traversed. Branch
coverage is a much stronger metric, but it still doesn’t guarantee that all expressions have been
evaluated. In some definitions, a short-circuit logical operator is considered to have been exe-
cuted even if the second operand has never been evaluated.

Branch coverage is appealing in several ways. It is easy to count. In many languages, the
tracing mechanism can be used to obtain this number. It is unambiguous. When you say that
70 percent of statements have been executed, little further explanation is needed. The ease
with which it is explained is part of its appeal. Anyone can grasp it in a moment.

Those factors make branch coverage seductive. There is a temptation to see it as a goal,
but it is not. It is simply a tool, and like any other tool it has limitations.

Branch coverage tells you nothing about data flow. It doesn’t tell you that a variable has
never been initialized, that a constant is returned instead of the value your code spent hours
calculating, or that an invariant value is being rewritten every time a loop is entered.

One hundred percent branch coverage only covers those branches that have been written,
so it doesn’t cover sins of omission. Necessary, but unwritten, code is invisible to this metric.
According to one survey study, these kinds of errors account for between 22 and 54 percent of
all bugs.3

Weak tests may hit all statements, but they don’t hit them very hard. The tests don’t exer-
cise every predicate in the conditional clauses. Loops are only executed once, and many bugs
don’t occur until they’re executed several times. Default values are modified, and the new
values leak into subsequent calls, but the test framework clears them every time.

Mock objects short-circuit interactions between methods. In Python, they allow complete
isolation, so it’s possible that the real function is never called. Although the statement has
been executed, it hasn’t been executed with real data.

Branch coverage doesn’t report errors that take a while to manifest. It doesn’t catch envi-
ronmental interactions. Table-driven code is inscrutable to branch coverage tools, which miss
all of the embedded logic. They miss any place where work is done in data instead of code,
and branch coverage completely misses the interactions between interrupts and signal
handlers.

With all these problems, why use branch coverage? Because it yields useful information;
but you have to be aware of that information’s limitations. If you have low test coverage, then
you probably have a problem. You should look at where the test coverage is missing, and then
decide if it should be addressed. If it’s old code that’s well debugged and rarely changes, then
it’s probably not worth focusing efforts there. If it’s in highly defective code, or code with a
high churn, then it might be worth focusing testing efforts there.

What constitutes low test coverage? Below 85 percent is a number that’s bandied about,
but there seems to be little academic basis for it. It may be a number that someone picked out
of a hat at some point and has been referenced ever since, like an urban legend.

What is the branch statement coverage of your code? Unless you’re measuring it, you’re
probably overestimating it. Typically, unit tests only cover 50 to 60 percent of the code in a sys-
tem. You can probably look at my code and get a feel for the coverage, but when you look at

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK238

3. Brian Marick, “Faults of Omission,” Software Testing and Quality Engineering Magazine (January,
2000), www.testing.com/writings/omissions.pdf.

9810ch08.qxd 6/3/08 2:12 PM Page 238

http://www.testing.com/writings/omissions.pdf

your own code your estimate will be too high. People tend to have a blind spot when it comes
to their own weaknesses. There is likely to be a moment of shock the first time you wire up one
of the tools described later in this chapter.

Some have an aversion to measurement. There’s not really an excuse for this. Refusing to
measure when you have the tools available means that you are willfully ignorant, but there
are reasons to tread carefully. Measurement has motivational effects, and these effects can be
good or bad. People tend to optimize for anything that they are being judged by. People like
to look busy and productive, so measure and report carefully.

Complexity Measurements
As with code coverage measurements, there are many different kinds of complexity measure-
ments. The example we’ll be wiring up later is called cyclomatic complexity, or McCabe
complexity, developed by Thomas McCabe in 1976. The measure was almost a side effect of
the paper’s larger achievement of defining what an “unstructured program” is. It determines
complexity on a per-function or per-member basis by examining a program’s control flow
graph.

A control flow graph pictorially represents how execution passes through a program. In
these diagrams, statements that don’t affect execution paths are ignored. Only those state-
ments that entail decision points are included. The flow graph for the following program is
shown in Figure 8-1.

def foo(x):
while x > 5:

if x < 2:
print "a"

else:
print "b"

The cyclomatic complexity algorithm adds a link from the end of the program to the
beginning. This is shown as a dotted line in Figure 8-1.

In hard mathematical terms, cyclomatic complexity is the smallest number of linearly
independent paths that it takes to span the flow graph. A set of partial paths span a graph
when every possible path through the graph can be described using a combination of these
partial paths. A set of paths that span this graph is shown in Figure 8-2. Every path through
this graph can be described by combining these five graphs.

The next part of the definition is linear independence. If you’ve had a linear algebra class,
this should be familiar. The paths through the graph are linearly independent if there is no
way to combine all of them at the same time in such a way that they cancel each other out.

Imagine that you’re dropping breadcrumbs as you walk one of the partial graphs. Then
you try walking one of the other paths that connect to this one, and you continue doing this
until you’ve walked through all of the partial paths. If you can pick up all the breadcrumbs
you dropped, then your paths were not linearly independent.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 239

9810ch08.qxd 6/3/08 2:12 PM Page 239

Figure 8-1. The control flow for an if-then-else statement inside a while loop

In Figure 8-2, the three paths on the right (3, 4, and 5) are not linearly independent. You
can walk path 3 and then path 4 dropping breadcrumbs along the way, and you’ll end up at
the beginning. Then you can follow path 5 backward, picking up the breadcrumbs as you go,
and you’ll end up at the beginning having collected all the crumbs.

Figure 8-2. A spanning set that is not linearly independent

Figure 8-3 shows a linearly independent set of partial paths that span the graph. This is
not the only one possible, but three is the smallest possible number for this graph. No set of
two partial paths can be combined to describe all possible paths, and no complete set of four

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK240

9810ch08.qxd 6/3/08 2:12 PM Page 240

or more partial paths is linearly independent if it spans the graph. Every closed directed graph
can be characterized like this.

Figure 8-3. A linearly independent minimal spanning set

So that’s a description of what cyclomatic complexity really means. It’s how many differ-
ent control flows are in a section of code. You could calculate it by drawing graphs and figuring
out the spanning sets, but there’s a much easier shorthand:

C = 1 + number of decisions

There is always at least one straight line through any graph, so cyclomatic code complex-
ity starts with one. Each decision point adds another possible path. Some constructs add more
than one. Every time a construct is encountered, the complexity index is increased by a speci-
fied amount. A simple calculation might use Table 8-1.

Table 8-1. Sample Scores for Use in Calculating Cylcomatic Code Complexity

Construct Effect Reason

If +1 A decision is made.

Each elif +1 A decision is made.

If-else +1 A decision is made. (A plain If statement has an implicit, but
empty else clause.)

While +1 A decision is made.

For +1 A decision is made.

Try +1 Exceptions generate a new flow of control.

First except 0 The first is already accounted for by the try block.

Subsequence excepts +1 A new choice is added.

Finally 0 All paths just rejoin here.

With 0 No control flow is visible to the routine.

Decorators 0 There is no alteration of the program flow.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 241

9810ch08.qxd 6/3/08 2:12 PM Page 241

There is more than one way to derive the cyclomatic complexity for a routine. The differ-
ences are based primarily on the control flow graph that is generated. Each logical comparison
in an if-then or while statement can be viewed as generating an alternate condition. This can
potentially result in much higher cyclomatic complexity numbers.

Generally, the lower the cyclomatic complexity, the better. Values in the range of 1 to 5 are
considered to be trivial. Values from 6 to 10 are considered to be low risk. Numbers between 11
and 20 signify moderate risk. Numbers between 21 and 50 are considered high risk. At 50, you
should consider submitting your routine to an obfuscated code contest rather than your
source repository. The word untestable is often used in this context. These cutoffs are some-
what arbitrary, and as far as I know, there is no basis for their use other than experience and
informed opinion.

Velocity: When Are We Done?
Velocity is a quantitative metric describing how much work a group can accomplish in a given
time. Velocity is the primary measure for capacity estimation in most agile methodologies. It is
most frequently used in development environments with well-defined iterations.

At the beginning of each iteration, the tasks available are placed on a board. Together, all
the developers assign an effort estimate to each task. The estimates come from a small set of
possible choices that correspond to point values. At the end of the iteration, the team sees
how many points of work they’ve completed. The team’s velocity is the number of points com-
pleted divided by the number of days worked.4

The first time through, the team is flying blind. They can make the estimates, but they
can’t convert those work estimates to time estimates. Velocity provides this conversion.

In successive iterations, the previous velocity measurements are combined to produce
an average velocity, and this value should become more accurate over time. As the accuracy
improves, the team can use this number to reschedule development or drop features as
appropriate.

There are different methods for assigning estimates. Some use raw points, and some map
between a natural language scale and points (e.g., small, medium, large, and that’s-too-big-to-
estimate). No matter what the details, they all use a small set of values, often no more than
four or five.

Next, I’ll describe two scales I’ve had direct experience with. One scale uses a raw point
range of 0 to 3. A 0-point job is trivial. A 3-point job should probably be broken into smaller
pieces. The numbers in this scale are not linear—a 2-point job takes much more than twice as
much effort as a 1-point job, and 1-point job takes much more effort than a 0-point job.

Another scale uses the sizes extra small, small, medium, large, and epic. At one end of the
spectrum are extra-small tasks, which are trivial, and at the other end are epic tasks, which are
inestimable and need to be broken down into more manageable chunks. The rationale for
using sizes rather than point values is that sizes can be mapped to a nonlinear scale, so that
small might be 1 point and large might be 8.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK242

4. Here the units are points per day. Always know your units.

9810ch08.qxd 6/3/08 2:12 PM Page 242

The scrum methodology uses direct time estimates in hours, in which no task takes more
than a day. All of these can be interchanged to some degree.

These values are purposefully fuzzy. Each group’s definition will be a little different. What
matters is that the team is consistent. Over time, the velocity calculations—whether in points,
effort, or hours—become more accurate. The team works in small enough increments that
daily stand-up meetings and periodic sprint retrospectives give them timely feedback, and
this allows for improvements in estimation.

Qualitative Measurements: It’s a Shih Tzu!
We are capricious beasts, and we are rarely as rational as we’d like to believe. Often, qualitative
measures are the things that truly matter to us. I can have the best job in the world, but some-
thing goes wrong. My manager changes, and nothing else really changes about my job. The
new guy is personable, in fact downright likable. By any measure of wage or work hours, or a
listing of responsibilities, my job has remained the same, but suddenly I hate it. Getting to
work is a chore. I’m constantly stressed. My ability to complete work declines.

Something has changed, but I can’t say what. I can’t measure the cause, but it’s real and it
matters. There has been a qualitative change, and its ruining my job.

IS THAT REALLY A MEASUREMENT?

Somewhere along the line, I was asked if qualitative judgment could really be called a measurement. I have a
background in biochemistry, and I spent a small chunk of my life in a lab. Lab notebooks were full of qualita-
tive measurements like this:

Tube A: Clear
Tube B: Cloudy
Tube C: Kind of murky
Tube D: Completely opaque

Each one of those is a measurement. You’re determining some kind of data and recording it. You can
describe code similarly:

Function A: Terrible code
Function B: Not too bad
Function C: Pretty good
Function D: Obviously Noah Friedman 5

So I think it’s fair to say that readability, continuity, and elegance are measurements, even if they don’t
have an obvious numerical representation. It’s the systematic recording that makes something a measurement.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 243

5. Noah Friedman wrote large chunks of Emacs. People who read his code have been known to laugh out
loud with pleasure. My programming skill is measured in millifriedmans.

9810ch08.qxd 6/3/08 2:12 PM Page 243

In the same way, there are many qualitative measures related to software. These are the
things that you feel with your gut. These are the elements of judgment. When you read a pro-
gram listing and you smile at the cleverness and clarity of the bounds checking, that’s a
qualitative judgment. In the same way, the sudden feeling of revulsion when you look at
Bugzilla’s code is also a qualitative judgment. These judgments are the measures of appropri-
ateness of naming, agreement among those names, and elegance of control flow.

Qualitative changes often have quantitative effects. Poor architecture leads to a lower
velocity, as do many other flawed development aspects. One of these is readability. Code that
is hard to read is hard to modify. Code that is inconsistent is harder to read. The need for con-
sistency leads to coding conventions.

Coding Conventions
There are three primary aspects to coding conventions. The typographical standards dictate
the code’s appearance. How many spaces is each block indented? Do spaces bracket the equal
sign in an assignment? How about in a keyword assignment?

Naming conventions determine how names for variables, classes, and methods are cho-
sen. They provide a common grammar and map the system metaphor into the programming
language.

Structural conventions determine how a project is laid out. They determine where data
and documentation can be found, and where the code and tests live. They provide a structure
so that both developers and tools can examine the code base.

Coding conventions supply your project with a common language. They allow you to take
more for granted. You don’t have to decide where a file will go. You only have to decide what
kind of a file it is. The convention supplies the location.

Coding conventions help to transfer knowledge across projects. When multiple projects
share the same conventions, the developers can use each other’s knowledge. They know where
the unit tests are. They know that ViewInterface names a class rather than a method, and that
view_interface defines a method or variable.

This consistency allows developers to learn new code more quickly.
Naming standards reduce name proliferation. A linear_transformation could reasonably

be called a linear_matrix, a linear_transform, a transform, a scaling_matrix, or a rotation.
Choosing one leaves less to remember.

Naming standards can compensate for language weaknesses. Unlike Java, Python doesn’t
provide interfaces as a language feature, but they can be simulated using various techniques.
The standard can declare that classes used as interfaces shall be given names like FooInterface.
Any time a developer sees BarInterface, they will know how it is being used. This lets develop-
ers bring along a useful feature from one language to another without formal support in the
new language.

Naming standards can also emphasize the relationships between items. Declaring that
collections must have plural names, and that each element in a collection must be referred to
by the singular of that collection’s name, instantly gives the user reading a loop a clear idea of
the variables’ relationships.

Almost any convention is better than none. Convention can be understood as a gradient,
and the more that is specified, the less has to be deduced. Conversely, the less that is specified,
the more must be deduced, and each deduction takes time and mental energy. Any reduction
in variety will help.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK244

9810ch08.qxd 6/3/08 2:12 PM Page 244

The principle behind all this is that structure is good. Some argue that choice is a good
thing, and it is, but only up to a point. Beyond that point, people are overwhelmed by choice.
Too many options at a store actually decrease the chances that a customer will buy something.
Our minds can’t cope with any more information. It just becomes mental noise. Coding con-
ventions reduce choice through clear guidelines.

This book demonstrates the utility of conventions—typographical, naming, and struc-
tural. When you see the font and location, you instantly know that this is the main narrative.
When you see a double-lined section, you know it’s a warning. When you see a sidebar, you
know that it might be interesting, but that it’s not essential. Imagine what this book would be
like without consistent conventions.

Consistency is a good thing, but some consistencies are more important than others.
Consistency with the world in general is good, but consistency within a project is more impor-
tant, and consistency within one package is more important still. In turn, consistency within a
module is more important than within a package, consistency within a class is more impor-
tant than within the module, and consistency within a single function or method is paramount.

In general, when it comes to coding standards, questions are important. If you have ques-
tions, ask your partner. If she’s not available, ask your teammates. Open and instant lines of
communication are valuable. Physical proximity is always best, but often not possible. IRC or
other shared-channel chat protocols are a distant second. Person-to-person chat is less useful.
Hiking across the office is bad, and the phone is even worse. Sometimes, though, it may be the
only choice.

There are very practical benefits conferred by consistent code conventions. When
applied, they reduce churn due to reformatting, and diffs between file revisions become
smaller, saving effort when integrating.

There are a variety of options for specifying coding conventions. At one end are flexible
guidelines that are suited for very small groups or very large groups with diverse personalities.
These may be little more than a collection of suggestions. At the other end are extremely
detailed documents describing every t and i to be crossed and dotted. In either case, these
are often best implemented as (or in conjunction with) a set of examples demonstrating the
desired standards.

Coding conventions are desirable when the code is maintained or extended. In practical
terms, this implies that anything other than disposable code for your own use should adhere
to a well-defined coding convention. Certainly all agile projects fall into this category. Pair
programming automatically involves review, and a well-defined system metaphor lays the
foundations of a naming convention that should be extended through the entire code base.

The definition of good code varies from person to person, but a group needs a shared def-
inition. Where should this shared definition come from? Answering this question requires
some consideration of how software projects work.

Software projects depend on two kinds of authority: organizational authority and
technical authority. The two are independent. Organizational authority comes from the struc-
ture of the company. Technical authority comes from experience and intelligence. Technical
decisions need to be made with respect to technical authority.

Programmers often tend to despise management. Management, in turn, often disregards
the programmer’s expertise. But both groups contribute to the larger goals of the company,
and each needs the other’s know-how. Only when they respect each other and listen to each
other can a project reach its maximum potential.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 245

9810ch08.qxd 6/3/08 2:12 PM Page 245

In all cases, managers should be involved with development to clearly communicate the
company’s goals. The agile practice of identifying a well-defined customer addresses part of
this. The customer is brought into the development cycle and works closely with the develop-
ers. Short iterations with a predictable workload provide management with the feedback they
need to understand development’s progress.

So where do the coding conventions come from? If a coding style declaration comes from
nontechnical management on the basis of organizational authority, then it will be rejected, so
it must come from a position of technical authority within the development organization.

Several things make a coding standard work. First and foremost, the coding standard
must be disseminated and understood. Clear examples of the coding standard must be
available.

The code must be considered to be a shared asset, and everyone should expect their code
to be read. Moreover, this expectation should be true. Every line should be seen by another
pair of eyeballs.

All code should be seen by multiple people. There are aspects of a coding standard that
can be verified by machine, all relating to typographical structure. The true meat must be veri-
fied by people, and that means people who weren’t the sole author. Such outsiders don’t have
the same blind spot for the author’s foibles.

When the code is submitted, it should meet quality guidelines. Some argue that the code
should be signed off by those with more technical authority. There is a range of views as to
how this should be done. At one end are those that suspect the programmer’s competence
and argue that all submissions must be approved. At another point along this continuum are
organizations in which only one sizable chunk of code must be submitted for approval. Once
the programmer has passed the “this is how we program here” test, they are allowed to submit
code on their own. At the far end of the scale are those who implicitly trust those whom they
hire without verification, which is a situation I have personally seen lead to bad code.

It has been suggested that if a project has a technical manager, then this manager should
read all code. If the manager can’t read the code, then it needs to be rewritten. In such cases, it
is a boon to the project if the manager isn’t a hotshot programmer, and the authors have to
write down to his level.

There are different degrees of formality for coding standards. The degree of formality is
directly related to the number of people on a project. The standard should be as informal as
possible. Established projects should use the guidelines that they already have. If they don’t
have any, then guidelines should be established. Those guidelines should match the code
base’s existing style whenever possible.

Occasionally you’ll have to break style. This is done primarily when the rules make code
less readable, even for someone who is knowledgeable about the rules. This should be a rare
occasion. The other reason is to be consistent with extant code that already breaks the rules,
although in these cases, fixing the offending code is often a better solution. The longer it incu-
bates, the further the stylistic infection is likely to spread through your code base’s healthy
tissues.

Welcome Back to Python
Unlike many other languages, Python has a natural authority for coding standards. This is
Guido van Rossum, Python’s creator. He is sometimes referred to as the Benevolent Dictator
for Life (BDFL).

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK246

9810ch08.qxd 6/3/08 2:12 PM Page 246

His wisdom is encapsulated in several Python Enhancement Proposals (PEPs). These con-
ventions were laid out early in Python’s development, so they’re reasonably well disseminated.
There are five documents related to coding conventions:

• PEP 7: Style Guide for C Code

• PEP 8: Style Guide for Python Code

• PEP 20: The Zen of Python

• PEP 257: Docstring Conventions

• PEP 287: reStructuredText Docstring Format

The first (PEP 7) relates only to C code, so I’m ignoring it in these discussions. The last two
(PEPs 257 and 287) relate to docstring formatting. reStructuredText (RST) is a simple markup
language similar to that used by many wikis. It is used for complicated docstrings or when the
code is intended to be self-documenting.

PEPs 8 and 20 are the real meat. PEP 20 explains the philosophy behind many of the deci-
sions made in the evolution of the language, and it helps in understanding why things are the
way they are. It’s written by Tim Peters, but he’s channeling the BDFL. It’s the best starting
place. In fact, PEP 20 is embedded within the Python interpreter:

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea—let's do more of those!

This contrasts strongly with other languages that offer many ways of performing the same
task. Here there’s only one way to do it.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 247

9810ch08.qxd 6/3/08 2:12 PM Page 247

PEP 8 is the global coding standard. All groups should attempt to adhere to it. Python is
refreshing (some might say maddening) in its approach to indenting. In most languages, the
placement of block delimiters results in a variety of gross layout decisions. Since Python uses
leading whitespace alone, there are no block delimiters to inspire theological debate.

PEP 8’s summation of block formatting boils down to this: each level is indented four
spaces—don’t use tabs. The document is well written, and it is available at www.python.org/
dev/peps/pep-0008/.

Naming is the area where Python is least consistent. The styles advocated in PEP 8 are
shown in Table 8-2. For the most part, new packages adhere to these. Unfortunately, the rec-
ommendations were taken up long after a variety of naming styles had infiltrated the core
libraries. There are now aberrations like the string buffer I/O module StringIO.StringIO.
Attribute names using camel case with an initial lower capital (à la Java) are often seen, but
this style is advised against. Still, it’s hard to escape this style because several notable pack-
ages, among them SQLObject, use it.

PEP 8 only addresses the most basic aspects of writing docstrings. PEP 257 fills in the
details, and it’s well worth the read. It explains conventions for formatting docstrings. PEP 258
goes even further. It defines a simple and attractive markup language for use in Python doc-
strings and documentation.

Table 8-2. Python Typographical Naming Conventions

Entity Name Convention Example

Package Short lowercase underscore separated my_package

Class Camel case MyClass

Attribute Lowercase underscore separated (LCUS) my_var

Function LCUS my_func

Private class Camel case with leading underscore _MyPrivateClass

Private attribute LCUS with leading underscore _my_private_var

Private function LCUS with leading underscore _my_private_func

Really private attribute LCUS with two leading underscores __my_var

All of these standards address the typographical aspects of coding conventions, but they
don’t deal with the semantic aspects of naming. To some extent, I’ve tried to provide a basis for
structural decisions in earlier chapters, but when it comes to the semantic aspects, you’ll have
to develop your own. The particulars of your naming scheme will depend heavily upon the
system metaphor you develop in your project.

Never Try to Fix a Social Problem with a
Technical Solution
Technical fixes to social issues are usually failures. They frustrate people. The people imposing
the technical limitations pay for the failure, and they usually pay in the currency of respect.

Before people can comply with a standard, it must be available. A secret standard is use-
less, so it must be published, and it should be published in a well-known location. Often a

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK248

9810ch08.qxd 6/3/08 2:12 PM Page 248

http://www.python.org

code catalog containing snippets is better than an English document. A catalog consisting of
real code from the project is even better. New samples can be taken from the code base as part
of a motivational system.

Rewarding good code is a mixed idea. It opens up the entire topic of rewards and penal-
ties. Rewards are a form of measure, and like all measures they must be used carefully, for they
are particularly prone to unintended side effects.

The goal of any reward should be increasing the productivity of the entire team. A reward
that emphasizes individual achievement but undermines the team is worse than no reward at
all. If individuals are rewarded, they should be rewarded for contributing to the achievement
of group goals, and in such a way that anyone can achieve the reward by doing their job well.
Choose goals that you want to amplify and that won’t stomp on other goals.

If you are a manager and you don’t understand what good code is, then don’t make that
judgment, for rewarded code should be exceptionally good. If it is not, then you’ll look like an
idiot. No matter what, the reward should not reflect any other attributes of the programmer
receiving the award. If the programmer is an arrogant, foul-smelling antisemite working for an
Israeli security firm, but he writes a chunk of code that makes people gasp at its beauty, then
he gets the reward, no matter what the political consequences.

The rewards should be something the programmer wants. “Attaboy” rewards are distaste-
ful. Rewards for the entire team for individual contributions are an interesting thought, but I
have little experience with them. If you do, then I’d love to hear from you about them. The
problem with individual rewards is that they are at some level in conflict with the principle of
collective ownership.

Code Reviews
Code reviews are an extremely valuable tool for achieving code quality. They are among the
most important forms of qualitative measurement, taking in all aspects of the code. Moreover,
code reviews tie in very closely with agile principles. They fall into two broad categories:
formal and informal reviews.

There is nothing magical about pairing. It involves a constant code review process. A sec-
ond developer gets to comment on every line of code as it is written. Pairing provides a second
set of eyeballs to help enforce coding standards. It’s like taking a formal review and rolling it
into the daily development process. Pairing does convey other social benefits, but they’re not
responsible for the primary quality effects.

There are some important things to remember about pairing. It shouldn’t be done 100
percent of the time. There are some things best done solo. Researching new technologies,
writing summaries, and just reviewing the code are often done best on an individual level.

Human interactions are a delicate thing. Most people in an office will be able to pair
with most others, but there will almost certainly be some combinations that don’t work well
together. Some people may get on each other’s nerves, be unable to communicate with each
other, or just dislike each other in a deep, visceral way. These people shouldn’t be forced to
pair with each other. That is simply cruel and probably unproductive.

This is not to say that an individual who refuses to pair with anyone or offends everyone
should be tolerated—but I am speaking specifically about particular pairwise interactions.

If a project doesn’t use pair programming, then official code reviews should be instituted.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 249

9810ch08.qxd 6/3/08 2:12 PM Page 249

Renaming
Naming conventions help, but you (or others) will sometimes choose inappropriate names.
Rename as soon as you realize that there is a better name. The longer a name remains in the
code base, the more calcified it becomes. Other names are chosen to relate meaningfully and
consistently with the extant names, and these names must also be changed when renaming.

When changes are limited in scope, refactoring tools are immensely useful. However, they
can’t find related names (yet), so they can’t help locate all the interdependent names in a well-
established project. However, they do make changing each name trivial, and making the early
change becomes far less onerous. Get familiar with your IDE’s renaming tools. Rename early,
and rename far less often in aggregate.

Communication
Documentation should be available for the project. It doesn’t have to be comprehensive, but it
should guide developers through the overall system. Many errors are due to developers not
understanding the problem domain, or the project’s architecture and implementation. Refer-
ence materials for these should be available.

Written documentation is not sufficient for expertise in any field. A recipe prepared by
Thomas Keller of French Laundry fame will taste very different from the same recipe prepared
at home.6 A great chef depends upon skills and judgments that have taken years to acquire.
Doctors and veterinarians go through lengthy internships, and musicians spend endless
hours practicing with each other. Programmers must communicate, too.

Curiosity is good. Questions should be encouraged, and opportunities for information
exchange should be encouraged. Mentors help when a person first enters a company. Brown
bag lunches on major subsystems are a good idea, too, but if I had my druthers the company
would always supply the brown bags.7 It’s really a minimal expense compared to the salary of
a skilled developer.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK250

6. Thomas Keller is considered one of the best chefs, and his restaurant French Laundry is consistently
listed among the top four in the world. See http://en.wikipedia.org/wiki/Thomas_Keller.

7. Brown bag lunches are (typically informal) talks given on the company premises. Often these happen
at lunch time, and brown bag refers the fact that everyone brings their own lunch. Such arrangements
are common at companies in the San Francisco Bay Area.

9810ch08.qxd 6/3/08 2:12 PM Page 250

http://en.wikipedia.org/wiki/Thomas_Keller

Technological Feedback: Bad Programmer,
No Cookie
There are three places in the development cycle where tools can be used to provide feedback.
At the keyboard, IDE or command-line tools can suggest changes according to coding conven-
tions. When the defective code is committed, revision control hooks (a.k.a. triggers) can
prevent it from reaching the code base or report questionable practices. When the code is
built, analysis requiring the entire code base is performed. Running unit tests is one such
example.

There are things that must never be allowed, and there are things that should not be done.
The things you must never do can be prevented, and the things you should not do should raise
warnings. Treating a “should not” as a “must never” is a crime. It maddens and frustrates
people, and it makes your project unpleasant to work on.

There are some things that should never be allowed on a Python project. Some are
typographical conventions. Unparsable code, leading tabs, inconsistent indenting, and ques-
tionable trailing whitespace should never be allowed into the code base. A build must never
succeed if the unit tests fail, and significantly decreasing test coverage should never be
allowed.

There are things that are looked down upon or that are indicative of other problems.
Overly complex methods probably need to be simplified. Low code coverage suggests inade-
quate testing. Bad style probably indicates poorly reviewed or insufficiently thought-out code.
These things should be checked and advised, but they should not trigger commit or build
failures.

Coercion at the Keyboard
Pydev offers a variety of features to assist with writing and analyzing code. These features
include the following:

• Autoformatting

• Code analysis (with Pydev)

• Templating

• Unit test execution

All of these features are configured from the Eclipse Preferences window. On the Mac, you
open it by selecting Eclipse ➤ Preferences. On Windows, it is under Window ➤ Preferences.

Autoformatting is one of the most useful but least contemplated features. Pydev offers
several settings, all of which have defaults conforming with PEP 8. The most important of
these are the indentation settings, which are specified under General ➤ Editors ➤ Text Editors,
as shown in Figure 8-4.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 251

9810ch08.qxd 6/3/08 2:12 PM Page 251

Figure 8-4. Changing indentation settings in the editor properties

To match PEP 8, “Displayed tab width” should be set to 4, and “Insert spaces for tabs”
should be checked.

Under Pydev ➤ Code Style, there are four panels: Block Comments, Code Formatter, Doc-
strings, and File Types. These affect the way Pydev assists with code generation. It is clear how
both Block Comments and Docstrings modify the formatting. Code Formatter only affects two
changes: it determines if spaces are used after commas and if spaces are used both before and
after parentheses. File Types determines which file name extensions the Pydev formatting
tools operate, but these do not affect the association between the editor and Python files.

Under Pydev ➤ Typing, you will find more settings affecting the completions and format-
ting actions that Pydev performs. This panel is shown in Figure 8-5.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK252

9810ch08.qxd 6/3/08 2:12 PM Page 252

Figure 8-5. The Pydev typing settings

The commercial Pydev extensions add a significant number of code analysis features.
These are accessed from Pydev ➤ PyDev Extensions ➤ Code Analysis. The tabs available are
Options, Unused, Undefined, Imports, and Others. The odd man out is Options, which speci-
fies when the analyzer runs. The rest of the tabs allow control of specific aspects of the
analyzer itself. Each feature listed can signal an error or a warning, or be ignored. The Unused
tab is shown in Figure 8-6.

Figure 8-6. The Unused tab on the Pydev Code Analysis panel

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 253

9810ch08.qxd 6/3/08 2:12 PM Page 253

The code analysis features provide the clearest examples of immediate feedback about
errors in the code. These are only at the most rudimentary syntactic level, but they help iden-
tify issues that would otherwise be found when running the unit tests.

Templates are macro expansion mechanisms. When you press Ctrl+Enter, Pydev replaces
the word you are currently typing with a template. Pydev defines macros for most Python con-
trol structures, but you can also define your own. The definitions can contain fields that must
be supplied by the user.

In my environment, I have a template named pym that starts a PyMock Nose test. Tem-
plates are defined through the panel shown in Figure 8-7, who’s path is Pydev ➤ Code
Completion ➤ Templates.

Figure 8-7. The Pydev Templates panel showing the def macro

The Edit button brings up the New Template window (shown in Figure 8-8). The Name
field is the string used to choose the template when expansion happens. The Description field
is just used in the Templates panel.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK254

9810ch08.qxd 6/3/08 2:12 PM Page 254

Figure 8-8. Creating a new template

The Pattern field defines the template body. Variables are denoted with the syntax ${foo}.
There are a handful of predefined variables that can be listed via the Insert Variable button.
The most commonly used is ${cursor}, which is the point the cursor will be left at when the
macro expansion is complete. Unknown variables are filled in at expansion time, as shown in
Figure 8-9.

Figure 8-9. The pym template being expanded

The developer replaces testCase with the new method’s name. When Enter is pressed, the
focus passes to the next undefined variable. At the end, the cursor is placed where the cursor
variable indicates. The templates can be exported and imported. A master templates file for
the project should be exported to the root and checked in with the source, and it should be
imported when it changes.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 255

9810ch08.qxd 6/3/08 2:12 PM Page 255

When Code Is Submitted
Subversion supplies hooks to validate committed code. These hooks happen after a transac-
tion has been committed and the files have been copied to the server, but before the change
has been committed. If the hook fails, the commit fails, and stderr is reported to the submitter.

This is the mechanism used to prevent atrociously malformed code from reaching the
repository, and for supplying reports of offensive code.

To set this up, a pre-commit file is created in the Subversion hooks directory. On my devel-
opment system, this is /usr/local/svn/respos/hooks. The file should be executable. If it is not,
then it will fail. If the commit succeeds, this script returns a zero exit code. If it fails, the script
returns a nonzero exit code and stderr is reported to the submitter. stdout is ignored. The
precommit script acts as a dispatcher for other scripts that perform the real work.

Writing precommit hooks is a formulaic process, much the same in any language. The
script must finish quickly to prevent the repository from blocking, so running a full compile to
verify integrity is out of the question.

Precommit hooks are always passed the same two arguments: the repository path and the
transaction number. These are used in conjunction with svnlook to get information about the
transaction. The list of files is retrieved with svnlook changes. These files are iterated through,
and the contents of each file are printed using svnlook cat. The log message can be accessed
with svnlook log.

While the hooks should examine the code written in the project, there are some Python
files that should be ignored. These are third-party files checked in to facilitate builds, so the
precommit scripts must ignore these subtrees.

Amazingly, this hasn’t been packaged up until now. I’ve done it as part of this chapter,
however. The package is named svnhooks, and it can be installed with easy_install. It pro-
vides a simple framework for producing your own hooks. It can terminate the build or send
notifications, and it comes with hooks to check for the following:

• Leading tabs

• Mismatched leading whitespace

• Windows line endings

• Trailing whitespace after \ at the end of the line

• Syntactically correct Python

• Suspiciously complex code via PyMetrics

• Questionable semantics via PyChecker or PyLint

PyChecker and PyLint are semantic verifiers. They check for constructions that are legal
but questionable. Such things include redefined methods or locals overriding Python built-ins.

■Caution Svnhooks supports PyLint, but the package is in questionable condition for use under
Python 2.5. As of version 0.14.0, it won’t correctly install unless the source is altered by hand.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK256

9810ch08.qxd 6/3/08 2:12 PM Page 256

My project’s precommit script fails if indenting, syntax, or line lengths are invalid. It
sends warnings to dev@sample.org if the code is too complex or if it fails the lint check. The file
follows:

$ cat /usr/local/svn/repos/hooks/pre-commit

#!/bin/sh

PRE-COMMIT HOOK
#
The pre-commit hook is invoked before a Subversion txn is
committed. Subversion runs this hook by invoking a program
(script, executable, binary, etc.) named 'pre-commit' (for which
this file is a template), with the following ordered arguments:
#
[1] REPOS-PATH (the path to this repository)
[2] TXN-NAME (the name of the txn about to be committed)
#
The default working directory for the invocation is undefined, so
the program should set one explicitly if it cares.
#
If the hook program exits with success, the txn is committed; but
if it exits with failure (non-zero), the txn is aborted, no commit
takes place, and STDERR is returned to the client. The hook
program can use the 'svnlook' utility to help it examine the txn.
#

IGNORE='[^\/]+/(?!thirdparty)/.+'
ADDR='dev@sample.org'

/Users/svn/bin/whitespace_check "$REPOS" "$TXN" "$IGNORE" || exit 1
/Users/svn/bin/syntax_check "$REPOS" "$TXN" "$IGNORE" || exit 1
/Users/svn/bin/length_check "$REPOS" "$TXN" "$IGNORE" || exit 1
/Users/svn/bin/complexity_check "$REPOS" "$TXN" "$IGNORE" -m $ADDR
/Users/svn/bin/lint_check "$REPOS" "$TXN" "$IGNORE" -m $ADDR

All checks passed, so allow the commit.
exit 0

For testing purposes, the checks can be run against known revisions using the -r flag. I
frequently ran the whitespace check against revision 29 on my system when I wanted a suc-
cessful test:

$ whitespace_check -r 29 /usr/local/svn/repos '[^\/]+/(?!thirdparty)/.+'
$ echo $?

