A Brain-Friendly Guide

Head First

11011

Model data
with lists,
@ sets,and
Load important dictionaries
programming concepts
directly into your brain
Preserve Hook up with
your data JSON, Android,
in a pickle and App Engine =
}

<

Sha,re. .your -coe with
the world on PyPI

Move your custom
app to the Web

O REILLY® o, Paul Barry

Head First Python

Python/Programming Languages

What will you learn from this book?

Ever wished you could learn Python from a book? Head First Python
helps you learn the language through a unique method that goes
beyond syntax and how-to manuals. You’ll quickly grasp Python’s
fundamentals, then move on to persistence, exception handling,
web development, SQLite, data wrangling, and Google App Engine.
You'll also learn how to write mobile apps for Android, all thanks to
the power that Python gives you. Head First Python is a complete
learning experience that will help you become a bona fide Python
programmer.

Port yow scru\a{,s from the Python

A — 4 shell to
"— the Web.

66{: Your data into a Fiéklc...
and get it back out.

Move Your webapp to phones as an
Android app.

[nstantiate data objeets
as instances of ¢lasses.

Why does this book look so different?

We think your time is too valuable to waste struggling with new con-
cepts. Using the latest research in cognitive science and learning
theory to craft a multi-sensory learning experience, Head First
Python uses a visually rich format designed for the way your brain
works, not a text-heavy approach that puts you to sleep.

US $49.99 CAN $57.99

ISBN: 978-1-449-38267-4
LT i Safarl ereny
|" ||| || ||||I||I Books Online purchase of this book.

9 '781449"38267 Details on last page.

Free online edition

“Head First Python is
a, great introduction to
not just the Python
language, but Python
as it’s used in the
real world. The book
goes beyond the
syntax to teach you
how to create applica-
tions for Android
phones, Google’s App
Engine, and more.”

— David Griffiths,
author and Agile coach

“Where other books
start with theory and
progress to examples,
Head First Python
jumps right in with
code and explains the
theory as you read
along. The breadth
of examples and
explanation cover
the majority of what
you’ll use in your job
every day.”

— Jeremy Jones, coauthor of
Python for Unix and Linux
System Administrators

O’REILLY"

oreilly.com
headfirstlabs.com

Advance Praise for Head First Python

“Head First Python is a great introduction to not just the Python language, but Python as it’s used in the
real world. The book goes beyond the syntax to teach you how to create applications for Android phones,
Google’s App Engine, and more.”

— David Griffiths, author and Agile coach

“Where other books start with theory and progress to examples, Head First Python jamps right in with code
and explains the theory as you read along. This is a much more effective learning environment, because
it engages the reader to do from the very beginning. It was also just a joy to read. It was fun without
being flippant and informative without being condescending. The breadth of examples and explanation
covered the majority of what you’ll use in your job every day. I'll recommend this book to anyone
starting out on Python.”

— Jeremy Jones, coauthor of Python for Unix and Linux System Administration

“Head First Python is a terrific book for getting a grounding in a language that is increasing in relevance
day by day.”

— Phil Hartley, University of Advancing Technology

Praise for other Head First books

“Kathy and Bert’s Head First fava transforms the printed page into the closest thing to a GUI you've ever
seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’

experience.”
— Warren Keuffel, Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, Head
Furst fava covers a huge amount of practical matters that other texts leave as the dreaded ‘exercise for the
reader....” It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that claim and live
up to it while also teaching you about object serialization and network launch protocols.”

— Dr. Dan Russell, Director of User Sciences and Experience Research

IBM Almaden Research Center (and teaches Artificial Intelligence at
Stanford University)

“It’s fast, irreverent, fun, and engaging, Be careful—you might actually learn something!”
— Ken Arnold, former Senior Engineer at Sun Microsystems

Coauthor (with James Gosling, creator of Java), The Java Programming

Language

“I feel like a thousand pounds of books have just been lifted off of my head.”
— Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practi-
cal development strategies—gets my brain going without having to slog through a bunch of tired, stale
professor-speak.”

— Travis Kalanick, founder of Scour and Red Swoosh
Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-eared,
mangled, and carried everywhere. Head First SQL 1s at the top of my stack. Heck, even the PDF I have
for review is tattered and torn.”

— Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving,”

— Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books
“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely tres ‘cool.” It
is fun, but they cover a lot of ground and they are right to the point. I'm really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I've ever read.”

— Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, CEO, Newsvine, Inc.

“Elegant design 1s at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive Vice President, Disney Online

“1 W Head First HTML with CSS & XHTMIL—it teaches you everything you need to learn in a ‘fun-coated’
format.”

— Sally Applin, UI Designer and Artist

“Usually when reading through a book or article on design patterns, I'd have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller...Bueller...Bueller...” this book 1s on the float
belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Other related books from O’Reilly
Learning Python
Programming Python
Python in a Nutshell
Python Cookbook

Python for Unix and Linux System Administration

Other books in O’Reilly’s Head First series
Head First Algebra
Head First Ajax
Head First C#, Second Edition
Head First Design Patterns
Head First EJB
Head First Excel
Head First 2D Geometry
Head First HTML with CSS & XHTML
Head First iPhone Development
Head First Java
Head First JavaScript
Head First Object-Oriented Analysis & Design (OOA&D)
Head First PHP & MySQL
Head First Physics
Head First PMP, Second Edition
Head First Programming
Head First Rails
Head First Servlets & JSP, Second Edition
Head First Software Development
Head First SQL
Head First Statistics
Head First Web Design
Head First WordPress

Head First Python

Wouldn't it be dreamy if there
were a Python book that didn't
make you wish you were anywhere
other than stuck in front of your

computer writing code? T guess it's

Jjust a fantasy...

Paul Barry

O’REILLY"

Beijing < Cambridge ¢ Farnham < KéIn « Sebastopol * Tokyo

Head First Python
by Paul Barry

Copyright © 2011 Paul Barry. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates Deivdre
Editor: Brian Sawyer

Cover Designer: Karen Montgomery

Production Editor: Rachel Monaghan

Proofreader: Nancy Reinhardt

Indexer: Angela Howard

Page Viewers: Deirdre, Joseph, Aaron, and Aideen

Printing History:
November 2010: First Edition.

Aaron

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head Furst Python, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No athletes were pushed too hard in the making of this book.

RepKover. - . oo
=== This book uses RepKover’," a durable and flexible lay-flat binding,

ISBN: 978-1-449-38267-4
(M]

I dedicate this book to all those generous people in the Python
community who have helped to make this great little language the
Jurst-rate programming technology it is.

And to those that made learning Python and its technologies just
complex enough that people need a book like this to learn it.

the author

Author of Head First Python

viii

Paul Barry recently worked out that he has been
programming for close to a quarter century, a fact that came
as a bit of a shock. In that time, Paul has programmed in

lots of different programming languages, lived and worked

in two countries on two continents, got married, had three
kids (well...his wife Deirdre actually fad them, but Paul was
there), completed a B.Sc. and M.Sc. in Computing, written or
cowritten three other books, as well as a bunch of technical
articles for Linux fournal (where he’s a Contributing Editor).

When Paul first saw Head Furst HTML with CSS & XHTMI,
he loved it so much he knew immediately that the Head First
approach would be a great way to teach programming. He
was only too delighted then, together with David Griffiths, to
create Head First Programming in an attempt to prove his hunch
correct.

Paul’s day job is working as a lecturer at The Institute of
Technology, Carlow, in Ireland. As part of the Department
of CGomputing and Networking, Paul gets to spend his day
exploring, learning, and teaching programming technologies
to his students, including Python.

Paul recently completed a post-graduate certificate in
Learning and Teaching and was more than a bit relieved to
discover that most of what he does conforms to current third-
level best practice.

Table of Contents (Summary)

© O N oy e W N

—_ —
— o

—-

Table of Contents (the rea] thing)

Intro

Meet Python: Everyone Loves Lists

Sharing Your Code: Modules of Functions

Files and Exceptions: Dealing with Errors
Persistence: Saving Data to Files
Comprehending Data: Work That Data!
Custom Data Objects: Bundling Code with Data
Web Development: Putting 1t All Together
Mobile App Development: Small Devices
Manage Your Data: Handling Input

Scaling Your Webapp: Getting Real

Dealing with Complexity: Data Wrangling
Leftovers: The Top Ten Things (We Dudn’t Cover)

Intro

table of contents

xxiii

33

73

105
139
173
213
255
293
351
397
435

Your brain on Python. Here you are trying to learn something, while

here your brain is doing you a favor by making sure the learning doesn'’t stick.

Your brain’s thinking, “Better leave room for more important things, like which

wild animals to avoid and whether naked snowboarding is a bad idea.” So how

do you trick your brain into thinking that your life depends on knowing Python?

Who is this book for?

We know what you’re thinking
Metacognition

Bend your brain into submission
Read me

The technical review team

Acknowledgments

XX1V
XXV
xxvil
XXIX
XXX
Xxxil

xxxiil

table of contents

meet python

Everyone loves lists

You’re asking one question: “What makes Python different?”
The short answer is: lots of things. The longer answers starts by stating that there’s
lots that’s familiar, too. Python is a lot like any other general-purpose programming
language, with statements, expressions, operators, functions, modules, methods,
and classes. All the usual stuff, really. And then there’s the other stuff Python provides
that makes the programmer’s life—your life—that little bit easier. You'll start your tour
of Python by learning about lists. But, before getting to that, there’s another important

question that needs answering...

What’s to like about Python? 2
Install Python 3 3
Use IDLE to help learn Python 4
Work effectively with IDLE 5
Deal with complex data 6
Create simple Python lists 7
Lists are like arrays 9
Add more data to your list 11
Work with your list data 15
For loops work with lists of any size 16
Store lists within lists 18
Check a list for a list 20
Complex data is hard to process 23
Handle many levels of nested lists 24
Don’t repeat code; create a function 28
Create a function in Python 29
Recursion to the rescue! 31
Your Python Toolbox 32

The Holy Grail, 1975, Tervy Jones ¢ Tervy Gilliam, 91 mins

Qraham Chapman

Michael Palin, John Cleese, Terry Gilliam, Exie [dle € Terry Jones

table of contents

sharing your code
Modules of functions

Reusable code is great, but a shareable module is better.

