

Making Use of Python

Wiley Publishing, Inc.

Rashi Gupta

Making Use of Python

Publisher: Robert Ipsen
Editor: Ben Ryan
Managing Editor: Angela Smith
New Media Editor: Brian Snapp
Text Design & Composition: John Wiley Composition Services

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names
appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appro-
priate companies for more complete information regarding trademarks and registration.

This book is printed on acid-free paper. ∞

Copyright © 2002 by Rashi Gupta. All rights reserved.

Published by Wiley Publishing, Inc., New York.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008,
E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is required,
the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0471-21975-4

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Introduction xi

Scenario xxiii

Chapter 1 An Introduction to Python 1
Getting Started 1
Understanding Requirements 2

Determine Requirements of the University 2
Obtain Python and Its Documentation 3
Determine the System Requirements 4
Install Python 5
Start Python in Different Execution Modes 7

Summary 12

Chapter 2 Getting Started with Python 13
Getting Started 14
Writing Your First Python Program 14

Comments 15
Python as a Calculator 16

Using Variables in Python 16
Variables 17
Assigning Values to Variables 18
Standard Types 19
Identifiers and Keywords 39
Memory Management 40
Create a Sequence to Store All the Names of the Students 42
Write the Code to Display the Names of the Students 42

Contents

v

Declare a Dictionary of Student Purchases with the
Names of the Students as the Key 43

Write the Code to Display the Student Purchases 43
Save and Execute the Code 43
Verify the Details 44

Summary 44

Chapter 3 Intrinsic Operations and Input/Output 47
Getting Started 48
Using Input/Output Features and Intrinsic Operations

for Data Types in Python 48
Identify the Variables to Be Used 49
Accepting User Input 49
Formatting the Output 50

Introduction to Intrinsic Operations 55
Intrinsic Operations for Numeric Data Types 57
Intrinsic Operations for Strings 60
Intrinsic Operations for Lists and Tuples 66
Write the Code 71
Execute the Code 71

Summary 73

Chapter 4 Programming Basics 75
Getting Started 76

Conditional Operators 76
Order of Precedence of Operators 82

Using Programming Constructs 83
Identify the Control and Loop Statements to Be Used 84
Write the Code 94
Execute the Code 95

Summary 97

Chapter 5 Functions 99
Getting Started 100
Using Functions 100

Functions 101
Scope of Variables 118
Identify the Functions to Be Used 119
Write the Code 119
Execute the Code 121

Summary 122

Chapter 6 Modules 123
Getting Started 124
Using Modules 124

Modules 124
Packages 135
Identify the Modules to Be Used 136

vi Contents

Write the Code 137
Execute the Code 139

Summary 140

Chapter 7 Files 141
Getting Started 141
Using File Objects 142

Identify the Functions and Methods to Be Used 142
Write the Code to Store Course Details to the File 154
Execute the Code 155
Verify the Solution 155

Summary 156

Chapter 8 Object-Oriented Programming 157
Getting Started 158

Introducing OOP 158
Components of OOP 159
Benefits of OOP 160

Using Classes 161
Identify the Classes to Be Defined 162
Identifying the Class Objects 163
Identifying the Classes to Be Inherited and Their Objects 170
Identify the Methods to Be Overridden 173
Write the Code 182
Execute the Code 189

Summary 190

Chapter 9 Exception Handling 193
Getting Started 193
Handling Exceptions 194

Identify the Type of Error and Where the Error Occurs 196
Identify the Mechanism of Trapping the Exception 200
Identify the Location for the Code for Handling

the Exception to Be Written 209
Write the Code for Handling the Exception 209
Save and Execute the Code 210

Summary 210

Chapter 10 CGI Programming 213
Getting Started 213

Internet Basics 214
World Wide Web 217
Web Browsers 217
Hypertext Transfer Protocol (HTTP) 220
Revising HTML 221
Client-Side versus Server-Side Scripting 227
An Introduction to CGI 229

Contents vii

Writing CGI Applications 231
Write the Code for the HTML Form to Accept Data

from the User 231
Write the CGI Program in Python to Generate the

Results Page 232
Write the CGI Program to Generate Both the Form and

Results Pages 236
Execute the Code 237

Summary 239

Chapter 11 Database Programming 241
Getting Started 241

Database Management 242
Introduction to MySQL 243
Working with MySQL 246

Accessing a Database from a Python Script 254
Identify the Elements of the Table That Stores

Registration Details 256
Identify the Steps for Connecting to the Database 256
Write the Code to Create a Table in the Database 259
Write the Code to Insert the Registration Details

into the Table Created 260
Execute the Code to Create the Table in the Database 261
Execute the Code to Insert Data into the Table 261
Verify the Data in the Database 263

Summary 264

Chapter 12 Network Programming 267
Getting Started 267

Client/Server Architecture 268
Network Programming 269

Using Sockets 272
Identify the Sockets to Be Used 272
Write the Code to Run on the IT Department Computer 287
Write the Code to Run on the Admission Office Computer 288
Execute the Code Created for the IT Department Computer 289
Execute the Code Created for the Admission

Office Computer 290
Verify that Data Has Been Saved to a File in the

IT Department Computer 292
Summary 292

Chapter 13 Multithreaded Programming 297
Getting Started 297

Single-Threaded Applications 298
Threading in Python 299

viii Contents

Creating Multithreaded Applications 300
Identify the Class and the Methods to Create

a Multithreaded Application 300
Write Code for the Server 308
Write the Code for the Client 309
Execute the Code Created for the Server 310
Execute the Code Created for the Client 311

Summary 313

Chapter 14 Advanced Web Programming 315
Getting Started 316

Creating Web Servers 316
Accessing URLs 323

Creating Advanced CGI Applications 328
Identify the Elements of the Web Page for Entering

Assignment Details and Uploading the File 328
Identify the Methodology for Uploading the File 329
Identify the Methodology for Storing User Information 330
Write the Code for the CGI Script 335
Execute the CGI Script 339

Summary 340

Chapter 15 GUI Programming with Tkinter 343
Getting Started 343

Introduction to Tkinter 344
Creating a GUI Application 347

Identify the Components of the User Interface 348
Identify the Tkinter Widgets to Design the User Interface 348
Write the Code for the User Interface 360
Execute the Code 362

Summary 364

Appendix A Distributing COM Objects 365
Basics of COM 365

The Binary Standard 367
COM Interfaces 369
Binding 370

Python and COM 371
Creating COM Clients 371
Creating COM Servers 373

Index 377

Contents ix

In this competitive age, high productivity, tight deadlines, and short development
cycles are the buzzwords in the application development world. These are the reasons
why software developers prefer rapid application development (RAD) tools like
Python.

Python is a portable, interpreted, object-oriented programming language. It com-
bines remarkable power with very clear syntax. Moreover, its high-level built-in data
structures, combined with dynamic typing and dynamic binding, make it very attrac-
tive for rapid application development.

Python is being used successfully to glue together large software components. It
spans multiple platforms, middleware products, and application domains. Python has
been around since 1991, and it has a very active user community.

Python can fulfill an important integration role in the design of large applications with a
long life expectancy. It allows a fast response to changes in user requirements that require
adapting the higher-level application logic without changing the fundamental underlying
components. It also allows quick adaptation of the application to changes in the under-
lying components.

Guido van Rossum, CNRI

Python is an easy to learn, powerful programming language. It has efficient high-level
data structures and a simple but effective approach to object-oriented programming.
Python’s elegant syntax and dynamic typing, together with its interpreted nature, make
it an ideal language for scripting and rapid application development in many areas on
most platforms.

www.python.org

This book is an attempt to bridge the ever-increasing gap between the market
demand and the availability of Python expertise. The first step to becoming an expert
is acquiring an in-depth knowledge of Python, and that is exactly what this book has
to offer. It begins with the basics of scripting and seamlessly moves to programming
intricacies.

Introduction

xi

Along with conceptual information this book will also provide extensive practical
exercises for the reader to gain valuable, real-life exposure to creating different types of
applications.

Overview of Python

Python is a free, open-source, general-purpose, interpreted, and powerful scripting
language for Web applications. It is an easy yet powerful programming language that
provides structure and support for large applications as well as the power and com-
plexity of traditional high-level languages. Python is the ideal choice if you require a
single language with the features of both an interpreted and a scripting language.

History of Python
Python is directly derived from the scripting language ABC, which was mainly used
for teaching purposes in the 1980s by a small number of people. Python’s development
was triggered by the need to develop tools to automate monotonous and time-
consuming tasks.

Guido van Rossum is the creator of Python. He started work on Python in late 1989
at CWI in Amsterdam. When Guido started work on Python, he was a researcher at
CWI. Initially, Python was designed to perform general administration tasks. Later, it
became a part of the Amoeba project at CWI and was first released for public use in
February 1991. A large part of Python development occurred at CNRI in Reston, Vir-
ginia, in the United States. In June 2000, the Python development team moved to
Pythonlabs, a member organization of the BeOpen network. The lead developers of
Python, including Guido van Rossum, maintained Pythonlabs. In October 2000, the
lead developers left BeOpen.com and joined Digital Creations. Since then the team has
been involved in Python development. Any intellectual property that is added to
Python is taken care by a nonprofit organization called Python Software Foundation.

Features of Python
Python can act as a connecting language that links many separate software compo-
nents in a simple and flexible manner. It can also act as a guiding language in which
high-level Python modules control low-level operations implemented by libraries in
other languages. Due to its ease of learning and strength to develop large applications,
it can serve both as a learner’s first programming language and as an interface for
users who want to become experts in advanced application development. Let’s discuss
some of the salient features of Python.

Easy

Python has an easy syntax, clean and simple semantics, and relatively few keywords,
which allow a new developer to learn Python very quickly and easily. It will require a
lesser effort for people who have some programming knowledge. Python has a syntax

xii Introduction

that is similar to that of Algol, C, and Pascal. In fact, it is a simplification of these lan-
guages and does not require any extra effort to learn an unfamiliar concept, syntax, or
keywords. Python is an object-oriented programming (OOP) language, but unlike
C++, OOP is not a mandatory concept for Python. You can start learning Python and
learn about OOP at a convenient point.

Moreover, Python does not have extra symbols for starting and ending code blocks,
defining an end to a statement, and pattern matching. Symbols such as curly braces
({}), dollar signs ($), semicolons (;), tildes (~), and at symbols (@), which are part and
parcel of many programming languages, do not constrain code written in Python.
Indentation is used to group statements to form code blocks. Therefore, you are less
likely to have bugs in your code due to incorrect indentations. Python is so simple to
understand that a reader who has never seen a single line of code can understand a
basic code written in Python.

Scalable

Unix shell scripting languages are fairly easy and can handle simple tasks very easily
and efficiently. When you add more features to a script, however, the script becomes
very large, complicated, and slow. You are unable to reuse your code, and even small
projects require huge scripts. Python provides a better structure and support for large
programs than shell scripting. You can build on your code from one project to another
or plug or create new components by reusing the existing code. The term “scalability”
in relation to Python refers to Python’s capability to provide ingredients to build an
application and to provide pluggable and modular architecture for the applications
that need to incorporate more functionality.

Python allows you to split your script into modules and reuse these modules in
other Python programs. Many standard modules, which can be used based on the
requirements of the program, are also built into Python. Many built-in modules aid
you in input/output, system calls, socket programming, and GUI programming, such
as Tkinter.

High Level

Consider that you have a shell script and you want to add a feature to it. It is possible
that the feature involves a system call, variable-length strings, or other data types that
are easy to implement in shell but will involve long code passages in C. Perhaps you
are not adequately familiar with C to write complex code. Python takes care of all these
issues. Python has built-in modules that help you make system calls. Useful, high-level
data types, such as lists (resizable arrays) and dictionaries (hash tables) are built into
Python, allowing you to express complicated expressions in a single statement. No
variable or argument declaration is necessary. After a value is assigned to a name, Python
instantly assumes the required type. All this minimizes the time and effort required to
implement a particular functionality in a program. The data types also reduce the code
size, resulting in a more comprehensible code. On the other hand, these data types
would be difficult to implement in C due to the required use of data structures and
pointers and the repetitive code needed to implement every large application.

Introduction xiii

Object Oriented

As stated earlier, OOP is a concept that is not imposed in Python right from the begin-
ning. Nonetheless, Python is a truly object-oriented language and provides features of
other structured and procedural languages. All components in Python are objects.
Python allows object orientation with multiple inheritance and late binding. You can
create object-oriented class hierarchies, and every attribute is referred to in name.
attribute notation. In this notation, an attribute is determined dynamically at run time.
Python also supports polymorphism—that is, Python callable objects can accept
optional arguments, keyword arguments, or an unlimited number of arguments. The
same operator can have different meanings according to the elements being refer-
enced. These features allow complex operations to be implemented in small Python
declarations. The source code of Python is also object oriented.

Interpreted

Python is an interpreted language that supports byte compilation. Python programs
can be run, debugged, and tested interactively by the Python interpreter, which runs in
interactive mode. In traditional interpreted languages, execution does not take place in
the native binary language of a system. Therefore, execution in traditional interpreted
languages is slower compared to that of compiled languages. Python’s source code is
byte-compiled directly when it is loaded on the interpreter, or it can be explicitly byte-
compiled. In addition, byte code of Python is machine independent and can be exe-
cuted on different hardware and software platforms without compiling it again.
Therefore, Python is an intermediate form providing features of both compiled and
interpreted languages.

Let’s discuss in detail why Python is considered an interpreted language. Python
programs can be executed at the interpreter in command-line mode and script mode. In
command-line mode, you type Python statements, and the interpreter prints the result.

$ python

Python 2.2a4 (#2, Nov 2 2001, 11:00:25)

GCC 2.96 20000731 (Red Hat Linux 7.1 2.96-81)] on Linux2

Type “help”,”copyright”, “credits” or “license” for more information.

>>> print 1 + 1

2

The first line of this example is the command that starts the Python interpreter. The
next two lines are messages that are displayed by the interpreter. The third line begins
with three greater-than signs (“>>>”), which is the prompt used by the interpreter to
indicate that it is ready. This is also the interpreter’s primary prompt. Typing 1 + 1 at
the interpreter returns 2 as the result in the next line.

If your code has a multiline construct, the interpreter prompts with a secondary
prompt, which is three dots (“...”) by default. Consider the following example:

>>> i=1

>>> if i is 1:

xiv Introduction

... print 1+1

2

Alternatively, you can write a program in a file and use the interpreter to execute the
contents of the file. Such a file written in Python is called a script. For example, a text
editor can be used to write a file, calculate.py, with the following contents:

print 1 + 1

By convention, files that contain Python programs have names with the .py extension.
To execute the program, you need to specify the name of the script at the interpreter.

$ python calculate.py

2

Extensible and Flexible

An application that contains a large amount of code can be effectively organized into
smaller modules due to Python’s dual structured and object-oriented programming
environments. These modules can still interact with each other or with other built-in
modules. Python’s syntax is the same for accessing both the user-defined and the built-
in standard modules. Python is also extremely flexible in the treatment of language
components. For example, a Python module that is meant to interact with the external
environment can be tested using an imitation of the external environment written in
Python.

Rich Core Library

Many development modules are built into Python and are part of the Python Standard
Library. A programmer can make use of these tools in the Python Standard Library,
depending on the application for which the tools are required. Besides modules that
work on all platforms, the library has modules that are specific to a particular platform
or environment. Python standard modules perform all types of usual tasks, such as
HTTP, FTP, POP, SMTP, and many other services. Using the rich core library, you can
write applications for downloading a Web page, parsing HTML files, developing a
graphic user interface (GUI), and so on.

Memory Management

C and C++ programmers always need to write code for handling memory manage-
ment and memory modification even if the program has very little to do with memory
access. This always results in an extra burden on the programmer. One clear example
is the need for tracking each object and deleting the reserved memory once the object
ends its life. This is the responsibility of the developer, and any failure can lead to

Introduction xv

memory leaks and other negative consequences. In Python, the interpreter manages
memory, thus removing the extra burden on the programmer. This results in fewer
errors and a more efficient application involving less development time.

Web Scripting Support and Data Handling

Python is popularly used for developing Internet and intranet applications. Python is
well suited for Internet and intranet applications because these applications are highly
dynamic and complex, and at times, they need to interact with several environments.
Python’s dynamism, the ease with which you can write complex applications, and its
advanced features, such as HTML, XML, and SGML parsing, allow you to write CGI
scripts for several environments.

Object Distribution

You can use Python to implement routines that can communicate with objects in other
languages. For example, Python can be used to pass data to COM components. In
addition, Common Object Request Broker Architecture (CORBA) can be implemented
in Python as well, which enables you to use cross-platform distributed objects.

Databases

Python provides interfaces to all major commercial databases. Besides that, it has built-
in modules that enable you to handle flat file databases. It also has object persistence
systems that can write entire objects to files. Python’s most important database-
programming feature, though, is Python API. This API includes functions that make it
easy to write applications that communicate with different databases.

GUI Programming

Python supports GUI applications that can be created and ported to many system calls,
libraries, and windows systems, such as Windows MFC, Macintosh, and the X Window
system of Unix. This is possible using Python’s default graphic user interface library,
Tkinter. Tkinter is the standard object-oriented interface of the TK GUI API, which is
the official GUI development platform of Python.

Extendable and Embeddable

You can add low-level modules to the Python interpreter. These modules enable pro-
grammers to add to or customize their tools to be more efficient. Compiled extension
modules can be created in Python to connect Python modules with external program-
ming libraries or new data types. Extension modules are easily created and maintained
using Python. Most platforms support the loading of new compiled components into
the interpreter dynamically. Python extension modules can be written in C and C++ for
CPython and in Java for JPython.

xvi Introduction

The Python interpreter can be embedded into another programming or scripting
application. Any other program can use the Python interpreter as a simple application
program interface (API). Therefore, the Python interpreter can act as a scripting tool
that glues everything.

Exception Handling

When running a program, if Python exits due to an error, it generates a complete stack
trace of errors. This stack trace indicates the name and type of the error that occurred.
The exception handling in Python allows you to detect errors at run time without adding
error-checking statements to your code. Exception handlers can be written in Python to
defuse a problem, perform a clean-up or maintenance action, or redirect the program
flow. This allows a programmer to put in considerably less effort to debug an error.

Portable

Python can run on a wide variety of hardware platforms and has the same interface on
all platforms. Its design is not linked to a particular operating system because it is writ-
ten in portable ANSI C. This means that you can write, test, and upload a program
written in Python on Windows, Linux, and Macintosh environments. This depends on
whether the application is developed to implement specific commands of an operating
system or if the application uses modules that do not work on all platforms. In these
situations, the application cannot run on all hardware platforms; however, this affects
only a few modules. Usually, the applications that you create run on all the platforms
without changing any code.

Freeware

Python is freeware and can be redistributed freely in the source form. The copyright of
Python does not allow authors to place it at risk legally and does prevent users from
hijacking its copyright. Programmers and users are allowed to use Python’s source in
any desired way. Programmers can create applications and release them in the binary-
only form, which has modules in only the byte-compiled form. The result of the prod-
uct can, however, be sold or distributed in any manner.

Users and Application Areas of Python
Python is an advanced scripting language that is being used in various areas. Some of
the areas where Python is being used are the following:

■■ Gluing together large software components. These large software components
can be written in C, C++, or Java.

■■ Creating prototypes of an application. The prototype can be written in Python
without writing any C, C++, or Java code. Often, the prototype is sufficiently
functional and performs well enough to be delivered as the final product, sav-
ing considerable development time.

Introduction xvii

■■ Writing CGI scripts on all platforms (Unix, Windows, and Mac). Because of this
ability Python has a strong presence on the Web.

Besides these, Python is also well represented in the distributed systems world. It is
one of the main languages supported by Xerox PARC’s ILU. It has also been used to
implement the Web browser Grail.

A list of Python users worldwide include the following:

■■ NASA

■■ Infoseek

■■ Digital Creations

■■ Grail

■■ Xerox

■■ Hewlett-Packard

■■ CMU

■■ Digital Media Inc.

■■ University of Queensland, Australia

■■ Space Telescope Science Institute

■■ Mind Spring

■■ Mitretek Systems

Python versus Other Languages
It is a well-known fact that scripting languages are slower than compiled languages.
The Python interpreter carries out most of the tasks that are carried out by a compiler
in all compiled languages. at Python, however, is an intermediate language that pro-
vides the features of both compiled and interpreted languages. Python can be com-
pared with many other languages mainly because it provides many salient features in
other languages and is derived from many languages, such as C, C++, Modula-3, ABC,
SmallTalk, and Unix shell.

Python is often compared with C and C++ because it has syntax similar to the syn-
tax of these languages. Python is considered a good tool to test C and C++ applications.
It also glues some components of C/C++ contributing to C/C++ projects. In many
ways, Python has merits over C/C++. Memory allocation and reference errors that
occur in C/C++ are eliminated by the Python interpreter, which performs automatic
memory management. Python code is usually easier and smaller than that in C and
C++. Python’s array constructs generate fewer problems than the array constructs of
C and C++.

Perl is another scripting language that you can compare with Python. Like Python,
Perl is of great use to programmers and system administrators. Perl is also a powerful
language for text manipulation and data extraction. Unlike Python, though, Perl has a
difficult syntax that dissuades beginners from learning it. Perl is a popular language

xviii Introduction

used to develop Common Gateway Interface (CGI) scripts for Internet programming.
Programmers working on the same large project find it difficult to understand each
other’s code because there are many ways of writing a program.

Tcl is also one of the popular scripting languages. Python is compared with Tcl for
many reasons. Tcl is a powerful and easy scripting language that provides the features
of a programming language as well as tools for system calls. Tcl is a more restrictive
language than Python because it has fewer data types than Python. Python uses the
same toolkit, Tk, as Tcl for developing GUI applications.

Python uses the OOP concept and has syntax similar to that of Java. Unlike Python,
Java applications require huge code and a compilation phase. Moreover, Python offers
dynamic typing and a rapid development environment. Python, though, is slower and
less portable than Java. A breakthrough in the relationship of Python and Java is
JPython, a Python interpreter that is constructed completely in Java. It can run on any
machine containing Java Virtual Machine (JVM). It provides programmers with the
features of Python along with a hoard of Java classes. A complete discussion on
JPython is out of the scope of this book. Some of its salient features are as follows:

■■ JPython provides a scripting environment for Java development.

■■ JPython generates a truly object-oriented programming environment.

■■ An application written in JPython can access Java classes directly and can inte-
grate them with its own JPython classes, whenever required.

■■ JPython provides access to Java AWT/Swing libraries for GUI development.

■■ Compiled JPython programs create Java byte code, creating a .class file,
which can be used to create applets.

How This Book Is Organized

This book shrugs away from the traditional content-based approach and uses the
problem-based approach to present the concepts of Python. Problems used in the book
are presented against the backdrop of real-life scenarios. The problem is followed by a
task list that helps to solve that problem, in the process delivering the concepts and
their implementation. This practical approach will help readers to understand the real-
life application of the language and its use in various scenarios. Moreover, to provide
an appropriate learning experience, the concepts will be supported adequately by case
studies that will be formulated in such a way that they provide a frame of reference for
the reader.

Chapter 1 is a guide to obtaining the Python software and its documentation. It also
discusses installation of Python on Unix, Linux, and Windows systems. Finally. it dis-
cusses the execution modes of Python and starting Python in Unix, Linux, and Windows.

Chapter 2 is a getting-started guide. It leads into developing a simple Python
program. Then, it discusses the standard data types, type operators, and expressions.
Finally, it mentions the identifiers and keywords in Python.

Introduction xix

Chapter 3 introduces intrinsic operations and input/output. It discusses formatting
the output to enhance its visual appeal. It further discusses the built-in functions to use
with each data type.

Chapter 4 introduces programming constructs. It discusses using conditional
constructs if...else, elif, and nested if constructs. It moves on to discuss loop
constructs while and for. Finally, it discusses break, continue, and pass state-
ments, which are used in loop constructs.

Chapter 5 moves a step further and discusses about functions. It also discusses user-
defined functions, Then, it talks about passing functions as arguments and returning
values from functions. Finally, it discusses the built-in functions apply(), filter(),
and map().

Chapter 6 discusses organizing code in Python modules. It also delves into importing
data from modules into the programming environment. Finally, it discusses organizing
modules into packages.

Chapter 7 introduces using files in Python. It discusses writing and appending data
to a file. It also discusses how to use Python to read the contents of a file.

Chapter 8 delves into the all-important concept of object-oriented programming. It
discusses classes and class objects in Python. Then, it discusses implementing classes.
Finally, it talks about using inheritance, overriding methods, and using wrapping.

Chapter 9 explains exceptions and the phases in which the actions related to an
exception are performed. Next, it mentions the standard exceptions in Python. It fur-
ther explains how exceptions can be raised. Finally, the chapter closes by explaining
user-defined exceptions.

Chapter 10 moves a few steps further and introduces CGI programming. This chapter
assumes that the reader has understands basic Internet concepts and knows how to create
Web pages and forms using HTML. For those who are new to the Internet, the chapter
briefly recaps World Wide Web, HTTP requests, and HTML form elements and tags. The
chapter then differentiates between client-side and server-side scripting. It finally dis-
cusses the cgimodule and generating dynamic Web pages by using a CGI application.

Chapter 11 assumes the reader has basic knowledge about databases, data storage in
databases, RDBMS concepts, and their implementation in MySQL. For those who are
new to MySQL, this chapter details concepts about installing MySQL and working
with the databases and tables in MySQL. It also discusses the Python Database API.
Next, the chapter explains the processes of accessing and manipulating a MySQL data-
base by using Python commands. Finally, the chapter discusses concepts such as the
creation of a database table to store information and the use of query statements to
access and manipulate data.

Chapter 12 delves into network programming in Python by using sockets. It dis-
cusses client/server architecture, protocols, sockets, IP addresses, and ports. It then dis-
cusses using the socket to create a TCP server, TCP client, UDP server, and UDP client.

Chapter 13 introduces another extremely important concept of multithreaded pro-
gramming. The chapter begins by differentiating between a single-threaded application
and a multithreaded application. It then discusses the thread module to create threads.
Finally it discusses the threading module to create multithreaded applications.

Chapter 14 further discusses advanced Web programming concepts. To start with,
this chapter discusses how to create a Web server. Next, it talks about how to work

xx Introduction

with URLs by using Python. Finally, this chapter explains advanced CGI to generate
dynamic Web pages using cookies and uploading files across an HTTP connection.

Chapter 15 delves into developing user-friendly graphic interfaces. This chapter
discusses using Tkinter, the official GUI framework for Python, to create GUI applica-
tions. It mentions the various controls that can be included in a GUI interface. Finally,
it leads to designing a GUI application.

Finally, the appendix gives a brief introduction to Component Object Model (COM).
It mentions the basics of COM and the support for COM in Python.

Who Should Read This Book

This book will be a guide for readers with a basic knowledge of programming. For those
with an intermediate knowledge of Python, the book covers the advanced concepts of
Python, too. This book will be of great help to people with the following job titles:

■■ Software engineers

■■ Web application developers

■■ Information application developers

The book will provide the necessary skills to create GUI, networking, and Web
applications. It will also talk about extending and embedding Python applications.

Tools You Will Need

For performing the tasks in this book, you will need a Pentium 200 MHz computer
with a minimum of 64MB RAM (128MB RAM recommended).

You will also need the following software:

■■ Operating system: Linux 7.1 or Windows 2000 Server

■■ Web server: Apache 1.3.19-5 (on Linux) and IIS 5.0 (on Windows)

■■ Relational database management system (RDBMS): MySQL 3.23.36-1

■■ GNU C++ for Windows 2000

■■ Python 2.2

What’s on the Web Site

The following will be available on the site www.wiley.com/compbooks/makinguse:

■■ Python 2.2

■■ All the code snippets used in the book

Introduction xxi

All problem statements in this book are based on the scenario of the Techsity University.
The following section elaborates on the setup of Techsity University and the univer-
sity’s future plans.

Techsity University

The term instructor-led training (ILT) implies that the real strength of the training
depends on the instructor and the type of concept insight, knowledge, flexibility, and
leadership an instructor can provide through the training. ILT is a form of traditional
classroom learning methodology where students can ask questions, seek clarifications,
and work directly in coordination with a knowledgeable instructor so as to fully under-
stand concepts and terminology. This was the idea that led to the inception of Techsity
University in January 1999.

Techsity University started its operations with 50 students and 4 trainers at its center
located in New York City. A total commitment to quality in terms of student satisfaction
enabled Techsity University to earn a profit of $1 million in the very first year of its oper-
ation. As an outcome of student responses to the courses offered, student enrollment
and staff recruitment in Techsity University increased over the past three years.

Currently, Techsity University provides 50 instructor-led courses, which include soft
skills development courses and technical courses. Currently, the university offers these
courses in five cities in different states of the United States; however, only four courses
are available at any given time. At present, Techsity University offers regular as well as
part-time courses.

Scenario

xxiii

The five cities in which the Techsity University has centers are these:

■■ New York

■■ Los Angeles

■■ Chicago

■■ Denver

■■ Washington, D.C.

The courses offered by Techsity University can be classified in the following
categories:

■■ Business development

■■ Professional development

■■ Information technology

■■ Software

■■ Desktop technologies

Course Structure
Usually, the duration of the courses offered by the Techsity University varies from
three to four weeks. Details about each course, such as fees, the syllabus, and the class
structure, are available at the front office of each University location. Typically, a course
comprises a beginner, an intermediate, and an advanced level. A student may choose
to start from any of the three levels. If a student chooses to start a course from the inter-
mediate or advanced levels, the student is interviewed at the beginning of the course.
In addition, the student needs to take an entry-level test so that the authorities can
determine whether the student meets the course prerequisites. Therefore, a student can
join a course a level or two above the beginner’s level only after clearing the test and
the interview.

The schedule of regular courses consists of a five-hour class from Monday to Friday.
Not all courses are offered as part time. The part-time courses have five-hour classes on
weekends and two-hour classes on two chosen days of the week.

Course objectives, syllabi, and any preliminary reading assignments are given to stu-
dents before the start of the course. Depending on the type of course, the course structure
comprises theoretical classes and hands-on practice classes. To increase the effectiveness
of courses, a class may also contain an amalgamation of both theory and practice.

Fee Structure
The University has a flexible and moderate fee structure for the convenience of its stu-
dents. A student can choose to pay the entire fee at the time of enrollment or pay the fee
amount in installments. When paying in installments, a student has to pay 50 percent
of the fees as down payment, 25 percent after the completion of 25 percent of the
course, and the remaining 25 percent after completion of 75 percent the course.

xxiv Scenario

Future Direction
As the number of students approaching the University for enrollment is increasing, it
is considering offering its courses on the Web as well. The main reasons for such a con-
sideration are as follows:

■■ Accommodating ILT in a student’s schedule means rearranging the student’s
life around training rather than arranging training around the student’s life.

■■ Because ILT relies so severely on the instructors, a bad instructor can negate all
the advantages associated with ILT.

■■ For the employed, attending ILT means time away from the office and involves
additional costs for travel, lodging, meals and so forth.

■■ ILT is conducted at a speed dictated by the training material, the time allotted
to the class, and the instructor’s approach to the training material. Students
who do not fit the knowledge base or the understanding of the intended target
audience in the class may find an ILT class a frustrating experience. A good
instructor will tune the presentation to make it applicable to the widest range
of classroom audience.

Keeping these points in mind, Techsity University plans to gradually launch its con-
tent on the Web. The Techsity University Web site planned to be developed soon will
not only offer its Web-based courses but also promote instructor-led training, which
forms the backbone of the courses it offers. The Web site will also provide support to
students, such as providing experts to answer students’ queries and accepting and
evaluating student assignments online.

Scenario xxv

C H A P T E R

1

C H A P T E R

OBJECTIVES:

In this chapter, you will learn to do the following:

� Identify the scenarios where Python can be used

� Obtain Python and its documentation

� Examine system requirements

� Install Python

� Start Python in different execution modes

Getting Started

The Introduction familiarized you with Python. It discussed what Python is, its history,
and its key features. This chapter will discuss the locations from where Python can be
obtained. You will also learn how to install Python on the various platforms and the
various ways in which a Python program can be executed. At the end, you will learn
about the Web sites from which Python documentation can be obtained.

An Introduction to Python

C H A P T E R

1

Understanding Requirements

Problem Statement
Techsity University has been set up recently and currently does not have an online site.
The University plans to expand its activities in the field of online training courses so
that students from all over the United States can enroll for courses. Techsity wants a
Web site that will enable learners to obtain information about its courses at the touch
of a key. The Web site should be fast to code, scalable, and robust.

Techsity has an application for internal use that was developed using C and C++. It
wants to reuse as much of this application as possible to reduce development time for
the new application. The new application needs to be developed within three months
by using the existing team of C and C++ developers.

Techsity’s Chief Technology Officer (CTO) has recommended Python as the new
language because it meets all the requirements of the new application and because the
existing team will be able to learn the new language easily, thus reducing the learning
and development time. The CTO has assigned the task of understanding system
requirements, obtaining Python for the development team, and getting Python run-
ning to Jim.

Task List

� Determine requirements of the University.

� Download Python and its documentation.

� Determine the system requirements.

� Install Python.

� Start Python in different execution modes.

Determine Requirements of the University
Before deciding on the software application and hardware platforms to use for the pre-
vious scenario, let’s understand the requirements of the University (see Table 1.1).

Obtain Python and Its Documentation
Python is currently available in five stable versions. Python 1.5.2 was released in April
1999. Python 1.6 was made available to the public in September 2000 and has major
new features and enhancements over Python 1.5.2. Python 2.0, released in October
2000, was more of a transition from Python 1.6. Python 2.1.1, released in July 2001, was
mainly a bug fix release for Python 2.1. The final release of the latest version, Python 2.2,
was released in December 2001. This book was developed when Python 2.2 was in its
alpha release 4. Therefore, most of the screen shots in this book are taken in Python 2.2a4.

2 Chapter 1

Table 1.1 Requirements of Techsity University

REQUIREMENT DESCRIPTION

Development time The entire application needs to be developed in three
months.

Platform The customers and dealers should be able to use any
kind of operating system platform; that is, the
application should be platform independent.

Speed Techsity wants a computerized system that enables
learners and dealers to obtain information about its
products and schemes readily.

Accessibility The University wants an information system that will
enable individuals from any part of the United States to
receive help on the courses and schemes offered by
Techsity.

Association The system should allow extension and embedding of
C and C++ to make use of existing applications in these
languages.

Other features The CTO wants the application to be powerful, robust,
and scalable.

How to decide on the version? The code written in Python 1.5.2 is backward
compatible with older versions and is available on the largest number of platforms.
Python 2.0 has new features, such as Unicode support, but does not support backward
compatibility. Programmers who are migrating from Python 1.5.2 to 2.0 can use Python
1.6. Programmers looking for improved features, such as Python’s model of objects
and classes, improved multiple inheritance, new iteration interface, and new and
improved modules, should use Python 2.2.

You can find all the latest information about Python on the Python official Web site
or the Pythonlabs Web site. The links are as follows:

http://www.python.org (Community home page)

http://www.pythonlabs.com (Commercial home page)

Python is freeware; therefore, all of Python’s current software versions are available
for free on the sites listed previously. You can download the Python distribution for
Unix, Windows, and Mac systems from the link www.python.org/download. In addi-
tion, Python documentation, news, and more are also available on this site. You can
download the Python documentation from www.python.org/doc/. The documenta-
tion is available in HTML, PDF, and PostScript formats. A part of the documentation is

An Introduction to Python 3

also available with the software package. The Python 2.2 distribution is a part of the
following documentation that helps you learn Python and its advanced features:

■■ The Python Tutorial

■■ Global Module Index

■■ Library Reference

■■ Macintosh Module Reference

■■ Installing Python Modules

■■ Language Reference

■■ Extending and Embedding

■■ Python/C API

■■ Documenting Python

■■ Distributing Python Modules

NOTE If you do not have Internet connectivity, all the versions of Python are
available on the Web site for this book, www.wiley.com/compbooks/gupta.

Determine the System Requirements
As discussed earlier, Python is available on a wide variety of platforms, such as Unix,
Windows, Macintosh, X Windows, OS/2, Be-OS, VMS, and Amiga. Python is supported
by most of the platforms that have a C compiler. After you download your version of
Python, which is in compressed format, you need to unpack the downloaded files. If
you are using Unix, the GNA gzip program performs the required action. The GNA
gzip program is available at www.gnu.org/software/gzip/gzip.html. For Windows, it
is necessary to have the WinZip program to unpack the downloaded files. Winzip can
be downloaded from www.winzip.com. To run Python, the system requirements are as
shown in Table 1.2.

You can choose from a host of software platforms to run Python. For the develop-
ment of this book, the software configuration shown in Table 1.3 is used.

Table 1.2 Hardware Specifications for Using Python

HARDWARE SPECIFICATION

Processor Pentium, 200 MHz

RAM 64 MB, 128 MB (Recommended)

4 Chapter 1

Table 1.3 Software Specifications for Using Python

SOFTWARE SPECIFICATION

Operating system Linux 7.1, Windows 2000 Server, and Windows NT Server

Web server Apache 1.3.19-5, (IIS 5.0 for Windows)

RDBMS My SQL 3.23.36-1

Web browser Netscape 4.76

GNU C++ For Windows NT/2000

Python Version 2.2a4

Install Python
As mentioned earlier, Python distribution is available for a wide variety of platforms.
You need to download only the binary code applicable for your platform and install
Python. If the binary code for your platform is not available, you need a C compiler to
compile the source code manually. Compiling the source code offers more flexibility in
terms of choice of features that you require in your installation. For example, for Win-
dows, you might want to install the additional Tcl/Tk support feature on which you
can build your GUI applications or install Win32 extensions, COM extensions, and
more. Similarly, you can choose to install Tkinter or the GNU readline module, which
allows you to scroll back through Python commands in the interpreter. All this can be
incorporated in the Unix installation of Python by editing the Setup file in the Modules
subdirectory in the source distribution.

Unix Installation

After unpacking the files in the source distribution and converting them into a tar
archive, you can install Python. This requires running the ./configure script in the
Python archive. Then, type make at the shell prompt, and type make install. On
Unix machines, the Python executable is usually installed in the /usr/local/bin
directory, and its libraries are installed in /usr/local/lib/pythonXX where XX is
the version of Python that you are using.

Linux Installation

Almost all major Linux distributions include Python. You might want to install the
latest version of Python, though, even if Python is installed automatically for you. This
can be done by using the RPM (RedHat Packet Manager) package for installation. The

An Introduction to Python 5

RPMs for Linux installation can be downloaded from www.python.org/2.2/rpms.html.
You must execute the following command to update the RPM:

rpm -Uhv python2.2-2.2b1-2.i386.rpm

Or use the following command to install the RPM from the RPM package:

rpm -ihv python2.2-2.2b1-2.i386.rpm

(Note that the preceding filenames reflect the beta version of Python 2.2.) For a fresh
installation of Python from the source code on a Linux machine, follow the same steps
as for Unix installation. You can also download the source RPM and build a binary
package by using the following command:

rpm —rebuild python2.2-2.2b1-2.src.rpm

Windows Installation

On Windows, you can install Python by running Python-XXX.exe, where XXX is
Python’s latest release. On Windows, double-clicking the file will launch the Installation
Wizard, as shown in Figure 1.1.

After installing Python, if you want to install PythonWin and PythonCOM software
also, double-click the win32all-YYY.exe file. Each version of Python has a specific
corresponding win32all file. Therefore, do not install the file that is intended for a
different release. You can download this file for the specific version of Python from the
following location: http://aspn.activestate.com/ASPN/Downloads/ActivePython/
Extensions/Win32all.

Figure 1.1 Python Installation Wizard guides you through a simple installation process.

6 Chapter 1

Start Python in Different Execution Modes
You can start Python in three different ways. One way is to start the interpreter inter-
actively where each line that you enter is executed at the same time. The second way is
to run a script written in Python. In this case, the interpreter directly executes the
script. Finally, you can run the interpreter in the form of a GUI that is part of the Inte-
grated Development Environment (IDE). An IDE usually provides tools for debugging
and editing text.

Interactive Interpreter

You can start Python in the command-line interpreter mode and start writing code.
Any operating system that provides you with a command-line interpreter or a shell
window, such as DOS or Unix, can start Python in an interactive interpreter mode. This
mode can be extremely helpful when you want to test the specific features of Python.

Unix. To start the Python interpreter, you need to type the full path to the Python
executable if you have not added the directory containing the Python executable
to your search path. Python usually exists in /usr/bin or /usr/local/bin
directories. To add Python to the search path, you can add the full path of the
directory containing the Python executable to the set path or PATH= directive.
After this, refresh the shell’s path variable. Now, you can invoke the Python
interpreter by typing python at the shell prompt.

$python

Typing python at the shell prompt will start the Python interpreter in the Unix
environment and will show the Python primary prompt denoted by “>>>” as
shown in Figure 1.2.

Figure 1.2 Starting Python in a Unix window.

An Introduction to Python 7

Figure 1.3 Starting Python in the Windows command line.

Windows. In order to run Python directly by typing python at the command
prompt, add Python to your search path. This is similar to what is done in Unix.
You can do this by editing the C:\Autoexec.bat file. The Python executable
in Windows is usually installed in C:\Program Files\Python or
C:\Python. In Windows also, you can start Python by typing python at the
command prompt C:\. This will start the Python interpreter in Windows, as
shown in Figure 1.3.

Script from the Command Line

You can also request Python to directly execute a script from the command-line inter-
face. This is the same for Windows, Unix, or any other operating system that supports
command-line interface, as in the following commands:

C:\>python myscript.py

$ python myscript.py

These commands, for Windows and Unix, execute the script myscript.py from
the current directory. If the script you want to execute is not in the current directory,
specify the complete path for the script.

You can also invoke the Python interpreter automatically without explicitly invok-
ing it from the command line. Include the following line to launch shell as the first line
of your script:

#!/usr/local/bin/python

The path following "#!" is the full path of the location of the Python interpreter. Be
careful to give the correct path name; if the path name is not correct, the shell will
return an error message.

8 Chapter 1

When you have added a startup directive to the beginning of your script, the Python
interpreter does not need to be explicitly invoked. You can run the script directly using:

$myscript.py

Alternatively, you can use a command named env for the startup directive, which is
installed in either /bin or /usr/bin. This command finds the Python interpreter in
your path. You can use env when you do not know where the Python executable is
located. You can also use env if you change its position frequently, but it is still avail-
able through the directory path you specify.

In Windows, if you have a Python IDE installed (this will be discussed in the next
section), you can execute a script directly by double-clicking it.

Integrated Development Environment

Python can also be started from a graphical user interface (GUI) environment. This can
be done using a GUI application, such as Tcl/Tk. Most GUI applications are IDEs as
well. IDEs provide the additional features of editing, tracing errors, and debugging.

Unix. IDLE is the first Unix IDE for Python. IDLE is Tkinter based and requires
Tcl/Tk to be installed on your system. You do not need to install Tcl/Tk fully
because the current versions of Python include the minimal subset of the Tcl/Tk
library in the distribution.

The IDLE executable is located in the Tools subdirectory with the source distrib-
ution. IDLE can be invoked by typing idle at the shell prompt. Figure 1.4 shows
the IDLE window in Unix.

Figure 1.4 Starting IDLE in Unix.

An Introduction to Python 9

Figure 1.5 The PythonWin environment in Windows.

Windows. PythonWin is the first Windows IDE for Python. The PythonWin
distribution includes Win32 API extensions, COM extensions, and Tcl/Tk.
PythonWin can be invoked by executing the file pythonwin.exe, which is
usually located in the same directory as Python in the Pythonwin subdirectory
C:\Program Files\Python\Pythonwin. Among its main features are a
color text editor, a debugger, an interactive shell window, and more. Figure 1.5
shows the PythonWin environment running in Windows, including the main
PythonWin window and a script open in its integrated source code editor.

As mentioned earlier, PythonWin can be installed by running the executable file
win32all-YYY.exe specific for the version of Python that you have on your
computer. You can obtain more information on PythonWin from the Pythonwin
readme file, which is located at C:\Program Files\Python\Pythonwin\
readme.html or any other location where PythonWin is installed.

Besides PythonWin, IDLE can also be installed on the Windows platform. It is
in the Tools or Idle subdirectory of the folder where Python is installed. To
start IDLE, double-click the idle.pyw executable. Figure 1.6 shows the IDLE
window in Windows.

10 Chapter 1

Figure 1.6 The IDLE environment in Windows.

Macintosh. The Python version that runs on Macintosh is called MacPython. It is
also available on www.python.org and can be downloaded as MacBinary or
BinHex’d files. Python source code is also available on the main Web site as
a Stuff-It archive, and the full version is available as a unique file, which also
includes Tkinter and IDLE. As in Unix and Windows, IDLE also works on
Macintosh. Figure 1.7 shows the IDLE environment in Macintosh.

Figure 1.7 The IDLE environment in Macintosh.

An Introduction to Python 11

Summary

In this chapter, you learned the following:

■■ Python is currently available in five stable versions: 1.5.2, 1.6, 2.0, 2.1.1, and 2.2.
The final release of the latest version Python 2.2 was made available in Decem-
ber 2001.

■■ You can find all the latest information about Python on the Python official Web
site or the Pythonlabs Web site. The links, respectively, are:

http://www.python.org (Community home page)

http://www.pythonlabs.com (Commercial home page)

■■ Python runs on a wide variety of platforms, such as Unix, Windows, Macintosh,
X Windows, OS/2, Be-OS, VMS, and Amiga, to name a few.

■■ You can download the Python distribution for Unix, Windows, and Mac systems
from the link www.python.org/download. In addition, the Python documenta-
tion, news, and other articles are also available on this site. You can download
the Python documentation from www.python.org/doc/. This documentation
is available in HTML, PDF, and PostScript formats.

■■ To install Python, download the binary applicable for your platform and execute
it in the way applicable for your platform.

■■ Python can be started in three different ways:

■■ As the interactive interpreter

■■ Directly executing a script from the command line

■■ As an Integrated Development Environment (IDE)

12 Chapter 1

13

OBJECTIVES:

In this chapter, you will learn to do the following:

� Write your first Python program

� Use comments

� Use Python as a calculator

� Use variables

� Use standard data types:

� Number

� String

� List

� Tuple

� Dictionary

� Examine memory management in Python

Getting Started with Python

C H A P T E R

2

C H A P T E R

Getting Started

This chapter will introduce the core part of Python and will familiarize you with
Python syntax. In this chapter, you will learn to write your first Python program. Then,
it will discuss the standard data types in Python. You will also learn about the standard
type operators and how variables and operators can be combined to form expressions.
Finally, you will learn about identifiers and keywords in Python.

Let’s now learn how to store information in a variable and how to use the stored
information in various ways, and discuss the relevance of expressions and operators.
This chapter uses the scenario of Techsity University, which needs to store and display
student details using different variables. You will also learn to use lists and dictionar-
ies to store all the information about students. The chapter has been designed so that
each task identified for the problem statement will progress toward equipping you
with all the knowledge you will need to solve the problem statement.

Writing Your First Python Program

The first program that we will write is the Hello World program, which is typically the
first program for learning any programming or scripting language. Type the following
command at the interpreter.

>>>print ‘Hello World!’

The output of this command will be:

Hello World!

As you can see in this command, the print statement is used to display the output
on the screen. Program input and output are the two most important basic features of
any programming language. In Python, the program output can be obtained using the
print statement. In order to enable the program to interact with the user, it needs to
accept data input from a user. To obtain user input from the command line, the easiest
way is to use the raw_input() built-in function. The raw_input() function accepts
only text input. For example, for accepting user input for a user name and then dis-
playing it, you can use the following commands:

>>>name=raw_input(‘Enter your name: ‘)

This command shows the following line where the user can enter text.

Enter your name: Laura

Now, to print the value input by the user, use the following print statement.

>>>print ‘Your name is: ‘, name

Figure 2.1 shows how the preceding statements appear on the interpreter.

14 Chapter 2

Figure 2.1 A sample program to accept user input and display the output on the screen.

NOTE A function is a block of code that is used to perform a single task.
Built-in functions are defined internally in Python and are ready to be called to
perform a specific task. You will learn about functions in detail in Chapter 5,
“Functions.”

A program usually does much more than just accept data from the user and display
it. To enhance the readability of a complex code, lines that explain the code are added
to the code. These lines do not affect the program in any way and are called comments.
Let’s learn more about using comments in Python.

Comments
As in most shell scripting and other scripting languages, you can use the hash or
pound (#) sign to start a comment. A comment begins from the hash or pound sign and
continues until the end of the line.

>>># First comment

...print ‘Learn about comments’ # second comment’

The output of the previous statements will be:

Learn about comments

Note that the first line of code doesn’t execute because it is preceded by a # sign.
Comments enhance the understanding of the code both for the programmer and for
other people who want to use the code. They should be kept clear, short, and simple.

Getting Started with Python 15

You should take care that comments serve the purpose they are meant for, and you
should avoid them when they are not required.

Python as a Calculator
The previous chapter talked about various execution modes of Python. Chapter 1, “An
Introduction to Python,” discussed that each line of code can be executed right after
typing at the Python interpreter. Therefore, the Python interpreter can be used as a sim-
ple calculator. You can write an expression at the interpreter, and it will return the
resulting value. Expressions are the same as the ones in most programming languages,
such as C, C++, and Pascal. They use the well-known +, -, *, and / operators. Let’s con-
sider some examples.

>>>2+2

4

Note that in the preceding example, the statement 2+2 is at Python's primary
prompt. In addition, the output of one line is shown directly in the line below it and is
indicated by the absence of >>>.

>>>#Learn using Python interpreter as calculator

...2+2

4

Note that in the preceding example, the comment is at Python's primary prompt.
The statement 2+2 is at Python's secondary prompt, three dots,

>>>(60+40)/10

10

The division of two integers using the / operator returns the floor value shown as
follows:

>>>9/2

4

>>>9/-2

-5

This chapter will further describe various operators and how they can be grouped
with other Python types in the later sections. After becoming familiar with the Python
syntax, you will learn how to use variables in Python.

Using Variables in Python

Programming is all about working with data. While programming, you often access
memory directly or indirectly to store or retrieve data. In some programming languages,

16 Chapter 2

such as C and C++, you can access the memory directly; in other programming lan-
guages, such as Visual Basic and Java, you cannot access memory directly. One thing
common across all programming languages is the use of variables to store data in
memory. Therefore, variables play a big role in any form of programming. Before
describing variables in detail, let’s discuss how Python uses objects to store data.

As we discussed in the previous chapter, Python is an object-oriented programming
(OOP) language, but you don’t need to use OOP as a concept to create a working appli-
cation in the beginning. We will discuss OOP in detail in Chapter 8, “Object-Oriented
Programming.” We have briefly introduced objects here, though. Python uses objects
for all types of data storage. Any entity that contains any type of value or data is called
an object. You can classify all data as an object or a relation to an object. Each object has
three characteristics: identity, type, and value.

Identity. The identity of an object refers to its address in the computer’s memory.
Identity is also a unique identifier that makes it distinct from the rest of the
objects. You can use the id() built-in function to obtain the memory address of
a variable.

Type. The type of an object determines the operations that are supported by an
object. It also defines the values that are possible for objects of that type and the
operations that can be performed on that object. The type() built-in function
can be used to determine the type of the Python object.

Value. The value of an object refers to the data item contained in that object.

The identity and type characteristics of an object are read only and are assigned
when the object is created. Objects whose values can be changed without changing
their identity are called mutable objects, and those whose values cannot be changed are
called immutable objects.

Some Python objects have multiple attributes and can store many data items. In addi-
tion, these objects might contain executable code that you can use to perform desired
tasks. These built-in object types are files, functions, classes, modules, and methods.

Although objects can store multiple data items, there are certain objects that store a
value and have a single attribute. These objects are called variables.

Variables
Variables are nothing but reserved memory locations to store values. This means that
when you create a variable you reserve some space in memory. Who decides how
much memory is to be reserved and what should be stored in this memory? This is
done by assigning data types to variables. Based on the data type of a variable, the
interpreter allocates memory and decides what can be stored in the reserved memory.
Therefore, by assigning different data types to variables, you can store integers, deci-
mals, or characters in these variables. Consider another situation in which you need to
store a large amount of the same type of data. One way to do this is to declare multiple
variables and then remember the names of all these variables! A simpler way to do this
in Python is by using tuples, lists, or dictionaries.

Getting Started with Python 17

Assigning Values to Variables
Unlike those of other languages, Python variables do not have to be explicitly declared
to reserve memory space. The declaration happens automatically when you assign a
value to a variable. Like most other programming languages, the equal sign (=) is used
to assign values to variables. The operand to the left of the = operator is the name of the
variable, and the operand to the right of the = operator is the value stored in the vari-
able. For example,

>>>price=100

>>>discount=25

>>>price-discount

75

Here, 100 and 25 are the values assigned to price and discount variables, respec-
tively. The expression price-discount calculates the difference between price and
discount. Similarly, string values can also be assigned to variables. For example,

>>>a=’play’

>>>b=’ground’

>>>a+b

‘playground’

The concatenation of multiple string values can also be assigned to a variable
directly by using the plus (+) operator.

>>> c=’Py’+’thon’

>>> c

‘Python’

After you have assigned a value to a variable, you can use that variable in other
expressions. For example,

>>>a=2

>>>a=a+3

>>>a

5

Note that you do not have to explicitly use a print statement to display the output
in the interpreter. Simply writing the name of the variable at the interpreter will dis-
play the value contained in a variable.

Multiple Assignment

You can also assign a single value to several variables simultaneously. For example,

>>>a=b=c=1

>>>a

1

18 Chapter 2

>>>b

1

>>>c

1

In the preceding example, an integer object is created with the value 1, and all three
variables are assigned to the same memory location. You can also assign multiple
objects to multiple variables. For example,

>>>a,b,c=1,2,’learn types’

>>>a

1

>>>b

2

>>>c

‘learn types’

In the preceding example, two integer objects with values 1 and 2 are assigned to
variables a and b, and one string object with the value ‘learn types’ is assigned to
the variable c. This type of assignment is a special case in which items on both sides of
the equal sign are tuples. We will learn about tuples later in this chapter. You can also
use parentheses for multiple assignments, but otherwise they are optional.

>>>(a,b,c)=(1,2,’learn types’)

This technique of multiple assignment can be used to swap values of variables. For
example,

>>> (x,y)=10,20

>>> x

10

>>> y

20

>>> (x,y)=(y,x)

>>> x

20

>>> y

10

You have learned that values can be assigned to variables. The question that arises
next, however, is about the type of values that can be assigned to variables in Python.
Let’s learn about Python’s standard types to help you answer the question.

Standard Types
The data stored in memory can be of many types. For example, a person’s age is stored
as a numeric value and his or her address is stored as alphanumeric characters. Python
has some standard types that are used to define the operations possible on them and
the storage method for each of them.

Getting Started with Python 19

Python has five standard data types:

■■ Numbers

■■ String

■■ List

■■ Tuple

■■ Dictionary

These standard types are also referred to as primitive data types or just data types.
Out of these, lists, tuples, and dictionaries are compound data types, which are used to
group other values.

Using Numbers

Number data types store numeric values. They are immutable data types, which
means that changing the value of a number data type results in a newly allocated
object. Like all data types, number objects are created when you assign a value to them.
For example,

>>>var=1

An existing number can be changed by assigning a value to it again. The new value
can be related to the old value, can be another variable, or can be a completely new
value.

>>>var=var+1

>>>var=2.76

>>>floatvar=6.4

>>>var=floatvar

When you do not want to use a particular number, usually you just stop using it.
You can also delete the reference to a number object by using the del statement. When
this is done, the name of the variable cannot be used unless it is assigned to another
value. The syntax of the del statement is:

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For
example,

>>>del var

>>>del varab,varcd

Python further classifies numbers into four types:

Regular or Plain integer. Plain integers are the most common data types among
all languages. Most machines allow you to assign a value to an integer variable
from -231 to 231 - 1. A plain integer in Python is implemented as the data type

20 Chapter 2

signed long int in C. Integers are usually represented in the base 10 (deci-
mal) format. They can also be represented in the base 8 (octal) and base 16
(hexadecimal) formats. Octal values are prefixed by “0”, and hexadecimal values
are prefixed by “0x” or “0X”. Some examples of plain integers are these:

10 100 6542 -784

083 -042 -0X43 0X61

Long integer. Long integers are helpful when you want to use a number out of
the range of plain integers that is less than -231 or greater than 231 - 1. There is vir-
tually no limit to their size except that the size is limited to the available virtual
memory of your machine. Virtual memory is a constraint because when any
variable is assigned or used, it is loaded into memory. Therefore, it is necessary
that memory have enough space to load the variable. The suffix “l” or “L” at the
end of any integer value denotes a long integer. Like plain integers, their values
can also be in decimal, octal, and hexadecimal. Some examples of long integers
are these:

53924561L -0x19423L 012L -4721845294529L

0xDEFABCECBDAECBFBAEl 535133629843L -052418132735L

NOTE Python allows you to use a lowercase L, but it is recommended that
you use only an uppercase L to avoid confusion with the number 1. Even if you
assign a long integer to a variable that has a lowercase L, Python displays long
integers with an uppercase L.

>>>varlong=812386l

>>>varlong

812386L

Floating-point real number. This type of number is also referred to as float.
Floating-point real numbers occupy 8 bytes on a 64-bit computer where 52 bits
are allocated to the mantissa, 11 bits to the exponent, and the last bit for the sign.
This gives you a range from +10308.25 through -10308.25. The float data type in
Python is implemented as the double data type in C.

Float values can have two parts, a decimal point part and an optional exponent
part. The decimal point part contains a decimal value, and the exponent part
contains a lowercase or uppercase "e" followed by the appropriate nonzero
exponential value. The positive or negative sign between "e" and the exponent
denotes the sign of the exponent. The sign is also optional, and its absence indi-
cates a positive exponent. Some examples of floating point numbers are these:

0.0 14.5 -15.4 32.3+e18

-90.76712 -90. -32.54e100 70.2-E12

Complex number. A complex number consists of an ordered pair of real floating-
point numbers denoted by a + bj, where a is the real part and b is the imagi-
nary part of the complex number. The imaginary part of the complex number is

Getting Started with Python 21

suffixed by a lowercase j (j) or an uppercase j (J). Some examples of complex
numbers are these:

3.14j 45.j .876j 5.43+3.2j 3e+26J

4.53e-7j 9.322e-36j -.6545+0J

The imaginary and the real parts of a complex number object can be extracted
using the data attributes of the complex number. In addition, a method attribute
of complex numbers can be used to return the complex conjugate of the object.
The following examples help you to understand these attributes:

>>>complexobj=23.87-1.23j

>>>complexobj.real

23.870000000000001

>>>complexobj.imag

-1.23

>>>complexobj.conjugate()

(23.870000000000001+1.23j)

NOTE The concept of conjugates is used in relation with complex numbers.
For any complex number of the form a + ib, the conjugate is a - ib and vice versa.

Arithmetic Operators

Operators play an important part in performing calculations. Besides arithmetic
operators, Python also supports conditional operators for making value comparisons.
We will cover conditional operators in a later chapter. Among the arithmetic operators
that Python supports are the unary operators + and - for no change and negation,
respectively, and the binary arithmetic operators, +, -, *, /, %, and **, for addition,
subtraction, multiplication, division, modulo, and exponentiation, respectively. In an
arithmetic expression such as:

x = y + z

y and z are called the operands for the + operator. Table 2.1 describes each type of
arithmetic operator that can be used to perform calculations in Python.

A new operator added to Python 2.2 is //, which is used for floor division. Floor
division is the division of operands where the result is the quotient in which the digits
after the decimal point are removed. This is different from true division where the
result is the actual quotient. The / operator, which is present in all versions of Python,
performs floor division for integer values and true division if one or both values are
floating-point numbers. For example, 9/2 is equal to 4 and -9/2 is equal to -5. How-
ever, 9.0/2 is equal to 4.5 and -9/2.0 is equal to -4.5. The // operator performs
floor division for all types of operands. Therefore, 9//2 is equal to 4 and 9.0//2.0
is equal to 4.0.

22 Chapter 2

Table 2.1 Arithmetic Operators

OPERATOR DESCRIPTION EXAMPLE EXPLANATION

+ Adds the operands. x = y + z Adds the value of y
and z and stores the
result in x.

- Subtracts the right x = y - z Subtracts z from y and
operand from the stores the result in x.
left operand.

** Raises the right x = y ** z y is raised to the
operand to the power power of z and stores
of the left operand. the result in x.

* Multiplies the x = y * z Multiples the values y
operands. and z and stores the

result in x.

/ Divides the left x = y / z Divides y by z and
operand by the stores the result in x.
right operand. Performs floor division

if both operands are
plain integers, and
performs true division
if either or both
operands are floating-
point numbers.

% Calculates the x = y % z Divides y by z and
remainder of an stores the remainder
integer division in x.

If an expression involves more than one operator, Python uses precedence rules to
decide which operator is to be evaluated first. If two operators have the same prece-
dence, Python uses associativity rules for evaluating an expression. For example,

>>>x=7+3*6

>>>x

25

>>>y=100/4*5

>>>y

125

To understand the preceding output, consider Table 2.2, a precedence and associa-
tivity table for arithmetic operators.

Getting Started with Python 23

Table 2.2 Associativity Table for Arithmetic Operators

TYPE OPERATORS ASSOCIATIVITY

Value construction () Innermost to outermost

Exponentiation ** Highest

Multiplicative // * / % Left to right

Additive + - Left to right

The ** operator has the highest precedence. The operator * has a higher prece-
dence than the operator +, and the operator / has the same precedence as *. In the
expression x = 7 + 3 * 6, the part 3 * 6 is evaluated first and the result 18 is added
to 7. In the expression y = 100 / 4 * 5, the part 100/4 is evaluated first because
the operator / is to the left of the operator *.

You can change the precedence and associativity of the arithmetic operators by
using (). The () operator has the highest precedence among the three types being dis-
cussed. The () operator has left to right associativity for evaluating the data within it.
Therefore, we have:

>>> x = (7 + 3) * 6

>>>x

60

>>> y = 100 / (4 * 5)

>>>y

5

>>> z = 7 + (5 * (8 / 2) + (4 + 6))

>>>z

37

The modulus operator % returns the remainder of an integer division. The following
example explains the working of the modulus operator:

>>> 7 % 3

1

>>>0 % 3

0

>>>1.0 % 3.0

1.0

The exponentiation operator behaves noticeably for unary operators. If it has a
unary operator to its right, it takes the power to be raised after applying the operator
to it. If there is a unary operator with the number to its left, it raises the power first and
then applies the operator. For example,

>>> 5**2

25

>>> 5**-2

24 Chapter 2

0.04

>>> -5**2

-25

>>> (-5)**2

25

You have learned how values are assigned to variables by using the = operator. Let’s
see the other assignment operators available in Python.

Assignment Operators

If you want to assign expressions to variables, you can also use the assignment opera-
tors listed in Table 2.3.

Table 2.3 Assignment Operators

OPERATOR DESCRIPTION EXAMPLE EXPLANATION

= Assigns the value of the x = y Assigns the value of
right operand to the left. y to x.

y could be an
expression, as shown
in the previous table.

+= Adds the operands and x + = y Adds the value of
assigns the result to the y to x.
left operand.

The expression could
also be written as
x = x + y.

-= Subtracts the right x - = y Subtracts y from x.
operand from the left
operand and stores the Equivalent to
result in the left operand. x = x - y.

*= Multiplies the left x * = y Multiplies the values
operand by the right x and y and stores the
operand and stores the result in x.
result in the left operand.

Equivalent to
x = x * y.

/= Divides the left operand x / = y Divides x by y and
by the right operand stores the result in x.
and stores the result in
the left operand. Equivalent to

x = x / y.

Continues

Getting Started with Python 25

Table 2.3 Assignment Operators (Continued)

OPERATOR DESCRIPTION EXAMPLE EXPLANATION

%= Divides the left operand x % = y Divides x by y and
by the right operand stores the remainder
and stores the remainder in x.
in the left operand.

Equivalent to
x = x % y.

Any of the operators listed in Table 2.3 can be used as shown here:

x <operator>= y

can also be represented as

x = x <operator> y

That is, y is evaluated before the operation takes place. For example,

>>> x=15

>>> y=12

>>> x+=y

>>> x

27

>>> x+=y*2

>>> x

51

Notice that the assignment x+=y is treated as x=x+y. After performing the first
operation, the value of x becomes 27. Then, in the second operation, 12*2=24 is
added to x to return 51.

Using Strings
Strings are one of the most commonly used types in Python. A string can be defined by
enclosing characters within single or double quotes. For example,

>>> str=’Hello World!’

>>> str

‘Hello World!’

>>> astr=”Welcome!”

>>> astr

‘Welcome!’

>>> print astr

Welcome!

In the preceding example, notice that when the output of a variable containing a
string value is directly displayed by typing it at the interpreter, string quotes appear.
When the same string is printed using the print statement, only the string appears
without string quotes.

26 Chapter 2

A string, which is created using single or double quotes, cannot contain the same
type of quotes inside it. For example, str=’couldn’t’ gives you a syntax error
because the interpreter takes the second quote as the end of the string and therefore
does not recognize the characters following it. There are different ways of assigning
such strings to variables. You can have a single quote(s) inside a string enclosed in
double quotes or vice versa. Quotes can be followed by a backslash (\) to make the
quotes a part of a string. For example,

>>> str=”couldn’t”

>>> str

“couldn’t”

>>> astr=’couldn”t’

>>> astr

‘couldn”t’

>>> “\”No,\” she said”

‘“No,” she said’

If you have a long string that spans multiple lines, a backslash (\) followed by n can
be used to break into multiple lines. For example,

>>> str=”Python is an easy yet powerful programming language, \n which

provides structure and support for large applications \n as well as the

power and complexity of traditional high-level languages.”

\n inserts new lines in the string when you print the string str by using the print
statement. The new lines are inserted as follows:

>>> print str

Python is an easy yet powerful programming language,

which provides structure and support for large applications

as well as the power and complexity of traditional high-level languages.

You can also enclose a string in triple quotes, such as “”” or ‘’’. When you use
triple quotes, new lines do not have to be escaped by using special characters, but they
will still be a part of the string. For example,

>>>str=”””Python is an easy yet powerful

programming language,

which provides structure and support for

large applications as well as power

and complexity of traditional high-level languages.”””

Print the string as follows:

>>> print str

Python is an easy yet powerful

programming language,

which provides structure and support for

large applications as well as power

and complexity of traditional high-level languages.

Getting Started with Python 27

You can concatenate a string by using the + operator and replicate a string by using
the * operator. For example,

>>> strvar=’play’+’ing’

>>> strvar

‘playing’

>>> newstr=strvar*4

>>> newstr

‘playingplayingplayingplaying’

You can change the preceding statement to assign a value to strval by using the
following statement:

>>> strval*=4

>>> strval

‘playingplayingplayingplaying’

In addition, two strings enclosed within quotes written next to each other are auto-
matically concatenated. For example,

>>> strvar=’play’’ing’

>>> strvar

‘playing’

The length of a string can be found using the len() function.

>>>len(strvar)

7

Unlike many other languages, Python does not support the character type. You can
use the string type to extract a single character or a substring from a string. This
method of extracting a single character or a substring from a string by using the index
or indices is called slicing. Slice notation consists of two indices separated by a colon,
and it can be used to extract substrings. For example,

>>> str=’learn’

>>> str[0]

‘l’

>>> str[0:2]

‘le’

>>> str[0:4]

‘lear’

>>> str[0:5]

‘learn’

Note that in the preceding example, the length of the string str is 5. When count-
ing forward, the indices start from 0 at the left and end at one less than the length of
the string. Therefore, for the previous string, any substring can be accessed within the
range 0 through 4.

28 Chapter 2

A string can also be counted backward, starting from the index -1, which corre-
sponds to the rightmost character to the negative value of the length of the string,
which is the index of the first character in the string. The following representation
shows how the indices can be counted forward and backward in a string.

0 1 2 3 4

l e a r n

-5 -4 -3 -2 -1

For example,

>>> str[-1]

‘n’

>>> str[-5]

‘l’

>>> str[-5:-1]

‘lear’

>>> str[1:-1]

‘ear’

When you miss the starting or ending index, the beginning index defaults to zero
and the ending index defaults to the size of the string being sliced.

>>> str[:3]

‘lea’

>>> str[2:]

‘arn’

The omission of both indices returns a copy of the string.

>>>str[:]

‘learn’

Python string data type is an immutable data type, and therefore, once created, it
cannot be changed. If a value can be assigned to a string variable, however, why is it an
immutable data type? The reason is simple. When you assign a different value to the
variable containing a string object, a new object is created. Let’s see how.

str1=’know’

>>> str1

‘know’

>>> id(str1)

16971488

>>> str1=’treat’

>>> id(str1)

17043008

Notice that when the string str1 is created, its identity given by the id() function
is different from the identity obtained after changing its value. This indicates that a

Getting Started with Python 29

completely new object is formed. Assigning a value to an index position in the string
results in an error.

>>> str[0]=’u’

Traceback (most recent call last):

File “<pyshell#74>”, line 1, in ?

str[0]=’u’

TypeError: object doesn’t support item assignment

You can create a new string combining the new content with the old string.

>>> ‘whir’+str[0]

‘whirl’

>>> ‘y’+str[1:]

‘yearn’

We have discussed the number and string data types. Now, let’s discuss a scenario
in which you can use your learning.

Problem Statement
As a member of a team that is developing the Web site for Techsity University, you
have been assigned the task of creating a software module that displays the following
student details:

■■ Name

■■ Registration number

■■ Date of birth

■■ Address

■■ City

■■ Home phone number

■■ Score in subject 1

■■ Score in subject 2

■■ Average score

Based on the inputs that you have gained, let’s look at the tasks you need to perform
to solve the preceding problem.

Task List

� Identify the variables and data types to be used.

� Write the code to display the details.

� Execute the code.

30 Chapter 2

Identify the Variables and Data Types to Be Used

Based on the knowledge acquired and the information given in the problem statement,
the variables and their data types listed in Table 2.4 can be identified.

Write the Code to Display the Details

After identifying the variables and their types let’s write the code to assign values and
display the details of a student.

Program to display user details

reg_no=’S001’

name=’Michael’

dob=’10/8/1971’

add=’Amityville’

city=’San Francisco’

phno=’534-177-3312’

score1=70

score2=85

print “Student details are:”

print ‘-’*20

print “Registration Number:”, reg_no

print “Name:”,name

print “Date of Birth:”, dob

print “Address:”,add

print “City:”,city

print “Phone number:”, phno

avg_score=(score1+score2)/2

print “Average Score:”, avg_score

Table 2.4 Variables and Data Types Identified for the Problem Statement

VARIABLE NAME DATA TYPE DESCRIPTION

reg_no String Registration number

name String Student name

dob String Date of birth

add String Address

city String City

home_phno String Home phone number

score1 Integer Score in first subject

score2 Integer Score in second subject

avg_score Float Average score

Getting Started with Python 31

Figure 2.2 The output of the first problem.

Execute the Code

To be able to view the output of the preceding code, the following steps have to be
executed:

1. Type the code in a text editor.

2. Save the file as probstat1.py.

3. Make the directory where you have saved the file the current directory.

4. On the shell prompt, type:

$ python probstat1.py

Figure 2.2 shows the sample output.
You now have basic knowledge about the two data types, numbers and strings. Let’s

move on to the list, which is a sequence data type in Python.

Using Lists

Consider a situation where the information regarding 50 models of a car needs to be
stored. An integer or a string is capable of storing only one value at a time. In addition,
it is not easy to define and keep track of 50 integers or strings in a program. The solu-
tion is to declare one variable with 50 elements to store the information about the var-
ious car models. To solve this problem, Python allows the use of three compound data
types: lists, tuples, and dictionaries.

Lists are the most versatile of Python’s compound data types. A list contains items
separated by commas and enclosed within square brackets ([]). To some extent, lists
are similar to arrays in C. One difference between them is that all the items belonging
to a list can be of different data type. For example,

32 Chapter 2

>>> listvar=[‘abcd’,123,2.23,’efgh’]

>>> listvar

[‘abcd’, 123, 2.23, ‘efgh’]

Lists can be sliced in the same way as strings, and the same slicing rules for positive
and negative indices apply to lists as well. For example,

>>> listvar[0]

‘abcd’

>>> listvar[2]

2.23

>>> listvar[1:-1]

[123, 2.23]

Lists can also be concatenated and replicated as in the following examples:

>>> listvar[:3]+[‘fake’,3*2]

[‘abcd’, 123, 2.23, ‘fake’, 6]

>>> 3*listvar

[‘abcd’, 123, 2.23, ‘efgh’, ‘abcd’, 123, 2.23, ‘efgh’, ‘abcd’, 123, 2.23,

‘efgh’]

>>> 2*listvar+[‘genuine’]

[‘abcd’, 123, 2.23, ‘efgh’, ‘abcd’, 123, 2.23, ‘efgh’, ‘genuine’]

We have seen that strings are immutable data types and that individual elements in
strings cannot be changed. You can, however, change the individual elements in lists.