0

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 257

9810ch08.qxd 6/3/08 2:12 PM Page 257

mailto:dev@sample.org
mailto:dev@sample.org

Buildbot and Coverage
When I introduced Buildbot, I showed how to use it in conjunction with Nose to run unit tests.
However, Nose can do much more. Together with the coverage package, it generates coverage
reports. Coverage works with easy_install . . . sort of. At the moment (version 2.78), it is bro-
ken ever so slightly. The problem is known, and there is a patch for it.

All packages in the build we constructed are stored locally. This means that a locally
patched version of coverage can be used. Retrieving the package from its distribution site is
the first step. This is located by consulting http://pypi.python.org, the Python package
repository.

The package is pulled down, unpacked locally, checked into source control, and subse-
quently patched. The version number is changed from 2.78 to 2.78p1 to designate that it has
been patched.

A new package is generated with python ./setup.py sdist, and the resulting package file
dist/coverage-2.78p1.tar.gz is copied into the project’s thirdparty directory. The depend-
ency on coverage-2.78p1 is added to the project’s requires attribute in setup.py.

The project is installed locally with python ./setup.py install, and the coverage tests
are successfully run through Nose. This is done simply by adding the --with-coverage option
when calling nosetests. The changes to the package are now known to function, so the
patched files and the new third-party bundle are committed to their respective repositories.

Running coverage through Nose against an early version of svnhooks produces the fol-
lowing report:

$ nosetests -w src/test --with-coverage

...............................
Name Stmts Exec Cover Missing
--
decorator 40 32 80% 62, 76-83, 123
getopt 103 15 14% 43-45, 48, 79-93, 110-143, 146-162,
168-186, 189-201, 204-207, 210-211
pickle 854 262 30% 84, 95-96, 197-207, 218, 222-225,
242-247, 251-257, 261-267, 271-331, 335, 339-343, 350-420, 427, 431-434, 438-458,
...
1358-1359, 1362, 1365-1367, 1370, 1373-1374, 1379-1380, 1383
pymock 73 52 71% 31, 47-48, 66-67, 74-75, 80-81, 86-87,
92, 95, 98, 101, 106, 109, 112, 117, 122, 127
pymock.pymock 493 329 66% 78-81, 92-93, 101-103, 106, 116-123, 127,
144, 150, 153-154, 159, 162, 165-166, 171, 176, 181-182, 185-188, 191-193, 206,
...
734-735, 739-743, 747-750, 754-755, 759-760, 781, 789, 797, 806, 818, 824, 835-836
sets 286 67 23% 60-79, 93-94, 101, 108, 114-117, 124,
132, 150-153, 156-159, 165-167, 178-185, 201-203, 210-212, 219-221, 228-235,
...
493-495, 499-505, 511, 515, 524-530, 537-543, 550-553, 557, 561, 565, 573-574, 577
subprocess 496 42 8% 368-369, 371, 375-398, 410, 415-417,
422-429, 443, 456-462, 493-530, 540-622, 626-628, 632-639, 653-667, 674-909,
...

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK258

9810ch08.qxd 6/3/08 2:12 PM Page 258

http://pypi.python.org

1083-1089, 1095-1103, 1109-1112, 1116-1181, 1188-1222, 1229-1239, 1243-1246
svnhooks 0 0 100%
svnhooks.indent 46 23 50% 17, 23-24, 28-31, 39-46, 49-51, 54-60
svnhooks.precommit 78 70 89% 32-33, 47-48, 51-52, 90, 99
svnhooks.syntax 18 17 94% 32
tabnanny 173 29 16% 28, 36-40, 44-58, 66, 68, 70, 72, 84-130,
156-176, 181-182, 199-203, 208, 215-223, 239-249, 256-264, 267-271, 274-325, 329
term 0 0 100%
term.framework 814 0 0% 3-1123
--
TOTAL 3474 938 27%
--
Ran 31 tests in 0.089s

OK

The first column is the name of the package. The second is the number of statements in
the file, followed by the number executed, and then the percentage calculated from those two.
The final column is a list of lines and line ranges that were not covered.

The coverage report has one noticeable weak point. It doesn’t distinguish between built-
in packages and subject packages. The report simply includes all the modules that are
imported.

The code coverage report is easily patched into Buildbot. The necessary changes to the
configuration created in Chapter 5 are shown here in bold:

def python_(version):
return "../../python%s/bin/python" % version

def nosetests_(version):
return "../../python%s/bin/nosetests" % version

def site_bin_(version):
return "../../python%s/site-bin" % version

def site_pkgs_(version):
subst = {'v': version}
path = "../../python%(v)s/lib/python%(v)s/site-packages"
return path % subst

def pythonBuilder(version):
python = python_(version)
nosetests = nosetests_(version)
site_bin = site_bin_(version)
site_pkgs = site_pkgs_(version)

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 259

9810ch08.qxd 6/3/08 2:12 PM Page 259

f = factory.BuildFactory()
f.addStep(SVN, baseURL="svn://repos/rsreader/",

defaultBranch="trunk",
mode="clobber",
timeout=3600)

f.addStep(ShellCommand,
command=["rm", "-rf", site_pkgs],
description="removing old site-packages",
descriptionDone="site-packages removed")

f.addStep(ShellCommand,
command=["mkdir", site_pkgs],
description="creating new site-packages",
descriptionDone="site-packages created")

f.addStep(ShellCommand,
command=["rm", "-rf", site_bin],
description="removing old site-bin",
description="site-bin removed")

f.addStep(ShellCommand,
command=["mkdir", site_bin],
description="creating new site-bin",
descriptionDone="site-bin created")

f.addStep(ShellCommand,
command=[python, "./setup.py", "setopt",

"--command", "easy_install",
"--option", "allow-hosts",
"--set-value", "None"],

description="Setting allow-hosts to None",
descriptionDone="Allow-hosts set to None")

f.addStep(Compile, command=[python, "./setup.py", "build"])
f.addStep(ShellCommand,

command=[python, "./setup.py", "install",
"--install-scripts", site_bin],

description="Installing",
descriptionDone="Installed")

f.addStep(ShellCommand,
command=[python, "./setup.py", "test"],
description="Running unit tests",
descriptionDone="Unit tests run")

f.addStep(ShellCommand,
command=[nosetests, "./src/test", "--with-coverage"],
description="Determining code coverage",
descriptionDone="Code coverage determined")

return f

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK260

9810ch08.qxd 6/3/08 2:12 PM Page 260

svn://repos/rsreader

Summary
People are error prone, and they’re prone to inflated judgments about their own capabilities
(of course, this excludes you and me). Programmers are people, and so they carry over the
same faults. Without adequate feedback, they can’t get an accurate assessment of their per-
formance, so it is critical to get feedback one way or another.

Getting feedback translates to measuring and reporting some aspect of the development
process. These measurements fall into two broad categories. Quantitative measurements
answer the question, “How much?” They are the sorts of things that produce hard numbers,
and are easily analyzed by computers. Qualitative measurements describe what something is,
and they tend to be things that people are good at determining.

Measurements have many aspects, and they need to be considered before investing time
and effort. You must understand the characteristics of what you are measuring, the character-
istics of the instrument you are measuring with, and the interactions between the two. You
must understand what the measurements mean, what the impact of measuring will be, and
what the possible adverse outcomes are.

Quantitative measurements tend to have very narrow definitions, and are only applicable
in limited scopes. Many quantitative measurements are required to get an accurate assess-
ment of a software project’s overall condition. Among those commonly encountered are code
coverage, cyclomatic complexity, and velocity.

Qualitative measurements tend to have much broader application, and they give a much
deeper picture of a project’s condition. They’re also much harder to determine since they
require human intervention, and collecting them systematically often requires procedural
support. The granddaddy of all qualitative measurement regimes is the code review, although
in agile development environments, pair programming often takes the place of formal
reviews.

Such measurement regimes provide feedback about our behavior and work. Feedback
can be achieved by social or technological means, but you should be wary of the temptation to
use technology to solve social problems, as cultural norms and peer pressure are often more
effective ways of shaping behavior.

Technological solutions have limited domains, but are often effective when used appro-
priately. There are a number of tools that help to provide feedback. Eclipse, Pydev, Subversion,
and Buildbot can all provide useful feedback when used correctly.

Chapter 9 looks at databases. Databases are their own little world, and they present
thorny issues when it comes to agile development. The issues of incremental upgrades and
downgrades to live databases are largely solved, but only in ad hoc ways. Moreover, these
mandate very different machinery from the object-relational mappers that are used to access
databases today.

CHAPTER 8 ■ EVERYBODY NEEDS FEEDBACK 261

9810ch08.qxd 6/3/08 2:12 PM Page 261

9810ch08.qxd 6/3/08 2:12 PM Page 262

Databases

Databases have traditionally been treated as entities distinct from the larger code base. This
is reflected organizationally; a firm wall often exists between developers and database admin-
istrators (DBAs); the DBAs work in parallel with the rest of the organization.

This is rooted in the historical nature of the technology. In the past, databases have been
expensive both in terms of software and hardware, and this means that there haven’t been
very many of them. With so few resources, very few people acquired the skills to work with
them. Dedicated staff were required to gate access to these limited resources, and to prevent
the naive from doing stupid things. Additionally, most products were very hard to configure.
Getting acceptable performance required much tuning, and thus even more expertise. The
company jewels were often stored in these mines, and had to be protected from fumbling
hands and untested scripts.

In recent years, the technical landscape has changed. Over the last ten years, free data-
base implementations have blossomed, as have computing and storage capabilities.

This has given rise to a proliferation of databases. SQL databases have morphed from
beasts with complicated interacting processes and dedicated raw filesystem drivers to server-
less libraries that can be linked and embedded within shipping code. Examples of these
include HSQLDB, embedded MySQL, and SQLite. As of Python 2.5, SQLite even ships in the
standard library.

Every developer can now have a database on the desktop (or laptop or palmtop). The con-
sequences of this have been slow to sink in. Agile software development techniques have a
long history behind them, but agile database development techniques do not.

A New Religion
The ultimate goal of any development organization is delivering business value. While the
proximate goal of development is producing software and the proximate goal of a database is
organizing data for retrieval, these are not the ultimate organizational goals. If the CEO could
get the same information more cheaply and reliably by calling a televangelist, then she’d be
doing it.

263

C H A P T E R 9

9810ch09.qxd 6/4/08 9:47 AM Page 263

Neither the goals of development nor the goals of the DBA organization are meaningful
without assistance from the each other. Development wants to use the databases to accom-
plish meaningful work for the company, and the DBAs want to ensure that the company’s data
is protected.1 These two organizations are often at loggerheads when they should be working
in concert to meet the overall organization’s needs.

Agile development recognizes that different business groups have differing needs and pri-
orities, and that these change over time. Code must change to reflect these realities, and this
leads to the need for constant refactoring. The same is true of data models. Like Code, they
will rot if they're not regularly maintained.

The database groups need to work closely with their customers to understand these
issues. As with development, they need to focus on the issues with the biggest payoffs. The
work should be prioritized, and some things will fall by the wayside. There will always be new
problems, so the database organization shouldn’t try to solve everything. The key is not to try
to eliminate and address all problems, but to design a process that addresses new issues as
normal occurrences.

Blurring the Boundaries
Only by creating integrated and fully automated processes can an organization meet the rapid
turnaround required by short iterations, and this can only be done by integrating the automa-
tion into the entire production cycle from start to finish. Agile development breaks down
some of the separations between development, operation, and administration. Agile develop-
ment therefore has strong impacts on the DBA organization:

Database design becomes an evolutionary process. Since change is a constant pressure,
the database schema is never complete. These changes must be propagated quickly from
development through to production. This must be done in such a way that it can be repli-
cated, and it must be done without human intervention.

Databases are improved through refactorings. These are changes that improve the struc-
ture of the database without altering its function. The need to accommodate live changes
imposes certain design constraints not present in code.

Code must be isolated from the underlying data model as much as possible. Much is writ-
ten about an object-relational mismatch. I don’t subscribe to that view any more than I
subscribe to a view of an object-filesystem mismatch or an object-thread mismatch.
Relational databases are complicated, but that doesn’t mean that there is a fundamental
misfit. It does mean that there is a lot of machinery required to magically unify the two.

Testing must be performed. Changes must be made to the database. Changes must also
be made to the code that uses the database. A variety of techniques are used to accom-
plish these tests. Some require little more than the machinery already discussed in
previous chapters, and some require new classes of software.

CHAPTER 9 ■ DATABASES264

1. The DBAs should ensure that the company’s data is available and protect it from loss. Often the first is
forgotten, but if nobody is doing useful work with the production databases, then either the databases
are superfluous or the company is in dire trouble. Either way, the DBAs are in trouble.

9810ch09.qxd 6/4/08 9:47 AM Page 264

Developers and DBAs both have a role in this, but since many tools reside in the software
development process, the DBAs have to learn more about those tools and processes. At the
same time, developers will have to learn more about being a DBA. The DBA’s job becomes less
about adjudicating changes and more about providing expertise and advising against absolute
stupidity. Because there is no clear organizational boundary, the DBAs have to work closely
with the developers to ensure that proper procedural boundaries are observed.

Concealing Data Access
At some point, your code has to talk to the database. At that point, the code needs to under-
stand the details of the data. It must know how to locate the data source and initiate a
conversation. It must know the structure of the data to perform efficient queries. It needs to
convert between local types and stored types, and back again, and it must know how and
when to write out changes. It must be able to recognize stale results, and it often needs to
cache data that is expensive to retrieve from the database.

When the structure of the data changes, the code that accesses that data needs to change.
If the data access code is scattered throughout a program, then every change necessitates
seeking those points out and rewriting the access code. This is time-consuming and prone to
error.

Therefore, code dealing with the database should be in a central location. This layer
mediates all access to the database. It can be as simple or as complex as needed. At one end
of the spectrum, it might simply be a few methods that read and write strings to a file. At the
other end are systems that map between relational databases and classes or objects within a
program.

Such libraries are called object-relational mappers (ORMs). These subsystems provide an
elaborate framework concealing the details of the underlying query mechanisms. They make
it easy to interface with the underlying database systems. With a good ORM, it is easier to
write database access code than it is to work with files.

Object-Relational Mappers
ORMs generally have four aspects:

• A description of the database schema

• A mapping between the schema and the application objects

• A way of selecting data

• A mechanism for writing changes

ORMs differ widely in how these are aspects are handled. In some cases, they are manu-
ally specified. In others, they are automatically derived from a running system. In some cases,
the running system’s configuration is derived from the ORM definitions.

I’m going to discuss the two leading Python ORMs: SQLObject and SQLAlchemy. There
are three common patterns that are useful when discussing them:

CHAPTER 9 ■ DATABASES 265

9810ch09.qxd 6/4/08 9:47 AM Page 265

• Active record

• Data mapper

• Unit of work

The Active Record Pattern
The active record pattern describes a simple relationship between a database and the pro-
gramming language. A database table corresponds to a class, a row in a table corresponds to
an instance of the class, and a column corresponds to an attribute.

Queries return objects, and the values are read from the attributes. Writing to an attribute
updates the database. Creating an instance inserts a row. Deleting an object deletes the row.
Inherent in the active record pattern is the idea that each row has an identity.

This pattern is easy to describe and understand. It combines the steps of describing the
database schema and producing a mapping between the schema and application objects. It
has the advantage of working very well for small-to-medium-sized cases.

While it easily maps tables, rows, and columns, it doesn’t easily map other database
objects, such as procedure results, views, joins, column selects, and multitable or multidata-
base results.

The biggest problem with the active record pattern is that the resulting code closely
mirrors the database schema. When the database structure changes, the code must also
change, and these changes are distributed throughout the code. Solving this requires a layer
of indirection.

The Data Mapper Pattern
The data mapper pattern maps columns into arbitrary objects. The underlying structure is
described, and then the mappings are specified between the storage entities and the applica-
tion objects.

This indirection separates the database from the application. The storage format can be
altered, while the objects remain the same, and vice versa. Changing the database structure
no longer necessitates changing the application code, and arbitrary SQL results can be sensi-
bly mapped.

On the other hand, it’s a little more complicated to set up. It hides database access and
structure by distributing them throughout your code. The relationships between attributes in
one place and those in another can be concealed. It’s a little harder to understand what is
going on in some cases.

The Unit of Work Pattern
In this pattern, the code tracks the changes that have been made and commits them in a
single batch within a single transaction.

Talking to the database is expensive. Each batch of changes incurs a significant time lag.
Often the majority of an application’s time is spent waiting for results from the database. I
have personally seen situations in which more than 90 percent of an application’s response
time was spent waiting on the database. The actual code took microseconds to run, but each

CHAPTER 9 ■ DATABASES266

9810ch09.qxd 6/4/08 9:47 AM Page 266

round trip to the database took milliseconds. Committing the changes in a single batch
reduces this overhead dramatically.

Since the database transaction is only held for the length of the batched connection, there
is less contention between queries and less opportunity for deadlock. The application quickly
uses and returns connections, so the running application needs to have fewer open connec-
tions to the database in order to achieve the same throughput.

The application is in control of the commits, so it knows when problems occur. The com-
mit points also provide a natural point to handle rollback.

There are disadvantages, though. Control comes at the expense of effort and forethought.
Developers must be aware of when changes are committed and how the batches are con-
structed. Potentially, an application can continue running with uncommitted changes that
haven’t been rolled back, leading to inconsistent views of the database and possible loss of
data. The application may be less responsive. While its overall performance may increase, the
lower latency of a do-it-immediately approach may be worth the increase in responsiveness.
A straight do-it-now access policy is useful and appropriate for many small applications.

Python ORMs
There are many Python ORMs, but there are two 900-pound gorillas. They are SQLObject and
SQLAlchemy. SQLObject has been around quite a bit longer than SQLAlchemy, but the latter is
gaining in popularity. Although more complicated for novices, it is far more capable when it
comes to real production problems.

SQLObject
SQLObject is based on the active record pattern. It has minimal support for the unit of work
pattern, and many people simply write to the database. It has an aggressive caching policy by
default, and it uses a simple declarative format to specify both the schema and mappings. It
really wants to use numeric keys for database records.

As always, obtaining the package is the first step:

$ easy_install -U SQLObject

Searching for SQLObject
Reading http://pypi.python.org/simple/SQLObject/
...
Processing dependencies for SQLObject
Finished processing dependencies for SQLObject

I’m using a classic example—that of students in a school. The student table looks like
Figure 9-1.

CHAPTER 9 ■ DATABASES 267

9810ch09.qxd 6/4/08 9:47 AM Page 267

http://pypi.python.org/simple/SQLObject

Figure 9-1. The student table

The schema for this table might be generated by the following SQL:

CREATE TABLE student (
ID INTEGER PRIMARY KEY AUTOINCREMENT,
full_name VARCHAR(64) NOT NULL,
username VARCHAR(16) NOT NULL

);

This table would be described to SQLObject as follows:

from sqlobject import SQLObject, StringCol

class Student(SQLObject):
username = StringCol(length=16)
fullName = StringCol(length=64)

Connecting to the Database
The next step is establishing a connection to the database. SQLObject uses standard connec-
tion URI syntax:

scheme://[user[:password]@]host[:port]/database[?parameters]

Examples include the following:

• mysql://jeff:myPasswordHere@localhost/test_db

• postgres://bob@my.host.com/another_db?debug=1&cache=0

• postges:///path/to/socket/db_name

• sqlite:///path/to/the/database

As of version 0.9, the common parameters are as follows:

• debug

• debugOutput

• debugThreading

• cache

CHAPTER 9 ■ DATABASES268

9810ch09.qxd 6/4/08 9:47 AM Page 268

mysql://jeff:myPasswordHere@localhost/test_db
mailto:bob@my.host.com/another_db?debug=1&cache=0

• autoCommit

• logger

• logLevel

Since SQLite ships with Python, I’ll be using it for the examples. The following code frag-
ment sets up a SQLite connection:

filename = "test_db"
abs_path = os.path.abspath(filename)
connection_uri = 'sqlite://' + abs_path
connection = sqlobject.connectionForURI(connection_uri)
sqlobject.sqlhub.processConnection = connection

You can turn this into the following method:

def sqlite_connect(abs_path):
connection_uri = 'sqlite://' + abs_path
connection = sqlobject.connectionForURI(connection_uri)
sqlobject.sqlhub.processConnection = connection

The important thing is that you set the processConnection variable to the correct connec-
tion. If you turn this into a method, the corresponding test is as follows:

@use_pymock
def test_sqlite_connect():

f = '/x'
uri = 'sqlite:///x'
connection = dummy()
override(sqlobject, 'connectionForURI').expects(uri).\

returns(connection)
replay()
sqlite_connect(f)
assert sqlobject.sqlhub.processConnection is connection
verify()

Creating Rows
New rows are created by instantiating objects. Here’s a simple test for this:

s1 = Student(username="jeff", fullName="Jeff Younker")
assert s1.username == "jeff"
assert s1.fullName == "Jeff Younker"

There’s a good deal of setup and tear-down that needs to be done, though. A new data-
base file must be created, and the connection to that database must be initiated. At the end of
the test, the file should be removed, the object cache should be cleared to prevent other tests
from stomping on yours, and finally the connection should be closed.

CHAPTER 9 ■ DATABASES 269

9810ch09.qxd 6/4/08 9:47 AM Page 269

■Note The connection hub’s caching plays havoc with the SQLite driver, so the test generates a new ran-
domly named connection each time.

import random
...
def random_string(length):

seq = [chr(x) for x in range(ord('a'), ord('z')+1)]
return ''.join([x for x in random.sample(seq, length)])

def test_creating_student():
f = os.path.abspath(random_string(8) + '.db')
if os.path.exists(f):

os.unlink(f)
sqlite_connect(f)
try:

s1 = Student(username="jeff", fullName="Jeff Younker")
assert s1.username == "jeff"
assert s1.fullName == "Jeff Younker"

finally:
sqlobject.sqlhub.processConnection.cache.clear()
sqlobject.sqlhub.processConnection.close()
del sqlobject.sqlhub.processConnection
os.unlink(f)

When this runs, it gives the following error:

Traceback (most recent call last):
File "/Library/Python/2.5/site-packages/nose-0.10.0-py2.5.egg/nose/case.py",➥

line 202, in runTest
self.test(*self.arg)

...
File "/Users/jeff/Library/Python/2.5/site-packages/SQLObject-0.10.0b2-py2.5.egg/➥

sqlobject/sqlite/sqliteconnection.py", line 177, in _executeRetry
raise OperationalError(ErrorMessage(e))

OperationalError: no such table: student

In other words, the schema has not been defined yet. The tests could create the schema
directly, but that ties them to the specific database used for the unit tests. Fortunately,
SQLObject instances know how to create themselves. One command creates this new table.
The revised test method is as follows:

def test_creating_student():
f = os.path.abspath('test_db')
if os.path.exists(f):

os.unlink(f)

CHAPTER 9 ■ DATABASES270

9810ch09.qxd 6/4/08 9:47 AM Page 270

sqlite_connect(f)
try:

Student.createTable()
s1 = Student(username="jeff", fullName="Jeff Younker")
assert s1.username == "jeff"
assert s1.fullName == "Jeff Younker"

finally:
sqlobject.sqlhub.processConnection.cache.clear()
sqlobject.sqlhub.processConnection.close()
del sqlobject.sqlhub.processConnection
os.unlink(f)

The test now runs successfully to conclusion. It’s a mess, though, and there are going to
be many more of these written. The setup and tear-down can be refactored into a decorator:

from decorator import decorator
...
@decorator
def with_sqlobject(tst):

f = os.path.abspath(random_string(8) + '.db')
if os.path.exists(f):

os.unlink(f)
sqlite_connect(f)
try:

Student.createTable()
tst()

finally:
sqlobject.sqlhub.processConnection.cache.clear()
sqlobject.sqlhub.processConnection.close()
os.unlink(f)

@with_sqlobject
def test_writing_student():

s1 = Student(username="jeff", fullName="Jeff Younker")
assert s1.username == "jeff"
assert s1.fullName == "Jeff Younker"

The resulting test is significantly more concise. The preceding code uses the decorator
module, which is a third-party module that simplifies writing decorators. Most decorators
usually involve creating at least one closure, and this closure is nearly always the same. Here’s
a decorator that prints before and then executes the wrapped function:

def before(f):
def wrapper(*args, *kw):

print "before"
return f(*args, **kw)

return wrapper

CHAPTER 9 ■ DATABASES 271

9810ch09.qxd 6/4/08 9:47 AM Page 271

The decorator module supplies the necessary closure machinery:

from decorator import decorator
...
@decorator
def before(f, *args, **kw)

print "before"
return f(*args, **kw)

I find the resulting decorators much cleaner and easier to understand.

Putting the Schema Where It Belongs
Right now there is only one table, but eventually there will be many. Every time a new table is
added, the schema definition in with_sqlobject() will grow. This schema creation informa-
tion may also be useful in the program itself, particularly when it needs to be installed, so it
should go into the file with the schema declarations.

from sqlobject_ex import create_schema
...
@decorator
def with_sqlobject(tst):

f = os.path.abspath(random_string(8) + '.db')
if os.path.exists(f):

os.unlink(f)
sqlite_connect(f)
try:

create_schema()
tst()

finally:
sqlobject.sqlhub.processConnection.cache.clear()
sqlobject.sqlhub.processConnection.close()
os.unlink(f)

And the create_schema() method should go into sqlobject_ex.py:

def create_schema():
Student.createTable()

Attribute Defaults
What happens if one of the student attributes is omitted? For example

>>> Student(fullName="Jeff Younker")

gives the following error:

CHAPTER 9 ■ DATABASES272

9810ch09.qxd 6/4/08 9:47 AM Page 272

Traceback (most recent call last):
...

ValueError: Unknown SQL builtin type: <type 'classobj'> for <class sqlobject.sql➥

builder.NoDefault at 0xde05d0>

All attributes are required unless a default is defined. In other words, all attributes are
assumed to be NOT NULL unless declared otherwise with the default attribute. The following
code makes the username optional:

class Student(SQLObject):
username = StringCol(length=16, default=None)
fullName = StringCol(length=64)

Selecting Objects
SQLObject has three methods for retrieving objects from the database. The get() method
retrieves a single object by its ID. The attribute id maps to the field ID. It is transparently man-
aged by the ORM. All mapped tables must have an ID field.

@with_sqlobject
def test_get():

s1 = Student(username="jeff", fullName="Jeff Younker")
s2 = Student.get(s1.id)
assert s1 is s2

The select() class method chooses one or more objects. With no arguments, it returns all
instances in the table.

from sets import Set
...
@with_sqlobject
def test_select():

s1 = Student(username="jeff", fullName="Jeff Younker")
s2 = Student(username="doug", fullName="Doug McBride")
students = list(Student.select())
assert len(students) == 2
assert Set(students) == Set([s1, s2])

The select() method takes a SQLBuilder expression. SQLBuilder is part of SQLObject.
You build SQL queries from SQLBuilder calls. The package makes extensive use of operator
overloading, so for simple cases, queries look just like normal Python comparison expressions.

@with_sqlobject
def test_select_using_full_name():

s1 = Student(username="jeff", fullName="Jeff Younker")
unused_s2 = Student(username="doug", fullName="Doug McBride")
students = Student.select(Student.q.fullName == "Jeff Younker")
assert list(students) == [s1]

CHAPTER 9 ■ DATABASES 273

9810ch09.qxd 6/4/08 9:47 AM Page 273

The class variable Student.q contains column descriptions. These are used in SQLBuilder
queries. The preceding expression translates to the following SQL:

select * from student where full_name = "Jeff Younker"

For simple comparisons, you’ll never have to access SQLBuilder directly, but more eso-
teric expressions require more direct meddling. The following code uses a SQL-like expression
to search for all students with a full name containing ou.

from sqlobject.sqlbuilder import LIKE
...
@with_sqlobject
def test_select_using_partial_name():

s1 = Student(username="jeff", fullName="Jeff Younker")
s2 = Student(username="doug", fullName="Doug McBride")
unused_s3 = Student(username="amy", fullName="Amy Woodward")
students = Student.select(LIKE(Student.q.fullName, '%ou%'))
assert Set(students) == Set([s1, s2])

The selectBy() method is a concise method of querying exact column matches. Key-
words specify the attributes to be compared, and the values are those to be compared with.

@with_sqlobject
def test_selectBy_full_name():

s1 = Student(username="jeff", fullName="Jeff Younker")
unused_s3 = Student(username="amy", fullName="Amy Woodward")
students = Student.selectBy(fullName="Jeff Younker")
assert list(students) == [s1]

Like select(), if no arguments are supplied, it returns the entire table:

@with_sqlobject
def test_selectBy_all():

s1 = Student(username="jeff", fullName="Jeff Younker")
s2 = Student(username="doug", fullName="Doug McBride")
students = Student.selectBy()
assert Set(students) == Set([s1, s2])

Updating Fields
Values are modified via simple assignment:

@with_sqlobject
def test_modify_values():

s1 = Student(username="jeff", fullName="Jeff Younker")
s1.fullName = "Jeff M. Younker"
students = Student.selectBy(fullName="Jeff M. Younker")
assert list(students) == [s1]

CHAPTER 9 ■ DATABASES274

9810ch09.qxd 6/4/08 9:47 AM Page 274

Deleting Rows
All SQLObject instances have a destroySelf() method. Calling this method deletes the associ-
ated row from the database:

@with_sqlobject
def test_delete():

s1 = Student(username="jeff", fullName="Jeff Younker")
s1.destroySelf()
students = Student.select()
assert list(students) == []

The destroySelf() method does not perform cascading deletes, but that can be accom-
plished by overriding this method.

One-to-Many Relationships
SQLObject specifies joins (specifically inner joins) declaratively. The products of the joins
appear as arrays contained in instance variables. To demonstrate, I’ve expanded the schema
to include an e-mail address for each student. Each student may have more than one e-mail
address (see Figure 9-2).

Figure 9-2. A many-to-one relationship between student and e-mail address

The corresponding SQL for the new table is as follows:

CREATE TABLE email (
ID INTEGER PRIMARY KEY AUTOINCREMENT,
address VARCHAR(255) NOT NULL,
studentID INTEGER NOT NULL,
FOREIGN KEY studentID REFERENCES student(id)

);

Foreign Keys
The new table is defined in sqlobject_ex.py as follows:

from sqlobject import ForeignKey, SQLObject, StringCol
...
class Email(SQLObject):

email = StringCol(length=255)

CHAPTER 9 ■ DATABASES 275

9810ch09.qxd 6/4/08 9:47 AM Page 275

student = ForeignKey('Student')
...
def create_schema():

Student.createTable()
Email.createTable()

ForeignKey defines the attribute student as a link to the class Student. When this attribute
is accessed, the key studentID will be dereferenced and the row will be instantiated. The IDs
are handled under the hood.

@with_sqlobject
def test_email_creation():

s1 = Student(username="jeff", fullName="Jeff Younker")
s2 = Student(username="doug", fullName="Doug McBride")
e1 = Email(address="jeff@not.real.org", student=s1)
assert e1.student is s1
e1.student = s2
assert e1.student is s2

SQLObject foreign keys are always expected to end in ID. This is one of the drawbacks of
using SQLObject. The underlying foreign key can be accessed directly via the attribute:

@with_sqlobject
def test_direct_id_access():

s1 = Student(username="jeff", fullName="Jeff Younker")
s2 = Student(username="doug", fullName="Doug McBride")
e1 = Email(address="jeff@not.real.org", student=s1)
assert e1.studentID == s1.id
e1.studentID = s2.id
assert e1.student is s2

Multiple Joins
So far, if the code has an Email, it can locate the associated Student, but there is no way to go
in the other direction. The MultipleJoin class provides this functionality. You modify the
Student class like this:

from sqlobject import ForeignKey, MultipleJoin, SQLObject, StringCol
...
class Student(SQLObject):

fullName = StringCol(length=64)
username = StringCol(length=16)
emails = MultipleJoin('Email')

Accessing the emails attribute returns a list of associated Email objects:

CHAPTER 9 ■ DATABASES276

9810ch09.qxd 6/4/08 9:47 AM Page 276

mailto:jeff@not.real.org
mailto:jeff@not.real.org

@with_sqlobject
def test_multiple_join():

s1 = Student(username="jeff", fullName="Jeff Younker")
e1 = Email(address="jeff@not.real.org", student=s1)
assert s1.emails == [e1]

If there are no objects, then an empty list is returned:

@with_sqlobject
def test_multiple_join_empty_returns_empty_list():

s1 = Student(username="jeff", fullName="Jeff Younker")
assert s1.emails == []

The attribute looks like it should be mutable, but you can't assign to it:

@with_sqlobject
def test_multiple_join_cant_assign():

s1 = Student(username="jeff", fullName="Jeff Younker")
e1 = Email(address="jeff@not.real.org", student=s1)
try:

s1.emails = [e1]
assert False

except AttributeError:
pass

MultipleJoin attributes are read-only. The only way to alter their contents is by changing
the foreign key:

@with_sqlobject
def test_changing_a_multiple_join():

s1 = Student(username="jeff", fullName="Jeff Younker")
s2 = Student(username="doug", fullName="Doug McBride")
e1 = Email(address="jeff@not.real.org", student=s1)
e2 = Email(address="doug@not.real.org", student=s2)
assert s1.emails == [e1]
e2.student = s1
assert Set(s1.emails) == Set([e1, e2])

Many-to-Many Relationships
Students are in many classes, and classes contain many students. This kind of relationship is
referred to as a many-to-many relationship. In relational databases, these are expressed
through intermediate tables. Each entry is essentially a double-ended pointer to the tables it
relates (see Figure 9-3).

CHAPTER 9 ■ DATABASES 277

9810ch09.qxd 6/4/08 9:47 AM Page 277

mailto:jeff@not.real.org
mailto:jeff@not.real.org
mailto:jeff@not.real.org
mailto:doug@not.real.org

Figure 9-3. A many-to-many relationship between students and classes

The SQL defining these tables in SQLite is as follows:

CREATE TABLE course (
ID INTEGER PRIMARY KEY AUTOINCREMENT,
name VARCHAR(64) NOT NULL

);

CREATE TABLE student_course_assc (
studentID INTEGER NOT NULL,
courseID INTEGER NOT NULL,
FOREIGN KEY studentID REFERENCES student(ID),
FOREIGN KEY courseID REFERENCES course(ID)

);

Only the target class is defined. The intermediate table is implicit in the RelatedJoin dec-
larations. The components related to the join are shown in bold:

from sqlobject import ForeignKey, MultipleJoin, RelatedJoin, \
SQLObject, RelatedJoin, StringCol

...
def create_schema():

Student.createTable()
Email.createTable()
Course.createTable()

...