By sharing your code as a Python module, you open up your code to the entire Python
community...and it's always good to share, isn’t it? In this chapter, you'll learn how to
create, install, and distribute your own shareable modules. You’ll then load your module
onto Python’s software sharing site on the Web, so that everyone can benefit from your

work. Along the way, you’ll pick up a few new tricks relating to Python’s functions, too.

It’s too good not to share 34
Turn your function into a module 35
Modules are everywhere 36
Coomment your code 37
Prepare your distribution 40
Build your distribution 41
A quick review of your distribution 42
Import a module to use it 43
Python’s modules implement namespaces 45
Register with the PyPI website 47
Upload your code to PyPI 48
Welcome to the PyPI community 49
Control behavior with an extra argument 52
Before your write new code, think BIF 53
Python tries its best to run your code 57
Trace your code 58
Work out what’s wrong 59
Update PyPI with your new code 60
You've changed your API 62
Use optional arguments 63
Your module supports both APIs 65
Your API is still not right 66
Your module’s reputation is restored 70
nester.py Your Python Toolbox 71

setup.py

Xi

table of contents

files and exceptions
Dealing with errors

It’s simply not enough to process your list data in your code.
You need to be able to get your data into your programs with ease, too. It's no surprise
then that Python makes reading data from files easy. Which is great, until you
consider what can go wrong when interacting with data external to your programs...
and there are lots of things waiting to trip you up! When bad stuff happens, you need a
strategy for getting out of trouble, and one such strategy is to deal with any exceptional

situations using Python’s exception handling mechanism showcased in this chapter.

Data is external to your program 74

It’s all lines of text 75

Take a closer look at the data 77

Know your data 79

Know your methods and ask for help 80

Know your data (better) 82

Two very different approaches 83

Add extra logic 84

Handle exceptions 88

Try first, then recover 89

Identify the code to protect 91

Take a pass on the error 93

What about other errors? 96

Add more error-checking code... 97

...Or add another level of exception handling 98

So, which approach is best? 99
* You're done...except for one small thing 101
Be specific with your exceptions 102
split (beans) Your Python Toolbox 103

Xii

table of contents

persistence
Saving data to files

Itis truly great to be able to process your file-based data.
But what happens to your data when you’re done? Of course, it's best to save your
data to a disk file, which allows you to use it again at some later date and time. Taking
your memory-based data and storing it to disk is what persistence is all about. Python
supports all the usual tools for writing to files and also provides some cool facilities for

efficiently storing Python data.

Programs produce data 106
Open your file in write mode 110
Files are left open after an exception! 114
Extend try with finally 115
Knowing the type of error is not enough 117
Use with to work with files 120
Default formats are unsuitable for files 124
Why not modify print_lol()? 126
Pickle your data 132
Save with dump and restore with load 133
Generic file I70 with pickle is the way to go! 137
Your Python Toolbox 138

["Is this the right room for an |
argument?', "No you haven't!",
'When?', "No you didn't!", "You
didn't!", 'You did not!', 'Ah!
(taking out his wallet and paying)
Just the five minutes.', 'You most
certainly did not!', "Oh no you
didn't!", "Oh no you didn't!", "Oh
look, this isn't an argument!",

['No it isn't!", "It's just
contradiction!", 'It IS!', 'You
just contradicted me!', 'You DID!',
'You did just then!', ' (exasperated)
Oh, this is futile!!', 'Yes it
is!']

xiii

table of contents

comprehending data
Work that data!

Data comes in all shapes and sizes, formats and encodings.
To work effectively with your data, you often have to manipulate and transform it into a
common format to allow for efficient processing, sorting, and storage. In this chapter,
you’ll explore Python goodies that help you work your data up into a sweat, allowing

you to achieve data-munging greatness.

Coach Kelly needs your help 140
Sort in one of two ways 144
The trouble with time 148
Comprehending lists 155
Iterate to remove duplicates 161
Remove duplicates with sets 166
Your Python Toolbox 172

This chapter's
guaranteed to give you
a workout!

Xiv

table of contents

custom data objects
Bundling code with data

It’s important to match your data structure choice to your data.
And that choice can make a big difference to the complexity of your code. In Python,
although really useful, lists and sets aren’t the only game in town. The Python dictionary
lets you organize your data for speedy lookup by associating your data with names, not
numbers. And when Python’s built-in data structures don’t quite cut it, the Python class

statement lets you define your own. This chapter shows you how.

Coach Kelly is back (with a new file format) 174
Use a dictionary to associate data 178
Bundle your code and its data in a class 189
Define a class 190
Use class to define classes 191
The importance of self 192
Every method’s first argument is self 193
Inherit from Python’s built-in list 204
Coach Kelly is impressed 211
Your Python Toolbox 212

The Object

XV

table of contents

web development
Putting it all together

Sooner or later, you’ll want to share your app with lots of people.
You have many options for doing this. Pop your code on PyPI, send out lots of emails, put
your code on a CD or USB, or simply install your app manually on the computers of those
people who need it. Sounds like a lot of work...not to mention boring. Also, what happens
when you produce the next best version of your code? What happens then? How do

you manage the update? Let’s face it: it's such a pain that you’ll think up really creative
excuses not to. Luckily, you don’t have to do any of this: just create a webapp instead. And,

as this chapter demonstrates, using Python for web development is a breeze.

It’s good to share 214
You can put your program on the Web 215
What does your webapp need to do? 218
Design your webapp with MVC 221
Model your data 222
View your interface 226
Control your code 234
CGl lets your web server run programs 235
Display the list of athletes 236
The dreaded 404 error! 242
Create another CGI script 244
Enable CGI tracking to help with errors 248
A small change can make all the difference 250
Your webapp’s a hit! 252
Qe Welooma to Coach Kels Webeke . Your Python Toolbox 253

CK hetp:/ /ocalhost: 8080/

Welcome to Coach Kelly's Website.
For now, all that you'll find here is my athiete's timing data. Enjoy!

See you on the track!

xvi

table of contents

mobile app development
Small devices

Putting your data on the Web opens up all types of possibilities.
Not only can anyone from anywhere interact with your webapp, but they are increasingly
doing so from a collection of diverse computing devices: PCs, laptops, tablets, palmtops,
and even mobile phones. And it's not just humans interacting with your webapp that

you have to support and worry about: bots are small programs that can automate web
interactions and typically want your data, not your human-friendly HTML. In this chapter,
you exploit Python on Coach Kelly’s mobile phone to write an app that interacts with your

webapp’s data.

The world is getting smaller 256
Coach Kelly is on Android 257
Don’t worry about Python 2 259
Set up your development environment 260
Configure the SDK and emulator 261
Install and configure Android Scripting 262
Add Python to your SL4A installation 263
Test Python on Android 264
Define your app’s requirements 266
The SL4A Android API 274
Select from a list on Android 278
The athlete’s data CGI script 281
The data appears to have changed type 284
\ JSON can’t handle your custom datatypes 285
\
| Run your app on a real phone 288
(@ seeasmaten Configure AndFTP 289
W : The coach is thrilled with his app 290
i Your Python Toolbox 291

james

jule

xvii

table of contents

manage your data
Handling input
The Web and your phone are not just great ways to display data.

They are also great tools to for accepting input from your users. Of course, once your
webapp accepts data, it needs to put it somewhere, and the choices you make when
deciding what and where this “somewhere” is are often the difference between a webapp
that's easy to grow and extend and one that isn’t. In this chapter, you'll extend your
webapp to accept data from the Web (via a browser or from an Android phone), as well

as look at and enhance your back-end data-management services.

Your athlete times app has gone national 294

Use a form or dialog to accept input 295

Create an HTML form template 296

The data 1s delivered to your CGI script 300

Ask for input on your Android phone 304

It’s time to update your server data 308

Avoid race conditions 309

You need a better data storage mechanism 310

Use a database management system 312

Python includes SQLite 313

Exploit Python’s database API 314

The database API as Python code 315

ﬁ A little database design goes a long way 316
Define your database schema 317

q What does the data look like? 318
L" Transfer the data from your pickle to SQLite 321

/ What ID is assigned to which athlete? 322
'\'.-I Insert your timing data 323
& SQLite data management tools 326
r @ Integrate SQLite with your existing webapp 327
You still need the list of names 332

Get an athlete’s details based on ID 333

@ You need to amend your Android app, too 342
Update your SQLite-based athlete data 348

The NUAC is over the moon! 349

Your Python Toolbox 350

xviii

table of contents

scaling your webapp
Getting real
The Web is a great place to host your app...until things get real.

Sooner or later, you'll hit the jackpot and your webapp will be wildly successful. When
that happens, your webapp goes from a handful of hits a day to thousands, possibly ten
of thousands, or even more. Will you be ready? Will your web server handle the load?
How will you know? What will it cost? Who will pay? Can your data model scale to
millions upon millions of data items without slowing to a crawl? Getting a webapp up and
running is easy with Python and now, thanks to Google App Engine, scaling a Python

webapp is achievable, too.

There are whale sightings everywhere 352
The HFWWG needs to automate 353
Build your webapp with Google App Engine 354
Download and install App Engine 355
Make sure App Engine is working 356
App Engine uses the MVC pattern 359
Model your data with App Engine 360
What good is a model without a view? 363
Use templates in App Engine 364
Django’s form validation framework 368
Check your form 369
Controlling your App Engine webapp 370
Restrict input by providing options 376
Meet the “blank screen of death” 378
Process the POST within your webapp 379
Put your data in the datastore 380
Don’t break the “robustness principle” 384
Accept almost any date and time 385
It looks like you’re not quite done yet 388
Sometimes, the tiniest change can make all the difference... 389
Capture your user’s Google ID, too 390
Deploy your webapp to Google’s cloud 391
Your HFWWG webapp is deployed! 394
Your Python Toolbox 395

Xix

table of contents

dealing With complexity
Data wrangling

It’s great when you can apply Python to a specific domain area.
Whether it's web development, database management, or mobile apps, Python helps
you get the job done by not getting in the way of you coding your solution. And then
there’s the other types of problems: the ones you can’t categorize or attach to a domain.
Problems that are in themselves so unique you have to look at them in a different, highly
specific way. Creating bespoke software solutions to these type of problems is an area
where Python excels. In this, your final chapter, you'll stretch your Python skills to the

limit and solve problems along the way.

