

Advance Praise for Head First Python

“Head First Python is a great introduction to not just the Python language, but Python as it’s used in the
real world. The book goes beyond the syntax to teach you how to create applications for Android phones,
Google’s App Engine, and more.”

— David Griffiths, author and Agile coach

“Where other books start with theory and progress to examples, Head First Python jumps right in with code
and explains the theory as you read along. This is a much more effective learning environment, because
it engages the reader to do from the very beginning. It was also just a joy to read. It was fun without
being flippant and informative without being condescending. The breadth of examples and explanation
covered the majority of what you’ll use in your job every day. I’ll recommend this book to anyone
starting out on Python.”

— Jeremy Jones, coauthor of Python for Unix and Linux System Administration

“Head First Python is a terrific book for getting a grounding in a language that is increasing in relevance
day by day.”

— Phil Hartley, University of Advancing Technology

Praise for other Head First books

“Kathy and Bert’s Head First Java transforms the printed page into the closest thing to a GUI you’ve ever
seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’
experience.”

— Warren Keuffel, Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, Head
First Java covers a huge amount of practical matters that other texts leave as the dreaded ‘exercise for the
reader.…’ It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that claim and live
up to it while also teaching you about object serialization and network launch protocols.”

— Dr. Dan Russell, Director of User Sciences and Experience Research
IBM Almaden Research Center (and teaches Artificial Intelligence at
Stanford University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

— Ken Arnold, former Senior Engineer at Sun Microsystems
Coauthor (with James Gosling, creator of Java), The Java Programming
Language

“I feel like a thousand pounds of books have just been lifted off of my head.”

— Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practi-
cal development strategies—gets my brain going without having to slog through a bunch of tired, stale
professor -speak.”

— Travis Kalanick, founder of Scour and Red Swoosh
Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-eared,
mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I have
for review is tattered and torn.”

— Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and coauthor of Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive Vice President, Disney Online

“I ♥ Head First HTML with CSS & XHTML—it teaches you everything you need to learn in a ‘fun-coated’
format.”

— Sally Applin, UI Designer and Artist

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller…Bueller…Bueller…’ this book is on the float
belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Other related books from O’Reilly

Learning Python

Programming Python

Python in a Nutshell

Python Cookbook

Python for Unix and Linux System Administration

Other books in O’Reilly’s Head First series

Head First Algebra

Head First Ajax

Head First C#, Second Edition

Head First Design Patterns

Head First EJB

Head First Excel

Head First 2D Geometry

Head First HTML with CSS & XHTML

Head First iPhone Development

Head First Java

Head First JavaScript

Head First Object-Oriented Analysis & Design (OOA&D)

Head First PHP & MySQL

Head First Physics

Head First PMP, Second Edition

Head First Programming

Head First Rails

Head First Servlets & JSP, Second Edition

Head First Software Development

Head First SQL

Head First Statistics

Head First Web Design

Head First WordPress

Beijing • Cambridge • Farnham • K�ln • Sebastopol • Tokyo

Head First Python

Wouldn’t it be dreamy if there
were a Python book that didn’t

make you wish you were anywhere
other than stuck in front of your

computer writing code? I guess it’s
just a fantasy...

Paul Barry

Head First Python

by Paul Barry

Copyright © 2011 Paul Barry. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Brian Sawyer

Cover Designer: Karen Montgomery

Production Editor: Rachel Monaghan

Proofreader: Nancy Reinhardt

Indexer: Angela Howard

Page Viewers: Deirdre, Joseph, Aaron, and Aideen

Printing History:

November 2010: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Python, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No athletes were pushed too hard in the making of this book.

ISBN: 978-1-449-38267-4

[M]

This book uses RepKover™, a durable and flexible lay-flat binding.
TM

Deirdre

Joseph

Aaron

Aideen

I dedicate this book to all those generous people in the Python
community who have helped to make this great little language the
first-rate programming technology it is.

And to those that made learning Python and its technologies just
complex enough that people need a book like this to learn it.

viii

the author

Author of Head First Python

Paul Barry recently worked out that he has been
programming for close to a quarter century, a fact that came
as a bit of a shock. In that time, Paul has programmed in
lots of different programming languages, lived and worked
in two countries on two continents, got married, had three
kids (well…his wife Deirdre actually had them, but Paul was
there), completed a B.Sc. and M.Sc. in Computing, written or
cowritten three other books, as well as a bunch of technical
articles for Linux Journal (where he’s a Contributing Editor).

When Paul first saw Head First HTML with CSS & XHTML,
he loved it so much he knew immediately that the Head First
approach would be a great way to teach programming. He
was only too delighted then, together with David Griffiths, to
create Head First Programming in an attempt to prove his hunch
correct.

Paul’s day job is working as a lecturer at The Institute of
Technology, Carlow, in Ireland. As part of the Department
of Computing and Networking, Paul gets to spend his day
exploring, learning, and teaching programming technologies
to his students, including Python.

Paul recently completed a post-graduate certificate in
Learning and Teaching and was more than a bit relieved to
discover that most of what he does conforms to current third-
level best practice.

Paul

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on Python. Here you are trying to learn something, while

here your brain is doing you a favor by making sure the learning doesn’t stick.

Your brain’s thinking, “Better leave room for more important things, like which

wild animals to avoid and whether naked snowboarding is a bad idea.” So how

do you trick your brain into thinking that your life depends on knowing Python?

Intro

Who is this book for? xxiv

We know what you’re thinking xxv

Metacognition xxvii

Bend your brain into submission xxix

Read me xxx

The technical review team xxxii

Acknowledgments xxxiii

 Intro xxiii

1 Meet Python: Everyone Loves Lists 1

2 Sharing Your Code: Modules of Functions 33

3 Files and Exceptions: Dealing with Errors 73

4 Persistence: Saving Data to Files 105

5 Comprehending Data: Work That Data! 139

6 Custom Data Objects: Bundling Code with Data 173

7 Web Development: Putting It All Together 213

8 Mobile App Development: Small Devices 255

9 Manage Your Data: Handling Input 293

10 Scaling Your Webapp: Getting Real 351

11 Dealing with Complexity: Data Wrangling 397

i Leftovers: The Top Ten Things (We Didn’t Cover) 435

table of contents

x

What’s to like about Python? 2

Install Python 3 3

Use IDLE to help learn Python 4

Work effectively with IDLE 5

Deal with complex data 6

Create simple Python lists 7

Lists are like arrays 9

Add more data to your list 11

Work with your list data 15

For loops work with lists of any size 16

Store lists within lists 18

Check a list for a list 20

Complex data is hard to process 23

Handle many levels of nested lists 24

Don’t repeat code; create a function 28

Create a function in Python 29

Recursion to the rescue! 31

Your Python Toolbox 32

Everyone loves lists1
meet python

You’re asking one question: “What makes Python different?”�
The short answer is: lots of things. The longer answers starts by stating that there’s

lots that’s familiar, too. Python is a lot like any other general-purpose programming

language, with statements, expressions, operators, functions, modules, methods,

and classes. All the usual stuff, really. And then there’s the other stuff Python provides

that makes the programmer’s life—your life—that little bit easier. You’ll start your tour

of Python by learning about lists. But, before getting to that, there’s another important

question that needs answering…

The Holy Grail, 1975, Terry Jones & Terry Gilliam, 91 mins

 Graham Chapman

 Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

table of contents

xi

Modules of functions

Reusable code is great, but a shareable module is better.
By sharing your code as a Python module, you open up your code to the entire Python

community…and it’s always good to share, isn’t it? In this chapter, you’ll learn how to

create, install, and distribute your own shareable modules. You’ll then load your module

onto Python’s software sharing site on the Web, so that everyone can benefit from your

work. Along the way, you’ll pick up a few new tricks relating to Python’s functions, too.

sharing your code

2
It’s too good not to share 34

Turn your function into a module 35

Modules are everywhere 36

Comment your code 37

Prepare your distribution 40

Build your distribution 41

A quick review of your distribution 42

Import a module to use it 43

Python’s modules implement namespaces 45

Register with the PyPI website 47

Upload your code to PyPI 48

Welcome to the PyPI community 49

Control behavior with an extra argument 52

Before your write new code, think BIF 53

Python tries its best to run your code 57

Trace your code 58

Work out what’s wrong 59

Update PyPI with your new code 60

You’ve changed your API 62

Use optional arguments 63

Your module supports both APIs 65

Your API is still not right 66

Your module’s reputation is restored 70

Your Python Toolbox 71

nester

nester.py

setup.py

table of contents

xii

Data is external to your program 74

It’s all lines of text 75

Take a closer look at the data 77

Know your data 79

Know your methods and ask for help 80

Know your data (better) 82

Two very different approaches 83

Add extra logic 84

Handle exceptions 88

Try first, then recover 89

Identify the code to protect 91

Take a pass on the error 93

What about other errors? 96

Add more error-checking code… 97

…Or add another level of exception handling 98

So, which approach is best? 99

You’re done…except for one small thing 101

Be specific with your exceptions 102

Your Python Toolbox 103

Dealing with errors3
files and exceptions

It’s simply not enough to process your list data in your code.
You need to be able to get your data into your programs with ease, too. It’s no surprise

then that Python makes reading data from files easy. Which is great, until you

consider what can go wrong when interacting with data external to your programs…

and there are lots of things waiting to trip you up! When bad stuff happens, you need a

strategy for getting out of trouble, and one such strategy is to deal with any exceptional

situations using Python’s exception handling mechanism showcased in this chapter.

split(beans)

table of contents

xiii

Saving data to files

It is truly great to be able to process your file-based data.
But what happens to your data when you’re done? Of course, it’s best to save your

data to a disk file, which allows you to use it again at some later date and time. Taking

your memory-based data and storing it to disk is what persistence is all about. Python

supports all the usual tools for writing to files and also provides some cool facilities for

efficiently storing Python data.

persistence

4
Programs produce data 106

Open your file in write mode 110

Files are left open after an exception! 114

Extend try with finally 115

Knowing the type of error is not enough 117

Use with to work with files 120

Default formats are unsuitable for files 124

Why not modify print_lol()? 126

Pickle your data 132

Save with dump and restore with load 133

Generic file I/O with pickle is the way to go! 137

Your Python Toolbox 138

['Is this the right room for an
argument?', "No you haven't!",
'When?', "No you didn't!", "You
didn't!", 'You did not!', 'Ah!
(taking out his wallet and paying)
Just the five minutes.', 'You most
certainly did not!', "Oh no you
didn't!", "Oh no you didn't!", "Oh
look, this isn't an argument!",
"No it isn't!", "It's just
contradiction!", 'It IS!', 'You
just contradicted me!', 'You DID!',
'You did just then!', '(exasperated)
Oh, this is futile!!', 'Yes it
is!']

[‘Is this the right room
for an argument?’, “No
you haven’t!”, ‘When?’,
“No you didn’t!”, “You
didn’t!”, ‘You did not!’,
‘Ah! (taking out his wallet
and paying) Just the five
minutes.’, ‘You most
certainly did not!’, “Oh
no you didn’t!”, “Oh no
you didn’t!”, “Oh look,
this isn’t an argument!”,
“No it isn’t!”, “It’s
just contradiction!”,
‘It IS!’, ‘You just
contradicted me!’, ‘You
DID!’, ‘You did just
then!’, ‘(exasperated)
Oh, this is futile!!’,
‘Yes it is!’]

table of contents

xiv

Coach Kelly needs your help 140

Sort in one of two ways 144

The trouble with time 148

Comprehending lists 155

Iterate to remove duplicates 161

Remove duplicates with sets 166

Your Python Toolbox 172

Work that data!5
comprehending data

Data comes in all shapes and sizes, formats and encodings.
To work effectively with your data, you often have to manipulate and transform it into a

common format to allow for efficient processing, sorting, and storage. In this chapter,

you’ll explore Python goodies that help you work your data up into a sweat, allowing

you to achieve data-munging greatness.

This chapter’s
guaranteed to give you
a workout!

table of contents

xv

Bundling code with data

It’s important to match your data structure choice to your data.
And that choice can make a big difference to the complexity of your code. In Python,

although really useful, lists and sets aren’t the only game in town. The Python dictionary

lets you organize your data for speedy lookup by associating your data with names, not

numbers. And when Python’s built-in data structures don’t quite cut it, the Python class

statement lets you define your own. This chapter shows you how.

custom data objects

6
Coach Kelly is back (with a new file format) 174

Use a dictionary to associate data 178

Bundle your code and its data in a class 189

Define a class 190

Use class to define classes 191

The importance of self 192

Every method’s first argument is self 193

Inherit from Python’s built-in list 204

Coach Kelly is impressed 211

Your Python Toolbox 212

The Object
Factory

table of contents

xvi

7
It’s good to share 214

You can put your program on the Web 215

What does your webapp need to do? 218

Design your webapp with MVC 221

Model your data 222

View your interface 226

Control your code 234

CGI lets your web server run programs 235

Display the list of athletes 236

The dreaded 404 error! 242

Create another CGI script 244

Enable CGI tracking to help with errors 248

A small change can make all the difference 250

Your webapp’s a hit! 252

Your Python Toolbox 253

Putting it all together

web development

Sooner or later, you’ll want to share your app with lots of people.
You have many options for doing this. Pop your code on PyPI, send out lots of emails, put

your code on a CD or USB, or simply install your app manually on the computers of those

people who need it. Sounds like a lot of work…not to mention boring. Also, what happens

when you produce the next best version of your code? What happens then? How do

you manage the update? Let’s face it: it’s such a pain that you’ll think up really creative

excuses not to. Luckily, you don’t have to do any of this: just create a webapp instead. And,

as this chapter demonstrates, using Python for web development is a breeze.

table of contents

xvii

8 Small devices

Putting your data on the Web opens up all types of possibilities.
Not only can anyone from anywhere interact with your webapp, but they are increasingly

doing so from a collection of diverse computing devices: PCs, laptops, tablets, palmtops,

and even mobile phones. And it’s not just humans interacting with your webapp that

you have to support and worry about: bots are small programs that can automate web

interactions and typically want your data, not your human-friendly HTML. In this chapter,

you exploit Python on Coach Kelly’s mobile phone to write an app that interacts with your

webapp’s data.

mobile app development

The world is getting smaller 256

Coach Kelly is on Android 257

Don’t worry about Python 2 259

Set up your development environment 260

Configure the SDK and emulator 261

Install and configure Android Scripting 262

Add Python to your SL4A installation 263

Test Python on Android 264

Define your app’s requirements 266

The SL4A Android API 274

Select from a list on Android 278

The athlete’s data CGI script 281

The data appears to have changed type 284

JSON can’t handle your custom datatypes 285

Run your app on a real phone 288

Configure AndFTP 289

The coach is thrilled with his app 290

Your Python Toolbox 291

table of contents

xviii

Your athlete times app has gone national 294

Use a form or dialog to accept input 295

Create an HTML form template 296

The data is delivered to your CGI script 300

Ask for input on your Android phone 304

It’s time to update your server data 308

Avoid race conditions 309

You need a better data storage mechanism 310

Use a database management system 312

Python includes SQLite 313

Exploit Python’s database API 314

The database API as Python code 315

A little database design goes a long way 316

Define your database schema 317

What does the data look like? 318

Transfer the data from your pickle to SQLite 321

What ID is assigned to which athlete? 322

Insert your timing data 323

SQLite data management tools 326

Integrate SQLite with your existing webapp 327

You still need the list of names 332

Get an athlete’s details based on ID 333

You need to amend your Android app, too 342

Update your SQLite-based athlete data 348

The NUAC is over the moon! 349

Your Python Toolbox 350

Handling input9
manage your data

The Web and your phone are not just great ways to display data.
They are also great tools to for accepting input from your users. Of course, once your

webapp accepts data, it needs to put it somewhere, and the choices you make when

deciding what and where this “somewhere” is are often the difference between a webapp

that’s easy to grow and extend and one that isn’t. In this chapter, you’ll extend your

webapp to accept data from the Web (via a browser or from an Android phone), as well

as look at and enhance your back-end data-management services.

table of contents

xix

Getting real

The Web is a great place to host your app…until things get real.
Sooner or later, you’ll hit the jackpot and your webapp will be wildly successful. When

that happens, your webapp goes from a handful of hits a day to thousands, possibly ten

of thousands, or even more. Will you be ready? Will your web server handle the load?

How will you know? What will it cost? Who will pay? Can your data model scale to

millions upon millions of data items without slowing to a crawl? Getting a webapp up and

running is easy with Python and now, thanks to Google App Engine, scaling a Python

webapp is achievable, too.

scaling your webapp

10
There are whale sightings everywhere 352

The HFWWG needs to automate 353

Build your webapp with Google App Engine 354

Download and install App Engine 355

Make sure App Engine is working 356

App Engine uses the MVC pattern 359

Model your data with App Engine 360

What good is a model without a view? 363

Use templates in App Engine 364

Django’s form validation framework 368

Check your form 369

Controlling your App Engine webapp 370

Restrict input by providing options 376

Meet the “blank screen of death” 378

Process the POST within your webapp 379

Put your data in the datastore 380

Don’t break the “robustness principle” 384

Accept almost any date and time 385

It looks like you’re not quite done yet 388

Sometimes, the tiniest change can make all the difference… 389

Capture your user’s Google ID, too 390

Deploy your webapp to Google’s cloud 391

Your HFWWG webapp is deployed! 394

Your Python Toolbox 395

table of contents

xx

What’s a good time goal for the next race? 398

So…what’s the problem? 400

Start with the data 401

Store each time as a dictionary 407

Dissect the prediction code 409

Get input from your user 413

Getting input raises an issue… 414

Search for the closest match 416

The trouble is with time 418

The time-to-seconds-to-time module 419

The trouble is still with time… 422

Port to Android 424

Your Android app is a bunch of dialogs 425

Put your app together… 429

Your app’s a wrap! 431

Your Python Toolbox 432

Data wrangling11
dealing with complexity

It’s great when you can apply Python to a specific domain area.
Whether it’s web development, database management, or mobile apps, Python helps

you get the job done by not getting in the way of you coding your solution. And then

there’s the other types of problems: the ones you can’t categorize or attach to a domain.

Problems that are in themselves so unique you have to look at them in a different, highly

specific way. Creating bespoke software solutions to these type of problems is an area

where Python excels. In this, your final chapter, you’ll stretch your Python skills to the

limit and solve problems along the way.

table of contents

xxi

The Top Ten Things (we didn’t cover)

You’ve come a long way.
But learning about Python is an activity that never stops. The more Python you code,

the more you’ll need to learn new ways to do certain things. You’ll need to master new

tools and new techniques, too. There’s just not enough room in this book to show you

everything you might possibly need to know about Python. So, here’s our list of the top

ten things we didn’t cover that you might want to learn more about next.

leftovers

i
#1: Using a “professional” IDE 436

#2: Coping with scoping 437

#3: Testing 438

#4: Advanced language features 439

#5: Regular expressions 440

#6: More on web frameworks 441

#7: Object relational mappers and NoSQL 442

#8: Programming GUIs 443

#9: Stuff to avoid 444

#10: Other books 445

xxiii

how to use this book

Intro

In this section, we answer the burning question:
“So why DID they put that in a Python book?”

I can’t believe
they put that in a

Python book.

xxiv intro

how to use this book

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card… we’ll accept a check, too.]

Do you prefer actually doing things and applying the stuff
you learn over listening to someone in a lecture rattle on
for hours on end?

3

Do you wish you had the know-how to program Python,
add it to your list of tools, and make it do new things?

2

Are you looking for a reference book to Python, one that
covers all the details in excruciating detail?

2

Do you already know how to program in another
programming language?

1

Do you already know most of what you need to know to
program with Python?

1

Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do you
believe a Python book should cover everything and if it
bores the reader to tears in the process then so much the
better?

3

you are here 4 xxv

the intro

“How can this be a serious Python book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously non-important content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things.
Like tigers. Like the danger of fire. Like how you should never have
posted those “party” photos on your Facebook page. And there’s no
simple way to tell your brain, “Hey brain, thank you very much, but
no matter how dull this book is, and how little I’m registering on the
emotional Richter scale right now, I really do want you to keep this
stuff around.”

We know what you’re thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only 450
more dull, dry,
boring pages.

xxvi intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the latest

research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more

understandable. Put the words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner party

companion or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but I can’t

stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be

boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you care about. You remember when you feel something.

No, we’re not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I Rule!” that comes when you solve a puzzle,

learn something everybody else thinks is hard, or realize you know something that “I’m more technical

than thou” Bob from engineering doesn’t.

you are here 4 xxvii

the intro

Metacognition: thinking about thinking
I wonder how

I can trick my brain
into remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how
to design user-friendly websites. And you probably don’t want to spend a lot
of time. If you want to use what you read in this book, you need to remember
what you read. And for that, you’ve got to understand it. To get the most from
this book, or any book or learning experience, take responsibility for your brain.
Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat
programming like it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

xxviii intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

you are here 4 xxix

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

6 Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

9 Write a lot of code!

There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to
do throughout this book. Coding is a skill, and the
only way to get good at it is to practice. We’re going
to give you a lot of practice: every chapter has
exercises that pose a problem for you to solve. Don’t
just skip over them—a lot of the learning happens
when you solve the exercises. We included a solution
to each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged
on something small.) But try to solve the problem
before you look at the solution. And definitely get it
working before you move on to the next part of the
book.

8 Feel something.

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

7 Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

5 Talk about it. Out loud.

Speaking activates a different part of the brain. If
you’re trying to understand something, or increase
your chance of remembering it later, say it out loud.
Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover
ideas you hadn’t known were there when you were
reading about it.

4 Make this the last thing you read before bed.
Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens after you put the book
down. Your brain needs time on its own, to do more
processing. If you put in something new during that
processing time, some of what you just learned will
be lost.

3 Read the “There are No Dumb Questions.”

That means all of them. They’re not optional
sidebars, they’re part of the core content!
Don’t skip them.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.

We put them in, but if we did them for you, that
would be like having someone else do your workouts
for you. And don’t just look at the exercises. Use a
pencil. There’s plenty of evidence that physical
activity while learning can increase the learning.

Don’t just read. Stop and think. When the book asks
you a question, don’t just skip to the answer. Imagine
that someone really is asking the question. The
more deeply you force your brain to think, the better
chance you have of learning and remembering.

Slow down. The more you understand, the
less you have to memorize.

1

xxx intro

how to use this book

Read Me
This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

This book is designed to get you up to speed with Python as
quickly as possible.

As you need to know stuff, we teach it. So you won’t find long lists of technical material, no
tables of Python’s operators, not its operator precedence rules. We don’t cover everything,
but we’ve worked really hard to cover the essential material as well as we can, so that you
can get Python into your brain quickly and have it stay there. The only assumption we make
is that you already know how to program in some other programming language.

This book targets Python 3

We use Release 3 of the Python programming language in this book, and we cover how to
get and install Python 3 in the first chapter. That said, we don’t completely ignore Release
2, as you’ll discover in Chapters 8 through 11. But trust us, by then you’ll be so happy using
Python, you won’t notice that the technologies you’re programming are running Python 2.

We put Python to work for you right away.

We get you doing useful stuff in Chapter 1 and build from there. There’s no hanging
around, because we want you to be productive with Python right away.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. Don’t skip the exercises.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books don’t
have retention and recall as a goal, but this book is about learning, so you’ll see some of the
same concepts come up more than once.

you are here 4 xxxi

the intro

The examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of an example looking
for the two lines they need to understand. Most examples in this book are shown within
the smallest possible context, so that the part you’re trying to learn is clear and simple.
Don’t expect all of the examples to be robust, or even complete—they are written
specifically for learning, and aren’t always fully functional.

We’ve placed a lot of the code examples on the Web so you can copy and paste them as
needed. You’ll find them at two locations:

 http://www.headfirstlabs.com/books/hfpython/

 http://python.itcarlow.ie

The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises, you will find hints to point you in the
right direction.

xxxii intro

the review teamthe review team

David Griffiths is the author of Head First Rails
and the coauthor of Head First Programming. He began
programming at age 12, when he saw a documentary
on the work of Seymour Papert. At age 15, he wrote
an implementation of Papert’s computer language
LOGO. After studying Pure Mathematics at University,
he began writing code for computers and magazine
articles for humans. He’s worked as an agile coach,
a developer, and a garage attendant, but not in that
order. He can write code in over 10 languages and
prose in just one, and when not writing, coding, or
coaching, he spends much of his spare time traveling
with his lovely wife—and fellow Head First author—
Dawn.

Phil Hartley has a degree in Computer Science
from Edinburgh, Scotland. Having spent more than
30 years in the IT industry with specific expertise in
OOP, he is now teaching full time at the University
of Advancing Technology in Tempe, AZ. In his spare
time, Phil is a raving NFL fanatic

Jeremy Jones is coauthor of Python for Unix and
Linux System Administration. He has been actively using
Python since 2001. He has been a developer, system
administrator, quality assurance engineer, and tech
support analyst. They all have their rewards and
challenges, but his most challenging and rewarding job
has been husband and father.

Technical Reviewers:

Jeremy Jones

Phil Hartley

David Griffiths

The technical review team

you are here 4 xxxiii

the intro

My editor:

Brian Sawyer was Head First Python’s editor. When not editing
books, Brian likes to run marathons in his spare time. This turns out
to be the perfect training for working on another book with me (our
second together). O’Reilly and Head First are lucky to have someone
of Brian’s caliber working to make this and other books the best they
can be.

Acknowledgments

Brian Sawyer
The O’Reilly team:

Karen Shaner provided administrative support and very capably coordinated the techical review process, responding
quickly to my many queries and requests for help. There’s also the back-room gang to thank—the O’Reilly Production
Team—who guided this book through its final stages and turned my InDesign files into the beautiful thing you’re
holding in your hands right now (or maybe you’re on an iPad, Android tablet, or reading on your PC—that’s cool, too).

And thanks to the other Head First authors who, via Twitter, offered cheers, suggestions, and encouragement
throughout the entire writing process. You might not think 140 characters make a big difference, but they really do.

I am also grateful to Bert Bates who, together with Kathy Sierra, created this series of books with their wonderful
Head First Java. At the start of this book, Bert took the time to set the tone with a marathon 90-minute phone call,
which stretched my thinking on what I wanted to do to the limit and pushed me to write a better book. Now, some nine
months after the phone call, I’m pretty sure I’ve recovered from the mind-bending Bert put me through.

Friends and colleagues:

My thanks again to Nigel Whyte, Head of Department, Computing and Networking at The Institute of Technology,
Carlow, for supporting my involvement in yet another book (especially so soon after the last one).

My students (those enrolled on 3rd Year Games Development and 4th Year Software Engineering) have been exposed
to this material in various forms over the last 18 months. Their positive reaction to Python and the approach I take with
my classes helped inform the structure and eventual content of this book. (And yes, folks, some of this is on your final).

Family:

My family, Deirdre, Joseph, Aaron, and Aideen had to, once more, bear the grunts and groans, huffs and puffs,
and more than a few roars on more than one occasion (although, to be honest, not as often they did with Head First
Programming). After the last book, I promised I wouldn’t start another one “for a while.” It turned out “a while” was no
more than a few weeks, and I’ll be forever grateful that they didn’t gang up and throw me out of the house for breaking
my promise. Without their support, and especially the ongoing love and support of my wife, Deirdre, this book would
not have seen the light of day.

The without-whom list:

My technical review team did an excellent job of keeping me straight and making sure what I covered was spot on.
They confirmed when my material was working, challenged me when it wasn’t and not only pointed out when stuff
was wrong, but provided suggestions on how to fix it. This is especially true of David Griffiths, my co-conspirator on
Head First Programming, whose technical review comments went above and beyond the call of duty. David’s name might
not be on the cover of this book, but a lot of his ideas and suggestions grace its pages, and I was thrilled and will forever
remain grateful that he approached his role as tech reviewer on Head First Python with such gusto.

xxxiv intro

safari books online

Safari® Books Online
Safari Books Online is an on-demand digital library that lets
you easily search over 7,500 technology and creative reference
books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, and get exclusive access to manuscripts in development
and post feedback for the authors. Copy and paste code samples, organize your
favorites, download chapters, bookmark key sections, create notes, print out pages,
and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com/?portal=oreilly.

this is a new chapter 1

Yes, yes...we have lots
of Pythons in stock... I’ll
just make a quick list.

meet python1

Everyone loves lists

You’re asking one question: “What makes Python different?”�
The short answer is: lots of things. The longer answers starts by stating that there’s lots

that’s familiar, too. Python is a lot like any other general-purpose programming language,

with statements, expressions, operators, functions, modules, methods, and classes.

All the usual stuff, really. And then there’s the other stuff Python provides that makes

the programmer’s life—your life—that little bit easier. You’ll start your tour of Python by

learning about lists. But, before getting to that, there’s another important question that

needs answering…

2 Chapter 1

python greatness

What’s to like about Python?
Lots. Rather than tell you, this book’s goal is to show you the greatness that is
Python.

Yeah... I need something that I can deploy
on PCs, Macs, handhelds, phones,the Web,
on big servers and small clients...and it has
to let me build GUIs quickly and painlessly...
OK, yes, yeah, I’m listening... What?!?
You’re kidding! Python can do all that?

Before diving head first into Python, let’s get a bit of housekeeping out of
the way.

To work with and execute the Python code in this book, you need a copy of
the Python 3 interpreter on your computer. Like a lot of things to do with
Python, it’s not difficult to install the interpreter. Assuming, of course, it’s not
already there…

you are here 4 3

meet python

Install Python 3
Before you write and run Python code, you need to make sure the Python
interpreter is on your computer. In this book, you’ll start out with Release 3 of
Python, the very latest (and best) version of the language.

A release of Python might already be on your computer. Mac OS X comes
with Python 2 preinstalled, as do most versions of Linux (which can also ship
with Release 3). Windows, in contrast, doesn’t include any release of Python.
Let’s check your computer for Python 3. Open up a command-line prompt
and, if you are using Mac OS X or Linux, type:

 python3 -V

On Windows, use this command:

 c:\Python31\python.exe -V

That’s an UPPERCASE “v”, by the way.

$ python3 -V
Python 3.1.2
$
$ python3
Python 3.1.2 (r312:79360M, Mar 24 2010, 01:33:18)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "help", "copyright", "credits" or "license" for more info.
>>>
>>> quit()
$

File Edit Window Help WhichPython?

Using the
UPPERCASE “v”
results in the Python
version appearing on
screen.

Without the
UPPERCASE “v”,
you are taken
into the Python
interpreter.

Use the quit()
command to exit
the interpreter and
return to your OS
prompt.

If Python 3 is missing from
your computer, download
a copy for your favorite OS
from the www.python.org
website.

Do this!

Let’s take a quick look at IDLE.

When you install Python 3, you also get IDLE, Python’s simple—yet
surprisingly useful— integrated development environment. IDLE includes a
color syntax-highlighting editor, a debugger, the Python Shell, and a complete
copy of Python 3’s online documentation set.

4 Chapter 1

idle hands

Use IDLE to help learn Python
IDLE lets you write code in its full-featured code editor as well as experiment
with code at the Python Shell. You’ll use the code editor later in this book
but, when learning Python, IDLE’s shell really rocks, because it lets you try
out new Python code as you go.

When you first start IDLE, you are presented with the “triple chevron”
prompt (>>>) at which you enter code. The shell takes your code statement
and immediately executes it for you, displaying any results produced on screen.

IDLE knows all about Python syntax and offers “completion hints” that pop
up when you use a built-in function like print(). Python programmers
generally refer to built-in functions as BIFs. The print() BIF displays
messages to standard output (usually the screen).

IDLE uses colored syntax to highlight your code. By default, built-in
functions are purple, strings are green, and language keywords (like if) are
orange. Any results produced are in blue. If you hate these color choices,
don’t worry; you can easily change them by adjusting IDLE’s preferences.

IDLE also knows all about Python’s indentation syntax, which requires code
blocks be indented. When you start with Python, this can be hard to get
used to, but IDLE keeps you straight by automatically indenting as needed.

IDLE knows
Python’s syntax
and helps you
conform to
the Python
indentation rules.

Enter your code
at the >>> prompt.

See results
immediately.

Unlike other C-based languages, which use { and } to delimit blocks, Python uses indentation instead.

you are here 4 5

meet python

Work effectively with IDLE
IDLE has lots of features, but you need to know about only
a few of them to get going.

TAB completion

Start to type in some code, and then press the TAB key.
IDLE will offer suggestions to help you complete your
statement.

Type “pr” and then
TAB at the >>> prompt
to see IDLE’s list of
command completion
suggestions.

Recall code statements

Press Alt-P to recall the previous code statement entered into
IDLE or press Alt-N to move to the next code statement
(assuming there is one). Both key combinations can be used
to cycle rapidly through all of the code you’ve entered into
IDLE, re-executing any code statements as needed.

Edit recalled code

Once you recall your code statement, you can edit it and
move around the statement using the arrow keys. It’s
possible to edit any statement that you’ve previously
entered, even code statements that span multiple lines.

Adjust IDLE’s preferences

IDLE’s preferences dialog lets you adjust its default
behavior to your tastes. There are four tabs of settings to
tweak. You can control font and tab behavior, the colors
used to syntax highlight, the behavior of certain key-
combinations, and IDLE’s start-up settings. So, if shocking
pink strings is really your thing, IDLE gives you the power
to change how your code looks on screen.

Alt-P for Previous
Alt-N for Next

Tweak IDLE
to your heart’s
content.

This is how IDLE looks on my computer. It might look a little different on yours, but not by much. (And, yes, it’s meant to look this ugly.)

Unless you’re on
a Mac, in which
case it’s Ctrl-P
and Ctrl-N.

6 Chapter 1

dealing with data

Deal with complex data
Any program of any worth that you create has to work with data. Sometimes,
the data is simple and straightforward—easy to work with. Other times, the
data you have to work with is complex in its structure and meaning, forcing you
to work hard to make sense of it all, let alone write code to process it.

To tame complexity, you can often arrange your data as a list: there’s the list
of customers, your friend’s list, the shopping list, and your to-do list (to name
a few). Arranging data in lists is so common that Python makes it easy for you
to create and process lists in code.

Let’s look at some complex data before learning how to create and process list
data with Python.

The Holy Grail, 1975, Terry Jones & Terry Gilliam, 91 mins

 Graham Chapman

Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

The Life of Brian, 1979, Terry Jones, 94 mins
 Graham Chapman

Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

The Meaning of Life, 1983, Terry Jones, 107 mins
 The six Monty Python cast members

The Holy Grail, 1975, Terry Jones & Terry Gilliam, 91 mins

 Graham Chapman

Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

The Life of Brian, 1979, Terry Jones, 94 mins
 Graham Chapman

Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

The Meaning of Life, 1983, Terry Jones, 107 mins
 The six Monty Python cast members

The Holy Grail, 1975, Terry Jones & Terry Gilliam, 91 mins

 Graham Chapman

Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

The Life of Brian, 1979, Terry Jones, 94 mins
 Graham Chapman

Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

The Meaning of Life, 1983, Terry Jones, 107 mins
 The six Monty Python cast members

I’ve been making lists of
movie data for years and
would love to be able to
process it on my laptop...

The Holy Grail, 1975, Terry Jones & Terry Gilliam, 91 mins
 Graham Chapman
 Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones
The Life of Brian, 1979, Terry Jones, 94 mins
 Graham Chapman
 Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones
The Meaning of Life, 1983, Terry Jones, 107 mins
 The six Monty Python cast members
 Graham Chapman, Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

There sure is
a lot of data
listed here.

This data is complex, too.

A highly
organized
movie buff

On first glance, this collection of data does indeed look quite complex.
However, the data appears to conform to some sort of structure: there’s a line
for a list of basic movie facts, then another line for the lead actor(s), followed
by a third line listing the movie’s supporting actors.

This looks like a structure you can work with…

you are here 4 7

meet python

Create simple Python lists
Let’s start with the following simple list of movie titles and work up from
there:

The Holy Grail
The Life of Brian
The Meaning of Life A short list of some

Monty Python movies

Here’s the same list written in a way that Python understands:

 movies = ["The Holy Grail",

 "The Life of Brian",

 "The Meaning of Life"]

To turn the human-friendly list into a Python-friendly one, follow this four-
step process:

It’s perfectly OK to put your list creation code all on one line, assuming, of
course, that you have room:

 movies = ["The Holy Grail", "The Life of Brian", "The Meaning of Life"]

This works, too.

Convert each of the names into strings by surrounding the data with quotes.1

Separate each of the list items from the next with a comma.2

Surround the list of items with opening and closing square brackets.3

Assign the list to an identifier (movies in the preceding code) using the
assignment operator (=).

4

8 Chapter 1

not my type

Hang on a second! Aren’t you
forgetting something? Don’t you need to
declare type information for your list?

No, because Python’s variable identifiers
don’t have a type.

Many other programming languages insist that every
identifier used in code has type information declared for
it. Not so with Python: identifiers are simply names that
refer to a data object of some type.

Think of Python’s list as a high-level collection. The
type of the data items is not important to the list. It’s
OK to state that your movies list is a “collection of
strings,” but Python doesn’t need to be told this. All
Python needs to know is that you need a list, you’ve
given it a name, and the list has some data items in it.

you are here 4 9

meet python

 The Life of Brian

Lists are like arrays
When you create a list in Python, the interpreter creates an array-like data
structure in memory to hold your data, with your data items stacked from
the bottom up. Like array technology in other programming languages, the
first slot in the stack is numbered 0, the second is numbered 1, the third is
numbered 2, and so on:

This is your “movies”
list in memory.

This is your
“movies” list in
code.

Each data item
in the list has a
numeric OFFSET associated with it.

Python starts counting
from zero.

Access list data using the square bracket notation

As with arrays, you can access the data item in a list slot using the standard
square bracket offset notation:

 print(movies[1])

 movies = ["The Holy Grail", "The Life of Brian", "The Meaning of Life"]

"The Holy Grail"

"The Life of Brian"

"The Meaning of Life" 2

1

 0

Item #0 Item #1 Item #2

Use the “print()” BIF to display a
data item on screen.

No surprise here, really…the requested data appears on screen.

Let’s use IDLE to learn a bit about how lists work.

10 Chapter 1

idle session

Lists in Python might look like arrays, but they are much more than that: they are full-blown Python collection
objects. This means that lists come with ready-to-use functionality in the form of list methods.

Let’s get to know some of Python’s list methods. Open up IDLE and follow along with the code entered at the >>>
prompt. You should see exactly the same output as shown here.

Start by defining a list of names, which you then display on screen using the print() BIF. Then, use the len()
BIF to work out how many data items are in the list, before accessing and displaying the value of the second data
item:

>>> cast = ["Cleese", 'Palin', 'Jones', "Idle"]

>>> print(cast)

['Cleese', 'Palin', 'Jones', 'Idle']

>>> print(len(cast))

4

>>> print(cast[1])

Palin

>>> cast.append("Gilliam")

>>> print(cast)

['Cleese', 'Palin', 'Jones', 'Idle', 'Gilliam']

>>> cast.pop()

'Gilliam'

>>> print(cast)

['Cleese', 'Palin', 'Jones', 'Idle']

>>> cast.extend(["Gilliam", "Chapman"])

>>> print(cast)

['Cleese', 'Palin', 'Jones', 'Idle', 'Gilliam', 'Chapman']

>>> cast.remove("Chapman")

>>> print(cast)

['Cleese', 'Palin', 'Jones', 'Idle', 'Gilliam']

>>> cast.insert(0, "Chapman")

>>> print(cast)

['Chapman', 'Cleese', 'Palin', 'Jones', 'Idle', 'Gilliam']

With your list created, you can use list methods to add a single data item to the end of your list (using the
append() method), remove data from the end of your list (with the pop() method), and add a collection of
data items to the end of your list (thanks to the extend() method):

Finally, find and remove a specific data item from your list (with the remove() method) and then add a data item
before a specific slot location (using the insert() method):

It’s OK to invoke a BIF on
the results of another BIF.

Methods are invoked using the common “.” dot notation.

It’s another list: items separated by commas,
surrounded by square brackets.

After all that, we end up with the cast of Monty Python’s Flying Circus!

you are here 4 11

meet python

Add more data to your list
With your list of movie names created, now you need to add more of the
movie buff ’s complex data to it. You have a choice here:

I think I’ll use the
appropriate list
methods to add the extra
data I need.

With something this small,
I’m gonna simply re-create
my list from scratch.

Either strategy works. Which works best for you depends on what you are
trying to do. Let’s recall what the movie buff ’s data looks like:

The next piece of data you need to add to your list is a number (which
represents the year the movie was released), and it must be inserted after each
movie name. Let’s do that and see what happens.

The Holy Grail, 1975, Terry Jones & Terry Gilliam, 91 mins
 Graham Chapman
 Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones
The Life of Brian, 1979, Terry Jones, 94 mins
 Graham Chapman
 Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones
The Meaning of Life, 1983, Terry Jones, 107 mins
 The six Monty Python cast members
 Graham Chapman, Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

A number
representing
the year is
next.

12 Chapter 1

mixed type

What?!? There’s no way you can mix
data of different types in lists, is
there? Surely this is madness?

No, not madness, just the way Python works.

Python lists can contain data of mixed type. It’s perfectly OK
to mix strings with numbers within the same Python list. In fact,
you can mix more than just strings and numbers; you can store
data of any type in a single list, if you like.

Recall that a Python list is a high-level collection, designed from
the get-go to store a collection of “related things.” What type
those things have is of little interest to the list, because the list
exists merely to provide the mechanism to store data in list form.

So, if you really need to store data of mixed type in a list,
Python won’t stop you.

you are here 4 13

meet python

Let’s take a bit of time to try to work out which strategy to use when adding data to your list in
this case.

Given the following list-creation code:

Write your
insertion
code here.

Write your
re-creation
code here.

 movies = ["The Holy Grail", "The Life of Brian", "The Meaning of Life"]

Work out the Python code required to insert the numeric year data into the preceding list,
changing the list so that it ends up looking like this:

Now write the Python code required to re-create the list with the data you need all in one go:

In this case, which of these two methods do you think is best? (Circle your choice).

1

2

1 2or

 ["The Holy Grail", 1975, "The Life of Brian", 1979, "The Meaning of Life", 1983]

14 Chapter 1

additional data

§
Let’s take a bit of time to try and work out which strategy to use when adding data to your list in
this case.

Given the following list-creation code:

 movies = ["The Holy Grail", "The Life of Brian", "The Meaning of Life"]

You were to work out the Python code required to insert the numeric year data into the preceding
list:

You were also to write the Python code required to recreate the list with the data you need all in
one go:

In this case, which of these two methods do you think is best? (You were to circle your choice.)

1

2

1 2or

movies.insert(1, 1975)

movies.insert(3, 1979)

movies.append(1983)

movies = ["The Holy Grail", 1975,
 "The Life of Brian", 1979,
 "The Meaning of Life", 1983]

Insert the first year
BEFORE the second list
item.

Then append the last year to
the end of the list.

Insert the second year BEFORE the fourth list item.

Did you get the math right? After the first insertion, the list grows, so you have to take that into consideration when working out where to do the second insert.

Assign all your data to the “movies”
identifier. What was previously there is
replaced.

Yes, method 2 seems the better
option here…that is, for a small
list like this. Also, there’s no
tricky counting to do.

you are here 4 15

meet python

Work with your list data
You often need to iterate over your list and perform some action on each item
as you go along. Of course, it is always possible to do something like this,
which works but does not scale:

 fav_movies = ["The Holy Grail", "The Life of Brian"]

 print(fav_movies[0])

 print(fav_movies[1])

Define a list and populate its items with the names of two movies.

Display the value of
each individual list ite

m
on the screen.

This code works as expected, making the data from the list appear on screen.
However, if the code is later amended to add another favorite movie to the list,
the list-processing code stops working as expected, because the list-processing code
does not mention the third item.

Big deal: all you need to do is add another print() statement, right?

Yes, adding one extra print() statement works for one extra movie, but
what if you need to add another hundred favorite movies? The scale of the
problem defeats you, because adding all those extra print() statements
becomes such a chore that you would rather find an excuse not to have to do.

It’s time to iterate

Processing every list item is such a common requirement that Python makes it
especially convenient, with the built-in for loop. Consider this code, which is
a rewrite of the previous code to use a for loop:

This is the list-processing
code.

 fav_movies = ["The Holy Grail", "The Life of Brian"]

 for each_flick in fav_movies:

 print(each_flick)

Define a list and populate it just as you did before.

This is the list-processing
code, using a for loop.

Use “for” to iterate
over the list, displayin

g
the value of each
individual item on
screen as you go.

Using a for loop scales and works with any size list.

16 Chapter 1

list processing

For loops work with lists of any size
Python’s for loop exists to process lists and other iterations in Python. Lists are
the most common iterated data structure in Python, and when you need to
iterate a list, it’s best to use for:

for in : target identifer list

 list-processing code

The keyword “for”
indicates the start
of the loop and
comes before the
target identifier.

The keyword “in” separates
the target identifier from
your list.

A colon “:” follows your list name and indicates the start of your list-processing code.

The list-processing code

MUST be indented
under the for loop.

The list-processing code is referred to by Python programmers as the suite.

The target identifier is like any other name in your code. As your list is
iterated over, the target identifier is assigned each of the data values in your
list, in turn. This means that each time the loop code executes, the target
identifier refers to a different data value. The loop keeps iterating until it
exhausts all of your list’s data, no matter how big or small your list is.

An alternative to using for is to code the iteration with a while loop.
Consider these two snippets of Python code, which perform the same action:

These while and for statements do the same thing.

 count = 0

 while count < len(movies):

 print(movies[count])

 count = count+1

 for each_item in movies:

 print(each_item)

When you use “while”,
you have to worry about
“state information,”
which requires you
to employ a counting
identifier.

When you use “for”, the Python interpreter worries about the “state information” for you.

you are here 4 17

meet python

Q: So…when iterating over a list, I
should always use for instead of while?

A: Yes, unless you have a really good
reason to use (or need the extra control
of) a while loop. The for loop takes care
of working from the start of your list and
continuing to the end. It’s next to impossible
to get stung by an off-by-one error when you
use for. This is not the case with while.

Q: So, lists aren’t really like arrays
then, because they do so much more?

A: Well…they are in that you can access
individual data items in your list with the
standard square bracket notation, but—as
you’ve seen—Python’s lists can do so much
more. At Head First Labs, we like to think of
lists as “arrays on steroids.”

Q: And they work this way only in
Python 3, right?

A: No. There are certain enhancements
to lists that were added in Python 3, but
release 2 of Python has lists, too. All of what
you’ve learned about lists so far will work
with lists in Releases 2 and 3 of Python.

Q: Why are we using Python 3? What’s
wrong with Python 2, anyway? Lots of
programmers seem to be using it.

A: Lots of programmers are using Python
2, but the future of Python development lies
with Release 3. Of course, moving the entire
Python community to Python 3 won’t happen
overnight, so there’s an awful lot of projects
that will continue to run on Release 2 for the
foreseeable future. Despite 2’s dominance
at the moment, at Head First Labs we think
the new bits in 3 are well worth the added
investment in learning about them now.
Don’t worry: if you know 2, Python 3 is easy.

Q: Seeing as Python’s lists shrink and
grow as needed, they must not support
bounds-checking, right?

A: Well, lists are dynamic, in that they
shrink and grow, but they are not magic,
in that they cannot access a data item
that does not exist. If you try to access a
nonexistent data item, Python responds with
an IndexError, which means “out of
bounds.”

Q: What’s with all the strange
references to Monty Python?

A: Ah, you spotted that, eh? It turns
out that the creator of Python, Guido van
Rossum, was reading the scripts of the
Monty Python TV shows while designing his
new programming language. When Guido
needed a name for his new language, he
chose “Python” as a bit of a joke (or so the
legend goes).

Q: Do I need to know Monty Python in
order to understand the examples?

A: No, but as they say in the official
Python documentation: “it helps if you do.”
But don’t worry: you’ll survive, even if you’ve
never heard of Monty Python.

Q: I notice that some of your strings
are surrounded with double quotes and
others with single quotes. What’s the
difference?

A: There isn’t any. Python lets you use
either to create a string. The only rule is that
if you start a string with one of the quotes,
then you have to end it with the same
quote; you can’t mix’n’match. As you may
have seen, IDLE uses single quotes when
displaying strings within the shell.

Q: What if I need to embed a double
quote in a string?

A: You have two choices: either escape
the double quote like this: \”, or surround
your string with single quotes.

Q: Can I use any characters to name
my identifiers?

A: No. Like most other programming
languages, Python has some rules that
must be adhered to when creating names.
Names can start with a letter character or
an underscore, then include any number
of letter characters, numbers, and/or
underscores in the rest of the name. Strange
characters (such as %$£) are not allowed
and you’ll obviously want to use names that
have meaning within the context of your
code. Names like members, the_
time , and people are much better
than m, t, and p, aren’t they?

Q: Yes, good naming practice is
always important. But what about case
sensitivity?

A: Yes, Python is the “sensitive type,” in
that Python code is case sensitive. This
means that msg and MSG are two different
names, so be careful. Python (and IDLE)
will help with the problems that can occur as
a result of this. For instance, you can use
an identifier in your code only if it has been
given a value; unassigned identifiers cause
a runtime error. This means that if you type
mgs when you meant msg, you’ll find out
pretty quickly when Python complains about
your code having a NameError.

18 Chapter 1

The Holy Grail, 1975, Terry Jones & Terry Gilliam, 91 mins
 Graham Chapman
 Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

lists within lists

Store lists within lists
As you’ve seen, lists can hold data of mixed type. But it gets even better than
that: lists can hold collections of anything, including other lists. Simply embed
the inner list within the enclosing list as needed.

Looking closely at the movie buff ’s data, it is possible to determine a structure
which looks much like a list of lists:

There’s a list of movie facts…

…which itself contains
a list of lead actors…

…which itself
contains a list of supporting actors.

There’s only one lead actor listed here, but there could be more.

In Python, you can turn this real list of data into code with little or no effort.
All you need to remember is that every list is a collection of items separated
from each other with commas and surrounded with square brackets. And, of
course, any list item can itself be another list:

 movies = [

 "The Holy Grail", 1975, "Terry Jones & Terry Gilliam", 91,

 ["Graham Chapman",

 ["Michael Palin", "John Cleese", "Terry Gilliam", "Eric Idle", "Terry Jones"]]]

This looks a little weird…until you remember that there are three opening square brackets, so there must also be three closing ones.

The start of the
first, outer list

The start of the second, inner list: “movies[4]”
The start of the third, inner
inner list: “movies[4][1]”

The end of all the lists is here.

So, a list within a list is possible, as is a list within a list within a list (as this
example code demonstrates). In fact, it’s possible to nest lists within lists to
most any level with Python. And you can manipulate every list with its own list
methods and access it with the square bracket notation:

 print(movies[4][1][3]) Eric Idle

A list within a list within a list Eric is this deeply nested, so he can’t possibly be idle. §

you are here 4 19

meet python

Creating a list that contains another list is straightforward. But what happens when you try to process a list that
contains another list (or lists) using the for loop from earlier in this chapter?

Let’s use IDLE to work out what happens. Begin by creating the list of the movie data for “The Holy Grail” in
memory, display it on screen, and then process the list with your for loop:

>>> movies = ["The Holy Grail", 1975, "Terry Jones & Terry Gilliam", 91,

 ["Graham Chapman", ["Michael Palin", "John Cleese",

 "Terry Gilliam", "Eric Idle", "Terry Jones"]]]

>>> print(movies)

['The Holy Grail', 1975, 'Terry Jones & Terry Gilliam', 91, ['Graham Chapman', ['Michael Palin',
'John Cleese', 'Terry Gilliam', 'Eric Idle', 'Terry Jones']]]

>>> for each_item in movies:

 print(each_item)

The Holy Grail

1975

Terry Jones & Terry Gilliam

91

['Graham Chapman', ['Michael Palin', 'John Cleese', 'Terry Gilliam', 'Eric Idle', 'Terry Jones']]

The list within a list within
a list has been created in
memory.

The “for” loop prints each item of
the outer loop ONLY.

The inner list within the inner list is printed “as-is.”

Your for loop is working OK. I think the
trouble is that you haven’t told it what to
do with any inner lists that it finds, so it
just prints everything, right?

Yes, that’s correct: the loop code isn’t complete.

At the moment, the code within the loop simply prints each list
item, and when it finds a list at a slot, it simply displays the entire
list on screen. After all, the inner list is just another list item as far as
the outer enclosing list is concerned. What’s we need here is some
mechanism to spot that an item in a list is in fact another list and take
the appropriate action.

That sounds a little tricky. But can Python help?

20 Chapter 1

looking for lists

Check a list for a list
Each time you process an item in your list, you need to check to see if the
item is another list. If the item is a list, you need to process the nested list
before processing the next item in your outer list. Deciding what to do when in
Python follows the familiar if... else... pattern:

if : some condition holds

 the "true" suite

The keyword “if”
indicates the start
of the decision code.

A colon (:) follows your condition test.

This code executes if t
he

condition holds (i.e., it
’s TRUE).

else:
 the "false" suite

This code executes if the condition does NOT hold (i.e., it’s FALSE).

No surprises here, as the if statement in Python works pretty much as
expected. But what condition do you need to check? You need a way to
determine if the item currently being processed is a list. Luckily, Python ships
with a BIF that can help here: isinstance().

What’s cool about the isinstance() BIF is that it lets you check if a
specific identifier holds data of a specific type:

Let’s use the IDLE shell to learn a little about how isinstance() works:

>>> names = ['Michael', 'Terry']

>>> isinstance(names, list)

True

>>> num_names = len(names)

>>> isinstance(num_names, list)

False

Refer to a Python type
here. In this case, the type
is “list”.

Note: both suites
are indented.

Create a short list and assign it to an identifier.

Ask if “names” is a list (it is).

Assign a number to an
identifier.

Ask if “num_names” is a

list (it isn’t).

Look! Another colon.

you are here 4 21

meet python

Here’s a copy of the current list-processing code. Your task is to rewrite this code using an if
statement and the isinstance() BIF to process a list that displays another list.

Write your
new code
here.

 for each_item in movies:

 print(each_item)

Q: Are there many of these BIFs in
Python?

A: Yes. At the last count, there were over
70 BIFs in Python 3.

Q: Over 70! How am I to remember
that many, let alone find out what they all
are?

A: You don’t have to worry about
remembering. Let Python do it for you.

Q: How?

A: At the Python or IDLE shell, type
dir(__builtins__) to see a list
of the built-in stuff that comes with Python
(that’s two leading and trailing underscore
characters, by the way). The shell spits
out a big list. Try it. All those lowercase
words are BIFs. To find out what any BIF
does—like input(), for example—type
help(input) at the shell for a
description of the BIFs function.

Q: Why so many BIFs?

A: Why not? Because Python comes with
lots of built-in functionality, it can mean less
code for you to write. This Python philosophy
is known as “batteries included”: there’s
enough included with Python to let you do
most things well, without having to rely on
code from third parties to get going. As well
as lots of BIFs, you’ll find that Python’s
standard library is rich and packed with
features waiting to be exploited by you.

22 Chapter 1

list the list

Here’s a copy of the current list-processing code. Your task was to rewrite this code using an if
statement and the isinstance() BIF to process a list that displays another list.

 for each_item in movies:

 print(each_item)

for each_item in movies:
 if isinstance(each_item, list):
 for nested_item in each_item:
 print(nested_item)
 else:
 print(each_item)

You need to check if the
current item is a list.

If it is a list, use another
“for” loop to process the
nested list.

If the current item
of the enclosing list
isn’t a list, display it
on screen.

The inner loop
needs a new target identifier.

Process the “movies”
list as before.

Did you manage to get your indentation right?

Let’s use IDLE to see if this code makes a difference to the output displayed on screen:

>>> for each_item in movies:

 if isinstance(each_item, list):

 for nested_item in each_item:

 print(nested_item)

 else:

 print(each_item)

The Holy Grail

1975

Terry Jones & Terry Gilliam

91

Graham Chapman

[‘Michael Palin’, ‘John Cleese’, ‘Terry Gilliam’, ‘Eric Idle’, ‘Terry Jones’]

This is a little better, but not by
much…there’s another nested list here
that’s not being processed properly.

you are here 4 23

meet python

Complex data is hard to process
The movie buff ’s data is complex. Let’s take another look at a subset of the
data and your Python code that processes it.

The Holy Grail, 1975, Terry Jones & Terry Gilliam, 91 mins
 Graham Chapman
 Michael Palin, John Cleese, Terry Gilliam, Eric Idle & Terry Jones

The outer, enclosing list

An inner, nested list Another inner (inner), nested list

 for each_item in movies:

 if isinstance(each_item, list):

 for nested_item in each_item:

 print(nested_item)

 else:

 print(each_item)

Yeah.. that’s almost
working...it’s just a
pity about that list of

supporting actors...

Can you spot the problem with your Python
code as it is currently written? What do you
think needs to happen to your code to allow it to
process the movie buff’s data correctly?

Process the outer, enclosing list.
Process the inner, nested list.

The data

Your code

24 Chapter 1

nested lists

Handle many levels of nested lists
The data and your code are not in sync.

The movie buff ’s data is a list that contains a nested list that itself contains
a nested list. The trouble is that your code knows only how to process a list
nested inside an enclosing list.

The solution, of course, is to add more code to handle the additionally nested list. By
looking at the existing code, it’s easy to spot the code you need to repeat:

 for each_item in movies:

 if isinstance(each_item, list):

 for nested_item in each_item:

 print(nested_item)

 else:

 print(each_item)

This code
processes a
nested list.

Here’s where the repeated code needs to go.

 for each_item in movies:

 if isinstance(each_item, list):

 for nested_item in each_item:

 if isinstance(nested_item, list):

 for deeper_item in nested_item:

 print(deeper_item)

 else:

 print(nested_item)

 else:

 print(each_item)

The repeated code replaces the “print()” statement and introduces another target identifier called “deeper_item”.
Note: in this
code, each
“if” needs an
associated
“else”.

The next
iteration of your
code looks like
this.

you are here 4 25

meet python

I just love that...in fact, I love it so
much I’ve decided to add another list to my
data. I want to include the other movies each
supporting actor has starred in. If I add the
data, can you change your code to print this

data, too?

That’s more list data and more Python code.

The data has to be embedded as another nested list within the already deeply
nested list of supporting actors. That’s possible to do, even though it makes
your head hurt just to think about a list of lists of lists of lists! Amending your
code is just a matter of adding another for loop and an if statement.

That doesn’t sound like too much trouble, does it?

Let’s use IDLE once more to test this latest iteration of your code:

>>> for each_item in movies:

 if isinstance(each_item, list):

 for nested_item in each_item:

 if isinstance(nested_item, list):

 for deeper_item in nested_item:

 print(deeper_item)

 else:

 print(nested_item)

 else:

 print(each_item)

The Holy Grail

1975

Terry Jones & Terry Gilliam

91

Graham Chapman

Michael Palin

John Cleese

Terry Gilliam

Eric Idle

Terry Jones

Process a deep
ly nested

list inside a ne
sted list

inside an enclos
ing list.

It works! This time, you see all of your list data on screen.

26 Chapter 1

avoid complexity

I think I’d rather have a root canal
than change that code again.

Adding another nested loop is a huge pain.

Your data is getting more complex (that mind-bending list
of lists of lists of lists) and, as a consequence, your code is
getting overly complex, too (that brain-exploding for loop
inside a for loop inside a for loop). And overly complex
code is rarely a good thing…

you are here 4 27

meet python

Wouldn’t it be dreamy if there were an
efficient way to process lists, preferably
using a technique that resulted in less code,
not more? But I know it’s just a fantasy...

28 Chapter 1

reduce, reuse, recycle

Don’t repeat code; create a function
Take a look at the code that you’ve created so far, which (in an effort to save
you from having your brain explode) has already been amended to process yet
another nested list. Notice anything?

 for each_item in movies:

 if isinstance(each_item, list):

 for nested_item in each_item:

 if isinstance(nested_item, list):

 for deeper_item in nested_item:

 if isinstance(deeper_item, list):
 for deepest_item in deeper_item:
 print(deepest_item)
 else:

 print(deeper_item)

 else:

 print(nested_item)

 else:

 print(each_item)

This code is essentially the same as this code…

…which is essentially
the same as this
code…

…which is not that much different than this code.

There’s not much
difference among these
four statements, either!

Your code now contains a lot of repeated code. It’s also a mess to look at, even
though it works with the movie buff ’s amended data. All that nesting of for
loops is hard to read, and it’s even harder to ensure that the else suites are
associated with the correct if statement.

There has to be a better way…but what to do?

When code repeats in this way, most programmers look for a way to take
the general pattern of the code and turn it into a reusable function. And
Python programmers think this way, too. Creating a reusable function lets
you invoke the function as needed, as opposed to cutting and pasting existing
code.

So, let’s turn the repeating code into a function.

This code is beginning to get a little scary…

you are here 4 29

meet python

Create a function in Python
A function in Python is a named suite of code, which can also take an optional
list of arguments if required.

You define a Python function using the def statement, providing a name
for your function and specifying either an empty or populated argument list
within parentheses. The standard form looks something like this:

def (): function name

 function code suite

The keyword “def”
introduces the name
of the function.

A colon (:) follows the closing parenthesis and indicates the start of your
functions code suite.

The function’s code
MUST be indented under

the def statement.

 argument(s)

Argument lists are optional,
but the parentheses are NOT.

What does your function need to do?

Your function needs to take a list and process each item in the list. If it finds a
nested list within the first list, the function needs to repeat. It can do this by
invoking itself on the nested list. In other words, the function needs to recur—
that is, invoke itself from within the funtion code suite.

Let’s call the function that you’ll create print_lol(). It takes
one argument: a list to display on screen. Grab your pencil and
complete the code below to provide the required functionality:

def print_lol(the_list):

 for

 if

 else:

30 Chapter 1

recursive function

You were to call the function that you’ll create print_lol(). It
takes one argument: a list to display on screen. You were to grab your
pencil and complete the code to provide the required functionality:

def print_lol(the_list):

 for

 else:

each_item in the_list:
 isinstance(each_item, list):
 print_lol(each_item)

if

Process the provided
list with a “for” loop.

 print(each_item)

If the item being processed is itself a list, invoke the function.

If the item being processed ISN’T
a list, display the item on screen.

Let’s use IDLE one final time to test your new function. Will it work as well as your earlier code?

>>> def print_lol(the_list):

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item)

 else:

 print(each_item)

>>> print_lol(movies)

The Holy Grail

1975

Terry Jones & Terry Gilliam

91

Graham Chapman

Michael Palin

John Cleese

Terry Gilliam

Eric Idle

Terry Jones

It works, too! The recusrive function produces EXACTLY the same results as the earlier code.

Define the function.

Invoke the function.

you are here 4 31

meet python

Recursion to the rescue!
The use of a recursive function has allowed you to reduce 14 lines of messy,
hard-to-understand, brain-hurting code into a six-line function. Unlike the
earlier code that needs to be amended to support additional nested lists
(should the movie buff require them), the recursive function does not need to
change to process any depth of nested lists properly.