>>> listvar

[‘abcd’, 123, 2.23, ‘efgh’]

>>> listvar[3]=8-4j

>>> listvar

[‘abcd’, 123, 2.23, (8-4j)]

You can also nest lists; that is, a list can consist of another list. You can perform all
the operations of a list on that element. For example,

>>> listvar[1]=[888,’pqr’]

>>> listvar

[‘abcd’, [888, ‘pqr’], 2.23, (8-4j)]

You can also extract the slice of the slice. For example,

>>> listvar[1][0]

888

You can use the len() function to find the length of a list. For example,

>>> len(listvar)

4

>>> listvar[1]

[888, ‘pqr’]

Getting Started with Python 33

You can even assign elements to slices. This might involve replacing, removing, or
inserting items in a list. Here are a few examples:

>>> listvar[1][0]

888

>>> listvar[0:2]=[]

>>> listvar

[2.23, (8-4j)]

listvar[1:1]=[1234,’ddd’]

>>> listvar

[2.23, 1234, ‘ddd’, (8-4j)]

>>> listvar[1:2]=[‘007’,’xyz’]

>>> listvar

[2.23, ‘007’, ‘xyz’, ‘ddd’, (8-4j)]

>>> listvar[:0]=listvar

>>> listvar

[2.23, ‘007’, ‘xyz’, ‘ddd’, (8-4j), 2.23, ‘007’, ‘xyz’, ‘ddd’, (8-4j)]

Items can also be removed from a list by using the del statement if you know the
index position of the items, which have to be deleted. If you do not know the index
position, you can use the remove method.

>>> del listvar[0:5]

>>> listvar

[2.23, ‘007’, ‘xyz’, ‘ddd’, (8-4j)]

>>> del listvar[0]

>>> listvar.remove(‘xyz’)

>>> listvar

[‘007’, ‘ddd’, (8-4j)]

You can add items at the end of a list by using the append method. For example,

>>> listvar.append([123,’abcd’])

>>> listvar

[‘007’, ‘ddd’, (8-4j), [123, ‘abcd’]]

>>> listvar[3].append(999)

>>> listvar

[‘007’, ‘ddd’, (8-4j), [123, ‘abcd’, 999]]

You have learned about the two data types, strings and lists, in which you can
extract and manipulate items by indexing and slicing. Due to this reason, Python terms
these data types as sequence data types. Python also supports two more sequence data
types, tuples and dictionaries.

Using Tuples

A tuple is another sequence data type that is similar to the list. When you are writing
code, there are situations in which the mutability offered by the list data type can

34 Chapter 2

become a hindrance to the functionality of specific code. Therefore, Python has another
data type that is immutable, which is called a tuple. A tuple consists of a number of
values separated by commas. Unlike lists, however, tuples are enclosed within paren-
theses. For example,

>>> tup=(123,’abc’,345)

>>> tup

(123, ‘abc’, 345)

You can input a tuple without enclosing it in brackets; however, parentheses are
important when tuples are a part of larger expressions. For example, you may want to
nest tuples—that is, include a tuple in another tuple.

>>> atup=’hello’,532

>>> atup

(‘hello’, 532)

>>> anothertup=tup,(‘a’,’b’,’c’)

>>> anothertup

((123, ‘abc’, 345), (‘a’, ‘b’, ‘c’))

The main difference between lists and tuples is that tuples are immutable; it’s not
possible to assign values to or remove individual items in a tuple. Assigning a value to
an item or removing it by using its index gives an error.

>>> atup[1]=999

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

TypeError: object doesn’t support item assignment

You can use indices or slices to access values in a tuple. For example,

>>> tup[1]

‘abc’

>>> tup[0:2]

(123, ‘abc’)

>>> anothertup[:2]

((123, ‘abc’, 345), (‘a’, ‘b’, ‘c’))

>>> anothertup[1][0]

‘a’

To overcome the problem of immutability in a tuple, you can take portions of exist-
ing tuples to create a new tuple. For example,

>>> tup=(123,’abc’,345)

>>> tup

(123, ‘abc’, 345)

>>>tup1=(‘ggg’,1562)

>>> tupmain=tup+tup1

>>> tupmain

(123, ‘abc’, 345, ‘ggg’, 1562)

Getting Started with Python 35

In the previous example, two tuples, tup and tup1, are created individually. They
are assigned to another tuple, tupmain, by using the + operator. Note that the tuple
tupmain contains the values of both tup and tup1. This method can also be used to
add elements to the same tuple.

>>> tup=(‘a’,’b’)

>>> tup=tup+(‘c’,’d’)

>>> tup

(‘a’, ‘b’, ‘c’, ‘d’)

You can also create tuples with mutable objects, such as lists. Therefore, you can
change the values in the list. For example,

>>> tuple=(567,’ddd’,[123,3214,’abc’])

>>> tuple

(567, ‘ddd’, [123, 3214, ‘abc’])

>>> tuple[2][1]=5678

>>> tuple

(567, ‘ddd’, [123, 5678, ‘abc’])

In the previous example, first we created a tuple containing a list. Then, we success-
fully changed the first item in that list. Therefore, even if tuples are immutable, mutable
items contained in them can be changed.

If you want to create an empty tuple, you can assign a pair of parentheses to a
variable. The length of an empty tuple is 0. For example,

>>> tup=()

>>> tup

()

>>> len(tup)

0

If you want to create a tuple containing a single item, then a comma should follow
that item. Without a trailing comma, the type of the element is assumed as the type of
the variable being assigned instead of a tuple. For example,

>>> single=(‘welcome’)

>>> len(single)

7

In the preceding example, because you assigned a single item to single, the length
of the tuple should be 1, which contains a single string, ‘welcome’. The length is 7
because single now contains the string ‘welcome’ instead of a tuple. When a single
data item is enclosed within parentheses, it acts as a binder instead of as a delimiter for
tuples. To assign a variable to a single item, the item should be followed by a comma.
For example,

>>> tup=(‘welcome’,).

>>> tup

(‘welcome’,)

>>> len(tup)

1

36 Chapter 2

Using Dictionaries

The sequence data types that you have learned use a range of values to index the val-
ues in them. You have seen how indexing and slicing are used to access data items in
strings, lists, and tuples. What is the solution if you want to access a data item by using
a key, not an index? Dictionaries are useful in such situations. Dictionaries use keys to
index values in them. A dictionary is analogous to a telephone directory, which is used
in daily life. You look for the telephone number of a person based on the name of the
person. Similarly, in a dictionary, the values are mapped according to keys. The key
does not have to be a numeric value to index the data item; it can be any immutable
data type, such as strings, numbers, or tuples. A tuple can be used as a key only if it
does not contain any mutable object directly or indirectly. In other words, a Python dic-
tionary is an unordered set of key:value pairs. Python dictionaries are similar to Perl’s
associative arrays or hash tables.

The keys in a dictionary are unique; one key can be associated with only a single
value. The syntax of the dictionary entry is key:value. A dictionary is enclosed within
curly braces ({}). Each key:value pair is separated by a comma. The output of a dictionary
is also shown in the same way.

>>> dict={}

>>> dict1={‘name’:’mac’,’ecode’:6734,’dept’:’sales’}

>>> dict1

{‘ecode’: 6734, ‘dept’: ‘sales’, ‘name’: ‘mac’}

>>> dict

{}

In the preceding example, we created an empty dictionary dict by assigning a pair
of curly braces to it and another dictionary dict1 by assigning three key:value pairs
separated by commas to it.

A value can be extracted from a dictionary by using the key associated with it. For
example,

>>> dict1[‘dept’]

‘sales’

>>> dict1[‘ecode’]

6734

In the preceding example, the value associated with the key ‘dept’ is ‘sales’.
When you use a key belonging to a dictionary, the corresponding value is displayed.
You use keys for lookup in a dictionary instead of indices. In other words, it is possible
to access the data item by using the key associated with it. Any attempt to access a key,
which does not exist in the dictionary, gives an error. For example,

>>> dict1[‘telno’]

(most recent call last):

File “<stdin>”, line 1, in ?

NameError: name ‘telno’ is not defined

The dictionary is a mutable data type. Therefore, key:value pairs can be added to it
any number of times. In the other sequence data types that we discussed, both lookup

Getting Started with Python 37

and assignment are achieved using an index. In a dictionary, a new value can be added
or an old value can be changed by supplying a key enclosed in square brackets as an
argument. Therefore, for a dictionary, both lookup and assignment are achieved using
a key instead of an index.

>>> dict1[‘telno’]=’555-451243’

>>> dict1

{‘dept’: ‘sales’, ‘telno’: ‘555-451243’, ‘name’: ‘mac’, ‘ecode’: 6734}

In the preceding example, because ‘telno’ is not an existing key in dict1, a new
key:value pair will be added to dict1with key=’telno’ and value=’555-451243’.

It is not necessary for all the keys in a dictionary to belong to the same data type.
Let’s look at another dictionary where the keys are of different data types.

>>> dict3={‘2’:1234,2:’abc’,6.5:’troy’ }

>>> dict3

{6.5: ‘troy’, 2: ‘abc’, ‘2’: 1234}

In the preceding example, the first key ‘2’ is a string and is associated with the inte-
ger 1234; the second key is the integer 2 and is associated with a string ‘abc’; the
third key is a float 6.5 and is paired with a string ‘troy’.

If you want to extract all the keys in a dictionary, you can use the keys() method of
the dictionary object. The keys() method returns a list of the keys in random order.
For example,

>>> dict3.keys()

[6.5, 2, ‘2’]

The length of a dictionary is the number of key:value pairs in it.

>>>len(dict3)

3

Items can be removed from a dictionary by using the del statement. You can also
use the del statement to delete the entire dictionary, but usually you will not require
this. You can also clear the dictionary by using the clear() method.

>>> del dict1[‘ecode’] #Remove an entry with ‘ecode’

>>> dict1

{‘name’: ‘mac’, ‘telno’: ‘555-451243’, ‘dept’: ‘sales’}

>>> dict1.clear() #Remove all entries from dict1

>>> dict1

{}

>>> del dict1 #Delete dict1

>>> dict1

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

NameError: name ‘dict1’ is not defined

38 Chapter 2

We learned how you can assign values to variables in Python. Let’s see which words
can be used to name the variables you define.

Identifiers and Keywords
We have learned that a program refers to a variable by using its name. Every program-
ming language defines a set of rules, which must be respected to build variable names.
Such names are called identifiers. Among all names allowed in Python, certain identi-
fiers are reserved by the language and cannot be used as programmer-defined identi-
fiers. These names are called keywords. Python uses the following identifiers as
keywords.

KEYWORDS

and del for is raise

assert elif from lambda return

break else global not try

while def finally in print

continue exec import pass

class except if or yield

The Python interpreter defines certain rules for naming identifiers, which are as
follows:

1. Variable names should not have any embedded spaces or symbols such as ? !
@ # + - % ^ & * () [] { } . , ; : “ ‘ / and \. Underscores _
can be used wherever space is required. For example, basic_salary.

2. Variable names must be unique. For example, to store four different numbers,
four unique variable names need to be used. Identifiers are case-sensitive; that
is, uppercase letters are considered distinct from lowercase letters.

3. A variable name can have any number of characters.

4. A variable name must begin with a letter or an underscore, which may be fol-
lowed by a sequence of letters, digits (0 through 9), or underscores. The first
character in a variable name cannot be a digit.

NOTE The Python is a case-sensitive language. This means that the variable
customerName is not the same as the variable customername.

Different organizations lay down certain guidelines to be followed by a program-
mer while naming identifiers. These guidelines are aimed at improving the readability
of a program. Your program will compile even if you do not follow these guidelines
for naming identifiers. Generally, it is a good practice to follow these variable-naming
conventions.

Getting Started with Python 39

■■ Variable names must be meaningful and short. The names must reflect the data
that the variables contain. For example, to store the age of an employee, the
variable name can be employee_age.

■■ Variable names are normally written in lowercase letters.

■■ If a variable name contains two or more words, join the words and begin
each word with an uppercase letter. Otherwise, separate each word with an
underscore.

The following variable names are valid:

address1

employee_name

this_variable_name_is_very_long

The following variable names are invalid:

#phone

1stName

According to the Python standard, identifiers containing a double underscore (__)
or beginning with an underscore (_) are reserved for use by Python implementations
and standard libraries and should not be used as ordinary identifiers.

In this chapter, you have already learned that variable types are not declared in
Python. When you start writing longer code in later chapters, you will also learn that
you can assign a value to a variable whenever you need it; it is not necessary that all
variables in a program be declared in the beginning. This is not the case in many other
languages, though. Variables have to be declared by specifying the type they belong to
in the beginning of a code block. Python does not impose any such restriction; vari-
ables are automatically declared during the first assignment. After the variable has
been assigned to an object, it can be accessed using its name. Now, let’s see how the
Python interpreter manages memory.

Memory Management
Python declares the type and memory space required by a variable at run time. When
you create a variable, the Python interpreter creates an object whose type is deter-
mined by the type of value you assign to it. After the object is created, a reference to
that object is assigned to the variable, which is on the left-hand side of the assignment
statement.

The interpreter handles the memory management by itself. We have learned that
when we assign a value to a variable, a certain amount of space in the memory is allo-
cated to that variable. Therefore, in this process, some resources from the system are
borrowed and need to be returned to it eventually. In Python, all this is handled by the
interpreter automatically. When a variable is no longer being used—that is, it is not
using the memory—it is reclaimed to the system. This mechanism is called garbage
collection. The Python garbage collector automatically deallocates the objects that are
no longer required. Python enables the programmer to concentrate on the application

40 Chapter 2

being written, and the programmer need not worry about the lower level of resource
management tasks. Garbage collection is done by tracking the number of references
made to an object. This is referred to as reference counting.

Reference Counting

Python performs reference counting by keeping track of the number of references
made to an object in an internal variable called reference counter. When an object is cre-
ated, the reference counter is set to 1. Each time a reference is made to the variable,
the reference count is incremented by 1. This reference is made when another variable is
assigned to the same object. The reference can also be made when the variable is passed
as an argument to invoke a function, a method, or a class instantiation or assigned as a
data item in a sequence. The following examples increment the reference count for the
object in the variable bee.

bee=’abcd’

Initialize variable, reference count set to 1

ruf=bee

#Reference count incremented by assigning object to another variable

func(bee)

#Reference count incremented by calling a function

The reference count of an object is decremented when the execution of that function,
method, or class instantiation is completed. All the objects used in a piece of code are
destroyed after the execution of that piece of code is complete, which results in decre-
menting the reference count.

The reference count to an object is decremented when the variable containing that
object is reassigned to another variable. For example,

ruf=beast

The reference count to an object is also decremented when the variable containing
an object is deleted using the del statement. For example,

del ruf

The preceding del statement will decrement the reference count to the object
‘abcd’ by 1 and delete the variable ruf. Furthermore, deleting the variable bee will
delete the final reference to ‘abcd’; therefore, the object becomes inaccessible and
becomes a part of garbage collection.

This chapter has explained the standard data types and their basic features. Let’s
now use them to help the sales department of Techsity University, which wants to
calculate the total sales made on a particular day through its Web site.

Problem Statement
The sales department needs the daily sales report from its Web site for Thursday. On
that day, five students purchased online courses from the Techsity Web site. You need

Getting Started with Python 41

Table 2.5 Variables and Data Types Identified for the Problem Statement

NAMES OF CUSTOMERS TOTAL PURCHASES (IN $)

Ken 234

William 200

Catherine 120.34

Steve 124.3

Mark 175

to display the names of these students. You also need to display the total purchases
made by each student. The names of the students and the total purchases made are
given in Table 2.5.

Task List

� Create a sequence to store all the names of the students.

� Write the code to display the names of the students.

� Declare a dictionary of purchases made by students with the names of the

students as the key.

� Write the code to display the purchases made by the students.

� Save and execute the code.

� Verify the details.

Create a Sequence to Store All the Names
of the Students
In the preceding problem, you do not have to add or delete any items from the
sequence, so you can use either a list or a tuple to store the names of students.

stud_name=[‘Ken’,’William’,’Catherine’,’Steve’,’Mark’]

Write the Code to Display the Names of the Students
The following print statements can be used to display the name of each student con-
tained in stud_name.

print stud_name[0]

print stud_name[1]

print stud_name[2]

print stud_name[3]

print stud_name[4]

42 Chapter 2

Declare a Dictionary of Student Purchases
with the Names of the Students as the Key
You can declare the following dictionary, stud_pur, containing the name of each stu-
dent as the key and his or her purchases as the value corresponding to each key.

stud_pur={‘Ken’:234.0,’William’:200.0,’Catherine’:120.34,’Steve’:124.30,

’Mark’:175.0}

Write the Code to Display the Student Purchases
Print the purchases made by each student in the following manner.

print ‘The purchases made by’,stud_name[0],’are’,stud_pur[stud_name[0]]

print ‘The purchases made by’,stud_name[1],’are’,stud_pur[stud_name[1]]

print ‘The purchases made by’,stud_name[2],’are’,stud_pur[stud_name[2]]

print ‘The purchases made by’,stud_name[3],’are’,stud_pur[stud_name[3]]

print ‘The purchases made by’,stud_name[4],’are’,stud_pur[stud_name[4]]

Let’s combine the preceding code snippets to create a complete code as follows:

stud_name=[‘Ken’,’William’,’Catherine’,’Steve’,’Mark’]

print “Names of students who made purchases on Thursday are:”

print stud_name[0]

print stud_name[1]

print stud_name[2]

print stud_name[3]

print stud_name[4]

print ‘-’*40

stud_pur={‘Ken’:234.0,’William’:200.0,’Catherine’:120.34,

‘Steve’:124.30,’Mark’:175.0}

print ‘The purchases made by’,stud_name[0],’are’,stud_pur[stud_name[0]]

print ‘The purchases made by’,stud_name[1],’are’,stud_pur[stud_name[1]]

print ‘The purchases made by’,stud_name[2],’are’,stud_pur[stud_name[2]]

print ‘The purchases made by’,stud_name[3],’are’,stud_pur[stud_name[3]]

print ‘The purchases made by’,stud_name[4],’are’,stud_pur[stud_name[4]]

Save and Execute the Code
To be able to view the output of the above code, the following steps have to be
performed:

1. Write the previous code in a text editor.

2. Save the file as probstat2.py.

3. Change the current directory to where you have saved the above file.

4. In the shell prompt, type:

$ python probstat2.py

Getting Started with Python 43

Figure 2.3 Output of the second problem.

Verify the Details
Verify whether all the values are displayed correctly and match Figure 2.3.

Summary

In this chapter, you learned the following:

■■ The print statement is used in Python to display data in Python.

■■ The raw_input() function is used to accept input from the user.

■■ A comment begins from the hash/pound sign and continues until the end of
the line.

■■ The Python interpreter can act as a simple calculator. When you write an
expression in it, it returns a value. The expressions used in the Python inter-
preter are the same as the ones in most programming languages, such as C,
C++, and Pascal. The operators used are also the same, such as +, -, *, and /.

■■ Python uses objects for data abstraction. Any entity that contains any type of
value or data is called an object. You can classify all data as an object or as a
relation to an object. Each object has three characteristics: identity, type, and
value.

Identity. The identity of an object refers to the address of the object in the
memory. It is also a unique identifier that makes it distinct from the rest of
the objects. You can use the id() built-in function to obtain the memory
address of a variable.

44 Chapter 2

Type. The type of an object determines the operations that are supported by
an object. It also defines the values that are possible for the objects of that
type and the operations that can be performed on that object. The type()
built-in function can be used to determine the type of the Python object.

Value. The value of an object refers to the data item contained in that object.

■■ Objects whose values can be changed after they are created are called mutable
objects. Objects whose values cannot be changed after they are created are
called immutable objects.

■■ Variables are reserved memory locations to store values.

■■ Python variables do not have to be explicitly declared. The declaration happens
automatically when you assign a value to a variable. You can assign a value to
a variable by using the = sign.

■■ Python declares the type and memory space required by a variable at run time.
The interpreter also manages memory itself. When a variable is not used any
longer—that is, when it is not using the memory—it is reclaimed to the system.
This mechanism is called garbage collection. Garbage collection is done by track-
ing the number of references made to an object. This is referred to as reference
counting.

■■ Python has five standard data types:

■■ Numbers

■■ String

■■ List

■■ Tuple

■■ Dictionary

■■ Python uses the following types of numbers:

■■ Regular or plain integer

■■ Long integer

■■ Floating-point real number

■■ Complex number

■■ The arithmetic operators available in Python are, +, -, *, /, //, **, and %.

■■ A string can be defined by enclosing characters within single or double quotes.

■■ The method of extracting a single character or a substring from a string by
using an index or indices is called slicing. When using slice notation, two
indices that are separated by a colon can be used to extract substrings.

■■ A list contains items separated by commas enclosed within square brackets
([]). All the items belonging to a list need not be of the same data type. Like
strings, indices can be used to extract values from lists; however, lists are muta-
ble data types.

Getting Started with Python 45

■■ A tuple consists of a number of values separated by commas; however, unlike
lists, tuples are enclosed within parentheses. Tuples are immutable data types.
You can use indices or slices, though, to access the values in a tuple.

■■ In a dictionary, values are mapped according to keys. The key does not need to
be a numeric value to index a data item; it can be any immutable data type,
such as strings, numbers, or tuples. A tuple can be used as a key only if it does
not contain any mutable object directly or indirectly. In other words, the Python
dictionary is an unordered set of key:value pairs.

■■ Every programming language defines a set of rules to build variable names.
Such names are called identifiers. Among all names allowed in Python, certain
identifiers are reserved by the language and cannot be used as programmer-
defined identifiers. These names are called keywords.

46 Chapter 2

47

OBJECTIVES:

In this chapter, you will learn to do the following:

� Use more methods of accepting user input

� Format the output:

� The % operator

� The special characters

� The raw string operator

� Use intrinsic operations:

� For numeric data types

� For strings

� For lists and tuples

� For dictionaries

Intrinsic Operations
and Input/Output

C H A P T E R

3

C H A P T E R

Getting Started

In the previous chapter, we familiarized you with the syntax and the standard data
types used in Python. You also learned how to perform basic operations by using these
data types. You identified two ways of displaying the output, using the print state-
ment and using variables and expressions directly at the interpreter. That, however, is
not how you may always want to display the output. You might want a definite spac-
ing between each element, or you may need to print special characters that you cannot
do using these ways. In this chapter, you will learn how to format the output to
enhance its visual appeal. This chapter will further discuss the built-in functions that
you can use with each data type. You might require an input from a user in different
ways, or you might print an output by formatting it. Python provides many features
that enable you to accomplish these tasks. Let’s consider a scenario that will require the
use of these features to enhance your learning.

Using Input/Output Features and Intrinsic
Operations for Data Types in Python

Problem Statement
The data entry operator of Techsity University is asked to enter the details of the
courses. He wants the data he enters to be displayed on the screen for verification. Pre-
pare an output screen for him. The details he has to enter for each course are as follows:

■■ Course code

■■ Course title

■■ Course duration

■■ Course fee

■■ Start date

■■ End date

■■ Number of seats

He also wants additional information about the year in which a student will pass
out, based on the end date of the course.

Let’s identify the relevant tasks that will help you solve the problem.

Task List

� Identify the variables and data types to be used.

� Write the code to accept and display the details.

� Execute the code.

48 Chapter 3

Table 3.1 Variables and Data Types Identified for the Problem Statement

VARIABLE NAME DATA TYPE

course_code String

course_title String

course_dur Integer

course_fee Float

start_date String

end_date String

no_of_seats Integer

Identify the Variables to Be Used
Based on knowledge from the previous chapter, the variables shown in Table 3.1 can be
identified.

Let’s now identify the tools that will further equip you to find a solution to the prob-
lem statement.

Accepting User Input
You already learned about the built-in raw_input() function that prompts the user
with a string, accepts an input, and stores the input in the form of a string. For example,

>>> string=raw_input(‘Enter a string ‘)

Enter a string Daniel

>>> string

‘Daniel’

The preceding statements accept a string from the user and store the input in the
variable string. Consider the following example:

>>> ls=raw_input(‘Enter a list ‘)

Enter a list [‘aaa’,1234]

>>> ls

“ [‘aaa’,1234]”

>>> type(ls)

<type ‘str’>

In this example, notice that even if you enter a list object as the input, the value
stored by the raw_input() function in the variable ls is in the form of a string
object. To solve this problem, Python provides the input() built-in function. The

Intrinsic Operations and Input/Output 49

raw_input() function accepts the user input in the supplied form and stores the
input in the form of a string. The input() function first evaluates the user input,
determines if the user input is an expression, evaluates the type, and then stores it in a
variable. While storing the object of the data, the input function does not change the
type of the object to a string. For example,

>>> inp=input(‘Enter a list’)

Enter a list [‘aaa’,1234]

>>> inp

[‘aaa’, 1234]

>>> type(inp)

<type ‘list’>

Formatting the Output
In the previous chapter, you learned about some special characters that can be used in
the print statement to alter the way a string is displayed. These were backslash (\) to
include quotes in a string, backslash and n (\n) to escape new lines, and triple quotes
(‘’’,”””) to print a string in the original form. Let’s learn about some more format-
ting features in Python, such as the % operator, special characters, and the raw string
operator.

The % Operator

The way the % operator works in Python is similar to the printf() function in C. It
also supports the printf() formatting codes. The syntax for using the % operator is
this:

print_string % (convert_arguments)

In the syntax, print_string is the string that has to be printed as is. It contains %
codes, each of which matches the corresponding argument in convert_arguments.
Although the % operator converts the arguments according to the % codes supplied in
print_string, the outcome is always a string. In other words, the result of the for-
matting is printed in the form of a string. Table 3.2 lists various % codes.

Table 3.2 % Codes and Their Conversion

% CODE CONVERSION

%c Converts to a character

%s Converts to a string and applies the str() function to the
string before formatting

%i Converts to a signed decimal integer

50 Chapter 3

% CODE CONVERSION

%d Converts to a signed decimal integer

%u Converts to an unsigned decimal integer

%o Converts to an octal integer

%x Converts to a hexadecimal integer with lowercase letters

%X Converts to a hexadecimal integer with uppercase letters

%e Converts to an exponential notation with lowercase "e"

%E Converts to an exponential notation with uppercase "e"

%f Converts to a floating-point real number

%g Converts to the value shorter of %f and %e

%G Converts to the value shorter of %f and %E

Hexadecimal Conversion

Let’s consider a few examples of hexadecimal conversions by using the % operator.

>>> “%x” % 255

‘ff’

>>> “%X” % 255

‘FF’

The previous examples use the hexadecimal conversion code with the % operator.
Note that when used with lowercase x, the % operator generates the output in lower-
case letters and when used with uppercase X, the % operator generates the output in
uppercase letters.

Floating-Point and Exponential Notation Conversion

Consider a few examples of floating-point and exponential conversions by using the %
operator.

>>> ‘%f’ % 676534.32143

‘676534.321430’

>>> ‘%.2f’ % 676534.32143

‘676534.32’

Note that if .2 is used before f, two digits are printed after the decimal point.

>>> ‘%12.2f’ % 676534.32143

‘ 676534.32’

Intrinsic Operations and Input/Output 51

In the preceding example, we specified the minimum total width of the output as 12
and the digits after the decimal point as 2. Therefore, the output has 9 digits to display
and is padded with 3 spaces in the beginning.

>>> ‘%e’% 1332.234445

‘1.332234e+003’

>>> ‘%E’ % 1332.234445

‘1.332234E+03’

>>> ‘%f’ % 1332.234445

‘1332.234445’

>>> ‘%g’ % 1332.234445

‘1332.23’

Integer and String Conversion

Consider a few examples of integer and string conversions by using the % operator.

>>> ‘%d’ % 65

‘65’

>>> ‘%3d’ % 65

‘ 65’

>>> ‘%-3d’ % 65

‘65 ‘

In the preceding example, we used a number with %d. This is to specify the mini-
mum total width of the converted string from the integer. If the number specified is
more than the number of digits in the number, the string is padded with spaces in the
beginning. Specifying a negative number with %d pads the spaces to the right of the
printed number. For example,

>>> ‘%-4d’ % 65

‘65 ‘

Specifying a zero along with the specified number pads the string with zeros instead
of spaces. For example,

>>> ‘%03d’ % 65

‘065’

Using + with the % operator displays the + sign with the number passed in
convert_argument if it is a positive number.

>>> ‘%+d’ % 65

‘+65’

>>> ‘%+d’ % -65

‘-65’

The conversion can also be performed in a statement. Here’s an example of %s for a
string conversion in a print statement.

52 Chapter 3

>>> print “Your registration number is: %s” % ‘A001’

Your registration number is: A001

You can also pass multiple arguments to the % operator as a tuple. For example,

>>> print “The name for the registration number %s is %s” \

... %(‘A001’,’John’)

The name for the registration number A001 is John

>>> print “%s has opted for %d courses” % (‘Steve’,5)

Steve has opted for 5 courses

>>> print “mm/dd/yy:%02d/%02d/%02d” % (2,13,1)

mm/dd/yy:02/13/01

Following is an example in which you can use a dictionary as an argument for the %
operator.

>>> ‘The domain name in the host name %(Host)s is %(Domain)s’ %\

... {‘Domain’:’ucla’,’Host’:’Test12.mktg.ucla.edu’}

‘The domain name in the host name Test12.mktg.ucla.edu is ucla’

Special Characters

You might want the strings to include characters, such as tabs and quotes. To do this,
use some single characters paired with a backslash (\). These single characters along
with a backslash denote the presence of a special character. Let’s consider an example
of the NEWLINE character (\n).

>>> print “Hello \nworld!!!”

Hello

world!!!

Note that \n is not printed in the output. There is also a new line before the begin-
ning of the second word. In addition, when you have a long statement that exceeds a
single line, you can use a backslash to escape NEWLINE for continuing the statement.
For example,

>>> print “The name for the registration number %s is %s” \

... %(“A002”,”Steve”)

The name for the registration number A002 is Steve

To print special characters, you use not only the characters with a backslash but also
their decimal, octal, and hexadecimal values. For example,

>>> print “Hello \012world!!!”

Hello

world!!!

Table 3.3 lists various backslash escape characters along with their octal, decimal,
and hexadecimal equivalents.

Intrinsic Operations and Input/Output 53

Table 3.3 Escape Characters for Strings

ESCAPE NAME CHARACTER DECIMAL OCTAL HEXADECIMAL
CHARACTER

\n Newline\ LF 10 012 0x0A
Linefeed

\t Horizontal HT 9 011 0x09
Tab

\b Backspace BS 8 010 0x08

\0 Null NUL 0 000 0x00
character

\a Bell BEL 7 007 0x07

\v Vertical VT 11 013 0x0B
tab

\r Carriage CR 13 015 0x0D
return

\e Escape ESC 27 033 0x1B

\” Double “ 34 042 0x22
quote

\’ Single ‘ 39 047 0x27
quote

\f Form FF 12 014 0x0C
feed

\\ Backslash \ 92 134 0x5C

The Raw String Operator

Consider a situation in which you actually want to print \t in the output by using the
print statement. The moment the Python interpreter encounters an escape character,
the interpreter converts it into a special character. To counter this behavior, Python pro-
vides the raw string operator, uppercase or lowercase r. When preceded by an r, a
string is converted to a raw string. For example,

>>> s=r’Hello\n’

>>> print s

Hello\n

54 Chapter 3

Introduction to Intrinsic Operations

Intrinsic operations are built into the standard libraries in Python. These operations
can be performed on Python objects including standard data types. We already dis-
cussed some operations involving the standard data types. These include variable
assignments, forming expressions by using variables and operators, and some stan-
dard built-in functions. We briefly introduced the type() and id() functions in the
previous chapter. Let’s see how the id() and type() functions can be used to extract
the type and identity of an object. For example,

>>> type(‘abcd’)

<type ‘str’>

>>> type(0xdd)

<type ‘int’>

>>> a=9+4j

>>> type(a)

<type ‘complex’>

In the preceding examples, the type() function returns the type of the object
passed to it as the argument. The id() function can be used to return the memory
address of an object. For example,

>>> a=9+4j

>>> id(a)

9639792

>>> a=a+76

>>> id(a)

7965324

Notice that because number is an immutable data type, changing the value of a vari-
able that contains the number creates another object with another memory address
assigned to that object.

Intrinsic Operations and Input/Output 55

REGULAR EXPRESSIONS

The raw strings feature that enables the interpreter to counter the behavior of
special characters is useful when composing Regular Expressions. Regular
Expressions are special strings that are used to define special search models
for strings. They contain special symbols to denote characters, variable names,
character classes, and criteria according to which characters are grouped and
matched. Regular Expressions also contain the symbols that denote escape
sequences. Therefore, using raw strings helps avoid the confusion between the
escape sequences and characters that are a part of Regular Expressions.

>>> a=[31,’ddd’]

>>> id(a)

17429076

>>> a.append(‘abcd’)

>>> id(a)

17429076

Notice that in the previous examples, because list is a mutable data type, changing
the items in a list does not change the memory address of the list.

Another function that can be used on all data types is the cmp() function. The syn-
tax of the cmp() built-in function is this:

cmp(ob1,ob2)

The cmp() function compares two Python objects, ob1 and ob2, and returns 0 if
ob1 equals ob2, 1 if ob1 is greater than ob2, and -1 if ob1 is less than ob2.

>>> a,b=-8,13

>>> cmp(a,b)

-1

>>> hex(34)

‘0x22’

>>> cmp(0x22,34)

0

In the first example, an integer is compared with another integer, and therefore it
returns -1 because ob1 is less than ob2. In the second example, the hexadecimal value
of 34 is compared with 34. The result is 0 because both the numbers are converted to
the same form before comparison and therefore evaluate to the same value. In other
words, numeric data types are compared according to their numeric value.

Sequence objects, such as strings, lists, tuples, and dictionaries, can be compared
with other objects. The comparison is made using lexicographical ordering. This means
that first the Python interpreter compares the first two items. If they are different, the
output is determined based on this comparison. If they are identical, the next two items
are compared. If they differ, the output is determined by this comparison. This contin-
ues until the last item in the sequence is exhausted.

>>> cmp((1,2,3,4),(1,2,4))

-1

>>> a,b=’abc’,’pqr’

>>> cmp(a,b)

-1

If all the items in the two sequences are equal, the sequences are considered equal. If
the first few items of one sequence are the same as in the other sequence, the smaller
sequence is considered to be less than the longer one.

>>> cmp([123,’abc’,888],[123,’abc’])

1

56 Chapter 3

If the sequences being compared contain other sequences as their data items, the
comparison is made recursively.

>>> cmp([‘abcd’,(123,’abc’,555)],[‘abcd’,(123,’xyz’,897)])

-1

You can also compare objects of different types. The types are compared by their
names. Therefore, dictionaries are smaller than lists, lists are smaller than strings, and
strings are smaller than tuples.

In addition to the functions that can be performed on all data types, there are func-
tions that can be performed only on sequence types, such as the len(), max(), and
min() functions. We learned that the len() function is used to find the length of a
sequence. The max() and min() functions can be used to find the element with the
minimum and maximum values, respectively. For example, when using a string, these
functions return the highest and lowest characters, respectively.

>>> max(‘abc’)

‘c’

>>> min(‘abc’)

‘a’

Consider another example for lists as follows:

>>> list=[23,23.1,23L,234e-1]

>>> max(list)

23.399999999999999

>>> min(list)

23

When the elements of a sequence are of different types, each element is treated as a
separate object that has to be compared lexicographically. The order of precedence for
the standard data types is as follows:

dictionaries < lists< strings<tuples

>>> list_str=[‘jjj’,445,[‘vf’,23]]

>>> max(list_str)

‘jjj’

>>> min(list_str)

445

After the brief introduction to the operations on data types, let’s consider each data
type individually.

Intrinsic Operations for Numeric Data Types
The operations on numeric data types can be classified into conversion functions and
other operational functions. Table 3.4 lists the conversion functions that can be applied
to numeric data types.

Intrinsic Operations and Input/Output 57

Table 3.4 Conversion Built-in Functions for Numeric Types

FUNCTION DESCRIPTION EXAMPLE

int(ob) Converts a string >>>int('15')
or number object
to an integer. 15

long(ob) Converts a string >>>long('12')
or number object
to long. 12L

float(ob) Converts a string >>> float(10)
or number object
to a floating-point 10.0
number.

complex(string) Converts a string to >>> complex('76')
or a complex number (76+0j)
complex(real,imag) or takes a real >>> complex(45,8)

number and an (45+8j)
imaginary number
(optional) and returns
a complex number
with those components.

Python also provides a few operational functions for numeric data types. Table 3.5
lists the operational functions applicable for numeric types.

Table 3.5 Operational Functions for Numeric Types

FUNCTION DESCRIPTION EXAMPLE

abs(ob) Converts the string >>> abs(-13)
or number object
to its absolute. 13

>>> abs(5.)

5.0

coerce(ob1,ob2) Converts ob1 and ob2 >>> coerce(12.0,8)
to the same numeric
type and returns the (12.0, 8.0)
two numbers as a tuple.

>>> coerce(2,86L)

(2L, 86L)

58 Chapter 3

FUNCTION DESCRIPTION EXAMPLE

divmod(ob1,ob2) Divides ob1 and ob2 >>> divmod(10,6)
and returns both the
quotient and remainder (1, 4)
as a tuple. For complex
numbers, the quotient >>> divmod(10.6,3.4)
is rounded off. Complex
numbers use only the (3.0, 0.39999999999999991)
real component of the
quotient. >>> divmod(78,23l)

(3L, 9L)

pow(ob1,ob2,mod) Raises ob2 to the >>> pow(2,3)
power of ob1. Takes 8
an optional argument >>> pow(2,3,5)
mod, divides the result 3
by mod, and returns
the remainder.

round(flt,dig) Rounds off the float >>> round(67.5324)
flt to the dig digits
after the decimal point 68.0
and assumes 0 if dig
is not supplied. >>> round(4.46,1)

4.5

In addition to the built-in functions that are applicable for all numeric types, Python
has some functions applicable only to integers. These functions can be classified into
base and ASCII conversion functions.

You already know that Python supports the hexadecimal and octal representation of
numbers. You can use the base conversion functions to convert an integer into its hexa-
decimal or octal equivalent. These functions are hex() and oct(). Both functions
take an integer and return a corresponding hexadecimal or octal equivalent as a string.

>>> hex(35)

‘0x23’

>>> hex(677)

‘0x2a5’

>>> hex(4*789)

‘0xc54’

>>> hex(45L)

‘0x2DL’

>>> oct(863)

‘01537’

>>> oct(6253915L)

‘027666533L’

Intrinsic Operations and Input/Output 59

Python also provides functions to convert integers into their ASCII (American Stan-
dard for Information Interchange) characters and vice versa. Each character is mapped
to a unique numeric value from 0 to 255, listed in a table called the ASCII table. The
mapping remains the same for all machines using the ASCII table. The ord() function
takes a single character and returns the ordinal value associated with that ASCII char-
acter. For example,

>>> ord(‘d’)

100

>>> ord(‘D’)

68

>>> ord(‘l’)

108

To convert a value to its corresponding ASCII character, you can use the chr()
function. For example,

>>> chr(65)

‘A’

>>> chr(100)

‘d’

>>> chr(108)

‘l’

You saw how intrinsic operations on integers make it simple to handle program-
ming tasks for which you might have to write long code. Let’s learn some intrinsic
operations possible for strings.

Intrinsic Operations for Strings
We discussed the cmp(), max(), and min() standard type functions, which perform
lexicographic comparison for all types. We also discussed the len() sequence type
function, which returns the length of a sequence. In addition, the max() and min()
functions can be used to find the character with the minimum and maximum values,
respectively. For example,

>>> max(‘abc’)

‘c’

>>> min(‘abc’)

‘a’

Often, you might need to convert a value of a particular data type into a string.
Python allows you to do this in a number of ways.

The repr() function. You can pass an object of any data type to the repr()
function to convert it to a string.

>>> astr=repr(76)

>>> astr

‘76’

60 Chapter 3

Recall that the presence of double or single quotes indicates that astr is a string.

>>> ls=[43,12.23]

>>> bstr=repr(ls)

>>> bstr

‘[43, 12.23]’

>>>cstr=’xyz’

>>> ls=[astr,cstr]

>>> ls_str=repr(ls)

>>> ls_str

“[‘76’, ‘xyz’]”

The str() function. You can also pass the value to the str() function. For
example,

>>> a=’Flower \tred’

>>> b=78

>>> tup=(a,b)

>>> str(tup)

“(‘Flower \\tred’, 78)”

Note that using the str() function to convert to a string adds backslashes if a
backslash is already present. This happens regardless of the method you use to
convert to a string.

>>> print str(tup)

(‘Flower \tred’, 78)

As expected, the escape character and the backslash appear in the string when
displayed using with the print statement and is not replaced with the corre-
sponding special character, which is a horizontal tab in this case.

Reverse quotes (` `). You can write the value or variable in reverse quotes to
convert it to a string. This method works for all data types except numbers.

>>> tup=(‘rep’,’tree’)

>>> `tup`

“(‘rep’, ‘tree’)”

>>> jo=’welcome’

>>> string=`jo`

>>> string

“‘welcome’”

Note that when you enclose a string within reverse quotes, string quotes are
added to it.

>>> `5*30`

‘150’

If the value enclosed in the reverse quotes is an expression, it is evaluated first
and then converted into a string.

In addition to the functions discussed previously, Python also provides some com-
mon operations for strings in the form of methods. For example, the capitalize()
method capitalizes the first character of a string. These methods can be called using a
variable containing a string value.

Intrinsic Operations and Input/Output 61

>>> s=’hello’

>>> s.capitalize()

‘Hello’

Table 3.6 lists some of these methods for strings.

Table 3.6 String Type Built-in Methods

METHOD EXPLANATION

s.capitalize() Capitalizes the first letter of the
string s.

s.center(width) Centers the string in the length
specified by width and pads the
columns to the left and the right
with spaces.

s.count((sub[, start[, end]]) Counts the number of occurrences
of sub in the string s beginning
from the start index and
continuing until the end index.
Both start and end indices are
optional and default to 0 and
len(s), respectively, if not
supplied.

s.endswith(sub[, start[, end]]) Returns 1 if the string s ends with
the specified substring sub;
otherwise returns -1. Search
begins from the index start until
the end of the string. Default is to
start from the beginning and
finish at the end of the string.

s.expandtabs([tabsize]) Returns the string after replacing
all tab characters with spaces. If
tabsize is not given, the tab size
defaults to 8 characters.

s.find(sub[, start[, end]]) Returns the beginning index in the
string where the substring sub
begins from the start index and
continues until the end index.
Both start and end indices are
optional and default to 0 and
len(s) if not supplied.

s.index(sub[, start[, end]]) Similar to find() but raises
an exception if the string is not
found.

62 Chapter 3

METHOD EXPLANATION

s.isalnum() Returns 1 if all the characters in
the string s are alphanumeric and
there is a minimum of one
character; otherwise returns 0.

s.isalpha() Returns 1 if all the characters in
the string s are alphabetic and
there is a minimum of one
character, otherwise returns 0.

s.isdigit() Returns 1 if all the characters in
the string s are digits.

s.islower() Returns 1 if all the alphabetic
characters in the string are in
lowercase and there is at least
one alphabetic character;
otherwise returns 0.

s.isspace() Returns 1 if there are only
whitespace characters in the string
and otherwise returns 0.

s.istitle() Returns 1 if the string is in title
case. True only when uppercase
characters follow lowercase char-
acters and lowercase characters
follow only uppercase characters.
Returns false otherwise.

s.isupper() Returns true if all the alphabetic
characters in the string are in
uppercase and returns false
otherwise.

s.join(seq) Returns a string that is the
concatenation of the strings in the
sequence seq. The separator
between elements is the string s.
The sequence seq should contain
only strings.

s.ljust(width) Returns a copy of string s left
justified in the total number of
columns equal to width. Extra
width is padded by spaces. If the
length of the string is greater than
the width, it is not truncated.

Continues

Intrinsic Operations and Input/Output 63

Table 3.6 String Type Built-in Methods (Continued)

METHOD EXPLANATION

s.ljust(width) Returns a copy of string s right
justified in the total number of
columns equal to width without
truncating the string. Extra width is
padded by spaces.

s.center(width) Returns a copy of string s
centered in the total number of
columns equal to width without
truncating the string. Extra width is
padded by spaces.

s.lower() Returns a copy of the string
converted to lowercase.

s.upper() Returns a copy of the string
converted to uppercase.

s.swapcase () Returns a copy of the string after
converting uppercase characters
to lowercase and vice versa.

s.title () Returns a copy of the string after
converting the first letters of all
the words to uppercase and the
rest to lowercase.

s.lstrip() Returns a copy of the string after
removing the leading whitespaces.

s.rstrip() Returns a copy of the string after
removing the trailing whitespaces.

s.strip() Returns a copy of the string after
removing both leading and trailing
whitespaces.

s.replace(oldsub, newsub[, num]) Replaces all occurrences of the
substring oldsub in the string s
with newsub. If the optional
argument num is supplied, only
the first num occurrences are
replaced.

s.rfind(sub [,start [,end]]) Similar to find() except
rfind(), searches the string
backward.

s.rindex(sub[, start[, end]]) Similar to rfind() but raises
ValueError when the substring
sub is not found.

64 Chapter 3

METHOD EXPLANATION

s.split([sep [,num]]) Returns a list of substrings in the
string s, which is separated by
sep as the delimiter string. If num
is supplied, maximum num splits
are performed. If sep is either not
specified or None, the whitespaces
are treated as separators.

s.splitlines([keepends]) Returns a list of the lines in the
string, breaking at the end of lines.
Line breaks are not included in
the resulting list if keepends is
specified to be 0 (false).

s.startswith(prefix[,start[,end]]) Returns 1 if string starts with the
prefix, otherwise returns 0. If
start and end are specified, the
search begins from the start
index and finishes at the end
index. If not specified, the search
starts from the beginning and
ends at the last character of the
string.

s.translate (table[, deletechars]) Returns a copy of the string where
all characters in the optional
argument deletechars are
removed and the remaining
characters are mapped through
the given translation table, which
must be a string (256 characters).

Let’s look at some examples using the methods mentioned in Table 3.6.

>>> strpy=’python is my choice’

>>> strpy.title()

‘Python Is My Choice’

>>> strpy.center(30)

‘ python is my choice ‘

>>> strpy.find(‘oi’,6)

15

>>> strpy.isalpha()

0

>>> strpy.replace(‘ ‘,’:’,2)

‘python:is:my choice’

>>> strpy.startswith(‘th’,2,9)

Intrinsic Operations and Input/Output 65

1

>>> strpy.split()

[‘python’, ‘is’, ‘my’, ‘choice’]

>>> ‘=’.join([‘name’,’steve’])

‘name=steve’

The join() and split() methods can be used when you want to first split each
word in a line and then join it again using a separator. For example,

>>> ‘:’.join(strpy.split())

‘python:is:my:choice’

You can also perform the same task by using the replace() method as follows:

>>>strpy.replace(‘ ‘,’:’)

‘python:is:my:choice’

Intrinsic Operations for Lists and Tuples
The basic operations that can be performed with lists, such as assigning values to lists,
inserting items, removing items, and replacing items, were discussed in the previous
chapter. In this chapter, let’s learn more about lists. You are aware that lists and tuples
offer similar features of slicing and indexing except that lists are mutable and tuples
are not. You might wonder why Python needs two similar kinds of data types. Con-
sider an example to answer this question. There may be a situation in which you are
calling a function by passing data to it. If the data is sensitive, you want it to remain
secure and not be altered in the function. In such a situation, tuples are used, which are
mutable and cannot be altered in the function. Lists, though, are best suited for a situ-
ation in which you are handling dynamic data sets, which allow elements to be added
and removed as and when required. Python also allows you to convert lists to tuples
and vice versa, rather painlessly, by using the tuple() and list() functions, respec-
tively. These functions do not actually convert a list into a tuple or vice versa. They
create an object of the destination type containing the same elements as that in the orig-
inal sequence. For example,

>>> listvar=[‘abcd’,123,2.23,’efgh’]

>>> tupvar=tuple(listvar)

>>> tupvar

(‘abcd’, 123, 2.23, ‘efgh’)

>>> id (tupvar)

15802876

>>> id (listvar)

17426060

Notice that the identity of listvar is different from the identity of the converted
list tupvar. Note also that listvar is a list with the items enclosed in [] and that
tupvar is a tuple with its arguments enclosed in (). Similarly, a tuple can also be con-
verted to a list by using the list() function. For example,

66 Chapter 3

Table 3.7 List Type Built-in Methods

METHOD EXPLANATION

s.append(ob) Adds the object ob at the end of the list.

s.extend(seq) Appends the items in the sequence seq to the list.

s.count(ob) Counts the number of occurrences of the object ob in
the list.

s.index(ob) Returns the smallest index in the list where the object
ob is found.

s.insert(i,ob) Inserts the object ob at the ith position in the list.

s.pop([i]) Returns the object at the ith position or the last position
from the list, if not specified. It also removes the item
returned from the list.

s.remove(x) Removes the object ob from the list.

s.reverse() Reverses the items of the list.

s.sort([func]) Sorts the items in the list and uses the compare function
func, if specified.

>>> tup1=(123,’abc’,345)

>>> id(tup1)

17351292

>>> list1=list(tup1)

>>> id(list1)

17454260

Like strings, Python also provides some methods for lists to perform common oper-
ations on lists, such as adding, sorting, deleting, and reversing items. Table 3.7 lists
some of these methods for lists. Because tuples are immutable data types, these meth-
ods do not apply to tuples.

Let’s present some examples by using the methods mentioned in Table 3.7.

>>> listvar=[‘abcd’,123,2.23,’efgh’]

>>> listvar.append(45)

>>> listvar

[‘abcd’, 123, 2.23, ‘efgh’, 45]

>>> listvar.remove(2.23)

>>> listvar

[‘abcd’, 123, ‘efgh’, 45]

>>> listvar.insert(4,’elite’)

>>> listvar

[‘abcd’, 123, ‘efgh’, 45, ‘elite’]

>>> listvar.insert(1,’elite’)

Intrinsic Operations and Input/Output 67

>>> listvar

[‘abcd’, ‘elite’, 123, ‘efgh’, 45, ‘elite’]

>>> listvar.remove(‘elite’)

>>> listvar

[‘abcd’, 123, ‘efgh’, 45, ‘elite’]

>>> listvar.reverse()

>>> listvar

[‘elite’, 45, ‘efgh’, 123, ‘abcd’]

>>> listvar.sort()

>>> listvar

[45, 123, ‘abcd’, ‘efgh’, ‘elite’]

In the preceding examples, we appended an item at the end of the list listvar and
removed an object by specifying a value in the remove() method. Next, we inserted
‘elite’ at the fourth position and then at the first position in the list. Note that the
remove() method removes only the first occurrence of the object ‘elite’ from the
list. The reverse() and sort() functions reverse and sort the items in the list,
respectively.

You learned about the intrinsic operations that can be performed on lists. Due to the
mutability feature of lists, they are very flexible; other data structures can be built on
lists very easily. Lists can also function like stacks and queues. Let’s see how.

Lists as Stacks

You know of a stack as a pile of items, such as books or cards, in which the last item you
place is the first one that can be removed. This is exactly what a stack means in terms
of programming. The method of adding items to a stack is called “last-in, first-out”
(LIFO). A list can also be used easily as a stack. The last item added to a list can be the
first element to be retrieved. An item can be added to a list by using the append()
method. The last item can be removed from the list by using the pop() method with-
out passing any index to it. Consider the following example:

>>> stack=[‘a’,’b’,’c’,’d’]

>>> stack.append(‘e’)

>>> stack.append(‘f’)

>>> stack

[‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’]

>>> stack.pop()

‘f’

>>> stack

[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

>>> stack.pop()

‘e’

>>> stack

[‘a’, ‘b’, ‘c’, ‘d’]

Notice that when you use lists in this manner, the last element added is extracted
first and the element added before the last is extracted next.

68 Chapter 3

Lists as Queues

A list can also be used easily as a queue. In a queue, the first item added to a list can be
the first element to be retrieved. The method of adding items to a queue is called “first-
in, first-out” (FIFO). An item can be added to a list by using the append() method.
The last item can be extracted from the list by using an index of 0 in the pop()method.
Consider the following example:

>>> queue=[‘a’,’b’,’c’,’d’]

>>> queue.append(‘e’)

>>> queue.append(‘f’)

>>> queue

[‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’]

>>> queue.pop(0)

‘a’

>>> queue.pop(0)

‘b’

>>> queue

[‘c’, ‘d’, ‘e’, ‘f’]

The range() function

Lists allow the use of another function, range(), which creates a list containing an
arithmetic progression. This is useful when you need to iterate over a sequence of
numbers. Iteration is performed using a looping statement. Chapter 4, “Programming
Basics,” discusses looping statements in detail. Here are a few examples of values
returned by the range() function.

>>>range(7)

[0, 1, 2, 3, 4, 5, 6]

Notice that the list returned by the range() function does not contain the value
passed to it as the last item. range(7) returns exactly seven values in the list, starting
from the first legal index of the sequence of length 7. You can also specify the sequence
generated by the range() function to start from a different index or specify a differ-
ent increment. For example,

>>> range(3,7)

[3, 4, 5, 6]

In the preceding example, the resulting sequence starts from the first argument
passed to the range() function and ends at one less than the second argument passed.

>>> range(-10,-100,-40)

[-10, -50, -90]

In the preceding example, the third argument passed is the number by which the
values in the resulting list are incremented. Note that the items in the list differ by -40.

Intrinsic Operations and Input/Output 69

Intrinsic Operations for Dictionaries

You learned how a dictionary consists of key:value pairs and how each value can
be addressed by using a key in a dictionary. Like strings and lists, Python also pro-
vides some built-in methods for dictionaries. Table 3.8 lists the methods available for
dictionaries.

Here are a few examples of using dictionary methods.

>>> dict1={‘name’:’mac’,’ecode’:6734,’dept’:’sales’}

>>> dict1.values()

[6734, ‘sales’, ‘mac’]

>>> dict1.items()

[(‘ecode’, 6734), (‘dept’, ‘sales’), (‘name’, ‘mac’)]

>>> dict1.get(‘ecode’)

6734

>>> dict1.has_key(‘dept’)

1

>>> dict1.has_key(‘salary’)

0

Table 3.8 Dictionary Type Built-in Methods

METHOD EXPLANATION

dict.clear() Deletes all the elements in the dictionary
dict.

dict.items() Returns a list of key:value pairs in the
dictionary dict in the form of tuples.

dict.keys() Returns a list of keys in the dictionary
dict.

dict.values() Returns a list of values in the dictionary
dict.

dict.has_key(key) Returns 1 if key is in the dictionary dict;
otherwise returns 0.

dict.get(key,default) Returns the value for key or the value
default if key is not found in the
dictionary.

dict.setdefault(key,default) Similar to get() but sets the value
associated with key to default; None if
default is not specified.

dict.copy() Creates a copy of the object in dict.

dict.update(dict2) Adds the values in the dictionary dict2
to dict.

70 Chapter 3

In the preceding example, the dictionary dict1 is created and the values in it are
extracted. The items() method is used to return the tuples of the key:value pairs in
the dictionary, and the get()method is used to extract the value associated with a key.
In the end, the has_key method is used to find out if a key exists in the dictionary.

Write the Code
Based on the preceding discussion, the code for the problem statement in the begin-
ning of the chapter is as follows:

#Accept values

course_code=raw_input(‘Enter course code:’)

course_title=raw_input(‘Enter course title:’)

course_dur=input(‘Enter course duration (in hrs.):’)

course_fee=float(input(‘Enter course fee (in $):’))

start_date=raw_input(‘Enter course start date (mm/dd/yy):’)

end_date=raw_input(‘Enter course end date (mm/dd/yy):’)

no_of_seats=input(‘Enter no. of seats:’)

#Display the output

print

print ‘%-20s %-20s %-20s %-20s’% (‘Course Code:’,course_code,\

‘Course Title:’,course_title.title())

print ‘%-20s %-20d %-20s %-17.2f’% (‘Course Duration:’,\

course_dur, ‘Course Fee:’,course_fee)

print ‘%-20s %-20s %-20s %-20s’% (‘Start Date:’,start_date,\

‘End Date:’,end_date)

print ‘%-20s %-20d ‘% (‘No. of seats:’,no_of_seats)

ls=end_date.split(‘/’)

print’\n’*3

print ‘The year of passing out will be’, ls[2]

Execute the Code
To be able to view the output of the preceding code, the following steps have to be
executed:

1. Type the code in a text editor.

2. Save the file as prgIntroper.py.

3. Make the directory in which you saved the file the current directory.

4. On the shell prompt, type:

$ python prgIntroper.py

Use Figure 3.1 as a sample to enter the input.
Figure 3.2 shows the sample output.

Intrinsic Operations and Input/Output 71

Figure 3.1 The sample input.

Figure 3.2 The sample output.

72 Chapter 3

Summary

In this chapter, you learned the following:

■■ The input() function first evaluates the user input and its type and then
stores it in a variable. While storing the object of the data, the input function
does not change the type of the object to a string.

■■ The way the % operator works in Python is similar to the printf () function
in C. It also supports the printf() formatting codes. The syntax for using the
% operator is this:

print_string % (convert_arguments)

■■ Backslash escape characters can be used to print special characters that other-
wise cannot be included in a string.

■■ When preceded by the raw string operator, uppercase or lowercase r, a string
is converted to a raw string.

■■ Intrinsic operations are built into the Python standard libraries and can be
performed on data types.

■■ The id() function can be used to return the memory address of an object.

■■ The cmp() function compares two Python objects, ob1 and ob2, and returns 0
if ob1 equals ob2, 1 if ob1 is greater than ob2, and -1 if ob1 is less than ob2.
The syntax of the cmp() built-in function is as follows:

cmp(ob1,ob2)

■■ The operations on numeric data types can be classified into conversion func-
tions and other operational functions.

■■ Any object containing a value can be converted to a string by using the follow-
ing ways:

■■ The repr() function

■■ The str() function

■■ Reverse quotes (` `)

■■ Python also provides some more common operations for strings in the form of
methods.

■■ Python allows you to convert lists to tuples and vice versa by using the
tuple() and list() functions, respectively.

■■ Like strings, Python also provides some methods for lists to perform common
operations on lists, such as adding, sorting, deleting, and reversing items.

■■ A list can also be easily used as a stack. The last item added to a list is the first
element to be retrieved. The method of adding items to a stack is called “last-in,
first-out” (LIFO).

Intrinsic Operations and Input/Output 73

■■ A list can also be easily used as a queue. In a queue, the first item added to a
list is the first element to be retrieved. The method of adding items to a queue
is called “first-in, first-out” (FIFO).

■■ The range() function creates a list containing an arithmetic progression.

■■ Python also provides some built-in methods for dictionaries.

74 Chapter 3

75

Programming Basics

C H A P T E R

4

C H A P T E R

OBJECTIVES:

In this chapter, you will learn to do the following:

� Use the following conditional constructs:

� if

� if...else

� elif

� nested if

� Use the following loop constructs:

� while

� for

� Use the following statements with loops:

� break

� continue

Getting Started

In the previous chapters, you learned about data types and variables and the intrinsic
operations performed on them. While programming, however, you need to use objects,
variables, and expressions in a clause that allows them to be executed after performing
a check. There are situations in which you may want to reference data items repeatedly,
perform operations on variables only when a certain condition holds true, or perform
different operations for different values of the same variable. Programming constructs
come in handy in such situations when you have to make choices or perform certain
actions based on whether a particular condition holds true. In this chapter, you will use
programming constructs, such as if...else, elif, while, for, break, and con-
tinue, and pass statements.

The conditions used in programming constructs usually resolve to either true or
false. Conditions contain operands and conditional operators. Before we learn about
programming constructs, let’s understand the various types of conditional operators
available in Python.

Conditional Operators
Conditional operators are used to compare values and test multiple conditions. The
various types of conditional operators used to perform operations in Python are these:

■■ Comparison operators

■■ Boolean logical operators

■■ Bitwise operators

■■ Membership operators (used for sequence only)

■■ Identity operators

Comparison Operators

Comparison operators, when used in an expression, evaluate to an integer value,
1, when the expression resolves to true and 0 when an expression resolves to false.
Table 4.1 describes the various comparison operators.

The Python interpreter uses the following rules for comparison operators:

■■ Arithmetic rules are used for comparison between numbers.

■■ Strings, lists, and tuples are compared lexicographically by matching the ASCII
value of each element in one sequence with that of the corresponding element
in the other sequence.

■■ Comparisons for dictionaries are also done lexicographically by matching
sorted lists of key:value pairs.

76 Chapter 4

Table 4.1 Comparison Operators

OPERATOR DESCRIPTION EXAMPLE EXPLANATION

== Evaluates whether the x==y Returns 1 if the values are
operands are equal. equal and 0 otherwise.

!= or <> Evaluates whether the x!=y Returns 1 if the values are
operands are not equal. not equal and 0 otherwise.

> Evaluates whether the x>y Returns 1 if x is greater
left operand is greater than y and 0 otherwise.
than the right operand.

< Evaluates whether the x<y Returns 1 if x is less than y
left operand is less than and 0 otherwise.
the right operand.

>= Evaluates whether the x>=y Returns 1 if x is greater
left operand is greater than or equal to y and
than or equal to the 0 otherwise.
right operand.

<= Evaluates whether the x<=y Returns 1 if x is less than
left operand is less than or equal to y and
or equal to the right 0 otherwise.
operand.

A few examples of using comparison operators follow:

>>> 32<50

1

>>> a=45

>>> b=15*3

>>> a==b

1

>>> a<=b

1

>>> a==b>50

0

>>> (1,2,3)<(1,2,4)

1

>>> ‘aaa’>’abc’

0

Boolean Operators

You can use Boolean operators to combine the results of Boolean expressions. Table 4.2
describes the various Boolean logical operators.

Programming Basics 77

Table 4.2 Boolean Operators

OPERATOR DESCRIPTION EXAMPLE RESULT

and Evaluates to false if the first x>5 and y<10 The result is true if
expression evaluates to false; condition1, x>5,
otherwise, if the first and condition2,
expression evaluates to true, y<10, are both
the and operator evaluates true. If one of them
to the value of the second is false, the result
expression. is false.

or Evaluates to true if the first x>5 or y<10 The result is true if
expression evaluates to false; either condition1,
otherwise, if the first x>5, or condition2,
expression evaluates to true, y<10, or both,
the or operator evaluates evaluate to true.
to the value of the second If both the condi-
expression. tions are false, the

result is false.

not Evaluates to true if its not x>5 The result is true if
argument is false and false condition is false
otherwise. and false if

condition is true.

The values returned by the operators and and or are not restricted to 0 or 1. Both
these operators return the last evaluated value. For example,

>>> x,y=45,65

>>> a,b=’abc’,’xyz’

>>> (x<y) and (a,b)

(‘abc’, ‘xyz’)

In the preceding example, the first expression is evaluated first. It is clear that the
first expression resolves to true. Therefore, the and operator evaluates to the value of
the second expression, which is a tuple.

Bitwise Operators (Integer-Only)

Data is stored internally in binary format (in the form of bits). A bit can have a value of
1 or 0. Bitwise operators are used to compare integers in their binary formats.

Table 4.3 summarizes the details of bitwise operators.

78 Chapter 4

Table 4.3 Bitwise Operators

OPERATOR DESCRIPTION EXAMPLE EXPLANATION

~(NOT) Evaluates to a binary ~x Results in -(x+1).
value after a bitwise
NOT on the operands.

& (AND) Evaluates to a binary x&y Bitwise AND results
value after a bitwise in a 1 if both the
AND on the operands. bits are 1; any other

combination results
in a 0.

|(OR) Evaluates to a binary x|y OR results in a 0
value after a bitwise OR when both the bits
on the two operands. are 0; any other

combination results
in a 1.

^(XOR) Evaluates to a binary x^y XOR results in a 0 if
value after a bitwise both the bits are of
XOR on the the same value and
two operands. 1 if the bits have

different values.

<<(Left shift) Left expression is x<<y Multiplies x by 2y.
shifted to the left by
number of bits in the
right expression.

>>(Right shift) Left expression is x>>y Divides x by 2y.
shifted to the right by
number of bits in the
right expression.

In the examples shown in Table 4.3, x and y are integers and can be replaced with
expressions. When you are applying bitwise operators, keep the following facts in mind:

■■ Negative numbers are treated as their binary complement value.

■■ When performing a bitwise comparison of two numbers, each bit of one num-
ber is compared with the corresponding bit of the other. This evaluates to a
binary number. The result is the binary number converted to its decimal value.
For example, the bitwise and operation between binaries 1011 and 1001 will
result in 1001, as shown in the following representation:

1 0 1 1

1 0 0 1

1 0 0 1

Programming Basics 79

■■ A left or right shift for an integer by N bits is equivalent to multiplication or
division by 2N, respectively.

■■ Shift operators (<< and >>) do not perform an overflow check for plain inte-
gers. This means that if the absolute value of the result is more than 231, the
operation deletes extra bits and flips the sign.

Let’s discuss a few examples of using the numbers 25 (11001), 50 (110010), and 38
(100110).

>>> ~38

-39

>>> ~-38

37

Note that bitwise NOT for 38 returns -39=-(38+1) and bitwise NOT for -38 returns 37=-
(-38+1).

>>> 38&50

34

>>> 38|25

63

>>> 38^50

20

Note that bitwise AND, OR, and XOR compare each bit of the binary values of the
operands and evaluate the resulting binary to its decimal value to display the result.

>>> 25>>2

6

>>> 38>>3

4

>>> 50<<4

800

Observe that a right shift of 25 by 2 is equal to 25/22, which, in turn, is equal to 6.
Similarly, a right shift of 38 by 3 is equal to 38/23. The left shift of 50 by 4 is equal to
50*24, which, in turn, is equal to 800.

Membership Operators

In addition to the operators discussed previously, Python has membership operators,
which test for membership in a sequence, such as strings, lists, or tuples. They are
shown in Table 4.4.

80 Chapter 4

Table 4.4 Membership Operators

OPERATOR DESCRIPTION EXAMPLE EXPLANATION

in Evaluates to true if it finds x in y in results in a 1 if x
a variable in the specified is a member of
sequence and false otherwise. sequence y.

not in Evaluates to false if it finds x not in y not in results in a
a variable in the specified 1 if x is a member
sequence and true otherwise. of sequence y.

Let’s see a few examples using membership operators.

>>> ‘a’ in ‘This is a good software’

1

>>> 12 in (‘aaa’,12,’abc’)

1

In the preceding examples, the left operand is searched in the right operand, which
is the object of a sequence, and the result is displayed depending on whether the left
operand is found in the right operand. Note that the operand on the left of a member-
ship operator can be only a single item.

Identity Operators

Identity operators compare the memory locations of two objects. Table 4.5 lists the
identity operators available in Python.

Table 4.5 Identity Operators

OPERATOR DESCRIPTION EXAMPLE EXPLANATION

is Evaluates to true if the x is y is results in 1 if
variables on either side of the id(x) equals
operator point to the same id(y).
object and false otherwise.

is not Evaluates to false if the x is not y is not results in
variables on either side of the 1 if id(x) is not
operator point to the same equal to id(y).
object and true otherwise.

Programming Basics 81

Here are a few examples using the membership operators.

>>> p=’hello’

>>> ps=p

>>> ps is p

1

In the preceding example, the object ‘hello’ is stored in the variable p and then
the variable p is assigned to ps. This means that both p and ps contain the same object.
Therefore, the is operator returns 1.

>>> g=123

>>> f=123

>>> g is f

0

Assigning the same values to different variables does not mean that the variables
contain the same object. The is operator compares the identity of objects. Therefore,
the operator returns 0. Note that objects are considered the same only when they reside
in the same memory location. Assigning the same value to another variable does not
make the objects equal.

A long expression in a condition may contain multiple operators. In this situation,
Python uses the order of precedence to resolve the expression.

Order of Precedence of Operators
Whenever multiple operators are used in a single expression, they are evaluated in a
specific order of precedence. To change the way an expression is evaluated, though,
you can enclose the expression to be evaluated first in parentheses (). Table 4.6 shows
the order of precedence of the operators in Python. Those with the same level of prece-
dence are listed in the same row. The order can be changed using parentheses at appro-
priate places. In all operator groups, the order of precedence is from left to right.

Table 4.6 Order of Precedence of Operators

TYPE OPERATORS

Boolean logical or and not

Membership in not in

Identity is is not

Comparison < <= >= > <> != ==

Bitwise | ^ &

Shifts << >>

Additive + -

82 Chapter 4

TYPE OPERATORS

Multiplicative * / %

Positive, negative +x -x

Exponentiation **

After discussing conditional operators, let’s discuss how you can use them in
programming constructs in the Techsity University scenario where programming
constructs are used extensively to create reports of students.

Using Programming Constructs

Problem Statement
Techsity University currently has 50 students and 3 trainers. The university does not
have an online site. It has a manual system of creating reports for students. John, a
trainer, has been assigned the task of creating reports for all students. He finds it
tedious first to manually enter data and then to calculate the total score and grades for
50 students. He is planning to shift to an automated system of generating the reports.
He needs to write a program in Python that should first accept the name and registra-
tion number of each student and then accept scores for four subjects. The score in any
subject cannot be greater than 100. The code written should also check that the user
enters all values. The program should calculate the total score and percentage for each
student and then evaluate that student’s grades based on the following criteria:

SCORE GRADES

Greater than or equal to 80 A

From 60 through 79 B

From 40 through 59 C

Below 40 Fail

At the end of the calculation for each student, the program should print a report
containing the registration number, name, and grade of the student. It should then con-
firm whether the user wants to continue entering scores for the next student.

Task List

� Identify the control and loop statements to be used.

� Write the code.

� Execute the code.

Programming Basics 83

Identify the Control and Loop Statements to Be Used
Programming constructs are of two types:

■■ Conditional constructs
■■ Looping constructs

Let’s look at each of these in detail.

Conditional Constructs
Conditional constructs are used to incorporate decision making into programs. The
result of this decision making determines the sequence in which a program will execute
instructions. You can control the flow of a program by using conditional constructs.
These constructs allow the selective execution of statements depending on the value of
the expressions associated with them. This section will discuss the programming con-
structs available in Python, such as if, if...else, elif, and nested if.

The if Statement
The if statement of Python is similar to that of other languages. The if statement con-
tains a logical expression using which data is compared, and a decision is made based
on the result of the comparison. The syntax of the if statement is:

if condition:

statement_true

All the statements indented by the same number of character spaces after a pro-
gramming construct are considered to be part of a single block of code. Python uses
indentation as its method of grouping statements.

In the if statement, condition is evaluated first. If condition is true—that is, if
its value is nonzero—then the statements in the statement_true block are executed.
Otherwise, the next statement following the statement_true block is executed. For
example,

>>> x=10

>>> if x>0:

... print ‘Hello’

In this example, the if statement prints Hello if the value of the variable x is
greater than 0.

The else Statement
An else statement can be combined with an if statement. An else statement con-
tains the block of code that executes if the conditional expression in the if statement
resolves to 0 or a false value. The syntax for the if...else construct is this:

if condition:

statement_true

else:

statement_false

84 Chapter 4

To print whether a given integer variable is even or odd, the code will be this:

if num%2==0:

print ‘even’

else:

print ‘odd’

In the preceding example, ‘even’ is printed if the modulo of the division of num by
2 is 0; otherwise, ‘odd’ is printed.

The elif Statement

While making decisions, you may want to include a condition in the else statement
so that the statements in the else block are executed only when that condition is true.
The elif statement in Python allows you to test multiple expressions for one truth
value and executes a particular block of code as soon as one of the conditions evaluates
to true. The syntax for an elif construct is this:

if condition1:

statement1_true

elif condition2:

statements2_true

:

:

elif condition:

statementN_true

else:

statement_none_of_above

The following example uses an elif construct to determine if the input character is
a vowel. Otherwise, it prints an appropriate message.

in_chr=raw_input(“Enter a character:”)

if(in_chr == ‘a’):

print”Vowel a”

elif (in_chr == ‘e’):

print”Vowel e”

elif (in_chr == ‘i’):

print”Vowel i”

elif (in_chr == ‘o’):

print”Vowel o”

elif(in_chr == ‘u’):

print”Vowel u”

else:

print “The character is not a vowel”

The preceding code takes input from the user in the variable in_chr. It checks if the
value of in_chr equals a. If the condition is satisfied, it prints Vowel a. If the condi-
tion is not satisfied, the control of the program moves to the first elif statement. This
goes on until a satisfying condition is found in the elif statements. If a match is found
in an elif statement, the statement block in that elif statement is executed and then

Programming Basics 85

the control comes out of the if construct. If it does not find a match, the control moves
to the else statement. If the user enters the value o, the output is Vowel o. If the user
enters h, none of the conditions in if and elif statements is met. Therefore, the out-
put The character is not a vowel is displayed.

Nested if

You may also want to see what happens when you want to check for another condition
after a condition resolves to true. In such a situation, you can use the nested if con-
struct. In a nested if construct, you can have an if...else construct inside another
if...else construct. The following code uses a nested if construct to check if the
input character is an uppercase or a lowercase letter.

inp=raw_input(‘Enter a character’)

Find if the character is lowercase or uppercase

if (inp >= ‘A’):

if(inp <= ‘Z’):

print “Uppercase”

elif (inp >= ‘a’):

if(inp <= ‘z’):

print “Lowercase”

else:

print “Input character > z”

else:

print “Input character > z but less than a”

else:

print “Input character less than A”

You might be confused by now about deciding which else statement belongs to
which if statement. The answer to this is indentation. Notice that each line in a basic
block is indented by the same number of character spaces.

