

METHODS IN MEDICAL INFORMATICS

Fundamentals of Healthcare Programming
in Perl, Python, and Ruby

CHAPMAN & HALL/CRC
Mathematical and Computational Biology Series

Aims and scope:
This series aims to capture new developments and summarize what is known
over the entire spectrum of mathematical and computational biology and
medicine. It seeks to encourage the integration of mathematical, statistical,
and computational methods into biology by publishing a broad range of
textbooks, reference works, and handbooks. The titles included in the
series are meant to appeal to students, researchers, and professionals in the
mathematical, statistical and computational sciences, fundamental biology
and bioengineering, as well as interdisciplinary researchers involved in the
�eld. The inclusion of concrete examples and applications, and programming
techniques and examples, is highly encouraged.

Series Editors

N. F. Britton
Department of Mathematical Sciences
University of Bath

Xihong Lin
Department of Biostatistics
Harvard University

Hershel M. Safer

Maria Victoria Schneider
European Bioinformatics Institute

Mona Singh
Department of Computer Science
Princeton University

Anna Tramontano
Department of Biochemical Sciences
University of Rome La Sapienza

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
4th, Floor, Albert House
1-4 Singer Street
London EC2A 4BQ
UK

METHODS IN MEDICAL INFORMATICS

Fundamentals of Healthcare Programming
in Perl, Python, and Ruby

Jules J. Berman

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-4182-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Berman, Jules J.
Methods in medical informatics : fundamentals of healthcare programming in Perl, Python, and Ruby /

Jules J. Berman.
p. ; cm. -- (Chapman & Hall/CRC mathematical and computational biology series ; 39)

Includes bibliographical references and index.
ISBN 978-1-4398-4182-2 (alk. paper)
1. Medical informatics--Methodology. 2. Medicine--Data processing. I. Title. II. Series: Chapman and

Hall/CRC mathematical & computational biology series ; 39.
[DNLM: 1. Medical Informatics--methods. 2. Programming Languages. 3. Computing Methodologies.

W 26.5 B516m 2011]

R858.B4719 2011
610.285--dc22 2010011244

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

For Irene

vii

Contents

Preface 	 xv

Nota Bene 	 xxi

About the Author 	 xxiii

IPart  � Fundamental Algorithms and Methods
of Medical Informatics

1Chapter 	 Parsing and Transforming Text Files 	 3
1.1	 Peeking into Large Files	 3