What’s a good time goal for the next race? 398
So...what’s the problem? 400
Start with the data 401
Store each time as a dictionary 407
Dissect the prediction code 409
Get input from your user 413
Getting input raises an issue... 414
Search for the closest match 416
The trouble is with time 418
The time-to-seconds-to-time module 419
The trouble is still with time... 422
Port to Android 424
Your Android app is a bunch of dialogs 425
Put your app together... 429
Your app’s a wrap! 431
Your Python Toolbox 432

Flle Edit “iew Msert Format Form Tools Help

o oA e A S % 123 'IDp‘I'Elh-iv H- O E- = L~

Formula: [Wi2

table of contents

lettovers
The Top Ten Things (we didn’t cover)

You’ve come a long way.

But learning about Python is an activity that never stops. The more Python you code,
the more you’ll need to learn new ways to do certain things. You'll need to master new
tools and new techniques, too. There’s just not enough room in this book to show you
everything you might possibly need to know about Python. So, here’s our list of the top

ten things we didn’t cover that you might want to learn more about next.

#1: Using a “professional” IDE 436
#2: Cloping with scoping 437
#3: Testing 438
#4: Advanced language features 439
#5: Regular expressions 440
#6: More on web frameworks 441
#7: Object relational mappers and NoSQL 442
#8: Programming GUIs 443
#9: Stuff to avoid 444
#10: Other books 445

XXi

how to use this bool
Intro

I can't believe
they put thatina
Python book.

urning t\ucs{jow

[n this seetion, we answer the b o,

“So why DID they ?u‘(: that in 3 P\/{‘)\on b

xXiii

how to use this

Who is this book for?

If you can answer “yes” to all of these:

o Do you already know how to program in another
programming language?

e Do you wish you had the know-how to program Python,
add it to your list of tools, and make it do new things?

e Do you prefer actually doing things and applying the stuff
you learn over listening to someone in a lecture rattle on
for hours on end?

this book is for you.

Who should probably back away from this book?

If you can answer “yes” to any of these:

o Do you already know most of what you need to know to
program with Python?

e Are you looking for a reference book to Python, one that
covers all the details in excruciating detail?

e Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do you
believe a Python book should cover everything and if it
bores the reader to tears in the process then so much the
better?

this book is not for you.

f%

FNo‘l:e from mavketing: this book
is lqcor anyone with a evedit card..
we'll aceept a theek, to0.]

XXiv

the intro

We know what youre thinking

“How can ths be a serious Python book?”
“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what your brain is thinking (" rtont

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the

boring things; they never make it past the “this is obviously not important”
filter.

How does your brain Anow what’s important? Suppose you're out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge. Great. Only 450
more dull, dry,
And that’s how your brain knows... boring page S.Y

This must be important! Don’t forget it!

. !
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. \/pue 003" J(';Y Q
You're studying. Getting ready for an exam. Or trying to learn some tough ~ TR|S bW o
technical topic your boss thinks will take a week, ten days at the most.

savingy

Just one problem. Your brain’s trying to do you a big favor. It’s trying to \
make sure that this obviously non-important content doesn’t clutter up scarce
resources. Resources that are better spent storing the really bzg things.
Like tigers. Like the danger of fire. Like how you should never have
posted those “party” photos on your Facebook page. And there’s no
simple way to tell your brain, “Hey brain, thank you very much, but
no matter how dull this book is, and how little I'm registering on the
emotional Richter scale right now, I really do want you to keep this
stufl’ around.”

you are here » XXV

XXVi

how to use this book

We think of a “Head First’ reader as a Jearner.

So what does it take to learn something? First, you have to getit, then make sure
you don’t forgetit. It’s not about pushing facts into your head. Based on the latest
research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more
understandable. Put the words within or near the graphics they relate to, rather than on
the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don't take yourself too seriously. Which would you pay more attention to:a stimulating dinner party

companionora lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. we've all had the”l really want to learn this but | can’t

stay awake past page one” experience.Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn't have to be

poring. Your brain will learn much more quickly if it's not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you caré about. You remember when you feel something.

No, we're not talking heart-wrenching stories about a boy and his dog. We're talking emotions like

surprise, curiosity, fun, nwhat the...?", and the feeling of “I Rule!” that comes when you solve a puzzle,

learn something everybody else thinks is hard, or realize you know something that“I'm more technical

than thou” Bob from engineering doesn'’t.

intro

the

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

I wonder how
T can trick my brain
into remembering

Most of us did not take courses on metacognition or learning theory when we this stuff

were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how &
to design user-friendly websites. And you probably don’t want to spend a lot
of time. If you want to use what you read in this book, you need to remember
what you read. And for that, you’ve got to understand it. To get the most from
this book, or any book or learning experience, take responsibility for your brain.
Your brain on #us content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you're in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat
programming like it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way 1s about sheer repetition. You obviously know that you are able to learn

and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t fee/ important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, cspecially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording;

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning. ..

XXVii

how to use this

Here’s what WE did:

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really s worth a thousand words. And when text and pictures work
together, we embedded the text i the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain

1s tuned to pay attention to the biochemistry of emotions. That which causes you to fee/
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see

an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have

a straight answer, because your brain is tuned to learn and remember when it has to work at
something, Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

XXViii

1=
S %

Cut this out and stick it

—t® O YOIAV‘ re y-igcra.tov_.

a Slow down. The more you understand, the
less you have to memorize.

Don’t just read. Stop and think. When the book asks
you a question, don’t just skip to the answer. Imagine
that someone really is asking the question. The

more deeply you force your brain to think, the better
chance you have of learning and remembering.

e Do the exercises. Write your own notes.
We put them in, but if we did them for you, that
would be like having someone else do your workouts
for you. And don’t just look at the exercises. Use a
pencil. There’s plenty of evidence that physical
activity w/u/e learning can increase the learning.

9 Read the “There are No Dumb Questions.”
That means all of them. They’re not optional
sidebars, they’re part of the core content!
Don’t skip them.

e Make this the last thing you read before bed.

Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens g/ you put the book
down. Your brain needs time on its own, to do more
processing. If you put in something new during that
processing time, some of what you just learned will
be lost.

Talk about it. Out loud.

Speaking activates a different part of the brain. If
you’re trying to understand something, or increase
your chance of remembering it later, say it out loud.
Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover
ideas you hadn’t known were there when you were
reading about it.

the

Here’s what YOU can do to bend
Your brain into submission

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

G Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

0 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

e Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
1s still better than feeling nothing at all.

e Write a lot of code!

There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to
do throughout this book. Coding is a skill, and the
only way to get good at it is to practice. We’re going
to give you a lot of practice: every chapter has
exercises that pose a problem for you to solve. Don’t
just skip over them—a lot of the learning happens
when you solve the exercises. We included a solution
to each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged
on something small.) But try to solve the problem
before you look at the solution. And definitely get it

working before you move on to the next part of the
book.

XXixX

how to use this

Read Me

This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

This book is designed to get you up to speed with Python as
quickly as possible.

As you need to know stuff, we teach it. So you won’t find long lists of technical material, no
tables of Python’s operators, not its operator precedence rules. We don’t cover everything,
but we’ve worked really hard to cover the essential material as well as we can, so that you
can get Python into your brain quickly and have it stay there. The only assumption we make
1s that you already know how to program in some other programming language.

This book targets Python 3

We use Release 3 of the Python programming language in this book, and we cover how to
get and install Python 3 in the first chapter. That said, we don’t completely ignore Release
2, as you’ll discover in Chapters 8 through 11. But trust us, by then you’ll be so happy using
Python, you won’t notice that the technologies you’re programming are running Python 2.

We put Python to work for you right away.

We get you doing useful stuff in Chapter 1 and build from there. There’s no hanging
around, because we want you to be productive with Python right away.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you've learned. Don’t skip the exercises.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books don’t
have retention and recall as a goal, but this book is about learning, so you’ll see some of the
same concepts come up more than once.

XXX

the

The examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of an example looking
for the two lines they need to understand. Most examples in this book are shown within
the smallest possible context, so that the part you’re trying to learn is clear and simple.
Don’t expect all of the examples to be robust, or even complete—they are written
specifically for learning, and aren’t always fully functional.

We've placed a lot of the code examples on the Web so you can copy and paste them as
needed. You'll find them at two locations:

http://www.headfirstlabs.com/books/hfpython/
http://python.itcarlow.ie

The Brain Power exercises don’t have answers.

For some of them, there 1s no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises, you will find hints to point you in the
right direction.

XXXi

the review team

The technical review team

David Griffiths

Jevemy Jones

Phil Har{:ley

Technical Reviewers:

David Griffiths is the author of Head First Rails Phil Hartley has a degree in Computer Science
and the coauthor of Head First Programming. He began from Edinburgh, Scotland. Having spent more than
programming at age 12, when he saw a documentary 30 years in the I'T industry with specific expertise in
on the work of Seymour Papert. At age 15, he wrote OOP, he is now teaching full time at the University
an implementation of Papert’s computer language of Advancing Technology in Tempe, AZ. In his spare

LOGO. After studying Pure Mathematics at University, time, Phil is a raving NFL fanatic

h iti f i . .
¢ began writing code for computers and magazine Jeremy Jones is coauthor of Python for Unix and

Linux System Administration. He has been actively using
Python since 2001. He has been a developer, system
administrator, quality assurance engineer, and tech
support analyst. They all have their rewards and
challenges, but his most challenging and rewarding job
has been husband and father.

articles for humans. He’s worked as an agile coach,

a developer, and a garage attendant, but not in that
order. He can write code in over 10 languages and
prose in just one, and when not writing, coding, or
coaching, he spends much of his spare time traveling
with his lovely wife—and fellow Head First author—
Dawn.

XXXii intro

the intro

Acknowledgments

My editor:

Brian Sawyer was Head First Python’s editor. When not editing
books, Brian likes to run marathons in his spare time. This turns out
to be the perfect training for working on another book with me (our
second together). O’Reilly and Head First are lucky to have someone
of Brian’s caliber working to make this and other books the best they

can be. Brian Sawycr

The O’Reilly team:

Karen Shaner provided administrative support and very capably coordinated the techical review process, responding
quickly to my many queries and requests for help. There’s also the back-room gang to thank—the O’Reilly Production
Team—who guided this book through its final stages and turned my InDesign files into the beautiful thing you’re

holding in your hands right now (or maybe you’re on an iPad, Android tablet, or reading on your PC—that’s cool, too).