In the preceding example, consider a case where the user enters the value D. The exe-
cution of the code will be as follows:

1. Check if the input value (D)>= 'A'. If yes, check if the input value <= 'Z'.

2. In this case, because the input value (D) >= 'A' and <= 'Z', the output will be
Uppercase.

Similarly, consider the case where the user enters f. The execution of the code would
be as follows:

1. Check if the input value (f)>= 'A'. Because the input value ‘f’ is not >= 'A'
and is not <= 'Z', the control passes to the elif statement that belongs to the
second if statement.

2. The elif statement will check if the input value >= 'a' and <='z'. Because it is,
the output will be Lowercase.

If all the preceding three if statements return false, the output will be 'Input
character > z'.

86 Chapter 4

So far, all the conditional statements that you have worked with execute in a linear
fashion. This means that these statements execute only once and stop when the condi-
tion is fulfilled. There might be situations, though, when you want a set of statements
to repeat a specific number of times. Loops can be used to achieve this type of
functionality.

Looping Constructs

A loop is a construct that causes a section of a program to be repeated a certain number
of times. The repetition continues while the condition set for the loop remains true.
When the condition becomes false, the loop ends and the program control is passed to
the statement following the loop. As against conditional constructs, which execute
only once, loop constructs execute continuously until the evaluating condition is no
longer satisfied. This section will discuss the various looping constructs in Python,
such as while and for statements. In addition, you will also learn about break and
continue statements, which are used with looping constructs.

The while Loop

The while loop is one of the looping constructs available in Python. The while loop
continues until the evaluating condition becomes false. The evaluating condition has
to be a logical expression and must return either a true or a false value. The general
syntax for the while loop is this:

while evaluating_condition:

repeat_statements

Figure 4.1 shows the sequence of steps for the execution of a while loop.

Figure 4.1 Sequence of execution of the while loop.

Initialization

False

True

Evaluate
Condition

Body of Loop

Re-initialization

Programming Basics 87

The following code demonstrates the use of the while loop:

n=input(‘Enter a number greater than 1 ‘)

num1=0

num2=1

print num1

while(num2<n):

print num2

num2=num1+num2

num1=num2-num1

The output of the preceding code when the user enters the value 200 will be:

enter a number greater than 1 200

0

1

1

2

3

5

8

13

21

34

55

89

144

In the preceding code, the statements indented in the while loop are executed
repeatedly until the variable num2 becomes greater than 200. With each iteration, the
value of num2 increments by the value of num1, and the value of num1 changes to the
current value of num2 after subtracting num1.

Infinite Loops
You must be extremely cautious while using while loops because the condition you
specify in a while loop might never resolve to a false value. This results in a loop that
never ends. Such a loop is called an infinite loop. An infinite loop might be useful in
client/server programming where the server needs to run continuously so that client
programs can communicate with it as and when required. Infinite loops, however, do
not generate the required output in all types of programs. The execution of an infinite
loop depends on whether the loop was supposed to run forever. Consider the follow-
ing code snippet:

>>>i=1

>>>while i==1:

... reg_no=raw_input(“Please enter your reg number “)

... tot_score=score(reg_no)

... print “Your total score is “, tot_score

In the preceding code, the value of the variable i is initialized to 1. The first state-
ment inside the while loop asks for user input. The second statement calls the

88 Chapter 4

score() function that evaluates the total score. The third statement prints the total
score evaluated by the score() function. Therefore, the while loop executes until the
value of i remains 1. This loop will execute infinitely because the condition in the
while loop will never resolve to Boolean false. Let’s change the preceding code to
solve the problem as shown here:

>>>i=1

>>>while i==1:

... reg_no=raw_input(“Please enter your reg number “)

... if valid(reg_no)==1:

... tot_score=score(reg_no)

... print “Your total score is “, tot_score

... i=0

... else:

... print “You haven’t entered a valid registration number”

Now, you have successfully solved the problem of an infinite loop. In this code
snippet, if a user enters a valid registration number, the total score of the user is calcu-
lated and the variable used in the condition is assigned to Boolean false. The loop is
executed again only when the user enters an invalid registration number.

The break Statement

You might face a situation in which you need to exit a loop when an external condition
is triggered. What do you do in such a situation? The break statement comes to your
rescue. It causes the program flow to exit the body of the while loop and resume the
execution of the program at the next statement after the while loop. The break state-
ment can be used to force an early exit from a loop or to implement a loop with a test
to exit in the middle of the loop body. A break statement within a loop should always
be protected within an if statement that enables you to check the exit condition.

a=input(‘Enter an integer ‘)

num1=0

num2=1

print num1

while (num2 < a):

print num2

num2 = num1+num2

num1 = num2 - num1

if num2==89

break

The preceding code is the same code that generates the Fibonacci series. The if
statement inside the while loop checks if the value of num2 is 89 and uses the break
statement to terminate the loop. The output of the code will be this:

Enter an integer 200

0

1

1

2

Programming Basics 89

3

5

8

13

21

34

55

The continue Statement

The continue statement returns the control to the beginning of the while loop. There
is, however, a misconception among budding programmers that the continue state-
ment continues to execute the current iteration of the loop and moves the control to the
next iteration. This statement is correct to a certain extent. What does the continue
statement actually do? Instead of continuing the current iteration and then returning
the control to the beginning of the loop, the continue statement rejects all the remain-
ing statements in the current iteration of the loop and moves the control back to the top
of the loop. Therefore, it skips any statement following the continue statement in the
body of the loop. The following code illustrates the continue statement:

num=0

reply=’y’

while(reply!=’n’):

num=int(raw_input(“Enter a number: “))

if(num>100):

print “The number is greater than 100. Enter again”

continue # The statements after this will be skipped

print “The square of the number is “,num*num

reply=raw_input(“Do you want to enter another y/n “)

This code requests a user to enter a value and prints its square. If the value entered
by the user is greater than 100, the user is asked to enter a value again. This while loop
is executed as many times as the user wants to input a value. Save this code as a .py file.
Run the module on the Shell prompt. Figure 4.2 shows a sample output of the code.

Figure 4.2 Output of the code showing the continue statement.

90 Chapter 4

The for Loop

The for loop in Python has the ability to iterate over the items of any sequence, such
as a list or a string. The general syntax of the for loop is this:

for iterating_var in sequence:

statements_to_repeat

If a sequence contains an expression list, it is evaluated first. Then, the first item
in the sequence is assigned to the iterating variable. Next, the statements in the
statements_to_repeat block are executed. Each item in the list is assigned to
iterating_var, and the statements_to_repeat block is executed until the
entire sequence is exhausted. Let’s see how the for loop works with different types of
sequences. Consider the following example for a string sequence.

>>> for letter in ‘Greece’:

... print ‘current letter:’, letter

The output of the preceding code will be this:

current letter: G

current letter: r

current letter: e

current letter: e

current letter: c

current letter: e

When a for loop iterates over a string, the iteration variable assumes the value of a
single character in each iteration. You might not use such a for loop to traverse a
string. A more useful way to traverse a string is to use the in operator or one of the
module functions that we covered in Chapter 2, “Getting Stated with Python.” The
output of a for loop that is printed in the form of single characters can be used to indi-
cate that a string is used as the sequence in the for loop rather than a sequence of
objects, such as a list.

You might want to print a list containing the names of people along with the lengths
of their names. A for loop can be easily used for this purpose. Let’s see how:

>>>names=[‘Laurie’,’James’,’Mark’,’John’,’William’]

>>> for x in names:

... print ‘The name %-3s is %d characters long’ % (x,len(x))

In this code, the % symbol is used to format the output of the code and the len()
function is used to calculate the length of each item in the list names . The output of
this code will be this:

The name Laurie is 6 characters long

The name James is 5 characters long

The name Mark is 4 characters long

The name John is 4 characters long

The name William is 7 characters long

Programming Basics 91

We have seen how to use the for loop when we have to iterate over a string or a list.
But how do we iterate over a sequence of numbers? Let’s see how.

The break and continue Statements

In an earlier section of this chapter, you learned how to use break and continue
statements in a while loop. You can also use the break and continue statements in
a for loop. The break statement breaks out of the current iteration of a loop typically
when a condition is met. For example,

>>> names=[‘Laurie’,’James’,’Mark’,’John’,’William’]

>>> for i in range(len(names)):

... if len(i)>6:

... break

... print i,names[i]

...

0 Laurie

1 James

2 Mark

3 John

The preceding code iterates over list names and finds an item in the list whose
length is greater than 6. As soon as this happens, the for loop breaks.

You can use the continue statement to continue with the next iteration of the loop.
Consider the following code in which the user is asked to enter a password and a max-
imum of three chances is allowed. If the password is found valid, then the current iter-
ation of the for loop is interrupted. Otherwise, the iterating variable is decremented
by 1 and the loop is continued to the next iteration.

valid=0

i=3

while i>0:

inp=raw_input(“Enter the password”)

for pass in passwordlist:

if inp==pass:

valid=1

break

if not valid:

print “invalid password”

i=i-1

continue

else:

break

The else Statement Used with Loops

In Python, a loop can also have an else statement associated with it. How does this
work? If the else statement is used with a for loop, the else statement is executed
when the loop has exhausted iterating the list. The following example illustrates the
combination of an else statement with a for statement that searches for prime num-
bers from 10 through 20.

92 Chapter 4

>>>for num in range(10,20): #to iterate on every number

...#between 10 to 20

... for i in range(2,num): #to iterate on the factors of the

... #number

... if num%i==0: #to determine the first factor

... j=num/i #to calculate the second factor

... print ‘%d equals %d * %d’ % (num,i,j)

... break #to move to the next number, the

... #first FOR

... else:

... print num, ‘is a prime number’

The output of the preceding code will be this:

10 equals 2*5

11 is a prime number

12 equals 2*6

13 is a prime number

14 equals 2*7

15 equals 3*5

16 equals 2*8

17 is a prime number

18 equals 2*9

19 is a prime number

The pass Statement

The pass statement is used when a statement is required syntactically but you do not
want any command or code to execute. The pass statement is a null operation;
nothing happens when it executes. For example,

>>> a=1

>>> if a==1:

pass

The preceding code does not execute any statement or code if the value of a is 1. The
pass statement is helpful when you have created a code block but it is no longer
required. You can then remove the statements inside the block but let the block remain
with a pass statement so that it doesn’t interfere with other parts of the code.

Result

Based on the preceding discussion, the programming constructs that you will use to
generate reports are as follows:

■■ The report has to be generated for a maximum of 50 students. Therefore, you
need to have a while loop that executes until the number of students reaches 50.

■■ You need to check whether the user has not skipped entering the name, regis-
tration number, and score in any subject. You can do this by using an if or a

Programming Basics 93

while statement. Using the while statement with a variable having a Boolean
true value will be the appropriate option. This variable should become false
when the user enters a value for a name or a registration number; the while
loop will repeat itself until the user does not enter a value for the variable. If
you use the if statement, you cannot force the control of the program to go
back to the statement that checks if the user does not enter a value again.

■■ You also need to have if and elif statements to decide the grade of a student
based on the specified criteria.

■■ Then, you need to have a statement that checks whether the user wants to con-
tinue entering details for another iteration of the first while loop. You can use
an if...else construct for this purpose. This if statement will check if the user
input matches the allowed sequence of items in a list.

■■ This if statement should also contain a statement to increment the value of the
counter variable used in the first while loop. The else statement should con-
tain a break statement to end the first while loop if the user does not want to
continue.

Write the Code
The code for the problem statement in the beginning of the chapter is as follows:

i=1

while (i<=50): #Repeats the loop 50 times

while 1:

#Takes user input for name and then checks if its length is 0

name=raw_input(“Enter the name “)

if len(name)==0:

continue

else:

break

while 1:

#Takes user input for name and then checks if its

#length is not 0

reg_no=raw_input(“Enter the registration number “)

if len(reg_no)==0:

continue

else:

break

j=1

tot_score=0

while j<=4:

#Iterates 4 times for 4 subjects

print ‘Enter score in subject’, j

score=raw_input()

if len(score)==0 or int(score)>100:

#Checks for the length of score and that they are

#not greater than 100

continue

else:

94 Chapter 4

j=j+1

#Goes back to next iteration only when user has

#entered a valid value

tot_score=tot_score+ int(score) #Calculates total score

percent=tot_score/4

if percent>=80:

#Evaluates the grade

grade=’A’

elif percent>=60:

grade=’B’

elif percent>=40:

grade=’C’

else:

grade=’Fail’

for clear in range(35):

#Prints 40 blank lines

print

print ‘-’*60

print “Name :”, name

print

print “Registration no. :”, reg_no

print

print “Grade :”, grade

print ‘-’*60

for y in range(10):

print

choice=raw_input(“Do you want to enter details for \

another student? “)

choices=[‘y’,’Y’,’yes’,’Yes’,’YES’]

if choice in choices:

#Checks if the user wants to add another value

i=i+1

for clear in range(40):

#Prints 40 blank lines

print

else:

break

Execute the Code
To be able to view the output of the preceding code, execute the following steps:

1. Type the code in a text editor.

2. Save the file as prgStat.py.

3. Make the directory where you have saved the file the current directory.

4. On the Shell prompt, type:

python prgStat.py.

Figure 4.3 shows the sample input.

Programming Basics 95

Figure 4.3 Sample input for executing the code.

Figure 4.4 shows a sample output.

Figure 4.4 Sample output.

96 Chapter 4

Summary

In this chapter, you learned that:

■■ Conditional operators are used to compare values and test multiple conditions.
They are classified as:

■■ Comparison operators

■■ Bitwise operators

■■ Boolean logical operators

■■ Membership operators

■■ Conditional constructs are used to allow the selective execution of statements.
The conditional constructs in Python are these:

if...else

elif

nested if

■■ Looping constructs are used when you want a section of a program to be
repeated a certain number of times. Python offers the following looping
constructs:

while

for

■■ The break and continue statements are used to control the program flow
within a loop.

Programming Basics 97

99

OBJECTIVES:

In this chapter, you will learn to do the following:

� Use user-defined functions

� Use the following arguments:

� Formal:

Required

Keyword

Default

� Variable-length:

Keyword

Non-keyword

� Pass functions as arguments

� Return values from functions

� Use lambda forms
Continues

Functions

C H A P T E R

5

C H A P T E R

OBJECTIVES (CONTINUED)

� Use built-in functions:

� apply()

� filter()

� map()

� Scope variables

Getting Started

In Chapter 4, you learned about programming constructs, which are used to make choices
or perform certain actions based on whether a particular condition is true. In a real-life
scenario, your code will be written in multiple code blocks that perform multiple actions.
When these code blocks are written one after the other, the readability of the code is
affected. Another programmer reading the code may not understand the action per-
formed by each code block. Moreover, in order to reuse a specific code block, you need
to create multiple copies. This chapter will move a step further and discuss functions.

Functions add reusability, modularity, and overall programming simplicity to code.
Functions also provide programmers with a convenient way of designing programs in
which complex computations can be built. After a function is properly designed, a pro-
grammer does not need to bother about how the calculations are done in it. It is suffi-
cient that the programmer knows what the function does and simply ensures that the
required parameters are passed to it. Therefore, to the programmer, the function itself
becomes a black box.

Consider a situation in which the execution of a lengthy program generates an error.
It is difficult to debug such a program manually by scanning each line of code. You can
break up the related lines of code into functions. This helps you debug only the piece
of code that does not execute properly or generates errors.

Using Functions

Problem Statement
Techsity University wants to add a sign-up page on its Web site for its students. The
sign-up page will accept user details, such as first name, last name, and date of birth.
Based on these details, the page should suggest four possible login ids. The criteria for
suggested login ids are stated in the text that follows. The examples provided here are
based on the name John Smith and the date of birth December 24, 1978.

Login1. First name followed by the first letter of the last name (for example, johns).

Login2. First name followed by the first letter of the last name and the month
and day of birth (for example, johns1024).

100 Chapter 5

Login3. First letter of the last name followed by first name and the year of birth
(for example, sjohn78).

Login4. First letter of first name followed by the last name and the age (for exam-
ple, jsmith23).

Task List

� Identify the functions to be used.

� Write the code.

� Execute the code.

Let’s learn about functions that help us solve this problem.

Functions
A function is a block of organized, reusable code that is used to perform a single, related
action. In other words, it is a set of related statements that provides a structured way of
organizing the logic in your program. Python supports the following types of functions:

■■ User-defined functions

■■ Lambda forms

■■ Built-in functions

User-Defined Functions
You can define functions to provide the required functionality. Function blocks begin
with the keyword def followed by the function name and parentheses (()). Any input
parameters or arguments should be placed within these parentheses. You can also
define parameters inside these parentheses. The first statement of a function can be an
optional statement—the documentation string of the function or docstring. The code
block within every function starts with a colon (:) and is indented. The syntax for a
function declaration is this:

def functionname(parameters):

“function_docstring”

function_suite

The following example illustrates a user-defined function:

def fnsquare(num):

x=0

x=num*num

print x

In the preceding example, the name of the function is fnsquare and the block of
code consists of the statements that are indented after the colon.

Functions 101

After you have defined a function, you need to execute it to implement its
functionality.

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be
included in the function, and structures the blocks of code. After the basic structure of
a function is finalized, you can execute it by calling it from another function or directly
from the Python prompt. You can call a function by using the following types of formal
arguments:

■■ Required arguments

■■ Keyword arguments

■■ Default arguments

Required Arguments

Required arguments are the arguments passed to a function in correct positional order.
In addition, the number of arguments in the function call should match exactly with
the function definition. To call the function fnsquare from the Python prompt, exe-
cute the following statement:

>>>fnsquare(40)

This function call will pass the value 40 to num in the function definition. The func-
tion will, in turn, execute the statements inside the function body assuming the value
of num to be 40. The output of this function call will be 1600.

The function call should have exactly the same number of arguments that are
defined for the function that is called. In addition, the order in which the arguments are
placed in the function call should be the same as the order in which they were defined.
For example, the function fnsquare is defined for one argument only. Therefore, it
can take only one input value. If the function is called in any of the following ways, it
will return an error:

>>> fnsquare()

Traceback (most recent call last):

File “<pyshell#3>”, line 1, in ?

TypeError: fnsquare() takes exactly 1 argument (0 given)

>>> fnsquare(15,’hi’)

Traceback (most recent call last):

File “<pyshell#4>”, line 1, in ?

TypeError: fnsquare() takes exactly 1 argument (2 given)

>>> fnsquare(3.2)

10.24

Python, however, allows you to change the order of arguments or skip them. This
can be done using keyword arguments.

102 Chapter 5

Keyword Arguments

Keyword arguments are related to the function calls. When you use keyword arguments
in a function call, the caller identifies the arguments by the parameter name. Therefore,
this allows you to skip arguments or place them out of order because the Python inter-
preter is able to use the keywords provided to match the values with parameters. Let’s
consider the following example of the function to illustrate keyword arguments:

>>>def printx(x):

... print x

The standard calls to this function will be:

>>>printx(‘fff’)

>>>printx(32)

>>>y=’abc’

>>>printx(y)

You can also make keyword calls to the function in the following ways:

>>>printf(x=’fff’)

>>>printx(x=32)

>>>y=’abc’

>>>printx(x=y)

The following function illustrates a more realistic example. Consider a function,
stud_fn().

>>>def stud_fn(reg_no, name, score):

... print ‘The score for the student, ‘, reg_no, ‘ , is’, score

You can use keyword arguments to call this function in any of the following ways:

>>>stud_fn(score=86,reg_no=’S001’, name=’Laura’)

In this function call, the score parameter assumes the value 86, reg_no assumes
the value S001, and name assumes the value Laura. Notice that the order of parame-
ters is different in the definition of the function and its call. Keyword arguments allow
out-of-order arguments, but you must provide the name of the parameter as the key-
word to match the values of arguments with their corresponding names.

You can also skip arguments by using keyword arguments, as in the following:

>>>stud_fn(score=86,reg_no=’S001’)

In the preceding function call, you have used the keyword argument to “miss” the
argument name. This is allowed, though, only when you are using default arguments.

Default Arguments

When your functions have many arguments, it becomes a tedious job to pass values for
each of them. In such cases, you can specify default arguments. A default argument is an

Functions 103

argument that assumes a default value if a value is not provided in the function call for
that argument. This is extremely helpful for a programmer who has to extend the code
written by another programmer and does not have adequate knowledge to provide
more values as arguments. Another advantage of using default arguments occurs
while developing an application for an end user. When you provide default values,
you provide the consumer with the freedom of not having to choose a particular value.
The following example illustrates a situation in which a default argument is useful for
a Web scenario:

>>>def course_fee(fee, discount=0.15):

... print fee-(fee*discount)

...

>>>course_fee(500)

425.0

In the preceding code, the course_fee function takes the fee for a course as a
parameter and then displays the fee after subtracting the discount. In this code, fee is
the required parameter and discount is the default parameter, which takes a default
value of 15 percent. Students taking different courses in the university would want to
see course_fee that they have to pay for a course or a semester. If a student shows
extraordinary performance, then the university may want to give the student a higher
discount. You can override the default value of the discount by providing a different
value for the default argument. In the preceding example, you can specify a discount
of 20 percent while calling the course_fee function.

>>>course_fee(500,0.20)

400.0

By specifying a value for discount, you override the default value of 0.15, which
was specified when the function was defined. There is one thing that you should keep
in mind while specifying both default and required parameters for the same function:
You must place all the required parameters before the default parameters in the func-
tion definition. While calling the function, default parameters do not have to be neces-
sarily specified. Therefore, if mixed modes were allowed, it will become very difficult
for the interpreter to match each value with its corresponding parameter. A syntax
error is raised if the order of the parameters is not correct.

>>>def course_fee(discount=0.15,fee):

... print fee-(fee*discount)

SyntaxError: non-default argument follows default argument

You can change the order of default and nondefault arguments by using the key-
word arguments in the function call. Let’s look at keyword arguments again in relation
to default arguments. Consider the following code snippet that calculates the area of a
shape.

>>>def shape(type,radius=3,height=4,length=5):

... suite

104 Chapter 5

Table 5.1 Invalid Function Calls to the shape() Function

FUNCTION CALL EXPLANATION

shape() Required argument not specified.

shape(‘circle’,type=’cone’) Duplicate value of the parameter
specified.

shape(radius=3,’sphere’) Default argument specified before a
nondefault argument.

shape(type=’sphere’,3) Keyword argument specified before a
non-keyword argument.

shape(perimeter=30) Unknown keyword specified.

This function can be called in any of the following ways:

>>>shape(‘circle’)

>>>shape(radius=12,type=’sphere’)

>>>shape(‘cone’,3,4,5)

>>>shape(cylinder,3,4)

Table 5.1 lists the calls to the shape() function that will be invalid.
While calling a function, an argument list must first contain positional arguments

followed by any keyword argument. Keyword arguments should be taken from the
required arguments only. Moreover, you cannot specify a value for an argument more
than once.

Variable-Length Arguments

You may need to process a function for more arguments than you specified while
defining the function. These arguments are called variable-length arguments and are not
named in the function definition, unlike required and default arguments. You can use
these arguments when the number of arguments is unknown before run time or when
the number of arguments is different for subsequent calls of the function. Python sup-
ports both keyword and non-keyword variable arguments.

Non-keyword Variable Arguments

When you call a function, all formal arguments are assigned to their corresponding
variables as specified in the function declaration. The remaining non-keyword variable
arguments are assigned to a tuple. Variable-length arguments should follow all formal
parameters. The general syntax for a function with non-keyword variable arguments
is this:

def function_name([formal_args,] *var_args_tuple)

suite

Functions 105

An asterisk (*) is placed before the variable name that will hold the values of all non-
keyword variable arguments. This tuple remains empty if no additional arguments are
specified during the function call. Let’s consider an example to demonstrate the use of
non-keyword variable arguments.

>>> def tuple_func(formal1, formal2=’xyz’, *vartuple):

... print ‘formal argument 1 ‘,formal1

... print ‘formal argument 2 ‘,formal2

... for each in vartuple:

... print ‘ another argument ‘,each

Let’s call this function with different values.

>>>tuple_func(‘city’,’state’, 20)

The output of this call will be:

formal argument 1 city

formal argument 2 state

another argument 20

The first two values in the function call are assigned to the formal arguments
formal1 and formal2. There are no more formal arguments. Therefore, the tuple
vartuple assumes the third value.

>>>tuple_func(‘city’)

The output of this call will be:

formal argument 1 city

formal argument 2 xyz

The value in the function call is assigned to the first nondefault formal argument,
formal1. The default argument, formal2, contains the value that was assigned to it
during the function declaration. There are no further arguments present in the function
call; therefore, the tuple vartuple remains empty.

>>>tuple_func(‘USA’,’state’,20,’New York’,30.2)

The output of this call will be:

formal argument 1 USA

formal argument 2 state

another argument 20

another argument New York

another argument 30.2

The first two values in the function call are assigned to the formal arguments for-
mal1 and formal2. There are no more formal arguments left; therefore, the rest of the
values go into the tuple vartuple.

106 Chapter 5

Keyword Variable Arguments

You have already learned that when you call a function, first all formal arguments are
assigned to their corresponding variables. Then, the remaining non-keyword variable
arguments are assigned to a tuple. If there are still any more keyword arguments after
this, they are assigned to a dictionary. The general syntax for a function with the key-
word variable arguments is this:

def function_name([formal_args,][*var_args_tuple,] **var_args_dict)

suite

A double asterisk (**) is placed before the variable name that holds the values of all
keyword variable arguments. Let’s consider an example to demonstrate the use of non-
keyword variable arguments.

>>> def tuple_func(formal1, formal2=’xyz’,**vardict):

... print ‘formal argument 1 ‘,formal1

... print ‘formal argument 2 ‘,formal2

... for each in vardict:

... print ‘another keyword argument %s=%s’ %(each,vardict[each])

Let’s call the preceding function:

>>>tuple_func(‘city’,’state’, num=20.2,count=30)

The output of this call will be:

formal argument 1 city

formal argument 2 state

another keyword argument count=30

another keyword argument num=20.2

The first two values in the function call are assigned to the formal arguments
formal1 and formal2. There are no more formal arguments or non-keyword vari-
able arguments. Therefore, the third keyword value becomes a part of the dictionary
vardict. Similarly, the fourth keyword value becomes a part of vardict.

You can use both keyword and non-keyword variable arguments in the same
function. In such a case, however, the keyword variable arguments should follow the
non-keyword variable arguments.

def var_args_func(formal1, formal2=’xyz’,*vark,**varnk):

print “formal argument 1 “,formal1

print “formal argument 2 “,formal2

for eachk in vark:

print’another keyword argument: ‘, eachk

for eachnk in varnk:

print’another non-keyword argument %s=%s’ \

%(eachnk,str(varnk[eachnk]))

Functions 107

When you call var_args_func within the interpreter, the following output is
obtained:

>>> var_args_func(‘city’,30,’USA’,’2000’,reg=30,que=42)

formal argument 1 city

formal argument 2 30

another keyword argument: USA

another keyword argument: 2000

another non-keyword argument que=42

another non-keyword argument reg=30

The return Statement

You have learned that you can use arguments to pass input values to functions. You
can also make a function return a value by using the return statement. Returning a
value means that when the function is called, it returns the result of its operation to a
variable. The following example illustrates the use of the return statement.

>>>def add(num1,num2):

... return num1+num2

The preceding function takes two input parameters, adds them, and returns the
result.

The return value can be accessed in the following way:

>>>sum=add(14,24)

>>>print sum

In the preceding lines, the value returned by the add() function is stored in the
variable sum. This value can be retrieved at the Python prompt by using the print
statement. Values returned by a function can be passed to another as a parameter, as in
the following code, which calculates the square of the value returned by the add()
function.

>>>def square(sum):

... return sum*sum

The entire code that implements both of these functions will be:

def main_func(a,b):

def add(num1,num2):

return num1+num2

sum=add(a,b) #Return value of add stored in sum

def square(sum): #calculates the square of sum

return sum*sum

sq=square(sum)

return sq

108 Chapter 5

If the function call is made at the interpreter, the output of the preceding code will be:

>>>output=main_func(14,24)

>>>output

1444

When a call is made to the main_func function with input values 14 and 24, they
are stored in variables, a and b. The preceding code calculates the sum of two num-
bers, num1 and num2, in the add() function and stores the return value in sum. The
values of a and b, which are 14 and 24, are passed to add(). The values are then
stored in num1 and num2. The square() function takes sum as the input parameter
and returns the square of sum. The variable sq in main_func is used to store the
return value of the square function. The main_func then returns the value of sq.

NOTE Python does not allow you to call a function before the function is
declared.

Python allows you to return only one value or object from a function. How do you
return multiple values by using a return statement? You can do this by using a tuple
or a list. Consider the following example:

>>>def func():

... return (‘fff’,’city’,8023)

This function returns a tuple. You can store the values of this tuple in a variable as
follows:

>>>tup=func()

>>>tup

(‘fff’,’city’,8023)

In this assignment, the variable tup stores the entire tuple, which is returned by the
func function. You can also use as many variables as the number of parameters in the
function to assign the values.

>>>(a,b,c)=func()

>>>(a,b,c)

(‘fff’,’city’,8023)

or

>>>p,q,r=func()

>>>p,q,r

(‘fff’,’city’,8023)

In the preceding assignments, each of the variables a, b, c and p, q, r will be
assigned to its corresponding return value.

Functions 109

Passing Functions

In Python, functions are treated like any other object. The value of the function name
has a type. The interpreter recognizes this type as a user-defined function. This value
can be assigned to another variable, which can then be used as a function itself. It can
also be passed to other functions as arguments or can be elements of other objects, such
as lists and dictionaries.

Functions can be aliases to variables, but what are aliases? Let’s understand this by
using an analogy. A person may be addressed as Robert Jenkins by strangers and Bob
by his wife. Both the name and the alias actually refer to the same entity. In the follow-
ing code, there is a single function called ruf with an alias called bee.

>>>def ruf():

... print ‘ruf----’

...

>>>bee=ruf

>>>bee()

ruf----

While assigning bee to ruf, the same function object was assigned to bee. There-
fore, bee()can be invoked in the same way that ruf()was invoked.

NOTE When you write the name of a function without parentheses, it is
interpreted as the reference, such as ruf. When you write the function name
with parentheses, such as ruf(), the interpreter invokes the function object.

You can even pass function references to other functions as arguments. Let’s discuss
this in the following example:

>>>def bee(arg):

... arg()

The function can be called from the interpreter by using the following statement:

>>>bee(ruf)

ruf----

When you write the preceding statement on the Python prompt, the function object
ruf is passed to bee as an argument. The function bee() calls ruf() by assigning
arg to ruf. When arg() is executed in bee, ruf() is executed. You can also pass
objects of built-in functions to other functions as arguments.

Lambda Forms

You can use the lambda keyword to create small anonymous functions. These functions
are called anonymous because they are not declared in the standard manner by using
the def keyword. Lambda forms can take any number of arguments but return just

110 Chapter 5

one value in the form of an expression. They cannot contain commands or multiple
expressions. Lambda forms can be used whenever function objects are required; how-
ever, lambda forms do not create any names in the namespace if they are not assigned
to a variable. The entire syntax of lambda functions contains only a single statement,
which is as follows:

lambda [arg1 [,arg2,.....argn]]:expression

A corresponding single statement function will be:

def functionname([arg1 [,arg2,.....argn]]):

expression

Let’s understand this better by considering the following single statement function:

def func():

return ‘Hi’

The preceding function does not take any arguments and always returns ‘Hi’. You
can write the same code in Python in a single line as:

def func(): return ‘Hi’

You can write this single statement function in the lambda form as follows:

lambda: ‘Hi’

Table 5.2 contains some more examples of functions and their lambda forms.
A call to a lambda function cannot be made directly. It has to be either assigned to

another variable or returned as a part of another function. The following examples
illustrate calling lambda forms:

>>>x= lambda a,b: a*b

>>>x(5,6)

30

Table 5.2 Examples of Single Statement Functions and Their Lambda Forms

FUNCTION LAMBDA FORM

def prod(a,b) :return a*b lambda a,b: a*b

def prod2(a,b=6) :return a*b lambda a,b=6:a*b

def tuple_arg(*tup):return tup lambda *tup: tup

def many_args(tup=(‘a’,’b’),**dt): lambda tup=(‘a’,’b’),**dt:
return [tup,dt]

Functions 111

In the preceding statements, the variable x is assigned to the lambda form. When
you invoke x with the arguments 5 and 6, the corresponding lambda form is invoked.
The values are passed to a and b, the product of a and b is calculated, and the output
is displayed.

>>>x=lambda a,b=6:a*b

>>>x(10)

60

In the preceding statements, b is a default argument; therefore, you do not need to
supply a value to b. The lambda form can be invoked by assigning the lambda form to
the variable x. The value returned by the lambda expression is 60.

>>>s= lambda *tup:tup

>>>s(‘hgh’,23)

(‘hgh’, 23)

In the preceding statements, the argument tup of type tuple is passed to the lambda
expression. The lambda expression is called using the variable s. Note that the argu-
ments passed to the lambda expression are returned in the form of a tuple.

You can also enable a lambda form to return multiple values in the form of a list, a
tuple, or a dictionary. The preceding example used a tuple. Let’s examine an example
in which the return value is stored in a list.

>>>s= lambda tup=(‘hgh’,23),**dt: [tup,dt]

>>> s((56,23),f=656,g=23,h=23)

[(56, 23), {‘h’: 23, ‘g’: 23, ‘f’: 656}]

The lambda function mentioned previously takes two arguments, tup and dt. tup
is the default argument with two values, ‘hgh’ and 23, and dt is the keyword variable
argument. Note that the return variables are enclosed within square brackets, which
means that the return values of both tup and dt will be stored in a list. As in the other
examples discussed before, the lambda form is assigned to the variable s. Therefore,
this variable will now store the list containing the tuple and the dictionary. The first
two values were in enclosed parentheses; therefore, while calling the lambda form, the
values are passed to tup. The rest of the keyword values are passed to dt. Notice that
the first two values in the output belong to a tuple and the rest to a dictionary.

Built-In Functions

You have already learned about the built-in functions that perform operations on data
structures. In this section, you will learn about some more built-in functions that are
not related to a specific data structure. This chapter will discuss some of the built-in
functions here, such as apply(), filter(), map(), and reduce().

The apply() Function

The apply() function does not do anything different than any other user-defined or
built-in function does. When a function and its parameters are passed to the apply()

112 Chapter 5

function as arguments, the apply() function invokes an object of that function. The
syntax of the apply() function is this:

apply(object[,args[,kwargs]])

The function call ruf(‘sdsd’,23) is the same as the function call
apply(ruf,(‘sdsd’,23)). You can also pass the arguments of the ruf() function
to the apply() function by using a tuple as follows:

tup=(‘sdsd’,23)

apply(ruf,tup)

Each element of tup is passed to ruf() as a separate argument by using the
apply() function instead of an argument, which is tup. Why do you actually need to
use the apply() function? After all, it just invokes another function, which can be
done directly by calling that function. The apply() function is most useful when the
arguments that need to be passed to a function are generated at run time. Consider the
following example, which takes two numbers and an operator as user input. Based on
the operator, the corresponding math function is applied to the two numbers and the
result is displayed.

from operator import add, sub, mul

op=(‘+’,’-’,’*’)

nums=(int(raw_input(‘Enter number 1: ‘)),int(raw_input(‘Enter number 2:

‘)))

ops={‘+’:add,’-’:sub,’*’:mul}

ch=raw_input(‘Enter an operator, +/-/*: ‘)

if ch in op:

ans=apply(ops[ch],nums)

print ‘%s%s%s=%d’ %(nums[0],ch,nums[1],ans)

else:

print ‘invalid operator’

Let’s understand the apply() function by using the preceding code:

■■ op is a tuple containing all the possible values of operators that are allowed.
nums is another tuple that contains the two numbers entered by a user. ops is
the dictionary containing the corresponding math function objects that match
the operators.

■■ Using the if construct, the function checks whether the name of the operator
specified by the user is in op. The function then invokes apply() to call the
math function with the operator and two numbers in order to calculate the
correct solution.

The sample output of the code will be:

Enter number 1: 8

Enter number 2: 5

Enter an operator, +/-/*: *

8*5=40

Functions 113

The filter() Function

This function filters the items of a sequence based on a Boolean function and returns
another sequence of the same type. The sequence returned by the filter() function
contains only those values for which the Boolean function returns true. The syntax of
the filter() function is this:

filter(boo_func,sequence)

You can understand the working of the filter() function by reviewing Figure 5.1.
Let’s start with the original sequence seq, which has the elements seq[0], seq[1],

seq[2], ... seq[N]. For each item in the list, the Boolean function boo_func is called.
This function returns either 0 or 1 for each item. The result is another sequence of the
same type that contains the items for which boo_func has returned the value true.
The filter() function returns only the newly created sequence. Consider the fol-
lowing example, which accepts user input for the number of years, determines the leap
years, and returns a sequence containing leap years.

def leap(n):

return n%4==0

list_yr=[]

ch=raw_input(‘Do you want to enter a year? ‘)

while 1:

if ch in (‘y’,’yes’,’Y’):

yr=raw_input(‘Enter a year:’)

list_yr.append(int(yr))

ch=raw_input(‘Do you want to enter another year? ‘)

else:

break

leap_yrs=filter(leap,list_yr)

print ‘You have entered %d leap years, they are: \

%s’%(len(leap_yrs),leap_yrs)

Figure 5.1 Working of the filter() function.

Sequence
(seq)

Filtered
Sequence
(fil_seq)

seq[0]
fil_seq[0]

seq[2]
fil_seq[1]

boo_func

[seq[0] seq[1] seq[2] seq[N] [

[[

1 10

114 Chapter 5

By now, you are in a good position to understand this code. The preceding code
accepts user input values for the number of years and adds the year to list_yr. This
happens until the user wants to enter more values. filter() is called to determine
the leap years in the list_yr and stores them in leap_yrs. Here is an output sam-
ple for this code:

Do you want to enter a year? y

Enter a year:2000

Do you want to enter another year? y

Enter a year:1998

Do you want to enter another year? y

Enter a year:1954

Do you want to enter another year? yes

Enter a year:1564

Do you want to enter another year? n

You have entered 2 leap years, they are: [2000, 1564]

The preceding code can be written again using a lambda function, which generates
the same output:

list_yr=[]

ch=raw_input(‘Do you want to enter a year? ‘)

while 1:

if ch in (‘y’,’yes’,’Y’):

yr=raw_input(‘Enter a year:’)

list_yr.append(int(yr))

ch=raw_input(‘Do you want to enter another year? ‘)

else:

break

leap_yrs=filter(lambda n:n%4==0,list_yr)

print ‘You have entered %d leap years, they are: \

%s’%(len(leap_yrs),leap_yrs)

The map() Function

There can be situations in which you need to perform the same operation on all the
items of a sequence. The map() function helps you do this. The function map() takes
a sequence, passes each item contained in the sequence through a function, and returns
another sequence containing all the return values. The syntax of the map() function is
similar to filter():

map(function,sequence)

For example, if you want to add 3 to all the elements in a sequence, you can use the
map() function in the following way:

>>>map((lambda a:a+3),[12,13,14,15,16])

Functions 115

The output of this statement will be:

[15,16,17,18,19]

Another illustration to calculate the cubes of all the items in a sequence is as follows:

>>>map((lambda a:a**3),[1,2,3,4,5])

[1,8,27,64,125]

Yet another example that rounds off all the values in a sequence containing float
values is as follows:

>>>map(round,[13.4,15.6,17.8])

[13.0, 16.0, 18.0]

Figure 5.2 illustrates the working of a simple map() function.
As is evident from Figure 5.2, the map() function applies the specified function on

all the members of the sequence and returns the resulting sequence. You learned how
the map() function works with a single sequence containing N elements. In a more
complex case, the map() function can take multiple sequences, each containing the
same number of elements. In such a case, the map() function applies the given func-
tion on the corresponding elements of all sequences and returns the result in a tuple.

For example, the following call to map() adds the corresponding elements of the
two sequences.

>>>map(lambda a,b:a+b,[4,7,3],[2,6,8])

[6, 13, 11]

The preceding example has two sequences, [4,7,3] and [2,6,8], each of size 3.
Therefore, the values of and N and M are 2 and 3, respectively. Here,

func=a+b

seq1=[4,7,3]

seq2=[2,6,8]

Figure 5.2 Working of the map() function.

Sequence
(seq)

Mapped
sequence
(mapped_seq)

given _func
(seq[0])

given _func
(seq[1])

given_func

[seq[0] seq[1] seq[2] seq[N-1] [

[[given _func
(seq[2])

given _func
(seq[N-1])

116 Chapter 5

then,

map(func,seq1,seq2)

=[4+2,7+6,3+8]

=[6,13,11]

Consider a few more examples where the map() function returns a tuple after
applying the function on each element of the all sequences.

>>>map(lambda a,b:(a+b,a-b),[4,7,3],[2,6,8])

[(6, 2), (13, 1), (11, -5)]

Notice that in the preceding example, the mapped sequence contains tuples com-
prising the return values of the function. The first value in each tuple is the addition of
corresponding values in the sequences, and the second value is their subtraction.

The map() function can also accept None as the function argument. In this case,
map() will take the default identity function as its argument. The return value of the
map function will contain tuples with one element from each sequence.

>>>map(None, [4,7,3],[2,6,8])

[(4, 2), (7, 6), (3, 8)]

Consider the following code that requests the user to specify integers and displays
the square of all the values along with the original values.

def square(n):

return n*n

seq=[]

ch=raw_input(‘Do you want to enter a number? ‘)

while 1:

if ch in (‘y’,’yes’,’Y’):

inp=raw_input(‘Enter a number:’)

seq.append(int(inp))

ch=raw_input(‘Do you want to enter another value? ‘)

else:

break

print map(None,seq,map(square,seq))

The sample output of the preceding code will be:

Do you want to enter a number? y

Enter a number:15

Do you want to enter another value? y

Enter a number:17

Do you want to enter another value? y

Enter a number:31

Do you want to enter another value? n

[(15, 225), (17, 289), (31, 961)]

In the preceding code, all the values entered by the user are stored in seq. The map()
function is nested with another map() function. The inner map() function invokes the

Functions 117

square function and returns the sequence containing the squares of integers in seq.
The outer map() function takes None as the function argument, which means that the
resulting sequence will be the same as the sequence you passed in. Therefore, the result
contains tuples with each value from the original sequence and the sequence contain-
ing squares.

You have learned about functions. You have also learned to pass parameters to func-
tions. What are the rules that govern the use of variables inside and outside a specific
function? To answer this question, let’s learn about the scope of variables in the fol-
lowing section.

Scope of Variables
All variables in a program may not be accessible at all locations in that program. This
depends on where you have declared a variable. The scope of a variable determines the
portion of the program where you can access a particular identifier.

Global and Local Variables

Variables that are defined inside a function body have a local scope, and those defined
outside have a global scope. This means that local variables can be accessed only inside
the function in which they are declared whereas global variables can be accessed
throughout the program body by all functions. When you call a function, the variables
declared inside it are brought into scope. This happens at the time when a local name
is created for the object. This name survives until the function execution has completed.
After this happens, that name is removed from the scope.

global_var=12

def ruf():

local_var=34

return global_var+local_var

In the preceding example, global_var is a global variable and local_var is a
local variable. global_var is accessible inside both the main block of code and
ruf() while local_str is accessible only inside ruf().

Number of Scopes

By its syntax, Python allows multiple levels of functional nesting. In other words, a
variable declared inside a function is considered global to the function nested in the
first function. Therefore, Python imposes multiple levels of scope. Consider the fol-
lowing example:

c=’global’

def ruf():

a=’global for bee’

def bee():

b=’local for bee’

print a+b

118 Chapter 5

print c

print a

bee()

In the preceding code, b is local to bee() and a is local to ruf() but global to
bee(). Therefore, a, b, and c can be accessed inside bee() whereas a and c can be
accessed inside ruf().

The lambda form also has the same scoping rules as the other functions. If the
lambda form defines a new variable, then that variable is accessible only in the lambda
form and not inside any other part of the program. This means that a function or a
lambda form can access variables local to it, variables declared in levels above it, and
global variables. Consider the following example:

c=’global’

def ruf():

a=’a is global to lambda’

bee=lambda b: a+b

print bee(‘only lambda’)

In the preceding code, b is the parameter passed to the lambda form. Therefore, b is
local to the lambda form, but a and c are global for the lambda form.

Identify the Functions to Be Used
The following functions are used to generate login ids:

isblank(). This function ensures that the user does not miss entering the first
name, the last name, and the date of birth.

dobvalid_func(). This function ensures that the user enters a valid date of
birth, which includes a valid calendar month, day, and year.

age_func(). This function calculates the age based on the date of birth.

Write the Code
Let’s write the code for the problem statement.

import time

def isblank(var): #Function checks if the value passed in var is

blank

while len(var)==0: #and asks for another input

print ‘You can\’t leave it blank’

var=raw_input(“Enter a value: “)

return var

def second(f): #Takes object of first() as the parameter

id=f+str(day)+str(month) #and evaluates second value

return id

Functions 119

def dobvalid_func(): #Checks if the date of birth is valid

while 1:

if year<=0 or month<=0 or day<=0:

break

if cur_year<year: #Checks if current year

is less than year of birth

break

if month>12: #Checks if month of birth is greater than 12

break

if month in (1,3,5,7,8,10,12):#Checks if number of days in are

if day>31: #greater than 31 for applicable

#month

break

elif month in (4,6,9,11): #Checks if number of days in

#date of birth

if day>30: #are greater than 31 for

#applicable month

break

if year%4==0 and month==2: #Checks if in a leap year,

#number of days

if day>29: #in date of birth are greater than 29

break #for february

return 1

return 0

def age_func(): #Calculates age based on date of

birth

age=cur_year-year-1

if month<cur_month or (month==cur_month and day<cur_day):

age=age+1

return str(age)

t=time.localtime(time.time()) #Determines the current time in a list

cur_year=t[0] #Extract the current year from the list

cur_month=t[1]

cur_day=t[2]

fname=raw_input(“Enter your first name: “)

fname=isblank(fname) #Call isblank function for fname

lname=raw_input(“Enter your last name: “)

lname=isblank(lname) #Call isblank function for lname

while 1:

dob=raw_input(“Enter your date of birth, mm-dd-yyyy: “)

dob=isblank(dob) #Call isblank function for dob

if len(dob)<>10:

print “Enter date in correct format!!”

continue

month=int(dob[:2]) #Extract month from date of birth

day=int(dob[3:5]) #Extract day from date of birth

year=int(dob[6:10]) #Extract year from date of birth

120 Chapter 5

if dobvalid_func()==0: #Checks if dobvalid_func returns true

print “Invalid date of birth”

continue

else:

break

print ‘You can choose one of the following login names:’

first=fname+lname[0] #Evaluates the first value

print “1. “,first

print “2. “,second(first)# Calls second() with first value as the

argument

third=lname[0]+fname+str(year)[2:]

print “3. “,third #Evaluates the third value

fourth=fname[0]+lname+age_func()

print “4. “,fourth #Evaluates the fourth value

Execute the Code
To be able to implement or view the output of the code to create login ids, you need to
execute the following steps:

1. Write the preceding code in a text editor and save it with the .py extension.

2. At the shell prompt, type python followed by the name of the file if the file is
in the current directory.

3. At the prompt Enter your first name: , enter Laura.

4. At the prompt Enter your last name: , press enter (leave it blank).

5. At the prompt Enter a value: , enter Jones.

6. At the prompt Enter your date of birth, mm-dd-yyyy:, enter 24.

7. When you are prompted again to enter the date of birth, enter 12-24-1985.

Figure 5.3 illustrates the output of the execution of the previous code.

Figure 5.3 Output of the code.

Functions 121

Summary

In this chapter, you learned the following:

■■ A function is a block of organized reusable code that is used to perform a single,
related action.

■■ Python supports the following types of functions:

■■ User-defined functions

■■ Built-in functions

■■ Lambda forms

■■ The syntax for a function declaration is:

def functionname(parameters)

function_docstring

function_suite

■■ You can call a function by using the following types of formal arguments:

■■ Required arguments

■■ Keyword arguments

■■ Default arguments

■■ Required arguments are the arguments passed to a function in correct positional
order.

■■ Using keyword arguments in a function call identifies the arguments by parame-
ter name.

■■ A default argument is an argument that takes a default value if a value is not
provided in the function call for that argument.

■■ Variable-length arguments are not named in the function definition.

■■ You can also make a function return a value by using the return statement.

■■ Functions can be passed to other functions as arguments or can be elements of
other objects.

■■ The apply() function basically invokes an object of another function when that
function and its parameters are passed to the apply() function as arguments.

■■ The filter()function filters the items of a sequence based on a Boolean func-
tion and returns another sequence of the same type.

■■ The map() function performs the same operation on all the items of a sequence.

■■ The scope of a variable determines the portion of the program where you can
access a particular identifier.

122 Chapter 5

123

OBJECTIVES:

In this chapter, you will learn to do the following:

� Use modules

� Import modules

� Use namespaces and scope variables

� Examine the module search path

� Test modules

� Use module built-in functions:

� dir()

� locals()

� globals()

� reload()

� Use packages

Modules

C H A P T E R

6

C H A P T E R

Getting Started

In the previous chapter, you learned how functions provide a convenient way of
designing programs that add modularity and overall programming simplicity to code.
What happens when your code consists of many functions and it is typed in the Python
interpreter itself? If you quit the interpreter, the function and variable definitions that
you made are lost. In order to store your code for later use, you can write the code in a
module.

In this chapter, you will learn how to organize code in Python modules. You will
also learn how data is imported from modules into your programming environment.
You will also understand how modules can be organized into packages.

Using Modules

Problem Statement
Techsity University’s Web site consists of many pages containing forms that accept
user details, such as details related to signing up, buying courses, and more. Every
time a user enters details, he or she needs to be validated to determine whether the
user has entered valid values. This is mandatory before carrying out further data pro-
cessing. As a programmer, Jim is assigned the task of creating Python modules that
perform these validations. These modules can be used to validate similar types of data
whenever required. For example, many pages or forms on the University’s Web site
accept credit card numbers. The number needs to be validated before processing the
user’s requests. Jim will create a module that validates credit card numbers and can be
imported whenever a user enters a credit card number.

Similarly, other modules can also be created for different types of user input. Ini-
tially, the University requires modules only to validate the first name, the last name,
the date of birth, the quantity ordered by a user, and the credit card number.

Task List

� Identify the modules to be used.

� Write the code for each module.

� Execute the code.

Let’s learn about modules to solve this problem of validating user input.

Modules
When writing code for complex tasks, it is quite common that the code becomes so
large that you need to break it down into small pieces. In addition, there may be a func-
tion that you want to use in many programs without copying it into each program. You

124 Chapter 6

can organize these small pieces of code into Python files, called modules, for easier
maintenance. A module usually contains statements that have some relation with each
other, such as a function and its related declarations or unrelated statements, which are
written to perform a specific task. Modules can be made to interact with each other to
access each other’s attributes.

To be able to use a piece of code stored in a module, a module should be shared. The
process of bringing in the attributes, such as variables and functions, of one module
into another or at the interpreter itself is called importing. Importing is the basis of a
module in Python. It is this feature that allows variables and functions declared in one
module to be shared in different modules.

In other words, a module is a Python file containing Python definitions and state-
ments. The filename is the name of the module with the .py extension appended.
Here’s an example of a simple module, welcome.py.

def print_func(a):

print “Welcome”,a

Use any text editor to write the preceding code and save it as welcome.py.

Importing Modules

You can import a module by using the import statement. The syntax of the import
statement is this:

import module1[,module2[,... moduleN]

A module can be imported in another module or in the main module. The main
module forms the top level of the collection of variables that you can access in a script
and in the calculator mode.

When the interpreter encounters an import statement, it imports the module if the
module is present in the search path. A search path is a list of directories that the inter-
preter searches before importing a module. We will discuss the search path later in this
chapter.

To import the module welcome.py, type the following command in the interpreter:

>>>import welcome

>>>welcome.print_func(‘Jim’)

The output of the preceding statement will be:

Welcome Jim

Here’s another example of a module called fib.py, which generates the Fibonacci
series.

#fib.py

def fibonacci(a,num1=0,num2=1):

print num1

Modules 125

while num2<a:

print num2

num2=num1+num2

num1=num2-num1

In the Python interpreter, type the following command:

>>>import fib

This command does not execute the functions defined in the module directly; it only
enters the module fib in the current symbol table. To access the function inside the
module, use the following command:

>>>fib.fibonacci(100)

0

1

1

2

3

5

8

13

21

34

55

89

When a module is imported, the interpreter creates a byte-compiled version of the
module. This byte-compiled version of the Python file has the .pyc extension, and this
version is created in the same directory that contains the module. For example, for the
module fib.py, the byte-compiled version will be fib.pyc.

Namespaces and Variable Scope

A namespace maps names with objects. When a name is added to a namespace by
declaring a variable or a function, binding occurs and the name is said to have bound to
the object. Similarly, the process of changing the mapping of the name with the object
is called rebinding, and removing the mapping is called unbinding. At any given time
during execution, there are only two or three active namespaces. These are local,
global, and built-in namespaces. The names that can be accessed by the Python inter-
preter from these namespaces depend on the order in which the namespaces are
brought into the system.

First, the built-in namespace, which consists of names in the __builtins__
module, is loaded. Then, the global namespace for executing the module is loaded.
When the module starts executing, the global namespace becomes the active name-
space. If a function call is made during execution, the local namespace is created.

Therefore, namespaces involve the mapping of objects with their names. The scope
of a name decides the locations within the code from which the name can be accessed.

126 Chapter 6

For any attribute such as a variable or a function, the names within and outside the
local namespace are in the local and global scope, respectively. In any program, local
namespaces are created and deleted along with function calls, but the built-ins and
global namespaces are permanent. When a module is imported for the first time, all the
executable statements and function definitions are executed. Each module has its own
private symbol table. This table is used as the global symbol table for all the functions
inside that module. The global variables within a module can be used as any other
global variables inside that module; however, these variables will be local to that mod-
ule. For example, here is an example of a call to the function fibonacci that generates
an error. The fibonacci function is local to the module fib.

>>>import fib

>>> fibonacci(100)

Traceback (most recent call last):

File “<interactive input>”, line 1, in ?

NameError: name ‘fibonacci’ is not defined

In order to access variables and functions local to a module outside that module,
you need to use the name of the attribute following the module name. For example,

>>>import fib

>>>fib.fibonacci(100)

0

1

1

2

3

5

8

13

21

34

55

89

Reference to an object made using the dotted attribute notation is called fully quali-
fied name. This notation prevents an exact conflicting match in the importing module’s
current namespace. The syntax for the notation is this:

modulename.functionname

For example, the function fibonacci() in the module fib.py is called fib.
fibonacci(). There can be only one module with a given name that can be loaded on
the Python interpreter. Therefore, fib. fibonacci() cannot conflict with another
name. If there is another module named fibnew.py containing the function
fibonacci(), the function will be called fibnew. fibonacci(). Therefore, there is
no chance of conflict between the names of attributes.

Modules 127

If a function in a module returns a value instead of printing the value, the fully qual-
ified name of a function can also be assigned to a variable. Consider the following
example:

#casemod.py

def case(inp):

if (inp >= ‘A’):

if(inp <= ‘Z’):

return ‘Uppercase’

elif (inp >= ‘a’):

if(inp <= ‘z’):

return ‘Lowercase’

else:

return ‘Input character > z’

else:

return ‘Input character > z but less than a’

else:

return ‘Input character less than A’

The preceding module checks whether an input variable is in uppercase or lower-
case and returns a string. After importing the module, you can capture the value
returned by the case() function in a variable as follows:

>>>import casemod

>>>c=casemod.case(‘H’)

>>>c

‘Uppercase’

The variable c has the value returned by the function casemod.case(). You can
now use the variable c for executing this function.

More on Importing Modules
A module can be imported by another module. Python allows you to place an import
statement, wherever required, in the importing module before using the attributes of
the imported module. Conventionally, though, all import statements are placed at the
beginning in the importing module. After importing a module, the attributes in the
imported module are placed in the global symbol table of the importing module.

A variant of the import statement places the attributes of the imported module in
the global symbol table of the importing module. Using the from-import statement,
you can import specific elements from a module into your namespace. The syntax of
the from-import statement is this:

from module import item1[,item2....[,itemN]]

For example, to import the function fibonacci from the module fib, use the fol-
lowing statement:

from fib import fibonacci

128 Chapter 6

This statement does not import the entire module fib into the current namespace;
it just introduces the item fibonacci from the module fib into the global symbol
table of the importing module. In other words, when you import only names from
other modules, the names become a part of the current namespace. When changes are
made to these names in the importing module, only copies of the variables denoted
by these names are altered. The original variables in the namespace of the imported
module remain unaltered. Let’s discuss this with the help of two modules,
importing_mod.py and imported_mod.py.

#imported_mod.py

ruf=’xyz’

def bee():

print “ruf in importing_mod”, ruf

#importing_mod.py

from imported_mod import ruf,bee

bee()

ruf=’507’

print “ruf in imported_mod”, ruf

bee()

When you run the script in importing_mod.py, you obtain the following output:

ruf in importing_mod xyz

ruf in imported_mod 507

ruf in importing_mod xyz

Notice that when the imported function name is called for the first time, the value of
the variable ruf is the same as that assigned in the imported module originally. Even
when the value of the variable ruf is changed in the importing module, it still remains
the same in the imported module. This can lead to a conflict when you actually want to
change the value of a variable in the importing module. The only solution to this is to
use a fully qualified name by using the attribute dotted notation. Therefore, change the
code of importing_mod.py as follows:

#importing_mod.py

from imported_mod import ruf,bee

imported_mod.bee()

imported_mod.ruf=’507’

print “ruf in imported_mod”, imported_mod.ruf

imported_mod.bee()

When you run the script in importing_mod.py, you obtain the following output:

ruf in importing_mod xyz

ruf in imported_mod 507

ruf in importing_mod 507

Modules 129

It is also possible to import all names from a module into the current namespace by
using the following import statement:

from fib import *

NOTE “from module import *” provides an easy way to import all the
items from a module into the current namespace; however, this statement
should be used sparingly. After all the items are imported from a module by
using from module import *, they become a part of the current namespace.
This can lead to conflicts because the names from the imported module can
clash with the names already present in the current namespace. The names
from the imported module can even override the names that are already
present in the current namespace.

If you do not want to import all the attributes in a module by using the "from
module import *" statement, you can begin the name of the attribute with an under-
score (_). In this way, you can hide data in your module even if you import all the
attributes of the module. This technique is not useful, though, if the entire module is
imported.

Python also contains a library of standard modules. Some modules are built into the
interpreter. These provide access to the core of the language but are programmed to
access operating system variables. Some of these modules are sys, os, and time. We
will discuss some built-in modules as and when required in the later chapters of this
book.

Module Search Path

While trying to import a module, you may have encountered the following error:

>>>import mymodule

Traceback (most recent call last):

File “<pyshell#2>”, line 1, in ?

import mymodule

ImportError: No module named mymodule

This happens because while importing a module, the Python interpreter searches
for it in certain predefined locations. These predefined locations are a set of directories
that constitute the Python search path. The search path contains the current directory
and a set of other directories. If the interpreter cannot locate the module in the search
path or if the search path is not set, it generates an error message. A default search path
is automatically defined at the time of installation of the Python interpreter. The search
path can also be modified to include other directories or remove directories already
present in the search path.

The Python search path is specified in the environment variable PYTHONPATH.
The syntax of PYTHONPATH is the same as that of the shell variable PATH. If
PYTHONPATH is not set or if the interpreter does not find the module to be imported

130 Chapter 6

in PYTHONPATH, the interpreter searches for the module in the installation-dependent
default path, which is usually .:/usr/local/lib/python on Unix.

Actually, the module search path is stored in the system module sys as the
sys.path variable. This variable contains a list of individual directory strings. The
sys.path variable contains the current directory, PYTHONPATH, and the installa-
tion-dependent default. To view the directories in the sys.path variable, just import
the sys module and type sys.path at the interpreter.

>>>import sys

>>>sys.path

The following output is obtained for a Linux computer. This output may vary
depending on platforms and installation settings.

[‘’,’/usr/local/lib/python2.2/’, ‘/usr/local/lib/python2.2/plat-linux2’,

‘/usr/local/lib/python2.2/lib-tk’, ‘usr/local/lib/python2.2/

lib-dynload’, ‘/usr/local/lib/python2.2/site-packages/’]

If the module you need to import is stored in a directory that is not contained in the
search path, you can modify the search path using the sys.path variable. The
sys.path variable contains a list. Therefore, the list can be easily modified using stan-
dard list operations. For example,

>>>import sys

>>>sys.path.append(‘home/user/python/mod’)

If you now see the contents of the sys.path variable, the variable will show the list
containing the directory you specified.

>>>sys.path

[‘’,’/usr/local/lib/python2.2/’, ‘/usr/local/lib/python2.2/plat-linux2’,

‘/usr/local/lib/python2.2/lib-tk’, ‘usr/local/lib/python2.2/

lib-dynload’, ‘/usr/local/lib/python2.2/site-packages’,

‘home/user/python/mod’]

If there are many modules with the same name at multiple locations, then the
Python interpreter will load the one it finds first while scanning through the search
path sequentially.

Testing Modules

A module can be loaded in one of the following two ways:

■■ By directly executing it as a script

■■ By importing it in the main module or in other scripts

Loading a module executes code in the top-level portion of the module, which
usually includes setting up of global variables and class and function declarations. In
addition, any code inside the check for __name__ built-in attribute of the module is

Modules 131

executed only when the module is executed directly as a script. We will discuss the
__name__ attribute a little later.

When a module is loaded by importing, it is loaded only once, even if it is imported
multiple times. This means that variable and function declarations in the top level of
the module happen only once, the first time a module is imported.

Modules, similar to all objects, have a built-in attribute, __name__. This attribute
depends on how the module is being used. If you run the module directly as a script,
then the __name__ attribute will contain a special default value, ‘__main__’. If you
import the module, then the __name__ attribute will contain the name of the module
without its path and file extension.

>>>import fib

>>>fib.__name__

‘fib’

__name__ can be used to design a test suite within the module itself by combining
it in an if statement as follows:

if __name__=’__main__’:

true_suite

When you run the module directly as a script, the attribute __name__ assumes
the value ‘main’. Therefore, the suite inside the if statement is executed. If the
__name__ attribute is something else, the suite is ignored. This method of using a test
suite with the __name__ attribute is useful while testing and debugging modules
before combining them in larger scripts.

Module Built-In Functions

Some built-in functions can be used in functional programming. We will describe some
of them in this section.

dir()

The dir() built-in function returns a sorted list of strings containing the names
defined by a module. The list contains the names of all the modules, variables, and
functions that are defined in a module. For example, you can import the built-in mod-
ule math and the module fib defined earlier. You can also use the dir() function to
determine the names defined by these modules. Let’s see how this is done:

>>> import math, fib

>>> dir(math)

[‘__doc__’, ‘__name__’, ‘acos’, ‘asin’, ‘atan’, ‘atan2’, ‘ceil’, ‘cos’,

‘cosh’, ‘e’, ‘exp’, ‘fabs’, ‘floor’, ‘fmod’, ‘frexp’, ‘hypot’, ‘ldexp’,

‘log’, ‘log10’, ‘modf’, ‘pi’, ‘pow’, ‘sin’, ‘sinh’, ‘sqrt’, ‘tan’,

‘tanh’]

>>>dir(fib)

[‘__builtins__’, ‘__doc__’, ‘__file__’, ‘__name__’, ‘fibonacci’]

132 Chapter 6

If you do not supply any arguments to the dir() function, the dir() function lists
the names you have defined currently.

>>> tup=(‘111’,’abc’,64)

>>> str=’xyz’

>>> import math, fib

>>> fibo=fib.fibonacci

>>> dir()

[‘__builtin__’, ‘__builtins__’, ‘__doc__’, ‘__name__’, ‘fib’, ‘fibo’,

‘math’, ‘os’, ‘str’, ‘string’, ‘sys’, ‘tup’]

The dir() function does not return the names of functions and variables that are
loaded automatically by the interpreter. A list of functions and variables defined in the
built-in standard module __built-in__ can be displayed as follows:

>>>import ___builtin__

>>>dir(__builtin__)

[‘ArithmeticError’, ‘AssertionError’, ‘AttributeError’,

‘DeprecationWarning’, ‘EOFError’, ‘Ellipsis’, ‘EnvironmentError’,

‘Exception’, ‘FloatingPointError’, ‘IOError’, ‘ImportError’,

‘IndentationError’, ‘IndexError’, ‘KeyError’, ‘KeyboardInterrupt’,

‘LookupError’, ‘MemoryError’, ‘NameError’, ‘None’, ‘NotImplemented’,

‘NotImplementedError’, ‘OSError’, ‘OverflowError’, ‘OverflowWarning’,

‘RuntimeError’, ‘RuntimeWarning’, ‘StandardError’, ‘StopIteration’,

‘SyntaxError’, ‘SyntaxWarning’, ‘SystemError’, ‘SystemExit’, ‘TabError’,

‘TypeError’, ‘UnboundLocalError’, ‘UnicodeError’, ‘UserWarning’,

‘ValueError’, ‘Warning’, ‘ZeroDivisionError’, ‘__debug__’, ‘__doc__’,

‘__import__’, ‘__name__’, ‘abs’, ‘apply’, ‘buffer’, ‘callable’, ‘chr’,

‘classmethod’, ‘cmp’, ‘coerce’, ‘compile’, ‘complex’, ‘copyright’,

‘credits’, ‘delattr’, ‘dictionary’, ‘dir’, ‘divmod’, ‘eval’, ‘execfile’,

‘exit’, ‘file’, ‘filter’, ‘float’, ‘getattr’, ‘globals’, ‘hasattr’,

‘hash’, ‘help’, ‘hex’, ‘id’, ‘input’, ‘int’, ‘intern’, ‘isinstance’,

‘issubclass’, ‘iter’, ‘len’, ‘license’, ‘list’, ‘locals’, ‘long’, ‘map’,

‘max’, ‘min’, ‘object’, ‘oct’, ‘open’, ‘ord’, ‘pow’, ‘property’, ‘quit’,

‘range’, ‘raw_input’, ‘reduce’, ‘reload’, ‘repr’, ‘round’, ‘setattr’,

‘slice’, ‘staticmethod’, ‘str’, ‘super’, ‘tuple’, ‘type’, ‘unichr’,

‘unicode’, ‘vars’, ‘xrange’, ‘zip’]

globals() and locals()

The globals() and locals() functions can be used to return the names in the
global and local namespaces depending on the location from where they are called. If
locals() is called from within a function, it will return all the names that can be
accessed locally from that function. If globals() is called from within a function, it
will return all the names that can be accessed globally from that function. The return
type of both these functions is dictionary. Therefore, names can be extracted using the
keys() function. Let’s discuss this with the help of two modules, mainmod.py and
fib1.py.

Modules 133

mainmod.py

import fib1

print “globals for main module:”,globals().keys()

print “locals for main module:”,locals().keys()

fib1.fibonacci(20)

fib1.py

def fibonacci(a,num1=0,num2=1):

print num1

while num2<a:

print num2

num2=num1+num2

num1=num2-num1

print “globals for fibonacci:”,globals().keys()

print “locals for fibonacci:”,locals().keys()

When you run the script in mainmod.py, you obtain the following output:

globals for main module: [‘__builtins__’, ‘__name__’, ‘fib1’, ‘__doc__’]

locals for main module: [‘__builtins__’, ‘__name__’, ‘fib1’, ‘__doc__’]

0

1

1

2

3

5

8

13

globals for fibonacci: [‘__builtins__’, ‘__name__’, ‘__file__’,

‘__doc__’, ‘fibonacci’]

locals for fibonacci: [‘a’, ‘num1’, ‘num2’]

Notice that both locals() and globals() return the same dictionary in the main
module because all the names in the global namespace can be accessed locally as well.
In other words, both global and local namespaces contain the same names in the main
module.

reload()

You have learned that the code in the top-level portion of a module is executed only
once when the module is imported. Therefore, if you want to reexecute the top-level
code in a module, you can use the reload() function. The reload() function imports
a previously imported module again. The syntax of the reload() function is this:

reload(module_name)

module_name is the name of the module you want to reload and not the string con-
taining the module name. For example, if the module you want to reload is mymodule,
then module_name should be named mymodule and not ‘mymodule’. In addition,
reload() will load only the module that has been loaded fully and not by using the
from-import statement.

134 Chapter 6

In the previous chapter, you learned how functions add simplicity and modularity
to your code. In this chapter, you learned how modules can be used to provide further
modularity to your code. After writing several modules for a project, however, you
may need to organize them in a structure so that you can easily access the names in
each module.

Packages
In Python, packages allow you to create a hierarchical file directory structure of modules
by using dotted module names. For example, mymodule.mod1 stands for a module,
mod1, in the package mymodule. You already know that the same function and vari-
able names can be used in different modules. You use fully qualified names to address
these functions and variables in the same module. Similarly, modules with the same
names can exist in different packages and are referred with dotted module names. You
can be certain that module names in multimodule packages will not conflict. The use
of modules is a good practice to group related modules.

For example, a package can be created for handling a banking application. There are
many different types of accounts, such as savings bank account, current account, and
fixed deposit. You need to create modules that will create all these types of accounts.
Then, you will create modules for different finances provided by the bank, such as cor-
porate, personal, infrastructure, and project. In addition, you will write modules to
perform services for the bank, such as advisory, custodial, ATM, and credit card. Like
this, you can have an endless stream of modules to perform these operations. Here’s a
simple package structure that you can create for the previous example:

Bank/

__init__.py

Account/

__init__.py

savingsbank.py

current.py

fixed.py

Finance/

__init__.py

personal.py

corporate.py

infrastructure.py

project.py

Services/

__init__.py

advisory.py

custodial.py

atm.py

creditcard.py

The __init__.py file is required so that the interpreter can treat such a directory
as a package. This file contains the information about the modules and subpackages
that exist in a package so that subpackages are not hidden unintentionally while

Modules 135

searching for the module search path. In the simplest case, __init__.py can be
empty but it can also contain initializer code for the module.

The fixed.pymodule in the previous example can be imported using the following:

import Bank.Account.fixed

To invoke a function in fixed.py, use the full name of the module:

Bank.Account.fixed.interest(Principal,rate=.12,period=5)

An alternative way of importing the submodule is:

from Bank.Account import fixed

The function interest can be invoked using the following statement:

fixed.interest()

You can also import the function or any variable in the fixed module directly by
using the from-import statement as follows:

from Bank.Account.fixed import interest

Then, you execute it directly as follows:

interest()

Now let’s identify the modules to be used for the problem statement in the begin-
ning of the chapter to perform user validations.

Identify the Modules to Be Used
The following modules will be used to validate user input:

isblank_mod.py. This module ensures that the user does not leave any input
for the required value blank.

age_mod.py. This module ensures that the user enters a valid date of birth,
which includes a valid calendar month, day, and year. It also calculates the age
based on the date of birth.

qty_mod.py. This module ensures that the quantity ordered is a numerical
value and is a whole number.

creditcard.py. This module ensures that all the digits in the credit card num-
ber are numeric and that it is a 16-digit number.

main_mod.py. This module does not perform any validation but imports other
modules and calls functions from them.

136 Chapter 6

Write the Code
Let’s now write the code.

The code for isblank_mod.py is as follows:

#isblank_mod.py

def isblank(var):

#Function checks if the value passed in var is blank

if len(var)==0:

print ‘You can\’t leave it blank’

else:

return 1

The code for age_mod.py is as follows:

import time

#Determines the current time in a list

t=time.localtime(time.time())

#Extract the current year from the list

cur_year=t[0]

cur_month=t[1]

cur_day=t[2]

#Checks if the date of birth is valid

def dobvalid_func(month,day,year):

while 1:

if year<=0 or month<=0 or day<=0:

break

#Checks if current year is less than year of birth

if cur_year<year:

break

if cur_year==year and cur_month>month:

break

#Checks if month of birth is greater than 12

if month>12:

break

#Checks if number of days are

#greater than 31 for applicable month

if month in (1,3,5,7,8,10,12):

if day>31:

break

#Checks if number of days in date of birth

#are greater than 30 for applicable month

elif month in (4,6,9,11):

if day>30:

break

#Checks if in a leap year, number of days

#in date of birth are greater than 29

#for february

if year%4==0 and month==2:

if day>29:

break

Modules 137

return 1

return 0

def age_cal(dob):

if len(dob)<>10:

print “Date not in correct format!!”

return 0

m=int(dob[:2]) #Extract month from date of birth

d=int(dob[3:5]) #Extract day from date of birth

y=int(dob[6:10]) #Extract year from date of birth

#Checks if dobvalid_func returns true

if dobvalid_func(m,d,y)==0:

print “Invalid date of birth”

return 0

else:

age=cur_year-y-1

if m<cur_month or (m==cur_month and d<cur_day):

age=age+1

return str(age)

The code for qty_mod is as follows:

qty_mod.py

def qty_func(qtystr):

#Checks if the quanity entered is numeric

#and whole number

i=0

while i<len(qtystr):

c=ord(qtystr[i])

if (c in range(0,47) or c in range(58,255)) and c<>46:

print “Please enter integers only”

break

else:

i=i+1

if i==len(qtystr):

qty=float(qtystr)

if qty<>int(qty) or qty<=0:

print “Invalid value for quantity”

The code for creditcard.py is as follows:

creditcard.py

def credit_func(cardno):

#Checks if credit card no. is 16-digit and

contains only numbers

if len(cardno)<>16:

print “Credit card no. should be 16 digits”

else:

i=0

while i<len(cardno):

138 Chapter 6

c=ord(cardno[i])

if c in range(0,47) or c in range(58,255):

print “Please enter integers only”

break

else:

i=i+1

You need a module to verify that the validation modules that you have created
execute properly. The code for this purpose in main_mod.py is as follows:

import isblank_mod

import qty_mod

import creditcard

import age_mod

fname=raw_input(“Enter your first name: “)

#Call isblank function for fname

isblank_mod.isblank(fname)

lname=raw_input(“Enter your last name: “)

#Call isblank function for lname

isblank_mod.isblank(lname)

date=raw_input(“Enter your date of birth, mm-dd-yyyy: “)

#Call age_cal function from age_mod module

return_age=age_mod.age_cal(date)

if return_age<>0:

print “Your age is %s years” %(return_age)

qty_order=raw_input(“Enter quantity: “)

#Call isblank function for qty ordered

if isblank_mod.isblank(qty_order)==1:

Call function qty_func in qty_mod module

qty_mod.qty_func(qty_order)

credit=raw_input(“Enter credit card no.: “)

#Call isblank function for credit card no.

if isblank_mod.isblank(credit)==1:

#Call function credit_func in creditcard module

creditcard.credit_func(credit)

Execute the Code
In order to implement or view the output of the code and test validation modules, you
need to execute the following steps:

1. Write the preceding code separately for each module in a text editor and save
all the modules with the .py extension in the current directory.