1.1.1	 Script Algorithm	 3
1.1.2	 Analysis	 5

1.2	 Paging through Large Text Files	 5
1.2.1	 Script Algorithm	 5
1.2.2	 Analysis	 7

1.3	 Extracting Lines that Match a Regular Expression	 7
1.3.1	 Script Algorithm	 8
1.3.2	 Analysis	 10

1.4	 Changing Every File in a Subdirectory	 10
1.4.1	 Script Algorithm	 10
1.4.2	 Analysis	 11

1.5	 Counting the Words in a File	 12
1.5.1	 Script Algorithm	 12
1.5.2	 Analysis	 14

1.6	 Making a Word List with Occurrence Tally	 14
1.6.1	 Script Algorithm	 14
1.6.2	 Analysis	 16

1.7	 Using Printf Formatting Style	 16
1.7.1	 Script Algorithm	 17
1.7.2	 Analysis	 18

viii	 Contents

2Chapter 	 Utility Scripts 	 21
2.1	 Random Numbers	 21

2.1.1	 Script Algorithm	 21
2.1.2	 Analysis	 22

2.2	 Converting Non-ASCII to Base64 ASCII	 22
2.2.1	 Script Algorithm	 23
2.2.2	 Analysis	 24

2.3	 Creating a Universally Unique Identifier	 24
2.3.1	 Script Algorithm	 24
2.3.2	 Analysis	 25

2.4	 Splitting Text into Sentences	 25
2.4.1	 Script Algorithm	 26
2.4.2	 Analysis	 26

2.5	 One-Way Hash on a Name	 27
2.5.1	 Script Algorithm	 28
2.5.2	 Analysis	 30

2.6	 One-Way Hash on a File	 30
2.6.1	 Script Algorithm	 30
2.6.2	 Analysis	 31

2.7	 A Prime Number Generator	 31
2.7.1	 Script Algorithm	 32
2.7.2	 Analysis	 34

3Chapter 	 Viewing and Modifying Images 	 37
3.1	 Viewing a JPEG Image	 37

3.1.1	 Script Algorithm	 38
3.1.2	 Analysis	 39

3.2	 Converting between Image Formats	 40
3.2.1	 Script Algorithm	 40
3.2.2	 Analysis	 41

3.3	 Batch Conversions	 42
3.3.1	 Script Algorithm	 42
3.3.2	 Analysis	 43

3.4	 Drawing a Graph from List Data	 44
3.4.1	 Script Algorithm	 44
3.4.2	 Analysis	 46

3.5	 Drawing an Image Mashup	 46
3.5.1	 Script Algorithm	 46
3.5.2	 Analysis	 50

4Chapter 	 Indexing Text 	 53
4.1	 ZIPF Distribution of a Text File	 53

4.1.1	 Script Algorithm	 54
4.1.2	 Analysis	 56

4.2	 Preparing a Concordance	 57
4.2.1	 Script Algorithm	 57
4.2.2	 Analysis	 59

4.3	 Extracting Phrases	 60
4.3.1	 Script Algorithm	 61
4.3.2	 Analysis	 63

4.4	 Preparing an Index	 63
4.4.1	 Script Algorithm	 65
4.4.2	 Analysis	 68

	 Contents	 ix

4.5	 Comparing Texts Using Similarity Scores	 69
4.5.1	 Script Algorithm	 69
4.5.2	 Analysis	 76

IPart I � Medical Data Resources

5Chapter 	 The National Library of Medicine’s Medical Subject
Headings (MeSH) 	 81
5.1	 Determining the Hierarchical Lineage for MeSH Terms	 83

5.1.1	 Script Algorithm	 83
5.1.2	 Analysis	 86

5.2	 Creating a MeSH Database	 88
5.2.1	 Script Algorithm	 88
5.2.2	 Analysis	 90

5.3	 Reading the MeSH Database	 90
5.3.1	 Script Algorithm	 91
5.3.2	 Analysis	 92

5.4	 Creating an SQLite Database for MeSH	 92
5.4.1	 Script Algorithm	 93
5.4.2	 Analysis	 96

5.5	 Reading the SQLite MeSH Database	 96
5.5.1	 Script Algorithm	 96
5.5.2	 Analysis	 97

6Chapter 	 The International Classification of Diseases 	 99
6.1	 Creating the ICD Dictionary	 99

6.1.1	 Script Algorithm	 100
6.1.2	 Analysis	 101

6.2	 Building the ICD-O (Oncology) Dictionary	 102
6.2.1	 Script Algorithm	 103
6.2.2	 Analysis	 104

7Chapter 	 SEER: The Cancer Surveillance, Epidemiology, and
End Results Program 	 107
7.1	 Parsing the SEER Data Files	 107

7.1.1	 Script Algorithm	 107
7.1.2	 Analysis	 109

7.2	 Finding the Occurrences of All Cancers in the SEER Data Files	 110
7.2.1	 Script Algorithm	 111
7.2.2	 Analysis	 114

7.3	 Finding the Age Distributions of the Cancers in the SEER Data Files	 115
7.3.1	 Script Algorithm	 115
7.3.2	 Analysis	 119

8Chapter 	 OMIM: The Online Mendelian Inheritance in Man 	 123
8.1	 Collecting the OMIM Entry Terms	 124

8.1.1	 Script Algorithm	 124
8.1.2	 Analysis	 125

8.2	 Finding Inherited Cancer Conditions	 126
8.2.1	 Script Algorithm	 126
8.2.2	 Analysis	 128

x	 Contents

9Chapter 	 PubMed 	 131
9.1	 Building a Large Text Corpus of Biomedical Information	 131