Python 3 defaults its recursion limit to 1,000, which is a lot of lists of lists of lists
of lists…and this limit can be changed should you ever need even more depth
than that.

Ah, yes, that’s terrific! I can now
relax, knowing that your code can
process my movie data. I really
should’ve done this years ago...

What a great start!

By taking advantage of functions and recursion, you’ve solved the code
complexity problems that had crept into your earlier list-processing code.

By creating print_lol(), you’ve produced a reusable chunk of code that
can be put to use in many places in your (and others) programs.

You’re well on your way to putting Python to work!

32 Chapter 1

python toolbox

Your Python Toolbox

You’ve got Chapter 1 under your
belt and you’ve added some key
Python goodies to your toolbox.

CHAPT
ER 1

 � Run Python 3 from the command line or
from within IDLE.

 � Identifiers are names that refer to data
objects. The identifiers have no “type,” but
the data objects that they refer to do.

 � print() BIF displays a message on
screen.

 � A list is a collection of data, separated
by commas and surrounded by square
brackets.

 � Lists are like arrays on steroids.

 � Lists can be used with BIFs, but also
support a bunch of list methods.

 � Lists can hold any data, and the data can be
of mixed type. Lists can also hold other lists.

 � Lists shrink and grow as needed. All of the
memory used by your data is managed by
Python for you.

 � Python uses indentation to group statements
together.

 � len() BIF provides a length of some data
object or count the number of items in a
collection, such as a list.

 � The for loop lets you iterate a list and
is often more convenient to use that an
equivalent while loop.

 � The if... else... statement lets you make
decisions in your code.

 � isinstance() BIF checks whether
an identifier refers to a data object of some
specified type.

 � Use def to define a custom function.

Python Lingo
• “BIF” - a built-in function.

• “Suite” - a block of Python code, which
is indented to indicate grouping.

• “Batteries included” - a way of
referring to the fact that Python comes
with most everything you’ll need to get
going quickly and productively.

IDLE Notes
• The IDLE shell lets you experiment with your code as you write it.
• Adjust IDLE’s preferences to suit the way you work.
• Remember: when working with the shell, use Alt-P for Previous and use Alt-N for Next (but use Ctrl if you’re on a Mac).

CH
AP

T
ER

 1

this is a new chapter 33

I’d love to share...but
how am I supposed
to function without a
module?

sharing your code2

Modules of functions

Reusable code is great, but a shareable module is better.
By sharing your code as a Python module, you open up your code to the entire Python

community…and it’s always good to share, isn’t it? In this chapter, you’ll learn how to

create, install, and distribute your own shareable modules. You’ll then load your module

onto Python’s software sharing site on the Web, so that everyone can benefit from your

work. Along the way, you’ll pick up a few new tricks relating to Python’s functions, too.

34 Chapter 2

let’s share

It’s too good not to share
You’ve been showing your function to other programmers, and they like what
they see.

You should make your function shareable,
so that everyone can use it.

Yes, a function this good should be shared with the world.

Python provides a set of technologies that make this easy for you, which
includes modules and the distribution utilities:

Modules let you organize your code for optimal sharing.

The distribution utilities let you share your modules with the world.

Let’s turn your function into a module, then use the distribution utilities to
share your module with the wider Python programming community.

you are here 4 35

sharing your code

Turn your function into a module
A module is simply a text file that contains Python code. The main
requirement is that the name of the file needs to end in .py: the Python
extension. To turn your function into a module, save your code into an
appropriately named file:

 def print_lol(the_list):

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item)

 else:

 print(each_item)

Your code
from
Chapter 1

Let’s call
this file

“nester.py”.

Go ahead and create a text
file called nester.py that
contains your function code
from the end of Chapter 1.

Do this!

Q: What’s the best Python editor?

A: The answer to that question really depends on who you ask. However, you
can, of course, use any text editor to create and save your function’s code in a
text file. Something as simple as NotePad on Windows works fine for this, as does
a full-featured editor such as TextMate on Mac OS X. And there’s also full-fledged
IDEs such as Eclipse on Linux, as well as the classic vi and emacs editors. And,
as you already know, Python comes with IDLE, which also includes a built-in
code editor. It might not be as capable as those other “real” editors, but IDLE is
installed with Python and is essentially guaranteed to be available. For lots of
jobs, IDLE’s edit window is all the editor you’ll ever need when working with your
Python code. Of course, there are other IDEs for Python, too. Check out WingIDE
for one that specifically targets Python developers.

36 Chapter 2

modules repository

Modules are everywhere
As might be expected, you’ll find Python modules in lots of places.

I’m preloaded with
lots of modules in the
Python Standard Library...
and they are already on your
computer.

If the Standard Library doesn’t do
it for you, why not try the Web?
I hear PyPI is where third-party
Python modules hang out.

The Python Package Index (or PyPI for short) provides a
centralized repository for third-party Python modules on the
Internet. When you are ready, you’ll use PyPI to publish your
module and make your code available for use by others. And your
module is ready, but for one important addition.

What do you think is missing from your module?

Geek Bits

If you are already familiar with
Perl’s CPAN repository, you can
think of PyPI as the Python
equivalent.

PyPI is pronounced
“pie-pie.”

you are here 4 37

sharing your code

Comment your code
It’s always a good idea to include comments with your code. As your plan to
share your module with the world, well-written comments help to document
your work.

In Python, a common commenting technique is to use a triple quote for
multiple-line comments. When you use a triple quote without assigning it to a
variable, everything between the triple quotes is considered a comment:

 """This is the standard way to

 include a multiple-line comment in

 your code."""

Hello! I’m a big string who
just happens to be a Python
comment, too. Nice, eh?

Start with a
triple quote…

…and end with a
triple quote.

Here is your module code (which is saved in the file nester.py). In
the spaces provided, use your pencil to compose two comments: the
first to describe the module and the second to describe the function.

def print_lol(the_list):

 for each_item in the_list:

 if isinstance(each_item, list)

 print_lol(each_item)

 else:

 print(each_item)

Put your module comment here.

Add a comment
for your function
here.

38 Chapter 2

request for comments

Here is your module code (which is saved in the file nester.py). In
the spaces provided, you were asked to use your pencil to compose
two comments: the first to describe the module and the second to
describe the function.

def print_lol(the_list):

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item)

 else:

 print(each_item)

There are no changes to the
actual code here; you’re just
adding some comments.

“““This is the “nester.py" module, and it provides one function called
print_lol() which prints lists that may or may not include nested lists.”””

“““This function takes a positional argument called “the_list", which is any
Python list (of, possibly, nested lists). Each data item in the provided list
is (recursively) printed to the screen on its own line.”””

Q: How do I know where the Python
modules are on my computer?

A: Ask IDLE. Type import sys;
sys.path (all on one line) into the IDLE
prompt to see the list of locations that your
Python interpreter searches for modules.

Q: Hang on a second. I can use “;” to
put more than one line of code on the
same line in my Python programs?

A: Yes, you can. However, I don’t
recommend that you do so. Better to give
each Python statement its own line; it makes
your code much easier for you (and others)
to read.

Q: Does it matter where I put my
nester.py module?

A: For now, no. Just be sure to put it
somewhere where you can find it later. In
a while, you’ll install your module into your
local copy of Python, so that the interpreter
can find it without you having to remember
when you actually put it.

Q: So comments are like a funny-
looking string surrounded by quotes?

A: Yes. When a triple-quoted string is
not assigned to a variable, it’s treated like a
comment. The comments in your code are
surrounded by three double quotes, but you
could have used single quotes, too.

Q: Is there any other way to add a
comment to Python code?

A: Yes. If you put a “#” symbol anywhere
on a line, everything from that point to the
end of the current line is a comment (unless
the “#” appears within a triple quote, in
which case it’s part of that comment). A lot
of Python programmers use the “#” symbol
to quickly switch on and off a single line of
code when testing new functionality.

Did you
remember to
include the triple
quotes?

you are here 4 39

sharing your code

Now that you’ve added your comments and created a module, let’s test that your code is still working properly.
Rather than typing your function’s code into IDLE’s prompt, bring the nester.py file into IDLE’s edit window,
and then press F5 to run the module’s code:

>>> ================================ RESTART ================================

>>>

>>>

Note that the
comments are
color coded.

Nothing appears to happen, other than the Python shell “restarting” and an empty prompt appearing:

>>> movies = [

 "The Holy Grail", 1975, "Terry Jones & Terry Gilliam", 91,

 ["Graham Chapman",

 ["Michael Palin", "John Cleese", "Terry Gilliam", "Eric Idle", "Terry Jones"]]]

>>> print_lol(movies)

The Holy Grail

1975

Terry Jones & Terry Gilliam

91

Graham Chapman

Michael Palin

John Cleese

Terry Gilliam

Eric Idle

Terry Jones

What’s happened is that the Python interpreter has reset and the code in your module has executed. The code
defines the function but, other than that, does little else. The interpreter is patiently waiting for you to do
something with your newly defined function, so let’s create a list of lists and invoke the function on it:

Define the list of movies facts
from Chapter 1.

Invoke the function on the list.

Cool. Your code continues to
function as expected. The data
in the list of lists is displayed
on screen.

40 Chapter 2

distribution plan

Prepare your distribution
In order to share your newly created module, you need to prepare a
distribution. This is the Python name given to the collection of files that
together allow you to build, package, and distribute your module.

Once a distribution exists, you can install your module into your local copy
of Python, as well as upload your module to PyPI to share with the world.
Follow along with the process described on these two pages to create a
distribution for your module.

Follow along with each of
the steps described on these
pages. By the time you reach
the end, your module will
have transformed into a
Python distribution.

Do this!

The “nester.py”
module file.

The newly created “nester” folder (or directory).nester

from distutils.core import setup

setup(

 name = 'nester',

 version = '1.0.0',

 py_modules = ['nester'],

 author = 'hfpython',

 author_email = 'hfpython@headfirstlabs.com',

 url = 'http://www.headfirstlabs.com',

 description = 'A simple printer of nested lists',

)

Import the
“setup” function
from Python’s
distribution utilities. Associate your module’s metadata with the setup function’s arguments.

These are the
setup function’s
argument names. These are the

values Head First Labs use with
their modules;
your metadata
will be different.

Begin by creating a folder for your module.
With the folder created, copy your nester.py module file into the
folder. To keep things simple, let’s call the folder nester:

1

Create a file called “setup.py” in your new folder.
This file contains metadata about your distribution. Edit this file by adding the following code:

2

you are here 4 41

sharing your code

Build your distribution
You now have a folder with two files in it: your module’s code in nester.py
and metadata about your module in setup.py. Now, it’s time to build your
distribution.

$ python3 setup.py sdist
running sdist
running check
warning: sdist: manifest template 'MANIFEST.in' does not exist

warning: sdist: standard file not found: should have README

writing manifest file 'MANIFEST'
creating nester-1.0.0
making hard links in nester-1.0.0...
hard linking nester.py -> nester-1.0.0
hard linking setup.py -> nester-1.0.0
creating dist
Creating tar archive
removing 'nester-1.0.0' (and everything under it)
$

File Edit Window Help Build
Enter the
command at
the prompt.

A collection of
status messages
appears on screen,
confirming the
creation of your
distribution.

$ python3 setup.py install
running install
running build
running build_py
creating build
creating build/lib
copying nester.py -> build/lib
running install_lib
copying build/lib/nester.py -> /Library/Frameworks/Python.
framework/Versions/3.1/lib/python3.1/site-packages
byte-compiling /Library/Frameworks/Python.framework/Versions/3.1/
lib/python3.1/site-packages/nester.py to nester.pyc
running install_egg_info
Writing /Library/Frameworks/Python.framework/Versions/3.1/lib/
python3.1/site-packages/nester-1.0.0-py3.1.egg-info

File Edit Window Help Install

Another bunch of status messages
appear on screen, confirming the
installation of
your distribution.

Note: if you are using Windows, replace “python3” in these commands with “c:\Python31\python.exe”.

Your distribution is ready.

Build a distribution file.
The distribution utilities include all of the smarts required to build a distribution. Open a terminal
window within your nester folder and type a single command: python3 setup.py sdist.

3

Install your distribution into your local copy of Python.
Staying in the terminal, type this command: sudo python3 setup.py install.

4

42 Chapter 2

ready for distribution

A quick review of your distribution
Thanks to Python’s distribution utilities, your module has been transformed into
a distribution and installed into your local copy of Python.

You started with a single function, which you entered into a file called
nester.py, creating a module. You then created a folder called nester
to house your module. The addition of a file called setup.py to your
folder allowed you to build and install your distribution, which has resulted
in a number of additional files and two new folders appearing within
your nester folder. These files and folders are all created for you by the
distribution utilities.

nesternester

Before Setup After Setup

nester.py

setup.py

MANIFEST

nester.py

nester.pyc

setup.py

build

dist

lib

nester.py

nester-1.0.0.tar.gz

Your metadata is
in this file.

Your code is in
this file.

A list of files in your distribution is in this file.

Your code is
in this file.

Your code is in
this file.

A “compiled” version of your code is in this file.Your metadata is
in this file.

This is your
distribution package.

Here are your
new folders.

you are here 4 43

sharing your code

Import a module to use it
Now that your module is built, packaged as a distribution, and installed, let’s
see what’s involved in using it. To use a module, simply import it into your
programs or import it into the IDLE shell:

 import nester

Use the Python
keyword “import”… …and provide the name of your module.

Note: you don’t need to
include the “.py” extension
when naming your module.

The import statement tells Python to include the nester.py module in
your program. From that point on, you can use the module’s functions as if
they were entered directly into your program, right? Well…that’s what you
might expect. Let’s check out the validity of your assumption.

Write a small program that imports your newly created module, defines a small list called “cast,”
and then uses the function provided by your module to display the contents of the list on screen.
Use the following list data (all strings): Palin, Cleese, Idle, Jones, Gilliam, and Chapman.

Open your program in IDLE’s edit window, and then press F5 to execute your code. Describe
what happens in the space below:

44 Chapter 2

idle error

You were to write a small program that imports your newly created module, defines a small list
called “cast,” and then uses the function provided by your module to display the contents of the
list on screen. You were to use the following list data (all strings): Palin, Cleese, Idle, Jones,
Gilliam, and Chapman.

Open your program in IDLE’s edit window, and then press F5 to execute your code. Describe
what happens in the space below:

import nester

cast = ['Palin’, 'Cleese’, 'Idle’, 'Jones’, 'Gilliam’, 'Chapman’]
print_lol(cast)

IDLE gives an error, and the program does not run!

With your program in the IDLE edit window, pressing F5 (or choosing Run Module from the Run menu) does
indeed cause problems:

>>> ================================ RESTART ================================

>>>

Traceback (most recent call last):

 File "/Users/barryp/HeadFirstPython/chapter2/try_nester.py", line 4, in <module>

 print_lol(cast)

NameError: name 'print_lol' is not defined

>>>
With your program in IDLE, pressing F5 causes a NameError…it looks like your function can’t be found!!!

Your program does not appear to have executed and an error message is reported:

It’s a simple three-
line program. There’s
nothing too difficult
here.

But it didn’t work!

you are here 4 45

sharing your code

Python’s modules implement namespaces
All code in Python is associated with a namespace.

Code in your main Python program (and within IDLE’s shell) is associated
with a namespace called __main__. When you put your code into its own
module, Python automatically creates a namespace with the same name as
your module. So, the code in your module is associated with a namespace
called nester.

I guess namespaces are like family names?
If someone is looking for Chris, we need to know
if it’s Chris Murray or Chris Larkin, right? The
family name helps to qualify what we mean, as do
namespace names in Python.

Yes, namespace names are like family names.

When you want to refer to some function from a module
namespace other than the one you are currently in, you need
to qualify the invocation of the function with the module’s
namespace name.

So, instead of invoking the function as print_lol(cast)
you need to qualify the name as nester.print_lol(cast).
That way, the Python interpreter knows where to look. The
format for namespace qualification is: the module’s name, followed
by a period, and then the function name.

 nester.print_lol(cast)

The module name, which
identifies the namespace. The function is then invoked as normal, with “cast” provided as the list to process.

A period separates the module namespace
name from the function name.

That’s a double underscore in front of the word “main” and after it.

46 Chapter 2

ready for pypi

Let’s test this. Staying at the IDLE shell, import your module, create the list, and then try to invoke the function
without a qualifying name. You’re expecting to see an error message:

>>> import nester

>>> cast = ['Palin', 'Cleese', 'Idle', 'Jones', 'Gilliam', 'Chapman']

>>> print_lol(cast)

Traceback (most recent call last):

 File "<pyshell#4>", line 1, in <module>

 print_lol(cast)

NameError: name 'print_lol' is not defined

As expected, your code has caused a
NameError, because you didn’t qualify
the name.

When you qualify the name of the function with the namespace, things improve dramatically:

>>> nester.print_lol(cast)

Palin

Cleese

Idle

Jones

Gilliam

Chapman

This time, things work as expected…the data items in the list are displayed on screen.

Geek Bits

When you use a plain import statement, such as import nester,
the Python interpreter is instructed to allow you to access nester’s
functions using namespace qualification. However, it is possible to be
more specific. If you use from nester import print_lol, the
specified function (print_lol in this case) is added to the current
namespace, effectively removing the requirement for you to use
namespace qualification. But you need to be careful. If you already have
a function called print_lol defined in your current namespace, the
specific import statement overwrites your function with the imported
one, which might not be the behavior you want.

Your module is now ready for upload to PyPI.

you are here 4 47

sharing your code

Register with the PyPI website
In order to upload your distribution to PyPI, you need to register with the
PyPI website. This is a relatively straightforward process.

Begin by surfing over to the PyPI website at http://pypi.python.org/ and
requesting a PyPI ID:

Provide the Username you’d like to use. Don’t try to use “hfpython,” because that Username is already taken.

Enter your chosen password
twice for confirmation
purposes.

Don’t worry about
providing a PGP key
(unless you actually ha

ve
one).

Provide a valid email address.

Don’t forget to click the “I agree” checkbox before clicking on the Register button.

If all of your registration details are in order, a confirmation message is sent
to the email address submitted on the registration form. The email message
contains a link you can click to confirm your PyPI registration:

Click the confirmation link to complete
your PyPI registration.You are now registered with PyPI.

48 Chapter 2

register and upload

Upload your code to PyPI
You’re ready to rock! The code in your function has been placed in a module,
used to create a distribution and installed into your local copy of Python. To
upload your distribution to PyPI, complete these two steps: command-line
registration with PyPI and command-line uploading.

It might seem strange to have to register with PyPI again, seeing as you just
did this with their website. However, the command-line uploading tool needs
to be made aware of your PyPI Username and Password, and that’s what this
registration does. Don’t worry: you have to do this only once.

$ python3 setup.py register
running register
running check
We need to know who you are, so please choose either:
 1. use your existing login,
 2. register as a new user,
 3. have the server generate a new password for you (and email it to you), or
 4. quit
Your selection [default 1]:
1
Username: hfpython
Password:
Registering nester to http://pypi.python.org/pypi
Server response (200): OK
I can store your PyPI login so future submissions will be faster.
(the login will be stored in /Users/barryp/.pypirc)
Save your login (y/N)?y

File Edit Window Help Register

With your registration details entered and saved, you are now ready to upload
your distribution to PyPI. Another command line does the trick:

$ python3 setup.py sdist upload
running sdist
running check
reading manifest file ‘MANIFEST’
creating nester-1.0.0
making hard links in nester-1.0.0...
hard linking nester.py -> nester-1.0.0
hard linking setup.py -> nester-1.0.0
Creating tar archive
removing ‘nester-1.0.0’ (and everything under it)
running upload
Submitting dist/nester-1.0.0.tar.gz to http://pypi.python.org/pypi
Server response (200): OK
$

File Edit Window Help Upload

Instruct setup to register your details.

Confirm that you
want to use your
just-created PyPI
credentials.

Use your PyPI
settings and save
them for future
use.

Instruct setup to
upload your software
distribution to PyPI.

Setup confirms
that the upload
is successful. Your
distribution is now
part of PyPI.

Note: If you try to upload a module called “nester”, you’ll get an error as that name’s already taken. §

you are here 4 49

sharing your code

Welcome to the PyPI community
Congratulations! You are now a full-fledged, card-carrying member of the
PyPI community. Your distribution has joined the over 10,000 other uploads
on PyPI. Feel free to surf on over to the PyPI website to confirm the upload.

Programmers from all over the globe are now able to download, unpack, and
install your module into their local copy of Python, which is pretty cool when
you think about it.

Sit back, put your feet up, and wait for the plaudits to
begin…

You’ve now written and
published your code…
how cool is that?

Q: Which is best: plain imports or
specific imports?

A: Neither, really. Most programmers
mix and match based on their own personal
preference and taste (although there are
plenty of programmers willing to argue that
their preferred way is the “one true way”).

Note that the from module import
function form pollutes your current
namespace: names already defined in your
current namespace are overwritten by the
imported names.

Q: And when I press F5 in IDLE’s edit
window, it’s as if the module’s code is
imported with an import statement, right?

A: Yes, that is essentially what happens.
The code in your edit window is compiled
and executed by Python, and any names
in the edit window are imported into the
namespace being used by IDLE’s shell. This
is handy, because it makes it easy to test
functionality with IDLE. But bear in mind that
outside of IDLE, you still need to import your
module before you can use its functionality.

Q: Is it really necessary for me to
install my modules into my local copy of
Python? Can’t I just put them in any old
folder and import them from there?

A: Yes, it is possible. Just bear in mind
that Python looks for modules in a very
specific list of places (recall the import
sys; sys.path trick from earlier
in this chapter). If you put your modules
in a folder not listed in Python’s path list,
chances are the interpreter won’t find
them, resulting in ImportErrors. Using the
distribution utilities to build and install your
module into your local copy of Python avoids
these types of errors.

Q: I noticed the distribution utiliites
created a file called nester.pyc.
What’s up with that?

A: That’s a very good question. When
the interpreter executes your module code
for the first time, it reads in the code and
translates it into an internal bytecode format
which is ultimately executed. (This idea is
very similar to the way the Java JVM works:
your Java code is turned into a class file as

a result of your Java technologies compiling
your code.) The Python interpreter is smart
enough to skip the translation phase the next
time your module is used, because it can
determine when you’ve made changes to
the original module code file. If your module
code hasn’t changed, no translation occurs
and the “compiled” code is executed. If your
code has changed, the translation occurs
(creating a new pyc file) as needed. The
upshot of all this is that when Python sees a
pyc file, it tries to use it because doing so
makes everything go much faster.

Q: Cool. So I can just provide my
users with the pyc file?

A: No, don’t do that, because the use of
the pyc file (if found) is primarily a runtime
optimization performed by the interpreter.

Q: So, can I delete the pyc file if I don’t
need it?

A: Sure, if you really want to. Just be
aware that you lose any potential runtime
optimization.

50 Chapter 2

conflicting requests

With success comes responsibility
Lots of programmers from many different locations are using your module.
And some of these programmers are looking for more features.

We really love your code,
but is there any chance this
thing could print the data
to screen and indent each
nested list whenever one is
found?

Hang on a second.
I kinda like the way it
works right now. I vote
NOT to change it.

Requests for change are inevitable

You need to keep your current users happy by maintaining the existing
functionality, while at the same time providing enhanced functionality to
those users that require it. This could be tricky.

What are your options here?

Likes what you’ve
done, but could
be happier.

Any changes to the way your function works are likely to annoy this guy.

you are here 4 51

sharing your code

Life’s full of choices
When it comes to deciding what to do here, there’s
no shortage of suggestions.

That’s soooo easy. Simply create
another function called “print_lol2”,
right? You could then import the
function you want using the specific
form of the import statement. It’s not

that hard, really...

Yeah, that might just work.

You could edit your module’s code and define a new function called
print_lol2, then code up the function to perform the nested printing
When you want to use the original function, use this specific form of the
import statement: from nester import print_lol. When you want
to use the new, improved version of the function, use this import statement:
from nester import print_lol2.

Which would work, but…

But that suggestion is twice
the work...which might be OK

sometimes...but the creation of a
second, almost identical, function
seems wasteful to me.

Right. A second function is wasteful.

Not only are you introducing an almost identical function to your
module, which might create a potential maintenance nightmare, but
you’re also making things much more difficult for the users of your
module, who must decide ahead of time which version of the function
they need. Adding a second function makes your module’s application
programming interface (API) more complex than it needs to be.

There has to be a better strategy, doesn’t there?

52 Chapter 2

add an argument

Control behavior with an extra argument
If you add an extra argment to your function, you can handle indentation
within your current code without too much trouble.

Yikes! I should’ve thought about that
myself... I probably need to go easy on
the coffee. Of course, it’s clear to me
now: adding another argument to your
function gives you options.

Take your function to the next level

At the moment, your function has a single argument: the_list. If you add
a second argument called level, you can use it to control indentation. A
positive value for level indicates the number of tab-stops to include when
displaying a line of data on screen. If level is 0, no indentation is used; if
it’s 1, use a single tab-stop; if it’s 2, use two tab-stops; and so on.

It’s clear you are looking at some sort of looping mechanism here, right? You
already know how to iterate over a variably sized list, but how do you iterate a
fixed number of times in Python?

Does Python provide any functionality that can help?

you are here 4 53

sharing your code

Before your write new code, think BIF
When you come across a need that you think is generic, ask yourself if there’s
a built-in function (BIF) that can help. After all, iterating a fixed number of
times is something you’ll need to do all the time.

And remember: Python 3 includes over 70 BIFs, so there’s a lot of
functionality waiting to be discovered.

What the BIF doesBIF

Use your pencil to draw a line matching each BIF to the correct description.
The first one is done for you. Once you have all your lines drawn, circle the
BIF you think you need to use in the next version of your function.

list() Creates a numbered list of paired-data, starting
from 0.

range() Returns the unique identification for a Python
data object.

enumerate() A factory function that creates a new, empty list.

int() Returns the next item from a iterable data
structure such as a list.

id() Returns an iterator that generates numbers in a
specified range on demand and as needed.

next() Converts a string or another number to an
integer (if possible).

54 Chapter 2

who did what

What the BIF doesBIF

You were to use your pencil to draw a line matching each BIF to the correct
description. Once you had all your lines drawn, you were to circle the BIF
you think you need to use in the next version of your function.

list() Creates a numbered list of paired-data, starting
from 0.

range() Returns the unique identification for a Python
data object.

enumerate() A factory function that creates a new, empty list.

int() Returns the next item from a iterable data
structure such as a list.

id() Returns an iterator that generates numbers in a
specified range on demand and as needed.

next() Converts a string or another number to an
integer (if possible).

SOLUTION

This BIF
looks
interesting.

The range() BIF iterates a fixed number of times

The range() BIF gives you the control you need to iterate a specific
number of times and can be used to generate a list of numbers from zero up-
to-but-not-including some number. Here’s how to use it:

 for num in range(4):

 print(num)
The numbers 0, 1, 2, and 3 will
appear on screen.

Generate numbers up-to-but-not-including 4.
“num” is the target identifier
and is assigned each of the
numbers generated by “range()”
in turn.

you are here 4 55

sharing your code

"""This is the "nester.py" module and it provides one function called print_lol()

 which prints lists that may or may not include nested lists."""

def print_lol(the_list,):

 """This function takes a positional argument called "the_list", which

 is any Python list (of - possibly - nested lists). Each data item in the

 provided list is (recursively) printed to the screen on it's own line."""

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item)

 else:

 print(each_item)

Now that you know a bit about the range() BIF, amend your function to use range() to
indent any nested lists a specific number of tab-stops.

Hint: To display a TAB character on screen using the print() BIF yet avoid taking a new-line
(which is print()’s default behavior), use this Python code: print("\t", end='').

Include the name of the extra argument.

Add code here to take the required
number of tab-stops.

Don’t forget to edit the comment.

Q:Don’t I need to import the BIFs in
order to use them in my program?

A: No. For all intents and purposes, the
BIFs are specifically imported into every
Python program as well as IDLE.

Q: So the BIFs must belong to the
__main__ namespace, right?

A: No. They are automatically imported
into the __main__ namespace, but the
BIFs have their very own namespace called
(wait for it) __builtins__.

Q: I get how range() works, but surely
I could just as easily use a while loop to
do the same thing?

A: Yes, you can, but it’s not as elegant
as using range(). Seriously, though,
the while equivalent not only requires
you to write more code, but it also makes it
your responsibility to worry about loop state,
whereas range() worries about this for
you. As a general rule, Python programmers
look for ways to reduce the amount of code
they need to write and worry about, which
leads to better code robustness, fewer errors,
and a good night’s sleep.

Q: So BIFs are actually good for me?

A: BIFs exist to make your programming
experience as straightforward as possible
by providing a collection of functions that
provide common solutions to common
problems. Since they are included with
Python, you are pretty much assured that
they have been tested to destruction and
do “exactly what it says on the tin.” You can
depend on the BIFs. Using them gives your
program a leg up and makes you look good.
So, yes, the BIFs are good for you!

56 Chapter 2

using range

"""This is the "nester.py" module and it provides one function called print_lol()

 which prints lists that may or may not include nested lists."""

def print_lol(the_list,):

 """This function takes a positional argument called "the_list", which

 is any Python list (of - possibly - nested lists). Each data item in the

 provided list is (recursively) printed to the screen on it's own line."""

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item)

 else:

 print(each_item)

Now that you know a bit about the range() BIF, you were to amend your function to use
range() to indent any nested lists a specific number of tab-stops.

Hint: To display a TAB character on screen using the print() BIF yet avoid taking a new-line
(which is print()’s default behavior), use this Python code: print("\t", end='').

Use the value of “level” to control
how many tab-stops are used.

level

for tab_stop in range(level):
 print("\t", end='') Display a TAB character for each level of indentation.

A second argument called “level" is used to insert tab-stops when a nested list is encountered."""

It’s time to test the new version of your function. Load your module file into IDLE, press F5 to import the function
into IDLE’s namespace, and then invoke the function on your movies list with a second argument:

>>> print_lol(movies, 0)

The Holy Grail

1975

Terry Jones & Terry Gilliam

91

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 print_lol(movies,0)

 File "/Users/barryp/HeadFirstPython/chapter2/nester/nester.py", line 14, in print_lol

 print_lol(each_item)

TypeError: print_lol() takes exactly 2 positional arguments (1 given)

Invoke your function, being sure to provide a second argument.

The data in “movies” starts to appear on screen…

…then all hell breaks loose! Something is not right here.

Your code has a TypeError, which
caused it to crash.

Here’s your clue as to
what’s gone wrong.

you are here 4 57

sharing your code

Python tries its best to run your code
Unlike compiled languages (such as C, Java, C#, and others), Python doesn’t
completely check the validity of your code until it runs. This allows Python to do
some rather cool things that just aren’t possible in those other languages, such
as dynamically defining functions at runtime. This, of course, can be very
flexible and powerful.

The cost to you, however, is that you need to be very careful when writing
your code, because something that typically would be caught and flagged as
an “error” by a traditional, statically typed, compiled language often goes
unnoticed in Python.

Please wait.
Compiling
your C++
code…

Running your
Python code
right now…

...OK, C++ syntax fine...continuing to
parse...whoops! You’re trying to use a
function before it’s declared?!? That’s NOT
allowed around here... I’m outta here.

Ah ha! The old “calling
a function before you’ve defined

it yet” trick, eh? I’ll just make a note
in case you define it later at runtime.
You are planning to do that, right?
Please don’t disappoint me, or I’ll give

you an error...

Take another look at the error on the opposite
page. Why do you think Python is giving you this
particular error? What do you think is wrong?

58 Chapter 2

line check

Trace your code
When you’re trying to work out what went wrong with a program that looks
like it should be OK, a useful technique is to trace what happens as each line
of code executes. Here’s the code that you are currently working with. At
only three lines long (remember: the creation of the list is one line of code), it
doesn’t look like it should cause any trouble:

 import nester

 movies = ["The Holy Grail", 1975, "Terry Jones & Terry Gilliam",
 91,["Graham Chapman", ["Michael Palin",
 "John Cleese", "Terry Gilliam", "Eric Idle",
 "Terry Jones"]]]

 nester.print_lol(movies, 0)

Thes two lines look OK.

You are invoking the function with two arguments,

so that’s OK, too.

 def print_lol(the_list, level):

 """This function ... """

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item)

 else:

 for tab_stop in range(level):

 print("\t", end='')

 print(each_item)

With the data assigned to the function’s arguments, the function’s code starts
to execute on each data item contained within the passed-in list:

The “movies” list is assigned to “the_list”, and the value 0 is assigned to “level”.
To save space, the
entire comment is
not shown.

Process each item in
the list…
…then decide what
to do next based on
whether or not the
data item is a list.

If the data item is a
list, recursively invoke
the function…hang on
a second, that doesn’t
look right!?

you are here 4 59

sharing your code

Work out what’s wrong
There’s your problem: the recursive invocation of your function is using the
old function signature that required only one argument. The new version of
your function requires two arguments.

The fix is easy: provide the correct number of arguments when calling the
new version of your function. So, this snippet of code from your function:

 if isinstance(each_item, list):

 print_lol(each_item)

 if isinstance(each_item, list):

 print_lol(each_item, level)

needs to be rewritten to specify the correct number of arguments:

Not so fast. Surely the nested
list needs to be printed after a specific
number of tab-stops? At the moment, your
code sets “level” to 0 but never changes the
value, so “level” never has any impact on your

displayed output...

Right. Your use of “level” needs one final tweak.

The whole point of having level as an argument is to allow you to
control the nested output. Each time you process a nested list, you need
to increase the value of level by 1. Your code snippet needs to look
like this:

 if isinstance(each_item, list):

 print_lol(each_item, level+1)

Simply increment the value of level by 1 each
time you recursively invoke your function.It’s time to perform that update.

60 Chapter 2

fresh pypi

Update PyPI with your new code
Go ahead and edit your nester.py module (in the nester folder) to
invoke your function properly. Now that you have a new version of your
module, it’s a good idea to update the distribution that you uploaded to PyPI.

With your code amended, there’s also a small change needed to your
distribution’s setup.py program. You’ve changed your API, so adjust the
value associated with version in setup.py. Let’s move from version 1.0.0
to 1.1.0:

from distutils.core import setup

setup(

 name = 'nester',

 version = '1.1.0',

 py_modules = ['nester'],

 author = 'hfpython',

 author_email = 'hfpython@headfirstlabs.com',

 url = 'http://www.headfirstlabs.com',

 description = 'A simple printer of nested lists',

)

$ python3 setup.py sdist upload
running sdist
running check
reading manifest file 'MANIFEST'
creating nester-1.1.0
making hard links in nester-1.1.0...
hard linking nester.py -> nester-1.1.0
hard linking setup.py -> nester-1.1.0
Creating tar archive
removing 'nester-1.1.0' (and everything under it)
running upload
Submitting dist/nester-1.1.0.tar.gz to http://pypi.python.org/pypi
Server response (200): OK
$

File Edit Window Help UploadAgain

Just as you did when you created and uploaded your distribution, invoke the
setup.py program within your distribution folder to perform the upload:

Change the value associated with “version” to indicate to PyPI that this is indeed a new version.

Your new distribution is now available on PyPI.

Don’t you just
love those
“200 OK”
messages?

you are here 4 61

sharing your code

Bob Mark Laura

Mark: Take a look at this, guys…the nester module has been
updated on PyPI.

Bob: Version 1.1.0…

Laura: I wonder what’s changed?

Mark: It still works with nested lists of lists, but now you can see the
nested structure on screen, which I think is pretty cool.

Laura: And useful. I’ve been waiting for that feature.

Bob: Eh…OK…but how do I upgrade my existing local copy?

Mark: Just follow the same steps as when you downloaded and
installed nester from PyPI the first time.

Bob: So I download the package file, unpack it, and ask setup.py to
install it into my Python for me?

Mark: Yes. It couldn’t be any easier.

Laura: And what about my existing version of nester; what
happens to that “old” version?

Bob: Yeah…do I have two nester modules now?

Mark: No. When you use setup.py to install the latest version
it becomes the current version and effectively replaces the previous
module, which was the 1.0.0 release.

Bob: And PyPI knows to give you the latest version of the module, too,
right?

Mark: Yes, when you surf the PyPI website and search for nester,
you are always provided with the latest version of the module.

Laura: Well, I use this module all the time and I’ve been waiting for
this feature. I think I’ll update right away.

Mark: I’ve already upgraded mine, and it works a treat.

Bob: Yeah, I use it a lot, too, so I guess I’ll keep my system up to date
and install the latest version. It’s probably not a good idea to rely on
out-of-date software, right?

Mark: I’d say. And, there’s nothing quite like progress.

Laura: Catch you later, guys, I’ve got work to do.

Bob: Me, too. I’m off to PyPI to grab the latest nester and install
it into my local copy of Python. I’ll give it a quick test to confirm all is
OK.

Mark: Later, dudes…

Cool.There’s a new
version of “nester” on
PyPI. Take a look.

62 Chapter 2

unhappy user

You’ve changed your API
Your new version of nester is indeed better, but not for all your users.

Ah, phooey! I can’t believe it... I installed
the latest version of “nester” from PyPI, and
now all of my code that uses your function is
not working. What did you do?!?

In your rush to release the lates and greatest version of your module, you
forgot about some of your existing users. Recall that not all of your users want
the new nested printing feature. However, by adding the second argument
to print_lol(), you’ve changed your function’s signature, which means
your module has a different API. Anyone using the old API is going to have
problems.

The ideal solution would be to provide both APIs, one which switches on the
new feature and another that doesn’t. Maybe the feature could be optional?

But how would that work?

Get with the program,
Bob. You have TypeError’s
everywhere...

you are here 4 63

sharing your code

Use optional arguments
To turn a required argument to a function into an optional argument, provide
the argument with a default value. When no argument value is provided, the
default value is used. When an argument value is provided, it is used instead
of the default. The key point is, of course, that the default value for the
argument effectively makes the argument optional.

To provide a default value for any function argument, specify the default
value after the argument name:

 def print_lol(the_list, level):

 def print_lol(the_list, level=0):

Both arguments are REQUIRED.

The addition of a
default value has
turned “level” into an
OPTIONAL argument.

With the default value for the argument defined, you can now invoke the
function in a number of different ways:

 nester.print_lol(movies, 0)

 nester.print_lol(movies)

 nester.print_lol(movies, 2)

Invoke the function and
provide both arguments.

Invoke the function with one argument and use the default value for the second.Invoke the function with both arguments, but provide an alternative starting value for the second argument.

Your function now supports different signatures, but the
functonality remains as it was.

64 Chapter 2

idle session

Amend your code to give the level argument a default value of 0 and then load your code into the IDLE editor.
Press F5 to load the code into the shell and then follow along to confirm that the latest version of your function
works as expected. Start be defining a short list of lists and use the function to display the the list on screen:

>>> names = ['John', 'Eric', ['Cleese', 'Idle'], 'Michael', ['Palin']]

>>> print_lol(names, 0)

John

Eric

 Cleese

 Idle

Michael

 Palin

Now try to do the same thing without specifiying the second argument. Let’s rely on the default value kicking in:

>>> print_lol(names)

John

Eric

 Cleese

 Idle

Michael

 Palin

Now specify a value for the second argument and note the change in the function’s behavior:

>>> print_lol(names, 2)

 John

 Eric

 Cleese

 Idle

 Michael

 Palin

One final example provides what looks like a silly value for the second argument. Look what happens:

>>> print_lol(names, -9)

John

Eric

Cleese

Idle

Michael

Palin

The standard behavior works as expected, with nested lists indented.

Without specifying the second argument, the
default is used and works, too.

Specify an alternative value for the second argument and the indenting starts from that level.

Using a negative value effectively switches OFF the indenting, as the

count for “level” is unlikely to become a positive integer. This looks exactly

like the original output from version 1.0.0, right?

you are here 4 65

sharing your code

Your module supports both APIs
Well done! It looks like your module is working well, as both APIs, the original
1.0.0 API and the newer 1.1.0 API, can now be used.

Let’s take a moment to create and upload a new distibution for PyPI. As
before, let’s amend the version setting in the setup.py program:

 name = 'nester',

 version = '1.2.0',

 py_modules = ['nester'],

Once again, be sure to change the value associated with “version” in “setup.py”.

And with the code changes applied, upload this new version of your
distribution to PyPI:

$ python3 setup.py sdist upload
running sdist
running check
reading manifest file 'MANIFEST'
creating nester-1.2.0
making hard links in nester-1.2.0...
hard linking nester.py -> nester-1.2.0
hard linking setup.py -> nester-1.2.0
Creating tar archive
removing 'nester-1.2.0' (and everything under it)
running upload
Submitting dist/nester-1.2.0.tar.gz to http://pypi.python.org/pypi
Server response (200): OK
$

File Edit Window Help UploadThree

Success! The messages from setup.py confirm that the your latest version
of nester is up on PyPI. Let’s hope this one satisfies all of your users.

Consider your code carefully. How might some of
your users still have a problem with this version of
your code?

This all looks
fine and
dandy.

66 Chapter 2

faulty default

Your API is still not right
Although the API lets your users invoke the function in its original form, the
nesting is switched on by default. This behavior is not required by everyone and
some people aren’t at all happy.

Funny...it works fine
for me.

I can’t believe it! My
programs were back to running
fine, but now everything is
indented. Has this thing
changed again?!?

Another
version of “nester” has
been released...but its
default behavior might not

be what you want.

Of course, if you have some functionality that really ought to be optional
(that is, not the default), you should adjust your code to make it so. But how?

One solution is to add a third argument which is set to True when the
indenting is required and False otherwise. If you ensure that this argument
is False by default, the original functonality becomes the default behavior
and users of your code have to request the new indenting feature explicitly.

Let’s look at adding this final revision.

you are here 4 67

sharing your code

Amend your module one last time to add a third argument to your function. Call your argument
indent and set it initially to the value False—that is, do not switch on indentation by default.
In the body of your function, use the value of indent to control your indentation code.

Note: to save a bit of space, the comments from the module are not shown here. Of course, you
need to make the necessary adjustments to your comments to keep them in sync with your code.

def print_lol(the_list, , level=0):

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item, , level+1)

 else:

 for tab_stop in range(level):

 print("\t", end='')

 print(each_item)

With your new code additions in place, provide the edit you would recommend making to the
setup.py program prior to uploading this latest version of your module to PyPI:

Provide the command you would use to upload your new distribution to PyPI:

1

2

3

Put the extra argument here.

What needs to
go in here?

Add a line of code
to control when
indenting occurs.

68 Chapter 2

adding an argument

You were to amend your module one last time to add a third argument to your function. You were
to call your argument indent and set it initially to the value False—that is, do not switch on
indentation by default. In the body of your function, you were to use the value of indent to
control your indentation code.

def print_lol(the_list, , level=0):

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item, , level+1)

 else:

 for tab_stop in range(level):

 print("\t", end='')

 print(each_item)

With your new code additions in place, you were to provide the edit you would recommend
making to the setup.py program prior to uploading this latest version of your module to PyPI:

You were to provide the command you would use to upload your new distribution to PyPI:

1

2

3

Did you include the default value?

Your signature has cha
nged,

so be sure to update
this

invocation.

A simple “if”
statement does
the trick.

indent=False

indent

if indent : Don’t forget the colon at the end of the “if” line.

Edit “setup.py” so that it reads: version = ‘1.3.0’,

python3 setup.py sdisk upload

Remember: if you are on Windows use “C:\Python31\python.exe”

instead of “python3”.

It’s a new version of your module, so be sure to change the value associated with “version” in your “setup.py” file.

A sweet alternative to this “for” loop is this code: print("\t" * level, end='').

you are here 4 69

sharing your code

A final test of the functonality should convince you that your module is now working exactly the way you and your
users want it to. Let’s start with the original, default behavior:

>>> names = ['John', 'Eric', ['Cleese', 'Idle'], 'Michael', ['Palin']]

>>> print_lol(names)

John

Eric

Cleese

Idle

Michael

Palin

Next, turn on indentation by providing True as the second argument:

>>> names = ['John', 'Eric', ['Cleese', 'Idle'], 'Michael', ['Palin']]

>>> print_lol(names, True)

John

Eric

 Cleese

 Idle

Michael

 Palin

And, finally, control where indentation begins by providing a third argument value:

>>> names = ['John', 'Eric', ['Cleese', 'Idle'], 'Michael', ['Palin']]

>>> print_lol(names, True, 4)

 John

 Eric

 Cleese

 Idle

 Michael

 Palin

Go ahead and edit your
setup.py file; then upload
your distribution to PyPI.

Do this!

The original, default functionality is restored (that should please Bob).

Indenting from a specific tab-stop is also possible.

By providing a second argument,
it’s possible to switch on indented
output (keeping Laura happy).

70 Chapter 2

one module for all

This is as close as Bob gets to a smile. But trust us, he’s happy. §

Your module’s reputation is restored
Congratulations! Word of your new and improved module is spreading fast.

Great work! I love
that I can switch
indentation on and off.

My programs are back to
working the way I want
them to, so I’m a happy
guy. Thanks!

Lots of PyPI hits
already. I told you
this was good.

Your Python skills are starting to build

You’ve created a useful module, made it shareable, and uploaded it to the
PyPI website. Programmers all over the world are downloading and using
your code in their projects.

Keep up the good work.

you are here 4 71

sharing your code

Your Python Toolbox

You’ve got Chapter 2 under your
belt and you’ve added some key
Python goodies to your toolbox.

CHAPT
ER 2

 � A module is a text file that contains Python
code.

 � The distribution utilities let you turn your
module into a shareable package.

 � The setup.py program provides
metadata about your module and is used
to build, install, and upload your packaged
distribution.

 � Import your module into other programs
using the import statement.

 � Each module in Python provides its own
namespace, and the namespace name
is used to qualify the module’s functions
when invoking them using the module.
function() form.

 � Specifically import a function from a module
into the current namespace using the from
module import function form of
the import statement.

 � Use # to comment-out a line of code or
to add a short, one-line comment to your
program.

 � The built-in functions (BIFs) have their own
namespace called __builtins__,
which is automatically included in every
Python program.

 � The range() BIF can be used with for to
iterate a fixed number of times.

 � Including end=’’ as a argument to the
print() BIF switches off its automatic
inclusion of a new-line on output.

 � Arguments to your functions are optional if
you provide them with a default value.

Python Lingo
• Use a “triple-quoted string” to include
a multiple-line comment in your code.

• “PyPI” is the Python Package Index and
is well worth a visit.

• A “namespace” is a place in Python’s
memory where names exist.

• Python’s main namespace is known as
__main__.

IDLE Notes
• Press F5 to “run” the code in the IDLE edit window.
• When you press F5 to “load” a module’s code into the IDLE shell, the module’s names are specifically imported into IDLE’s namespace. This is a convenience when using IDLE. Within your code, you need to use the import statement explicitly.

this is a new chapter 73

I always thought he was
exceptional...especially when it
comes to processing my files.

files and exceptions3

Dealing with errors

It’s simply not enough to process your list data in your code.
You need to be able to get your data into your programs with ease, too. It’s no surprise

then that Python makes reading data from files easy. Which is great, until you consider

what can go wrong when interacting with data external to your programs…and there

are lots of things waiting to trip you up! When bad stuff happens, you need a strategy for

getting out of trouble, and one such strategy is to deal with any exceptional situations

using Python’s exception handling mechanism showcased in this chapter.

74 Chapter 3

getting data in

Data is external to your program
Most of your programs conform to the input-process-output model: data comes
in, gets manipulated, and then is stored, displayed, printed, or transferred.

DBMS

I’m ready for your
data...just give it to
me, baby!

Data comes from
lots of places.

So far, you’ve learned how to process data as well as display it on screen.
But what’s involved in getting data into your programs? Specifically, what’s
involved in reading data from a file?

How does Python read data from a file?

you are here 4 75

files and exceptions

It’s all lines of text
The basic input mechanism in Python is line based: when read into your
program from a text file, data arrives one line at a time.

Python’s open() BIF lives to interact with files. When combined with a for
statement, reading files is straightforward.

 open()

Your data in a text
file called “sketch.txt”.

Your data
as individual
lines.

Do this!

Create a folder called
HeadFirstPython and a
subfolder called chapter3.
With the folders ready,
download sketch.txt from
the Head First Python support
website and save it to the
chapter3 folder.

When you use the open() BIF to access your data in a file, an iterator is
created to feed the lines of data from your file to your code one line at a time.
But let’s not get ahead of ourselves. For now, consider the standard open-
process-close code in Python:

Let’s use IDLE to get a feel for Python’s file-input mechanisms.

 the_file = open('sketch.txt')
 # Do something with the data
 # in "the_file".
 the_file.close()

Open…

…Process…

…Close.

76 Chapter 3

idle session

>>> data.seek(0)

0

>>> for each_line in data:

 print(each_line, end='')

Man: Is this the right room for an argument?

Other Man: I've told you once.

Man: No you haven't!

Other Man: Yes I have.

Man: When?

Other Man: Just now.

Man: No you didn't!

 ...

Man: (exasperated) Oh, this is futile!!

(pause)

Other Man: No it isn't!

Man: Yes it is!

>>> data.close()

Start a new IDLE sesson and import the os module to change the current working directory to the folder that
contains your just-downloaded data file:

>>> import os

>>> os.getcwd()

'/Users/barryp/Documents'

>>> os.chdir('../HeadFirstPython/chapter3')

>>> os.getcwd()

'/Users/barryp/HeadFirstPython/chapter3'

Import “os” from the Standard Library.
What’s the current working directory?

Change to the folder that contains your data file.

This code should look familiar: it’s a standard iteration using the file’s data as input.

Now, open your data file and read the first two lines from the file, displaying them on screen:

>>> data = open('sketch.txt')

>>> print(data.readline(), end='')

Man: Is this the right room for an argument?

>>> print(data.readline(), end='')

Other Man: I've told you once.

Let’s “rewind” the file back to the start, then use a for statement to process every line in the file:

Open a named file and assign the file to a file object called “data”.

Use the “readline()” method to grab a
line from the file, then use the “print()”
BIF to display it on screen.

Use the “seek()” method to return to the start of the file.
And yes, you can use “tell()” with Python’s files, too.

Every line of the data is
displayed on screen (although
for space reasons, it is
abridged here).

Since you are now done with the file, be sure to close it.

Confirm you are now in the right place.

you are here 4 77

files and exceptions

Take a closer look at the data
Look closely at the data. It appears to conform to a specific format:

Man: Is this the right room for an argument?
Other Man: I’ve told you once.
Man: No you haven’t!

Other Man: Yes I have.

Man: When?

Other Man: Just now.

Man: No you didn’t!

The cast
member’s role

A colon, followed by a
space character

The line spoken by the
cast member

 each_line.split(":")

 Man: Is this the right room for an argument?

 Man
 Is this the right room for an argument?

Invoke the “split()” m
ethod

associated with the “each_line”

string and break the
string

whenever a “:” is found
.

The split() method returns a list of strings, which are assigned to a list of
target identifiers. This is known as multiple assignment:

 (role, line_spoken) = each_line.split(":")

A list of target identifiers on the left…
…are assigned the strings returned by “split()”.

Using the example data from above, “role” is assigned the string “Man”, whereas…
…“line_spoken”: is assigned the string “Is this
the right room for an argument?”

With this format in mind, you can process each line to extract parts of the line
as required. The split() method can help here:

This tells “split()” what to split on.

Well? Is it? §

78 Chapter 3

idle session

Let’s confirm that you can still process your file while splitting each line. Type the following code into IDLE’s shell:

>>> data = open('sketch.txt')

>>> for each_line in data:

 (role, line_spoken) = each_line.split(':')

 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

Man said: Is this the right room for an argument?

Other Man said: I've told you once.

Man said: No you haven't!

Other Man said: Yes I have.

Man said: When?

Other Man said: Just now.

Man said: No you didn't!

Other Man said: Yes I did!

Man said: You didn't!

Other Man said: I'm telling you, I did!

Man said: You did not!

Other Man said: Oh I'm sorry, is this a five minute argument, or the full half hour?

Man said: Ah! (taking out his wallet and paying) Just the five minutes.

Other Man said: Just the five minutes. Thank you.

Other Man said: Anyway, I did.

Man said: You most certainly did not!

Traceback (most recent call last):

 File "<pyshell#10>", line 2, in <module>

 (role, line_spoken) = each_line.split(':')

ValueError: too many values to unpack

Open the data file.

Process the data, extracting each part fr
om

each line and displaying each part on scree
n.

Whoops! There’s something seriously
wrong here.

This all looks OK.

It’s a ValueError, so
that must mean there’s
something wrong with the
data in your file, right?

you are here 4 79

files and exceptions

Know your data
Your code worked fine for a while, then crashed with a runtime error. The
problem occurred right after the line of data that had the Man saying, “You
most certainly did not!”

Let’s look at the data file and see what comes after this successfully processed
line:

Man: You didn't!

Other Man: I'm telling you, I did!

Man: You did not!

Other Man: Oh I'm sorry, is this a five minute argument, or the full half hour?

Man: Ah! (taking out his wallet and paying) Just the five minutes.

Other Man: Just the five minutes. Thank you.

Other Man: Anyway, I did.

Man: You most certainly did not!

Other Man: Now let's get one thing quite clear: I most definitely told you!

Man: Oh no you didn't!

Other Man: Oh yes I did!

The error occurs AFTER this line
of data.

Notice anything?

Notice anything about the next line of data?

The next line of data has two colons, not one. This is enough extra data
to upset the split() method due to the fact that, as your code currently
stands, split()expects to break the line into two parts, assigning each to
role and line_spoken, respectively.

When an extra colon appears in the data, the split() method breaks the
line into three parts. Your code hasn’t told split() what to do with the third
part, so the Python interpreter raises a ValueError, complains that you
have “too many values,” and terminates. A runtime error has occurred.

What approach might you take to solve this data-
processing problem?

Do this!

To help diagnose this
problem, let’s put your
code into its own file called
sketch.py. You can copy
and paste your code from
the IDLE shell into a new
IDLE edit window.

80 Chapter 3

ask for help

Know your methods and ask for help
It might be useful to see if the split() method includes any functionality
that might help here. You can ask the IDLE shell to tell you more about the
split() method by using the help() BIF.

>>> help(each_line.split)

Help on built-in function split:

split(...)

 S.split([sep[, maxsplit]]) -> list of strings

 Return a list of the words in S, using sep as the

 delimiter string. If maxsplit is given, at most maxsplit

 splits are done. If sep is not specified or is None, any

 whitespace string is a separator and empty strings are

 removed from the result.

Looks like “split()” takes an optional argument.

The optional argument to split() controls how many breaks occur within
your line of data. By default, the data is broken into as many parts as is
possible. But you need only two parts: the name of the character and the line
he spoke.

If you set this optional argument to 1, your line of data is only ever broken
into two pieces, effectively negating the effect of any extra colon on any line.

Let’s try this and see what happens.

Geek Bits

IDLE gives you searchable access to the entire Python
documentation set via its Help ➝ Python Docs menu option (which
will open the docs in your web browser). If all you need to see is the
documentation associated with a single method or function, use
the help() BIF within IDLE’s shell.

split(beans)

split(beans, 1)

you are here 4 81

files and exceptions

Here’s the code in the IDLE edit window. Note the extra argument to the split() method.

>>> ================================ RESTART ================================

>>>

Man said: Is this the right room for an argument?

Other Man said: I've told you once.

Man said: No you haven't!

Other Man said: Yes I have.

Man said: When?

Other Man said: Just now.

 ...

Other Man said: Anyway, I did.

Man said: You most certainly did not!

Other Man said: Now let's get one thing quite clear: I most definitely told you!

Man said: Oh no you didn't!

Other Man said: Oh yes I did!

Man said: Oh no you didn't!

Other Man said: Oh yes I did!

Man said: Oh look, this isn't an argument!

Traceback (most recent call last):

 File "/Users/barryp/HeadFirstPython/chapter4/sketch.py", line 5, in <module>

 (role, line_spoken) = each_line.split(':', 1)

ValueError: need more than 1 value to unpack

The extra argument controls how “split()” splits.

With the edit applied and saved, press F5 (or select Run Module from IDLE’s Run menu) to try out this version of
your code:

The displayed output is
abridged to allow the
important stuff to fit on
this page.

Cool. You made it past the line with two colons…

…but your joy is short lived. There’s
ANOTHER ValueError!!

That’s enough to ruin your day. What could be wrong now?

82 Chapter 3

missing colon

Know your data (better)
Your code has raised another ValueError, but this time, instead of
complaining that there are “too many values,” the Python interpreter is
complaining that it doesn’t have enough data to work with: “need more than
1 value to unpack.” Hopefully, another quick look at the data will clear up the
mystery of the missing data.

Other Man: Now let's get one thing quite clear: I most definitely told you!

Man: Oh no you didn't!

Other Man: Oh yes I did!

Man: Oh no you didn't!

Other Man: Oh yes I did!

Man: Oh look, this isn't an argument!

(pause)

Other Man: Yes it is!

Man: No it isn’t!

(pause)

Man: It's just contradiction!

Other Man: No it isn't!

What’s this?!? Some of the data doesn’t conform to the expected format…which can’t be good.

The case of the missing colon

Some of the lines of data contain no colon, which causes a problem when
the split() method goes looking for it. The lack of a colon prevents
split() from doing its job, causes the runtime error, which then results in
the complaint that the interpreter needs “more than 1 value.”

It looks like you still have
problems with the data in
your file. What a shame it’s
not in a standard format.

you are here 4 83

files and exceptions

Two very different approaches

When you have to deal with a
bunch of exceptional situations, the
best approach is to add extra logic.
If there’s more stuff to worry
about, you need more code.

Jill
Joe

Or you could decide to let the
errors occur, then simply handle
each error if and when it happens.
That would be exceptional.

Jill’s suggested approach certainly works: add the extra logic required to work out
whether it’s worth invoking split() on the line of data. All you need to do is
work out how to check the line of data.

Joe’s approach works, too: let the error occur, spot that it has happened, and then
recover from the runtime error…somehow.

Which approach works best here?

84 Chapter 3

find the substring

Add extra logic
Let’s try each approach, then decide which works best here.

In addition to the split() method, every Python string has the find()
method, too. You can ask find() to try and locate a substring in another
string, and if it can’t be found, the find() method returns the value -1. If
the method locates the substring, find() returns the index position of the
substring in the string.

>>> each_line = "I tell you, there's no such thing as a flying circus."

>>> each_line.find(':')

-1

>>> each_line = "I tell you: there's no such thing as a flying circus."

>>> each_line.find(':')

10

Assign a string to the each_line variable that does not contain a colon, and then use the find() method to
try and locate a colon:

Press Alt-P twice to recall the line of code that assigns the string to the variable, but this time edit the string to
include a colon, then use the find() method to try to locate the colon:

The string does NOT contain a colon, so “find()” returns -1 for NOT FOUND.

The string DOES contain a colon, so “find()” returns a positive index value.

And you thought this approach wouldn’t
work? Based on this IDLE session, I
think this could do the trick.

you are here 4 85

files and exceptions

Adjust your code to use the extra logic technique demonstrated on the previous page to deal
with lines that don’t contain a colon character.

data = open('sketch.txt')

for each_line in data:

 if

 (role, line_spoken) = each_line.split(':', 1)

 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

data.close()

What condition needs to go here?

Can you think of any potential problems with this technique?
Grab your pencil and write down any issues you might have with
this approach in the space provided below:

86 Chapter 3

substring found

You were to adjust your code to use the extra logic technique to deal with lines that don’t contain
a colon character:

data = open('sketch.txt')

for each_line in data:

 if

 (role, line_spoken) = each_line.split(':', 1)

 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

data.close()

You were to think of any potential problems with this technique,
grabbing your pencil to write down any issues you might have
with this approach.

There might be a problem with this code if the format of the data file
changes, which will require changes to the condition.

The condition used by the if statement is somewhat hard to read and
understand.

not each_line.find(':') == -1:

This code is a little “fragile”…it will break if another exceptional
situation arises.

It takes a few seconds to get your head around this condition, but it does work.

Note the use of the
“not” keyword, which
negates the value of
the condition.

It’s OK if your issues
are different. Just so
long as they are similar
to these.

you are here 4 87

files and exceptions

Test Drive
Amend your code within IDLE’s edit window, and press F5 to see if it works.

No errors this time.

Your program works…although it is fragile.

If the format of the file changes, your code will
need to change, too, and more code generally means
more complexity. Adding extra logic to handle
exceptional situations works, but it might cost you
in the long run.

Maybe it’s time for a
different approach? One
that doesn’t require extra
logic, eh?

88 Chapter 3

exceptional catch

Handle exceptions
Have you noticed that when something goes wrong with your code, the
Python interpreter displays a traceback followed by an error message?

The traceback is Python’s way of telling you that something unexpected has
occurred during runtime. In the Python world, runtime errors are called
exceptions.

>>> if not each_

Traceback (most r

 File “<pyshell

 (role, line_

ValueError: too m
Oooh, yuck! It lo

oks

like there’s a b
ug.

Whoooah! I don’t
know what to do with this
error, so I’m gonna raise
an exception...this really is
someone else’s problem.

Of course, if you decide to ignore an exception when it occurs, your program
crashes and burns.

But here’s the skinny: Python let’s you catch exceptions as they occur, which
gives you with a chance to possibly recover from the error and, critically, not
crash.

By controlling the runtime behavior of your program, you can ensure (as
much as possible) that your Python programs are robust in the face of most
runtime errors.

Try the code first. Then deal with errors as they happen.

you are here 4 89

files and exceptions

Try first, then recover
Rather than adding extra code and logic to guard against bad things
happening, Python’s exception handling mechanism lets the error occur,
spots that it has happened, and then gives you an opportunity to recover.

During the normal flow of control, Python tries your code and, if nothing goes
wrong, your code continues as normal. During the exceptional flow of control,
Python tries your code only to have something go wrong, your recovery code
executes, and then your code continues as normal.

The try/except mechanism

Python includes the try statement, which exists to provide you with a way to
systematically handle exceptions and errors at runtime. The general form of
the try statement looks like this:

try:
 your code (which might cause a runtime error)

except:
 your error-recovery code

Both “try”
and “except”
are Python
keywords.

Crash!

Normal flow
Python tries
your code, but
fails!

It’s all OK, so
keep going…

Exceptional flow

Python tries
your code.

Your recovery
code executes.

Then you keep
going…

Your exception
is handled.

90 Chapter 3

allow errors

Hang on, here! Are you
actually letting errors
occur on purpose? ARE
YOU MAD?!?

No. Not mad. And, yes. Letting errors occur.

If you try to code for every possible error, you’ll be at it for a
long time, because all that extra logic takes a while to work out.

Paradoxically, when you worry less about covering every
possible error condition, your coding task actually gets easier.

you are here 4 91

files and exceptions

Identify the code to protect
In order to plug into the Python exception handling mechanism, take a
moment to identify the code that you need to protect.

Study your program and circle the line or lines of code that you
think you need to protect. Then, in the space provided, state why.

data = open('sketch.txt')

for each_line in data:

 (role, line_spoken) = each_line.split(':', 1)

 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

data.close()

State your reason
why here.

Q: Something has been bugging me for a while. When the split() method executes, it passes back a list, but the target identifiers
are enclosed in regular brackets, not square brackets, so how is this a list?