2. At the shell prompt, execute main_mod.py.

3. At the prompt Enter your first name:, enter Laura.

4. At the prompt Enter your last name:, press enter (leave it blank).

5. At the prompt Enter your date of birth, mm-dd-yyyy:, enter
12-24-1984.

Modules 139

6. At the prompt Enter quantity:, enter 6.3.

7. At the prompt Enter credit card no.:, enter 12219461263.

Summary

In this chapter, you learned the following:

■■ A module is a file containing Python definitions and statements used to organize
code for easier maintenance. The filename is the name of the module with the
.py extension appended.

■■ The process of bringing in attributes, such as variables and functions, of one
module into another or into the main module is called importing.

■■ The syntax of the import statement is:

import module1[,module2[,... moduleN]

■■ The global variables inside a module can be used as any other global variables;
however, these variables will be local to that module.

■■ The reference to an object that is made using dotted attribute notation is called
fully qualified name. This notation prevents an exact conflicting match in the cur-
rent namespace importing module. The syntax for the notation is:

modulename.functionname

■■ A module can be imported by another module. The syntax of the from-import
statement is:

from module import item1[,item2....[,itemN]]

■■ The from-import statement does not import the entire module. It imports only
variables and functions from a module. Names imported in this way become a
part of the current namespace. You alter a copy of the names, not the original.

■■ While importing a module, the predefined directories searched by the Python
interpreter constitute the Python search path. The module search path is stored
in the system module sys as the sys.path variable.

■■ Loading a module executes the code in the top-level portion of a module, which
usually includes setting up global variables and class and function declarations.
If the module is executed directly as a script, any code inside the check for
__name__ built-in attribute of the module is executed. When the module is
loaded by importing it, it is loaded only once even if it is imported multiple times.

■■ The dir() built-in function returns a sorted list of strings containing the
names defined by a module.

■■ The globals() and locals() functions can be used to return the names in the
global and local namespaces depending on the location from which they are called.

■■ The reload() function reexecutes the top-level code in a module.

■■ A package is a hierarchical file directory structure used to organize related-
Python modules.

140 Chapter 6

141

C H A P T E R

7

OBJECTIVES

In this chapter, you will learn to do the following:

� Use file objects

� Use standard input and output methods

� Use methods of file objects

� Use methods of the os module

� Use methods of the os.path module

Getting Started

In the previous chapters, you learned how to accept data from users and display it.
What happens to this data when you quit the interpreter? All the user input values will
be lost. How can you store data for future use? To store data for future use, you can
redirect user input into a file. You can also read the contents of a file.

In this chapter, you will learn how to write and append data to a file. You will also
learn how to read the contents of a file.

Files

C H A P T E R

Using File Objects

Problem Statement
Techsity University allows students from all over the United States to register for
instructor-led training courses. The University wants to store course details such as the
code, title, duration, and fee in a file. As a programmer, Jim is assigned the task of stor-
ing the course details in the file. Jim needs to create a script that will allow him to store
the course details in a file.

Task List

� Identify the functions and methods to be used.

� Write the code to store course details in a file.

� Execute the code.

� Verify that all information has been entered correctly.

Before helping Jim to solve this problem, let’s learn about the functions and methods
that help us perform file-related operations.

Identify the Functions and Methods to Be Used
You require certain methods and functions to store data into files and read data from
files. Python library provides basic functions and methods necessary to manipulate
files by default. Importing special modules for this purpose is not required. These
functions and methods are available for all file objects.

File Objects

As you know, Python uses objects for all types of data storage. You can use file objects
to access files in order to read and write contents. File objects have built-in functions
and methods that help you access all types of files.

In Python, the base of any file-related operation is the built-in function open(). The
open() function returns a file object, which you can use to perform various file-
related actions.

The open() Function

You can use the open() function to open any type of file. The syntax for the open()
function is given here:

file object = open(file_name [, access_mode][,buffering])

142 Chapter 7

The file_name argument is a string value that contains the name of the file that
you want to access. The other two arguments, access_mode and buffering, are
optional arguments. access_mode determines the mode in which the file has to be
opened. buffering specifies the type of buffering to be performed while accessing
the file. You will learn more about access modes and buffering in the sections that fol-
low. Python returns a file object if it opens the specified file successfully. The following
code displays an example for the use of the open() function.

>>>fileobj=open(‘/home/testfile’,’r’)

The preceding code opens the file testfile in the /home directory in the read
mode. Here, the buffering argument is omitted to allow system default buffering. Let’s
now discuss the various modes in which a file can be opened.

Access Modes. The default file access mode is read (r). The other common access
modes are write (w) and append (a). In order to open a file in the read mode, the
file should be created earlier. You can use the write and append modes with
existing files or new files. When you open an existing file in the write mode, the
existing content of the file will be deleted and new content will be written from
the beginning of the file. When you use the append (a) mode for accessing an
existing file, the new content will be written from the existing end-of-file posi-
tion. If you access new files with the write and append modes, the files will be
automatically created before writing data.

In addition to these modes, there are other modes for accessing files in binary
mode. Windows and Macintosh operating systems treat text files and binary
files differently. When you access files for reading or writing on Windows and
Macintosh operating systems, the end-of-line characters will be changed
slightly. Although the automatic change of the end-of-line characters in the file
content does not affect ASCII files considerably, it will corrupt binary data in
graphic and executable files.

NOTE Posix-compliant operating systems, such as Unix and Linux, treat all
files as binary files. Therefore, there is no need to use binary mode explicitly for
reading or writing in these operating systems.

In Windows and Macintosh systems, you can access files in binary mode by
adding b to the normal access mode, such as rb, wb, and ab. For example, the
following code will open testfile in binary mode for writing:

fileobj=open(‘c:/myfiles/testfile’,’wb’)

You can access a file for both reading and writing by adding + with access
mode, such as r+, w+, and a+. The following line of code will open testfile
with read-write access.

fileobj=open(‘/home/testfile’,’r+’)

Table 7.1 describes the use of different access modes.

Files 143

Table 7.1 The Different File Access Modes

ACCESS MODE DESCRIPTION

r Opens a file for reading

w Opens a file for writing

a Opens a file for appending

rb Opens a file for reading in binary format

wb Opens a file for writing in binary format

ab Opens a file for appending in binary format

r+ Opens a file for both reading and writing

w+ Opens a file for both writing and reading

a+ Opens a file for both appending and reading

rb+ Opens a file for both reading and writing in binary format

wb+ Opens a file for both writing and reading in binary format

ab+ Opens a file for both appending and reading in binary format

NOTE If you omit the access mode argument in the open() function, the file
will be opened in the read mode.

Buffering. The buffering argument can take different integer values to specify
the type of the buffering to be performed while accessing a file. If the buffering
value is set to 0, no buffering will take place. If the buffering value is 1, line
buffering will be performed while accessing a file. If you specify the buffering
value as an integer greater than 1, then buffering action will be performed with
the indicated buffer size. To specify default system buffering, you can either
omit this argument or assign a negative value.

After the open() function returns a file object successfully, you can use the
methods of file objects to perform different actions, such as writing and reading.
Let’s learn about the important methods of the file object.

Methods of File Objects

There are different types of methods, which you can use to read or write contents and
move the cursor position within a file. First, let’s learn about the methods, which are
useful to write data to files.

Writing Data to a File

The write() method writes a string of data to a file. The string can be a set of charac-
ters in a single line or multiple lines or in a block of bytes. The write() method does

144 Chapter 7

not insert line breaks automatically. If you want to insert line breaks, you add the
NEWLINE character, \n, after each line. The following example displays the use of the
write() method:

>>>fileobj=open(‘testfile’,’w’)

>>>fileobj.write(‘This is the first line\n’)

>>>fileobj.write(‘This is the second line\n’)

In the preceding code, the first statement opens the file testfile for writing. Then,
the second statement writes This is the first line in the file and adds a line
break. Finally, the last statement adds another line with the text This is the second
line and adds a line break. In both the second and third statements, line breaks are
added due to the \n character.

TI P You can insert a Tab character by using \t.

The writelines() Method. You can use the writelines() method to write a
list of strings to a file. The writelines() method also does not insert the NEW-
LINE character automatically. If you do not add the NEWLINE character at the
end of each string in the list, the writelines() method will write the list items
as a single string. The following example illustrates the use of writelines().

>>> list=[‘one’,’two’,’three’]

>>> i=0

>>> for x in list:

list[i]=x+’\n’

i=i+1

>>> fileobj=open(‘newtestfile’,’w’)

>>>fileobj.writelines(list)

In the preceding code, the first statement creates a list consisting of three items.
Then, the for loop adds the NEWLINE character \n to each item in the list.
Next, the open() function opens the file newtestfile for writing, and the
writelines() method writes the items of the list in newtestfile. The items
of the list will be written as separate text line due to the NEWLINE characters.

Reading Data

You can read the data from a file by using the read([size]) method. The read()
method reads the bytes in a file to a string. The size argument is optional, which spec-
ifies the number of bytes to be read. If you do not specify the size, the value of this
argument will be set to -1 in order to read the entire contents of the file. The read()
method also displays the NEWLINE characters. The following example displays the
use of the read() method without specifying the size argument.

>>> fileobj=open(‘testfile’,’r’)

>>>fileobj.read()

‘This is the first line\nThis is the second line\n’

Files 145

Now, let’s look at the use of the size argument in the read() method.

>>> fileobj1=open(‘newtestfile’,’r’)

>>>fileobj1.read(3)

‘one’

The read()method reads the number of bytes from the current cursor position. For
example, newtestfile has 14 bytes, and you can read the first 4 bytes by using the
code fileobj.read(4). When you use the read() method the next time, the
method will start reading the contents from the fifth byte. Look at the following code:

>>> fileobj=open(‘newtestfile’,’r’)

>>>fileobj.read(4)

‘one\n’

>>>fileobj.read()

‘two\nthree\n’

Here, the second code line reads the first 4 bytes. After that, when you execute the
next read statement, the read() method returns all the bytes starting from the fifth
byte in the file.

Two more methods help you read data from files, readline() and readlines().
Now, let’s examine the functioning of these methods.

The readline() Method. You can use the readline() method to read a sin-
gle line of text in a file. This method includes the NEWLINE character in the
returned string. The code given here displays the functioning of readline():

>>> fileobj2=open(‘testfile’,’r’)

>>>fileobj2.readline()

‘This is the first line\n’

The readlines() Method. You can also use the readlines() method to read
the contents of a file. This method returns each text line in a file as a string in a list.
Let’s now use the readlines() method to read the contents of testfile:

>>> fileobj=open(‘testfile’,’r’)

>>> fileobj.readlines()

[‘This is the first line\n’, ‘This is the second line\n’]

The readlines() method also returns data from the current cursor position.
Look at the following example:

>>> f=open(‘testfile’,’r’)

>>> f.readline()

‘This is the first line\n’

>>> f.readlines()

[‘This is the second line\n’]

In this case, first the readline() method displays the first text line in
testfile. After that, the readlines() method returns the remaining line,
which is the second line.

146 Chapter 7

Standard Input and Output

When you start Python, the system provides three standard files: stdin, stdout, and
stderr. The file stdin contains the standard input, for which characters are normally
entered using the keyboard. The file stdout has the standard output, which is the dis-
play on the monitor. The error messages generated by any code will be directed to the
stderr file. The standard files are part of the sys module, and you need to import the
sys module before accessing the standard files.

When you print a string, you actually write that string to the stdout file. When you
receive data by using the raw_input() method, the raw_input() method reads the
input from the stdin file. The standard files also support the methods for writing and
reading data.

There are certain similarities and differences between the print() method and the
write() method of the stdout. Let’s look at the following examples to understand
the functioning of print() method and stdout.write() methods.

■■ print() method
>>> print ‘Welcome to Python’

Welcome to Python

■■ stdout.write() method
>>> import sys

>>> sys.stdout.write(‘Welcome to Python\n’)

Welcome to Python

Both the examples display the text Welcome to Python. In the stdout.write()
method, though, you have to add \n explicitly to indicate the end of the line.

Now, let’s look at the functioning of the raw_input() method and the stdin.
readline() method.

■■ raw_input()

>>> name=raw_input(‘Enter your name: ‘)

Enter your name:

■■ standard_read.py

import sys

sys.stdout.write(‘Enter a your name: ‘)

name=sys.stdin.readline()

sys.stdout.write(name)

Both the examples store the name entered by a user in the variable name and display
the same. When you use the stdin.readline() method to accept a string to a vari-
able, however, you have to write the code inside a file and then execute that file. If you
write the code on the command prompt directly, you cannot store the value to a variable.

Supported Methods of File Objects

In addition to the methods of writing and reading data, file objects have certain other
methods that help you perform different tasks on files such as moving within a file,

Files 147

finding the current cursor position, and closing files. These methods include the
following:

■■ seek()

■■ tell()

■■ close()

Let’s discuss each of these methods in detail.

The seek() Method. You can use the seek() method to move the cursor posi-
tion to different locations within a file. The syntax of the seek() method is this:

file_oobject.seek(offset,from_what)

The seek() method has two arguments, offset and from_what. The
offset argument indicates the number of bytes to be moved. The from_what
argument specifies the reference position from where the bytes are to be moved.
Table 7.2 describes the values that can be taken by the from_what argument.

The seek() method is very useful when a file is opened for both read and write
access. After writing data to a file, the current position of the cursor will be at
the end of the file. In such a case, if you execute the read() method, Python
returns a blank line. Here, you can use the seek() method to move the cursor
to the beginning of the file and then read data. Consider the following example:

>>> fileobj=open(‘seekfile’,’w+’)

>>> fileobj.write(‘Welcome to Python\n’)

>>> fileobj.read()

‘’

>>> fileobj.seek(-18,1)

>>> fileobj.read()

‘Welcome to Python\n’

In this example, when you execute the second line of code, Python writes 17 bytes
of data, including the NEWLINE character, to seekfile. After this task, the
current cursor position will be on the next byte, 18, which is blank. Therefore,
the read() method returns a blank string. Then, to move the cursor position to
the beginning of the file, you set the offset value of the seek method to -18 from
the current cursor position. When you execute the seek() method with these
values, the cursor position moves to the byte zero. Now, the read() method
displays the entire contents of the file from the beginning.

Table 7.2 The Values of the from_what Argument in the seek()Method

VALUE DESCRIPTION

0 Uses the beginning of the file as the reference position

1 Uses the current position as the reference position

2 Uses the end of the file as the reference position

148 Chapter 7

The tell() Method. The tell() method displays the current position of the
cursor in a file. This method is helpful for determining the argument values of
the seek() method. The following example illustrates the use of the tell()
method:

>>> fileobj=open(‘tellfile’,’w+’)

>>> fileobj.write(‘Welcome to Python\n’)

>>> fileobj.tell()

18L

>>> fileobj.seek(-18,1)

>>> fileobj.tell()

0L

The close() Method. You can use the close() method to close access to a file.
Python automatically closes a file when the reference object of a file is reassigned
to another file. It is a good practice to use the close() method to close a file.

You have learned to access files for reading and writing data. In addition, various
tasks are related to files, directories, and the file system. Now, let’s discuss the file sys-
tem and the various methods that help perform file- and directory-related tasks.

File System

Python has separate modules for different operating systems, such as posix for Unix,
nt for Windows, and mac for Macintosh, to perform file- and directory-related tasks.
The use of methods in these modules is slightly complex, though. The os module pro-
vides methods, which are simple to use, for performing file- and directory-related
tasks. The os module acts as a front-end module to a pure operating system-dependent
module. This module eliminates the direct use of operating system-dependent modules
by loading appropriate modules according to the operating system installed on a
computer.

You can divide the methods in the os module into three categories:

■■ File processing

■■ Directory

■■ Permissions

Let’s discuss these methods in detail.

File-Processing Methods

The os module provides methods that help you perform file-processing operations,
such as renaming and deleting files. You can rename files by using the rename()
method and delete files by using the remove() method. Let’s look at the functioning
of these methods.

The rename() Method. The rename() method takes two arguments, the cur-
rent filename and the new filename. The syntax for the rename() method is:

rename(current_file_name, new_file_name)

Files 149

The following example renames myfile to newfile.

>>>import os

>>>os.rename(‘myfile’, ‘newfile’)

When you execute this code, the os module converts this method to the appro-
priate rename command based on the operating system installed.

The remove() Method. You can use the remove() method to delete files by
supplying the name of the file to be deleted as the argument. The following code
displays the use of the remove() method.

>>>import os

>>>os.remove(‘newfile’)

Directory Methods

The os module has several methods that help you create, remove, and change directo-
ries. You can also use directory methods to display the current directory and list the
contents of a directory.

The mkdir() Method. You can use the mkdir() method of the os module to
create directories in the current directory. You need to supply an argument to
this method, which contains the name of the directory to be created. The follow-
ing code creates a directory called newdir:

>>> import os

>>>os.mkdir(‘newdir’)

NOTE The os module has one more method that allows you to create
directories—makedirs(). This method also takes the name of the directory to
be created as the argument.

The chdir() Method. You can use the chdir() method to change the current
directory. The chdir() method takes an argument, which is the name of the
directory that you want to make the current directory. For example, you can
change the current directory from home to the directory newdir by using the
following code:

>>> import os

>>>os.chdir(‘newdir’)

The getcwd() Method. The getcwd() method displays the current working
directory. The following code displays the use of the getcwd() method:

>>> import os

>>> os.getcwd()

‘/home/newdir’

>>>os.chdir(‘/home’)

>>> os.getcwd()

‘/home’

The listdir() Method. You can display the contents of a directory, which com-
prises files and subdirectories, by using the listdir() method. This method
takes the name of the directory for which the contents are to be displayed as the

150 Chapter 7

argument. For example, you can display the contents of the directory newdir by
using the following code:

>>>import os

>>> os.listdir(‘newdir’)

[‘File1’, ‘File2’]

The last line in this code is the result obtained by executing the second line of code.

The rmdir() Method. The rmdir() method deletes the directory, which is passed
as an argument in the method. Before removing a directory, all the contents in it
should be removed. You can delete newdir by using the following code:

>>> import os

>>>os.chdir(‘newdir’)

>>>os.remove(‘File1’)

>>>os.remove(‘File2’)

>>>os.chdir(‘/home’)

>>>os.rmdir(‘newdir’)

NOTE You can also delete directories by using the removedirs() method
of the os module. In this method also, you need to supply the name of the
directory to be deleted as the argument.

Permission Methods

The permission methods of the os module allow you to set and verify the permission
modes. Table 7.3 describes the different permission methods.

The os.path Module

The os.path module includes functions that are useful to perform path-related oper-
ations. You can access the os.path module from the os module. The methods avail-
able in this module are useful for operations such as file path inquiries and retrieving
information about files and directories. Let’s look at the most useful methods of the
os.path module.

Table 7.3 The Access Permission Methods of the os Module

METHOD DESCRIPTION

os.access(path,mode) This method verifies the access permission
specified in the mode argument to the specified
path. If the access permission is granted, the
access() method returns 1. Otherwise, this
function returns 0.

os.chmod(path, mode) This method changes the access permission of the
path to the specified mode.

umask(mask) This method sets the mask specified as the
argument and returns the old mask.

Files 151

The basename() Method. The os.path.basename() method takes a path
name as an argument and returns the leaf name of the specified path. For exam-
ple, you have created a file called file1 in a directory called user1 under the
home directory. Now, you can use the basename() method to retrieve only the
filename from the path /home/user1/file1 by using the following code:
>>> import os

>>>os.path.basename(‘/home/user1/file1’)

‘file1’

The dirname() Method. You can use the os.path.dirname() method to
retrieve the directory name from a path name. For example, the following code
returns the directory name of the path ‘/home/user1/file1’:
>>> import os

>>> os.path.dirname(‘/home/user1/file1’)

‘/home/user1’

The join() Method. The os.path.join() method joins two or more path
components into a single path name. This method takes the path components as
arguments. The following example illustrates the use of the join() method:
>>>import os

>>>current_dir=os.getcwd()

>>> print current_dir

/home/

>>>join_dir=os.path.join(current_dir,’testfile’)

>>>print join_dir

/home/testfile

This example joins the path of the current working directory with the second
argument, testfile, and returns the joined path.

The split() Method. The os.path.split() method splits a path, which is
passed as an argument, into a directory name and a base name and returns them
as a tuple. The following example splits the joined path obtained in the previous
example:
>>> import os.path

>>> os.path.split(join_dir)

(‘/home’,’testfile’)

The splitdrive() Method. The splitdrive() method is used to split the
drive name and the path name of the argument passed in the method. The fol-
lowing examples illustrate the use of the splitdrive() method in both Unix
and Windows versions:

■■ Unix version
>>> import os.path

>>> os.path.splitdrive(‘/home/testfile’)

(‘’, ‘/home/ testfile’)

■■ Windows version
>>> import os.path

>>> os.path.splitdrive(‘c:/Python’)

(‘c:’, ‘/Python’)

152 Chapter 7

Table 7.4 The Information Methods of the os.path Module

METHOD DESCRIPTION

getsize(file_name) Returns the size of a file in bytes

getatime(file_name) Returns the time when a file was last accessed

getmtime(file_name) Returns the time when a file was last modified

The splitext() Method. The splitext() method separates the first name
and the extension name of a filename. Consider the following code:

>>> import os.path

>>> os.path.splitext(‘testfile.txt’)

(‘testfile’, ‘.txt’)

The Information Methods

The os.path module has three methods that allow you to retrieve information about
the file size and file access. Table 7.4 describes these methods.

The following example displays the functioning of these methods:

>>> import os.path

>>> os.path.getsize(‘testfile’)

47L

>>> os.path.getatime(‘testfile’)

1006535165

>>> os.path.getmtime(‘testfile’)

1006541232

Other Useful Methods

The os.path module also has certain methods that help to determine the existence of
path names, directories, and files. Table 7.5 describes the important methods of the
inquiry category.

Table 7.5 The Inquiry Category Methods of the os.path module

METHOD DESCRIPTION

exists(path_name) Returns 1 if path_name exists and 0 if path_name
does not exist

isdir(path_name) Returns 1 if path_name is a directory and 0
otherwise

isfile(path_name) Returns 1 if path_name is a file and 0 otherwise

Files 153

Now, let’s discuss how we can use these methods.

>>> import os.path

>>> os.path.exists(‘/home’)

1

>>> os.path.exists(‘/home/testfile’)

1

>>> os.path.isdir(‘/home’)

1

>>> os.path.isdir(‘/home/testfile’)

0

>>> os.path.isfile(‘/home’)

0

>>> os.path.isfile(‘/home/testfile’)

1

In this example, the exists() method returns 1 in both the cases because both the
paths exist. The isdir() methods return 1 and 0, and the isfile() methods
return 0 and 1 because /home is a directory and testfile is a file. You have learned
about all the important file objects. Now, let’s decide the methods to be used to solve
the problem statement given in the beginning of the chapter.

Result

You need to store course details to a file and display the contents of that file. To do this,
you need to use the following methods:

■■ open()

■■ write()

■■ read()

You can store the details of a course in a list because you need to write the details of
a course in a single line.

Write the Code to Store Course Details to a File
The code for the problem statement in the beginning of the chapter is as follows:

heading=[‘Code’,’Title’,’Duration’,’Fee’]

fileobj=open(‘course_details’,’a’)

import os.path

ans=’y’

while (ans==’y’):

course_code=raw_input(‘Enter the course code: ‘)

course_title=raw_input(‘Enter the course title: ‘)

course_dur=raw_input(‘Enter the course duration: ‘)

course_fee=raw_input(‘Enter the course fee: ‘)

154 Chapter 7

details=[course_code,course_title,course_dur,course_fee]

i=0

for x in details:

details[i]=x+’\t’

i=i+1

j=0

for x in heading:

heading[j]=x+’\t’

j=j+1

if (os.path.getsize(‘course_details’)==0):

fileobj.writelines(heading)

fileobj.writelines(‘\n’)

fileobj.writelines(details)

fileobj.writelines(‘\n’)

ans=raw_input(‘Do you wish to add more records(y/n): ‘)

fileobj.close()

Execute the Code
To view the output of the preceding code, the following steps have to be executed:

1. Type the code in a text editor.

2. Save the file as read_data.py.

3. Make the directory where you have saved the file the current directory.

4. On the Shell prompt, type:

python read_data.py

Verify the Solution
To verify that all information has been entered correctly, perform the following tasks:

1. Type the following code in a text editor:

fileobj=open(‘course_details’,’r’)

output=fileobj.read()

print output

fileobj.close()

2. Save the file as verify.py in the same directory where you have saved the
file read_data.py.

3. Make the directory where you have saved the file the current directory.

4. On the Shell prompt, type:

python verify.py

Files 155

Summary

In this chapter, you learned the following:

■■ File objects are used to access files for reading and writing contents.

■■ The open() method is used to open any type of file.

■■ The access mode determines the mode in which a file has to be opened.

■■ The methods that are used to write data in a file are these:

■■ write() Writes a string of data to a file.

■■ writelines() Writes a list of strings to a file.

■■ The methods that are used to read the contents of a file are these:

■■ read() Reads the bytes in a file to a string.

■■ readline() Reads a single line of text in a file.

■■ readlines() Returns the text lines in a file as strings in a list.

■■ There are three standard files in Python:

■■ stdin This is the standard input file.

■■ stdout This is the standard output file.

■■ stderr The error messages generated by any code will be generated to
this file.

■■ The standard files are part of the sys module.

■■ The seek() method is used to move the cursor position to different locations
within a file.

■■ The tell() method displays the current cursor position in a file.

■■ The close() method is used to close access to a file.

■■ The os module acts as a front end to the operating system-specific module to
perform the file- and directory-related operations.

■■ The methods in the os module can be categorized into three categories:

■■ File-processing methods

■■ Directory methods

■■ Permission methods

■■ The os.path module provides several functions that are used to perform
path-related operations.

156 Chapter 7

157

OBJECTIVES:

In this chapter, you will learn to do the following:

� Use classes

� Use class objects

� Attributes

� Data attributes

� Functional attributes

� Instances

� Implement classes

� Composition

� Derivation

� Use inheritance

� Multiple inheritance

� Override methods

� Use built-in functions

� Use wrapping

� Delegation

Object-Oriented Programming

C H A P T E R

8

C H A P T E R

Getting Started

In the previous chapters, you learned about the basics of programming in Python. You
also learned how to use functions, modules, packages, and files to create programs in
Python. In real-life applications, though, you cannot always create a well-structured
program by using only these components. This is where the concept of object-oriented
programming (OOP) comes in handy. Python provides support for OOP, but it is not
necessarily required for creating programs in Python. Before you learn about OOP and
its components, let’s recap some features of OOP.

Introducing OOP
With advances in technology in different fields, the items used in day-to-day life are
becoming more complex. Consider the example of a telephone. Earlier, telephones
were heavy and wired, and they could be used only from a fixed location, but with
advances in technology, phones have become small and mobile. You can be in touch
with the world from anywhere. These items have become small and easy to use, but
simultaneously they have become complex. You can appreciate the complexity of these
gadgets only when you try to look at the details of their design and working.

The same trend is seen for software. Software applications are becoming more com-
plex with time for various reasons. Generally, the inherent complexity of software
depends on the task that it is programmed to perform. All applications need not be
complex. For example, a software application developed by a user for personal use
may be less complex than those that are used for accounting, air traffic control, and
power supply applications.

Complexities are associated with software development and cannot be ignored. It is
necessary to keep producing more advanced and useful applications. For example,
mobile and satellite phones were developed in order to produce technologically
advanced products. Otherwise, the world would still be using only wired phones. Care
should be taken, though, to prevent the complexities from affecting the functioning of
software and users’ understanding of it. These complexities need to be simplified to
make software easy to understand, manage, and use.

One of the ways in which these complexities can be simplified is by breaking the
system into manageable components and arranging them in a systematic way. For
example, a personal computer, which is a complex machine, can be broken down into
different components, such as a CPU, a VDU, and a keyboard. The CPU can be further
broken down into components, such as a processor, a clock chip, and memory. This
demonstrates how a complex thing, such as a computer, can be broken down to its last
logical component. A component can be defined and explained so that its functions and
working can be understood. The functions of all the components, combined together,
define the functionality of a computer. It is easy to understand the functions of a com-
puter by knowing about the functions of its components and how they interact with
each other. This approach gives a user a clear picture about a product or a concept.

Due to its benefits, this approach is now implemented in software development.
This is known as the object-oriented approach to developing software. People have
started developing software applications in the way you build high-rise buildings, by

158 Chapter 8

putting together different components, big and small. It has led to the creation of com-
plex software applications with much less effort and fewer lines of code.

Before we discuss OOP in Python, let’s become familiar with the basic components
of OOP.

Components of OOP
In earlier times, programs were written with the code arranged in a sequence of steps.
Today, programming has become more structured and organized. Now, you can have
code organized in logical blocks with specific functionality, which can also be reused.
This logical method of programming gives you the freedom to create an object that
meets your exact requirements and specifications.

Objects

Everything in this world is an object. Objects are of different shapes, sizes, and colors,
and they have different purposes. You learn to recognize an object soon after birth. As
you grow older, you start recognizing an object as an entity that has a definite boundary
and a distinct shape, such as a book, a table, or a fan. After this, you start comparing
objects to learn that each object is unique. Based on all these experiences, you can define
an object as a tangible thing that displays some well-defined behavior. For example, a
football is a tangible entity with a well-defined visible boundary. It has a unique pur-
pose, and you can direct a specific action toward it, like kicking the football.

This concept of objects can be used in software development with a little refinement.
An object is an entity with some physical characteristics, but for the purpose of soft-
ware development, an object can also be anything that has a conceptual boundary. So,
an object is an entity that has the following characteristics:

■■ It has a state.

■■ It might display a behavior.

■■ It has a unique identity.

Classes

The world is full of objects that have different characteristics and purposes. The task of
managing these millions of objects is very difficult and needs planning. It requires a
systematic approach to classification of objects, based on their characteristics. This is
similar to the classification of living beings into kingdom, genus, family, and species.
For example, the elephant, the bear, and the buffalo are all called animals. Why are they
called so? All of them have some characteristics and the properties of the animal king-
dom. For example, all of them have four limbs, give birth to their young, and have a
solid bone structure. As the elephant, the bear, and the buffalo all share structural and
behavioral similarities, they can be put in a class called animals.

Using the same fundamentals for the purpose of software development, you can
identify different objects that have common attributes and define different classes. This

Object-Oriented Programming 159

classification can be different for objects and classes in different situations. Let’s con-
sider the following scenario:

Dr. John Hanks is a doctor at the City Hospital. He wants to send a report about a
critically ill patient for review to Dr. M. Smith, a renowned specialist at the Federal
Hospital. Dr. Hanks is quite anxious that the report should reach Dr. Smith safely and
on time.

As the report is very important and needs to be reviewed and returned as quickly as
possible, Dr. Hanks has decided to send this report by hand through a trusted messen-
ger. The doctor hands over the package to his messenger and instructs him to proceed
with urgency.

Let’s examine this situation and identify the objects therein. Identifying objects
means finding objects that are relevant and central to the situation. In this scenario, one
object involved is surely Dr. Hanks, who is sending something to someone through
the other person. Apart from Dr. Hanks himself, the something (i.e., the report) and the
someone (i.e., Dr. Smith) are also objects. There is also another object involved in this
situation, the messenger. There are a total of four objects in the case: Dr. Hanks, the
report, Dr. Smith, and the messenger.

Now, let’s divide these objects into classes. Dr. Hanks, Dr. Smith, and the messenger
can be part of the class, Living Things, and the report can be part of the class, Nonliv-
ing Things.

Later in the chapter, you will learn to use classes for programming in Python.

Benefits of OOP
There are many reasons for using the object-oriented approach to programming. One
of the important reasons is that OOP maps to real-world situations. The object-oriented
approach of programming is based on the object model, which provides the conceptual
framework for OOP. As the world is full of objects, OOP models the real world cor-
rectly and provides a direct approach for solving real-world problems.

Another benefit of OOP is that you can reuse the classes that you create. This saves
a lot of the time and energy spent on creating redundant lines of code. Let’s examine
an example.

Speedy Motors is a manufacturer of cars and sells them under the brand name
Speedy. Speedy cars have not been doing well for some time. The marketing depart-
ment has been very concerned about the plunging sales. The marketing staff plans to
conduct a market study to find out why people do not like Speedy.

The results of the market study show that customers are happy with the engine and
performance but do not like the body and colors of the car. After a detailed analysis of
the results, the marketing team finds that the root cause of the problem is that the com-
pany’s car doesn’t have an identity of its own.

Based on the results of the study, the marketing department decides to give the car
a new look and a new range of colors. The design department of the company creates
a virtual design of the car and conducts a test using simulation software. The advertis-
ing department plans a promotional strategy based on the design created by the design
department. At the same time, the finance department plans for the cost to design and
manufacture the new car.

160 Chapter 8

All these departments can be viewed as several teams working on one project. All
the teams use the same information about the new car to arrive at a complete solution
for the Speedy car.

The scenario at Speedy Motors can be used to explain the concept of reusability that
is supported by the object-oriented approach. In the object-oriented approach, classes
are designed such that they can be reused in several systems. In OO terms, the car is a
class that can be used by all who need it.

Extending this scenario to include a situation in which Speedy Motors is planning to
launch a new variant of the Speedy car, the work done on the design of the Speedy car
can be used for the new variant. Not only can the attributes of the car, such as its
length, width, and height, be reused, but also the process of designing can also be fol-
lowed. For example, the process used by the finance department to compute the man-
ufacturing cost of the Speedy car can be used for this new variant.

The software based on OOP is favorable to change. If, for some reason, you need to
change few things in your software, you need not scrap your existing software and
start developing a new one. You can simply update those parts that are affected by the
proposed change and continue using the other parts of the software as they were earlier.
This makes software based on object orientation easy to maintain and update. Let’s
look at the following case to explain this.

HighDesign is a company that creates computer graphics for the advertising busi-
ness. All the internal systems of the company, such as accounts and payroll, are auto-
mated and use object-oriented techniques. The company has 500 employees; of them,
400 are graphic designers.

The company is now venturing into the business of software development. As the
company is new in this business, it has now employed freelance software developers
who work as temporary employees.

This new development in the company has rendered the old payroll system inade-
quate. The original payroll system was designed for two types of employees, confirmed
employees and trainees. Though many attributes are common between confirmed
employees and trainees, like name and address, some attributes are different. For
example, a confirmed employee receives a base pay while a trainee receives a stipend.

The company now wants the system to be modified to accommodate freelancers as
well. In the object-oriented system, this change does not mean that the entire payroll
system needs to be revamped. A new class of freelancers needs to be introduced to take
care of all the activities related to freelancers. The rest of the system remains unchanged.

Now that you are familiar with OOP and its components, let’s look at a problem
statement to learn to implement OOP using Python.

Using Classes

Problem Statement
Techsity University has already started with the process of automating its existing sys-
tems and making them available online. Working toward this goal, it is now planning
to automate the library of the university and make it accessible online.

Object-Oriented Programming 161

The library of Techsity University is very large and has various sections to cater to
the needs of the reader. To start with the process of library automation, the university
has decided to automate the book and software sections and make them available
online. The success of this project will determine whether the rest of the library will be
converted.

A team has been set up, with Sharon as the leader, to complete the task of library
automation. The team has been given limited time to complete this project. In this short
period, the team has to create a system that is fast, light, modular, and well structured.
Apart from all this, the team has to take into consideration that two sections of the
library are being computerized to start and that the rest of the sections will follow soon.

To make the code fast and light, they will have to keep the code short. They will also
have to make parts of the code reusable, so that redundant lines of code are avoided.
This would require them to write blocks of code that can be reused within the same
application or with other applications, when the university plans to convert other sec-
tions of the library. For example, if a few fields, such as title and price, are common to
books and software, the code to enter such information should be written only once in
the application and should be accessible by other parts of the application when
required.

The application should allow users to do the following:

■■ Add book and software records

■■ View book and software records

■■ Delete book and software records

To create an application that meets all the requirements, the project team has decided
to take an object-oriented approach. They have come up with the following task list.

Task List

� Identify the classes to be defined.

� Identify the class objects.

� Identify the classes to be inherited and their objects.

� Identify the methods to be overridden.

� Write the code.

� Execute the code.

Identify the Classes to Be Defined
Classes are an important entity of object-oriented programming in Python. Python
classes are a combination of the C++ and Module-3 classes. The Python class mecha-
nism supports the most important features of classes. The terminology used in Python
is different from the universally accepted terminology used for classes in C++ and

162 Chapter 8

other languages. In Python, all the data types are objects and the word “object” need
not mean an instance of a class, as in some other languages.

Python classes are data structures used to define objects. They contain data values
and define behavioral characteristics. In Python, you define a class by using the key-
word, class, followed by the class name in the header line. The suite of code follows the
information in the header line. The syntax for a class declaration is this:

class Class_Name:

‘class_docstring’

class_suite

The class suite contains statements that define the class. Classes can have multiple
data types and functions. These class functions are commonly known as methods.
They are defined as part of the class definition and are invoked by instances, which are
required for executing classes. A class is generally defined earlier in the module so that
its instances can be used in the code when required.

Classes have many benefits over the standard types, such as lists and directories.
The major difference is that the standard types cannot be customized while classes can
be customized and can have their own set of attributes. Another difference is that the
definition of a class creates a new namespace, while standard data types do not pro-
vide a separate namespace. A namespace is a mapping from names to objects and is
used as the local scope. All variable assignments happen in it. The function names are
also bound to their definitions in this namespace. The standard data types have a com-
mon set of methods, and you can define methods as per your requirements in classes.

Result

In order to automate the books and software sections of the library, the following
classes will be defined in the code:

library. This class will define the attributes and methods that the user will use
to enter common information about books and software.

books. This class will define the attributes and methods that the user will use to
enter specific information about books.

software. This class will define the attributes and methods that the user will
use to enter specific information about software.

Identifying the Class Objects
As everything in Python is an object, classes are also objects. But, there is room for con-
fusion here. When talking of classes as objects, it’s important to understand that classes
are not a realization of the objects that are defined in the class.

You can work with class objects by performing two types of operations. The first is
creating attribute references, and the second is creating an instance of the class.

Object-Oriented Programming 163

Class Attributes

A class attribute is an element of the class, which is referred to by using the standard
dotted-attribute notation used for all attribute references in Python. The standard syn-
tax for attribute references is this:

obj.name

In this code, obj refers to the name of the object and name refers to the name of the
attribute.

The class attributes belong to the class in which they are defined. When you create a
class, all the names that are in the namespace of the class at the time of its creation are
considered as valid attribute names. These attributes can be either data attributes or
functional attributes. Data attributes are created when they are assigned for the first
time. A few Python data types use data attributes. For example, complex numbers use
the real and imag attribute. The functional attributes are the methods, which are also
used in other Python types, such as lists and dictionaries.

Data Attributes

Data attributes are commonly known as static members or class variables and are set
at the time when the class is created. They can be used as any other variable. You can
use methods to manipulate and update the variables in the class. These variables are
directly linked to the class object and are not related instances. They are similar in
nature to the Static variables used in C++. The most common attributes are the
instance data attributes, as instances are the most commonly used objects in OOP. You
generally define a class data attribute only when you want data types that are inde-
pendent of instances and are static. Let’s use an example to explain data attributes.

>>>class My_Class:

... ‘An example of class data attributes’

... a=0

... b=1

...

>>>print My_Class.a

0

>>>My_Class.a=My_Class.a + My_Class.b

>>>print My_Class.a

1

In this example, My_Class.a and My_Class.b are the class data attribute refer-
ences, returning an integer. My_Class.a is assigned another value by adding the
values in My_Class.a and My_Class.b.

A class can have many attributes. It would be difficult to search for them in the code.
Python provides a built-in function, dir(), which you can use to display a list of the
names of the attributes currently contained in a class. You can also use the class dictio-
nary attribute, __dict__ to show the class attributes along with their values.
__dict__ is a special attribute and is available to all the classes. It consists of a dictio-
nary of all the data attributes of a class. When you refer to a class attribute, the

164 Chapter 8

__dict__ dictionary is searched for that attribute. If the attribute is found in the
dictionary of the current class, it is returned. If the attribute is not found, then the dic-
tionaries of the base classes of the current class are searched. Any changes made to the
attributes of a class are reflected in the __dict__ attribute of only that class. dir()
and __dict__ do not display all the built-in functions and variables of a class.
Another way to show an output in the same way as the __dict__ attribute is to use
the vars() built-in function. The function takes an instance of the class as an argu-
ment. You can also use vars() without an argument. If used in such a way, it returns
a dictionary of the attributes and values corresponding to the current local symbol table.

Let’s use the example of My_Class defined earlier. First, the dir() built-in func-
tion has been used to show the attributes of My_Class.

>>>dir(My_Class)

[‘__doc__’, ‘__module__’, ‘a’, ‘b’]

It lists all the attributes of My_Class. It also displays two special class attributes
__doc__ and __module__. __doc__ contains the documentation string for the class,
which is the first unassigned string that comes after the header line. It is similar to the
document strings used for functions and modules. The documentation string for a
class is specific to that class. __module__ contains the name of the module in which
the class is defined. It is part of the fully qualified class name. The fully qualified name
of the class, My_Class, is __main__.My_Class, in which __main__ is the module
name. You can refer to these special class attributes as you refer to any other attribute.

Now let’s use the __dict__ special class attribute to show the attributes of
My_Class.

>>>My_Class.__dict__

{‘a’: 0, ‘__module__’: ‘__main__’, ‘b’: 1, ‘__doc__’: ‘An example of

class data attributes’}

It shows all the attributes of My_Class with their values, including the two special
class attributes, __doc__ and __module__.

The second type of class attributes is functional attributes. The methods of a class are
the functional attributes of that class. Therefore, functional attributes are also known as
method class attributes. You need to create an instance of the class object before you
can call a method. A method can be invoked only by using the instance of the class to
which it belongs. Before you learn about functional attributes, let’s learn how to create
and work with class instances.

Class Instances

Other than attribute referencing, the operation that you can perform with classes is cre-
ating an instance of a class. A class instance is a variable that contains a reference to the
class, which is of a data structure definition type. All instances are of the type, instance.
In Python, it is easier to create an instance in comparison to other object-oriented lan-
guages. The process of creating an instance of a class is known as instantiation.

Object-Oriented Programming 165

Class instantiation uses the function notation to call a class object, which creates an
empty object. This object is then assigned to a local variable called the instance. Take
the example of the class, My_Class, created earlier. Let’s create a new instance of
My_Class and assign the object to the variable, m.

>>>m = My_Class()

Now that you know about class instances, let’s learn to work with functional attributes.

Functional Attributes

As discussed earlier, class attributes are of two types, data attributes and functional
attributes. Functional attributes or method class attributes are the methods of a class.
Working with functional attributes generally involves method handling. As methods
are the functions defined in a class, they are defined as part of the class definition and
are invoked by instances.

Python uses the concept of binding to restrict method calls by using only a class
instance. Binding requires a method to be bound to an instance before you can call the
method. Even if a method cannot be called directly by using the class object, it is still
an attribute of the class in which it is defined. A method is considered bound if the
instance is present and unbound if the instance is not present.

Let’s consider an example to explain this concept. First, a new class,
My_Method_Class, will be defined. This class will include a method,
my_method_example. This method will then be called directly as any other function
is called.

>>>class My_Method_Class:

... def my_method_example(self):

... return ‘An example of method reference’

...

>>>my_method_example()

Traceback (most recent call last):

File “<pyshell#5>”, line 1, in ?

my_method_example()

NameError: name ‘my_method_example’ is not defined

When the my_method_example is called directly, the attempt fails and a
NameError exception is raised. If the method is called by using the class object, it
raises the TypeError exception. Let’s try this:

>>>My_Method_Class.my_method_example()

Traceback (most recent call last):

File “<pyshell#6>”, line 1, in ?

My_Method_Class.my_method_example()

TypeError: unbound method my_method_example() must be called with

My_Method_Class instance as first argument (got nothing instead)

In the previous examples, my_method_example is unbound. As it is a method and
not a function available in the global namespace, it needs to be bound so that you can
invoke it directly.

166 Chapter 8

Let’s now bind the my_method_example method and call it by using the instance
of the class, My_Method_Class.

>>>m = My_Method_Class()

>>>m.my_method_example()

‘An example of method reference’

In this example, the my_method_example method is bound by creating an
instance of the My_Method_Class, m. This instance is then used to call the
my_method_example method.

There are situations when you might want to invoke unbound methods. A few of the
common reasons for doing so are when you want to apply static methods that are not
supported by Python and when a specific instance of the method class is not available.
You can call an unbound method by providing the object of the instance explicitly. The
following code explains how you can do this.

>>>My_Method_Class.my_method_example(m)

‘An example of method reference’

If the instance object is not available, you will not be able to call an unbound method.

The __init__() Constructor Method

The __init__() constructor is a special method available in Python that can be
defined in a class to create objects in the initial state. If the class for which you are cre-
ating the instance contains any __init__() method, then it is invoked at the time of
instantiation. The class object is returned, and the instantiation process is completed
only after the __init__() method has been implemented. The __init__() method
should not return any object other than the class object because this might lead to a
conflict.

The __init__() method is also commonly used to set instance attributes. Instance
attributes are data attributes, which contain values associated with a specific instance
of a class. Instance attributes are not declared like local variables. They are set when the
__init__() method is implemented at the time of instantiation. Instance attributes
are referred to in the same way as any other data attribute.

Let’s look at an example code to define the __init__() method in a class and ini-
tialize instance attributes:

def __init__(self):

self.a=0

self.b=0

The __init__() special method has self as the first argument like any other
function and method defined in Python. During the instantiation operation, when the
__init__() method is called, the object of the instance is passed to self. In the pre-
ceding example, two instance attributes, a and b, are also initialized. The __init__()
method can also have arguments other than self. As the __init__() method is not
invoked directly, you can pass values to these arguments through the instantiation
operator at the time of instantiation.

Object-Oriented Programming 167

Let’s consider an example that will show how differently a class will behave after
the __init__() method is defined in it. For this, a new class, My_Init, needs to be
created on the basis of My_Class used earlier. Let’s create the My_Init class:

>>>class My_Init:

... ‘An example of __init__ method’

... def __init__(self, aVal, bVal):

... self.a=aVal

... self.b=bVal

...

>>>i = My_Init(1,2)

>>>i.a, i.b

(1, 2)

In this example, three arguments are defined in the __init__() method, self,
aVal, and bVal. During the instantiation operation, the object of the instance is passed
to self, and the values for the arguments, aVal and bVal, are passed as part of the
class invocation call. The values in aVal and bVal are then assigned to the two
instance attributes, which are accessed later. You can use the dir() built-in method
and the __dict__ special attribute to display all the instance attributes. Let’s use the
previous example and see how it works.

>>>dir(i)

[‘__doc__’, ‘__init__’, ‘__module__’, ‘a’, ‘b’]

>>>

>>>i.__dict__

{‘a’: 1, ‘b’: 2}

Python also provides a special destructor method, __del__. Destructors are imple-
mented in Python to do some processing after the references to all instance objects are
removed and before the instances are deallocated. The __del__ method is not imple-
mented commonly because these conditions are difficult to meet.

Result
The library class will contain the following objects:

■■ Attributes

LibCode. This attribute will contain the library code for the book or software.

Title. This attribute will contain the title of the book or the software.

Price. This attribute will contain the price of the book or software.

■■ Methods

init__(). This method is the constructor of the class. It will initialize the
attributes defined in it.

def __init__(self):

‘library class constructor’

.....

168 Chapter 8

.....

.....

lib_method(). This method will prompt the user to enter the item code,
the title, and the price of a book or software.

def lib_method(self):

‘Enter common details for books and software’

.....

.....

.....

empty_file_method(). This method will delete the records of all the
books or software.

def empty_file_method(self, FileName):

‘Delete book or software records’

.....

.....

.....

clear__screen_method(). This method will clear the screen.

def clear_screen_method(self):

‘Clear screen method’

.....

.....

.....

The books class will contain the following objects:

■■ Attributes

Author. This attribute will contain the name of the author of the book.

PageCount. This attribute will contain the total number of pages in the book.

ISBN. This attribute will contain the International Standard Book Number
(ISBN) of the book.

■■ Methods

bks_method(). This method will ensure that the user enters all the details
about a book.

def bks_method(self):

‘Enter book details’

.....

.....

.....

bks_display(). This method will display the details of all the books.

def bks_display(self):

‘Display book details’

.....

.....

.....

Object-Oriented Programming 169

The software class will contain the following objects:

■■ Attributes

ProductOf. This attribute will contain the name of the software company.

Size. This attribute will contain the size of the software.

■■ Methods

sws_method(). This method will ensure that the user enters all the details
about the software.

def sws_method(self):

‘Enter software details’

.....

.....

.....

sws_display(). This method will display the details of all the software.

def sws_display(self):

‘Display software details’

.....

.....

.....

Identifying the Classes to Be Inherited and Their Objects
After identifying the classes and their attributes, you need to utilize these classes in
your code. The following section discusses how you can utilize the classes that you
have created.

Utilizing Classes

At the beginning of this chapter, you learned about the need for classes. Later, you
learned how to create and work with them. Now, after you know all this, it is time to
learn how to use classes in your program and make them a part of your code. It is
important to fit classes in your program in a way that they follow the logical flow of
your program. You can implement classes in your code in two ways, composition and
derivation.

Composition

In composition, one class is made up of another. Classes are combined to create a code
that provides better functionality. You can add classes inside other classes. This gives
you the benefit of using the attributes and methods by using the original class objects.
Composition also provides the benefit of code reusability.

Composition is useful if the classes have nothing in common and a class is just a
required component of a larger class. If the relationship between two classes is close
and they share common behavior, derivation is a better choice.

170 Chapter 8

Derivation

Derivation provides a powerful feature of OOP, which allows for the use of the features
and behavior of a class by another class without disturbing the rest of the program. It
is possible for a dependent class to derive the features of its base class. These depen-
dent classes are commonly called subclasses.

Subclasses and Inheritance

Inheritance is the property by which a subclass derives the attributes of the base class.
The term “subclass” describes a class that inherits or derives the attributes from
another class; the term “base class” describes a class from which a subclass has been
derived. To understand this better, let’s relate this to the concept of parent and child. In
inheritance, the base class is also termed as the parent and a subclass as the child. A child
class can be a parent class for some other classes and so on. All classes higher than the
parent class are termed as ancestors. This cycle of derivation can continue for multiple
levels. This provides the benefit of code reusability.

The subclasses inherit most of the attributes of their base classes. Thus, a subclass
has more attributes than its base class. A subclass can also modify some or all of the
inherited attributes of the base class, but the base class cannot do anything with the
attributes of the subclass. The syntax for declaring a subclass looks like this:

class Sub_Class_Name(Base_Class1[, Base_Class2, ...]):

‘class_docstring’

class_suite

It is similar to the syntax used for declaring a base class, the only difference being
that a list of all the base classes of the subclass is provided after the name of the subclass.

Let’s look at the following example to explain the concept of base classes and
subclasses.

>>>class My_Base_Class:

... ‘My_Base_Class is the parent class of My_Subclass’

... def my_base_class_method(self):

... return ‘Base class method’

...

>>>class My_Subclass(My_Base_Class):

... ‘My_Subclass is the child class of My_Base_Class’

... def my_subclass_method(self):

... return ‘Subclass method’

...

>>>

>>>b = My_Base_Class()

>>>

>>>dir(b)

[‘__doc__’, ‘__module__’, ‘my_base_class_method’]

>>>

Object-Oriented Programming 171

>>>

>>>s = My_Subclass()

>>>

>>>dir(s)

[‘__doc__’, ‘__module__’, ‘my_base_class_method’, ‘my_subclass_method’]

>>>

>>>s.my_base_class_method()

‘Base class method’

>>>

>>>b.my_subclass_method()

Traceback (most recent call last):

File “<pyshell#17>”, line 1, in ?

b.my_subclass_method()

AttributeError: My_Base_Class instance has no attribute

‘my_subclass_method’

In this example, two classes, My_Base_Class and My_Subclass, are defined. My_
Base_Class is the parent class of My_Subclass. It defines one method, my_base_
class_method. My_Subclass also defines one method, my_subclass_method.

The dir() built-in function is used to list the attributes of the class. The output of
My_Base_Class shows my_base_class_method, but the output of My_Subclass
shows both my_base_class_method and my_subclass_method. This shows that
My_Subclass, which is the child class of My_Base Class, has inherited the attrib-
utes of the parent class.

As My_Subclass is a subclass of My_Base_Class, the my_base_class_method
can be invoked by using b, which is an instance of the subclass, My_Subclass. But,
when the my_subclass_method is invoked by using s, which is an instance of the
base class, My_Base_Class, it results in an error. This shows that inheritance is only
one-way; hence, only a subclass inherits the attributes of the base class and not vice
versa.

Multiple Inheritance

When a class has one or multiple subclasses, it is known as inheritance. When a sub-
class is inherited from multiple base classes, it is known as multiple inheritance. All the
subclasses derived from a single base class are termed as siblings.

When a class is derived from multiple classes, it is sometimes difficult to figure out
the parent classes. Python provides you with a class attribute, __bases__ that you
can use to show the set of base classes for a subclass. __bases__ is a tuple and dis-
plays only the parent class of a subclass and not all the ancestor classes.

Let’s consider an example to explain multiple inheritance and the use of the
__bases__ attribute. This would require using the classes created earlier and defining
two new classes, My_Class_A and My_Class_B. My_Class_A will be the subclass of
the class, My_Subclass. My_Class_B will be the subclass of the classes,
My_Class_A and My_Base_Class.

>>>class My_Class_A(My_Subclass):

... ‘My_Class_A is the child class of My_Subclass’

... def my_subclass_method(self):

172 Chapter 8

... return ‘Method of My_Class_A’

...

>>>My_Class_A.__bases__

(<class __main__.My_Subclass at 0x009462EC>,)

>>>

>>>class My_Class_B(My_Class_A, My_Base_Class):

... ‘My_Class_B is the child class of My_Class_A and My_Base_Class’

... def my_subclass_method(self):

... return ‘Method of My_Class_B’

...

>>>My_Class_B.__bases__

(<class __main__.My_Class_A at 0x00955B84>, <class

__main__.My_Base_Class at 0x00936344>)

Even if My_Class_A is derived from My_Subclass, the result of My_Class_B.__
bases__ shows only the two parent classes, My_Class_A and My_Base_Class.

Result

The library class will be the base class, and both the books and software classes
will be the subclasses of the Library class. The library class will define the attrib-
utes and methods that are common to both the books and software items, and it can be
used by both the books and software classes. Both these classes will inherit all the
objects of the Library class.

class library:

‘library class’

.....

.....

.....

class books(library):

‘books class’

.....

.....

.....

class software(library):

‘software class’

.....

.....

.....

Identify the Methods to Be Overridden
There might be times when you use the same names for the methods in the base class
and the subclasses. This is known as method overriding. Method overriding is useful
when you do not want to remember different method names. You might also use
method overriding when you want to provide enhanced functionality in your sub-
classes. The following section elaborates on method overriding.

Object-Oriented Programming 173

Method Overriding

In the earlier example, the classes My_Subclass, My_Class_A, and My_Class_B
have a method with the same name, my_subclass_method. Let’s use this example to
explain method overriding. Let’s first create instances of the classes, My_Class_A and
My_Class_B.

>>>Aclass = My_Class_A()

>>>

>>>Bclass = My_Class_B()

>>>

Now, let’s try invoking the my_subclass_method by using the instances of the
classes, My_Subclass, My_Class_A, and My_Class_B.

>>>s.my_subclass_method()

‘Subclass method’

>>>

>>>Aclass.my_subclass_method()

‘Method of My_Class_A’

>>>

>>>Bclass.my_subclass_method()

‘Method of My_Class_B’

In this example, My_Class_A defines my_subclass_method() and also inherits
my_subclass_method() of My_Subclass. When you invoke my_subclass_
method() by using the instance of My_Class_A, the inherited method of My_Sub-
class is not called. Instead, the my_subclass_method() of My_Class_A is called.
In the same way, My_Class_B defines my_subclass_method() and also inherits
my_subclass_method() of My_Class_A. But, when you invoke my_subclass_
method() by using the instance of My_Class_B, the my_subclass_method()
method of My_Class_B is called, not the method of My_Class_A.

The methods in the base classes override the methods of their subclasses when you
want to apply static methods that are not supported by Python. When a specific
instance, but when the methods of the subclass, is invoked by the instances of the sub-
class, the overriding methods (methods of the base class) are not invoked. In such a sit-
uation, if you want to invoke the methods of the base class, you can do that in the
following way:

>>>My_Subclass.my_subclass_method(Aclass)

‘Subclass method’

You call the method of the base class by invoking an unbound base class method
and providing the instance of the subclass. The instance of My_Subclass is not
required because the instance of My_Class_A, which is a subclass of My_Subclass,
is available.

If the base class has a constructor __init__() and the subclass also has a construc-
tor __init__(), the constructor of the base class is not inherited by the subclass. When
you instantiate the subclass, the __init__() method of the subclass is automatically

174 Chapter 8

invoked. You can invoke the __init__() method of the base class in the same way as
you invoke the overridden method of a base class, by calling the unbound base class
method and explicitly providing the instance of the subclass. Let’s consider an example.

>>>class My_Class:

... ‘My Class is the parent class of My_Child_Class’

... def __init__(self):

... print ‘My_Class constructor’

...

>>>class My_Child_Class(My_Class):

... ‘My_Child_Class is the subclass of My_Class’

... def __init__(self):

... print ‘My_Child_Class constructor’

...

>>>

>>>MyC=My_Class()

My_Class constructor

>>>

>>>MyChC=My_Child_Class()

My_Child_Class constructor

>>>

In this example, when the subclass is instantiated, the constructor of the subclass is
called. Now, let’s add an explicit call to the constructor of the base class in the con-
structor of the subclass.

>>>class My_Child_Class(My_Class):

... ‘My_Child_Class is the subclass of My_Class’

... def __init__(self):

... My_Class.__init__(self)

... print ‘My_Child_Class constructor’

...

>>>

>>>MyChC=My_Child_Class()

My_Class constructor

My_Child_Class constructor

In this example, the instance of the subclass is explicitly passed when calling the
constructor of the base class, My_Class.__init__(self).

Result

The method names used by all the classes are unique, but they all have the constructor
methods, __init__(), with the same name. The constructor method of the subclass
will override the constructor method of the base class.

class library:

‘library class’

def __init__(self):

‘library class constructor’

Object-Oriented Programming 175

.....

.....

.....

.....

.....

.....

class books(library):

‘books class’

def __init__(self):

‘books class constructor’

.....

.....

.....

.....

.....

.....

class software(library):

‘software class’

def __init__(self):

‘software class constructor’

.....

.....

.....

.....

.....

.....

Figure 8.1 explains the final class structure.

Figure 8.1 Class structure.

library

Attributes:

LibCode
Title
Price

init()
lib_method ()
empty_file_method ()
clear_screen_method ()

Methods:

books software

Attributes:

Author
Publisher
PageCount
ISBN

init()
bks_method ()
bks_display ()

Methods: Attributes:

ProductOf
Size

init()
sws_method ()
sws_display ()

Methods:

176 Chapter 8

Using Built-In Functions

You have already discussed and used some built-in functions, such as dir() and
var(). Let’s now look at the syntax of some other common built-in functions available
in Python for OOP and learn how to use them.

isinstance(object1, object2)

The isinstance() function takes two arguments, in which the first argument is an
instance object and the second argument is a class object or a type object, for example,
object1 and object2.

Let’s consider an example to explain the isinstance() function. Continuing with
the same example that was used to explain inheritance, My_Base_Class already has
an instance, b, and My_Subclass has an instance, s. Let’s create instances for
My_Class_A and My_Class_B.

>>>classA = My_Class_A

>>>

>>>classB = My_Class_B

In the isinstance() function, if the second argument is a class, the function deter-
mines whether object1 is an instance of the class object2. If this is true, the func-
tion returns 1.

>>>isinstance(classA, My_Class_A)

1

If object1 is not an instance of the class object2, the function returns 0.

>>>isinstance(classA, My_Class_B)

0

In the isinstance() function if the second argument is a type object, the function
determines whether object1 is of the type object2. If this is true the function
returns 1. You use the type() function to determine the type of any object. In Python,
the standard types need not be classes and they cannot be used for direct derivation.
All the built-in standard types of Python are defined in the types standard module.

>>>isinstance(‘a’, type(‘z’))

1

>>>

>>>type(‘a’)

<type ‘str’>

>>>

>>>type(‘z’)

<type ‘str’>

Here, both ‘a’ and ‘z’ are strings and are of the type str. Hence, the
isinstance() function returns 1.

Object-Oriented Programming 177

If object1 is not of the type object2, the isinstance() function returns 0.

>>>isinstance(‘a’, type(1))

0

>>>

>>>type(1)

<type ‘int’>

Here, 1 is an integer and is of the type int, while ‘a’ is a string and is of the type
str. Hence, the isinstance() function returns 0.

If object2 is not a class object or a type object, the function raises a TypeError
exception.

>>>isinstance(‘a’, classA)

Traceback (most recent call last):

File “<pyshell#49>”, line 1, in ?

isinstance(‘a’, classA)

TypeError: isinstance() arg 2 must be a class or type

Here, classA is not a class object or a type object. Hence, the isinstance() func-
tion raises a TypeError exception.

issubclass(class1, class2)

issubclass() takes two arguments, and both of them are classes—for example,
class1 and class2.

It determines whether class1 is a subclass of class2, and if this is true, the func-
tion returns 1. Let’s take the same example that was used to explain inheritance.

>>>issubclass(My_Class_B, My_Base_Class)

1

Here, My_Base_Class is the parent class of My_Class_B.
If class1 is not a subclass of class2, the function returns 0.

>>>issubclass(My_Subclass, My_Class_B)

0

Here, My_Class_B is not the parent or ancestor class of My_Subclass.
If class2 is an ancestor of class1, the result will be true and the function will

return 1.

>>>issubclass(My_Class_B, My_Subclass)

1

My_Class_B is inherited from My_Class_A, and My_Class_A is inherited from
My_Subclass, thus making My_Subclass the ancestor class of My_Class_B.

Also, if both class1 and class2 are the same, the function returns 1 because a
class is considered a subclass of itself.

>>>issubclass(My_Class_B, My_Class_B)

1

178 Chapter 8

But, if one or both the arguments of the issubclass() function are not class
objects, a TypeError exception is raised.

>>>issubclass(classB, My_Class_B)

Traceback (most recent call last):

File “<pyshell#53>”, line 1, in ?

issubclass(classB, My_Class_B)

TypeError: issubclass() arg 1 must be a class

Here, classB is not a class object but an instance object. Hence, the function raises
a TypeError exception.

hasattr(obj, attr)

The hasattr() function takes two arguments, in which the first argument is an
object (for example, obj) and the second argument is a string (for example, attr). It
determines whether the string is the name of one or more of the object attributes. This
function can be used to check whether the object attributes that you want to refer to
actually exist.

Let’s consider an example to explain the hasattr() function. Let’s create a new
class, My_Attr_Class, and define two class attributes.

>>>class My_Attr_Class:

a=0

b=1

If attr is the name of an attribute of the object, obj, the function returns 1.

>>>hasattr(My_Attr_Class, ‘a’)

1

Here, a is an attribute of the class, My_Attr_Class. Hence, the function returns 1.
If attr is not the name of an attribute of the object, obj, the function returns 0.

>>>hasattr(My_Attr_Class, ‘z’)

0

Here, z is not an attribute of the class, My_Attr_Class. My_Attr_Class has only
two attributes, a and b. Hence, the function returns 0.

getattr(obj, attr)

The getattr() function takes two arguments, in which the first argument is an object
(for example, obj) and the second argument is a string (for example, attr). It returns
the value of the attribute that has the same name as the string.
If attr is the name of an attribute of the object, obj, the function returns the value of
the attribute.

>>>hasattr(My_Attr_Class, ‘a’)

0

Object-Oriented Programming 179

Here, a is an attribute of the class, My_Attr_Class, and its value is 0.
If attr is not the name of an attribute of the object, obj, the function raises an

AttributeError exception.

>>> getattr(My_Attr_Class, ‘z’)

Traceback (most recent call last):

File “<pyshell#46>”, line 1, in ?

getattr(My_Attr_Class, ‘z’)

AttributeError: class My_Attr_Class has no attribute ‘z’

Here, z is not an attribute of the class, My_Attr_Class. My_Attr_Class has only
two attributes, a and b. Hence, the function raises an AttributeError exception.

setattr(obj, attr, val)

The setattr() function takes three arguments, in which the first argument is an
object (for example, obj), the second argument is a string (for example, attr), and the
third argument is a value (for example, val). You use this function to change the value
of an existing attribute or set a new attribute for an object.

When you use the setattr() function to change the value of an existing attribute,
it assigns the value, val, to the attribute, attr, of the object, obj, or it sets a new
attribute, attr, in the object, obj, and assigns the value, val.

Let’s update the value of the attribute, a, of the class, My_Attr_Class, from 1 to 10.

>>>setattr(My_Attr_Class, ‘b’, 10)

>>>

>>>getattr(My_Attr_Class, ‘b’)

10

When you use the setattr() function to set a new attribute, it sets a new attribute,
attr, in the object, obj, and assigns the value, val. Let’s consider an example. Let’s
first list the present attributes of the class, My_Attr_Class, before the new attribute
is added.

>>>dir(My_Attr_Class)

[‘__doc__’, ‘__module__’, ‘a’, ‘b’]

My_Attr_Class has only two attributes, a and b, besides the standard built-in
attributes.

Let’s now set a new attribute, c, with the value as 100 in the class, My_Attr_Class.

>>>setattr(My_Attr_Class, ‘c’, 100)

>>>

>>>getattr(My_Attr_Class, ‘c’)

100

Let’s now list the attributes of My_Attr_Class to confirm that the new variable, c,
has been set with the value, 100.

180 Chapter 8

>>> My_Attr_Class.__dict__

{‘a’: 0, ‘c’: 100, ‘__module__’: ‘__main__’, ‘b’: 10, ‘__doc__’: None}

c appears in the list with the value as 100.

delattr(obj, attr)

The delattr() function takes two arguments, in which the first argument is an object
(for example, obj) and the second argument is a string (for example, attr). You use
this function to delete an existing attribute from an object. It deletes an existing
attribute, attr, from an object, obj.

Let’s delete the attribute, c, of the class, My_Attr_Class.

>>>delattr(My_Attr_Class, ‘c’)

>>>

>>>dir(My_Attr_Class)

[‘__doc__’, ‘__module__’, ‘a’, ‘b’]

c is deleted from the class, My_Attr_Class.

delattr(obj, attr)

delattr() takes two arguments in which the first argument is an object (for example,
obj) and the second argument is a string (for example, attr). You use this function to
delete an existing attribute from an object. It deletes an existing attribute, attr, from
an object, obj.

Let’s delete the attribute, c, of the class, My_Attr_Class.

>>>delattr(My_Attr_Class, ‘c’)

>>>

>>>dir(My_Attr_Class)

[‘__doc__’, ‘__module__’, ‘a’, ‘b’]

c is deleted from the class, My_Attr_Class.

Wrapping

Python allows you to modify, add, or remove some functionality to an existing object,
such as a data type or some code by packaging the object. This is known as wrapping.

Wrapping is important when you want to derive the behavior of a standard type.
You need to wrap a type to derive its behavior because Python does not support the
derivation of standard types. To derive a type, you wrap it as a member of a class and
then use the object of this class. You can use the wrapped type to provide the behavior
of the standard type as you desire, remove what you do not want, and also provide
some improved functionality. Wrapping generally consists of customizing the existing
type to provide some enhanced functionality over the existing behavior of a standard
type. The wrapping of a class is also possible, but you can also wrap an object in the
way you wrap a type.

Object-Oriented Programming 181

Delegation

Delegation is a characteristic of wrapping that uses the existing functionality of the type
to enable code reusability. Delegation takes advantage of the existing functionality of
the type. In delegation, the existing functionality is delegated to the default attributes
of the object, and a new class manages the extra functionality.

You implement delegation by overriding the __getattr__() method that contains
a call to the getattr() function. When an object attribute is referred to, it is searched
locally first in the local namespace and then in the class namespace. If it is not found at
both the locations, the search for the original object begins by invoking the
__getattr__() method, which in turn calls the getattr() function.