CHAPTER 9 ■ DATABASES278

9810ch09.qxd 6/4/08 9:47 AM Page 278

class Student(SQLObject):
fullName = StringCol(length=64)
username = StringCol(length=16)
emails = MultipleJoin('Email')
courses = RelatedJoin('Course')

...
class Course(SQLObject):

name = StringCol(length=64)
students = RelatedJoin('Student')

Joining Students and Courses
The join statements create add and remove methods. These are named after the class being
joined. In the Student class, they would be addCourse() and removeCourse(). As with a multi-
ple join, the attribute returns a list of associated objects:

from sqlobject_ex import Course, Email, sqlite_connect, Student, create_schema
...
@with_sqlobject
def test_related_join_add():

s1 = Student(username="jeff", fullName="Jeff Younker")
c1 = Course(name="Modern Algebra")
c2 = Course(name="Biochemistry")
s1.addCourse(c1)
s1.addCourse(c2)
assert Set(s1.courses) == Set([c1, c2])
assert c1.students == [s1]
assert c2.students == [s1]

The relationship can be established from either end:

@with_sqlobject
def test_related_join_add_in_other_order():

s1 = Student(username="jeff", fullName="Jeff Younker")
c1 = Course(name="Modern Algebra")
c2 = Course(name="Biochemistry")
s1.addCourse(c1)
c2.addStudent(s1)
assert Set(s1.courses) == Set([c1, c2])
assert c1.students == [s1]
assert c2.students == [s1]

Relations are removed with the removeFoo() method:

CHAPTER 9 ■ DATABASES 279

9810ch09.qxd 6/4/08 9:47 AM Page 279

@with_sqlobject
def test_related_join_remove():

s1 = Student(username="jeff", fullName="Jeff Younker")
c1 = Course(name="Modern Algebra")
c2 = Course(name="Biochemistry")
s1.addCourse(c1)
s1.addCourse(c2)
assert Set(s1.courses) == Set([c1, c2])
c2.removeStudent(s1)
s1.removeCourse(c1)
assert s1.courses == []
assert c1.students == [] and c2.students == []

Adds can be performed multiple times, and they result in multiple records:

@with_sqlobject
def test_related_join_multiple_adds():

s1 = Student(username="jeff", fullName="Jeff Younker")
c1 = Course(name="Modern Algebra")
s1.addCourse(c1)
s1.addCourse(c1)
assert s1.courses == [c1, c1]
assert c1.students == [s1, s1]

Removes take away all the duplicates:

@with_sqlobject
def test_related_join_removing_multiples():

s1 = Student(username="jeff", fullName="Jeff Younker")
c1 = Course(name="Modern Algebra")
s1.addCourse(c1)
s1.addCourse(c1)
s1.removeCourse(c1)
assert s1.courses == []

Multiple Relationships
Multiple relationships are frequently created between two tables. For example, a student may
be enrolled in a course or have completed a course. A corresponding schema is shown in
Figure 9-4.

CHAPTER 9 ■ DATABASES280

9810ch09.qxd 6/4/08 9:47 AM Page 280

Figure 9-4. A student can be enrolled in a course or may have completed a course.

The SQLObject model is modified to reflect this:

class Student(SQLObject):
fullName = StringCol(length=64)
username = StringCol(length=16)
emails = MultipleJoin('Email')
enrolled = RelatedJoin('Course',

intermediateTable="enrolled_assc",
joinColumn="studentID",
otherColumn="courseID",
addRemoveName="Enrolled")

completed = RelatedJoin('Course',
intermediateTable="completed_assc",
joinColumn="studentID",
otherColumn="courseID",
addRemoveName="Completed")

class Email(SQLObject):
address = StringCol(length=255)
student = ForeignKey('Student')

CHAPTER 9 ■ DATABASES 281

9810ch09.qxd 6/4/08 9:47 AM Page 281

class Course(SQLObject):
name = StringCol(length=64)
enrolled = RelatedJoin('Student',

intermediateTable="enrolled_assc",
joinColumn="courseID",
otherColumn="studentID",
addRemoveName="Enrolled")

completed = RelatedJoin('Student',
intermediateTable="completed_assc",
joinColumn="courseID",
otherColumn="studentID",
addRemoveName="Completed")

As with the simple RelatedJoin, the first argument is the class being joined with the
containing class. The table containing the relation is specified with the intermediateTable
keyword. The joinColumn and otherColumn keywords specify column names in the relation
table. The join column points back to the containing class, and the other column links to the
contained class. If left to its own devices, SQLObject generates the add and remove methods
from the class name. The addRemoveName keyword supplies a different one.

■Note It is not necessary for these definitions to be symmetrical. If your application will only add courses
to students, and you can guarantee that courses will never be queried for the students they contain, then the
related join can be omitted from the course.

At this point, all of the tests relating Course instances to Student instances have become
invalid, and they need to be removed. Running the test suite indicates which ones should be
removed.

The new enrolled relation and its add and remove methods are shown in this test:

@with_sqlobject
def test_enrollment_add_and_remove():

s1 = Student(username="jeff", fullName="Jeff Younker")
c1 = Course(name="Modern Algebra")
s1.addEnrolled(c1)
assert s1.enrolled == [c1]
s1.removeEnrolled(c1)
assert s1.enrolled == []

And it is clear that the two new relations point to separate tables:

@with_sqlobject
def test_enrollment_relations_are_separate():

s1 = Student(username="jeff", fullName="Jeff Younker")
c1 = Course(name="Modern Algebra")
c2 = Course(name="Biochemistry")
s1.addEnrolled(c1)

CHAPTER 9 ■ DATABASES282

9810ch09.qxd 6/4/08 9:47 AM Page 282

s1.addCompleted(c2)
assert s1.enrolled == [c1]
assert s1.completed == [c2]

SQLAlchemy
SQLObject focuses on making easy things easy, but hard things are still hard. SQLAlchemy
requires more configuration, but it pays that back in power. The results of any arbitrary join
or select statement may be mapped to objects. The package gives fine-grained control over
object graph loading and saving. It provides connection pooling and a low-level database
interface. Generated SQL can even be replaced with custom queries when needed.

It is obtained via easy_install:

$ easy_install SQLAlchemy

Searching for SQLAlchemy
Reading http://pypi.python.org/simple/SQLAlchemy/
...
Installed /Users/jeff/Library/Python/2.5/site-packages/SQLAlchemy-0.4.3-py2.5.egg
Processing dependencies for SQLAlchemy
Finished processing dependencies for SQLAlchemy

As with SQLObject, the examples here will use SQLite. Without SQLObject’s caching
issues, an in-memory database can be used safely. The application code is defined in
sqlalchemy_ex.py, and the tests are defined in test_sqlalchemy_ex.py.

With SQLAlchemy, setting up a connection is simple enough that it doesn’t justify encap-
sulating the code:

from sqlalchemy import create_engine

def test_connection():
engine = create_engine('sqlite:///:memory:')

The schema for the student table is pictured in Figure 9-5. The table is defined in
sqlachemy_ex.py.

Figure 9-5. The student table again

CHAPTER 9 ■ DATABASES 283

9810ch09.qxd 6/4/08 9:47 AM Page 283

http://pypi.python.org/simple/SQLAlchemy

from sqlalchemy import Column, Integer, MetaData, Table, String

schema = MetaData()
student_table = Table('student', schema,

Column('id', Integer, primary_key=True),
Column('username', String(16)),
Column('full_name', String(64)),

)

The MetaData class describes a connection. The Table() method describes the table’s
schema and associates it with the MetaData object (called schema). The declaration looks very
much like a SQL table statement. Unlike SQLObject, the primary key’s identity and type is not
assumed, and must be declared.

This test creates the schema in the connected database:

from sqlalchemy_ex import schema
...
def test_schema_creation():

engine = create_engine('sqlite:///:memory:')
schema.create_all(engine)

This creates a schema, but there is no way to alter data yet. Doing this involves two steps.
First, a class must be declared, and then the table must be mapped to the class. This linkage
occurs through the names of table columns and object attributes.

from sqlalchemy import Column, Integer, MetaData, Table, String
from sqlalchemy.orm import mapper

schema = MetaData()
student_table = \

Table('student', schema,
Column('id', Integer, primary_key=True, nullable=False),
Column('username', String(16), nullable=False),
Column('full_name', String(64), nullable=False),

)

class Student(object):

def __init__(self, username, full_name):
self.username = username
self.full_name = full_name

mapper(Student, student_table)

Notice that the primary key id is implicitly mapped. SQLAlchemy understands the signifi-
cance of the primary key, and the mapper automatically manages it for you. SQLAlchemy
draws a distinction between creating an object and saving it to the database. Until the object
is saved, the id is None.

CHAPTER 9 ■ DATABASES284

9810ch09.qxd 6/4/08 9:47 AM Page 284

While SQLObject columns assume that columns are IS NOT NULL, SQLAlchemy columns
assume the opposite. The nullable keyword allows the code to change this. In the table just
defined, each column explicitly sets nullable to False.

def test_create_unsaved_student():
s1 = Student(username="jeff", full_name="Jeff Younker")
assert s1.username == "jeff"
assert s1.full_name == "Jeff Younker"
assert s1.id is None

Manipulating data requires a session. Sessions come from Session classes, which are in
turn created by the sessionmaker() function. The session must be bound to a database engine
at some point, which can be done either when it is created or afterward. The following tests
demonstrate both methods:

from sqlalchemy.orm import sessionmaker
...
def test_getting_a_session():

engine = create_engine('sqlite:///:memory:')
schema.create_all(engine)
Session = sessionmaker(bind=engine, autoflush=True,

transactional=True)
unused_session = Session()

def test_getting_a_session_and_binding_later():
engine = create_engine('sqlite:///:memory:')
schema.create_all(engine)
Session = sessionmaker(autoflush=True, transactional=True)
Session.configure(bind=engine)
unused_session = Session()

Saving an object adds it to the session, but the session does not instantly flush the
changes to the database. A flush can be manually forced:

def test_create_and_save_student():
engine = create_engine('sqlite:///:memory:')
schema.create_all(engine)
Session = sessionmaker(bind=engine, autoflush=True, \
transactional=True)

session = Session()
s1 = Student(username="jeff", full_name="Jeff Younker")
session.save(s1)
assert s1.id is None
session.flush()
assert s1.id is not None

The test methods are getting a little unwieldy at this point, so refactoring the code is a
good idea. The database and session configuration is refactored into a new method:

CHAPTER 9 ■ DATABASES 285

9810ch09.qxd 6/4/08 9:47 AM Page 285

def session_from_new_db():
engine = create_engine('sqlite:///:memory:')
schema.create_all(engine)
Session = sessionmaker(bind=engine, autoflush=True,
transactional=True)

return Session()

def test_create_and_save_and_flush_student():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
session.save(s1)
assert s1.id is None
session.flush()
assert s1.id is not None

Flushing is required in the preceding code, but during normal operation, autoflush will
trigger a flush at appropriate times.

The next test saves a student and then retrieves it:

def test_retrieve_from_database():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
session.save(s1)
f = session.query(Student).filter_by(username="jeff").first()
assert f is s1
assert s1.id is not None

It is clear that a flush happened immediately before the query, since it found the new
record, and because id has been set.

When working in transactional mode, it is necessary to commit the changes before they
become permanent:

def test_commit_changes():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
session.save(s1)
session.commit()

Committing the session flushes all saved changes in a single transaction, closes it, and
begins a new one.

As with SQLObject, attributes map through to the underlying columns in the database,
and they can be modified as if they were instance variables:

def test_set_and_modify_database():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
session.save(s1)
#
f = session.query(Student).filter_by(full_name=\
"Jeff M. Younker").first()

CHAPTER 9 ■ DATABASES286

9810ch09.qxd 6/4/08 9:47 AM Page 286

assert f is None
#
s1.full_name = "Jeff M. Younker" # flush happens before query
f = session.query(Student).filter_by(full_name=\
"Jeff M. Younker").first()

assert f is s1

Queries
All queries begin with the query() method; this has been show previously, but not noted.
Queries differ in the subsequent filtering commands. With no filtering, a query returns all the
rows in a table:

def test_query_all_rows():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
s2 = Student(username="doub", full_name="Doug McBride")
session.save(s1)
session.save(s2)
f = session.query(Student)
assert Set(f) == Set([s1, s2])

Choosing Results
A slice of results may be selected. So far, it may appear that the results are returned as lists.
This is not the case; they are actually iterable result sets. Subsets may be obtained through
slicing. The chosen results are obtained using the SQL LIMIT and OFFSET directives. This allows
a limited subset to be efficiently returned from a large result set, without having to transfer the
query.

def test_query_slice():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
s2 = Student(username="doub", full_name="Doug McBride")
s3 = Student(username="amy", full_name="Amy Woodward")
for s in [s1, s2, s3]:

session.save(s)
sliced = session.query(Student)[1:3]
assert [s2, s3] == list(sliced)
assert [s2, s3] != sliced

Slicing a single element does not return a result set; it immediately returns the requested
element:

def test_query_results_with_index():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
s2 = Student(username="doub", full_name="Doug McBride")

CHAPTER 9 ■ DATABASES 287

9810ch09.qxd 6/4/08 9:47 AM Page 287

session.save(s1)
session.save(s2)
f = session.query(Student)[0]
assert s1 == f

This previous test’s data is used repeatedly. Extracting the method prepare_two_students()
leads to the following code:

def prepare_two_students(session):
s1 = Student(username="jeff", full_name="Jeff Younker")
s2 = Student(username="doub", full_name="Doug McBride")
session.save(s1)
session.save(s2)
return (s1, s2)

def test_query_results_with_index():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
f = session.query(Student)[0]
assert f == s1

The methods all(), first(), and one() are used to immediately select portions of a result
set. all() returns all the results as a collection:

def test_query_results_all():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
f = session.query(Student).all()
assert f == [s1, s2]

The first() method returns the first element from a result set. It is equivalent to using
[0], but more expressive.

def test_query_results_first():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
f = session.query(Student).first()
assert f == s1

If only one result is returned by a query, then the one() method behaves like first():

def test_query_results_one_with_one_result():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
f = session.query(Student).filter_by(username="jeff").one()
assert f == s1

If the query does not return precisely one result, then one() raises an InvalidRequestError.

CHAPTER 9 ■ DATABASES288

9810ch09.qxd 6/4/08 9:47 AM Page 288

from nose.util import assert_raises
from sqlalchemy.orm.exceptions import InvalidRequestError
...
def test_query_results_one_raises_error_with_multiple_results():

session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
assert_raises(InvalidRequestError, session.query(Student).one)

Filtering with SQL Queries
In the simplest cases, the filter() method works analogously to SQLObject’s select()
method. In these cases, it takes one argument that is a query expression written as a Python
expression. These column names come from either the mapped class or the column listings
in the corresponding table object’s c attribute. The two queries in the following test are
equivalent:

from sqlalchemy_ex import schema, Student, student_table
...
def test_simple_filter_expressions():

session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
f = session.query(Student).filter(Student.username == "jeff")
g = session.query(Student).\
filter(student_table.c.username == "jeff")

assert list(f) == list(g) == [s1]

SQLObject requires importing SQL expression constructors from the SQLBuilder library.
Under SQLAlchemy, these sorts of operators are directly accessible from columns:

def test_sql_filter_expressions():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
f = session.query(Student).filter(Student.username.like('%ef%'))
assert list(f) == [s1]

filter() also accepts raw SQL where expressions. This allows you to produce hand-tuned
queries when needed. These queries can contain variables that are expanded. The two string
queries in the following test are equivalent:

def test_simple_literal_sql_filter_expressions():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
f = session.query(Student).filter("username = 'jeff'")
g = session.query(Student).\

filter("username = :un").params(un="jeff")
assert list(f) == list(g) == [s1]

CHAPTER 9 ■ DATABASES 289

9810ch09.qxd 6/4/08 9:47 AM Page 289

In the second query, the string :un is expanded to jeff. This expansion performs the
appropriate escapes. If you have to substitute variables into a query, then always use this form
to stave off SQL injection attacks.

Hand-tuning goes even further with the from_statement() method. It accepts complete
SQL from statements:

def test_from_statement():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
query = "SELECT * FROM student WHERE username like :match"
f = session.query(Student).from_statement(query).\
params(match='%ou%').one()

assert f == s2

Keyword Queries
The filter_by() method is directly analogous to SQLObject’s selectBy() method. The key-
words are column names, and the values will be exactly matched. The usage has already been
demonstrated, but here’s a reminder:

def test_filter_by():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
f = session.query(Student).filter_by(username="jeff").one()
assert f == s1

Chaining
The query() method produces a query object. Each filter method produces another query
object as its result, so filter expressions can be chained together. The chained expressions are
combined with a logical and.

def test_chained_filters():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
s2 = Student(username="jeffs", full_name="Jeff Smith")
session.save(s1)
session.save(s2)
f = session.query(Student).\
filter(Student.full_name.like('Jeff%')).\
filter_by(username="jeffs").one()

assert f == s2

Printing query objects shows the generated SQL:

CHAPTER 9 ■ DATABASES290

9810ch09.qxd 6/4/08 9:47 AM Page 290

>>> print session.query(Student).filter_by(username="fool")

SELECT student.id AS student_id, student.username AS➥

student_username, student.full_name AS student_full_name
FROM student
WHERE student.username = :student_username_1 ORDER BY student.id

One-to-Many Relationships
One-to-many relationships and the conjugate many-to-one relationships are specified from
the one-to-many side. While foreign keys in SQLObject automatically yield instances of the
appropriate type, in SQLAlchemy only the key value is available until the connection is estab-
lished from the associated table. The relationship is declared through mappers. The schema
used for this example is shown in Figure 9-6.

Figure 9-6. The email table points back to the student table.

You add the email table here, but the one-to-many relationship is not established yet:

from sqlalchemy import Column, ForeignKey, Integer, MetaData, \
Table, String

from sqlalchemy.orm import mapper

schema = MetaData()

student_table = Table('student', schema,
Column('id', Integer, primary_key=True),
Column('username', String(16), nullable=False),
Column('full_name', String(64), nullable=False),

)

email_table = Table('email', schema,
Column('id', Integer, primary_key=True),
Column('address', String(255), nullable=False),
Column('student_id', Integer, \

ForeignKey('student.id'), nullable=False),
)

CHAPTER 9 ■ DATABASES 291

9810ch09.qxd 6/4/08 9:47 AM Page 291

class Student(object):

def __init__(self, username, full_name):
self.username = username
self.full_name = full_name

class Email(object):

def __init__(self, address):
self.address = address

mapper(Student, student_table)

mapper(Email, email_table)

The following test shows that the foreign key does not engender an attribute pointing
back to the associated Student instance:

def test_email_doesnt_have_student_attribute():
e1 = Email(address="jeff@not.real.com")
assert_raises(AttributeError, getattr, e1, 'student')

The mapper() directive for the student table establishes the one-to-many relationship
between Student and Email:

from sqlalchemy.orm import mapper, relation
...
mapper(Student, student_table, properties={

'emails': relation(Email, backref="student")
})

The previous test now fails, and it is changed to one that verifies the existence of this
attribute:

def test_email_now_has_student_attribute():
e1 = Email(address="jeff@not.real.com")
assert e1.student is None

The relationship can now be established from either end of the connection. On the
Student end, the one-to-many connection appears as a list, just as with SQLObject—but there
it was a read-only attribute. Here it is writable, though, and adding an object to it sets the
appropriate foreign key in the added object:

def test_email_adding_via_one_to_many_side():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
e1 = Email(address="jeff@not.real.com")
session.save(s1)
s1.emails.append(e1)

CHAPTER 9 ■ DATABASES292

9810ch09.qxd 6/4/08 9:47 AM Page 292

mailto:jeff@not.real.com
mailto:jeff@not.real.com
mailto:jeff@not.real.com

session.flush()
assert s1.emails == [e1]
assert e1.student == s1

As stated earlier, it works from the other direction, too:

def test_email_adding_via_many_to_one_side():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
e1 = Email(address="jeff@not.real.com")
session.save(s1)
e1.student = s1
assert s1.emails == [e1]
assert e1.student == s1

Elements can also be deleted from the joined attribute as if it is a normal list. Were the
foreign key in the email table nullable, then the following test would work:

def test_email_removing_via_many_to_one_side():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
e1 = Email(address="jeff@not.real.com")
session.save(s1)
s1.emails.append(e1)
session.flush()
del s1.emails[0]
session.flush()
assert s1.emails == []

Many-to-Many Relationships
As with one-to-many relationships, creating the simplest many-to-many relationships is a
little more involved than with SQLObject, as the intermediate tables must be explicitly
described.

The schema described here is pictured in Figure 9-7.

course_table = Table('course', schema,
Column('id', Integer, primary_key=True),
Column('name', String(64), nullable=False),

)

enrolled_assc_table = \
Table('enrolled_assc', schema,
Column('student_id', Integer, ForeignKey('student.id')),
Column('course_id', Integer, ForeignKey('course.id')),

)
...

CHAPTER 9 ■ DATABASES 293

9810ch09.qxd 6/4/08 9:47 AM Page 293

mailto:jeff@not.real.com
mailto:jeff@not.real.com

class Course(object):

def __init__(self, name):
self.name = name

...
mapper(Course, course_table, properties={

'enrolled': relation(Student, secondary=enrolled_assc_table)
})

Figure 9-7. Students are enrolled in courses.

The keyword secondary indicates that this is a many-to-many relationship. Unlike
SQLObject, it is not necessary to describe the details of this intermediate class when the rela-
tionship is declared, as this has already been done in the table definition.

The preceding declaration only creates a link from the Course object to the Student object.
To make this link from the Student object back to the Course object, the backref keyword must
be used:

mapper(Course, course_table, properties={
'enrolled': relation(Student,

secondary=enrolled_assc_table,
backref='enrolled')

})

The relationship can now be viewed from either side, as shown in the next test. The next
few tests require a pair of Course instances, so you’ll create a method to prepare the needed
test data.

from sqlalchemy_ex import Course, Email, schema, Student, student_table
...
def prepare_two_courses(session):

c1 = Course('Modern Algebra')
c2 = Course('Biochemistry')

CHAPTER 9 ■ DATABASES294

9810ch09.qxd 6/4/08 9:47 AM Page 294

session.save(c1)
session.save(c2)
return (c1, c2)

def test_enrolled_adding():
session = session_from_new_db()
(s1, unused_s2) = prepare_two_students(session)
(c1, c2) = prepare_two_courses(session)
s1.enrolled.append(c1)
c2.enrolled.append(s1)
session.flush()
assert Set(s1.enrolled) == Set([c1, c2])
assert c1.enrolled == [s1]
assert c2.enrolled == [s1]

Querying Relations
SQLAlchemy provides better support for querying relations than does SQLObject. This is done
through the join() query method:

def test_select_student_by_course():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
(c1, c2) = prepare_two_courses(session)
s1.enrolled.append(c1) # Course "Modern Algebra"
s2.enrolled.append(c2) # Course "Biochemistry"
session.flush()
f = session.query(Student).join('enrolled').\

filter(Course.name=="Biochemistry").one()
assert f == s2

Deleting
Deletions are scheduled using the session’s delete() method:

def test_delete_student():
session = session_from_new_db()
(s1, s2) = prepare_two_students(session)
session.flush()
session.delete(s1)
students = session.query(Student).all()
assert students == [s2]

By default, deletes don’t cascade. Deleting an entity related to others leaves orphans and
dangling foreign keys. Cascading deletes are a property of a relation, and are declared through
the cascade keyword:

CHAPTER 9 ■ DATABASES 295

9810ch09.qxd 6/4/08 9:47 AM Page 295

def test_delete_cascade():
session = session_from_new_db()
s1 = Student(username="jeff", full_name="Jeff Younker")
e1 = Email(address="jeff@not.real.com")
session.save(s1)
s1.emails.append(e1)
session.flush()
session.delete(s1)
session.flush()
email = session.query(Email).all()
assert email == []

When setting up delete cascades with bidirectional relations, you should pay close atten-
tion to which object is the desired parent.

Going Further with SQLAlchemy
I’ve tried to cover the absolute minimum that you need to know to work with SQLAlchemy. An
entire book could easily be written about it.

Fortunately, it has wonderful documentation. It is concise and clear, but also voluminous.
Topics worth examining further include the following:

• Building SQL expressions

• Using raw connections as a better DBI layer

• Returning custom collections from relations

• Loading strategies

• Mapping classes onto arbitrary select results

• Mapping classes onto multiple tables

• Table inheritance

Building the Database
Agile development entails short iterations. Updating databases with short iterations requires
automation. There is no time to hand-tweak changes or adjust between the development
environments, the QA environments, and the production environments. The only sensible
way to do this is to use the same system throughout.

The database consists of the schema and the test data. Database setup must include
both—however, the schema and the test data must be separable. The schema will go to QA
and production, but the test data will not. The same mechanisms used to produce a database
in development must be used to produce the database in QA and production. Otherwise, the
changes produced in the first part of the development pipeline will have to be adapted to the
mechanisms and processes used in later parts. This is a recipe for error, delay, and wasted
effort.

CHAPTER 9 ■ DATABASES296

9810ch09.qxd 6/4/08 9:47 AM Page 296

mailto:jeff@not.real.com

The database schema is part of the source code. The code depends upon having a specific
schema version. If application code can’t access the database, then the data stored there may
be worthless. Without a database running the appropriate schema version, the code is useless,
and without appropriate code, the information in the database is useless; the two are inextri-
cably intertwined. Since the database schema is part of the code base, it is owned collectively,
and it is versioned.

Even though many more modifications happen to the database, using the same migration
mechanisms throughout means that less operational effort must be expended. Martin Fowler
has mentioned a project that had 30 developers and 1 DBA. He has also stated that many proj-
ects reduce their number of dedicated DBAs by substituting developers with database skills.

Much of the work involved with agile database development has focused on organizations
in which the database is closely coupled to a single application. Some production environ-
ments have databases that serve many applications. Old financial institutions are one such
case, as are potentially medical records systems. In these cases, the database schema may not
travel along with a single application. There has been less work done in these areas, but the
techniques developed to manage incremental database change can still be applied to them.

Testing
Programs that interact with databases have common elements, and testing each requires a
different approach. These elements include

• Application–mapping layer interactions

• Mapping layer–database interactions

• Functional interactions between the application and the database

• Embedded code

• Database migrations

Application–mapping layer interactions are often addressed most easily through normal
unit-testing isolation techniques; mapped objects can frequently be replaced with impostors.
When testing larger subsystems, fake databases may be useful, although the existence of
embedded databases and in-memory databases lessens the need for these.

Mapping layer–database interactions often benefit from using a real database of some
sort. Behavioral differences between various kinds of target databases can be identified or
verified before integration. Doing this requires running instances to be available to each and
every developer. These days, a multi-CPU desktop has more than enough horsepower to run
several virtual machines hosting “real” databases such as Oracle, Microsoft SQL Server, or
Sybase. For basic sanity checking of the mapping layer, it is usually sufficient to use something
like SQLite.

■Warning No development work should ever be done against production databases. This is a recipe for
disaster. Mistakes can easily destroy production data; successful modifications remove the database from a
known state, and this has the potential to ruin automation. If a problem can’t be replicated in development or
QA, that suggests there is something wrong with the development and QA resources.

CHAPTER 9 ■ DATABASES 297

9810ch09.qxd 6/4/08 9:47 AM Page 297

Functional interactions between the application and the database are addressed by using
real databases. As noted previously, VMs are useful for this. Indeed, I know of several organi-
zations in which a scaled-down version of the entire production network runs on each
developer’s desktop. Over the next few years, I expect this sort of full environment simulation
to become more common.

Embedded code refers to code that runs in the database. Triggers and stored procedures
are the most frequently used kinds of embedded code. The only way to test this code is with a
live database.

Database migrations must be tested against their target databases. Those migrations
must be tested against both the schemas and realistic sets of data. How this is done consti-
tutes much of the remainder of this chapter.

Refactorings
Refactorings are modifications to the database that improve its structure. As with code refac-
torings, these are incremental changes. They can be applied to the existing database to achieve
a desired final state. Unlike source refactorings, they have to take data into account, too.

If you’re lucky, then your database can be brought down completely while your software is
upgraded and the current database is refactored. If you work in a 24/7 environment or you
have many applications working with a single database, then this is often not a possibility. In
these cases, refactorings have to be performed in two steps.

The first step adjusts the database so that both the old and new versions of the applica-
tion continue to work with the new database. This is referred to as the transition period.
During this time, the applications depending on the old schema are upgraded.

Once the applications have been upgraded, compatibility with the old schema is no
longer required. It is safe to transform the database to the completed state.

Consider renaming a column from Foo to Bar. When the change is applied, a new column,
Bar, is added. Either the application code or database machinery mirrors changes between Bar
and Foo so that old code continues to operate. Once all running applications reference Bar, the
mirroring mechanism is turned off, and the column Foo is removed.

Almost all live production database environments are upgraded incrementally, so refac-
torings fit into the DBA’s natural operational model.

“But I run a Java cluster on server Foo, and it switches deployed versions all at once!” No it
doesn’t. Every Java clustering mechanism I have seen switches over to the new version after
the old connections terminate. Connections to each machine will terminate at different rates.
This means that every member of the cluster switches to the new version of your application
at different times. The result is that, often for a few seconds, some proportion of your cluster is
running at version n, and some proportion of your cluster is running at version n+1.

Migrations
All developer databases should be synchronized. This can be done in one of two ways: either
each developer’s instance is updated from a central location, or the database is reconstructed
by the build. These two are not mutually exclusive, either.

I prefer the second option, in which the database is reconstructed by the build. The
migration of the central source of truth needs to be done, and so it will need to be in a replicable

CHAPTER 9 ■ DATABASES298

9810ch09.qxd 6/4/08 9:47 AM Page 298

manner. If it can be done once, then it can be done many times, and only one mechanism will
be required.

Over the last few years, a consensus has started to emerge about how database migrations
should be performed. The database records what schema version it is running. Developers
write a set of instructions describing how to get from one version to the next. A tool consults
the database version and the desired version, it determines which set of instructions must be
applied, and then it applies them.

These instructions are never applied by hand—only by automation. They are applied to
production en masse at release time. Generally, reverse scripts are supplied so that the pro-
duction database may be rolled back if needed.

The Instructions
There are two broad systems for generating the migration instructions:

With explicit migrations, the developer declares which steps will be taken. In some cases,
this is done with XML declarations. In others, it is done with a DSL (Rails Migrations is an
example). Sometimes it is done in the application language code, and often it is done in
raw SQL. The first three techniques have the advantage of being database independent.
The last is not, but it has the advantage of giving direct access to many database features,
including applying security.

With derived migrations, the instructions are derived from the difference between the
desired schema and the current schema. Sometimes the desired state is encoded in the
full schema. More often, it is in a DSL, with XML being one of the more common formats.
In some systems, the difference is derived by comparing the desired schema with the
database itself.

Derived migrations are appealing, but in practice experienced developers seem to be very
wary of them. Even if the derived migrations work, data migration code must still often be
written. A framework for running this code must be supplied, and this is the same framework
that is necessary for running explicit migrations. If you have one, why complicate it with the
other? Explicit migrations also give the opportunity for migration procedure code reviews.

Numbering Migrations and Playing Them Back
In the simplest case, the migration scripts are numbered in a monotonically increasing integer
sequence (1, 2, 3, etc.). The database records the most recently applied script. All scripts below
that are assumed to have been applied, and those above have not. When a migration happens,
all the scripts between the current version and the desired version are played back, and the
last one is recorded.

The simple numbered sequence works for small groups working on a single codeline.
When those two assumptions break down, so does the sequence numbering. The numbers are
now a scarce resource, and developers must arbitrate access to them. When merges happen,
duplicates collide and the migrations have to be renumbered, and heaven help you if they
have been applied to shared resources. The potential for error quickly becomes large.

The solution is to use numbers with a low chance of collision: timestamps. They are
monotonically increasing integers, and there is a small chance that two people will choose
exactly the same second to create a migration file. The migration system also needs to know

CHAPTER 9 ■ DATABASES 299

9810ch09.qxd 6/4/08 9:47 AM Page 299

nothing about what they represent, as they're just a fancy kind of integer. A typical timestamp
might be 20080204080953 (Feb, 4, 2008, 08:09:53.)

That doesn’t completely solve the merge problem, though. Consider the case in which
one branch has already been applied to a database, and another branch is merged in. Both
were under development at the same time, so they have migrations with intermingled time-
stamps. The odds are that these migrations are independent, so you should be able to play
them back successfully.

Problems happen when some of the newly merged migrations are below the current ver-
sion. These will not be played back when a new migration is attempted. This can be solved by
tracking all of the applied revisions instead of just the most recently applied revision. When a
migration happens, the desired version is determined, the applied migration list is consulted,
and then all unapplied migrations below the desired version are applied to the database.

Where to Put the Migration Mechanism
Applying migrations can be viewed as part of the installer, part of the application, or the duty
of a special application that just manages database upgrades. It all depends on the application
that you’re using and its intended purpose. I don’t have firm feelings except in the case of clus-
tered applications. In these environments, coordinating deployment is a major headache, and
I feel that migration duties belong with the application or with a special-purpose database
migration management application. No matter where you put it, a mechanism is required to
manage migration attempts.

DBMigrate: A Migration Mechanism
Writing the migration mechanism itself is painful. While not seeming terribly complicated, it
has lots of edge cases that need to be addressed. This problem has been tackled in the Ruby
world with Rails Migrations. In the Java world, PatchDB is a notable example, and there are
many others. The Python world has had no such mechanism . . . until now. In the course of
working for my employer I had to write one, as did an acquaintance of mine. I’ve taken
aspects of my code and his, and I’ve published DBMigrate.

Using DBMigrate
DBMigrate is installed via easy_install dbmigrate. Migrations and test data are written as
Python packages. These migrations can be applied through the following:

• Command-line tools

• Setuptools directives

• Embedding the engine within your program

• Unit tests

The tool supports test data importation. Applied migrations are tracked individually
rather than using a single counter. The application supports bootstrapping and complete
tear-down of a database. Migrations are explicit, and they are written as raw SQL, Python
functions, or a mixture of both. Different kinds of databases can have different migrations;

CHAPTER 9 ■ DATABASES300

9810ch09.qxd 6/4/08 9:47 AM Page 300

MySQL may have one set of migrations while SQLite has another. In this case, MySQL might
set user permissions. SQLite does not have user permissions, so these are skipped.

Starting from Scratch
The database must be created before it can be used. With SQLite, this isn’t a problem—the file
is the database. However, with other databases, DBMigrate must be able to connect as a user
that has permission to create databases, and in many cases, to grant privileges. DBMigrate
calls this user the admin user; the admin user has an associated admin password. This is dis-
tinct from the application user that will attach to the database in production or during testing.

Throughout the application, the following keywords are referenced:

scheme: The database connection scheme (e.g., sqlite or mysql).

admin_user: The database user with rights to create a database, create users, and grant
rights.

admin_pw: The admin user’s password.

user: The database user that the application connects as. This user may not exist until the
migrations are run. If this is omitted, then it is assumed to be the same as admin_user.

pw: The application user’s password. If this is omitted, then it is assumed to be the same as
admin_pw.

db: The name of the database to be created.

host: The name of the host on which the database server runs.

port: The port number on which the database server listens.

socket: The path to the socket that the database listens on.

versiontable: The name of the table containing the applied revisions.

These values are passed to the migration scripts in a dictionary. This is the set of
expansions for a database.

Creating Migrations
The first migration must always set up the records table. Migrations are stored in a table.

$ python ./setup.py make_migration --package apptest.db.schema➥

--name create_db

Migration apptest.db.schema.migrate_20080218151301_create_db created.

$ more apptest/db/schema/migrate_20080218151301_create_db.py

Migration template created by DBMigrate at 2008/02/18 at 15:13:01 UTC.

migration = []

CHAPTER 9 ■ DATABASES 301

9810ch09.qxd 6/4/08 9:47 AM Page 301

Migrations are specified as a list of atoms. The atoms are tuples. The first component of
the atom is a single SQL statement that performs an upgrade. The second component is a
single SQL statement that undoes the first operation. Either one may be an empty string or
None.