A: Well spotted. It turns out that there are two types of list in Python: those that can change (enclosed in square brackets) and those that
cannot be changed once they have been created (enclosed in regular brackets). The latter is an immutable list, more commonly referred
to as a tuple. Think of tuples as the same as a list, except for one thing: once created, the data they hold cannot be changed under any
circumstances. Another way to think about tuples is to consider them to be a constant list. At Head First, we pronounce “tuple” to rhyme with

“couple.” Others pronounce “tuple” to rhyme with “rupal.” There is no clear concensus as to which is correct, so pick one and stick to it.

92 Chapter 3

code to protect

You were to study your program and circle the line or lines of
code that you think you need to protect. Then, in the space
provided, you were to state why.

data = open('sketch.txt')

for each_line in data:

 (role, line_spoken) = each_line.split(':', 1)

 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

data.close()

These four
lines of code
all need to be
protected.

If the call to “split()” fails, you don’t want the three “print()”
statements executing, so it’s best to protect all four lines of the “if”
suite, not just the line of code that calls “split()”.

OK. I get that the code
can be protected from an
error. But what do I do when
an error actually occurs?

Yeah...good point. It’s
probably best to ignore
it, right? I wonder how...

you are here 4 93

files and exceptions

Take a pass on the error
With this data (and this program), it is best if you ignore lines that don’t
conform to the expected format. If the call to the split() method causes
an exception, let’s simply pass on reporting it as an error.

When you have a situation where you might be expected to provide code, but
don’t need to, use Python’s pass statement (which you can think of as the
empty or null statement.)

Here’s the pass statement combined with try:

 data = open('sketch.txt')

 for each_line in data:

 try:

 (role, line_spoken) = each_line.split(':', 1)
 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

 except:

 pass

 data.close()

This code is
protected from
runtime errors.

If a runtime error occurs, this code is executed.

Now, no matter what happens when the split() method is invoked, the
try statement catches any and all exceptions and handles them by ignoring the
error with pass.

Let’s see this code in action. Do this!

Make the required changes
to your code in the IDLE
edit window.

94 Chapter 3

idle session

With your code in the IDLE edit window, press F5 to run it.

>>> ================================ RESTART ================================

>>>

Man said: Is this the right room for an argument?

Other Man said: I’ve told you once.

Man said: No you haven’t!

Other Man said: Yes I have.

Man said: When?

 ...

OOther Man said: Nonsense!

Man said: (exasperated) Oh, this is futile!!

Other Man said: No it isn’t!

Man said: Yes it is!

This code works, and there are no runtime errors, either.

So...both approaches work.
But which is better?

you are here 4 95

files and exceptions

Tonight’s talk: Approaching runtime errors with extra code
and exception handlers

Extra Code:
By making sure runtime errors never happen, I keep
my code safe from tracebacks.

Complexity never hurt anyone.

I just don’t get it. You’re more than happy for your
code to explode in your face…then you decide it’s
probably a good idea to put out the fire?!?

But the bad things still happen to you. They never
happen with me, because I don’t let them.

Well…that depends. If you’re smart enough—and,
believe me, I am—you can think up all the possible
runtime problems and code around them.

Hard work never hurt anyone.

Of course all my code is needed! How else can you
code around all the runtime errors that are going to
happen?

Um, uh…most of them, I guess.

Look: just cut it out. OK?

Exception Handler:

At the cost of added complexity….

I’ll be sure to remind you of that the next time
you’re debugging a complex piece of code at 4
o’clock in the morning.

Yes. I concentrate on getting my work done first and
foremost. If bad things happen, I’m ready for them.

Until something else happens that you weren’t
expecting. Then you’re toast.

Sounds like a whole heap of extra work to me.

You did hear me earlier about debugging at 4 AM,
right? Sometimes I think you actually enjoy writing
code that you don’t need…

Yeah…how many?

You don’t know, do you? You’ve no idea what will
happen when an unknown or unexpected runtime
error occurs, do you?

96 Chapter 3

more errors

What about other errors?
It is true that both approaches work, but let’s consider what happens when
other errors surface.

OK, guys. How does you
code react when the
data file is deleted?

Ummm...I’m not totally
sure, to be honest...

I guess that’ll produce
another exception, but
what happens in my code
is anyone’s guess.

Handling missing files

Frank’s posed an interesting question and, sure
enough, the problem caused by the removal of
the data file makes life more complex for Jill and
Joe. When the data file is missing, both versions of
the program crash with an IOError.

Do this!

Rename the data file, then
run both versions of your
program again to confirm
that they do indeed raise an
IOError and generate a
traceback.

you are here 4 97

files and exceptions

Add more error-checking code…
If you’re a fan of the “let’s not let errors happen” school of thinking, your
first reaction will be to add extra code to check to see if the data file exists
before you try to open it, right?

Let’s implement this strategy. Python’ s os module has some facilities that can
help determine whether a data file exists, so we need to import it from the
Standard Library, then add the required check to the code:

 import os

 if os.path.exists('sketch.txt'):

 data = open('sketch.txt')

 for each_line in data:

 if not each_line.find(':') == -1:

 (role, line_spoken) = each_line.split(':', 1)

 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

 data.close()

 else:

 print('The data file is missing!')

Check whether
the file exists.

Inform the
user of the
bad news.

All of this
code remains
unchanged.

A quick test of the code confirms that this new problem is dealt with properly. With this new version of your code
in IDLE’s edit window, press F5 to confirm all is OK.

>>> ================================ RESTART ================================

>>>

The data file is missing!

>>>

Exactly what was expected. Cool.

98 Chapter 3

take it to another level

…Or add another level of exception handling
If you are a fan of the “handle exceptions as they occur” school of thinking, you’ll
simply wrap your code within another try statement.

 try:

 data = open('sketch.txt')

 for each_line in data:

 try:

 (role, line_spoken) = each_line.split(':', 1)

 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

 except:

 pass

 data.close()

 except:

 print('The data file is missing!')

As with the
other program,
all of this
code remains
unchanged.

Add another
“try” statement.

Give the user
the bad news.

Another quick test is required, this time with the version of your program that uses exception handling. Press F5 to
give it a spin.

>>> ================================ RESTART ================================

>>>

The data file is missing!

>>>

As expected, this version of the
program handles the missing file, too.

you are here 4 99

files and exceptions

So, which approach is best?
Well…it depends on who you ask! Here are both versions of your code:

This version uses extra logic to handle File I/O errors.

This version uses another “try” statement to handle File I/O errors.

Let’s ask a simple question about these two versions of your program: What do each
of these programs do?

Grab your pencil. In box 1, write down what you think the
program on the left does. In box 2, write down what you think
the program on the right does.

2

1

100 Chapter 3

keep it simple

Complexity is rarely a good thing

Do you see what’s happening here?

As the list of errors that you have to worry about grows, the complexity of
the “add extra code and logic” solution increases to the point where it starts
to obscure the actual purpose of the program.

This is not the case with the exceptions handling solution, in which it’s obvious
what the main purpose of the program is.

By using Python’s exception-handling mechanism, you get to concentrate on
what your code needs to do, as opposed to worrying about what can go wrong
and writing extra code to avoid runtime errors.

Prudent use of the try statement leads to code that is easier to read, easier
to write, and—perhaps most important—easier to fix when something goes
wrong.

Concentrate on what your code needs to do.

The code on the right starts by importing the “os” library, and then it uses “path.exists” to
make sure the data file exists, before it attempts to open the data file. Each line from
the file is then processed, but only after it has determined that the line conforms to the
required format by checking first for a single “:” character in the line. If the “:” is found,
the line is processed; otherwise, it’s ignored. When we’re all done, the data file is closed. And
you get a friendly message at the end if the file is not found.

The code on the right opens a data file, processes each line in that file, extracts the data of
interest and displays it on screen. The file is closed when done. If any exceptions occur, this
code handles them.

You were to grab your pencil, then in box 1, write down what you
thought the program on the left does. In box 2, write down what
you thought the program on the right does.

2

1

There’s a lot to write, so you actually need
more space for your description than was
provided on the previous page.

Now…that’s more like it.

you are here 4 101

files and exceptions

You’re done…except for one small thing
Your exception-handling code is good. In fact, your code might be too good in
that it is too general.

At the moment, no matter what error occurs at runtime, it is handled by your
code because it’s ignored or a error message is displayed. But you really need to
worry only about IOErrors and ValueErrors, because those are the types
of exceptions that occurred earlier when your were developing your program.

Although it is great to be able to handle all runtime errors, it’s probably
unwise to be too generic…you will want to know if something other than
an IOError or ValueError occurs as a result of your code executing at
runtime. If something else does happen, your code might be handling it in an
inappropriate way.

 try:

 data = open('sketch.txt')

 for each_line in data:

 try:

 (role, line_spoken) = each_line.split(':', 1)

 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

 except:

 pass

 data.close()

 except:

 print('The data file is missing!')

This code and this cod
e runs when ANY

runtime error occurs within the code that

is being tried.

As your code is currently written, it is too generic. Any runtime error that
occurs is handled by one of the except suites. This is unlikely to be what
you want, because this code has the potential to silently ignore runtime errors.

You need to somehow use except in a less generic way.

102 Chapter 3

specify exceptions

Be specific with your exceptions
If your exception-handling code is designed to deal with a specific type of
error, be sure to specify the error type on the except line. In doing so, you’ll
take your exception handling code from generic to specific.

 try:

 data = open('sketch.txt')

 for each_line in data:

 try:

 (role, line_spoken) = each_line.split(':', 1)

 print(role, end='')

 print(' said: ', end='')

 print(line_spoken, end='')

 except ValueError:
 pass

 data.close()

 except IOError:
 print('The data file is missing!')

Specify the type of runtime error you are handling.

Of course, if an different type of runtime error occurs, it is no longer handled
by your code, but at least now you’ll get to hear about it. When you are
specific about the runtime errors your code handles, your programs no longer
silently ignore some runtime errors.

...and it lets you avoid
adding unnecessary code
and logic to your programs.
That works for me!

Using “try/except”
lets you concentrate
on what your code
needs to do...

you are here 4 103

files and exceptions

Your Python Toolbox

You’ve got Chapter 3 under your
belt and you’ve added some key
Python techiques to your toolbox.

CHAPT
ER 3

 � Use the open() BIF to open a disk file,
creating an iterator that reads data from
the file one line at a time.

 � The readline() method reads a
single line from an opened file.

 � The seek() method can be used to
“rewind” a file to the beginning.

 � The close() method closes a
previously opened file.

 � The split() method can break a
string into a list of parts.

 � An unchangeable, constant list in Python
is called a tuple. Once list data is
assigned to a tuple, it cannot be changed.
Tuples are immutable.

 � A ValueError occurs when your data
does not conform to an expected format.

 � An IOError occurs when your data
cannot be accessed properly (e.g.,
perhaps your data file has been moved or
renamed).

 � The help() BIF provides access to
Python’s documentation within the IDLE
shell.

 � The find() method locates a specific
substring within another string.

 � The not keyword negates a condition.

 � The try/except statement provides
an exception-handling mechanism,
allowing you to protect lines of code that
might result in a runtime error.

 � The pass statement is Python’s empty
or null statement; it does nothing.

Python Lingo
• An “exception” o

ccurs as a resu
lt

of a runtime error, produ
cing a

traceback.

• A “traceback” is
 a detailed

description of
the runtime error

that has occur
red.

IDLE Notes
• Access Python’s documentation by choosing Python Docs from IDLE’s Help menu. The Python 3 documentation set should open in your favorite web browser.

this is a new chapter 105

I’m in a bit of a pickle...my
data is not as persistent as
it could be.

persistence4

Saving data to files

It is truly great to be able to process your file-based data.
But what happens to your data when you’re done? Of course, it’s best to save your

data to a disk file, which allows you to use it again at some later date and time. Taking

your memory-based data and storing it to disk is what persistence is all about. Python

supports all the usual tools for writing to files and also provides some cool facilities for

efficiently storing Python data. So…flip the page and let’s get started learning them.

106 Chapter 4

save your work

Programs produce data
It’s a rare program that reads data from a disk file, processes the data, and
then throws away the processed data. Typically, programs save the data they
process, display their output on screen, or transfer data over a network.

DBMS

Your data is ready.
Where should I put it
for you?

Hey, that’s nice
output...exactly
what I want.

You have lots of choices about which type of disk file to use.

Before you learn what’s involved in writing data to disk, let’s process the data
from the previous chapter to work out who said what to whom.

When that’s done, you’ll have something worth saving.

you are here 4 107

persistence

Code Magnets
Add the code magnets at the bottom of this page to your existing
code to satisfy the following requirements:

1. Create an empty list called man.
2. Create an empty list called other.
3. Add a line of code to remove unwanted whitespace from the
line_spoken variable.
4. Provide the conditions and code to add line_spoken to the
correct list based on the value of role.
5. Print each of the lists (man and other) to the screen.

line_spoken = line_spoken.strip()

 print(other)

man = []
 other.append(line_spoken)

try:

 data = open('sketch.txt')

 for each_line in data:

 try:

 (role, line_spoken) = each_line.split(':', 1)

 except ValueError:

 pass

 data.close()

except IOError:

 print('The datafile is missing!')

other = []

Here are your magnets.

 print(man)

 if role == 'Man':

 man.append(line_spoken)

 elif role == 'Other Man':

108 Chapter 4

process and print

try:

 data = open('sketch.txt')

 for each_line in data:

 try:

 (role, line_spoken) = each_line.split(':', 1)

 except ValueError:

 pass

 data.close()

except IOError:

 print('The datafile is missing!')

 other.append(line_spoken)

 if role == 'Man':

 man.append(line_spoken)

 elif role == 'Other Man':

Code Magnets Solution
Your were to add the code magnets to your existing code to satisfy
the following requirements:

1. Create an empty list called man.
2. Create an empty list called other.
3. Add a line of code to remove unwanted whitespace from the
line_spoken variable.
4. Provide the conditions and code to add line_spoken to the
correct list based on the value of role.
5. Print each of the lists (man and other) to the screen.

line_spoken = line_spoken.strip()

 print(man)

man = []

other = []

Assign an empty list to “man” and “other”.

The “strip()” method
removes unwanted
whitespace from a string.

Assign the
stripped string
back onto itself.

Update one of the lists based on who said what.

Conclude by displaying the
processed data on screen.

“elif” means
“else if.”

 print(other)

you are here 4 109

persistence

Test Drive
Load your code into IDLE’s edit window and take it for a spin by pressing F5. Be sure to save your program into the
same folder that contains sketch.txt.

The code in IDLE’s edit window

And here’s what appears
on screen: the contents of
the two lists.

It worked, as expected.

Surely Python’s open() BIF
can open files for writing as well
as reading, eh?

Yes, it can.

When you need to save data to a file, the
open() BIF is all you need.

110 Chapter 4

open and close

Open your file in write mode
When you use the open() BIF to work with a disk file, you can specify an
access mode to use. By default, open() uses mode r for reading, so you don’t
need to specify it. To open a file for writing, use mode w:

 out = open("data.out", "w")
The data file
object

The name of the file to
write to

The access model to use

By default, the print() BIF uses standard output (usually the screen) when
displaying data. To write data to a file instead, use the file argument to
specify the data file object to use:

 print("Norwegian Blues stun easily.", file=out)

What gets written to the file The name of the data
file object to write to

When you’re done, be sure to close the file to ensure all of your data is written
to disk. This is known as flushing and is very important:

 out.close()
This is VERY important when writing to files.

Geek Bits

When you use access mode w, Python opens your named file
for writing. If the file already exists, it is cleared of its contents, or
clobbered. To append to a file, use access mode a, and to open a
file for writing and reading (without clobbering), use w+. If you
try to open a file for writing that does not already exist, it is first
created for you, and then opened for writing.

you are here 4 111

persistence

At the bottom of your program, two calls to the print() BIF
display your processed data on screen. Let’s amend this code to
save the data to two disk files instead.

Call your disk files man_data.txt (for what the man said) and
other_data.txt (for what the other man said). Be sure to
both open and close your data files, as well as protect your code
against an IOError using try/except. man = []

other = []

try:

 data = open('sketch.txt')

 for each_line in data:

 try:

 (role, line_spoken) = each_line.split(':', 1)

 line_spoken = line_spoken.strip()

 if role == 'Man':

 man.append(line_spoken)

 elif role == 'Other Man':

 other.append(line_spoken)

 except ValueError:

 pass

 data.close()

except IOError:

 print('The datafile is missing!')

 print(man,)

 print(other,)

Go on, try. Open your two
data files here.

Specify the files to
write to when you invoke
“print()”.Be sure to

close your
files.

Handle any
exceptions here.

112 Chapter 4

save to disk

man = []

other = []

try:

 data = open('sketch.txt')

 for each_line in data:

 try:

 (role, line_spoken) = each_line.split(':', 1)

 line_spoken = line_spoken.strip()

 if role == 'Man':

 man.append(line_spoken)

 elif role == 'Other Man':

 other.append(line_spoken)

 except ValueError:

 pass

 data.close()

except IOError:

 print('The datafile is missing!')

 print(man,)

 print(other,)

At the bottom of your program, two calls to the print() BIF
display your processed data on screen. You were to amend this
code to save the data to two disk files instead.

You were to call your disk files man_data.txt (for what the
man said) and other_data.txt (for what the other man said).
You were to make sure to both open and close your data files, as
well as protect your code against an IOError using try/except.

try:
man_file = open(‘man_data.txt’, ‘w’)

file=man_file
file=other_file

print('File error.’)

other_file = open(‘other_data.txt’, ‘w’)

man_file.close()
other_file.close()

except IOError:

All of this code is unchanged.

Did you remember to open
your files in WRITE mode?

Open your two files, and assign
each to file objects.

Use the “print()” BIF to save the named lists to named disk files.

Don’t forget to close BOTH files.

Handle an I/O exception, should one occur.

you are here 4 113

persistence

Test Drive
Perform the edits to your code to replace your two print() calls with your new file I/O code. Then, run your
program to confirm that the data files are created:

When you run
your code, this
is all you see,
what looks like
an “empty” IDLE
shell.

Before your program runs, there are no data files in your folder, just your code.

After your program
runs, two new files are
CREATED in your folder.

That code worked, too. You’ve created two data files, each holding the data
from each of your lists. Go ahead and open these files in your favorite editor
to confirm that they contain the data you expect.

Consider the following carefully: what happens to
your data files if the second call to print() in
your code causes an IOError?

114 Chapter 4

close files

Files are left open after an exception!
When all you ever do is read data from files, getting an IOError is annoying,
but rarely dangerous, because your data is still in your file, even though you
might be having trouble getting at it.

It’s a different story when writing data to files: if you need to handle an
IOError before a file is closed, your written data might become corrupted
and there’s no way of telling until after it has happened.

 try:

 man_file = open('man_data.txt', 'w')

 other_file = open('other_data.txt', 'w')

 print(man, file=man_file)

 print(other, file=other_file)

 man_file.close()

 other_file.close()

 except IOError:

 print('File error.')

Crash!

Ok.
OK

OK

OK

OK
OK

Not OK!!

These two lines of code
DON’T get to run.

Your exception-handling code is doing its job, but you now have a situation
where your data could potentially be corrupted, which can’t be good.

What’s needed here is something that lets you run some code regardless of
whether an IOError has occured. In the context of your code, you’ll want
to make sure the files are closed no matter what.

you are here 4 115

persistence

Extend try with finally
When you have a situation where code must always run no matter what errors
occur, add that code to your try statement’s finally suite:

 try:

 man_file = open('man_data.txt', 'w')

 other_file = open('other_data.txt', 'w')

 print(man, file=man_file)

 print(other, file=other_file)

 except IOError:

 print('File error.')

 finally:

 man_file.close()

 other_file.close()

No changes
here, except
that…

…the calls to
“close()” are
moved to here.

If no runtime errors occur, any code in the finally suite executes. Equally,
if an IOError occurs, the except suite executes and then the finally
suite runs.

No matter what, the code in the finally suite always runs.

By moving your file closing code into your finally suite, you are reducing
the possibility of data corruption errors.

This is a big improvement, because you’re now ensuring that files are closed
properly (even when write errors occur).

But what about those errors?

How do you find out the specifics of the error?

116 Chapter 4

no dumb questiohns

Q: I’m intrigued. When you stripped the line_spoken data
of unwanted whitespace, you assigned the result back to the
line_spoken variable. Surely invoking the strip() method on
line_spoken changed the string it refers to?

A: No, that’s not what happens. Strings in Python are immutable,
which means that once a string is created, it cannot be changed.

Q: But you did change the line_spoken string by removing
any unwanted whitespace, right?

A: Yes and no. What actually happens is that invoking the
strip() method on the line_spoken string creates a
new string with leading and trailing whitespace removed. The new
string is then assigned to line_spoken, replacing the data that
was referred to before. In effect, it is as if you changed line_
spoken, when you’ve actually completely replaced the data it
refers to.

Q: So what happens to the replaced data?

A: Python’s built-in memory management technology reclaims the
RAM it was using and makes it available to your program. That is,
unless some other Python data object is also referring to the string.

Q: What? I don’t get it.

A: It is conceivable that another data object is referring to the
string referred to by line_spoken. For example, let’s assume
you have some code that contains two variables that refer to the
same string, namely “Flying Circus.” You then decide that one of
the variables needs to be in all UPPERCASE, so you invoke the
upper() method on it. The Python interperter takes a copy of the
string, converts it to uppercase, and returns it to you. You can then
assign the uppercase data back to the variable that used to refer to
the original data.

Q: And the original data cannot change, because there’s
another variable referring to it?

A: Precisely. That’s why strings are immutable, because you never
know what other variables are referring to any particular string.

Q: But surely Python can work out how many variables are
referring to any one particular string?

A: It does, but only for the purposes of garbage collection. If you
have a line of code like print('Flying Circus'), the
string is not referred to by a variable (so any variable reference
counting that’s going on isn’t going to count it) but is still a valid string
object (which might be referred to by a variable) and it cannot have
its data changed under any circumstances.

Q: So Python variables don’t actually contain the data
assigned to them?

A: That’s correct. Python variables contain a reference to a
data object.The data object contains the data and, because you
can conceivably have a string object used in many different places
throughout your code, it is safest to make all strings immutable so
that no nasty side effects occur.

Q: Isn’t it a huge pain not being able to adjust strings “in
place”?

A: No, not really. Once you get used to how strings work, it
becomes less of an issue. In practice, you’ll find that this issue rarely
trips you up.

Q: Are any other Python data types immutable?

A: Yes, a few. There’s the tuple, which is an immutable list. Also,
all of the number types are immutable.

Q: Other than learning which is which, how will I know when
something is immutable?

A: Don’t worry: you’ll know. If you try to change an immutable
value, Python raises a TypeError exception.

Q: Of course: an exception occurs. They’re everywhere in
Python, aren’t they?

A: Yes. Exceptions make the world go ’round.

you are here 4 117

persistence

Knowing the type of error is not enough
When a file I/O error occurs, your code displays a generic “File Error”
message. This is too generic. How do you know what actually happened?

Maybe the problem
is that you can’t open
the file?

It could be that the
file can be opened but
not written to?

Yeah, or it could be
a permission error, or
maybe your disk is full?

Who knows?

It turns out that the Python interpreter knows…and it will give up the details
if only you’d ask.

When an error occurs at runtime, Python raises an exception of the specific
type (such as IOError, ValueError, and so on). Additionally, Python
creates an exception object that is passed as an argument to your except
suite.

Let’s use IDLE to see how this works.

118 Chapter 4

idle session

Let’s see what happens when you try to open a file that doesn’t exist, such as a disk file called missing.txt.
Enter the following code at IDLE’s shell:

>>> try:

 data = open('missing.txt')

 print(data.readline(), end='')

except IOError:

 print('File error')

finally:

 data.close()

File error

Traceback (most recent call last):

 File "<pyshell#8>", line 7, in <module>

 data.close()

NameError: name 'data' is not defined

There’s your error message, but…

…what’s this?!? Another exception was raised and it killed your code.

As the file doesn’t exist, the data file object wasn’t created, which subsequently makes it impossible to call the
close() method on it, so you end up with a NameError. A quick fix is to add a small test to the finally
suite to see if the data name exists before you try to call close(). The locals() BIF returns a collection of
names defined in the current scope. Let’s exploit this BIF to only invoke close() when it is safe to do so:

finally:

 if 'data' in locals():

 data.close()

File error No extra exceptions this time. Just your error message.

Here you’re searching the collection returned by the locals() BIF for the string data. If you find it, you can
assume the file was opened successfully and safely call the close() method.

If some other error occurs (perhaps something awful happens when your code calls the print() BIF), your
exception-handling code catches the error, displays your “File error” message and, finally, closes any opened file.

But you still are none the wiser as to what actually caused the error.

The “in” operator tests
for membership.

This is just the bit of code that needs to change. Press Alt-P to edit your code at IDLE’s shell.

you are here 4 119

persistence

When an exception is raised and handled by your except suite, the Python interpreter passes an exception object
into the suite. A small change makes this exception object available to your code as an identifier:

except IOError as err:

 print('File error: ' + err)

Traceback (most recent call last):

 File "<pyshell#18>", line 5, in <module>

 print('File error:' + err)

TypeError: Can't convert 'IOError' object to str implicitly

Give your exception object a name…
…then use it as part of
your error message.

Whoops! Yet another
exception; this time it’s a
“TypeError”.

This time your error message didn’t appear at all. It turns out exception objects and strings are not compatible
types, so trying to concatenate one with the other leads to problems. You can convert (or cast) one to the other
using the str() BIF:

except IOError as err:

 print('File error: ' + str(err))

File error: [Errno 2] No such file or directory: 'missing.txt'

Use the “str()” BIF to force the exception object to behave like a string.

And you now get a specific error
message that tells you exactly
what went wrong.

Of course, all this extra logic is starting to obscure the
real meaning of your code.

Wouldn’t it be dreamy if there
were a way to take advantage of
these mechanisms without the code
bloat? I guess it’s just a fantasy...

But when you try to run your code with this change made, another exception is raised:

Now, with this final change, your code is behaving exactly as expected:

120 Chapter 4

try with

Use with to work with files
Because the use of the try/except/finally pattern is so common when
it comes to working with files, Python includes a statement that abstracts
away some of the details. The with statement, when used with files, can
dramatically reduce the amount of code you have to write, because it negates
the need to include a finally suite to handle the closing of a potentially
opened data file. Take a look:

 try:

 data = open('its.txt', "w")

 print("It's...", file=data)

 except IOError as err:

 print('File error: ' + str(err))

 finally:

 if 'data' in locals():

 data.close()

try:

 with open('its.txt', "w") as data:

 print("It's...", file=data)

except IOError as err:

 print('File error: ' + str(err))

This is the usual “try/except/finally” pattern.

The use of “with”
negates the need for
the “finally” suite.

When you use with, you no longer have to worry about closing any opened
files, as the Python interpreter automatically takes care of this for you. The
with code on the the right is identical in function to that on the left. At Head
First Labs, we know which approach we prefer.

Geek Bits

The with statement takes advantage of a Python technology
called the context management protocol.

you are here 4 121

persistence

Grab your pencil and rewrite this try/except/finally code to use
with instead. Here’s your code with the appropriate finally
suite added:

 try:

 man_file = open('man_data.txt', 'w')

 other_file = open('other_data.txt', 'w')

 print(man, file=man_file)

 print(other, file=other_file)

 except IOError as err:

 print('File error: ' + str(err))

 finally:

 if 'man_file' in locals():

 man_file.close()

 if 'other_file' in locals():

 other_file.close()

Write your
“with” code
here.

122 Chapter 4

no finally

You were to grab your pencil and rewrite this try/except/finally
code to use with instead. Here’s your code with the appropriate
finally suite added:

 try:

 man_file = open('man_data.txt', 'w')

 other_file = open('other_data.txt', 'w')

 print(man, file=man_file)

 print(other, file=other_file)

 except IOError as err:

 print('File error: ' + str(err))

 finally:

 if 'man_file' in locals():

 man_file.close()

 if 'other_file' in locals():

 other_file.close()

try:
 with open(‘man_data.txt', ‘w') as man_file:
 print(man, file=man_file)
 with open(‘other_data.txt', ‘w') as other_file:
 print(other, file=other_file)
except IOError as err:
 print(‘File error: ' + str(err))

with open('man_data.txt', 'w') as man_file, open('other_data.txt’, 'w’) as other_file:
 print(man, file=man_file)
 print(other, file=other_file)

Using two “with”
statements to rewrite
the code without the
“finally” suite.

Or combine the two “open()” calls into one
“with” statement.

Note the use of the comma.

you are here 4 123

persistence

Test Drive
Add your with code to your program, and let’s confirm that it continues to function as expected. Delete the two
data files you created with the previous version of your program and then load your newest code into IDLE and give
it a spin.

No errors in the IDLE
shell appears to indica

te

that the program ran
successfully.

If you check your folder, your two data files should’ve reappeared. Let’s take a closer look at the data file’s contents
by opening them in your favorite text editor (or use IDLE).

Here’s what the
man said.

Here’s what the
other man said.

You’ve saved the lists in two files containing what the Man said and what the Other
man said. Your code is smart enough to handle any exceptions that Python or
your operating system might throw at it.

Well done. This is really coming along.

124 Chapter 4

unsuitable format

Default formats are unsuitable for files
Although your data is now stored in a file, it’s not really in a useful format.
Let’s experiment in the IDLE shell to see what impact this can have.

Use a with statement to open your data file and display a single line from it:

>>> with open('man_data.txt') as mdf:

 print(mdf.readline())

['Is this the right room for an argument?', "No you haven't!", 'When?', "No you didn't!", "You
didn't!", 'You did not!', 'Ah! (taking out his wallet and paying) Just the five minutes.',
'You most certainly did not!', "Oh no you didn't!", "Oh no you didn't!", "Oh look, this isn't
an argument!", "No it isn't!", "It's just contradiction!", 'It IS!', 'You just contradicted
me!', 'You DID!', 'You did just then!', '(exasperated) Oh, this is futile!!', 'Yes it is!']

Yikes! It would appear your list is converted to a large string by print()
when it is saved. Your experimental code reads a single line of data from the
file and gets all of the data as one large chunk of text…so much for your code
saving your list data.

What are your options for dealing with this problem?

Note: no need to close your file, because “with” does that for you.

Geek Bits

By default, print() displays your data in a format that mimics
how your list data is actually stored by the Python interpreter.
The resulting output is not really meant to be processed further…
its primary purpose is to show you, the Python programmer,
what your list data “looks like” in memory.

you are here 4 125

persistence

I guess I could write some custom
parsing code to process the “internal
format” used by “print()”. It shouldn’t
take me all that long...

It might be worth looking at
using something other than a plain

“print()” to format the data prior
to saving it to the data file? I’d

certainly look into it.

Parsing the data in the file is a possibility…although it’s complicated by all those
square brackets, quotes, and commas. Writing the required code is doable,
but it is a lot of code just to read back in your saved data.

Of course, if the data is in a more easily parseable format, the task would likely be
easier, so maybe the second option is worth considering, too?

Can you think of a function you created from earlier
in this book that might help here?

126 Chapter 4

nonstandard output

Why not modify print lol()?
Recall your print_lol() function from Chapter 2, which takes any list (or
list of lists) and displays it on screen, one line at a time. And nested lists can
be indented, if necessary.

This functionality sounds perfect! Here’s your code from the nester.py
module (last seen at the end of Chapter 2):

This code currently displays your
data on the screen.

Amending this code to print to a disk file instead of the screen (known as
standard output) should be relatively straightforward. You can then save your
data in a more usable format.

Standard Output The default place where your code writes its
data when the “print()” BIF is used. This is typically the screen.

In Python, standard output is referred to as “sys.stdout” and
is importable from the Standard Library’s “sys” module.

you are here 4 127

persistence

Let’s add a fourth argument to your print_lol() function to identify a place to write your
data to. Be sure to give your argument a default value of sys.stdout, so that it continues to
write to the screen if no file object is specified when the function is invoked.

Fill in the blanks with the details of your new argument. (Note: to save on space, the comments
have been removed from this cod, but be sure to update your comments in your nester.py
module after you’ve amended your code.)

1

def print_lol(the_list, indent=False, level=0,):

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item, indent, level+1,)

 else:

 if indent:

 for tab_stop in range(level):

 print("\t", end='',)

 print(each_item,)

What needs to happen to the code in your with statement now that your amended print_lol()
function is available to you?

2

List the name of the module(s) that you now need to import into your program in order to support your
amendments to print_lol().

3

128 Chapter 4

extend your function

You were to add a fourth argument to your print_lol() function to identify a place to write
your data to, being sure to give your argument a default value of sys.stdout so that it
continues to write to the screen if no file object is specified when the function is invoked.

You were to fill in the blanks with the details of your new argument. (Note: to save on space, the
comments have been removed from this code, but be sure to update those in your nester.py
module after you’ve amended your code).

1

def print_lol(the_list, indent=False, level=0,):

 for each_item in the_list:

 if isinstance(each_item, list):

 print_lol(each_item, indent, level+1,)

 else:

 if indent:

 for tab_stop in range(level):

 print("\t", end='',)

 print(each_item,)

What needs to happen to the code in your with statement now that your amended print_lol()
function is available to you?

2

List the name of the module(s) that you now need to import into your program in order to support your
amendments to print_lol().

3

fh=sys.stdout

fh

file=fh
file=fh

The code needs to be adjusted so that instead of using the
“print()” BIF, the code needs to invoke “print_lol()” instead.

The program needs to import the amended “nester” module.

Note: the
signature has
changed.

Adjust the two
calls to “print()”
to use the new
argument.

Add the fourth argument and give it a
default value.

you are here 4 129

persistence

Test Drive
Before taking your code for a test drive, you need to do the following:

 1. Make the necessary changes to nester and install the amended module into your Python
 environment (see Chapter 2 for a refresher on this). You might want to upload to PyPI, too.

 2. Amend your program so that it imports nester and uses print_lol() instead of print()
 within your with statement. Note: your print_lol() invocation should look something like this:
 print_lol(man, fh=man_file).

When you are ready, take your latest program for a test drive and let’s see what happens:

Let’s check the contents of the files to see what they look like now.

As before, there’s no
output on screen.

What the man
said is now
legible.

And here’s what
the other man
said.

This is looking good. By amending your nester module, you’ve provided a
facility to save your list data in a legible format. It’s now way easier on the eye.

But does this make it any easier to read the data back in?

130 Chapter 4

brittle code

Hang on a second...haven’t you been
here before? You’ve already written
code to read in lines from a data file and
put ‘em into lists...do you like going around
in circles?!?

That’s a good point.

This problem is not unlike the problem from the
beginning of the chapter, in that you’ve got lines of
text in a disk file that you need to process, only now
you have two files instead of one.

You know how to write the code to process your
new files, but writing custom code like this is
specific to the format that you’ve created for this
problem. This is brittle: if the data format changes,
your custom code will have to change, too.

Ask yourself: is it worth it?

you are here 4 131

persistence

Head First: Hello, CC, how are you today?

Custom Code: Hi, I’m great! And when I’m not
great, there’s always something I can do to fix things.
Nothing’s too much trouble for me. Here: have a
seat.

Head First: Why, thanks.

Custom Code: Let me get that for you. It’s my
new custom SlideBack&Groove™, the 2011 model,
with added cushions and lumbar support…and it
automatically adjusts to your body shape, too. How
does that feel?

Head First: Actually [relaxes], that feels kinda
groovy.

Custom Code: See? Nothing’s too much trouble
for me. I’m your “go-to guy.” Just ask; absolutely
anything’s possible when it’s a custom job.

Head First: Which brings me to why I’m here. I
have a “delicate” question to ask you.

Custom Code: Go ahead, shoot. I can take it.

Head First: When is custom code appropriate?

Custom Code: Isn’t it obvious? It’s always
appropriate.

Head First: Even when it leads to problems down
the road?

Custom Code: Problems?!? But I’ve already told
you: nothing’s too much trouble for me. I live to
customize. If it’s broken, I fix it.

Head First: Even when a readymade solution
might be a better fit?

Custom Code: Readymade? You mean (I hate to
say it): off the shelf?

Head First: Yes. Especially when it comes to
writing complex programs, right?

Custom Code: What?!? That’s where I excel:
creating beautifully crafted custom solutions for folks
with complex computing problems.

Head First: But if something’s been done before,
why reinvent the wheel?

Custom Code: But everything I do is custom-
made; that’s why people come to me…

Head First: Yes, but if you take advantage of other
coders’ work, you can build your own stuff in half
the time with less code. You can’t beat that, can you?

Custom Code: “Take advantage”…isn’t that like
exploitation?

Head First: More like collaboration, sharing,
participation, and working together.

Custom Code: [shocked] You want me to give my
code…away?

Head First: Well…more like share and share alike.
I’ll scratch your back if you scratch mine. How does
that sound?

Custom Code: That sounds disgusting.

Head First: Very droll [laughs]. All I’m saying is
that it is not always a good idea to create everything
from scratch with custom code when a good enough
solution to the problem might already exist.

Custom Code: I guess so…although it won’t be as
perfect a fit as that chair.

Head First: But I will be able to sit on it!

Custom Code: [laughs] You should talk to my
buddy Pickle…he’s forever going on about stuff like
this. And to make matters worse, he lives in a library.

Head First: I think I’ll give him a shout. Thanks!

Custom Code: Just remember: you know where to
find me if you need any custom work done.

Custom Code Exposed
This week’s interview:
When is custom code appropriate?

132 Chapter 4

in a pickle

Pickle your data
Python ships with a standard library called pickle, which can save and load
almost any Python data object, including lists.

Once you pickle your data to a file, it is persistent and ready to be read into
another program at some later date/time:

['Is this the right room for an
argument?', "No you haven't!",
'When?', "No you didn't!", "You
didn't!", 'You did not!', 'Ah!
(taking out his wallet and paying)
Just the five minutes.', 'You
most certainly did not!', "Oh
no you didn't!", "Oh no you
didn't!", "Oh look, this isn't
an argument!", "No it isn't!",
"It's just contradiction!", 'It
IS!', 'You just contradicted
me!', 'You DID!', 'You did just
then!', '(exasperated) Oh, this
is futile!!', 'Yes it is!']

[‘Is this the right room
for an argument?’, “No
you haven’t!”, ‘When?’,
“No you didn’t!”, “You
didn’t!”, ‘You did not!’,
‘Ah! (taking out his wallet
and paying) Just the five
minutes.’, ‘You most
certainly did not!’, “Oh
no you didn’t!”, “Oh no
you didn’t!”, “Oh look,
this isn’t an argument!”,
“No it isn’t!”, “It’s
just contradiction!”,
‘It IS!’, ‘You just
contradicted me!’, ‘You
DID!’, ‘You did just
then!’, ‘(exasperated)
Oh, this is futile!!’,
‘Yes it is!’]

Your data as it appears
in Python’s memory The pickle engine

Your
pickled
data

Feed your Python data to pickle.
Out comes the
pickled version of
your data.

You can, for example, store your pickled data on disk, put it in a database,
or transfer it over a network to another computer.

When you are ready, reversing this process unpickles your persistent pickled
data and recreates your data in its original form within Python’s memory:

['Is this the right room for an
argument?', "No you haven't!",
'When?', "No you didn't!", "You
didn't!", 'You did not!', 'Ah!
(taking out his wallet and paying)
Just the five minutes.', 'You
most certainly did not!', "Oh
no you didn't!", "Oh no you
didn't!", "Oh look, this isn't
an argument!", "No it isn't!",
"It's just contradiction!", 'It
IS!', 'You just contradicted
me!', 'You DID!', 'You did just
then!', '(exasperated) Oh, this
is futile!!', 'Yes it is!']

[‘Is this the right room
for an argument?’, “No
you haven’t!”, ‘When?’,
“No you didn’t!”, “You
didn’t!”, ‘You did not!’,
‘Ah! (taking out his wallet
and paying) Just the five
minutes.’, ‘You most
certainly did not!’, “Oh
no you didn’t!”, “Oh no
you didn’t!”, “Oh look,
this isn’t an argument!”,
“No it isn’t!”, “It’s
just contradiction!”,
‘It IS!’, ‘You just
contradicted me!’, ‘You
DID!’, ‘You did just
then!’, ‘(exasperated)
Oh, this is futile!!’,
‘Yes it is!’]

Your data is recreated in Python’s memory, exactly as before.The same pickle engine

Your
pickled
data

Feed your pickled data to pickle.
Out comes the
Python version of
your pickled data.

you are here 4 133

persistence

Save with dump and restore with load
Using pickle is straightforward: import the required module, then use
dump() to save your data and, some time later, load() to restore it. The
only requirement when working with pickled files is that they have to be
opened in binary access mode:

import pickle

 ...

with open('mydata.pickle', 'wb') as mysavedata:

 pickle.dump([1, 2, 'three'], mysavedata)

 ...

with open('mydata.pickle', 'rb') as myrestoredata:

 a_list = pickle.load(myrestoredata)

print(a_list)

What if something goes wrong?

If something goes wrong when pickling or unpickling your data, the pickle
module raises an exception of type PickleError.

The “b” tells
Python to open
your data files
in BINARY
mode.

Always
remember
to import
the “pickle”
module.

To save your data,
use “dump()”.

Restore your data from your file using “load()”.

Assign your
restored data
to an identifie

r.

Once your data is back in your program, you can

treat it like any other data object.

w Here’s a snippet of your code as it currently stands. Grab your
pencil and strike out the code you no longer need, and then
replace it with code that uses the facilities of pickle instead.
Add any additional code that you think you might need, too.

try:

 with open('man_data.txt', 'w') as man_file, open('other_data.txt', 'w') as other_file:

 nester.print_lol(man, fh=man_file)

 nester.print_lol(other, fh=other_file)

except IOError as err:

 print('File error: ' + str(err))

134 Chapter 4

significance of the pickle

 print(‘Pickling error: ‘ + str(perr))
Here’s a snippet of your code as it currently stands. You were to grab
your pencil and strike out the code you no longer need, and then
replace it with code that uses the facilities pickle instead. You
were also to add any additional code that you think you might need.

try:

 with open('man_data.txt', 'w') as man_file, open('other_data.txt', 'w') as other_file:

 nester.print_lol(man, fh=man_file)

 nester.print_lol(other, fh=other_file)

except IOError as err:

 print('File error: ' + str(err))

import pickle

except pickle.PickleError as perr:

pickle.dump(man, man_file)
pickle.dump(other, other_file)

 print('Pickling error: ' + str(perr))

‘wb' 'wb'

Import “pickle” near the top of your program.

Replace the two calls to “nester.print_lol()”
with calls to “pickle.dump()”.

Don’t forget to handle any exceptions that can occur.

Change the access mode to
be “writeable, binary”.

Q: When you invoked print_lol() earlier, you provided only two arguments, even though the function signature requires you to
provide four. How is this possible?

A: When you invoke a Python function in your code, you have options, especially when the function provides default values for some
arguments. If you use positional arguments, the position of the argument in your function invocation dictates what data is assigned to which
argument. When the function has arguments that also provide default values, you do not need to always worry about positional arguments
being assigned values.

Q: OK, you’ve completely lost me. Can you explain?

A: Consider print(), which has this signature: print(value, sep=' ', end='\n', file=sys.stdout). By
default, this BIF displays to standard output (the screen), because it has an argument called file with a default value of sys.stdout.
The file argument is the fourth positional argument. However, when you want to send data to something other than the screen, you do not need
to (nor want to have to) include values for the second and third positional arguments. They have default values anyway, so you need to provide
values for them only if the defaults are not what you want. If all you want to do is to send data to a file, you invoke the print() BIF like this:
print("Dead Parrot Sketch", file='myfavmonty.txt') and the fourth positional argument uses the value
you specify, while the other positional arguments use their defaults. In Python, not only do the BIFs work this way, but your custom functions
support this mechamism, too.

you are here 4 135

persistence

Test Drive
Let’s see what happens now that your code has been amended to use the standard pickle module instead of
your custom nester module. Load your amended code into IDLE and press F5 to run it.

So, once again, let’s check the contents of the files to see what they look like now:

Once again, you
get no visual clue
that something has
happened.

The is the other
man’s pickled data.

The is the man’s
pickled data.

It appears to have worked…but these files look like gobbledygook! What gives?

Recall that Python, not you, is pickling your data. To do so efficiently, Python’s
pickle module uses a custom binary format (known as its protocol). As you
can see, viewing this format in your editor looks decidedly weird.

Don’t worry: it is supposed to look like this.

136 Chapter 4

idle session

pickle really shines when you load some previously pickled data into another program. And, of course, there’s
nothing to stop you from using pickle with nester. After all, each module is designed to serve different
purposes. Let’s demonstrate with a handful of lines of code within IDLE’s shell. Start by importing any required
modules:

>>> import pickle

>>> import nester

No surprises there, eh?

Next up: create a new identifier to hold the data that you plan to unpickle.Create an empty list called new_man:

>>> new_man = []

Yes, almost too exciting for words, isn’t it? With your list created. let’s load your pickled data into it. As you are
working with external data files, it’s best if you enclose your code with try/except:

>>> try:

 with open('man_data.txt', 'rb') as man_file:

 new_man = pickle.load(man_file)

except IOError as err:

 print('File error: ' + str(err))

except pickle.PickleError as perr:

 print('Pickling error: ' + str(perr))

This code is not news to you either. However, at this point, your data has been unpickled and assigned to the
new_man list. It’s time for nester to do its stuff:

>>> nester.print_lol(new_man)

Is this the right room for an argument?

No you haven’t!

When?

No you didn’t!

 ...

You did just then!

(exasperated) Oh, this is futile!!

Yes it is!

And to finish off, let’s display the first line spoken as well as the last:

>>> print(new_man[0])

Is this the right room for an argument?

>>> print(new_man[-1])

Yes it is!

Not all the data is shown here, but trust us: it’s all there.

See: after all that, it is the right room! §

you are here 4 137

persistence

Generic file I/O with pickle is the way to go!

Now, no matter what data you create
and process in your Python programs,
you have a simple, tested, tried-
and-true mechanism for saving and
restoring your data. How cool is that?

Python takes care of your file I/O details, so you can concentrate on what
your code actually does or needs to do.

As you’ve seen, being able to work with, save, and restore data in lists is a
breeze, thanks to Python. But what other data structures does Python
support out of the box?

Let’s dive into Chapter 5 to find out.

138 Chapter 4

python toolbox

Your Python Toolbox

You’ve got Chapter 4 under your
belt and you’ve added some key
Python techiques to your toolbox.

CHAPT
ER 4

 � The strip() method removes
unwanted whitespace from strings.

 � The file argument to the print()
BIF controls where data is sent/saved.

 � The finally suite is always executed
no matter what exceptions occur within a
try/except statement.

 � An exception object is passed into the
except suite and can be assigned to
an identifier using the as keyword.

 � The str() BIF can be used to access
the stringed representation of any data
object that supports the conversion.

 � The locals() BIF returns a collection
of variables within the current scope.

 � The in operator tests for membership.

 � The “+” operator concatenates two
strings when used with strings but adds
two numbers together when used with
numbers.

 � The with statement automatically
arranges to close all opened files, even
when exceptions occur. The with
statement uses the as keyword, too.

 � sys.stdout is what Python calls
“standard output” and is available from
the standard library’s sys module.

 � The standard library’s pickle module
lets you easily and efficiently save and
restore Python data objects to disk.

 � The pickle.dump() function saves
data to disk.

 � The pickle.load() function
restores data from disk.

Python Lingo
• “Immutable types” -

 data types

in Python that, on
ce assigned

a value, cannot
 have that valu

e

changed.

• “Pickling” - the process of

saving a data o
bject to persis

tence

storage.

• “Unpickling” - the process of

restoring a sav
ed data object

from persistence sto
rage.

CH
AP

T
ER

 4

this is a new chapter 139

Life could be so much
easier if only she’d let me
help her extract, sort, and
comprehend her data...

comprehending data5

Work that data!

Data comes in all shapes and sizes, formats and encodings.
To work effectively with your data, you often have to manipulate and transform it into a

common format to allow for efficient processing, sorting, and storage. In this chapter, you’ll

explore Python goodies that help you work your data up into a sweat, allowing you to

achieve data-munging greatness. So, flip the page, and let’s not keep the coach waiting…

140 Chapter 5

coaching crisis

Coach Kelly needs your help

I’m too busy on the track
to waste time fiddling with
my computer. Can you help
me process my athlete data?

The coach is an old friend, and you’d love to help. His crack squad of U10
athletes has been training hard. With each 600m run they do, Coach Kelly
has recorded their time in a text file on his computer. There are four files in
all, one each for James, Sarah, Julie, and Mikey.

2-34,3:21,2.34,2.45,3.01,2:01,2:01,3:10,2-22

james.txt

2.59,2.11,2:11,2:23,3-10,2-23,3:10,3.21,3-21

julie.txt

2:22,3.01,3:01,3.02,3:02,3.02,3:22,2.49,2:38

mikey.txt
2:58,2.58,2:39,2-25,2-55,2:54,2.18,2:55,2:55

sarah.txt

Initially, the coach needs a quick way to know the top three fastest times for each
athlete.

Can you help?

you are here 4 141

comprehending data

Do this!

Before proceeding with this
chapter, take a few moments
to download the four data
files from the Head First
Python support website.

Let’s begin by reading the data from each of the files into its own list. Write a short program to
process each file, creating a list for each athlete’s data, and display the lists on screen.

Hint: Try splitting the data on the commas, and don’t forget to strip any unwanted whitespace.

Write your
code here.

142 Chapter 5

let’s split

Let’s begin by reading the data from each of the files into its own list. You were to write a short
program to process each file, creating a list for each athlete’s data. You were then to display the
lists on screen.

with open(‘james.txt’) as jaf:
 data = jaf.readline()
james = data.strip().split(‘,’)
with open(‘julie.txt’) as juf:
 data = juf.readline()
julie = data.strip().split(‘,’)
with open(‘mikey.txt’) as mif:
 data = mif.readline()
mikey = data.strip().split(‘,’)
with open(‘sarah.txt’) as saf:
 data = saf.readline()
sarah = data.strip().split(‘,’)

print(james)
print(julie)
print(mikey)
print(sarah)

Open each of
the data files
in turn, read
the line of
data from the
file, and create
a list from the
line of data.

Open the file.

Read the line of data.

Convert the data to a list.

Display the four lists on screen.

Q: That data.strip().split(',') line looks a little weird. Can you explain what’s going on?

A: That’s called method chaining. The first method, strip(), is applied to the line in data, which removes any unwanted whitespace
from the string. Then, the results of the stripping are processed by the second method, split(','), creating a list. The resulting list is
then applied to the target identifier in the previous code. In this way, the methods are chained together to produce the required result. It helps
if you read method chains from left to right.

you are here 4 143

comprehending data

Test Drive
Load your code into IDLE and run it to confirm that it’s all OK for now:

Here’s your
program as
displayed in
IDLE.

And here’s the output
produced by running
your code.

So far, so good. Coach Kelly’s data is now represented by four lists in Python’s
memory. Other than the use of method chaining, there’s nothing much new
here, because you’ve pretty much mastered reading data from files and using
it to populate lists.

There’s nothing to show the coach yet, so no point in disturbing him until his
data is arranged in ascending order, which requires you to sort it.

Let’s look at your sorting options in Python.

144 Chapter 5

in-place or copied sorting

Sort in one of two ways
When it comes to sorting your data using Python, you have two options.

In-place sorting takes your data, arranges it in the order you specify, and
then replaces your original data with the sorted version. The original ordering
is lost. With lists, the sort() method provides in-place sorting:

[1,
 3,

4, 2
, 6,

 5]

[1, 2, 3,
 4, 5, 6]

The original,
unordered data

The original,
unordered data

The original data has now been ordered (and replaced).

The Python “In-place Sorting” Engine transforms, then replaces.

The Python “Copied Sorting” Engine transforms and returns.

[1,
 3,

4, 2
, 6,

 5]

Copied sorting takes your data, arranges it in the order you specify, and
then returns a sorted copy of your original data. Your original data’s ordering
is maintained and only the copy is sorted. In Python, the sorted() BIF
supports copied sorting.

The data has now been
ordered (and copied).

[1,
2, 3,

 4, 5
, 6]

The original, unordered data remains UNTOUCHED.

[1, 3, 4, 2, 6, 5]

you are here 4 145

comprehending data

Let’s see what happens to your data when each of Python’s sorting options is used. Start by creating an unordered
list at the IDLE shell:

>>> data = [6, 3, 1, 2, 4, 5]

>>> data

[6, 3, 1, 2, 4, 5]

Perform an in-place sort using the sort() method that is built in as standard to every Python list:

>>> data.sort()

>>> data

[1, 2, 3, 4, 5, 6]

Reset data to its original unordered state, and then perform a copied sort using the sorted() BIF:

>>> data = [6, 3, 1, 2, 4, 5]

>>> data

[6, 3, 1, 2, 4, 5]

>>> data2 = sorted(data)

>>> data

[6, 3, 1, 2, 4, 5]

>>> data2

[1, 2, 3, 4, 5, 6]

Create a list of
unordered data and assign to a variable.

Perform IN-PLACE sorting on the data.
The data’s ordering has changed.

The data’s ordering has been reset.

Perform COPIED sorting on the data.
Same as it ever was.

The copied data is ordered
from lowest to highest.

Either sorting option works with the coach’s data, but let’s use a
copied sort for now to arrange to sort the data on output. In the
space below, provide four amended print() statements to
replace those at the bottom of your program.

146 Chapter 5

all sorted

Either sorting option works with the coach’s data, but let’s use
a copied sort for now to arrange to sort the data on output. You
were to provide four amended print() statements to replace
those at the bottom of your program.

print(sorted(james))
print(sorted(julie))
print(sorted(mikey))
print(sorted(sarah))

Q: What happens to the unsorted data when I use sort()?

A: For all intents and purposes, it disappears. Python takes a copy,
sorts it, and then replaces your original data with the sorted version.

Q: And there’s no way to get the original data back?

A: No. If the ordering of the original data is important to you, use
the sorted() BIF to transform your data into a sorted copy.

Simply call
“sorted()” on the
data BEFORE
you display it on
screen.

Geek Bits

You’ve already seen method chaining, and now it’s time to say
“hello” to function chaining. Function chaining allows you to apply
a series of functions to your data. Each function takes your data,
performs some operation on it, and then passes the transformed
data on to the next function. Unlike method chains, which read
from left to right, function chains read from right to left (just to
keep things interesting).

you are here 4 147

comprehending data

Test Drive
Let’s see if this improves your output in any way. Make the necessary amendments to your code and
run it.

Hey, it looks like your data values are
not uniform. Is the problem with all those
periods, dashes, and colons?

Here’s the updat
es

to the code.
But look at THIS! The data is not at all sorted…which is, like, weird.

Yes. The minute and seconds separators are
confusing Python’s sorting technology.

When recording his athletes’ times in each of their files, Coach
Kelly sometimes used a different character to separate minutes
from seconds. It looks like you need to fix your data.

Look at this: 2-55 is
coming BEFORE 2.18…now
that is weird.

148 Chapter 5

time trials

The trouble with time
Well…there’s never enough of it, is there?

Let’s look closely at the coach’s data to see what the problem is. Here’s Sarah
raw data again:

2:58,2.58,2:39,2-25,2-55,2:54,2.18,2:55,2:55

sarah.txt

Recall that data read from a file comes into your program as text, so Sarah’s
data looks like this once you turn it into a list of “times”:

 ['2-25', '2-55', '2.18', '2.58', '2:39', '2:54', '2:55', '2:55', '2:58']

These are all strings, even though the coach
thinks they’re times.

['2:58', '2.58', '2:39’, '2-25', '2-55', '2:54’, '2.18', '2:55', '2:55']

And when you sort Sarah’s data, it ends up in this order (which isn’t quite
what you were expecting):

Whoops! That’s not right. How can 2.18 come after 2-55?

Whoops again. 2:39
can’t come between
2.58 and 2:54, can it?

Python sorts the strings, and when it comes to strings, a dash comes before a
period, which itself comes before a colon. As all the strings start with 2, the
next character in each string acts like a grouping mechanism, with the dashed
times grouped and sorted, then the period times, and finally the colon times.

Nonuniformity in the coach’s data is causing the sort to fail.

I don’t get what the
problem is...they’re all
times to me.

Oh, look: what a lovely
bunch of strings...

you are here 4 149

comprehending data

Code Magnets
Let’s create a function called sanitize(), which takes as input
a string from each of the athlete’s lists. The function then processes
the string to replace any dashes or colons found with a period and
returns the sanitized string. Note: if the string already contains a
period, there’s no need to sanitize it.

Rearrange the code magnets at the bottom of the page to provide
the required functionality.

time_string.split(splitter)

if '-' in time_string:

splitter = ':'

def sanitize(time_string):

 return(mins + '.' + secs)

Your magnets are
waiting.

elif ':' in time_string:

else:

split
ter =

 '-'

return(time_string)

(mins, secs) =

Return the sanitized time string to the caller of this function.

150 Chapter 5

sanitzing function

def sanitize(time_string):

 return(mins + '.' + secs)

Code Magnets Solution
You were to create a function called sanitize(), which takes
as input a string from each of the athlete’s lists. The function then
processes the string to replace any dashes or colons found with a
period and returns the sanitized string. Note: if the string already
contains a period, there’s no need to sanitize it.

You were to rearrange the code magnets at the bottom of the
previous page to provide the required functionality.

if '-' in time_string:

splitter = ':'

elif ':' in time_string:

else:

splitter = '-'

return(time_string)

Use the “in”
operator to
check if the
string contains
a dash or a
colon. Do nothing if the string does NOT need to be sanitized.

Split the string to extract the
minutes and seconds parts.

Of course, on its own, the sanitize() function is not enough. You need
to iterate over each of your lists of data and use your new function to convert
each of the athlete’s times into the correct format.

Let’s put your new function to work right away.

time_string.split(splitter)(mins, secs) =

you are here 4 151

comprehending data

print()

Let’s write the code to convert your existing data into a sanitized version of itself. Create four
new lists to hold the sanitized data. Iterate over each athlete’s list data and append each
sanitized string from each list to the appropriate new list. Conclude your program by printing a
sorted copy of each new list to the screen.

with open('james.txt') as jaf: data = jaf.readline()

james = data.strip().split(',')

with open('julie.txt') as juf: data = juf.readline()

julie = data.strip().split(',')

with open('mikey.txt') as mif: data = mif.readline()

mikey = data.strip().split(',')

with open('sarah.txt') as saf: data = saf.readline()

sarah = data.strip().split(',')

print()

print()

print()

The code that
reads the data
from the data
files remains
unchanged
(and has been
compressed to fit
on this page).

What happens
to the four

“print()”
statements?

Add your new
code here.

152 Chapter 5

sanitized for your protection

print()

Let’s write the code to convert your existing data into a sanitized version of itself. You were to
create four new lists to hold the sanitized data. You were then to iterate over each athlete’s data
and append each sanitized string from each list to an appropriate new list. You were to conclude
your program by printing a sorted copy of each new list to the screen.

print()

print()

print()

The four “print()” statements now
display the new
lists, which are
sorted, too.

with open('james.txt') as jaf: data = jaf.readline()

james = data.strip().split(',')

with open('julie.txt') as juf: data = juf.readline()

julie = data.strip().split(',')

with open('mikey.txt') as mif: data = mif.readline()

mikey = data.strip().split(',')

with open('sarah.txt') as saf: data = saf.readline()

sarah = data.strip().split(',')

clean_james = []
clean_julie = []
clean_mikey = []
clean_sarah = []

for each_t in sarah:
 clean_mikey.append(sanitize(each_t))
for each_t in mikey:
 clean_julie.append(sanitize(each_t))
for each_t in julie:
 clean_james.append(sanitize(each_t))
for each_t in james:

 clean_sarah.append(sanitize(each_t))

sorted(clean_james)
sorted(clean_julie)
sorted(clean_mikey)
sorted(clean_sarah)

Create four
new, initially
empty lists.

Take each of the data items in the original lists, sanitize them, and then append the sanitized data to the appropriate new list.

you are here 4 153

comprehending data

Test Drive
Combine your sanitize() function with your amended code from the previous page, and then
press F5 in IDLE to confirm the sorting is now working as expected.

This output looks much better.

It’s taken a bit of work, but now the data from each of the four files is both
sorted and uniformly formatted. By preprocessing your data before you
sort it, you’ve helped ensure Python’s sorting technology performs correctly.

Geek Bits

By default, both the sort() method and the sorted()
BIF order your data in ascending order. To order your data in
descending order, pass the reverse=True argument to
either sort() or sorted() and Python will take care of
things for you.

Four sorted
lists

The sanitized data only
contains ‘.’ as a separator.

The ordering works, because all the times are now comparable.

154 Chapter 5

duplicated code

Hang on a sec! Something doesn’t feel quite
right...look at all that duplicated code, as well as
all those duplicated lists. This duplication is bad,
right? Is this really the best you can do?

That’s right. Duplicated code is a problem.

As things stand, your code creates four lists to hold the data as read
from the data files. Then your code creates another four lists to hold
the sanitized data. And, of course, you’re iterating all over the
place…

There has to be a better way to write code like this.

Transforming lists is such a common requirement that Python
provides a tool to make the transformation as painless as
possible. This tool goes by the rather unwieldly name of list
comprehension. And list comprehensions are designed to reduce
the amount of code you need to write when transforming one list
into another.

you are here 4 155

comprehending data

Comprehending lists
Consider what you need to do when you transform one list into another. Four
things have to happen. You need to:

Create a new list to hold the transformed data.1

Append the transformed data to the new list.4

With each iteration, perform the transformation.3

Iterate each data item in the original list.2

 clean_mikey = []

 for each_t in mikey:

 clean_mikey.append(sanitize(each_t))

1. Create.
2. Iterate.

3. Transform.

4. Append.

Here’s the same functionality as a list comprehension, which involves
creating a new list by specifying the transformation that is to be applied to each
of the data items within an existing list.

 clean_mikey = [sanitize(each_t) for each_t in mikey]

The new list is created… …within an existing list.…by applying a
transformation…

…to each
data item…

What’s interesting is that the transformation has been reduced to a single line
of code. Additionally, there’s no need to specify the use of the append()
method as this action is implied within the list comprehension. Neat, eh?

You get to pick the target identifier to use (just like with regular iterations).

156 Chapter 5

idle session

Let’s see some other list comprehension examples. Open up your IDLE shell and follow along with these one-liner
transformations.

Start by transforming a list of minutes into a list of seconds:

>>> mins = [1, 2, 3]

>>> secs = [m * 60 for m in mins]

>>> secs

[60, 120, 180]

How about meters into feet?