And thanks to the other Head First authors who, via Twitter, offered cheers, suggestions, and encouragement
throughout the entire writing process. You might not think 140 characters make a big difference, but they really do.

I am also grateful to Bert Bates who, together with Kathy Sierra, created this series of books with their wonderful
Head First fava. At the start of this book, Bert took the time to set the tone with a marathon 90-minute phone call,
which stretched my thinking on what I wanted to do to the limit and pushed me to write a better book. Now, some nine
months after the phone call, I'm pretty sure I've recovered from the mind-bending Bert put me through.

Friends and colleagues:

My thanks again to Nigel Whyte, Head of Department, Computing and Networking at The Institute of Technology,
Carlow, for supporting my involvement in yet another book (especially so soon after the last one).

My students (those enrolled on 3rd Year Games Development and 4th Year Software Engineering) have been exposed
to this material in various forms over the last 18 months. Their positive reaction to Python and the approach I take with
my classes helped inform the structure and eventual content of this book. (And yes, folks, some of this is on your final).

Family:

My family, Deirdre, Joseph, Aaron, and Aideen had to, once more, bear the grunts and groans, huffs and puffs,
and more than a few roars on more than one occasion (although, to be honest, not as often they did with Head First
Programming). After the last book, I promised I wouldn’t start another one “for a while.” It turned out “a while” was no
more than a few weeks, and I'll be forever grateful that they didn’t gang up and throw me out of the house for breaking
my promise. Without their support, and especially the ongoing love and support of my wife, Deirdre, this book would
not have seen the light of day.

The without-whom list:

My technical review team did an excellent job of keeping me straight and making sure what I covered was spot on.
They confirmed when my material was working, challenged me when it wasn’t and not only pointed out when stuff

was wrong, but provided suggestions on how to fix it. This is especially true of David Griffiths, my co-conspirator on
Head First Programming, whose technical review comments went above and beyond the call of duty. David’s name might
not be on the cover of this book, but a lot of his ideas and suggestions grace its pages, and I was thrilled and will forever
remain grateful that he approached his role as tech reviewer on Head First Python with such gusto.

you are here » xxxiii

safari

Safari® Books Online

S a f ari Safari Books Online is an on-demand digital library that lets
Boone Ontine. you easily search over 7,500 technology and creative reference

books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, and get exclusive access to manuscripts in development
and post feedback for the authors. Copy and paste code samples, organize your
favorites, download chapters, bookmark key sections, create notes, print out pages,
and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com/?portal=orelly.

XXXiV

1 meet python ¥

« Everyone loves lists *

Yes, yes...we have lots
of Pythons in stock... T'll
just make a quick list.

You’re asking one question: “What makes Python different?”
The short answer is: lots of things. The longer answers starts by stating that there’s lots
that's familiar, too. Python is a lot like any other general-purpose programming language,
with statements, expressions, operators, functions, modules, methods, and classes.
All the usual stuff, really. And then there’s the other stuff Python provides that makes

the programmer’s life—your life—that little bit easier. You'll start your tour of Python by

learning about lists. But, before getting to that, there’s another important question that
needs answering...

this is a new chapter

python greatness

What's to like about Python?

Lots. Rather than tell you, this book’s goal is to show you the greatness that is
Python.

Yeah... I need something that I can deploy
on PCs, Macs, handhelds, phones,the Web,
on big servers and small clients...and it has
to let me build GUIs quickly and painlessly...
OK, yes, yeah, I'm listening... What?!?
You're kidding! Python can do all that?

Before diving head first into Python, let’s get a bit of housekeeping out of
the way.

To work with and execute the Python code in this book, you need a copy of
the Python 3 interpreter on your computer. Like a lot of things to do with

Python, it’s not difficult to install the interpreter. Assuming, of course, it’s not
already there...

2 Chapter 1

meet python

Install Python 3

Before you write and run Python code, you need to make sure the Python
interpreter is on your computer. In this book, you’ll start out with Release 3 of
Python, the very latest (and best) version of the language.

A release of Python might already be on your computer. Mac OS X comes
with Python 2 preinstalled, as do most versions of Linux (which can also ship
with Release 3). Windows, in contrast, doesn’t include any release of Python.
Let’s check your computer for Python 3. Open up a command-line prompt

and, if you are using Mac OS X or Linux, type: 9‘6
python3 -V * Do this!
0] .
u-,:)ha{:s an MPPERCASE
On Windows, use this command: v b)’ the way. *

c:\Python31l\python.exe -V ¢

\ 4 \py If Python 3 is missing from
your computer, download
a copy for your favorite OS
th from the www.python.org
MS\Y\ ¢ W bsite.
UPPERCASE N i

. on

\'CSV‘H"S n the P\f File Edit_Window Help WhichPython?

version a\’YcaY\% $ python3 -V

streen. Python 3.1.2
$
$ python3
Without the “,,j Python 3.1.2 (r312:79360M, Mar 24 2010, 01:33:18)
UPPERCASE V', [GCC 4.0.1 (Apple Inc. build 5493)] on darwin
ou ave taken Type "help", "copyright", "credits" or "license" for more info.
into the Python 222 .
ih‘{',CY'YY'CtCV' §>> quit ()

Use the D\ui{:()
tommand +o exit
the interpreter and
vetuen 1o Your 0s
Yromv‘l:-

When you install Python 3, you also get IDLE, Python’s simple—yet
surprisingly useful— integrated development environment. IDLE includes a
color syntax-highlighting editor, a debugger, the Python Shell, and a complete
copy of Python 3’s online documentation set.

Let’s take a quick look at IDLE.

you are here » 3

idle

Use IVLE to help learn Python

IDLE lets you write code in its full-featured code editor as well as experiment
with code at the Python Shell. You’ll use the code editor later in this book
but, when learning Python, IDLE’s shell really rocks, because it lets you try
out new Python code as you go.

When you first start IDLE, you are presented with the “triple chevron”
prompt (>>>) at which you enter code. The shell takes your code statement
and ummediately executes it for you, displaying any results produced on screen.

IDLE knows all about Python syntax and offers “completion hints” that pop
up when you use a built-in function like print (). Python programmers
generally refer to built-in functions as BIFs. The print () BIF displays
messages to standard output (usually the screen).

'l/(nlikc other C—based
anguages, which use { and }
to delimit blocks, P\/'l:hon uses

Enter Yyour tode indentation instead.
at the >>> YVO"‘\’{"
806 Python Shell)

Python 3.1.2 (r312:79360M, Mar 24 2010, 01:33:18)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "copyright", "credits" or "license()" for more /Znformaticn.
>>>
>>> print("You can experiment with code within ZZ1E's shell. Cool, eh?")
You can experiment with code within IDLE's =x€ll. Cool, eh?

>>> 1if 43 > 42:

See vesults print("Don‘t panicl")
immediately.
! S Don't panic!
>>> |
lLn: 12/Col: 4]
IDLE uses colored syntax to highlight your code. By default, built-in ID LE l(ﬂows
functions are purple, strings are green, and language keywords (like 1 £) are ’
orange. Any results produced are in blue. If you hate these color choices, pytll()ﬂ S syntax
don’t worry; you can easily change them by adjusting IDLE’s preferences.
. o YIS : and hel]ns you
IDLE also knows all about Python’s indentation syntax, which requires code
blocks be indented. When you start with Python, this can be hard to get Con{orm tO
used to, but IDLE keeps you straight by automatically indenting as needed.
the pytlton

indentation rules.

Work effectively with IPLE

IDLE has lots of features, but you need to know about only

a few of them to get going.

TAB completion

Start to type in some code, and then press the TAB key.
IDLE will offer suggestions to help you complete your
statement.

meet python

This is how [DLE looks on

mY Computer-.

H? "\igh‘l‘. look a

little di‘plpcrcn{: on Yours, but

not b)’ muth.

(Ahd, yes, i{:'s

meant o look this ugly.)

“Python Shell*

*160M, Mar 24 2010, 01:33:18)
build 5493)] on darwin

idits" or "license()" for more information.

)jeriment with code within IDLE's shell
th code within IDLE's shell. Cool, eh?

m;anic!)}

800
?é‘é‘gprint
'I'ypep"?tp erty
Type “pr” and then] il
TAB at the >>> vvzﬁmv’c Ly S
‘e i round
{o see IDLE’s l‘st. B -
tommand Lom?lc‘{:lon \ setattr
. Don '[slice
SVSSCS{‘JOV\S- >>> Pr|

= Cool; eh?")

Ln: 12|Col: 6|

Recall code statements

Press Alt-P to recall the previous code statement entered into

IDLE or press Alt-N to move to the next code statement

(assuming there is one). Both key combinations can be used

to cycle rapidly through all of the code you’ve entered into
IDLE, re-executing any code statements as needed.

Edit recalled code

Alt-P {or Previous

Alt-N for Next
Unless You've on])
a Mcac,\/in which

case it's Ctrl-P

Once you recall your code statement, you can edit it and and Ctel-N. A T
move around the statement using the arrow keys. It’s Fonts/Tabs | Highlighting | Keys | General |
possible to edit any statement that you’ve previously Custom Highlighting Highlighting Theme
entered, even code statements that span multiple lines. gk
(Choose Colour for:) © asuile-in Theme
3 s -
Adjust IDLE’s preferences Nomaites Y | -
IDLE’s preferences dialog lets you adjust its default Tweak IDLE © Foreground () Background no custom themes
behavior to your tastes. There are four tabs of settings to 1, Your heart's—7 hoose Liems
tweak. You can control font and tab behavior, the colors content.
used to syntax highlight, the behavior of certain key-
combinations, and IDLE’s start-up settings. So, if shocking
pink strings is really your thing, IDLE gives you the power
to change how your code looks on screen. e
Ok) (Apply) (Cancel) (‘Help

you are here » 5

dealing with data

Peal with complex data

Any program of any worth that you create has to work with data. Sometimes,
the data is simple and straightforward—easy to work with. Other times, the
data you have to work with is complex in its structure and meaning, forcing you
to work hard to make sense of it all, let alone write code to process it.

To tame complexity, you can often arrange your data as a list: there’s the list
of customers, your friend’s list, the shopping list, and your to-do list (to name
a few). Arranging data in lists is so common that Python makes it easy for you
to create and process lists in code.

Let’s look at some complex data before learning how to create and process list

data with Python.

T've been making lists of
movie data for years and
would love to be able to

A MSW process it on my laptop... Theve sure is
o\«?)amu

vie bu a lot of data
mo listed heve.