The atoms are applied in order from first to last when upgrading. They are applied in
reverse order when downgrading.

A sample migration to create the student table from earlier in this chapter follows. This is
one of those cases where I feel that breaking convention for readability is worth it.

migration = [("""
CREATE TABLE student (

id INTEGER PRIMARY KEY AUTO_INCREMENT,
full_name VARCHAR(64) NOT NULL,
username VARCHAR(16) NOT NULL

)
""", """

DROP TABLE student
"""),

]

Migration strings are expanded before they are executed. This is done with Python string
expansion using named parameters such as %(foo)s. The precise set of expansions depends
upon the kind of database being constructed. SQLite uses only the minimum set of expan-
sions: scheme and versiontable. Databases with multiple accounts will always expand user
and pw. Database servers with multiple databases also expand db.

migration = [("""
CREATE TABLE %(db)s.student (

id INTEGER PRIMARY KEY AUTO_INCREMENT,
full_name VARCHAR(64) NOT NULL,
username VARCHAR(16) NOT NULL

)
""", """

DROP TABLE %(db)s.student
"""),

]

Migrations can also be functions. These functions receive a SQLAlchemy connection
argument. The function optionally accepts an expansions dictionary. Migration functions and
migration strings can be freely intermixed.

def my_data_migration_up(connection, expansions):
This just happens to accept an expansions dictionary
pass

def my_data_migration_down(connection):
This doesn't
pass

migration = [(my_data_migration_up, my_data_migration_down)]

CHAPTER 9 ■ DATABASES302

9810ch09.qxd 6/4/08 9:47 AM Page 302

Different migrations can be specified for different database schemes. These schemes
correspond to the schemes used in SQLAlchemy database URIs. In this case, migration is a
dictionary instead of a list. The keys correspond to the database’s URI scheme. For example,
if the URI for the database was mysql://localhost/db, then the scheme would be myqsl. The
default migration is used when there is no matching migration. It is keyed with _.

generic_migration = [("""
CREATE DATABASE %(db)s

""", """
DROP DATABASE %(db)s

"""),
("""

CREATE TABLE %(db)s.%(versiontable)s (
id INTEGER PRIMARY KEY AUTO_INCREMENT,
package VARCHAR(64) NOT NULL,
revision INTEGER UNSIGNED NOT NULL

)
""", """

DROP TABLE %(db)s.%(versiontable)s
"""),

]

sqlite_migration = [("""
CREATE TABLE %(versiontable)s (

id INTEGER PRIMARY KEY AUTOINCREMENT,
package VARCHAR(64) NOT NULL,
revision INTEGER UNSIGNED NOT NULL

)
""", """

DROP TABLE %(versiontable)s
"""),

],

migration = {'_': generic_migration, 'sqlite': sqlite_migration}

The first migration always creates the database and migration schema. Templates for
these migrations are available in db.migrate.templates. Currently, there are templates for
SQLite, MySQL, and PostgreSQL, and one suitable for use under Pylons.

Manually Migrating a Database
Databases are manually migrated using setup.py. Different parameters are supplied depend-
ing on the database being migrated. The following command shows a MySQL database being
upgraded to the most recent version:

$ python ./setup.py dbmigrate --scheme mysql --admin_user root➥

--admin_pw ROOT_USER_PW --user dbu --pw dbpw➥

--host localhost -v --db mydb my.app.schema

CHAPTER 9 ■ DATABASES 303

9810ch09.qxd 6/4/08 9:47 AM Page 303

mysql://localhost/db

Upgrade from revision 0 to revision 20080219120356
Applying my.app.schema.migrate_20080218151301_create_db
Applying my.app.schema.migrate_20080218192701_create_student
Applying my.app.schema.migrate_20080219120356_create_email

The database can be torn down using the --revision flag:

$ python ./setup.py dbmigrate --scheme mysql --admin_user root➥

--admin_pw ROOT_USER_PW --user dbu --pw DB_PW➥

--host localhost -v --db mydb --revision 0 my.app.schema

Downgrade from 20080219120356 to revision 0
Applying my.app.schema.migrate_20080219120356_create_email
Applying my.app.schema.migrate_20080218192701_create_student
Applying my.app.schema.migrate_20080218151301_create_db

As with any Setuptools command, commonly used options can be stored in the setup.cfg
file. The section heading is [dbmigrate]. For the preceding command, the corresponding
setup.cfg is the following:

[dbmigrate]
scheme=mysql
admin_user=root
admin_pw=ROOT_USER_PW
db=mydb
user=dbu
pw=DB_PW
host=localhost

Minus the verbose flag, -v, the previous installation commands are now the following:

$ python ./setup.py dbmigrate my.app.schema
$ python ./setup.py dbmigrate --revision 0 my.app.schema

When more than two packages are passed to DBMigrate, the migrations are interleaved
based on their timestamps. The ordering between identical timestamps is undefined; they
may be applied in any order.

$ python ./setup.py dbmigrate -v my.app.schema my.test.schema

Upgrade from revision 0 to revision 20080219120534
Applying my.app.schema.migrate_20080218151301_create_db
Applying my.app.schema.migrate_20080218192701_create_student
Applying my.app.testdata.migrate_20080218192734_populate_student
Applying my.app.schema.migrate_20080219120356_create_email
Applying my.app.testdata.migrate_20080219120534_populate_email

CHAPTER 9 ■ DATABASES304

9810ch09.qxd 6/4/08 9:47 AM Page 304

Running DBMigrate with Unit Tests
Running unit tests requires a minimal setup.cfg. scheme is the only required parameter for all
databases; in general, only the minimum amount of information required to create an admin-
istrative connection is needed. For SQLite, nothing is required; for MySQL, only scheme=mysql,
admin_user, and admin_pw are required.

A setup.cfg for MySQL might read as follows:

[dbmigrate]
scheme=mysql
admin_user=root
admin_pw=ROOT_USER_PW
host=localhost

The values user, pw, and db are ignored by the unit tests, as DBMigrate creates random
values for them. This results in a unique database; these randomly chosen values are still
passed to the migration scripts in the expansions dictionary.

Within a unit test, migrations are applied using dbmigrate.DBTestCase in the case of
unittest. The method connect_application() is called from setUp(), and the method
disconnect_application() is called from tearDown(). If these methods are not supplied,
then no error results.

from dbmigrate import DBTestCase

class MyTestCase(DBTestCase):
"""Database test case using migrations framework"""

One or more sets of migrations
migrations = ['my.app.schema', 'my.app.testdata']

def connect_application(self, uri, expansions):
The function should connect your application code
MyApp.connect(uri)

def disconnect_application(self, uri, expansions):
This function should disconnect your application code
MyApp.disconnect()

def test_method(self):
this would be a test method if this were real code.
MyApp.run()

Running DBMigrate from Your Program
Your program may need to control the setup or tear-down of a database at install time or
runtime. In these cases, the migration framework can be embedded and run from your appli-
cation code. The migration engine is run with a dictionary of connection parameters and a list
of packages containing schema files.

CHAPTER 9 ■ DATABASES 305

9810ch09.qxd 6/4/08 9:47 AM Page 305

from dbmigrate import MigrationEngine
...
def install_database():

config = read_your_app_config()
params = {'scheme': 'mysql',

'admin_user': config['db.admin_user'],
'admin_pw': config['db.admin_pw'],
'user': config['db.user'],
'pw': config['db.pw'],
'host': config['db.host'],
'port': config['db.port'],
'db': config['db.name'],

}
MigrationEngine().run(params, ['my.app.schema'])

The preceding code shows how the connection parameter dictionary params might be
constructed from an application’s configuration, and then how the migration engine is run.

Specific revisions may also be requested using the revisions keyword:

MigrationEngine().run(params, ['my.app.schema'],
revision=20080215135324)

The database is upgraded or downgraded to achieve the desired revision.

Summary
Database technology has become steadily cheaper and more widely available over the last ten
years. Only recently has database development started to adapt to these changing realities.
The result is an agile approach to database development sometimes called evolutionary data-
base development. It is built around the assumption that databases, like software, will change.

Agile development’s focus on short iterations forces this change. Traditional DBA organi-
zations are unable to meet the rapid turnaround without large increases in staff. The only way
to shorten cycles is through automation, and automation by nature pervades the entire devel-
opment cycle.

As a result, database development is viewed as part of the overall software development
process. DBAs and developers work closely together to understand each other’s concerns as
early in the development cycle as possible. The developers themselves often compose the
migration scripts for the database.

ORMs are valuable tools for isolating application code from the details of the underlying
database. They map between application objects and database structures such as tables,
columns, and rows. Because database access is mediated by normal objects, testing can be
performed using normal techniques. The two most common Python ORMs are SQLObject and
SQLAlchemy.

In an agile environment, database upgrades must be performed through automation.
This automation must be consistent and testable, and is often done through schema migra-
tion systems. These store the schema version in the database and compare it to the version
required by the code. If the two disagree, then a series of migration scripts are applied to bring
the database into conformance.

CHAPTER 9 ■ DATABASES306

9810ch09.qxd 6/4/08 9:47 AM Page 306

Agile database development is very much on the cutting edge of agile development. There
is room for many new tools and new practices. It is problematic because the development
involves external applications and additional special-purpose languages working in conjunc-
tion with the application code.

Another cutting edge area is web development, which has similar issues. Today’s rich web
applications are built around JavaScript running in the user’s browser. Compatibility must be
maintained against a wide variety of client platforms. Somehow this code and its interactions
with the Python application must be verified—which is the subject of the next chapter.

CHAPTER 9 ■ DATABASES 307

9810ch09.qxd 6/4/08 9:47 AM Page 307

9810ch09.qxd 6/4/08 9:47 AM Page 308

Web Testing

The World Wide Web was the killer app for the Internet. In the course of less than a decade, it
went from a simple document-sharing system for physicists to ubiquity. In 1994, if you’d said
to someone that six years later billboards hawking milk would have URLs plastered on them,
you would have been asked if you’d seen your psychiatrist recently and if she’d considered
upping your dosage. Nevertheless, six years later there were URLs on billboards hawking all
manner of consumer wares.

To say that the Web grew quickly is an understatement. It grew quickly, and it grew from
the ground up. The technologies composing it were not planned out. They arose from need
and circumstance. To put it more frankly, the Web as we know it today is a hodgepodge of dif-
ferent technologies that have been hacked together with the digital equivalent of bubblegum,
spit, and baling wire. Afterward, standards bodies come through and codify the things that
held together, but by that time everyone else has rushed on to the next set of problems.

Despite this madcap development, the Web has a very simple basis. Every application
must use the same technologies to talk to the browser, so web applications have gross similar-
ities in structure. These similarities give rise to repeated solutions to problems, which in turn
means repeated testing methods. This is true of both unit testing and functional testing, but in
this chapter I’ll be demonstrating unit testing tools.

Really Simple Primer
At its simplest, the Web is a document format combined with a notation identifying these doc-
uments, and a protocol for using those identifiers to retrieve the documents.

• The document format is HTML (Hypertext Markup Language).

• The document identifiers are called URIs (Universal Resource Identifiers). When used to
locate documents on a network, they are called URLs (Universal Resource Locators).

• The network protocol is HTTP (Hypertext Transfer Protocol).

All three are based on ASCII text rather than binary encodings. This makes them easy to
manipulate with text-based tools such as text editors or telnet clients.

309

C H A P T E R 1 0

9810ch10.qxd 6/4/08 10:49 AM Page 309

Web browsers are programs that retrieve documents via URLs, render the HTML, and
then allow users to follow the URLs included in the retrieved documents. At its simplest, a
browser follows a well-defined series of steps:

1. The user supplies a URL to the browser.

2. The browser uses the URL to locate the server containing the required document.

3. The browser requests the document from the server by HTTP.

4. The server returns the document to the browser.

5. The browser renders the document and presents it to the user.

This system allows for a limited amount of interaction from the user. The document may
specify data to be retrieved from the user and a method for sending the results back to a
server. This data is still sent back via HTTP. The result is yet another document.

HTML was originally intended to describe the content of a document, and not its format-
ting, but it was quickly forced into that role. Cascading Style Sheets (CSS) was created to restore
this separation.

HTML is based on a document format called SGML (Standard Generalized Markup Lan-
guage). SGML eventually begat a simpler markup language called XML (eXtensible Markup
Language), which has become wildly successful for representing many kinds of data.

HTML
HTML is a text format. Ideally it describes the contents of a document, not how that document
is to be rendered. In reality, this ideal is rarely met, and the elements of a form are often used
for layout. Crucially, HTML documents also describe how they connect to other documents.

This is a simple HTML document:

<html>
<head>

<title>My Favorite Comics</title>
<head>
<body>

I love XKCD and PVP.
</body>

</html>

An HTML document can be viewed as a tree. The opening tag <foo> defines a node
named “foo.” It is terminated by the closing tag </foo>. The nodes are referred to as elements.
Elements nest, but they do not interleave. If a tag contains no other elements, then the open-
ing and closing can be combined, as in <foo/>.

Elements can also contain key/value pairs called attributes. Here the input tag has the
type text and the name comicname: < input type="text" name="comicname" />.

SGML, from which HTML was derived, is a vast standard developed by committee. It was
far from simple, and its parsers had to be very complete and strict in their interpretations.

HTML is a limited derivative of SGML with a very narrow problem domain: displaying
simple documents on a network. HTML parsers were intended to be very forgiving so that
slightly inaccurate documents created by relatively naive users could be successfully

CHAPTER 10 ■ WEB TESTING310

9810ch10.qxd 6/4/08 10:49 AM Page 310

presented. While this do-what-I-mean approach is in the spirit of Postel’s Law,1 it has intro-
duced much ambiguity, and has resulted in a situation where no two web browsers render
things in exactly the same way.

CSS
CSS describes how HTML documents are to be rendered. It is the result of an effort to remove
formatting information from HTML documents. CSS binds HTML tags to formatting directives.

XML
The wild success of HTML and the relative failure of SGML gave birth to an effort to simplify
SGML. This led to XML. The preceding description of HTML tells you most of what you need
to know about XML syntax.

In the late ‘90s, XML was hyped beyond all belief. Vendors were suggesting that it would
solve all data interchange problems, when clearly this was not the case. Despite this failure to
deliver on the hype, I feel that it has been underappreciated for what it really does.

It provides a common syntax for structuring data, essentially doing for file formats what
ASCII did for character sets. Having a common character representation vastly increased the
portability of programs across computer systems, but it didn’t solve all data interchange prob-
lems. It just allowed the focus to be raised to a new level of abstraction. XML does the same for
data by supplying a universal syntax.

URI and URL
The URI format identifies documents unambiguously. Once obscure, it can now be seen even
on billboards for toilet paper. A URI has four parts, organized as follows:

scheme : hierarchical part [? query] [# fragment]

The scheme identifies the kind of resource, and it determines how the other three parts
are interpreted. Common schemes include the following:

• http, for web pages

• https, for encrypted web pages

• file, for files on the local system

• mailto, for e-mail addresses

The hierarchical part is separated from the scheme by a colon, and it is mandatory. A
question mark separates the hierarchical portion from an optional query. It contains nonhier-
archically organized information. The fragment is separated from these parts by a pound sign,
and it serves as a secondary index into the identified resource. The following URI shows all the
parts:

http://www.theblobshop.com/theguide?chapter=6times9#answer

CHAPTER 10 ■ WEB TESTING 311

1. Postel’s Law is “Be conservative in what you do; be liberal in what you accept from others.” See, for
example, http://ironick.typepad.com/ironick/2005/05/my_history_of_t.html.

9810ch10.qxd 6/4/08 10:49 AM Page 311

http://www.theblobshop.com/theguide?chapter=6times9#answer
http://ironick.typepad.com/ironick/2005/05/my_history_of_t.html

When a URI contains the information necessary to locate a resource, it is referred to as a
URL. The two terms are often used interchangeably.

HTTP
HTTP is the network protocol that the Web is built on. It is defined in RFC 2616. In this proto-
col, a client initiates a connection to a server, sends a request, receives a response, and then
disconnects. The server is not expected to maintain state between invocations.

A request consists of the following:

• A command

• The URI the command operates on

• A message describing the command

A response consists of the following:

• A numeric status code

• A message describing the response

The request and response messages share the same format. It is precisely the same format
as that used to represent letters in e-mail, and it is defined in RFC 822. The message consists of
a set of headers followed by a blank line and then an arbitrary number of data sections. There
is one header per line, and each header is just a name/value pair. The name is on the left, the
value is on the right, and they are separated by a colon.

JavaScript
JavaScript is not Java. It is not Java-light. It has nothing to do with Java. It is a dialect of a stan-
dardized language called ECMAScript, which is defined in the document ECMA-262.

JavaScript is a dynamically typed, object-oriented, prototype-based language. It has a
C-based syntax, but its object model is much closer to that of Python, and Python program-
mers will find themselves at home.

JavaScript executes within the browser, and each browser has its own slightly different
implementation. JavaScript programs manipulate a tree-shaped data structure representing
the HTML document they reside in. Changes to this document are reflected on the screen.
JavaScript programs can also send data back and forth to the server from which they were
retrieved.

A display model that can be easily manipulated, combined with two-way network com-
munications, has given rise to a programming paradigm called Ajax (Asynchronous JavaScript
and XML). You can use Ajax techniques to create web pages that behave much like local appli-
cations.

Web Servers and Web Applications
Web applications run on both the client that displays the pages and the server that delivers
them, yet almost all applications start with the server. There is wide variation in how the appli-
cations are implemented.

CHAPTER 10 ■ WEB TESTING312

9810ch10.qxd 6/4/08 10:49 AM Page 312

At one end are simple scripts executed by the web server. The web server and scripts typi-
cally communicate using the Common Gateway Interface (CGI) defined by RFC 3875. At its
heart, this standard defines a few more request headers describing the HTTP conversation.
These are passed to your script, and the server expects your script to send back a few more
headers. The new HTTP request is passed into your script via stdin, and the server reads the
response message from your script’s stdout.

The odds are that you will never deal with CGI at such a low level; all languages that I can
think of provide libraries for handling these nuts and bolts. In Python, this library is named cgi.

At the other extreme are full stack applications. These implement everything from the
web server to the application logic. They are often seen in shrink-wrapped applications, or
with applications that act as platforms for other applications. One example in Python is the
Plone content management system.

Between the two extremes are applications written with web application frameworks.
These typically run on top of different web servers. These frameworks support writing com-
plex applications, providing solutions for common problems. Typical features are

• Form validation and data conversion

• Session management

• Persistent data storage

• HTML templating

Common Python application servers include

• Zope

• Django

• Google App Engine

• Pylons

• Turbogears

These days, most applications of any appreciable size are written with web application
frameworks. These frameworks run on top of some kind of a web server, such as Apache, IIS,
or the Python-based Twisted.

Application frameworks typically have large startup costs connected to the extensive
services they provide, so running them from CGI isn’t feasible. The delay between the user’s
request and the application’s response would be too long. Instead they connect to web servers
through different mechanisms.

These mechanisms fall into two broad categories. In one, the application runs as part of
the web server itself, and in the other, the application runs in a separate process and the web
server forwards requests and responses to this process.

When an application framework runs as part of a web server’s process, there is often little
configuration to be done. The application often has direct access to the web server’s internal
state and its optimized services. The problem is that you’re engaging directly with the web
server’s environment. This can lead to strange interactions, particularly when other applica-
tions are also running in the server’s address space.

CHAPTER 10 ■ WEB TESTING 313

9810ch10.qxd 6/4/08 10:49 AM Page 313

There are as many ways of doing this as there are web servers, since each different kind
has its own extension interfaces. With Apache, this functionality is provided by the Apache
plug-in mod_python.

THE PROBLEM WITH OCCUPYING ANOTHER’S SPACE

I once spent days trying to determine why a Python application was failing when running under mod_
python, but succeeding from its test environment. It used the SQLObject object-relational mapping layer
(see Chapter 9) in combination with the MySQLdb back end. The application would access the database
layer, and then simply die without sending a response. There were no messages in the logs, there were no
stack traces, and there were no core dumps.

Tracing the calls at the system level led to the discovery that PHP was loading a custom version of the
dynamically linked MySQL client libraries. When MySQLdb attempted to load the client libraries, it was
instead linked with the PHP version. The PHP version was incompatible at a very low level, and the calls to
the database died silently.

Luckily, PHP was not required for the operation of the production system, and I was able to turn off the
mod_php plug-in with impunity.

The alternative approach is running the application framework in another process. The
web server passes requests and responses to and from the external process. Once again, there
are multiple ways of accomplishing this, but in this case there is also a standard mechanism
called FastCGI.

To make things worse, every application framework used to have its own method for
interfacing to each web server. Even if two different frameworks both had FastCGI adapters,
each was configured in a different way. Having m web server interfaces and n web servers
leads to m ✕ n combinations; or to put it more succinctly, it resulted in a big mess.

What happens when you want to connect multiple web applications to a single web
server? What if you want to set up more than one application running under the same applica-
tion framework? These used to be significant problems, but they’ve been solved within the last
few years.

WSGI
The Web Server Gateway Interface (WSGI; pronounced whiskey) defines a simple interface
between web servers and Python web applications. It is defined in PEP 333. Adapters are writ-
ten from the web servers to WSGI, so applications only have to support a connection to WSGI.
Over the last few years, WSGI has become ubiquitous. On the server side, it is supported by
Apache, CherryPy, LightHTTPd, and Zope, among others. On the app server side, it is sup-
ported by CherryPy, Django, Pylons, Turbogears, TwistedWeb, and Webware, to name a few.

The interface is similar in concept to Java’s Servlet interface. While servlets are designed
for implementing any kind of network protocol, WSGI is focused on HTTP.

CHAPTER 10 ■ WEB TESTING314

9810ch10.qxd 6/4/08 10:49 AM Page 314

There are two parties in each WSGI conversation: the gateway and the application, with
the gateway representing the web server. The application is a callable, and I’ll refer to it as
application. The interaction can be summarized as follows:

1. The gateway calls application passing an environ dictionary and a start_response
callback. The dictionary environ contains the application’s environment variables.

2. The application processes the request.

3. The application calls start_response, passing the response status and a set of response
headers back to the gateway.

4. The application returns the response contents as an iterable object.

In the first step, the gateway calls application(environ, start_response). The
application object must be a callable, but it may be a function, a class, or an instance. The
method the gateway calls for each of these is shown in Table 10-1.

Table 10-1. Call Equivalents

application Is a(n) . . . application(environment, start_headers) Is Equivalent to . . .

Function or method application(environ, start_headers)

Class application.__init__(self, environ, start_headers)

Object application.__call__(self, environ, start_headers)

In the third step, the application object calls start_response(status, headers) when it is
ready to return HTTP results. This must be done before the last result is read from the iterator
returned by application(environ, start_headers).

In the fourth step, the returned sequence may be a collection, a generator, or even self,
as long as the returned object implements the __iter__ method.

Using the write Callback
Some underlying web servers read the application’s results in a different way. They hand the
application object an output stream, and instead of returning the results, the application
object writes the results to this output stream. This stream is accessed through the write(data)
callback, which is returned from start_response(environment, headers). In this case, the call-
ing sequence is as follows:

1. The gateway calls application(environment, start_response).

2. The application object calls write = start_response(status, headers).

3. The application object writes the results: for x in results; write(x).

4. The application object returns empty results: return [""].

CHAPTER 10 ■ WEB TESTING 315

9810ch10.qxd 6/4/08 10:49 AM Page 315

WSGI Middleware
In this chapter, I will use the term middleware in the limited sense defined by WSGI. These
components are both WSGI gateways and WSGI applications. They are shimmed between the
web server and the application. They add functionality to the web server or application with-
out needing to alter either. They perform duties such as the following:

• URL routing

• Session management

• Data encryption

• Logging traffic

• Injecting requests

The last two give an inkling of why WSGI middleware is important to testing. Middleware
components provide a way of implementing testing spies and call recorders. These can be
used to create functional tests. The underlying web server can also be completely replaced by
a test harness that acts as a WSGI gateway. This bypasses the need to start a web server for
many kinds of tests.

Testing Web Applications
Web testing breaks down into the two broad categories of unit testing and integration testing.
Integration testing involves multiple components being tested in concert. It requires a more
complicated testing infrastructure, it distances your tests from the origin of your errors, and it
tends to take more time. It is an invaluable approach with web applications, since there are
aspects of many programs that can’t be performed in isolation, yet because of its shortcom-
ings, it should be used judiciously.

This returns us to the idea of designing for testability. By restructuring your program, you
can limit the number of places where you have to run integration tests, and this restructuring
happens to result in more maintainable programs. There is a well-defined architecture called
model-view-controller (MVC) that facilitates this.

MVC separates the input (controller) and output (view) from the computation and stor-
age (model). Web programs receive sets of key/value pairs at distinct intervals as input. The
computation is no different than with any other software. Both of these are easily tested with
techniques you’ve already seen in previous chapters. The real differences reside in the view.

The views generate four distinct kinds of output:

• Graphics

• Marshalled/serialized objects in text form

• Markup

• Executable content

Each has a distinct set of testing strategies.

CHAPTER 10 ■ WEB TESTING316

9810ch10.qxd 6/4/08 10:49 AM Page 316

Graphics and Images
There are multiple levels of image testing. There are two basic strategies: one is to watch the
image generation process, and the other is to examine the resulting image.

The first is accomplished with testing techniques that we’ve already examined. The
drawing library is replaced with a fake or a mock, and the resulting instructions are verified.
Common sequences of primitive drawing operations are combined into larger operations.
These can be verified and then used as the blocks for instrumenting larger higher-level
drawing operations.

The other approach employs additional techniques. At the simplest, you can check
whether something was returned, and the basic characteristics are checked without regard for
the contents at all. Image generation should produce results, and it should do so without rais-
ing an error. Verifying this may be enough for some problem domains.

The image can be validated through parsing. It is passed to the appropriate image library
and rendered to an internal representation. The rendering process will fail if the image is not
valid. Once rendered, your graphics library may supply enough data to verify certain image
characteristics. These could include the image width and height, the image size, the number
of bits in the color palette, or the range of colors.

In other cases, the contents of the images may need to be verified. The simplest cases
are when a known image is generated. The resulting image may be compared byte for byte
against a reference image. For other kinds of images, it may be sufficient to compare certain
image properties such as the center of mass, average brightness, color spectrum, or autocorre-
lation results. These sorts of properties are generated using image-processing libraries. Each
library has unique properties and should be chosen with regard to which properties must be
measured.

Vector image formats often produce instructions that may already be text or that can
be easily converted to text, and they may be treated as if it they were any other kind of text
document.

It may also be possible to instrument the rendering library itself. The test subject is
passed to the rendering library, and the calls that it produces are verified either through logs
generated by test spies or by fakes and mocks.

Markup
The output from web applications isn’t strictly limited to markup documents, but they form
the vast bulk of the output you’ll be testing. These can be analyzed through lexical, syntactic,
and semantic tools. For the simplest cases, where you just want to verify that a word was
included in otherwise tested results, lexical analysis may be sufficient. In these cases, the
HTML output is just text, and the entire toolbox of Python string operators may be brought to
bear. Regular expressions and string.find are very useful in these cases.

One of the primary drawbacks of lexical testing is that it doesn’t verify that the document
is well formed. However, this is easily done through syntactic testing techniques. In particular,
the Python standard library includes HTMLParser for these simple cases.

At the syntactic level, it may be enough to verify that the output is valid HTML. This can
be accomplished by passing the document through the standard library’s HTMLParser. It allows
you to quickly verify that a sequence of tags is included in a page, but it tells you little about
the meaning of those tags—it’s a very low-level tool.

CHAPTER 10 ■ WEB TESTING 317

9810ch10.qxd 6/4/08 10:49 AM Page 317

More complete parsers produce a tree representing the parsed document. The structure
and relationship between nodes is available for your tests’ perusal. The elements are the
nodes, and they are named. Attributes are attached to the element, as are the attribute values.
Child and sibling nodes can be iterated for every element. This functionality is available
through the standard library’s ElementTree package.2 Parsing a document with ElementTree
is easy:

import xml.etree.ElementTree as et
...
doc = """
<html>

<head>
<title>Comic Feeds</title>

</head>
<body bgcolor="#ffffff">

You are not subscribed to any feeds
</body>

</html>
"""

parsed = et.XML(doc)

The parsed object is an ElementTree describing the document. Each node contains
methods for navigating the subtrees.

def setup(self):
self.root = et.XML(doc)

def test_get_tag_name(self):
root = et.XML(doc)
assert self.root.tag == 'html'

def test_get_children(self):
children = self.root.getchildren()
assert children[0].tag == 'head'
assert children[1].tag == 'body'

def test_get_attributes_from_body_tag(self):
body = self.root.getchildren()[1]
assert body.item() == [('bgcolor', '#ffffff')]

The line between syntactic analysis and semantic analysis of HTML documents is fuzzy.
When writing tests, you want to know the answer to questions such as the following:

CHAPTER 10 ■ WEB TESTING318

2. ElementTree was added to the standard library in Python 2.5, so it is not present in earlier versions. It
still exists as an external package, and you can install it with easy_install. It installs into a different
namespace: elementtree.ElementTree. It is under active development, and there have been significant
improvements since it was added to the standard libraries, so it may be worth installing it even if you
are using Python 2.5. In this case, it happily coexists with the standard installation.

9810ch10.qxd 6/4/08 10:49 AM Page 318

• Are the two links to my favorite comics included in this document?

• Is the table of contents included?

• Are there three links to xkcd?

These all involve searching for specific nodes within the parsed document. The overall
test pattern is the same—the document is parsed, and then the element tree is searched
for the relevant tags. ElementTree searches are done with the find(), findtext(), and
findall() methods. The following code finds the title tag in the previous example:

def test_find_title_tag(self):
title = self.root.find('.//title')
assert title.tag == 'title'

The findtext() method returns the text contained in the found tag:

def test_find_title_text(self):
title_text = self.root.findtext('.//title')
assert title_text == 'Comic Feeds'

If the search expression matches more than one element, then these two methods will
only return results for the first one. To return all matches, you must use the findall() method:

def test_find_all_top_of_roots_children(self):
root_children = self.root.findall('*')
assert len(root_children) == 2
child_tags = [x.tag for x in root_children]
assert child_tags == ['head', 'body']

You may be wondering about the strange query strings that the find operations use. These
are XPath queries. XPath is a standard format for locating nodes within an XML document.
XPath is somewhat like a directory path specification. It is a very rich query language, but the
ElementTree implements only a small subset of the full specification. Despite its limitations,
it’s quite usable for many testing purposes.

A summary of query components can be found in Table 10-2. The full XPath specifica-
tions can be found on the World Wide Web Consortium (W3C) web site at www.w3.org/TR/.
Although the current version is 2.0, most XPath packages still support only 1.0 or some variant
thereof. More complete XPath implementations can be found in other Python packages such
as PyXML.

Table 10-2. The XPath Operations Supported by ElementTree

Operator Action

foo Matches an element with the tag foo

* Matches any child tag name

. Specifies the current tag; mostly used at the top level

/ Separates levels within the tree

// Finds the next pattern anywhere in the subtree

CHAPTER 10 ■ WEB TESTING 319

9810ch10.qxd 6/4/08 10:49 AM Page 319

http://www.w3.org/TR

The other solution is the package named BeautifulSoup. It is downloaded via easy_intall
BeautifulSoup. It makes free-form queries of HTML and XML documents. It possesses a wide
set of parsers that allow it to work with a variety of web XML–related formats. Some of these
parsers are very strict, and some are very permissive.

from BeautifulSoup import BeautifulSoup
...
class TestBeautifulSoup(TestCase):

def setUp(self):
self.soup = BeautifulSoup(doc)

def test_find_title_element(self):
title = self.soup.find(name='title')[0]
assert title.name == 'title'

def test_find_body_by_attributes(self):
body = self.soup.find(attrs={'bgcolor': '#ffffff'})
assert body.name == 'body'
assert body.attrs = [(u'bgcolor', u'#ffffff')]

def test_find_by_text(self):
must match entire text string
text = self.soup.find(text='Comic Feeds')
assert text == 'Comic Feeds'

When the find arguments are used in the same expression, they are anded together,
restricting the set of returned elements.

The name and text search attributes aren’t limited to strings. They can be replaced by reg-
ular expressions. This is particularly useful in combination with the findAll() method, which
returns all matches, rather than just the first one.

import re
...
def test_find_all_elements_with_e(self):

has_e = self.soup.findAll(name=re.compile('e'))
element_names = [x.name for x in has_e]
assert element_names == ['head', 'title']

Testing JavaScript
Testing JavaScript is far more involved than testing other kinds of content. It poses many of
the same problems as testing Python. As with Python, there are tools for performing both unit
and functional tests. I’ll only be dealing with the former in this chapter.

In order to unit test JavaScript, you have to be able to run the JavaScript code. There are
stand-alone interpreters for JavaScript, but these have shortcomings compared with browsers.
First and foremost, each browser has a slightly different set of libraries. Emulating these differ-
ences in a stand-alone interpreter is a technical challenge that nobody has risen to yet, nor are

CHAPTER 10 ■ WEB TESTING320

9810ch10.qxd 6/4/08 10:49 AM Page 320

they likely to. Since these changes must be tested, we’re left with the option of executing the
code with the target browsers.

This is done with the software package JsUnit (www.jsunit.net/), written by Edward
Hieatt of Pivitol Labs. It is not to be confused with the similarly named JsUnit package written
by Jörg Schaible.

Using JsUnit
The first step in working with JsUnit is obtaining a copy. It can be downloaded from http://
downloads.sourceforge.net/jsunit. As of this time, there are two ZIP files available. One is an
Eclipse plug-in, and the other is JsUnit itself. Sadly, the Eclipse plug-in does not work with the
most recent versions of Eclipse (3.2 as of this writing), so I won’t discuss its use.

We’ll be using JsUnit in conjunction with the RSReader project from previous chapters.
This is the first non-Python tool in the project, so it fits in a different place. I tend to create a
generic tools directory when the project is small. Only when a particular class of tools gets
large enough do I create dedicated directory hierarchies.

$ cd /Users/jeff/Documents/ws/rsreader
$ ls

build/ setup.py
dist/ setuptools-0.6c7-py2.5.egg
ez_setup.py src/
ez_setup.pyc thirdparty/
setup.cfg

$ mkdir tools
$ cd tools
$ curl -L -o jsunit2.2alpha11.zip➥

http://downloads.sourceforge.net/jsunit/jsunit2.2alpha11.zip

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 5968k 100 5968k 0 0 967k 0 0:00:06 0:00:06 --:--:-- 1169k

$ unzip jsunit2.2alpha11.zip

inflating: jsunit/app/css/readme
inflating: jsunit/app/emptyPage.html

...
inflating: jsunit/tests/jsUnitUtilityTests.html
inflating: jsunit/tests/jsUnitVersionCheckTests.html

$ ls

CHAPTER 10 ■ WEB TESTING 321

9810ch10.qxd 6/4/08 10:49 AM Page 321

http://www.jsunit.net
http://downloads.sourceforge.net/jsunit
http://downloads.sourceforge.net/jsunit
http://downloads.sourceforge.net/jsunit/jsunit2.2alpha11.zip

jsunit/ jsunit2.2alpha11.zip

$ rm jsunit2.2alpha11.zip

The JavaScript source and tests will be placed in their own directory trees:

$ cd ..
$ mkdir javascript
$ ls

build/ setup.py
dist/ setuptools-0.6c7-py2.5.egg
ez_setup.py src/
ez_setup.pyc thirdparty/
javascript/ tools/
setup.cfg

$ cd javascript
$ mkdir src
$ mkdir test
$ ls

src tests

Running a Test
You can run tests stand-alone or distributed. Stand-alone tests are suitable for developing the
tests themselves or interactively testing small pieces of code, as they require the user to inter-
act with a web browser. Distributed tests are run from within the build. They use a farm of web
browsers that may reside on other machines.