>>> meters = [1, 10, 3]

>>> feet = [m * 3.281 for m in meters]

>>> feet

[3.281, 32.81, 9.843]

Given a list of strings in mixed and lowercase, it’s a breeze to transform the strings to UPPERCASE:

>>> lower = ["I", "don't", "like", "spam"]

>>> upper = [s.upper() for s in lower]

>>> upper

['I', "DON'T", 'LIKE', 'SPAM']

Let’s use your sanitize() function to transform some list data into correctly formatted times:

>>> dirty = ['2-22', '2:22', '2.22']

>>> clean = [sanitize(t) for t in dirty]

>>> clean

['2.22', '2.22', '2.22']

It’s also possible to assign the results of the list transformation back onto the original target identifier. This
example transforms a list of strings into floating point numbers, and then replaces the original list data:

>>> clean = [float(s) for s in clean]

>>> clean

[2.22, 2.22, 2.22]

And, of course, the transformation can be a function chain, if that’s what you need:

>>> clean = [float(sanitize(t)) for t in ['2-22', '3:33', '4.44']]

>>> clean

[2.22, 3.33, 4.44]

Simply multiply the minute values by 60.

Yes, there are 3.281
feet in a meter.

Every string comes with the “upper()” method.

It’s never been so easy to turn something
dirty into something clean. §

The “float()” BIF converts to floating point.

Combining transformations on the data
items is supported, too!

you are here 4 157

comprehending data

Now that you know about list comprehensions, let’s write four of
them to process the coach’s four lists of timing values. Transform
each of your lists into sorted, sanitized version of themselves.
Grab your pencil and in the space provided, scribble the list
comprehensions you plan to use.

Q: So…let me get this straight: list comprehensions are good and list iterations are bad, right?

A: No, that’s not the best way to look at it. If you have to perform a transformation on every item in a list, using a list comprehension is the
way to go, especially when the transformation is easily specified on one line (or as a function chain). List iterations can do everything that list
comprehensions can, they just take more code, but iterations do provide more flexibility should you need it.

Geek Bits

Python’s list comprehension is an example of the language’s
support for functional programming concepts. There’s plenty of
debate about the best way to develop program code: either
procedurally, using functional programming techniques, or
using object orientation. At Head First Labs, we try not to get
involved in this debate, other than to rejoice in the fact that
Python supports, in one way or another, all three of these
programming practices.

158 Chapter 5

list comprehensions

Now that you know about list comprehensions, you were to write
four of them to process the coach’s four lists of timing values. You
were to transform each of your lists into sorted, sanitized version
of themselves. You were to grab your pencil and in the space
provided, scribble the list comprehensions you plan to use.

sorted([sanitize(t) for t in james])

sorted([sanitize(t) for t in sarah])
sorted([sanitize(t) for t in mikey])
sorted([sanitize(t) for t in julie])

The list comprehension
performs the
transformation, and the
new list is then ordered
by the “sorted()” BIF.

Rinse and repeat for the other lists.

 Be careful about where you use
the sorted() BIF when defining
your list comprehensions.

You may have been tempted to use the
function chain sorted(sanitize(t))

within your list comprehension. Don’t be. Recall that the
transformation works on one list item at a time, not the
entire list. In this example, the sorted() BIF expects
to sort a list, not an individual data item.

The beauty of list comprehensions

The use of list comprehensions with the coach’s athlete data has resulted
in a lot less code for you to maintain. Additionally, as you get used to list
comprehension syntax and usage, you’ll find that their use is natural and
matches the way your brain thinks about your data and the transformations
that you might want to apply.

Let’s confirm that your new code is working as expected.

you are here 4 159

comprehending data

Test Drive
Replace your list iteration code from earlier with your four new (beautiful) list comprehensions. Run
your program to confirm that the results have not changed.

Your new list comprehensions
produce EXACTLY the
same output as your earlier
list iterations.

As expected, the outout matches that from earlier.

You’ve written a program that reads Coach Kelly’s data from his data files,
stores his raw data in lists, sanitizes the data to a uniform format, and then
sorts and displays the coach’s data on screen. And all in 25 lines of code.

It’s probably safe to let the coach take a look at your output now.

What will the coach think?

160 Chapter 5

list slicing

Have you not been drinking enough
water? I wanted the three fastest times
for each athlete...but you’ve given me
everything and it contains duplicates!

In your haste to sanitize and sort your data, you forgot to worry about what
you were actually supposed to be doing: producing the three fastest times for each
athlete. And, of course, there’s no place for any duplicated times in your
output.

Accessing the first three data items from any list is easy. Either specify each list
item individually using the standard notation or use a list slice:

 james[0]

 james[1]

 james[2]

 james[0:3]

Access each data item
you need individually.

Use a list slice to access from list
item 0 up-to-but-not-including
list item 3.

But…what about removing duplicates from your list?

you are here 4 161

comprehending data

Iterate to remove duplicates
Processing a list to remove duplicates is one area where a list comprehension
can’t help you, because duplicate removal is not a transformation; it’s more of
a filter. And a duplicate removal filter needs to examine the list being created
as it is being created, which is not possible with a list comprehension.

To meet this new requirement, you’ll need to revert to regular list iteration
code.

Assume that the fourth from last line of code from your current program is changed to this:

 james = sorted([sanitize(t) for t in james])

That is, instead of printing the sanitized and sorted data for James to the screen, this line of
code replaces James’s unordered and nonuniform data with the sorted, sanitized copy.

Your next task is to write some code to remove any duplicates from the james list produced
by the preceding line of code. Start by creating a new list called unique_james, and then
populate it with the unique data items found in james. Additionally, provide code to display only
the top three fastest times for James.

Hint: you might want to consider using the not in operator.

162 Chapter 5

top three

Assume that the fourth from last line of code from your current program is changed to this:

 james = sorted([sanitize(t) for t in james])

That is, instead of printing the sanitized and sorted data for James to the screen, this line of
code replaces James’s unordered and non-uniform data with the sorted, sanitized copy.

Your next task was to write some code to remove any duplicates from the james list produced
by the preceding line of code. You were to start by creating a new list called unique_james
and then populate it with the unique data items found in james. Additionally, you were to
provide code to only display the top three fastest times for James.

unique_james = []

for each_t in james:
if each_t not in unique_james:

unique_james.append(each_t)

print(unique_james[0:3])

Create the
empty list to
hold the unique
data items. Iterate over the existing data… …and if the data item ISN’T

already in the new list…

…append the unique data item to
the new list.

Slice the first
three data items from the list and display them on
screen.

Do this!

Repeat the code on this page
for the rest of the coach’s lists:
julie, mikey & sarah. Add
all of your new code to your
existing program.

you are here 4 163

comprehending data

Test Drive
Take all of the recent amendments and apply them to your program. Run this latest code within IDLE
when you are ready.

It worked!

You are now displaying only the top three times for each athlete, and the
duplicates have been successfully removed.

The list iteration code is what you need in this instance. There’s a little bit of
duplication in your code, but it’s not too bad, is it?

Sort and sanitize each list.

Remove the
duplicates.

Looking good!

164 Chapter 5

duplicated code to remove duplication?

“Not too bad”...you’re kidding, right?!?
Surely there’s something that can be done
with all that duplicated duplicate code?

The irony is hard to avoid, isn’t it?

The code that removes duplicates from your lists is itself
duplicated.

Sometimes such a situation is unavoidable, and sometimes
creating a small function to factor out the duplicated code can
help. But something still doesn’t feel quite right here…

you are here 4 165

comprehending data

Wouldn't it be dreamy if there were a way to
quickly and easily remove duplicates from an
existing list? But I know it's just a fantasy...

166 Chapter 5

factory functions

Remove duplicates with sets
In addition to lists, Python also comes with the set data structure, which
behaves like the sets you learned all about in math class.

The overriding characteristics of sets in Python are that the data items in a set
are unordered and duplicates are not allowed. If you try to add a data item to a set
that already contains the data item, Python simply ignores it.

Create an empty set using the set() BIF, which is an example of a factory
function:

Factory Function: A factory function is used to make new
data items of a particular type. For instance, “set()” is

a factory function because it makes a new set. In the
real world, factories make things, hence the name.

 distances = set()

 distances = {10.6, 11, 8, 10.6, "two", 7}

 distances = set(james)

Create a new,
empty set, and
assign it to a
variable.

It is also possible to create and populate a set in one step. You can provide a list
of data values between curly braces or specify an existing list as an argument
to the set() BIF, which is the factory function:

Any duplicates in the supplied list
of data values are ignored.

Any duplicates in
the “james” list are
ignored. Cool.

you are here 4 167

comprehending data

Tonight’s talk: Does list suffer from set envy?

List:
[sings] “Anything you can do, I can do better. I can
do anything better than you.”

Can you spell “d-a-t-a l-o-s-s”? Getting rid of data
automatically sounds kinda dangerous to me.

Seriously?

And that’s all you do?

And they pay you for that?!?

Have you ever considered that I like my duplicate
values. I’m very fond of them, you know.

Which isn’t very often. And, anyway, I can always
rely on the kindness of others to help me out with
any duplicates that I don’t need.

Set:

I’m resisting the urge to say, “No, you can’t.”
Instead, let me ask you: what about handling
duplicates? When I see them, I throw them away
automatically.

But that’s what I’m supposed to do. Sets aren’t
allowed duplicate values.

Yes. That’s why I exist…to store sets of values.
Which, when it’s needed, is a real lifesaver.

That’s all I need to do.

Very funny. You’re just being smug in an effort
to hide from the fact that you can’t get rid of
duplicates on your own.

Yeah, right. Except when you don’t need them.

I think you meant to say, “the kindness of set()”,
didn’t you?

Do this!
To extract the data you need, replace
all of that list iteration code in your
current program with four calls to
sorted(set(...))[0:3].

168 Chapter 5

code review

Head First
Code Review

The Head First Code Review Team has taken your code and
annotated it in the only way they know how: they’ve scribbled
all over it. Some of their comments are confirmations of what
you might already know. Others are suggestions that might
make your code better. Like all code reviews, these comments
are an attempt to improve the quality of your code.

def sanitize(time_string):

 if '-' in time_string:

 splitter = '-'

 elif ':' in time_string:

 splitter = ':'

 else:

 return(time_string)

 (mins, secs) = time_string.split(splitter)

 return(mins + '.' + secs)

with open('james.txt') as jaf:

 data = jaf.readline()

james = data.strip().split(',')

with open('julie.txt') as juf:

 data = juf.readline()

julie = data.strip().split(',')

with open('mikey.txt') as mif:

 data = mif.readline()

mikey = data.strip().split(',')

with open('sarah.txt') as saf:

 data = saf.readline()

sarah = data.strip().split(',')

print(sorted(set([sanitize(t) for t in james]))[0:3])

print(sorted(set([sanitize(t) for t in julie]))[0:3])

print(sorted(set([sanitize(t) for t in mikey]))[0:3])

print(sorted(set([sanitize(t) for t in sarah]))[0:3])

There’s a bit of duplication here. You

could factor out the code into a small

function; then, all you need to do is call

the function for each of your athlete

data files, assigning the result to an

athlete list.

What happens
if one of these
files is missing?!?
Where’s your
exception handling

code?

A comment would
be nice to have
here.

Ah, OK. We get it.
The slice is applied to
the list produced by
“sorted()”, right?

There’s a lot
going on here,
but we find it’s
not too hard to
understand if you

read it from the

inside out.

I think we
can make a few
improvements here.

Meet the Head
First Code Review
Team.

you are here 4 169

comprehending data

Let’s take a few moments to implement the review team’s suggestion to turn those four with
statements into a function. Here’s the code again. In the space provided, create a function to
abstract the required functionality, and then provide one example of how you would call your
new function in your code:

with open('james.txt') as jaf:

 data = jaf.readline()

james = data.strip().split(',')

with open('julie.txt') as juf:

 data = juf.readline()

julie = data.strip().split(',')

with open('mikey.txt') as mif:

 data = mif.readline()

mikey = data.strip().split(',')

with open('sarah.txt') as saf:

 data = saf.readline()

sarah = data.strip().split(',')

Write your new
function here.

Provide one
example call.

170 Chapter 5

statement to function

You were to take a few moments to implement the review team’s suggestion to turn those four
with statements into a function. In the space provided, your were to create a function to
abstract the required functionality, then provide one example of how you would call your new
function in your code:

with open('james.txt') as jaf:

 data = jaf.readline()

james = data.strip().split(',')

with open('julie.txt') as juf:

 data = juf.readline()

julie = data.strip().split(',')

with open('mikey.txt') as mif:

 data = mif.readline()

mikey = data.strip().split(',')

with open('sarah.txt') as saf:

 data = saf.readline()

sarah = data.strip().split(',')

def get_coach_data(filename):
 try:
 with open(filename) as f:
 data = f.readline()
 return(data.strip().split(‘,'))
 except IOError as ioerr:
 print(‘File error: ' + str(ioerr))
 return(None)

sarah = get_coach_data(‘sarah.txt')

Create a new
function.

Accept a filename as the sole argument.

Add the suggested exception-handling code.

Open the file, and
read the data.

Perform the split/strip trick on the data prior to returning it to the calling code.

Tell your user about the error
(if it occurs) and return “None”
to indicate failure.

Calling the function
is straightforward.

Provide the name of the file to process.

you are here 4 171

comprehending data

Test Drive
It’s time for one last run of your program to confirm that your use of sets produces the same results
as your list-iteration code. Take your code for a spin in IDLE and see what happens.

As expected, your latest code does the business. Looking good!

Excellent!

You’ve processed the coach’s data perfectly, while
taking advantage of the sorted() BIF, sets,
and list comprehensions. As you can imagine, you
can apply these techniques to many different
situations. You’re well on your way to becoming a
Python data-munging master!

That’s great work, and just
what I need. Thanks! I’m
looking forward to seeing
you on the track soon...

172 Chapter 5

python toolbox

Python Lingo
• “In-place” sorting

- transforms

and then repla
ces.

• “Copied” sorting
- transforms

and then retur
ns.

• “Method Chaining” - reading

from left to right,
 applies a

collection of m
ethods to data

.

• “Function Chaining” - reading

from right to left,
 applies a

collection of f
unctions to dat

a.

Your Python Toolbox

You’ve got Chapter 5 under your
belt and you’ve added some more
Python techiques to your toolbox.

CH
AP

T
ER

 5

 � The sort() method changes the
ordering of lists in-place.

 � The sorted() BIF sorts most any data
structure by providing copied sorting.

 � Pass reverse=True to either
sort() or sorted() to arrange your
data in descending order.

 � When you have code like this:
 new_l = []
 for t in old_l:
 new_l.
append(len(t))
rewrite it to use a list comprehension,
like this:
 new_l = [len(t) for t
in old_l]

 � To access more than one data item from
a list, use a slice. For example:
 my_list[3:6]
accesses the items from index location 3
up-to-but-not-including index location 6.

 � Create a set using the set() factory
function.

More Python Lingo• “List Comprehension” - specify a transformation on one line (as opposed to using an iteration).
• A “slice” - access more than one item from a list.

• A “set” - a collection of unordered data items that contains no duplicates.

this is a new chapter 173

The object of my desire
[sigh] is in a class of
her own.

custom data objects6

Bundling code with data

It’s important to match your data structure choice to your data.
And that choice can make a big difference to the complexity of your code. In Python,

although really useful, lists and sets aren’t the only game in town. The Python dictionary

lets you organize your data for speedy lookup by associating your data with names, not

numbers. And when Python’s built-in data structures don’t quite cut it, the Python class

statement lets you define your own. This chapter shows you how.

174 Chapter 6

additional data

Coach Kelly is back
(with a new file format)

I love what you’ve done, but I can’t tell which line
of data belongs to which athlete, so I’ve added some
information to my data files to make it easy for you to
figure it out. I hope this doesn’t mess things up much.

The output from your last program in Chapter 5 was exactly what the coach
was looking for, but for the fact that no one can tell which athlete belongs to
which data. Coach Kelly thinks he has the solution: he’s added identification
data to each of his data files:

Sarah Sweeney,2002-6-17,2:58,2.58,2:39,2-25,2-55,2:54,2.18,2:55,2:55,2:22,2-21,2.22

This is “sarah2.txt”, with
extra data added.

Sarah’s full name Sarah’s date of birth Sarah’s timing data

If you use the split() BIF to extract Sarah’s data into a list, the first data
item is Sarah’s name, the second is her date of birth, and the rest is Sarah’s
timing data.

Let’s exploit this format and see how well things work.

Do this!

Grab the updated files from the
Head First Python website.

you are here 4 175

custom data objects

Code Magnets
Let’s look at the code to implement the strategy outlined at the bottom of the previous page. For
now, let’s concentrate on Sarah’s data. Rearrange the code magnets at the bottom of this page to
implement the list processing required to extract and process Sarah’s three fastest times from Coach
Kelly’s raw data.

Hint: the pop() method removes and returns a data item from the specified list location.

get_coach_data('sarah2.txt')

sarah

=

def sanitize(time_string):

 if '-' in time_string:

 splitter = '-'

 elif ':' in time_string:

 splitter = ':'

 else:

 return(time_string)

 (mins, secs) = time_string.split(splitter)

 return(mins + '.' + secs)

def get_coach_data(filename):

 try:

 with open(filename) as f:

 data = f.readline()

 return(data.strip().split(','))

 except IOError as ioerr:

 print('File error: ' + str(ioerr))

 return(None)

=
(sarah_name, sarah_dob)

sarah.pop(0), sarah.pop(0)

print(sarah_name +

"'s fastest times are: " +

str(sorted(set([sanitize(t) for t in sarah]))[0:3]))

The “sanitize()” function is as it was in Chapter 5.

The “get_coach_data()” function is
also from the last chapter.

Rearrange the
magnets here.

176 Chapter 6

sarah’s times

Code Magnets Solution
Let’s look at the code to implement the strategy outlined earlier. For now, let’s concentrate on
Sarah’s data.

You were to rearrange the code magnets at the bottom of the previous page to implement the list
processing required to extract and process Sarah’s three fastest times from Coach Kelly’s raw data.

get_coach_data('sarah2.txt')sarah =

def sanitize(time_string):

 if '-' in time_string:

 splitter = '-'

 elif ':' in time_string:

 splitter = ':'

 else:

 return(time_string)

 (mins, secs) = time_string.split(splitter)

 return(mins + '.' + secs)

def get_coach_data(filename):

 try:

 with open(filename) as f:

 data = f.readline()

 return(data.strip().split(','))

 except IOError as ioerr:

 print('File error: ' + str(ioerr))

 return(None)

=(sarah_name, sarah_dob) sarah.pop(0), sarah.pop(0)

print(sarah_name + "'s fastest times are: " +

str(sorted(set([sanitize(t) for t in sarah]))[0:3]))

Use the function to turn Sarah’s data file into a list, and then assign it to the “sarah” variable.

The “pop(0)” call
returns and
removes data from
the front of a
list.. Two calls to
“pop(0)” remove
the first two data
values and assigns
them to the named
variables.

A custom message within the call to “print()” is used to display the results you’re after.

you are here 4 177

custom data objects

Test Drive
Let’s run this code in IDLE and see what happens.

Your latest code

This output
is much more
understandable.

This program works as expected, and is fine…except that you have to name and create
Sarah’s three variables in such as way that it’s possible to identify which name, date of birth,
and timing data relate to Sarah. And if you add code to process the data for James, Julie,
and Mikey, you’ll be up to 12 variables that need juggling. This just about works for now
with four athletes. But what if there are 40, 400, or 4,000 athletes to process?

Although the data is related in “real life,” within your code things are disjointed, because
the three related pieces of data representing Sarah are stored in three separate variables.

178 Chapter 6

keys and values

Use a dictionary to associate data
Lists are great, but they are not always the best data structure for every
situation. Let’s take another look at Sarah’s data:

Sarah Sweeney,2002-6-17,2:58,2.58,2:39,2-25,2-55,2:54,2.18,2:55,2:55,2:22,2-21,2.22

Sarah’s full name Sarah’s date of birth Sarah’s timing data

There’s a definite structure here: the athlete’s name, the date of birth, and
then the list of times.

Let’s continue to use a list for the timing data, because that still makes sense.
But let’s make the timing data part of another data structure, which associates
all the data for an athlete with a single variable.

We’ll use a Python dictionary, which associates data values with keys:

Dictionary A built-in data structure (included with
Python) that allows you to associate data with keys, as

opposed to numbers. This lets your in-memory data
closely match the structure of your actual data.

Name

DOB

Times

"Sarah Sweeney"

"2002-6-17"

[2:58,2.58,2:39,2-25,2-55,2:54,2.18,2:55,2:55,2:22,2-21,2.22]

The “keys”
The associated data, also known as the “values”

you are here 4 179

custom data objects

Tonight’s talk: To use a list or not to use a list?

Dictionary:
Hi there, List. I hear you’re great, but not always
the best option for complex data. That’s where I
come in.

True. But when you do, you lose any structure
associated with the data you are processing.

Isn’t it always?

You guess so? When it comes to modeling your data
in code, it’s best not to guess. Be firm. Be strong. Be
assertive. Use a dictionary.

[laughs] Oh, I do love your humor, List, even when
you know you’re on thin ice. Look, the rule is
simple: if your data has structure, use a dictionary, not a
list. How hard is that?

Which rarely makes sense. Knowing when to use a
list and when to use a dictionary is what separates
the good programmers from the great ones, right?

List:

What?!? Haven’t you heard? You can put anything
into a list, anything at all.

Well…assuming, of course, that structure is
important to you.

Ummm, uh…I guess so.

That sounds like a slogan from one of those awful
self-help conferences. Is that where you heard it?

Not that hard, really. Unless, of course, you are a
list, and you miss being used for every piece of data
in a program…

I guess so. Man, I do hate it when you’re right!

Geek Bits

The Python dictionary is known by different names in other programming languages. If you hear other
programmers talking about a “mapping,” a “hash,” or an “associative array,” they are talking about a “dictionary.”

180 Chapter 6

idle session

Let’s see the Python dictionary in action. Follow along with this IDLE session on your computer, ensuring that you
get the same results as shown.

Start by creating two empty dictionaries, one using curly braces and the other using a factory function:

>>> cleese = {}

>>> palin = dict()

>>> type(cleese)

<class 'dict'>

>>> type(palin)

<class 'dict'>

Add some data to both of these dictionaries by associating values with keys. Note the actual structure of the data
is presenting itself here, as each dictionary has a Name and a list of Occupations. Note also that the palin
dictionary is being created at the same time:

>>> cleese['Name'] = 'John Cleese'

>>> cleese['Occupations'] = ['actor', 'comedian', 'writer', 'film producer']

>>> palin = {'Name': 'Michael Palin', 'Occupations': ['comedian', 'actor', 'writer', 'tv']}

Both techniques create an empty dictionary, as confirmed.

With your data associated with keys (which are strings, in this case), it is possible to access an individual data item
using a notation similar to that used with lists:

>>> palin['Name']

'Michael Palin'

>>> cleese['Occupations'][-1]

'film producer'

Use square brackets to index into the dictionary to access
data items, but instead of numbers, index with keys.

Use numbers to access a list item stored at a particular dictionary key.
Think of this as “index-chaining” and read from right to left: “…the last
item of the list associated with Occupations…”.

As with lists, a Python dictionary can grow dynamically to store additional key/value pairings. Let’s add some data
about birthplace to each dictionary:

>>> palin['Birthplace'] = "Broomhill, Sheffield, England"

>>> cleese['Birthplace'] = "Weston-super-Mare, North Somerset, England"

Unlike lists, a Python dictionary does not maintain insertion order, which can result in some unexpected
behavior. The key point is that the dictionary maintains the associations, not the ordering:

>>> palin

{'Birthplace': 'Broomhill, Sheffield, England', 'Name': 'Michael Palin', 'Occupations':
['comedian', 'actor', 'writer', 'tv']}

>>> cleese

{'Birthplace': 'Weston-super-Mare, North Somerset, England', 'Name': 'John Cleese',
'Occupations': ['actor', 'comedian', 'writer', 'film producer']}

Provide the data associated
with the new key.

The ordering maintained by Python is different from how the data
was inserted. Don’t worry about it; this is OK.

you are here 4 181

custom data objects

It’s time to apply what you now know about Python’s dictionary to your code. Let’s continue to
concentrate on Sarah’s data for now. Strike out the code that you no longer need and replace it
with new code that uses a dictionary to hold and process Sarah’s data.

def sanitize(time_string):

 if '-' in time_string:

 splitter = '-'

 elif ':' in time_string:

 splitter = ':'

 else:

 return(time_string)

 (mins, secs) = time_string.split(splitter)

 return(mins + '.' + secs)

def get_coach_data(filename):

 try:

 with open(filename) as f:

 data = f.readline()

 return(data.strip().split(','))

 except IOError as ioerr:

 print('File error: ' + str(ioerr))

 return(None)

sarah = get_coach_data('sarah2.txt')

(sarah_name, sarah_dob) = sarah.pop(0), sarah.pop(0)

print(sarah_name + "'s fastest times are: " +

 str(sorted(set([sanitize(t) for t in sarah]))[0:3]))

Strike out the code you no longer need.

Add your dictionary
using and processing
code here.

182 Chapter 6

dictionary data

It’s time to apply what you now know about Python’s dictionary to your code. Let’s continue to
concentrate on Sarah’s data for now. You were to strike out the code that you no longer needed
and replace it with new code that uses a dictionary to hold and process Sarah’s data.

def sanitize(time_string):

 if '-' in time_string:

 splitter = '-'

 elif ':' in time_string:

 splitter = ':'

 else:

 return(time_string)

 (mins, secs) = time_string.split(splitter)

 return(mins + '.' + secs)

def get_coach_data(filename):

 try:

 with open(filename) as f:

 data = f.readline()

 return(data.strip().split(','))

 except IOError as ioerr:

 print('File error: ' + str(ioerr))

 return(None)

sarah = get_coach_data('sarah2.txt')

(sarah_name, sarah_dob) = sarah.pop(0), sarah.pop(0)

print(sarah_name + "'s fastest times are: " +

 str(sorted(set([sanitize(t) for t in sarah]))[0:3]))

sarah_data = {}
sarah_data[‘Name’] = sarah.pop(0)
sarah_data[‘DOB’] = sarah.pop(0)
sarah_data[‘Times’] = sarah
print(sarah_data[‘Name’] + “’s fastest times are: “ +
 str(sorted(set([sanitize(t) for t in sarah_data[‘Times’]]))[0:3]))

You don’t need this code anymore.

Create an empty
dictionary.

Populate the dictionary with the data by associating the data from the file with the dictionary keys..

Refer to the dictionary when processing the data.

you are here 4 183

custom data objects

Test Drive
Let’s confirm that this new version of your code works exactly as before by testing your code within
the IDLE environment.

Which, again, works as expected…the difference being that you can now more easily
determine and control which identification data associates with which timing data,
because they are stored in a single dictionary.

Although, to be honest, it does take more code, which is a bit of a bummer. Sometimes the
extra code is worth it, and sometimes it isn’t. In this case, it most likely is.

Let’s review your code to see if we can improve anything.

Your dictionary code produces the same results as earlier.

184 Chapter 6

code review

Head First
Code Review

The Head First Code Review Team has been at it
again: they’ve scribbled all over your code. Some
of their comments are confirmations; others are
suggestions. Like all code reviews, these comments
are an attempt to improve the quality of your code.

def sanitize(time_string):

 if '-' in time_string:

 splitter = '-'

 elif ':' in time_string:

 splitter = ':'

 else:

 return(time_string)

 (mins, secs) = time_string.split(splitter)

 return(mins + '.' + secs)

def get_coach_data(filename):

 try:

 with open(filename) as f:

 data = f.readline()

 return(data.strip().split(','))

 except IOError as ioerr:

 print('File error: ' + str(ioerr))

 return(None)

sarah = get_coach_data('sarah2.txt')

sarah_data = {}

sarah_data['Name'] = sarah.pop(0)

sarah_data['DOB'] = sarah.pop(0)

sarah_data['Times'] = sarah

print(sarah_data['Name'] + "'s fastest times are: " +

 str(sorted(set([sanitize(t) for t in sarah_data['Times']]))[0:3]))

Rather than building the dictionary as you g
o

along, why not do it all in one go? In fact, in

this situation, it might even make sense to do

this processing within the get_coach_data()

function and have the function return a

populated dictionary as opposed to a list.

Then, all you need to do is create the

dictionary from the data file using an

appropriate function call, right?

You might want to consider moving this code into the get_coach_data() function, too, because doing so would rather nicely abstract away these processing details. But whether you do or not is up to you. It’s your code, after all!

It’s great to see
you taking some of our
suggestions on board.
Here are a few more...

you are here 4 185

custom data objects

Actually, those review comments are really useful. Let’s take the time to
apply them to your code. There are four suggestions that you need to
adjust your code to support:

1. Create the dictionary all in one go.

2. Move the dictionary creation code into the get_coach_data()
function, returning a dictionary as opposed to a list.

3. Move the code that determines the top three times for each athlete
into the get_coach_data() function.

4. Adjust the invocations within the main code to the new version of the
get_coach_data() function to support it’s new mode of operation.

Grab your pencil and write your new get_coach_data() function
in the space provided below. Provide the four calls that you’d make to
process the data for each of the athletes and provide four amended
print() statements:

186 Chapter 6

reviews are in

def get_coach_data(filename):
 try:
 with open(filename) as f:
 data = f.readline()
 templ = data.strip().split(‘,’)
 return({‘Name’ : templ.pop(0),
 ‘DOB’ : templ.pop(0),
 ‘Times’: str(sorted(set([sanitize(t) for t in templ]))[0:3])})
 except IOError as ioerr:
 print(‘File error: ‘ + str(ioerr))
 return(None)

james = get_coach_data(‘james2.txt’)

print(james[‘Name’] + “’s fastest times are: “ + james[‘Times’])

You were to take the time to apply the code review comments to your
code. There were four suggestions that you needed to adjust your code
to support:

1. Create the dictionary all in one go.

2. Move the dictionary creation code into the get_coach_data()
function, returning a dictionary as opposed to a list.

3. Move the code that determines the top three times for each athlete
into the get_coach_data() function.

4. Adjust the invocations within the main code to the new version of the
get_coach_data() function to support its new mode of operation.

You were to grab your pencil and write your new get_coach_data()
function in the space provided below, as well as provide the four calls
that you’d make to process the data for each of the athletes and provide
four amended print() statements:

1. Create a temporary
list to hold the data
BEFORE creating the
dictionary all in one go.

2. The dictionary creation code is now part of the function.

3. The code that determines the
top three scores is part of the
function, too.

4. Call the function
for an athlete and
adjust the “print()”
statement as needed.

We are showing only these two lines of code for one athlete (because repeating it for the other three is a trivial exercise).

you are here 4 187

custom data objects

All of the data processing is moved into the function.

This code has been considerably tidied up an
d

now displays the name of the athlete associated

with their times.

Test Drive
Let’s confirm that all of the re-factoring suggestions from the Head First Code Review Team are
working as expected. Load your code into IDLE and take it for a spin.

Looking
good!

To process additional athletes, all you need is two lines of code: the first invokes
the get_coach_data() function and the second invokes print().

And if you require additional functionality, it’s no big deal to write more
functions to provide the required functionality, is it?

188 Chapter 6

associate custom code with custom data

Wait a minute...you’re using a dictionary to
keep your data all in one place, but now you’re
proposing to write a bunch of custom functions
that work on your data but aren’t associated with
it. Does that really make sense?

Keeping your code and its data together is good.

It does indeed make sense to try and associate the functions with the
data they are meant to work on, doesn’t it? After all, the functions
are only going to make sense when related to the data—that is, the
functions will be specific to the data, not general purpose. Because this
is the case, it’s a great idea to try and bundle the code with its data.

But how? Is there an easy way to associate custom code, in the form
of functions, with your custom data?

you are here 4 189

custom data objects

Bundle your code and its data in a class
Like the majority of other modern programming languages, Python lets you
create and define an object-oriented class that can be used to associate code
with the data that it operates on.

Why would anyone
want to do this?

Using a class helps reduce complexity.

By associating your code with the data it works on, you reduce
complexity as your code base grows.

So what’s the big
deal with that?

Reduced complexity means fewer bugs.

Reducing complexity results in fewer bugs in your code.
However, it’s a fact of life that your programs will have
functionality added over time, which will result in additional
complexity. Using classes to manage this complexity is a very
good thing.

Yeah? But...who really
cares?

Fewer bugs means more maintainable code.

Using classes lets you keep your code and your data together in
one place, and as your code base grows, this really can make
quite a difference. Especially when it’s 4 AM and you’re under a
deadline…

190 Chapter 6

get some class

Define a class
Python follows the standard object-oriented programming model of
providing a means for you to define the code and the data it works on as a
class. Once this definition is in place, you can use it to create (or instantiate)
data objects, which inherit their characteristics from your class.

Within the object-oriented world, your code is often referred to as the class’s
methods, and your data is often referred to as its attributes. Instantiated
data objects are often referred to as instances.

The Object
Factory

"Sarah Sweeney","2002-6-17",[2:58,2.58,2:39,2-25,2-55,2:54,2.18,2:55,2:55,2:22,2-21,2.22]

The “raw” data

The factory has been primed with your class.

Here are your instantiated objects,
which are packaged to contain your
code and its associated data.

James’s object
instance

Mikey’s object instance Julie’s object
instance

Each object is created from the class and shares a similar set of
characteristics. The methods (your code) are the same in each instance, but
each object’s attributes (your data) differ because they were created from your
raw data.

Let’s look at how classes are defined in Python.

you are here 4 191

custom data objects

Use class to define classes
Python uses class to create objects. Every defined class has a special method
called __init__(), which allows you to control how objects are initialized.

Methods within your class are defined in much the same way as functions,
that is, using def. Here’s the basic form:

 class Athlete:

 def __init__(self):

 # The code to initialize a "Athlete" object.
 ...

The keyword starts
the definition.

Give your class a nice, descriptive name.

Don’t forget the colon!

That’s a double underscore before and after the word “init”. The code that initializes each
object goes in here.

Creating object instances

With the class in place, it’s easy to create object instances. Simply assign a call
to the class name to each of your variables. In this way, the class (together
with the __init__() method) provides a mechanism that lets you create
a custom factory function that you can use to create as many object
instances as you require:

Unlike in C++-inspired languages, Python has no notion of defining a
constructor called “new.” Python does object contruction for you, and then
lets you customize your object’s initial state using the __init__() method.

 a = Athlete()

 b = Athlete()

 c = Athlete()

 d = Athlete()

The brackets tell Python to create a new “Athlete” object, which is then assigned to a variable.

All of these variables are
unique and are “of type”
Athlete.

192 Chapter 6

note to self

The importance of self
To confirm: when you define a class you are, in effect, defining a custom factory
function that you can then use in your code to create instances:

 a = Athlete()
The target identifier that holds
a reference to your instance

Invoke the class’s custom factory function.

When Python processes this line of code, it turns the factory function call into
the following call, which identifies the class, the method (which is automatically
set to __init__()), and the object instance being operated on:

 Athlete().__init__(a)

The name of the class

The name of the method

The target identifier
of the object instance

Now take another look at how the __init__() method was defined in the
class:

 def __init__(self):

 # The code to initialize an "Athlete" object.
 ...

Check out what Python turns your object creation invocation into. Notice
anything?

The target identifer is assigned to the self argument.
This is a very important argument assignment. Without it, the Python interpreter
can’t work out which object instance to apply the method invocation to. Note
that the class code is designed to be shared among all of the object instances:
the methods are shared, the attributes are not. The self argument helps
identify which object instance’s data to work on.

you are here 4 193

custom data objects

Every method’s first argument is self
In fact, not only does the __init__() method require self as its first
argument, but so does every other method defined within your class.

Python arranges for the first argument of every method to be the invoking
(or calling) object instance. Let’s extend the sample class to store a value in a
object attribute called thing with the value set during initialization. Another
method, called how_big(), returns the length of thing due to the use of
the len() BIF:

 class Athlete:

 def __init__(self, value=0):

 self.thing = value

 def how_big(self):

 return(len(self.thing))

The “init” code now
assigns a supplied value
to a class attribute
called “self.thing”.

The “how_big()” method returns the length of “self.thing”.

Note the use of “self” to identify the calling object instance.

When you invoke a class method on an object instance, Python arranges for
the first argument to be the invoking object instance, which is always assigned
to each method’s self argument. This fact alone explains why self is
so important and also why self needs to be the first argument to every object
method you write:

What you write: What Python executes:

 d = Athlete("Holy Grail") Athlete.__init__(d, "Holy Grail")

 d.how_big() Athlete.how_big(d)

The class The method
The target
indentifer (or
instance)

194 Chapter 6

idle session

Let’s use IDLE to create some object instances from a new class that you’ll define. Start by creating a small class
called Athlete:

>>> class Athlete:

 def __init__(self, a_name, a_dob=None, a_times=[]):

 self.name = a_name

 self.dob = a_dob

 self.times = a_times

With the class defined, create two unique object instances which derive their characteristcs from the Athlete
class:

>>> sarah = Athlete('Sarah Sweeney', '2002-6-17', ['2:58', '2.58', '1.56'])

>>> james = Athlete('James Jones')

>>> type(sarah)

<class '__main__.Athlete'>

>>> type(james)

<class '__main__.Athlete'>

Even though sarah and james are both athletes and were created by the Athlete class’s factory function,
they are stored at different memory addreses:

>>> sarah

<__main__.Athlete object at 0x14d23f0>

>>> james

<__main__.Athlete object at 0x14cb7d0>

Now that sarah and james exist as object instances, you can use the familiar dot notation to access the
attributes associated with each:

>>> sarah.name

'Sarah Sweeney'

>>> james.name

'James Jones'

>>> sarah.dob

'2002-6-17'

>>> james.dob

>>> sarah.times

['2:58', '2.58', '1.56']

>>> james.times

[]

Three attributes are initialized and assigned
 to three class

attributes using the supplied argument data.

Confirm that both “sarah” and
“james” are athletes.

Note the default values for two of the arguments.

Create two unique athletes (with “james” using the default argument values).

These are the memory addresses on our computer, which will

differ from the values reported on yours. The key point is

the memory address for “sarah” and “james” differ.

The “james” object instance has no value for “dob”, so nothing appears on screen.

you are here 4 195

custom data objects

Here’s your code (except for the santize() function, which doesn’t
need to change). With your pencil, write code to define the Athlete
class. In addition to the __init__() method, define a new method
called top3() that, when invoked, returns the top three times.

Be sure to adjust the get_coach_data() function to return an
Athlete object as opposed to a dictionary, and don’t forget to amend
your print() statements, too.

def get_coach_data(filename):

 try:

 with open(filename) as f:

 data = f.readline()

 templ = data.strip().split(',')

 return({'Name' : templ.pop(0),

 'DOB' : templ.pop(0),

 'Times': str(sorted(set([sanitize(t) for t in templ]))[0:3])})

 except IOError as ioerr:

 print('File error: ' + str(ioerr))

 return(None)

james = get_coach_data('james2.txt')

print(james['Name'] + "'s fastest times are: " + james['Times'])

Write your Athlete class code here.

What needs to change here to ensure
this function returns an Athlete object
as opposed to a dictionary?

This line of code needs to change, too.

196 Chapter 6

class athlete

Here’s your code (except for the santize() function, which doesn’t
need to change). With your pencil, you were to write code to define the
Athlete class. In addition to the __init__() method, you were to
define a new method called top3() that, when invoked, returns the top
three times. You were to be sure to adjust the get_coach_data()
function to return an Athlete object as opposed to a dictionary, and
you weren’t to forget to amend print(), too.

def get_coach_data(filename):

 try:

 with open(filename) as f:

 data = f.readline()

 templ = data.strip().split(',')

 return({'Name' : templ.pop(0),

 'DOB' : templ.pop(0),

 'Times': str(sorted(set([sanitize(t) for t in templ]))[0:3])})

 except IOError as ioerr:

 print('File error: ' + str(ioerr))

 return(None)

james = get_coach_data('james2.txt')

print(james['Name'] + "'s fastest times are: " + james['Times'])

class Athlete:
 def __init__(self, a_name, a_dob=None, a_times=[]):
 self.name = a_name
 self.dob = a_dob
 self.times = a_times

 def top3(self):
 return(sorted(set([sanitize(t) for t in self.times]))[0:3])

Athlete(templ.pop(0), templ.pop(0), templ)

str(james.top3())james.name

There’s nothing new here as this code is taken straight from the most recent IDLE session.

Did you remember to
use “self”?

Remove the dictionary creation code and replace it with Athlete object creation code instead.

Use the dot notation to get
at your data.

Invoke the “top3()” method and convert its results to a string prior to its display on screen.

you are here 4 197

custom data objects

Test Drive
With these changes applied to your program, let’s ensure you continue to get the same results as
earlier. Load your code into IDLE and run it.

The code to the “sanitize()” function is not shown here, but it is still part of this program.

Cool! There’s no
change here.

And to make objects
do more, I just add more
methods, right?

Yes, that’s correct: more functionality = more methods.

Simply add methods to encapsulate the new functionality you need within
your class. There’s no limit to how many methods a class can have, so feel
free to knock yourself out!

198 Chapter 6

no dumb questions

Q: I’m not sure I see why the top3() method is coded to return
a three-item list, as opposed to a string? Surely a string would
make the print() statement in the main program easier to write?

A: It would, but it wouldn’t be as flexible. By returning a list (albeit
a small one), the top3() method lets the calling code decide what
happens next, as opposed to forcing the caller to work with a string.
Granted, the current program needs to treat the list like a string, but
not all programs will want or need to.

Q: Why does the class even need the top3() method? Why
not store the top three times as an attribute within the class and
create it as part of the object’s creation?

A: Again, better not to, because doing so is less flexible. If you
compute and store the top three times at object creation, you make it
harder to extend the list of timing data associated with the object.

For instance, if you add more timing data after the object is created,
you’ll need to arrange to recompute the top three (because the new
times might be fast) and update the attribute. However, when you
compute the top three times “on the fly” using a call to the top3()
method, you always ensure you’re using the most up-to-date data.

Q: OK, I get that. But, with a little extra work, I could do it
during object creation, right?

A: Well, yes…but we really don’t advise that. By preserving the
original data in each object’s attributes, you are supporting the
extension of the class to support additional requirements in the
future (whatever they might be). If you process the data as part of
the object initialization code, the assumptions you make about how
programmers will use your class might just come back to bite you.

Q: But what if I’m the only programmer that’ll ever use a
custom class that I write?

A: Trust us: you’ll thank yourself for coding your class to be as
flexible as possible when you come to use it for some other purpose
in a future project. When you are creating a class, you have no idea
how it will be used by other programmers in their projects. And, if you
think about, you have no idea how you might use it in the future, too.

Q: OK, I think I’m convinced. But tell me: how do I go about
adding more times to my existing Athlete objects?

A: To do more, add more methods. With your Athlete class
created, it’s a breeze to extend it to do more work for you: simply add
more methods.

So, if you want to add a single new timing value to your times
attribute, define a method called add_time() to do it for you.
Additionally, you can add a list of times by defining a method called
add_times().Then all you need to do in your code is say
something like this:
 sarah.add_time('1.31')
to add a single time to Sarah’s timing data, or say this:
 james.add_times(['1.21','2.22'])
to add a bunch of times to James’s data.

Q: But surely, knowing that times is a list, I could write code
like this to do the same thing?
 sarah.times.append('1.31')
 james.times.append(['1.21','2.22'])

A: You could, but that would be a disaster.

Q: What?!? Why do you say that? There’s nothing wrong
with my suggestion, is there?

A: Well…it does indeed work. However, the problem with writing
code like that is that it exposes (and exploits) that fact that the
timing data is stored in a list within the Athlete class. If you
later change your class implementation to use (for instance) a string
instead of a list, you may well break all of the existing code that uses
your class and that exploits the fact that the timing data is a list.

By defining your own API with add_time() and add_
times(), you leave open the possibility that the way the data
is stored within your class can change in the future (obviously, only
if such a change makes sense). It is worth noting that one of the
reasons for using object orientation is to hide away the details of a
class’s implementation from the users of that class. Defining your
own API directly supports this design ideal. Exposing the internals of
your class’s implementation and expecting programmers to exploit it
breaks this fundamental ideal in a very big way.

you are here 4 199

custom data objects

Let’s add two methods to your class. The first, called add_time(), appends a single
additional timing value to an athlete’s timing data. The second, add_times(), extends an
athlete’s timing data with one or more timing values supplied as a list.

Here’s your current class: add the code to implement these two new methods.

class Athlete:

 def __init__(self, a_name, a_dob=None, a_times=[]):

 self.name = a_name

 self.dob = a_dob

 self.times = a_times

 def top3(self):

 return(sorted(set([sanitize(t) for t in self.times]))[0:3])

Add your new
methods here.

Don’t put down the pencil just yet! Provide a few lines of code to
test your new functionality:

200 Chapter 6

more methods

While still holding on firmly to your pencil, you were to provide a
few lines of code to test your new functionality:

Let’s add two methods to your class. The first, called add_time(), appends a single
additional timing value to an athlete’s timing data. The second, add_times(), extends an
athlete’s timing data with one of more timing values supplied as a list.

Here’s your current class: you were to add the code to implement these two new methods.

class Athlete:

 def __init__(self, a_name, a_dob=None, a_times=[]):

 self.name = a_name

 self.dob = a_dob

 self.times = a_times

 def top3(self):

 return(sorted(set([sanitize(t) for t in self.times]))[0:3])

 def add_time(self, time_value):
 self.times.append(time_value)

 def add_times(self, list_of_times):
 self.times.extend(list_of_times)

vera = Athlete(‘Vera Vi’)
vera.add_time(‘1.31’)
print(vera.top3())
vera.add_times([‘2.22’, “1-21”, ‘2:22’])
print(vera.top3())

Take the supplied argument and append it to the existing list of timing values.

Take the list of supplied arguments
and extend the existing list of timing
values with them.

Don’t forget to
use “self”!!!

Create a new
object instance
for Vera. Add a single timing value.

This will display a list with only one value in it: 1.31.
Add three more timing values.

The top 3 timing scores are now: 1.21, 1.31 and 2.22.

you are here 4 201

custom data objects

Test Drive
After running your existing program, try out your test code in the IDLE shell to confirm that
everything is working as expected.

As expected.

Create a new athlete.
Add one timing value.

Display the top three times (there’s only one, so that’s all you see).
Add three more timing values.

Display the top three times (which, now, makes a little more sense).

Great: it worked.

You’ve packaged your code with your data and created a custom class
from which you can create objects that share behaviors. And when extra
functionality is required, add more methods to implement the required
functionality.

By encapsulating your athlete code and data within a custom class, you’ve
created a much more maintainable piece of software. You will thank
yourself for doing this when, in six months, you need to amend your code.

Well done. This is really coming along!

Do this!

Amend your code with the updated version
of your Athlete class before proceeding
with this Test Drive.

202 Chapter 6

reinventing the wheel

Emmm...maybe I’m missing something, but
isn’t your Athlete class wasteful? I mean,
you’ve extended it with functionality that’s
already in lists, which feels a little like
reinventing the wheel to me...

Yes, your Athlete class is much like a list.

Your Athlete class does indeed behave like a list most
of the time, and you’ve added methods to expose some list
functionality to the users of your class. But it’s true: you are
reinventing the wheel here. Your add_time() method
is a thin wrapper around the list append() method and
your add_times() method is list’s extend() method in
disguise.

In fact, your Athlete class only differs from Python’s list
due to the inclusion of the name and dob object attributes.

you are here 4 203

custom data objects

Wouldn't it be dreamy if there were a
way to extend a built-in class with custom
attributes? But I know it's just a fantasy…

204 Chapter 6

inherit class

Inherit from Python’s built-in list
Python’s class lets you create a custom class from scratch, just like you did with
your Athlete class. However, class also lets you create a class by inheriting
from any other existing class, including Python’s built-in data structure classes
that provide you with list, set, and dict. Such classes are referred to as
subclasses.

What’s really nice is that when you inherit from an existing class (such as
list), you are given all of the existing functionality for free.

As your existing class is really nothing more than a list with added attributes,
perhaps a better design is to kill off your Athlete class and replace it
with a class that inherits from the built-in list class? It’s certainly worth
considering, isn’t it?

Sorry to hear about your
Athlete class. But, according
to my files, you’re in line to inherit a
mountain of functionality from the
built-in list class. Congratulations,
you’re rich!

Slippery
lawyer-type

you are here 4 205

custom data objects

Tonight’s talk: Inheritance, a.k.a. He looks just like his father.

Custom Class:
Programmers like me because they get to
control everything in their code…and you know
programmers: they love to code.

Design! Phooey! Real programmers eat, sleep,
dream, snore, and exhale code. All that design talk
is for people who can’t code!

No, no, no: you’re not listening. It’s all done with
control. When you build everything from the
ground up, you’re in control, as it’s all your code.

Of course, especially when there are custom
requirements to be taken into consideration. In that
case, a brand-spanking new custom class is the only
way to go.

Yeah, right…it’s a win-win for you, not me.

I guess so, although I’m still a fan of custom code…

Inherited Class:

Yes, they do. But sometimes writing everything from
scratch is not the best design decision.

Is it really? So, you’re saying it’s much better to do
everything from scratch and repeat the work of
others, because your way is the best way. Are you
serious?!?

And you’re happy to reinvent the wheel, even
though someone else solved that problem eons ago?

Not if you can extend someone else’s class to handle
your custom requirements. That way, you get the
best of both worlds: inheritied functionality (so
you’re not reinventing the wheel) together with the
custom bits. It’s a win-win situation.

But it’s not about us: it’s to do with making the life
of the programmer easier, even the ones that live to
code, right?

206 Chapter 6

idle session

Let’s see what’s involved in inheriting from Python’s built-in list class. Working in IDLE’s shell, start by creating a
custom list derived from the built-in list class that also has an attribute called name:

>>> class NamedList(list):

 def __init__(self, a_name):

 list.__init__([])

 self.name = a_name

With your NamedList class defined, use it to create an object instance, check the object’s type (using the
type() BIF), and see what it provides (using the dir() BIF):

>>> johnny = NamedList("John Paul Jones")

>>> type(johnny)

<class '__main__.NamedList'>

>>> dir(johnny)

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dict__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__',
'__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__module__',
'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__',
'__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__',
'__weakref__', 'append', 'count', 'extend', 'index', 'insert', 'name', 'pop', 'remove',
'reverse', 'sort']

Use some of the functionality supplied by the list class to add to the data stored in johnny:

>>> johnny.append("Bass Player")

>>> johnny.extend(['Composer', "Arranger", "Musician"])

>>> johnny

['Bass Player', 'Composer', 'Arranger', 'Musician']

>>> johnny.name

'John Paul Jones'

Because johnny is a list, it’s quite OK to do list-type things to it:

>>> for attr in johnny:

 print(johnny.name + " is a " + attr + ".")

John Paul Jones is a Bass Player.

John Paul Jones is a Composer.

John Paul Jones is a Arranger.

John Paul Jones is a Musician.

Provide the name of the class that this new class derives from.

Initialize the derived from class, and then
assign the argument to the attribute.

Create a new “NamedList” object instance.

Yes, “johnny” is a “NamedList”.

“johnny” can do everything a list can, as well as store data in the “name” attribute.

Add data to the “NamedList” using the
methods provided by the list built in.

Access the list data, as well as the attribute data.

“johnny” is like any other list, so feel free to
use it wherever you’d use a list.

Confirmation: John’s a busy boy. §

you are here 4 207

custom data objects

Here is the code for the now defunct Athlete class. In the space provided below, rewrite this
class to inherit from the built-in list class. Call your new class AthleteList. Provide a
few lines of code to exercise your new class, too:

class Athlete:

 def __init__(self, a_name, a_dob=None, a_times=[]):

 self.name = a_name

 self.dob = a_dob

 self.times = a_times

 def top3(self):

 return(sorted(set([sanitize(t) for t in self.times]))[0:3])

 def add_time(self, time_value):

 self.times.append(time_value)

 def add_times(self, list_of_times):

 self.times.extend(list_of_times)

Write your new
class code here.

Exercise your
code here.

208 Chapter 6

new athletelist

Here is the code for the now defunct Athlete class. In the space provided below, you were
to rewrite this class to inherit from the built-in list class. You were to call your new class
AthleteList, as well as provide a few lines of code to exercise your new class:

class Athlete:

 def __init__(self, a_name, a_dob=None, a_times=[]):

 self.name = a_name

 self.dob = a_dob

 self.times = a_times

 def top3(self):

 return(sorted(set([sanitize(t) for t in self.times]))[0:3])

 def add_time(self, time_value):

 self.times.append(time_value)

 def add_times(self, list_of_times):

 self.times.extend(list_of_times)

class AthleteList(list):
 def __init__(self, a_name, a_dob=None, a_times=[]):
 list.__init__([])
 self.name = a_name
 self.dob = a_dob
 self.extend(a_times)
 def top3(self):
 return(sorted(set([sanitize(t) for t in self]))[0:3])

vera = AthleteList(‘Vera Vi’)

print(vera.top3())
vera.append(‘1.31’)

vera.extend([‘2.22’, “1-21”, ‘2:22’])
print(vera.top3())

These
methods
aren’t needed
anymore.

The data
itself is the
timing data,
so the “times”
attribute is
gone.

The class name
has changed.

Nothing new here…this code is very similar to the
“NamedList” init code.

Use the new
class’s name.

This code does a good job of
exercising your new class.

Now that you’re
inheriting from
the built-in list,
you can use its
methods to get
your work on.

Inherit from the built-in list class.

you are here 4 209

custom data objects

Do this!

In your code, replace your Athlete
class code with your new AthleteList
class code, and don’t forget to change
get_coach_data() to return an
AthleteList object instance as
opposed to an Athlete object instance.

Q: Sorry…but not three minutes ago you were telling me not
to expose the inner workings of my class to its users, because
that was fundamentally a bad idea. Now you’re doing the exact
opposite! What gives?

A: Well spotted. In this particular case, it’s OK to expose the fact
that the class is built on top of list. This is due to the fact that the
class is deliberately called AthleteList to distinguish it from
the more generic Athlete class. When programmers see the
word “list” in a class name, they are likely to expect the class to work
like a list and then some. This is the case with AthleteList.

Q: And I can inherit from any of the built-in types?

A: Yes.

Q: What about inheriting from more than one class…does
Python support multiple interitance?

A: Yes, but it’s kind of scary. Refer to a good Python reference text
for all the gory details.

Q: Can I inherit from my own custom classes?

A: Of course, that’s the whole idea. You create a generic class
that can then be “subclassed” to provide more specific, targeted
functionality.

Q: Can I put my class in a module file?

A: Yes, that’s a really good idea, because it lets you share your
class with many of your own programs and with other programmers.
For instance, if you save your AthleteList class to a file
called athletelist.py, you can import the into your code
using this line of code:

 from athletelist import AthleteList

then use the class as if it was defined in your current program. And,
of course, if you create a really useful class, pop it into its own
module and upload it to PyPI for the whole world to share.

210 Chapter 6

test drive

Test Drive
One last run of your program should confirm that it’s working to specification now. Give it a go in
IDLE to confirm.

Your entire
program now
produces the
output the
coach wants.

you are here 4 211

custom data objects

Coach Kelly is impressed

That looks great! I can’t
wait to show this to my
young athletes and see
their reaction...

By basing your class on built-in functionality, you’ve leveraged the power of
Python’s data structures while providing the custom solution your application
needs.

You’ve engineered a much more maintainable solution to Coach Kelly’s data
processing needs.

Good job!

212 Chapter 6

python toolbox

Your Python Toolbox

You’ve got Chapter 6 under your
belt and you’ve added some key
Python techiques to your toolbox.

CHAPT
ER 6

 � Create a empty dictionary using the
dict() factory function or using {}.

 � To access the value associated with
the key Name in a dictionary called
person, use the familiar square bracket
notation: person['Name'].

 � Like list and set, a Python’s dictionary
dynamically grows as new data is added
to the data structure.

 � Populate a dictionary as you go:
new_d = {} or new_d = dict()
and then
d['Name'] = 'Eric Idle'
or do the same thing all in the one go:
new_d = {'Name': 'Eric
Idle'}

 � The class keyword lets you define a
class.

 � Class methods (your code) are defined in
much the same way as functions, that is,
with the def keyword.

 � Class attributes (your data) are just like
variables that exist within object instances.

 � The __init__() method can be
defined within a class to initialize object
instances.

 � Every method defined in a class must
provide self as its first argument.

 � Every attribute in a class must be prefixed
with self. in order to associate it data
with its instance.

 � Classes can be built from scratch or can
inherit from Python’s built-in classes or
from other custom classes.

 � Classes can be put into a Python module
and uploaded to PyPI.

Python Lingo
• “Dictionary” - a built-in data

structure that
 allows you to

associate data
 values with keys.

• “Key” - the look-up part of

the dictionary
.

• “Value” - the data part
 of the

dictionary (which can be any
 value,

including anoth
er data struct

ure).

More Python Lingo
• “self” - a method argument that always refers to the current object instance.

CH
AP

T
ER

 6

this is a new chapter 213

This Web thing will
never catch on...especially
now that I have my trusty
Underwood to keep me
company...

web development7

Putting it all together

Sooner or later, you’ll want to share your app with lots of people.
You have many options for doing this. Pop your code on PyPI, send out lots of emails, put

your code on a CD or USB, or simply install your app manually on the computers of those

people who need it. Sounds like a lot of work…not to mention boring. Also, what happens

when you produce the next best version of your code? What happens then? How do you

manage the update? Let’s face it: it’s such a pain that you’ll think up really creative excuses

not to. Luckily, you don’t have to do any of this: just create a webapp instead. And, as this

chapter demonstrates, using Python for web development is a breeze.

214 Chapter 7

caring is sharing

It’s good to share

The coach showed us your program
running on his laptop...any chance me and my
friends could also get access to our list of
times? I’d love to show them to my dad...

Coach Kelly’s
young athletes

You’re a victim of your own success.

The new requests come flooding in right after Coach Kelly starts showing
off your latest program. It appears that everyone wants access to the coach’s
data!

The thing is: what’s the “best way” to do this?

you are here 4 215

web development

You can put your program on the Web

You’ll want to be
able to share your
functionality with lots
of people...

...but you probably want
only one version of your
program “out there” that
everyone accesses...

...and you need to make sure
updates to your program
are easy to apply.

A “webapp” is what you want.

If you develop your program as a Web-based application (or webapp, for short),
your program is:

 • Available to everyone who can get to your website

 • In one place on your web server

 • Easy to upate as new functionality is needed

But…how do webapps actually work?

216 Chapter 7

anatomy of a web request

Webapps Up Close

The Internet

I just type the
web address into my
browser’s location bar
and press Enter...Step 1: Your user enters

a web address, selects
a hyperlink, or clicks a
button in her chosen

web browser.

No matter what you do on the Web, it’s all about requests and responses. A web request is sent
from a web browser to a web server as the result of some user interaction. On the web server, a
web response (or reply) is formulated and sent back to the web browser. The entire process can
be summarized in five steps.

Step 2: The web
browser converts
the user’s action

into a web request
and sends it to a
server over the

Internet.

Hey, hello there...what’s this?
A web request just for me? How
nice...

Step 3: The web server
receives the web request
and has to decide what

to do next.

Web
Server

Deciding what to do next

One of two things happen at this point. If the web request
is for static content—such as an HTML file, image, or
anything else stored on the web server’s hard disk—the web
server locates the resource and returns it to the web browser as
a web response.

If the request is for dynamic content—that is, content that
must be generated—the web server runs a program to produce
the web response.

Here comes a web

request.

you are here 4 217

web development

The Internet

That’s exactly what I
need. Thanks!

Step 4: The web server
processes the web

request, creating a web
response, which is sent
back over the Internet

to the waiting web
browser.

Web
Server

Step 5: The web
browser receives the

web response and
displays it on your

user’s screen.

The (potentially) many substeps of step 4

In practice, step 4 can involve multiple substeps, depending
on what the web server has to do to produce the response.
Obviously, if all the server has to do is locate static content
and sent it back to the browser, the substeps aren’t too
taxing, because it’s all just file I/O.

However, when dynamic content must be generated, the sub-
steps involve the web server locating the program to execute,
executing the located program, and then capturing the output
from the program as the web response…which is then sent
back to the waiting web browser.

This dynamic content generation process has been
standardized since the early days of the Web and is known
as the Common Gateway Interface (CGI). Programs
that conform to the standard are often referred to as CGI
scripts.

Here comes a web response.

Here you go...a web
response generated just for
you. Enjoy!

218 Chapter 7

webapp requirements

What does your webapp need to do?
Let’s take a moment to consider what you want your webapp to look like
and how it should behave on your user’s web browser. You can then use this
information to help you specify what your webapp needs to do.

I guess I need a nice,
friendly home page to
kick things off, eh?

Yeah...and I want to be
able to get at my times
easily...

...and once I’ve
selected mine, I want
them to look nice on
my screen, so I can print
them for my mom.

you are here 4 219

web development

There’s nothing like grabbing your pencil and a few blank paper
napkins to quickly sketch a simple web design. You probably
need three web pages: a “welcome” page, a “select an athlete”
page, and a “display times” page. Go ahead and draw out a rough
design on the napkins on this page, and don’t forget to draw any
linkages between the pages (where it makes sense).

220 Chapter 7

back-of-the-napkin sketch

§ There’s nothing like grabbing your pencil and a few blank paper
napkins to quickly sketch a simple web design. You probably
need three web pages: a “welcome” page, a “select an athlete”
page, and a “display times” page. You were to draw out a rough
design on the napkins. You were to draw any linkages between
the pages (where it made sense).

Welcome to Coach Kelly’s Website

For now, all that you’ll find h
ere is my

athlete’s timing data.

See you on the track!

Select an athlete from this list to work with: Sarah
 James
 Julie
 Mikey

 Select

Timimg data for Sarah:

 2.18

 2.21

 2.22

Home Select another athlete.

The home page
displays a friendly graphic and a link to start the web app.

Click on the home page’s link to go to
a page that displays a list of all the
coach’s athletes. Click on an athlete’s
radio button and then the “Select”
button to see the data.

The third web page displays the selected athlete’s data and provides links back to the other two pages.

you are here 4 221

web development

Design your webapp with MVC
Now that you have an idea of the pages your webapp needs to provide, your
next question should be: what’s the best way to build this thing?

Ask 10 web developers that question and you’ll get 10 different answers; the
answer often depends on whom you ask.

Despite this, the general consensus is that great webapps conform to the
Model-View-Controller pattern, which helps you segment your webapp’s code
into easily manageable functional chunks (or components):

The Model
The code to store (and sometimes process) your webapp’s data

The View
The code to format and display your webapp’s user interface(s)

The Controller
The code to glue your webapp together and provide its business logic

By following the MVC pattern, you build your webapp in such as way as to
enable your webapp to grow as new requirements dictate. You also open up the
possibility of splitting the workload among a number of people, one for each
component.

Let’s build each of the MVC components for your webapp.

222 Chapter 7

build a model

Model your data
Your web server needs to store a single copy of your data, which in this case is
Coach Kelly’s timing values (which start out in his text files).

When your webapp starts, the data in the text files needs to be converted
to AthleteList object instances, stored within a dictionary (indexed by
athlete name), and then saved as a pickle file. Let’s put this functionality in a
new function called put_to_store().

While your webapp runs, the data in the pickle needs to be available to your
webapp as a dictionary. Let’s put this functionality in another new function
called get_from_store().