Write the Code
Let’s write the code for the problem statement.

import os #Imports the OS module, which would be required

#to execute the system commands

ClearScreen = os.system(‘clear’) #Clears the screen as soon

#as the code is executed

class library: #Defines the library class, which is the

#top most class in the hierarchy

‘library class’

def __init__(self):

‘library class constructor’

LibCode=Title=Price=’’ #Initializes the attributes

#of the library class

FileName=’’

def lib_method(self): #Takes input for three

#attributes, LibCode, Title,

#and Price, which are common to

#books and software

‘Enter common details for books and software’

LibCode=raw_input(‘Enter the library code: ‘)

Title=raw_input(‘Enter the title: ‘)

Price=raw_input(‘Enter the price (in $): ‘)

return LibCode,Title,Price

def empty_file_method(self, FileName): #Accepts the

#name of the

#file and

#empties it

‘Delete all book or software records’

File=open(FileName,’a’)

File.seek(0,2) #Goes to the end of file

FileLen=File.tell() #Stores the length of file in

182 Chapter 8

#an attribute

if FileLen == 0L: #Checks if the length of file

#is zero

print

print

print ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

print ‘xxxxxxx FILE ALREADY EMPTY xxxxxxx’

print ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

print

print

else:

File.truncate(0) #Empties the file, if the

#lenght of file is not zero

if FileName == ‘BookDetails’: #Checks if the

#filename is

#BookDetails,

#which contains

#book records

print

print

print ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

print ‘xxxxxxx ALL BOOK RECORDS DELETED xxxxxx’

print ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

print

print

else:

print

print

print ‘xxx’

print ‘xxxxxxx ALL SOFTWARE RECORDS DELETED xxxxxx’

print ‘xxx’

print

print

File.close()

def clear_screen_method(self): #Clears the screen when

#called within the code

‘Clear screen method’

KeyInput=0

while not KeyInput:

print

ch=raw_input(‘Press Enter to continue ‘)

if ch!=’’: #Checks if the input is not the

#Enter key

print

print

print ‘Wrong key pressed. You can only press Enter ‘

else:

ClearScreen = os.system(‘clear’)

KeyInput=1

class books(library): #Defines the books class, which is

Object-Oriented Programming 183

#a subclass of the library class

‘books class’

def __init__(self):

Author=Publisher=PageCount=ISBN=’’ #Initializes the

#attributes of

#the books

#class

def bks_method(self): #Takes input for book details

‘Enter book details’

BkFile=open(‘BookDetails’, ‘a’) #Creates and opens

#a file in the

#append mode

libM=self.lib_method() #Calls the method of the

#base class, which takes

#input for three attributes,

#LibCode, Title, and Price,

#and returns their values

BkFile.write(libM[0] + ‘,’) #Values in attributes

#are written to the

#file

BkFile.write(libM[1] + ‘,’)

Author=raw_input(‘Enter the name of the author: ‘)

BkFile.write(Author + ‘,’)

Publisher=raw_input(‘Enter the name of the publisher: ‘)

BkFile.write(Publisher + ‘,’)

ISBN=raw_input(‘Enter the ISBN: ‘)

BkFile.write(ISBN + ‘,’)

PageCount=raw_input(‘Enter the page count: ‘)

BkFile.write(PageCount + ‘,’)

BkFile.write(libM[2] + ‘\n’)

BkFile.close()

print ‘’’

You have entered the following details for a book:

==

Library code: %s

Title: %s

Author: %s

Publisher: %s

ISBN: %s

Page count: %s

Price: $%s’’’ % (libM[0], libM[1], Author, Publisher, ISBN, PageCount,

libM[2]) #Prints the book details entered

#recently

def bks_display(self): #Display all the book records

#available in the BookDetails

#file

‘Display book details’

BkFile=open(‘BookDetails’, ‘a’)

BkFile.seek(0,2)

184 Chapter 8

BkFileLen=BkFile.tell()

if BkFileLen == 0L: #Check if the length of the

#file is zero

print

print

print ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

print ‘xxxxxx NO RECORDS AVAILABLE xxxxxx’

print ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

print

print

BkFile.close()

else:

BkFile=open(‘BookDetails’, ‘r’) #Opens the file

#in read mode

#to print all

#its records

print

print

print ‘##################################’

print ‘########## BOOK DETAILS ##########’

print ‘##################################’

print

end=0

record=1

while not end:

BkDet=BkFile.readline()

if BkDet != ‘’:

print

print ‘Record number: %s’ % (record)

print ‘================’

print BkDet

record = record + 1

else:

print

print ‘*********************************’

print ‘********** END OF FILE **********’

print ‘*********************************’

print

print

end=1

BkFile.close()

class software(library): #Defines the library class,

#which is a subclass of the

#library class

‘software class’

def __init__(self):

‘software class constructor’

ProductOf=Size=’’ #Initializes the attributes of

#the library class

def sws_method(self): #Takes input for software

Object-Oriented Programming 185

#details

‘Enter software details’

SwFile=open(‘SoftwareDetails’, ‘a’)

libM=self.lib_method() #Calls the method of the

#base class, which takes

#input for three

#attributes, LibCode,

#Title, and Price, and

#returns their values

SwFile.write(libM[0] + ‘,’)

SwFile.write(libM[1] + ‘,’)

ProductOf=raw_input(‘Enter the name of the software vendor: ‘)

SwFile.write(ProductOf + ‘,’)

Size=raw_input(‘Enter the size of the software (in MB): ‘)

SwFile.write(Size + ‘,’)

SwFile.write(libM[2] + ‘\n’)

SwFile.close()

print ‘’’

You have entered the following details for a book:

==

Library code: %s

Title: %s

Vendor: %s

Size: %sMB

Price: $%s’’’ % (libM[0],libM[1],ProductOf,Size,libM[2])

def sws_display(self): #Displays all software records

#available in the

#SoftwareDetails file

‘Display software details’

SwFile=open(‘SoftwareDetails’, ‘a’)

SwFile.seek(0,2)

SwFileLen=SwFile.tell()

if SwFileLen == 0L: #Check if the length of the

#file is zero

print

print

print ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

print ‘xxxxxx NO RECORDS AVAILABLE xxxxxx’

print ‘xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx’

print

print

SwFile.close()

else:

SwFile=open(‘SoftwareDetails’, ‘r’)

print

print

print ‘##################################’

print ‘######## SOFTWARE DETAILS ########’

print ‘##################################’

print

SwFile=open(‘SoftwareDetails’, ‘r’)

186 Chapter 8

end=0

record=1

while not end:

SwDet=SwFile.readline()

if SwDet != ‘’:

print

print ‘Record number: %s’ % (record)

print ‘===============’

print SwDet

record = record + 1

else:

print

print ‘*********************************’

print ‘********** END OF FILE **********’

print ‘*********************************’

print

print

end=1

SwFile.close()

def MainMenu(): #Displays the main menu, takes input for

#choice, and calls an appropriate method

#based on the choice

MenuItems=’’’

<#><#><#><#><#><#><#><#><#>

<#><#><#><#><#><#><#><#><#>

<#> <#>

<#> TECHSITY UNIVERSITY <#>

<#> LIBRARY <#>

<#> <#>

<#><#><#><#><#><#><#><#><#>

<#><#><#><#><#><#><#><#><#>

MAIN MENU

=========

1 Enter details for books

2 Enter details for software

3 View details of books

4 View details of software

5 Delete all book records

6 Delete all software records

7 Quit

Enter choice (1-7): ‘’’

done=0

while not done:

MenuChoice=raw_input(MenuItems) #Asks input for

#choice

ClearScreen = os.system(‘clear’)

print ‘You entered: %s’ % MenuChoice

if MenuChoice not in ‘1234567’: #Checks if the

#choice is correct

print

print ‘Wrong choice. Enter 1, 2, 3, 4, 5, 6, or 7.’

Object-Oriented Programming 187

print

else:

if MenuChoice ==’7’: #Quits if the choice is

#7

done=1

if MenuChoice ==’1’:

print

print

print ‘ ENTER BOOK DETAILS’

print ‘ ==================’

print

bk.bks_method() #Calls bks_method() of the

#books class to accept book

#details

bk.clear_screen_method() #Calls the

#clear_screen_method()

#of the library class

#to clear the screen

if MenuChoice ==’2’:

print

print

print ‘ ENTER SOFTWARE DETAILS’

print ‘ ======================’

print

sw.sws_method() #Calls sws_method() of the

#software class to accept

#software details

sw.clear_screen_method() #Calls the

#clear_screen_method()

#of the library class

#to clear the screen

if MenuChoice ==’3’:

bk.bks_display() #Calls bks_display() of

#the books class to

#display all book

#records

bk.clear_screen_method()

if MenuChoice ==’4’:

sw.sws_display() #Calls sws_display() of

#the software class to

#display all software

#records

sw.clear_screen_method()

if MenuChoice ==’5’:

bk.empty_file_method(‘BookDetails’)

#Calls empty_file_method() of the library

#class and passes the name of the file to

#delete all its records

bk.clear_screen_method()

188 Chapter 8

if MenuChoice ==’6’:

sw.empty_file_method(‘SoftwareDetails’)

#Calls empty_file_method() of the library class

#and passes the name of the file to delete all

#its records

sw.clear_screen_method()

bk=books() #Creates instance of the books class

sw=software() #Creates instance of the software class

MainMenu() #Calls the MainMenu() function

Execute the Code
To be able to implement or view the output of the code to automate the books and soft-
ware sections of the Techsity University library, you need to execute the following steps:

1. Write the preceding code in a text editor and save it with the .py extension.

2. At the shell prompt, type python followed by the name of the file if the file is in
the current directory.

3. Use the Main menu (see Figure 8.2) to add, view, and delete details about
books and software.

Figure 8.2 The main menu.

Object-Oriented Programming 189

Summary

In this chapter, you learned the following:

■■ The object-oriented approach to programming has changed the way programs
are written today.

■■ Object-oriented programming (OOP) has the following two major components:

■■ Objects

■■ Classes

■■ OOP has the following benefits:

■■ Models the real world

■■ Allows code reusability

■■ Is favorable to change

■■ In Python, all the data types are objects, and the word “object” need not mean
an instance of a class.

■■ Python classes are data structures used to define objects.

■■ You can work with class objects by performing the following two types of
operations:

■■ Creating attribute references

■■ Creating an instance of a class

■■ A class attribute is an element of a class.

■■ The class attributes belong to the class in which they are defined.

■■ The class attributes are of the following two types:

■■ Data attributes

■■ Functional attributes

■■ Data attributes are commonly known as static members or class variables and
are set when the class is created.

■■ Functional attributes or method class attributes are the class methods.

■■ Methods can be invoked only by using an instance of the class to which they
belong.

■■ A class instance is a variable that contains a reference to a class.

■■ The process of creating an instance of a class is known as instantiation.

■■ __init__() is a constructor or a special method that can be defined in a class
to create objects in the initial state.

■■ The __init__() special method has self as the first argument like any other
function or method defined in Python.

190 Chapter 8

■■ Classes can be implemented in the following two ways:

■■ Composition

■■ Derivation

■■ In composition, classes are combined to create a code that provides better
functionality.

■■ Derivation provides a powerful feature of OOP, which allows for the use of the
features and behavior of a class by another class without disturbing the rest of
the program.

■■ The term “subclass” describes a class that inherits or derives the attributes from
another class.

■■ The term “base class” describes a class from which a subclass has been derived.

■■ Subclasses inherit most of the attributes of their base classes.

■■ Inheritance is the property by which a subclass derives the attributes of the
base class.

■■ In inheritance, the base class is also termed as the parent and the subclass as the
child.

■■ When a subclass is inherited from multiple base classes, it is known as multiple
inheritance.

■■ There might be times when you use the same names for methods in the base
class and the subclasses. In such a situation, the methods in the base classes
override the methods of their subclasses. This is known as method overriding.

■■ Python has some of the following common built-in functions for OOP:

■■ dir()

■■ var()

■■ isinstance()

■■ issubclass()

■■ hasattr()

■■ getattr()

■■ setattr()

■■ delattr()

■■ Python allows you to modify, add, or remove some functionality to an existing
object, such as a data type or some code by packaging the object. This is known
as wrapping.

■■ Delegation is a characteristic of wrapping that uses the existing functionality of
the type to enable code reusability.

Object-Oriented Programming 191

193

C H A P T E R

9

OBJECTIVES:

In this chapter, you will learn to do the following:

� Identify basics of exceptions

� Identify standard exceptions in Python

� Handle exceptions

� Raise exceptions

� Create user-defined exceptions

Getting Started

While shopping for fruits and vegetables from a grocery shop, will you buy them if
they are rotten? Imagine that, while you are driving, your car stops after every little
pebble that comes your way and you have to restart it every time. Similarly, errors in
the program execution may cause your program to come to a fatal stop or may produce
garbage output. In such a situation, you might have to re-execute the program to show
the output or correct the error that caused the problem. It’s nice that your car is
designed with features that handle little hurdles very well. In the same way, you can
also construct your programs to handle possible errors.

Exception Handling

C H A P T E R

Thus, error handling is important to account for unexpected situations, such as
insufficient memory or inability to find or open files. If these errors are not trapped, the
program can come to an abrupt halt or produce unwanted output. The program can
show anomalous behavior because of two types of problems, syntax errors and excep-
tions. Syntax errors are the errors that occur when a statement or a command is not
written in the way that is allowed by the software. Thus, syntax errors cannot be com-
piled by the interpreter and have to be repaired before starting the execution. On the
other hand, an exception can be defined as the unexpected event that occurs during the
execution of a program and disrupts the normal flow of instructions. In most instances,
exceptions cause program disruption, and the interpreter reaches a point where it can-
not continue the program execution any further. Exceptions are erroneous events like
a division by zero or a request for out-of-range index for a sequence.

Most of the time you need the program to complete execution of other parts even if
an error occurs in one part. This can be accomplished through exception handling. The
exception handling in Python allows programs to handle abnormal and unexpected
situations in a structured and ordered manner.

The action as a resolution for exception can occur in two phases. The first phase is
the error, which actually causes the exception to occur, and the second phase is where
the exception is detected and resolved. Let’s elaborate on these phases.

When the error occurs, the Python interpreter tries to identify it. This is called
throwing an exception (also known as triggering and generating). Throwing an excep-
tion is the process by which the interpreter tells the program control that there has been
an anomaly. Python also allows the programmer to raise an exception. Whether user-
defined or triggered by the Python interpreter, exceptions indicate that the error has
occurred. The appropriate action to resolve the error can be taken in the second phase.

When an exception is raised, a host of possible actions can be invoked in response:
ignoring the error and resuming the program flow, logging the error but taking no
action, rectifying the problem that caused the exception to occur, or performing
another action and aborting the program.

This chapter explains exceptions and the phases in which the actions related to an
exception are performed. Next, the chapter introduces you to the standard exceptions
in Python. This chapter further explains how exceptions can be raised. Finally, the
chapter explains user-defined exceptions.

Handling Exceptions

Problem Statement
Jim, the data analyst, has written a code that accepts student details and displays them
after calculating the scholarship applicable for each student. The code, however, gen-
erates an error and halts unusually. The code for accepting and displaying student
details is given here. Jim now needs to control program execution so that the execution
does not terminate abruptly.

class Student:

def __init__(self,name,phno,fee,age=18,schrship=0.15):

self.studname=name

194 Chapter 9

self.studphno=phno

self.studage=age

self.studfee=fee

self.studschrship=schrship

def displaydetails(self):

print ‘%-20s %s’ % (‘Name:’,self.studname)

print ‘%-20s %d’ % (‘Age:’,self.studage)

print ‘%-20s %s ‘ % (‘Phone number:’,self.studphno)

print ‘%-20s %f’ % (‘Course fee:’,self.studfee)

print ‘%-20s %f’ % (‘Scholarship(%):’,self.studschrship)

scship=self.studfee-(self.studschrship*100/self.studfee)

print ‘%-20s %f’ % (‘Scholarship($):’,scship)

print ‘\n’

r=os.system(“clear”)

studobjects=[]

studobjects.append(Student(‘Tom’,’5552383745’,4000))

studobjects.append(Student(‘Mac’,’6478638323’,4500,22))

studobjects.append(Student(‘Leonard’,’8485242263’,6500,19,0))

ctr=0

while ctr<=3:

studobjects[ctr].displaydetails()

ctr=ctr+1

print(‘All displayed’)

The error generated by the preceding code, which is saved as studentdetails.py, is
shown in Figure 9.1.

Figure 9.1 The output of studentdetails.py.

Exception Handling 195

Task List

� Identify the type of error and where the error occurs.

� Identify the mechanism of trapping the exception.

� Identify the location where the code for handling the exception has to be written.

� Write the code for handling the exception.

� Save and execute the code.

Identify the Type of Error and Where the Error Occurs
Recall that the earlier chapters in this book had examples that included code snippets
in which errors occurred. Whenever the Python interpreter encounters an error, it dis-
plays the information related to that error, such as the name of the error, the reason for
the error, and, most of the time, the line number where the error occurred. All errors
have a similar format whether they occur while running a script or at the Python
prompt. As discussed earlier, these errors occur due to the program’s anomalous
behavior that is incompatible with the Python interpreter. Let’s have a look at some of
the common exceptions that occur.

ZeroDivisionError. This error occurs when any number is divided by
numeric zero. For example,

>>> 55/0

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

ZeroDivisionError: integer division or modulo by zero

NameError. This error occurs when an attempt is made to access a variable that
has not been assigned. NameError indicates that the identifier was not found in
the interpreter’s symbol table. The Python interpreter searches for a variable in
the global and local namespace and returns NameError if it does not find the
variable in any of these namespaces.

>>> ruf

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

NameError: name ‘ruf’ is not defined

SyntaxError. As stated earlier, syntax errors do not occur at run time. When
a SyntaxError exception is raised, it indicates that a piece of code or a state-
ment is not written according to the syntax allowed in Python. These exceptions
occur at compile time and have to be corrected before the execution of the pro-
gram. For example,

>>> def

Traceback (File “<interactive input>”, line 1

def

^

SyntaxError: invalid syntax

196 Chapter 9

The preceding command generates an error because the def keyword must fol-
low a name of a function. Because the Python interpreter expects an identifier
after the def keyword, it gives an error.

IOError. This error occurs due to general input/output failures, such as inabil-
ity to read from a file or attempting to access a nonexistent file. For example,

>>> file=open(“Myfile”)

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

IOError: [Errno 2] No such file or directory: ‘Myfile’

In the preceding example, the error occurs because the interpreter tries to search
for Myfile and it cannot find the file.

IndexError. This error is generated when an attempt is made to access an ele-
ment beyond the index of a sequence. For example, if you try to access the sec-
ond element of a list that contains only one element, IndexError will be
thrown as follows:

>>> Mylist=[‘abc’]

>>> Mylist[1]

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

IndexError: list index out of range

KeyError. You know that in a dictionary, values are mapped to a correspond-
ing key. KeyError occurs when a request is made to access a nonexistent key in
the dictionary. For example,

>>> dict1={‘name’:’mac’,’ecode’:6734,’dept’:’sales’}

>>> dict1[‘telno’]

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

KeyError: telno

ImportError. This error is generated when an attempt is made to import a
module that does not exist or the interpreter is unable to locate it. This error can
also occur when the from-import statement is not able to import a name that
is requested. Following is the example of when the import statement fails.

>>> import mod

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

ImportError: No module named mod

Table 9.1 describes the standard exceptions in Python. Prior to Python 1.5, all excep-
tions were identified as string objects; however, in Python 1.5 and later versions, most
exceptions are provided as class objects. The exceptions are defined in the excep-
tions module. You do not need to import the exceptions module explicitly. All the
exceptions are built in the namespace by default.

Exception Handling 197

Table 9.1 Standard Exception Hierarchy

EXCEPTION NAME DERIVED FROM DESCRIPTION

Exception Base class for all exceptions.

StopIteration Exception Raised when the next()
method of an iterator does
not point to any object.

SystemExit Exception Raised by the sys.exit()
function.

StandardError Exception Base class for all built-in
exceptions except
StopIteration and
SystemExit.

ArithmeticError StandardError Base class for all errors that
occur for numeric
calculation.

OverflowError ArithmeticError Raised when a calculation
exceeds maximum limit for
a numeric type.

FloatingPointError ArithmeticError Raised when a floating point
calculation fails.

ZeroDivisonError ArithmeticError Raised when division or
modulo by zero takes place
for all numeric types.

AssertionError StandardError Raised in case of failure of
the Assert statement.

AttributeError StandardError Raised in case of failure of
attribute reference or
assignment.

EOFError StandardError Raised when there is no
input from either the
raw_input() or input()
function and the end of file
is reached.

ImportError StandardError Raised when an import
statement fails.

KeyboardInterrupt StandardError Raised when the user
interrupts program
execution, usually by
pressing Ctrl+c.

LookupError StandardError Base class for all lookup
errors.

198 Chapter 9

EXCEPTION NAME DERIVED FROM DESCRIPTION

IndexError LookupError Raised when an index is not
found in a sequence.

KeyError LookupError Raised when the specified key
is not found in the dictionary.

NameError StandardError Raised when an identifier is
not found in the local or
global namespace.

UnboundLocalError NameError Raised when trying to access
a local variable in a function
or method but no value has
been assigned to it.

EnvironmentError StandardError Base class for all exceptions
that occur outside the Python
environment.

IOError EnvironmentError Raised when an input/
output operation fails, such
as the print statement or
the open() function when
trying to open a file that does
not exist.

OSError EnvironmentError Raised for operating system-
related errors.

SyntaxError StandardError Raised when there is an error
in Python syntax.

IndentationError SyntaxError Raised when indentation is
not specified properly.

SystemError StandardError Raised when the interpreter
finds an internal problem, but
when this error is
encountered the Python
interpreter does not exit.

SystemExit StandrdError Raised when Python inter-
preter is quit by using the
sys.exit() function. If not
handled in the code, causes
the interpreter to exit.

TypeError StandardError Raised when an operation or
function is attempted that is
invalid for the specified data
type.

continues

Exception Handling 199

Table 9.1 Standard Exception Hierarchy (Continued)

EXCEPTION NAME DERIVED FROM DESCRIPTION

ValueError StandardError Raised when the built-in
function for a data type has
the valid type of arguments,
but the arguments have
invalid values specified.

RuntimeError StandardError Raised when a generated
error does not fall into any
category.

NotImplementedError RunTimeError Raised when an abstract
method that needs to be
implemented in an inherited
class is not actually
implemented.

Result

The type of error that occurs in the program for displaying student details is
IndexError. The code segment in which the error occurs is the following statement:

studobjects[ctr].displaydetails()

Identify the Mechanism of Trapping the Exception
When an unexpected error occurs in the program, the Python interpreter creates an
object of the appropriate exception class. As discussed earlier, this is the first phase
where, after creating the object, the Python interpreter passes it to the program by
throwing the exception. The exception object contains the information about the type
of the error and the state of the object when the exception occurred. Then, you can
write the code to handle the exception using an exception handler. Various exception
handling techniques can be used to trap an exception and then give instructions to the
interpreter based on the exception that occurs.

Exception-Handling Techniques

The exception handler code can be implemented in a try statement. The try state-
ment can be implemented in two forms, try-except and try-finally. Let’s discuss
each of these in detail.

The try-except Statement

The try-except statement allows you first to throw an exception in the try block
and then write the diagnostic code to handle the exception in the except block. The
syntax of the try-except statement is this:

200 Chapter 9

try:

try_statements

except Exception:

except_statements

The try_statements block, which is after the try statement, contains the state-
ments that define the scope of exception handlers associated with it. The except_
statements block, after the except statement, contains the exception-handler code
immediately after the try_statements block. The except statement catches the
specified exception and executes the except_statements block. Let’s consider an
example to understand better how the try-except statement works.

>>> try:

... import mod

... except ImportError:

... print “Cannot locate the module”

...

Cannot locate the module

In the preceding example, the attempt to open the module mod is made in the block
of code below the try statement. When the specified module does not exist, the excep-
tion occurs. As you can see, the exception still occurs, so what is the use of exception
handling? The answer to this question lies in the except statement. During program
execution the interpreter tries to execute all statements in the try block. If no exception
occurs, the statements in the except block are not executed, and any code after the
try-except-statement is executed. If an exception occurs that is specified in the
except statement, the code in the except block is executed. If an exception that is not
specified in the except statement occurs, then the example here does not include the
exception-handling code for that exception. In this example, occurrence of any other
exception than ImportError will cause the program to halt execution. What do you
do if another exception occurs? To handle multiple exceptions, you can also write mul-
tiple except statements for a single try statement or catch multiple exceptions in a
single except statement. Before elaborating on each of these, let’s first discuss the dif-
ferent ways in which an exception can be handled. Let’s consider an example to
explain this.

NOTE Remember that there should not be any statement between the try
block and its corresponding except block. A try block should be immediately
followed by an except block.

You know that the int() function converts a string value containing only alphanu-
meric characters to an integer. If the string passed as an argument to the int() func-
tion does not contain alphanumeric characters, it gives ValueError as follows:

>>> int(‘abc’)

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

ValueError: invalid literal for int(): abc

Exception Handling 201

It can also give TypeError if an argument other than a string is passed as follows:

>>> int([12])

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

TypeError: object can’t be converted to int

Consider a user-defined function int_convert() that takes an object as a param-
eter and contains code to convert the object to an integer.

def int_convert(var):

try:

return int(var)

except ValueError:

pass

Notice that the preceding code contains a try block for attempting to convert var
to an integer. The except block catches ValueError if it occurs but simply ignores it.
You can also choose to return a value if the exception occurs so that the function actu-
ally always returns a value even if the exception occurs. For example,

def int_convert(var):

try:

return int(var)

except ValueError:

return 0

You can also choose to print an appropriate message on the screen or store it in a
variable.

def int_convert(var):

try:

return int(var)

except ValueError:

print ‘The argument does not contain numbers’

Notice that the preceding example handles the ValueError exception in different
ways but does not handle the TypeError exception at all, which might occur if any
object other than a string is passed to the function. Another exception that is expected
to occur can be handled using the following approaches:

■■ A try statement with multiple except statements

■■ A single except statement with multiple exceptions

Let’s discuss each of them in detail.

A try Statement with Multiple except Statements. A single try statement can
have multiple except statements. This is useful when the try block contains

202 Chapter 9

statements that may throw different types of exceptions. The syntax for multiple
except statements is this:

try:

try_statements

except Exception1:

except_statements1

except Exception2:

except_statements2

:

:

except ExceptionN:

except_statementsN

In this form of try-except statement, the interpreter attempts to execute the
statements in the try block. If an exception is thrown and a match is found in an
except statement, the corresponding except_statements block is executed.
Let’s come back to our example of the int_convert function. The ValueError
that was expected to occur was handled in one except statement; however,
TypeError was not handled. Let’s write another except statement to handle
TypeError.

>>>def int_convert(var):

... try:

... return int(var)

... except ValueError:

... print ‘The variable does not contain numbers’

... except TypeError:

... print ‘Non-string type can\’t be converted to integer’

You can execute the preceding code using different function calls as follows:

>>>int_convert(‘abc’)

The variable does not contain numbers

>>>int_convert([12])

Non-string type can’t be converted to integer

>>> int_convert(‘12’)

12

Single except Statement with Multiple Exceptions. You can also use the same
except statement to handle multiple exceptions. This can be a situation when
you do not want to perform different actions when any exception occurs. The
syntax of the except statement with multiple exceptions is this:

try:

try_statements

except (Exception1[,Exception2[,...ExceptionN]]]):

except_statements

When multiple exceptions are handled in a single except statement, they are
specified as a tuple. Let’s change the int_convert() function to display the
same message when either ValueError or TypeError occur.

Exception Handling 203

>>>def int_convert(var):

... try:

... return int(var)

... except (ValueError,TypeError):

... print ‘Wrong argument type or the argument contains

alphabetic characters’

You can execute the preceding code using different function calls as follows:

>>>int_convert(‘abc’)

Wrong argument type or the argument contains alphabetic characters

>>> int_convert([12])

Wrong argument type or the argument contains alphabetic characters

>>> int_convert(‘12’)

12

NOTE You can also use the except statement with no exceptions defined as
follows:

try:

try_statements

except:

except_statements

This kind of a try-except statement catches all the exceptions that occur.
Using this kind of try-except statement is not considered a good
programming practice, though, because it catches all exceptions but does not
make the programmer identify the root cause of the problem that may occur.

You learned the different ways in which an exception can be handled. The ques-
tion now arises, what do you do if you also want the except statement to
return the value of the exception? Let’s learn how to return values by using the
except statement.

Argument of an Exception. An exception may have an associated value, called
the argument of the exception. Every time an exception is thrown, an instance of
the exception class is created. The argument of an exception and its type
depend on the exception class. If you are writing the code to handle a single
exception, you can have a variable follow the name of the exception in the
except statement. If you are trapping multiple exceptions, you can have a vari-
able follow the tuple of the exception. This variable will receive the value of the
exception mostly containing the cause of the exception. The variable can receive
a single value or multiple values in the form of a tuple. This tuple usually con-
tains the error string, the error number, and an error location. Following is an
example for a single exception:

def int_convert(var):

try:

return int(var)

except ValueError,arg:

print ‘The argument does not contain numbers:’,arg

204 Chapter 9

When you execute the preceding call using the function call
int_convert(‘abc’),

the output will be:

The argument does not contain numbers: invalid literal for int(): abc

Notice that, because ValueError contains only one value in its argument, the
output contains a single value. Following is an example for multiple exceptions:

def int_convert(var):

try:

return int(var)

except (ValueError,TypeError), arg:

print ‘Wrong argument type or the argument contains alphabetic

characters:’, arg

When you execute the preceding call using the function call
int_convert([12,13]),

the output will be:

Wrong argument type or the argument contains alphabetic characters:

object can’t be converted to int

After discussing various forms of the try-except statement, let’s learn how
the else statement works with the try-except statement.

The else Statement. There may be some statements that you want to execute
if the try statement does not generate any errors. One way out is that you can
place these statements in the try block. You may not always want to do this,
though, because these statements might generate some exceptions, which will
be caught in the subsequent except statements. To solve this problem, you can
use the else statement. The else statement is placed after all the except
blocks for a particular try block and contains code that must be executed when
no exception is raised by the try statement. For example,

def int_convert(var):

try:

print int(var)

except ValueError:

print ‘The variable does not contain numbers’

except TypeError:

print ‘Non-string type can\’t be converted to integer’

else:

print ‘No exception generated’

In the preceding example, note that the else statement is placed after all the
except statements. When you call the int_convert() function by using the
function call int_convert(‘32’), the output will be:

32

No exception generated

You can also nest try-except statements. Nested try blocks are similar to
nested constructs. You can have one try block inside another. Similarly, an

Exception Handling 205

except block can also contain other try-except statements. If the lower-level
try-except block does not have a matching except handler, the outer try
block is checked for it.

The try-finally Statement
When a statement in the try block causes an exception to occur, the rest of the state-
ments in the try block are ignored. At times those statements must be executed
regardless of the occurrence of the exception. You can place all such statements in the
finally block. The syntax of the try-finally statement is this:

try:

try_statements

finally:

finally_statements

When an exception is thrown in the try block, the execution immediately passes to
the finally block. After all the statements in the finally block are executed, the
exception is raised again and is handled in the except statements if present in the next
higher layer of the try-except statement. Consider the following example:

try:

f=open(‘testfile’,’w’)

f.write(‘Bank calculations for interest’)

except IOError:

print ‘ Error: can\’t find file or read data’

f.close()

In the preceding example, the statements in the try block are executed. If an excep-
tion occurs, it is handled in the except block and the file is closed. What happens
when the exception does not occur? The file is never closed and remains open. Shifting
the f.close() statement to the try block will also not solve our problem. In that
case, when an exception occurs the file will remain open and the program control will
exit the try-except statement without closing the file. The finally statement
comes to your rescue in situations like these where certain statements need to be exe-
cuted whether or not the exception occurs. Let’s write the preceding code again to
demonstrate the use of the try-finally statement.

try:

f=open(‘testfile.txt’,’w’)

try:

f.write(‘Bank calculations for interest’)

finally:

f.close()

except IOError:

print ‘Error: can\’t find file or read data’

The preceding code uses a nested try-finally statement inside another try-
except statement. The outer try block first attempts to open the file. The inner try
statement writes a line to the file and immediately jumps to the finally block and

206 Chapter 9

closes the file whether or not an exception occurred while writing to the file. If an
exception occurs in the inner try block, it is handled in the outer except block along
with the exception that occurs in the outer try block.

Until now, you learned how standard errors raised by the interpreter are generated
and trapped. Python also allows you to explicitly generate exceptions. Let’s learn how
exceptions can be raised.

Raising Exceptions

When raising an exception, the exception can be a Python standard exception or a
programmer-defined exception. You can raise exceptions in several ways by using the
raise statement. The general syntax for the raise statement is this:

raise [Exception[,argument[,Traceback]]]

The first argument of the raise statement is the name of the exception to be raised.
This name can be the name of a class, a standard exception, or a string. The second
argument is optional and contains the arguments for the exception. The previous sec-
tion has already explained what is an argument of an exception. The third argument,
traceback, is also an optional argument but is not used too much in practice. A
traceback object is created when an exception is raised. It is useful when an excep-
tion is to be raised again. If not specified, any argument defaults to None. Consider an
example to raise an exception with an argument as a string.

num1=input(‘Enter num1:’)

num2=input(‘Enter num2:’)

op=raw_input(‘Enter an operator’)

if op==’+’:

print num1+num2

else:

raise ValueError,’Incorrect operator’

Running the preceding code will generate an exception with the specified string as
the value of the exception.

Any built-in standard exception can be raised by using the raise statement. Here,
some examples are presented of raising RuntimeError.

>>> raise RuntimeError

Traceback (most recent call last):

File “<interactive input>”, line 1, in ?

RuntimeError

>>> raise RuntimeError()

Traceback (most recent call last):

File “<interactive input>”, line 1, in ?

RuntimeError

>>> raise RuntimeError(‘System not responding’)

Traceback (most recent call last):

File “<interactive input>”, line 1, in ?

RuntimeError: System not responding

Exception Handling 207

You can also raise string exceptions; however, this is not practiced much after class
objects were introduced in Python 1.5. The following example illustrates the use of
string exceptions:

>>> MyError=’Incorrect input’

>>> raise MyError

Traceback (most recent call last):

File “<interactive input>”, line 1, in ?

Incorrect input

Table 9.1 explains that a KeyboardInterrupt exception is raised when Ctrl+c is
pressed or when any of the input functions are waiting for an input from the user. The
following code raises a KeyboardInterrupt exception and prints a message on the
screen.

>>> try:

... raise KeyboardInterrupt

... except KeyboardInterrupt:

... print ‘Sorry u cannot copy’

...

Sorry u cannot copy

This section has explained how you can handle built-in standard exceptions. Let’s
learn about user-defined exceptions.

User-Defined Exceptions

Python also allows you to create your own exceptions by deriving classes from the
standard built-in exceptions. Here is an example related to RuntimeError. Here a
class is created that is subclassed from RuntimeError. This is useful when you need
to display more specific information when an exception is caught. In the try block, the
user-defined exception is raised and caught in the except block. The variable e is
used to create an instance of the class Networkerror.

>>> class Networkerror(RuntimeError):

... def __init__(self,arg):

... self.args=arg

...

>>> try:

... raise Networkerror(“Bad hostname”)

... except Networkerror,e:

... print e.args

...

Bad hostname

After the discussion in this chapter, you will agree that the try-except statement
will be used to catch the exception that is generated.

208 Chapter 9

Identify the Location for the Code for Handling
the Exception to Be Written
Based on the previous discussion, the following result can be obtained for the task of
identifying the location where the exception-handling code needs to be written. The
error that the code in the problem statement shows is this:

IndexError: list index out of range

This error occurs in the list used to display the course details, which is part of the
while loop. Therefore, the while loop in the main part of the code has to be enclosed
within the try block. The exception raised can be caught in the except block.

Write the Code for Handling the Exception
Let’s now write the code for the problem statement that handles the exception thrown.

import os

class Student:

def __init__(self,name,phno,fee,age=18,schrship=0.15):

self.studname=name

self.studphno=phno

self.studage=age

self.studfee=fee

self.studschrship=schrship

def displaydetails(self):

print ‘%-20s %s’ % (‘Name:’,self.studname)

print ‘%-20s %d’ % (‘Age:’,self.studage)

print ‘%-20s %s ‘ % (‘Phone number:’,self.studphno)

print ‘%-20s %f’ % (‘Course fee:’,self.studfee)

print ‘%-20s %f’ % (‘Scholarship(%):’,self.studschrship)

scship=self.studfee-(self.studschrship*100/self.studfee)

print ‘%-20s %f’ % (‘Scholarship($):’,scship)

print ‘\n’

studobjects=[]

studobjects.append(Student(‘Tom’,’5552383745’,4000))

studobjects.append(Student(‘Mac’,’6478638323’,4500,22))

studobjects.append(Student(‘Leonard’,’8485242263’,6500,19,0))

ctr=0

r=os.system(“clear”)

try: #start of the try block

while ctr<=3:

studobjects[ctr].displaydetails()

ctr=ctr+1

except IndexError: #start of the except block

print ‘Trying to access beyond the length of the list’

else: #Start of statements to be executed

#if exception does not occur

print(‘All displayed’)

Exception Handling 209

Figure 9.2 Output of the code for exception handling.

Save and Execute the Code
In order to execute the preceding code, do the following:

1. Write the preceding code in a text editor and save it with the .py extension.

2. At the shell prompt, type python followed by the name of the file if the file is in
the current directory.

Figure 9.2 shows the output of the code.

Summary

In this chapter, you learned the following:

■■ An exception can be defined as the unexpected event that occurs during the
execution of a program and disrupts the normal flow of instructions.

■■ The Python interpreter already contains a host of built-in standard exceptions.
Whenever the Python interpreter encounters an error, it displays the informa-
tion related to that error, such as the name of the error, the reason for the error,
and, most of the time, the line number where the error occurred.

210 Chapter 9

■■ You can write the code to handle the exception using an exception handler. The
exception-handler code can be implemented in a try statement.

■■ The try statement can be implemented in two forms:

■■ try-except

■■ try-finally

■■ The syntax of the try-except statement is:

try:

try_statements

except Exception:

except_statements

■■ The try block throws an exception, and the except block contains code to
handle the exception.

■■ A single try statement can have multiple except statements, or an except
statement can handle multiple exceptions.

■■ An exception may have an associated value, called the argument of the exception.
Every time an exception is thrown, an instance of the exception class is cre-
ated. The argument of an exception and its type depend on the exception class.

■■ The else statement is placed after all the except blocks for a particular try
block and contains code that must be executed when no exception is raised by
the try statement.

■■ At times those statements must be executed regardless of the occurrence of the
exception. You can place all such statements in the finally block. The syntax
of the try-finally statement is this:

try:

try_statements

finally:

finally_statements

■■ You can raise exceptions in several ways by using the raise statement. The
general syntax for the raise statement is this:

raise [Exception[,argument[,Traceback]]]

■■ Python also allows you to create your own exceptions by deriving classes from
the standard built-in exceptions.

Exception Handling 211

213

C H A P T E R

10

OBJECTIVES:

In this chapter, you will learn to do the following:

� Describe the various terms and components associated with the Internet

� Appreciate the World Wide Web environment

� Understand HTTP requests

� Use tags and form elements in HTML forms

� Differentiate client-side and server-side scripting

� Use the cgi module

� Generate dynamic Web pages by using a CGI application

Getting Started

Web programming is one of the most important application areas of Python. Python is
fast gaining popularity as an Internet programming language. Until now, chapters in
this book have introduced you to Python language. These chapters explained the basic
concepts of Python and taught you how to write a complete working application by

CGI Programming

C H A P T E R

using Python. They also used a scenario related to a Web application to explain the
concepts referred to in a chapter. In this chapter, you will actually delve into the devel-
opment of Web-based applications in Python. Web programming in Python is per-
formed through CGI scripts.

This chapter assumes that the reader understands basic Internet concepts, such as its
working, various types of networks, the client/server architecture, the addressing
scheme on the Internet, World Wide Web, and the HTTP request. This chapter also
assumes that you know how to create Web pages and forms using HTML. For those of
you who are new to these topics, the concepts are discussed briefly in the chapter.
Before getting down to writing CGI scripts in Python, let’s review the Internet and
HTML concepts.

Internet Basics
The origin of the Internet was a result of man’s continuous struggle to satisfy human
need for fast communication. The first step toward the Internet was connecting
two stand-alone computers, which gave birth to local area networks (LANs) and wide
area networks (WANs). On these networks, we can quickly share computer equip-
ment, programs, messages, and the information available on a site. Further develop-
ment in these areas gave birth to a network of many LANs and WANs—the Internet.
Figure 10.1 explains how the Internet has made this world a small place. It shows
how the Internet connects many other networks. Some of them are NASA, BITNET,
NSFNET, ARPANET, and so on.

After this brief introduction to the Internet, let’s discuss how the Internet works.

How Does the Internet Work?

One of the key aspects of communication between computers over a network is the
transfer of data. This type of communication requires the following:

■■ The address of the destination

■■ A safe method of transmitting data in the form of electronic signals

Before we proceed further with the explanation of these two requirements, let’s first
recap some more terms commonly used in the Internet scenario: the client, the server,
and the client/server network. These three terms lay the foundation for understanding
how data is transferred over a network.

Client

A client is a destination computer on the network that requests services from another
computer on the network. This computer requires adequate access permissions to be
able to request services and access resources from other computers.

Server

A server is a source computer that receives requests from the client computer, processes
these requests, and serves the requested information/data to the client computer.
The server computer has a range of services to offer to a client; for example, a server

214 Chapter 10

Figure 10.1 The Internet—the network of networks.

computer can offer information, software, games, music, and print services. The client
can access these services only if it has adequate permissions. The server computer
delineates these permissions for the client.

The Client/Server Network

The client/server network forms the basis of computer connectivity on a network. This
network consists of several client computers that are connected to the server and also
to each other. Let’s discuss the request/response cycle in a client/server network.

The client computer sends a request to the server computer. The server computer
accepts the request if the client has necessary permissions. Assuming that the server
computer accepts the client request, the server then serves the requested information
to the client computer.

Figure 10.2 illustrates client computers interacting with server computers in the
client/server network.

Ethernet

Local
Area

Network Campus Wide
Network

The Internet

Corporate Network

Workstation
running
TCP/IP

CGI Programming 215

Figure 10.2 Client/server network.

The Internet also follows the client/server architecture where several clients and
servers interoperate with each other. In the Internet scenario, a server is also termed a
Web server or the host computer, which provides Web services to the clients on the
Internet. Not only a server but also a client can host information to another computer,
and thus act as a client and a server.

Mode of Data Transmission

Both of the requirements of assigning an address to the destination and providing a
method of transmitting data can be taken care of by a set of rules that govern the send-
ing and receiving of data over a network called protocols. Some examples of network
protocols are TCP/IP, UDP, Apple Talk, and Net BEUI. The Internet uses the TCP/IP
protocol to transfer data. The two rules stated previously are implemented in two
parts; the first part is called Transmission Control Protocol (TCP), and the second is
called Internet Protocol (IP). First, the data to be transferred is divided into small parts
called data packets. All the information related to these data packets is also packed
with them so that they can be reassembled correctly at the destination without causing
any damage to the data. IP assigns a destination address to data packets so that they
actually reach the location they are transferred to.

It is not always necessary that all data packets follow the same path from the source
to the destination. A special device called the router achieves a balance between the
various paths that exist on the Internet. Another computer called the gateway allows
different electronic networks to communicate with the Internet, which uses TCP/IP.

Note: In this chapter, we will not delve into the details of the functioning of TCP/
IP. The naming and addressing scheme used on the Internet is a mandatory fea-
ture for accessing Internet resources. Therefore, let’s understand its conventions and
abbreviations.

You know that you need a computer, a telephone line or a leased line, and the ser-
vices of an Internet service provider (ISP) to connect to the Internet. Once you are

Server

216 Chapter 10

connected, volumes of information on varied topics, such as technological guides,
topic-specific data, and games, are available at the click of a mouse button. Bear in
mind that this information is stored in the form of documents spread over thousands
of computers all over the Internet. How are these documents linked so that they are
accessible on the Internet? They use the World Wide Web (WWW), an Internet service,
as the architectural framework for accessing and linking documents.

World Wide Web
WWW is a common set of protocols that provides standards for specific computers to
distribute documents on the Internet. As a result, the World Wide Web is composed of
millions of information-holding documents or Web pages distributed on a server, pop-
ularly known as a Web server.

A Web page is a document created in HTML that includes text, graphics, hypertext
links, and audio files. Hypertext Markup Language (HTML) was created as a subset of
Standard Generalized Markup Language (SGML) to serve documents over the Inter-
net. HTML uses a simple textual format to create Web pages and contains commands
in the form of tags. These tags specify the display format of the various elements of a
document. A collection of Web pages about a specific individual or group is known as
a Web site. Web sites are created to tender organizational information, advertise for
small businesses, offer information, and much more.

NOTE To make a Web page on a site available to everyone, you need to
publish the site on a Web server, a process popularly known as Web hosting.
Depending on the available financial resources and the size of your Web site,
you can choose any of the following methods for publishing a site:

■■ You can use your own financial resources or the support of a strong financial
partner or institution.

■■ You can use the services of your ISP. Most ISPs allocate some space to dedi-
cated clients for a nominal fee.

■■ You can hire a Web hosting service company to rent you Web space at reason-
able rates.

The documents on the server are accessed through computers that use different plat-
forms, such as Unix, Windows, or Mac OS. As a result, applications at the client end use
certain programs to facilitate the display of Web pages in a standardized format. Let’s
look at a new concept of Web browsers that facilitates a consistent display of Web pages.

Web Browsers
Web browsers are programs that communicate with the Web servers on the Internet and
enable the download and display of requested Web pages. Functionally, a Web browser
interacts with both the Web server and the operating system of a computer. As a result,

CGI Programming 217

the basic features of a Web browser call for a minimal understanding of HTML and the
ability to display text. In recent years, with the advancement of the components of a
Web page, expectations from a Web browser have increased multifold. As a result, a
Web browser today is able to provide support to complex Web pages with graphics,
sound, video, and 3-D imaging.

The most popular Web browsers that have the maximum user support are Netscape
Navigator and Microsoft Internet Explorer. Netscape supports a wide range of plat-
forms, such as Windows, Macintosh, and Unix. Internet Explorer, in contrast, was orig-
inally designed for Microsoft products but is also available for Macintosh and some
Unix platforms today.

The display of the contents of a Web page depends solely on the choice of browser.
Therefore, Web applications need to support a standardized display of contents,
regardless of the browser used. As a result, an important feature of applications is
cross-browser support. Cross-browser support ensures a uniform display of content
independent of the browser or platform used. This feature of Web applications enables
you to view pages in the correct format because of Web applications’ compatibility
with both browsers, Netscape Navigator and Microsoft Internet Explorer.

Because a browser runs on a client computer, it should contain components that
make the display of the Web page contents easy. These components are part of the
browser window and are consistent in layout, regardless of their brand. Let’s look at
the elements of a browser window.

Components of a Browser Window

The basic elements of a Web browser consist of the menu bar, toolbars, the address bar,
the viewing window, and the status window. Most of you are familiar with universal
elements, such as the menu bar, the viewing window, and the status bar, which are
common to nearly all computer applications. The address bar is a browser-specific ele-
ment that is used to specify the URL of the Web page. The URL contains the name and
address of the requested Web page. Figure 10.3 depicts the contents of a Web page.

Uniform Resource Locator (URL)

A URL, also called an IP address, contains the exact location of any document. It is an
addressing scheme (also called an IP address) that provides the path to an Internet
resource. When a user clicks on a link, the URL provides information about that link to
the Web browser, which in turn displays the linked Web page. Therefore, links are
always implemented by using URLs. A URL may point to a document, image, video,
or graphic.

A typical URL is of the following format:

protocol://host.domain-name.toplevel-domain-name/path/dataname

where:

■■ protocol refers to the type of protocol to be used.

■■ host refers to the server where the resource is stored.

218 Chapter 10

Figure 10.3 A Web page in Microsoft Internet Explorer.

■■ domain-name and toplevel-domain-name are the name and the type of the domain,
respectively. The types of domains include com (used for commercial institutes),
edu (educational institutes), net (network organizations), org (miscellaneous
organizations), gov (government entities), mil (US military), .info (content sites),
.name (personal Web sites), and .biz (business organizations).

■■ path/dataname refers to the location on the server on which the data is stored.

We will discuss the HTTP protocol in later sections of the chapter.
How does a Web browser use a URL to access HTML documents? The process of

accessing HTML documents that represent Web pages consists of the following three
steps:

1. The browser determines the protocol to be used.

2. The URL is used to contact the server.

3. The path name and the filename are used to request the specific Web page from
the server.

We now know that a client computer uses a browser to display the content of a Web
page. We also know that when a Web page is hosted on a server, the client calls for a

CGI Programming 219

particular Web page on the server. When the Web server receives the client call, it
responds by displaying the contents of the requested Web page. Can you visualize an
ongoing interaction between the client and the server?

In the case of Web applications, Hypertext Transfer Protocol (HTTP) is used to facil-
itate the exchange of information and data between the client and the server.

Hypertext Transfer Protocol (HTTP)
HTTP is based on the request-response phenomenon in which the client, which is rep-
resented by the browser, sends a request to the server, which is represented by the Web
server. A typical HTTP transaction between a Web browser and a Web server will take
place in the following manner:

1. A TCP/IP connection is established between the client (browser) and the server.

2. The browser sends a request for a particular HTML page.

3. The server locates the file and sends a response in the form of the text content
of the requested page.

4. The TCP/IP connection is closed.

Figure 10.4 depicts the interaction between a client and a server.
HTTP uses explicit methods and specifications to structure both request and

response messages. Let’s now understand the specifications used by a client and a
server during an HTTP request-response cycle.

The HTTP Request

An HTTP request is sent to the server along with the URL of the requested page, which
is typed in the address location bar of the browser. The standard methods of HTTP 1.1
that are used to specify the type of user request are GET, POST, HEAD, OPTIONS, PUT,
DELETE, TRACE, and CONNECT. Of these, with the CGI perspective, only the first two
are generally used.

The GET Method

This is the simplest and most frequently used request method to request a static
resource with inert contents, such as an HTML page. This method is simple because
typing the URL of the requested Web page while surfing the Net invokes the GET

Figure 10.4 The HTTP request-response cycle.

User's
Computer Server

HTML

Browser requests
for Web Page

Server sends file
back to browser

220 Chapter 10

method. As a result, a statement, such as http://www.mysportspage/index.htm,
specifies the request made using the GET method to fetch the specified page contents
from the Web server. In addition to making a page request, the GET method can be
used to include additional information on the Web page. Such additional information
is passed as a query parameter that is appended to the URL of the Web page. For
instance, at any Web shopping site, have you ever noticed the URL string that appears
when you send your logon information for validation? Or, better still, have you noticed
the change in the URL string on the status bar when you open your mailbox at the end
of the day? The URL address is appended with a string set apart with a “?”. The URL
is something like this:

http://www.URLAddress.com?login=yourLoginName

The query parameter in such a case serves as a dynamic search criterion that is used
to send parameter-specific content.

The POST Method

The POST method is used to request a dynamic resource that requires sending large
amounts of data as request parameters for the server. Unlike the parameters in the GET
method, the parameters in this method are contained within the body of the request.
Because the size of a request parameter can contain any amount of text, the POST
method can be used to upload even huge binary and text files. An advantage of using
the GETmethod, despite the restriction in the size of the parameter, is that such requests
can be used as bookmarks, which can be saved for visits to the same sites in the future.

Before you begin writing programs in Python, it is a good idea to reexamine the
basics of HTML. This will help you embed Python code in HTML more effectively.

Revising HTML
You can use HTML along with Python to create attractive and dynamic Web pages.
Here are a few pointers to HTML to refresh your memory.

■■ Hypertext Markup Language (HTML) is the most common markup language
that has been used extensively over a period of years to create Web pages.
HTML was derived from Standard Generalized Markup Language (SGML);
however, HTML is much simpler and easier to use than SGML.

■■ Markup languages, such as HTML, use labels. These labels are used to specify
text or images. These labels are called tags.

■■ Tags are used to contain specific elements of HTML. Elements are the heart of
any HTML document. Elements are nothing but logical blocks that determine
how text or an image will appear when displayed on a Web page.

■■ To use elements, you need to specify them within opening and closing tags.
An opening tag marks the beginning of an element, and a closing tag marks
the end of an element.

■■ Each HTML document will always contain the <HTML> </HTML> element. The
HTML element indicates that the text in the document is hypertext.

CGI Programming 221

■■ Each element has certain characteristics. These characteristics are called the
attributes of an element. For example, the attributes of the element <TABLE>
are ALIGN, WIDTH, BORDER, CELLSPACING, and CELLPADDING. Each of these
attributes can be specified within the TABLE element.

Consider the following HTML code:

<HTML><HEAD><TITLE>Earnest Bank</TITLE>

</HEAD>

<BODY bgColor=#CCCCFF text=”#9900FF”>

<FORM>

<P>Earnest Bank

Registration form for new

account </P>

<HR>

<P>Please tell us about yourself:</P>

<P>Title

(Optional) &n

bsp

;

Mr <INPUT CHECKED name=R1 type=radio value=V1> Mrs

<INPUT name=R1 type=radio value=V2>

Ms <INPUT name=R1 type=radio value=V3> Dr <INPUT name=R1

type=radio value=V4></P>

<P>First

Name:

<INPUT

name=T1 size=30>

Last

Name:

<INPUT

name=T2 size=30></P>

<P>Social Security

#:

<INPUT name=T3

size=30></P>

<P>Home Address</P>

<P><font color=”#9900FF”

size=”3”>Apt/Suite#:

<INPUT name=T4 size=30>

<font color=”#9900FF”

size=”3”>Street#:

<INPUT name=T5 size=30>

222 Chapter 10

</P>

<P><font color=”#9900FF”

size=”3”>City:

<INPUT name=T6

size=30>

<font color=”#9900FF”

size=”3”>State:

<INPUT name=T7 size=14>

Zip:

<INPUT

name=T8 size=13></P>

<P>Home

Phone:

<INPUT

name=T9

size=30>

Email

Id:

<INPUT name=T10 size=30></P>

<P>Please provide us with your financial

information:</P>

<P>

Annual

Income:

<INPUT

name=T11>

Source of

Income: <SELECT name=D1

size=1> <OPTION selected>Business</OPTION> <OPTION>Service</OPTION>

<OPTION>Agriculture</OPTION> <OPTION>Other

sources</OPTION></SELECT></P>

<P>Please tell us about the account set

up:</P>

<P>

Account

Type:

<SELECT

name=D2 size=1> <OPTION selected>Savings account</OPTION> <OPTION>Loan

account</OPTION> <OPTION>Fixed deposits</OPTION> <OPTION>Recurring

deposits</OPTION></SELECT></P>

<P> </P>

<P>

CGI Programming 223

<INPUT name=B1 type=submit value=”Submit Form”>

<INPUT name=B2 type=reset value=Reset></P></FORM>

<P> </P></BODY></HTML>

The output of the preceding code appears in Internet Explorer on Windows as
shown in Figure 10.5.

The output of the preceding code appears in Netscape Navigator on Linux as shown
in Figure 10.6.

In the preceding code, the elements that have been used are these:

HTML. This element contains an entire HTML document. In simpler words, this
document marks the beginning and end of an HTML document.

HEAD. This element is used to specify the header information of the document.

TITLE. This element is used to specify the title of the document.

BODY. This element contains the body text of the HTML document.

FONT. This element is used to alter the font size and color of text.

Figure 10.5 Output of sample.html in Internet Explorer.

224 Chapter 10

Figure 10.6 Output of sample.html in Netscape Navigator.

H1. This element is used to contain that part of the text within the HTML docu-
ment that needs to appear as Heading 1 on a Web page.

P. This element is used to define a paragraph.

TABLE. This element is used to define a table that consists of data represented in
rows and columns.

TD. This element is used to specify the data that will be present in a cell.

TR. This element is used to specify TD and TH elements.

CENTER. This element indicates that the text should be centered.

B. This element stands for Bold. It is used to make the text appear bold.

The preceding code also consists of attributes that are used with elements. The
attributes are as follows:

■■ The COLOR attribute is used with the FONT element to specify the color of the
font.

■■ The SIZE attribute is used with the FONT element to specify the size of the text.

CGI Programming 225

You can also design HTML forms to accept data from a user. Regardless of whether
you are creating a simple login page or a complex shopping cart, three elements will be
used generally. The following three basic elements are detailed in this section:

The FORM element. This element contains all the code related to a form. In simpler
words, the FORM element contains all the tags that are specific to a form.

The INPUT element. This element specifies the code used to create the form con-
trols that accept user input. The INPUT element can contain text boxes, buttons,
check boxes, or radio buttons.

The SELECT element. This element is used to display lists in a form.

Now, let’s discuss each of these in detail.

The FORM Element

The FORM element contains the entire code specific to a form. A form is a collection of
text boxes, radio buttons, check boxes, and buttons. The main purpose of a form in a
Web page is to accept user input in a systematic and structured manner.

The FORM element consists of all the code used to display text boxes, buttons, or a list
of options. Therefore, INPUT and SELECT elements are also included in the FORM ele-
ment. Two attributes are used with the form element:

■■ The METHOD attribute

■■ The ACTION attribute

Now, let’s consider each of these attributes in isolation and understand how they are
used.

The METHOD Attribute

The METHOD attribute is used to transmit form data, which is filled in by the user. Two
methods can be used to transmit form data:

■■ The GET method

■■ The POST method

These methods have already been discussed earlier in “The HTTP Request” section.

The ACTION Attribute

The ACTION attribute is used to specify the target where form data is to be transmitted.
Typically, the target is a file that contains the code for processing form data. After pro-
cessing form data, the file generates the desired output and displays it.

Syntax for METHOD and ACTION Attributes

Almost every HTML form that accepts user input would typically begin with a FORM
tag that contains the METHOD and ACTION attributes. The syntax for using these attrib-
utes is this:

<form METHOD= “GET/POST” ACTION= “name_of_the_target_file”>

226 Chapter 10

In the preceding syntax, the METHOD attribute specifies the method of transmission
to be used. You can use either the GET method or the POST method with the METHOD
attribute. The ACTION attribute specifies the name of the file to which form data will be
transmitted.

The INPUT Element
As discussed earlier, the INPUT element is specified within the FORM element. The
main purpose of using the INPUT element is to accept user-specific input. The INPUT
element helps developers create text boxes, buttons, check boxes, and radio buttons in
their forms. This, in turn, makes the Web page interactive and user friendly. All a user
has to do is fill out the required fields of a form and click a button to submit the infor-
mation. The features of the INPUT element can be summed up as follows:

The INPUT element consists of controls, such as text boxes, buttons, radio buttons,
and check boxes. Each of these controls contains its attributes. These attributes are the
following:

The TYPE attribute. This attribute is used to specify the type of control that will
be used to accept input from the user.

The NAME attribute. This attribute is used to specify a name for a control. This
name is used to identify a particular control in the form.

The VALUE attribute. This attribute holds the value entered by a user or the
default value for a particular control.

While using the INPUT element with HTML forms, you can create five types of con-
trols that accentuate the user interface:

■■ Submit button

■■ Text boxes

■■ Radio buttons

■■ Check boxes

■■ Combo boxes

HTML has changed the way data is exchanged over the Internet; however, HTML
alone can be used to display only static contents. As discussed in the previous section,
a browser requests an HTML file from the Web server by using HTTP. The Web server
processes the request by sending the appropriate HTML file, and finally, the browser
displays the file to the user. To reflect changes, page contents have to be modified and
displayed dynamically. Dynamic content can be displayed on a Web page by using
client-side and server-side scripting.

Client-Side versus Server-Side Scripting
The development of Web servers has led to a considerable rise in the need for display-
ing dynamic content. In client-side scripting, scripts are processed by a browser,
whereas in server-side scripting, scripts are processed by a server. In other words,
when a browser asks a Web server for an HTML file that contains a client-side script,

CGI Programming 227

the client browser processes the file. This enhances the speed with which the requests
are processed because the server is not overloaded with processing the script of every
client. This saves a lot of time and allows the server to handle the requests of many
more clients at the same time. This distribution of work helps in optimizing the per-
formance of the Web server.

Certain tasks need to be processed only by the server and cannot be handled by
client-side scripts. Consider that you need to display the current time of the system on
which a Web site is hosted. If you use a client-side script, then each of the browsers
requesting the script will display the current time of the machine on which the browser
is located. The required result can be obtained only if you use a server-side script. Fig-
ure 10.7 illustrates the use of client-side and server-side scripts to display the current
time of the server. When the time() function of the server in New York is invoked
using a client-side script, client browsers in Atlanta, Denver, and Seattle show different
times as the current time in New York. When a server-side script is used for the same
purpose, the client browsers show the correct time in New York.

Server-side scripting is used when there is a need to develop active Web sites that
can interact with databases and allow the customization of the content of a Web page
for each user. The benefits of server-side scripting can be listed as follows:

■■ Server-side scripting allows database interactivity with Web pages.

■■ Server-side scripting allows the use of templates for creating HTML docu-
ments. Templates are files containing the HTML code to which contents from a
text file, a database, and other data sources can be retrieved dynamically before
displaying the Web page to the user. This allows the information to be changed
dynamically instead of changing it manually every time it changes.

Figure 10.7 Client-side versus server-side scripting.

Client-Side Scripting Server-Side Scripting

Browser in
Denver

Browser in
Atlanta

Browser in
Seattle

Browser in
Denver

Browser in
Atlanta

Browser in
Seattle

The time now
at New York is
9:00 AM

Time () function used in
a client-side script. The
file containing the script
is located in a Web
Server in New York.

Time () function used in
a server-side script. The
file containing the script
is located in a Web
Server in New York.

The time now
at New York is
11:00 AM

The time now
at New York is
8:00 AM

The time now
at New York is
11:00 AM

The time now
at New York is
11:00 AM

The time now
at New York is
11:00 AM

228 Chapter 10

Python is a powerful server-side scripting language. As stated earlier in this chapter,
Web programming in Python is done through CGI. Let’s start with an introduction to CGI.

An Introduction to CGI
When a client sends a request to a server by clicking the Submit button on an HTML
form, the Web server handles the requests in an HTML form by invoking an external
program. Both the client and the server wait for the resulting HTML file. After the exe-
cution of the external program is completed, the program passes the resulting HTML
page back to the server. The server, in turn, passes it to the client. This mechanism of
the server receiving the form, contacting the external program to process the request,
and receiving and returning the newly generated HTML file is called Common Gate-
way Interface (CGI). The external program that processes the client request is called a
CGI script. Therefore, when a CGI script begins to execute, it also retrieves the data
that the user has supplied in an HTML form. This data is supplied on the client
browser and does not reside on the server. In other words, the main purpose of CGI is
to manage the communication between the client browser and the server. Figure 10.8
explains the working of CGI.

CGI scripts can be written to handle a variety of tasks, such as interaction with data-
bases, files, and other programs on the server and printing the result back to the client
in a customized format. CGI scripting can be done in many languages, such as Ruby,
ColdFusion, Python, and PHP. Let’s write a simple CGI script in Python.

#!/usr/local/bin/python

print “Content-Type: text/plain\n\n”

print “Python works”

Let’s look at each line of the code sequentially. You already know that the first line is
the comment to indicate the path to the Python interpreter in a Unix machine. The sec-
ond line passes the MIME type to the browser and tells the browser how to render the
information. This line is important because the browser can understand only HTTP
data, which includes HTML and MIME headers. The third line prints the specified line
in the browser window. You can write the script in any text editor; however, you have
to make sure that you save the file in the cgi-bin directory. The complete path to this
directory is /var/www/cgi-bin. Figure 10.9 shows the output of the preceding script
in a browser.

Figure 10.8 The working of CGI.

Web Server

Submit
Completed

Call the
CGI Application

CGI Application's
response

CGI Application's
response

Web Browser
(client)

CGI Application

CGI Programming 229

Figure 10.9 Output of the simple CGI script in the browser.

NOTE Often, a CGI script has to be made executable by executing the
following command:

$ chmod +x scriptname.py

Equipped with the basic knowledge of CGI, let’s write a complete CGI application
in Python.

The cgi Module

The cgi module has to be imported in any CGI script written in Python. The field-
storage class in the cgi module is responsible for communication with a client.
When a user enters the data in the client browser, an instance created for the field-
storage class reads standard input from the user in the form of standard input for
POST calls and a query string for GET calls. This instance consists of an object similar to
a dictionary in which keys are the names of form items and values are the data in them
that was passed through the form. After acquiring the basic knowledge required to
write a CGI script, let’s write a CGI application for the Techsity University.

230 Chapter 10

Write the CGI Program in Python
to Generate the Results Page
As discussed earlier, an HTML page is a static page. After it is created, the contents of
the page cannot be changed. When a user sends a request to the server by using an
HTML form, the server has to display the results back to the client browser in the form
of an HTML page. Therefore, the CGI application that processes the client request
should be able to send the results back to the server in the form of a Web page. For this
purpose, the CGI application should contain the code to generate an HTML page
dynamically. The following section explains how you can write a CGI script by using
Python to generate a dynamic Web page.

Generating a Dynamic Web Page

Let’s consider an example to explain how data from a form is passed to a CGI script.
The example here refers to two files, details.html and results.py. The following
code represents details.html, which contains a form to accept the login name and
password of a user.

<HTML><HEAD><TITLE>

Student Details Form

</TITLE></HEAD>

<BODY>

<u>Personal Details Form</u>

<FORM method=”POST” ACTION=”http://localhost/cgi-bin/results.py”>

<p>Title:

<INPUT TYPE=radio NAME=studtitle VALUE=”Mr.” CHECKED> Mr

<INPUT TYPE=radio NAME=studtitle VALUE=”Mrs.”> Mrs.

<INPUT TYPE=radio NAME=studtitle VALUE=”Ms.”> Ms.

<INPUT TYPE=radio NAME=studtitle VALUE=”Dr.”> Dr.

<p>Name:

<INPUT TYPE=text NAME=studname VALUE=”” SIZE=30></p>

<p>Date of Birth:

<INPUT TYPE=text NAME=studdob VALUE=”” SIZE=30></p>

<p>Address:

<textarea NAME=studadd rows=2 cols=30></textarea></p>

<p>Home phone #:

<INPUT TYPE=text NAME=studphone VALUE=”” SIZE=30></p>

<p>E-mail address:

<INPUT TYPE=text NAME=emailadd VALUE=”” SIZE=30></p>

<P>Course:

<SELECT name=studcourse size=1> <OPTION selected>Project

Management</OPTION>

<OPTION>Quality Management</OPTION>

<OPTION>Team Building</OPTION>

<OPTION>Cost Management</OPTION></SELECT></P>

<INPUT TYPE=submit>

<INPUT TYPE=RESET></FORM></BODY></HTML>

232 Chapter 10

Figure 10.10 Details.html in the Web browser.

The form contains seven data fields: Title, Name, Address, Date of birth, Home
phone, E-mail address, and Course. These fields implement radio buttons, text boxes,
and a combo box. The form action specifies the type POST for the METHOD subtag. This
means that the data in the HTML form will be parsed to the CGI script results.py
by using the POST method. The path specified is http://localhost/cgi-bin/
results.py because the CGI script results.py is stored in the cgi-bin directory.
If the METHOD subtag is not specified, its default type is assumed to be GET. The POST
method is chosen here because the voluminous data is to be transferred from the
HTML form to the CGI script. Figure 10.10 shows the user details page in the browser.

Notice that the address bar of the browser window shows the path of the Web page.

NOTE By default, the Linux server is configured to run only the scripts in the
cgi-bin directory in /var/www. If you want to specify any other directory to
run your CGI scripts, comment the following line in the httpd.conf file:

<Directory “/var/www/cgi-bin”>

AllowOverride None

Options ExecCGI

Order allow,deny

Allow from all

</Directory>

CGI Programming 233

and type the following command:

<Directory “path_to_httpd_docs”>

Options All

</Directory>

Replace “path_to_httpd_docs” with the path of the directory where you
want to keep the CGI scripts.

When the user clicks the SUBMIT button, the script results.py is executed
through CGI. The following is the code for the results.py script, which accepts the
user details fields from details.html and creates a dynamic HTML page to show
the results.

#!/usr/local/bin/python

import cgi

print “Content-Type: text/html\n”

dynhtml=’’’<HTML><HEAD><TITLE>

Personal Details</TITLE></HEAD>

<BODY><H2>Personal details for: %s %s</H2>

<p>Your date of birth is: %s</p>

<p>Your home address is: %s </p>

<p>Your home phone is: %s </p>

<p>Your e-mail address is: %s </p>

<p>You have opted for the %s course</p>

</BODY></HTML>’’’

fs = cgi.FieldStorage()

title = fs[‘studtitle’].value

name = fs[‘studname’].value

dob=fs[‘studdob’].value

add=fs[‘studadd’].value

phone=fs[‘studphone’].value

email=fs[‘emailadd’].value

course=fs[‘studcourse’].value

print dynhtml % (title,name,dob,add,phone,email,course)

The preceding code accepts the data entered by the user in the details.html page
and stores it in fs, which is an instance of the fieldstorage class in the cgi mod-
ule. The dynhtml variable contains the Python code embedded in the HTML code to
create the dynamic HTML page. Notice the Content-type tag in the script, which
sends a header describing the contents of the document. This tag is used by the client
browser and does not appear in the generated page. The values that this tag can be
assigned are text/html, image/gif, text/plain, and image/jpeg. In the end,
the code generates a dynamic Web page to display the information entered by the user.
Figure 10.11 shows the dynamically generated page containing the data supplied by
the user.

234 Chapter 10

Figure 10.11 Results page in Netscape Navigator on Linux.

Result

Using what you have just learned, let’s write the code for the validate.py script that
checks whether a user has entered a login name and a password and displays a
dynamically generated Web page based on the data entered by the user.

#!/usr/local/bin/python

import cgi

header= “Content-Type: text/html\n\n”

dynhtml=’’’<HTML><HEAD><TITLE>

%s </TITLE></HEAD>

<BODY><CENTER><HR><H2> %s </H2> <H3> %s </H3><HR></CENTER>

</BODY></HTML>’’’

fs = cgi.FieldStorage()

passd=”password”

if fs.has_key(‘login’) and (fs[‘login’].value!=””):

if fs.has_key(‘password’):

fpass=fs[‘password’].value

CGI Programming 235

if fpass==passd:

abc=”Connected”

message=”Welcome...\n”

else:

abc=”Not connected”

message=”Wrong password”

else:

abc=”Not connected”

message=”Password not entered for”

print header+dynhtml % (abc,message,fs[‘login’].value)

else:

abc=”not connected”

message=”You have not entered a login name.”

message2=”Click Back”

print header+dynhtml % (abc,message,message2)

Write the CGI Program to Generate
Both the Form and Results Pages
Let’s now combine the HTML code in details.html and the CGI script in results.py
into a CGI script formresults.py. This script will now display the form to accept
the user input and display the results page. This means that both the pages will be gen-
erated dynamically. The following code represents formresults.py.

#!/usr/local/bin/python

import cgi

header= “Content-Type: text/html\n\n”

formhtml=’’’<HTML>

<HEAD>

<TITLE>Login Page</TITLE>

</HEAD>

<BODY>

<HR><CENTER>

<FORM method=”POST” action=”http://localhost/cgi-bin/formresults1.py”>

<p>Login Name:<input type=”text” name=”login” value=””></p>

<p>Password: <input type=”password” name=”password” value=””></p>

<p><input type=”submit” value=”Submit”>

<input type=”reset” value=”Reset”></p>

</FORM>

</CENTER>

<HR>

</BODY>

</HTML>’’’

236 Chapter 10

def show_form():

print header+formhtml

dynhtml=’’’<HTML><HEAD><TITLE>

%s </TITLE></HEAD>

<BODY><CENTER><HR><H2> %s </H2> <H3> %s </H3><HR></CENTER>

</BODY></HTML>’’’

fs = cgi.FieldStorage()

passd=”password”

if not fs:

show_form()

elif fs.has_key(‘login’) and (fs[‘login’].value!=””):

if fs.has_key(‘password’):

Ch=0

fpass=fs[‘password’].value

if fpass==passd:

abc=”Connected”

message=”Welcome...\n”

else:

abc=”Not connected”

message=”Wrong password”

else:

abc=”Not connected”

message=”Password not entered for”

print header+dynhtml % (abc,message,fs[‘login’].value)

else:

pass

Execute the Code
To execute the formresults.py script, perform the following steps:

1. Save formresults.py in the /var/www/cgi-bin directory.

2. Type the following command:

$ chmod +x /var/www/cgi-bin/formresults.py

3. In the address bar of Netscape Navigator, enter the following URL:

http://localhost/cgi-bin/formresults.py

4. On the login screen, enter the login name User1 and password password.

5. Click the Submit button. A results page is generated as shown in Figure 10.12.

6. Go back to the login page.

7. Enter the login name User1 and click the Submit button. An error page is
generated as shown in Figure 10.13.

CGI Programming 237

Figure 10.12 The results page when the correct details are entered on the login page.

Figure 10.13 The results page when the password field is left blank.

238 Chapter 10

Figure 10.14 The results page when an incorrect value for the password is entered.

8. Go back to the login page.

9. Enter the login name User1 and the password pass. An error page is gener-
ated as shown in Figure 10.14.

Summary

In this chapter, you learned the following:

■■ The Internet is a connection of many other networks across the globe. It uses
the TCP/IP protocol to transfer data across the networks.

■■ World Wide Web (WWW) is a common set of protocols that provides standards
for specific computers to distribute documents on the Internet.

■■ Web browsers are programs that communicate with the Web servers on the
Internet, enabling the download and display of requested Web pages.

■■ The address bar is a browser-specific element that is used to specify the URL
of the Web page. The URL contains the name and address of the requested
Web page.

CGI Programming 239

■■ A typical HTTP transaction between a Web browser and a Web server will take
place in the following manner:

1. A TCP/IP connection is established between the client (browser) and the
server.

2. The browser sends a request for a particular HTML page.

3. The server locates the file and sends a response in the form of the text
content of the requested page.

4. The TCP/IP connection is closed.

■■ The HTTP request is sent to the server along with the URL of the requested
page, which is typed in the address location bar of the browser. The GET and
POST methods are commonly used to specify the type of requests of HTTP 1.1.

■■ You can use HTML along with Python to create attractive and dynamic
Web pages. HTML tags are used to contain specific elements of HTML.

■■ The INPUT element is specified within the FORM element in an HTML form.
The main purpose of using the INPUT element is to accept user-specific input.
The INPUT element helps developers create text boxes, buttons, check boxes,
and radio buttons in their forms.

■■ Server-side scripting is used when there is a need to develop active Web sites
that can interact with databases and allow the customization of the content of
a Web page for each user.

■■ The mechanism of the server receiving the form, contacting the external pro-
gram to process the request, and receiving and returning the newly generated
HTML file is called Common Gateway Interface (CGI), and the external pro-
gram that processes the client request is called a CGI script.

■■ The cgi module has to be imported in any CGI script written in Python. The
fieldstorage class in the cgi module is responsible for communication
with a client.

■■ The CGI application that processes the client request should be able to send the
results back to the server in the form of a Web page. For this purpose, the CGI
application should contain the code to generate an HTML page dynamically.
This code is made up of the HTML code with the Python code embedded in it.

■■ CGI can be used to create both the form that accepts the user details and the
dynamically generated HTML page to display the results after processing the
information in the form.

240 Chapter 10

241

OBJECTIVES:

In this chapter, you will learn to do the following:

� Define a database

� Identify the significance of databases

� Explain database-related concepts

� Identify the Python DB API

� Install MySQL

� Identify the features of MySQL

� Use MySQL in Python

Getting Started

Until now, this book has familiarized you with the Python concepts that are important
for developers or programmers to grasp before they can start using Python for Web
development. Chapter 10, “CGI Programming,” explained the basics of CGI. In the last
chapter, you learned how to accept data from a user in an HTML form, process it, and

Database Programming

C H A P T E R

11

C H A P T E R

display the result back in a dynamically created Web page. You will agree that most
transactions on the Web require the use of stored data sources that can be accessed and
manipulated to yield desired output. Consider a simple example of a site that provides
free e-mail services to its users. Have you ever wondered where the information spe-
cific to each of these users is stored? Or, for that matter, how the password specific to a
user is validated every time the user tries to log on to the site? The answers to all these
questions are databases. Databases give developers the ability to create well-formatted
and structured data repositories. They enable data accessibility and availability across
networks.

This chapter assumes that the reader has a basic knowledge of databases and under-
stands how data is stored in databases. It also assumes that you are familiar with
RDBMS concepts and their implementation in MySQL. For those of you who are new
to MySQL, this chapter details concepts about installing MySQL and working with the
databases and tables in MySQL.