‘

The Holy Geail, 1975, Terry Jones ¢ Tervy Gilliam, 9 mins
Graham Chapman
Miehael Palin, John Cleese, Terry Gilliam, Evie |dle ¢ Tervy Jones
The Life of Brian, 1979, Teercy Jones, 94 mins
Graham Chapman
Mithael Palin, John Cleese, Tervy Gilliam, Evie |dle £ Teevy Jones
The Meaning of Life, 1983, Teevy Jones, |07 mins
=] The six Monty Python east members

Graham Chapman, Michael Palin, John Cleese, Tevvy Gilliam, Evie [dle ¢ Terry Jones

/(Th\s data is Lom\?lc%, too0.

On first glance, this collection of data does indeed look quite complex.
However, the data appears to conform to some sort of structure: there’s a line
for a list of basic movie facts, then another line for the lead actor(s), followed
by a third line listing the movie’s supporting actors.

This looks like a structure you can work with...

6 Chapter 1

meet python

Create simple Python lists

Let’s start with the following simple list of movie titles and work up from
there:

The Holy Grail
The Life of Bvian

The Meaning of Life (\Ashoﬂc list of some
Mon{:\/ P\/{‘)\OV\ movies

Here’s the same list written in a way that Python understands:

v

movies = ["The Holy Grail",

"The Life of Brian",

"The Meaning of Life"]

To turn the human-friendly list into a Python-friendly one, follow this four-
step process:

0 Convert cach of the names into strings by surrounding the data with quotes.
e Separate cach of the list items from the next with a comma.
e Surround the list of items with opening and closing square brackets.

o Assign the list to an identifier (movies in the preceding code) using the
assignment operator (=).

It’s perfectly OK to put your list creation code all on one line, assuming, of
course, that you have room:

movies = ["The Holy Grail", "The Life of Brian", "The Meaning of Life"]

A

This works, +oo.

you are here » 7

not

Hang on a second! Aren't you
forgetting something? Don't you need to
declare type information for your list?

No, because Python’s variable identifiers
don’t have a type.

Many other programming languages insist that every
identifier used in code has type information declared for
it. Not so with Python: identifiers are simply names that
refer to a data object of some type.

Think of Python’s list as a high-level collection. The
type of the data items is not important to the list. It’s
OK to state that your movies listis a “collection of
strings,” but Python doesn’t need to be told this. All
Python needs to know is that you need a list, you’ve
given it a name, and the list has some data items in it.

meet python

Lists are like arrays

When you create a list in Python, the interpreter creates an array-like data
structure in memory to hold your data, with your data items stacked from
the bottom up. Like array technology in other programming languages, the
first slot in the stack is numbered 0, the second is numbered 1, the third is
numbered 2, and so on:

hhis is Yyour
‘_‘E\;\Sn:s"\f list in [tem #0 [tem #I [em #2

tode. g 4 ué /-

movies = ["The Holy Grail", "The Life of Brian", "The Meaning of Life"]

)
This is Your “movies’
list in memory-:

" "The ﬂean:.ng of Lif Z \

Each data item
in the list has a
P SE— .
"The Life of Brian" | / numevie OFFSET

assotiated with it.
"The Holy Grail" 0 /

Python starts counting

£rom zevo.

Access list data using the square bracket notation

As with arrays, you can access the data item in a list slot using the standard
square bracket offset notation:

print (movies[1]) The Life of Brian
aN

Use the “pein £ BIF 4o display a No surprise heve, rcally...’chc
data item on streen. requested data appears on sereen,

Let’s use IDLE to learn a bit about how lists work.

you are here » 9

idle session

— e 7 n [DLE Session

P

Lists in Python might look like arrays, but they are much more than that: they are full-blown Python collection
objects. This means that lists come with ready-to-use functionality in the form of list methods.

Let's get to know some of Python’s list methods. Open up IDLE and follow along with the code entered at the >>>
prompt. You should see exactly the same output as shown here.

Start by defining a list of names, which you then display on screen using the print () BIF. Then, use the len ()
BIF to work out how many data items are in the list, before accessing and displaying the value of the second data

item:

>>> cast = ["Cleese", 'Palin', 'Jones',6 "Idle"]

>>> print(cast)

['Cleese', 'Palin', 'Jones',6 'Idle']
>z prlnt(len(caqsL/ H:Is OK +p invoke 3 BIF on
4

the vesults of another BIF.

>>> print(cast[1])

Palin

With your list created, you can use list methods to add a single data item to the end of your list (using the
append () method), remove data from the end of your list (with the pop () method), and add a collection of
data items to the end of your list (thanks to the extend () method):

>>> cast.append("Gilliam") “< . Methods are invoked using the

tommon “”)
>>> print(cast) dot notation.

['Cleese', 'Palin', 'Jones', 'Idle', 'Gilliam']
>>> cast.pop()

'Gilliam'’

[£'s another list: items sepavated by commas,
surrounded by square brackets.

>>> print(cast)

['Cleese', 'Palin', 'Jones',6 'Idle']
>>> cast.extend(["Gilliam", "Chapman"])
>>> print(cast)

['Cleese', 'Palin', 'Jones',6 'Idle', 'Gilliam', 'Chapman']

Finally, find and remove a specific data item from your list (with the remove () method) and then add a data item
before a specific slot location (using the insert () method):

>>> cast.remove ("Chapman")

>>> print(cast)

['Cleese', 'Palin', 'Jones', 'Idle', 'Gilliam'] /’hc'bcr all {:ha{;, we end up with
>>> cast.insert (0, "Chapman") {:he cach °‘F MOh“:y P\/{‘,hon's
>>> print(cast) Fl\/""ﬂ Civeus

['Chapman', 'Cleese', 'Palin', 'Jones',6 'Idle', 'Gilliam'] 6/

10

Chapter 1

meet python

Add wmore data to your list

With your list of movie names created, now you need to add more of the
movie buff’s complex data to it. You have a choice here:

I think T'll use the
appropriate list

methods to add the extra
data I need.

With something this small,
I'm gonna simply re-create
my list from scratch.

Either strategy works. Which works best for you depends on what you are
trying to do. Let’s recall what the movie buff’s data looks like:

A number /—$
rcYYCSCV\{jV\S The Holy 6vail,@ rey Jones ¢ Terey Gilliam, 91 mins

the year is Graham Chapman
next. Michael Palin, John Cleese, Terry Gilliam, Evic [dle ¢ Tevry Jones
The Life of Bl vy Jones, 94 mins

Graham Chapman
Michael Palin, John Cleese, Terry Gilliam, Evie [dle ¢ Terry Jones
The Meaning of Lif(1983,) erey Jones, 107 mins
The six Monty Python east members
Graham Chapman, Michael Palin, John Cleese, Tervy Gilliam, Evic |dle ¢ Tervy Jones

The next piece of data you need to add to your list is a number (which
represents the year the movie was released), and it must be inserted affer each
movie name. Let’s do that and see what happens.

you are here » 11

mixed

12

What?!? There's no way you can mix
data of different types in lists, is
there? Surely this is madness?

No, not madness, just the way Python works.

Python lists can contain data of mixed type. It’s perfectly OK
to mix strings with numbers within the same Python list. In fact,
you can mix more than just strings and numbers; you can store
data of any type in a single list, if you like.

Recall that a Python list is a high-level collection, designed from
the get-go to store a collection of “related things.” What type
those things have is of little interest to the list, because the list
exists merely to provide the mechanism to store data in list form.

So, if you really need to store data of mixed type in a list,
Python won’t stop you.

meet python

Let’s take a bit of time to try to work out which strategy to use when adding data to your list in
this case.

Exercise

Given the following list-creation code:

movies = ["The Holy Grail", "The Life of Brian", "The Meaning of Life"]

o Work out the Python code required to insert the numeric year data into the preceding list,
changing the list so that it ends up looking like this:

["The Holy Grail", 1975, "The Life of Brian", 1979, "The Meaning of Life", 1983]

Wr'r{:c \IOUY ..
insertion
tode heve.

9 Now write the Python code required to re-create the list with the data you need all in one go:

Write your
ve—treation
tode heve.

In this case, which of these two methods do you think is best? (Circle your choice).

you are here » 13

additional data

» Let’s take a bit of time to try and work out which strategy to use when adding data to your list in
XeRCISe this case.
Al
oLutioN Given the following list-creation code:

movies = ["The Holy Grail", "The Life of Brian", "The Meaning of Life"]

o You were to work out the Python code required to insert the numeric year data into the preceding
list:

[nsevt the Liest year
BEFORE the setond list \ ..
item. movies.insert(l, 1975)
.. Did You 56": the math vi

e math right?
IV\SCY‘{: the setond Year T ‘F".‘,CV the ‘FW'S{; ihSCV‘{:ion' the

liS OWS, SO VYou
BEFORE the fourth list ite,, —— moviesinsert(3, 191D < Jchﬁtg‘irn{\; ': SY dﬁ_:'i‘.'c J“hjcakc
.. onsi 1on when

wo\rkinf) out where 1o do the

.. setond insert.

one go:

Assign all your data to H‘_C “movies PP
v, What was previously there is "The Meaning of Life”, 19833

rc‘?l&dtd ..
In this case, which of these two methods do you think is best? (You were to circle your choice.)

Yes, method 1 seems the better

o " <— option heve...that is, for a small
list like this. Also, there's no
{‘,\rick\/ Loun{:ing {0 do-

14 Chapter 1

meet python

Work with your list data

You often need to uerate over your list and perform some action on each item
as you go along. Of course, it is always possible to do something like this,
which works but does not scale:

Dc'pine a list
. ! d po .
items with 'l:hj hnaF Pulate its

movies. mes of two

)
fav_movies = ["The Holy Grail", "The Life of Brian"] J

print (fav_movies[0])

This is the list—protessing
print(fav_movies[1]) | code.

r\s

£
isplay the value ot
E:c\:\ '\\z\d\v'\dua\ list item

on the seveen

This code works as expected, making the data from the list appear on screen.
However, if the code is later amended to add another favorite movie to the list,
the list-processing code stops working as expected, because the list-processing code
does not mention the third item.

Big deal: all you need to do is add another print () statement, right?

Yes, adding one extra print () statement works for one extra movie, but
what if you need to add another hundred favorite movies? The scale of the
problem defeats you, because adding all those extra print () statements
becomes such a chore that you would rather find an excuse not to have to do.