[‘Is this the right room
for an argument?’, “No
you haven’t!”, ‘When?’,
“No you didn’t!”, “You
didn’t!”, ‘You did not!’,
‘Ah! (taking out his wallet
and paying) Just the five
minutes.’, ‘You most
certainly did not!’, “Oh
no you didn’t!”, “Oh no
you didn’t!”, “Oh look,
this isn’t an argument!”,
“No it isn’t!”, “It’s
just contradiction!”,
‘It IS!’, ‘You just
contradicted me!’, ‘You
DID!’, ‘You did just
then!’, ‘(exasperated)
Oh, this is futile!!’,
‘Yes it is!’]

[‘Is this the right room
for an argument?’, “No
you haven’t!”, ‘When?’,
“No you didn’t!”, “You
didn’t!”, ‘You did not!’,
‘Ah! (taking out his wallet
and paying) Just the five
minutes.’, ‘You most
certainly did not!’, “Oh
no you didn’t!”, “Oh no
you didn’t!”, “Oh look,
this isn’t an argument!”,
“No it isn’t!”, “It’s
just contradiction!”,
‘It IS!’, ‘You just
contradicted me!’, ‘You
DID!’, ‘You did just
then!’, ‘(exasperated)
Oh, this is futile!!’,
‘Yes it is!’]

sarah.txt

julie.txt
james.txt

mikey.txt

The single pickle with all of the data stored in a dictionary

The single pickle
with all of the
coach’s data
stored in a
dictionary

The
put_to_store()

function

The
get_from_store()

function

 {'Sarah': AthleteList... ,

 'James': AthleteList... ,

 'Julie': AthleteList... ,

 'Mikey': AthleteList... }

A dictionary of AthleteLists returned
from the “get_from_store()” function

When your webapp starts: While your webapp runs:

you are here 4 223

web development

Here is the outline for a new module called athletemodel.py, which provides the
functionality described on the previous page. Some of the code is already provided for you. Your
job is to provide the rest of the code to the put_to_store() and get_from_store()
functions. Don’t forget to protect any file I/O calls.

import pickle

from athletelist import AthleteList

def get_coach_data(filename):

 # Not shown here as it has not changed since the last chapter.

def put_to_store(files_list):

 all_athletes = {}

 return(all_athletes)

def get_from_store():

 all_athletes = {}

 return(all_athletes)

You need code in
here to populate
the dictionary with
the data from the
files.

And don’t forget to save the
dictionary to a
pickle (and check for file I/O errors).

This function is called with a list of filenames as its sole argument.

Get the dictionary
from the file, so
that it can be
returned to the
caller.

Both functions
need to return
a dictionary of
AthleteLists.

224 Chapter 7

model module

Here is the outline for a new module called athletemodel.py, which provides the
functionality described on the previous page. Some of the code is already provided for you. Your
job was to provide the rest of the code to the put_to_store() and get_from_store()
functions. You were not to forget to protect any file I/O calls.

import pickle

from athletelist import AthleteList

def get_coach_data(filename):

 # Not shown here as it has not changed since the last chapter.

def put_to_store(files_list):

 all_athletes = {}

 for each_file in files_list:
 ath = get_coach_data(each_file)
 all_athletes[ath.name] = ath
 try:
 with open(‘athletes.pickle', ‘wb') as athf:
 pickle.dump(all_athletes, athf)
 except IOError as ioerr:
 print(‘File error (put_and_store): ' + str(ioerr))
 return(all_athletes)

def get_from_store():

 all_athletes = {}

 try:
 with open(‘athletes.pickle', ‘rb') as athf:
 all_athletes = pickle.load(athf)
 except IOError as ioerr:
 print(‘File error (get_from_store): ' + str(ioerr))
 return(all_athletes)

Take each file, turn it
into an AthleteList
object instance, and
add the athlete’s data
to the dictionary.

Each athlete’s name is used as the “key” in the dictionary. The “value” is the AthleteList object instance.

Save the entire
dictionary of
AthleteLists
to a pickle.

And don’t forget
a try/except to
protect your file
I/O code.

Again…don’t
forget your
try/except.

Simply read the
entire pickle into
the dictionary.
What could be
easier?

you are here 4 225

web development

Let’s test your code to ensure that it is working to specification. Type your code into an IDLE edit window and save
your code into a folder that also includes the coach’s text files. Press F5 to import your code to the IDLE shell, and
then use the dir() command to confirm that the import has been successful:
>>> dir()

['AthleteList', '__builtins__', '__doc__', '__name__', '__package__', 'get_coach_data’,
'get_from_store', 'pickle', 'put_to_store']

Create a list of files to work with, and then call the put_to_store() function to take the data in the list of files
and turn them into a dictionary stored in a pickle:

>>> the_files = ['sarah.txt', 'james.txt', 'mikey.txt', 'julie.txt']

>>> data = put_to_store(the_files)

>>> data

{'James Lee': ['2-34', '3:21', '2.34', '2.45', '3.01', '2:01', '2:01', '3:10', '2-22', '2-
01', '2.01', '2:16'], 'Sarah Sweeney': ['2:58', '2.58', '2:39', '2-25', '2-55', '2:54', '2.18',
'2:55', '2:55', '2:22', '2-21', '2.22'], 'Julie Jones': ['2.59', '2.11', '2:11', '2:23', '3-
10', '2-23', '3:10', '3.21', '3-21', '3.01', '3.02', '2:59'], 'Mikey McManus': ['2:22', '3.01',
'3:01', '3.02', '3:02', '3.02', '3:22', '2.49', '2:38', '2:40', '2.22', '2-31']}

At this point, the athletes.pickle file should appear in the same folder as your code and text files. Recall
that this file is a binary file, so trying to view it in IDLE or in your editor is not going to make much sense. To access
the data, use the dictionary returned by the put_to_store() or get_from_store() functions.

Use the existing data in the data dictionary to display each athlete’s name and date of birth:

>>> for each_athlete in data:

 print(data[each_athlete].name + ' ' + data[each_athlete].dob)

James Lee 2002-3-14

Sarah Sweeney 2002-6-17

Julie Jones 2002-8-17

Mikey McManus 2002-2-24

Use the get_from_store() function to load the pickled data into another dictionary, then confirm that the
results are as expected by repeating the code to display each athlete’s name and date of birth:

>>> data_copy = get_from_store()

>>> for each_athlete in data_copy:

 print(data_copy[each_athlete].name + ' ' + data_copy[each_athlete].dob)

James Lee 2002-3-14

Sarah Sweeney 2002-6-17

Julie Jones 2002-8-17

Mikey McManus 2002-2-24

Here’s all of the AthleteLists.

By accessing the “name” and “dob”
attributes, you can get at the rest of
the AthleteList data.

The data in the returned dictionary is as expected, exactly the same as that produced by put_to_store().

226 Chapter 7

interface view

View your interface
With your model code written and working, it’s time to look at your view code,
which creates your webapp’s user interface (UI).

On the Web, UIs are created with HTML, the Web’s markup technology. If
you are new to HTML, it is worth taking some time to become familiar with
this critical web development technology. There’s lots of material on the Web
and more than a few good books out there.

[Note from Marketing: This is the book that we recommend for quickly getting up to speed with HTML…not that we’re biased or anything. §].

YATE: Yet Another Template Engine

Your friends over at the Head First Code Review Team heard you’re planning
to write some code to generate HTML for your webapp’s UI. They’ve sent
over some code that they swear will make your life easier. It’s a small library
of HTML-generating helper functions called yate. The code was produced
quickly and was originally designed to be “throw away,” so the team has
provided it as is. It’s somewhat raw, but it should be OK.

Hey, we hear you are getting into
web development? We have a small

module that we put together that might help
you generate HTML. It’s a little rough, but it
works. You’re more than welcome to use it for

your projects, if you like.

(Most of) the Head First Code Review Team

you are here 4 227

web development

from string import Template

def start_response(resp="text/html"):

 return('Content-type: ' + resp + '\n\n')

def include_header(the_title):

 with open('templates/header.html') as headf:

 head_text = headf.read()

 header = Template(head_text)

 return(header.substitute(title=the_title))

def include_footer(the_links):

 with open('templates/footer.html') as footf:

 foot_text = footf.read()

 link_string = ''

 for key in the_links:

 link_string += '' + key + ' '

 footer = Template(foot_text)

 return(footer.substitute(links=link_string))

def start_form(the_url, form_type="POST"):

 return('<form action="' + the_url + '" method="' + form_type + '">')

def end_form(submit_msg="Submit"):

 return('<p></p><input type=submit value="' + submit_msg + '">')

def radio_button(rb_name, rb_value):

 return('<input type="radio" name="' + rb_name +

 '" value="' + rb_value + '"> ' + rb_value + '
')

def u_list(items):

 u_string = ''

 for item in items:

 u_string += '' + item + ''

 u_string += ''

 return(u_string)

def header(header_text, header_level=2):

 return('<h' + str(header_level) + '>' + header_text +

 '</h' + str(header_level) + '>')

def para(para_text):

 return('<p>' + para_text + '</p>')

There’s not much help here, just the code. No comments, explanations, documentation, or anything!

228 Chapter 7

template engine code

Let’s get to know the yate code before proceeding with the rest of this chapter. For each chunk
of code presented, provide a written description of what you think it does in the spaces provided:

from string import Template

Take a moment to
look up the “Template”
module in Python’s
documentation set.

def start_response(resp="text/html"):

 return('Content-type: ' + resp + '\n\n')

def include_header(the_title):

 with open('templates/header.html') as headf:

 head_text = headf.read()

 header = Template(head_text)

 return(header.substitute(title=the_title))

def include_footer(the_links):

 with open('templates/footer.html') as footf:

 foot_text = footf.read()

 link_string = ''

 for key in the_links:

 link_string += '' + key +
 ' '

 footer = Template(foot_text)

 return(footer.substitute(links=link_string))

This function takes a single (optional) string as its argument and uses it to
create a CGI “Content-type:” line, with “text/html” as the default.

One has already
been done for you.

Write your
explanations in
the spaces.

you are here 4 229

web development

def start_form(the_url, form_type="POST"):

 return('<form action="' + the_url + '" method="' + form_type + '">')

def end_form(submit_msg="Submit"):

 return('<p></p><input type=submit value="' + submit_msg + '"></form>')

def radio_button(rb_name, rb_value):

 return('<input type="radio" name="' + rb_name +

 '" value="' + rb_value + '"> ' + rb_value + '
')

def u_list(items):

 u_string = ''

 for item in items:

 u_string += '' + item + ''

 u_string += ''

 return(u_string)

def header(header_text, header_level=2):

 return('<h' + str(header_level) + '>' + header_text +

 '</h' + str(header_level) + '>')

def para(para_text):

 return('<p>' + para_text + '</p>')

230 Chapter 7

template engine described

Let’s get to know the yate code before proceeding with the rest of this chapter. For each chunk
of code presented, you were to provide a written description of what you think it does:

from string import Template

def start_response(resp="text/html"):

 return('Content-type: ' + resp + '\n\n')

def include_header(the_title):

 with open('templates/header.html') as headf:

 head_text = headf.read()

 header = Template(head_text)

 return(header.substitute(title=the_title))

def include_footer(the_links):

 with open('templates/footer.html') as footf:

 foot_text = footf.read()

 link_string = ''

 for key in the_links:

 link_string += '' + key +
 ' '

 footer = Template(foot_text)

 return(footer.substitute(links=link_string))

Import the “Template” class from the standard library’s “string”
module. This allows for simple string-substitution templates.

This function takes a single (optional) string as its argument and uses it to
create a CGI “Content-type:” line, with “text/html” as the default.

This function takes a single string as its argument and uses at the title for
the start of a HTML page. The page itself is stored within a separate file
in “templates/header.html”, and the title is substituted in as needed.

Similar to the “include_header” function, this one uses its single string as
its argument to create the end of a HTML page. The page itself is stored
within a separate file in “templates/footer.html”, and the argument is used
to dynamically create a set of HTML link tags. Based on how they are used,
it looks like the argument needs to be a dictionary.

Note the default for “resp”.

Open the
template file
(which is HTML),
read it in, and
substitute in the
provided “title”.

Open the template file (which is
HTML), read it in, and substitute in the provided dictionary of HTML links in “the_links”.

Turn the
dictionary of
links into a string,
which is then
substituted into
the template.

This looks a little weird, but it’s an HTML hack for
forcing spaces
into a string.

you are here 4 231

web development

def start_form(the_url, form_type="POST"):

 return('<form action="' + the_url + '" method="' + form_type + '">')

def end_form(submit_msg="Submit"):

 return('<p></p><input type=submit value="' + submit_msg + '"></form>')

def radio_button(rb_name, rb_value):

 return('<input type="radio" name="' + rb_name +

 '" value="' + rb_value + '"> ' + rb_value + '
')

def u_list(items):

 u_string = ''

 for item in items:

 u_string += '' + item + ''

 u_string += ''

 return(u_string)

def header(header_text, header_level=2):

 return('<h' + str(header_level) + '>' + header_text +

 '</h' + str(header_level) + '>')

def para(para_text):

 return('<p>' + para_text + '</p>')

This function returns the HTML for the start of a form and lets the caller
specify the URL to send the form’s data to, as well as the method to use.

This is typically either “POST” or “GET”.

This function returns the HTML markup, which terminates the form while
allowing the caller to customize the text of the form’s “submit” button.

Given a radio-button name and value, create a HTML radio button (which is
typically included within a HTML form). Note: both arguments are required.

Given a list of items, this function turns the list into a HTML unnumbered
list. A simple “for” loop does all the work, adding a LI to the UL element
with each iteration.

Create and return a HTML header tag (H1, H2, H2, and so on) with level 2
as the default.. The “header_text” argument is required.

Enclose a paragraph of text (a string) in HTML paragraph tags. Almost not
worth the effort, is it?

A simple “for”
loop does the
trick.

232 Chapter 7

no dumb questions

Q: Where are the HTML templates used in the include_
header() and include_footer() functions?

A: They are included with the yate module’s download. Go
ahead and grab them from the Head First Python support website,
and put them into a folder of your choice.

Q: Why do I need yate at all? Why not include the HTML that I
need right in the code and generate it with print() as needed?

A: You could, but it’s not as flexible as the approach shown
here. And (speaking from bitter experience) using a collection of
print() statements to generate HTML works, but it turns your
code into an unholy mess.

Q: And you did this because you are using MVC?

A: Partly, yes. The reason the MVC pattern is being followed is to
ensure that the model code is separate from the view code, which
are both separate from the controller code. No matter the size of the
project, following MVC can make your life easier.

Q: But surely MVC is overkill for something this small?

A: We don’t think so, because you can bet that your webapp will
grow, and when you need to add more features, the MVC “separation
of duties” really shines.

Let’s get to know the yate module even more. With the code downloaded and tucked away in an easy-to-
find folder, load the module into IDLE and press F5 to take it for a spin. Let’s start by testing the start_
response() function. The CGI standard states that every web response must start with a header line that
indictes the type of the data included in the request, which start_response() lets you control:

>>> start_response()

'Content-type: text/html\n\n'

>>> start_response("text/plain")

'Content-type: text/plain\n\n'

>>> start_response("application/json")

'Content-type: application/json\n\n'

The default CGI response header, plus variations on a theme.

The include_header() function generates the start of a web page and let’s you customizee its title:

>>> include_header("Welcome to my home on the web!")

'<html>\n<head>\n<title>Welcome to my home on the web!</title>\n<link type="text/css"
rel="stylesheet" href="/coach.css" />\n</head>\n<body>\n<h1>Welcome to my home on the web!</
h1>\n'

This all looks a little bit messy, but don’t worry; it’s meant

to be processed by your web browser, NOT by you. Your web

browser will have no difficulty working with this HTML. Note

the inclusion of a link to a CSS file (more on this in a bit).

you are here 4 233

web development

The include_footer() function produces HTML that terminates a web page, providing links (if provided as a
dictionary). An empty dictionary switches off the inclusion of the linking HTML:

>>> include_footer({'Home': '/index.html', 'Select': '/cgi-bin/select.py'})

'<p>\nHome <a href="/cgi-bin/select.
py">Select \n</p>\n</body>\n</html>\n'

>>> include_footer({})

'<p>\n\n</p>\n</body>\n</html>\n' With links included, and
without.

The start_form() and end_form() functions bookend a HTML form, with the parameter (if supplied)
adjusting the contents of the generated HTML:

>>> start_form("/cgi-bin/process-athlete.py")

'<form action="/cgi-bin/process-athlete.py" method="POST">'

>>> end_form()

'<p></p><input type=submit value="Submit"></form>'

>>> end_form("Click to Confirm Your Order")

'<p></p><input type=submit value="Click to Confirm Your Order"></form>'

The argument allows you to specify the name of the program on the server to send the form’s data to.

HTML radio buttons are easy to create with the radio_button() function:

>>> for fab in ['John', 'Paul', 'George', 'Ringo']:

 radio_button(fab, fab)

'<input type="radio" name="John" value="John"> John
'

'<input type="radio" name="Paul" value="Paul"> Paul
'

'<input type="radio" name="George" value="George"> George
'

'<input type="radio" name="Ringo" value="Ringo"> Ringo
'

Which one is your favorite?
Select from the list of radio
buttons.

Unordered list are a breeze with the u_list() function:

u_list(['Life of Brian', 'Holy Grail'])

'Life of BrianHoly Grail'

The header() function lets you quickly format HTML headings at a selected level (with 2 as the default):

>>> header("Welcome to my home on the web")

'<h2>Welcome to my home on the web</h2>'

>>> header("This is a sub-sub-sub-sub heading", 5)

'<h5>This is a sub-sub-sub-sub heading</h5>'

Again, not too easy on your eye, but fine as far as your web browser is concerned.

Last, but not least, the para() function encloses a chunk of text within HTML paragraph tags:

>>> para("Was it worth the wait? We hope it was...")

'<p>Was it worth the wait? We hope it was...</p>'

Nothing too exciting here, but it works
as expected. Same goes for here.

234 Chapter 7

controller code

Control your code
Your model code is ready, and you have a good idea of how the yate
module can help you with your view code. It’s time to glue it all together
with some controller code.

First things first: you need to arrange your wedapp’s directory structure to
help keep things organized. To be honest, anything goes here, although by
giving it a little thought, you can enhance your ability to extend your webapp
over time. Here’s one folder structure that Head First Labs recommends.

webapp

cgi-bin

data

images

templates

You can call your top-level
folder anything you like.

Let’s keep the coach’s
data files in a separate
folder by putting all of
the TXT files in here.

The templates that
came with the “yate.py”
download can go in here.

Any code that you write for your webapp needs to reside in a specially named folder called “cgi-bin”.

If your webapp has any images files (JPGs, GIFs, PNGs, and so on), pop them into their own folder to help keep things organized.

As well as containing the subfolders, this folder

contains your webapps “index.html” file, your
“favicon.ico” icon, style sheets, and anythin

g
else that doesn’t fit neatly into one of th

e
subfolders.

Do this!

Head on over to the
Head First Python support
website, download
webapp.zip, and
unpack it to your hard
disk.

you are here 4 235

web development

CGI lets your web server run programs
The Common Gateway Interface (CGI) is an Internet standard that allows for
a web server to run a server-side program, known as a CGI script.

Typically, CGI scripts are placed inside a special folder called cgi-bin, so
that the web server knows where to find them. On some operating systems
(most notably UNIX-styled systems), CGI scripts must be set to executable
before the web server can execute them when responding to a web request.

So...to run my webapp,
I need a web server with
CGI enabled.

All webapps need to run on web servers.

Practically every web server on the planet supports CGI. Whether
your running Apache, IIS, nginx, Lighttpd, or any of the others, they
all support running CGI scripts written in Python.

But using one of these tools here is overkill. There’s no way the
coach is going to agree to download, unpack, install, configure,
and manage one of these industry heavyweights.

As luck would have it, Python comes with its very own web server,
included in the http.server library module. Check the
contents of the webapp.zip download: it comes with a CGI-
enabled web server called simplehttpd.py.

 from http.server import HTTPServer, CGIHTTPRequestHandler

 port = 8080

 httpd = HTTPServer(('', port), CGIHTTPRequestHandler)

 print("Starting simple_httpd on port: " + str(httpd.server_port))

 httpd.serve_forever()

Here are the five lines of code needed to build a web server in Python.Import the HTTP server and CGI modules.
Specify a port.

Create a
HTTP server.

Display a friendly
message and start
your server.

More on this in
a little bit.

I’m all fired up and
ready to go! I live to
serve-up HTML and
run CGIs...

CGI
Web

Server

236 Chapter 7

generate list

Display the list of athletes
Let’s create a program called generate_list.py which, when executed
by the web server, dynamically generates a HTML web page that looks
something like this:

Select an athlete from this list to work with:
 Sarah
 James
 Julie
 Mikey

 Select

This is a paragraph.

There’s one radio
button for each
athlete.

A “submit” button

All of this is
contained within an HTML form.

It wouldn’t hurt to add a title to this web page, would it?

When your user selects an athlete by clicking on her radio button and clicking
Select, a new web request is sent to the web server. This new web request
contains data about which radio button was pressed, as well as the name of a CGI
script to send the form’s data to.

Recall that all of your CGI scripts need to reside in the cgi-bin folder on
your web server. With this in mind, let’s make sure your generate_list.py
CGI script sends its data to another program called:

cgi-bin/generate_timing_data.py

you are here 4 237

web development

Pool Puzzle
Your job is to take the code from the pool and

place them into the blank lines in the CGI
script. You may not use the same line
of code more than once. Your goal is to
make a CGI script that will generate a
HTML page that matches the hand-drawn
design from the previous page.

Note: each thing from
the pool can be used
once!

import athletemodel

import yate

import glob

data_files = glob.glob("data/*.txt")

athletes = athletemodel.put_to_store(data_files)

print(yate.include_footer({"Home": "/index.html"}))

I’ve started
things off
for you.

Import the modules that you need. You’ve already met “athletemodel” and “yate”. The “glob” module lets you query your operating system for a list of file names.

Use your “put_to_store()” function
to create a dictionary of athletes
from the list of data files.

print(yat
e.start_r

esponse()
)

print(yate.include_header("Coach Kelly's List of Athletes"))

print(yate.start_form("generate_timing_data.py"))

print(yate.para("Select an athlete from the list to work with:"))

for each_athlete in athletes:

print(yate.radio_button("which_athlete", athletes[each_athlete].name))print(yate.end_form("Select"))

Let’s add a link to the bottom of the generated HTML page that takes
your user home.

238 Chapter 7

cgi script

Pool Puzzle Solution
Your job was to take the code from the pool

and place them into the blank lines in the
CGI script. You were not to use the same
line of code more than once. Your goal
was to make a CGI script that generates a
HTML page that matches the hand-drawn
design.

import athletemodel

import yate

import glob

data_files = glob.glob("data/*.txt")

athletes = athletemodel.put_to_store(data_files)

print(yate.include_footer({"Home": "/index.html"}))

print(yate.start_response())

print(yate.include_header("Coach Kelly's List of Athletes"))

print(yate.start_form("generate_timing_data.py"))

print(yate.para("Select an athlete from the list to work with:"))

for each_athlete in athletes:

print(yate.radio_button("which_athlete", athletes[each_athlete].name))

print(yate.end_form("Select"))

Always start with a
Content-type line.

Start generating the web page, providing an appropriate title.

Start generating the form,
providing the name of the server-
side program to
link to.

A paragraph telling
your user what to
do

Generate a radio-
button for each of
your athletes.

End the form generation with a custom “Submit” button.

Cool…an
empty pool.

you are here 4 239

web development

Test Drive
To test drive your CGI script, you need to have a web server up and running. The code to
simplehttpd.py is included as part of the webapp.zip download. After you unpack the ZIP
file, open a terminal window in the webapp folder and start your web server:

 What you need to do next depends on the operating
system you’re running your web server on.

If you are running on Windows, stop reading right now and
proceed to the Test Drive. However, if you are running a Unix-
based system (such as Linux, Mac OS X, or BSD) you need to

do two things to prepare your CGI script for execution:

1. Set the executable bit for your CGI using the chmod +x command.

2. Add the following line of code to the very top of your program:

#! /usr/local/bin/python3

From your terminal window, type
chmod +x generate_li

st.

py to set the executable bit. You
need do this only once.

c:\Python31\python.exe simplehttpd.py
Starting simple_httpd on port: 8080

File Edit Window Help WebServerOnWindows

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080

File Edit Window Help WebServerOnUNIX

Use this command on Windows-based systems.

Use this command
on Unix-based
systems.

240 Chapter 7

test drive

Test Drive, continued
With your web server running, let’s load up Coach Kelly’s home page and get things going. You’ve
started your web server running on port 8080 on your computer, so you need to use the following
web address in your web browser: http://localhost:8080.

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080
localhost - - [12/Sep/2010 14:30:03] "GET / HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:30:03] "GET /coach.css HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:30:03] "GET /images/coach-head.jpg HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:30:03] "GET /favicon.ico HTTP/1.1" 200 -

File Edit Window Help DisplayingHomePage

…and your web server
springs into life, logging
(to the screen) any and
all web requests that it
processes.

The coach’s home page appears in your browser. It’s called “index.html” and it is included in the “webapp.zip” download.

The “timing
data” hyperlink is
waiting for you
to click it.

you are here 4 241

web development

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080
localhost - - [12/Sep/2010 14:30:03] "GET / HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:30:03] "GET /coach.css HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:30:03] "GET /images/coach-head.jpg HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:30:03] "GET /favicon.ico HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:45:16] "GET /cgi-bin/generate_list.py HTTP/1.1" 200 -

File Edit Window Help DisplayingHomePage

Looking good…the web page has been generated correctly…

Sure enough, clicking on the home page’s link runs the generate_list.py program on the web
server, which displays Coach Kelly’s athletes as a list of radio buttons.

…and your web server logs
the web request to run
the “generate_list.py”
CGI script.

You can click the Home hyperlink to return to the coach’s home page, or
select an athlete from the list (by clicking on their radio-button), before
pressing the Select button to continue.

Select an athlete and press Select. What happens?

242 Chapter 7

no such cgi script

The dreaded 404 error!
Whoops! Your web server has responded with a “404” error code, which is
its way of telling you that something was wrong with your request. The web
server is in fact telling you that it can’t locate the resource that your web
browser requested, so it’s telling you that you made a mistake:

Yikes! The web server can’t find the “/cgi-bin/generate_timing_data.py” CGI script, which triggers the 404.

Check the web server’s console window to confirm that your attempt to post your
form’s data to generate_timing_data.py resulted in failure.

Which isn’t really that surprising seeing as you have yet to write that code! So…things
aren’t as bad as they first appear. The “404” error is exactly what you would expect
to be displayed in this situation, so your generate_list.py CGI is working
fine. What’s needed is the code to the other CGI script.

If you create the required CGI script, you’ll be back on track.

you are here 4 243

web development

Tonight’s talk: To be CGI or not to be CGI, that is the question.

A Python Program:
Listen: you’re really not all that different than me;
you just work on a web server, whereas I can work
anywhere.

Special?!? But you only work on the Web, nowhere
else. How’s that “special”?

Nonsense! The truth is that you work only on the Web
and break pretty quickly when used elsewhere. You
don’t even have control over your own I/O.

Like [sniggers] generating text in the form of
HTML? That’s really taxing…

Oh, get over yourself ! You’re a regular program,
just like me. I can generate HTML, too, I just
choose not to.

I guess so…

Ummmm…I guess so.

A Python CGI Script:

Yes. I like to think of myself as special.

Because all the cool stuff works on the Web these
days and I’m designed, optimized, tailored, and
engineered for the Web. Because the Web’s a cool
place, it follows that I must be cool, too. See: special.

I don’t need control over my input and output. I
have a friendly web server to take care of that for
me. My input comes from the web server and my
output goes to the web server. This arrangement
allows me to concentrate on the important stuff.

Smirk all you want; HTML makes the World Wide
Web go around and I’m a master at generating it
dynamically, on demand, and as needed. Without me,
the Web would be a pretty static place.

And if you did generate HTML, you’d want it
displayed somewhere…like in a browser?

And to do that you’d need to rely on the services of
a friendly web server, right?

Which would make you a CGI script. So, you’d be
special, too. Q.E.D.

244 Chapter 7

yet another cgi script

Timing data for Sarah:

 2.18

 2.21

 2.22

Home Select another athlete.

Create another CGI script
Let’s take a moment to recall what is required from the generate_
timing_data.py CGI script. Based on your hand-drawn sketch from
earlier, your need to generate a new HTML page that contains the top three
times for the selected athlete:

This looks like a
HTML heading for
the page, right?

This might be best rendered as an
unordered HTML list.

Two hyperlinks: one jumps to the home
page, whereas the other returns to the
previous selection page.

But how do you know which athlete is selected?

When you click on a radio-button and then press the Select button, a new
web request is sent to the server. The web request identifies the CGI script
to execute (in this case, that’s generate_timing_data.py), together
with the form’s data. The web server arranges to send the form’s data to your
CGI script as its input. Within your code, you can access the form data using
Python’s cgi module, which is part of the standard library:

 import cgi

 form_data = cgi.FieldStorage()

 athlete_name = form_data['which_athlete'].value

Import the
“cgi” library.

Grab all of the form data and put it in a dictionary.

Access a named piece of data from the form’s data.

It’s probably a good idea to add a title to this page.

Let’s include
the ahtlete’s
full name and
DOB here.

you are here 4 245

web development

It’s time to exercise your newly acquired web-coding chops. Grab
your pencil and write the code for the generate_timing_data.
py CGI script. It’s not too different from the generate_list.py
code, so you should be able to reuse a lot of your existing code.Write the code

to your new CGI
script here.

246 Chapter 7

revised script

It’s time to exercise your newly acquired web-coding chops. You
were to grab your pencil and write the code for the generate_
timing_data.py CGI script. It’s not too different from the
generate_list.py code, so you should be able to reuse a lot of
your existing code.

#! /usr/local/bin/python3

import cgi

import athletemodel
import yate

athletes = athletemodel.get_from_store()

form_data = cgi.FieldStorage()
athlete_name = form_data['which_athlete'].value

print(yate.start_response())
print(yate.include_header("Coach Kelly's Timing Data"))
print(yate.header("Athlete: " + athlete_name + ", DOB: " +
 athletes[athlete_name].dob + "."))
print(yate.para("The top times for this athlete are:"))
print(yate.u_list(athletes[athlete_name].top3()))
print(yate.include_footer({"Home”: "/index.html",
 "Select another athlete": "generate_list.py"}))

This line is needed on Unix-based systems only.

Import the
libraries and
modules you
intend to use.

Get the data
from the
model.

Which
athlete’s
data are
you working
with?

Nothing
new here
or here.

Grab the
athlete’s name
and DOB.

The bottom of
this web page
has two links.

Turn the top three list into
an unordered HTML list.

A link back to the previous CGI script.

you are here 4 247

web development

Test Drive
Your web server should still be running from earlier. If it isn’t, start it again. In your web browser,
return to the coach’s home page, then select the hyperlink to display the list of athletes, select Sarah,
and then press the button.

Note: If you are on a Unix-based system, don’t forget
to add “chmod +x generate_timing_data.py” to
set the executable bit.

Ah, phooey!
Something’s not
quite right here. Where’s Sarah’s
top three times?

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080
localhost - - [12/Sep/2010 14:30:03] "GET / HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:30:03] "GET /coach.css HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:30:03] "GET /images/coach-head.jpg HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:30:03] "GET /favicon.ico HTTP/1.1" 200 -
localhost - - [12/Sep/2010 14:45:16] "GET /cgi-bin/generate_list.py HTTP/1.1" 200 -
localhost - - [12/Sep/2010 16:12:27] “GET /cgi-bin/generate_list.py HTTP/1.1” 200 -
localhost - - [12/Sep/2010 16:12:29] “POST /cgi-bin/generate_timing_data.py HTTP/1.1” 200 -
Traceback (most recent call last):
 File “/Users/barryp/HeadFirstPython/chapter7/cgi-bin/generate_timing_data.py”, line 21, in <module>
 print(yate.u_list(athletes[athlete_name].top3()))
TypeError: ‘list’ object is not callable
localhost - - [12/Sep/2010 16:12:29] CGI script exit status 0x100

File Edit Window Help HoustonWeHaveAProblem

Does the
web server’s
logging
information
tell you
anything?

This all
looks OK.

Your CGI has suffered from a TypeError exception, but other than looking at the web
server’s logging screen, it’s not clear on the web browser screen that anything has gone wrong.

What do you think is the problem here? Take a moment
to study the error message before flipping the page.

248 Chapter 7

track down cgi errors

Enable CGI tracking to help with errors
The CGI standard dictates that any output generated by a server-side
program (your CGI script) should be captured by the web server and sent
to the waiting web browser. Specifically, anything sent to STDOUT (standard
output) is captured.

When your CGI script raises an exception, Python arranges for the error
message to display on STDERR (standard error). The CGI mechanism is
programmed to ignore this output because all it wants is the CGI script’s
standard output.

This behavior is fine when the webapp is deployed, but not when it’s being
developed. Wouldn’t it be useful to see the details of the exception in the
browser window, as opposed to constantly having to jump to the web server’s
logging screen?

Well…guess what? Python’s standard library comes with a CGI tracking
module (called cgitb) that, when enabled, arranges for detailed error
messages to appear in your web browser. These messages can help you work
out where your CGI has gone wrong. When you’ve fixed the error and your
CGI is working well, simply switch off CGI tracking:

Web
Server

When your CGI works, I’ll fill
your STDOUT with lovely HTML.
When your CGI fails, it’s a case
of—POOF!—gone for good. Sorry,
but that’s the way the CGI cookie

crumbles...

 import cgitb

 cgitb.enable()

Add these two lines near the start of your CGI scripts to enable Python’s CGI tracking technology.

you are here 4 249

web development

Test Drive
Add the two CGI tracking lines of code near the top of your generate_timing_data.py CGI
script. Press the Back button on your web browser and press the Select button again. Let’s see what
happens this time.Wow! Look at all

of this detail.

Notice that the CGI tracking module tries to identify
exactly where the problem with your code lies.

What’s this? top3() is undefined?!?

250 Chapter 7

small fix, big difference

A small change can make all the difference
The CGI tracking output indicates an error with the use of the top3() method
from the AthleteList code.

A quick review of the code to the AthleteList class uncovers the source of the
error: the top3() method has been redesignated as a class property.

 @property

 def top3(self):

 return(sorted(set([self.sanitize(t) for t in self]))[0:3])

The use of the @property decorator allows the top3() method to appear
like an attribute to users of the class. So, instead of calling the top3()
method like this:

 print(yate.u_list(athletes[athlete_name].top3()))

Treat the top3() method as if it was another class attribute, and call it like
this:

 print(yate.u_list(athletes[athlete_name].top3))

It’s a small change, but it’s an important one

When a change is made to the way a class is used, you need to be careful to
consider what impact the change has on existing programs, both yours and
those written by others.

At the moment, you are the only one using the AthleteList class, so it’s
not a big deal to fix this. But imagine if thousands of programmers were
using and relying on your code…

Let’s fix your CGI script and try again.

This decorator allows you to access the data returned by “top3()” as if it were a class attribute.

A method call
always needs the parentheses…

…unless the method is declared
to be an “@property”, in which
case parentheses are NOT
required.

you are here 4 251

web development

Test Drive
Make the small edit to your code to remove the brackets from the call to the top3() method, press
your web browser’s Back button, and press the Select button one last time.

Whoo hoo! This
time the selected
athlete’s data is
displayed on screen.
Nice, eh?

Q: What happens if the coach recruits new athletes?

A: All Coach Kelly needs do is create a new text file similar to the
others, and your webapp handles the rest by dynamically including
the new athlete the next time your webapp runs, which occurs when
someone clicks on the home page’s “timing data” hyperlink.

Q: Shouldn’t the server’s data be in a database as opposed
to a pickle? Surely that would be better, right?

A: In this case, it’s probably overkill to use a database, but it might
be worth considering sometime in the future.

Now that you’ve
solved that
problem, be sure
to switch off
CGI tracking.

252 Chapter 7

successful webapp

Your webapp’s a hit!

This is great! Now I can
share my data with the kids,
and they can access their
times without bugging me...

Hey, this is super cool
and the coach is right...
if we train hard, we can
improve on these times!

Wait until my mom
sees my times...she’ll
be so proud of me!

By moving your program to the Web, you’ve made it a no-brainer for Coach
Kelly to share his data with not only his athletes, but with anyone else that
needs to access his data.

By conforming to the MVC pattern and using CGI, you’ve built a webapp in
such a way that it’s easy to extend as new requirements are identified.

Congratulations! You’re a web developer.

you are here 4 253

web development

Python Lingo
• “@property” - a decorator that lets you arrange for a class method to appear as if it is a class attribute.

Your Python Toolbox

You’ve got Chapter 7 under your
belt and you’ve added some key
Python techiques to your toolbox.

CHAPT
ER 7

 � The Model-View-Controller pattern lets
you design and build a webapp in a
maintainable way.

 � The model stores your webapp’s data.

 � The view displays your webapp’s user
interface.

 � The controller glues everything together
with programmed logic.

 � The standard library string module
includes a class called Template,
which supports simple string substitutions.

 � The standard library http.server
module can be used to build a simple web
server in Python.

 � The standard library cgi module
provides support for writing CGI scripts.

 � The standard library glob module is
great for working with lists of filenames.

 � Set the executable bit with the chmod
+x command on Linux and Mac OS X.

 � The standard library cgitb module,
when enabled, lets you see CGI coding
errors within your browser.

 � Use cgitb.enable() to switch on
CGI tracking in your CGI code.

 � Use cgi.FieldStorage() to
access data sent to a web server as part
of a web request; the data arrives as a
Python dictionary.

Web Lingo
• “webapp” - a program that runs on

the Web.

• “web request” - sent from the web

browser to the web server.

• “web response” - sent from the web

server to the web browser in repsonse

to a web request.

• “CGI” - the Common Gateway

Interface, which allows a web server to

run a server-side program.

• “CGI script” - another name for a

server-side program.

this is a new chapter 255

This had better be a
smartphone running
Honeycomb or Mr. Smooth
is history!

mobile app development8

Small devices

Putting your data on the Web opens up all types of possibilities.
Not only can anyone from anywhere interact with your webapp, but they are increasingly

doing so from a collection of diverse computing devices: PCs, laptops, tablets, palmtops,

and even mobile phones. And it’s not just humans interacting with your webapp that

you have to support and worry about: bots are small programs that can automate web

interactions and typically want your data, not your human-friendly HTML. In this chapter,

you exploit Python on Coach Kelly’s mobile phone to write an app that interacts with your

webapp’s data.

256 Chapter 8

going mobile

The world is getting smaller
Coach Kelly is continuing to use his webapp every day, but he’s having a
problem with his new smartphone.

I can access my timing data over WiFi on
my phone, but it’s so small it’s all but impossible
to read, let alone click on links or buttons. Can
you take a look at it for me? Gotta dash. I’ve got
another 5K to do before breakfast...

There’s more than just desktop computers out there.

Who knew that your users would try to interact with your webapp using
something other than a desktop computer or laptop?

It’s a diverse computing environment out there.

you are here 4 257

mobile app development

Coach Kelly is on Android
The coach has a lovely new smartphone that’s running Google’s Android
operating system. Sure enough, when you check it out, the webapp is way too
small and not much use on the coach’s three-inch screen:

Does anyone have a magnifying glass?

And don’t go telling
me to do all that two-
fingered zoom and double-
tapping thing. That just
drives me crazy!

Obviously, the coach needs to access his data and run his webapp
on his phone…but what’s the best way to do this if not through the
phone’s browser?

Open your web browser on your desktop computer (or phone)
and enter “Python for Android” into your favorite search engine.
Make a note in the space below of the most promising site from
your search results:

258 Chapter 8

scripting layer for android

Run Python on the coach’s smartphone

A quick search of the Web uncovers a pleasent surprise: Python runs on Android.

At least a version of Python runs on Android. A project called Scripting Layer
for Android (SL4A) provides technology to let you run Python on any Android
device. But there’s a catch.

Ummmm...I just checked
the SL4A website, and
it looks like it supports
Python 2.6.2, not Python 3.

Phooey!

Yes. SL4A ships with Python 2, not 3.

Python 3, this book’s preference, is the best version of
Python yet, but it achieves its greatness at the cost of a
lack of backward compatibility. There’s some stuff in
3 that will never work in 2 and vice versa.

Is this fact alone a show-stopper?

You were to open your web browser on your desktop computer
(or phone) and enter “Python for Android” into your favorite
search engine. You were then to make a note in the space below
of the most promising site from your search results:

http://code.google.com/p/android-scripting (the home of the SL4A project.)

Is this the one
you found?

you are here 4 259

mobile app development

Don’t worry about Python 2
The fact that Python 2 is available for Android and you’ve learned Python
3 in this book is nothing to lose sleep over. Python 2 is still Python, and the
differences between Python 2 and Python 3 are easy to manage.

Think about your webapp for a minute. Right now, the model, view, and
controller code resides on the web server, which is running Python 3.

Your web browser
runs here.

All of your webapp code runs here.

The Internet
Web

Server

If you move the user interaction to the smartphone, the model and some
of the controller code stay on the server (and continue to run on Python
3), whereas the view code and the rest of the controller code move to the
smartphone, where they need to be rewritten to run on Python 2.

The Internet
Web

Server

I’m quite happy
to run Python 3
all day long...

Python 3 is still
going strong...

Half your webapp’s code runs here…

…and the other
half runs here.

Run Python code?
No problem...just so
long as it’s Python 2.

260 Chapter 8

android sdk

Set up your development environment
Understandably, the coach won’t let your have his phone to work on until
you have something that works. Thankfully, Google provides a cross-platform
Android emulator that lets you develop for the phone as needed, even
though you don’t own any hardware.

Download the Software Development Kit (SDK)

Let’s get started developing for Android. Visit this website and download the
SDK for your computer and operating system:

 http://developer.android.com/sdk/index.html

Do this!

Follow along with
these instructions to
ensure you have your
Android development
environment correctly set
up on your computer.

Despite what this website might look like it’s telling you, you do not need to
install Eclipse to run the Android emulator. However, you do need to have a
Java Runtime Environment installed. If you are unsure about this, don’t worry:
the Android emulator will advise your best course of action if it spots that
Java is missing.

Note: This is how the Android SDK
download page looks at the time of
this writing. It might look a little
different for you. No worries: just
download the latest version of the
SDK.

The Android
SDK website

you are here 4 261

mobile app development

Configure the SDK and emulator
You need to do two things to configure the SDK and emulator: add an Android
Platform and create an Android Virtual Device (known as an AVD).

Add an Android platform

The coach is running Android 2.2 on his phone, so let’s add a 2.2 platform
to mimic this setup. Open up the Android SDK and AVD Manager tool,
select Available Packages, and pick 2.2 for installation.

Create a new Android Virtual Device (AVD)

With the 2.2 platform downloaded and installed, create a new Android
Virtual Device.

The Android download contains
a folder called “tools”. Run the
“android” program within this
folder.

This might take a minute or two, depending on the speed of your network connection.

Give your AVD a name,
and select a target.

Set the size of the virtual SDcard: 512 is more than enough.

Click on
“Create AVD”.

Your AVD is
a simulated
Android phone.

This is the only version of the SDK that you need.

262 Chapter 8

emulate sl4a

Install and configure Android Scripting
With the emulator ready, use the AVD Manager to start your 2.2 device. Click
on the emulator’s browser (the little globe), surf to this web address:

 http://code.google.com/p/android-scripting

and tap on the “boxed” bar code near the bottom of the page:
Don’t worry if it takes your emulator a minute or two to start. The emulator is slower than the actual phone…

On the emulator,
tap on the
“boxed” bar code
to start the
SL4A download.

When the download completes, select the emulator’s Menu button ➝ More ➝
Downloads, and then tap on the sl4a_r2.apk file to install the SL4A
package on the emulator. When the install completes, tap Done.

The version you see might be different than
this. Don’t worry; yours in the most recent.

The version available to you might be
different, but don’t worry: download the
latest release.

These instructions work on a “real” phone, too. Just be sure to enable “Unknown sources” to allow for non-Market application downloads.

you are here 4 263

mobile app development

Add Python to your SL4A installation
Return to the emulator’s web browser, double-tap on the screen to zoom in,
and select the Downloads tab. Double-tap again and tap the following link:

 python_for_android_r1.apk

Tap the download link, and tap on the package name to download it. Select
Menu ➝More ➝ Downloads, and tap on the newly downloaded package.

Again, the version you see might
be different than this. Select the
most recent file.

The Python for Android app runs. When you are ready, tap Open -> Install
to complete the installation. This downloads, extracts, and installs the Python
support files for Android, which can take a few minutes to complete. When
it does, Python 2.6.2 and Python for Android are installed on your emulator
and ready for action.

Let’s confirm everything is working with a quick test.

This last bit is really important.

264 Chapter 8

your script on android

Test Python on Android
Return to your emulator’s main screen and find an app called SL4A added to your list
of app icons. Tap this app to display the list of Python scripts preinstalled with Python
for Android. Simplty tap on any script name to execute it:

Take your Android emulator for a spin

Here’s a four-line Python script that you can create to test your installation.
Let’s call this script mydroidtest.py:

 import android

 app = android.Android()

 msg = "Hello from Head First Python on Android"
 app.makeToast(msg)

Import the “android”
library and create a new
app object instance.

Create an appropriate message and display it on screen.

To transfer your script to the emulator, you need to copy it to the emulator’s
virtual SD card. Another program within the tools folder called adb helps
with this:

 tools/adb push mydroidtest.py /sdcard/sl4a/scripts

Issue this command at your terminal window to transfer your script to the emulator.

Your script should now appear on the list of scripts available to SL4A.

The “menu”
button.

 Be sure to set
the SL4A
rotation mode
to automatic.

Your screen might
switch to landscape by default
the first time you run a script.
To fix this, choose Menu ➝
Preferences, scroll down to
Rotation mode, and set its
value to Automatic.

you are here 4 265

mobile app development

Test Drive
Let’s confirm that your Android setup is working. With the SL4A app open, simply tap on your script’s
name to run it, and then click the run wheel from the menu.

Click your app’s
name…

…then click the
“run wheel.”

And there’s your message. It
works!

Your Android
emulator with SL4A
is working, and it’s
running your Python
code.

266 Chapter 8

what to do?

Define your app’s requirements
Let’s think a little bit about what your Android app needs to do.

Frank Jill Joe

Nothing’s really
changed...you just
have to get the web
data onto the phone.

Frank: Well…first off, the view code no longer has to generate HTML,
so that makes things interesting.

Jill: In fact, you need the web server only to supply your data on
request, not all that generated HTML.

Joe: Ah ha! I’ve solved it. Just send the pickle with all the data from the
server to the Android phone. It can’t be all that hard, can it?

Jill: Sorry, guys, that’ll cause problems. The pickle format used by
Python 3 is incompatible with Python 2. You’ll certainly be able to send
the pickle to the phone, but the phone’s Python won’t be able to work
with the data in the pickle.

Frank: Darn…what are our options, then? Plain data?

Joe: Hey, good idea: just send the data as one big string and parse it on
the phone. Sounds like a workable solution, right?

Jill: No, that’s a potential disaster, because you never know in what
format that stringed data will arrive. You need an data interchange format,
something like XML or JSON.

Frank: Hmm…I’ve heard XML is a hound to work with…and it’s
probably overkill for this simple app. What’s the deal with JSON?

Joe: Yes, of course, I keep hearing about JSON. I think they use it in
lots of different places on the Web, especially with AJAX.

Frank: Oh, dear…pickle, XML, JSON, and now AJAX…I think my
brain might just explode here.

Jill: Never worry, you only need to know JSON. In fact, you don’t even
need to worry about understanding JSON at all; you just need to know
how to use it. And, guess what? JSON comes standard with Python
2 and with Python 3…and the format is compatible. So, we can use
JSON on the web server and on the phone.

Frank & Joe: Bonus! That’s the type of technology we like!

you are here 4 267

mobile app development

Head First: Hello, JSON. Thanks for agreeing to
talk to us today.

JSON: No problem. Always willing to play my part
in whatever way I can.

Head First: And what is that, exactly?

JSON: Oh, I’m just one of the most widely used
data interchange formats on the Web. When you
need to transfer data over the Internet, you can rely
on me. And, of course, you’ll find me everywhere.

Head First: Why’s that?

JSON: Well…it’s really to do with my name. The
“JS” in JSON stands for “JavaScript” and the “ON”
stands for “Object Notation.” See?

Head First: Uh…I’m not quite with you.

JSON: I’m JavaScript’s object notation, which
means I’m everywhere.

Head First: Sorry, but you’ve completely lost me.

JSON: The first two letters are the key ones: I’m
a JavaScript standard, which means you’ll find me
everywhere JavaScript is…which means I’m in every
major web browser on the planet.

Head First: What’s that got to do with Python?

JSON: That’s where the other two letters come
into play. Because I was initially designed to allow
JavaScript data objects to be transferred from one
JavaScript program to another, I’ve been extended
to allow objects to be transferred regardless of what
programming language is used to create the data.
By using the JSON library provided by your favorite
programming language, you can create data that
is interchangeable. If you can read a JSON data
stream, you can recreate data as you see fit.

Head First: So I could take an object in, say,

Python, use JSON to convert it to JSON’s object
notation, and then send the converted data to
another computer running a program written in C#?

JSON: And as long as C# has a JSON library, you
can recreate the Python data as C# data. Neat, eh?

Head First: Yes, that sounds interesting…only
[winks] why would anyone in their right mind want
to program in C#?

JSON: [laughs] Oh, come on now: be nice. There’s
plenty of reasons to use different programming
languages for different reasons.

Head First: Which goes some of the way to explain
why we have so many great programming titles, like
Head First C#, Head First Java, Head First PHP and
MySQL, Head First Rails, and Head First JavaScript.

JSON: Was that a shameless, self-serving plug?

Head First: You know something…I think it might
well have been! [laughs].

JSON: [laughs] Yes, it pays to advertise.

Head First: And to share data, right?

JSON: Yes! And that’s exactly my point: when you
need a language-neutral data interchange format that is
easy to work with, it’s hard to pass me by.

Head First: But how can you be “language neutral”
when you have JavaScript in your name?

JSON: Oh, that’s just my name. It’s what they
called me when the only language I supported was
JavaScript, and it kinda stuck.

Head First: So they should really call you
something else, then?

JSON: Yes, but “WorksWithEveryProgramming
LanguageUnderTheSunIncludingPythonObject
Notation” doesn’t have quite the same ring to it!

JSON Exposed
This week’s interview:
The Data Interchange Lowdown

268 Chapter 8

leaving pickle on the plate

This is NOT cool... I spent all that time
learning to use pickles and now you’re
abandoning them in favor of this “JSON”
thing. You’ve got to be joking...?

You are not exactly “abandoning” pickle.

The JSON technology is a better fit here for a number
of reasons. First of all, it’s a text-based format, so
it fits better with the way the Web works. Second, it’s
a standard that works the same on Python 2 and
Python 3, so there are no compatibility issues. And
third, because JSON is language-neutral, you open
up the possibility of other web tools written in other
programming languages interacting with your server.

If you use pickle here, you lose all this.

you are here 4 269

mobile app development

JSON is an established web standard that comes preinstalled with Python 2 and Python 3. The JSON API is not that
much different to the one used by pickle:

>>> import json

>>> names = ['John', ['Johnny', 'Jack'], 'Michael', ['Mike', 'Mikey', 'Mick']]

>>> names

['John', ['Johnny', 'Jack'], 'Michael', ['Mike', 'Mikey', 'Mick']]

>>> to_transfer = json.dumps(names)

>>> to_transfer

'["John", ["Johnny", "Jack"], "Michael", ["Mike", "Mikey", "Mick"]]'

>>> from_transfer = json.loads(to_transfer)

>>> from_transfer

['John', ['Johnny', 'Jack'], 'Michael', ['Mike', 'Mikey', 'Mick']]

>>> names

['John', ['Johnny', 'Jack'], 'Michael', ['Mike', 'Mikey', 'Mick']]

Import the JSON library.

Create a list of lists.

Transform the Python list-of-lists into a JSON list of lists.
The format is similar,
but different.

Transform the JSON list of lists back into one that Python understands.

The new data is exactly the same
as the original list of lists.

Add a new function to the athletemodel module that, when
called, returns the list of athlete names as a string.

Call the new function get_names_from_store().

270 Chapter 8

athletemodel function

You were to add a new function to the athletemodel module
that, when called, returns the list of athlete names as a string.

You were to all the new function get_names_from_store().

def get_names_from_store():
 athletes = get_from_store()
 response = [athletes[each_ath].name for each_ath in athletes]
 return(response)

Get all the data from the pickle.

Extract a list
of athlete names
from the data.

Return the list to the caller.

So...rather than running
a CGI script to create a HTML
web page, you want me to deliver
just the data, right? That’s OK. Not
a problem—just be sure to tell me
which script to run...

Web
Server

you are here 4 271

mobile app development

With your new function written and added to the athletemodel module, create a new CGI
script that, when called, returns the data from the get_names_from_store() function to
the web requester as a JSON data stream.

Call your new script cgi-bin/generate_names.py.

Hint: Use application/json as your Content-type.

I may be small, but I’m
mighty capable. Whether
you need a web page or just
your data, you can count on me
to get the job done.

272 Chapter 8

json-generating cgi script

#! /usr/local/bin/python3

import json
import athletemodel
import yate

names = athletemodel.get_names_from_store()

print(yate.start_response('application/json'))
print(json.dumps(sorted(names)))

With your new function written and added to the athletemodel module, you were to create
a new CGI script that, when called, returns the data from the get_names_from_store()
function to the web requester as a JSON data stream.

You were to call your new script cgi-bin/generate_names.py.

Don’t forget this
“magic” first line
if you’re running
on Linux or Mac
OS X.

Do your imports.

Get the data from the model.Start with the
appropriate
“Content-type”:
line. Sort “names”, then convert

to JSON and send to
STDOUT.

 Take care testing
your JSON-generating
CGI code.

The behavior you see
when testing your JSON-

generating CGI script will differ
depending on the web browser you
are using. For instance, Firefox might
attempt to download the generated
data as opposed to display it on screen.

you are here 4 273

mobile app development

Test Drive
If it is not already running, start your web server and be sure to set the executable bit with the
chmod +x cgi-bin/generate_names.py command (if on Linux or Mac OS X). When you’re
ready, grab your favorite web browser and take your new CGI for a spin.

Hey! It looks like the coach has added two new athletes.

The web server’s
logging information
confirms that the
CGI executed.

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080
localhost - - [18/Sep/2010 06:31:29] "GET /cgi-bin/generate_names.py HTTP/1.1" 200 -
localhost - - [18/Sep/2010 06:35:29] "GET /cgi-bin/generate_list.py HTTP/1.1" 200 -
localhost - - [18/Sep/2010 06:35:35] "POST /cgi-bin/generate_timing_data.py HTTP/1.1" 200 -
localhost - - [18/Sep/2010 06:35:38] "GET /cgi-bin/generate_list.py HTTP/1.1" 200 -
localhost - - [18/Sep/2010 06:35:40] "GET /index.html HTTP/1.1" 200 -
localhost - - [18/Sep/2010 06:35:49] "GET /cgi-bin/generate_names.py HTTP/1.1" 200 -

File Edit Window Help GeneratingJSON

That worked!

Now all you have to do is arrange for the Android emulator to request the
data within a Python script and display the list of names on the smartphone’s
screen. How hard can that be?

Enter the web address of the CGI in your
browser’s location bar.

274 Chapter 8

two apis

The SL4A Android API
The SL4A technology provides a high-level API to the low-level Android API,
and SL4A’s API is documented in the online API reference:

 http://code.google.com/p/android-scripting/wiki/ApiReference

Recall the code from earlier, which demonstrated a minimal Android SL4A
app:

 import android

 app = android.Android()

 msg = "Hello from Head First Python on Android"
 app.makeToast(msg)

Import the “android”
library and create a new
app object instance.

Create an appropriate message and display it on screen.

Six calls to the Android API let you create a list of selectable items in a dialog,
together with positive and negative buttons, which are used to indicate the
selection your user made. Note how each of the calls to the Android “dialog”
API results in something appearing on screen.

import android

app = android.Android()

app.dialogCreateAlert("Select an athlete:")

app.dialogSetSingleChoiceItems(['Mikey', 'Sarah', 'James', 'Julie'])

app.dialogSetPositiveButtonText("Select")

app.dialogSetNegativeButtonText("Quit")

app.dialogShow()

resp = app.dialogGetResponse().result

Always start with an import.

Create an Android
app object.

Display your dialog on the phone. Wait for a response
from your user.

you are here 4 275

mobile app development

Android Code Magnets
Here is the code to a program that queries your web server for the list of names as a JSON array
and then displays the list on the smartphone. The only trouble is, the second half of the program
is a bunch of mixed-up code magnets at the bottom of the screen. Your job is to rearrange the
magnets to complete the program.

app.dialogSetNegativeButtonText('Quit')

app = android.Android()

 def status_update(
msg, how_long=2):

 app.makeToast(
msg)

 time.sleep(how
_long)

import android

import json

import time

from urllib import urlencode

from urllib2 import urlopen

hello_msg = "Welcome to Coach Kelly's Timing App"

list_title = 'Here is your list of athletes:'

quit_msg = "Quitting Coach Kelly’s App."

web_server = 'http://192.168.1.33:8080'

get_names_cgi = '/cgi-bin/generate_names.py'

def send_to_server(url, post_data=None):

 if post_data:

 page = urlopen(url, urlencode(post_data))

 else:

 page = urlopen(url)

 return(page.read().decode("utf8"))

status_update(hello_msg)

app.dialogSetPositiveButtonText('Select')

athlete_names = sorted(json.loads(send_to_server(web_server + get_names_
cgi)))

app.dialogSetSingleChoiceItems(athlete_names)

app.dialogShow() app.dialogCreateAlert(list_title)

resp = app.dialogGetResponse().result

status_update(quit_msg)

Do the usual imports…these ones pull in web client functionality.

Change this to the
web address that’s
running your web
server.

All of this
program’s
messages are in
one place.

The name
of the CGI
script to run
on the web
server This function takes both a web address (url) and some optional data (post_data) and sends a web request to your web server. The web response is returned to the caller.

This code’s a
mess…can you
fix it?

276 Chapter 8

android query

Android Code Magnets Solution
Here is the code to a program that queries your web server for the list of names as a JSON array
and then displays the list on the smartphone. The only trouble is, the second half of the program
is a bunch of mixed-up code magnets at the bottom of the screen. Your job was to rearrange the
magnets to complete the program.

app.dialogSetNegativeButtonText('Quit')

import android

import json

import time

from urllib import urlencode

from urllib2 import urlopen

hello_msg = "Welcome to Coach Kelly's Timing App"

list_title = 'Here is your list of athletes:'

quit_msg = "Quitting Coach Kelly’s App."

web_server = 'http://192.168.1.33:8080'

get_names_cgi = '/cgi-bin/generate_names.py'

def send_to_server(url, post_data=None):

 if post_data:

 page = urlopen(url, urlencode(post_data))

 else:

 page = urlopen(url)

 return(page.read().decode("utf8"))

app.dialogSetPositiveButtonText('Select')

athlete_names = sorted(json.loads(send_to_server(web_server + get_names_
cgi)))

app.dialogSetSingleChoiceItems(athlete_names)

app.dialogCreateAlert(list_title)

status_update(quit_msg)

Create an Android
app object.

Say
“hello”.

This is a little
function for
displaying short
messages on the
phone.

Send the web request to your server, then turn the JSON response into a sorted list.

Create a two-buttoned
dialog from the list of
athlete names.

Wait for the user to tap a button, then assign the result to “resp”.
Say “bye bye.”

app.dialogShow()

 def status_update(msg, how_long=2):

 app.makeToast(msg)

 time.sleep(how_long)

app = android.Android()

resp = app.dialogGetResponse().result

status_update(hello_msg)

you are here 4 277

mobile app development

Test Drive
Recall that (for now) your Android Python scripts run within the emulator, not within IDLE. So use the
tools/adb program to copy your program to the emulator. Call your program coachapp.py. When
the code is copied over, start SL4A on your emulator, and then tap your script’s name.

Tap your app’s
name, and
then tap the
“run wheel."

And there they are…Coach Kelly’s athletes.

This is looking really good! Your app has communicated with your web server,
requested and received the list of athlete names, and displayed the list on your
emulator.

 If you app doesn’t run, don’t panic. Check your code for typos.

Run your app again in the Python terminal by tapping on the little terminal icon to the
left of the “run wheel” within SL4A. If your code raises an error, you’ll see any messages
on the emulator’s screen, which should give you a good idea of what went wrong.

278 Chapter 8

positive or negative

Select from a list on Android
When your user taps on a button, the “result” of the call to
dialogGetResponse() is set to positive if the first button is tapped
or negative if the second button is tapped. In your code, you can check
the value of resp, which is a dictionary, and the which key is set to either
positive or negative.

A subsequent call to dialogGetSelectedItems() returns the index
value of the selected list item.

So…if the positive button is tapped, you can index into the list of athlete names
to see which athlete was selected from the displayed list. The selected name can then
be sent to the web server to request the rest of the athlete’s data using the send_
to_server() function.

You can use this behavior in the next version of your code.

Index item 0

Index item 1

Index item 2

Index item 3

Index item 4

The “positive” button The “negative” button

you are here 4 279

mobile app development

Assume that you have a CGI script called cgi-bin/
generate_data.py, which, when called, requests the data
for a named athlete from the server.

Provide the code (which includes a call to thensend_to_
server() function) to implement this functionality:

Additionally, write the code required to display the list of times returned from the server within an Android
dialog.

Hints: Use the dialogSetItems() method from the Android API to add a list of items to a dialog. Also,
remember that the data arriving over the Internet will be formatted using JSON.

1

2

280 Chapter 8

ask for an athlete

You were to assume that you have a CGI script called cgi-bin/
generate_data.py, which, when called requests the data for
a named athlete from the server.

You were to provide the code (which includes a call to
the send_to_server() function) to implement this
functionality:

Additionally, you were to write the code required to display the list of times returned from the server within
an Android dialog:2

1

get_data_cgi = '/cgi-bin/generate_data.py'
send_to_server(web_server + get_data_cgi, {'which_athlete': which_athlete})

if resp['which'] in ('positive'):
 selected_athlete = app.dialogGetSelectedItems().result[0]

 which_athlete = athlete_names[selected_athlete]

 athlete = json.loads(send_to_server(web_server + get_data_cgi,
 {'which_athlete': which_athlete}))

 athlete_title = which_athlete + ' top 3 times:'
 app.dialogCreateAlert(athlete_title)
 app.dialogSetItems(athlete['Top3'])
 app.dialogSetPositiveButtonText('OK’)
 app.dialogShow()

 resp = app.dialogGetResponse().result

Provide the name of
the CGI to run.

Send the request
to the web server,
together with the
athlete name.