This chapter also discusses the Python Database API. Next, the chapter explains the
processes of accessing and manipulating a MySQL database by using Python com-
mands. Finally, the chapter will discuss concepts such as the creation of a database table
to store information and the use of query statements to access and manipulate data in
the Techsity University scenario.

Before discussing database programming in Python, let’s recap database manage-
ment concepts.

Database Management
A database can be defined as a repository that stores related information. Examples of
databases are formal databases for quantitative analysis, such as databases containing
census data, or informal databases, such as those containing recipes, shopping lists, or
task lists. Desired information can be extracted from voluminous data by using queries.
Queries provide a quick, interactive way to retrieve information from a database.

Relational Database Management System

As discussed earlier, databases provide a methodology to structure and organize large
amounts of data. This data can consist of details about a shopping cart, an online bank,
a picture gallery, or a corporate network. A database management system (DBMS) pre-
sents a software mechanism to access, retrieve, and manage the data in a database in
the form of tables consisting of rows and columns.

When a DBMS can retrieve information by using the data in the specified columns
of a table to find additional data in another table, it is known as a relational database
management system (RDBMS). A relational database management system allows you to
define relationships between the tables present in a database. This improves speed and
flexibility, and data from different tables can be combined in response to a request from
a client. MS-Access, MS-SQL Server, Oracle, Sybase, Informix, and Ingress are some
examples of DBMSs and RDBMSs that are available today. The access and retrieval of
data from a database is achieved by the use of Structured Query Language, or SQL, in
the standardized query format decided by International Organization for Standardiza-
tion (ISO) and American National Standards Institute (ANSI).

242 Chapter 11

Python Database API

The idea of providing a standard way in which different Python modules can access
databases led to the development of Python Database API. In this way, consistency can
be achieved among modules. Therefore, modules are easily understood, code is
portable across databases, and database connectivity from Python is easy. The latest
version of the Python Database API is 2.0. The specification of the Python Database
API interface consists of several sections:

■■ Module Interface

■■ Connection Objects

■■ Cursor Objects

■■ Type Objects and Constructors

■■ Implementation Hints

■■ Major Changes from 1.0 to 2.0

For more information on Python Database API you can refer to: www.python.org/
topics/database/DatabaseAPI-2.0.html.

Python Database API is maintained by the Database Special Interest Group (DB-SIG).
For more information on SIGs, check out the site, www.python.org/sigs/db-sig/.
Python Database API supports a wide range of database servers:

■■ GadFly

■■ mSQL

■■ MySQL

■■ PostgreSQL

■■ Microsoft SQL Server 2000

■■ Informix

■■ Interbase

■■ Oracle

■■ Sybase

NOTE Although Python supports a wide range of database servers, because
of its advantages, we will use MySQL for all database-related activities in this
book.

Introduction to MySQL
MySQL is a powerful RDBMS developed by a commercial company called MySQL AB.
The features of MySQL are as follows:

■■ In MySQL, you can have multiple related tables in a database, which makes it a
powerful RDBMS.

Database Programming 243

■■ It is freely downloadable from its official site, www.mysql.com. Its source code
can be used to customize it based on the need of the user.

■■ It has built-in support for a lot of applications and languages, such as Python,
Perl, and PHP.

■■ It can be installed on almost any operating system.

■■ It consists of a thread-based memory allocation system, which is fast.

■■ It supports fixed-length and variable-length records.

■■ It has an efficient security system that allows host-based verification. Passwords
are encrypted during transit, ensuring maximum security.

■■ It is capable of handling very large databases.

■■ Support is available on almost all MySQL programs. On Linux systems, the —
help argument can be used with the program name to display a page that
consists of online help. On Windows, MySQL documentation is installed with
MySQL by default.

■■ Column types, such as FLOAT, CHAR, TEXT, DATE, TIME, DATETIME, VARCHAR,
YEAR, TIMESTAMP, and others, are supported in MySQL.

■■ There are no reported memory leakages in MySQL.

■■ It consists of an optimized class library. All MySQL functions are implemented
using this class library and, as a result, are very fast.

■■ It supports TCP/IP sockets, Unix sockets, and Named Pipes for connectivity.
These concepts are discussed in Chapter 12, “Network Programming.”

Installing and Configuring MySQL

If you have chosen Linux as your platform for MySQL and installed Linux with the
Custom-Everything option, you do not need to install MySQL separately; MySQL
comes bundled with Red Hat Linux. There are a few steps that you need to perform
before you can start using MySQL. The steps are as follows:

1. Ensure that you have logged in as a root user.

2. On the command prompt, type the command ntsysv. The Services screen
appears on the command prompt.

3. Now, select the option mysqld as shown in Figure 11.1, and click OK.

4. Type the following command at the command prompt to start the MySQL
daemon:

/etc/rc.d/init.d/mysqld start

Installing MySQL Separately

If not installed with Linux, MySQL can also be installed separately. It is recommended
that you install MySQL by using its RPM files. The RPM files can be downloaded from

244 Chapter 11

Figure 11.1 Services screen.

www.sourceforge.net. The RPM files will also be available on the Red Hat Linux 7.1 CD.
Depending on your requirement, the necessary RPM files that you may want to use to
install MySQL are the following:

MySQL-<versionname>.i386.rpm. This RPM file installs MySQL Server. You
need to install this file if MySQL Server is not installed on a remote machine.

MySQL-client-<versionname>.i386.rpm. This RPM file will install the
client-only version of MySQL. It is advisable that you always install this pack-
age along with MySQL Server.

MySQL-devel-<versionname>.i386.rpm. This RPM file will install all the
necessary libraries and will include the files that are required to compile other
client programs.

MySQL-<versionname>.src.rpm. This RPM file contains the entire source
code for all the application packages mentioned here.

To install MySQL by using the RPM files, you need to use a single command as shown:

1. Download the latest RPM files or copy the required RPM files from the Red
Hat Linux 7.1 CD to the /root directory.

2. Type the following command to install MySQL Server and a MySQL client:

rpm -ivh MySQL-versionname.i386.rpm MySQL-client-

versionname.i386.rpm

After you install MySQL by using its RPM file, all necessary data is transferred to
the /var/lib/mysql directory. Appropriate entries are also made in the /etc/rc.d
directory. This configures the system to start MySQL at startup.

Database Programming 245

Working with MySQL
You have now learned to install and configure MySQL. Let’s move on to learning the
basics of MySQL so that you can start using MySQL. This chapter will briefly introduce
two commands, mysql and mysqladmin. Primarily, these two commands are used to
work with the databases in MySQL.

The mysqladmin Command

The mysqladmin command is used in MySQL for server administration. There are
many things a database administrator can do using the mysqladmin command at the
command prompt. The syntax of the msqladmin command is this:

mysqladmin [options] command1 command2......commandn

Some of the options that you can use with the mysqladmin command are listed in
Table 11.1.

Table 11.2 lists the commands used with the mysqladmin command.

Table 11.1 Options Used with mysqladmin

OPTION DESCRIPTION

-?, —help This option is used to display help
and exit.

-h, —host=[Hostname] This option is used to connect to the
host Hostname.

-p[password], —password[=password] This option is used to specify the
password when connecting to the
server. If password is not specified,
MySQL Server asks for a password
from the tty.

-P, —port=[portno] This option is used to specify the
port number portno for connection.

-s, —silent This option is used to exit silently if
a connection to the server cannot
be established.

-u, —user=[user] This option is used to specify the
user for login if not the current user.

246 Chapter 11

Table 11.2 Commands Used with mysqladmin

COMMAND DESCRIPTION

Create <database_name> This command creates a new database with the
specified name.

Drop <database_name> This command deletes the database with the
specified name.

Extended-status This command displays the status in a table with
two columns, Variable_name and Value.

Flush-hosts This command clears all hosts that are cached.

Flush-logs This command clears all server logs.

Flush-tables This command clears all tables.

Flush-threads This command clears all threads from the thread
cache.

Ping This command checks whether the MySQL
daemon is functional. A message mysqld is
alive is displayed if mysql is functional.

Refresh This command clears all tables and then opens
and closes log files.

Status This command displays a short status message on
the command prompt.

Variables This command displays all available variables on
the command prompt.

Version This command displays the version information of
the MySQL Server.

Shutdown This command shuts down the MySQL server.

Creating a Database

To create a database, use the create command at the command prompt. For example,

#mysqladmin create Student

The preceding command creates a database with the name Student.

Database Programming 247

The mysql Command

The mysql monitor is the command-line interface used to interact with MySQL data-
bases. The mysql monitor can be invoked at the command prompt as follows:

mysql [OPTIONS] [database]

Without any option, the mysql monitor can be invoked at the command prompt as
follows:

mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 3 to server version: 3.23.36

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer

mysql>

You can specify the database to be used by using the database parameter. Many
options can be specified with the mysql command. Some of the options that can be
specified are listed in Table 11.3.

You can now use the MySQL interface to work with databases; you can create, mod-
ify, and delete tables and query and retrieve data from tables. However, databases can
be created only on a machine that is running MySQL Server by using the mysqladmin
command.

Table 11.3 Options Used with mysql

OPTION DESCRIPTION

-?, —help This option is used to display help
and exit.

-B, —batch This option is used to print results
with a tab as a separator, each row
on a new line. This option does not
use the history file.

-D, —database=[databasename] This option is used to specify the
database to use.

-h, —host=[Hostname] This option is used to connect to
the host Hostname.

-p[password], —password[=password] This option is used to specify the
password when connecting to the
server. If the password is not
specified, MySQL Server asks for a
password from the tty.

-P, —port=[portno] This option is used to specify the
port number portno for a
connection.

248 Chapter 11

Table 11.4 The Basic MySQL Commands

COMMAND WHAT IT DOES

Use Makes the specified database the current database.

Create table Creates a table in a database.

Select Retrieves records from a table.

Insert into Inserts new records in a table.

Update Modifies the values in the records of a table.

Delete Deletes records from a table.

Drop table Deletes a table from a database.

Let’s briefly look at some basic MySQL commands and their utility. Table 11.4 lists
each of these commands to demonstrate their implementations.

Let’s now look at the implementations of the SQL commands by using examples.

Specifying the Database to Be Used

If you have not specified the database to use while invoking the mysql monitor, you
can use the use command. For example,

mysql> Use Student;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

Creating a Table

The create table command is used to create a new table in a database. The follow-
ing syntax illustrates the line of code used for creating a table:

create table tableName (columnName1 datatype, columnName2 datatype...);

Consider a situation in which you need to create a table in the Student database,
which is used to validate the authenticity of the username and password entered by a
student on the login page. The fields for this table are cStudent_Id and cPassword.

The following command shows the use of the create table command to create
the Login table in the Student database:

mysql> create table Login (cStudent_Id char(10), cPassword char(10));

Notice that the data type used in the preceding example for the two fields is char.
Table 11.5 lists the data types available in MySQL.

Database Programming 249

Table 11.5 Data Types Available in MySQL

DATA TYPE DESCRIPTION

Numeric types

NUMERIC This data type represents a number.

DECIMAL (precision,scale) This data type represents a decimal number.
Precision specifies the number of significant
decimal digits that will be stored for values,
and scale specifies the number of digits that
will be stored following the decimal point.

INT This data type represents an integer from
-2147483648 through 2147483647.

SMALLINT This data type represents an integer from
-32768 through 32767.

FLOAT This data type represents a number from
-1.79E+308 to 1.79E+308.

REAL This data type represents a number from
-3.40E+38 through 3.40E+38.

DOUBLE PRECISION This data type represents a 64-bit value from
10 308 through 10 -323.

Date and Time types

DATETIME This data type represents a date of the format
yyyy-mm-dd hh:mm:ss.

DATE This data type represents a date of the format
yyyy-mm-dd.

TIMESTAMP This data type represents dates ranging from
the beginning of 1970 to sometime in the year
2037 with a resolution of one second. Values
are displayed as numbers, and their lengths
depend on their display sizes.

TIME This data type represents time in the format
hh:mm:ss.

YEAR This data type represents a year in the format
yyyy. The range is 1901 through 2155.

String types

CHAR(no_of_bytes) This data type represents strings of length 0
through 255. Regardless of the length of the
string, a char type occupies the specified
number of bytes.

250 Chapter 11

DATA TYPE DESCRIPTION

VARCHAR(no_of_bytes) This data type represents variable-length strings
of length 0 through 255. In contrast to CHAR,
VARCHAR values are stored using only as many
characters as are needed, plus one byte to
record the length.

TEXT This data type represents strings, which do not
require a size to be specified and can be as
long as you want.

To test whether the table was successfully created, type the following command:

mysql> show tables;

This command will display the tables present in the database named Student. The
output of the command appears as shown:

mysql> show tables;

+------------------+

| Tables_in_Student|

+------------------+

| Login |

+------------------+

1 rows in set (0.01 sec)

The preceding output indicates that a table named Login is created in Student.
You can also view the fields that you had added to the table Login. To do this, type the
following command:

mysql> explain Login;

This command helps an administrator keep track of the number of fields and their
types. The output of the command appears as shown:

+-------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| cStudent_Id | varchar(10) | YES | | NULL | |

| cPassword | varchar(20) | YES | | NULL | |

+-------------+-------------+------+-----+---------+-------+

2 rows in set (0.00 sec)

Notice all the information about all the fields present in the table. In the case of the
Student database we had created a table, Login, with two fields. All the fields in the
table are displayed along with a description of each field.

Database Programming 251

Retrieving Records from a Table

The select command is used to view the records of a table. The following syntax
illustrates the line of code for viewing the records of a table:

select * from tableName;

The use of an asterisk specifies the retrieval of all records from a particular table. You
can also specify a selection criterion in the select statement. The where clause is
used along with the selection criterion to specify a selective retrieval of records from a
table. The syntax in such a case will be this:

select * from tableName where selectionCriterion;

The following statement shows the use of the select command to retrieve records
for a student with the id User15:

select * from Registration where cStudent_Id=”User15”;

Inserting Records in a Table

The insert into command is used to insert new records in a table. The following
syntax illustrates the line of code for adding records to a table:

insert into tableName values (columnValue1, columnValue2 ...);

It is important to maintain the sequence of the column values being inserted, which
should be similar to the order of the column names specified during creation of the
table. The following code snippet is used to insert the first name, last name, address,
phone number, and e-mail address of a student in the Registration table:

insert into Registration values(“Dunston”, “Payne”, “21, Sunley House,

Eastern Avenue”, “362283838383”, “duns@xyz.com”);

Modifying the Data in a Table

The update command is used to modify the records in a table. The following syntax
illustrates the line of code for modifying a column based on a specified criterion:

update tableName set columnName=”newColumnValue” where criterion;

The following code snippet is used to modify the last name of Betty from Smith to
Charles in view of her recent marriage:

update Registration set lastName=”Charles” where firstName=”Betty”

252 Chapter 11

The alter command is used to modify the columns of a table. The following tasks
can be performed using the alter command:

Adding a column to a table. To add a column to a table, use the following syntax:

alter table table_name add newcolumn fielddefinition;

Changing the type of a column. To change the type of an existing column, use
the following syntax:

alter table table_name change column_name newfielddefinition;

Indexing a column in a table. To index an existing column, use the following
syntax:

alter table table_name add index column_name (column_name);

Making a unique column in a table. To make a unique column in a table, use the
following syntax:

alter table table_name add unique column_name (column_name);

Deleting a column from a table. To permanently delete a column from an exist-
ing table, use the following syntax:

alter table table_name drop column_name;

Deleting Records from a Table

The delete command is used to delete records from a table. The following syntax
illustrates the SQL statement used for deleting all the records of a table:

delete from tableName;

The where clause is used along with a selection criterion to specify a selective dele-
tion of records from a table. The syntax in such a case will be this:

delete from tableName where selectionCriterion;

The following code snippet shows the use of the delete command to retrieve
records for a student named Jonathan:

delete from Registration where firstName=”Jonathan”;

Deleting a Table

The drop table command is used to delete a table from a database. The following
syntax illustrates the SQL statement used for deleting a table:

drop table tableName;

Database Programming 253

The following code snippet shows the use of the drop table command to delete
the tempTransaction table:

drop table tempTransaction;

The concepts covered up to now discussed the basics of MySQL. Let’s move on to
understanding how the preceding concepts can be used to manipulate the data in a
database.

Accessing a Database from a Python Script

Problem Statement
The online site of Techsity University has a provision for new students to register
online. All that students need to do is register themselves by filling out the online reg-
istration form. The administrator of the Web site processes the request, and if all the
essential criteria for having an account with the University are met, the student is duly
informed and the database is updated with the new student’s details.

Your colleague John has already designed the interface for the page that will be used
to update the database with a new student’s details. You, as a developer, have been
assigned the task of writing the code for the database interaction. The code, when exe-
cuted, will insert a new student’s details into the related database table. The prototype
for this particular application that inserts new records into the registration first
requires the creation of a registration table before the insertion of records.

NOTE The format and appearance of the HTML forms used for accepting
students’ details will change as the application progresses toward completion.

The following HTML code for the registration page accepts input for the student
registrations:

<HTML><HEAD><TITLE>

User Registration Form

</TITLE></HEAD>

<BODY>

<u>User Registration Form</u>

<FORM method=”POST” ACTION=”http://localhost/cgi-bin/regdetcgi.py”>

<p>Name:

<INPUT TYPE=text NAME=studname VALUE=”” SIZE=30>

<p>Date of Birth:

<input type=”text” name=”studdob”>

(yyyy-mm-dd) </p>

<p>Address:

<textarea NAME=studadd rows=2 cols=30></textarea>

254 Chapter 11

</p>

<p>Country:

<input type=”radio” name=”studcountry” value=”U.S.A” checked>

U.S.A

<input type=”radio” name=”studcountry” value=”Canada”>

Canada

<input type=”radio” name=”studcountry” value=”Other”>

Other

</p>

<p>Home phone #:

<INPUT TYPE=text NAME=studphone VALUE=”” SIZE=30>

</p>

<p>E-mail address:

<INPUT TYPE=text NAME=emailadd VALUE=”” SIZE=30></p>

<P>

<INPUT TYPE=submit>

<INPUT TYPE=RESET>

</P>

</FORM>

</BODY></HTML>

Figure 11.2 displays the registration page.

Figure 11.2 The registration page to enter user details.

Database Programming 255

Task List

� Identify the elements of the table that stores registration details.

� Identify the steps for connecting to the database.

� Write the code to create a table in the database.

� Write the code to insert the registration details to the table created.

� Execute the code to create the table in the database.

� Execute the code to insert data into the table.

� Verify the data in the database.

Identify the Elements of the Table
That Stores Registration Details
Based on the elements in the input page, we will create the registration table to accept
the student details. Table 11.6 represents the composition of the regdetails table.

Identify the Steps for Connecting to the Database
Before you can begin manipulating the data held in the tables of the database, you first
need to execute the following phases:

Import the MySQLdb module. This phase makes the MySQLdb module available
to the Python application.

Connect to the database. This phase establishes a connection with the database.
This involves two steps: first, creating a connection object and then creating a
cursor object to execute an SQL statement.

Query the database. This phase involves executing the SQL statement. If the SQL
statement returns results—for example, the results of a select statement—this
phase also involves retrieving the results.

Table 11.6 Elements of the Registration Table

TABLE FIELD NAME CONTENTS DATA TYPE

cName Name of the student varchar(20)

cDob Date of birth of the student Date

cAdd Address of the student varchar(50)

cCountry Country where the student resides varchar(20)

cPhone Home phone number varchar(15)

cEmail E-mail id varchar(20)

256 Chapter 11

Import the MySQLdb Module

To write a program that can connect to a database, you first need to install and config-
ure the MySQLdb module. The RPM file for this module can be obtained from
http://dustman.net/andy/python/ MySQLdb. Each version of Python has a specific
MySQLdb RPM file. After obtaining the RPM file, type the following command at the
command prompt:

rpm -ivh MySQL-python-0.9.1-1py2.i386.rpm

You can import the MySQLdb module as follows:

>>>import MySQLdb

Connect to the Database

After importing the MySQLdb module, you need to identify the database within the
module that will be queried and then connect to that database. To do this, you need to
create a connection object by invoking the connect() method of the MySQLdb mod-
ule. The following line of code illustrates the parameters used to establish a connection
with a database that resides on the same machine as the code:

>>>Connection = MySQLdb.connect(host=”localhost”,db=”Student”,\

port=8000, username=”laura”, passwd=”password”)

After establishing a connection, you need to create a cursor object, which can be
done using the cursor() method of the connection object.

The cursor() Method

This method returns a new cursor object and represents a database cursor. Cursors are
used to manage all operations in a database. Operations in a database act on a complete
set of rows. For example, the set of rows returned by a select statement consists of all
the rows that satisfy the conditions in the where clause of the statement. This com-
plete block of rows returned by the statement is known as the result set. Applications
such as those in Python cannot always work effectively with the entire result set as a
unit. Most applications need a mechanism to work with one row or a small block of
rows at a time. Cursors provide such a mechanism to work with result sets. Cursors aid
in positioning at specific rows in a result set and retrieving a row or a group of rows
from the current position in the result set.

Therefore, a cursor object functions as the active connection to the database. A cur-
sor object can be created using the previously created connection object as follows:

>>> con=connection.cursor()

After you are connected to a database, you can submit and retrieve the results of a
query though the cursor object.

Database Programming 257

NOTE According to the Python Database API, a connection object should also
support the following methods:

■■ commit(). This method commits any pending transaction with a database.
This feature is initially off for MySQL because MySQL supports an autocommit
feature. This means that whenever an update to a table in a database is made,
it is immediately executed and the changes are updated on the disk. If you
want a set of statements to be executed together, the autocommit feature can
be turned off using the following command:

mysql> SET AUTOCOMMIT=0

After this, you must use COMMIT to store your changes to disk or ROLLBACK if
you want to ignore the changes you have made since the beginning of your
transaction.

■■ rollback(). This method causes a database to roll back a pending transac-
tion and start the transaction again. If you close the connection with the server
without committing the transaction, the transaction is automatically rolled
back.

■■ close(). This method closes a connection to a database. Any further com-
mand to access the database will return an error after the connection is closed.

Query the Database

After a connection between the Python application and the database with which the
application wants to interact is set up, you use methods and attributes of a cursor object
to send simple queries to the database. Out of the methods available for a cursor object
the executeXXX() methods are used to execute any MySQL statement, and the
fetchXXX() methods are used to get the results of the previous executeXXX() as a
list of tuples. These methods are discussed in detail next.

Executing MySQL Commands

The execute()method of a cursor object prepares and executes a database command
or a query. The syntax of the execute() method is this:

execute(command[parameters])

For example,

>>>con.execute(‘insert into Login values(“user1”,”pass123”)’)

You can also pass parameters to the execute() method if instead of actual values
you want to use variables in the MySQL command. For example,

>>>stud_id=”user2”

>>>password=”password272”

>>> con.execute(‘insert into Login values(“%s”,”%s”)’ % \

(stud_id,password))

>>> con.execute(select * from login)

258 Chapter 11

In the preceding command, the values contained in the variables stud_id and
password will be passed to the insert command. Therefore, instead of supplying the
actual values, you can supply the variables to the execute command.

The executemany() command can also be used if you want to execute multiple
operations by using a single command. In such a situation, you can write multiple
query statements followed by the parameters in the executemany() command.

Retrieving Query Results

The following methods can be used to retrieve any results returned by the execute-
XXX() method. fetchXXX() methods are discussed in detail as follows.

fetchone(). This method fetches the next row of a query result set. A result set
is an object that is returned when a cursor object is used to query a table. Con-
sider the following call to the execute() method.

>>> con.execute(select * from login)

You know that this preceding command returns all the records in the Login table.
All the records returned will be contained in a result set. Now, the fetchone()
method can be used to fetch a single row of the result set as follows:

>>> result=con.fetchone()

>>> result

(‘user1’, ‘pass123’)

>>> result=con.fetchone()

>>> result

(‘user2’, ‘password272’)

Notice that when the fetchone() method is used the second time, it retrieves
the second row of the result set. This means that the fetchone() method can
be used to extract the next row in a result set.

fetchall(). This method fetches all the rows in a result set. If some rows have
already been extracted from the result set, the fetchall() method retrieves
the remaining rows from the result set. The following statement illustrates the
use of the fetchall() method to retrieve all the records from the Login table.

>>> result=con.fetchall()

>>> result

((‘user1’, ‘pass123’),(‘user2’, ‘password272’))

rowcount. This is a read-only attribute and returns the number of rows that
were affected by an executeXXX() method.

Write the Code to Create a Table in the Database
The statements to create the regdetails table in the Registration database are as
follows:

#!/usr/local/bin/python

import MySQLdb

connection=MySQLdb.connect(host=”localhost”,db=”Registration”,\

user=”root”,passwd=”new-password”)

Database Programming 259

con=connection.cursor()

sql_stmt=’create table regdetails (cName varchar(20),\

cDob date, cAdd varchar(50), cCountry varchar(20),

cPhone varchar(15),cemail varchar(20))’

try :

con.execute(sql_stmt)

print ‘Table created’

except:

print ‘Cannot create table’

con.close()

Write the Code to Insert the Registration Details
into the Table Created
Because the data that is to be added to the regdetails table is entered in an HTML
form, a CGI script needs to be written to enable this addition.

#!/usr/local/bin/python

import cgi

import MySQLdb

print “Content-Type: text/html\n”

dynhtml=’’’<HTML><HEAD><TITLE>

Personal Details</TITLE></HEAD>

<BODY><HR><H2><center>Personal details for %s</H2>

<p>%s</p>

<HR>

</BODY></HTML>’’’

fs = cgi.FieldStorage()

name = fs[‘studname’].value

dob=fs[‘studdob’].value

add=fs[‘studadd’].value

country=fs[‘studcountry’].value

phone=fs[‘studphone’].value

email=fs[‘emailadd’].value

try:

connection=MySQLdb.connect(host=”localhost”,db=”Registration”,\

user=”root”,passwd=”new-password”)

con=connection.cursor()

sql_stmt=’insert into regdetails values\

(“%s”,”%s”,”%s”,”%s”,”%s”,”%s”)’ % (name,dob,add,country,phone,email)

con.execute(sql_stmt)

message=”Successfully entered in the database”

except:

message=”Error writing data to the table”

#result_set=con.fetchall()

con.close()

print dynhtml % (name,message)

260 Chapter 11

Execute the Code to Create the Table in the Database
To be able to implement or view the output of the code to create the regdetails
table, you need to execute the following predefined steps:

1. Save the file used to create a table as createtable.py.

2. At the shell prompt, type python followed by the name of the file if the file is
in the current directory. Figure 11.3 displays the screen that represents the suc-
cessful creation of the table in the database.

Execute the Code to Insert Data into the Table
To add student details to the regdetails table, perform the following steps:

1. Save the script used to insert registration details in the /var/www/cgi-bin
directory as regdetcgi.py.

2. Type the following command:

$ chmod +x /var/www/cgi-bin/regdetcgi.py

3. In the address bar of Netscape Navigator, enter the following URL:

http://localhost/regpage.html

Figure 11.3 The screen message after creation of the table.

Database Programming 261

Figure 11.4 The registration page with input details.

4. On the registration screen, enter student details as shown in Figure 11.4.

5. Click the Submit button. The results page is generated as shown in Figure 11.5.

If the query is not successfully executed, the page shown in Figure 11.6 is
displayed.

Figure 11.5 The results page when data is successfully inserted to the database.

262 Chapter 11

Figure 11.6 The results page when data is not inserted to the database.

Verify the Data in the Database
To verify that student details have been entered in the regdetails table, execute the
following code:

#!/usr/local/bin/python

import MySQLdb

connection=MySQLdb.connect(host=”localhost”,db=”Registration”,\

user=”root”,passwd=”new-password”)

con=connection.cursor()

sql_stmt2=”select * from regdetails”

try :

con.execute(sql_stmt2)

print “Records in the table are: “

count=con.rowcount

print count

i=0

while i<count:

result_set=con.fetchone()

print “Name:”, result_set[0]

print “Date of birth:”, result_set[1]

print “Address:”, result_set[2]

Database Programming 263

print “Country:”, result_set[3]

print “Phone number:”, result_set[4]

print “Email id:”, result_set[5]

i=i+1

except:

print ‘Cannot display records’

con.close()

Summary

In this chapter, you learned the following:

■■ A database can be defined as a repository that stores related information.
Databases provide a way to structure and organize large amounts of data.

■■ A database management system (DBMS) presents a software mechanism to
access, retrieve, and manage the data in a database in the form of tables consist-
ing of rows and columns. When a DBMS can retrieve information by using the
data in a table to find additional data in another table, it is known as a rela-
tional database management system (RDBMS).

■■ The idea of providing a standard way in which different Python modules can
access databases led to the development of Python Database API. Python
Database API is maintained by Database Special Interest Group (DB-SIG).

■■ MySQL is a free, multithreaded RDBMS that can be used to interact with
Python applications.

■■ MySQL comes bundled with Red Hat Linux; however, MySQL can also be
installed separately. The RPM file for installing MySQL can be downloaded
from www.sourceforge.net.

■■ The mysqladmin command is used in MySQL for server administration. To
create a database, use the create command at the command prompt. For
example,

#mysqladmin create Student

■■ The mysql monitor is the command-line interface to interact with MySQL data-
bases. The mysql monitor can be invoked at the command prompt as follows:

mysql [OPTIONS] [database]

■■ The various commands that can be used to access and modify tables in a
MySQL database are: use, create table, select, insert into, update,
delete, and drop table.

■■ MySQL allows the use of a host of data types, such as NUMERIC, DECIMAL,
INT, SMALLINT, FLOAT, REAL, DOUBLE PRECISION, DATETIME, DATE,
TIMESTAMP, TIME, YEAR, CHAR, VARCHAR, and TEXT.

264 Chapter 11

■■ Before you can begin manipulating the data held in the tables of the database,
you first need to execute the following steps:

1. Import the MySQLdb module

2. Connect to the database

3. Query the database

■■ To write a program that can connect to a database, you first need to install and
configure the MySQLdb module. The RPM file for this module can be obtained
from http://dustman.net/andy/python/ MySQLdb.

■■ To connect to a database, you need to create a connection object by invoking
the connect() method of the MySQLdb module. For example,

>>>Connection = MySQLdb.connect(host=”localhost”,db=”Student”,\

port=8000, username=”laura”, passwd=”password”)

■■ The cursor() method returns a new cursor object and represents a database
cursor. Cursors are used to manage retrieval operations in a database. A cursor
object can be created using the previously created connection object as follows:

>>> con=connection.cursor()

■■ The methods that can be used to extract records from a result set are:
execute(), executemany(), fetchone(), and fetchall().

Database Programming 265

267

OBJECTIVES:

In this chapter, you will learn to do the following:

� Use the socket module to:

� Create a TCP server and a TCP client

� Execute a TCP server and a TCP client

� Create a UDP server and a UDP client

� Execute the UDP server and the UDP client

� Use other network programming-related modules

Getting Started

In the previous chapters, you have learned about the various components and tech-
niques of programming in Python. In this chapter, you will learn about network pro-
gramming in Python by using sockets. We will start with a discussion on client/server
architecture, followed by an overview of related concepts, such as protocols, sockets,
IP addresses, and ports. This will give you the foundation to work with network pro-
gramming modules of Python and use them to create network applications.

Network Programming

C H A P T E R

12

C H A P T E R

This book introduced client/server architecture in Chapter 10, “CGI Programming.”
Let’s discuss client/server architecture in detail in the following section.

Client/Server Architecture
Networking is the technology that has changed the way information flows in present
times. It has made communication possible between computers over a LAN, a WAN,
and above all, the Internet. One of the important components of networking that has
made it so successful is client/server architecture.

Client/server architecture is a term used to define the communication process
between two computers, one of which is a client and the other is a server. What is a
client? What is a server? Let’s consider an example to explain this concept:

Consider that you are on vacation in the Caribbean. The weather is fine, and you are
enjoying your holidays. One day, you learn that the hotel is organizing a charity event
and that you have been invited to it. There is a dress code for the event is formal, and
you are required to wear your best formal clothes. You are on a holiday, though, and do
not have a tuxedo with you. You immediately call the concierge desk of the hotel and
are greeted by a beautiful female voice. You ask the lady to get you one size 42, single-
breasted black tuxedo with classic peak lapels, a white shirt, and black trousers with a
double-pleated front. You also ask her to get the matching accessories. You tell her to
send everything to your room by 5:00 in the evening. Around 5:00 P.M., you receive all
the items you requested. You neither know, nor do you want to know, how all the items
were procured.

The entities involved in this example are the tuxedo, the lady at the concierge desk
who got the tuxedo, and, of course, you. You are the customer or client who ordered
the tuxedo. There was a process involved in getting the tuxedo to you, which you ini-
tiated. Your request was processed, and the items were delivered to you.

This is how client/server architecture works. A client places a request or order to a
server. The server processes the client’s request. In client/server architecture, commu-
nication between a client and a server is most important. Both the client and the server
can be on the same computer or on separate computers on the network. Usually,
client/server communication takes place over the network.

A server provides services required by one or more clients. The server listens for the
client requests, services the requests, and again waits for more requests. A successful
transaction in client/server architecture begins when a client asks a server for a partic-
ular service and ends after the server replies to the client request. To allow such trans-
actions to be repeatedly successful, the server should always be available to service
client requests. Each client request is a separate transaction, which ends when a server
replies successfully to the request or returns an appropriate reason for a failure.

Client/server architecture applies to both hardware and software systems. Therefore,
the meaning of client/server architecture depends on the system you are describing
and where you are applying this terminology. You can describe client/server architec-
ture as application development architecture in which the client requests services and
the server services these requests. Here, both the server and the client can be hardware
components or programs running on the same or different computers.

File and print servers are common examples of servers in the hardware client/server
architecture system. In the case of a print server, a client sends a print job, and a print

268 Chapter 12

server processes the request and redirects it to a printing device. The print server and
the client can be on the same or different computers. In client/server architecture, this
does not affect the transaction between the client and the server. Client/server archi-
tecture is designed to separate the presentation of data from its internal processing and
storage. The complete transaction of a client sending a request and getting a reply is
hidden from a user.

In a software client/server architecture system, the client and the server are not
hardware devices but programs running on some hardware. Software servers are com-
monly used for data storage, data retrieval, program execution, and working with data
in various other ways. Web servers and database servers are common examples of
servers in the software client/server architecture system.

In a client/server application, the server manages the shared resources that are
accessed by multiple users. The Web server is an ideal example of a software server. It
delivers HTML pages to different users across the Internet. These users can be on dif-
ferent platforms and may be using different types of software to access the Web server.
The users are able to transact with the server without being aware of these complica-
tions because client/server architecture keeps its internal processing separate from data
presentation.

Database servers are another example of a server in a software client/server archi-
tecture system. A client sends a request to a database server to obtain data or store data.
An example of such a software client/server architecture system is the airline ticket
reservation system. When you request a ticket for a particular flight on a specific date,
this information is sent to a database as a query, and the database either returns a list
of flights that match your requirements or displays an appropriate message.

Protocols

In all forms of communication, there are a few rules that have to be followed. This is
true even for network communication between computers. The rules used for network
communication are called network protocols. Protocols are a set of rules and standards
that one computer needs to follow in order to communicate with another system over
the network. In client/server architecture, the manner in which a client contacts a
server and the way in which the server replies are defined by the protocol being used.

Different protocols can be used for network communication. These protocols can be
categorized depending on the type of network connection they support. Protocols can
be connection-oriented, such as TCP, or connectionless, such as UDP.

Python supports both types of protocols. Later in the chapter, you will use Python’s
network-programming components to enable network communication by using both
types of protocols.

Network Programming
A server should always be ready to receive client requests. To do this, the server should
have a communication point available for receiving client requests. This communica-
tion point should always be ready to receive client calls. For a client to contact this com-
munication point, the client should be aware of it. It would be of no use to have a
communication point that is not known to the clients. It would be like moving to a new

Network Programming 269

house and waiting for your mail messages to reach you there, without your telling any-
one about the new address.

On the other hand, it is as important for a client to know the address of a server’s
communication point. When the client wants to communicate with the server, it will
create a communication point, which will call the communication point of the server.
After the server’s communication point is found, the data is transmitted. After the
transaction is over, the client disconnects from the server and closes its communication
point. On the other hand, the server keeps the communication point open at its end,
ready to receive more client requests.

Sockets

Sockets are software objects that allow programs to make connections. They are data
structures that enable network communication by using protocols, such as TCP/IP and
UDP. As described earlier in the chapter, a client and a server require a communication
point to communicate between themselves. Sockets are the communication points that
act as endpoints in two-way communication between the client and the server, where
the client and the server are two programs running on the network. To establish a con-
nection for network communication, a request is sent by a client to the server socket.
After the connection is established, the transactions can take place. After the transac-
tion is over, the client socket disconnects itself from the server.

Sockets were first introduced in 1981 as part of the BSD flavor of Unix. They pro-
vided an interface for communication between Unix systems over the network. They
were originally used for Inter Process Communication (IPC) between two programs on
the same host or platform. Because they were first introduced with Unix BSD 4.2, they
have come a long way and have become very popular. Sockets are the only IPC forms
that support cross-platform communication. They have become an important compo-
nent in the development of the Internet as a platform-independent system, making it
easy for computers around the world to communicate with each other.

Sockets are bound to ports, which are numeric addresses. A server receives client
requests through ports. In order to connect to the server, a client should know the host
name or IP address of the computer on which the server is running and the port num-
ber of the server. For example, you can compare the host name to the address of the
building in which you live and the port to your apartment number in the building. A
person who wishes to reach your apartment must know the address of your building
and the apartment number.

A few port numbers are assigned to specific protocols. When you are working with
these protocols, if you don’t specify the port number, the default port number is used.
A port is an entry point through which an application or a service residing on a server
is accessed. It is a 16-bit integer, which can range between 65535. But, you can use a
port number greater that 1024 freely inside your programs. This is because the range
0-1023 are reserved by the operating system for the network protocols. Table 12.1
shows the port numbers associated with common protocols.

270 Chapter 12

Table 12.1 Protocols and Default Port Numbers

PROTOCOL PORT NUMBER

FTP 21

Telnet 23

SMTP 25

BOOTP 67

HTTP 80

POP 110

Let’s run through the complete process of network communication between a client
and a server.

Before the actual process of communication can start, the server has to be made
ready to receive client requests. It should be running on a specific computer and
should have a socket that is bound to a specific port number.

When the server is ready and listening for the client request, the client can try to
make a connection. To do this, the client tries to contact the server socket on the com-
puter on which the server is running by using the host name or IP address of the com-
puter and the server port number. The client should have this information about the
server if it wants to connect to the server.

When a server receives a request for connection, the server may accept the request.
When a server accepts a client request for connection, a new socket with a new port is
assigned to the server, leaving the original port open. This allows the server to accept
new client requests without affecting the existing connection. The new port is tempo-
rary and connection specific. As soon as the connection ends, the port is released.

The server can be compared to a switchboard operator at a company’s corporate
office. When the operator receives a call from someone, it is similar to the server receiv-
ing a client request for connection. The operator asks you about the person with whom
you want to talk and transfers the call to that person. This is similar to a server accept-
ing the connection and assigning it to a new port, leaving the original port open. After
your call has been transferred, the operator is free to receive other calls on the same
line. In a similar manner, after the server accepts the connection and is assigned a new
port, the original port is ready to receive more requests from other clients.

When the server accepts the client’s request for connection, a socket is created at the
client end. This socket is assigned a local port number by the client computer. The
client then communicates with the server by using this socket. Therefore, a socket is a
communication channel between the client and the server that can be used by both of
them to exchange data and perform other tasks.

Now that you know about the fundamental concepts of network communication
and programming, let’s learn to create network programs in Python.

Network Programming 271

Using Sockets

Problem Statement
Techsity University has an IP network. Its IT department has suggested implementing
client/server architecture for university systems over the IP network. The manage-
ment of the university is not very sure about converting all its systems to client/server
architecture. They are also not sure about the integrity of exchanging data in client/
server architecture. Therefore, they have planned to have a pilot implementation. The
university has created a team, led by Jenny, to conduct the pilot.

The main concern of the team is to demonstrate the use of client/server architecture
to management and to maintain the security of data sent over the network. The team
has therefore decided to implement socket programming to show the working of
client/server architecture. For the pilot, data will be exchanged between the comput-
ers in the Admissions office and the IT department. The computer in the IT department
will be the main computer and will store data in a file.

Task List

� Identify the type of sockets to be used.

� Write the code to run on the IT department computer.

� Write the code to be run on the Admissions office computer.

� Execute the code created for the IT department computer.

� Execute the code created for the Admissions office computer.

� Verify that data has been saved to a file in the IT department computer.

Identify the Sockets to Be Used
As discussed earlier, before a server can be made ready to listen to client requests, it
should have a socket bound to a specific port number. You also need to create a socket
at the client end to allow the client to make a connection with the server. The following
section discusses how you can create sockets by using Python.

The socket Module

To implement network programming in Python by using sockets, you use the socket
module. It contains various methods used for socket-based network programming.
The most common of them is the socket() method.

272 Chapter 12

The socket() method is used to create a new socket. It returns the socket object,
which is an instance of the SocketType class. The syntax of the socket() method is
as follows:

socket(family, type, protocol)

You can have the family value as AF_UNIX or AF_INET. AF in AF_UNIX and
AF_INET stand for Address Family. These family names define whether the client and
server programs run on the same or different computers. The sockets of the AF_UNIX
family are also called Unix sockets and were used originally in Unix BSD, the flavor of
Unix that introduced sockets. You use the sockets of this family for interprocess com-
munication on the same computer.

With the growth of networks using Internet Protocol (IP), the need for communica-
tion between programs running on two different computers on the network increased.
Such a requirement led to the development of a new type of network sockets that could
be used to communicate between two processes running on two separate computers.
Therefore, a new address family, AF_INET, was created. The growth of the Internet has
made AF_INET the most commonly used address family. The AF_INET family sup-
ports protocols such as TCP and UDP.

The type argument of the socket method defines the network connection supported
by a socket. As discussed earlier, the network connection can be connection-oriented or
connectionless. To create connection-oriented sockets, you use SOCK_STREAM as the
type value. Connection-oriented sockets, also called stream sockets, are implemented
by protocols such as TCP. They are also known as TCP sockets.

To create a connectionless socket, you use SOCK_DGRAM as the type value. Con-
nectionless sockets, also called datagram sockets, are implemented by protocols such
as UDP. They are also known as UDP sockets.

The other values that can be used for the type argument can be SOCK_RAW,
SOCK_RDM, and SOCK_SEQPACKET. Out of all the types discussed, only
SOCK_STREAM and SOCK_DGRAM are generally used.

The last argument of the socket method, protocol, is optional. It is used with the
raw type of sockets and defines the protocol being used. By default, the value of this
argument is 0 for all socket types other than raw.

For example, you can create a TCP socket as follows:

TCP_Sock=socket(AF_INET, SOCK_STREAM)

You can create a UDP socket as follows:

TCP_Sock=socket(AF_INET, SOCK_DGRAM)

After you create a socket object, you can use it to call various methods. Table 12.2
describes some of these methods.

Network Programming 273

Table 12.2 Socket Object Methods

METHOD DESCRIPTION

accept() The accept() method accepts a connec-
tion and returns the new socket object
used to carry out transactions on the
connection. The method also returns the
address of the socket on the other end of
the connection. Before you accept a
connection, the socket must be bound to
a port and ready to receive connections.

bind() The bind() method binds a socket to an
address.

close() The close() method closes a socket.
After the socket is closed, no action can
be performed on the socket object.

connect(address) The connect() method connects to a
socket at a given address.

getpeername() The getpeername() method returns the
address to which the socket is connected.

getsockname() The getsockname() method returns the
address of its own socket.

listen(con_queue) The listen() method starts listening to
requests for connections. This method
takes one argument, which is the number
of maximum connections that can be
queued, before the socket starts refusing
them. The number of connections
supported by a socket depends on your
system, but it has to be at least one.

makefile(mode,buffer) The makefile() method creates and
returns a file object associated with a
socket. This file object can be used to
work with file functions, such as read()
and write(). The makefile() function
takes two arguments. The first argument
is the mode of the file object, while the
second argument is the buffer size for that
object. These arguments are similar in
meaning to the arguments of the open()
built-in function. Only sockets of the
address family AF_INET support this
function.

274 Chapter 12

METHOD DESCRIPTION

recv(buffer, flag) The recv() method receives data from
the socket and returns it as a string. It can
take two arguments. The first argument is
the buffer size, which limits the maximum
size of data that it can receive. The second
argument, flag, is optional and contains
values that are used to perform some
advance functions on data. By default, the
value of flag is 0.

recvfrom(buffer, flag) The recvfrom() method receives data
from the socket and returns two values.
The first value is the string of data
received, and the second value is the
address of the sender. This method can
take two arguments. The first argument is
buffer size, which limits the maximum
size of data that it can receive, and the
second argument is flag, which has the
same meaning as described for recv().

send(string, flag) The send() method sends a data string
to a socket and returns the size of the
data sent. The connection should already
exist with a remote socket before you use
this function. The meaning of an optional
flag argument is the same as that of
recv().

sendto(string, flag, address) The sendto() method sends a data
string to a socket whose address is
passed as an argument. Because the
address of the remote socket is passed
with the function, this function does not
require a prior connection. The meaning
of an optional flag argument is the same
as that of recv().

shutdown(how) The shutdown() shuts down the
connection. It takes 0, 1, or 2 as the
argument. If 0 is passed as an argument,
the connection stops receiving data. If 1 is
passed, the connection stops sending,
and if 2 is passed, the connection stops
both sending and receiving.

Network Programming 275

The format of an address used as arguments in these methods depends on the
address family. Generally, the address is a tuple and contains the host name, or the IP
address, and the port number of a specific socket.

In addition to the socket() method, various other attributes are available in the
socket module. To use them easily, you can import them in your program by adding
this to your code:

from module import *

Creating a TCP Server and a TCP Client

Now that you have learned to create sockets and learned about their common meth-
ods, let’s use this knowledge to create servers and clients. As sockets are commonly
used for TCP and UDP connections, you will learn to create servers and clients for both
these protocols. Let’s start with the TCP server.

TCP Server

When creating a TCP server, the server application needs to follow a sequence of steps.
The first step in the sequence is to create a socket. To do this, you use the socket()
method of the socket module. After the socket is created, you need to bind the socket
to the local computer on which the server is running and assign a unique port number.
The host name and the port number together form the address of the socket. This
address is then bound to the socket. To do this, you use the bind() socket object
method. After you have bound the address to the socket, the socket can start listening
to the bound port for client requests. For this, you use the listen() socket object
method. You pass the maximum number of connections that a server can accept as the
attribute to the listen() method. After the server is ready and listening, it can accept
client requests. To do so, you use the accept() socket object method. As discussed
earlier, when the server accepts the client request, the connection is transferred to a new
temporary port. Therefore, the main port is free and open to receive new connections.

Generally, servers are designed to listen for connections indefinitely. To implement
this functionality, after a server starts listening for connections, an infinite loop is
started. The steps for accepting client connections and other steps for transacting over
the connection are included in the loop.

The infinite loop is not meant to end so that the socket always remains open. It is
generally a good practice, though, to have a statement to close the socket. To do this,
you use the close() socket object method. Adding a step to close the socket is a good
programming practice and is useful in case a server shuts down unexpectedly.

Let’s write the code to create a TCP server:

1 from socket import *

2

3 Hostname = ‘’

4 PortNumber = 12345

5 Buffer = 500

6 ServerAddress = (Hostname, PortNumber)

7

276 Chapter 12

8 TCP_Server_Socket = socket(AF_INET, SOCK_STREAM)

9 TCP_Server_Socket.bind(ServerAddress)

10 TCP_Server_Socket.listen(2)

11

12 while 1:

13 print ‘Server is waiting for connection’

14 TCP_Client_Socket, ClientAddress = TCP_Server_Socket.accept()

15 print ‘Server has accepted the connection request from ‘,

ClientAddress

16 print ‘The Server is ready to receive data from the client’

17

18 while 1:

19 ClientData = TCP_Client_Socket.recv(Buffer)

20 if not ClientData:

21 print ‘The client has closed the connection’

22 break

23 print ‘The client has sent this data string: ‘,\

ClientData

24 TCP_Client_Socket.send(‘Hello! Client’)

25 print ‘The server is ready to receive more data

from the client’

26 TCP_Client_Socket.close()

27

28 TCP_Server_Socket.close()

Let’s look at this code line by line to understand what is happening:

■■ In line 1, all attributes of the socket module, including the socket() function,
are imported.

■■ In lines 3 through 5, variables are defined for the host name and port number
of the server and the maximum size of data that can be exchanged. The Host-
name variable is left blank, indicating that any available address can be used.

■■ In line 6, an attribute, ServerAddress, is defined. This attribute contains the
address of the server. The address consists of the host name and the port num-
ber of the server.

■■ In line 8, the server socket is created and its object, TCP_Server_Socket, is
returned. The arguments of the socket() module denote that the server socket
belongs to the address family AF_INET and is a stream socket, SOCK_STREAM.

■■ In line 9, the address of the server, which consists of the host name and port
number, is bound to the socket created in line 8.

■■ In line 10, the listen() method is used to make the socket start listening for
connections. The value passed to the listen() method denotes that the
server can accept a maximum of two incoming connections.

■■ In line 12, an infinite loop is started, so that the server always listens for client
requests.

■■ In line 14, the client request for a connection is accepted, and the connection is
transferred to a new temporary socket, TCP_Temp_Socket. The accept()
method also returns the address of the client.

Network Programming 277

■■ In line 18, a new loop that will be used for receiving and sending operations is
started.

■■ In line 19, the data from the client, which has the maximum size equal to the
value passed to the recv() method, is returned and stored in the attribute
ClientData.

■■ In line 20, the if condition checks whether the server has received any data
from the client. If the client has sent no data, then it means that the client has
quit and the loop has started in line 18. The control shifts to line 26.

■■ If the server receives data from the client, the control is shifted to line 23.

■■ In line 23, a message and the data string received from the client are printed.

■■ In line 24, a data string is send to the client.

■■ In line 26, the temporary socket created for communication between the client
and the server is closed.

■■ In line 28, the server socket is closed, but due to the infinite loop started in line
12, the control never reaches line 28. Therefore, the preceding code never ends,
and the server socket keeps listening for connections indefinitely. If the server
shuts down due to some reason, the statement in line 28 will be executed and
the server socket will be closed.

As discussed earlier, the server should be running before the client tries to connect
to it. We have just created the TCP server; let’s now create the TCP client that will con-
nect to this TCP server.

TCP Client

Clients are easier to create than servers. After the server has been started, the client
only needs to connect to the server and transact. When creating a client, you need to
follow two main steps. First, you need to create a client socket. To do this, you use the
socket() method of the socket module. Second, you need to contact the server to
open a connection. For this, you use the connect() socket object method and pass the
address of the server as an argument to the method.

As discussed earlier, when the server accepts the client request and the connection
is established from the client to the server, the server port transfers the connection to a
new temporary port. The client, however, is unaware of this and is not concerned with
what’s happening at the server end. It requires only a connection to the server. Now
that the connection has been established, the transaction of sending and receiving can
happen between both the client and the server. The client remains connected to the
server only until the time it wants to transact. As soon as the transaction is completed,
the client closes its socket and ends the connection to the server. This shows that the
client connection is transaction-specific, while the server on the other end keeps listen-
ing for connections indefinitely.

Let’s write the code to create a TCP client:

1 from socket import *

2

3 Hostname = ‘localhost’

4 PortNumber = 12345

278 Chapter 12

5 Buffer = 500

6 ServerAddress = (Hostname, PortNumber)

7

8 TCP_Client_Socket = socket(AF_INET, SOCK_STREAM)

9 TCP_Client_Socket.connect(ServerAddress)

10

11 while 1:

12 print ‘The client is connected to the server’

13 DataStr = raw_input(‘Enter data to send to the server: ‘)

14 if not DataStr:

15 print ‘The client has entered nothing; hence the

connection to the server is closed’

16 break

17 TCP_Client_Socket.send(DataStr)

18 ServerData = TCP_Client_Socket.recv(Buffer)

19 if not ServerData:

20 print ‘The server has sent nothing’

21 break

22 print ‘The server has sent this data string: ‘, ServerData

23 TCP_Client_Socket.close()

Let’s look at this code line by line to understand what is happening:

■■ In line 1, all attributes of the socket module, including the socket() function,
are imported.

■■ In lines 3 through 5, variables are defined for the host name and port number
of the server and the maximum size of data that can be exchanged. The Host-
name variable will contain the name of the host on which the server is running.
In this case, both the server and the client are running on the same host. There-
fore, the value localhost is passed as the host name.

■■ In line 6, an attribute, ServerAddress, that contains the address of the server,
is defined. The address consists of the host name and port number of the server.

■■ In line 8, the client socket is created and its object, TCP_Client_Socket, is
returned. The arguments of the socket() module denote that the client socket
belongs to the address family AF_INET. The arguments also denote that the
client socket is a stream socket, SOCK_STREAM.

■■ In line 9, the connect() method is used to connect the client to the server. The
address of the server, which consists of the host name and the port number, is
passed as an argument to the connect() method.

■■ In line 11, a loop contains statement is started. This statement will be used for
sending and receiving operations.

■■ In line 13, the user at the client end is prompted for data input. The data string
is stored in the attribute DataStr.

■■ In line 14, the if condition checks whether the user at the client end has entered
any data. If not, the loop started in line 11 breaks and the control shifts to line 23.

■■ If the user at the client end enters data, the control shifts from line 14 to line 17.

Network Programming 279

■■ In line 17, the data entered by the user at the client end is sent to the server to
which the client is connected.

■■ In line 18, the data from the server, which has the maximum size equal to the
value passed to the recv() method, is returned and stored in the attribute
ServerData.

■■ In line 19, the if condition checks whether the server has sent any data to the
client. If not, the loop started in line 11 breaks and the control shifts to line 23.

■■ If the server sends data, the control shifts from line 14 to line 22.

■■ In line 22, a message and the data received from the server are printed.

■■ In line 23, the client socket is closed.

Executing the TCP Server and the TCP Client

The code for both TCP server and the client are ready. Let’s run them and see how
client/server software architecture actually works.

You have to be careful about the sequence in which you run these applications. As
discussed earlier, the server should be running before the client tries to connect to it.
Therefore, the server application has to be run first. After the server has started, the
client application is run.

In order to execute the code written for the TCP server and the client, we save them
as a Python file with an extension .py. The server program is saved as TCPserver.py,
and the client program is saved as TCPclient.py. In this case, both the server and the
client will run on the same host. Therefore, to show the working of both the server side
and the client side, you will have to run TCPserver.py in one terminal window and
TCPclient.py in another terminal window.

Let’s execute the TCP server program.

$ python TCPserver.py

Server is waiting for connection

The server is running and listening to its port for connections. Now let’s execute the
TCP client program and connect to the server.

$ python TCPclient.py

The client is connected to the server

Enter data to send to the server:

After the client connects to the server, the server shows the following message:

.....

.....

The server has accepted the connection request from (‘127.0.0.1, 1131)

The server is ready to receive data from the client

NOTE In the preceding code, the port number is randomly specified by the
system and can be different every time.

280 Chapter 12

Now that the client and the server are connected and the server is ready to receive
data from the client, let’s enter data at the client end say, Hello! Server.

.....

.....

Enter data to send to the server: Hello! Server

After the client sends the data to the server, the server displays a message and is
ready to receive more data from the client.

.....

.....

The client has sent this data string: Hello! Server

The server is ready to receive more data from the client

When the server receives the data from the client, the server sends a message to the
client and the client is ready to send more data.

.....

.....

The server has sent this data string: Hello! Client

The client is connected to the server

Enter data to send to the server:

You can exchange more data between the client and the server as shown here. If you
want to close the client connection with the server, you need to send a blank string. You
can do this by pressing the Enter key when the system prompts you for input.

.....

.....

Enter data to send to the server:

The user has entered nothing; hence the connection to the server is

closed

$

After the client sends a blank string to the server, the server displays a message and
closes the temporary socket created by it for this connection. Even if this connection is
closed, the server is running and listening for more connections.

.....

.....

The client has closed the connection

Server is waiting for connection

Creating a UDP Server and a UDP Client

In the previous sections, you learned to write and execute programs for a TCP server
and a TCP client. Let’s now create a UDP server and a UDP client taking the same
example for creating a TCP server and a client. This will help you understand the

Network Programming 281

difference between programming for a connection-oriented (TCP) and connectionless
(UDP) type of network environment.

UDP is connectionless and does not try to establish a connection before sending and
receiving data. Due to this nature of UDP, you cannot be sure whether the other side
has received the data. Let’s now create a UDP server first.

UDP Server

There is some difference in the steps that you follow for creating a TCP server and a
UDP server. UDP is not connection-oriented; therefore, the amount of setup required
for a UDP server is less than that required for a TCP server.

When creating a UDP server, the server application needs to follow a sequence of
steps, starting with creating a socket. To do this, you use the socket() method of the
socketmodule. After the socket is created, you need to bind the address to the socket.
For this, you use the bind() socket object method. After you have bound the address
to the socket, the UDP server can query the port for client connections.

These are all the steps required for making the UDP server ready to receive client
connections. As the UDP server is connectionless, the number of subsequent connec-
tions need not be specified using the listen() socket object method for UDP servers.
For the same reason, after the UDP server accepts the client connection, the connection
is not transferred to a new temporary socket. Therefore, the UDP server does not require
accept(), recv(), and send() socket object methods. Instead, the UDP server uses
the recvfrom() and sendto() socket object methods for receiving and sending
transactions.

Servers generally run indefinitely; therefore, you can also make the UDP server run
indefinitely by using an infinite loop. This loop is not meant to end so that the server
always queries the port for new connections. As discussed earlier, though, it is a good
practice to include a statement to close the server socket.

Let’s write the code to create a UDP server:

1 from socket import *

2

3 Hostname=’’

4 PortNumber=12345

5 Buffer=500

6 ServerAddress=(Hostname, PortNumber)

7

8 UDP_Server_Socket=socket(AF_INET, SOCK_DGRAM)

9 UDP_Server_Socket.bind(ServerAddress)

10

11 while 1:

12 print ‘The server is ready to receive data from the client’

13 ClientData, ClientAddress = UDP_Server_Socket.recvfrom(Buffer)

14 print ‘Server has received data from ‘, ClientAddress

15 print ‘The client has send this data string: ‘, ClientData

16 UDP_Server_Socket.sendto(‘Hello! Client’, ClientAddress)

17 UDP_Server_Socket.close()

282 Chapter 12

Let’s look at this code line by line to understand what is happening. It is somewhat
similar to the code used for the TCP server.

■■ In line 1, all attributes of the socket module, including the socket() function,
are imported.

■■ In lines 3 through 5, variables are defined for the host name and port number
of the server and the maximum size of data that can be exchanged. The Host-
name variable is left blank, indicating that any available address can be used.

■■ In line 6, an attribute, ServerAddress, containing the address of the server is
defined. The address consists of the host name and port number of the server.

■■ In line 8, the server socket is created and its object, UDP_Server_Socket, is
returned. The arguments of the socket() module denote that the server
socket belongs to the address family AF_INET. The arguments also indicate
that the server socket is a stream socket, SOCK_DGRAM.

■■ In line 9, the address of the server, which consists of the host name and the port
number, is bound to the socket created in line 8.

■■ In line 11, an infinite loop is started.

■■ In line 13, the recvfrom() stock object method returns the data from the
client and the address of the client. The data received is stored in the attribute
ClientData, and the address of the client is stored in the attribute
ClientAddress.

■■ In line 14, a message and the client address are printed.

■■ In line 15, a message and the data string received from the client are printed.

■■ In line 16, a data string is sent to the client.

■■ In line 17, the server socket is closed, but due to the infinite loop started in line
11, the control never reaches line 17. If the server shuts down for some reason,
the statement in line 17 will be executed and the server socket will be closed.

We have just created the UDP server; let’s now create the UDP client, which will con-
nect to this UDP server.

UDP Client

Because UDP clients are connectionless, the code used for a UDP client is a little differ-
ent from that of the TCP client. In the case of a UDP client, data from the server needs
to be sent or received only. When creating a UDP client, you need to create a client socket.
To do this, you use the socket()method of the socketmodule. Because UDP is con-
nectionless, you do not need to open a separate connection with the server to exchange
data between the UDP client and the server. Therefore, there is no need for the con-
nect(), send(), and recv() socket object methods. Instead, you use the sendto()
and recvfrom() socket object methods for receiving and sending transactions.

The client connects to the server only until the time a transaction such as sending or
receiving data is taking place. Let’s write the code to create a UDP client.

Network Programming 283

1 from socket import *

2

3 Hostname=’localhost’

4 PortNumber=12345

5 Buffer=500

6 ServerAddress=(Hostname, PortNumber)

7

8 UDP_Client_Socket=socket(AF_INET, SOCK_DGRAM)

9

10 while 1:

11 DataStr=raw_input(‘Enter data to send to the server: ‘)

12 if not DataStr:

13 print ‘The user has entered nothing; hence the client

socket is closed’

14 break

15 UDP_Client_Socket.sendto(DataStr, ServerAddress)

16 ServerData, ServerAddress = UDP_Client_Socket.recvfrom(Buffer)

17 if not ServerData:

18 print ‘The server has sent nothing; hence the client

socket is closed’

19 break

20 print ‘The server has sent this data string: ‘, ServerData

21 UDP_Client_Socket.close()

Let’s look at this code line by line to understand what is happening. It is quite simi-
lar to the one used for TCP client.

■■ In line 1, all attributes of the socket module, including the socket() function,
are imported.

■■ In lines 3 through 5, variables are defined for the host name and port number
of the server and the maximum size of data that can be exchanged. The Host-
name variable will contain the name of the host on which the server is running.
In this case, both the server and the client are running on the same host. There-
fore, the value localhost is passed as the host name.

■■ In line 6, an attribute, ServerAddress, containing the address of the server is
defined. The address consists of the host name and port number of the server.

■■ In line 8, the server socket is created and its object, UDP_Client_Socket, is
returned. The arguments of the socket() module denote that the server
socket belongs to the address family AF_INET. The argument also denotes that
the server socket is a stream socket, SOCK_DGRAM.

■■ In line 10, a loop containing statements is started. This statement will be used
for sending and receiving operations.

■■ In line 11, the user at the client end is prompted for data input. The data string
is stored in the attribute DataStr.

■■ In line 12, the if condition checks whether the user at the client end has
entered any data. If not, then the loop started in line 10 breaks and the control
shifts to line 21.

284 Chapter 12

■■ If the user at the client end enters data, the control shifts from line 12 to line 15.

■■ In line 15, the data entered by a user at the client end is sent to the server whose
address is passed as an argument in the sendto() socket object method.

■■ In line 16, the recvfrom() stock object method returns the data from
the server and the address of the server. The data received is stored in the
attribute ServerData, and the address of the client is stored in the attribute
ServerAddress.

■■ In line 17, the if condition checks whether the server has sent any data to the
client. If not, the loop started in line 10 breaks and the control shifts to line 21.

■■ If the server sends data, the control shifts from line 17 to line 20.

■■ In line 20, a message and the data received from the server are printed.

■■ In line 21, the client socket is closed.

Executing the UDP Server and the UDP Client

As with any type of server and client, a server should be running before a client tries to
connect to it. Therefore, the server application has to be run first. After the server has
started, the client application is run.

For the purpose of executing the code written for the UDP server and the UDP
client, we save them as a Python file with an extension .py. The server program is
saved as UDPserver.py, and the client program is saved as UDPclient.py. In this
case, both the server and the client will run on the same host. Therefore, to show the
working of both the server side and the client side, you will have to run UDPserver.py
in one terminal window and UDPclient.py in another terminal window.

$ python UDPserver.py

The server is ready to receive data from the client

The server is running and ready to receive data from the client. Now let’s execute
the UDP client program and send some data to the server.

$ python UDPclient.py

Enter data to send to the server: Hello! Server

After the client sends the data to the server, the server displays some messages and
is ready to receive more data from the client.

.....

.....

Server has received data from (‘127.0.0.1’, 1028)

The client has sent this data string: Hello! Server

The server is ready to receive data from the client

In this code, the port number is randomly given by the system and can be different
every time. When the server receives the data from the client, the server sends a mes-
sage to the client, and the client is ready to send more data.

Network Programming 285

.....

.....

The server has sent this data string: Hello! Client

Enter data to send to the server:

You can exchange more data between the client and the server as shown here. If you
want to close the client socket, you need to send a blank string. You can do this by
pressing the Enter key when the system prompts you for input.

.....

.....

Enter data to send to the server:

The user has entered nothing; hence the client socket is closed

$

These sections described the process of creating and executing TCP and UCP,
servers and clients. You were also able to differentiate between the processes followed
for TCP and UDP. Note that the difference between the process of creating codes for
TCP and UDP is also seen in the messages used for them.

The IT department computer is the main computer and will therefore store data. In
other words, the IT department computer serves as the server while the Admissions
office computer serves as the client. One of the major concerns of the university man-
agement team is the integrity of the data exchanged. Therefore, the socket used should
be connection oriented. The University network is IP-based, and therefore it supports
connection-oriented protocols, such as TCP. Both server and client sockets are of the
address family AF_INET and type SOCK_STREAM.

Server socket (IT Department computer)

Server_Socket=socket(AF_INET, SOCK_STREAM)

Client socket (Admission Office computer

Client_Socket=socket(AF_INET, SOCK_STREAM)

Other Network Programming-Related Modules

Python provides many other modules that are used for implementing some advanced
feature of network programming. Some of these modules are briefly described here.

asyncore

The asyncore module is used to write and handle servers and clients that use asyn-
chronous socket service. It keeps a check on the sockets to find information on the data
transfer that is taking place with them. Based on the situation the asyncore module
handles them by implementing an appropriate routine.

An important part of the asyncore module is the dispatcher class. You use the
dispatcher class by creating subclasses and overriding the required method. It
defines various methods to handle different situations, such as handle_write(),
handle_read(), handle_connect(), and handle_close(). The dispatcher
class also wraps the socket object.

286 Chapter 12

select

The select module is generally available in many operating systems. Windows uses
this module only for sockets. With other operating systems, such as Unix, the module
is also used for pipes and files. The asyncore module, as discussed earlier, is built on
top of this module.

This module provides select() and poll() functions. The select() function
takes three arguments. These three arguments are socket lists and are used for input,
output, and exceptional conditions. The function can have one optional argument,
which provides time in seconds as time-out. It returns three lists of ready objects,
which are the subsets of the first three arguments passed to the function. If no file
descriptor is ready before time-out, the three lists are returned empty.

The poll() function returns a polling object. This object is used for registering a file
descriptor and also for unregistering or removing a registered file descriptor. These are
then used for polling I/O events. The poll() function is not supported by all operat-
ing systems.

Write the Code to Run on the IT Department Computer
The code for the server (IT Department Computer) is as follows:

from socket import * #Imports the attributes of the socket module

Hostname = ‘’ #Defines the host name/IP address of the server.

#The variable is left blank, so that any available address can be used

PortNumber = 22222 #Defines a dedicated port number for the server

Buffer = 1024 #Defines the maximum size of data that can be

exchanged

ServerAddress = (Hostname, PortNumber) #Defines the address of the

server

Server_Socket=socket(AF_INET, SOCK_STREAM) #Creates a stream

#socket for the server

Server_Socket.bind(ServerAddress) #Binds the server address to

#the server socket

Server_Socket.listen(5) #Listens for connections

print

print ‘!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!’

print ‘Server is waiting for connection’

print ‘!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!’

print

while 1: #Infinite loop starts

Temp_Socket, ClientAddress = Server_Socket.accept() #Accepts

client connection and passes it to a new temporary socket

print ‘Server has accepted the connection request from ‘,

ClientAddress

print

print ‘The server is ready to receive data from the client’

print ‘^^^’

print

while 1: #Client/server connection loop starts

Network Programming 287

DataFromClient = Temp_Socket.recv(Buffer) #Receives data

#from the client

if not DataFromClient: #Checks if the variable is blank

print

print

print ‘************************************’

print ‘The client has closed the connection’

print ‘************************************’

print

print

print

print

print ‘!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!’

print ‘Server is waiting for a new connection’

print ‘!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!’

print

break #Client/server connection loop breaks

WriteToFile=open(‘DataFile’, ‘a’) #Opens a file in append

#mode

WriteToFile.write(DataFromClient + ‘\n’) #Writes data to

#file

WriteToFile.close() #Closes the file

ReadfromFile=open(‘DataFile’,’r’)

output=ReadfromFile.read()

Temp_Socket.send(‘DATA \n%s \nWRITTEN TO THE FILE’ % output)

#Sends data to the client

ReadfromFile.close()

print

print ‘~~’

print ‘The server is ready to receive more data from the client’

print ‘~~’

Temp_Socket.close() #Closes the temporary socket

Server_Socket.close() #Closes the server socket and stops the

#infinite loop

Write the Code to Run on the
Admission Office Computer
The code for the client (Admission Office Computer) is as follows:

from socket import * #Imports the attributes of the socket module

Hostname = ‘172.17.68.120’ #Defines the IP address of the server

#(IT Department computer). Uses the host name/IP address of the

#computer on which you are executing the server

PortNumber = 22222 #Defines the dedicated port number of the server

288 Chapter 12

Buffer = 1024 #Defines the maximum size of data that can be

exchanged

ServerAddress = (Hostname, PortNumber) #Defines the address of server

Client_Socket=socket(AF_INET, SOCK_STREAM) #Creates a stream

#socket for the client

Client_Socket.connect(ServerAddress) #Connects to the server

#at a given address

print

print ‘The client is connected to the server at’, ServerAddress

print

while 1:

DataToServer = raw_input(‘Enter data: ‘) #Asks input for data

if not Data: #Checks if the variable is blank

print

print ‘**’

print ‘** You have entered nothing **’

print ‘** The connection to the server is closed **’

print ‘**’

print

break

Client_Socket.send(DataToServer) #Sends data to server

ServerData=Client_Socket.recv(Buffer) #Receives data from client

if not ServerData: #Checks if the variable is blank

print

print ‘The server has ended the connection’

break

print ‘~~~’

print ‘Message from the server:’, ServerData

print ‘~~~’

print

Client_Socket.close() #Closes the client socket

Execute the Code Created for the
IT Department Computer
To be able to implement or view the output of the server programs, perform the fol-
lowing steps on the server computer (the IT department computer):

1. Write the server code in a text editor and save it with the .py extension.

2. Open a terminal window.

3. At the shell prompt, type python followed by the name of the server file, if the
file is in the current directory. The server starts as shown in Figure 12.1.

Network Programming 289

Figure 12.1 The screen after starting the server.

Execute the Code Created for the
Admission Office Computer
To be able to implement or view the output of the server programs, perform the fol-
lowing steps on the client computer (Admissions office computer):

1. Write the client code in a text editor and save it with the .py extension.

2. Open a new terminal window.

3. At the shell prompt, type python followed by the name of the client file, if the
file is in the current directory.

4. At the prompt Enter data:, enter Hello! Server as shown in Figure 12.2.

Figure 12.2 The client sending data to the server.

290 Chapter 12

Figure 12.3 The server sending data to the client.

5. The server sends the data written to the file back to the client as shown in
Figure 12.3.

6. At the prompt Enter data:, enter You are too fast and stable! as shown in
Figure 12.4.

7. Once again, the server sends the data written to the file back to the client, as
shown in Figure 12.5.

8. In order to exit from the client program, at the prompt Enter data:, press
the Enter key.

Figure 12.4 The client sending data to the server again.

Network Programming 291

Figure 12.5 The server sending data to the client again.

NOTE Regularly observe the output of both programs to understand what is
happening.

The server program will not end on its own because it is in an infinite loop. You
will have to close the terminal window in which the server program is running
in order to end it.

Verify That Data Has Been Saved to a File
in the IT Department Computer
To verify that all data has been saved to a file, perform the following steps on the server
computer (the IT department computer):

1. Open the file DataFile from the same directory where your server program is
saved.

2. Observe the contents of the file. It displays the complete data that you have
entered on the client end.

3. Close the file.

Summary

In this chapter, you learned the following:

■■ Client/server architecture is a term used to define the communication process
between two computers, one of which is a client and the other is the server.

292 Chapter 12

■■ The server provides services that one or more clients require.

■■ A successful transaction in client/server architecture begins when the client
asks a server for some service and ends after the server replies to the client
request.

■■ The server should always be ready to receive client requests.

■■ Client/server architecture applies to both:

■■ Hardware

■■ Software

■■ In a software client/server architecture system, the client and the server are not
hardware devices but programs running on some hardware.

■■ The rules used for network communication are called network protocols.

■■ Protocols can be of two types:

■■ Connection-oriented, such as TCP

■■ Connectionless, such as UDP

■■ Python supports both types of protocols.

■■ Sockets are software objects that allow programs to make connections.

■■ Sockets are the only IPC forms that support cross-platform communication.

■■ Sockets are bound to ports, which are numeric addresses.

■■ A few port numbers are assigned to specific protocols.

■■ The client should know the host name, or the IP address, of the server com-
puter and the port number for the client to connect to the server.

■■ To implement network programming in Python by using sockets, you use the
socket module.

■■ The socket() method of the socket module is used to create a new socket.

■■ The syntax of the socket() method is as follows:

socket(family, type, protocol)

■■ Python supports two address families:

■■ AF_UNIX

■■ AF_INET

■■ These family names define whether the client and server programs run on the
same or different computers.