To start with, I’ll demonstrate stand-alone testing. Once you’ve gained an understanding
of how to use JsUnit, I’ll move on to using distributed tests, in order to tie them into the larger
build for automatic execution.

The JsUnit test runner is a web page in your browser. Open the browser of your choice to
the file rsreader/tools/jsunit/app/testRunner.html. On my system, this is file:///Users/
jeff/Documents/ws/rsreader/tools/jsunit/testRunner.html. The test runner is shown in
Figure 10-1.

CHAPTER 10 ■ WEB TESTING322

9810ch10.qxd 6/4/08 10:49 AM Page 322

file:///Users

Figure 10-1. The JsUnit stand-alone test runner

The name of the file containing the tests to be run is put into the first text box. Clicking
the Run button beside the text bar loads and runs the test.

A JsUnit test is an HTML file. JavaScript documents frequently manipulate the document
structure, so it must be included as part of the test. HTML is the natural place to do this. The
following file defines a function and a test for that function:

$ more test/lineTest.html

<html>
<head>

<title>Test Page line(m, x, b)</title>
<script language="JavaScript"

src="../../tools/jsunit/app/jsUnitCore.js">
</script>
<script language="JavaScript">

function line(m, x, b) {
return m*x + b;

}

CHAPTER 10 ■ WEB TESTING 323

9810ch10.qxd 6/4/08 10:49 AM Page 323

function testCalculationIsValid() {
assertEquals("zero intercept", 10, line(5, 2, 0));
assertEquals("zero slope", 5, line(0, 2, 5));
assertEquals("at x = 10", 25, line(2, 10, 5));

}

</script>
</head>
<body>

This page tests line(m, x, b).
</body>

</html>

First notice that all of the test code resides within the <head> tag. The first <script> tag is
what makes this a JsUnit test:

<html>
...

<script language="JavaScript"
src="../../tools/jsunit/app/jsUnitCore.js">

...
</html>

It loads all of the JsUnit test code that executes when the test page finishes loading. If any-
thing goes wrong with this loading process, then you’ll see the message shown in
Figure 10-2.

■Note I strongly advise you to adjust the “Page load timeout” and “Page setup timeout” to much smaller
values. They are specified in seconds, and the defaults are 2 minutes (120 seconds). This is much too long
when you’re running tiny tests from the filesystem. Somewhere between 2 and 5 seconds is a reasonable
value.

Figure 10-2. The dreaded “Reading Test Page . . . timed out” alert

CHAPTER 10 ■ WEB TESTING324

9810ch10.qxd 6/4/08 10:49 AM Page 324

The error in Figure 10-2 means one of two things. Either the file doesn’t exist or the path
to jsUnitCore.js is incorrect. You can check the former by trying to load the URL in a normal
web browser. The latter is a bit trickier. Change to the test page’s directory (in this case
/Users/jeff/Documents/ws/rsreader/javascript/test), and then cut and paste the path in
the script tag’s src attribute.

This is the single most frustrating part of getting started with JsUnit.3 The good news is
that once it’s ironed out, you won’t have to deal with it again. If you’re using Eclipse and Pydev,
you should set up a template for these test pages so that nobody on your project will have to
deal with this problem either.

A successful test run is shown in Figure 10-3. The progress bar is full and green, and the
total test execution time is shown above it. Notice that this absolutely trivial test took over half
a second to run.

Figure 10-3. The test runs and succeeds.

JsUnit tests are slow. This highlights a theme with all JavaScript testing tools: write as few
tests as possible. Don’t do this by skimping on tests, though—do it by structuring your code so
that you need to run as few tests as possible.

CHAPTER 10 ■ WEB TESTING 325

3. I suffer so you won’t have to.

9810ch10.qxd 6/4/08 10:49 AM Page 325

An excellent way of doing this is by depending on someone else to do the heavy lifting.
There are wonderful JavaScript libraries available for free that implement the vast majority of
things you’ll want to do. MochiKit, script.aculo.us, and Ext JS are three of the most popular.
Use them.

How It Works
Test cases are recognized by name. If a function begins with the string test, then it is treated
as a test. JsUnit is a direct translation of the XUnit framework, as is Python’s unittest. There is a
one-to-one correspondence between most of the major concepts. This is shown in Table 10-3.

Table 10-3. The Correspondence Between unittest and JsUnit

unittest JsUnit

TestCase classes Test pages

Test methods Test functions

Test suites Test suite pages

Extend unittest.TestCase Include app/jsUnitCore.js

Import subject code Include subject code

setUp() and tearDown() methods setUp() and tearDown() functions

IDE test runners Web browser test runners

The correspondence between the two carries through to the test methods, too. These sim-
ilarities are shown in Table 10-4.

Table 10-4. The Correspondence Between unittest Test Methods and JsUnit Test Functions

unittest Method JsUnit Function

assert_() assert()

failUnless() assertTrue()

assertTrue() assertTrue()

failIf() assertFalse()

assertFalse() assertFalse()

assertEqual() assertEquals()

failUnlessEqual() assertEquals()

assertNotEqual() assertNotEquals()

failIfEqual() assertNotEquals()

failUnless(x is None)

failIf(x is None)

failUnless(x is None) assertNull()

failIf(x is None) asssertNotNull()

assertNaN()

assertNotNan()

CHAPTER 10 ■ WEB TESTING326

9810ch10.qxd 6/4/08 10:49 AM Page 326

Connoisseur of the Undefined
If you’re not familiar with JavaScript, there are a few methods that bear some explanation.
Unlike Python, JavaScript draws a distinction between variable declaration and variable
assignment.

In JavaScript, variables must be declared before they are used. Until you assign a value to
that variable, its value is undefined. (It might have been clearer to call it uninitialized.) After
you assign a value to the variable, it is no longer undefined. When you want to say that this
variable has no value, you assign it the value null, which corresponds to Python’s None.

As variables can be in two different indeterminate states, it is necessary to have two dif-
ferent sets of test methods. Since Python variables are created by the act of assignment, there
is no such thing as a declared but unassigned variable, and there is no need for these test
functions. The trade-off is that in Python, it is possible to create new variables accidentally by
misspelling names. The following test function shows how undefined and null relate:

function testVariableInitializationStates() {
var foo;
assertUndefined(foo);
assertNotNull(foo);

foo = 0;
assertNotUdefined(foo);
assertNotNull(foo);

foo = null;
assertNotUndefined(foo);
assertNull(foo);

}

The second feature visible in the test methods is the value NaN, which is short for Not a
Number. JavaScript returns NaN from many arithmetic expressions that would raise exceptions
in Python. Commonly, it also arises when a string-to-numeric conversion fails. The following
Python test checks for just such a failure:

def testNumericConversionFailure(self):
self.failUnlessRaises(ValueError, int, 'foo')

It is equivalent to this JavaScript test:

function testNumericConversionFailure() {
assertNaN(parseInt('foo'));

}

The value NaN is a valid JavaScript number, and it can participate in normal computations.
JavaScript also has special values to represent positive and negative infinities. In general,
where Python will generate an exception such as DivisionByZero, JavaScript will return a sen-
sible but not terribly useful symbol representing the numeric construct.

Python also has a nan, but it appears in fewer places. While Python mixes exceptions and
special symbolic representations, JavaScript is pleasantly consistent in its usage.

CHAPTER 10 ■ WEB TESTING 327

9810ch10.qxd 6/4/08 10:49 AM Page 327

Adding a Little More Realism
Note that in Table 10-3, I mentioned including subject code in the test. However, I didn’t do
that in the simple test example, and the subject function slope(m, x, b) is declared within
the test itself. To make the example a bit more realistic, I’ll move it to the source directory in
a file named line.js, and I’ll reference that from the test. The subject code is shown in
Listing 10-1 and the test is shown in Listing 10-2.

Listing 10-1. The Subject Code in rsreader/javascript/src/line.js

function line(m, x, b) {
return m*x + b;

}

Listing 10-2. The Test Code in rsreader/javascript/test/lineTest.html

<html>
<head>

<title>Test Page line(m, x, b)</title>
<script language="JavaScript"

src="../../tools/jsunit/app/jsUnitCore.js">
</script>
<script language="JavaScript" src="../src/line.js"></script>
<script language="JavaScript">

function testCalculationIsValid() {
assertEquals("zero intercept", 10, line(5, 2, 0));
assertEquals("zero slope", 5, line(0, 2, 5));
assertEquals("at x-axis", 25, line(2, 10, 5));

}

</script>
</head>
<body>

This a page tests line(m, x, b).
</body>

</html>

With these changes in place, the test executes successfully, leaving you with a green bar in
the test runner.

Manipulating the DOM
To do anything of interest, a JavaScript program must interact with the user, and to interact
with the user, it must interact with the browser. This is done through the Document Object
Model (DOM). The DOM is a standard internal representation of the HTML document being
presented to the user. It acts as the formal interface between the browser and the JavaScript
interpreter.

CHAPTER 10 ■ WEB TESTING328

9810ch10.qxd 6/4/08 10:49 AM Page 328

Anything passing between the browser and your JavaScript code goes through the DOM.
By embedding your tests within HTML pages, JsUnit gives them access to the DOM.

We’re going to add a validation function to line.js. It will check an input field named
slope in a form named lineForm. When there is an error, it will write an error message with
a <div> tag with the ID errorMsg. The validation will be activated when someone clicks the
calculate button. Listing 10-3 gives a skeleton test document that will be filled in as we walk
through the process.

Listing 10-3. The Test Skeleton for rsreader/javascript/test/testSlopeValidator.html

<html>
<head>

<title>Test Page line(m, x, b)</title>
<script language="JavaScript"

src="../../tools/jsunit/app/jsUnitCore.js">
</script>
<script language="JavaScript" src="../src/line.js"></script>
<script language="JavaScript">

// tests go here
</script>

</head>
<body>

// DOM elements for the test go here
</body>

</html>

The input will require a form named slopeForm. Since the form is not being submitted, we
don’t need to include an action.

<form name="lineForm">
</form>

The form needs to include the input text field named slope:

<form name="lineForm">
<input type="text" name="slope"/>

</form>

The validator is activated when the user clicks the calculate button:

<form name="lineForm">
<input type="text" name="slope"/>
<input type="button" value="Calculate" onclick="validateSlope()"/>

</form>

The calculate button will never be called by the tests. It serves as documentation, showing
how the tested method should be used within a real document.

The error messages will be presented in a <div> tag. When the validator is run, it will
change the inner contents of this element. The tag is split in two to emphasize that it is the
contents that are important.

CHAPTER 10 ■ WEB TESTING 329

9810ch10.qxd 6/4/08 10:49 AM Page 329

<div id="errorMsg"></div>
<form name="lineForm">

<input type="text" name="slope"/>
<input type="button" value="Calculate" onclick="validateSlope()"/>

</form>

The location of the error message isn’t important. It could just as well be part of the form,
but placing it outside underscores this fact.

For the first tests, you’ll just want to verify that the included subject page defines the
method you want to test:

function testThatValidateSlopeIsDefinedAndIncluded() {
validateSlope();

}

The tests will be looking at the value of the <div> tag, so it should be cleared to a known
value before every test. This is done with a setUp() function:

function setUp() {
document.getElementById('errorMsg').innerHTML = "";

}

function testThatValidateSlopeIsDefinedAndIncluded() {
validateSlope();

}

This preceding JavaScript and the DOM fixtures are placed into the test skeleton. The
minimal test is shown in Listing 10-4.

Listing 10-4. A Minimal Test in rsreader/javascript/test/testSlopeValidator.js

<html>
<head>

<title>Test Page line(m, x, b)</title>
<script language="JavaScript"

src="../../tools/jsunit/app/jsUnitCore.js">
</script>
<script language="JavaScript" src="../src/line.js"></script>
<script language="JavaScript">

function setUp() {
document.getElementById('errorMsg').innerHTML = "";

}

function testThatValidateSlopeIsDefinedAndIncluded() {
validateSlope();

}

</script>
</head>

CHAPTER 10 ■ WEB TESTING330

9810ch10.qxd 6/4/08 10:49 AM Page 330

<body>
<div id="errorMsg"></div>
<form name="lineForm">

<input type="text" name="slope"/>
<input type="button" value="Calculate" onclick="validateSlope()"/>

</form>
</body>

</html>

The validateSlop() function hasn’t been defined yet, so when the test is run, you will see
a failure, as shown in Figure 10-4.

Figure 10-4. The test dies because the subject hasn’t been implemented.

JsUnit, like unittest and Nose, distinguishes between failures and errors. Failures result
from assertions failing, and errors result from the tests dying during execution. The combined
failures and errors are shown in the “Errors and failures” panel.

Each line in the “Errors and failures” panel represents one unit test. Highlighting a test
and clicking “Show selected” brings up the details for that test in an alert. Clicking “Show all”
brings up a window with all the failure information. Failures will show detailed information
about the failure, such as the expected value and the value produced. Errors will show a trace-
back. (If you’ve worked with JavaScript much, you’ll be drooling at this prospect.) This is
shown in Figure 10-5.

CHAPTER 10 ■ WEB TESTING 331

9810ch10.qxd 6/4/08 10:49 AM Page 331

Figure 10-5. The “Show all” errors window with a message and traceback

Add a minimal definition to line.js. The file now reads as follows:

$ cat src/line.js

function validateSlope() {
}

function line(m, x, b) {
return m*x + b;

}

Run the test again. This time it succeeds, as shown in Figure 10-6.
From this point forward, the process is very similar to developing with TDD in Python.

You define a function that checks one kind of validation failure:

function testValidationFailsWhenEmpty() {
document.lineForm.slope.value = '';
validateSlope();
var errorMsg = document.getElementById('errorMsg');
assertEquals('You must define a slope', errorMsg.innerHTML);

}

This function demonstrates the classic XUnit test pattern. It sets the expectations,
performs the action, and then checks the results, which are to be found within the
<div id="errorMsg"> tag in the test page.

CHAPTER 10 ■ WEB TESTING332

9810ch10.qxd 6/4/08 10:49 AM Page 332

Figure 10-6. The test runs successfully.

You run the test and, as expected, it fails. You then add the corresponding logic to
validateSlope(). The new definition is as follows:

function validateSlope() {
var errorMsg = document.getElementById('errorMsg');
errorMsg.innerHTML = "You must define a slope";

}

Now when you run the test, it succeeds. This back-and-forth process continues until the
test cases are completed, as shown in Listings 10-5 and 10-6.

Listing 10-5. The Subject Code in rsreader/javascript/src/line.js

function line(m, x, b) {
return m*x + b;

}

function validateSlope() {
var slope = document.lineForm.slope.value;
var errorMsg = document.getElementById('errorMsg');
if (!slope) {

errorMsg.innerHTML = 'You must define a slope';
} else if (isNaN(parseInt(slope))) {

errorMsg.innerHTML = "The slope must be a number";

CHAPTER 10 ■ WEB TESTING 333

9810ch10.qxd 6/4/08 10:49 AM Page 333

} else {
errorMsg.innerHTML = '';

}
}

Listing 10-6. The Test Code in rsreader/javascript/test/testSlopeValidator.html

<html>
<head>

<title>Test Page line(m, x, b)</title>
<script language="JavaScript"

src="../../tools/jsunit/app/jsUnitCore.js">
</script>
<script language="JavaScript" src="../src/line.js"></script>
<script language="JavaScript">

function setUp() {
// clear out any previous message
errorMsg().innerHTML = '';

}

function testFieldIsBlankAfterSuccessfulValidation() {
document.lineForm.slope.value = '0';
errorMsg().innerHTML = 'an arbitrary message';
pressCalculate();
assertEquals('', errorMsg().innerHTML);

}

function testValidationFailsWhenEmpty() {
document.lineForm.slope.value = '';
pressCalculate();
assertEquals('You must define a slope', errorMsg().innerHTML);

}

function testValidationFailsWhenNotANumber() {
document.lineForm.slope.value = 'this is not a number';
pressCalculate();
expected = 'The slope must be a number';
assertEquals(expected, errorMsg().innerHTML);

}

// separate tests from validation mechanism details
function pressCalculate() {

validateSlope();
}

CHAPTER 10 ■ WEB TESTING334

9810ch10.qxd 6/4/08 10:49 AM Page 334

// make tests more concise
function errorMsg() {

return document.getElementById('errorMsg');
}

</script>
</head>
<body>

<form name="lineForm">
<input type="text" name="slope" value="0"/>
<input type="button" value="Calculate" onclick="validateSlope()"/>
<div id="errorMsg"></div>

</form>
</body>

</html>

There are a few things worth pointing out about the final tests:

• The original test function testThatValidateSlopeIsDefinedAndIncluded() no longer
serves any function, so it has been removed.

• The call to the subject method validateSlope() has been extracted into the method
pressCalculate(). This makes it clearer what user action is being tested. It also makes
the test less dependent on the name of the subject function. This is more of a worry
with JavaScript, since we don’t have refactoring tools at our disposal.

• The common subexpression document.getElementById('errorMsg') has been extracted
into a utility method. This makes the test code more concise and moves this depend-
ency into one place, reducing the test’s brittleness.

Aggregating Tests
JsUnit tests can be combined using test suite pages. Test suite pages don’t define any test
functions. Instead they define a single function called suite(). This function, which you
create, must return a jsUnitTestSuite() object. Test pages are added using the methods
addTestPage(testPagePath) and addTestSuite(testSuite). The argument to the latter must
be a jsUnitTestSuite.

At this point, two tests have been defined. They are testLine.js and testSlopeValidator.
html. These are combined into the suite page shown in Listing 10-7.

Listing 10-7. The line.js Test Suite rsreader/javascript/test/lineSuite.html

<html>
<head>

<title>Test Page line(m, x, b)</title>
<script language="JavaScript"

src="../../tools/jsunit/app/jsUnitCore.js">
</script>
<script language="JavaScript">

CHAPTER 10 ■ WEB TESTING 335

9810ch10.qxd 6/4/08 10:49 AM Page 335

function suite() {
var suite = new top.jsUnitTestSuite();
suite.addTestPage("../../javascript/test/lineTest.html");
suite.addTestPage("../../javascript/test/testSlopeValidator.html");
return suite;

}
</script>

</head>
<body>

All tests for line.js.
</body>

</html>

The trickiest part about making a test suite page is the getting the paths right. They are
relative to testRunner.html, which in this example is in rsreader/tools/jsunit/.

Usually when you create test suites, you aggregate test pages or other suite pages. For the
purposes of addTestPage(testPagePath), there is no difference between a test page full of test
functions and a test page that defines a suite. Accordingly, you will deal with test suite objects
and addTestSuite(testSuite) infrequently. The following suite() function aggregates several
test suite pages into a single suite:

function suite() {
// the geometry suite
var suite = new top.jsUnitTestSuite();
suite.addTestPage("../../javascript/test/lineSuite.html");
suite.addTestPage("../../javascript/test/circleSuite.html");
return suite;

}

Running Tests by URL
Remember what I wrote about JsUnit being slow? The preceding test suite with four methods
takes about 1.7 seconds on Firefox 2.0.0.14 on a dual-core 2.3 GHz processor.4 Running an
exhaustive set of JsUnit tests takes a long time. During development, you’ll run tests fre-
quently, so you’ll want to break them up into meaningful and useful chunks that you can run
as needed, and run quickly. Essentially, you’ll use test suites as a means of optimizing your test
runs. Frequently you'll run specific suites interactively.

You’ll find yourself pasting, clicking, and running ad nauseam. Any means of making this
process go faster will make your life easier and encourage you to use tests.5 You can easily
speed things up by supplying information as part of the test page URL.

CHAPTER 10 ■ WEB TESTING336

4. In five years, we’re both going to look back at this sentence and think, “Gee, that’s not even as fast as
the low-voltage CPU in my vacuum cleaner.” I hate dating myself.

5. And that is what I want—I want you to test and test and test, simply because I like using software that
isn’t infested by bugs. I want you to write better software, and I want you to have more fun doing
it, too.

9810ch10.qxd 6/4/08 10:49 AM Page 336

Several parameters can be supplied as part of the test runner URL. The testPage para-
meter is the path to the test page that is run. The autoRun parameter tells the runner to
immediately execute the test page. Instead of loading the test runner, typing in the test page,
and then clicking Run, you could simply open the following URL to execute lineSuite.html:

file:///Users/jeff/Documents/ws/rsreader/tools/jsunit/testRunner.html?testPage=/➥

Users/jeff/Documents/ws/rsreader/javascript/test/lineSuite.html&autoRun=true

Values may also be passed to the test pages themselves. Arbitrary parameter/value pairs
can be placed in the URL. When the page runs, these will be available to the tests through the
object top.jsUnitParmHash. The parameters can be accessed as either top.jsUnitParmHash.
parameterName or top.jsUnitParmHash['parameterName'].

Summary
The Web is a hodgepodge of rapidly evolving technologies, but at its core it is based on three
things: a document format (HTML), a method of identifying documents (URIs/URLs), and a
network protocol (HTTP) that retrieves those documents. Web browsers retrieve documents
from web servers and present them to users. Those documents link to each other through
embedded URIs, and browsers can follow those links.

HTML documents can act as forms. The user supplies the requested information, and it is
sent back to a web server, which returns yet another document. Originally, all processing had
to happen at the server, but this changed with the advent of JavaScript.

JavaScript is a powerful interpreted programming language that runs within the user’s
web browser. The programs are embedded within web pages; they can communicate across
the network to the servers they were loaded from.

Today, most interesting web applications are based on web application frameworks of
one sort or another. These offer the programmer a wide variety of services such as data per-
sistence, HTML templating, and session management. Notable Python frameworks are
Django, Google App Engine, Pylons, Turbogears, and Zope. These frameworks interface with
the underlaying web servers using the Python protocol WSGI.

Web applications should be structured to facilitate unit testing. MVC is a common archi-
tectural choice that separates computation from output generation and input processing. In
this way, each component can be tested independently of the others.

These components are often tested with different tools. Testing the computation or busi-
ness logic is no different than with any other program. The input is also amenable to similar
treatment. The real difference lies with the output. There are many specialized tools for deal-
ing with the markup that most pages generate. Two useful Python libraries are xml.etree.
ElementTree and BeautifulSoup.

JavaScript testing is the real challenge. It is a second programming environment, and it
comes with its own tools. JavaScript programs are application code, so they should be devel-
oped with the same disciplines and practices as the rest of your programs. JavaScript
implementations vary in important details from browser to browser, so it is necessary to test
JavaScript within the target browsers. The most commonly used unit-testing tool is JsUnit. It
operates in both stand-alone and distributed mode. Distributed mode has poor Python har-
ness integration, so I only cover the stand-alone mode in this book.

CHAPTER 10 ■ WEB TESTING 337

9810ch10.qxd 6/4/08 10:49 AM Page 337

file:///Users/jeff/Documents/ws/rsreader/tools/jsunit/testRunner.html?testPage=/�

Chapter 11 examines acceptance testing tools. These tools help to define the program’s
requirements, as well as ensure that the program behaves as expected. The tool I’ll demon-
strate is PyFit.

CHAPTER 10 ■ WEB TESTING338

9810ch10.qxd 6/4/08 10:49 AM Page 338

Functional Testing

Functional testing is about building the right code. It is as important as unit testing, but it
gets far less press. It breaks down into the three rough categories of acceptance testing, integra-
tion testing, and performance testing. I won’t examine performance testing at all, and I’ll only
discuss integration testing in passing. This chapter’s real meat is acceptance testing using
PyFit, a functional and integration testing tool. So what is integration testing, and how do inte-
gration tests differ from acceptance tests?

Integration testing determines if large chunks of the application fit together correctly.
It’s like fitting together a few pieces of a broken mug before you try to glue the entire thing
together. If you can’t fit together the big chunks, then you know you can’t reassemble it all.
These sorts of tests are often not specified up front, but written by programmers or testers as
the project proceeds.

Acceptance tests are begun before the program is written. In a perfect world, they serve
as the outline for all the new features in an iteration of development. They are written in con-
junction with the customer. Acceptance tests are an adjunct to stories. The stories are brief
descriptions that provide a roadmap for the feature, but they don’t supply anything concrete
that can be automatically verified. That’s where the tests come in.

The stories serve as a starting point for the discussion between the developers and the
customer. These two hash out the details. The customer supplies the needed inputs and broad
behaviors of the product. The customer comes from a high level, and the developer comes
from a low level. Their goal is to meet in the middle in a place that captures the essence of the
feature in way that the customer can understand, yet in enough detail that it can be quantified
for testing. The product of this discussion is one or more acceptance tests.

Running Acceptance Tests
Acceptance tests occupy a different place in the build infrastructure than unit tests. The build
fails if unit tests fails, but the product fails if acceptance tests fail. The build must always work,
but the product doesn’t have to work until delivery, so acceptance tests are not expected to
pass with every build.

However, acceptance tests do yield useful information when run. Their successes and
failures suggest how close the product is to completion. This information is interesting to
developers in that it allows them to know how close they are to completion, but it’s also inter-
esting to customers. It should be available to both, and it should be produced regularly, but it
doesn’t need to be produced with every build.

339

C H A P T E R 1 1

9810ch11.qxd 6/4/08 10:14 AM Page 339

The injunction against running functional tests with every build is even more important
when you consider that functional tests are often slower than unit tests. Often they are orders
of magnitude slower, in some instances taking literally days to run against mature products.
Functional test farms are not unheard of with large products. Running them quickly can be a
major engineering effort. At least one person I’ve spoken with has been porting their testing
infrastructure to cloud computing environments such as Amazon’s EC2 so that they can
acquire hundreds of testing machines for short periods of time. Fortunately, I haven’t had to
confront such monsters myself.

This problem is remedied by adding a second kind of build to your continuous integra-
tion servers. The builds you’ve seen until now construct the software and then run the unit
tests. I’ll refer to them as continuous builds. The new builds do this, but they also run the func-
tional tests after the unit tests complete. I’ll refer to these as formal builds. Formal builds
should run regularly, at least daily and preferably more often, and the results should be pub-
lished to the customer.

PyFit
FIT (Framework for Integrated Tests, http://fit.c2.com/) is a tool developed by Ward Cun-
ningham to facilitate collaboration between customers and developers. Tests are specified as
tables, which are written in a tool the customer is familiar with. Developers or testers use
these documents to write the tests. These tables are extracted from the documents, and they
drive the acceptance tests. The end results are similarly formatted tables.

FITNESSE

FIT has given rise to a system called FitNesse, which is built around a wiki. Tests are entered as wiki pages,
meaning that the people writing the tests need to learn a new tool, and they need to have access to the wiki
in order to write tests. (Frankly, wikis are awful places to write tables.) Running the acceptance tests requires
access to the wiki, too.

The real drawback for me is that the tests are independent of the code. It isn’t possible to reproduce the
acceptance criteria for a previous revision of the product. This may work for small groups or projects in which
there is only ever one version of the system deployed at a time. While this is true of many hosted products,
it’s not true of many other software systems, particularly those that I work with.

FIT was originally produced for Java, but blessed clones have been created for many other
languages. PyFit, written by John Roth, is Python’s rendition. This flavor of FIT is well adapted
to running from within the build. FIT has four components:

• Requirement documents are created by customers in conjunction with the developers.
They specify the tests as tables, defining expected inputs and outputs, as well as identi-
fying the associated test fixture.

CHAPTER 11 ■ FUNCTIONAL TESTING340

9810ch11.qxd 6/4/08 10:14 AM Page 340

http://fit.c2.com

• Fixtures are created by developers, and testers perform tests upon the applications.

• Test runners extract test data from tables in the requirement documents and then feed
the data into the associated fixtures.

• Reports are created when the test runners are executed.

The relationship between these is shown in Figure 11-1.

Figure 11-1. The components of FIT

These components are common across all FIT implementations. Requirement docu-
ments can come from the filesystem or from FitNesse servers (see the “FitNesse” sidebar).
In this chapter, they’ll all be coming from a local filesystem.

Writing Requirements
With some FIT implementations, the requirement documents can be in many different for-
mats. The test tables can be extracted from Microsoft Word documents, Excel spreadsheets,
and HTML documents. Any format capable of representing tables can theoretically be used
as a source document as long as a converter is supplied.

My favorite document source is a spreadsheet. Spreadsheets are eminently capable of cre-
ating, manipulating, and formatting tables, and everyone knows how to use one. In particular,
the customers I work with have extensive experience with them.

Now for the bad news: PyFit doesn’t support them. With PyFit, you get one choice: HTML
files. The good news is that there are many tools that will edit HTML files so that you don’t
have to get your hands dirty. Figure 11-2 is a FIT spec being written with Microsoft Word.

CHAPTER 11 ■ FUNCTIONAL TESTING 341

9810ch11.qxd 6/4/08 10:14 AM Page 341

news:PyFit

Figure 11-2. Writing an HTML spec document using Microsoft Word

First and foremost, nonprogrammers are the intended audience for this document. It has
a format that you’ll use again and again:

• The first section describes the purpose of the acceptance test in human terms. It gives a
background for everything that follows.

• The second section describes the variables used in the test. On one side are the names,
and on the other are descriptions. Variable names ending in ? are results calculated by
the test fixture.

• One or more tables follow. These define the acceptance criteria.

Notes may be freely mixed within the document. The documents may be as simple or as
fancy as you desire. When the FIT runner processes the document, it will extract the tables
and use them to drive the fixtures.

These specifications are not intended to be data-driven tests that exhaustively examine
every possible input and output. The rows should specify interesting conditions. This data
should emphasize the things that are important to determine about the test. It is a waste of
everyone’s time to supply 50 or 60 rows when only a few are necessary to convey a complete
explanation of how the feature is supposed to work.

So who is everyone? Everyone includes the customers, the developers, and the testers.
The preceding spec would most likely be created by the customer. It’s rough and it needs
refinement. The document might be shuttled back and forth by e-mail a few times while
people discuss the possibilities. Eventually, the team huddles around someone’s laptop and
hashes out a finished version. The precise process by which this happens isn’t important.

What matters is that a discussion happens between all stakeholders. This requirement
document serves as the centerpiece for discussion. It forces everyone to decide on a concrete
description of the feature.

Along the way, the team creates a common vocabulary describing the application and its
actions. This vocabulary defines the system metaphor. At first, this vocabulary grows quickly,
but the birth rate of new terms declines quickly.

CHAPTER 11 ■ FUNCTIONAL TESTING342

9810ch11.qxd 6/4/08 10:14 AM Page 342

Because the group creates these documents, they are at a level that all parties can under-
stand. Each party involved will pull the documents in their own directions. The customers will
want them to be too abstract, and the developers will want them to be too concrete. It will take
a while before the participants learn to choose the right level. This is a good time to use people
with both customer- and application-facing experience, such as sales engineers. They can
serve as arbitrators early in the process.

This is FIT’s magic. The documents are abstract enough that nontechnical people can
grasp them and learn to write them with familiar tools, and they’re detailed enough to pro-
duce tests from. Their level of abstraction allows them to serve as design specifications, and
their level of detail makes them sufficient to replace technical requirement documents and
test plans. Since they can be executed, they serve as formal acceptance criteria, which can be
verified through automation. This also means that they won’t fall out of date.

There is one crucial thing missing from the specification in Figure 11-2. FIT has no way
of knowing which test fixture to use. This information is added to the form by the developer
when they begin writing the test implementation. The new table is shown in Figure 11-3.

Figure 11-3. A fixture binding has been added to the table.

In the figure, a fixture binding has been added to the beginning of the table. Customers
know that this line is techie magic stuff, so they avoid modifying it.

The first row in Figure 11-3 binds the fixture geometry.line.CheckCoordinates to the
values in the table. A developer or tester creates the fixture. This is a simple (but broken)
example.

from fit.ColumnFixture import ColumnFixture
class CheckCoordinates(ColumnFixture):

_typeDict={
"slope": "Float",
"x": "Float",
"intercept": "Float",
"y": "Float",
}

slope = 0.0
x = 0.0
intercept = 0.0
def y(self):

return self.slope * self.x

When FIT runs, it produces an XML summary document and an HTML page for every
test. The HTML page for this test and fixture is shown in Figure 11-4.

CHAPTER 11 ■ FUNCTIONAL TESTING 343

9810ch11.qxd 6/4/08 10:14 AM Page 343

Figure 11-4. A FIT report for a broken test

Successful test results are shown in green and unsuccessful ones are shown in red.
A link to these documents may be supplied to the customers and to management. This

provides them with a self-service view into the status of the current development iteration.
Once an organization adapts to using FIT as its primary specification tool, these reports sup-
plant many status meetings and other formal communications.

At the beginning, customers and management will have to become familiar with the
rhythms and patterns with which features are fulfilled. This will take time, and that needs to
be made up front. Care should be taken when introducing the process, and expectations
should be managed carefully.

Once everyone is comfortable with the process, it has social benefits. Developers and
managers will feel less need to pester developers for project statuses. Developers will feel less
harried and less pressured, and it will give them a greater sense of control.

It will also give customers and managers the feeling of more control, too. Instead of harry-
ing development (which management likes doing as little as development likes receiving),
they can look to the day’s reports. Regular meaningful feedback that they can retrieve empow-
ers them, and it builds trust in their team.

A Simple PyFit Example
The previous section has hopefully given you a good feeling for what FIT does and how it
can benefit you. Unfortunately, setting up FIT is more complicated than it needs to be. The
documentation is patchy at best, and if you’re not using FitNesse, it fails to address many
implementation questions, particularly to do with running PyFit from a build. Fortunately,
this lack of information conceals a simple process.

It should be easy to set up a build on a new machine. Each additional package that you
have to install to perform a build is a potential barrier. Each step is another delay when new
people start on the project, when a machine is rebuilt, or when a new build server is added.
Each new package has to be back-ported to all the existing build environments, too. There is
little as frustrating as updating your source and discovering that you need to install a new
package, so your build should carry its own infrastructure whenever possible.

The best way to learn about PyFit is to work with it. You can install it via easy_install, but
none of the executables will work, and it won’t be accessible to the build. Instead you’ll install
it into the tools directory that was created for JsUnit in Chapter 10, and the build will run it
from there.

As I write, the current version is 0.8a2, and you can download it directly from http://
pypi.python.org/packages/source/P/PyFIT/PyFIT-0.8a2.zip.

CHAPTER 11 ■ FUNCTIONAL TESTING344

9810ch11.qxd 6/4/08 10:14 AM Page 344

http://pypi.python.org/packages/source/P/PyFIT/PyFIT-0.8a2.zip
http://pypi.python.org/packages/source/P/PyFIT/PyFIT-0.8a2.zip

■Note As of this writing, an earlier version is also available from the Download Now section of the FIT web
site, at http://fit.c2.com. Hopefully, it will be up to date by the time you read this.

$ curl -o /tmp/PyFIT-0.8a2.zip -L➥

http://pypi.python.org/packages/source/P/PyFIT/PyFIT-0.8a2.zip

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 962k 100 962k 0 0 314k 0 0:00:03 0:00:03 --:--:-- 356k

$ cd /Users/jeff/Documents/ws/rsreader/tools
$ ls -F

jsunit/

$ unzip /tmp/PyFIT-0.8a2.zip

Archive: /tmp/PyFIT-0.8a2.zip
inflating: PyFIT-0.8a2/PKG-INFO
inflating: PyFIT-0.8a2/README.txt
...
inflating: PyFIT-0.8a2/fit/tests/VariationsTest.py
inflating: PyFIT-0.8a2/fit/tests/__init__.py

$ ls -F

PyFIT-0.8a2/ jsunit/

The tests will always run with the version of PyFit in tools, so the version information in
the file name is superfluous.