When your user
taps the “positive”
button…work out
the index value
chosen.

The index value
is in the first
element of the
list of results
returned from the
dialog.Look up the

athlete’s name using the index value. Send a new
web request
to the server
to fetch the
athlete’s data.

Dynamically
create the
dialog’s title.

Set the single
button’s text.

The user needs
to see only the
data this time, so
you need to use
“dialogSetItems()”.

Wait for a tap
from the user.

Include the data.

Which button was pressed?

you are here 4 281

mobile app development

The athlete’s data CGI script
Here’s the code for the cgi-bin/generate_data.py CGI script, which
takes a web request and returns the indicated athlete’s data from the model:

 #! /usr/local/bin/python3

 import cgi

 import json

 import athletemodel

 import yate

 athletes = athletemodel.get_from_store()

 form_data = cgi.FieldStorage()

 athlete_name = form_data['which_athlete'].value

 print(yate.start_response('application/json'))

 print(json.dumps(athletes[athlete_name]))

Get all the data from the model.
Process the
data sent with
the request and
extract the
athlete’s name.

Start a web
response, with JSON as the data type.

Include the indicated
athlete’s data in the web
response, formatted by JSON.The complete Android app, so far

You’ve made quite a few changes to your program at this stage. Before you test it
on the Android emulator, take a moment to look at your code in its entirety:

import android

import json

import time

from urllib import urlencode

from urllib2 import urlopen

hello_msg = "Welcome to Coach Kelly's Timing App"

list_title = 'Here is your list of athletes:'

quit_msg = "Quitting Coach Kelly's App."

web_server = 'http://192.168.1.34:8080'

get_names_cgi = '/cgi-bin/generate_names.py'

get_data_cgi = '/cgi-bin/generate_data.py'

The rest of your
code is on the
following page.

282 Chapter 8

app code, continued

def send_to_server(url, post_data=None):

 if post_data:

 page = urlopen(url, urlencode(post_data))

 else:

 page = urlopen(url)

 return(page.read().decode("utf8"))

app = android.Android()

def status_update(msg, how_long=2):

 app.makeToast(msg)

 time.sleep(how_long)

status_update(hello_msg)

athlete_names = sorted(json.loads(send_to_server(web_server + get_names_cgi)))

app.dialogCreateAlert(list_title)

app.dialogSetSingleChoiceItems(athlete_names)

app.dialogSetPositiveButtonText('Select')

app.dialogSetNegativeButtonText('Quit')

app.dialogShow()

resp = app.dialogGetResponse().result

if resp['which'] in ('positive'):

 selected_athlete = app.dialogGetSelectedItems().result[0]

 which_athlete = athlete_names[selected_athlete]

 athlete = json.loads(send_to_server(web_server + get_data_cgi,

 {'which_athlete': which_athlete}))

 athlete_title = athlete['Name'] + ' (' + athlete['DOB'] + '), top 3 times:'

 app.dialogCreateAlert(athlete_title)

 app.dialogSetItems(athlete['Top3'])

 app.dialogSetPositiveButtonText('OK')

 app.dialogShow()

 resp = app.dialogGetResponse().result

status_update(quit_msg)

you are here 4 283

mobile app development

Test Drive
Let’s give the latest version of your app a go. Copy the app to your emulator, and put the new CGI
script in your cgi-bin folder on your web server (remember to set the executable bit, if needed).
What happens when you run your latest app using the emulator’s Python shell as opposed to the

“run wheel”?

Yikes! Your code has a TypeError, which is crashing your app when you try
to display the selected athlete’s timing data. Why do you think this is happening?

You are dumped into the
Python shell with a rather
nasty error message.

After reading the error
message, click “Yes” to return
to the SL4A script listing.

You’re getting a
“TypeError”.

284 Chapter 8

debugging data

The data appears to have changed type

Look at the CGI
code...it gets the data
from the model and
sends it to the web
browser...

...ummm, I see. But
somehow, the data
that arrives isn’t an
AthleteList.

Let’s add a debugging line of code to your CGI script to try and determine what’s
going on. Recall that the CGI mechanism captures any output your script sends
to standard output by default, so let’s use code like this to send your debugging
messgage to the web server’s console, which is displaying on standard error:

 import sys

 print(json.dumps(athletes[athlete_name]), file=sys.stderr)

Import “sys”
from the
standard library.

Redirect the output from “print()” to “stderr”, rather
than the default, which is “stdout”.

Run your app again and, of course, it’s still crashes with a TypeError.
However, if you check your web server’s console screen, you’ll see that the
data being sent as the JSON web response is clearly visible. Notice anything?

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080
192.168.1.33 - - [18/Sep/2010 17:40:04] "GET /cgi-bin/generate_names.py HTTP/1.1" 200 -
192.168.1.33 - - [18/Sep/2010 17:40:08] "POST /cgi-bin/generate_data.py HTTP/1.1" 200 -
["2-44", "3:01", "2.44", "2.55", "2.51", "2:41", "2:41", "3:00", "2-32", "2.11", "2:26"]

File Edit Window Help JustWhatsInTheData

This is a list of
athlete timing
values…but where’s
the name and
DOB values?

you are here 4 285

mobile app development

JSON can’t handle your custom datatypes
Unlike pickle, which is smart enough to pickle your custom classes, the
JSON library that comes with Python isn’t. This means that the standard
library’s JSON library can work with Python’s built-in types, but not with
your AthleteList objects.

The solution to this problem is straightforward: add a method to your
AthleteList class to convert your data into a dictionary, and send that
back to the app. Because JSON supports Python’s dictionary, this should work.

Let’s create a new method in your AthleteList class. Called to_dict(), your new
method needs to convert the class’s attribute data (name, DOB, and top3) into a dictionary. Be
sure to decorate your new method with @property, so that it appears to be a new attribute to
users of your class.

Q: What’s the purpose of this @property thing again?

A: The @property decorator lets you specify that a method is to be presented to users of your class as if it were an attribute. If you
think about things, your to_dict() method doesn’t change the state of your object’s data in any way: it merely exists to return the object’s
attribute data as a dictionary. So, although to_dict() is a method, it behaves more like an attribute, and using the @property
decorator let’s you indicate this. Users of your class (that is, other programmers) don’t need to know that when they access the to_dict
attribute they are in fact running a method. All they see is a unified interface: attributes access your class’s data, while methods manipulate it.

286 Chapter 8

data to dictionary

Let’s create a new method in your AthleteList class. Called to_dict(), your new
method needs to convert the class’s attribute data (name, DOB, and top3) into a dictionary. Be
sure to decorate your new method with @property, so that it appears to be a new attribute to
users of your class.

 @property
 def as_dict(self):
 return({‘Name’: self.name,
 ‘DOB’: self.dob,
 ‘Top3’: self.top3})

Decorate your
new method with
“@property”. Create a new method.

Return a dictionary of the object’s
data attributes.

Did you remember to use “self”?

Do this!

As well as updating your AthleteList
class code, be sure to change cgi-bin/
generate-data.py to return a
dictionary, rather than the object instance,
when servicing its web request.

While you’re making changes, adjust the
coachapp.py app code to include the
athlete’s name and DOB values in the
second dialog’s title.

you are here 4 287

mobile app development

Test Drive
With your changes applied to AthleteList.py, cgi-bin/generate_data.py and
coachapp.py, use the adb tool to copy the latest version of your app to the emulator. Let’s see
how things work now.

Here’s the code
that your app uses
in response to an
athlete selection.

Tap!

Success.

Your app displays the selected
athlete’s top three times on
screen. How cool is that?

288 Chapter 8

file transfer over wifi

Run your app on a real phone
Now that your app is running successfully on your emulator, it’s time to try it
on a real phone. This is where things get interesting.

There are many options when it comes to copying your code to a real device:

 • Use file transfer over Bluetooth.

 • Use file transfer with a USB connection.

 • Use the Android SDK’s adb tool with USB.

 • Use a file transfer tool over WiFi.

Unfortunately, which technique to use (and which work) depends very much
on your phone.

At Head First Labs, we’ve had the greatest and most consistent success with
the last option: use a file transfer tool over WiFi.

Step 1: Prepare your computer

To transfer files securely between your Android phone and your computer,
enable SSH file transfers by running an SSH server on your computer. How
you do this depends on the operating system you are running:

 • Windows: download one of the many free SSH servers.

 • Mac OS X: enable remote logins.

 • Linux: install and enable OpenSSH Server.

Step 2: Install AndFTP on your Android phone

Use the Android Market on your phone to find and install the AndFTP app.
This excellent tool lets you transfer files to and from your Android phone over
FTP, SFTP, and FTPS.

To use it with the SSH server running on your computer, you’ll want to select
SFTP as the file transfer protocol within the app, because AndFTP defaults
to using the FTP protocol.

Let’s take a look at what’s involved.

 These
instructions
do not work
on the
emulator.

The Android emulator
does not currently support
Google’s Android Market,
which you’ll need access to
use when following along
with the instructions on
these pages.

The AndFTP app is one of our faves.

you are here 4 289

mobile app development

With the connection set up, tap AndFTP’s Connect button to establish a
connection to your SSH server, entering your Username and Password when
prompted.

With the connection to the server established, navigate to the server folder
containing the file(s) you want to transfer to the phone, mark the files for
download, and tap the Download button.

When the download completes, click Disconnect to terminate the connection
between the phone and your computer. If you transferred a Python program,
it should now be added to the list of scripts within SL4A.

It’s time to let Coach Kelly take a look.

Configure AndFTP
With AndFTP running on your phone, configure it to connect to your
computer (Hostname) using SFTP as the transfer protocol (Type). Leave the Port,
Username, Password, and Remote dir entries as they are, but change the Local dir
entry to /sdcard/sl4a/scripts.

Be sure to tap “Save”.

Be sure to set this to “SFTP”. The value for “Port” should change to 22.

Set this to “/sdcard/sl4a/scripts” which ensures files transferred from your server are added to SL4A.

Change this entry to
be the web name or
address of your SSH
server.

Your app
is ready!

290 Chapter 8

app complete (almost)

The coach is thrilled with his app

That’s looking great! I knew you could do it...
now all I need is a way to add a new timing
value directly from my phone. That would
be awesome!

Welcome to the future!

You’ve delivered a solution that automates interaction with your website while
providing a modern interface on an Android phone. Your app allows your
users to access web data directly on their mobile device.

The fact that your server code runs on Python 3 and your Android client code
runs on Python 2 makes very little difference: it’s all just Python code, after all.

All that’s left to do is write some code to satisfy Coach Kelly’s latest request,
and you’ll get to that in the next chapter.

This is great work.

The coach’s app
running on the
coach’s phone.

you are here 4 291

mobile app development

Your Python Toolbox

You’ve got Chapter 8 under your
belt and you’ve added some key
Python techiques to your toolbox.

CHAPT
ER 8

 � The json library module lets you
convert Python’s built-in types to the text-
based JSON data interchange format.

 � Use json.dumps() to create a
stringed version of a Python type.

 � Use json.loads() to create a
Python type from a JSON string.

 � Data sent using JSON needs to
have its Content-Type: set to
application/json.

 � The urllib and urllib2 library
modules (both available in Python 2)
can be used to send encoded data from
a program to a web server (using the
urlencode() and urlopen()
functions).

 � The sys module provides the sys.
stdin, sys.stdout and sys.
stderr input streams.

Python Lingo
• “Python 2” - the previous r

elease

of Python, which has compatibility

“issues” with Python 3 (and a
re not

worth getting w
orked up over)

.

Android Lingo
• “SL4A” - the Scripting Layer for Android lets you run Python on your Android device.

• “AVD” - an Android Virtual Device which lets you emulate your Android device on your computer.

this is a new chapter 293

Input this, input that...that’s
all I ever hear...input, input,
input, input...all day long. It’s
enough to drive me mad!

manage your data9

Handling input

The Web and your phone are not just great ways to display data.
They are also great tools to for accepting input from your users. Of course, once your

webapp accepts data, it needs to put it somewhere, and the choices you make when

deciding what and where this “somewhere” is are often the difference between a webapp

that’s easy to grow and extend and one that isn’t. In this chapter, you’ll extend your webapp

to accept data from the Web (via a browser or from an Android phone), as well as look at

and enhance your back-end data-management services.

294 Chapter 9

add data anywhere

Your athlete times app has gone national

We love what you
did for Coach Kelly, but it
would be great if we could
add times for an athlete
no matter where we are. Is

this possible?

The National Underage Athletics Committee (NUAC) took one look at your
Android app and realized it’s just what they need…almost.

There are many ways to improve your webapp, but for now, let’s concentrate
on the committee’s most pressing need: adding a new time value to an existing
athlete’s data set.

Adding new data to text files isn’t going to work: there are just too many
coaches around the country adding data. The committee wants something
that’s user friendly from any web browser or Android phone.

Can you help?

you are here 4 295

manage your data

Use a form or dialog to accept input

Simply use the standard
<FORM> and <INPUT> tags
within your HTML web page to
get input from your users...

...or if you are on
your phone, a call to
the “dialogGetInput()”
function will do the trick.

On the Web, your user interacts with your web form and enters data. When
she presses the submit button, the web browser gathers up all of the form’s
data and sends it to the web server as part of the web request.

On your Android phone, you can use the dialogGetInput() method to
get input from the user, then mimic the behavior of the web form’s submit
button in code.

In fact, you’ve done this already: check out this line of code from your
coachapp.py app, which sends the selected athlete name to your web
server:

 athlete = json.loads(send_to_server(web_server + get_data_cgi, {'which_athlete': which_athlete}))

Here’s where the data is included
with the web
request.

296 Chapter 9

form action

Create an HTML form template
Let’s extend yate.py to support the creation of a HTML form. Take a look
a this simple form, together with the HTML markup used to produce it.

 <form action="cgi-bin/process-time.py" method="POST">

 Enter a timing value:

 <input type="Text" name="TimeValue" size=40>

 <input type="Submit" value="Send">

 </form>

The name of the CGI script to send the form’s data to.

Click the “Send”
button to submit the
form’s data to your
web server.

When your user clicks on the Send button, any data in the input area is sent
to the web server as part of the web request.

On your web server, you can access the CGI data using the facilities provided
by the standard library’s cgi module:

 import cgi

 form = cgi.FieldStorage()

 timing_value = form["TimeValue"].value

Get the data sent
from the form as
part of the web
request. Access the value associated with the “TimeValue” key from

the form’s data.

The cgi module converts the data associated with the web request into a
dictionary-like object that you can then query to extract what you need.

you are here 4 297

manage your data

def create_inputs(inputs_list):

 return(html_inputs)

Let’s turn the HTML form from the previous page into a template within the yate.py module.

Start by creating a new template called templates/form.html that allows you to
parameterize the form’s CGI script name, method, input tags, and submit button text:

1

2
With the template ready, write the code for two functions you intend to add to yate.py.

The first, called create_inputs(), takes a list of one of more strings and creates HTML <INPUT> tags
for each string, similar to the one that accepts TimeValue on the previous page.

The second, called do_form(), uses the template from Part 1 of this exercise together with the create_
inputs() function to generate a HTML form.

def do_form(name, the_inputs, method="POST", text="Submit"):

 return(form.substitute(cgi_name=name, http_method=method,

 list_of_inputs=inputs, submit_text=text))

Given a list of <INPUT> tag names.

Return the
generated tags to the caller.

The name of the CGI script and a list of <INPUT> tag names are required arguments.

The HTTP method and text
to the “Submit” button have
sensible default values.

Substitute the
arguments and
generated <INPUT>
tags into the
template to create
the form.

298 Chapter 9

def do_form(name, the_inputs, method="POST", text="Submit"):

 return(form.substitute(cgi_name=name, http_method=method,

 list_of_inputs=inputs, submit_text=text))

html form template

def create_inputs(inputs_list):

 return(html_inputs)

 with open(‘templates/form.html') as formf:
 form_text = formf.read()
 inputs = create_inputs(the_inputs)
 form = Template(form_text)

 html_inputs = ''
 for each_input in inputs_list:
 html_inputs = html_inputs + ‘<input type= “Text" name="' + \
 each_input + '" size=40>'

<form action=$cgi_name method=$http_method>
Enter a timing value: $list_of_inputs

<input type="Submit" value=$submit_text></form>

You were to turn the HTML form into a template within the yate.py module.

You were to start by creating a new template called templates/form.html that allows you
to parameterize the form’s CGI script name, method, input tags, and submit button text.

1

2
With the template ready, you were to write the code for two functions to add to yate.py.

The first, called create_inputs(), takes a list of one of more strings and creates HTML <INPUT> tags
for each string, similar to the one that accepts TimeValue.

The second, called do_form(), uses the template from Part 1 of this exercise together with the create_
inputs() function to generate a HTML form:

The CGI script’s
name and associated
HTTP method are
parameterized.

The list of <INPUT> tags and the submit button’s text is also parameterized.

Take each name
and create an
<INPUT> tag.

This “continuation”
character lets you split
a long line of code over
multiple lines.

Grab the
template from
your disk.

Create a
template form.

Create the list of <INPUT> tags.

you are here 4 299

manage your data

Test Drive
Here’s the code to a CGI script called cgi-bin/test-form.py, which generates the HTML form
from earlier. As you can see, there’s nothing to it.

 #! /usr/local/bin/python3

 import yate

 print(yate.start_response('text/html'))

 print(yate.do_form('add_timing_data.py', ['TimeValue'], text='Send'))

Set the executable bit (if required on your OS) using chmod + x test_form.py , and then use
your browser to confirm that your HTML form-generating code is working.

Always start with a CGI response. Dynamically create the form,
supplying any arguments as required.

Enter the URL for the CGI script into
your web browser’s location bar.

The generated HTML form appears within the browser’s window.

Use your browser’s “View Source” menu option to confirm that the generated form is exactly what you need.

Great. You’ve extended yate.py to support the creation of a simple data
entry form. Now all you need to do is to decide what happens once the data
arrives on your server.

300 Chapter 9

data delivery

The data is delivered to your CGI script
In addition to running your webapp, the web server also arranges to deliver
any submitted form data to your waiting CGI script. Python’s cgi library
converts the data into a dictionary and, as you already know, provides you
with convenient access to the submitted data:

 import cgi

 form = cgi.FieldStorage()

Additional information about the web request is also available to you via the
web server’s environment. Typically, you won’t need to access or use this data
directly. However, occasionally, it can be useful to report on some of it.

Here is some code that takes advantage of Python’s built-in support for
querying your CGI script’s environment using the os library, assuming the
environment values have been set by a friendly web server. Note that the data
in the enviroment is available to your code as a dictionary.

 import os

 import time

 import sys

 addr = os.environ['REMOTE_ADDR']

 host = os.environ['REMOTE_HOST']

 method = os.environ['REQUEST_METHOD']

 cur_time = time.asctime(time.localtime())

 print(host + ", " + addr + ", " + cur_time + ": " + method, file=sys.stderr)

Let’s exploit both code snippets on this page to log the data sent from a form
to your web server’s console. When you are convinced that the data is arriving
at your web server intact, you can extend your code to store the received data
in your model.

Let’s write a CGI to display your form’s data.

All of your form’s data has been added to the “form” dictionary.

Be sure to include the “os” library in your list of imports.

Query three environment variables
and assign their values to variables.

Get the current time.
Display the
queried data
on standard
error.

you are here 4 301

manage your data

#! /usr/local/bin/python3

import cgi

import os

import time

import sys

import yate

print(yate.start_response('text/plain'))

addr = os.environ['REMOTE_ADDR']

host = os.environ['REMOTE_HOST']

method = os.environ['REQUEST_METHOD']

cur_time = time.asctime(time.localtime())

print(host + ", " + addr + ", " + cur_time + ": " + method + ": ",

 end='', file=sys.stderr)

print('OK.')

CGI Magnets
You need a new CGI script called add_timing_data.py,
which processes the data from a form and displays the data on
your web server’s console screen. The CGI needs to query the
environment, arranging to display the logged data on one line.
The code exists, but most of it is all over the floor. Rearrange the
magnets to produce a working program.

form = cgi.FieldStorage()

file=sys.stderr)

end=' ',

Don’t forget
this line if you
are running on
Max OS X or
Linux. There’s not much of a response for now…so just send back plain text to the waiting web browser.

There’s really
nothing new
here.

print(file=sys.stderr)

for each_form_item in form.keys():

print(each_form_item + '->' + form[each_form_item].value,

302 Chapter 9

add timing data

#! /usr/local/bin/python3

import cgi

import os

import time

import sys

import yate

print(yate.start_response('text/plain'))

addr = os.environ['REMOTE_ADDR']

host = os.environ['REMOTE_HOST']

method = os.environ['REQUEST_METHOD']

cur_time = time.asctime(time.localtime())

print(host + ", " + addr + ", " + cur_time + ": " + method + ": ",

 end='', file=sys.stderr)

print('OK.')

CGI Magnets Solution
You need a new CGI script called add_timing_data.py,
which processes the data from a form and displays the data on
your web server’s console screen. The CGI needs to query the
environment, arranging to display the logged data on one line.
The code exists, but most of it is all over the floor. You were to
rearrange the magnets to produce a working program.

form = cgi.FieldStorage()

file=sys.stderr)end=' ',

print(file=sys.stderr)

for each_form_item in form.keys():

print(each_form_item + '->' + form[each_form_item].value,

Take a newline on standard error.

Ensure that this “print()” function does NOT take a newline.

you are here 4 303

manage your data

Test Drive
Let’s use your form-generating CGI script from earlier to try out add_timing_data.py. As you
enter data in the form and press the Send button, watch what happens on the web server’s console.

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080
localhost - - [21/Sep/2010 17:34:54] "GET /cgi-bin/test_form.py HTTP/1.1" 200 -
localhost - - [21/Sep/2010 17:34:54] "GET /favicon.ico HTTP/1.1" 200 -
localhost - - [21/Sep/2010 17:35:24] "POST /cgi-bin/add_timing_data.py HTTP/1.1" 200 -
localhost, 127.0.0.1, Tue Sep 21 17:35:24 2010: POST: TimeValue->2.22

File Edit Window Help DisplayingPOSTs

That worked perfectly. The data entered into the form is delivered to your
CGI script on the your server. Your next challenge is to provide the same user
input experience on an Android phone.

Enter some
data into your
web form.

The web browser displays a very
basic response.
All is “OK”.

The web server’s
logging screen
displays the data
that arrived, as
well as the name
associated with it.

304 Chapter 9

android data entry

Ask for input on your Android phone
When you ask for user input on Android, the dialog that your user sees looks
something like this example, which asks your user to confirm or change the
web address and port for your server.

The input dialog has
a title.

There’s some
additional descriptive
text (or message).

A space for data entry, when tapped, bring ups the “soft” keyboard.

An “OK” button
confirms the entry.

A “Cancel” button
lets you change your
mind.

 title = 'Which server should I use?'

 message = "Please confirm the server address/name to use for your athlete's timing data:"

 data = 'http://192.168.1.33:8080'

 resp = app.dialogGetInput(title, message, data).result

A single Android call creates this interface for you using the
dialogGetInput() method:

Pressing the Ok button sets resp to the data entered into the input area.

Pressing the Cancel button sets resp to None, which is Python’s internal
null-value.

Let’s create some Android data-entry dialogs.

The result of your user’s interaction with the dialog is assigned to “resp”.

you are here 4 305

manage your data

Let’s create a small Android app that interacts with your user twice. The first dialog asks the
user to confirm the web address and port to use for the web server. Assuming your user taps
the OK button on your dialog, a second dialog pops up to request the timing value to send to the
server. As with the first dialog, tapping the OK button continues execution by sending the newly
acquired timing value to the web server. Tapping Cancel at any time causes your app to exit.

Some of the code is provided for you. Your job is to complete the program. Write the code you
think you need under this code, and call your program get2inputsapp.py:

import android

from urllib import urlencode

from urllib2 import urlopen

server_title = 'Which server should I use?’

server_msg = "Please confirm the server address/name to use for your athlete's timing data:"

timing_title = 'Enter data'

timing_msg = 'Provide a new timing value:'

web_server = 'http://192.168.1.33:8080'

add_time_cgi = '/cgi-bin/add_timing_data.py'

app = android.Android()

def send_to_server(url, post_data=None):

 if post_data:

 page = urlopen(url, urlencode(post_data))

 else:

 page = urlopen(url)

 return(page.read().decode("utf8"))

There’s
nothing new
here…you’ve
seen all of
this code
before.

306 Chapter 9

user interaction

resp = app.dialogGetInput(server_title, server_msg, web_server).result

if resp is not None:
 web_server = resp
 resp = app.dialogGetInput(timing_title, timing_msg).result
 if resp is not None:
 new_time = resp
 send_to_server(web_server + add_time_cgi, {‘TimingValue’: new_time})

You were to create a small Android app that interacts with your user twice. The first dialog asks
the user to confirm the web address and port to use for the web server. Assuming your user taps
the OK button on your dialog, a second dialog pops up to request the timing value to send to the
server. As with the first dialog, tapping the OK button continues execution by sending the newly
acquired timing value to the web server. Tapping Cancel at any time causes your app to exit.

Some of the code was provided for you. Your job was to complete the program by writing the
code you think you need under this code and call your program get2inputsapp.py.

import android

from urllib import urlencode

from urllib2 import urlopen

server_title = 'Which server should I use?’

server_msg = "Please confirm the server address/name to use for your athlete's timing data:"

timing_title = 'Enter data'

timing_msg = 'Provide a new timing value:'

web_server = 'http://192.168.1.33:8080'

add_time_cgi = '/cgi-bin/add_timing_data.py'

app = android.Android()

def send_to_server(url, post_data=None):

 if post_data:

 page = urlopen(url, urlencode(post_data))

 else:

 page = urlopen(url)

 return(page.read().decode("utf8"))

The first dialog asks your user to confirm the web address and port to use.

If your user did NOT tap
on the Cancel button… …the second dialog asks for a new timing value.

Again, if your user did NOT
tap on the Cancel button… …the app sends the data to the web server.

you are here 4 307

manage your data

Test Drive
Let’s copy get2inputsapp.py to the emulator using the adb tool:

 tools/adb push get2inputsapp.py /sdcard/sl4a/scripts

The get2inputsapp.py app appears on the list of scripts within SL4A. Go ahead and give it a tap:

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080
localhost - - [21/Sep/2010 17:34:54] "GET /cgi-bin/test_form.py HTTP/1.1" 200 -
localhost - - [21/Sep/2010 17:34:54] "GET /favicon.ico HTTP/1.1" 200 -
localhost - - [21/Sep/2010 17:35:24] "POST /cgi-bin/add_timing_data.py HTTP/1.1" 200 -
localhost, 127.0.0.1, Tue Sep 21 17:35:24 2010: POST: TimeValue->2.22
192.168.1.33 - - [21/Sep/2010 20:50:30] "POST /cgi-bin/add_timing_data.py HTTP/1.1" 200 -
localhost, 192.168.1.33, Tue Sep 21 20:50:30 2010: POST: TimingValue->2:56

File Edit Window Help InputsFromAndroid

Your new app starts,
and you can edit
the web server
address and port.

When you click
on the input
area, Android’s
“soft” keyboard
pops up.

Enter a new
timing value,
and then tap
“Ok”.

The web server’s
log confirms
the data was
sent from your
emulator.

Perfect. That’s working, too. Regardless of where your data originates—on
the Web or a phone—your app can send it to your web server.

308 Chapter 9

update which dataset?

It’s time to update your server data

Yikes! I think there’s a problem here...
your server data is in two places: within
your pickle and in the NUAC’s text files.
The question is: which one do you update?

Which of your two datasets should you update?

If you update the pickle, the next time the put_to_store()
function runs, your most recent update will vanish as put_
to_store() recreates the pickle from the data in the text files.
That’s not good.

If you update the appropriate athlete’s text file, the data in the
pickle will be stale until put_to_store() runs again. If
another process calls the get_from_store() function in the
meantime, the update to the pickle might not have been applied
and will appear to be missing for anyone reading your data. That’s
not good, either.

Oh, look, how lovely: I
have a new timing value to add to
the system. Who’s going first?

Web
Server

[‘Is this the right room
for an argument?’, “No
you haven’t!”, ‘When?’,
“No you didn’t!”, “You
didn’t!”, ‘You did not!’,
‘Ah! (taking out his wallet
and paying) Just the five
minutes.’, ‘You most
certainly did not!’, “Oh
no you didn’t!”, “Oh no
you didn’t!”, “Oh look,
this isn’t an argument!”,
“No it isn’t!”, “It’s
just contradiction!”,
‘It IS!’, ‘You just
contradicted me!’, ‘You
DID!’, ‘You did just
then!’, ‘(exasperated)
Oh, this is futile!!’,
‘Yes it is!’]

Update me, then
I’ll update him.

No, no, no,
he’s busy. Just
update me!

Your text file Your pickle file

you are here 4 309

manage your data

Avoid race conditions

Of course...I could
write to the text file
and then immediately call

“put_to_store()” to update
the pickle, right?

Yes, that’s one possible solution, but it’s a poor one.

You might think it highly unlikely…but it is possible for another
process to call the get_from_store() function between the text file
update and the pickle recreation, resulting in a short period of data
inconsistency. These types of situations are known as race conditions
and are hard to debug when they occur.

It’s best to keep them from ever happening if you can.

The basic problem here is that you have one update with one piece of data
that results in two file interactions. If nothing else, that’s just wasteful.

[‘Is this the right room
for an argument?’, “No
you haven’t!”, ‘When?’,
“No you didn’t!”, “You
didn’t!”, ‘You did not!’,
‘Ah! (taking out his wallet
and paying) Just the five
minutes.’, ‘You most
certainly did not!’, “Oh
no you didn’t!”, “Oh no
you didn’t!”, “Oh look,
this isn’t an argument!”,
“No it isn’t!”, “It’s
just contradiction!”,
‘It IS!’, ‘You just
contradicted me!’, ‘You
DID!’, ‘You did just
then!’, ‘(exasperated)
Oh, this is futile!!’,
‘Yes it is!’]

Hey, thanks for
the update!

What update?!?
It’s been all quiet
over here...

Your up-to-
date text file Your temporarily

inconsistent pickle file

310 Chapter 9

avoid race conditions

You need a better data storage mechanism
Your initial text files and pickle design is fine when only one user is accessing
the data. However, now that more than one person can access the data at any
time, and from anywhere, your design is in need of improvement. Above all,
you need to avoid that race condition.

Q: Surely you should have thought about this problem long
ago and designed this “properly” from the start?

A: That’s certainly one way to look at things, and hindsight is
always a wonderful thing! However, programs have a tendency
to start out small, then grow to provide more features, which can
introduce complexity. Recall that the coach’s app started life as a
simple “standalone” text-based program, which was then moved
to the Web to support multiple users. Part of the app was then
redeveloped for use on an Android phone. And yes, if we’d known all
of this ahead of time, we might have been designed it differently.

Q: So I’m facing a rewrite of large chunks of my code?

A: Let’s see. You did build your program using the MVC pattern,
and you are using Python, so those two facts should take the sting
out of any potential rewrite, assuming a rewrite is what’s required
here.

Web
Server

[‘Is this the right room
for an argument?’, “No
you haven’t!”, ‘When?’,
“No you didn’t!”, “You
didn’t!”, ‘You did not!’,
‘Ah! (taking out his wallet
and paying) Just the five
minutes.’, ‘You most
certainly did not!’, “Oh
no you didn’t!”, “Oh no
you didn’t!”, “Oh look,
this isn’t an argument!”,
“No it isn’t!”, “It’s
just contradiction!”,
‘It IS!’, ‘You just
contradicted me!’, ‘You
DID!’, ‘You did just
then!’, ‘(exasperated)
Oh, this is futile!!’,
‘Yes it is!’]

This is very
upsetting...I appear

to be missing an update.

Your inconsistent
and upset pickle file

Listen, bud, it’s not my fault...until
someone, somewhere runs the “put_to_store()”

function without someone, somewhere else running the
“get_from_store()” function, you’ll have to do without that
data update. I’m not a miracle worker...I just do what

I’m told.

you are here 4 311

manage your data

Wouldn't it be dreamy if I could put my
data in only one place and support all my
app’s requirements? But I know it's just a
fantasy...

312 Chapter 9

which database management system?

Use a database management system
You need to move away from your text file and pickle combination and use a
real database management system. You have plenty of choices here…

I really like
MySQL and
MariaDB.

Back ends based on
Oracle’s technology
are rock solid.

MS SQL Server is
used everywhere!

If you want rock-
solid without the
corporate bloat, it has
to be PostgreSQL.

All of these fine technologies will work, but they are overkill for your app’s
data requirements. And besides some of these are way beyond the NUAC’s
budget, let alone their ability to set up, run, and maintain such a system.

What you need is something that’s effectively hidden from the NUAC yet lets
you take advantage of what a database management system has to offer.

If only such a technology existed…

you are here 4 313

manage your data

Python includes SQLite
Python 3 comes preinstalled with Release 3 of SQLite, a full-featured, zero-
config, SQL-based data management system.

To use SQLite, simply import the sqlite3 library and use Python’s
standardized database API to program it.There’s really nothing to it: no
database setup, no config, and no ongoing maintenance.

With your data stored in SQLite, rewrite your webapp’s model code to use
SQL to access, manipulate, and query your data. You can plan to move
to one of the bigger database systems if and when your application needs
dictate such a move.

SQLite sounds perfect for the NUAC’s data, doesn’t it?

Geek Bits

The material in this chapter assumes
you are comfortable with SQL
database technology. If you are
new to SQL (or just need a quick
refresher), take a look at Head
First SQL, which comes highly
recommended.

[Note from Marketing: Available anywhere
good books are sold and to anyone with a
valid credit card.]

314 Chapter 9

database connection process

Exploit Python’s database API
The Python Database API provides a standard mechanism for
programming a wide variery of database management systems, including
SQLite. The process you follow in your code is the same regardless of which
back-end database you’re using.

Connect
Establish a connection to your
chosen database back end.

Create
Create a cursor to communicate through the
connecton to your data.

Interact
Using the cursor, manipulate your
data using SQL.

Commit
Tell your connection to apply
all of your SQL manipulations
to your data and make them
permanent.

Poof!

Rollback
Tell your connection to abort your
SQL manipulations, returning your
data to the state it was in before your
interactions started.

Close
Destroy the connection to the
database back end. When you close your

connection, your cursor
is destroyed, too.

you are here 4 315

manage your data

The database API as Python code
Here’s how to implement an interaction with a database using the sqlite3
module:

 import sqlite3

 connection = sqlite3.connect('test.sqlite')

 cursor = connection.cursor()

 cursor.execute("""SELECT DATE('NOW')""")

 connection.commit()

 connection.close()

As always, import
the library you
need.

Establish a connection
to a database.

Create a cursor to
the data.
Execute some SQL.
Commit any changes,
making them permanent.

Close your connection when you’re finished.

Depending on what happens during the Interact phase of the process, you
either make any changes to your data permanent (commit) or decide to
abort your changes (rollback).

You can include code like this in your program. It is also possible to interact
with you SQLite data from within IDLE’s shell. Whichever option you choose,
you are interacting with your database using Python.

It’s great that you can use a database to hold your data. But what schema
should you use? Should you use one table, or do you need more? What data
items go where? How will you design your database?

Let’s start working on the answers to these questions.

This disk file is used to hold the database and its tables.

316 Chapter 9

design your database

A little database design goes a long way
Let’s consider how the NUAC’s data is currently stored within your pickle.

Each athlete’s data is an AthleteList object instance, which is associated
with the athlete’s name in a dictionary. The entire dictionary is pickled.

{ ... } Sarah: AthleteList
 James: AthleteList Mikey: AthleteList Julie: AthleteList

The pickled dictionary has any number of AthleteLists within it.

 Sarah: AthleteList

 The athlete’s name

 The athlete’s DOB

 The athlete’s list of times

Each AthleteList has the following attributes:

With this arrangement, it is pretty obvious which name, date of birth, and list
of times is associated with which individual athlete. But how do you model
these relationships within a SQL-compliant database system like SQLite?

You need to define your schema and create some tables.

you are here 4 317

manage your data

Define your database schema
Here is a suggested SQL schema for the NUAC’s data. The database is called
coachdata.sqlite, and it has two related tables.

The first table, called athletes, contains rows of data with a unique
ID value, the athlete’s name, and a date-of-birth. The second table, called
timing_data, contains rows of data with an athlete’s unique ID and the
actual time value.

 coachdata.sqlite

 CREATE TABLE athletes (

 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,
 name TEXT NOT NULL,

 dob DATE NOT NULL)

 CREATE TABLE timing_data (

 athlete_id INTEGER NOT NULL,

 value TEXT NOT NULL,

 FOREIGN KEY (athlete_id) REFERENCES athletes)

This is a new attribute that should make it easy to guarantee uniqueness.

Note how this schema “links” the two
tables using a foreign key.

There can be one and only one row of data for each athlete in the athletes
table. For each athlete, the value of id is guaranteed to be unique, which
ensures that two (or more) athletes with the same name are kept separate
within the system, because that have different ID values.

Within the timing_data table, each athlete can have any number of time
values associated with their unique athlete_id, with an individual row of
data for each recorded time.

Let’s look at some sample data.

318 Chapter 9

athletes and values

What does the data look like?
If the two tables were created and then populated with the data from the
NUAC’s text files, the data in the tables might look something like this.

This is what the data in the “athletes” table might look like, with one row of data for each athlete.

This is what the data in the
“timing_data” table might
look like, with multiple rows
of data for each athlete and
one row for each timing value.

If you create these two tables then arrange for your data to be inserted into
them, the NUAC’s data would be in a format that should make it easier to
work with.

Looking at the tables, it is easy to see how to add a new timing value for an
athlete. Simply add another row of data to the timing_data table.

Need to add an athlete? Add a row of data to the athletes table.

Want to know the fastest time? Extract the smallest value from the
timing_data table’s value column?

Let’s create and populate these database tables.

There’s more data in this
table than shown here.

you are here 4 319

manage your data

SQLite Magnets
Let’s create a small Python program that creates the coachdata.
sqlite database with the empty athletes and timing_data
tables. Call your program createDBtables.py. The code you
need is almost ready. Rearrange the magnets at the bottom of the
page to complete it.

id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

name TEXT NOT NULL,

dob DATE NOT NULL)""")

import sqlite3

cursor.execute("""CREATE TABLE athletes (

 athlete_id INTEGER NOT NULL,

 value TEXT NOT NULL,

 FOREIGN KEY (athlete_id) REFERENCES athletes)""")

connection.commit()

connection.close()

connection = sqlite3.connect('coachdata.sqlite')

cursor = connection.cursor()

cursor.execute("""CREATE TABLE timing_data (

320 Chapter 9

create database tables

import sqlite3

cursor.execute("""CREATE TABLE athletes (

 athlete_id INTEGER NOT NULL,

 value TEXT NOT NULL,

 FOREIGN KEY (athlete_id) REFERENCES athletes)""")

connection.commit()

connection.close()

SQLite Magnets Solution
Your job was to create a small Python program that creates the
coachdata.sqlite database with the empty athletes
and timing_data tables. You were to call your program
createDBtables.py. The code you needed was almost ready,
and you were to rearrange the magnets at the bottom of the page to
complete it.

id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

name TEXT NOT NULL,

dob DATE NOT NULL)""")

connection = sqlite3.connect('coachdata.sqlite')

cursor = connection.cursor()

cursor.execute("""CREATE TABLE timing_data (

The commit isn’t always required with most other database systems, but it is with SQLite.

you are here 4 321

manage your data

Transfer the data from your pickle to SQLite
As well as writing the code to create the tables that you need, you also need
to arrange to transfer the data from your existing model (your text files and
pickle combination) to your new database model. Let’s write some code to do
that, too.

You can add data to an existing table with the SQL INSERT statement.
Assuming you have data in variables called name and dob, use code like this to
add a new row of data to the athletes table:

 cursor.execute("INSERT INTO athletes (name, dob) VALUES (?, ?)",(name, dob))

The data in these variables is substituted in place of the “?” placeholders.

You don’t need to worry about supplying a value for

the “id” column, because SQLite provides one for you

automatically.

Ready Bake
Python Code

import sqlite3

connection = sqlite3.connect('coachdata.sqlite')

cursor = connection.cursor()

import glob

import athletemodel

data_files = glob.glob("../data/*.txt")

athletes = athletemodel.put_to_store(data_files)

for each_ath in athletes:

 name = athletes[each_ath].name

 dob = athletes[each_ath].dob

 cursor.execute("INSERT INTO athletes (name, dob) VALUES (?, ?)", (name, dob))

 connection.commit()

connection.close()

Here’s a program, called initDBathletes.py, which takes
your athlete data from your existing model and loads it into your
newly created SQLite database.

Get the athlete’s
name and DOB
from the pickled
data.

Use the INSERT statement to add a new row to the “athletes” table.
Make the change(s) permanent.

Grab the
data from
the existing
model.

Connect
to the new
database.

322 Chapter 9

names and numbers

What ID is assigned to which athlete?
You need to query the data in your database table to work out which ID value
is automatically assigned to an athlete.

With SQL, the SELECT statement is the query king. Here’s a small snippet of
code to show you how to use it with Python, assuming the name and dob
variables have values:

 cursor.execute("SELECT id from athletes WHERE name=? AND dob=?", (name, dob))

Again, the placeholders indicate where the data values are substituted into the query.

If the query succeeds and returns data, it gets added to your cursor. You can
call a number of methods on your cursor to access the results:

 • cursor.fetchone() returns the next row of data.

 • cursor.fetchmany() returns multiple rows of data.

 • cursor.fetchall() returns all of the data.

Each of these cursor
methods return a list
of rows.

Names alone are not enough
anymore...if you want to uniquely
identify your athletes, I need to
know their IDs.

Web
Server

you are here 4 323

manage your data

Insert your timing data
You’re on a roll, so let’s keep coding for now and produce the code to take
an athlete’s timing values out of the pickle and add them to your database.
Specifically, you’ll want to arrange to add a new row of data to the
timing_data table for each time value that is associated with each athlete
in your pickle.

Those friendly coders over at the Head First Code Review Team have just
announced they’ve added a clean_data attribute to your AthleteList
class. When you access clean_data, you get back a list of timing values
that are sanitized, sorted, and free from duplicates.The Head First Code
Review Team has excellent timing; that attribute should come in handy with
your current coding efforts.

Grab your pencil and write the lines of code needed to query the
athletes table for an athlete’s name and DOB, assigning the
result to a variable called the_current_id. Write another
query to extract the athlete’s times from the pickle and add them
to the timing_data table.

Again, it’s OK to assume in your
code that the “name” and “dob”
variables exist and have values
assigned to them.

324 Chapter 9

database queries

You were to grab your pencil and write the lines of code needed
to query the athletes table for an athlete’s name and DOB,
assigning the result to a variable called the_current_id. You
were then to write another query to extract the athlete’s times
from the pickle and add them to the timing_data table.

cursor.execute(“SELECT id from athletes WHERE name=? AND dob=?”,
 (name, dob))

the_current_id = cursor.fetchone()[0]
for each_time in athletes[each_ath].clean_data:
 cursor.execute("INSERT INTO timing_data (athlete_id, value) VALUES (?, ?)”,
 (the_current_id, each_time))

connection.commit()

It often makes sense to split your execute statement over multiple lines.

Query the “athletes”
table for the ID.

Remember:
“fetchone()”
returns a list.

Add the ID and the time value to the “timing_data” table.

Take each of
the “clean”
times and use
it, together
with the ID,
within the
SQL “INSERT”
statement. As always, make the

change(s) permanent.

Do this!

Add the code to your initDBathletes.py code from earlier,
just after the connection.commit()call. Rename your
program initDBtables.py, now that both the athletes
and timing_data tables are populated with data by a single
program.

That’s enough coding (for now). Let’s transfer your pickled data.

you are here 4 325

manage your data

Test Drive
You’ve got two programs to run now: createDBtables.py creates an empty database, defining
the two tables, and initDBtables.py extracts the data from your pickle and populates the tables.
Rather than running these programs within IDLE, let’s use the Python command-line tool instead.

$ python3 createDBtables.py
$ python3 initDBtables.py
$

File Edit Window Help PopulateTheTables

If you are running Windows,
replace “python3” with this:
“C:\Python31\python.exe”.

Be careful
to run both
programs ONLY
once.

Hello? Something happened there,
didn’t it? I ran the programs but nothing
appeared on screen...how do I know if
anything worked?

326 Chapter 9

sqlite manager

SQLite data management tools
When it comes to checking if your manipulations of the data in your
database worked, you have a number of options:

Write more code to check that the database is in the
state that you expect it.
Which can certainly work, but is error-prone, tedious, and way too
much work.

a

Life really is
too short.

Use the supplied “sqlite3” command-line tool.
Simply type sqlite3 within a terminal window to enter the SQLite

“shell.” To find out which commands are available to you, type .help
and start reading. The tool is a little basic (and cryptic), but it works.

b That’s a period,
followed by the
word “help”.

Use a graphical database browser.
There are lots of these; just Google “sqlite database browser” for
more choices than you have time to review. Our favorite is the SQLite
Manager, which installs into the Firefox web browser as an extension.

c
Works great,
but only on
Firefox.This is what

SQLite Manager
looks like.

Great, all of the athletes are in the “athletes” table.

But how do you integrate your new database into your webapp?

you are here 4 327

manage your data

Integrate SQLite with your existing webapp

Jim

Joe

Frank

Joe: This should be easy. We just have to rewrite the code in
athletemodel.py to use the database, while keeping the API the
same.

Frank: What do you mean by keeping the API the same?

Joe: Well…take the get_from_store() function, for instance. It
returns an AthleteList dictionary, so we need to make sure that
when we update get_from_store() to use our database that it
continues to return a dictionary, just as it’s always done.

Frank: Ah, now I get it: we can query the database, grab all the data,
turn it into a big dictionary containing all of our AthleteList
objects and then return that to the caller, right?

Joe: Yes, exactly! And the best of it is that the calling code doesn’t need
to change at all. Don’t you just love the beauty of MVC?

Frank: Ummm…I guess so.

Jim: [cough, cough]

Frank: What’s up, Jim?

Jim: Are you guys crazy?

Joe & Frank: What?!?

Jim: You are bending over backward to maintain compatibility with an
API that exists only because of the way your data model was initially
designed. Now that you’ve reimplemented how your data is stored in
your model, you need to consider if you need to change your API, too.

Joe & Frank: Change our API? Are you crazy?!?

Jim: No, not crazy, just pragmatic. If we can simplify the API by
redesigning it to better fit with our database, then we should.

Joe: OK, but we haven’t got all day, y’know.

Jim: Don’t worry: it’ll be worth the effort.

So...we just need to
change our model code
to use SQLite...but

what’s involved?

328 Chapter 9

get out of a pickle

Let’s spend some time amending your model code to use your SQLite database as opposed
to your pickle. Start with the code to your athletemodel.py module. Take a pencil and
strike out the lines of code you no longer need.

import pickle

from athletelist import AthleteList

def get_coach_data(filename):

 try:

 with open(filename) as f:

 data = f.readline()

 templ = data.strip().split(',')

 return(AthleteList(templ.pop(0), templ.pop(0), templ))

 except IOError as ioerr:

 print('File error (get_coach_data): ' + str(ioerr))

 return(None)

def put_to_store(files_list):

 all_athletes = {}

 for each_file in files_list:

 ath = get_coach_data(each_file)

 all_athletes[ath.name] = ath

 try:

 with open('athletes.pickle', 'wb') as athf:

 pickle.dump(all_athletes, athf)

 except IOError as ioerr:

 print('File error (put_and_store): ' + str(ioerr))

 return(all_athletes)

you are here 4 329

manage your data

def get_from_store():

 all_athletes = {}

 try:

 with open('athletes.pickle', 'rb') as athf:

 all_athletes = pickle.load(athf)

 except IOError as ioerr:

 print('File error (get_from_store): ' + str(ioerr))

 return(all_athletes)

def get_names_from_store():

 athletes = get_from_store()

 response = [athletes[each_ath].name for each_ath in athletes]

 return(response)

Remember: there’s no
requirement to maintain
the existing API.

330 Chapter 9

out of a pickle

Let’s spend some time amending your model code to use your SQLite database as opposed
to your pickle. Start with the code to your athletemodel.py module. You were to take a
pencil and strike out the lines of code you no longer need.

import pickle

from athletelist import AthleteList

def get_coach_data(filename):

 try:

 with open(filename) as f:

 data = f.readline()

 templ = data.strip().split(',')

 return(AthleteList(templ.pop(0), templ.pop(0), templ))

 except IOError as ioerr:

 print('File error (get_coach_data): ' + str(ioerr))

 return(None)

def put_to_store(files_list):

 all_athletes = {}

 for each_file in files_list:

 ath = get_coach_data(each_file)

 all_athletes[ath.name] = ath

 try:

 with open('athletes.pickle', 'wb') as athf:

 pickle.dump(all_athletes, athf)

 except IOError as ioerr:

 print('File error (put_and_store): ' + str(ioerr))

 return(all_athletes)

None of this code
is needed anymore,
because SQLite
provides the data
model for you.

you are here 4 331

manage your data

def get_from_store():

 all_athletes = {}

 try:

 with open('athletes.pickle', 'rb') as athf:

 all_athletes = pickle.load(athf)

 except IOError as ioerr:

 print('File error (get_from_store): ' + str(ioerr))

 return(all_athletes)

def get_names_from_store():

 athletes = get_from_store()

 response = [athletes[each_ath].name for each_ath in athletes]

 return(response)

This might seem a little
drastic...but sometimes a
redesign requires you to throw

away obsolete code.

332 Chapter 9

get names from store

You still need the list of names
Throwing away all of your “old” model code makes sense, but you still need
to generate a list of names from the model. Your decision to use SQLite is
about to pay off: all you need is a simple SQL SELECT statement.

Ready Bake
Python Code

 import sqlite3

 db_name = 'coachdata.sqlite'

 def get_names_from_store():

 connection = sqlite3.connect(db_name)

 cursor = connection.cursor()

 results = cursor.execute("""SELECT name FROM athletes""")

 response = [row[0] for row in results.fetchall()]

 connection.close()

 return(response)

Here’s the code for your new get_names_from_store()
function:

Connect to the
database.

Extract the
data you need.

Formulate a
response.

Return the list of
names to the caller.

I guess in this case it
actually makes perfect
sense to maintain the
API for this call.

you are here 4 333

manage your data

 def get_athlete_from_id(athlete_id):

 connection = sqlite3.connect(db_name)

 cursor = connection.cursor()

 results = cursor.execute("""SELECT name, dob FROM athletes WHERE id=?""",

 (athlete_id,))

 (name, dob) = results.fetchone()

 results = cursor.execute("""SELECT value FROM timing_data WHERE athlete_id=?""",

 (athlete_id,))

 data = [row[0] for row in results.fetchall()]

 response = { 'Name': name,

 'DOB': dob,

 'data': data,

 'top3': data[0:3]}

 connection.close()

 return(response)

Get an athlete’s details based on ID
In addition to the list of names, you need to be able to extract an athlete’s
details from the athletes table based on ID.

Ready Bake
Python Code

Here’s the code for another new function called
get_athlete_from_id():

A new function
gets the data
associated with
a specific ID.

Note the use of the placeholder to indicate where the “athlete_id” argument is inserted into the SQL SELECT query.

Take the data from both query results and turn it into a dictionary.Return the
athlete’s data
to the caller.

Get the list of
times from the
“timing_data”
table.

Get the “name”
and “DOB” values from the athletes table.

This function is a more involved than get_names_from_store(), but
not by much. It still follows the API used with working with data stored in
SQLite. This is coming along. nicely.

With the model code converted, you can revisit your CGI scripts to use your
new model API.

Let’s see what’s involved with converting the CGIs.

334 Chapter 9

use ids internally

Isn’t there a problem here? The
“get_names_from_store()” function returns a list
of names, while the “get_athlete_from_id()” function
expects to be provided with an ID. But how does the
web browser or the phone know which ID to use when
all it has to work with are the athletes’ names?

That’s a good point: which ID do you use?

Your current CGIs all operate on the athlete name, not
the ID. In order to ensure each athlete is unique, you
designed your database schema to include a unique ID
that allows for your system to properly identify two (or
more) athletes with the same name, but at the moment,
your model code doesn’t provide the ID value to either
your web browser or your phone.

One solution to this problem is to ensure that the athlete
names are displayed to the user within the view, while the
IDs are used internally by your system to unique identify
a specific athlete. For this to work, you need to change
get_names_from_store().

you are here 4 335

manage your data

Here is the current code for your get_names_from_store() function. Rather than
amending this code, create a new function, called get_namesID_from_store(),
based on this code but including the ID values as well as the athlete names in its response.
Write your new function in the space provided.

import sqlite3

db_name = 'coachdata.sqlite'

def get_names_from_store():

 connection = sqlite3.connect(db_name)

 cursor = connection.cursor()

 results = cursor.execute("""SELECT name FROM athletes""")

 response = [row[0] for row in results.fetchall()]

 connection.close()

 return(response)

336 Chapter 9

get name’s id

Here is your current code for your get_names_from_store() function. Rather than
amending this code, you were to create a new function, called get_namesID_from_
store(), based on this code but including the ID values as well as the athlete names in its
response. You were to write your new function in the space provided.

import sqlite3

db_name = 'coachdata.sqlite'

def get_names_from_store():

 connection = sqlite3.connect(db_name)

 cursor = connection.cursor()

 results = cursor.execute("""SELECT name FROM athletes""")

 response = [row[0] for row in results.fetchall()]

 connection.close()

 return(response)

def get_namesID_from_store():
 connection = sqlite3.connect(db_name)
 cursor = connection.cursor()
 results = cursor.execute(“““SELECT name, id FROM athletes""")
 response = results.fetchall()
 connection.close()
 return(response)

Arrange to include the value of “id” in the SQL “SELECT” query.

There’s no need to process
“results” in any way…assign
everything returned from the
query to “response”.

Remember: when you close your connection, your cursor is also destroyed, so you’ll generate an exception if you try and use “return(results.fetchall())”.

you are here 4 337

manage your data

Part 1: With your model code ready, let’s revisit each of your
CGI scripts to change them to support your new model. At the
moment, all of your code assumes that a list of athlete names or an
AthleteList is returned from your model. Grab your pencil and
amend each CGI to work with athlete IDs where necessary.

#! /usr/local/bin/python3

import glob

import athletemodel

import yate

data_files = glob.glob("data/*.txt")

athletes = athletemodel.put_to_store(data_files)

print(yate.start_response())

print(yate.include_header("NUAC's List of Athletes"))

print(yate.start_form("generate_timing_data.py"))

print(yate.para("Select an athlete from the list to work with:"))

for each_athlete in sorted(athletes):

 print(yate.radio_button("which_athlete", athletes[each_athlete].name))

print(yate.end_form("Select"))

print(yate.include_footer({"Home": "/index.html"}))

#! /usr/local/bin/python3

import cgi

import athletemodel

import yate

athletes = athletemodel.get_from_store()

form_data = cgi.FieldStorage()

athlete_name = form_data['which_athlete'].value

print(yate.start_response())

print(yate.include_header("NUAC's Timing Data"))

print(yate.header("Athlete: " + athlete_name + ", DOB: " + athletes[athlete_name].dob + "."))

print(yate.para("The top times for this athlete are:"))

print(yate.u_list(athletes[athlete_name].top3))

print(yate.para("The entire set of timing data is: " + str(athletes[athlete_name].clean_data) +

 " (duplicates removed)."))

print(yate.include_footer({"Home": "/index.html", "Select another athlete": "generate_list.py"}))

This is the “generate_list.py”
CGI script.

This is “generate_timing_data.py”. This “Sharpen” is continued on the next page, but no peeking! Don’t flip over until you’ve amended the code on this page.

Note the change to the title.

Another title change.

338 Chapter 9

not done yet

Part 2: You’re not done with that pencil just yet! In addition to
amending the code to the CGIs that support your web browser’s
UI, you also need to change the CGIs that provide your webapp
data to your Android app. Amend these CGIs, too.

#! /usr/local/bin/python3

import json

import athletemodel

import yate

names = athletemodel.get_names_from_store()

print(yate.start_response('application/json'))

print(json.dumps(sorted(names)))

#! /usr/local/bin/python3

import cgi

import json

import sys

import athletemodel

import yate

athletes = athletemodel.get_from_store()

form_data = cgi.FieldStorage()

athlete_name = form_data['which_athlete'].value

print(yate.start_response('application/json'))

print(json.dumps(athletes[athlete_name].as_dict))

This is the
“generate_names.py”
CGI.

And here is the
“generate_data.py”
CGI.

you are here 4 339

manage your data

Part 1: With your model code ready, you were to revisit each of
your CGI scripts to change them to support your new model. At the
moment, all of your code assumes that a list of athlete names or an
AthleteList is returned from your model. You were to grab your
pencil and amend each CGI to work with athlete IDs where necessary.

#! /usr/local/bin/python3

import glob

import athletemodel

import yate

data_files = glob.glob("data/*.txt")

athletes = athletemodel.put_to_store(data_files)

print(yate.start_response())

print(yate.include_header("NUAC's List of Athletes"))

print(yate.start_form("generate_timing_data.py"))

print(yate.para("Select an athlete from the list to work with:"))

for each_athlete in sorted(athletes):

 print(yate.radio_button("which_athlete", athletes[each_athlete].name))

print(yate.end_form("Select"))

print(yate.include_footer({"Home": "/index.html"}))

#! /usr/local/bin/python3

import cgi

import athletemodel

import yate

athletes = athletemodel.get_from_store()

form_data = cgi.FieldStorage()

athlete_name = form_data['which_athlete'].value

print(yate.start_response())

print(yate.include_header("NUAC's Timing Data"))

print(yate.header("Athlete: " + athlete_name + ", DOB: " + athletes[athlete_name].dob + "."))

print(yate.para("The top times for this athlete are:"))

print(yate.u_list(athletes[athlete_name].top3))

print(yate.para("The entire set of timing data is: " + str(athletes[athlete_name].clean_data) +

 " (duplicates removed)."))

print(yate.include_footer({"Home": "/index.html", "Select another athlete": "generate_list.py"}))

This is the “generate_list.py”
CGI script.

This is “generate_timing_data.py”. The rest of this “Sharpen Solution” is on the next page.

get_namesID_from_store()

each_athlete[0], each_athlete[1])

radio_button_id() ?!?

athlete = athletemodel.get_athlete_from_id(athlete_id)

athlete[‘Name'] + “, DOB: " + athlete[‘DOB']

athlete[‘top3'] str(athlete[‘data'])

You no longer need the “glob” module, as “get_nameID_from_store()” does all this work for you.

The “athletes” are now a list of
lists, so amend the code to get
at the data you need.

It looks like you might need
a slightly different “radio_
button()” function?!?

Get the athlete’s data
from the model, which
returns a dictionary.

Use the returned data as needed, accessing each of the dictionary key/values to get at the athlete’s data.

340 Chapter 9

cgis for android

Part 2: You weren’t done with that pencil just yet! In addition to
amending the code to the CGIs that support your web browser’s
UI, you also needed to change the CGIs that provide your webapp
data to your Android app. You were to amend these CGIs, too.

#! /usr/local/bin/python3

import json

import athletemodel

import yate

names = athletemodel.get_names_from_store()

print(yate.start_response(‘application/json’))

print(json.dumps(sorted(names)))

#! /usr/local/bin/python3

import cgi

import json

import sys

import athletemodel

import yate

athletes = athletemodel.get_from_store()

form_data = cgi.FieldStorage()

athlete_name = form_data[‘which_athlete’].value

print(yate.start_response(‘application/json’))

print(json.dumps(athletes[athlete_name].as_dict))

This is the
“generate_names.py”
CGI.

And here is the
“generate_data.py”
CGI.

get_namesID_from_store()

athlete = athletemodel.get_athlete_from_id(athlete_id)

The tiniest of changes need to be made to these CGIs, because your Android app is only interested in your webapp’s data, NOT all of that generated HTML.

 def radio_button_id(rb_name, rb_value, rb_id):

 return('<input type="radio" name="' + rb_name +

 '" value="' + str(rb_id) + '"> ' + rb_value + '
')

Add this code to
“yate.py” to support
the creation of radio
buttons that provide
a value for the
button that differs
from the button
text.

A third argument lets you specify an ID to go with the radio button.

you are here 4 341

manage your data

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080

File Edit Window Help StartYourWebEngine

Test Drive
Before you run your amended webapp, be sure to move you SQLite database into the top-level
directory of your webapp (that is, into the same folder your index.html file). That way, your
model code can find it, so move it into your webapp’s root folder now. When you are ready, take your
SQL-powered webapp for a spin.Start (or

restart) your
web server.

Click on the
link on the home
page.

Display the list
of athlete names as radio buttons.And there’s

Sally’s timing
data.

That worked well. But what about your Android app?

342 Chapter 9

amend for android

You need to amend your Android app, too
Unlike your HTML-based webapp, where all of your code resides and is
executed on your web server, your Android app runs on your phone and it is
programmed to work with a list of names, not a list of names and athlete IDs.

When you run coachapp.py on your emulator, weirdness ensues…

This is weird…instead of
the names, your app is
displaying a list of lists!

And if you tap “Select”, your app crashes with a “ValueError”. Bummer.

Just like with the CGI scripts, you need to amend you Android app to work
with the data that’s now arriving from your web server—that is, a list of lists
as opposed to a list.

That shouldn’t take too long, should it?