9.1.1	 Script Algorithm	 132
9.1.2	 Analysis	 134

9.2	 Creating a List of Doublets from a PubMed Corpus	 134
9.2.1	 Script Algorithm	 136
9.2.2	 Analysis	 138

9.3	 Downloading Gene Synonyms from PubMed	 139
9.4	 Downloading Protein Synonyms from PubMed	 140

1Chapter 0	 Taxonomy 	 143
10.1	 Finding a Taxonomic Hierarchy	 143

10.1.1	 Script Algorithm	 144
10.1.2	 Analysis	 147

10.2	 Finding the Restricted Classes of Human Infectious Pathogens	 148
10.2.1	 Script Algorithm	 148
10.2.2	 Analysis	 153

1Chapter 1	 Developmental Lineage Classification and Taxonomy
of Neoplasms 	 157
11.1	 Building the Doublet Hash	 158

11.1.1	 Script Algorithm	 158
11.1.2	 Analysis	 161

11.2	 Scanning the Literature for Candidate Terms	 161
11.2.1	 Script Algorithm	 161
11.2.2	 Analysis	 166

11.3	 Adding Terms to the Neoplasm Classification	 167
11.3.1	 Script Algorithm	 168
11.3.2	 Analysis	 170

11.4	 Determining the Lineage of Every Neoplasm Concept	 171
11.4.1	 Script Algorithm	 172
11.4.2	 Analysis	 175

1Chapter 2	 U.S. Census Files 	 177
12.1	 Total Population of the United States	 177

12.1.1	 Script Algorithm	 177
12.1.2	 Analysis	 181

12.2	 Stratified Distribution for the U.S. Census	 182
12.2.1	 Script Algorithm	 182
12.2.2	 Analysis	 184

12.3	 Adjusting for Age	 185
12.3.1	 Script Algorithm	 186
12.3.2	 Analysis	 189

1Chapter 3	 Centers for Disease Control and Prevention
Mortality Files 	 193
13.1	 Death Certificate Data	 193
13.2	 Obtaining the CDC Data Files	 196
13.3	 How Death Certificates Are Represented in Data Records	 197
13.4	 Ranking, by Number of Occurrences, Every Condition in the CDC

Mortality Files	 200
13.4.1	 Script Algorithm	 200
13.4.2	 Analysis	 204

	 Contents	 xi

IIPart I  Primary Tasks of Medical Informatics

1Chapter 4	 Autocoding 	 209
14.1	 A Neoplasm Autocoder	 209

14.1.1	 Script Algorithm	 210
14.1.2	 Analysis	 215

14.2	 Recoding	 216

1Chapter 5	 Text Scrubber for Deidentifying Confidential Text 	 219
15.1	 Script Algorithm	 220
15.2	 Analysis	 222