$ mv PyFIT-0.8a2 pyfit
$ ls -F

pyfit/ jsunit/

Finally, you can remove the ZIP file that you downloaded earlier:

$ rm /tmp/PyFIT-0.8a2.zip

At this point, you should check the pyfit directory and all of its contents.

CHAPTER 11 ■ FUNCTIONAL TESTING 345

9810ch11.qxd 6/4/08 10:14 AM Page 345

http://fit.c2.com
http://pypi.python.org/packages/source/P/PyFIT/PyFIT-0.8a2.zip

Giving the Acceptance Tests a Home
Unlike unit tests, acceptance tests do not run every time the code is built. They are run when
the developer needs to see the results, or when iteration progress is checked. The latter is typi-
cally done on a regular basis by a special build. This means that the acceptance tests must be
separated from unit tests. You can do this by creating a directory for acceptance tests:

$ cd /Users/jeff/Documents/ws/rsreader
$ mkdir acceptance
$ ls -F

acceptance/ ez_setup.py setuptools-0.6c7-py2.5.egg
build/ javascript/ src/
dist/ setup.cfg thirdparty/
ez_setup.py setup.py tools/

You must have locations to store requirement documents, fixtures, and reports, and they
should be separate:

$ mkdir acceptance/requirements
$ mkdir acceptance/fixtures
$ mkdir acceptance/reports

You should check these into your source repository at this point.

Your First FIT
Requirement documents are at the heart of FIT. There are a number of different families of
tests that can be created with FIT. The type of test I’m showing you how to create is a column
fixture. A column fixture is a table in which each column represents a different input or output
to the test. Each row is a different combination of these values.

You’re limited to HTML documents at this time—it’s the format that PyFit currently
understands. This doesn’t mean that you have to write them by hand, though. Microsoft Word,
Adobe Dreamweaver, or any tool capable of reading and writing HTML will speed the job
along. The requirement document shown following is written to the file acceptance/
requirements/geometry/line.html:

$ cat acceptance/requirements/geometry/line.html

<html>
<head>

<title>Line function for geometry pacakge</title>
</head>
<body>

<table>
<tr><td colspan="4">geometry.line.CheckCoordinate</td></tr>
<tr>

<td>slope</td>
<td>x</td>

CHAPTER 11 ■ FUNCTIONAL TESTING346

9810ch11.qxd 6/4/08 10:14 AM Page 346

<td>intercept</td>
<td>y?</td>

</tr>
<tr>

<td>5</td>
<td>3</td>
<td>0</td>
<td>15</td>

</tr>
<tr>

<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>

</tr>
</table>

</body>
</html>

The test-specific information is printed in bold. As with all HTML, it’s much easier to
interpret in a browser, as Figure 11-5 shows.

Figure 11-5. The simple test table shown in a browser

This table represents column fixture, and it has three important parts:

• The first row has one cell that reads geometry.line.CheckCoordinates. This designates
the fixture for the test.

• The second row assigns variable names to columns. Columns names ending in ? are
expected results from the tests.

• Each subsequent row contains a set of test values. A test fixture is constructed for each
one, and the values from each column are used to either prepare the test or compare
the results.

Column fixtures are commonly used to represent business process. A friend’s favorite FIT
examples come from a marketing department that he worked in. The tables consisted of crite-
ria for when coupons should be given to customers. The conditions were involved, but
walking a person through the process answered many questions about which values were
important and which were not. They were all easily represented as columns.

CHAPTER 11 ■ FUNCTIONAL TESTING 347

9810ch11.qxd 6/4/08 10:14 AM Page 347

There are other kinds of fixtures, and they have different behaviors, but they’re all speci-
fied as tables.

The Fixture
A fixture can be thought of as a kind of command object. A fixture is created, the test values
are set in the fixture, and then command methods are called. The variable names and com-
mand method names match those in the table.

Here, the fixtures are placed into acceptance/fixtures, which is the root of a Python
package tree. Since it is a Python package tree, each subdirectory needs to have an
__init__.py file.

$ mkdir acceptance/fixtures/geometry
$ touch acceptance/fixtures/geometry/__init__.py
$ mkdir acceptance/fixtures/geometry/line
$ touch acceptance/fixture/geometry/line/__init__.py

You’ll notice something weird here—the binding line in the table is geometry.line.
CheckCoordinates. It would be reasonable for you assume that it specifies the class
CheckCoordinates in the module geometry.line, but you would be wrong. It actually specifies
the class CheckCoordinates in the module geometry.line.CheckCoordinates. Go figure. Here is
the fixture’s code:

$ cat acceptance/fixtures/geometry/line/CheckCoordinates.py

from fit.ColumnFixture import ColumnFixture

class CheckCoordinates(ColumnFixture):
_typeDict={

"slope": "Float",
"x": "Float",
"intercept": "Float",
"y": "Float",
}

slope = 0.0
x = 0.0
intercept = 0.0

def y(self):
return self.slope * self.x + self.intercept

The fixture breaks into three parts. All of the names correspond to columns in the require-
ments table minus any meaningful punctuation, such as the trailing ? on test results.

CHAPTER 11 ■ FUNCTIONAL TESTING348

9810ch11.qxd 6/4/08 10:14 AM Page 348

• The first section declares the test’s variables and their types. This reflects FIT’s strongly
typed Java heritage. The argument types could be inferred from member definitions.

• The second section declares and initializes defaults for the variables that FIT supplies
from each row in the requirements table.

• The third section defines the methods that produce results. Each is named after the
corresponding column in the requirements table.

For this fixture, you can think of the execution process as following these steps:

f = CheckCoordinates()
converted_row = converted_values(row, f._typeDict)
f.slope = converted_row['slope']
f.x = converted_row['x']
f.intercept = converted_row['intercept']
f.recordAssertionResults('y?', converted_row['y?'], f.y())

The reality is more complicated, but this captures the essence of the process.

Running PyFit
PyFit supplies many different programs for running tests. These are located in tools/pyfit/
fit. You want FolderRunner.py, which reads requirement documents from one directory and
writes the finished reports to another. FolderRunner.py came from a ZIP file, and on UNIX
systems this means that the execute bit isn’t set, so you’ll have to call Python to run it.

$ python tools/pyfit/fit/FolderRunner.py acceptance/requirements acceptance/reports

Result print level in effect. Files: 'e' Summaries: 't'
Total tests Processed: 0 right, 0 wrong, 0 ignored, 0 exceptions

This indicates that no tests were found. By default, FolderRunner.py searches only the
top-level directory you specified, but line.html is in a subdirectory. The +r flag tells
FolderRunner.py to search for tests recursively.

$ python tools/pyfit/fit/FolderRunner.py +r acceptance/requirements➥

acceptance/reports

Result print level in effect. Files: 'e' Summaries: 'f'
Processing Directory: geometry
0 right, 0 wrong, 0 ignored, 1 exceptions line.html
Total this Directory: 0 right, 0 wrong, 0 ignored, 1 exceptions
Total tests Processed: 0 right, 0 wrong, 0 ignored, 1 exceptions

This is better. It found the test—however, it should display 1 right, 0 wrong, 0 ignored,
0 exceptions. Obviously there’s a problem here, so you’ll want to look at the results. The test
was in acceptance/requirements/geometry/line.html, so the results are in acceptance/
reports/geometry/line.html.

CHAPTER 11 ■ FUNCTIONAL TESTING 349

9810ch11.qxd 6/4/08 10:14 AM Page 349

$ cat acceptance/reports/geometry/line.html

...
<tr><td colspan="4" class="fit_error">geometry.line.CheckCoordinates➥

<hr>The module 'geometry.line' was not found.</td></tr>
...

The relevant message in the preceding report is shown in bold. The module geometry.line
wasn’t found because the directory acceptance/fixtures isn’t on the PYTHONPATH. This is some-
thing that can be easily fixed:

$ export PYTHONPATH=acceptance/fixtures
$ python tools/pyfit/fit/FolderRunner.py +r acceptance/requirements➥

acceptance/reports

Result print level in effect. Files: 'e' Summaries: 'f'
Total tests Processed: 1 right, 0 wrong, 0 ignored, 0 exceptions

This is exactly what you wanted. The tests have run and the results have been generated.

Making It Easier
You’re going run PyFit frequently. Remembering all those values is a hassle, and you’re cer-
tainly not going to want to type them over and over again, so you should create a script to do it
for you.

The tool is going to have to go someplace, and you don’t have a location for generic tool
scripts yet. You can put them in a subdirectory of tools:

$ mkdir tools/bin

The script is called tools/bin/accept.py. The first version is shown in Listing 11-1.

Listing 11-1. The First Pass at the Acceptance Testing Script

#!/usr/local/bin/python

from subprocess import Popen
import sys

cmd = "%(python)s %(fitrunner)s +r %(requirements)s %(reports)s"
expansions = dict(python=sys.executable,

fitrunner='./tools/pyfit/fit/FolderRunner.py',
requirements='./acceptance/requirements',
reports='./acceptance/reports')

env = dict(PYTHONPATH='acceptance/fixtures')

proc = Popen(cmd % expansions, shell=True, env=env)
proc.wait()

CHAPTER 11 ■ FUNCTIONAL TESTING350

9810ch11.qxd 6/4/08 10:14 AM Page 350

On UNIX systems, you must make the script executable before it can be run:

$ chmod a+x tools/bin/accept.py

Before you can verify that it’s doing the right thing, you need to remove PYTHONPATH from
your shell’s environment:

$ unset PYTHONPATH

At this point, running FolderRunner.py by hand results in an exception again:

$ python tools/pyfit/fit/FolderRunner.py +r acceptance/requirements➥

acceptance/reports

Result print level in effect. Files: 'e' Summaries: 'f'
Processing Directory: geometry
0 right, 0 wrong, 0 ignored, 1 exceptions line.html
Total this Directory: 0 right, 0 wrong, 0 ignored, 1 exceptions
Total tests Processed: 0 right, 0 wrong, 0 ignored, 1 exceptions

However, running the script works:

$ tools/bin/accept.py

Result print level in effect. Files: 'e' Summaries: 'f'
Total tests Processed: 1 right, 0 wrong, 0 ignored, 0 exceptions

There is still a problem, though. The script will only run from the project’s root directory:

$ cd tools
$ bin/accept.py

/Library/Frameworks/Python.framework/Versions/2.5/Resources/Python.app/Contents/➥

MacOS/Python: can't open file './tools/pyfit/fit/FolderRunner.py':➥

[Errno 2] No such file or directory

All the paths are relative, which is good. It means that the tools work no matter where the
project is placed on the filesystem. It’s bad, however, in that the script will only run from the
project’s root directory. You could require people to run it from there, but that’s inconvenient—
people forget rules like that, so this isn’t a particularly robust solution.

You could extract the root directory from an environment variable and require people to
set that, but this creates problems for people working on multiple branches. In order to move
between them, they’ll have to reconfigure their environment.

A more robust solution determines the directory from the path. The revised program is
shown in Listing 11-2.

CHAPTER 11 ■ FUNCTIONAL TESTING 351

9810ch11.qxd 6/4/08 10:14 AM Page 351

Listing 11-2. The Script accept.py Now Runs from Any Directory Within the Project

#!/usr/local/bin/python

import os
from subprocess import Popen
import sys

def bin_dir():
return os.path.dirname(os.path.abspath(__file__))

def find_dev_root(d):
setup_py = os.path.join(d, 'setup.py')
if os.path.exists(setup_py):

return d
parent = os.path.dirname(d)
if parent == d:

return None
return find_dev_root(parent)

dev_root = find_dev_root(bin_dir())
if dev_root is None:

msg = "Could not find development environment root"
print >> sys.stderr, msg
sys.exit(1)

os.chdir(dev_root)

cmd = "%(python)s %(fitrunner)s +r %(requirements)s %(reports)s"
expansions = dict(python=sys.executable,

fitrunner='./tools/pyfit/fit/FolderRunner.py',
requirements='./acceptance/requirements',
reports='./acceptance/reports')

env = dict(PYTHONPATH='tools/pyfit/fit:acceptance/fixtures')

proc = Popen(cmd % expansions, shell=True, env=env)
proc.wait()

The project’s root is the ancestor of the tools/bin directory that contains setup.py. The
functions bin_dir() and find_dev_root(directory) perform this search. The solution is a
mouthful, but it can be used over and over again. When you need to reuse it, you should move
it into a common module that gets installed with your development environment.

The script now runs from anywhere:

$ cd /tmp
$ /Users/jeff/Documents/ws/rsreader/tools/bin/accept.py

Result print level in effect. Files: 'e' Summaries: 'f'
Total tests Processed: 1 right, 0 wrong, 0 ignored, 0 exceptions

CHAPTER 11 ■ FUNCTIONAL TESTING352

9810ch11.qxd 6/4/08 10:14 AM Page 352

Besides learning a general technique, you’ve made the job of running from Buildbot that
much easier.

FIT into Buildbot
In a world with limitless computing resources, there would only be one kind of a build. That
build would execute the program’s full test suite. It would run every unit test, acceptance test,
functional test, and performance test. In the real world, however, there are rarely enough
resources to do this.

Large mature projects often have full test suites that take hours if not days to run. Many of
the tests thirstily consume resources. For obvious reasons, performance tests are consummate
gluttons. Functional tests for products such as embedded systems or device drivers may
require specialized hardware.

While the size of the unit test suite is roughly proportional to the size of the code base, the
size of the functional test suite is proportional to the code base’s age. As the code ages, the
functional suite bloats. Eventually, it may grow so large that massive parallelization is the only
solution to running it in a reasonable time.

Functional tests need to be broken out long before then, and acceptance tests do, too. The
team needs regular progress reports for the acceptance tests, so the build containing them is
produced at regular intervals.

Casting back to Chapter 5, you’ll recall that we set up a build master and a build slave
named rsreader-linux. The build system produced builds for both Python 2.4 and Python 2.5.
The builds were triggered whenever a change was submitted to the Subversion server.

You’re about to add a second kind of build that includes the acceptance tests. This build
will run several times a day, and it will run even if there are no recent changes.

You do this by defining the following items in the Buildbot configuration file master.cfg:

• A schedule that determines when a builder runs

• A build factory that constructs a build

• Build steps that the build performs

• A builder that ties together a build factory, a slave, and a factory

Before you can run a builder, you need to set up the infrastructure on the slave.

Preparing the Slave
Each builder needs a unique build directory under /usr/local/buildbot/slave/rsreader.
The previous two were full-py2.4 and full-py2.5. This will be a Python 2.5 builder, and you
should name it acceptance-py2.5.

slave$ cd /usr/local/buildbot/rsreader/slave
slave$ sudo -u build mkdir acceptance-py2.5

The builder needs its own Python installation. You can copy that from full-2.5.

slave$ sudo -u build cp -rp full-py2.5/python2.5 acceptance-py2.5/python2.5

Now you can set up the builder.

CHAPTER 11 ■ FUNCTIONAL TESTING 353

9810ch11.qxd 6/4/08 10:14 AM Page 353

Run New Builder, Run!
There’s an old maxim about software: Make it run. Make it run right. Make it run fast. It
applies to configuration, too. Right now, you want to focus on making the builder run. Later,
you can make it run right. This prevents you from conflating basic configuration errors with
the mistakes you make while hacking out a new builder, so you should configure the build like
the existing ones. They are defined by /usr/local/buildbot/master/rsreader/master.cfg as
follows:

b1 = {'name': "buildbot-full-py2.5",
'slavename': "rsreader-linux",
'builddir': "full-py2.5",
'factory': pythonBuilder('2.5'),
}

b2 = {'name': "buildbot-full-py2.4",
'slavename': "rsreader-linux",
'builddir': "full-py2.4",
'factory': pythonBuilder('2.4'),
}

c['builders'] = [b1, b2,]

Adding the new definition gives you this:

...
b2 = {'name': "buildbot-full-py2.4",

'slavename': "rsreader-linux",
'builddir': "full-py2.4",
'factory': pythonBuilder('2.4'),
}

b3 = {'name': "buildbot-acceptance-py2.5",
'slavename': "rsreader-linux",
'builddir': "acceptance-py2.5",
'factory': pythonBuilder('2.5'),
}

c['builders'] = [b1, b2, b3]

After doing this, you should reload the Buildbot configuration to see if you’ve introduced
any errors:

master$ buildbot reconfig /usr/local/buildbot/master/rsreader

sending SIGHUP to process 52711
2008-05-05 15:59:56-0700 [-] loading configuration from /usr/local/buildbot/master
2008-05-05 15:59:56-0700 [-] updating builder buildbot-full-py2.4: factory changed
...
Reconfiguration appears to have completed successfully.

The reconfig worked, so you can safely continue. The new builder must be scheduled.
Here is the section of master.cfg containing the new scheduler definition:

CHAPTER 11 ■ FUNCTIONAL TESTING354

9810ch11.qxd 6/4/08 10:14 AM Page 354

####### SCHEDULERS

from buildbot.scheduler import Nightly, Scheduler
c['schedulers'] = []
c['schedulers'].append(Scheduler(name="rsreader under python 2.5",

branch=None,
treeStableTimer=60,
builderNames=["buildbot-full-py2.5"]))

c['schedulers'].append(Scheduler(name="rsreader under python 2.4",
branch=None,
treeStableTimer=60,
builderNames=["buildbot-full-py2.4"]))

c['schedulers'].append(Scheduler(name="Acceptance tests under python 2.5",
branch=None,
treeStableTimer=60,
builderNames=["buildbot-acceptance-py2.5"]))

At this point, you should reconfigure the master. A quick look at the waterfall display in
Figure 11-6 shows that the builder is online.

Figure 11-6. The new builder is alive.

You send a notification to verify that the builder actually works:

master$ buildbot sendchange --master buildmaster:4484 -u jeff -n 30 setup.py

change sent successfully

You can watch the build happen on the waterfall display.

CHAPTER 11 ■ FUNCTIONAL TESTING 355

9810ch11.qxd 6/4/08 10:14 AM Page 355

Figure 11-7 shows the build completing on my system. You should see something similar.
Now that you know the builder runs, you have to make it run right. Running the acceptance
tests requires making a new builder factory.

Figure 11-7. The new builder builds.

The current builder factory does most of what you want. You can easily leverage this. The
new builder will call the old one and then add its own steps.

def pythonBuilder(version):
python = python_(version)
nosetests = nosetests_(version)
site_bin = site_bin_(version)
site_pkgs = site_pkgs_(version)

f = factory.BuildFactory()
...

f.addStep(ShellCommand,
command=[python, "./setup.py", "test"],
description="Running unit tests",
descriptionDone="Unit tests run")

return f

CHAPTER 11 ■ FUNCTIONAL TESTING356

9810ch11.qxd 6/4/08 10:14 AM Page 356

def pythonAcceptanceBuilder(version):
f = pythonBuilder(version)
f.addStep(ShellCommand,

command=[python_(version, "./tools/bin/accept.py"],
description="Running acceptance tests",
descriptionDone="Acceptance have been run")

return f

You should reload the master to ensure that you haven’t made any mistakes. The new
builder definition still references the old builder factory, so you make the following change to
hook in the new one:

b3 = {'name': "buildbot-acceptance-py2.5",
'slavename': "rsreader-linux",
'builddir': "acceptance-py2.5",
'factory': pythonAcceptanceBuilder('2.5'),

}

Now you should reload the master again and verify that you didn’t make an error. With
that verified, you should trigger a build again:

master$ buildbot sendchange --master buildmaster:4484 -u jeff -n 30 setup.py

change sent successfully

When the build completes, you’ll see the new step, as shown in Figure 11-8.

Figure 11-8. PyFit has been run.

The output from the build step shows that the build has been run successfully, but reports
aren’t available.

CHAPTER 11 ■ FUNCTIONAL TESTING 357

9810ch11.qxd 6/4/08 10:14 AM Page 357

Making the Reports Available
When the PyFit step completes, the results are left in acceptance/reports. They’re HTML doc-
uments, so you can publish them by copying them into a web server’s document tree. Since
you’ll invariably have more than one build slave, you’ll need to centralize the reporting.

Fortunately, this is easy to do with Buildbot. It can copy files from the slaves to the master,
and you can use the master’s internal web server to present the reports.

You’ll want to track the project’s progress over time, so you’ll want to publish all the
acceptance reports simultaneously. Copying them to a fixed location on the master won’t
work. If you do that, then the latest reports will overwrite the previous reports, so you’ll need
to copy each to a different location.

The combination of the Python version and Subversion revision make a useful identifier.
These should effectively be unique. You’ll copy the results to

public_html/rsreader/acceptance/%(subversion_revision)s-py%(python_version)s/reports

Buildbot makes build-related information such as the branch and the revision available
through build parameters. The documentation would lead you to believe that the feature is
complete, but it isn’t.1 The mechanisms for setting and reading build properties are in place,
but the final pieces that set them are missing. Along the way, you’re going to have to supply
some of this machinery yourself.

The publishing process has the following steps:

• The slave packages the reports.

• The master copies the reports from the slave.

• The master unpacks and moves the reports to the web server.

Each of these corresponds to a build step.

Packaging the Reports
The build tool accept.py puts the reports into acceptance/reports. These files need to be
zipped into a single archive so that the next step can copy them over. At this point, only this
directory must be copied, but that is likely to change in the future. It’s temping to issue shell
commands directly, and this will work. However, to do this, Buildbot must understand how
the build is structured.

Using formal interfaces allows developers to restructure the build without having to mod-
ify the build server. A red flag should go up when you find yourself tweaking the build system
to manipulate build’s internal structure. Instead you resolve the issue by putting the details
within the build itself; this often involves creating some sort of tool.

You’re about to create a tool called package_reports.py. Like access.py, it lives in
rsreader/tools/bin. Here’s the code:

CHAPTER 11 ■ FUNCTIONAL TESTING358

1. This is true as of Buildbot 0.7.7.

9810ch11.qxd 6/4/08 10:14 AM Page 358

#!/usr/local/bin/python

import os
from subprocess import Popen
import sys

if len(sys.argv) != 2:
msg = """Usage: %s ZIPFILE

This must be run from the project's root.
"""

print >> sys.stderr, msg % sys.argv[0]
sys.exit(0)

filename = sys.argv[1]
reports = os.path.join("acceptance", "reports")
proc = Popen(['zip', '-r', filename, reports])
proc.wait()

Currently it just zips up the directory acceptance/reports into the file reports.zip, but
this still hides the layout from the build scripts. It takes the name of the ZIP file as its only
argument, and it runs from the slave’s builder directory. You should check this file in.

The build step is straightforward:

def reportsFile():
return "reports.zip"

def pythonAcceptanceBuilder(version):
f.addStep(ShellCommand,

haltOnFailure=True,
command=[python_(version), "./tools/bin/accept.py"],
description="Running acceptance tests",
descriptionDone="Acceptance tests complete")

f.addStep(ShellCommand,
haltOnFailure=True,
command=[python_(version),

"./tools/bin/package_reports.py",
reportsFile()],

description="Packaging build reports",
descriptionDone="Build reports packaged")

After you make this change, you should force a build, and it should succeed.

Retrieving the Reports
The Buildbot installation will have acceptance tests for both Python 2.4 and 2.5. These builds
will run at the same time, so you need to keep the retrieved ZIP files separate. If you don’t,
then they may stomp on each other.

CHAPTER 11 ■ FUNCTIONAL TESTING 359

9810ch11.qxd 6/4/08 10:14 AM Page 359

An easy way to do this is to create an upload directory for each builder. You’ll name these
directories uploaded-pyVersion. The version corresponds to the Python version (e.g., 2.5).
These directories must be created before the copy happens.

The FileUpload build step copies the files. You supply the source file name on the slave,
and the destination file name on the master. These can be absolute or relative path names. On
the slave, they are relative to the build directory, and on the master, they are relative to the
server root directory.

def reportsFile():
return "reports.zip"

def makeUploadDirectory(version):
uploads = uploadDirectory(version)
if not os.path.exists(uploads):

os.mkdir(uploads, 0750)

def reportsFileLocal(version):
return os.path.join(uploadDirectory(version), reportsFile())

def uploadDirectory(version):
return "uploaded-py%s" % version

def pythonAcceptanceBuilder(version):
f.addStep(ShellCommand,

haltOnFailure=True,
command=[python_(version), "./tools/bin/accept.py"],
description="Running acceptance tests",
descriptionDone="Acceptance tests complete")

f.addStep(ShellCommand,
haltOnFailure=True,
command=[python_(version),

"./tools/bin/package_reports.py",
reportsFile()],

description="Packaging build reports",
descriptionDone="Build reports packaged")

f.addStep(FileUpload,
haltOnFailure=True,
slavesrc=reportsFile(),
masterdest=reportsFileLocal(version))

Once you’ve made these changes, you should restart the master and trigger a build. Once
the build succeeds, you’re ready to publish the reports.

Publishing the Reports
You’d think that unpacking a ZIP file to a directory would be an easy job. Unfortunately, you’d
be wrong. The command you’re trying to run is

unzip -qq -o -d %(destination)s %(zipfile)s

CHAPTER 11 ■ FUNCTIONAL TESTING360

9810ch11.qxd 6/4/08 10:14 AM Page 360

The -qq option silences all output, and the -o option overwrites existing files without
prompting. The ZIP file will be unpacked in the directory specified by the -d option, which
also happens to create any missing directories.

The destination location contains the revision number and the Python version. This path
is public_html/rsreader/%(revision)s-py%(version), and it is relative to Buildbot’s root direc-
tory on the master. Getting the revision number is the first hurdle.

Getting the Revision

The Buildbot 0.7.7 documentation suggests that this information is in the "revision" build
property. BuildStep.getProperty() and BuildStep.setProperty() form the core of the build
properties system, but only custom tasks can use them. ShellCommand classes have another
access mechanism: command strings are wrapped in the WithProperties class, and this class
expands them at runtime.2

The documentation suggests that the "revision" property is set by the SVN build step.
Alas, that is not true. You must create a customized SVN build step to set this property.

SVN calls svn checkout to create the build directory. One of the last lines from this com-
mand is r'^Checked out revision \d+\.', where \d+ is the revision number. All you need to
do is search the log for that pattern.

import re
from StringIO import StringIO
...
class SVNThatSetsRevisionProperty(SVN):

checked_out_line = re.compile("^Checked out revision (\d+)\.")

def createSummary(self, log):
for line in StringIO(log.getText()).readlines():

found = self.checked_out_line.search(line)
if found:

self.setProperty("revision", found.group(1))
return SVN.createSummary(self, log)

The method createSummary(log) gives you access to the log just after it completes and
just before Buildbot makes any decisions about the step’s status. There are quite a few other
hook methods that let you intercept a step’s control flow.

It is time to replace the old SVN step with the new one:

def pythonBuilder(version):
python = python_(version)
nosetests = nosetests_(version)
site_bin = site_bin_(version)
site_pkgs = site_pkgs_(version)

CHAPTER 11 ■ FUNCTIONAL TESTING 361

2. Used thusly: ShellCommand(command=["rm", "-rf", WithProperties("uploaded-py%(revision)s")]).

9810ch11.qxd 6/4/08 10:14 AM Page 361

f = factory.BuildFactory()
f.addStep(SVNThatSetsRevisionProperty,

baseURL="svn://repos/rsreader/",
defaultBranch="trunk",
mode="clobber",
timeout=3600)

f.addStep(ShellCommand,
command=["rm", "-rf", site_pkgs],
description="removing old site-packages",
descriptionDone="site-packages removed")

...

You’ll see no change when you fire off the build this time.

Publishing the Build

The publishing step only runs on the master. Buildbot doesn’t provide much support for this,
but it’s not too hard. You’ll start with a very simple build step:

from buildbot.process.buildstep import BuildStep
from buildbot.status.builder import SUCCESS
...
class InstallReports(BuildStep):

def start(self):
self.step_status.setColor("green")
self.step_status.setText("Reports published")
self.finished(SUCCESS)

This step ties it into the build:

def pythonAcceptanceBuilder(version):
...
f.addStep(FileUpload,

haltOnFailure=True,
slavesrc=reportsFile(),
masterdest=reportsFileLocal(version))

f.addStep(InstallReports, haltOnFailure=True)

Run it, and it should produce a successful green build step.
You’ll need to publish to a URL. On my system, this URL is http://buildmaster.

theblobshop.com:8010/rsreader/%(revision)s-py%(version)s. You’ll use a fixed URL the
first time, and you’ll subsequently parameterize it:

class InstallReports(BuildStep):
url = "http://buildmaster.theblobshop.com:8010/rsreader/18-py2.5"

def start(self):
self.setUrl("reports", self.url)

CHAPTER 11 ■ FUNCTIONAL TESTING362

9810ch11.qxd 6/4/08 10:14 AM Page 362

svn://repos/rsreader
http://buildmaster
http://buildmaster.theblobshop.com:8010/rsreader/18-py2.5

self.step_status.setColor("green")
self.step_status.setText("Reports published")
self.finished(SUCCESS)

Parameterizing the URL requires the code revision and Python version. The customized
SVN step supplies the revision via the build parameter. The build factory supplies the version
as an argument, as with other steps in the build factory.

class InstallReports(BuildStep):
url = "http://buildmaster.theblobshop.com:8010/rsreader/18-py2.5"

def __init__(self, version, **kw):
self.version = version
BuildStep.__init__(self, **kw)
self.addFactoryArguments(version=version)

def start(self):
self.setUrl("reports", self.url)
self.step_status.setColor("green")
self.step_status.setText("Reports published")
self.finished(SUCCESS)

When you initialize a build step, you must always pass on the other arguments to the par-
ent. Not doing this leads to unpredictable behavior.

Now you have to change how the factory calls the build step.

def pythonAcceptanceBuilder(version):
...
f.addStep(FileUpload,

haltOnFailure=True,
slavesrc=reportsFile(),
masterdest=reportsFileLocal(version))

f.addStep(InstallReports,
haltOnFailure=True,
version=version)

Now the build step has access to the revision and version, so you can finally parameterize
the URL:

class InstallReports(BuildStep):
url = "http://buildmaster.theblobshop.com:8010" \

"/rsreader/%(revision)s-py%(version)s"

def __init__(self, version, **kw):
self.version = version
BuildStep.__init__(self, **kw)
self.addFactoryArguments(version=version)

CHAPTER 11 ■ FUNCTIONAL TESTING 363

9810ch11.qxd 6/4/08 10:14 AM Page 363

http://buildmaster.theblobshop.com:8010/rsreader/18-py2.5
http://buildmaster.theblobshop.com:8010

def expansions(self):
return {'revision': self.getProperty('revision'),

'version': self.version}

def start(self):
self.setUrl("reports", self.url % self.expansions())
self.step_status.setColor("green")
self.step_status.setText("Reports published")
self.finished(SUCCESS)

The step now expands the URL. You’ll want the step to go yellow while it runs.

def start(self):
self.step_status.setColor("yellow")
self.step_status.setText(["Publishing reports", "Unzipping package"])
self.setUrl("reports", self.url % self.expansions())
self.step_status.setColor("green")
self.step_status.setText("Reports published")
self.finished(SUCCESS)

Oh yeah, and you’ll want to unzip the file too. There is a catch, though. Buildbot uses the
Twisted framework. Twisted is an asynchronous interaction system, and it extensively manip-
ulates operating system signals. This interferes with the normal subprocess calls, resulting in
strange exceptions whenever you invoke any asynchronous operations—like checking a
process’s exit code.

Luckily, Twisted supplies process-handling methods. These methods include
getProcessOutput(), getProcessValue(), and getProcessOutputAndValue(). These live in the
package twisted.internet.utils. You’ll use getProcessValue() first:

import os
from twisted.internet.utils import getProcessValue
...
class InstallReports(BuildStep):

url = "http://buildmaster.theblobshop.com:8010/" \
"rsreader/%(revision)s-py%(version)s"

dest_path = "public_html/rsreader/%(revision)s-py%(version)s"
...

def start(self):
self.step_status.setColor("yellow")
self.step_status.setText(["Publishing reports", "Unzipping package"])
dest = self.dest_path % self.expansions()
if not os.path.exists(dest):

os.makedirs(dest, 0755)
cmd = "/usr/bin/unzip"
zipfile = os.path.abspath(reportsFileLocal(self.version))
args = ("-qq",

"-o",
"-d", dest,
zipfile)

CHAPTER 11 ■ FUNCTIONAL TESTING364

9810ch11.qxd 6/4/08 10:14 AM Page 364

http://buildmaster.theblobshop.com:8010

getProcessValue(cmd, args)
self.setUrl("reports", self.url % self.expansions())
self.step_status.setColor("green")
self.step_status.setText("Reports published")
self.finished(SUCCESS)

When you run this step, it should succeed. If it succeeds, you’ll find the results in the
directory public_html/rsreader/%(revision)s-py2.5/acceptance/reports, under the Buildbot
master’s directory.3 What if it doesn’t succeed, though? You haven’t checked the results of
getStatusValue(), so you don’t know. There’s nothing special about checking the results,
however:

from buildbot.status.builder import FAILURE, SUCCESS
...

def start(self):
self.step_status.setColor("yellow")
self.step_status.setText(["Publishing reports", "Unzipping package"])
dest = self.dest_path % self.expansions()
if not os.path.exists(dest):

os.makedirs(dest, 0755)
cmd = "/usr/bin/unzip"
zipfile = os.path.abspath(reportsFileLocal(self.version))
args = ("-qq",

"-o",
"-d", dest,
zipfile)

result = getProcessValue(cmd, args)
if result == 0:

self.setUrl("reports", self.url % self.expansions())
self.step_status.setColor("green")
self.step_status.setText("Reports published")
self.finished(SUCCESS)

else:
self.step_status.setColor("red")
self.step_status.setText("Report publication failed")
self.finsished(FAILURE)

If your build failed before, then it’s worth trying it again. You should see a red step without
a URL this time. Once you have this step running, you can refactor it:

def start(self):
self.begin()
self.make_report_directory()
results = self.unzip()
if results == 0:

self.succeed()

CHAPTER 11 ■ FUNCTIONAL TESTING 365

3. On my system, this is /usr/local/buildbot/master/rsreader.

9810ch11.qxd 6/4/08 10:14 AM Page 365

else:
self.fail()

def begin(self):
self.step_status.setColor("yellow")
self.step_status.setText(["Publishing reports", "Unzipping package"])

def make_report_directory(self):
dest = self.dest_path % self.expansions()
if not os.path.exists(dest):

os.makedirs(dest, 0755)

def unzip(self):
cmd = "/usr/bin/unzip"
zipfile = os.path.abspath(reportsFileLocal(self.version))
args = ("-qq",

"-o",
"-d", self.dest_path % self.expansions(),
zipfile)

return getProcessValue(cmd, args)

def succeed(self):
self.setUrl("reports", self.url % self.expansions())
self.step_status.setColor("green")
self.step_status.setText("Reports published")
self.finished(SUCCESS)

def fail(self):
self.step_status.setColor("red")
self.step_status.setText("Report publication failed")
self.finsished(FAILURE)

As usual, you should verify the changes by running the build. You no longer need to run
tests on this builder, so you can put it on a regular schedule.

Getting Regular Builds
Regularly timed builds are run with the Nightly scheduler. It runs builds at times specified by
a combination of dayOfMonth, dayOfWeek, month, hour, and minute. If a value isn’t specified, then
it isn’t used to match the date. The exception is minute, which defaults to 0. If you’ve ever used
the UNIX cron command, then you’ll be right at home.