It’s time to iterate

Processing every list item is such a common requirement that Python makes it
especially convenient, with the built-in for loop. Consider this code, which 1s
a rewrite of the previous code to use a for loop:

Define a list and

Just as you dig be ,Lt:,?:’af‘ it
Use “for” o '\Jccva{',c. /
over the list, displaying :
e e e fav_movies = ["The Holy Grail", "The Life of Brian"]

\nd\V\d\AA\ tem on
streen as \fou 90-

for each flick in fav_movies: This is the list—protessing
| print (each_flick) tode, using 3 for loop-
Using a for loop scales and works with any size list.

you are here » 15

list processing

For loops work with lists of any size

Python’s for loop exists to process lists and other #terations in Python. Lists are
the most common iterated data structure in Python, and when you need to
iterate a list, it’s best to use for:

“SLor” A eolon “” £o)l
The kcyword for The keyword ! separates sk g lows your
. m d .
sl b it nd o e e
tomes bc‘cc‘:vc the Your list l/ Protessing tode.
favget identifier.

9for l target identifer | in :J

list-processing code

The \\s{:—‘?robcss\ng tode
MUST be indented
under the Lov loop-

The list-processing code 1s referred to by Python programmers as the suite.

The target identifier is like any other name in your code. As your list is
iterated over, the target identifier is assigned eac/ of the data values in your
list, in turn. This means that each time the loop code executes, the target
identifier refers to a different data value. The loop keeps iterating until it
exhausts all of your list’s data, no matter how big or small your list is.

An alternative to using for is to code the iteration with a while loop.
Consider these two snippets of Python code, which perform the same action:

When You use “while”,
You have to worvy ,:aboujc

“state information, > count = 0
whith requires Yyou while count < len(movies) :

l l for each_item in movies:

4o employ a toun ng print (movies[count]) print (each_item)

7 count = count+l

identifier. N

When You use “(:o\r'", the
Python interpreter
worries about the “state

intormation” for You.

These while and for statements do the same thing.

16 Chapter 1

Q: So...when iterating over a list, |
should always use for instead of while?

A: Yes, unless you have a really good
reason to use (or need the extra control
of) a while loop. The for loop takes care
of working from the start of your list and
continuing to the end. It’s next to impossible
to get stung by an off-by-one error when you
use for. This is not the case with while.

Q: So, lists aren’t really like arrays
then, because they do so much more?

A: Well...they are in that you can access
individual data items in your list with the
standard square bracket notation, but—as
you've seen—Python’s lists can do so much
more. At Head First Labs, we like to think of
lists as “arrays on steroids.”

Q} And they work this way only in
Python 3, right?

A: No. There are certain enhancements
to lists that were added in Python 3, but
release 2 of Python has lists, too. All of what
you've learned about lists so far will work
with lists in Releases 2 and 3 of Python.

Q: Why are we using Python 3? What’s
wrong with Python 2, anyway? Lots of
programmers seem to be using it.

A: Lots of programmers are using Python
2, but the future of Python development lies
with Release 3. Of course, moving the entire
Python community to Python 3 won't happen
overnight, so there’s an awful lot of projects
that will continue to run on Release 2 for the
foreseeable future. Despite 2's dominance
at the moment, at Head First Labs we think
the new bits in 3 are well worth the added
investment in learning about them now.
Don't worry: if you know 2, Python 3 is easy.

therejareno
Dumb Questions

Q: Seeing as Python’s lists shrink and
grow as needed, they must not support
bounds-checking, right?

A: Well, lists are dynamic, in that they
shrink and grow, but they are not magic,

in that they cannot access a data item

that does not exist. If you try to access a
nonexistent data item, Python responds with
an IndexError, which means “out of
bounds.”

Q: What’s with all the strange
references to Monty Python?

A: Ah, you spotted that, eh? It turns

out that the creator of Python, Guido van
Rossum, was reading the scripts of the
Monty Python TV shows while designing his
new programming language. When Guido
needed a name for his new language, he
chose “Python” as a bit of a joke (or so the
legend goes).

Q: Do I need to know Monty Python in
order to understand the examples?

A: No, but as they say in the official
Python documentation: “it helps if you do.”
But don’t worry: you'll survive, even if you've
never heard of Monty Python.

Q: I notice that some of your strings
are surrounded with double quotes and
others with single quotes. What's the
difference?

A: There isn't any. Python lets you use
either to create a string. The only rule is that
if you start a string with one of the quotes,
then you have to end it with the same
quote; you can’'t mix’n’match. As you may
have seen, IDLE uses single quotes when
displaying strings within the shell.

python

Q: What if | need to embed a double
quote in a string?

A: You have two choices: either escape
the double quote like this: \ ”/, or surround
your string with single quotes.

Q: Can | use any characters to name
my identifiers?

A: No. Like most other programming
languages, Python has some rules that
must be adhered to when creating names.
Names can start with a letter character or
an underscore, then include any number

of letter characters, numbers, and/or
underscores in the rest of the name. Strange
characters (such as $$£) are not allowed
and you'll obviously want to use names that
have meaning within the context of your
code. Names like members, the
time, and people are much better
than m, t, and p, aren’t they?

Q: Yes, good naming practice is
always important. But what about case
sensitivity?

A: Yes, Python is the “sensitive type,” in
that Python code is case sensitive. This
means that msg and MSG are two different
names, so be careful. Python (and IDLE)
will help with the problems that can occur as
a result of this. For instance, you can use
an identifier in your code only if it has been
given a value; unassigned identifiers cause
a runtime error. This means that if you type
mgs when you meant msg, you'll find out
pretty quickly when Python complains about
your code having a NameError.

17

lists within lists

Store lists within lists

As you've seen, lists can hold data of mixed type. But it gets even better than
that: lists can hold collections of anything, including other lists. Simply embed

the nner list within the enclosing list as needed. T R
here’s onl\/ one lead

Looking closely at the movie buff’s data, it is possible to determine a structure attor listed here, but
which looks much like a list of lists: theve could be move.

Theve's a list of movie faets...
| The Holy rail, 1975, Terry Jones ¢ Terry Gilliam, 91 mins

..which itself COh{ains/—7 Graham Chapman
a list of lead actovs... ‘
Michael Palin, John Cleese, Tevry Gilliam, Evie |dle £ Tervy Jones

...which itself
tontains 3 list of

supporting actors.

In Python, you can turn this real list of data into code with little or no effort.
All you need to remember is that every list is a collection of items separated
from each other with commas and surrounded with square brackets. And, of
course, any list item can itself be another list:

The start of the
fivs{, outer list ’)

N\
movies = [Thc th o‘F a” ﬂ‘c
) lists is heve.
"The Holy Grail", 1975, "Terry Jones & Terry Gilliam", 91,
["Graham Chapman", &
/ ["Michael Palin", "John Cleese", "Terry Gilliam", "Eric Idle", "Terry Jones"]]]

(S

The start of the o
setond, inner list: The start :(: {‘fhc {,h:nl?lii"mhﬂ This looks a little weird...until you
“movies[4-7”" innev list: “moviesLr vemember that there ave 'l:h\rccy
oPening square b
So, a list within a list is possible, as is a list within a list within a list (as this also b? ‘E;l:c:cdo:?::cjz:o there must

example code demonstrates). In fact, it’s possible to nest lists within lists to
most any level with Python. And you can manipulate every list with its own list
methods and access it with the square bracket notation:

print (movies[4][1][3]) —

A list within 3 list within a list

Evie is this deepl
: PlY nested,
tan't Possibly be i)clilc. @C ot

18 Chapter 1

meet python

— e 7 &n IDLE Session

——
Creating a list that contains another list is straightforward. But what happens when you try to process a list that
contains another list (or lists) using the for loop from earlier in this chapter?

Let’s use IDLE to work out what happens. Begin by creating the list of the movie data for “The Holy Grail”in
memory, display it on screen, and then process the list with your for loop:

>>> movies = ["The Holy Grail", 1975, "Terry Jones & Terry Gilliam", 91,
["Graham Chapman", ["Michael Palin", "John Cleese",
"Terry Gilliam", "Eric Idle", "Terry Jones"]]]

>>> print (movies)

['The Holy Grail', 1975, 'Terry Jones & Terry Gilliam', 91, ['Graham Chapman',
'John Cleese', 'Terry Gilliam', 'Eric Idle', 'Terry Jones']]]

>>> for each_item in movies: \ The list within 3 list within
print(each_item) a list has been ¢treated in
mcmov\/~

['Michael Palin',

The Holy Grail

1975 The “for” loop prints eath item of

Terry Jones & Terry Gilliam /H\e oufcr |oo‘7 ONL\/
91

['Graham Chapman', ['Michael Palin', 'John Cleese', 'Terry Gilliam', 'Eric Idle',

T

'Terry Jones']]

The inner list within the innev list is printed “as—is.”

Your for loop is working OK. I think the
trouble is that you haven't told it what to
do with any inner lists that it finds, so it
just prints everything, right?

Yes, that’s correct: the loop code isn’t complete.

At the moment, the code within the loop simply prints each list
item, and when it finds a list at a slot, it simply displays the entire
list on screen. After all, the inner list is just another list item as far as
the outer enclosing list is concerned. What’s we need here is some
mechanism to spot that an item in a list is in fact another list and take
the appropriate action.

That sounds a little tricky. But can Python help?

you are here » 19

looking for lists

Check a list for a list

Each time you process an item in your list, you need to check to see if the
item 1s another list. If the item is a list, you need to process the nested list
before processing the next item in your outer list. Deciding what to do when in
Python follows the familiar if.. else... pattern:

The keyword <"
indicates the start
of the detision tode-

lf some condition holds

A eolon () follows
¢ondition test.

.

\/owr

(4

) & Les '& th
Thsd'ﬁ:\i: :\:\cd: Ge., it's TRUE). > the "true" suite
tondt
else < Lokl hobher colon
This code exetutes if the tondition —_— the "false" suite

does NOT hold (e, it's FALSE).

No surprises here, as the if statement in Python works pretty much as
expected. But what condition do you need to check? You need a way to
determine if the item currently being processed is a list. Luckily, Python ships
with a BIF that can help here: isinstance ().

What’s cool about the isinstance () BIF is that it lets you check if a
specific identifier holds data of a specific type:

NO{ZC: bo‘{')\ Svfl{',CS
ave indented.