1Chapter 6	 Web Pages and CGI Scripts 	 227
16.1	 Grabbing Web Pages	 227

16.1.1	 Script Algorithm	 227
16.1.2	 Analysis	 229

16.2	 CGI Script for Searching the Neoplasm Classification	 230
16.2.1	 Script Algorithm	 231
16.2.2	 Analysis	 235

1Chapter 7	 Image Annotation 	 237
17.1	 Inserting a Header Comment	 238

17.1.1	 Script Algorithm	 238
17.1.2	 Analysis	 240

17.2	 Extracting the Header Comment in a JPEG Image File	 240
17.2.1	 Script Algorithm	 240
17.2.2	 Analysis	 241

17.3	 Inserting IPTC Annotations	 242
17.4	 Extracting Comment, EXIF, and IPTC Annotations	 242

17.4.1	 Script Algorithm	 242
17.4.2	 Analysis	 242

17.5	 Dealing with DICOM	 243
17.6	 Finding DICOM Images	 244
17.7	 DICOM-to-JPEG Conversion	 245

17.7.1	 Script Algorithm	 245
17.7.2	 Analysis	 246

1Chapter 8	 Describing Data with Data, Using XML 	 249
18.1	 Parsing XML	 250

18.1.1	 Script Algorithm	 250
18.1.2	 Analysis	 252
18.1.3	 Resource Description Framework (RDF)	 252

18.2	 Dublin Core Metadata	 254
18.3	 Insert an RDF Document into an Image File	 254

18.3.1	 Script Algorithm	 255
18.3.2	 Analysis	 256

18.4	 Insert an Image File into an RDF Document	 256
18.4.1	 Script Algorithm	 257
18.4.2	 Analysis	 258

18.5	 RDF Schema	 259
18.6	 Visualizing an RDF Schema with GraphViz	 260
18.7	 Obtaining GraphViz	 262

xii	 Contents

18.8	 Converting a Data Structure to GraphViz	 263
18.8.1	 Script Algorithm	 263
18.8.2	 Analysis	 265

IPart V  Medical Discovery

1Chapter 9	 Case Study: Emphysema Rates 	 269
19.1	 Script Algorithm	 270
19.2	 Analysis	 273

2Chapter 0	Case Study: Cancer Occurrence Rates 	 275
20.1	 Script Algorithm	 275
20.2	 Analysis	 281

2Chapter 1	 Case Study: Germ Cell Tumor Rates across
Ethnicities 	 285
21.1	 Script Algorithm	 286
21.2	 Analysis	 293

2Chapter 2	Case Study: Ranking the Death-Certifying Process,
by State 	 295
22.1	 Script Algorithm	 295
22.2	 Analysis	 298

2Chapter 3	Case Study: Data Mashups for Epidemics 	 301
23.1	 Tally of Coccidioidomycosis Cases by State	 302

23.1.1	 Script Algorithm	 303
23.1.2	 Analysis	 306

23.2	 Creating the Map Mashup	 307
23.2.1	 Script Algorithm	 307
23.2.2	 Analysis	 311

2Chapter 4	Case Study: Sickle Cell Rates 	 315
24.1	 Script Algorithm	 315
24.2	 Analysis	 318

2Chapter 5	Case Study: Site-Specific Tumor Biology 	 321
25.1	 Anatomic Origins of Mesotheliomas	 321
25.2	 Mesothelioma Records in the SEER Data Sets	 323

25.2.1	 Script Algorithm	 324
25.2.2	 Analysis	 329

25.3	 Graphic Representation	 329
25.3.1	 Script Algorithm	 330
25.3.2	 Analysis	 333

2Chapter 6	Case Study: Bimodal Tumors 	 335
26.1	 Script Algorithm	 337
26.2	 Analysis	 344

2Chapter 7	Case Study: The Age of Occurrence of Precancers 	 351
27.1	 Script Algorithm	 351
27.2	 Analysis	 357

	 Contents	 xiii

Epilogue for Healthcare Professionals and Medical Scientists 	 361
Learn One or More Open Source Programming Languages	 361
Don’t Agonize Over Which Language You Should Choose	 362
Learn Algorithms	 362
Unless You Are a Professional Programmer, Relax and Enjoy Being a Newbie	 363
Do Not Delegate Simple Programming Tasks to Others	 363
Break Complex Tasks into Simple Methods and Algorithms	 364
Write Fast Scripts	 364
Concentrate on the Questions, Not the Answers	 365

Appendix 	 367
How to Acquire Ruby	 367
How to Acquire Perl	 367
How to Acquire Python	 367
How to Acquire RMagick	 368
How to Acquire SQLite	 369
How to Acquire the Public Data Files Used in This Book	 370
Other Publicly Available Files, Data Sets, and Utilities	 376

Index 	 377

xv

Preface

There are many talented and energetic healthcare workers who have basic program-
ming skills, but who have not had an opportunity to use their skills to help their
patients or advance medical science. Too often, healthcare workers are led to believe
that medical informatics is a complex and specialized field that can only be mas-
tered by teams of professional programmers. This is just not the case. A few dozen
simple algorithms account for the bulk of activities in the field of medical infor-
matics. Moreover, in the past decade, gigabytes of medical data, comprising many
millions of deidentified clinical records, have been released into the public domain,
and are freely accessible via the Internet. With the arrival of open source high-level
programming languages, the barriers to entry into the field of medical informatics
have collapsed.