■■ The sockets of the AF_UNIX family are also called Unix sockets.

■■ AF_INET is the most commonly used address family and supports protocols
such as TCP and UDP.

■■ Sockets can be of the types:

■■ SOCK_STREAM

■■ SOCK_DGRAM

Network Programming 293

■■ SOCK_RAW

■■ SOCK_RDM

■■ SOCK_SEQPACKET

■■ SOCK_STREAM is used to create connection-oriented sockets.

■■ SOCK_STREAM is used to create connectionless sockets.

■■ The socket object can be used to execute the following methods:

■■ accept()

■■ bind()

■■ close()

■■ connect()

■■ getpeername()

■■ getsockname()

■■ listen()

■■ makefile()

■■ recv()

■■ recvfrom()

■■ send()

■■ sendto()

■■ shutdown()

■■ Socket object methods, such as accept(), listen(), recv(), and send(),
are used for working with connection-oriented servers and clients.

■■ Socket object methods, such as recvfrom() and sendto(), are used for
working with connection-oriented servers and clients.

■■ The asyncore module is used to write and handle servers and clients that use
asynchronous socket service.

■■ The dispatcher class is an important part of the asyncore module.

■■ The asyncore module, as discussed earlier, is built on top of the select
module.

■■ The select module provides two functions:

■■ select()

■■ poll()

■■ The SocketServer module is used for creating general IP servers, provides
the necessary framework for network servers, and simplifies the job of writing
them.

■■ The BaseHTTPServer module provides the infrastructure required for creating
Web servers.

294 Chapter 12

■■ The BaseHTTPServer module defines two classes:

■■ HTTPServer

■■ BaseHTTPRequestHandler

■■ The HTTPServer class is used to create Web sockets.

■■ The BaseHTTPRequestHandler handles HTTP requests.

■■ The SimpleHTTPServer module is used for creating simple Web servers.

■■ The SimpleHTTPServer module defines a class, SimpleHTTPRe-
questHandler, for handling requests to serve only base directory files.

■■ The CGIHTTPServer module is used for creating Web servers with support
for CGI.

■■ The CGIHTTPServer module defines a class, CGIHTTPRequestHandler, for
handling requests to serve files or output of CGI scripts.

Network Programming 295

297

OBJECTIVES:

In this chapter, you will learn to do the following:

� Identify the difference between a single-threaded application and a mul-
tithreaded application

� Create threads by using the thread module

� Create multithreaded applications by using the threading module

Getting Started

Graphics and sound are part of most Web-based training courses. Have you ever
noticed that graphics, text, and audio effects run simultaneously? Imagine a situation
where the screen changes, then text appears. Next, the audio starts playing. To use a
course to our advantage, all the elements of the course need to be processed at the same
time. In other words, the application for the course needs to be divided into three sub-
units. Each subunit handles one task.

In a similar manner, suppose a Web server could talk only to a single user at a time.
With so many people wanting to access the same Web site, you may end up waiting a
very long time to make it to the front of the queue!

Multithreaded Programming

C H A P T E R

13

C H A P T E R

Fortunately, the courses on the Web and the Web servers are designed to perform
many things at the same time. Each of these techniques involves splitting a problem
into smaller tasks and allowing them to run almost at the same time. (Obviously, they
can’t truly run at the same time unless your computer has more than one processor.)

A thread, which is the smallest unit of code that can be executed, performs each of
these tasks. Any program that has more than one thread is called a multithreaded pro-
gram. Having looked at a thread, it is essential for us to look at another component to
complete the big picture here—a process. A process is an executing instance of a pro-
gram. This raises the question about how a process is different from a thread. The
essential difference is that a process has a complete set of data and variables while one
or more threads may share the same data.

The primary advantage of creating multithreaded applications is that you can write
efficient programs that make maximum use of the processor by keeping idle time to a
minimum. Before you can design multithreaded applications, you first have to under-
stand the difference between a single-threaded application and a multithreaded appli-
cation. To do this, let’s first examine a single-threaded application.

Single-Threaded Applications
A single-threaded application has only one thread. This thread is the main thread of
the application. In this application, all the processing is done in a linear fashion. In
other words, user input and any processing that does not require user input are han-
dled by the same thread. While waiting for user input, the application cannot perform
any background task due to the presence of only one thread. Therefore, the application
is not able to effectively switch between various independent tasks. A single-threaded
application also takes a long time to execute.

To better understand this, let’s consider an example. The program singlethr.py uses
a single-threaded application. This program contains two functions and executes them
one after the other.

from time import sleep,ctime,time

def func1():

i=0

while i<=3:

print “func1 at”, ctime(time())

sleep(2)

i=i+1

def func2():

j=0

while j<=3:

print “func2 at”, ctime(time())

sleep(1)

j=j+1

print ‘*’*40

print “started at”, ctime(time())

print ‘*’*40

func1()

print ‘*’*40

func2()

298 Chapter 13

print ‘*’*40

print “end at”, ctime(time())

print ‘*’*40

In the preceding code, we created two functions, func1() and func2(). In addi-
tion, we used the sleep() function of the time module. This function takes the num-
ber of seconds as an argument in the form of a floating-point value and halts the
execution for the specified number of seconds. The definition of func1() contains a
call to the sleep() function with an argument of 2 seconds. Similarly, func2() con-
tains a call to the sleep() function with an argument of 1 second. This means that
when the program execution encounters these function calls, the program execution is
halted for a specified number of seconds. The execution of func1() completes first
before func2() starts to execute because func1() and func2() are called sequen-
tially. The execution of func1() takes 8 seconds, and the execution of func2() takes
4 seconds. Therefore, the total program execution takes 12 (8 + 4) seconds. The output
of the execution of singlethr.py is as follows:

**

started at Thu Dec 27 19:10:07 2001

**

func1 at Thu Dec 27 19:10:07 2001

func1 at Thu Dec 27 19:10:09 2001

func1 at Thu Dec 27 19:10:11 2001

func1 at Thu Dec 27 19:10:13 2001

**

func2 at Thu Dec 27 19:10:15 2001

func2 at Thu Dec 27 19:10:16 2001

func2 at Thu Dec 27 19:10:17 2001

func2 at Thu Dec 27 19:10:18 2001

**

end at Thu Dec 27 19:10:19 2001

**

After considering the disadvantages of a single-threaded application in terms of
time, let’s scrutinize how Python implements threading.

Threading in Python
Execution of Python applications is controlled by Python Virtual Machine (PVM), which
is also known as the Python interpreter’s main loop. Python is designed in such a way
that only one thread can take control of this main loop at a time. Therefore, even if mul-
tiple threads are alive, only one thread can be executed at any given time. A global inter-
preter lock (GIL) controls access to Python Virtual Machine. This lock ensures that
exactly one thread is executing in the main loop at a particular point in time. In a mul-
tithreaded environment, Python Virtual Machine switches on the GIL for a thread that
is to be executed. Next, PVM executes the thread for a specified number of time peri-
ods and then makes the thread sleep. Next, it unlocks the GIL and repeats the process
for another thread until all the threads have executed completely.

Multithreaded Programming 299

Creating Multithreaded Applications

Problem Statement
Techsity University is converting all its systems to client/server architecture over the
IP network. Jenny’s team is working to demonstrate the use of client/server architec-
ture and the security of data sent over the network to the management team. Jenny’s
team has already implemented socket programming to show the working of client/
server architecture between the computers in the Admissions office and the IT depart-
ment. The team is now assigned the task of creating a chat application between the
computers of the IT department. To start, this chat application should be able to con-
nect five computers at a time in the IT department. When a client sends a message to
the server, the server sends the message back to the client. In addition, when any other
client connects to the server, all the earlier messages sent by the existing clients are sent
to that client.

Let’s identify the tasks for creating this chat application.

Task List

� Identify the class and the methods required to create a multithreaded application.

� Write the code for the server.

� Write the code for the client.

� Execute the code created for the server.

� Execute the code created for the client.

Identify the Class and the Methods
to Create a Multithreaded Application
Python provides two modules to support multithreaded programming. They are the
thread module and the threading module. These modules are used to manage
threads. If Python is not configured for threads when it is built, then it basically relies
on operating system threads. Otherwise, the thread and threading modules can be
used to create efficient multithreaded applications. The thread module provides the
basic thread and locking features and is appropriate for lower-level thread access,
whereas the threading module provides higher-level thread access. Let’s examine
each of them with the help of examples.

The thread Module
The threadmodule provides the functionality of working with threads, including gen-
erating threads and locking them. Locking threads is a synchronization mechanism that
is accomplished by the use of a lock object. Only one thread can acquire a lock at a time.
Here are the most commonly used thread functions available in the thread module.

300 Chapter 13

thread.start_new_thread(func, args,[,kwargs]). This function starts
a new thread and uses an apply() function internally to call the function func
with args arguments and kwargs optional arguments. args should be a tuple.

thread.exit(). This function ends a thread.

thread.get_thread(). This function returns the identifier of the current
thread.

thread.allocate_lock(). This function creates and returns a lock object.
The following functions are exposed to a lock object:

lock_obj.acquire([waitflag]). This function is used to acquire a lock
and takes an optional argument, waitflag. If waitflag is omitted, this
method acquires the lock immediately and returns None after acquiring the
lock. If the value of the waitflag argument is zero, the lock is acquired only
when it can be acquired immediately without waiting for another thread. For
any other nonzero value of waitflag, the lock is acquired immediately after
another thread, if in execution, releases the lock. When an argument is supplied,
the return value is 1 if the lock is acquired successfully, 0 if not.

lock_obj.release(). This function releases the lock.

lock_obj.locked(). This function returns 1 if a thread acquires a lock.
It returns 0 if a thread does not acquire a lock.

Let’s change the previous code of singlethr.py to incorporate threads and
change it to multithr.py as follows:

from time import sleep,ctime,time

import thread

def func1():

i=0

while i<=3:

print “func1 at”, ctime(time())

sleep(2)

i=i+1

def func2():

j=0

while j<=3:

print “func2 at”, ctime(time())

sleep(1)

j=j+1

print ‘*’*40

print “started at”, ctime(time())

print ‘*’*40

thread.start_new_thread(func1,())

print ‘*’*40

thread.start_new_thread(func2,())

sleep(9)

print ‘*’*40

print “end at”, ctime(time())

print ‘*’*40

Multithreaded Programming 301

The only change from singlethr.py to multithr.py is that we have introduced
threads in the latter. The first highlighted statement in the preceding code starts a new
thread in which func1() is invoked. The program execution control immediately
moves to the next statement. It encounters another start_new_thread() function
and therefore starts another thread in which func2() is invoked. Again, the program
execution moves to the next statement and encounters a sleep() function. Why is the
call to the sleep() function important? If the main thread is not put to sleep, the exe-
cution of the main thread will continue. The last print statement will be executed, and
the program control will end the main loop while the other threads are still running.
Notice the following output of multithr.py.

**

started at Sat Dec 29 16:39:20 2001

**

**

func1 at Sat Dec 29 16:39:20 2001

func2 at Sat Dec 29 16:39:20 2001

func2 at Sat Dec 29 16:39:21 2001

func1 at Sat Dec 29 16:39:22 2001

func2 at Sat Dec 29 16:39:22 2001

func2 at Sat Dec 29 16:39:23 2001

func1 at Sat Dec 29 16:39:24 2001

func1 at Sat Dec 29 16:39:26 2001

**

end at Sat Dec 29 16:39:29 2001

**

Notice that the execution of the thread containing func1() starts first and the
thread sleeps for two seconds. This is the time when the execution of func2() takes
place twice because the sleep duration of func2() is set to one second. Again, the exe-
cution of func1() continues while func2() is sleeping. The execution continues till
both the threads have completed the execution of the functions. Notice the amount of
time saved (three seconds) in comparison with the previous single-threaded applica-
tion, singlethr.py. In singlethr.py, first the execution of func2() could start
only after the execution of func1() was complete. Here, the execution of both the
functions takes place simultaneously and none has to wait for the other to finish exe-
cution before the other starts.

To understand lock objects, let’s consider yet another example. Consider lockthr.py.

import thread

from time import ctime,time,sleep

class Bank:

def __init__(self):

self._account={}

self._account[‘1’]=self.account_savings

self._account[‘2’]=self.account_current

self._account[‘3’]=self.account_fixed

self._account[‘4’]=self.account_recrg

def account(self,selection,seconds):

self._account[selection](seconds)

302 Chapter 13

def account_savings(self,seconds_arg):

thread.start_new_thread(self.openac,(seconds_arg,\

‘1. Savings’,locks[0]))

def account_current(self,seconds_arg):

thread.start_new_thread(self.openac,(seconds_arg,\

‘2. Current’,locks[1]))

def account_fixed(self,seconds_arg):

thread.start_new_thread(self.openac,(seconds_arg,\

‘3. Fixed’,locks[2]))

def account_recrg(self,seconds_arg):

thread.start_new_thread(self.openac,(seconds_arg,\

‘4. Recurring’,locks[3]))

def openac(self,seconds,account,lock):

for i in range(seconds):

sleep(0.01)

print “%s is opened at %s” % (account,ctime(time()))

myBank=Bank()

locks=[]

for i in range(4):

lock=thread.allocate_lock()

lock.acquire()

locks.append(lock)

print “start at”,ctime(time())

myBank.account(‘1’,700)

myBank.account(‘2’,500)

myBank.account(‘3’,500)

myBank.account(‘4’,300)

The preceding code uses threads to open four types of bank accounts. Notice that
four threads are used to execute the openac() function four times with different types
of accounts. In addition to the name of the account that is to be opened, a lock object is
passed. Four lock objects are created separately in the main thread by using the
thread.allocate_lock() function and are acquired using the acquire()
method. Each of the locks is added to the list locks after the locks have been acquired.
Each time the openac() function is called by the threads, the calling function passes a
lock as an argument along with the number of seconds and the account type. In the
preceding code, all lock objects are acquired first because acquiring locks is time-
consuming. If the threads execute quickly, it is possible that they complete execution
even before the lock is acquired. In addition, this technique enables all the threads to
start at nearly the same time. The output of the code will be this:

start at Mon Dec 31 11:15:03 2001

4. Recurring is opened at Mon Dec 31 11:15:06 2001

2. Current is opened at Mon Dec 31 11:15:08 2001

3. Fixed is opened at Mon Dec 31 11:15:08 2001

1. Savings is opened at Mon Dec 31 11:15:10 2001

As stated earlier, the threadmodule provides the basic support for threading while
the threading module provides higher-level thread functionality.

Let’s now examine the working of the threading module.

Multithreaded Programming 303

The threading Module

The threading module exposes all the functions of the thread module and provides
some additional functions:

threading.activeCount(). Returns the number of thread objects that are
active.

threading.currentThread(). Returns the number of thread objects in the
caller’s thread control.

threading.enumerate(). Returns a list of all thread objects that are currently
active.

In addition to the functions, the threading module has the Thread class that
implements threading.

The Thread Class
The Thread class encapsulates the functionality of the thread of execution. This class
defines a number of methods that help create and manage threads. Table 13.1 lists the
methods of the Thread class.

The Thread class is used to create threads. There are two ways of starting a thread
after subclassing the Thread class. You can pass a callable function to the constructor
of the subclass or override the run() method in the subclass. Only the __init__()
method and the run() method of the Thread class should be overridden. After you
create the thread of the object of the subclass, you can start the thread by calling the
start() method of the thread. This invokes the run() method in a separate thread
of control.

After the execution of the statements in a thread has started, it can be in any of the
following states:

Alive and active. A thread enters alive and an active state when its activity starts.

Blocked. A thread enters a blocked state when the sleep function is called.

Dead. A thread can die when the run function terminates normally or when the
run method is terminated abnormally due to an exception.

Table 13.1 Methods in the Thread Class

METHOD NAME DESCRIPTION

run() The run() method is the entry point for a thread.

start() The start() method starts a thread by calling the
run method.

join([time]) The join() waits for threads to terminate.

isAlive() The isAlive() method checks whether a thread is still
executing.

getName() The getName() method returns the name of a thread.

setName() The setName() method sets the name of a thread.

304 Chapter 13

Having looked so far at the functions of the Thread class, let’s examine the steps
involved in creating a single-threaded application:

1. Extending the Thread class.

2. Defining the run() method.

3. Creating an object of the Thread class and calling the start() method.

Let’s consider each of these steps separately.

Extending the Thread class. You can create a new class that is extended from the
Thread class to implement the functionality that you require. The following
code creates a class named MyThread.

import Threading

class MyThread(Threading.Thread):

Defining the run() method. You can override the run() method of the Thread
class to meet your requirements. The following code sample prints the Hello
World message 10 times after a time gap of 5 seconds.

def run(self):

number =1

while(number <= 10)

print(“Hello World”)

time.sleep(0.001)

Creating an object of the Thread class and calling the start() method. The
start() method starts a thread by invoking the run() method of the Thread
class.

NewThreadObject = MyThread()

NewThreadObject.start()

The main difference between instantiating the Thread class and calling the
thread.start_new_thread() method is that the new thread object created by
instantiating the Thread class need not start immediately, whereas the
start_new_thread() method starts the thread right away. This can be a useful syn-
chronization technique when you want all the thread objects to be created first and
then later to start all the threads together.

Having looked at the different sections of the code, let’s now look at the complete
code.

import time

import Threading

class MyThread(Threading.Thread):

def run(self):

number =1

while(number <= 10)

print(“Hello World”)

time.sleep(0.001)

NewThreadObject = MyThread()

NewThreadObject.start()

Multithreaded Programming 305

Let’s now consider converting this single-threaded application into a multithreaded
application. All it requires is instantiating the MyThread class as many times as
the number of threads you want to create and the join() method. The thread-
obj.join() method works as a synchronization mechanism. This method ensures
that the program control does not exit the main loop until a thread (threadobj) ter-
minates. This method is not important when the code is such that it will wait anyway
for all the threads to complete execution before exiting out of the main loop. Here is the
code in action.

from time import sleep, ctime, time

import threading

class MyThread(threading.Thread):

def run(self):

number =1

while(number <= 5):

print”Thread executing”,ctime(time())

sleep(1)

number=number+1

threadarray = []

threadnumber = 1

while threadnumber <= 2:

NewThreadObject = MyThread()

NewThreadObject.start()

threadarray.append(NewThreadObject)

threadnumber=threadnumber+1

for mythread in threadarray:

mythread.join()

print “End of My Code”

In the preceding code, we first create a subclass MyThread from the Thread class.
The run() method of MyThread prints the current time five times after an interval of
one second. Next, we create two thread objects by instantiating MyThread. The
start()method is used to invoke the run()method of MyThread. Notice that a loop
containing the join() method at the end of the code ensures that both threads are ter-
minated before exiting from the code. The output of the preceding code will be this:

Thread executing Wed Jan 09 09:58:30 2002

Thread executing Wed Jan 09 09:58:30 2002

Thread executing Wed Jan 09 09:58:31 2002

Thread executing Wed Jan 09 09:58:31 2002

Thread executing Wed Jan 09 09:58:32 2002

Thread executing Wed Jan 09 09:58:32 2002

Thread executing Wed Jan 09 09:58:33 2002

Thread executing Wed Jan 09 09:58:33 2002

Thread executing Wed Jan 09 09:58:34 2002

Thread executing Wed Jan 09 09:58:34 2002

End of My Code

Let’s add the functionality of displaying the thread number by overriding the con-
structor of the Thread class in MyThread.

306 Chapter 13

from time import sleep, ctime, time

import threading

class MyThread(threading.Thread):

def __init__(self,func,args):

threading.Thread.__init__(self)

self.func=func

self.args=args

def run(self):

apply(self.func,self.args)

def func1(threadn,):

number =1

while(number <= 5):

print”Thread no.”,threadn,ctime(time())

sleep(threadn)

number=number+1

threadarray = []

threadnumber = 1

while threadnumber <= 2:

NewThreadObject = MyThread(func1,(threadnumber,))

NewThreadObject.start()

threadarray.append(NewThreadObject)

threadnumber=threadnumber+1

for mythread in threadarray:

mythread.join()

print “End of My Code”

Notice that the constructor of MyThread can be used to pass any parameters to the
run() method. In the preceding code, instead of processing threads in the run()
method directly, we call another function, func1(). The parameters required by
func1() are passed as a sequence along with the function’s name while creating the
instance of MyThread. All these arguments are initialized in the constructor of
MyThread. The run() method invokes func1() and passes the sequence of argu-
ments to func1(). The arguments passed have to be in the form of a sequence; there-
fore, a comma is specified after threadnumber while creating an instance of the
MyThread class. Notice that threadnumber is the variable that contains the number
of the thread that is currently executing.

The output of the preceding code will be:

Thread no. 1 Wed Jan 09 11:28:35 2002

Thread no. 2 Wed Jan 09 11:28:35 2002

Thread no. 1 Wed Jan 09 11:28:36 2002

Thread no. 2 Wed Jan 09 11:28:37 2002

Thread no. 1 Wed Jan 09 11:28:37 2002

Thread no. 1 Wed Jan 09 11:28:38 2002

Thread no. 2 Wed Jan 09 11:28:39 2002

Thread no. 1 Wed Jan 09 11:28:39 2002

Thread no. 2 Wed Jan 09 11:28:41 2002

Thread no. 2 Wed Jan 09 11:28:43 2002

End of My Code

Multithreaded Programming 307

Result

For creating an application for the scenario given earlier in this chapter, you need to
create a server program and a client program. The server program will be running on
a single computer whereas the client program can run on four computers at maximum.
From the preceding discussion about thread and threading modules, we have
identified that the Thread class is more effective for contemporary threading and syn-
chronizing multiple threads. Therefore, the server program will incorporate the
Thread class for creating four client threads. Let’s write the code for the server and the
client computers for the Techsity University scenario.

Write Code for the Server
The following is the code for creating a TCP server for the required application:

#server program

from socket import *

from time import sleep,time,ctime

import threading

ServerData=[]

Hostname = ‘’

PortNumber = 12345

Buffer = 500

ServerAddress = (Hostname, PortNumber)

#Create server socket

TCP_Server_Socket = socket(AF_INET, SOCK_STREAM)

TCP_Server_Socket.bind(ServerAddress)

TCP_Server_Socket.listen(4)

print ‘Server is waiting for connection’

add=[]

class MyThread(threading.Thread):

def run(self):

while 1:

TCP_Client_Socket, ClientAddress =\

TCP_Server_Socket.accept()

print ‘Server has accepted the connection request from ‘,\

ClientAddress

if ServerData:

for i in range(len(ServerData)):

TCP_Client_Socket.send(str(ServerData[i]))

sleep(0.01)

else:

TCP_Client_Socket.send(“Hi”)

print ‘The Server is ready to receive data from \

the client’

while 1:

ClientData = TCP_Client_Socket.recv(Buffer)

if not ClientData:

print ‘The client has closed the connection’

break

308 Chapter 13

print ‘The %s has sent this data string: %s’\

% (ClientAddress,ClientData)

ClientData=ClientData+’~~’

#Collect the data sent by all clients in ServerData

ServerData.append(ClientData)

#send the data collected in ServerData

for i in range(len(ServerData)):

TCP_Client_Socket.send(str(ServerData[i]))

sleep(0.01)

print ‘The Server is ready to receive more data from\

the client’

TCP_Client_Socket.close()

break

TCP_Server_Socket.close()

ch=0

while ch<=3:

#Create four threads for four clients

NewThreadObject = MyThread()

NewThreadObject.start()

threadarray.append(NewThreadObject)

ch=ch+1

Write the Code for the Client
The following is the code for creating a TCP client for the required application:

Client program

from socket import *

from time import sleep

Hostname = ‘localhost’

PortNumber = 12345

Buffer = 500

#Establish connection with the server

ServerAddress = (Hostname, PortNumber)

TCP_Client_Socket = socket(AF_INET, SOCK_STREAM)

TCP_Client_Socket.connect(ServerAddress)

while 1:

print ‘The client is connected to the server’

ServerData = TCP_Client_Socket.recv(Buffer)

if not ServerData:

print ‘The server has sent nothing’

break

else:

#process data received

ServerStr=str(ServerData)

if ServerStr.find(‘~~’)!=-1:

ServerList=ServerStr.split(‘~~’)

Multithreaded Programming 309

for i in range(len(ServerList)):

print ServerList[i]

else:

print ServerStr

DataStr = raw_input(‘Enter data to broadcast: ‘)

if not DataStr:

print ‘The client has entered nothing; hence the connection\

to the server is closed’

break

#send data

TCP_Client_Socket.send(DataStr)

sleep(0.1)

#receive data from server

TCP_Client_Socket.close()

Execute the Code Created for the Server
To implement or view the output of the server program, perform the following steps
on the server computer:

1. Write the server code in a text editor and save it as MultiThrServer.py.

2. At the shell prompt, type:

$ python MultiThrServer.py

The server starts as shown in Figure 13.1.

Figure 13.1 The screen after starting the server.

310 Chapter 13

Execute the Code Created for the Client
To implement or view the output of the client program, perform the following steps on
the client computer:

1. Write the client code in a text editor and save it as MultiThrClient.py.

2. At the shell prompt, type:

$ python MultiThrServer.py

3. At the prompt Enter data:, enter:

How do I start a comment in Python?

Figure 13.2 shows a client connected and sending data to the server.

4. The server sends the data written to the file back to the client.

5. Open another terminal window, and start the client program again. Notice that
the message sent by the previous client appears here.

6. At the prompt Enter data:, enter:

In python, comments begin with a pound (#) sign.

Figure 13.3 shows another client connected and sending data to the server.

Figure 13.2 The client sending data to the server.

Multithreaded Programming 311

Figure 13.3 The second client sending data to the server.

7. Once again, the server sends the data back to the second client, as shown in
Figure 13.4.

8. Open another terminal window and start the client program again. Notice that
the messages sent by both the previous clients appear. (Refer to Figure 13.5.)

Figure 13.4 The server sending data to the sending client.

312 Chapter 13

Figure 13.5 The third client receiving data from the server.

9. To exit from all the client programs, at the prompt Enter data:, press the
Enter key.

NOTE Regularly observe the output of all programs to understand the
communication between the server and clients. The server program will not end
on its own because it is in an infinite loop. You will have to close the terminal
window in which the server program is running to end it.

Summary

In this chapter, you learned the following:

■■ A thread is the smallest unit of code that can be executed. Any program that has
more than one thread is called a multithreaded program.

■■ A process is an executing instance of a program.

■■ A single-threaded application has only one thread. In a single-threaded appli-
cation, user input and any processing that does not require user input are
handled by the same thread.

■■ Python provides two modules to support multithreaded programming:

■■ thread

■■ threading

Multithreaded Programming 313

■■ The thread module provides the basic thread and locking features and is
appropriate for lower-level thread access, whereas the threading module
provides higher-level thread functionality.

■■ The most commonly used thread functions available in the thread module are
as follows:

■■ thread.start_new_thread(func, args,[,kwargs])

■■ thread.exit()

■■ thread.get_thread()

■■ thread.allocate_lock()

■■ The following functions are exposed to a lock object:

■■ lock_obj.acquire([waitflag])

■■ lock_obj.release()

■■ lock_obj.locked()

■■ The threading module exposes all the functions of the thread module and
provides some additional functions. These functions are as follows:

■■ threading.activeCount()

■■ threading.currentThread()

■■ threading.enumerate()

■■ In addition to the functions, the threading module has the Thread class
that implements threading. The methods provided by the Thread class are as
follows:

■■ run()

■■ start()

■■ join([time])

■■ isAlive()

■■ getName()

■■ setName()

■■ The steps involved in creating a single-threaded application are these:

1. Extending the Thread class

2. Defining the run() method

3. Creating an object of the Thread class and calling the start() method

■■ Creating a multithreaded application also requires the same steps except that
you have to specify a join method for each thread object to ensure that the
program does not exit the main loop as all threads terminate.

314 Chapter 13

315

OBJECTIVES:

In this chapter, you will learn to do the following:

� Create Web servers by using:

� The SocketServer module

� The BaseHTTPServer module

� The SimpleHTTPServer module

� The CGIHTTPServer module

� Access URLs in Python by using:

� The urlparse module

� The urllib module

� Upload files across an HTTP connection

� Use cookies for data persistence on the client side

Advanced Web Programming

C H A P T E R

14

Getting Started

Web programming and network programming were introduced in Chapter 10, “CGI
Programming,” and Chapter 12, “Network Programming.” You are now familiar with
the way data is handled over networks and how it can be transferred from a client to a
server or vice versa using Python. This chapter takes you further and discusses
advanced Web programming concepts. To start, this chapter discusses how to create
your own Web server. Next, it talks about how you can work with URLs by using
Python. Finally, this chapter explains advanced CGI to generate dynamic Web pages
using cookies and uploading files across an HTTP connection.

Creating Web Servers
You already know that CGI request processing involves Web servers and clients. Usu-
ally, we use browsers, such as Netscape Navigator and Internet Explorer, as Web clients.
The most popular Web servers are IIS, Apache, and Netscape. You can use Python for
creating a Web server and Web clients. Some of the modules available in Python for
building Web servers are SocketServer, BaseHTTPServer, SimpleHTTPServer,
and CGIHTTPServer.

The SocketServer Module

The SocketServer module is used for creating general IP servers. It provides the
necessary framework for network servers and simplifies the job of writing them. While
using this module, you do not require the socket module to implement servers. This
module implements servers by using four classes: TCPServer, UDPServer,
UnixStreamServer, and UnixDatagramServer. These classes provide interfaces
to the most commonly used protocols, and they handle requests in a synchronous
manner. The UnixStreamServer and UnixDatagramServer classes use Unix
domain sockets and are not meant for non-Unix platforms. The TCPServer and
UDPServer classes implement a server and support the TCP protocol and the UDP
protocol, respectively.

In addition, it also provides StreamRequestHandler and DatagramRequest-
Handler classes to handle requests. While using the SocketServermodule, you can
handle requests as separate threads.

The following steps explain the creation of a Web server by using the Socket-
Server module:

1. Create a request handler class by subclassing the StreamRequestHandler
class or the DatagramRequestHandler class and overriding its handle()
method. The handle() method processes incoming requests.

2. Instantiate one of the server classes by passing the address of the server and the
instance of the request handler class.

3. Finally, call the handle_request() method to process the request of a client
or the serve_forever() method of the server object to process the requests
of many clients.

316 Chapter 14

TCPServer, UDPServer, UnixStreamServer, and UnixDatagramServer
classes require two parameters. The first parameter is a 2-tuple comprising the host
name and the port of the server address; the second parameter is the request handler
class, which is an instance of the BaseRequestHandler class. All of the classes dis-
cussed have their own instances of class variables; however, all of them implement the
following methods and attributes:

fileno(). This method returns an integer file descriptor for the socket of the
Web server that you create.

handle_request(). This method processes a single request at a time and
invokes the handle() method of the handler class.

serve_forever(). This method handles an infinite number of requests by
calling handle_request() inside an infinite loop.

address_family. This is the family of protocols of the server socket, socket.
AF_INET and socket.AF_UNIX.

RequestHandlerClass. This is the class that handles all the requests through
the handle() method; an instance of this class is created for each request.

server_address. This is the address containing the IP address and an integer
port number of the socket on which the server is listening.

socket. This is the socket object on which the server listens for approaching
requests.

The following code, SocServer.py, creates a Web server by using the Socket-
Server module. A TCP client or a UDP client can be used to connect to this server.

import SocketServer

from time import sleep

port=8888

class myR(SocketServer.StreamRequestHandler):

def handle(self):

print “connection from”,self.client_address

try:

self.wfile.write(“SocketServer works!”)

except IOError:

print “Connection from the client “,\

self.client_address,” closed”

while 1:

srvsocket=SocketServer.TCPServer((“”,port),myR)

print “the socket is listening to the port”, port

srvsocket.serve_forever()

When you start the server and connect it with two clients, it displays the following:

the socket is listening to the port 8888

connection from (‘127.0.0.1’, 34181)

connection from (‘127.0.0.1’, 34182)

The serve_forever() method ensures that multiple clients can access the server.

Advanced Web Programming 317

The BaseHTTPServer Module
The BaseHTTPServermodule provides the infrastructure required for creating HTTP
servers (Web servers). To implement these servers, the BaseHTTPServer module
defines two classes, HTTPServer and BaseHTTPRequestHandler.

The HTTPServer class is the subclass of TCPServer, which belongs to the
ServerSocket module. You use this class to create Web sockets. The HTTPServer
class also listens to Web sockets and directs requests to the concerned handler. The
BaseHTTPRequestHandler class is used to handle HTTP requests. You need to create
a subclass of the BaseHTTPRequestHandler class to handle each request method.
The BaseHTTPRequestHandler class defines various instance variables, class vari-
ables, and methods that can be used by its subclasses. The following methods are
exposed by the BaseHTTPRequestHandler class:

handle(). This method handles a request by calling the do_GET() method
when the base server receives a GET request and by calling the do_POST()
method when the base server receives a POST request.

send_error[error code[,error message]]. This method sends an error
to the client along with the error code that is the HTTP error code and the mes-
sage that is the optional text you can specify.

send_response[response code[,response message]]. This method
sends a response header. You can specify a more specific response message also.
For example, the response code 200 returns an “OK” status.

send_header[keyword,value]. This method sends the MIME header to the
output stream where a keyword specifies the header keyword and a value speci-
fies the header value.

end_headers(). This method indicates the end of MIME headers.

The following attributes are also exposed by the BaseHTTPRequestHandler class:

client_address. Returns a tuple containing the host and port number refer-
ring to the address of the client.

command. Returns the request type, such as GET, POST, etc.

path. Returns the request path.

request_version. Returns the version string from a request, such as
HTTP/1.0.

headers. Contains the message headers in the HTTP request.

rfile. Contains the input stream used to read the data received from the client.

wfile. Contains the input stream used for sending a response to the client.

The following code, Mywebserver.py, illustrates a Web server created using the
BaseHTTPServer module:

#!/usr/bin/python2.2

from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer

dynhtml=”””

<HTML><HEAD><TITLE>My Home Page</TITLE></HEAD>

318 Chapter 14

<HR>

<BODY><CENTER><H1><U>Hello client!</U></H1>

<H2>You are connected to Mywebserver</H2><HR></BODY>

</HTML>”””

nf=”File not found”

class req_handler(BaseHTTPRequestHandler):

def do_GET(self):

if self.path==”/”:

self.send_response(200)

self.send_header(‘Content-type’,’text/html’)

self.end_headers()

self.wfile.write(dynhtml)

else:

self.send_error(404,nf)

try:

server=HTTPServer((‘’,8000),req_handler)

print ‘Welcome to the Mywebserver...’

print ‘Press ^C once or twice to quit’

server.serve_forever()

except KeyboardInterrupt:

print ‘^C pressed, shutting down server’

server.socket.close()

When you execute the preceding code, a Web server starts. When a client tries to
access the server, an OK status is returned with the response code 200 and the default
page of the server is displayed, as shown in Figure 14.1.

Figure 14.1 The default page displayed when the Web server is accessed.

Advanced Web Programming 319

Figure 14.2 Accessing the Web server.

This is a simple program to create a Web server, and it cannot access files on the
server. If the client tries to access a file, the “file not found” message code is displayed
with the error code 404. The server displays loggable output as shown in Figure 14.2.

NOTE Standard Web servers run on port 80. Other Web servers that you
create do not have access to this port. Therefore, if you are accessing a Web
server from a client browser, do not forget to specify the server’s port number
along with its host name, which is the name of the computer on which the
server resides.

The SimpleHTTPServer Module

The SimpleHTTPServer module is used for creating simple Web servers. It defines a
class, SimpleHTTPRequestHandler, for handling requests to serve only base direc-
tory files. This module is compatible with the BaseHTTPServer module. Therefore,
the methods and attributes exposed by the SimpleHTTPServermodule are similar to
the BaseHTTPServer module; however, this module is suitable for implementing
GET and HEAD requests.

The following code, Mysimplewebserver.py, illustrates a Web server created using
the SimpleHTTPServer module:

#!/usr/bin/python2.2

from os import curdir, sep

from BaseHTTPServer import HTTPServer

320 Chapter 14

from SimpleHTTPServer import SimpleHTTPRequestHandler

class req_handler(SimpleHTTPRequestHandler):

def do_GET(self):

try:

f = open(curdir + sep + self.path)

self.send_response(200)

self.send_header(‘Content-type’,’text/html’)

self.end_headers()

self.wfile.write(f.read())

f.close()

except IOError:

self.send_error(404,’File Not Found: %s’ % self.path)

try:

server=HTTPServer((‘’,8000),req_handler)

print ‘Welcome to the My simple web server...’

print ‘Press ^C once or twice to quit’

server.serve_forever()

except KeyboardInterrupt:

print ‘^C pressed, shutting down server’

server.socket.close()

When you execute the preceding code, a Web server starts. When a client browser
tries to open a Web page, the Web page is displayed, as shown in Figure 14.3.

Figure 14.3 The page displayed when the Web server is accessed.

Advanced Web Programming 321

This code can access files using the server and send the response code 200 if the file
is found. If the client tries to access a file that does not exist, the “file not found” mes-
sage code is displayed with the error code 404. The server displays output that can be
logged, as shown in Figure 14.4.

The CGIHTTPServer Module

The CGIHTTPServer module is used for creating Web servers that support CGI. It
defines a class, CGIHTTPRequestHandler, for handling requests or the output of
CGI scripts. This module is compatible with the BaseHTTPServer module. The
CGIHTTPRequestHandler class also inherits its behavior from SimpleHTTP-
RequestHandler with an added functionality of handling CGI scripts. To handle CGI
requests, the CGIHTTPRequestHandler class implements the cgi_directories
attribute. This attribute contains a list of directories in which CGI scripts can be stored.

Your Web surfing experience must have made you familiar with URLs. (URLs
were introduced in Chapter 10.) Let’s discuss functions that can be used to work
with URLs.

Figure 14.4 The Web page opened by the Web server.

322 Chapter 14

Accessing URLs
While accessing a simple Web page or executing a CGI script, you come across URLs.
Many times, you may need to process the URLs in your scripts. In Chapter 10, we said
that a typical URL consists of a protocol, a host, a domain name, a top-level domain
name, and a path. It may contain a few other components as well. For example, you
must have noticed that when a Web page sends a GET request to a Web server, the URL
passed contains other components as well. You usually see URLs of the following for-
mat on the Web:

protocol://server_loc/path:params?query#frag

Let’s understand each of these components:

protocol refers to the type of protocol to be used.

server_loc refers to the location of the server where the resource to be accessed
or user information is stored. User information can be stored in this component
of URL in the form

user:password@host:port

path refers to the path of a file or a CGI application separated by slashes.

params refers to optional parameters.

query refers to key-value pairs separated by ampersands (&).

frag refers to fragment identifier within a document.

Python provides urllib and urlparse modules to process URLs. Let’s discuss
the functions provided by these modules.

The urlparse Module

The urlparse module provides the functionality of manipulating URL strings. It con-
tains functions to break a URL into tuples, as well as to combine them back to form the
original URL. These functions are urlparse(), urlunparse(), and urljoin().

The urlparse.urlparse() Function

The urlparse() function breaks any URL into a 6-tuple containing the elements
described previously, which are protocol, server_loc, path, params, query, and
frag. The syntax of the urlparse() function is:

urlparse(url[,def_prot_scheme[,allow_frags]])

For example,

>>> import urlparse

>>> urlparse.urlparse(‘http://www.python.org/doc/lib/lib.html’)

(‘http’, ‘www.python.org’, ‘/doc/lib/lib.html’, ‘’, ‘’, ‘’)

Advanced Web Programming 323

The urlparse.urlunparse() Function

The urlunparse() function combines the components of a URL returned by the
urlparse() function back to form the original URL. In other words, the tuple con-
taining six elements (protocol, server_loc, path, params, query, and frag)
returned by the urlparse() function is joined to form a URL by the urlunparse()
function. The syntax of the urlunparse() function is this:

urlunparse(urltuple)

For example,

>>> urltup=(‘http’, ‘www.python.org’, ‘/doc/lib/lib.html’)

>>> urlparse.urlunparse(urltup)

‘http://www.python.org/doc/lib/lib.html’

The urlparse.urljoin() Function

The urljoin() function combines two URLs after excluding the filename from the
first URL. To understand this, let’s first look at the syntax of urljoin():

urlparse.urljoin(baseurl, url [,allowfrag])

The urljoin() function joins baseurl with url after removing the filename, if
provided, from baseurl. For example,

>>> urlparse.urljoin(“http://www.python.org/doc/Newbies.html”,\

“current/tut/tut.html”)

‘http://www.python.org/doc/current/tut/tut.html’

The urllib Module

The urllib module provides the functionality of retrieving data from the Web by
using the given URLs. It also provides functions for encoding and decoding strings so
that they can be suitably used as parts of URL strings.

The urllip.urlopen() Function

The urlopen() function retrieves a Web page and returns a file-like object that can be
manipulated the way any other file object can be manipulated. The syntax of the
urlopen() function is this:

urlopen(url,[,encoded_data])

The urlopen() function opens the URL url. For HTTP GET requests, a query
string should be provided as part of url. You will learn about encoding data in the
next section, the urlencode() function. For POST requests, because data is to be kept
a secret, it is not passed as part of url. Instead, encoded data is passed in

324 Chapter 14

encoded_data. Let’s write a program, urlopenmod.py, to illustrate the retrieval of a
Web page from www.python.org and copy the Web page to another local file.

import urllib

copyfile=open(“copypage.html”,”wb”)

f=urllib.urlopen(“http://www.python.org/”)

data=f.read(500)

while data:

copyfile.write(data)

data=f.read(500)

copyfile.close()

f.close()

The preceding code opens the home page of the official Web site of Python and
transfers it to another HTML file. The code transfers only 500 bytes at a time. The
urllib.urlopen (“http://www.python.org/”) command creates a stream
object. All the usual file object functions can be used with this object. Figure 14.5 shows
the copypage.html file when opened in a browser.

This stream object provides two additional attributes, url and headers. url con-
tains the URL of the page that you are opening, and headers contains a dictionary
that contains page headers. Let’s change the preceding code to urlopenmod1.py to
illustrate the usage of these attributes.

Figure 14.5 The copypage.html file.

Advanced Web Programming 325

import urllib

copyfile=open(“copypage.html”,”wb”)

f=urllib.urlopen(“http://www.python.org/”)

data=f.read(500)

while data:

copyfile.write(data)

data=f.read(500)

print “URL:”, f.url

for key, value in f.headers.items():

print key,”=”,value

copyfile.close()

f.close()

The preceding code generates the following output at the Python prompt:

URL: http://www.python.org/

content-length = 13432

keep-alive = timeout=15, max=100

server = Apache/1.3.20 (Unix)

last-modified = Fri, 11 Jan 2002 03:49:53 GMT

connection = close

etag = “5a7511-3478-3c3e60e1”

date = Fri, 11 Jan 2002 06:46:32 GMT

content-type = text/html

accept-ranges = bytes

The urllib.urlretrieve() Function

The urlretrieve() function does all the work that is performed by urlopenmod.py.
In other words, the urlretrieve() function opens a Web page that is specified in the
network path and copies the Web page to a local file. The syntax of this function is this:

urlretrieve(url[,filename[,downloadstatushook]]

For example,

urllib.urlretrieve(“http://www.python.org/”,”copypage.html”)

This command copies the entire home page of www.python.org to copypage.
html. The optional argument, downloadstatushook, is the name of the function
that is executed after each block of data is copied to a local file.

The urllib.quote() and urllib.quote_plus() Functions

The quote() function converts a string to its encoded version by replacing each spe-
cial character with its %xx escape code. %xx code is the hexadecimal representation of
a character. The syntax of the quote() function is this:

quote(string[,safe])

326 Chapter 14

For example,

>>>urllib.quote(‘http://search.python.org/query.html?qt=CGI&\

col=ftp&col=python’)

‘http%3A//search.python.org/query.html%3Fqt%3DCGI%26col%3Dftp%26col%3Dpy

thon’

In the safe string, you can specify the set characters that you do not want to be con-
verted. However, certain characters are never converted: commas, underscores, dashes,
periods, and alphanumeric characters.

The quote_plus() function also works like the quote() function except that the
quote_plus () function replaces spaces by plus (+) signs.

>>>urllib.quote_plus(‘http://search.python.org/query.html?\

qt=CGI COM&col=ftp&col=python’)

‘http%3A//search.python.org/query.html%3Fqt%3DCGI+COM%26col%3Dftp%26col%

3Dpython’

The urllib.unquote() and urllib.unquote_plus() Functions

The unquote() function converts an encoded string back to the original string. There-
fore, when you supply an encoded string containing %xx codes, the codes are converted
to their ASCII equivalents. The syntax of the unquote() function is this:

unquote(string)

For example,

>>> urllib.unquote(‘http%3A//search.python.org/query.html%3Fqt\

%3DCGI%26col%3Dftp’)

‘http://search.python.org/query.html?qt=CGI&col=ftp’

The unquote_plus() function is similar to the unquote() function, and it con-
verts plus signs to spaces. For example,

>>> urllib.unquote_plus(‘http%3A//search.python.org/query.html%3Fqt\

%3DCGI+COM%26col%3Dftp%26col%3Dpython’)

‘http://search.python.org/query.html?qt=CGI COM&col=ftp&col=python’

The urllib.urlencode() Function

The urlencode() function takes a dictionary and converts it into a URL-encoded
string that can be included as a part of the query in the CGI request string. The key-
value pairs are first encoded in the “key=value” format with each key-value pair sep-
arated by an ampersand (&). The syntax of the urlencode() function is this:

urllib.urlencode(dict)

Advanced Web Programming 327

For example,

>>> dict1={‘name’:’Laura’, ‘studid’:’S001’}

>>> urllib.urlencode(dict1)

‘name=Laura&studid=S001’

Having considered the urlparse and urllib modules to work with URLs, we
will now consider how to develop advanced CGI applications.

Creating Advanced CGI Applications

Problem Statement
Besides offering Web-based training courses, Techsity University also provides instruc-
tor-led training courses. To enhance and test the learning of students, the trainers in the
university have unanimously agreed to send a weekend assignment to students every
week. Catherine, a Web site designer, is assigned the task of preparing a form on the
Web site. A student should be able to enter personal details in the form and upload an
assignment to the university’s Web server. The details in the form should include stu-
dent ID, student name, course ID, and assignment number. After a student clicks the
Submit button on the form, these details and the file uploaded should appear on the
next screen in the browser. The student should also be able to go back to the form and
view the details previously entered.

Task List

� Identify the elements of the Web page for entering assignment details and up-
loading the file.

� Identify the methodology for uploading a file.

� Identify the methodology for storing user information.

� Write the code for the CGI script.

� Execute the CGI script.

Identify the Elements of the Web Page for Entering
Assignment Details and Uploading the File
A form has to be designed as a user interface to gather the required information from a
student. See Table 14.1.

328 Chapter 14

Table 14.1 Elements of the User Interface for Entering Assignment Details

DETAIL TYPE

Student Name Text box

Student ID Text box

Course ID Text box

Assignment Number Text box

File Name/Path A box with a button to browse to the path of the
file to be uploaded

Identify the Methodology for Uploading the File
A file can be uploaded using the file input type:

<input type=”file” name=”File_Uploal” value=”/root/abc.txt”>

This directive adds an empty text box with a button on its side, which allows you to
browse to the path of the file you want to upload. In most browsers, this button reads
Browse. However, some browsers might label it with ellipses (...).

To upload a file to the Web server through a form, you should specify the form
encoding as multipart/formdata. The default form encoding is application/
x-www-form-urlencoded. Therefore, you do not need to specify this encoding
with the FORM tag. For multipart forms, encoding should be specified as follows:

<form method=”post” action=”/cgi-bin/mycgi.py” enctype=”multipart/

form-data”>

Let’s consider a CGI script, uploadfile.py, which uploads a file to a Web server.

#!/usr/local/bin/python2.2

from cgi import FieldStorage

header=”Content-type:text/html\n\n”

dynhtml=”””<html>

<head>

<title>File upload</title>

</head>

<body>

<form action=”/cgi-bin/uploadfile.py” method=”POST”

enctype=”multipart/form-data”>

Advanced Web Programming 329

<input type=”file” name=”file_name” size=”50”>

<input type=”submit”>

</form>

</body>

</html>”””

shtml = ‘’’<HTML><HEAD><TITLE>

</TITLE></HEAD>

<BODY>

<H3>Contents: %s</H3>

<PRE>%s

</PRE>

</BODY></HTML>’’’

form=FieldStorage()

if not form:

print header+dynhtml

elif form.has_key(“file_name”):

fileupload=form[“file_name”]

data=’ ‘

if fileupload.file:

count=0

while 1:

line=fileupload.file.readline()

data=data+line

if not line:

break

count=count+1

print header+shtml % (fileupload.filename,data)

else:

pass

The preceding code is a simple code that sends a file across an HTTP connection
using an HTML form. Notice that the file input type is used to submit multipart form
data to the Web server. The file attribute of the uploaded file is used to read data
from the uploaded file, and the filename attribute of the uploaded file is used to
return the name of the file. When the CGI script is accessed, the screen shown in Figure
14.6 is displayed.

When you use the Browse button on the form to navigate to the file you want to
upload and then click the Submit query button, the screen shown in Figure 14.7 is dis-
played in the browser.

Identify the Methodology for Storing User Information
We will use cookies as the methodology to store user information. Cookies are pieces
of information stored by a Web server on a client computer and managed by a browser.
When a client sends a request to a server for a site visited previously, the server
accesses these cookies to retrieve site-related information. In the case of a request from

330 Chapter 14

Figure 14.6 A form showing file input type.

Figure 14.7 A sample Web page showing the contents of the uploaded file.

Advanced Web Programming 331

a CGI script, the same methodology is applied to retrieve information regarding
repeated requests for the same page. As a result, cookies can be used in the following
cases:

User identification. Cookies provide a link for identifying a user on subsequent
visits to a Web site. Such a methodology can be explained using the example of
an online store. After adding an item to the shopping cart, the HTTP connection
is closed. How is the server able to identify the user during subsequent item
selections? The Web server stores a cookie on a client computer by requesting
the client computer to create a cookie. The cookie is sent back to the Web server
in the form of HTTP headers when a client sends a request to the server.

Username and password specifications. Cookies can be used to store user iden-
tification. Instead of specifying the username and password during subsequent
visits to a Web site, cookies can be used to store the username and the password.
After a user registers on the Web site, a cookie is created with a unique ID that is
associated with a specific user. When the user subsequently visits the site, the
user’s ID is used to identify the registered user without requiring username and
password specifications. Such a methodology is used only for low-security sites.

Web page customizations. Cookies can store user-specified formats that are used
to change the appearance of Web pages according to users’ preferences. The
changed format of a page is retained and can be retrieved during subsequent
visits to the site.

Each cookie contains several bits of information, such as a variable name, a value, an
expiration date, and a path. The variable name and the value are stored in a cookie in
the form of key-value pairs separated by equal (=) signs and delimited by semicolons
(;). The number of cookies and amount of information that can be stored on a computer
can be limited to save hard disk space. The values must be shorter than 2KB, and the
size of all cookies from one site must be less than 20KB total. The expiration date con-
tains the time interval for retaining a cookie on a computer. The path in the cookie
determines the locations on the site for the validity period of a cookie. For example, if
your application is stored at the URL /cgi-bin/app/myapp.py and it sets a cookie
whose path is “/”, then that cookie will be sent when you visit any URL on the whole
site.

In Python, the Cookie module handles cookies. Let’s examine the use of the
Cookie module.

The Cookie Module

The Cookie module has many classes that handle the creation of cookie objects. The
base class for the creation of all cookie objects is Cookie. A cookie object can be created
using the Cookie class as follows:

>>> import Cookie

>>> cookie=Cookie.Cookie()

332 Chapter 14

A cookie object contains key-value pairs and behaves like a dictionary. Therefore, a
value can be assigned and extracted like a dictionary. This cookie object supports all
the cookie attributes defined by RFC 2109. For example,

>>> cookie[‘studname’]=’Laura Jones’

>>> cookie[‘studid’]=200

>>> cookie[‘studid’].value

200

When assigning value to cookies, nonstring objects are converted to string objects.
A cookie can be displayed as follows:

>>> print cookie

Set-Cookie: studname=”Laura Jones”;

Set-Cookie: studid=”I200\012.”;

Let’s now write the code for calculating the hit count for a Web page. The following
CGI script, hitcount.py, calculates the number of times a client visits a Web page,
assigns a random ID to the client, and returns the hit count and the ID to the client.

#!/usr/bin/python2.2

import Cookie

import cgi

import os

from random import randint

dynhtml=’’’<HTML><HEAD><TITLE>

Hit Count</TITLE></HEAD>

<HR><CENTER><BODY><H2>You have visited this page %s time(s)</H2>

<p><H3>Your visitor ID is: %s</p></H3><CENTER>

<HR>

</BODY></HTML>’’’

def getCookie(initialvalues={}):

if os.environ.has_key(‘HTTP_COOKIE’):

C=Cookie.Cookie(os.environ[‘HTTP_COOKIE’])

else:

C=Cookie.Cookie()

for eachkey in initialvalues.keys():

if not C.has_key(eachkey):

C[eachkey]=initialvalues[eachkey]

elif C.has_key(‘studid’):

C[‘studid’]=”S”+str(randint(10,100))

pass

return C

if __name__==’__main__’:

cookie=getCookie({‘counter’:0,’studid’:”S01”})

cookie[‘counter’]=int(cookie[‘counter’].value)+1

print cookie

print “Content-type: text/html\n\n”

print dynhtml %(cookie[‘counter’].value, cookie[‘studid’].value)

When you access hitcount.py by using a browser, a screen as shown in Figure 14.8
appears.

Advanced Web Programming 333

Figure 14.8 The browser output on first access to hitcount.py.

Close the browser and open it again. When you execute the hitcount.py script again,
the hit count changes and a different student id is generated, as shown in Figure 14.9.

Let’s understand the working of the preceding code. The getCookie() function
checks the existence of cookies by using the environment variable HTTP_COOKIE.
When a cookie exists on the client side, which is set by the server on the first visit to a
CGI script, requests to the server can be sent using the HTTP_COOKIE environment
variable. The initial key-value pairs that should be used for the first visit are passed to

Figure 14.9 The browser output on second access to hitcount.py.

334 Chapter 14

getCookie() by using the initialvalues dictionary as a parameter. If some of the
cookie values haven’t been set, they are added to the cookie by using the initial-
values dictionary. The getCookie() function finally returns a cookie object. The hit
count is displayed on the client browser for the first visit by adding 1 to the value of
counter. Actually, this is the value that is displayed on the client side that is stored in
the cookie. Every time the client accesses this script, the value of counter and, in turn,
the value stored in the cookie are increased by one. This is the value that is displayed
as the hit count.

After understanding the concept of uploading files and cookies, let’s write the code
for uploading a weekend assignment for Techsity University.

Write the Code for the CGI Script
Let’s write the code for the CGI script.

#!/usr/local/bin/python2.2

from cgi import FieldStorage

from os import environ

from cStringIO import StringIO

from urllib import quote, unquote

#from string import strip,split, join

class myCGI:

header = ‘Content-Type: text/html\n\n’

url = ‘/cgi-bin/assignmentcgi1.py’

formhtml = ‘’’<html>

<head>

<title>Tecksity University Assignment Form</title>

</head>

<body bgcolor=”#FFFFFF” text=”#000000”>

<div align=”center”>

<form name=”form1” method=”post” action=”%s”

enctype=”multipart/form-data”>

<h1><U>Weekend Assignment Form</U></h1>

<h2>Student ID:<i> %s </i></h2>

<table width=”400” border=”1” bgcolor=”#CCCCCC”>

<tr>

<td width=”100”>Student ID</td>

<td width=”189”>

<input type=”text” name=”cookie” value=”%s”>

</td>

</tr>

<tr>

<td width=”100”>Student Name</td>

<td width=”189”>

<input type=”text” name=”Stud_Name” value=”%s”>

</td>

</tr>

<tr>

<td width=”100”>Course ID </td>

Advanced Web Programming 335

<td width=”189”>

<input type=”text” name=”Course_ID” value=”%s”>

</td>

</tr>

<tr>

<td width=”100”>Assignment No.</td>

<td width=”189”>

<input type=”text” name=”Assign_No” value=”%s”>

</td>

</tr>

<tr>

<tr>

<td width=”100”>Assignment</td>

<td width=”189”>

<input type=”file” name=”File_Upl” value=”%s”>

</td>

</tr>

</table> <p>

<input type=”submit” name=”Submit” value=”Submit”>

</p>

</form>

<h1> </h1>

<h3> </h3>

</div>

</body>

</html>’’’

def FBCookies(self): # reads cookies from client

if environ.has_key(‘HTTP_COOKIE’):

for eachCook in environ[‘HTTP_COOKIE’].split(‘;’):

eachCook=eachCook.strip()

if len(eachCook) > 5 and eachCook[:2] == ‘FB’:

tag = eachCook[2:6]

try:

self.cookies[tag] = eval(unquote(eachCook[7:]))

except (NameError, SyntaxError):

self.cookies[tag] = unquote(eachCook[7:])

else:

self.cookies[‘info’] = self.cookies[‘stid’] = ‘’

if self.cookies[‘stid’] != ‘’:

self.studname,self.courseid,self.assignno,self.f_name \

= self.cookies[‘info’].split(‘$’)

else:

self.studname = self.f_name = self.courseid=self.assignno=’’

def showForm(self): # show fill-out form

self.FBCookies()

if not self.cookies.has_key(‘stid’) or self.cookies[‘stid’] == ‘’:

cookStatus = studidCook = ‘’

336 Chapter 14

else:

studidCook = cookStatus = self.cookies[‘stid’]

print myCGI.header + myCGI.formhtml % \

(myCGI.url,cookStatus, studidCook, self.studname,\

self.courseid,self.assignno,self.f_name)

errhtml = ‘’’<HTML><HEAD><TITLE>

Assignment Submission</TITLE></HEAD>

<BODY><H3>ERROR</H3>

%s<P>

<FORM><INPUT TYPE=button VALUE=Back

ONCLICK=”window.history.back()”></FORM>

</BODY></HTML>’’’

def displayError(self):

print myCGI.header + myCGI.errhtml % (self.error)

shtml = ‘’’<HTML><HEAD><TITLE>

</TITLE></HEAD>

<BODY>

<h1 align=”left”><u>Uploaded Data for Student %s </u></h1>

<H3>Student Name : %s</H3>

<H3>Course ID : %s</H3>

<H3>Assignment No. : %s</H3>

<h2><u>

Uploaded

file details:</u></h2>

<h3>File Name: %s</h3>

<H3>Contents:</H3>

<PRE>%s

</PRE>

Click here to go back

to the form.

</BODY></HTML>’’’

def setFBCookies(self):

for eachCook in self.cookies.keys():

print ‘Set-Cookie: FB%s=%s; path=/’ % \

(eachCook, quote(self.cookies[eachCook]))

def doResults(self):

totbytes = 1024

filedata = ‘’

while len(filedata) < totbytes: # read each line

#from the file

data = self.f_data.readline()

if data == ‘’: break

filedata = filedata + data

else: # truncate if too long

filedata = filedata + \

‘... <I>(file too long to truncated)</I>’

self.f_data.close()

if filedata == ‘’:

filedata = ‘<I>(file upload error or file not

supplied)</I>’

Advanced Web Programming 337

filename = self.f_name

if not self.cookies.has_key(‘stid’) or self.cookies[‘stid’] == ‘’:

cookStatus = ‘<I>(cookie has not been set yet)</I>’

studidCook = ‘’

else:

studidCook = cookStatus = self.cookies[‘stid’]

self.cookies[‘info’] = ‘$’.join\

([self.studname,self.courseid,self.assignno,filename])

self.setFBCookies()

print myCGI.header + myCGI.shtml %\

(cookStatus, self.studname,self.courseid,\

self.assignno,filename, filedata, myCGI.url)

def start(self): # determine which page to return

self.cookies = {}

self.error = ‘’

form = FieldStorage()

if form.keys() == []:

self.showForm()

return

if form.has_key(‘Stud_Name’):

val=form[‘Stud_Name’].value

self.studname = val.strip().capitalize()

if self.studname == ‘’:

self.error = ‘Your name is required. (blank)’

else:

self.error = ‘Your name is required. (missing)’

if form.has_key(‘Course_ID’):

val=form[‘Course_ID’].value

self.courseid = val.strip().capitalize()

if self.courseid == ‘’:

self.error = ‘Course ID is required. (blank)’

else:

self.error = ‘Course ID is required. (missing)’

if form.has_key(‘Assign_No’):

val=form[‘Assign_No’].value

self.assignno = val.strip().capitalize()

if self.assignno == ‘’:

self.error = ‘Assignment Number is required. (blank)’

else:

self.error = ‘Assignment Number is required. (missing)’

if form.has_key(‘cookie’):

self.cookies[‘stid’] = unquote(form[‘cookie’].value.strip())

else:

self.cookies[‘stid’] = ‘’

if form.has_key(‘File_Upl’):

File_Upl = form[“File_Upl”]

self.f_name = File_Upl.filename or ‘’

if File_Upl.file:

self.f_data = File_Upl.file

else:

self.f_data = StringIO(‘(no data)’)

338 Chapter 14

else:

self.f_data = StringIO(‘(no file)’)

self.f_name = ‘’

if not self.error:

self.doResults()

else:

self.displayError()

if __name__ == ‘__main__’:

page = myCGI()

page.start()

Execute the CGI Script
To execute the CGI script, perform the following steps:

1. Save the preceding file in /var/www/cgi-bin directory as assignmentcgi.py.

2. Type the following command:

$ chmod +x /var/www/cgi-bin/assignmentcgi.py

3. In the address bar of Netscape Navigator, enter the following URL:

http://localhost/cgi-bin/formresults.py

4. Assuming that a text file Assignment.txt exists in the /root directory, enter
details in the Web page, as shown in Figure 14.10.

Figure 14.10 Web page with assignment details.

Advanced Web Programming 339

Figure 14.11 Web page showing assignment details and contents of Assignment.txt.

5. Click the Submit button. A page showing the details entered in step 4 appears
along with the contents of Assignment.txt, as shown in Figure 14.11.

6. Scroll to the bottom of the page, and click the hyperlink denoted by back.

7. The Weekend Assignment form appears again, showing the details that were
added, as shown in Figure 14.12.

Summary
In this chapter, you learned the following:

■■ You can create Web servers by using the following modules:
The SocketServer module. Used for creating general IP servers.

The BaseHTTPServer module. Provides the infrastructure required for cre-
ating HTTP servers.

The SimpleHTTPServer module. Used for creating simple Web servers.

The CGIHTTPServer module. Used for creating Web servers that support CGI.

■■ You can use the following modules to process URLs:
The urlparse module. Provides the functionality of manipulating URL

strings.

The urllib module. Provides the functionality of retrieving data from the
Web by using the given URLs.

340 Chapter 14

Figure 14.12 Web page showing assignment details after using cookies to extract them.

■■ A file can be uploaded using the file input type as shown here:

<input type=”file” name=”File_Upload” value=”/root/abc.txt”>

■■ To upload a file to the Web server through a form, form encoding should be
specified as multipart/formdata.

■■ The file attribute of the uploaded file is used to read data from the uploaded
file, and the filename attribute of the uploaded file is used to return the name
of the file.

■■ Cookies are pieces of information stored by a Web server on a client computer,
and they are managed by a browser.

■■ The Cookie module has many classes that handle the creation of cookie
objects. The base class for the creation of all cookie objects is Cookie.

■■ A cookie object contains key-value pairs and behaves like a dictionary. Therefore,
a value can be assigned and extracted like a dictionary.

Advanced Web Programming 341

343

OBJECTIVES:

In this chapter, you will learn to do the following:

� Identify the significance of the Tkinter module

� Identify the steps to create a GUI application

� Identify the widgets provided by the Tkinter module

� Use various widgets in your application

Getting Started

Until now, this book has discussed how to create applications that work on the com-
mand-line interface. You execute a Python script and view its output at the Python
prompt. If the application requires user input, you enter the input at the prompt. At
times, text-based applications can be very monotonous and difficult to work with. This
chapter can be helpful for those who want to learn to develop user-friendly graphic
interfaces. Imagine how exciting it will be to enable a user to enter the required details
in a window with different controls for each detail where the user can activate or
choose options by simply pointing or clicking with a mouse instead of asking for

GUI Programming with Tkinter

C H A P T E R

15

C H A P T E R

details on the Python prompt. Such applications that interact with a user by means of
an interface represented using icons, menus, and dialog boxes on the screen are called
graphical user interface (GUI) applications.

In this chapter, you will learn about Tkinter, the official GUI framework for Python,
to create GUI applications. As a part of this, you will learn about various controls that
can be included in a GUI interface. You will further enhance the skills gained in the
chapter by designing a GUI application. Before moving on to the concepts related to
Tkinter, let’s take a brief look at GUI applications.

A graphical user interface (GUI) application, like a painting, has a user interface. In
the case of a painting, the canvas holds various components, such as lines, circles, and
boxes. Similarly, a GUI application consists of a number of controls, such as text boxes,
labels, and buttons, which are contained inside a window. You would have come
across a number of GUI applications in day-to-day life. These applications could range
from an online registration form on a Web site to a calculator used in home PCs.

Python enables you to create visually appealing GUI applications by using Tkinter.
The following section discusses Tkinter.

Introduction to Tkinter
Tkinter is the standard GUI library for Python. Python when combined with Tkinter
provides a fast and easy way to create GUI applications. Tkinter provides a powerful
object-oriented interface to the Tk GUI toolkit. Tkinter provides various controls, such
as buttons, labels, and text boxes, used in a GUI application. These controls are com-
monly called widgets.

As mentioned earlier, creating a GUI application using Tkinter is an easy task. All
you need to do is perform the following steps:

1. Import the Tkinter module.

2. Create the GUI application window.

3. Add widgets to the GUI application.

4. Enter the main event loop.

Let’s now elaborate on how to perform these steps.

Import the Tkinter Module

The Tkinter module contains all the classes and widgets required to create a GUI
application. To use this module in your application, you need to import it. The follow-
ing code statement will help you import the Tkinter module.

import Tkinter #Statement 1

You can also import all the methods, classes, and attributes from the Tkinter mod-
ule by using the following module.

from Tkinter import * #Statement 2

344 Chapter 15

Create the Application Window

Any GUI application should first contain a top-level window, or a root window, that can
further contain the various objects required in the application. The objects contained in
the root window could be widgets, such as buttons and labels, or other windows. To
create a root window for your application, use the following statement.

top = Tkinter.Tk()

If you use the from-import statement to import all the elements from the Tkinter
module, then you need to replace the preceding statement with this one:

top = Tk()

Add Widgets to the Application

Using Tkinter, you can add a number of widgets to your Python application. These
widgets can be stand-alone or containers. Stand-alone widgets are the ones that do not
contain any other widgets, such as a button, a checkbox, and a label. Container widgets
are the ones that contain other widgets, such as a frame and a window. A container
widget is called a parent widget, and the contained widgets are called child widgets.
Various widgets provided by Tkinter are listed in Table 15.1.

Table 15.1 Widgets Provided by Tkinter

WIDGETS DESCRIPTION

Button The Button widget is used to display buttons in your
application.

Canvas The Canvas widget is used to draw shapes, such as lines,
ovals, polygons, and rectangles, in your application.

Checkbutton The Checkbutton widget is used to display a number of
options as checkboxes. The user can select multiple options
at a time.

Entry The Entry widget is used to display a single-line text field for
accepting values from a user.

Frame The Frame widget is used as a container widget to organize
other widgets.

Label The Label widget is used to provide a single-line caption for
other widgets. It can also contain images.

Listbox The Listbox widget is used to provide a list of options to
a user.

continues

GUI Programming with Tkinter 345

Table 15.1 Widgets Provided by Tkinter (Continued)

WIDGETS DESCRIPTION

Menubutton The Menubutton widget is used to display menus in your
application.

Menu The Menu widget is used to provide various commands to a
user. These commands are contained inside Menubutton.

Message The Message widget is used to display multiline text fields for
accepting values from a user.

Radiobutton The Radiobutton widget is used to display a number of
options as radio buttons. The user can select only one option
at a time.

Scale The Scale widget is used to provide a slider widget.

Scrollbar The Scrollbar widget is used to add scrolling capability to
various widgets, such as list boxes.

Text The Text widget is used to display text in multiple lines.

Toplevel The Toplevel widget is used to provide a separate window
container.

You will learn to add widgets to your application later in this chapter.

Enter the Main Event Loop

After you design an application by adding appropriate widgets, you need to execute
the application. When an application is executed, it enters an infinite loop. This loop
includes waiting for an event, such as a mouse-click, processing the event, and then
waiting for the next event. The statement that helps your application enter the infinite
loop is this:

Tkinter.mainloop()

If you use the from-import statement to import all the elements from the Tkinter
module, then you need to replace the preceding statement with this one:

top.mainloop()

In the preceding statement, top refers to the top-level window.
Let’s put the pieces together and consolidate the code to display a window by using

the Tkinter module.

import Tkinter

top = Tkinter.Tk()

#Code to add widgets

Tkinter.mainloop()

346 Chapter 15

Figure 15.1 A sample window.

You can also rewrite the preceding code as follows:

from Tkinter import *

top = Tk()

#Code to add widgets

top.mainloop()

The output of the preceding code is shown in Figure 15.1.
Now that you understand the basic steps involved in creating a GUI application by

using Tkinter, let’s start with creating a GUI application.

Creating a GUI Application

Problem Statement
Techsity University offers a number of courses. Each course has certain prerequisites
that a student needs to meet to apply for that course. In addition, a student needs to be
21 years of age to be eligible for applying. The online site of Techsity University has a
way to inform students about the prerequisites of a course. All that a student needs to
do is fill out an online form. This form requires the details of the course selected and
displays the prerequisites for the course. This form also indicates whether a course is
offered part time.

You, as a developer, have been assigned the task of designing a form and writing the
code that performs the required job. The code, when executed, will display a form that
prompts a student to provide certain input. The result is then displayed in a message
box when a button is clicked. Moreover, a student is addressed appropriately in the
message box—for example, Mr. Tom Smith. Let’s identify the tasks needed to create
this application. As an add-on, you need to create buttons that clear all the widgets
present in the window and close the window.

GUI Programming with Tkinter 347

Task List

� Identify the components of the user interface of the form.

� Identify the Tkinter elements to design the user interface.

� Write the code for the user interface.

� Execute the code.

Identify the Components of the User Interface
A form has to be designed as a user interface to gather the required information from a
student:

■■ Personal details

The user’s name that can be split into two parts, first name and last name

The age of the student

The gender of the student

■■ Course details

The course selected

Whether the course is offered part time

Identify the Tkinter Widgets to Design the User Interface
Table 15.2 describes the Tkinter widgets to be used for the design of the form.

Table 15.2 Widgets to Be Used in the Window

WIDGET PURPOSE

Label To provide captions for various other widgets.

Entry To display a single-line entry field for accepting values,
such as the first name and the last name.

Listbox To display a list of available courses.

Radiobutton To accept the gender of a student.

Checkbutton To provide the option of checking the availability of a
part-time course.

Button To display the prerequisite for the opted course, clear the
widgets, and close the window.

Frame To organize various radio buttons and buttons.

348 Chapter 15

Let’s now look at the details of these components.

The Label Widget

The Label widget is used to display text or provide captions for other widgets. For
example, you can use a label to provide captions for various other widgets present in a
window. In addition, you can display bitmaps and images in a label. Use the following
syntax to display a text label in a window.

L1 = Label(top, text=”Hello World”)

In the preceding code,

■■ top refers to the window on which the label is to be displayed.

■■ text option is used to specify the text to be displayed in the label.

You can also specify the width and height of a label by using the width and height
options, respectively. The statement to do so is as follows:

L1 = Label(top, text=”Hello World”, width = 20, height =5)

The complete code that creates a label in a window (as shown in Figure 15.2) is as
follows:

from Tkinter import *

top = Tk()

L1 = Label(top, text=”Hello World”, width = 20, height =5)

L1.pack()

top.mainloop()

If the label displays text, then the unit of measurement is text units. If the label dis-
plays an image, then the unit of measurement is pixels.

Table 15.3 lists some other options that you can use with the Label widget.

Figure 15.2 A sample window displaying a label.

GUI Programming with Tkinter 349

Table 15.3 Various Options of the Label Widget

OPTION DESCRIPTION

bitmap bitmap specifies the bitmap to be displayed.

borderwidth borderwidth specifies the width of the label border.

bg bg specifies the background color of the label.

fg fg specifies the color of the text present in the label.

font font specifies the font of the text to be displayed.

justify justify specifies the alignment of multiple lines of text.
Various possible values are LEFT, RIGHT, or CENTER.

The Entry Widget

The Entry widget is used to accept single-line text strings from a user. Let’s now look
at the syntax to display an Entry widget in your application.

E1 = Entry(top)

Like the Label widget, you can use various options with the Entry widget. Some
of these options are listed in Table 15.4.

The following code statement implements some of the options of the Entry widget.

E1 = Entry(top, bd =5, fg = “red”, relief = RAISED)

The preceding statement displays a text field in the top window. The border width
of this window is five pixels, and the color of the text is red.