All of this makes more sense with a few examples. This will run every March at 6:42 PM
and 9:42 PM:

month=3, hour=(18, 21), minute=42

CHAPTER 11 ■ FUNCTIONAL TESTING366

9810ch11.qxd 6/4/08 10:14 AM Page 366

This will run at 6:00 AM on every Monday that falls on the second or third day of the
month:

dayOfMonth=(2, 3), dayOfWeek=0, hour=6

I like to run acceptance builds several times a day:

• Once in the morning so that people know the project status at the beginning of the day,
including any changes that people made the night before

• Once at lunch to pick up the morning’s work

• Once near the end of the day to pick up the afternoon’s changes and report them before
everyone goes home

Scheduling this takes just a few lines:

from buildbot.scheduler import Nightly, Scheduler
c['schedulers'] = []
c['schedulers'].append(Scheduler(name="rsreader under python 2.5",

branch=None,
treeStableTimer=5,
builderNames=["buildbot-full-py2.5"]))

c['schedulers'].append(Scheduler(name="rsreader under python 2.4",
branch=None,
treeStableTimer=5,
builderNames=["buildbot-full-py2.4"]))

c['schedulers'].append(Nightly(name="python 2.5 acceptance builds",
builderNames=["buildbot-acceptance-py2.5"],
hour=(7, 12, 17), minute=0)

The odds are that you’ll have to wait several hours for this to trigger a build. You can test
Nightly by setting the hours and minutes to times just a minute or two in the future, but don’t
forget to restore them when you’ve finished your tests.

What’s Left?
You went through a great deal of effort to ensure that a 2.4 builder could easily configured, but
I’m not going walk you through the rest of the process. You should know more than enough at
this point to set it up, and it’s a great exercise. As you do, test each change. Buildbot configura-
tion is a complicated path, and it’s easy to get lost unless you keep track of each step.

Summary
FIT is a system for specifying and running functional tests. It consumes requirement docu-
ments with which it drives testing fixtures and produces reports. The system focuses upon the
requirement documents. In an optimal situation, the customer produces them with the assis-
tance of other team members. This process serves as the basis of detailed design discussions.
Along the way, they create a common vocabulary, which can be considered the core of the
system metaphor.

CHAPTER 11 ■ FUNCTIONAL TESTING 367

9810ch11.qxd 6/4/08 10:14 AM Page 367

The requirement documents can also play the roles of design documents and testing
plans. Developers and testers create test fixtures that connect these plans to the larger code
base. Once the fixtures are developed, they can be run from the build. The output from these
runs serves as a progress document for customers and for management. Watching as the
requirements go from red to green over the course of an iteration instills them with confi-
dence.

PyFit is the Python version of FIT. While the FIT framework theoretically copes with any
kind of document that contains tables, PyFit only supports HTML. The documents are read
from the filesystem or a FitNesse server. FitNesse is a wiki server for writing and running FIT
tests. While appealing for very small projects, it doesn’t cope well with branching, and discon-
nected operation isn’t really possible. For these reasons, I prefer placing FIT tests into the
source.

Tying PyFit into a build is theoretically an easy thing to do, but there are many intricacies.
In the system you worked with, the tests run on the build slaves, and the results are packaged
into ZIP files there, too. Scripts encapsulate the intricacies of both tasks and hide the details
from the build server. The results are presented by the build master using Buildbot’s internal
web server. To do this, the ZIP file is copied to the build master, and then unpacked into the
web server’s document tree. This forms the basis for the project’s dashboard.

CHAPTER 11 ■ FUNCTIONAL TESTING368

9810ch11.qxd 6/4/08 10:14 AM Page 368

■A
absolute paths, Buildbot, 124
accept.py build tool, 358
acceptance testing, 339, 340

build to include acceptance tests, 353
converting URLs into feed objects, 188
creating directory for, 346
description, 140, 173, 339
Framework for Integrated Tests (FIT),

340–353, 367
creating column fixture test with FIT,

346–353
observing failing test first, 152
PyFit, 340–353

writing requirements, 341–344
RSS reader application, 150, 152
running FIT with Buildbot, 353–367

defining Buildbot configuration file, 353
getting regular builds, 366–367
making reports available, 358–366
preparing slave, 353
running builder, 354–357

running with every build, 339, 346
using data files, 189

active record pattern
ORMs, 266
SQLObject, 267

add (__add__) method, 193
add command, Subversion, 50
add method, pMock, 201
add method, PyMock, 221
adding files, Subversion

from command line, 50
through Eclipse, 68

addRemoveName keyword
multiple relationships, SQLObject, 282

addTestPage/addTestSuite methods
aggregating JsUnit tests, 335–336

add_single_feed method, PyMock, 216–217
refactoring, 218

admin_pw keyword, DBMigrate, 301
admin_user keyword, DBMigrate, 301
AggregateFeed class, pMock

combine_feeds method, 199
creating FeedEntry factory, 200
empty AggregateFeed output, 209
entries initialized to Set, 201
feeds_from_urls method, 203
initializing FeedParser factory, 203
refactoring/extracting, 198
reimplementing from_urls method, 204

AggregateFeed class, PyMock
entries initialized to Set, 222
print_entry_listings with empty feeds, 225

aggregating JsUnit tests, 335–336
aggregating two feeds, 194–195
aggregator, 149
agile development, 1, 3, 4

databases and, 264, 296, 306
impact on DBA organization, 264
using IDEs with, 21

agile host, aliasing, 104
agile methods, 4

collective code ownership, 12–13
continuous integration, 16–17
continuous reflection, 15
documentation, 17
on-site customers, 8–9
pair programming, 5–7
refactoring, 11–12
short iterations, 13–15
simple design, 12
system metaphor, 8
test-driven development, 10–11
unit tests, 9
user stories, 7–8

Ajax (Asynchronous JavaScript and XML),
312

aliasing hosts, 104
all (__all__) attribute, 182

Index

369

9810Index.qxd 6/6/08 10:42 AM Page 369

all method, SQLAlchemy, 288
allow-hosts option, easy_install, 132
altinstall.pth file, 85–86
Ant Builder, 164
Apache plug-ins

mod_python, 314
application class, 175
application frameworks

connections to web servers, 313
application object, 315
application servers, Python, 313
application tests

creating, 175
implementing as native Nose tests, 176

applications
full stack applications, 313
web application frameworks, 313
web applications, 312–320

arguments
how dependencies arise, 190
mocking calls to self, pMock, 196

Arguments field
builder properties window, 165
External Tools dialog, Eclipse, 169

argv file, sys
running unit tests manually in Eclipse, 154

assert expression, Python
success or failure of unit tests, 147

AssertionError, 147
assertStdoutEquals method

running unit tests manually in Eclipse, 158
assert_equals method, 176
atoms

creating migrations, DBMigrate, 302
attribute access, Python, 193
attribute defaults, SQLObject, 272
attribute setter mocking, PyMock, 229
attributes, HTML elements, 310
attributes, Nose, 160, 174
at_least playback count, PyMock, 229
at_least_once calling policy, pMock, 229
authority, organizational/technical, 245
autoflush attribute, SQLAlchemy, 286
autoformatting, 251
autoRun parameter, JsUnit

running tests by URL, 337

■B
backref keyword, SQLAlchemy, 294
baseURL property, Subversion, 119
bdist_egg command, Setuptools, 90
BeautifulSoup package, 320
Bicycle Repair Man program, 39
bin directory, Python

Install step, Buildbot, 125
bin_dir function, PyFit, 352
Block Comments panel, Pydev, 252
branch coverage, 238
branches

revision control systems, 44
browsers see web browsers
build automation

continual verification of builds, 103
replicable builds, 81

build command, Setuptools, 89
build directory

building projects with setup.py, 88
paths used on build slave, 124
Subversion ignoring files, 98

build factories
description, 109, 136
encapsulating builder factory in function,

129
running FIT with Buildbot, 353, 356
supporting Python 2.4 builds, 129
using source code, 119

build master, Buildbot, 107–112
accessing Subversion repository, 116–118
build slave contacting, 107
configuring, 107
description, 104, 136
naming, 104
options for triggering builds, 104
running FIT with Buildbot, 354–355, 357

Build Options tab
builder properties window, 165

build servers, Buildbot, 103–116
build slave, Buildbot, 112–116

accessing Subversion repository, 116–118
checking out code, 120
configuring, 112
contacting build master, 107
description, 104, 136

■INDEX370

9810Index.qxd 6/6/08 10:42 AM Page 370

installing Buildbot on buildmaster, 104
naming, 104
paths used on, 124
Python installation, 122
running FIT with Buildbot, 353

build steps, Buildbot
colors used for, 114, 116
Compile step, 124–125
description, 136
enhancing step progress description, 134
Install step, 125–128
running FIT with Buildbot, 353
SVN step, 119–121

build user, Buildbot
configuring build master, 107
configuring build slave, 112

Buildbot, 104–116
architecture, 104
build master, 104, 107–112
build slave, 104, 112–116
code coverage report, 259
Compile step, 124–125
configuring build system, 106
contrib directory, 121
coverage package, 258
enhancing step progress description,

134–136
hooks to Subversion events, 121
Install step, 125–128
installing, 104–106
installing contributed programs, 106
installing on Windows systems, 107
landing page, 111
notifications, 121
options for triggering builds, 104
paths used on build slave, 124
reconfig command, 119
reconfiguration, 120
running FIT with Buildbot, 353–367

defining Buildbot configuration file, 353
getting regular builds, 366–367
making reports available, 358–366
preparing slave, 353
running builder, 354–357

running full test suite at build time,
171–173

sendchange command, 114, 120

summary, 136
supporting Python 2.4 builds, 128–132
SVN step, 119–121
waterfall display, 111

buildbot binary
server startup script, 112

Buildbot.tac file
configuring build master, 108
configuring build slave, 113

buildbotUrl property, Buildbot, 110
builder

running FIT with Buildbot, 353, 354–357
builder directory

packaging reports, 359
paths used on build slave, 124

builder properties window, 164
tabs and fields, 165

builders, 109
preventing overlapping, 122

Builders menu item
project properties window, 163

builders property, Buildbot
configuring build master, 109
supporting Python 2.4 builds, 130

buildmaster
aliasing hosts, 104
configuring build slave, Buildbot, 112
configuring build system, 106
installing Buildbot on, 104

BuildmasterConfig dictionary, 108
builds

build to include acceptance tests, 353
building projects with setup.py, 88–91
continual verification of, 103
continuous builds, 340
formal builds, 340
incremental builds, Eclipse, 163
replicable builds, 85–86

path manipulation solution, 85
virtual Python solution, 85

running full test suite at build time,
171–173

supporting Python 2.4 builds, 128–132
when unit tests need to be run, 163

BuildSlave objects, Buildbot
configuring build master, 108
configuring build slave, 112

■INDEX 371

9810Index.qxd 6/6/08 10:42 AM Page 371

build_ext module, Setuptools, 89
build_py module, Setuptools, 89, 90

■C
callbacks

using write() callback, 315
camel case

naming standards, 248
cascade keyword, SQLAlchemy, 295
Cascading Style Sheets (CSS), 310, 311
centralized revision control systems, 42
CGI (Common Gateway Interface), 313
chained expressions, SQLAlchemy, 290
checkout command, Subversion, 47
cheese shop, Python, 84
classes

creating application class, 175
creating Python class, 33
subclassing, 193

code analysis features, Pydev, 253
code coverage, 237–239

branch coverage, 238
low test coverage, 238
patching code coverage report into

Buildbot, 259
statement coverage, 237

Code Formatter panel, Pydev, 252
code reviews, 5, 249
code style options, Pydev, 252
coding

collective code ownership, 12–13
validating committed code, 256–257

coding conventions, 244
consistency, 245
features assisting writing/analyzing code,

251
feedback on defective code, 251
naming standards, 244
Python, 246

coding standards
autoformatting, 251
code analysis features, 253
rewarding good code, 248–249
templates, Pydev, 254

cohesion, 141
unit tests illustrating, 142

collective code ownership, 12–13
unit tests, 143

column fixtures, 346
representing business processes, 347
tests created with FIT, 346–353

combine_feeds method, pMock
AggregateFeed class, 199
mocking calls to self, 196
reimplementing from_urls method, 204

commit command, Subversion, 50
commit event, Subversion, 121
Commit window

working with Subversion through Eclipse,
70

committers
adding to Subversion group, 117
build master/slave accessing Subversion,

116
file ownership, 116

Common Gateway Interface (CGI), 313
Common tab

External Tools dialog, Eclipse, 169
communication, developers, 250
Compile step, Buildbot, 124–125
complexity measurements, 239–242
components

isolating components under test, 190–192
configure step

supporting Python 2.4 builds, 128
connections

application frameworks to web servers,
313

connect_application method
running DBMigrate with unit tests, 305

consistency
coding conventions, 245

Console Encoding field
Common tab, External Tools dialog, 170

Console view
working with Subversion through Eclipse,

65
console_scripts key, setup.py, 91
continuous builds, 340
continuous integration, 16–17

replicable builds, 85
continuous reflection, 15
contrib directory, Buildbot, 121
copy command, Subversion, 51

working with Subversion through Eclipse,
78

■INDEX372

9810Index.qxd 6/6/08 10:42 AM Page 372

copying files, Subversion
working from command line, 51
working through Eclipse, 78

coupling, 141, 142
coverage package, 258

coverage report weakness, 259
running coverage through Nose, 258
with-coverage option, nosetests, 258

createSummary method
publishing reports, 361

create_entry method, pMock, 200
create_entry method, PyMock, 217, 218, 220,

221
create_schema method

schema definition, SQLObject, 272
crontab command, 112
CSS (Cascading Style Sheets), 310, 311
customer tests, 139, 173
cyclomatic complexity, 239, 241

■D
d option, unzip command

publishing reports, 360
daemon option, svnserve, 117
data mapper pattern, ORMs, 266
database administrators (DBAs), 263, 265
database migrations

testing databases, 298
databases

adjusting between database
environments, 296

agile development, 264, 296, 306
background, 306
background to working with, 263
connecting to databases

concealing data access, 265
DBMigrate, 301
SQLAlchemy, 283
SQLObject, 268

creating rows, SQLObject, 269–272
evolution of database design, 264
isolation, 264
migrations, 298–306

DBMigrate, 300–306
generating migration instructions, 299
locating migration mechanism, 300
numbering migrations and playback,

299

object-relational mappers (ORMs),
265–267

Python, 267–296
SQLAlchemy, 283–296
SQLObject, 267–282

refactoring, 264, 298
testing, 264

db keyword, DBMigrate, 301
DBAs (database administrators)

working with databases, 263
working with developers, 265

DBMigrate, 300–306
admin_pw keyword, 301
admin_user keyword, 301
atoms, 302
connecting to database, 301
creating migrations, 301–303
db keyword, 301
functions, 302
host keyword, 301
installing, 300
manually migrating database, 303–304
migration dictionary, 303
port keyword, 301
pw keyword, 301
revision flag, 304
running DBMigrate from program, 305
running DBMigrate with unit tests, 305
scheme keyword, 301
socket keyword, 301
string expansion, 302
user keyword, 301
verbose flag, 304
versiontable keyword, 301

debugging
unit testing to reduce, 141
value of debuggers, 141

decorators
creating rows, SQLObject, 271

decorators, Python, 161
use_pymock decorator, PyMock, 212

default attribute, SQLObject, 273
defaultBranch property, Subversion, 119
delete command, Subversion, 52

working with Subversion through Eclipse,
77

delete method, SQLAlchemy, 295

■INDEX 373

9810Index.qxd 6/6/08 10:42 AM Page 373

deleting files, Subversion
working from command line, 52
working through Eclipse, 76

deleting rows, SQLObject, 275
dependencies

application initializing dependencies,
pMock, 211

ensuring local dependency processing,
132

how dependencies arise, 190
isolating components for testing, 191
Python packages, 83
Setuptools managing dependencies,

92–94
testing and, 142
test_rsreader_dependency_initialization

test, PyMock, 227
verifying dependencies initialized

correctly, pMock, 206
description/descriptionDone keywords,

Buildbot, 134
design

iterative design methods, 175
simple design, 12

destroySelf method
deleting rows, SQLObject, 275

developers
communication, 250
kinds of feedback for development, 234
pair programming, 249
rewarding good code, 248–249
why developers need feedback, 234
working with databases, 263
working with DBAs, 265

development
see also agile development
code reviews, 249
goal of development organization, 263
using production database, 297

development environments, 22
development methodologies

agile development, 1
iterative methodologies, 3
reasons for, 1
test-driven development (TDD), 10–11,

146–147
waterfall methodology, 2

development mode, Setuptools, 100–102
development processes

benefits of version/revision control, 41
collective code ownership, 12–13
continuous integration, 16–17
continuous reflection, 15
documentation, 17
on-site customers, 8–9
pair programming, 5–7
refactoring, 11–12
short iterations, 13
system metaphor, 8
user stories, 7–8

development velocity, 242–243
diff command, Subversion, 54–56
directories, Eclipse, 38
directory structure, Subversion, 44
disconnect_application method

running DBMigrate with unit tests, 305
Display in favorites menu field

Common tab, External Tools dialog, 170
dist directory

Setuptools, 91
Subversion ignoring files, 98

distributed mode, JsUnit, 337
distributed revision control systems, 42
Distutils library, 81

description, 102
installing Python packages, 83

distutils.cfg file, 86
Docstrings panel, Pydev, 252
Document Object Model (DOM), 328
documentation

agile methods, 17
developer communication, 250

docutils package
Install step, Buildbot, 126

DOM (Document Object Model), 328
DSL (domain-specific languages), 193
duck typing, 193
dummies, 191

writing in Python, 192
dummy objects, PyMock, 216

■INDEX374

9810Index.qxd 6/6/08 10:42 AM Page 374

■E
EasyMock

record-replay, 193
easy_install program, Setuptools, 87

allow-hosts option, 132
development mode, 100
installing Buildbot, 104, 106
installing from local copy, 96
removing existing package, 95

echo step output
configuring build slave, Buildbot, 115

Eclipse
advantages of, 21
creating Python development

environment, 40
development environments, 22
directories, 38
ignoring files, 100
importing from Subversion, 60–64
incremental builds, 163
installing, 25
installing Mylyn, 25–31
installing plug-ins, 30
installing Pydev, 31–32
job management system, 21
perspectives, 24
project file, 38
pydevproject file, 38
revision control plug-ins, 59
revision control systems and, 59–64
running full test suite in development, 168
running unit tests manually in, 151–159
selecting workspace root, 23
shared projects, 59
sharing subverted project, 59–60
source folders, 33
src directory, 39
startup screen, 24
views, 24
workbench, 25
working with Python, 25
working with Subversion through, 64–79

Eclipse plug-ins
Pydev, 22, 25
Pydev Extensions, 22
SQLExplorer, 22
Subversive, 22

Eclipse Preferences window, 251
edit-and-merge process

revision control systems, 43
Subversion and, 79

editing files
working with Subversion through Eclipse,

71
eggs

installing, 84
installing Setuptools, 86
naming structure, 84
setup.py creating, 87
Setuptools and, 81

egg_info command, Setuptools, 90
elements, HTML, 310
ElementTree package

MVC testing markup, 318–319
XPath operations supported by, 319

embedded code
testing databases, 298

encapsulation, 141
encryption

https scheme, 311
ending keyword, PyMock, 230
entities, global

how dependencies arise, 191
entry_listings method, pMock, 207–208
entry_listings method, PyMock, 223
entry_points attribute, setup.py, 91
environ dictionary

WSGI conversations, 315
eq constraint, PyMock, 213
errors

branch coverage, 238
JsUnit, 331

estimates
short iterations, 14

exceptions, pMock/PyMock, 228
exclusive locking

revision control systems, 43
executables

Install step, Buildbot, 125
paths used on build slave, 124

expectations, PyMock
alternative syntax to define, 214

expected_items value, 182
expected_line value, 176

■INDEX 375

9810Index.qxd 6/6/08 10:42 AM Page 375

expects clause
defining expectations, PyMock, 215
pMock, 196

playback counts, 229
exploratory testing, 140
extent, unit tests, 145
External Tools dialog, Eclipse, 168–169
external_requirements attribute, setup.py, 92
ez_setup.py program

bootstrapping Setuptools, 97
installing Setuptools, 86
using local copy of Setuptools, 132

■F
factories see build factories
failures, assertions

JsUnit, 331
fakes, 192
Feature License screen

installing Mylyn, 27
Feature Verification screen

installing Mylyn, 30
feedback

defective code, 251
environmental feedback, 234
kinds of feedback for development, 234
measurements, 235–236, 261
social feedback, 234
why developers need feedback, 234

FeedEntry constructor, PyMock
mocking __init__ directly, 222
test_feed_entry_constructor test, 223
test_feed_entry_listing test, 222

FeedEntry factory, pMock
AggregateFeed creating, 200
from_parsed_feed method, 202
listing method, 203
test_feed_entry_listing test, 202
verifying operation, 202

FeedParser factory, pMock
AggregateFeed initializing, 203

FeedParser package, 149
converting URLs into feed objects, 185

feeds
add_single_feed method, PyMock, 216,

217
aggregating two feeds, 194–195

converting URLs into feed objects, 185,
188

creating aggregate entries for feeds,
pMock, 197

formatting feed entry listings, pMock, 207
from_urls method, pMock, 204
taking and converting, pMock, 200

feeds_from_urls method, pMock, 204
AggregateFeed initializing FeedParser

factory, 203
FeedEntry factory, 203
reimplementing from_urls method, 204

FeedWriter class, pMock
formatting feed entry listings, 207
initializing stdout attribute, 209

feed_from_url method
converting URLs into feed objects, 185
isolating components, 190

feed_listing method, 180
fields

updating fields, SQLObject, 274
file repository see repository
file revisions, storage of, 40
file scheme, 311
File Types panel, Pydev, 252
files

job management system, 21
FileUpload build step

retrieving reports, 360
filter method, SQLAlchemy, 289
filter_by method, SQLAlchemy, 290
find-links option, Setuptools

fixing options with setup.cfg, 97
findall method

MVC testing markup, 319, 320
findtext method

MVC testing markup, 319
find_dev_root function

running PyFit, 352
find_packages function, Setuptools, 88
first method, SQLAlchemy, 288
FIT (Framework for Integrated Tests),

340–367
background, 340
components, 340
creating column fixture test with, 346–353
description, 367

■INDEX376

9810Index.qxd 6/6/08 10:42 AM Page 376

families of tests created with, 346
FIT report for broken test, 344
FitNesse, 340, 368
fixtures, 341
PyFit and, 368
PyFit example, 344–345
reports, 341
requirement documents, 340, 341, 346

writing requirements, 341–344
running FIT with Buildbot, 353–367

defining Buildbot configuration file, 353
getting regular builds, 366–367
making reports available, 358–366
preparing slave, 353
running builder, 354–357

showing successful/unsuccessful test
results, 344

test runners, 341
XML summary document produced, 343

FitNesse, 340, 368
fixtures

column fixtures, 346
creating column fixture test with FIT,

346–353
description, 348
Framework for Integrated Tests (FIT), 341

writing HTML spec document, 343
parts of, 348

flushing
autoflush attribute, SQLAlchemy, 286

FolderRunner.py
creating column fixture test with FIT, 349
running PyFit, 351

foreign keys, SQLAlchemy, 291, 292
foreign keys, SQLObject, 275
formal builds, 340
Framework for Integrated Tests see FIT
frameworks

web application frameworks, 337
from_parsed_feed method, pMock

FeedEntry factory, 202
formatting feed entry listings, 208

from_statement method, SQLAlchemy, 290
from_urls method, pMock, 204
from_urls method, PyMock, 215–216, 219
full stack applications, 313

functional testing
databases, 298
description, 139, 339
Framework for Integrated Tests (FIT),

340–353, 367
running FIT with Buildbot, 353–367
running tests with every build, 340
size of functional test suite, 353

functions
creating migrations, DBMigrate, 302
decorators, 161
how dependencies arise, 190

■G
generator mocking, PyMock, 230
get method

retrieving objects, SQLObject, 273
getElementById method, JavaScript, 335
getitem (__getitem__) function, 193

PyMock, 213
getProcessValue method, Twisted, 364
getProperty method, BuildStep class, 361
global entities

how dependencies arise, 191
graphics

MVC testing web applications, 317
groups

adding committers to Subversion group,
117

gui_scripts key, setup.py, 91

■H
harness see test harness
hooks

hooks sending notifications, Buildbot, 121
main method, 175
precommit hooks, 256

host keyword, DBMigrate, 301
hosts

aliasing hosts, 104
allow-hosts option, easy_install, 132

HTML (Hypertext Markup Language),
310–311

HTML documents and forms, 337
SGML and, 310
Web and, 309, 337
writing HTML spec document, 342

■INDEX 377

9810Index.qxd 6/6/08 10:42 AM Page 377

html.WebStatus class
configuring build master, Buildbot, 110

HTMLParser library
MVC testing markup, 317

HTTP (Hypertext Transfer Protocol), 312
state, 312
Web and, 309, 337

http scheme, 311
https scheme, 311
http_port keyword

configuring build master, Buildbot, 110

■I
IDEs

development environments, 22
ignore property, Subversion, 99
ignoring files, Eclipse, 100
ignoring files, Subversion, 98–100
images

MVC testing web applications, 317
impersonators see impostors
import command, Subversion, 46
Import project window

importing from Subversion, 60
imports

monkeypatching and, 186
impostors

categories of, 191
description, 231
dummies, 191
fakes, 192
mock objects, 192
mocking to break dependencies, 191
stubs, 192
writing impostors, 192

incremental builds, Eclipse, 163
indentation settings

autoformatting, Pydev, 252
info command, Subversion, 49

verifying status, 117
info directory

configuring build slave, Buildbot, 113
init (__init__) method

application initializing dependencies,
pMock, 211

creating FeedEntry factory, pMock, 201
mocking __init__ directly, PyMock, 222

install command, Setuptools, 90
ensuring local dependency processing,

132
installing from local copy, 96

Install step, Buildbot, 125–128
ensuring local dependency processing,

134
installations

Buildbot, 104–106
DBMigrate, 300
Eclipse, 25
Eclipse plug-ins, 30
eggs, 84
JsUnit, 321
Mylyn, 25
pMock, 195
Pydev, 32
Setuptools, 86–87
SQLAlchemy, 283
SQLObject, 267
Subversion, 44–47
Twisted, 104

InstallReports class, 362
install_lib command, Setuptools, 90
install_requires attribute, setup.py, 92
integration testing

description, 140, 339
Framework for Integrated Tests (FIT),

340–353
running FIT with Buildbot, 353–367

intermediateTable keyword, SQLObject, 282
interpreter, Python

paths used on build slave, 124
isolating components under test, 190–192
isolation, databases, 264
is_empty method, pMock, 210
is_empty method, PyMock, 225, 226
iterative design methods, 175
iterative methodologies, 3

■J
JavaScript, 312

getElementById method, 335
HTML documents and forms, 337
interacting with browser, 328
NaN value, 327
null value, 327

■INDEX378

9810Index.qxd 6/6/08 10:42 AM Page 378

pressCalculate method, 335
setUp function, 330
“Show all” errors window, 332
suite function, 335
testing, 320, 326
undefined value, 327
unit testing, 337
validateSlope method, 331, 335
validation function, 329
variable declaration/assignment, 327

jMock, 193
job management system, 21
join method, SQLAlchemy, 295
join statements, SQLObject, 279
joinColumn keyword, SQLObject, 282
joins, SQLObject, 275, 276
JsUnit, 321–326

adjusting timeouts, 324
aggregating tests, 335–336
author, 321
correspondence with unittest, 326
description, 337
distributed mode, 337
failures and errors, 331
installing, 321
package, 321
running tests by URL, 336
stand-alone testing, 322
test runner, 322

Jython, 33

■K
keys

foreign keys, SQLObject, 275
keyword queries, SQLAlchemy, 290
Komodo IDE, 22

■L
labels

revision control systems, 44
landing page, Buildbot, 111
libraries

mocking libraries, 193–194
library directories, Pydev, 33
license agreements

installing Eclipse plug-ins, 28
linear independence

cyclomatic complexity, 239

Linux
usermod command, 117

list command, Subversion, 46
listing method, pMock

FeedEntry factory, 203
listing_from_item method, 176
list_from_item method, 177
load testing, 140
local dependencies

ensuring local dependency processing,
132

Location field
builder properties window, 165
External Tools dialog, Eclipse, 169

log command, Subversion, 56
low test coverage, 238

■M
MailNotifier class

configuring build master, Buildbot, 110
mailto scheme, 311
main method

converting URLs into feed objects, 188
hook between Setuptools and application

class, 175
implementing application class, 176
new_main method, pMock, 210, 212
test_main test, pMock, 212
test_main test, PyMock, 227

Main tab, builder properties window, 165
makefiles, Buildbot

configuring build master, 108
configuring build slave, 113

many-to-many relationships
SQLAlchemy, 293
SQLObject, 277

mapper directive
one-to-many relationships, SQLAlchemy,

292
mapping layer database interactions, 297
markup

MVC testing web applications, 317–320
master see build master, Buildbot
master.cfg file

configuring build master, Buildbot, 108
paths used on build slave, 124
running FIT with Buildbot, 353, 354
using source code, 119

■INDEX 379

9810Index.qxd 6/6/08 10:42 AM Page 379

McCabe complexity see cyclomatic
complexity

measurements, 236–237
code coverage, 237–239
coding conventions, 244
complexity measurements, 239–242
development velocity, 242–243
effecting change, 236
factors characterizing, 236
feedback, 235, 236, 261
instrument for measuring, 236
low test coverage, 238
purpose of, 236
qualitative measurements, 235, 243–246,

261
quantitative measurements, 235, 237–243,

261
scope of, 236
side effects, 236–237
software quality, 235
units of measurement, 236
what is being measured, 236

merge command, Subversion, 56
merging files

revision control systems, 43–44
MetaData class, SQLAlchemy, 284
method function, PyMock, 215
methodologies see development

methodologies
methods

agile methods, 4
decorators modifying, 161
how dependencies arise, 190
overriding existing methods, 185–189
protocols, 193
testing and, 142

middleware, WSGI, 316
migration dictionary, DBMigrate, 303
migrations, database, 298–306

DBMigrate, 300–306
generating migration instructions, 299
locating migration mechanism, 300
numbering migrations and playback, 299
testing databases, 298

mkdir command, Subversion, 46
mock object packages

types (pMock/PyMock) compared, 231

mock objects
attribute setter mocking, PyMock, 229
benefit of, 206
code coverage, 238
description, 192
domain-specific languages (DSL), 193
EasyMock, Java, 193
exception mocking, pMock, 228
exception mocking, PyMock, 228
generator mocking, PyMock, 230
introducing into tested code, pMock, 196
mocking class constructors, PyMock, 220
pMock, 194, 195–212
PyMock, 212–228
specifying calls on mock objects, PyMock,

215
switching from record mode to replay

mode, PyMock, 213
verify method, PyMock, 213

mocking
breaking dependencies, 191

mocking libraries, 193–194
model-view-controller (MVC), 316, 337
modules

mocking external modules, PyMock, 216
modules, Pydev, 33
modules, Python, 82

coupling, 141
mod_python, Apache plug-in, 314
monkeypatching, 185–189

description, 231
drawbacks if hand coding, 192
imports and, 186
mocking calls to self, pMock, 196
pMock, 193
PyMock, 214–215

moving methods to new object, 218
objects that Python can’t monkeypatch,

224
writing impostors, 192

motivation
rewarding good code, 248–249

move command, Subversion, 51
moving files, Subversion

working from command line, 51
working through Eclipse, 77

multiple joins, SQLObject, 276

■INDEX380

9810Index.qxd 6/6/08 10:42 AM Page 380

multiple relationships, SQLObject, 280
MVC (model-view-controller)

testing web applications, 316, 337
Mylyn

advantages of Eclipse IDE, 21
installing, 25
job management system, 22

■N
name attribute, setup.py, 87
naming conventions/standards

camel case, 248
coding conventions, 244
renaming, 183–184, 250
typographical naming conventions, 248

NaN value, JavaScript, 327
native tests, Nose, 149
never calling policy, pMock, 229
new_main method, pMock, 210, 212
new_main method, PyMock, 226
Nightly scheduler, 366
Node Kind field

info command, Subversion, 49
nodes, HTML, 310
Nose

attributes, 160, 174
coverage package, 258
description, 149, 174
discovering unit tests, 149
finding tests with Nose, 159–160
implementing application tests as Nose

tests, 176
introduction, 148
native tests, 149
options in builder properties window, 165
running coverage through Nose, 258
running full test suite in development, 167
skipping slow tests, 160–162
stdout and stderr, 160
tags, 160
tests_require property, 167
tests_suite property, 167
turning off output capture, 160
underscore (_) prefix, 195

nosetests, 159
builder properties window, 165
negating options, 161
standard test output, 160

vociferous test output, 160
with-coverage option, 258

notification classes
configuring build master, Buildbot, 110

notifications, 121
null value, JavaScript, 327
nullable keyword, SQLAlchemy, 285

■O
-o option, unzip command, 360–361
object-relational mappers see ORMs
object-relational mismatch, 264
on-site customers, 8–9
once calling policy, pMock, 229
once playback count, PyMock, 229
one method, SQLAlchemy, 288
one-to-many relationships

SQLAlchemy, 291
SQLObject, 275

one_or_more playback count, PyMock, 229
operator overloading, Python, 193
organizational authority, 245
ORMs (object-relational mappers), 265–267

active record pattern, 266
aspects of ORMs, 265
data mapper pattern, 266
description, 306
Python ORMs, 267–296
SQLAlchemy, 283–296
SQLObject, 267–282
unit of work pattern, 266

otherColumn keyword, SQLObject, 282
overloading operators, Python, 193
override expression, PyMock, 215
override function, PyMock, 215–216

monkeypatching, 214
overriding objects

monkeypatching and imports, 186

■P
packages

catching missing packages, 132
coverage package, 258
FeedParser package, 149
Install step, Buildbot, 125
paths used on build slave, 124

packages directive, Setuptools, 88
packages, Pydev, 33

■INDEX 381

9810Index.qxd 6/6/08 10:42 AM Page 381

packages, Python, 82
egg naming structure, 84
installing, 83–84
managing dependencies, 83
packages for unit testing, 148

packages, Setuptools
finding packages on the Net, 94
managing dependencies, 92–94
removing existing package, 95

package_dir directive, Setuptools, 88
package_reports.py tool, 358
pair programming, 5–7, 249
params dictionary

running DBMigrate from program, 306
parsing

FeedParser package, 149
HTMLParser library, 318
MVC testing markup, 318

path manipulation solution
replicable builds, 85

paths, Buildbot
absolute paths, 124
paths used on build slave, 124
relative paths, 124

Pattern field, Pydev templates, 255
PBChangeSource class

configuring build master, Buildbot, 109
pending prefix

AggregateFeed creating FeedEntry factory,
pMock, 200

testing, 195
PEPs (Python Enhancement Proposals), 247

PEP 20 - The Zen of Python, 247
PEP 257 - Docstring Conventions, 248
PEP 333 - Web Server Gateway Interface,

314
PEP 8 - Style Guide for Python Code, 248

performance testing, 140, 339
perspectives, Eclipse, 24
phytoplankton host, aliasing, 104
planning

agile development and, 4
playback counts, pMock/PyMock, 229
plug-ins

installing Eclipse plug-ins, 30
pMock, 195–212

AggregateFeed creating FeedEntry factory,
200

AggregateFeed initializing FeedParser
factory, 203

AggregateFeed.entries initialized to Set,
201

application initializing dependencies, 211
creating aggregate entries for feeds, 197
description, 193–194
empty AggregateFeed output, 209
exception mocking, 228
expects clause, 196
FeedWriter initializing stdout attribute,