Innovative medical data analysis cannot be driven by commercial software applica-
tions. There are limits to what anyone can accomplish with spreadsheets, statistical
packages, search engines, and other off-the-shelf computational products. There will
come a point, in the careers of all healthcare professionals, when they need to per-
form their own programming to answer a very specific question, or to discover a new
hypothesis from a trove of data resources. This book provides step-by-step instructions
for applying basic informatics algorithms to medical data sets. It is written for students
and professionals in the healthcare field who have some working knowledge of Perl,
Python, or Ruby. Most of our future data analysis efforts will build on the computa-
tional approaches and programming routines developed in this book.

Perl, Python, and Ruby are free, readily available, open source programming lan-
guages that can be used on any operating system including Windows, Linux, and
Mac. Most people who work in the biomedical sciences and develop their own pro-
gramming solutions, perform at least some of their programming with one of these
three languages. These languages are popular, in part because they are easy to learn.

xvi	 Preface

Without becoming a full-time programmer, you can write powerful programs, in just
a few minutes and a few lines of code, with any of these languages.

We will use a minimal selection of commands to write short scripts that can be
learned quickly by biomedical students and professionals. This book demonstrates
that, with a few programming methods, biomedical professionals can master any kind
of data collection.

Though there are numerous books that introduce programming techniques to bio-
medical professionals (including several that I have written) no other book has these
important features:

	 1.	All of the data, nomenclatures, programming scripts, and programming lan-
guages used in this book are free and publicly available. Most of the data comes
from U.S. government sources, providing gigabytes of high quality, curated
biomedical data to a global community of scientists, healthcare experts, clini-
cians, nurses, and students. Every student should become familiar with these
data sources, and understand their medical value. This book provides instruc-
tions for downloading all of the data sources discussed in the book.

	 2.	Data come in many different forms. We describe the structure of every data
source used. In the case of image formats, we provide instructions for convert-
ing between the different file types.

	 3.	Most medical informatics books are written for one specific language, or are
written as “concept books” that describe algorithms without actually provid-
ing programming instruction. We provide equivalent scripts in Perl, Python,
and Ruby, so that anyone with some programming skill will benefit. Each trio
of scripts is preceded by a step-by-step explanation of the algorithm, in plain
English. You may wish to confine your attention to scripts written in your pre-
ferred language. Over the years, you may find it valuable to reread this book,
paying attention to the languages you ignored on the first pass.

	 4.	It is nearly impossible to begin a new data analysis project without first observ-
ing some case examples. With step-by-step instructions, you will learn the
basic informatics methods for retrieving, organizing, merging, and analyzing
the following data sources.

Here are the public resources used in this book:

Data Sets and Services
SEER—The National Cancer Institute’s Surveillance Epidemiology and End

Results project, containing deidentified records for nearly 4 million cancer cases.
PubMed—The National Library of Medicine’s Web-based bibliographic retrieval

service. The title, author(s), journal publication information, and, in most
cases, article summaries, are provided for over 19 million medical citations.

	 Preface	 xvii

CDC mortality data sets—The Centers for Disease Control and Prevention’s
collection of mortality records containing computer-parsable data on virtually
every death occurring in the U.S.

U.S. Census—Every 10 years, the U.S. Bureau of Census counts the number of
people living in the U.S., and collects basic demographic information in the
process. Much of the information collected by the census is freely available to
the public.

OMIM®—The Online Mendelian Inheritance in Man® is a large data set con-
taining detailed information on over 20,000 inherited conditions of humans,
made publicly available by the National Library of Medicine’s National Center
for Biotechnology Information.