Table 15.4 Various Options of the Entry Widget

OPTION DESCRIPTION

bd bd specifies the width of the Entry widget border.

bg bg specifies the background color of the Entry widget.

fg fg specifies the color of the text in the Entry widget.

font font specifies the font of the text in the text field.

relief relief specifies the type of the border. Some of the
values are SUNKEN, RAISED, GROOVE, and RIDGE.

350 Chapter 15

Figure 15.3 A sample window displaying an Entry widget.

Following is the complete code to display an Entry widget:

from Tkinter import *

top = Tk()

E1 = Entry(top, bd =5, fg = “red”, relief = RAISED)

E1.pack()

top.mainloop()

This field appears raised (as shown in Figure 15.3).
In addition to these options, an Entry widget also provides a number of methods.

Table 15.5 lists some of these methods.

Table 15.5 Various Methods to Manipulate the Entry Widget

METHOD FUNCTION EXAMPLE

insert(index, text) This method inserts text at E1.insert
the given index. Some of (INSERT, “Hello”)
the values used to specify
index are INSERT and END. This statement inserts

Hello at the current
cursor position.

delete(index) This method deletes the E1.delete(1)
character at the specified
index. This statement deletes

the character at the
index position 1.

delete(from, to) This method deletes the E1.delete(0, END)
characters within the
specified range. This statement deletes

all the characters
present in a string.

get() This method retrieves the E1.get()
contents present in the
text field. This statement returns

the contents of the E1
Entry widget.

GUI Programming with Tkinter 351

Before proceeding further, let’s look at a code sample to display an entry field for a
username along with a suitable caption.

from Tkinter import *

top = Tk()

L1 = Label(top, text=”User Name”)

E1 = Entry(top, bd =5)

top.mainloop()

When you execute the preceding code, the corresponding window that appears does
not display any control in the window because you did not arrange the widgets in the
parent window. Tkinter provides you with various classes that help you organize the
placement of widgets in a window. These classes are also called geometry managers.

Geometry Managers
Widgets in a window should be in a proper layout so that they do not appear scattered.
For this purpose Tkinter provides a powerful concept called geometry management.
Geometry management is the technique used to organize widgets in their container
widget. Tkinter provides a powerful and flexible model to manage the placement of
widgets in a container.

To organize various widgets inside a window or another widget, Tkinter provides
three classes or geometry managers: pack, grid, and place. The following list
describes these classes.

■■ The pack geometry manager organizes widgets in rows or columns inside the
parent window or the widget. To manage widgets easily, the pack geometry
manager provides various options, such as fill, expand, and side.

fill. The fill option is used to specify whether a widget should occupy
all the space given to it by the parent window or the widget. Some of the
possible values that can be used with this option are NONE, X, Y, or BOTH.
By default, the fill option is set to NONE.

expand. The expand option is used to specify whether a widget should
expand to fill any extra space available. The default value is zero, which
means that the widget is not expanded.

side. The side option is used to specify the side against which the widget
is to be packed. Some of the possible values that can be used with this option
are TOP, LEFT, RIGHT, and BOTTOM. By default, the widgets are packed
against the TOP edge of the parent window.

Let’s now rewrite the code to display a Label and an Entry widget that we dis-
cussed in the previous section by using the pack class.

from Tkinter import *

top = Tk()

L1 = Label(top, text=”User Name”)

L1.pack(side=LEFT)

E1 = Entry(top, bd =5)

E1.pack(side=RIGHT)

top.mainloop()

352 Chapter 15

Figure 15.4 Organizing widgets by using the pack geometry manager.

When you execute the preceding code, a window containing both the widgets
appears, as shown in Figure 15.4.

■■ The grid geometry manager is the most flexible and easy-to-use geometry
manager. It logically divides the parent window or the widget into rows and
columns in a two-dimensional table. You can then place a widget in an appro-
priate row and column format by using the row and column options, respec-
tively. To understand the use of row and column options, consider the
following code.

from Tkinter import *

top = Tk()

L1 = Label(top, text=”User Name”)

L1.grid(row=0, column=0)

E1 = Entry(top, bd =5)

E1.grid(row=0, column=1)

top.mainloop()

When you execute the preceding code, a window containing both the widgets
appears, as shown in Figure 15.5.

■■ The place geometry manager allows you to place a widget at the specified
position in the window. You can specify the position either in absolute terms or
relative to the parent window or the widget. To specify an absolute position,
use the x and y options. To specify a position relative to the parent window or
the widget, use the relx and rely options. In addition, you can specify the
size of the widget by using the width and height options provided by this
geometry manager.

Let’s now look at the code to implement the place geometry manager.

from Tkinter import *

top = Tk()

L1 = Label(top, text=”User Name”)

L1.place(relx=0.0, rely=0.0)

E1 = Entry(top, bd =5)

E1.place(relx=0.4, rely = 0.0)

top.mainloop()

Figure 15.5 Organizing widgets by using the grid geometry manager.

GUI Programming with Tkinter 353

Figure 15.6 Organizing widgets by using the place geometry manager.

When you execute the preceding code, a window containing both the widgets
appears, as shown in Figure 15.6.

NOTE While using the relx and rely options, 0.0 refers to the upper left
edge and 1.0 refers to the lower right edge.

The Button Widget

The Button widget is used to add buttons in a Python application. These buttons can
display text or images that convey the purpose of the buttons. You can attach a func-
tion or a method to a button, which is called automatically when you click the button.
Consider the following statement that is used to display a button.

self.w=Button(top, text =”Say Hello”, command=self.Call_Hello)

In the preceding code,

■■ top represents the parent window.

■■ The text option is used to specify the text to be displayed on the button.

■■ The command option is used to specify the function or procedure that is called
when a user clicks the button. In this case, the Call_Hello() method is called.

Table 15.6 lists some of the options that can be used with the Button widget.

Table 15.6 Various Options of the Button Widget

OPTION DESCRIPTION

bg bg specifies the background color of the button.

fg fg specifies the color of the text in the button.

font font specifies the font of the text.

354 Chapter 15

OPTION DESCRIPTION

relief relief specifies the type of the border. Some of the values
are SUNKEN, RAISED, GROOVE, and RIDGE.

image image specifies the image to be displayed in the button.

width, height width and height specify the size of the button.

Let’s now look at a code snippet that displays a button and then displays a message
to say hello to the user.

import Tkinter

import tkMessageBox

top = Tkinter.Tk()

def hello():

tkMessageBox.showinfo(“Say Hello”, “Hello World”)

B1 = Tkinter.Button(top, text = “Say Hello”, command = hello)

B1.pack()

top.mainloop()

When you execute the preceding code, a window containing a button appears, as
shown in Figure 15.7. Next, you click the Say Hello button, and a message displaying
Hello World appears.

You would have noticed that in the preceding code, we used a module called
tkMessageBox. The following section discusses the details of this module.

The tkMessageBox Module

The tkMessageBox module is used to display message boxes in your applications.
This module provides a number of functions that you can use to display an appropri-
ate message. Some of these functions are showinfo, showwarning, showerror,
askquestion, askokcancel, askyesno, and askretryignore. The syntax to dis-
play a message box is this:

tkMessageBox.FunctionName(title, message [, options])

In the preceding code,

■■ FunctionName is the name of the appropriate message box function.

■■ ttitle is the text to be displayed in the title bar of a message box.

Figure 15.7 A sample window containing a button.

GUI Programming with Tkinter 355

■■ message is the text to be displayed as a message.

■■ options are alternative choices that you may use to tailor a standard message
box. Some of the options that you can use are default and parent. The default
option is used to specify the default button, such as ABORT, RETRY, or IGNORE
in the message box. The parent option is used to specify the window on top
of which the message box is to be displayed.

NOTE Before using the tkMessageBox module, you need to import it by
using the following statement:

import tkMessageBox

The Listbox Widget
The Listbox widget is used to display a list of items from which a user can select a
number of items. To create a list box in your application, use the following syntax.

Lb1 = Listbox(top)

The preceding code creates a blank list box, as shown in Figure 15.8. Therefore, you
need to add items to it. To do so, you use the insert method. The syntax of this
method is described here.

Lb1.insert(index, item)

In the preceding syntax,

■■ index refers to the index position at which an item is to be inserted. Some of the
possible values of an index are INSERT and END. The INSERT value places the
item at the current cursor position, and the END value places the item at the end.

■■ item refers to the value to be inserted. Item can be of the text type only.

For example,

Lb1.insert(END, “Rose”)

The preceding statement inserts the item Rose at the end of the Lb1 listbox.
Let’s now write a complete code to insert a listbox in a window.

from Tkinter import *

import tkMessageBox

top = Tk()

Lb1 = Listbox(top)

Lb1.insert(1,”Python”)

Lb1.insert(2,”Perl”)

Lb1.insert(3,”C”)

Lb1.insert(4,”PHP”)

Lb1.insert(5,”JSP”)

Lb1.insert(6,”Ruby”)

Lb1.pack()

top.mainloop()

356 Chapter 15

Figure 15.8 A Window containing the Listbox widget.

The preceding code creates a Listboxwidget containing the names of different lan-
guages at the specified indices, as shown in Figure 15.8.

The Listbox widget provides a number of other methods that ease your working
with this widget. Some of these methods are listed in Table 15.7.

Table 15.7 Methods Provided by the Listbox Widget

METHOD FUNCTION EXAMPLE

curselection() This method retrieves the Lb1.curselection()
index position of the
selected index. This statement returns

the index position of the
currently selected item.

delete(index) This method deletes the Lb1.delete(1)
item at the specified index.

This statement deletes
the item at the index
position 1.

delete(first, last) This method deletes the Lb1.delete(0, END)
items within the specified
range. For example, you This statement deletes
can use 0, END to delete all the items present in
all the items in the list. the list box.

get(index) This method retrieves the E1.get(1)
item present at the
specified index. This statement returns

the item present at the
index position 1 of the
list box.

GUI Programming with Tkinter 357

Figure 15.9 A window containing the Checkbutton widget.

The Checkbutton Widget

The Checkbutton widget is used to display a number of options to a user as toggle
buttons. The user can then select one or more options by clicking the button corre-
sponding to each option. You can also display images in place of text. The syntax to dis-
play a check button in an application is this:

CheckVar = IntVar()

C1 = Checkbutton(top, text = “Music”, variable = CheckVar)

In the preceding syntax,

■■ top refers to the parent window.

■■ The text option specifies the text to be displayed.

■■ The variable option attaches a Tkinter variable (CheckVar) to the check
button. When you click the button, the value contained in the variable is
toggled between the on value and the off value, which specifies whether
the button is checked or unchecked. You can set these values by using the
onvalue and offvalue options.

Let’s write the code to display a Checkbutton widget in a window.

from Tkinter import *

import tkMessageBox

top = Tkinter.Tk()

CheckVar = IntVar()

C1 = Checkbutton(top, text = “Music”, variable = CheckVar, \

onvalue = 1, offvalue = 0)

C1.pack()

top.mainloop()

The preceding code creates a check button, Music, as shown in Figure 15.9.
Table 15.8 lists some of the methods that you can use with a check button.

Table 15.8 Methods Provided by the Checkbutton Widget

METHOD FUNCTION EXAMPLE

deselect() To deselect the button C1.deselect()

select() To select the button C1.deselect()

toggle() To reverse the toggle state of the button C1.toggle()

358 Chapter 15

The Radiobutton Widget

Like the Checkbutton widget, the Radiobutton widget is also used to display a
number of options to a user as toggle buttons. A user can select only one option at a
time, though. The syntax to display a radio button is this:

from Tkinter import *

import tkMessageBox

top = Tkinter.Tk()

RadioVar = IntVar()

R1 = Radiobutton(top, text = “Male”, variable = RadioVar, value = 1)

R1.pack()

R2 = Radiobutton(top, text = “Female”, variable =RadioVar,value = 2)

R2.pack()

top.mainloop()

The preceding code creates two radio buttons, Male and Female, as shown in
Figure 15.10. You need to add these buttons to one group so that a user can select only
one of them at a time. To do so, ensure that the variable option points to the same
variable name (RadioVar).

Like the Checkbutton widget, a Radiobutton widget also supports select()
and deselect() methods. These methods are used to select and deselect the button,
respectively.

The Frame Widget

The Frame widget is a container widget used to organize other widgets. Frame refers
to a rectangular area on a parent window. To understand the use of the Frame widget,
consider a situation in which you need to add a number of radio buttons to your appli-
cation. Organizing a large number of radio buttons in the parent window is a tedious
task. Therefore, to simplify this process, you can add all the radio buttons to a frame
and then add the frame to the parent window. The syntax to create a frame is this:

F1 = Frame(top, width = 100, height = 100)

The preceding code creates a frame of the size that is specified using the width and
height options. This frame is created in the top window.

The following code demonstrates the process of adding widgets to a frame.

r1=Radiobutton(F1, text=”Male”, variable=v, value=1)

r2=Radiobutton(F1, text=”Female”, variable=v, value=2)

Figure 15.10 A window containing the Radiobutton widget.

GUI Programming with Tkinter 359

Write the Code for the User Interface
After identifying the widgets required to design the user interface, let’s write the code
for the user interface to display the prerequisites of a course.

from Tkinter import *

import tkMessageBox

class App:

def __init__(self, master):

#First Name

Label(master, text=”First Name”).grid(row=0)

self.e1=Entry(master)

self.e1.grid(row=0, column=1)

#Last Name

Label(master, text=”Last Name”).grid(row=1)

self.e2=Entry(master)

self.e2.grid(row=1, column=1)

#Age

Label(master, text=”Age”).grid(row=2)

self.e3=Entry(master)

self.e3.grid(row=2, column=1)

#Blank

Label(master, text=””, width=5).grid(row=0, column=3)

#Gender

Label(master, text=”Gender”).grid(row=0, column=4)

self.f1=Frame(master, relief= “sunken”, bd=2)

self.v=IntVar()

self.r1=Radiobutton(self.f1, text=”Male”,\

variable=self.v, value=1).pack(anchor=W)

self.r2=Radiobutton(self.f1, text=”Female”,\

variable=self.v, value=2).pack(anchor=W)

self.f1.grid(row=1, column=4)

#Blank

Label(master, text=””).grid(row=3)

#Course Applied For

Label(master, text=”Course Applied for:”,

wraplength=60).grid(row=4)

self.L1 = Listbox(master, width = 25, height = 4)

for item in [“Quality Management (Adv.)”,\

“Financial Management (Adv.)”,\

“Project Management (Adv.)”,\

“Project Management (Int.)”]:

self.L1.insert(END, item)

self.L1.grid(row=4, column=1)

#Buttons

self.f2=Frame(master)

self.w=Button(self.f2, text =”Prerequisites”, height =1,\

width=10, command=self.Chk_Prereq, default=ACTIVE).pack()

self.w1=Button(self.f2, text =”Clear”, height =1, \

width=10, command=self.Clear).pack()

360 Chapter 15

self.w2=Button(self.f2, text =”Cancel”, height=1, \

width=10, command=self.Close).pack()

self.f2.grid(row=4, column=4)

#Blank

Label(master, text=””).grid(row=6)

#Checkbox

self.var=IntVar()

self.c=Checkbutton(master, text=”Part-Time Course”, variable=

self.var, offvalue=0, onvalue=1)

self.c.grid(row=7)

def Chk_Prereq(self):

self.Eval()

def Eval(self):

self.fname = self.e1.get()

self.lname = self.e2.get()

self.age = int(self.e3.get())

#Check for Age

if self.age < 21:

tkMessageBox.showwarning(“Invalid Age”,\

“You are not eligible”)

return

#Check for Gender

if self.v.get()==1:

self.str1 = “Dear Mr.”

elif self.v.get()==2:

self.str1 = “Dear Ms.”

else:

tkMessageBox.showwarning(“Missing Info”, \

“Please select the appropriate gender”)

return

#Check for Prereq Course

self.name = self.str1 + “ “ + self.fname + “ “ + self.lname

self.varl1 = self.L1.get(self.L1.curselection())

if self.varl1 == “Quality Management (Adv.)”:

self.prereq =

“The prereq for this course is Quality Management (Int).”

self.flag = 1

elif self.varl1 == “Financial Management (Adv.)”:

self.prereq = \

“The prereq for this course is Financial Management (Bas).”

self.flag = 1

elif self.varl1 == “Project Management (Adv.)”:

self.prereq = \

“The prereq for this course is Project Management (Int).”

self.flag = 0

else:

self.prereq = \

“The prereq for this course is Project Management (Bas).”

self.flag = 0

GUI Programming with Tkinter 361

#Check whether Part Time

if self.var.get() == 1 and self.flag == 0:

self.str2 = “\nThis course is not available part time.”

elif self.var.get() == 1 and self.flag == 1:

self.str2 = “\nThis course is available part time.”

else:

self.str2 = “”

self.result = self.prereq + self.str2

tkMessageBox.showinfo(self.name, self.result)

def Close(self):

root.destroy()

def Clear(self):

self.e1.delete(0,END)

self.e2.delete(0,END)

self.e3.delete(0,END)

self.c.deselect()

self.L1.select_clear(self.L1.curselection())

root = Tk()

app = App(root)

root.mainloop()

Execute the Code
To be able to implement or view the output of the code to design the user interface and
display the prerequisites of a course, you need to execute the following steps:

1. Save the file as DispPrereq.py.

2. At the shell prompt, type python followed by the name of the file if the file is
in the current directory. A window appears, as shown in Figure 15.11.

Figure 15.11 Techsity University—the prerequisites form.

362 Chapter 15

Figure 15.12 The Missing Info message box.

3. In the window that appears, enter the following details:

First Name: John

Last Name: Smith

Age: 21

Course Applied For: Quality Management (Adv.)

4. Click the Prerequisites button. A message box appears, as shown in
Figure 15.12. Close the message box.

5. Click the Clear button. The contents of all the widgets are deleted.

6. Repeat step 3 with the following modifications:

Gender: Male

Age: 20

7. Click the Prerequisites button. A message box appears, as shown in
Figure 15.13.

8. Repeat step 3 with the following modifications:

Gender: Male

Age: 21

9. Click the Prerequisites button. A message box appears, as shown in
Figure 15.14. Close the message box.

Figure 15.13 The Invalid Age message box.

GUI Programming with Tkinter 363

Figure 15.14 The message box displaying the prerequisite.

10. Click the Cancel button. The window is closed.

Summary

In this chapter, you learned the following:

■■ The Tkinter module is a collection of classes that help you create GUI applica-
tions in Python.

■■ The steps involved in creating a GUI application by using Tkinter are as follows:

1. Import the Tkinter module.

2. Create the application window.

3. Add widgets to the application.

4. Enter the main event loop.

■■ The Label widget is used to display text.

■■ The Entry widget is used to accept single-line text strings from a user.

■■ The Button widget is used to display various types of buttons.

■■ The Listbox widget is used to display a list of items from which a user can
select one or more items.

■■ The Checkbutton widget is used to display a number of options to a user as
a toggle button. A user can select more than one option by clicking the button
corresponding to an option.

■■ The Radiobutton widget is also used to display a number of options to a user
as toggle buttons; however, a user can select only one option at a time.

■■ The Frame widget is the container widget that is used to organize other
widgets.

364 Chapter 15

365

Programming languages such as Visual Basic, C++, Java, and Delphi have comparable
strengths and weaknesses when used in a development environment. A major draw-
back, though, is that an application or a component written in a specific programming
language is unable to communicate or use the functionality of a component written in
another language. For example, you create the functions to perform calculations in
Python. You work on a Visual Basic application for which you need a calculator. Now,
how will you use the calculation functions created in Python in your Visual Basic
application? COM is the answer to this question. Component Object Model (COM) cre-
ates a cross-platform bridge for objects written in different languages to communicate
with each other.

Basics of COM

Component Object Model (COM) is a software architecture that allows applications
and systems to be built from the components supplied by different software vendors.
It is a set of binary and network standards that allows software applications to com-
municate with each other regardless of the hardware, operating system, and program-
ming language used for development.

A component is a program, or a binary object, that performs a specific operation. In
a component-based system, the components interact by calling methods and passing

Distributing COM Objects

A P P E N D I X

A

A P P E N D I X

data. COM ensures that there is a standard method of interaction between the compo-
nents. All COM objects need to follow these standards when providing functionality.
COM is not a programming language. It is a specification that defines how compo-
nents can communicate with each other.

One of the most important features of COM is the COM specification. The COM
specification is a standard that describes the appearance and behavior of COM objects
and is a set of services. The COM library provides these services as part of the operat-
ing system in a Win32 platform and as a separate package for other operating systems.
COM defines the standards in which objects or components are defined within appli-
cations and other software components. These software objects are shared so that other
objects and applications can use them. Several services and applications in the Win-
dows platform follow and support COM specifications. Although COM standards are
applied in a large number of cases in Windows, it cannot be generalized that COM is
not supported by other platforms. COM is platform-independent, and COM compo-
nents can be created in any language and operating system if they adhere to the COM
specifications.

Some of the other features of COM are as follows:

COM is object oriented. COM components are true objects in the usual sense—
they have an identity, state, and behavior.

COM enables easy customization and upgrades to your applications. COM
components link dynamically with each other, and COM defines standards for
locating other components and identifying their functionality. Therefore, com-
ponents can be swapped without having to recompile the entire application.

COM enables distributed applications. Location transparency is one of the fea-
tures of COM. This enables you to write applications regardless of the location
of the COM components they use. The components can be moved without
requiring any changes to the application using them.

COM components can be written using many languages. Any language that
can handle a binary standard can be used to create COM components. You
can use Python, C, C++, Java, Visual Basic, and Visual C++ languages to create
components.

COM-based components are self-versioning. COM provides a facility for ver-
sion control. This implies that new functionality can be added to a component
without affecting the clients that already use the component.

COM provides access to functionality of components through interfaces. A
COM component is a stand-alone and encapsulated object. So that other objects
can access functionality provided by the component, every component has an
interface. This interface defines the behavior of the component. A client applica-
tion has to interact with the interface to call the methods of the component.

COM components can also be created using Python. The support for COM in
Python is available in the form of win32com Python extensions. These extensions
are installed as a package when you run the win32all executable file to install
the PythonWin distribution. Therefore, you can use the win32com package to
create COM components that can communicate with other COM-aware applica-
tions, such as Microsoft Word, Microsoft Excel, and Visual Basic.

366 Appendix A

The Binary Standard
In Component Object Model, components are pieces of code that are capable of com-
municating with each other. Component objects can be implemented in a number of
programming languages and can be used for client software programs written in dif-
ferent languages. COM provides a binary standard for communication between
objects. This is done in COM through virtual function tables. This concept of virtual
function table is borrowed from C++. COM lays down specifications for loading the
virtual table in memory and provides a standard way to access functions from the vir-
tual table. All languages that support calling of functions through pointers can be used
to create components that interoperate with the components written in any other lan-
guage but following the same binary standard. For example, an object or component
written in Visual Basic can communicate and share data with an object written in
Python if the objects follow the COM binary standard.

Each COM component is written to meet the binary standards set by COM. Some of
these standards are as follows:

■■ Components need to keep track of their own creation and destruction.

■■ Components need to provide their functionality through a standard procedure.

■■ The location of the component needs to be transparent to the client.

Each component has a unique ID for its identification. These IDs are present in the
HKEY_CLASSES_ROOT hive of the system registry in Windows. Figure A.1 shows the
registry entry for Microsoft Internet Explorer.

From the previous discussion, you have learned that COM can be used to create
reusable components that connect to form applications. The interaction between com-
ponents in COM is based on the client/server model. Based on this model, COM com-
ponents can be categorized as follows:

Client components. Components using the functionality provided by other
components.

Server. COM components with a predefined functionality that other components
can use.

Figure A.1 Registry view.

Distributing COM Objects 367

Consider a situation in which a user wants to insert a bitmap image into a Microsoft
Word document. The Object dialog box that is displayed (refer to Figure A.2) when the
Object option is selected from the Insert menu option displays the COM components
available on the system. These components will fall into the server category.

In this example, the Word document requires access to the functionality provided by
the bitmap image. The Word document is acting like a client.

Consider another situation in which a user wants to insert a Word document into an
Excel worksheet. Here, the Word document is acting as a server and the Excel worksheet
as a client. The Excel worksheet is accessing the functionality of the Word application.

Another feature of COM components is that COM is designed to allow components
to communicate with each other regardless of their location. For example, the user
interface component would be best located on the same computer as the client. Alter-
natively, a component that supplies statistical calculations of remote data would most
likely be located on a separate computer with the data to be manipulated.

COM server components can be categorized into two types:

In-process server. In-process servers are ideal for situations that involve the transfer
of large amounts of data between the server and the client component. In-process
servers occupy the same address space as the client application; therefore, they
can communicate with the client at a faster speed. In-process servers are imple-
mented as Dynamic Link Libraries (DLLs). DLLs allow specific sets of functions
to be stored separately from the executable as files with the DLL extension. These
DLLs are loaded into the memory only when the program requires them.

Figure A.2 Inserting a bitmap image into a Word document.

368 Appendix A

Out-process server. Out-process servers are ideal for the components that need
to run either in a separate process space or in a thread separate from the client
application. These servers are a little slower because the data has to be moved
from one address space to another. Out-process servers are implemented as
stand-alone EXEs and run in their own threads. The clients do not block the
servers when the client code is executing.

When you create a COM component, how does it interact with client applications?
The answer to this lies in COM interfaces. The following section provides a brief
description of COM interfaces.

COM Interfaces
COM components are highly encapsulated. The process of internal implementation
of the component object is hidden from the user. There is no way to know the data
structures that the object uses and how these data structures are manipulated by the
functions. If the component object is well encapsulated, how does it communicate with
other objects? The answer to this question lies in an interface. The only way to access a
COM object is through an interface. Interfaces are groups of functions that are used by
the applications to interact with each other and with the operating system.

Interfaces are only the declarations of these functions, and the interfaces do not
carry any implementations of these functions. These functions have to be implemented
in the component. To call the methods of the component object, a client application will
have to create a pointer to the interface of the component object. Using the pointer, the
client application will be able to call the methods of the component object. Let’s under-
stand how this happens.

Each interface provides one or more functions that another object or program can
call. Each interface is uniquely identified by its Globally Unique Identifier (GUID). A
GUID is a 128-bit or 16-byte number that can be assigned to an interface, a class, or a
library. GUIDs ensure that there are no naming conflicts and that COM components do
not accidentally connect to the wrong component. A developer creating an interface
also needs to create an identifier for that interface. By doing this, any naming conflicts
that can arise during run time are eliminated. If a new functionality is added to an
interface, a new GUID is assigned to the interface. This makes an interface immutable.
Therefore, no versioning of an interface is required.

To create an object, COM locates an object and creates its instance. COM classes are
similar to other Python classes. Each COM class needs to implement the following
types of GUIDs:

■■ Interface ID (IID) is a GUID for uniquely identifying an interface.

■■ Class ID (_reg_clsid_) is a GUID for uniquely identifying a class.

■■ Program ID (_reg_progid_) is a user-friendly name for a class ID.

COM provides a set of standard interfaces such as IUnknown, IDispatch,
IStream, Istorage, and IOle. The IUnknown interface is the base interface that
has to be implemented by all the other interfaces. The IUnknown interface contains
three methods: AddRef(), Release(), and QueryInterface(). Both AddRef()
and Release() manage the lifetime of a COM component. AddRef() increments a

Distributing COM Objects 369

counter that counts the number of clients accessing the component. Release()
decrements the counter when a client stops using the component object. Query-
Interface() is used to obtain the other interfaces that the object exposes. It provides
a pointer to the functions of the interface. The IDispatch() interface is used by the
component to interact with other components.

To access a property or method of a component, the object has to be bound to the
component property or method. This is called binding. Let’s see how Python uses
binding to access properties and methods of COM objects.

Binding
The process of associating a function to an object is called binding. When the type of
object to be created is known at the time of compilation, a particular function of the
COM object can be associated with the calling object. This process is called early binding.

In certain situations, the type of the object may not be known at the time of compi-
lation. Consider a class hierarchy, which represents the family of personal computers
(PC), and the need to create a list of personal computers . Depending on the request of
a user, the attributes of a particular computer, such as the speed of the CPU, the hard
disk capacity, and the memory space, may have to be displayed. The objects are
dynamically created. Therefore, the types of objects are not known at the time of com-
pilation. In these situations, the binding of the function to the object is done at run time.
This process is called dynamic or late binding.

The Python interpreter does not know the properties and methods exposed by an
object. Therefore, it uses the concept of late binding to access the methods and proper-
ties of the object. The Python interpreter associates with the methods and properties of
the object at run time. Late bindings use the IDispatch interface to dynamically
determine the object model. The client.dispatch() function provided by the
win32com module implements late bindings. The names are converted internally into
IDs by using an internal function, GetIDsOfNames(). Then, the ID generated is
passed internally to the Invoke() function.

This type of association, which happens at run time, can be time-consuming because
names are resolved at run time. The performance can be improved by early binding. In
the case of early binding, names are not resolved at run time, and the object model is
exposed at compile time. In this type of implementation, methods and properties of the
object cannot be called directly. You will have to use the GetIDsOfNames() method,
which returns an ID for the method or property of the object that you want to use, and
the invoke method, which calls the property or the method. For example, you can
invoke a function call as follows:

id= GetIDsOfNames(“MethodCall”)

Invoke(id,DISPATCH_METHOD)

You can invoke a function call as follows:

id= GetIDsOfNames(“Property”)

Invoke(id,DISPATCH_METHOD)

370 Appendix A

You can also call the function as follows:

MyObject.MethodCall()

In addition, you call the property as follows:

MyObject.ObjectProperty

Python and COM

The support for COM in Python is provided by two packages:

The pythoncom extension module. The pythoncom module exposes raw inter-
faces to Python. Many standard COM interfaces, such as ISTREAM and IDIS-
PATCH, are exposed by equivalent Python objects, such as PyIStream and
PyIDispatch objects. This module is rarely accessed directly. Instead, the
win32com package provides classes and functions for additional services to a
Python programmer.

The win32com package. The win32com package supports two subpackages:

win32com.client. This package supports client-side COM—for example,
using Python to access a spreadsheet in Microsoft Excel. The COM client
helps Python to call COM interfaces.

win32com.server. This package provides support for server-side COM—
for example, creating a COM server in Python and using other languages,
such as Visul Basic to implement COM interfaces to access Python objects.
Therefore, this package can be used to create COM servers that can be
accessed and manipulated by another COM client.

Creating COM Clients
To create COM clients, the methods and properties of the COM object have to be
exposed using the IDISPATCH interface. To do this by using Python, you first need to
import the win32com.client package and dispatch the right object by using the
win32com.client.dispatch()method. This method takes the Prog ID or Class ID
of the object you want to create as the parameter. For example, to open and manipulate
a Microsoft Excel application, the Prog ID used should be Excel.Applicaton. This
object also has a Class ID that uniquely registers it in the Windows registry. For exam-
ple, to expose an Excel object by using Python, use the following statements:

>>> import win32com.client

>>> xl=win32com.client.Dispatch(“Excel.Application”)

Now, xl is the object representing Excel. To make it visible, type the following
statement:

>>> xl.visible=1

Distributing COM Objects 371

By default, the win32com.client package uses late binding when creating an object.
As stated earlier, late binding implies that Python does not have any advance knowl-
edge of the properties and methods available for an object. For example, when Python
encounters the statement,

xl.visible=1,

it first queries the object xl to determine whether the property visible exists. If so,
the Python interpreter sets the property to 1.

The value in the object will be returned as:

>>> xl

<COMObject Excel.Application>

This implies that a COM object named Excel.Application exists.
The win32com package can also use early binding for COM objects. Using early

binding implies that the methods and properties of the object are exposed before the
type information is supplied by the object. Python uses the MakePy utility to support
early binding. Composed in Python, the MakePy utility uses a COM type library to
generate its Python source code that supports the interface. After you execute the
MakePy utility, early binding is supported automatically. To make the MakePy utility
available, you need to execute the makepy.py file in the win32com\client folder.
To execute makepy.py, start PythonWin. On the Tools menu, select the COM MakePy
utility. A list similar to the one presented in Figure A.3 appears. The items in this list
depend on the applications installed on your machine.

From Type Library, select Microsoft Excel 9.0 Object Library (1.3) or another entry
that supports the version of Microsoft Excel on your machine. Press the Enter key.
After the Python interpreter has executed makepy.py, the following line will appear:

Generating to C:\Program

Files\Python22\win32com\gen_py\00020813-0000-0000-

C000-000000000046x0x1x3.py

Figure A.3 List of object presented by the COM MakePy utility.

372 Appendix A

After creating the MakePy support, you can create the following code used earlier to
create an Excel.Application object:

>>> import win32com.client

>>> xl=win32com.client.Dispatch(“Excel.Application”)

>>> xl.visible=1

When you print the xl object now, you obtain the following output:

>>> xl

<win32com.gen_py.Microsoft Excel 9.0 Object Library._Application>

Note that the Python interpreter has more information about the object as compared
with the previous example that did not use MakePy. The Python interpreter now knows
that the name of the type library is Microsoft Excel 9.0 Object Library.

After you create an Excel object, you can access its methods and set its properties.
Let’s examine a few statements to work with Excel using Python.

>>>xl.Workbooks.Add()

The preceding statement creates a new Excel workbook. To enter a value in cell A1
of the Excel worksheet, use the following statement:

>>> xl.Cells(1,1).Value=”Hi!”

To set the time in cell A2, use the following statement:

>>> xl.Cells(1,2).Value=”=NOW()”

To print the sum of 100 and 156 in cell B2, use the following statement:

>>>xl.Cells(2,2).Value=”=SUM(100,156)”

You also use tuples to print multiple values in a cell range as follows:

>>> xl.Range(“A3:D3”).Value=(‘How’,’are’,’you!’)

An Excel object can call a wide variety of functions and attributes. It is not possible
to explain all of them because of the limited scope of the book; however, you can
explore others by yourself.

Creating COM Servers
When you create a COM server, it implies exposing a Python object in a COM-aware envi-
ronment, such as Visual Basic or Delphi. Implementing a COM object in Python requires
implementing a Python class that exposes the functionality of the COM object. This class
has two special attributes that determine how the object is published using COM:

_reg_clsid_. This attribute contains the class ID for the COM object. The
Class ID can be generated using the pythoncom.CreateGuid() function.

_reg_progid_. This attribute contains a user-friendly string that you can use
to call the COM object.

Distributing COM Objects 373

Another attribute of the implementing class is _public_methods. This attribute
contains a list of the methods exposed by the class of the COM server. Therefore, the
class that exports the functionality should implement the three attributes described in
the following way:

class COMStringServer:

_reg_clsid_=’{BD055A03-EC10-4919-9F65-FDE57A840D1A}’

_reg_progid_=’COMSTRINGSERVER’

_public_methods_=[‘letters’,’words’]

Each COM object that you create should have a unique class ID. This ID is then used
by the _reg_clsid_ attribute. The class ID can be generated as follows:

>>> import pythoncom

>>> print pythoncom.CreateGuid()

{BD055A03-EC10-4919-9F65-FDE57A840D1A}

After creating the class, the COM object has to be registered. This can be done by
using the following statements:

import win32com.server.register

win32com.server.register.UseCommandLine(COMStringServer)

When the UseCommandLine() function executes successfully, the Python inter-
preter displays a message containing the prog ID of the COM object. The message
looks something like this:

Registered: COMSTRINGSERVER

Now, let’s create a COM server that can be called by a COM client in Visual Basic.
The server should calculate the number of letters and words in a string that is accepted
from the user in a Visual Basic form. Therefore, the code for the COM server in Python
will be:

class COMStringServer:

_reg_clsid_=’{BD055A03-EC10-4919-9F65-FDE57A840D1A}’

_reg_progid_=’COMSTRINGSERVER’

_public_methods_=[‘letters’,’words’]

def letters(self,arg1):

#arg1=arg1.strip()

counter=arg1.count(‘ ‘)

l=len(arg1)

return l-counter

def words(self,arg1):

arg1=arg1.strip()

counter=arg1.count(‘ ‘)

return counter+1

if __name__==’__main__’:

import win32com.server.register

win32com.server.register.UseCommandLine(COMStringServer)

374 Appendix A

Figure A.4 A Visual Basic form design.

Save the preceding code as a .py file, and execute it by double-clicking on it in Win-
dows explorer.

Create a Visual Basic COM client that can call the methods in the COM object. The
Visual Basic form should look like the one in Figure A.4.

The COM server should be called at the time of loading the form. Therefore, the ini-
tialization steps should be written in the Form_Load function as follows:

Private Sub Form_Load()

Set COMStringServer = CreateObject(“COMSTRINGSERVER”)

End Sub

In the preceding statements, COMStringServer is the name of the object used by the
VB client. This object can now be used to access the methods of the COM server. There-
fore, the code for the VB client can be written as follows:

Dim COMStringServer As Object

Private Sub Command1_Click()

Dim output As Integer

output = COMStringServer.letters(Text1.Text)

MsgBox “No. of letters in “ & Text1.Text & “=” & output

End Sub

Private Sub Command2_Click()

Dim output1 As Integer

output1 = COMStringServer.words(Text1.Text)

MsgBox “No. of words in “ & Text1.Text & “=” & output1

End Sub

Private Sub Form_Load()

Text1 = “”

FuncCOMStringServer

End Sub

Private Sub Form_Unload(Cancel As Integer)

Set COMStringServer = Nothing

End Sub

Sub FuncCOMStringServer()

Set COMStringServer = CreateObject(“COMSTRINGSERVER”)

End Sub

Distributing COM Objects 375

Figure A.5 Output shown when Letters button on the form is clicked.

When you execute the client, you will see an interactive window in which you can
enter a string and determine the number of letters and words in it. If the input string is
Python is a scripting language1, clicking the letters button will display a
message box, as shown in Figure A.5.

Clicking the Words button will display a message box, as shown in Figure A.6.

Figure A.6 Output shown when the Words button on the form is clicked.

376 Appendix A

377

Index

A
access modes

append (a), 143–44
buffering argument, 144
file objects, 143–44
Macintosh operating system, 143–44
read (r), 143–44
Windows operating system, 143–44
write (w), 143–44

addition (+) operator, precedence, 24
Address Family, sockets, 273
AF_INET family, sockets, 273
AF_UNIX family, sockets, 273
alive and active state, threads, 304
American National Standards Institute

(ANSI), 242
ancestors, class inheritance, 171
anonymous functions, 110–12
append (a) access mode, 143–44
arguments

buffering, 144
default, 102–5
exception, 204–5
from_what, 148
functions, 102–5
keyword, 102, 103
keyword variable, 107–8
non-keyword variable, 105–6
passing to modulus (%) operator, 53

required, 102
variable-length, 105–8

arithmetic operators
number data type, 22–25
order of precedence, 23–25, 82–83

arithmetic progression, lists, 69–70
ASCII characters, 60
Assignment Details Web page

Cookie module, 332–35
file uploading, 329–30
hit counter, 333–34
user information storage, 330–35
user interface elements, 328–29

assignment operators, 25–26
associativity rules, expressions, 23–24
asterisk (*) character, 24, 106
asyncore module, 286
attributes

ACTION, 226
address_family, 317
class, 164–65
client_address, 318
command, 318
data, 164–65
delegation, 182
fully qualified name notation, 127–28
functional, 166–67
headers, 318
HTML elements, 222
METHOD, 226

378 Index

attributes (continued)
NAME, 227
path, 318
_public_methods, 374
_reg_clsid_, 373
_reg_clsid_attribute, 374
_reg_progid_, 373
request_version, 318
rfile, 318
TYPE, 227
VALUE, 227
wfile, 318

B
backslash and n (\n) characters, 27
backslash (\) character, 53–54
BaseHTTPServer module, 318–20
binary standard, COM, 367–69
binding, 126, 370–71
bitwise operators, 79–81
biz (business organizations), domain, 219
blocked state, threads, 304
Boolean operators, 78
break statement, 89–90, 92–93
built-in functions

defined, 15
modules, 132–34
OOP, 177–82

built-in namespaces, 126
byte-compiled module version, pyc file

extension, 126

C
calculators, using Python as, 16
calls

default arguments, 103–5
functions, 102–5
keyword arguments, 103
required arguments, 102
shape() function, 105
threads, 305

C compiler, Python source code, 5
CGI scripts

cgi module, 230
dynamic Web page, 232–36
Form and Results Page, 236–39
making executable, 230
regdetails table data insertion, 260
Results Page generation, 232–36

supported languages, 229
uploading files, 329–30
See also scripts

child widgets, 345
class attributes, 164–165
classes

ancestors, 171
attributes, 164–65
BaseRequestHandler, 317
books, 163, 169
CGIHTTPRequestHandler, 322
child/parent inheritance, 171–72
COM, 369
composition, 170–71
Cookie, 332–33
data attributes, 164–65
DatagramRequestHandler, 316
derivation, 171
grid, 352–53
library, 163, 168–69
method overriding, 174–77
multiple inheritance, 172–73
OOP component, 159–60
pack, 352–53
place, 352–53
RequestHandlerClass, 317
siblings, 172
SimpleHTTPRequestHandler, 30
software, 163, 170
StreamRequestHandler, 316
TCPServer, 316–17
Thread, 304–7
UDPServer, 316–17
UnixDatagramServer, 316–17
UnixStreamServer, 316–17
utilizing, 170–73
See also class objects

class instances, 165
class objects

ancestors, 171
books class, 163, 169
child/parent inheritance, 171–72
class attributes, 164–65
class instances, 165–68
composition, 170–71
data attributes, 164–65
derivation, 171
functional attributes, 166–67
init() constructor method, 167–68

Index 379

library class, 163, 168–69
method overriding, 174–76
multiple inheritance, 172–73
siblings, 172
software class, 163, 170
subclass inheritance, 171–73
wrapping, 181
See also classes; objects

clients
Component Object Model (COM), 367
defined, 214
TCP, 278–80, 309–13
UDP, 281, 283–85

client/server architecture
described, 268–69
protocols, 269
TCP client, 276–80
UDP client, 281–85

client/server network, 215–16
client-side scripting, 227–29
code

accepting user data, 231
Admission Office client, 288–89
age_mod.py, 137–38
assignmentcgi.py, 335–40
course details, 71
creditcard.py, 138
DispPrereq.py, 360–64
dynamic Web page, 232–36
exception handling, 209–10
executing, 32
Hello World program, 14
hitcount.py, 333–35
isblank_mod.py, 136–37
IT Department server computer, 287–88
library automation, 182–89
lockthr.py, 302–3
login ids, 119–21
main_mod.py, 139
multithreaded application, 305–7
multithr.py, 301–2
Mysimplewebserver.py, 320–22
Mywebserver.py, 318–20
qty_mod.py, 138
regdetails table creation, 259–60
regdetails table data insertion, 260
registration page, 254–55
sample.html, 222–24
singlethr.py, 298–99
SocServer.py, 317

storing course details, 154–55
student details display, 31
student grade calculation, 94–96
student name display, 43
student purchases, 43–44
TCP client creation, 278–80, 309–10
TCP server creation, 276–78, 308–9
UDP client creation, 284–85
UDP server creation, 282–83
uploadfile.py, 329–30
urlopenmod.py, 325
urlopenmod1.py, 325–26

colon (:) character, 28–29, 101
columns, modifying, 253
COM clients, creating, 371–76
com (commercial institutes), domain, 219
comma (,) character, 33, 35, 37
command line, accepting user input, 14
command-line interface, startup, 8–9
commands

alter, 253
create table, 249
delete, 253
drop table, 253–54
executemany(), 259
explain login, 251
insert into, 252
mysql, 248–49
mysqladmin, 246–47
select, 252
show tables, 251
update, 252

comments, pound sign (#), 15
Common Gateway Interface (CGI), 229
comparison operators, 76–77
comparisons, lexicographical order, 56–57
complex numbers, data type, 21–22
Component Object Model (COM)

binary standard, 367–369
binding, 370–71
classes, 369
client components, 367
clients, creating, 371–73
described, 365–66
in-process server, 368
interfaces, 369–70
out-process server, 369
Python packages, 371
server component, 367
servers, creating, 373–76

380 Index

composition, classes, 170–71
concatenation, 18, 28, 33
conditional constructs, 84–86
conditional operators, 76–82
conjugates, complex numbers, 22
connectionless sockets, creating, 273
container widgets, 345
continue statement, 90–91
conversions

exponential notation, 51–52
floating-point, 51–52
hexadecimal, 51
integer, 52–53
integer to ASCII character, 60
modulus (%) operator, 50–51
raw string operator, 54–55
string, 52–53
values to ASCII character, 60
variable to string with reverse quotes, 61

cookies, 330, 332–35
course prerequisites form, 348–57
curly braces { and } characters, 37

D
data, writing to a file, 144–45
data attributes, 164–65
databases

accessing from a script, 254–64
column modifications, 253
connection methods, 257–58
creating tables, 249–51
defined, 242
deleting records from a table, 253
deleting tables, 253–54
inserting records, 252
modifying table data, 252–53
MySQL, 243–54
Python Database API, 243
querying, 258
RDBMS, 242
retrieving query results, 259
retrieving records from a table, 252
SQL, 242

Database Special Interest Group
(DB-SIG), 243

datagram sockets, 273
data types

dictionaries, 37–39
immutable, 20
lists, 33–35, 66–70

MySQL, 250–51
numbers, 20–26
numeric, 57–60
sequence, 35–39
strings, 26–30, 60–66
tuples, 35–37, 66–70

date data types, MySQL, 250
dead state, threads, 304
declarations, function syntax, 101
default arguments, functions, 102–5
delegation, 182
derivation, classes, 171
dictionaries, 37–39, 43, 53, 70–71, 77
directories, 150–52
division operator

precedence order, 24
slash (/) character, 16

docstring, functions, 101
domain-name, 219
dots (...) characters, secondary prompt, 16
double asterisk (**) characters, 24, 107
double parentheses () characters, 24
double quote (") characters, 26–27
double slash (//) characters, 23–24
double underscore (__) character, 40
drive names, splitting, 152
dynamic Web page, CGI scripts, 232–36

E
edu (educational institutes), domain

type, 219
elements, HTML, 221
elif statement, 85–86
else statement, 85, 93–94
environment variables, PYTHONPATH,

130–31
equal sign (=) character, assigning values

to variables, 18–19
escape characters, strings, 54
exception handlers

arguments, 204–205
defined, 200
else statement, 205
raise statement, 207–8
try-except statement, 200–205
try-finally statement, 206–7

exceptions
arguments, 204–5
defined, 194
error-handling code, 209–10

Index 381

error identification, 196–200
hierarchy, 198–200
ImportError, 197
IndexError, 197
IOError, 197
KeyError, 197
NameError, 196
raising, 207–8
SyntaxError, 196–97
trapping mechanisms, 200–208
user-defined, 208
ZeroDivisionError, 196

exponential notation conversion, modulus
(%) operator, 51–52

exponentiation (**) operator, precedence
order, 24

F
family names, sockets, 273
file objects

access modes, 143–44
append (a) access mode, 143–44
buffering argument, 144
closing access to, 149
cursor positioning, 148
inserting Tab characters, 145
methods, 144–49
opening, 142–44
reading cursor position, 149
reading data from a file, 145–46
read (r) access mode, 143–44
standard error (stderr), 147
standard input (stdin), 147
standard output (stdout), 147
write (w) access mode, 143–44
writing data to a file, 144–45
writing string list to a file, 145

filenames, splitting first/extension, 153
files, uploading script, 329–30
file system, 149–54
floating-point conversion, modulus (%)

operator, 51–52
floating-point real number, data type, 21
floor division, double slash (//) charac-

ters, 23–24
for loops, 91–94
forms

Assignment Details, 328–40
course prerequisites, 347–64

HTML, 226–27
lambda, 110–12
user-input, 227

freeware, 3
fully qualified name, 127–28
functional attributes, class objects, 166–67
functions

add(), 108
age_func(), 119
anonymous, 110–12
apply(), 112–13
base conversion, 59–60
bee(), 110
built-in, 15, 112–18
calling, 102–5
class instantiation, 166
cmp(), 56, 60
colon (:) character, 101
course_fee(), 104
declaration syntax, 101
declaring before calling, 109
default arguments, 102–5
defined, 15, 101
def keyword, 101
delattr(), 181
dir(), 132–33
dobvalid_func(), 119
docstring, 101
filter(), 114–15
fnsquare(), 102
fully qualified name, 127–28
func1(), 299
func2(), 299
getattr(), 180
globals(), 133–34
hasattr(), 179–80
hex(), 59
id(), 30, 55
input(), 49–50
isblank(), 119
isinstance(), 177–78
issubclass(), 179
keyword arguments, 102–3
lambda forms, 110–12
len(), 28, 34, 60
list(), 66
locals(), 133–134
lock_obj.acquire(), 301
lock_obj.locked(), 301

382 Index

functions (continued)
lock_obj.release(), 301
main_func(), 109
map(), 115–18
max(), 60
min(), 60
numeric type conversion, 58
numeric type operation, 58–59
oct(), 59
open(), 142–44
ord(), 60
parentheses (and) characters, 101, 110
passing, 110
poll(), 287
printx(), 102
quote(), 326
quote_plus(), 326–27
range(), 69–70
raw_input(), 14, 49–50
reload(), 134
repr(), 60–61
required arguments, 102
return statement, 108–9
reverse(), 68
ruf(), 110
select(), 287
setattr(), 180–81
shape(), 105
single statement, 111
sleep(), 299
sort(), 68
str(), 61
stud_fn(), 102
thread.allocate_lock(), 301
thread.exit(), 301
thread.get_thread(), 301
thread.start_new_thread(), 301
tuple(), 66
type(), 55
unquote(), 327
unquote_plus(), 327
urlencode(), 327–28
urljoin(), 324
urlopen(), 324–26
urlparse(), 323
urlretrieve(), 326
urlunparse(), 324
UseCommandLine(), 374
user-defined, 101–2
variable-length arguments, 105–8

G
garbage collection, 41
geometry management, 352–54
global interpreter lock (GIL), 299
Globally Unique Identifier (GUID), 369
global namespaces, 126
global scope, namespaces, 127
global symbol table, modules, 127
global variables, 118–19
GNA gzip program, Unix system, 4
gov (government entities), domain, 219
graphical user interface (GUI), 343–44
greater-than (>>) characters, 16
GUI (graphical user interface)

course prerequisites form, 347–64
described, 343–44
Tkinter module, 344–57
widgets, 344–46, 348–57

H
hardware requirements, Python, 4
Hello World program, code, 14
hexadecimal conversion, 51
hierarchy, exceptions, 198–200
hit counters, 333–34
hosts, 218
HTML (Hypertext Markup Language)

attributes, 222
client-side vs. server-side scripting,

227–29
described, 221
elements, 221
forms, 226–27, 231, 236–39
labels, 221
Python documentation support, 3
sample.html code, 222–24
tags, 221
Web documents, 217

HTML forms, 231, 236–39
Hypertext Transfer Protocol (HTTP),

220–21

I
identifiers, 39–40
identity, object characteristic, 17
identity operators, 81–82
if statement, 84–85
if...else statement, 85
immutable data types, numbers, 20
immutable objects, 17

Index 383

ImportError, 197
importing

defined, 125
modules, 125–30
MySQLdb module, 257

IndexError, 197
infinite loops, 89
info (content sites), domain type, 219
inheritance, subclasses, 171–73
in-process server, COM, 368
Installation Wizard, 6
integer conversion, 52–53
integers, 59–60, 79–81
integrated development environment

(IDE), Python startup, 9–11
interactive interpreter mode, Python

startup, 7–8
interfaces, 369–70
International Organization for

Standardization (ISO), 242
Internet

client/server communications, 214–16
client-side vs. server-side script, 227–29
cross-browser support, 218
data transmission protocols, 216–17
development history, 214
hosting services, 217
HTML, 217, 226–27
HTTP, 220–21
ISP, 217
SGML, 217
TCP/IP protocol, 216
URL, 218–19
Web pages, 217
WWW protocols, 217

Internet Explorer, 218, 224
Internet Protocol (IP), 216
Internet service provider (ISP), 217
interpreters, 77, 125, 130–31
Inter Process Communication (IPC), 270
intrinsic operations

base conversion functions, 59–60
described, 55
dictionaries, 70–71
integer to ASCII conversion, 60
lexicographical ordering, 56–57
lists, 66–70
numeric data types, 57–60
strings, 60–66

tuples, 66–70
value to ASCII character conversion, 60

IOError, 197

K
KeyError, 197
keys, dictionaries, 37–38
key:value pairs, dictionaries, 37–38
keyword arguments, functions, 102–3
keywords, 39, 101, 110–12
keyword variable arguments, 107–8

L
labels, HTML element, 221
lambda forms, 110–12
lexicographical ordering, 56
libraries, intrinsic operations, 55–71
Linux

posix-compliant operating system, 143
Python installation, 5–6
supported Web browsers, 218

lists
appending items, 34–35, 67–68
arithmetic progression, 69–70
built-in methods, 67
comma (,) character as, 33
comparison operator rules, 77
compound data type, 33–35
concatenation, 33
deleting items from, 34
intrinsic operations, 66–70
length determination, 34
nesting, 33
queries, 69
reversing items, 68
slice extraction, 34
slicing, 33–34
sorting items, 68
square brackets [and] characters, 33
stacks, 68–69
student name storage, 43
vs. tuples, 35

local namespaces, 126–127
local scope, namespaces, 127
local variables, 118–19
long integers, number data type, 21
looping constructs, 89–94
loops, 89–94, 346–47

384 Index

M
Macintosh

file object access modes, 143–44
IDE, 11
Web browsers, 218

MacPython, Macintosh support, 11
mapping, objects with namespaces, 126
membership operators, 81
memory, 16–17, 41–42
methods

append, 34–35, 68, 69
basename(), 151–52
capitalize(), 61–62
chdir(), 150
Checkbutton widget, 358
clear(), 39, 149, 258
commit(), 258
cursor(), 257
dictionary type, 70–71
directory, 150–51
dirname(), 152
end_headers(), 318
Entry widget, 351
execute(), 258–59
exists(), 154
fetchall(), 259
fetchone(), 259
fileno(), 317
get(), 220–21, 71
getcwd(), 150
handle(), 318
handle_request(), 317
information, 153
init(), 167–68
inquiry category, 153–54
isdir(), 154
isfile(), 154
items(), 71
join(), 152
keys(), 38
list type, 67
Listbox widget, 357
listdir(), 150–51
os module, 149–51
overriding, 174–76
permission, 151
pop(), 68–69
post(), 221
print(), 147

raw_input(), 147
read(), 145–46
readline(), 146
remove(), 34, 68, 150
rename(), 149
rmdir(), 151
rollback(), 258
run(), 305
seek(), 148
send_error(), 318
send_header(), 318
send_response(), 318
server_forever(), 317
socket(), 272–73
socket module, 272–76
socket object, 274–75
split(), 152
splitdrive(), 152
splitext(), 153
start(), 305
stdin.readline(), 147
stdout.write(), 147
string type, 62–65
tell(), 149
Thread class, 304
write(), 144–45
writelines(), 145

mil (US military), domain, 219
modules

asyncore, 286
BaseHTTPServer, 318–20
built-in functions, 132–34
byte-compiled version, 126
cgi, 230
CGIHTTPServer, 322
Cookie, 332–35
described, 124–25
fully qualified name notation, 127–28
importing, 125–30
MySQLdb, 257
name attribute, 127
namespaces, 126–28
os, 149–51
os.path, 151–54
packages, 135–36
pyc file extension, 126
py file extension, 125
search path, 125, 130–31
select, 287

Index 385

sharing, 125
SimpleHTTPServer, 320–22
socket, 272–76
SocketServer, 316–17
symbol tables, 127
testing, 131–32
thread, 300–303
threading, 304–8
Tkinter, 344–57
tkMessageBox, 355–56
urllib, 324–28
urlparse, 323–24
user input validation, 136
variable scope, 126–28

modulus (%) operator
dictionary as argument, 53
integer conversion, 52–53
output formatting, 50–53
passing arguments to, 53
precedence order, 24
string conversion, 52–53

multiplication (*) operator, 24
multithreaded programming

defined, 298
TCP client, 309–13
TCP server, 308–10
threading module, 304–8
thread module, 300–303
thread states, 304

mutable objects, 17, 36
MySQL

alter command, 253
column modifications, 253
column type support, 244
configuration, 244–45
creating tables, 249–51
database connection methods, 257–58
database creation, 247
database query, 258
database specification, 249
data types, 250–51
deleting records from a table, 253
deleting tables, 253–54
download URL, 244
drop table command, 253–54
encrypted passwords, 244
executing commands, 258–59
explain login command, 251
fixed-length record support, 244

inserting data in regdetails table,
260–63

inserting records, 252
insert into command, 252
installation, 244–45
language support, 244
modifying table data, 252–53
multiple related table support, 243
MySQLdb module, 257
Named Pages support, 244
operating system support, 244
optimized class library, 244
RDBMS, 243–44
regdetails table creation, 259–61
Registration table, 256
retrieving query results, 259
retrieving records from a table, 252
security enhancements, 244
TCP/IP sockets support, 244
thread-based memory allocation, 244
Unix sockets support, 244
update command, 252
variable-length record support, 244

MySQLdb module, 257

N
name (personal Web sites), domain, 219
name attribute, modules, 127
NameError, 196
namespaces, 126–27, 130
nested if statement, 86–87
nested lists, 33
nested tuples, 35
net (network organizations), domain, 219
Netscape Navigator, 218
network programming

asyncore module, 286
client/server architecture, 268–69
described, 269–70
select module, 287
socket module, 272–76
sockets, 270–71
TCP client, 278–80
TCP server, 276–78
UDP client, 281, 283–85
UDP server, 281–83

networks, client/server, 215–16
NEWLINE character (\n), 53, 145–46
non-keyword variable arguments, 105–6

386 Index

number data type
arithmetic operators, 22–25
assignment operators, 25–26
complex number, 21–22
conjugates, 22
described, 20
floating-point real number, 21
immutable, 20
long integer, 21
regular or plain integer, 20–21

numeric data types, 57–60, 250

O
object-oriented programming (OOP)

benefits, 160–61
built-in functions, 177–82
classes, 159–60, 162–63
class objects, 166–70
components, 159–60
composition, 170–71
delegation, 182
derivation, 171
described, 158–59
inheritance, 171–73
method overriding, 174–76
multiple inheritance, 172–73
objects, 159, 163–74
Python class mechanism, 162–63
Python support, 17
subclasses, 171–73
wrapping, 181

objects
cookie, 332–33
fully qualified name, 127–28
identity, 17
mapping with namespaces, 126
multiple variable assignments, 19
mutable vs. immutable, 17
OOP component, 159
read only characteristics, 17
reference counter, 41–42
socket, 317
type, 17
value, 17
See also class objects

options
Button widget, 354–55
Entry widget, 350
Label widget, 350

org (miscellaneous organizations), 219
os module, file system methods, 149–51
os.path module, file system, 151–54
out-process server, COM, 369
output formatting

exponential notation conversion, 51–52
floating-point conversion, 51–52
hexadecimal conversion, 51
integer conversion, 52–53
modulus (%) operator, 50–53
NEWLINE character (\n), 53, 145, 146
raw string operator, 54–55
special characters, 53–54
string conversion, 52–53

P
packages, 135–36, 371
parentheses (and) characters, 16, 35,

101, 110
parent widgets, 345
pass statement, 94
passwords, cookie use, 332
path/dataname, 219
paths, joining/splitting, 152
PDF format, Python documentation, 3
percent sign (%) character, 24, 50–51
permission methods, os module, 151
plain (regular) integers, data type, 20–21
platforms, Python supported types, 4–6
plus sign (+) character, 18, 24
port 80, Web servers, 320
ports, 270, 320
PostScript format, 3
pound sign (#) character, 15
precedence order, operators, 23–25, 82–83
primary prompt, greater-than (>>)

characters, 16
printing

special characters, 53
strings, 27
user input from the command line, 14

problem statements
assignment details form, 328
chat application creation, 300
client/server architecture, 272
code error identification, 194–95
course detail file script, 142
course prerequisites form, 347
daily sales report, 42

Index 387

database interaction, 254
data entry operator course details, 48
library automation, 161–62
login ids, 100–101
login page with password, 231
software module creation, 30
student grade calculations, 83–84
validation modules, 124
Web site development, 2

process, 298
protocols

client/server architecture, 269
defined, 218
HTTP, 220–21
Internet data transmission, 216–17
IP, 216
port numbers, 270
TCP, 216

PVM, global interpreter lock (GIL), 299
pyc file extension, 126
py file extension, modules, 125
Python Database API, 243
Python Virtual Machine (PVM), 299

Q
queries, 258–259
queues, 69

R
raw string operator, 54–55
RDBMS, MySQL, 243–54
read (r) access mode, file objects, 143–44
rebinding, 126
records, 252–253
RedHat Packet Manager (RPM)

MySQL installation files, 244–45
Python for Linux installation, 5–6

reference counting, 41–42
regdetails table, 259–61
Registration table, 256
regular (plain) integers, 20–21
Regular Expressions, raw strings, 54–55
relational database management system

(RDBMS), 242
replication, strings, 28
reports, results generation, 94
required arguments, functions, 102
result sets, 257, 259

return statement, 108–9
reverse quotes, 61
root window, 345

S
scope, 118–19, 127
scripts

client-side vs. server-side, 227–29
command-line interface startup, 8–9
database access, 254–64
module testing method, 131–32
See also CGI scripts

search path, 125, 130–31
secondary prompt, 16
select module, 287
sequence data types, 35–39
sequence objects, 56–57
servers

COM, 367
defined, 214
HTTP requests, 220–21
TCP, 276–78, 308–10
UDP, 281–83
Web, 316–23

server-side scripting, 227–29
shared modules, 125
siblings, subclasses, 172
single quote (') characters, 26–27
single statement functions, lambda, 111
single-threaded programming, 298–99
slash (/) character, 16, 24
slice notation, strings, 28–29
slicing

lists, 33–34
strings, 28–29
tuples, 35–36

SOCK_DRGAM type, 273
socket module, methods, 272–76
socket object, 274–75, 317
sockets, 270–73
SocketServer module, 316–17
SOCK_STREAM type, 273
software requirements, Python, 5
sorts, list items, 68
special characters, output formats, 53–54
square brackets [and] characters, lists, 33
stacks, 68–69
stand-alone widgets, 345

388 Index

standard error (stderr), file objects, 147
Standard Generalized Markup Language

(SGML), HTML development, 217
standard input (stdin), file objects, 147
standard output (stdout), file objects, 147
statements

break, 89–90, 92–93
continue, 90–91
del, 20, 34, 39
elif, 85–86
else, 85, 93–94, 205
from-import, 128–30
if, 84–85
if...else, 85
import, 125–26, 128–30
nested if, 86–87
pass, 94
print, 14, 27
raise, 207–8
return, 108–9
try-except, 200–205
try-finally, 206–7

states, threads, 304
string conversion, 52–53
string data types, MySQL, 250–51
string values, concatenation, 18
strings

accepting user input, 49–50
breaking into multiple lines, 27
built-in methods, 62–65
colon (:) character, 28–29
comparison operator rules, 77
concatenating, 28
described, 26–27
escape characters, 54
first character capitalization, 61–62
immutable data type, 29–30
intrinsic operations, 60–66
length determination, 28
output formatting, 50–55
printing, 27
replicating, 28
slicing, 28–29
writing to a file, 145

Structured Query Language (SQL), 242
subclasses, inheritance, 171–73
symbol tables, 127
SyntaxError, 196–97
syntax errors, 194
system requirements, 4–5

T
Tab character, inserting, 145
tables

column modifications, 253
creating, 249–51
deleting, 253–54
deleting records, 253
inserting records, 252
modifying data, 252–53
regdetails, 259–61
Registration, 256
retrieving records, 252

tags, HTML, 221
task lists, 2, 30–31
TCP client, 278–80, 309–13
TCP/IP protocol, 216
TCP server, 276–78, 308–10
Techsity University

Admission Office client, 288–92
Assignment Details Web page, 328–40
books class, 163, 169
code execution, 32
command-line interface startup, 8–9
course detail data types, 49
course details code, 71
course detail variables, 49
course prerequisites form, 347–64
data types, 31–32
exception handling code, 209–10
integrated development environment

(IDE) startup, 9–11
interactive interpreter mode, 7–8
IT Department server computer, 287–92
library automation code, 182–89
library class, 163, 168–69
login id code, 119–21
project requirements, 2–3
Python for Linux installation, 5–6
Python for Windows installation, 6
Python requirements, 4–5
registration page code, 254–55
software class, 163, 170
storing course details in a file, 154–55
student details code, 31
student grade calculation code, 94–96
uploading an assignment, 335–40
user input validation modules, 136–39
variables, 31–32

threading module, 304–8
threads, 298–99, 304–7

Index 389

time data types, MySQL, 250
Tkinter module

form widgets, 348–57
geometry management, 352–54
importing, 344
main event loop, 346–47
root window, 345
widgets, 344–46

tkMessageBox module, 355–56
toplevel-domain-name, 219
Transmission Control Protocol (TCP), 216
triple quote characters, strings, 27
tuples

comma (,) character, value separator, 35
comparison operator rules, 77
empty, 36
immutable data type, 35–36
intrinsic operations, 66–70
mutable objects, 36
nesting, 35
parentheses (and) characters, 35
single item creation, 36–37
slicing, 35–36
student name storage, 43
vs. lists, 35

type, object characteristic, 17

U
unbinding, 126
underscore (_) character, identifier

restrictions, 40
Uniform Resource Locator (URL)

accessing, 323–28
address elements, 323
described, 218–19
urllib module, 324–28
urlparse module, 323–24

Unix
command-line interface startup, 8–9
GNA gzip program, 4
integrated development environment

(IDE) startup, 9
interactive interpreter startup, 7
posix-compliant operating system, 143
Python installation, 5
sockets development history, 270
supported Web browsers, 218

user data, HTML form, 231
user-defined exceptions, 208

user-defined functions, 101–2
user identification, cookie use, 332
user input

accepting from strings, 49–50
accepting from the command line, 14
HTML forms, 227
printing, 14
validation modules, 136

usernames, cookie use, 332
users, information storage, 330–35

V
validation modules, user input, 136
value construction () operator, 24
values

ASCII character conversion, 60
equal sign (=) character, 18–19
object characteristic, 17
return statement, 108–9
variable assignments, 18–19
variable swapping, 19

variable-length arguments
functions, 105–8
keyword, 107–8
non-keyword, 105–6

variables
assignment operators, 25–26
defined, 17
equal sign (=) character, 18–19
fully qualified name assignment, 128
global, 118–19
local, 118–19
multiple assignment, 18–19
naming conventions, 40
object assignments, 19
reference counter, 41–42
scope, 118–19
Techsity University, 31–32, 49
value assignments, 18–19
value swapping, 19

variable scope, modules, 126–28
versions, Python, 3

W
Web browsers, 217–19
Web hosting, 217
Web pages

Assignment Details, 328–40
defined, 217
hit counters, 333–34

390 Index

Web programming
accessing URLs, 323–28
Cookie module, 332–35
creating Web servers, 316–23
hit counters, 333–34
uploading file script, 329–30
user information storage, 330–35

Web publishing, 217
Web servers

BaseHTTPServer module, 318–20
CGIHTTPServer module, 322
port 80, 320
SimpleHTTPServer module, 320–22
SocketServer module, 316–17

Web sites
ActivePython Extensions, 6
Database Special Interest Group

(DB-SIG), 243
defined, 217
GN gzip program, 4
MacPython, 11
MySQL, 244
MySQL RPM files, 245
Python Database API, 243
Pythonlabs, 3
RedHat Packet Manager (RPM), 6
wiley.com, 4
Winzip program, 4

while loops, 87–89
widgets

Button, 354–56
Checkbutton, 358

child, 345
container, 345
defined, 344
Entry, 350–52
Frame, 359
geometry management, 352–54
Label, 349–50
Listbox, 356–58
parent, 345
Radiobutton, 359
stand-alone, 345
Tkinter module, 344–46

Windows
command-line interface startup,

8–9
compiling Python source code, 5
file object access modes, 143–44
integrated development environment

(IDE), 10–11
interactive interpreter startup, 8
Python installation, 6
supported Web browsers, 218

Winzip program, unpacking
Python, 4

wizards, Installation, 6
World Wide Web (WWW), 217
wrapping, 181
write (w) access mode, 143–44

Z
ZeroDivisionError, 196

	Making Use of Python
	Contents
	Introduction
	Overview of Python
	History of Python
	Features of Python
	Users and Application Areas of Python
	Python versus Other Languages

	How This Book Is Organized
	Who Should Read This Book
	Tools You Will Need
	What’s on the Web Site

	Scenario
	Techsity University
	Course Structure
	Fee Structure
	Future Direction

	An Introduction to Python
	Getting Started
	Understanding Requirements
	Determine Requirements of the University
	Obtain Python and Its Documentation
	Determine the System Requirements
	Install Python
	Start Python in Different Execution Modes

	Summary

	Getting Started with Python
	Getting Started
	Writing Your First Python Program
	Comments
	Python as a Calculator

	Using Variables in Python
	Variables
	Assigning Values to Variables
	Standard Types
	Identifiers and Keywords
	Memory Management
	Create a Sequence to Store All the Names of the Students
	Write the Code to Display the Names of the Students
	Declare a Dictionary of Student Purchases with the Names of the Students as the Key
	Write the Code to Display the Student Purchases
	Save and Execute the Code
	Verify the Details

	Summary

	Intrinsic Operations and Input/Output
	Getting Started
	Using Input/Output Features and Intrinsic Operations for Data Types in Python
	Identify the Variables to Be Used
	Accepting User Input
	Formatting the Output

	Introduction to Intrinsic Operations
	Intrinsic Operations for Numeric Data Types
	Intrinsic Operations for Strings
	Intrinsic Operations for Lists and Tuples
	Write the Code
	Execute the Code

	Summary

	Programming Basics
	Getting Started
	Conditional Operators
	Order of Precedence of Operators

	Using Programming Constructs
	Identify the Control and Loop Statements to Be Used
	Write the Code
	Execute the Code

	Summary

	Functions
	Getting Started
	Using Functions
	Functions
	Scope of Variables
	Identify the Functions to Be Used
	Write the Code
	Execute the Code

	Summary

	Modules
	Getting Started
	Using Modules
	Modules
	Packages
	Identify the Modules to Be Used
	Write the Code
	Execute the Code

	Summary
	Getting Started

	Files
	Using File Objects
	Identify the Functions and Methods to Be Used
	Write the Code to Store Course Details to a File
	Execute the Code
	Verify the Solution

	Summary

	Object-Oriented Programming
	Getting Started
	Introducing OOP
	Components of OOP
	Benefits of OOP

	Using Classes
	Identify the Classes to Be Defined
	Identifying the Class Objects
	Identifying the Classes to Be Inherited and Their Objects
	Identify the Methods to Be Overridden
	Write the Code
	Execute the Code

	Summary

	Exception Handling
	Getting Started
	Handling Exceptions
	Identify the Type of Error and Where the Error Occurs
	Identify the Mechanism of Trapping the Exception
	Identify the Location for the Code for Handling
	the Exception to Be Written
	Write the Code for Handling the Exception
	Save and Execute the Code

	Summary

	CGI Programming
	Getting Started
	Internet Basics
	World Wide Web
	Web Browsers
	Hypertext Transfer Protocol (HTTP)
	Revising HTML
	Client-Side versus Server-Side Scripting
	An Introduction to CGI
	Write the CGI Program in Python to Generate the Results Page
	Write the CGI Program to Generate Both the Form and Results Pages
	Execute the Code

	Summary

	Database Programming
	Getting Started
	Database Management
	Introduction to MySQL
	Working with MySQL

	Accessing a Database from a Python Script
	Identify the Elements of the Table
	That Stores Registration Details
	Identify the Steps for Connecting to the Database
	Write the Code to Create a Table in the Database
	Write the Code to Insert the Registration Details
	into the Table Created
	Execute the Code to Create the Table in the Database
	Execute the Code to Insert Data into the Table
	Verify the Data in the Database

	Summary

	Network Programming
	Getting Started
	Client/Server Architecture
	Network Programming

	Using Sockets
	Identify the Sockets to Be Used
	Write the Code to Run on the IT Department Computer
	Write the Code to Run on the Admission Office Computer
	Execute the Code Created for the IT Department Computer
	Execute the Code Created for the Admission Office Computer
	Verify That Data Has Been Saved to a File in the IT Department Computer

	Summary

	Multithreaded Programming
	Getting Started
	Single-Threaded Applications
	Threading in Python

	Creating Multithreaded Applications
	Identify the Class and the Methods to Create a Multithreaded Application
	Write Code for the Server
	Write the Code for the Client
	Execute the Code Created for the Server
	Execute the Code Created for the Client

	Summary

	Advanced Web Programming
	Getting Started
	Creating Web Servers
	Accessing URLs

	Creating Advanced CGI Applications
	Identify the Elements of the Web Page for Entering
	Assignment Details and Uploading the File
	Identify the Methodology for Uploading the File
	Identify the Methodology for Storing User Information
	Write the Code for the CGI Script
	Execute the CGI Script

	Summary

	GUI Programming with Tkinter
	Getting Started
	Introduction to Tkinter

	Creating a GUI Application
	Identify the Components of the User Interface
	Identify the Tkinter Widgets to Design the User Interface
	Write the Code for the User Interface
	Execute the Code

	Summary

	Distributing COM Objects
	Basics of COM
	The Binary Standard
	COM Interfaces
	Binding

	Python and COM
	Creating COM Clients
	Creating COM Servers

	Index