_ j An IDLE Session

_—

Create a short list and Let’s use the IDLE shell to learn a little about how isinstance () works:

assign it to an identifier. A\

>>> names = ['Michael', 'Terry']

. . AR >>> isinst , list
Ask |-(—\ “hamcs" is a ||S£ (r{‘, s), —— { isinstance (names ist)

. is tase, the type

Assign a number to an =2 >>> num names = len(names) - — hc‘;T JL‘,': this ' 1

. L. st -

|dCh{l‘C|CV~ >>> isinstance (num_names, list) sl

LRTEFY 7 False
ek 1§ Srum_pames”
)

lisk (it isn't)-

True b RC‘(:CY'

4o a Python type

20 Chapter 1

meet python

Here's a copy of the current list-processing code. Your task is to rewrite this code using an if
El’-QRCiSQ statement and the isinstance () BIF to process a list that displays another list.

for each_item in movies:

print(each_item)

Write your
new tode S
heve.
tberelgre no
Dumb Questions
Q: Are there many of these BIFs in Q: How? Qj Why so many BIFs?
Python?
AI At the Python or IDLE shell, type A: Why not? Because Python comes with
- Yes. At the last count, there were over dir(builtins) toseealist lots of built-in functionality, it can mean less
70 BIFs in Python 3. of the built-in stuff that comes with Python code for you to write. This Python philosophy
(that's two leading and trailing underscore is known as “batteries included”: there’s
Q: Over 70! How am | to remember characters, by the way). The shell spits enough included with Python to let you do
that many, let alone find out what they all ~ out a big list. Try it. All those lowercase most things well, without having to rely on
are? words are BIFs. To find out what any BIF code from third parties to get going. As well
does—like input (), for example—type as lots of BIFS,){ou"ll find that Pythorfs
A: You don't have to worry about help (input) atthe shell fora standard Ilbrgw is rich and packed with
description of the BIFs function. features waiting to be exploited by you.

remembering. Let Python do it for you.

you are here » 21

list the list

Here’s a copy of the current list-processing code. Your task was to rewrite this code using an if

: RC:SQ statement and the isinstance () BIF to process a list that displays another list.
10

OLutiON

for each_item in movies:

print (each_item)

The innev looP

.)
Protess the ‘movies
list as before. \
for eath_item in movies: needs a mew Lar

-- ¢
You need to cheek if the identifier. Je

I£itisa list, use another

“Sor” loop to protess the —>

nested ist. o PR
|£ the curvent 'l{ilc'l
N | S R of the ch‘OSiV\S is
Did you manage to printleach_ibem)<— o't a list, display it

indentation viah{;? ___

on streen.

— e /' n IDLE Session

"
Let’s use IDLE to see if this code makes a difference to the output displayed on screen:

>>> for each_item in movies:
if isinstance(each_item, list):
for nested item in each item:
print (nested_item)
else:

print (each_item)

his is a little better, but not by
Tmi\r\lf.{:\'\c‘vc's another nested list heve

that's not being protessed properly-
Terry Jones & Terry Gilliam

. /

Graham Chapman \L

[‘Michael Palin’, ‘John Cleese’, ‘Terry Gilliam’, ‘Eric Idle’, ‘Terry Jones’]

The Holy Grail
1975

22 Chapter 1

meet python

Complex data is hard to process

The movie buff’s data is complex. Let’s take another look at a subset of the
data and your Python code that processes it.

The outer, entlosing list

The data
The Holy Grail, 1975, chr\/ Jones £ Terry Gilliam, 91 mins
éraham C aPm n
ithael Palin, John Cleese, Tcrr\/ Gilliam, Evie |dle ¢ ¢ Tcw\, one
2
An innev, nested list Another innev (inner), nested list
Vour tode Protess the inner,
Protess the outer, entlosing list. nested |ist.
\ !
\Y Yeah.. that's almost

working...it's just a
“for sach_iten in movies: orking.its just

pity about that list of
if isinstance(each _item, list): supporting actors...

@em in each_item:)

print(nested_item)

else:

print (each_item)

RANN
PQwEWw

Can you spot the problem with your Python
code as it is currently written? What do you
think needs to happen to your code to allow it to
process the movie buff's data correctly?

you are here » 23

nested lists

Handle many levels of nested lists

The data and your code are not in sync.

The movie buff’s data is a list that contains a nested list that itself contains
a nested list. The trouble is that your code knows only how to process a list
nested inside an enclosing list.

The solution, of course, is to add more code to handle the additionally nested list. By
looking at the existing code, it’s easy to spot the code you need to repeat:

for each_item in movies:
if isinstance(each item, list):
This tode £ . . .
or nested item in each item:
protesses a ﬁ . -
nested list. print(nested_item)
e ——
else:
print (each_item)
\
Heve's where the
The ek {:Fcatcd tode needs
e ne 0.
itevation of your J
code looks like
this. ‘

9
for each item in movies:
if isinstance(each_item, list): T
= he rcha{:cd ¢ode
replaces {he “Prink()”

for nested item in each_item:

Note: in this /’

if isinstance(nested item, list):
2

for deeper_item in nested item: Snother target identifier

tode, eath called ‘4 .
S£” needs an print (deeper_item) ceper_item”.
assotiated \)
« »
else . .
print(nested item)
else:

print (each_item)

24 Chapter 1

meet python

— e j An IDLE Session

—
Let’s use IDLE once more to test this latest iteration of your code:

cs{',cd

. . . tess 3 deepl) "¢ L

>>> for each item in movies: zf— Pro s"t',cd\‘S
. \ist nside 3 €

. A . “Sh
if isinstance(each_item, list): /— L side an Chc\osw\s
for nested item in each item: "

if isinstance(nested item, list):

for deeper_ item in nested item:
print (deeper_item)
else:
print (nested_item)
else:

print(each_item)

The Holy Grail

1975 It works! This £ime, You

Terry Jones & Terry Gilliam &— all of Your list data
91 on streen.
Graham Chapman

Michael Palin

John Cleese

Terry Gilliam

Eric Idle

Terry Jones

T just love that...in fact, T love it so
much I've decided to add another list to my
data. T want to include the other movies each
supporting actor has starred in. If I add the
data, can you change your code to print this
data, t00?

That’s more list data and more Python code.

The data has to be embedded as another nested list within the already deeply
nested list of supporting actors. That’s possible to do, even though it makes
your head hurt just to think about a list of lists of lists of lists! Amending your
code 1s just a matter of adding another for loop and an if statement.

That doesn’t sound like too much trouble, does it?

you are here » 25

avoid

26

I think I'd rather have a root canal
than change that code again.

Adding another nested loop is a huge pain.

Your data is getting more complex (that mind-bending list
of lists of lists of lists) and, as a consequence, your code is
getting overly complex, too (that brain-exploding for loop
mnside a for loop inside a for loop). And overly complex
code is rarely a good thing...

meet python

Wouldn't it be dreamy if there were an
efficient way to process lists, preferably
using a fechnique that resulted in less code,
not more? But I know it's just a fantasy...

you are here » 27

reduce, reuse, recycle

Pon’t repeat code; create a function

Take a look at the code that you've created so far, which (in an effort to save
you from having your brain explode) has already been amended to process yet
another nested list. Notice anything?

This eode is csscn{:ia”\/ the
f same as this tode...

for each_item in movies:

.whith is csscr\{:ia"\/
if isinstance (each_item, list): e e T

for nested item in each item: tode...
&instance (nestem
for deeper_item in nested item:
Q@tance(deeper\item

else:

print (deeper_ item) \
e —--————
else: AN

print(nested item)=), not wmuth
else: diffecence amond

ments, €
print (each_item) é_T’/ four statemen

This ¢ode is beginning to get a little stary...

these
'\Jghcr!

Your code now contains a lot of repeated code. 1t’s also a mess to look at, even
though it works with the movie buff’s amended data. All that nesting of for
loops 1s hard to read, and it’s even harder to ensure that the else suites are
associated with the correct if statement.

There has to be a better way...but what to do?

When code repeats in this way, most programmers look for a way to take

the general pattern of the code and turn it into a reusable function. And
Python programmers think this way, too. Creating a reusable function lets
you invoke the function as needed, as opposed to cutting and pasting existing
code.

So, let’s turn the repeating code into a function.

28 Chapter 1

for deepest item in deeper item: th
rint (deepest_item M

Whlch is ho«{:
{:haf muth

di#crcn{ than
is Code.

meet python

Create a function in Python

A function in Python is a named suite of code, which can also take an optional
list of arguments if required.

You define a Python function using the def statement, providing a name

for your function and specifying either an empty or populated argument list A eolon () follows the
within parentheses. The standard form looks something like this: Closin5 parenthesis
A\rgwncn{: lists ave °Y£‘°"al’ and indicates Lhe
“gef” but the parentheses ave NOT. start of your
The kcyword de furch .
introduces the name ions code suite.
of the function.

i def ‘ function name l (l argument (s) ') :y
The funttion's Lodcﬁ function code suite

MMST be '\V\devx{',Cd wnder
the def skatement.

What does your function need to do?

Your function needs to take a list and process each item in the list. If it finds a
nested list within the first list, the function needs to repeat. It can do this by
invoking itself on the nested list. In other words, the function needs to recur—
that 1s, invoke tself from within the funtion code suite.

pen your pencil

— @G har
N

Let’s call the function that you'll create print 1ol (). It takes
one argument: a list to display on screen. Grab your pencil and
complete the code below to provide the required functionality:

def print lol(the list):

else:

you are here » 29

recursive function

_ % harpen your pencil

\ " SOIutlon You were to call the function that you'll create print 1ol ().It
takes one argument: a list to display on screen. You were to grab your
pencil and complete the code to provide the required functionality:

def print lol(the list):

LN £ the item bei
Process the projiel " oxeath_item in the s s s a sk, ke e
list with 8 Yo o . . unction.
if isinstante(each_item, list): (\y
Priw{‘,__lol(cach__i‘&wu)
else: 1§ 4he item being protessed [SN'T

print(each_item) < a list, display the item on stveen.

— e j An IDLE Session

—
Let’s use IDLE one final time to test your new function. Will it work as well as your earlier code?