Nomenclatures and Ontologies
MeSH—Medical Subject Headings, a comprehensive, hierarchical listing of

medical topics, developed by the National Library of Medicine.
ICD and ICD-O—The World Health Organization’s disease nomenclatures, the

International Classification of Diseases and the International Classification of
Diseases in Oncology.

Taxonomy—A computer-parsable classification of organisms, used by biotech-
nology centers.

Developmental Lineage Classification and Taxonomy of Neoplasms—The larg-
est nomenclature of tumors in existence, with synonymous terms grouped
under concepts and organized as a hierarchical biological classification.

Internet Protocols, Markup Languages, and Interfaces
HTML—HyperText Markup Language, the markup language used in Web

pages.
HTTP—Hypertext Transfer Protocol, the Internet protocol supporting the

Internet’s World Wide Web.
XML—eXtensible Markup Language, a syntax for describing the data and

including both data and data descriptors in a format that can be read by
humans and computers.

RDF—Resource Description Framework, a method of organizing information
in statements that bind data, and descriptors for the data, to an identified
object. RDF is expressed in the XML markup language.

CGI—Common Gateway Interface, an Internet protocol, used by Perl, Python,
Ruby, and other languages, that receives input values submitted through
Web pages.

xviii	 Preface

The included scripts will call upon a few programming skills, in either Perl, Python,
or Ruby. You should know the basic syntax of a language, the minimum structural
requirements for a script, how command lines are written, how iterating loops are
structured, how files are opened, read, and written, how values can be assigned to and
retrieved from data structures, how simple regular expressions are interpreted, and
how scripts are launched. The scripts are written in a style that sacrifices elegance for
readability. If your knowledge of Perl, Python, or Ruby is shaky, there are numerous
beginner-level books, and many Web-based tutorials for each of these languages.

The book is divided into four parts: Part I—Fundamental Algorithms and Methods
of Medical Informatics; Part II—Medical Data Resources; Part III—Primary
Tasks of Medical Informatics; and Part IV—Medical Discovery.

Part I—Fundamental Algorithms and Methods of Medical Informatics
(Chapters 1 to 4) provides simple methods for viewing text and image files, and for
parsing through large data sets line by line, retrieving, counting, and indexing selected
items. The primary purpose of these chapters is to introduce the basic computational
subroutines that are used in more complex scripts later in the book. The secondary
purpose of these chapters is to demonstrate that Perl, Python, and Ruby are quite
similar to one another, and provide equivalent functionality.

Part II—Medical Data Resources (Chapters 5 to 13) demonstrates uses of some
freely available biomedical data sets. These data sets have cost hundreds of millions
of dollars to assemble, yet many healthcare workers are unaware of their enormous
clinical value. In these chapters, you will learn the intended uses of data sets, how the
data sets are organized, and how you can select, retrieve, and analyze information from
the files.

Part III—Primary Tasks of Medical Informatics (Chapters 14 to 18) covers some
of the computational methods of biomedical informatics, including autocoding, data
scrubbing, and data deidentification.

A good question is hard to find. Part IV—Medical Discovery (Chapters 19 through
27) provides examples of the kinds of questions that biomedical scientists can ask and
answer with public data and open source programming languages. In these chapters,
we combine methods developed in the earlier chapters, using freely available data
sources to answer specific questions or to develop new medical hypotheses. Many of
the informatics projects that you will use in your biomedical career can be completed
with the basic methods and implementations described in these chapters.

This book is intended to be used as a textbook in medical informatics courses.
Because the methods in the book are generalized, the book will also serve as a con
venient reference source of script snippets that can be freely used by students and pro-
fessionals. The scripts are written in a syntax appropriate for the most current popular
version of Perl, Python, or Ruby, and based on the availability of about a dozen large,
public data sets, each with a consistent data structure. Over time, programming lan-
guages change; the availability, Internet location, and organization of the large public

	 Preface	 xix

data sets may also change. Readers should be warned that, as time goes by, the scripts
will need to be modified. Because the scripts are very short, future script changes
should be minor, and easy to implement.