209
formatting feed entry listings, 207
installing, 195
introducing mocks into tested code, 196
mock object packages compared, 231
mocking calls to self, 196
modeling basis for, 175, 231
playback counts, 229
raising exceptions with pMock, 228
refactoring/condensing tests, 206
refactoring/extracting AggregateFeed, 198
same constraint, 196
taking and converting feeds, 200
test_add, 201
test_add_single_feed, 197, 199
test_aggregate_feed_creates_factory, 206
test_aggregate_feed_initializes_feed_parse

r test, 203, 206
test_combine_feeds, 196
test_create_entry, 200
test_entries_is_always_defined, 201
test_feed_entry_from_parsed_feed, 208
test_feed_entry_listing, 202
test_feed_writer_intializes_stdout, 209
test_feed_writer_prints_nothing_with_an_

empty_feed, 209
test_from_urls, 204
test_get_feeds_from_urls, 203
test_is_empty, 210
test_main, 212
test_new_main, 210
test_print_entry_listings, 208, 210
test_rsreader_initializes_dependencies,

211
turning new_main into main method, 212
verifying dependencies initialized

correctly, 206

■INDEX382

9810Index.qxd 6/6/08 10:42 AM Page 382

verifying FeedEntry factory operation, 202
will clause, 196

pMock methods
add method, 201
combine_feeds method, 199
create_entry method, 200
defining feeds_from_urls method, 203
feeds_from_urls method, 204
feed_entry_listing method, 202
from_parsed_feed method, 202, 208
from_urls method, 204
is_empty method, 210
new_main method, 210, 212
print_entry_listings method, 208, 210
verify method, 196

port keyword, DBMigrate, 301
post-commit hook, Buildbot, 121
Postel’s Law, 311
pre-commit hook, Buildbot, 121
pre-commit hooks, 256–257
pressCalculate method, JavaScript, 335
primary keys, SQLAlchemy, 284
printed_items value, 179

breaking into strings, 182
renaming, 183

print_entry_listings method
pMock, 208, 210
PyMock, 224, 225

processConnection variable
setting up SQLite connection, 269

production database
using for development, 297

programmer tests, 139
see also unit tests

programming
cohesion, 141
collective code ownership, 12–13
coupling, 141
pair programming, 249
web application frameworks, 337

project file, Eclipse, 38
project major/minor, 45
project properties window, 163
projectName property, Buildbot, 110, 112
projects

building projects with setup.py, 88–91
Import project window, 60

job management system, 21
organizing projects, 45
shared projects, 59
starting new Pydev project, 32–38

projectUrl property, Buildbot, 110, 112
properties, Subversion

ignoring files, 99
propset command, Subversion, 99
protocols, Python, 193
protocols, Web, 312
public_html directory, Buildbot, 108
pw keyword, DBMigrate, 301
PyChecker, 256
Pydev

autoformatting, 251
creating Python class, 33
Eclipse, 25
Eclipse plug-ins, 22
features assisting writing/analyzing code,

251
installing, 32
library directories, 33
modules, 33
packages, 33
renaming unit test values for readability,

183
starting new project, 32–38
templates, 254

Pydev extensions, 39
code analysis features, 253
Eclipse plug-ins, 22

Pydev Package Explorer pane, 33
working with Subversion through Eclipse,

68
pydevproject file, Eclipse, 38
pydistutils.cfg file, 85, 86
PyFit, 340–353

creating column fixture test with FIT,
346–353

running PyFit, 349–353
creating directory for acceptance tests,

346
description, 368
example, 344–345
FitNesse, 368
fixtures, 348
programs for running tests, 349

■INDEX 383

9810Index.qxd 6/6/08 10:42 AM Page 383

requirement documents, 341–344
running FIT with Buildbot, 357

making reports available, 358
spreadsheet support, 341

PyLint, 256
PyMock, 212–228

activating new functionality, 227
AggregateFeed.entries initialized to Set,

222
AggregateFeed.__init__, 221
alternative syntax to define expectations,

214
attribute setter mocking, 229
dummy objects, 216
ending keyword, 230
entry listings sorting test, 223
eq constraint, 213
exception mocking, 228
expects clause, 215
FeedEntry.__init__, 222
generator mocking, 230
getitem (__getitem__) function, 213
method function, 215
mock object packages compared, 231
mocking class constructors, 220
mocking external modules, 216
mocking __init__ directly, 222
modeling basis for, 175, 231
monkeypatching, 214–215
moving methods to new object, 218
objects that Python can’t monkeypatch,

224
override function, 215–216
playback counts, 229
raising exceptions with PyMock, 228
record-replay model, 213
replay mode, 213
returns clause, 215
RSReader initialization test, 227
specifying calls on mock objects, 215
switching from record mode to replay

mode, 213
test_add, 221
test_add_single_feed, 217
test_entries_is_always_defined, 221
test_feed_entry_constructor, 222–223
test_feed_entry_listing, 222

test_from_urls, 216, 219
test_getting_attributes, 229
test_is_empty, 226
test_main, 227
test_new_main, 226
test_print_agg_feed_listing_is_printed,

224
test_rsreader_dependency_initialization,

227
test_setting_attributes, 229
use_pymock decorator, 212
using PyMock with unittest, 230

PyMock methods
add method, 221
add_single_feed method, 216–217, 218
create_entry method, 217–218, 220–221
entry_listings method, 223
from_urls method, 215–216, 219
print_entry_listings method, 224, 225
verify method, 213

PyTest, 149
Python

build slaves and, 122
cheese shop repository, 84
coding standards, 246
creating classes, 33
decorators, 161
egg naming structure, 84
ez_setup.py program, 86
global entities, 191
modules, 82
ORMs, 267–296
package root, 88
packages, 82

installing, 83–84
managing dependencies, 83
unit testing, 148

protocols, 193
site package mechanism, 86
types of defective coding, 251
typographical naming conventions, 248

Python 2.4
supporting Python 2.4 builds, 128–132

Python application servers, 313
Python development environment

creating for Eclipse IDE, 40
Python Enhancement Proposals see PEPs

■INDEX384

9810Index.qxd 6/6/08 10:42 AM Page 384

Python interpreter, 124
Python Interpreters screen, 32
PYTHONPATH variable, 32

installing eggs, 84
replicable builds, 85
running PyFit, 350–351
specifying additional packages, 82

■Q
-qq option, unzip command, 360
quality, software, 234
qualitative measurements, 243–246

coding conventions, 244
description, 235, 261

quantitative measurements, 237–243
code coverage, 237–239
complexity measurements, 239–242
description, 235, 261
development velocity, 242–243

queries, SQLAlchemy, 287
chained expressions, 290
filtering with SQL queries, 289
keyword queries, 290
querying relations, 295

query method, SQLAlchemy, 287
chained expressions, 290

■R
raises method, PyMock, 228
raise_exception function, pMock/PyMock,

228
readability

renaming, 183
reconfig command, Buildbot, 119
reconfiguration, Buildbot, 120
record mode, PyMock, 213
record-replay, EasyMock, 193
record-replay model, pMock, 194
record-replay model, PyMock, 213
refactoring, 11–12

add_single_feed method, PyMock, 218
condensing tests, pMock, 206
creating rows, SQLObject, 271
databases, 264, 298
extracting AggregateFeed, pMock, 198
implementing application class, 176
moving from_urls, PyMock, 219

moving methods to new object, PyMock,
218

reasons for, 143
reimplementing from_urls, pMock, 204
running unit tests manually in Eclipse,

155–156
triangulation, 182
turning new_main into main method,

pMock, 212
refactoring menu, Pydev renaming

capability, 183
refactoring preview window, Pydev, 184
refactoring tools, 250
references to objects

monkeypatching and imports, 186–187
regression testing, 10, 140
relationships

many-to-many, SQLAlchemy, 293
many-to-many, SQLObject, 277
multiple, SQLObject, 280
one-to-many, SQLAlchemy, 291
one-to-many, SQLObject, 275
querying, SQLAlchemy, 295

relative paths, Buildbot, 124
relocate option, switch command, 118
relying on the compiler technique, 178
Rename refactoring window, Pydev, 184
renaming, 183–184, 250

working with Subversion through Eclipse,
77

replay mode, PyMock, 213
replicable builds, 85–86
reports

Framework for Integrated Tests (FIT), 341
running FIT with Buildbot, 358–366

getting revision, 361–362
making reports available, 358
packaging reports, 358–359
publishing build, 362–366
publishing reports, 360–366
retrieving reports, 359–360

repository
continuous integration, 16

repository, Python
cheese shop, 84

■INDEX 385

9810Index.qxd 6/6/08 10:42 AM Page 385

repository, Subversion
accessing, 45
creating, 44
defining repository location, 61
repository tree, 116
team repository view, 65–68

requests, HTTP, 312
requirement documents

design and testing, 368
Framework for Integrated Tests (FIT),

340–341, 346
writing requirements, 341–344

writing HTML spec document, 342
resolved command, Subversion, 58
responses, HTTP, 312
results, SQLAlchemy, 287
return values

how dependencies arise, 191
returns clause, PyMock

defining expectations, 215
revert command, Subversion, 53
Revert window

working with Subversion through Eclipse,
73

reviews
code reviews, 249
short iterations, 13

revision control systems
benefits of, 41
benefits of Subversion, 42–44
branches, 44
distributed revision control systems, 42
edit-and-merge process, 43
exclusive locking, 43
labels, 44
merging files, 43, 44
subverting Eclipse, 59–64
types of, 42
working with Subversion from command

line, 47–59
working with Subversion through Eclipse,

64–79
Revision field

info command, Subversion, 49
revision flag, DBMigrate, 304
revision property

publishing reports, 361

revisions keyword
running DBMigrate from program, 306

RFC 2616, 312
RFC 3875, 313
RFC 822, 312
rows, SQLObject

creating, 269–272
deleting, 275

RSReader application
acceptance tests, 152
application initializing dependencies,

pMock, 211
building project, 88–91
building RSS reader, 81
converting URLs into feed objects, 185,

188
finding packages, 88
identifying project with name attribute, 87
implementing application class, 176
initialization, PyMock, 227
installing executables using setup.py, 91
installing rsreader into site-packages, 89
managing dependencies, 92–94
test_rsreader_dependency_initialization,

PyMock, 227
test_rsreader_initializes_dependencies,

pMock, 211
using data files, 189
with unit test skeleton, 152

rsreader directory
paths used on build slave, 124

RSReader links, Buildbot, 112
rsreader-linux slave, Buildbot, 108
RSS feeds, 149
RSS reader application

acceptance testing, 150
aggregators and, 149
building simple RSS reader, 81

running commands, Setuptools, 89

■S
same constraint, pMock, 196
Save as field

Common tab, External Tools dialog, 170
scheduler

running FIT with Buildbot, 353, 354

■INDEX386

9810Index.qxd 6/6/08 10:42 AM Page 386

schedulers property, Buildbot
configuring build master, 109
supporting Python 2.4 builds, 130

schema definition, SQLAlchemy, 284
schema definition, SQLObject, 272
scheme keyword, DBMigrate, 301
scrum methodology, 243
secondary keyword, SQLAlchemy, 294
select method, SQLObject, 273
selectBy method, SQLObject, 274
self

mocking calls to self, pMock, 196
semantic verifiers, 256
sendchange command, Buildbot, 114, 120

paths used on build slave, 125
servers

build servers, 103
startup script, 112

sessionmaker function, SQLAlchemy, 285
sessions, SQLAlchemy, 285–286
setProperty method, BuildStep class, 361
setter mocking, PyMock, 229
setUp function, JavaScript, 330
setUp method

correspondence of unittest/JsUnit, 326
running unit tests manually in Eclipse, 155
using PyMock with unittest, 230

setup.cfg file
fixing options with setup.cfg, 97
Subversion ignoring files, 98

setup.py program, Setuptools, 87
bootstrapping Setuptools, 97
building packages, 83
building projects, 88–91
console_scripts key, 91
entry_points attribute, 91
external_requirements attribute, 92
gui_scripts key, 91
installing executables, 91
install_requires attribute, 92
name attribute, 87
version attribute, 87

Setuptools, 81
basic usage, 87
bdist_egg command, 90
build command, 89
building projects with setup.py, 89

build_ext module, 89
build_py command, 89, 90
configuring values for options, 97
description, 84
development mode, 100–102
dist directory, 91
Distutils compared, 102
easy_install program, 87
eggs, 81
egg_info command, 90
finding packages on the Net, 94
find_packages function, 88
hook to application class, 175
install command, 90
installing, 86–87
installing eggs, 84
installing executables using setup.py, 91
install_lib command, 90
managing dependencies, 92–94
packages directive, 88
package_dir directive, 88
removing existing package, 95
running commands, 89
running full test suite in development, 167
setup.py program, 87
Subversion ignoring files, 98–100
version numbers, 88
zip_safe flag not set warning, 94

set_count playback count, PyMock, 229
SGML (Standard Generalized Markup

Language)
HTML and, 310
XML and, 311

shared projects, 59
ShellCommand build

Buildbot running full test suite, 171
ShellCommand classes, 361
short iterations, 13–15
“Show all” errors window, JavaScript, 332
simple design, 12
site package mechanism, Python, 86
site-packages directory, Python, 82

installing Python packages, 83
installing rsreader into site-packages, 89
replicable builds, 85

site-packages directory, Setuptools
development mode, 100
removing existing package, 95

■INDEX 387

9810Index.qxd 6/6/08 10:42 AM Page 387

slave see build slave, Buildbot
slave-lnx01

aliasing hosts, 104
configuring build slave, Buildbot, 112
configuring build system, 106

slavePortnum property, Buildbot, 108, 109
slaves property, Buildbot

configuring build master, 108
configuring build slave, 112

socket keyword, DBMigrate, 301
software quality, 234

measurements, 235
source

aliasing hosts, 104
naming Subversion for use with Buildbot,

104
source code

build slave obtaining, 119
source control

build master/slave accessing Subversion,
116–118

source folders, Eclipse, 33
source repository, 40
SQL injection attacks, 290
SQLAlchemy, 283–296

all method, 288
backref keyword, 294
cascade keyword, 295
chained expressions, 290
connecting to database, 283
delete method, 295
filter method, 289
filter_by method, 290
first method, 288
from_statement method, 290
further documentation on, 296
installing, 283
join method, 295
keyword queries, 290
many-to-many relationships, 293
mapper directive, 292
MetaData class, 284
nullable keyword, 285
one method, 288
one-to-many relationships, 291
primary keys, 284
query method, 287

chained expressions, 290

querying relations, 295
results, 287
secondary keyword, 294
sessionmaker function, 285
sessions, 285–286

SQLBuilder
retrieving objects, SQLObject, 273

SQLExplorer, Eclipse plug-ins, 22
SQLite connection, setting up, 269
SQLObject, 267–282

attribute defaults, 272
connecting to database, 268, 269
creating rows, 269–272
deleting rows, 275
describing database table to, 268
foreign keys, 275
installing, 267
join statements, 279
many-to-many relationships, 277
multiple joins, 276
multiple relationships, 280
one-to-many relationships, 275
retrieving objects, 273
schema definition, 272
updating fields, 274

src directory, Eclipse, 39
SSH trust relationships, 118
Standard Input and Output field

Common tab, External Tools dialog, 170
start-commit hook, Buildbot, 121
startup screen, Eclipse, 24
startup script, servers, 112
start_response() callback, 315
state

HTTP protocol, 312
statement coverage, 237
status command, Subversion, 49, 50, 53, 54,

56
ignoring files, 98

status property, Buildbot, 110
stderr

Nose intercepting, 160
stdin, HTTP request, 313
stdout

defining print_entry_listings, pMock, 208
HTTP response, 313
Nose intercepting, 160

■INDEX388

9810Index.qxd 6/6/08 10:42 AM Page 388

running unit tests manually in Eclipse,
153, 158

stdout attribute, pMock, 209
steps, Buildbot see build steps, Buildbot
stories, 339
stress testing, 140
string expansion

creating migrations, DBMigrate, 302
StringIO object

running unit tests manually in Eclipse, 153
stubs, 192
subclassing, 193
Subversion, 41

accessing repositories, 45
add command, 50
benefits of, 42–44, 79
checkout command, 47, 61
commit command, 50, 121
copy command, 51, 78
creating repository, 44
delete command, 52, 77
diff command, 54–56
directory structure, 44
events and hooks, 121
ignore property, 99
ignoring files, 98–100
import command, 46
importing into Eclipse from, 60–64
info command, 49
installing, 44–47
list command, 46
log command, 56
merge command, 56
mkdir command, 46
move command, 51
organizing projects, 45
parts of Subversion URL, 45
propset command, 99
resolved command, 58
revert command, 53
sharing subverted project, 59–60
status command, 49, 50, 53, 54, 56
svn directories, 43
update command, 54, 56
validating committed code, 256–257
working from command line, 47–59

adding files, 50–51

conflicting file changes, 55–59
copying/moving files, 51–52
deleting files, 52
examining workspace files/directories,

49–50
merging code, 55–59
modifying files, 53–54
restoring files, 53
updating working copy, 54–55

working through Eclipse, 64–79
adding files, 68–69
committing changes, 70–71
copying files, 78–79
deleting files, 76–77
editing files, 71–72
moving files, 77
renaming files, 77
resolving conflicts, 73–76
reverting changes, 72–73
reverting moves/renames/copies, 79
team repository view, 65–68

Subversion clients
accessing local filesystem, 117
accessing svnserve, 117

Subversion group
adding committers to, 117
permissions, 116

Subversion repository
access methods, 116
authorization/permissions, 116
baseURL property, 119
build master/slave accessing, 116–118
changing permission ownership, 117
defaultBranch property, 119
naming for use with Buildbot, 104
repository tree, 116

Subversive plug-in, 22
Subversion revision control systems, 41
team providers, 59

suite function, JavaScript
aggregating JsUnit tests, 335, 336

SVN build step
paths used on build slave, 124
publishing reports, 361
using source code, 119

svn directories, 43

■INDEX 389

9810Index.qxd 6/6/08 10:42 AM Page 389

svn group
Subversion repository, 116
switch command, 118

SVN step, Buildbot, 119–121
svn user, creating, 117
Svnhooks, 256
svnlook

precommit hooks, 256
svnserve

build master/slave accessing Subversion,
116

committers and file ownership, 116
daemon option, 117
starting after host machine reboot, 118
Subversion permissions, 116

switch command, svn, 118
Synchronize view

working with Subversion through Eclipse,
65, 68

sys.argv file, 154
sys.stdout file, 153, 158
system metaphor, 8

■T
Table method, SQLAlchemy, 284
tables

creating tables, SQLObject, 270
many-to-many relationships,

SQLAlchemy, 293
many-to-many relationships, SQLObject,

277
multiple relationships, SQLObject, 280
one-to-many relationships, SQLAlchemy,

291
one-to-many relationships, SQLObject,

275
tags, HTML, 310
tags, Nose, 160

tag expressions, 162
tasks

job management system, 22
TDD (test-driven development), 10–11,

146–147
description, 173
implicit goal, 218
using mock objects

pMock, 195–212
PyMock, 212–228

team providers, 59
team repository view, 65–68
tearDown method

correspondence of unittest/JsUnit, 326
running unit tests manually in Eclipse, 155
using PyMock with unittest, 230

technical authority, 245
templates, Pydev, 254
test assertion

implementing application tests, 176
test coverage see code coverage
test doubles see impostors
test fixtures, 142
test from_urls test, pMock, 204
test harness

converting URLs into feed objects, 185
Setuptools, 81, 102

test methods/functions
correspondence of unittest/JsUnit, 326

test package
running unit tests manually in Eclipse, 152

test runners
Framework for Integrated Tests (FIT), 341
JsUnit, 322

test suite pages
aggregating JsUnit tests, 335–336

test-driven development see TDD
TestCase classes

Nose, 149, 159
unittest, 148

testGeneratesWithRaisedTermination,
PyMock, 230

testing
acceptance testing, 140, 339–353
application tests, creating, 175
customer tests, 139
databases, 264
exploratory testing, 140
Framework for Integrated Tests (FIT),

340–353, 367
functional testing, 139, 339
integration testing, 140, 339
isolating components, 190–192
JavaScript, 320–326
load testing, 140
pending prefix, 195
performance testing, 140, 339

■INDEX390

9810Index.qxd 6/6/08 10:42 AM Page 390

programmer tests, 139
PyFit, 340–353
refactoring/condensing tests, pMock, 206
regression testing, 10, 140
running tests by URL, 336
running tests manually in Eclipse, 151–159
stories, 339
stress testing, 140
unit testing, 9–10, 141–142
using data files, 189
web applications, 316

graphics and images, 317
markup, 317
MVC, 316

XUnit test pattern, 332
testPage parameter, JsUnit

running tests by URL, 337
TestRunner objects, unittest, 148
TestSuite classes, unittest, 148
tests_require property, Nose, 167
test_add, pMock, 201
test_add, PyMock, 221
test_add_single_feed, pMock, 199
test_add_single_feed, PyMock, 217
test_aggregate_feed_creates_factory, pMock,

206
test_aggregate_feed_initializes_feed_parser,

pMock, 203, 206
test_combine_feeds, pMock, 196
test_create_entry, pMock, 200
test_entries_is_always_defined, pMock, 201
test_entries_is_always_defined, PyMock, 221
test_feed_entry_constructor, PyMock,

222–223
test_feed_entry_from_parsed_feed, pMock,

208
test_feed_entry_listing, pMock, 202
test_feed_entry_listing, PyMock, 222
test_feed_listing, 181–182
test_feed_writer_intializes_stdout, pMock,

209
test_feed_writer_prints_nothing_with_an_

empty_feed, pMock, 209
test_from_urls, PyMock, 216, 219
test_getting_attributes, PyMock, 229
test_get_feeds_from_urls, pMock, 203
test_is_empty, pMock, 210

test_is_empty, PyMock, 226
test_listing_for_item function, 182
test_listing_from_item function, 183
test_main, pMock, 212
test_main, PyMock, 227
test_new_main, pMock, 210
test_new_main, PyMock, 226
test_print_agg_feed_listing_is_printed,

PyMock, 224
test_print_entry_listings, pMock, 208, 210
test_rsreader_dependency_initialization,

PyMock, 227
test_rsreader_initializes_dependencies,

pMock, 211
test_setting_attributes, PyMock, 229
test_suite property, Nose, 167
triangulation, 182
Twisted, 104, 364
typing

duck typing, 193
typographical naming conventions, Python,

248

■U
umask command

Subversion group permissions, 116
undefined value, JavaScript, 327
underscore (_) prefix, Nose, 195
unit of work pattern, ORMs, 266
unit tests, 9, 141–142

arguments against unit testing, 143–146
don’t understand code behavior, 144
environment for running tests, 144
not developer’s job, 144
time spent on unit testing, 143, 144
unreliable tests, 144

asserting success or failure, 147
cohesion and coupling, 141
collective code ownership, 143
description, 139, 173
disabling unit tests, 145
discovering unit tests, 149
extent, 145
feedback on defective code, 251
finding tests with Nose, 159–160
fixing broken tests, 145
how they work, 141
isolating components, 190–192

■INDEX 391

9810Index.qxd 6/6/08 10:42 AM Page 391

JavaScript, 337
locating test code, 148
observing failing test first, 152
preventing regression, 145
problems with not unit testing, 142–143
Python packages for, 148
renaming values for readability, 183
RSReader with unit test skeleton, 152
running DBMigrate with unit tests, 305
running full test suite at build time,

171–173
running full test suite in development,

167–171
running tests after every change, 163–166
running tests by URL, 336
running tests manually in Eclipse, 151–159
size of unit test suite, 353
structure, 174
test-driven development, 146–147
test fixtures, 142
testing JavaScript, 320–326
tools producing unit tests from finished

code, 145
web application frameworks, 337
when unit tests need to be run, 162
why unit testing fails, 144
writing, 10

unittest
correspondence with JsUnit, 326
description, 148, 174
introduction, 148
TestCase classes, 148
TestRunner objects, 148
TestSuite classes, 148
using PyMock with unittest, 230

unzip command
publishing reports, 360

update command, Subversion, 54, 56
updating fields, SQLObject, 274
upload directories

retrieving reports, 360
URIs (Universal Resource Identifiers)

options query, 311
schemes identifying resource type, 311
secondary index, 311
syntax and URLs, 311
Web and, 309, 337
when URI becomes URL, 312

URLs (Universal Resource Locators)
converting URLs into feed objects, 185,

188
feeds_from_urls method, pMock, 203
from_urls method, PyMock, 216
parts of Subversion URL, 45
reimplementing from_urls method,

pMock, 204
running tests by URL, 336
steps followed by Web browsers, 310
test from_urls, pMock, 204
URI syntax, 311
Web and, 309, 337
when URI becomes URL, 312

user keyword, DBMigrate, 301
user stories, 7–8
usermod command, Linux, 117
use_pymock decorator, PyMock, 212

■V
validateSlope function, JavaScript, 331, 335
validating committed code, 256–257
validation function, JavaScript, 329
velocity

development velocity, 242–243
verbose flag, DBMigrate, 304
verify method, pMock, 196
verify method, PyMock, 213
version attribute, setup.py, 87
version control

see also revision control systems
benefits of, 41

versions
egg naming structure, 84
replicable builds, 85–86
version numbers, 88

versiontable keyword, DBMigrate, 301
views, Eclipse, 24
virtual Python solution

replicable builds, 85
vocabulary

writing HTML spec document, 342

■W
waterfall display, Buildbot, 111

description, 110
enhancing step progress description, 134

■INDEX392

9810Index.qxd 6/6/08 10:42 AM Page 392

illustration of, 111, 114, 119, 122, 125, 128,
136

running FIT with Buildbot, 355
waterfall methodology, 2
Web, 309, 337
web application frameworks, 313, 337
web applications, 312–314

testing, 316–320
graphics and images, 317
markup, 317
MVC, 316

using write() callback, 315
variations on implementation, 312
Web Server Gateway Interface (WSGI),

314–315
WSGI middleware, 316

web browsers
description, 310
JavaScript and, 312
JavaScript interaction with, 328
steps followed by, 310

Web Server Gateway Interface see WSGI
web servers

application framework connections, 313
using write() callback, 315
web applications and, 312

WebStatus class
configuring build master, Buildbot, 110

will clause, pMock, 196
Wing IDE, 22
with-coverage option, nosetests, 258

WithProperties class
publishing reports, 361

with_sqlobject method
creating rows, SQLObject, 271
schema definition, SQLObject, 272

workbench, Eclipse, 25
working copy

updating working copy of file, 54–55
Working Directory field

builder properties window, 165
External Tools dialog, Eclipse, 169

World Wide Web, 309, 337
write() callback, 315
WSGI (Web Server Gateway Interface),

314–315
pronunciation of WSGI, 314
web application frameworks, 337

WSGI middleware, 316

■X
xkcd_output

renaming printed_items value, 183
XML (eXtensible Markup Language), 311

SGML and, 310
XPath, 319
XUnit test pattern, 332

■Z
zero_or_more playback count, PyMock, 229
zip_safe flag not set warning, Setuptools, 94
Zope Interface, 104

■INDEX 393

9810Index.qxd 6/6/08 10:42 AM Page 393

	Foundations of Agile Python Development
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	What’s Really in Here?
	Chapter 1: What Is Agile Development?
	Chapter 2: The IDE: Eclipsing the Command Line
	Chapter 3: Revision Control: Subverting Your Code
	Chapter 4: Setuptools: Harnessing Your Code
	Chapter 5: A Build for Every Check-In
	Chapter 6: Testing: The Horse and the Cart
	Chapter 7: Test-Driven Development and Impostors
	Chapter 8: Everybody Needs Feedback
	Chapter 9: Databases
	Chapter 10: Web Testing
	Chapter 11: Functional Testing

	Contacting Me

	What Is Agile Development?
	Why More Methodologies?
	A Little History
	Planning and Agile Development
	What Are Agile Methods?
	Pair Programming
	User Stories
	The System Metaphor
	On-Site Customers
	Unit Tests
	Test-Driven Development
	Refactoring
	Simple Design
	Collective Code Ownership
	Short Iterations
	Continuous Reflection
	Continuous Integration
	Documentation

	Summary

	The IDE: Eclipsing the Command Line
	Installing Eclipse
	Installing Plug-Ins
	Installing and Configuring Pydev
	Your First Project
	Looking Under the Hood
	Paying for More Functionality
	Summary

	Revision Control: Subverting Your Code
	Revision Control Phylum
	What Subversion Does for You
	Getting Subverted
	Working with Your Subverted Code
	Examining Files
	Adding Files
	Copying and Moving Files
	Deleting Files
	Reverting Changes
	Modifying a File

	Updating Your Working Copy
	Conflicting Changes
	Subverting Eclipse
	Sharing Your Subverted Project
	Importing from Subversion

	Working with a Subverted Eclipse
	The Team Repository View
	Adding a File
	Committing Changes
	Editing a File
	Reverting Changes
	Resolving Conflicts
	Deleting Files
	Moving Files
	Renaming Files
	Copying Files
	Reverting Moves, Renames, and Copies

	Summary

	Setuptools: Harnessing Your Code
	The Project: A Simple RSS Reader
	Python Modules
	The Old Way
	The New Way: Cooking with Eggs
	Some Notes About Building Multiple Versions
	Installing Setuptools
	Getting Started with Setuptools
	Building the Project
	Installing Executables
	Dependencies
	Think Globally, Install Locally
	Removing an Existing Package: Undoing Your Hard Work
	Installing from the Local Copy

	Fixing Options with setup.cfg
	Bootstrapping Setuptools
	Subverting Subversion: What Shouldn’t Be Versioned
	The Easy Way with Eclipse

	Checking in Changes: Not Losing It
	Working in Development Mode
	Summary

	A Build for Every Check-In
	Buildbot Architecture
	Installing Buildbot
	Configuring the Build System
	Mastering Buildbot
	Enslaving Buildbot
	Hooking Up Source Control
	Using the Source
	Subversion to Buildbot, Over
	A Python for Every Builder
	Finally, a Real Build Succeeds
	Installing the Build
	Supporting Python 2.4 Builds
	Ensuring Local Dependency Processing
	Keeping Up Appearances
	Summary

	Testing: The Horse and the Cart
	Unit Testing
	The Problems with Not Unit Testing
	Pessimism
	Test-Driven Development
	Knowing Your Unit Tests
	unittest and Nose
	A Simple RSS Reader
	The First Tests
	Finding Tests with Nose
	Skipping Slow Tests
	Integrating the Tests into the Environment
	Running Tests After Every Change
	Running the Complete Test Suite in Development
	Buildbot with Unit Tests

	Summary

	Test-Driven Development and Impostors
	Moving Beyond Acceptance Tests
	Renaming
	Overriding Existing Methods: Monkeypatching
	Monkeypatching and Imports
	The Changes Go Live

	Using Data Files
	Isolation
	Rolling Your Own
	Python Quirks
	Mocking Libraries
	Aggregating Two Feeds
	A Simple pMock Example
	Implementing with pMock
	Test: Defining combine_feeds
	Test: Defining add_single_feed
	Refactoring: Extracting AggregateFeed
	Refactoring: Moving add_single_feed
	Test: Defining create_entry
	Test: Ensuring That AggregateFeed Creates a FeedEntry Factory
	Test: Defining add
	Test: AggregateFeed.entries Is Always Initialized to a Set
	Test: Defining FeedEntry.from_parsed_feed
	Test: Defining feed_entry_listing
	Test: Defining feeds_from_urls
	Test: AggregateFeed Initializes the FeedParser Factory
	Test: Defining from_urls
	Refactoring: Reimplementing from_urls
	Refactoring: Condensing Some Tests
	Test: Formatting Feed Entry Listings
	Test: Defining print_entry_listings
	Test: FeedWriter Initializes the stdout Attribute
	Test: Empty AggregateFeeds Generate No Output
	Test: Defining is_empty
	Test: Defining new_main
	Test: The Application Initializes Dependencies
	Refactoring: Making new_main the New main

	A Simple PyMock Example
	Monkeypatching
	Saying the Same Thing Differently

	Implementing with PyMock
	Test: from_urls and Mocking External Modules
	Test: Defining add_single_feed
	Refactoring: Moving Methods to a New Object
	Refactoring: Moving add_single_feed
	Refactoring: Moving from_urls()
	Test: create_entry() and Mocking Class Constructors
	Tests: Defining add and AggregateFeed.__init__
	Test: Defining FeedEntry.__init__
	Test: Defining listing
	Test: entry_listings Should Be Sorted
	Test: Defining print_entry_listings
	Test: print_entry_listings Should Do Nothing with Empty Feeds
	Test: is_empty and the Unproven Test
	Test: new_main, Hooking It All Together
	Test: RSReader Initialization
	Finishing Up: Activating the New Functionality

	Other pMock and PyMock Features
	Raising Exceptions with pMock
	Raising Exceptions with PyMock
	Playback Counts with pMock
	Playback Counts with PyMock
	Mocking Attribute Setters with PyMock
	Mocking Generators with PyMock
	Using PyMock with unittest

	Summary

	Everybody Needs Feedback
	Measuring Software Quality
	Measurements
	Quantitative Measurements: How Much Is That Doggie in the Window?
	Code Coverage
	Complexity Measurements
	Velocity: When Are We Done?
	Qualitative Measurements: It’s a Shih Tzu!
	Coding Conventions
	Welcome Back to Python
	Never Try to Fix a Social Problem with a Technical Solution
	Code Reviews
	Renaming
	Communication
	Technological Feedback: Bad Programmer, No Cookie
	Coercion at the Keyboard
	When Code Is Submitted
	Buildbot and Coverage
	Summary

	Databases
	A New Religion
	Blurring the Boundaries
	Concealing Data Access
	Object-Relational Mappers
	The Active Record Pattern
	The Data Mapper Pattern
	The Unit of Work Pattern

	Python ORMs
	SQLObject
	Connecting to the Database
	Creating Rows
	Putting the Schema Where It Belongs
	Attribute Defaults
	Selecting Objects
	Updating Fields
	Deleting Rows
	One-to-Many Relationships
	Foreign Keys
	Multiple Joins
	Many-to-Many Relationships
	Joining Students and Courses
	Multiple Relationships

	SQLAlchemy
	Queries
	Choosing Results
	Filtering with SQL Queries
	Keyword Queries
	Chaining
	One-to-Many Relationships
	Many-to-Many Relationships
	Querying Relations
	Deleting
	Going Further with SQLAlchemy

	Building the Database
	Testing
	Refactorings
	Migrations
	The Instructions
	Numbering Migrations and Playing Them Back
	Where to Put the Migration Mechanism
	DBMigrate: A Migration Mechanism
	Using DBMigrate
	Starting from Scratch
	Creating Migrations
	Manually Migrating a Database
	Running DBMigrate with Unit Tests
	Running DBMigrate from Your Program

	Summary

	Web Testing
	Really Simple Primer
	HTML
	CSS
	XML
	URI and URL
	HTTP
	JavaScript

	Web Servers and Web Applications
	WSGI
	Using the write Callback

	WSGI Middleware
	Testing Web Applications
	Graphics and Images
	Markup
	Testing JavaScript

	Using JsUnit
	Running a Test
	How It Works
	Connoisseur of the Undefined
	Adding a Little More Realism
	Manipulating the DOM
	Aggregating Tests
	Running Tests by URL

	Summary

	Functional Testing
	Running Acceptance Tests
	PyFit
	Writing Requirements
	A Simple PyFit Example
	Giving the Acceptance Tests a Home
	Your First FIT
	The Fixture
	Running PyFit
	Making It Easier

	FIT into Buildbot
	Preparing the Slave
	Run New Builder, Run!
	Making the Reports Available
	Packaging the Reports
	Retrieving the Reports
	Publishing the Reports

	Getting Regular Builds
	What’s Left?

	Summary

	Index