Here’s your current Android app running on the emulator.

you are here 4 343

manage your data

Here is your current coachapp.py code, which you need to amend to support the way your
webapp’s model now works. Grab a pencil and make the necessary changes to this code.

import android, json, time

from urllib import urlencode

from urllib2 import urlopen

hello_msg = "Welcome to NUAC's Timing App"

list_title = 'Here is your list of athletes:'

quit_msg = "Quitting NUAC's App."

web_server = 'http://192.168.1.34:8080'

get_names_cgi = 'cgi-bin/generate_names.py'

get_data_cgi = '/cgi-bin/generate_data.py'

def send_to_server(url, post_data=None):

 # There is no change to this code from the previous chapter.

app = android.Android()

def status_update(msg, how_long=2):

 # There is no change to this code from the previous chapter.

status_update(hello_msg)

athlete_names = sorted(json.loads(send_to_server(web_server + get_names_cgi)))

app.dialogCreateAlert(list_title)

app.dialogSetSingleChoiceItems(athlete_names)

app.dialogSetPositiveButtonText('Select')

app.dialogSetNegativeButtonText('Quit')

app.dialogShow()

resp = app.dialogGetResponse().result

if resp['which'] in ('positive'):

 selected_athlete = app.dialogGetSelectedItems().result[0]

 which_athlete = athlete_names[selected_athlete]

 athlete = json.loads(send_to_server(web_server + get_data_cgi,{'which_athlete': which_athlete}))

 athlete_title = athlete['Name'] + ' (' + athlete['DOB'] + '), top 3 times:'

 app.dialogCreateAlert(athlete_title)

 app.dialogSetItems(athlete['Top3'])

 app.dialogSetPositiveButtonText('OK')

 app.dialogShow()

 resp = app.dialogGetResponse().result

status_update(quit_msg)

344 Chapter 9

support the new model

Here is your current coachapp.py code, which you need to amend to support the way your
webapp’s model now works. You were to grab a pencil and make the necessary changes to this
code.

import android, json, time

from urllib import urlencode

from urllib2 import urlopen

hello_msg = "Welcome to NUAC's Timing App"

list_title = 'Here is your list of athletes:'

quit_msg = "Quitting NUAC's App."

web_server = 'http://192.168.1.34:8080'

get_names_cgi = 'cgi-bin/generate_names.py'

get_data_cgi = '/cgi-bin/generate_data.py'

def send_to_server(url, post_data=None):

 # There is no change to this code from the previous chapter.

app = android.Android()

def status_update(msg, how_long=2):

 # There is no change to this code from the previous chapter.

status_update(hello_msg)

athlete_names = sorted(json.loads(send_to_server(web_server + get_names_cgi)))

app.dialogCreateAlert(list_title)

app.dialogSetSingleChoiceItems(athlete_names)

app.dialogSetPositiveButtonText('Select')

app.dialogSetNegativeButtonText('Quit')

app.dialogShow()

resp = app.dialogGetResponse().result

if resp['which'] in ('positive'):

 selected_athlete = app.dialogGetSelectedItems().result[0]

 which_athlete = athlete_names[selected_athlete]

 athlete = json.loads(send_to_server(web_server + get_data_cgi,{'which_athlete': which_athlete}))

 athlete_title = athlete['Name'] + ' (' + athlete['DOB'] + '), top 3 times:'

 app.dialogCreateAlert(athlete_title)

 app.dialogSetItems(athlete['Top3'])

 app.dialogSetPositiveButtonText('OK')

 app.dialogShow()

 resp = app.dialogGetResponse().result

status_update(quit_msg)

athlete_names = [ath[0] for ath in athletes]

athletes =

athletes[selected_athlete][1]

athlete[‘top3']

Extract the athlete names ONLY from the list of lists.

Determine the ID associated
with the selected athlete.

A small adjustment to next line is needed to access the “top3” attribute.

This is a cool use of a comprehension.

you are here 4 345

manage your data

Android Pool Puzzle
Your job is to take the code from the pool and place it into

the blank lines in the program. Your goal is to write
the code to have your app provide the user with a
mechanism to add a timing value to the server for
the currently selected athlete. For now, send your
data to the cgi-bin/add_timing_data.py

CGI script.

Hint: the code from get2inputsapp.py (from earlier in
this chapter) should come in handy here.

 app.dialogSetNegativeButtonText('Add Time')

 ...

 if resp['which'] in ('positive'):

 pass

 elif resp['which'] in ('negative'):

 send_to_server(web_server + add_time_cgi,{'Time': new_time, 'Athlete': which_athlete})

'/cgi-bin/add_timing_data.py'

if resp i
s not Non

e:

timing_msg =

'Provide a new timing value ' + athlete['Name'] + ': '

add_time_cgi =

timing_ti
tle = 'En

ter a new
 time'

resp = app.dialogGetInput(timing_title, timing_msg).result

new_time
= resp

Add another button to the existing
dialog in the current version of your app.

Based on the button t
hat’s tapped,

either do nothing (“pa
ss”) or start a

new dialog with the user.

If some input is
supplied, send it
to the web server together with the athlete’s ID.

346 Chapter 9

allow android input

 app.dialogSetNegativeButtonText('Add Time')

 ...

 if resp['which'] in ('positive'):

 pass

 elif resp['which'] in ('negative'):

 send_to_server(web_server + add_time_cgi,{'Time': new_time, 'Athlete': which_athlete})

Define the dialog’s titles and specify the CGI to send
the data to.

Display the dialog and
wait for

some user input.

Android Pool Puzzle Solution
Your job was to take the code from the pool and place it

into the blank lines in the program. Your goal was
to write the code to have your app provide the user
with a mechanism to add a timing value to the server
for the currently selected athlete. For now, you
were to send your data to the cgi-bin/add_
timing_data.py CGI script.

Hint: the code from get2inputsapp.py (from earlier in
this chapter) should come in handy here.

'/cgi-bin/add_timing_data.py'

if resp is not None:

timing_msg = 'Provide a new timing value ' + athlete['Name'] + ': '

add_time_cgi =

timing_title = 'Enter a new time'

resp = app.dialogGetInput(timing_title, timing_msg).result

new_time = resp

you are here 4 347

manage your data

Test Drive
Use the tools/adb command to copy your latest app to the emulator, and give your app a go.

$ python3 simple_httpd.py
Starting simple_httpd on port: 8080
198.162.1.34 - - [27/Sep/2010 14:51:47] "GET /cgi-bin/generate_names.py HTTP/1.1" 200 -
198.162.1.34 - - [27/Sep/2010 14:52:01] "POST /cgi-bin/generate_data.py HTTP/1.1" 200 -
198.162.1.34 - - [27/Sep/2010 14:52:19] "POST /cgi-bin/add_timing_data.py HTTP/1.1" 200 -
localhost, 198.162.1.34, Mon Sep 27 14:52:19 2010: POST: Athlete->3 Time->1.33

File Edit Window Help DataFromAndroid

Select “Vera”
from the list
of athletes… …to see Vera’s top 3 times, then tap the “Add Time” button… …to enter a new

time, which is
then sent to
your web server.

Great: your data
is sent from your
Android app to
your web server.

348 Chapter 9

database update

Update your SQLite-based athlete data
All that’s left is to change the cgi-bin/add_timing_data.py CGI
script to write your submitted data to your database, as opposed to the web
server’s console screen.

At this point, it’s a trivial exercise, because a single SQL INSERT statement
will do the heavy lifting.

Get the data sent to your web browser from your Android app.

INSERT the data into your
“timing_data” table.

With this version of your CGI script running on your web server, any new
times entered by anyone on an Android phone are added to the data in the
database.

The NUAC no longer has to worry about adding data to text files, because
the files are effectively obsoleted by the use of SQLite.

You’ve produced a robust solution that is more manageable, scalable,
programmable, and extendable. And it’s all thanks to the power of Python,
it’s database API and the inclusion of sqlite3 in the standard library.

All that’s left to do is sit back, relax and bask in the
glory of your latest programming creation…

you are here 4 349

manage your data

The NUAC is over the moon!
Of course, your use of SQLite gives you more than just easy insertions
of data. With the NUAC’s data in tables, it’s easy to answer some of the
questions that have been on their mind.

With our data in a
database, it’s a breeze to

work out the fastest time
among all our athletes.

And if we need to
know who had the
fastest time, that’s
easy, too.

This is just great! I can get
instant answers to my many
questions in the blink of an
eye. All thanks to Python
and SQLite.

To answer these and other queries on the data in the NUAC’s database, you’ll
have to bone up on your SQL. Then it’s up to you to take it from there.

You’ve converted your webapp to use an SQL database. As your data
management needs increase, you can consider alternative heavy-duty data
management technologies as needed.

This is great work. Your webapp is ready for the big time.

350 Chapter 9

python toolbox

Your Python Toolbox

You’ve got Chapter 9 under your
belt and you’ve added some
key Python tools to your evey
expanding Python toolbox.

 � The fieldStorage() method from
the standard library’s cgi module lets
you access data sent to your web server
from within your CGI script.

 � The standard os library includes
the environ dictionary providing
convenient access to your program’s
environment settings.

 � The SQLite database system is included
within Python as the sqlite3 standard
library.

 � The connect() method establishes a
connection to your database file.

 � The cursor() method lets you
communicate with your database via an
existing connection.

 � The execute() method lets you send
an SQL query to your database via an
existing cursor.

 � The commit() method makes changes
to your database permanent.

 � The rollback() method cancels
any pending changes to your data.

 � The close() method closes an
existing connection to your database.

 � The “?” placeholder lets you parameterize
SQL statements within your Python code.

Python Lingo
• “Database API” - a

standardized m
echanism for

accessing an SQ
L-based database

system from within a Python

program.

Database Lingo
• “Database” - a collection of one or more tables.
• “Table” - a collection of one or more rows or data, arranged as one or more columns.

• “SQL” - the “Structured Query Language” is the language of the database world and it lets you work with your data in your database using statements such as CREATE, INSERT, and SELECT.

CH
AP

T
ER

 9

this is a new chapter 351

It all started with the internal
combustion engine, then it was
the electric engine, and now
there’s App Engine. Will this
torture never end?

scaling your webapp10

Getting real

The Web is a great place to host your app…until things get real.
Sooner or later, you’ll hit the jackpot and your webapp will be wildly successful. When that

happens, your webapp goes from a handful of hits a day to thousands, possibly ten of

thousands, or even more. Will you be ready? Will your web server handle the load? How

will you know? What will it cost? Who will pay? Can your data model scale to millions

upon millions of data items without slowing to a crawl? Getting a webapp up and running

is easy with Python and now, thanks to Google App Engine, scaling a Python webapp is

achievable, too. So…flip the page and find out how.

352 Chapter 10

a whale of data

There are whale sightings everywhere
The Head First Whale Watching Group (HFWWG) coordinates the live
cetacean sightings for the entire country. To date, they’ve provided a PDF
form on their website that members of the public can download, fill in, and
mail to the HFWWG central office.

The form contains the essential data needed to record the sighting:

After a busy sightings weekend, the central office is swamped with completed
forms for thousands of sightings…which is a data-entry nightmare as all those
forms can take an age to process manually. There’s nothing worse than being
stuck in front of your computer entering data when all you want to do is be
out on the water looking for humpbacks…

you are here 4 353

scaling your webapp

We need to somehow
automate the recording
of our sightings... Yeah, but we aren’t

technical, and we don’t
have much money.

Suggesting to the HFWWG that they invest in an expensive web hosting
solution isn’t going to make you any friends. It’s way too expensive to buy
the capacity they’ll need for the busy weekends and a total waste of capacity
when sightings are infrequent.

Suggesting that they invest in a large, state-of-the-art web server that can be
hosted in the central office is also a nonstarter: there’s no one to look after a
setup like that, and the broadband link required to handle the anticipated
traffic would blow the their budget right out of the water.

Is there another option?

Ideally, a solution that works on
the Web would be great. That
way, anyone from anywhere
could record a sighting. Look!

There’s one...

The HFWWG needs to automate

354 Chapter 10

enter app engine

Build your webapp with Google App Engine
Google App Engine (GAE) is a set of technologies that lets you host your
webapp on Google’s cloud computing infrastructure.

GAE constantly monitors your running webapp and, based on your webapp’s
current activity, adjusts the resources needed to serve up your webapp’s pages.
When things are busy, GAE increases the resources available to your webapp,
and when things are quiet, GAE reduces the resources until such time as
extra activity warrants increasing them again.

On top of this, GAE provides access to Google’s BigTable technology: a set of
database technologies that make storing your webapp’s data a breeze. Google
also backs up your webapp’s data on a regular basis, replicates your webapp
over multiple, geographically dispersed web servers, and keeps App Engine
running smoothly 24/7.

And the best part? GAE can be programmed with Python.

And the even better part? You can start running your webapp on GAE for free.

That sounds perfect for
the HFWWG. What’s the
catch?

Initially, there isn’t one.

Google provides this webapp hosting service at no
charge and will continue to do so until your webapp
processes five million page views per month. Once it
exceeds this threshold, you’ll need to pay Google for
the extra capacity used. If you never reach the limit,
your use of GAE is not charged.

Five million page views? That’s a lot of sightings…

you are here 4 355

scaling your webapp

Download and install App Engine
When your webapp is ready for deployment, you’ll upload it to the Google
cloud and run it from there. However, during development, you can run a test
version of your webapp locally on your computer. All you need is a copy of
the GAE SDK, which is available from here:

 http://code.google.com/appengine/

Download the GAE Python SKD for your operating system. Windows, Mac
OS X, and Linux are all supported, and installation is straightforward.

GAE uses Python 2.5

The version of Python built into GAE is a modified version of the Python 2.5
release. As when you worked with Python for Android, the fact that you aren’t
running Python 3 isn’t such a big deal with GAE, although you do need to
ensure Python 2.5 is installed on your computer. Open up a terminal window
and type:

 python2.5 -V

If this command gives an error, pop on over to the Python website and grab
the 2.5 release for your operating system.

After installation, Windows and Mac OS X users will find a nice, graphical front end added to their system.

On Linux, a new folder called
“google_appengine” is created after a
successful install.

Q: Aren’t things going backward here? First, there was Python 3, then it was Python 2.6 for Android, and now we are dropping
down to 2.5 for App Engine? What gives?

A: That’s a great question. It’s important to remember to always code to the restrictions placed on you.You might think that it sucks that GAE
runs on Python 2.5, but you shouldn’t. Think of it as just another restriction placed on the code you write—that is, it must target Release 2.5
of Python. As with the Android code you created in the previous chapters, the GAE code you are about to write is not all that different than the
Python code for 3. In fact, you will be hard pressed to spot the difference.

356 Chapter 10

testing app engine

Make sure App Engine is working
The environment supported by GAE within the Google cloud supports
standard CGI or Python’s WSGI. To build a GAE-compatible webapp, you
need three things: a folder to hold your webapp’s files, some code to execute,
and a configuration file.

To test your setup, create a folder called mygaetest. Within the folder,
create a small CGI you can use to test GAE. Call this CGI sayhello.py.
Use this code:

 print('Content-type: text/plain\n')

 print('Hello from Head First Python on GAE!')

The configuration file must be called app.yaml and it, too, must be in
your webapp’s folder. This file tells the Google cloud a little bit about your
webapp’s runtime environment. Here’s a basic configuration file:

It doesn’t get much easier than this…a plain-text message is displayed within your browser whenever this CGI runs.

 application: mygaetest

 version: 1

 runtime: python

 api_version: 1

 handlers:

 - url: /.*

 script: sayhello.py

The “application” line identifies
your webapp and is the same name
as your folder.

The “version” line identifies the current version of your webapp (and usually starts at 1).

“runtime” tells GAE that your webapp
is written in and will run on Python.

The “api_version”
indicates the release of
GAE you are targeting.

Do this!

Go ahead and create the folder called
mygaetest and the two files shown here.

Think of the “handlers” section of the configuration file as a top-level webapp routing mechanism.
This entry tells GAE to route
all requests to your webapp to
your “sayhello.py” program.

mygaetest

sayhello.py

app.yaml

you are here 4 357

scaling your webapp

Test Drive
The GAE SDK includes a test web server, so let’s use it to take your test GAE webapp for a spin. If you
are running on Windows or Mac OS X, fire up the Google App Engine Launcher front end. This tool
makes it easy to start, stop, and monitor your webapp. On Linux, you’ll need to invoke a command
to kick things off. If you are using the GAE Launcher, choose File -> Add Existing Application from
the menu system to browse and select your webapp’s folder. Also: be sure to edit the Launcher’s
Preferences to select Python 2.5 as your preferred Python Path.

This is how the
GAE Launcher
looks on Mac OS
X…it looks similar
on Windows.

There is no graphical front end for Linux, so start your GAE webapp from the command line.

$ python2.5 google_appengine/dev_appserver.py mygaetest/

INFO 2010-10-02 12:41:16,547 appengine_rpc.py:149] Server: appengine.google.com
INFO 2010-10-02 12:41:16,555 appcfg.py:393] Checking for updates to the SDK.
INFO 2010-10-02 12:41:17,006 appcfg.py:407] The SDK is up to date.
WARNING 2010-10-02 12:41:17,007 datastore_file_stub.py:657] Could not read datastore data
from /tmp/dev_appserver.datastore
INFO 2010-10-02 12:41:17,104 dev_appserver_main.py:431] Running application mygaetest
on port 8080: http://localhost:8080

File Edit Window Help GAEonLinux

Click this
button to
start your
webapp.

With your webapp running and waiting on port 8080, open your favorite web browser and surf on
over to the http://localhost:8080/ web address.

And there it is…
the message from
your test webapp!

358 Chapter 10

more work?

I don’t believe it. This is
actually more work than
plain old CGI...and you’re
claiming this is better?!?

Yes, it is more work. But that’s about to change.

For now, this is more work than you’re used to, but remember that
this is just a quick test to make sure your GAE test environment is
up and running (and it is). When you start to work with some of
GAE’s web development features, you’ll initially see that there’s a
lot more going on behind the scenes than meets the eye.

you are here 4 359

scaling your webapp

App Engine uses the MVC pattern
Google has built GAE to conform to the familiar Model-View-Controller
(MVC) pattern.

Like your webapp from the previous chapter, the model component of a
GAE-enabled webapp uses a back-end data storage facility that’s known as
the datastore. This is based on Google’s BigTable technology, which provides
a “NoSQL” API to your data, as well as a SQL-like API using Google’s
Query Language (GQL).

GAE’s views use templates, but unlike the simple string templates from the
previous chapter, GAE uses the templating system from the Django
Project, which is one of Python’s leading web framework technologies. In
addition to templates, GAE includes Django’s forms-building technology.

And, of course, any controller code is written in Python and can use the
CGI or WSGI standards. Unfortunately, you can’t use your yate module
with GAE, because it is a Python 3 library (and would need to be extensively
rewritten to support Python 2). Not to worry: the facilities provided by GAE

“out of the box” are more than enough to build great webapps.

So...like any other webapp that I build,
with App Engine I define a model for my data,
create some templates for my view, and then
control it all with code, right?

Yes, it’s the same process as any other webapp.

Google has worked hard to ensure that the move to App Engine
is as painless as possible. If you understand MVC (as you now
do), you are well on your way to creating with GAE. It’s just a
matter of working out how GAE implements each of the MVC
components.

The Model The View

The Controller

360 Chapter 10

model data

Model your data with App Engine
App Engine refers to data items stored within its datastore as properties, which
are defined within your model code.

Think of properties as a way to define the name and types of data within
your database schema: each property is like the column type associated piece
of data stored in a row, which App Engine refers to as an entity.

When you think “row,” I
think “entity.” And when
your think “column,” I
think “property.” Get it?

As with traditional SQL-based databases, your GAE datastore properties are
of a specific, predeclared type. There are lots to choose from, for instance:

 • db.StringProperty: a string of up to 500 characters

 • db.Blob: a byte string (binary data)

 • db.DateProperty: a date

 • db.TimeProperty: a time,

 • db.IntegerProperty: a 64-bit integer

 • db.UserProperty: a Google account

This data is stored as
a “db.IntegerProperty”.

Store this data as
“db.StringProperty”.

This data is stored as a “db.DateProperty”.

Here’s some sample data from

the prevoius chapter.

For the full list of property
types supported, pop on over
to http://code.google.com/
appengine/docs/python/datastore/
typesandpropertyclasses.html and
take a look.

you are here 4 361

scaling your webapp

Pool Puzzle
Your job is to take the properties from the

pool and place them in the correct
place in the class code, which is in a
file called hfwwgDB.py. Your goal
is to assign the correct property type
to each of the attributes within your
Sighting class.

from google.appengine.ext import db

class Sighting(db.Model):

 name =

 email =

 date =

 time =

 location =

 fin_type =

 whale_type =

 blow_type =

 wave_type =

db.TimeProperty()

db.StringProperty(
)

db.DateProperty()

db.StringProperty(
)

db.StringProperty(
)

db.StringProperty()

db.StringProperty()

db.StringProperty()

Import the “db”
module from the GAE
extensions.

Create a class called “Sighting” that inherits from the GAE “db.Model” class.

Each property
is assigned to a
name.

db.StringProperty(
)

362 Chapter 10

property types

Pool Puzzle Solution
Your job was to take the properties from

the pool and place them in the correct
place in the class code, which is in a
file called hfwwgDB.py. Your goal
was to assign the correct property
type to each of the attributes within
your Sighting class.

from google.appengine.ext import db

class Sighting(db.Model):

 name =

 email =

 date =

 time =

 location =

 fin_type =

 whale_type =

 blow_type =

 wave_type =

db.TimeProperty()

db.StringProperty()

db.DateProperty()

db.StringProperty()

db.StringProperty()

db.StringProperty()

db.StringProperty()

db.StringProperty()

db.StringProperty()

Everything is a
“StringProperty”, except the “date” and “time” fields.

you are here 4 363

scaling your webapp

What good is a model without a view?
GAE not only lets you define the schema for your data, but it also creates
the entities in the datastore. The first time you go to put your data in the
datastore, GAE springs to life and makes room for your data. There’s no
extra work required by you, other than defining your model in code. It’s
useful to think of GAE as executing something similar to a SQL CREATE
command on the fly and as needed. But how do you get data into the GAE
datastore?

The short answer is that you put it there, but you first need to get some data
from your webapp’s user…and to do that, you need a view. And views are
easy when you use templates.

App Engine templates in an instant

Recall that the templating technology built into GAE is based on technology
from the Django Project. Django’s templating system is more sophisticated
than the simple string-based templates used in the previous chapter. Like your
templates, Django’s templates can substitute data into HTML, but they can
also execute conditional and looping code.

Here are four templates you’ll need for your HTWWG webapp. Two of them
should be familiar to you: they are adaptions of those used in the previous
chapter. The other two are new. Go ahead and grab them from this book’s
support website. As you can see, rather that using the $name syntax for
variable substitution in the template, Django uses the {{name}} syntax:

<p>

{{ links }}

</p>

</body>

</html>

<html>

<head>

<title>{{ title }}</title>
</head>

<body>

<h1>{{ title }}</h1> <form method="POST" action="/">
<table>

<tr><th> </th><t
d><input type="submit

" value="{{ sub_title
 }}"></td></tr>

</table>

</form>

footer.html

form_end.html

form_start.html

header.html

364 Chapter 10

use a template

Use templates in App Engine
To use a template, import the template module from google.
appengine.ext.webapp and call the template.render() function.
It is useful to assign the output from template.render() to a variable,
which is called html in this code snippet:

from google.appengine.ext.webapp import template

html = template.render('templates/header.html', {'title': 'Report a Possible Sighting'})

As usual, start with your import.

Call “template.
render()”… …supplying the

template name…
…as well as a dictionary that maps values to
the named template variable.

This is similar to the mechanism your yate.py module uses to parameterize
the data displayed within your HTML pages.

And I can use a bunch of calls
like this to create the view
that I need for the HTWWG
sightings form, right?

Yes, create your view with templates.

Just like the other webapps that you’ve built, you
can create your view in much the same way using
Python code. It’s a bummer that you can’t use your
yate.py module, but Django’s templates provide
most of the functionality you need here.

Q: Should I create one big template for my entire web page?

A: You could, if you want. However, if you build up your view from snippets of HTML in templates, you open up the possibility of reusing those
HTML snippets in lots of places. For instance, to maintain a consistent look and feel, you can use the same header and footer template on all of
your web pages, assuming of course that your header and footer aren’t already embedded in an entire web page (which can’t be reused).

you are here 4 365

scaling your webapp

Let’s write the rest of the code needed to create a view that
displays a data entry form for your HFWWG webapp.

In addition to your web page header code (which already exists
and is provided for you), you need to write code that starts a new
form, displays the form fields, terminates the form with a submit
button, and then finishes off the web page. Make use of the
templates you’ve been given and (here’s the rub) do it all in no
more than four additional lines of code.

1

2 Now that you have attempted to write the code required in no more than four lines of code, what
problem(s) have you encountered. In the space below, note down any issue(s) you are having.

from google.appengine.ext.webapp import template

html = template.render('templates/header.html', {'title': 'Report a Possible Sighting'})

html = html +

Remember: no
more than 4
lines of code!

Extend the contents of “html” with the rest of the HTML you need.

This code goes into a
new program called
“hfwwg.py”.

366 Chapter 10

data-entry display

You were to write the rest of the code needed to create a view
that displays a data entry form for your HFWWG webapp.

In addition to your webpage header code (which already exists
and is provided for you), you were to write code with starts a
new form, displays the form fields, terminates the form which a
submit button, then finishes off the webpage. You were to make
use of the templates you’ve been given and (here’s the rub) you
had to do it all in no more than four more lines of code.

1

2 Having attempted to write the code required in no more than four lines of code, you were to make a
note of any issue(s) you encountered.

from google.appengine.ext.webapp import template

html = template.render('templates/header.html', {'title': 'Report a Possible Sighting'})

html = html + template.render('templates/form_start.html’, {})

We need to generate the FORM fields in here…but how?!?

html = html + template.render(‘templates/form_end.html’, {‘sub_title’: ‘Submit Sighting’})
html = html + template.render(‘templates/footer.html’, {‘links’: ''})

This is IMPOSSIBLE to do in just four lines of code, because there’s no way
to generate the FORM fields that I need. I can’t even use the “do_form()”
function from “yate.py”, because that code is not compatible with Python 2.5…
this just sucks!

The “render()” function always expects two arguments. If you don’t need the second one, be sure to pass an empty dictionary.

This is an issue,
isn’t it?

You may have written something like this…assuming, of course, you haven’t thrown your copy of this book out the nearest window in frustration. §

you are here 4 367

scaling your webapp

Wouldn't it be dreamy if I could avoid
hand-coding a <FORM> and generate the
HTML markup I need from an existing data
model? But I know it's just a fantasy…

368 Chapter 10

more borrowing from django

Django’s form validation framework
Templates aren’t the only things that App Engine “borrows” from Django.
It also uses its form-generating technology known as the Form Validation
Framework. Given a data model, GAE can use the framework to generate the
HTML needed to display the form’s fields within a HTML table. Here’s an
example GAE model that records a person’s essential birth details:

from google.appengine.ext import db

class BirthDetails(db.Model):

 name = db.StringProperty()

 date_of_birth = db.DateProperty()

 time_of_birth = db.TimeProperty()

This code is in a file
called “birthDB.py”.

This model is used with Django’s framework to generate the HTML markup
needed to render the data-entry form. All you need to do is inherit from a
GAE-included class called djangoforms.ModelForm:

from google.appengine.ext.webapp import template

from google.appengine.ext.db import djangoforms

import birthDB

class BirthDetailsForm(djangoforms.ModelForm):

 class Meta:

 model = birthDB.BirthDetails

 ...

 html = template.render('templates/header.html', {'title': 'Provide your birth details'})

 html = html + template.render('templates/form_start.html', {})

 html = html + str(BirthDetailsForm(auto_id=False))

 html = html + template.render('templates/form_end.html', {'sub_title': 'Submit Details'})

 html = html + template.render('templates/footer.html', {'links': ''})

Create a new class by inheriting from the “djangoforms.Model” class, and then link your new class to your data model.

Use your new class to generate
your form.

Import the forms library in addition
to your GAE data model.

There is some code missing from here…but don’t worry: you’ll get to it in just

a moment. For now, just concentrate on understanding the lin
ks between the

model, the view code, and the Django form validation framework.

you are here 4 369

scaling your webapp

Check your form
The framework generates the HTML you need and produces the following
output within your browser.

Use the View Source menu option within your web browser to inspect the
HTML markup generated.

The Django framework is smart enough to create

sensible labels for each of your input field
s (based on

the names used in your model).

It’s not the
prettiest web page
ever made, but it
works.

By setting “auto_id” to “False” in your code, the form generator uses your model property names to identify your form’s fields.

It’s time to tie things all together with your controller code.

370 Chapter 10

controller code

hfwwgapp

static

templates

Controlling your App Engine webapp
Like your other webapps, it makes sense to arrange your webapp controller
code within a specific folder structure. Here’s one suggestion:

Your top-level folder needs to be
named to match the “application” line
in your webapp’s “app.yaml” file.

Put your HTML templates in here.

If you have static content,
put it in here (at the moment,
this folder is empty).

Put all of your webapp’s controller code and configuration files in here.

As you’ve seen, any CGI can run on GAE, but to get the most out of Google’s
technology, you need to code to the WSGI standard. Here’s some boilerplate
code that every WSGI-compatible GAE webapp starts with:

 from google.appengine.ext import webapp

 from google.appengine.ext.webapp.util import run_wsgi_app

 class IndexPage(webapp.RequestHandler):

 def get(self):

 pass

 app = webapp.WSGIApplication([('/.*', IndexPage)], debug=True)

 def main():

 run_wsgi_app(app)

 if __name__ == '__main__':

 main()

Import App
Engine’s
“webapp” class.

Import a utility that runs your webapp.

This class
responds to a
web request
from your web
browser.This method runs when a GET web request

is received by your webapp.Create an
new “webapp”
object
for your
application.

Start your webapp.

Just use these two lines of code as-is.

This is
not unlike switching on CGI tracking.

you are here 4 371

scaling your webapp

App Engine Code Magnets
Let’s put everything together. Your model code is already in your hfwwgDB.py
file. All you need to do is move that file into your webapp’s top-level folder. Copy
your templates folder in there, too.Your webapp’s controller code, in a file called
hfwwg.py, also needs to exist in your top-level folder. The only problem is that
some of the code’s all over the floor. Rearrange the magnets to fix things.

class SightingForm(djangoforms.ModelForm):

class Meta:

class SightingInputPage(webapp.RequestHandler):
 def get(self):

import hfwwgDB

from google.appengine.ext import webapp

from google.appengine.ext.webapp.util import run_wsgi_app

from google.appengine.ext import db

from google.appengine.ext.webapp import template

from google.appengine.ext.db import djangoforms

 html = template.render('templates/header.html', {'title': 'Report a Possible Sighting'})

 html = html + template.render('templates/form_start.html', {})

 html = html + template.render('templates/form_end.html’, {'sub_title': 'Submit Sighting'})

 html = html + template.render('templates/footer.html', {'links': ''})

app = webapp.WSGIApplication([(‘/.*’, SightingInputPage)], debug=True)

def main():

 run_wsgi_app(app)

if __name__ == '__main__':

 main()

model = hfw
wgDB.Sighti

ng

All of the imports have survived…so there’s no need to rearrange them.

There’s only one small
change from the boilerplate
code in that “IndexPage” is
not being linked to.

html = html
 + str(Sigh

tingForm())

self.response.out.write(html)

Let’s test how well
you’ve been paying
attention. There’s no
guiding lines on the
fridge door.

What’s missing
from in here?

372 Chapter 10

everything together

App Engine Code Magnets Solution
Let’s put everything together. Your model code is already in your hfwwgDB.py
file. You were to move that file into your webapp’s top-level folder, as well as copy
your templates folder in there, too.Your webapp’s controller code, in a file called
hfwwg.py, also needs to exist in your top-level folder. The only problem is that
some of the code’s all over the floor. You were to rearrange the magnets to fix
things:

class SightingForm(djangoforms.ModelForm):

class Meta:

class SightingInputPage(webapp.RequestHandler):

 def get(self):

import hfwwgDB

from google.appengine.ext import webapp

from google.appengine.ext.webapp.util import run_wsgi_app

from google.appengine.ext import db

from google.appengine.ext.webapp import template

from google.appengine.ext.db import djangoforms

 html = template.render('templates/header.html', {'title': 'Report a Possible Sighting'})

 html = html + template.render('templates/form_start.html', {})

 html = html + template.render('templates/form_end.html’, {'sub_title': 'Submit Sighting'})

 html = html + template.render('templates/footer.html', {'links': ''})

app = webapp.WSGIApplication([('/.*', SightingInputPage)], debug=True)

def main():

 run_wsgi_app(app)

if __name__ == '__main__':

 main()

model = hfwwgDB.Sighting

html = html + str(SightingForm())

self.response.out.write(html)

Import your GAE data
model code.

Use your model to create a sighting form that inherits from the “django.ModelForm” class.

The connected handler class is called
“SightingInputPage” and it provides a
method called “get” which responds to a
GET web request.

Include the generated form in the HTML response.

Did you guess this correctly? You need to se
nd a

response back to the waiting web browser and this line

of code does just that.

you are here 4 373

scaling your webapp

Test Drive
It’s been a long time coming, but you are now ready to test the first version of your sightings form.
If you haven’t done so already, create an app.yaml file, too. Set the application line to hfwwg
and the script line to hfwwg.py. One final step is to use the Add Existing Application menu option
within the GAE Launcher to select your top-level folder as the location of your webapp.

The launcher adds your webapp into its list and assigns it the next available protocol port—in this case, 8081.

And here’s your
generated HTML form in all its glory.

This is looking good. Let’s get a quick opinion from the
folks over at the HFWWG.

374 Chapter 10

make it pretty

I know what you’re thinking: “With a shirt like
that, how can this guy possibly know anything about
style?”... But let me just say that your form could do
with a bit of, well...color, couldn’t it? Any chance it

could look nicer?

OK, we get it. Web design is not your thing.

Not to worry, you know all about code reuse, right? So, let’s reuse
someone else’s cascading style sheets (CSS) to help with the “look”
of your generated HTML form.

But who can you “borrow” from and not lose sleep feeling guilty over
it?

As luck would have it, the authors of Head First HTML with CSS &
XHTML created a bunch of stylesheets for their web pages and have
made them available to you. Grab a slightly amended copy of some
of their great stylesheets from this book’s support website. When you
unzip the archive, a folder called static appears: pop this entire
folder into your webapp’s top-level folder.

There’s a file in static called favicon.ico. Move it into your
top-level folder.

Improve the look of your form

To integrate the stylesheets into your webapp, add two link tags to your
header.html template within your templates folder. Here’s what the
tags need to look like:

 <link type="text/css" rel="stylesheet" href="/static/hfwwg.css" />
 <link type="text/css" rel="stylesheet" href="/static/styledform.css" />

GAE is smart enough to optimize the delivery of static content—that is,
content that does not need to be generated by code. Your CSS files are static
and are in your static folder. All you need to do is tell GAE about them to
enable optimization. Do this by adding the following lines to the handers
section of your app.yaml file:

 - url: /static

 static_dir: static

Provide the URL location for your static content.
Switch on the
optimization.

Add these two lines to the top of your “header.html” template.

you are here 4 375

scaling your webapp

Test Drive
With your stylesheets in place and your app.yaml file amended, ask your browser to reload your form.

Looking good.

A little style goes
a long way...that’s
looking great!

376 Chapter 10

list of choices

Restrict input by providing options
At the moment, your form accepts anything in the Fin, Whale, Blow, and
Wave input areas. The paper form restricts the data that can be provided for
each of these values. Your HTML form should, too.

Anything you can do to cut down on
input errors is a good thing. As the youngest
member of the group, I was “volunteered” to
work on data clean-up duties...

Providing a list of choices restricts what users can input.

Instead of using HTML’s INPUT tag for all of your form fields, you can use the
SELECT/OPTION tag pairing to restrict what’s accepted as valid data for any of the
fields on your form. To do this, you’ll need more HTML markup. That’s the bad
news.

The good news is that the form validation framework can generate the HTML
markup you need for you. All you have to provide is the list of data items to use as
an argument called choices when defining your property in your model code. You
can also indicate when multiple lines of input are acceptable using the multiline
argument to a property.

Apply these changes to your model code in the hfwwgDB.py file.

_FINS = ['Falcate', 'Triangular', 'Rounded']

_WHALES = ['Humpback', 'Orca', 'Blue', 'Killer', 'Beluga', 'Fin', 'Gray', 'Sperm']

_BLOWS = ['Tall', 'Bushy', 'Dense']

_WAVES = ['Flat', 'Small', 'Moderate', 'Large', 'Breaking', 'High']

 ...

 location = db.StringProperty(multiline=True)

 fin_type = db.StringProperty(choices=_FINS)

 whale_type = db.StringProperty(choices=_WHALES)

 blow_type = db.StringProperty(choices=_BLOWS)

 wave_type = db.StringProperty(choices=_WAVES)

Define your lists of values near the top of your code.

This naming
convention
helps identify
these lists as
containing
constant values.

Switch on multiple-line input.

Use your lists
of values when
defining your
properties.

you are here 4 377

scaling your webapp

Test Drive
With these changes applied to your model code, refresh your web browser once more.

Your form is not only
looking good, but it’s
more functional, too.

The “location” field is now displayed over multiple lines.

Each of the “type” fields now have
drop-down selection menus associated with them.

Your form now looks great! Go ahead and enter some test data, and then
press the Submit Sighting button.

What happens?

378 Chapter 10

checking log console

Meet the “blank screen of death”
Submitting your form’s data to the GAE web server produces a blank screen.

Whoops…that’s not
exactly user-friendly.

To work out what happened (or what didn’t
happen), you need to look at the logging
information for your GAE webapp.

If you are running GAE on Linux, your logging
messages are displayed on screen. If you are on
Windows or Mac OS X, click the Logs button
within the Launcher to open up the Log Console
for your webapp.

Your request resulted in a 405 status code from the web server. According to
the official HTTP RFC standards document, 405 stands for:

“Method Not Allowed. The method specified in the Request-Line is not allowed
for the resource identified by the Request-URI. The response MUST include an Allow

header containing a list of valid methods for the requested resource”.
Ummm…that’s as clear
as mud, isn’t it?

Your last web request resulted in a 405.

Click!

you are here 4 379

scaling your webapp

Process the POST within your webapp
What the 405 status code actually tells you is that posted data arrived at your
webapp intact, but that your webapp does not have any way of processing it.
There’s a method missing.

Take a quick look back at your code: the only method currently defined is
called get(). This method is invoked whenever a GET web request arrives
at your webapp and, as you know, it displays your sightings form.

In order to process posted data, you need to define another method.
Specifically, you need to add a new method called post() to your
SightingInputPage class.

App Engine handles requests as well as responses

Your get() method produces your HTML form and returns a web response
to the waiting web browser using the self.response object and by
invoking the out.write() method on it.

In additon to helping you with your web responses, GAE also helps you
process your web requests using the self.request object. Here are a few
lines of code that displays all of the data posted to your web server:

 def post(self):

 for field in self.request.arguments():

 self.response.out.write(field)

 self.response.out.write(': ')

 self.response.out.write(self.request.get(field))

 self.response.out.write('
')

App
Engine

Web
Server

Listen, bud, I’ll happily
process your web requests all
day long...just as long as you
give me the methods I need!

Define a new
method called
“post”.

Don’t forget to use “self” with all your methods.
The “arguments()” method returns a list of the field names used on your form.

The “get()” method returns the value associated

with the provided form field name.

So…if you know the name of your form field, you can access its value from
within your webapp using the self.request.get() method.

But what do you do with the data once you have it?

380 Chapter 10

storing data

Put your data in the datastore
Your data is sent to your webapp by GAE and you can use the self.
request.get() method to access each input field value by name. Recall
the BirthDetails model from earlier in this chapter:

from google.appengine.ext import db

class BirthDetails(db.Model):

 name = db.StringProperty()

 date_of_birth = db.DateProperty()

 time_of_birth = db.TimeProperty()

This code is in a file
called “birthDB.py”.

Assume that an HTML form has sent data to your webapp. The data is
destined to be stored in the GAE datastore. Here’s some code to do the heavy
lifting:

 def post(self):

 new_birth = birthDB.BirthDetails()

 new_birth.name = self.request.get('name')

 new_birth.date = self.request.get('date_of_birth')

 new_birth.time = self.request.get('time_of_birth'))

 new_birth.put()

 html = template.render('templates/header.html', {'title': 'Thank you!'})

 html = html + "<p>Thank you for providing your birth details.</p>"

 html = html + template.render('templates/footer.html',

 {'links': 'Enter another birth.'})

 self.response.out.write(html)

Create a new “BirthDetails” object to hold your data.

Get each of the
form’s data values
and assign them to
your new object’s
attributes.Put (save) your data to the GAE datastore.

Generate a
HTML response
to say “thanks.”

Send your
response to the
waiting web
browser.

There’s nothing to it: create a new object from your data model, get the
data from your HTML form, assign it to the object’s attributes, and then use
the put() method to save your data in the datastore.

you are here 4 381

scaling your webapp

 def post(self):

 html = template.render('templates/header.html',

 {'title': 'Thank you!'})

 html = html + "<p>Thank you for providing your sighting data.</p>"

 html = html + template.render('templates/footer.html',

 {'links': 'Enter another sighting.'})

 self.response.out.write(html)

Based on what you know about how to put your HTML form’s data into the GAE datastore,
create the code for the post() method that your webapp now needs. Some of the code has
been done for you already. You are to provide the rest.

Put your code
here.

382 Chapter 10

post to datastore

Based on what you know about how to put your HTML form’s data into the GAE datastore, you
were to create the code for the post() method that your webapp now needs. Some of the
code has been done for you already. You were to provide the rest.

 def post(self):

 html = template.render('templates/header.html',

 {'title': 'Thank you!'})

 html = html + "<p>Thank you for providing your sighting data.</p>"

 html = html + template.render('templates/footer.html',

 {'links': 'Enter another sighting.'})

 self.response.out.write(html)

 new_sighting = hfwwgDB.Sighting()

 new_sighting.name = self.request.get(‘name’)
 new_sighting.email = self.request.get(‘email’)
 new_sighting.date = self.request.get(‘date’)
 new_sighting.time = self.request.get(‘time’)
 new_sighting.location = self.request.get(‘location’)
 new_sighting.fin_type = self.request.get(‘fin_type’)
 new_sighting.whale_type = self.request.get(‘whale_type’)
 new_sighting.blow_type =self.request.get(‘blow_type’)
 new_sighting.wave_type = self.request.get(‘wave_type’)

 new_sighting.put()

Create a new “Sighting” object.

Store your populated object in the GAE
datastore.

For each of the data values received from the HTML form, assign them to the attributes of the newly created object.

you are here 4 383

scaling your webapp

Test Drive
Add your post() code to your webapp (within the hfwwg.py file) and press the Back button on
your web browser. Click the Submit Sighting button once more and see what happens this time.

Here’s your
form with the
data waiting to
be submitted.

But when you click the button, something bad has happened…your webapp has crashed.

It looks like you might have a problem with the
format of your date property, doesn’t it?

Phooey…that’s disappointing, isn’t it?

At the very least, you were expecting the data from the form to make it into
the datastore…but something has stopped this from happening. What do you
think is the problem?

384 Chapter 10

conservative responses to liberal requests

Don’t break the “robustness principle”
The Robustness Principle states: “Be conservative in what you send; be liberal
in what you accept.” In other words, don’t be too picky when requesting data of
a certain type from your users, but when providing data, give ’em exactly what
they need.

If you make it too hard for your users to enter data into your system, things
will likely things break. For instance, within your model code, consider how
date and time are defined:

...

 date = db.DateProperty()

 time = db.TimeProperty()

...

A date, and NOTHING
but a date will do. You must provide a valid value for time. Anything else is simply UNACCEPTABLE.

The trouble is, when it comes to dates and times, there are lots of ways to
specify values.

I say, old boy, tea is
at noon on the first
of each month.

Oh, la, la.. c’est temps
to toot mon flute! It’s
14:00hr on 24/04/2011.

Get the low-down on
the hoedown: quarter
after six on 6/17/2011.

you are here 4 385

scaling your webapp

Accept almost any date and time
If you are going to insist on asking your users to provide a properly formatted
date and time, you’ll need to do one of two things:

• Specify in detail the format in which you expect the data.

• Convert the entered data into a format with which you can work.

Both appoaches have problems.

For example, if you are too picky in requesting a date in a particular format,
you’ll slow down your user and might end up picking a date format that is
foreign to them, resulting in confusion.

If you try to convert any date or time entered into a common format that
the datastore understands, you’ll be biting off more than you can chew. As
an example of the complexity that can occur, how do you know if your user
entered a date in mm/dd/yyyy or dd/mm/yyyy format? (You don’t.)

There is a third option

If your application doesn’t require exact dates and times, don’t require them of
your user.

With your sightings webapp, the date and time can be free-format fields that
accept any value (in any format). What’s important is the recording of the sighting,
not the exact date/time it occurred.

Use “db.StringProperty()” for dates and times

If you relax the datatype restrictions on the date and time fields, not only
do you make is easier on your user, but you also make it easier on you.

For the sightings webapp, the solution is to change the property type for
date and time within the hfwwgDB.py file from what they currently are
to db.StringProperty().

Let’s see what difference this change makes.

Of course, other webapps might not be as fast and loose with dates and times. When that’s the case, you’ll need to revert one of the options discussed earlier on this page and do the best you can.

...

 date = db.StringProperty()

 time = db.StringProperty()

...

It’s a small change,
but it’ll make all the
difference.

386 Chapter 10

test drive

Test Drive
Change the types of date and time within htwwgDB.py to db.StringProperty(), being
sure to save the file once you’ve made your edit. Click Back in your web brwoser and submit your
sightings data once more.OK, folks…

let’s try
this again.

Let’s enter another
sighting, just to be
sure.

Success! It appears to have worked this time.

By relaxing the restrictions you placed on the types of data
you’ll accept, your webapp now appears to be working fine. Go
ahead and enter a few sightings by clicking on the link on your
thank-you page and entering more data.

you are here 4 387

scaling your webapp

With a few sightings entered, let’s use App Engine’s included developer console to confirm that the
sightings are in the datastore.

To access the console, enter http://localhost:8081/_ah/admin into your web browser’s
location bar and click on the List Entities button to see your data.

In addition to viewing your existing data in the datastore, you can use the console to enter new test data.

There’s all the data your entered, which is in a slightly different order than what you might expect. But it’s all in there. (App Engine stores your properties in alphabetical order, by name.)

App Engine has assigned a “Key” and an “ID” to

each of your entities, which comes in handy
when you need to uniquely identify a sightin

g.

Your GAE webapp is now ready for prime time.

Before you deploy it to Google’s cloud infrastructure, let’s run it by the folk at
HFWWG to see if they are happy for their webapp to “go live.”

388 Chapter 10

restrict to registered users

Man, that’s looking good!
There’s just one thing we forgot
to tell you... we are worried
about spam and need to be sure
only registered users can enter a
sighting. Is that a big change?

It looks like you’re not quite done yet

Is this a big change?

You would imagine that it would be. You’ll have to create an new entity to
hold your registered user login information, and you’ll also need another form
to ask users to provide their registration data (which you’ll need to store in the
datastore). With that in place, you’ll need yet another form to ask your users to log
in, and then you’ll have to come up with a mechanism to restrict only registered
and logged-in users to view your webapp’s pages, assuming you can come up
with something robust that will work…?

Or…as this is GAE, you could just switch on authorization.

you are here 4 389

scaling your webapp

Sometimes, the tiniest change can make
all the difference…
The engineers at Google designed App Engine to deploy on Google’s cloud
infrastructure. As such, they decided to allow webapps running on GAE to
access the Google Accounts system.

By switching on authorization, you can require users of your webapp to
log into their Google account before they see your webapp’s pages. If a user
tries to access your webapp and he isn’t not logged in, GAE redirects to the
Google Accounts login and registration page. Then, after a successful login,
GAE returns the user to your waiting webapp. How cool is that?

To switch on authorization, make one small change to your app.yaml file:

 application: hfwwgapp

 version: 1

 runtime: python

 api_version: 1

 handlers:

 - url: /static

 static_dir: static

 - url: /.*

 script: hfwwg.py

 login: required

That’s all there
is to it.

Now, when you try to access your webapp, you are asked to log in before proceeding.

This is how the login
screen looks within the
GAE test environment
running on your computer.

390 Chapter 10

log login info

Capture your user’s Google ID, too
Now that your webapp requires your users to log in, let’s arrange to capture
the user login information as part of the sighting.

Start by adding the following property to your entity’s list of attributes in your
hfwwgDB.py file. Add it right after the wave_type property.

 which_user = db.UserProperty()

Let’s ensure that Django’s form validation framework excludes this new attribute
when generating your HTML form. Within your hfwwg.py file, change your
SightingForm class to look like this:

 class SightingForm(djangoforms.ModelForm):

 class Meta:

 model = hfwwgDB.Sighting

 exclude = ['which_user']

Staying within your hfwwg.py file, add another import statement near the
top of your program:

 from google.appengine.api import users

In your post() method, right before you put your new sighting to the
datastore, add this line of code:

 new_sighting.which_user = users.get_current_user()

Every time a user adds a sighting to the datastore, GAE ensures that the user’s
Google Account ID is saved, too. This extra identification information allows the
HFWWG to track exactly who reported which sighting, and should (hopefully) cut
down on the amount of spam your webapp might attract.

Create a new
attribute in your
“Sighting” class…

…and set its
property type.

Make sure Django
doesn’t include
the new attribute
in your generated
form.

Import GAE’s
Google Accounts
API.

When you put your
data to the datastore,
this code includes
the Google ID of the
currently logged-in user.

All that’s left to do is to deploy your webapp to Google’s cloud.

you are here 4 391

scaling your webapp

Deploy your webapp to Google’s cloud
With your webapp developed and tested locally, you are now ready to deploy
to the Google cloud. This is a two-step process: register and upload.

To register your webapp on the Google cloud, click the Dashboard button
on the GAE Launcher.

The “Dashboard” button opens your web browser and takes you to the GAE “My Applications” page (after you sign in with your Google ID).

Enter your webapp’s name in the box, then click on the “Check Availability” button.

Don’t use “hfwwgapp” as
that’s already taken. §

Optionally, enter a title for your webapp, and then

click the “Create Application” button.

Assuming all went according to plan and GAE confirmed that your
application has been created, all that’s left to do is to deploy. Return to the
GAE Launcher and click on the Deploy button. The console displays a
bunch of status message while the deployment progresses. If all is well, you’ll
be told that “appcfg.py has finished with exit code 0”.

Your GAE webapp is now ready to run on Google’s cloud.

On Linux, use the
“appcfg.py” script to
deploy.

392 Chapter 10

test drive

Test Drive, on Google
Let’s take your webapp for a spin on Google’s cloud. Open your web browser and surf to a web
address that starts with your webapp’s name and ends in .appspot.com. For the HFWWG webapp, the
web address is http://hfwwgapp.appspot.com. When you first attempt to go to their webapp, App
Engine redirects you to the Google login page.

Provide your Google ID and
password, or sign up for a new
Google account (if you don’t
have one already).

you are here 4 393

scaling your webapp

After a successful login, your sighting form appears. Go ahead and enter some test data:

The sighting form served
from the Google cloud is
EXACTLY the same as the
form served by your test
server. Return to the http://appengine.google.com site to log into the console. The UI is a little different than the test console, but you can use the Datastore Viewer to confirm that your data has been stored correctly.

Click on this link to see your data as stored in the Google cloud.

394 Chapter 10

a winning webapp

Your HFWWG webapp is deployed!

I’m all packed up and
ready for a weekend of
whale watching. I can’t wait
to enter my sightings

data online!

This is waaaay cool. Look
at that fabulous webapp.
This is exactly what we
need. Super work!

Lovely... I finally have
time to relax, now that I
have no more marathon
data-entry sessions.

This is professional work.

You’ve built a great data-entry webapp and deployed it on Google’s cloud. No
matter how busy things get, whether there’s a handful of sightings per day
or tens of thousands, your webapp can handle the load, thanks to Google’s App
Engine. And, best of all, the cash-strapped HFWWG doesn’t pay a penny
until their sightings activity reaches the level of millions of sightings per
month!

Did you even notice that
you wrote all of your
code using Python 2.5?

you are here 4 395

scaling your webapp

Your Python Toolbox

You’ve got Chapter 10 under your
belt and you’ve added more great
Python technology to your ever-
expanding Python toolbox.

CHAPT
ER 10 � Every App Engine webapp must have a

configuration file called app.yaml.

 � Use the GAE Launcher to start, stop,
monitor, test, upload, and deploy your
webapps.

 � App Engine’s templating technology
is based on the one use in the Django
Project.

 � App Engine can also use Django’s Form
Validation Framework.

 � Use the self.response object to
construct a GAE web response.

 � Use the self.request object to
access form data within a GAE webapp.

 � When responding to a GET request,
implement the required functionality in a
get() method.

 � When responding to a POST request,
implement the required functionality in a
post() method.

 � Store data in the App Engine datastore
using the put() method.

App Engine Lingo
• “Datastore” - the data repository used
by Google App Engine to permanently
store your data.

• “Entity” - the name used for a “row of

data”.
• “Property” - the name used for a “data

value”.

this is a new chapter 397

Once I build up a head of
steam, it’s not all that hard
to keep on running, and
running, and running...

dealing with complexity11

Data wrangling

It’s great when you can apply Python to a specific domain area.
Whether it’s web development, database management, or mobile apps, Python helps you

get the job done by not getting in the way of you coding your solution. And then there’s

the other types of problems: the ones you can’t categorize or attach to a domain. Problems

that are in themselves so unique you have to look at them in a different, highly specific way.

Creating bespoke software solutions to these type of problems is an area where Python

excels. In this, your final chapter, you’ll stretch your Python skills to the limit and solve

problems along the way.

398 Chapter 11

pace data

What’s a good time goal for the
next race?
The Head First Marathon Club has spent years collecting and
collating data on their distance runners. Over time, this
data has helped the club produce a large spreadsheet of pace
data that helps their runners predict their performance over
various distances. The spreadsheet is huge and runs to 50
columns of tightly packed data.

Let’s take a look at the club’s data, as well as the way the
runners and their coach use it.

Here’s a portion of the Marathon
Club’s spreadsheet data.

The runner selects a
distance, say 15K, and
we time her over the
length of her run.

The timed
distance is 15km.

The predicted
marathon goal.

you are here 4 399

dealing with complexity

I run the 15K in 45:01. My
coach looks up the closest
match for my time along the
15K row.

This benchmark allows me
to look up or down the column
to select a target time for
any other distance, such as a
marathon, for example.

This spreadsheet is a little intimidating…but don’t worry. You’ll sort it out soon.

Yes, she’s wicked fast!

400 Chapter 11

rain delay

So…what’s the problem?
At the moment, we print our data onto

multiple sheets of paper, which we carry with us.
Most of the time, this works fine. But when it rains
or gets really windy, our pages are either soaked

through or they end up all over the place.

Not to mention: forgetting the sheets, keeping the sheets up to date, and
having to flip back and forth through the sheets looking for a closest match.

Of course, word of your newly acquired Python programming skills is
getting around, especially among the running crowd. Ideally, the Marathon
Club needs an Android app that can be loaded onto a bunch of phones and
carried in each coach’s pocket. The app needs to automate the lookup and
distance predictions.

Are you up to the challenge? Do you think you can help?

All these sheets are a pain…especially in the rain.

you are here 4 401

dealing with complexity

Start with the data
For now, let’s not worry about creating the Android app; you’ll get to that
soon enough. Instead, let’s solve the central data wrangling problem
and then, when you have a working solution, we’ll worry about porting your
solution to Android. We’ll begin by getting the data into a format you can
easily process with Python.

Most spreadsheet programs can export data to the widely used CSV format.
The club has done this for you and created a file called PaceData.csv,
which includes the data for each of the rows from the original the spreadsheet.

Here’s a sample of the raw data from the start of the CSV:

V02,84.8,82.9,81.1,79.3,77.5,75.8,74.2,72.5,70.9,69.4,67.9,66.4,64.9,63.5,62.1,60.7,59.4,58.1,56.8,55.

2mi,8:00,8:10,8:21,8:33,8:44,8:56,9:08,9:20,9:33,9:46,9:59,10:13,10:26,10:41,10:55,11:10,11:25,11:40,1

5k,12:49,13:06,13:24,13:42,14:00,14:19,14:38,14:58,15:18,15:39,16:00,16:22,16:44,17:06,17:30,17:53,18:

The first line of data is the column headings from the spreadsheet. They look

like numbers but are actually headings that represe
nt estimated maximal oxygen

consumption (or VO2 Max, in ml/kg-min) for the race times in each column.

Because the have no affect on the timing data, we’ll just treat them as headings.

The first value on each of the rest of the lines is the timed distance or row label.
The rest of each line is a list of recorded
run times.

You somehow have to model the data from the CSV file in your
Python program. Can you think of a data structure that might
help here? Justify your selection.

Do this!

Grab a copy of
PaceData.csv from this
book’s support website.

402 Chapter 11

multiple associations

You somehow have to model the data from the CSV file in your
Python program. You were to think of a data structure that might
help here? You were also to justify your selection.

The list of headings can be stored in a LIST.
The list of times from each row can also be stored in a LIST, but they
also need to be associated with the headings in the very first row of
data, so maybe a DICTIONARY is what’s needed here?

Maybe it’s some COMBINATION of the two?!?

Ummm…
there’s lots
to think
about here.

Take another look at the data

The first row of data in the CSV file is the column headings, with the
very first value on the line, the V02 string, being redundant (it won’t ever be
used in this version of the app). The rest of the first line’s data are headings
associated with the time values in each of the columns.

Of course, the data in the columns is also associated with each row, which is
identified by a row label in the first column, such as 2mi, 5k, and so on.

Let’s look at the data in the CSV file again, which has been reformatted to
help highlight the associations.

V02, 84.8, 82.9, 81.1, 79.3, 77.5, 75.8, 74.2

2mi, 8:00, 8:10, 8:21, 8:33, 8:44, 8:56, 9:08,

5k, 12:49, 13:06, 13:24, 13:42, 14:00, 14:19, 14:38,

This string is
redundant.

The column headings are
on the first line.

The times on each row are associated with their row label, but ALSO with a column heading.

The row labels are unique to each row of times.

But can we capture all these associations in code?

you are here 4 403

dealing with complexity

Marathon Magnets
Here’s some code that reads the raw data from from the CSV data
file. The column headings from the first line are loaded into a list
called column_headings. The rest of the data (all the rows of
times) are loaded into a dictionary called row_data, with each row
of data keyed with the row label string from the start of each line.
Of course, as luck would have it, someone was cleaning the fridge
door, and they’ve left a bunch of magnets on the floor. See if you
can arrange the magnets into their correct order.

paces.readline().strip().split(',')

column_headings =

row_data = {}

with open('PaceData.csv') as paces:

 for each_line in paces:

num_cols = len(column_headings)

print(num_cols, end=' -> ')

print(column_headings)

num_2mi = len(row_data['2mi'])

print(num_2mi, end=' -> ')

print(row_data['2mi'])

num_Marathon = len(row_data['Marathon'])

print(num_Marathon, end=' -> ')

print(row_data['Marathon'])

column_headings.pop(0)

row_label = row.pop(0)row_data[row_label] = row

row = each_line.strip().split(',')

Process the
“column_headings”
list here.

Process
“row_data”
here.

What needs
to go here?

With the data
loaded, this code lets you check if it’s all OK.

404 Chapter 11

read table data

with open('PaceData.csv') as paces:

 for each_line in paces:

num_cols = len(column_headings)

print(num_cols, end=' -> ')

print(column_headings)

num_2mi = len(row_data['2mi'])

print(num_2mi, end=' -> ')

print(row_data['2mi'])

num_Marathon = len(row_data['Marathon'])

print(num_Marathon, end=' -> ')

print(row_data['Marathon'])

Marathon Magnets Solution
Here’s some code that reads the raw data from from the CSV data
file. The column headings from the first line are loaded into a list
called column_headings. The rest of the data (all the rows of
times) are loaded into a dictionary called row_data, with each row
of data keyed with the row label string from the start of each line.
Of course, as luck would have it, someone was cleaning the fridge
door, and they’ve left a bunch of magnets on the floor. You were to
see if you could arrange the magnets into their correct order.

paces.readline().strip().split(',')column_headings =

row_data = {}

column_headings.pop(0)

row_label = row.pop(0)

row_data[row_label] = row

row = each_line.strip().split(',')

You need to be sure to create an empty dictionary for the row times.

Create the
column headings
from the first
line of data. Read a line from the file, strip it

of unwanted whitespace, and then
split the line on comma.Delete the first heading, the

“V02”string—you don’t need it.

Process the rest of the file.

It’s the same deal here:
take the line, strip it, and
then split on comma.Extract the

row label.
Use the row label together with the rest of the line’s data to update the dictionary.

you are here 4 405

dealing with complexity

Test Drive
Load your code into IDLE and, with the CSV in the same folder as your code, run it to see what you
get on screen.

The output confirms
that each row of
data has 50 data
items.

The column
headings

The
“Marathon”
row of
data

The “2mi”
row of
data

Your code
in IDLE.

That’s a great start: you’ve managed to read the data from the CSV and put
the headings into a list and the data into a dictionary.

What’s next?

406 Chapter 11

link data structures

Did you forget to associate
each time on each row with its
heading? At the moment, the
list and the dictionary are
disconnected...

Yes, the two data structures should be linked.

At the moment, the column_headings list and the row_
data dictionary are not linked in any way, and they need to
be. What we need is some way to connect each of the times in
each row with the heading that tops their column of data.

What options do you have here?

When it comes to linking (or associating) two data items with
each other, the Python dictionary is the data strucutre of
choice, isn’t it?

you are here 4 407

dealing with complexity

Store each time as a dictionary
Rather than simply storing each time in the row_data dictionary as a
number, let’s store the data as as a dictionary, with the key set to the time and
the value set to the column heading. That way, you can quickly and easily
determine for any time which column it is associated with, right?

Here’s a portion of what the data structure looks like in Python’s memory
once this association exists:

row_data['2mi'] {
}

8:00

84.8

8:10

82.9

8:21

81.1

=

The “row_data”
dictionary no longer
contains a list.

Instead of a single time value, each row item is now an inner dictionary that associates the time with its column heading.

All you need to do is work out how to populate the inner dictionary with the
row data and the associated columns headings…and you’ll have all the data
you need.

The trick in creating the data structure is to realize that each row, including
the column headings, are of a fixed size: 50 items. Knowing this, it’s not much
work to create the dictionary you need:

 row_data = {}

 with open('PaceData.csv') as paces:

 column_headings = paces.readline().strip().split(',')

 column_headings.pop(0)

 for each_line in paces:

 row = each_line.strip().split(',')

 row_label = row.pop(0)

 inner_dict = {}

 for i in range(len(column_headings)):

 inner_dict[row[i]] = column_headings[i]

 row_data[row_label] = inner_dict

No changes
are needed
here.

Create another,
empty dictionary.

Let’s not hard-
code 50, calc the value instead. Associate the

column heading
with the time
value from the
row.

With each iteration,
“i” is the current
column number. With the dictionary populated, assign it to its label in “row_data”.

408 Chapter 11

idle session

Go ahead and add the extra dictionary populating code to your program. Let’s remove all of those print()
statements from the end of your program, because you’ll use the IDLE shell to test your code. Run the code by
pressing F5 or by selecting the Run Module option from the Run menu. Use the dir() BIF to confirm that your
program code executed and that a collection of variables have been created in Python’s namespace:

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__', 'column_headings', 'each_line', 'i',
'inner_dict', 'paces', 'row', 'row_data', 'row_label']

All of your code’s variables exist.

Take another look at (part of) the spreadsheet data file above, and let’s try and find the column heading
associated with the 43:24 time on the 15k row. Let’s then use the column heading to find the predicted time for a
20k run:

>>> column_heading = row_data['15k']['43:24']

>>> column_heading

'81.1'

>>> prediction = [k for k in row_data['20k'].keys() if row_data['20k'][k] == column_heading]

>>> prediction

['59:03']

The associated column heading is correctly identified as “81.1”.

A time of “59:03” is correctly predicted, too.

you are here 4 409

dealing with complexity

Dissect the prediction code
Let’s take a moment to review what just happened at the bottom of the IDLE
Session from the last page. This line of code is a double-dictionary lookup on the
dictionary-of-dictionaries stored in row_data:

 column_heading = row_data['15k']['43:24']

This is a dictionary key
within “row_data”.