 I maintain a Web site with updated resources for all of my books (including this
one) at the following address: http://www.julesberman.info/.

xxi

Nota Bene

Throughout the book are short scripts. Most of the scripts are under a dozen lines of
code, and every script is preceded by a step-by-step explanation of the code’s basic
algorithm. To keep the scripts short, easy to understand, and generalizable, I omit-
ted many of the tricks and language-specific conventions that programmers love to
flaunt: subroutines, pragmas, exception handling, references, nested data structures,
command-line parameters, and iterator functions (to name a few). Every script was
tested and successfully executed in the Windows® operating system, using Perl ver-
sion 5.8, Python version 2.5, and Ruby version 1.8. Because the scripts are all short
and simple, using a minimum of external modules, it is likely that many of the scripts
will execute without modification, on any computer. Some scripts will require pub-
licly available data files that you must download to your own computer. You will need
to modify these scripts to include the correct directory locations for your own file sys-
tem. An archive of small text and image files, used throughout the book, along with
all of the book scripts, are available from the publisher’s Web site. Please note that a
return arrow, shown at right, indicates a line continuation and is not script code.

The following disclaimer applies to all parts of this book, including text, scripts,
and images. This material is provided by its creator, Jules J. Berman, “as is,” without
warranty of any kind, expressed or implied, including but not limited to the warran-
ties of merchantability, fitness for a particular purpose, and noninfringement. In no
event shall the author or copyright holder be liable for any claim, damages, or other
liability, whether in an action of contract, tort or otherwise, arising from, out of, or
in connection with the material or the use or other dealings.

All of the scripts included in the book are distributed under the GNU General
Public License, a copy of which is available at

http://www.gnu.org/copyleft/gpl.html

xxii	N ota Bene

If you encounter problems with the scripts, the author will try to find the problem and
make corrections. The author cannot guarantee that a correction or modification will
satisfy the needs or the desires of every reader. Readers should understand that this
book is a work of literature, and not a collection of software applications.

xxiii

About the Author

Jules Berman, Ph.D., M.D., received two bachelor of science degrees (mathematics
and earth sciences) from MIT, a Ph.D. in pathology from Temple University, and an
M.D. from the University of Miami School of Medicine. His postdoctoral research
was conducted at the National Cancer Institute. His medical residence in pathol-
ogy was completed at the George Washington University School of Medicine. He
became board certified in anatomic pathology and in cytopathology, and served as the
chief of Anatomic Pathology, Surgical Pathology and Cytopathology at the Veterans
Administration (VA) Medical Center in Baltimore, Maryland. While at the Baltimore
VA, he held appointments at the University of Maryland Medical Center and at the
Johns Hopkins Medical Institutions. In 1998, he became the program director for
pathology informatics in the Cancer Diagnosis Program at the U.S. National Cancer
Institute. In 2006, he became president of the Association for Pathology Informatics.
Over the course of his career, he has written, as first author, more than 100 publica-
tions, including five books in the field of medical informatics. Today, Dr. Berman is a
full-time freelance writer.

IPart

Fundamental
Algorithms

and Methods
of Medical
Informatics

3

1
Parsing and Transforming

Text Files

File parsing is the computational method of reading a file, piece by piece. The size of the
pieces can be miniscule (individual bits) or small (individual characters), or somewhat
bigger (lines of text, paragraphs, demarcated reports, etc.). In most parsing routines,
the pieces are matched against a pattern, then extracted or modified. Modifications
can include translations, substitutions, deletions, additions, or formatting changes.
The bulk of biomedical informatics routines involve some element of file parsing.

1.1 � Peeking into Large Files

Some of the files we will be using exceed a gigabyte in length. Most word processors
simply cannot open a file of this size. You will need a simple utility that can open a
large file, extract a sample of the file, and display it on your monitor. In a few lines of
code, we can write a script that will extract and display the first 40 lines from a large
text file, and will store the first 3,000 lines in a separate file that you can open with
your word processor.