>>> def print lol(the_list):
for each_item in the list:
if isinstance(each_item, list): & DC‘(:ihc {:hc ‘CW\C{Z.‘O"-
print lol (each_item)
else:

print(each_item)

>>> print lol (movies) R’ " ﬂ, ‘C {
hvoke the tunttion.

The Holy Grail
1975

Terry Jones & Terry Gilliam

91
Graham Chapman 5 H: wovks, £°°.I The retusvrive ‘Fuhc-[;io,‘
Michael Palin PVOdu(,cs EXACTL\/ 'U\C Same V‘CS\AH‘,S as

he earli
John Cleese lier tode.

Terry Gilliam
Eric Idle

Terry Jones

30 Chapter 1

meet python

Recursion to the rescue!

The use of a recursive function has allowed you to reduce 14 lines of messy,
hard-to-understand, brain-hurting code into a six-line function. Unlike the
carlier code that needs to be amended to support additional nested lists
(should the movie buff require them), the recursive function does not need to
change to process any depth of nested lists properly.

Python 3 defaults its recursion limit to 1,000, which is a lot of lists of lists of lists
of lists...and this limit can be changed should you ever need even more depth
than that.

Ah, yes, that's terrific! I can now
relax, knowing that your code can
process my movie data. T really

should've done this years ago...

What a great stari!

By taking advantage of functions and recursion, you've solved the code
complexity problems that had crept into your earlier list-processing code.

By creating print lol (), you've produced a reusable chunk of code that
can be put to use in many places in your (and others) programs.

You’re well on your way to putting Python to work!

you are here » 31

python

3, Your Python Toolbox

You’ve got Chapter 1 under your
belt and you’ve added some key
Python goodies to your toolbox.

P\/'l',\\on Lingo

[J “B'F” -a built—in ‘(:uvxc{:ion-

o “Suite” — a blotk of P\/{\non tode, whith
s indented to inditate grouping:

. g » 0(:
“Ba{{:ems mcludcd - 4a wa\/
ovc(:crring 4o the fact that Python eomes
with most cver\/{:hing \Iou’“ need to 56‘[:
ooing quickly and productively.

IDLE Notes

s @ The IDLE shell lets You experiment with
Your eode as you write it.

o Adjust [DLEs Preferentes 4o suit Lhe
way You work.

o Remember: when working wi

9 with the shell,
use Alt—P for Previous and use Al'l:—sNefor
Next (but use Civl if you've on a Mae).

32

% BULLET POINTS —

Run Python 3 from the command line or
from within IDLE.

Identifiers are names that refer to data
objects. The identifiers have no “type,” but
the data objects that they refer to do.

print () BIF displays a message on
screen.

Alist is a collection of data, separated
by commas and surrounded by square
brackets.

Lists are like arrays on steroids.

Lists can be used with BIFs, but also
support a bunch of list methods.

Lists can hold any data, and the data can be
of mixed type. Lists can also hold other lists.

Lists shrink and grow as needed. All of the
memory used by your data is managed by
Python for you.

Python uses indentation to group statements
together.

len () BIF provides a length of some data
object or count the number of items in a
collection, such as a list.

The for loop lets you iterate a list and
is often more convenient to use that an
equivalent while loop.

The if... else... statement lets you make
decisions in your code.

isinstance () BIF checks whether
an identifier refers to a data object of some
specified type.

Use def to define a custom function.

2 sharing your code

*
+« Modules of functions *

I'd love to share...but
how am I supposed
to function without a
module?

Reusable code is great, but a shareable module is better.

By sharing your code as a Python module, you open up your code to the entire Python
community...and it's always good to share, isn’t it? In this chapter, you'll learn how to
create, install, and distribute your own shareable modules. You'll then load your module
onto Python’s software sharing site on the Web, so that everyone can benefit from your

work. Along the way, you’ll pick up a few new tricks relating to Python’s functions, too.

this is a new chapter

33

let’s share

lt’s 00 good not to share

You've been showing your function to other programmers, and they like what
they see.

You should make your function shareable,
so that everyone can use it.

Yes, a function this good should be shared with the world.

Python provides a set of technologies that make this easy for you, which
includes modules and the distribution utilities:

@ Modules let you organize your code for optimal sharing.

(o) The distribution utilities let you share your modules with the world.

Let’s turn your function into a module, then use the distribution utilities to
share your module with the wider Python programming community.

34 Chapter 2

sharing code

Turn your function info a module

A module is simply a text file that contains Python code. The main
requirement is that the name of the file needs to end in . py: the Python
extension. To turn your function into a module, save your code into an
appropriately named file:

\/our tode

feom

Chapter | def print lol(the list):
for each item in the_list:
if isinstance(each_item, list):
print lol (each_item)

else:

print (each_item)

Let's call
this file

“ncs{cr.py". —

therejare no o
Dumb Questions

Q} What's the best Python editor?

A: The answer to that question really depends on who you ask. However, you
can, of course, use any text editor to create and save your function’s code in a 5.5
text file. Something as simple as NotePad on Windows works fine for this, as does

a full-featured editor such as TextMate on Mac OS X. And there’s also full-fledged D@ ﬂﬁs’

IDEs such as Eclipse on Linux, as well as the classic vi and emacs editors. And,

as you already know, Python comes with IDLE, which also includes a built-in
code editor. It might not be as capable as those other “real” editors, but IDLE is ;‘ i

installed with Python and is essentially guaranteed to be available. For lots of
jobs, IDLE’s edit window is all the editor you'll ever need when working with your
Python code. Of course, there are other IDEs for Python, too. Check out WingIDE Go ahead and create a text
for one that specifically targets Python developers. file called nester.py that
contains your function code
from the end of Chapter 1.

35

modules

Modules are everywhere

As might be expected, you’ll find Python modules in lots of places.

I'm preloaded with
lots of modules in the
Python Standard Library...

and they are already on your
computer.

o) If the Standard Library doesn't do
o it for you, why not try the Web?
I hear PyPI is where third-party
f = Python modules hang out.
@ python

Lf")
.Y

PyP s promounced

“Y\C,\i\c-

The Python Package Index (or PP/ for short) provides a
centralized repository for third-party Python modules on the
Internet. When you are ready, you’ll use PyPI to publish your
module and make your code available for use by others. And your
module zs ready, but for one important addition.

If you are already familiar with
Perl’s CPAN repository, you can
think of PyPI as the Python
equivalent.

What do you think is missing from your module?

36

sharing your code

Comment your code

It’s always a good idea to include comments with your code. As your plan to
share your module with the world, well-written comments help to document
your work.

In Python, a common commenting technique is to use a triple quote for
multiple-line comments. When you use a triple quote without assigning it to a
variable, everything between the triple quotes is considered a comment:

Hello! I'm a big string who
Jjust happens to be a Python
comment, too. Nice, eh?

Start with a
triple quote...

\7‘his is the standard way to
include a multiple-line comment in

your code .

-.and end with 3
‘tV"lPlc quo{:c.

_ % harpen your pencil

\) Here is your module code (which is saved in the file nester.py).In
the spaces provided, use your pencil to compose two comments: the
first to describe the module and the second to describe the function.

dd a Lommch{’j
tbeov Jour Lunttion e R TR IR LR IO T T LR

heve: for each item in the list:
if isinstance(each item, list)
print lol (each item)
else:

print (each item)

you are here » 37

request for comments

_ % Ilarpen your pencil
Solution

Did You
rcmC"\bCY ‘{',O

\V\C\\Adc {',\\C ‘{'X‘Y\C
o\uo{zCS?

Here is your module code (which is saved in the file nester.py).In
the spaces provided, you were asked to use your pencil to compose
two comments: the first to describe the module and the second to

describe the function.

def print lol(the list):

for each item in the list:

if isinstance(each item,
print lol (each item)
else:

print (each item)

list):

K There are no thanges +o the

““This funetion takes a positional arqument called “the_list”, which is any

) .
attual tode heve; Youve Just
addM5somcLOMMCn .

Q} How do | know where the Python
modules are on my computer?

A: Ask IDLE. Type import sys;
sys.path (all on one line) into the IDLE
prompt to see the list of locations that your
Python interpreter searches for modules.

Q; Hang on a second. | can use “;” to
put more than one line of code on the
same line in my Python programs?

A: Yes, you can. However, | don't
recommend that you do so. Better to give
each Python statement its own line; it makes
your code much easier for you (and others)
to read.

38 Chapter 2

therejare no
Dumb Questions

Q,: Does it matter where | put my
nester.py module?

A: For now, no. Just be sure to put it
somewhere where you can find it later. In

a while, you'll install your module into your
local copy of Python, so that the interpreter
can find it without you having to remember
when you actually put it.

Q: So comments are like a funny-
looking string surrounded by quotes?

A: Yes. When a triple-quoted string is
not assigned to a variable, it's treated like a
comment. The comments in your code are
surrounded by three double quotes, but you
could have used single quotes, too.

Q; Is there any other way to add a
comment to Python code?

A: Yes. If you put a “#” symbol anywhere
on a line, everything from that point to the
end of the current line is a comment (unless
the “#” appears within a triple quote, in
which case it's part of that comment). A lot
of Python programmers use the “#” symbol
to quickly switch on and off a single line of
code when testing new functionality.

sharing your code

— e /' n [DLE Session

_

Now that you've added your comments and created a module, let’s test that your code is still working properly.
Rather than typing your function’s code into IDLE’'s prompt, bring the nester. py file into IDLE's edit window,
and then press F5 to run the module’s code:

anOn nester.py — /Users/barryp/HeadFirstPython/chapter2 /nester.py
> """This is the "nester.py" module and it provides one funection called print_lol()
{: ‘h\'\a{ {',\\C which prints lists that may or may not include nested lists."""
ote
N {} are def print_lol(the_list):
tommen """This function takes one positional argument called "the_ list", which

\ LodCd~ -___£> is any Python list (of - possibly - nested lists). Each data item in the
tolov provided list is (recursively) printed to the screen on it’s own line.""'
for each_item in the_list:
if isinstance(each_item, list):
print_lol(each_item)
else:
print(each_item)

Ln: 15/Col: 0]

Nothing appears to happen, other than the Python shell “restarting” and an empty prompt appearing:

>>> RESTART

>>>
>>>

What's happened is that the Python interpreter has reset and the code in your module has executed. The code

defines the function but, other than that, does little else. The interpreter is patiently waiting for you to do
something with your newly defined function, so let’s create a list of lists and invoke the function on it:

>>>