Look up the ‘15k’ row data, then look up the
value associated with the ‘43:24’ time, which
is then assigned to “column_heading”.

And this is another dictionary key,
which indexes into the dictionary at “row_data[‘15k’]”.

Working out the predicted time in the 20k row of data involves finding the
key in the row’s dictionary whose value is set to the just-discovered value stored
in column_heading.

A conditional list comprehension is put to good use here. Recall that the list
comprehension syntax is a shorthand notation for a for loop. The loop searches
through the data in the list of keys associated with the dictionary stored at
row_data['20k']. If the value associated with the key (in k) is the same
as column_heading, the value of k is added to the comprehensions results,
which are then assigned to a new list call predicton.

There’s really an awful lot going on in that comprehension.

 prediction = [k for k in row_data['20k'].keys() if row_data['20k'][k] == column_heading]

You are interested only in data that satisfies this conditional.

This is the data you’re searching.

410 Chapter 11

list comprehension

Sweet mother of all things
Python! What’s going on
here? I think my brain is
going to explode...

Don’t let the list comprehension put you off.

Recall that you can always rewrite a list comprehension using
an equivalent for loop…

Ummm…now there’s an idea.

you are here 4 411

dealing with complexity

Rewrite each of the list comprehensions on this page to use a for
loop.

times = [t for t in row_data['Marathon'].keys()]

headings = [h for h in sorted(row_data['10mi'].values(), reverse=True)]

time = [t for t in row_data['20k'].keys() if row_data['20k'][t] == '79.3']

412 Chapter 11

for loop

You were to rewrite each of the list comprehensions to use a for
loop.

times = [t for t in row_data['Marathon'].keys()]

headings = [h for h in sorted(row_data['10mi'].values(), reverse=True)]

time = [t for t in row_data['20k'].keys() if row_data['20k'][t] == '79.3']

times = []
for each_t in row_data[‘Marathon’].keys():
 times.append(each_t)

headings = []
for each_h in sorted(row_data[‘10mi’].values(), reverse=True):
 headings.append(each_h)

time = []
for each_t in row_data[‘20k’].keys():
 if row_data[‘20k’][each_t] == ‘79.3’:
 time.append(each_t)

Start with an
empty list.

Turn the
dictionary’s keys into a list.

With each iteration, append the key (which is a time
value) onto the “times” list.

Start with an
empty list.

Turn the dictionary’s values into a list…

…being sure to sort the values in
reverse order (biggest first).

With each iteration, append the value (which is a
column heading) onto the “times” list.

Start with an
empty list.

There’s a
definite pattern emerging here. §

Turn the dictionary’s keys into a list.

With each iteration, check to see if the
column heading (the value part of the
dictionary) equals “79.3” and if it does,
append the time to the list.

you are here 4 413

dealing with complexity

Get input from your user
Now that you have your data within a Python data structure, it’s time to ask
your user what it is they are looking for.

Specifically, you need to know three things: the distance run, the time recorded,
and the distance a prediction is required for.

When you get to move your app onto Android, you can use a nice graphical
dialog to ask your user for input, but for now, let’s quickly create a text-
based user interface, which will allow you to develop and test the rest of the
functionality required from your application. When you’re done, you’ll create
the Android app.

Use input() for input

Python has the input() BIF that can help here, which is used to display
a prompt on screen, and then accept keyboard input, returning what was
entered as a string to your code.

Using the input() BIF is best demonstrated with some examples:

>>> res = input('What is your favorite programming language: ')

What is your favorite programming language: Python

>>> res

'Python'

The input() BIF returns a string, which has been stripped of any trailing newline character, which would
typically be included at the end of any input string. It is important to note that any input is returned as a string,
regardless of what type of data you think you might be entering:

>>> age = input('What is your age: ')

What is your age: 21

>>> age

'21'

>>> int(age)

21

Gimme, gimme,
gimme...input() !!!

>>>

Provide the prompt to display to your user.

The entered data is assigned to “res”
and it’s a STRING.

[Editor’s note: Yeah…
dream on, Paul. §]

The entered data is assigned to “age” and
it’s a string, even though you might want to
treat it like it’s a number.

Convert the input to the type you
need BEFORE using the data.

414 Chapter 11

input error

Getting input raises an issue…
It’s not hard to use input() to get the, um, er…input you need. Here’s your
code from earlier with three calls to input() added to interact with your
user.

When your program runs, your user enters some data, and look what happens:

There’s nothing to this, as
user-interaction with “input()”
doesn’t get much easier than
this..

A “KeyError” exception has
been raised…but why?

you are here 4 415

dealing with complexity

If we have a match, great.
If not, we look for the
closest match and work
from there...

If it’s not in the dictionary, it can’t be found.
The data in the row_data dictionary originally comes from the spreadsheet
and is read into your program from the CSV file.

If the data value entered into the recorded_time variable is in the dictionary,
things are going to be fine, because there’s a match. However, if the data entered
into the recorded_time variable doesn’t match anything in the dictionary,
you’ll get a KeyError.

But how is this “problem” handled during training?

The entered time for a 20k run (59:59) falls between these two values on the pace sheet.

416 Chapter 11

close enough

Search for the closest match
All you need to do is search the row of data for the closest match, right?
And guess what? The Head First Code Review Team think they have some
functions that might help here.

There’s nothing better
than sharing our code
with our fellow Python
programmers. Check out
our “find_it” module.

This code is in a file called
“find_it.py” and you can
download a copy from this
book’s support website.

Here’s an example of a nested function, which is allowed in Python. Given two values, this function returns the difference between them.

The “find_closest”
function does a simple
linear search, returning
the value in “target_data”
that most closely matches
the “look_for” argument.

This may not be the most
efficient search code ever
written, but it works.

you are here 4 417

dealing with complexity

Let’s test the find_it.py module to try and determine if it meets the requirements of your application. Load
the module into IDLE and then press F5 or choose Run Module from the Run menu:

>>> find_closest(3.3, [1.5, 2.5, 4.5, 5.2, 6])

2.5

>>> find_closest(3, [1, 5, 6])

1

>>> find_closest(3, [1, 3, 4, 6])

3

>>> find_closest(3.6, [1.5, 2.5, 4.5, 5.2, 6])

4.5

>>> find_closest(3, [1, 4, 6])

4

>>> find_closest(2.6, [1.5, 2.5, 4.5, 5.2, 6])

2.5

Given a value to look for and some target data, the “find_closest” function seems to be doing the trick.

Let’s try it with some of data that more closely resembles your CSV data:

>>> find_closest('59:59', ['56:29', '57:45', '59:03', '1:00:23', '1:01:45'])

Traceback (most recent call last):

 File "<pyshell#23>", line 1, in <module>

 find_closest('59:59', ['56:29', '57:45', '59:03', '1:00:23', '1:01:45'])

 File "/Users/barryp/HeadFirstPython/chapter11/find_it.py", line 15, in find_closest

 if diff == 0:

 File "/Users/barryp/HeadFirstPython/chapter11/find_it.py", line 11, in whats_the_difference

TypeError: unsupported operand type(s) for -: 'str' and 'str' Yikes! Something’s seriously
broken here.

What do you think has gone wrong here? Why
does the find_closest() function crash when
asked to work with data from your CSV file?

418 Chapter 11

time trials

The trouble is with time
The data in your CSV file is a representation of timing values. Rather than
actual numbers, the values in the CSV are strings. This is great for you,
because you understand what the representation means. Python, on the other
hand, sees the data only as strings.

When you send your data to the find_closest() function, Python
attempts to treat your strings as numbers and chaos ensues. What might work
would be to convert the time-strings into numbers. But how?

When I have to work with
times, I always convert my
time strings to seconds
first...

Yeah, of course!
Didn’t we write the

“tm2secs2tm” module to
handle this sort of thing?

you are here 4 419

dealing with complexity

Here’s the guy’s
“tm2secs2tm.py” module.

Grab a copy of this code from this book’s support website.

Given a “time string”, convert it to a value in seconds.

Convert a value in seconds to a “time string”.

The time-to-seconds-to-time module
The Head First Code Review Team’s generosity knows no bounds. Sure enough, their
rather strangely name tm2secs2tm.py module looks like it might help.

This function ensures that all times are formatted in
“HH:MM:SS” format. This helps keep things simple when doing
conversions to seconds.

Now that you have the tm2secs2tm.py and find_it.py modules, let’s create a function
that uses the facilities provided by these modules to solve your searching problem. Your new
function, called find_nearest_time(), takes two arguments: the time to look for and a
list of times to search. The function returns the closest time found as a string:

from find_it import find_closest

from tm2secs2tm import time2secs, secs2time

def find_nearest_time(look_for, target_data):

The code you
need has been
started for
you.

Unlike in the previous chapter, it is possible to do what you need to do here in only four lines of code.

420 Chapter 11

time to string

Now that you have the tm2secs2tm.py and find_it.py modules, you were to create a
function that uses the facilities provided by these modules to solve your searching problem. Your
new function, called find_nearest_time(), takes two arguments: the time to look for and
a list of times to search. The function returns the closest time found as a string:

from find_it import find_closest

from tm2secs2tm import time2secs, secs2time

def find_nearest_time(look_for, target_data):

what = time2secs(look_for)
where = [time2secs(t) for t in target_data]
res = find_closest(what, where)
return(secs2time(res))

Import the
team’s code. The function takes two arguments, a time string and a list of time strings.

Convert the time string
you are looking for into its equivalent value in seconds. Convert the lines of time

strings into seconds.

Call “find_closest()”,
supplying the converted data. Return the closest match to the calling code, after converting it back to a time string.

Let’s try out your code at the IDLE shell to see if your time “problems” have been resolved:

>>> find_nearest_time('59:59’, ['56:29', '57:45', '59:03', '1:00:23', '1:01:45'])

'01:00:23'

>>> find_nearest_time('1:01:01', ['56:29', '57:45', '59:03', '1:00:23', '1:01:45'])

'01:00:23'

>>> find_nearest_time('1:02:01', ['56:29', '57:45', '59:03', '1:00:23', '1:01:45'])

'01:01:45'

>>> find_nearest_time('57:06', ['56:29’, '57:45', '59:03', '1:00:23', '1:01:45'])

'00:56:29'

Here’s some of your pace data. Let’s work with data from the “20k” row.

Great!
This
appears
to be
working
fine.

you are here 4 421

dealing with complexity

Test Drive
With all this code available to you, it’s an easy exercise to put it all together in your program and
produce a complete solution to the Marathon Club’s prediction problem. Let’s take it for a test run.

This code is used “as is”.

Find the nearest time
within the data.

Extract the
column heading.

Search for
a predicted
time at
the desired
distance and
display it on
screen.

After all that, you’re getting the same error as before. Bummer.

Another “KeyError”…

Try out your program with the same
data input from earlier.

422 Chapter 11

more time trials

The trouble is still with time…
Or, to be more precise, with how the tm2secs2tm.py module formats
time strings. Take another look at the results from the previous IDLE Session.
Do you notice anything strange about the results returned by the call to the
find_nearest_time() function?

>>> find_nearest_time('59:59’, ['56:29', '57:45', '59:03', '1:00:23', '1:01:45'])

'01:00:23'

>>> find_nearest_time('1:01:01', ['56:29', '57:45', '59:03', '1:00:23', '1:01:45'])

'01:00:23'

>>> find_nearest_time('1:02:01', ['56:29', '57:45', '59:03', '1:00:23', '1:01:45'])

'01:01:45'

>>> find_nearest_time('57:06', ['56:29’, '57:45', '59:03', '1:00:23', '1:01:45'])

'00:56:29'

All the
returned
times
use the
“HH:MM:SS”
format.

When your code takes one of these returned values and tries to index into
your dictionary, there’s no match found, because your dictionary’s keys do not
confirm to the HH:MM:SS format. The solution to this problem is to ensure
that every time you use a time-string in your code, make sure it’s in HH:MM:SS
format:

Import the “format_time()”
function from the
“tm2secs2tm.py” module.

Use the function to ensure the times used internally by your code are formatted in “HH:MM:SS” format.

you are here 4 423

dealing with complexity

Test Drive
Let’s try your code one more time. Hopefully, now that all of the time strings within the system
conform to HH:MM:SS format, your code will behave itself.

This is the previous test, which crashed with a “KeyError”.

This time around, your program behaves
itself and works fine.

Another test confirms that things are working well.

And one final test makes sure.

This is working well. You’ve solved your application’s central problem: your
program reads in the spreadsheet data from the CSV file, turns it into a
dictionary of dictionaries, and lets you interact with your user to acquire
the recorded time at a particular distance before predicting a time for
another distance.

Not counting the code provided by the Head First Code Review Team,
you’ve written fewer than 40 lines of code to solve this problem. That’s
quite an achievement. All that’s left to do is to port your program to the club’s
Android’s phones.

And porting to Android won’t take too long, will it?

424 Chapter 11

android interface

Port to Android
Your code is working great. Now it’s time to port your text-based Python
program to Android. Most of your code doesn’t need to change, only the
parts that interact with your user.

Obviously, you’ll want to make things as easy to use as possible for users of
your latest Android app, providing an interface not unlike this one.

1. Start by
picking a distance
run…

2. Enter the
recorded time…

3. Select a
distance to
predict to…

4. After the
lookup, display
the predicted
time.

These are both
“dialogSetSingleChoiceItems” dialog boxes.

This is a
“dialogSetItems”
dialog box.

This is a
“dialogGetInput”
dialog box.

you are here 4 425

dealing with complexity

Your Android app is a bunch of dialogs
Your Android app interacts with your users through a series of dialogs. Other
than the single dialog that requests data from your user, the other three share
certain similarities. You can take advantage of these shared features by
creating a utility function which abstracts the dialog creation details:

 def do_dialog(title, data, func, ok='Select', notok='Quit'):

 app.dialogCreateAlert(title)

 func(data)

 app.dialogSetPositiveButtonText(ok)

 if notok:

 app.dialogSetNegativeButtonText(notok)

 app.dialogShow()

 return(app.dialogGetResponse().result)

The dialog’s
title string.

The dialog
creation
method name. The list of

values to display.

The text for
the buttons,
with defaults.

Display the dialog and then return the selected item.

Assume the existence of a list called distances, which contains
the row distance labels (2mi, 5k, 5mi, and so on). In the space below,
provide the two calls to the do_dialog() function needed to create
the two dialogSetSingleChoiceItems shown on the left of
the previous page.

426 Chapter 11

adding dialog

 import time

 import android

 ...

 distances = ['2mi', '5k', '5mi', '10k', '15k', '10mi', '20k',

 '13.1mi', '25k', '30k', 'Marathon']

 ...

 hello_msg = "Welcome to the Marathon Club's App"

 quit_msg = "Quitting the Marathon Club's App."

 ...

 app = android.Android()

 def status_update(msg, how_long=2):

 app.makeToast(msg)

 time.sleep(how_long)

You were to assume the existence of a list called distances, which
contains the row distance labels. In the space below, you were to
provide the two calls to the do_dialog() function needed to create
the two dialogSetSingleChoiceItems.

do_dialog("Pick a distance", distances,
 app.dialogSetSingleChoiceItems)
do_dialog("Pick a distance to predict", distances,
 app.dialogSetSingleChoiceItems)
do_dialog('The predicited time running ' + predicted_distance +

 ' is: ', prediction, app.dialogSetItems, "OK", None)

Provide the
dialog title.

Provide the list of items to display.

Provide the
type of dialog
to use.

Ditto: do it all
again for the
other dialog.

This last one’s a little trickier, because you have to build up the dialog title from some variables (that you’ll need to have created first).

Use a different dialog
creating method this
time.

Override the
default values for the dialog’s buttons.

Create a list of
row labels.

Define two
friendly messages.

Do your imports.

Create an Android app object.

This function is taken “as-is”
from earlier in this book.

Get your Android app code ready

To use your dialog creating code, import the necessary libraries, define
some constants, create an Android object, and reuse some code from
earlier in this book:

Here’s
another
example.

you are here 4 427

dealing with complexity

Android Pool Puzzle
Your job is to take the code from the pool and place

it into the blank lines in your Android app code.
You can assume that the row_data dictionary
exists and has been populated. The variables

shown at the bottom of the last page have also
been created, and the status_update()
and do_dialog() functions are available

to you. Your goal is to arrange the code so that it
implements the UI interactions you need.

status_update(hello_msg)

resp = do_dialog("Pick a distance", distances,)

 distance_run =

 distance_run = distances[distance_run]

 = app.dialogGetInput("Enter a " + distance_run + " time:",

 "Use HH:MM:SS format:").result

 closest_time = find_nearest_time(format_time(), row_data[distance_run])

 closest_column_heading = row_data[distance_run][closest_time]

 resp = do_dialog("Pick a distance to predict", distances,)

 predicted_distance =

 predicted_distance = distances[predicted_distance]

 prediction = [k for k in row_data[predicted_distance].keys()

 if row_data[predicted_distance][k] == closest_column_heading]

 do_dialog('The predicted time running ' + predicted_distance + ' is: ',

 prediction, app.dialogSetItems, "OK", None)

status_update(quit_msg)

if resp['which'] in ('positive'): if resp['which'] i
n ('positive'):

app.dialogSetSingl
eChoiceItems

app.dialogSetSingl
eChoiceItems

recorded_time

recorded_time

The dialogGetInput() method displays the input dialog box.

app.dialogGetSelectedItems().result[0]

app.dialogGetSelectedItems().result[0]

428 Chapter 11

out of the pool

Android Pool Puzzle Solution
Your job was to take the code from the pool and

place it into the blank lines in your Android app
code.You were to assume that the row_data
dictionary exists and has been populated. The

variables you need also have been created, and
the status_update() and do_dialog()
functions were available to you. Your goal was

to arrange the code so that it implements the UI
interactions you need.

status_update(hello_msg)

resp = do_dialog("Pick a distance", distances, app.dialogSetSingleChoiceItems)

if resp['which'] in ('positive'):

 distance_run = app.dialogGetSelectedItems().result[0]

 distance_run = distances[distance_run]

 recorded_time = app.dialogGetInput("Enter a " + distance_run + " time:",

 "Use HH:MM:SS format:").result

 closest_time = find_nearest_time(format_time(recorded_time), row_data[distance_run])

 closest_column_heading = row_data[distance_run][closest_time]

 resp = do_dialog("Pick a distance to predict", distances, app.dialogSetSingleChoiceItems)

 if resp['which'] in ('positive'):

 predicted_distance = app.dialogGetSelectedItems().result[0]

 predicted_distance = distances[predicted_distance]

 prediction = [k for k in row_data[predicted_distance].keys()

 if row_data[predicted_distance][k] == closest_column_heading]

 do_dialog('The predicted time running ' + predicted_distance + ' is: ',

 prediction, app.dialogSetItems, "OK", None)

status_update(quit_msg)

Ask your user to pick a distance from the list of labels.

Assign the selected distance label
to “distance_run”.

Ask your user enter the recorded time.

Work out
what column
heading to
use.

Ask your user to pick a distance from the list of labels to predict to.Look up the
prediction.

Display the predicted time at the
selected distance to your user.

you are here 4 429

dealing with complexity

Put your app together…
You now have all the code you need to create your app:

Do your imports.

Include your “find_nearest()”
function.

Declare your constants.

Grab and preprocess your
CSV data.

NOTE: the location of the data file on the SDCARD is specific to Android.

Create your Android app object and include your helper functions.

Display your UI to your user and process
the resulting interaction.

430 Chapter 11

test drive

Test Drive
It’s time to test your Android app on the Android Emulator before loading a working application
onto a “real” phone. Start your Android emulator and begin by transferring your code and the
files it needs onto the emulator’s SDCARD. Use the adb command in the tools folder to copy
marathonapp.py, find_it.py, tm2sec2tm.py and PaceData.csv to the emulator, and
then take your app for a spin.

And there it is…
waiting for you
to test it.

Go on. You know you want to: tap that app!

Copy your code
and its support
files to the
emulator with
these commands.

$ tools/adb push marathonapp.py /mnt/sdcard/sl4a/scripts
43 KB/s (2525 bytes in 0.056s)
$ tools/adb push find_it.py /mnt/sdcard/sl4a/scripts
7 KB/s (555 bytes in 0.069s)
$ tools/adb push tm2secs2tm.py /mnt/sdcard/sl4a/scripts
12 KB/s (628 bytes in 0.050s)
$ tools/adb push PaceData.csv /mnt/sdcard/sl4a/scripts
59 KB/s (4250 bytes in 0.069s)

File Edit Window Help CopyToEmulator

you are here 4 431

dealing with complexity

Your app’s a wrap!
All that’s left to do is transfer your working Android app to the Marathon
Club’s phones…and that’s easy when you use AndFTP. When you show off
your latest work, the club’s members can’t believe their eyes.

This is fantastic! Now I can work with
my coach and the other club members
to hit my target times at my chosen
distances. There’s no stopping me now...

And there’s no stopping you!

You’ve put your Python skills and techniques to great use here.

Whether you’re building an app for the smallest handheld device or the
biggest web server, your Python skills help you get the job done.

Congratulations!

432 Chapter 11

python toolbox

Your Python Toolbox

You’ve got Chapter 11 under your
belt and you’ve demonstrated a
mastery of your Python toolbox.
Congratulations and well done!

 � The input() BIF lets you prompt and
receive input from your users.

 � If you find yourself using Python 2 and in
need of the input()function, use the
raw_input() function instead.

 � Build complex data structures by
combining Python’s built-in lists, sets,
and dictionaries.

 � The time module, which is part of
the standard library, has a number of
functions that make converting between
time formats possible.

Python Lingo
• A “conditional” list comprehension
is one that includes a trailing “if”
statement, allowing you to control which
items are added to the new list as the
comprehension runs.

• List comprehensions can be rewritten
as an equivalent “for” loop.

CH
AP

T
ER

 11

you are here 4 433

dealing with complexity

It’s been a blast having
you with us here on Lake
Python. Come back soon
and often. We love it
when you drop by.

This is just the beginning

We’re sad to see you leave, but there’s nothing like taking what you’ve learned and putting it to use. You’re
just beginning your Python journey and you’re in the driver’s seat. We’re dying to hear how things go, so drop us a
line at the Head First Labs website, www.�headfirstlabs.�com, and let us know how Python is paying off for YOU!

It’s time to go…

this is an appendix 435

The Top Ten Things
(we didn’t cover)

appendix: leftovers

I don’t know about you, but
I think it could do with
more spam...

You’ve come a long way.

But learning about Python is an activity that never stops. The more Python you code,

the more you’ll need to learn new ways to do certain things. You’ll need to master new

tools and new techniques, too. There’s just not enough room in this book to show you

everything you might possibly need to know about Python. So, here’s our list of the top ten

things we didn’t cover that you might want to learn more about next.

436 appendix

pro tools

#1: Using a “professional” IDE
Throughout this book, you’ve used Python’s IDLE, which is great to use
when first learning about Python and, although it’s a little quirky, can handle
most programming tasks. It even comes with a built-in debugger (check
out the Debug menu), which is surprisingly well equipped. Chances are,
however, sooner or later, you’ll probably need a more full-featured integrated
development environment.

One such tool worth looking into is the WingWare Python IDE. This
professional-level development tool is specifically geared toward the Python
programmer, is written by and maintained by Python programmers, and is
itself written in Python. WingWare Python IDE comes in various licencing
flavor: it’s free if you’re a student or working on an open source project, but
you’ll need to pay for it if you are working within a for-profit development
environment.

More general tools also exist. If you are running Linux, the KDevelop IDE
integrates well with Python.

And, of course,there are all those programmer editors which are often all
you’ll ever need. Many Mac OS X programmers swear by the TextMate
programmer’s editor. There’s more than a few Python programmers using
emacs and vi (or its more common variant, vim). Your author is a huge fan
of vim, but also spends large portions of his day using IDLE and the Python
shell.

Written in Python by Python
programmers for other
Python programmers...what
else could you ask for?

The WingWare
Python IDE

you are here 4 437

leftovers

#2: Coping with scoping
Consider the following short program:

A global variable called “name”.

Call the function.

A function which attempts to read from and write to the global variable called “name”.

See what “name” is set to after the function runs.

If you try to run this program, Python complains with this error message:
UnboundLocalError: local variable ‘name’ referenced before assignment…whatever that
means!

When it comes to scope, Python is quite happy to let you access and read
the value of a global variable within a function, but you cannot change
it. When Python sees the assignment, it looks for a local variable called
name, doesn’t find it, and throws a hissy fit and an UnboundLocalError
exception. To access and change a global variable, you must explicitly declare
that’s your intention, as follows:

Some programmers find this quite ugly. Others think it’s what comes to pass when you watch Monty Python reruns while designing your programming language. No matter what everyone thinks: this is what we’re stuck with! §

438 appendix

testing, testing

#3: Testing
Writing code is one thing, but testing it is quite another. The combination of
the Python shell and IDLE is great for testing and experimenting with small
snippets of code, but for anything substantial, a testing framework is a must.

Python comes with two testing frameworks out of the box.

The first is familiar to programmers coming from another modern language,
because it’s based on the popular xUnit testing framework. Python’s
unittest module (which is part of the standard library) lets you create test
code, test data, and a test suite for your modules. These exist in separate files
from you code and allow you to exercise your code in various ways. If you
already use a similar framework with your current language, rest assured that
Python’s implementation is essentially the same.

The other testing framework, called doctest, is also part of the standard
library. This framework allows you to take the output from a Python shell or
IDLE session and use it as a test. All you need to do is copy the content from
the shell and add it to your modules documentation strings. If you add code like
this to the end of your modules, they’ll be ready for “doctesting”:

If you then run your module at your operating systems comand line, your
tests run. If all you want to do is import your module’s code and not run your
tests, the previous if statement supports doing just that.

For more on unittest and doctest, search the online Python
documentation on the Web or via IDLE’s Help menu.

 if __name__ == "__main__":

 import doctest

 doctest.testmod()

If your code is imported as a module, this code does NOT run. If you run your module from the command line, your tests run.

What do you mean:
you can’t hear me...I
guess I should’ve
tested this first, eh?

you are here 4 439

leftovers

#4: Advanced language features
With a book like this, we knew we’d never get to cover the entire Python
language unless we tripled the page count.

And let’s face it, no one would thank us for that!

There’s a lot more to Python, and as your confidence grows, you can take the
time to check out these advanced language features:

Anonymous functions: the lambda expression lets you create small, one-
line, non-named functions that can be incredibly useful once you understand
what’s going on.

Generators: like iterators, generators let you process sequences of data.
Unlike iterators, generators, through the use of the yield expression, let
you minimize the amount of RAM your program consumes while providing
iterator-like functionality on large datasets.

Custom exceptions: create your own exception object based on those
provided as standard by Python.

Function decorators: adjust the behavior of a preexisting function by
hooking into its start-up and teardown mechanisms.

Metaclasses: custom classes that themselves can create custom classes.
These are really only for the truely brave, although you did use a metaclass
when you created your Sightings form using the Django form validation
framework in Chapter 10.

Most (but not all) of these language features are primarily of interest to the
Python programmer building tools or language extensions for use by other
Python programmers.

You might never need to use some of these language features in your code,
but they are all worth knowing about. Take the time to understand when and
where to use them.

See #10 of this appendix for a list of my favorite Python books (other than
this one), which are all great starting points for learning more about these
language features.

I know I look
complex, but I really
am quite useful.

440 appendix

regexes

#5: Regular expressions
When it comes to working with textual data, Python is a bit of a natural.
The built-in string type comes with so many methods that most of the
standard string operations such as finding and splitting are covered. However,
what if you need to extract a specific part of a string or what if you need
to search and replace within a string based on a specific specification? It is
possible to use the built-in string methods to implement solutions to these
types of problems, but—more times than most people would probably like to
admit to—using a regular expression works better.

Consider this example, which requires you to extract the area code from the
phone_number string and which uses the built-in string methods:

Jeff Friedl’s regular
expression “bible”,
which is well worth a
look if you want to
learn more. Look up
the “re” module in
Python’s docs, too.

Find the opening “(“.

Calculate where the area code is in the string.
Extract the area code.

This code works fine, but it breaks when presented with the following value for
phone_number:

 phone_number = "Cell (mobile): (555)-918-8271"
Why does this phone number cause the program to fail? Try it and see what happens…

When you use a regular expression, you can specify exactly what it is you
are looking for and improve the robustness of your code:

This looks a little strange, but this regular expression is looking for an opening “(“ followed by three digits and then a closing “)”. This specification is much more likely to find the area code and won’t break as quickly as the other version of this program.

you are here 4 441

leftovers

#6: More on web frameworks
When it comes to building web applications, CGI works, but it’s a little
old-fashioned. As you saw in Chapter 10, Google’s App Engine technology
supports CGI, but also WSGI and a number of web framework technologies.
If you aren’t deploying to the cloud and prefer to roll your own, you have
plenty of choices. What follows is a representative sample. My advice: try a
few on for size and see which one works best for you.

Search for the following terms in your favorite search engine: Django, Zope,
TurboGears, Web2py, and Pylons.

The “old timers”…but don’t let maturity fool you: these are cracking web frameworks.

The “new kids on the
block”: leaner, meaner
and stuffed full of
features.

442 appendix

data mappers and nosql

#7: Object relational mappers and NoSQL
Working with SQL-based databases in Python is well supported, with the
inclusion of SQLite in the standard library a huge boon. Of course, the
assumption is you are familiar with SQL and happy to use SQL to work with
your data.

But what if you aren’t? What if you detest SQL?

An object relational mapper (ORM) is a software technology that lets
you use an underlying SQL-based database without having to know anything
about SQL. Rather than the procedural interface based on the Python
database API, ORMs provide an object-oriented interface to your data,
exposing it via method calls and attribute lookups as opposed to columns and
rows.

Many programmers find ORMs a much more natural mechanism for
working with stored datasets and the Python community creates and supports
a number of them.

One of the most interesting is SQL Alchemy, which is popular and included
in a number of the web framework technologies discussed in #6. Despite
being hugely popular anyway, SQL Alchemy is also interesting because it
supports both Python 2 and Python 3, which makes it a standout technology
(for now).

If you find yourself becoming increasingly frustrated by SQL, check out an
ORM. Of course, you have already experienced a similar technology: Google
App Engine’s datastore API is very similar in style to those APIs provided by
the major Python ORMs.

There’s NoSQL, too.

In addition to database technologies that let you avoid working with the
underlying SQL-based database, a new breed of technologies have emerged
that let you drop your SQL database in its entirety. Known collectively as
NoSQL, these data tools provide an alternative non-SQL API to your
data and do not use an SQL-based database management system at all. As
these technologies are relatively new, there’s been more activity around
Python 2 than Python 3, but they are still worth checking out. CouchDB
and MongoDB are the two most closely associated with robust Python
implementations. If you like working with your data in a Python dictionary
and wished your database technology let you store your data in much the
same way, then you need to take a look at NoSQL: it’s a perfect fit.

you are here 4 443

leftovers

#8: Programming GUIs
In this book, you’ve created text-based interfaces, web-based interfaces and
interfaces that ran on Android devices. But what if you want to create a
desktop application that runs on your or your user’s desktop computer? Are
you out of luck, or can Python help here, too?

Well…as luck would have it, Python comes preinstalled with a GUI-building
toolkit called tkinter (shorthand for Tk Interface). It’s possible to create a usable
and useful graphical user interface (GUI) with tkinter and deploy it on Mac
OS X, Windows, and Linux. With the latest version of Tk, your developed app
takes on the characteristics of the underlying operating system, so when you
run on Windows, your app looks like a Windows desktop app, when it run on
Linux, it looks like a Linux desktop app, and so on.

You write your Python and tkinter code once, then run it anywhere and it just
works. There are lots of great resources for learning to program with tkinter,
with one of the best being the last few chapters of Head First Programming, but
since plugging that book would be totally shameless, I won’t mention it again.

Other GUI-building technologies do exist, with the PyGTK, PyKDE,
wxPython, and PyQT toolkits coming up in conversation more than most. Be
warned, however, that most of these toolkits target Python 2, although support
for Python 3 is on its way. Search the Web for any of the project names to learn
more.

Oh, look: it’s one of the
GUIs created in “Head First
Programming”…and yes, I said
I wouldn’t mention THAT
book again, but isn’t this GUI
beautiful? §

444 appendix

your bugs, my bugs, and threads

#9: Stuff to avoid
When it comes to stuff to avoid when using Python, there’s a very short list. A
recent tweet on Twitter went something like this:

Don’t you like my
threads...?

“There are three types of
bugs: your bugs, my bugs...
and threads.”

Threads do indeed exist in Python but should be avoided where possible.

This has nothing to do with the quality of Python’s threading library and
everything to do with Python’s implementation, especially the implementation
known as CPython (which is more than likely the one you’re running
now). Python is implemented using a technology known as the Global
Interpreter Lock (GIL), which enforces a restriction that Python can only
ever run on a single interpreter process, even in the presence of multiple
processors.

What all this means to you is that your beautifully designed and implemented
program that uses threads will never run faster on multiple processors even
if they exist, because it can’t use them. Your threaded application will run
serially and, in many cases, run considerably slower than if you had developed
the same functionality without resorting to threads.

Main message: don’t use threads with Python until the GIL restriction is
removed…if it ever is.

you are here 4 445

leftovers

#10: Other books
There are lots of great books that cover Python in general, as well as
specifically within a particular problem domain. Here is a collection of my
favorite Python books, which we have no hestitation in recommending to you.

Includes a great case study involving the porting of a complex Python 2 module to Python 3.

If you are a
sysadmin, then
this is the Python book for you.

At 1,200 pages, this is the

definitive language re
ference for

Python: it’s got everyt
hing in it!

The best desktop reference on the market

Includes some big examples with

big technology: XML, parsing

and advanced language
 features.

this is the index 447

Index

Symbols and Numbers
404 Error, from web server 242

405 Error, from web server 378

>>> (chevron, triple) IDLE prompt 4

: (colon)
in for loop 16
in function definition 29
in if statement 20

, (comma) separating list items 7

{} (curly braces)
creating dictionaries 180
creating sets 166

= (equal sign)
assignment operator 7
in function argument definition 63

(...) (parentheses)
enclosing function arguments 29
enclosing immutable sets 91

+ (plus sign) addition or concatenation operator 138

(pound sign) preceding one-line comments 38

@property decorator 250, 253, 285

? (question mark) parameter placeholder 321, 350

“...” or ‘...’ (quotes) enclosing each list item 7

“””...””” or ‘’’...’’’ (quotes, triple) enclosing comments 37

; (semicolon) separating statements on one line 38

[...] (square brackets)
accessing dictionary items 180, 212
accessing specific list items 9, 18
enclosing all list items 7, 18

A
“a” access mode 110

access modes for files 110, 133

addition operator (+) 138

Alt-N keystroke, IDLE 5

Alt-P keystroke, IDLE 5

AndFTP app 288–289

Android apps
accepting input from 278–282, 295, 304–307
converting from Python code 424–430
creating 274–277, 281–282
data for. See JSON data interchange format
integrating with SQLite 342–348
running on phone 288–289
scripting layer for. See SL4A
troubleshooting 277

Android emulator
installing and configuring 260–262
running scripts on 264–265, 272–273, 283

Android Market 288

Android Virtual Device. See AVD

anonymous functions 439

append() method, lists 10, 14

apps. See Android apps; webapps

app.yaml file 356, 395

arguments for functions
adding 52, 66–68
optional 63–64, 134

arrays
associative. See dictionaries
similarity to lists 9–10, 17

as keyword 119, 138

assignment operator (=) 7

associative arrays. See dictionaries

attributes, class 190, 194, 212

authorization, user 389–393

AVD (Android Virtual Device) 261, 291

448 Index

the index

B
“batteries included” 32

BIFs. See built-in functions

BigTable technology 354, 359

blue text in IDLE 4

books
Dive Into Python 3 (CreateSpace) 445
Head First HTML with CSS & XHTML (O’Reilly)

374
Head First Programming (O’Reilly) 443
Head First SQL (O’Reilly) 313
Learning Python (O’Reilly) 445
Mastering Regular Expressions (O’Reilly) 440
Programming in Python 3 (Addison-Wesley Profes-

sional) 445
Python Essential Reference (Addison-Wesley Profes-

sional) 445
Python for Unix and Linux System Administration

(O’Reilly) 445
braces. See curly braces

brackets, regular. See parentheses

brackets, square. See square brackets

BSD, running CGI scripts on 239

build folder 42

built-in functions (BIFs). See also specific functions
displayed as purple text in IDLE 4
help on 21
importing of, not needed 55
namespace for 55
number of, in Python 21

__builtins__ namespace 55, 71

C
cascading style sheet (CSS) 374–375

case sensitivity of identifiers 17

cgi-bin folder 234, 235

CGI (Common Gateway Interface) scripts 217, 235, 243,
253. See also WSGI

location of 234, 235
running 239
running from Android 264–265, 272–273, 283

sending data to 300–303
tracking module for 248–249
troubleshooting 242, 247–250
writing 236–238, 244–246
writing for Android. See SL4A

cgi library 300

cgitb module 248–249, 253

chaining
functions 146, 172
methods 142, 172

chevron, triple (>>>) IDLE prompt 4

chmod command 239, 253

classes 189–191
attributes of 190, 194, 212
benefits of 189
converting data to dictionary 285–286
defining 190–193, 194, 195–196
inherited 204–209, 212
instances of 190, 191, 194, 195–196
metaclasses 439
methods of 190, 195–196, 198–200
in modules 209, 212

class keyword 191, 212

close() method, database connection 315, 350

close() method, files 75, 103

code editors 35, 436. See also IDLE

colon (:)
in for loop 16
in function definition 29
in if statement 20

comma (,) separating list items 7

comments 37–38

commit() method, database connection 315, 350

Common Gateway Interface scripts. See CGI scripts

comprehension, list 154–159, 172, 409–411, 432

concatenation operator (+) 138

conditional list comprehension 409–411, 432

conditions. See if/else statement

connection, database
closing 314, 315
creating 314, 315

you are here 4 449

the index

connect() method, sqlite3 315, 350

context management protocol 120

Controller, in MVC pattern 221
for GAE webapps 359, 370–373
for webapps 234–238, 244–246

“copied” sorting 144, 145–146, 172

CREATE TABLE statement, SQL 317, 319–320

CSS (cascading style sheet) 374–375

CSV format, converting to Python data types 401–405

curly braces ({})
creating dictionaries 180
creating sets 166

cursor() method, database connection 315, 350

custom code 131

custom exceptions 439

D
data

for Android apps. See JSON data interchange format
bundling with code. See classes
duplicates in, removing 161–163, 166–167
external. See database management system; files
for GAE webapps. See datastore, for GAE
nonuniform, cleaning 148–153
race conditions with 309–310
Robustness Principle for 384–387
searching for closest match 416–417
sending to web server 275, 291
sorting 144–147, 172
storing. See persistence
transforming, list comprehensions for 154–159

database API 314–315, 350

database management system 312
closing connection to 314, 315
commit changes to data 314, 315, 350
connecting to 314, 315
cursor for, manipulating data with 314, 315
designing 316–318
inserting data into 321, 324, 348
integrating with Android apps 342–348
integrating with webapps 327–341
managing and viewing data in 326
process for interacting with 314–315
querying 322, 332–333

rollback changes to data 314, 315, 350
schema for 317
SQLite for. See SQLite
tables in 317, 319–320, 350

data folder 234

data interchange format. See JSON data interchange
format

data objects. See also specific data objects
getting next item from 54
ID for 54
length of, determining 32
names of. See identifiers

datastore, for GAE 359–360, 380–383, 384–387, 395

data types
converting CSV data into 401–405
converting strings to integers 54
in datastore 360
immutable 91, 103, 116, 138
for JSON 285
for list items 8, 12

date and time data
format compatibility issues 418–423
property type for 362, 384–385

db.Blob() type 360

db.DateProperty() type 360

db.IntegerProperty() type 360

db.StringProperty() type 360, 385

db.TimeProperty() type 360

db.UserProperty() type 360, 390

decision statement. See if/else statement

decorators, function 439

def keyword 29, 191, 212

dialogCreateAlert() method, Android API 274, 276, 280

dialogGetInput() method, Android API 295, 304–306

dialogGetResponse() method, Android API 274, 276,
278, 280

dialogGetSelectedItems() method, Android API 278, 280

dialogSetItems() method, Android API 279, 280

dialogSetNegativeButtonText() method, Android API
274, 276

dialogSetPositiveButtonText() method, Android API 274,
276, 280

450 Index

the index

dialogSetSingleChoiceItems() method, Android API 274,
276

dialogShow() method, Android API 276, 280

dict() factory function 180, 212

dictionaries 178–182, 212
accessing items in 180, 212
compared to lists 179
converting class data to 285–286
creating 180, 182, 186
dictionaries within 407–409
keys for 178, 180, 212
populating 180, 212
reading CSV data into 403–404
values of 178, 180, 212

dir() command 225

directory structure. See folder structure

dist folder 42

distribution
creating 40–42
updating 60–61, 65
uploading to PyPI 48

Dive Into Python 3 (CreateSpace) 445

djangoforms.ModelForm class 368

Django Project
Form Validation Framework 368–369, 395
templates 363–366, 395

doctest framework 438

documentation for Python 3 3, 80, 103

dot notation 10, 194, 196

double quotes. See quotes

dump() function, pickle 133–134, 138

dumps() function, json 269, 272, 281, 291

dynamic content 216, 217

E
Eclipse editor 35

editors 35, 436. See also IDLE

elif keyword 108. See also if/else statement

else keyword. See if/else statement

emacs editor 35, 436

enable() function, cgitb 248, 253

end_form() function, yate 231, 233

entities, in datastore 360, 395

enumerate() built-in function 54

environ dictionary 300, 350

equal sign (=)
assignment operator 7
in function argument definition 63

errors. See exception handling; troubleshooting

exception handling 88–95, 103. See also troubleshooting
benefits of 95, 100
closing files after 114–115, 120–123
custom exceptions 439
defining with try/except statement 89, 91–94
ignoring found errors 93–94
IndexError exception 17
IOError exception 103, 112–114, 117–119
for missing files 96–98
NameError exception 44, 118
PickleError exception 133–134
specific errors, checking for 101–102
specific errors, details about 117–119
TypeError exception 56–57, 116, 247–249, 283–285
ValueError exception 78–79, 81–82, 103

exception objects 119, 138

except keyword. See try/except statement

execute() method, cursor 315, 322, 324, 350

extend() method, lists 10

F
F5 key, IDLE 39, 44, 49, 71

factory functions 166

favicon.ico file, for webapp 234

fetchall() method, cursor 322

fetchmany() method, cursor 322

fetchone() method, cursor 322

FieldStorage() method, cgi 244, 253, 296, 300, 350

files. See also persistence
access modes for 110, 133
appending data to 110
checking for existence of 118

you are here 4 451

the index

closing 75, 110
closing after exception 114–115, 120–123
CSV format, converting to Python data types 401–

405
exceptions involving, determining type of 117–119
flushing 110
missing, exception handling for 96–98
opening 75, 109–110
opening in binary access mode 133
reading data from 75–78, 142–143
rewinding 76
splitting lines in 77–78
writing 110–113
writing, custom formats for 126–130
writing, default format for 124–125
writing, pickle library for. See pickle library

finally keyword 115, 138

find() method, strings 84–86, 103

Firefox, SQLite Manager for 326

folder structure
for distribution 42
for GAE 356, 370
for webapps 234

for loop 15–17, 32
compared to list comprehension 432
nesting 19–22

forms, HTML 295
creating from template 296–299
Form Validation Framework for 368–369
input restrictions for 376–377, 384–387
sending data to CGI scripts 300–303
stylesheets for 374–375

Form Validation Framework 368–369, 395

405 Error, from web server 378

404 Error, from web server 242

Friedl, Jeff (author, Mastering Regular Expressions) 440

from statement 46, 49

functional programming concepts 157

function decorators 439

functions
adding arguments to 52, 66–68
anonymous 439
built-in. See built-in functions (BIFs)

chaining 146, 172
creating 28–30, 170–171
optional arguments for 63–64, 134
recursive 31
sharing. See modules

G
GAE (Google App Engine) 354

configuration and setup for 356–357
controller code for 370–373
data modeling with 360–362
datastore for 359, 380–383, 384–387, 395
deploying webapps to Google cloud 391
folder structure for 356, 370
form generation for 368–369
form input restrictions for 376–377, 384–387
form stylesheets for 374–375
MVC pattern used by 359
SDK for, downloading 355
troubleshooting 378
user authorization for 389–393
view for, desigining 363–369

GAE Launcher 357, 391, 395

garbage collection 116

generators 439

get() method, GAE 370, 379, 395

GET web request 370

GIL (Global Interpreter Lock) 444

glob module 237, 253

Google App Engine. See GAE

Google BigTable technology 354, 359

GQL (Google Query Language) API 359

green text in IDLE 4

GUI (graphical user interface), building 443

H
hashes. See dictionaries

header() function, yate 231, 233

Head First HTML with CSS & XHTML (O’Reilly) 374

Head First Programming (O’Reilly) 443

452 Index

the index

Head First SQL (O’Reilly) 313

help() built-in function 80, 103

HTML
generating for webapp interface 230–231
learning 226
templates for, with Django 363–366

HTML forms. See forms, HTML

HTTP server 235

http.server module 235, 253

I
id() built-in function 54

IDE 436. See also IDLE

identifiers 7, 17, 32

IDLE 3–5, 32
colored syntax used in 4
indenting enforced in 4
preferences, setting 5
prompt in (>>>) 4
recalling and editing code statements 5
running or loading code in 39, 44, 49, 71
TAB completion 5

if/else statement 20, 32
elif keyword 108
in list comprehension 432
negating conditions in 86, 103

images folder 234

immutable data types 138
lists 91, 103, 116
numbers 116
strings 116

import statement 43, 46, 49, 71

include_footer() function, yate 230, 232, 233

include_header() function, yate 230, 232

indentation rules
enforced in IDLE 4
for for loops 16
for function definitions 29
for if statement 20

IndexError exception 17

index.html file, for webapp 234

inherited classes 204–209, 212

__init__() method 191, 212

in operator 16, 118, 138

“in-place” sorting 144, 145, 172

input
from Android apps 278–282, 295, 304–307
HTML forms for. See forms, HTML
from keyboard after screen prompt 413–414, 432

input() built-in function 413–414, 432

insert() method, lists 10, 14

INSERT statement, SQL 321, 324, 348

instances of classes 190, 191, 194, 195–196

int() built-in function 54

integers, converting strings to 54

interface. See View, in MVC pattern

IOError exception 103, 112–114, 117–119

I/O (input/output), handling. See files

isinstance() built-in function 20–22, 32

iterations
for loop 15–17, 19–22, 32
generating with range() function 54–56
while loop 16–17

J
JSON data interchange format 266–267, 291

API for, using 269–272
browser differences with 272
data types supported by 285
incompatibility with pickle data objects 284–285

K
KDevelop IDE 436

keys, in dictionary 178, 180, 212

keywords, displayed as orange text in IDLE 4

you are here 4 453

the index

L
lambda expression 439

Learning Python (O’Reilly) 445

len() built-in function 10, 32

lib folder 42

Linux
code editors for 35
GAE log messages on 378
IDEs for 436
installing Python 3 on 3
running CGI scripts on 239, 272
running GAE Launcher on 357
transferring files to Android device 288

list() built-in function 54

list comprehension 154–159, 172, 409–411, 432

lists 32. See also data objects
adding items to 10–14
bounds checking for 17
classes inherited from 204–208
compared to dictionaries 179
compared to sets 167
creating 6–7, 54
data types in 8, 12
duplicates in, removing 161–163
extracting specific item from 175–176
getting next item from 54
identifiers for 7
immutable 91, 103, 116
iterating 15–17, 157
length of, determining 10, 32
methods for 10
nested, checking for 20–22
nested, creating 18–19
nested, handling 23–25, 28–31
numbered, creating 54
reading CSV data into 403–404
removing items from 10
similarity to arrays 9–10, 17
slice of 160, 172

load() function, pickle 133, 138

loads() function, json 269, 276, 280, 291

locals() built-in function 118, 138

loops. See iterations

M
Mac OS X

code editors for 35
GAE log messages on 378
IDEs for 436
installing Python 3 on 3
running CGI scripts on 239, 272
running GAE Launcher on 357
transferring files to Android device 288

__main__ namespace 45

MANIFEST file 42

mappings. See dictionaries

Mastering Regular Expressions (O’Reilly) 440

metaclasses 439

methods 190. See also specific methods
chaining 142, 172
for classes 195–196, 198–200
creating 212
results of, as attributes 250, 253
self argument of 212

ModelForm class, djangoforms 368

Model, in MVC pattern 221
for GAE webapps 359, 360–362
for webapps 222–225

Model-View-Controller pattern. See MVC pattern

modules 34–36, 71
adding functionality to 50–52
classes in 209, 212
creating 35
distribution for, creating 40–42
distribution for, updating 60–61, 65
distribution for, uploading to PyPI 48
importing 43–44, 46
loading in IDLE 39, 49, 71
locations for 38, 49
namespaces for 45–46, 71
in Python Standard Library 36
third-party 36

454 Index

the index

Monty Python 17

multiple inheritance 209

MVC (Model-View-Controller) pattern 221, 232, 253,
359

Controller 234–238, 244–246, 370–373
Model 222–225, 360–362
View 226–233, 363–369

N
NameError exception 44, 118

names. See identifiers

namespaces 45–46, 71

next() built-in function 54

NoSQL 359, 442

NotePad editor 35

not in operator 161–162

not keyword 86, 103

numbered lists 54

O
object relational mapper. See ORM (object relational

mapper)

objects. See data objects

open() built-in function 75, 103, 109–110

orange text in IDLE 4

ORM (object relational mapper) 442

os module 76, 300, 350

P
para() function, yate 231, 233

parentheses ((...))
enclosing function arguments 29
enclosing immutable lists 91

pass statement 93, 103

persistence 105
pickle library for 132–137
reading data from files 222–224
writing data to files 110–113, 222–224

PickleError exception 133–134

pickle library 132–137, 138
data modeling using 222–224
incompatibility with JSON data types 284–285
transferring data to a database 321–325

plus sign (+) addition or concatenation operator 138

pop() method, lists 10, 175–176

post() method, GAE 379–383, 395

POST web request 379

pound sign (#) preceding one-line comments 38

print() built-in function 10, 32, 124–125
disabling automatic new-line for 56, 71
displaying TAB character with 56
writing to a file 110, 128, 138

Programming in Python 3 (Addison-Wesley Professional)
445

properties, in datastore 360, 395

@property decorator 250, 253, 285

purple text in IDLE 4

put() method, GAE 395

.pyc file extension 42, 49

.py file extension 35

PyPI (Python Package Index) 36
registering on website 47
uploading distributions to 48
uploading modules to 209

Python 2
compared to Python 3 17
raw_input() built-in function 432
running on Android smartphones 258–259, 291
using with Google App Engine 355

Python 3
compared to Python 2 17
documentation for 3, 80, 103
editors for 35, 436
installing 3
interpreter for. See IDLE
learning 445

python3 command
building a distribution 41
checking for Python version 3
installing a distribution 41
uploading a new distribution 68

you are here 4 455

the index

Python Essential Reference (Addison-Wesley Professional)
445

Python for Unix and Linux System Administration
(O’Reilly) 445

Python, Monty 17

Python Package Index. See PyPI

Python Standard Library 36

Q
querying a database 322, 332–333

question mark (?) parameter placeholder 321, 350

quotes (“...” or ‘...’) enclosing each list item 7

quotes, triple (“””...””” or ‘’’...’’’) enclosing comments 37

R
“r” access mode 110

race conditions 309–310

radio_button() function, yate 231, 233

range() built-in function 54–56, 71

raw_input() built-in function 432

readline() method, files 76, 103, 142

recursion 31

regular brackets. See parentheses

regular expressions 440

re module 440

remove() method, lists 10

render() function, template 364, 366

Robustness Principle 384–387

rollback() method, database connection 315, 350

runtime errors 88. See also exception handling; trouble-
shooting

S
schema, database 317

scoping of variables 437

Scripting Layer for Android. See SL4A

scripts. See CGI scripts; SL4A

sdist command 41

seek() method, files 76, 103

SELECT/OPTION, HTML tag 376

SELECT statement, SQL 322, 332–333

self argument 192–193, 212

self.request object 379, 395

self.response object 372, 379, 395

semicolon (;) separating statements on one line 38

set() built-in function 166, 172

sets 166, 167, 172

setup() built-in function 40

setup.py file 40, 71

single quotes. See quotes

SL4A (Scripting Layer for Android) 258, 291
adding Python to 263
Android apps, creating 274–277
automatic rotation mode, setting 264
documentation for 274
installing 262
Python versions supported 258–259

slice of a list 160, 172

smartphones, apps on. See Android apps

sorted() built-in function 144–147, 153, 158, 172

sort() method, lists 144–145, 153, 172

split() method, strings 77–78, 80–81, 103, 142

SQL Alchemy 442

SQLite 313, 350
closing connection to 314, 315
committing data to 314, 315
connecting to 314, 315
cursor for, manipulating data with 314, 315
designing database 316–318
inserting data into 321, 324, 348
integrating with Android apps 342–348
integrating with webapps 327–341
managing data in 326
process for interacting with 314–315
querying 322, 332–333
rollback changes to data 314
schema for database 317
tables in, creating 319–320

456 Index

the index

sqlite3 command 326

sqlite3 library 313, 315, 350

SQLite Manager, for Firefox 326

SQL (Structured Query Language) 313, 350. See
also NoSQL; SQLite; ORM

square brackets ([...])
accessing dictionary items 180, 212
accessing specific list items 9, 18
enclosing all list items 7, 18

standard error (sys.stderr) 248, 291

standard input (sys.stdin) 291

Standard Library, Python 36

standard output (sys.stdout) 126–128, 291

start_form() function, yate 231, 233

start_response() function, yate 230, 232

static content 216, 217

static folder 370

str() built-in function 119, 138

strings
concatenating 138
converting other objects to 119
converting to integers 54
displayed as green text in IDLE 4
finding substrings in 84–86
immutable 116
sorting 148
splitting 77–78, 80–81
substitution templates for 230, 253

strip() method, strings 108, 138, 142

Structured Query Language. See SQL

stylesheets for HTML forms 374–375

suite 16, 29, 32

sys module 291

sys.stdout file 126–128, 138

T
TAB character, printing 56

TAB completion, IDLE 5

tables, database 317, 319–320, 350

target identifiers, from split() method 77, 91

.tar.gz file extension 42

Template class 230, 253

template module 364

templates folder 234, 370

templates for GAE 363–366, 395

testing code 438

TextMate editor 35, 436

third-party modules 36

threads 444

time data
format compatibility issues 418–423
property type for 362, 384–385

time module 419, 432

Tk Interface (tkinter) 443

traceback 88, 103. See also exception handling; trouble-
shooting

tracing code 58–59

triple chevron (>>>) IDLE prompt 4

triple quotes (“””...””” or ‘’’...’’’) enclosing comments 37

troubleshooting. See also exception handling
404 Error, from web server 242
405 Error, from web server 378
Android apps 277
GAE webapps 378
testing code 438
tracing code 58–59

try/except statement 89, 93–94, 101–102, 103
finally keyword for 115, 138
with statement and 120–123

tuples 91, 103, 116

TypeError exception 56–57, 116, 247–249, 283–285

you are here 4 457

the index

U
u_list() function, yate 231, 233

unittest module 438

urlencode() function, urllib 291

urllib2 module 291

urllib module 291

urlopen() function, urllib2 291

user authorization 389–393

user input. See forms, HTML; input

UserProperty() type, db 390

V
ValueError exception 78–79, 81–82, 103

values, part of dictionary 178, 180, 212

variables, scope of 437

vi editor 35, 436

View, in MVC pattern 221
for GAE webapps 359, 363–369
for webapps 226–233

vim editor 436

W
“w” access mode 110

“w+” access mode 110

“wb” access mode 133

webapps 215–217, 253
controlling code for 221, 234–238, 244–246
data modeling for 221, 222–225
designing with MVC 221
design requirements for 218–220
directory structure for 234
Google App Engine for. See GAE
input data, sending to CGI scripts 300–303
input forms for. See forms, HTML
SQLite used with 327–341
view for 221, 226–233

Web-based applications. See webapps

web frameworks 441. See also CGI; WSGI

web request 216, 253, 395

web response 216–217, 253, 395

web server 216–217, 235

Web Server Gateway Interface (WSGI) 356, 370. See
also CGI scripts

while loop 16–17, 55

WingIDE editor 35

WingWare Python IDE 436

with statement 120–123, 138

WSGI (Web Server Gateway Interface) 356, 370. See
also CGI scripts

Y
yate (Yet Another Template Engine) library 226–233

yield expression 439

	Table of Contents
	How to use this book: Intro
	Who is this book for?
	We know what you’re thinking
	We know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission
	Read Me
	The technical review team
	Acknowledgments
	Safari® Books Online

	1. Meet Python: Everyone Loves Lists
	What’s to like about Python?
	Install Python 3
	Use IDLE to help learn Python
	Work effectively with IDLE
	Deal with complex data
	Create simple Python lists
	Lists are like arrays
	Add more data to your list
	Work with your list data
	For loops work with lists of any size
	Store lists within lists
	Check a list for a list
	Complex data is hard to process
	Handle many levels of nested lists
	Don’t repeat code; create a function
	Create a function in Python
	Recursion to the rescue!
	Your Python Toolbox

	2. Sharing Your Code: Modules of Functions
	It’s too good not to share
	Turn your function into a module
	Modules are everywhere
	Comment your code
	Prepare your distribution
	Build your distribution
	A quick review of your distribution
	Import a module to use it
	Python’s modules implement namespaces
	Register with the PyPI website
	Upload your code to PyPI
	Welcome to the PyPI community
	With success comes responsibility
	Life’s full of choices
	Control behavior with an extra argument
	Before your write new code, think BIF
	Python tries its best to run your code
	Trace your code
	Work out what’s wrong
	Update PyPI with your new code
	You’ve changed your API
	Use optional arguments
	Your module supports both APIs
	Your API is still not right
	Your module’s reputation is restored
	Your Python Toolbox

	3. Files and Exceptions: Dealing with Errors
	Data is external to your program
	It’s all lines of text
	Take a closer look at the data
	Know your data
	Know your methods and ask for help
	Know your data (better)
	Two very different approaches
	Add extra logic
	Handle exceptions
	Try first, then recover
	Identify the code to protect
	Take a pass on the error
	What about other errors?
	Add more error-checking code…
	…Or add another level of exception handling
	So, which approach is best?
	You’re done…except for one small thing
	Be specific with your exceptions
	Your Python Toolbox

	4. Persistence: Saving Data to Files
	Programs produce data
	Open your file in write mode
	Files are left open after an exception!
	Extend try with finally
	Knowing the type of error is not enough
	Use with to work with files
	Default formats are unsuitable for files
	Why not modify print lol()?
	Pickle your data
	Save with dump and restore with load
	Generic file I/O with pickle is the way to go!
	Your Python Toolbox

	5. Comprehending Data: Work that Data!
	Coach Kelly needs your help
	Sort in one of two ways
	The trouble with time
	Comprehending lists
	Iterate to remove duplicates
	Remove duplicates with sets
	Your Python Toolbox

	6. Custom Data Objects: Bundling code with Data
	Coach Kelly is back (with a new file format)
	Use a dictionary to associate data
	Bundle your code and its data in a class
	Define a class
	Use class to define classes
	The importance of self
	Every method’s first argument is self
	Inherit from Python’s built-in list
	Coach Kelly is impressed
	Your Python Toolbox

	7. Web Development: Putting It All Together
	It’s good to share
	You can put your program on the Web
	What does your webapp need to do?
	Design your webapp with MVC
	Model your data
	View your interface
	Control your code
	CGI lets your web server run programs
	Display the list of athletes
	The dreaded 404 error!
	Create another CGI script
	Enable CGI tracking to help with errors
	A small change can make all the difference
	Your webapp’s a hit!
	Your Python Toolbox

	8. Mobile App Development. Small Devices
	The world is getting smaller
	Coach Kelly is on Android
	Don’t worry about Python 2
	Set up your development environment
	Configure the SDK and emulator
	Install and configure Android Scripting
	Add Python to your SL4A installation
	Test Python on Android
	Define your app’s requirements
	The SL4A Android API
	Select from a list on Android
	The athlete’s data CGI script
	The data appears to have changed type
	JSON can’t handle your custom datatypes
	Run your app on a real phone
	Configure AndFTP
	The coach is thrilled with his app
	Your Python Toolbox

	9. Manage Your Data: Handling Input
	Your athlete times app has gone national
	Use a form or dialog to accept input
	Create an HTML form template
	The data is delivered to your CGI script
	Ask for input on your Android phone
	It’s time to update your server data
	Avoid race conditions
	You need a better data storage mechanism
	Use a database management system
	Python includes SQLite
	Exploit Python’s database API
	The database API as Python code
	A little database design goes a long way
	Define your database schema
	What does the data look like?
	Transfer the data from your pickle to SQLite
	What ID is assigned to which athlete?
	Insert your timing data
	SQLite data management tools
	Integrate SQLite with your existing webapp
	You still need the list of names
	Get an athlete’s details based on ID
	You need to amend your Android app, too
	Update your SQLite-based athlete data
	The NUAC is over the moon!
	Your Python Toolbox

	10. Scaling Your Webapp: Getting Real
	There are whale sightings everywhere
	The HFWWG needs to automate
	Build your webapp with Google App Engine
	Download and install App Engine
	Make sure App Engine is working
	App Engine uses the MVC pattern
	Model your data with App Engine
	What good is a model without a view?
	Use templates in App Engine
	Django’s form validation framework
	Check your form
	Controlling your App Engine webapp
	Restrict input by providing options
	Meet the “blank screen of death”
	Process the POST within your webapp
	Put your data in the datastore
	Don’t break the “robustness principle”
	Accept almost any date and time
	It looks like you’re not quite done yet
	Sometimes, the tiniest change can make all the difference…
	Capture your user’s Google ID, too
	Deploy your webapp to Google’s cloud
	Your HFWWG webapp is deployed!
	Your Python Toolbox

	11. Dealing with Complexity: Data Wrangling
	What’s a good time goal for the next race?
	So…what’s the problem?
	Start with the data
	Store each time as a dictionary
	Dissect the prediction code
	Get input from your user
	Getting input raises an issue…
	If it’s not in the dictionary, it can’t be found.
	Search for the closest match
	The trouble is with time
	The time-to-seconds-to-time module
	The trouble is still with time…
	Port to Android
	Your Android app is a bunch of dialogs
	Put your app together…
	Your app’s a wrap!
	Your Python Toolbox
	It’s time to go…

	Appendix: Leftovers: The Top Ten Things (we didn't cover)
	#1: Using a “professional” IDE
	#2: Coping with scoping
	#3: Testing
	#4: Advanced language features
	#5: Regular expressions
	#6: More on web frameworks
	#7: Object relational mappers and NoSQL
	#8: Programming GUIs
	#9: Stuff to avoid
	#10: Other books

	Index