1.1.1 � Script Algorithm

	 1.	Send a prompt to the monitor asking for the name of a file to be searched.
	 2.	Receive the line of text entered by the user, clipping off the carriage return

(also known as the newline character) that is always added when the user pushes
the Enter key.

	 3.	Put the received keyboarded response into a variable that contains the name
of the file to be searched.

	 4.	Open the file for reading.
	 5.	Open another file for writing. This file will receive the output of the script.
	 6.	Create a “for” loop that will iterate 40 times.
	 7.	In each loop, read a line of text. Print the line of text to the monitor, and print

the same line of text to the “write” file you opened in step 5.
	 8.	Create a “for” loop that will iterate 2,960 times. This loop will continue read-

ing the large file at the location where the prior (40 iteration loop) stops.
	 9.	In each loop, read a line of text and send it to the “write” file opened in step 5.

4	 Methods in Medical Informatics﻿

	 10.	When the loop is finished, print the name of the “write” file to the monitor (so
that the user will know where to find the output text).

	 11.	Exit. The opened files will automatically close when the script exits.

Perl Script

#!/usr/local/bin/perl
print “What file would you like to sample?\n”;
$lookup = <STDIN>;
chomp();
open (TEXT, $lookup)||die”Can’t open file”;
open (OUT, “>sample.txt”)||die”Can’t open file”;
$line = “ “;
$count = 0;
print “\n”;
for (0..39)
 {
 $line = <TEXT>;
 print OUT $line;
 print $line;
 }
for (0..2959)
 {
 $line = <TEXT>;
 print OUT $line;
 }
print “\nYour sampled text is in file \”sample.txt\”\n”;
exit;

Python Script

#!/usr/local/bin/python
import sys
import string
print “What file would you like to sample?\n”
line = sys.stdin.readline()
line = line.rstrip()
infile = open (line, “r”)
outfile = open (“sample.txt”, “w”)
print “\n”
for iterations in range(40):
 getline = infile.readline()
 print getline.rstrip()
 outfile.write(getline)
for iterations in range(2960):
 getline = infile.readline()
 outfile.write(getline)
infile.close()
outfile.close()

	 Parsing and Transforming Text Files	 5

print “\nYour sampled text is in file \”sample.txt\”\n”
exit

Ruby Script

#!/usr/local/bin/ruby
puts “What file would you like to read?”;
filename = gets.chomp
file_in = File.open(filename,”r”)
file_out = File.open(“sample.txt”,”w”)
(1..40).each {|n| puts file_in.readline}
(41..3000).each {|n| file_out.puts file_in.readline}
puts “Your sampled text is in file sample.txt”
exit

1.1.2 � Analysis

Even simple scripts occasionally require the user to enter information via the key-
board. In this script, one command line is all that is needed to initiate a conversation
between script and user. A line of text is sent to the monitor, and the script waits until
the user enters a reply and presses the Enter key. The reply is captured by the script,
and assigned to a script variable. Scripting languages provide a simple but effective
user interface.

1.2 � Paging through Large Text Files

Rather than snatching a portion of a large file (as in the prior example), you may prefer
to read the file line by line until you tire of the process. Here is a script that displays
the first 40 lines from any file, provides an opportunity to quit; if declined, displays the
next 40 lines, and repeats indefinitely. By simply keeping your finger on the Enter key
(thus bypassing the exit prompt), you can quickly scroll through the file. This script is
particularly useful for large text files (exceeding 10 megabytes [MB]) that word pro-
cessors cannot quickly load.

1.2.1 � Script Algorithm

	 1.	Send a prompt to the monitor asking for the name of a file that you want to read.
	 2.	Receive the line of text entered by the user, clipping off the carriage return

(newline character) that is always added when the user pushes the Enter key.
	 3.	Put the received keyboarded response into a variable that now contains the

name of the file to be searched.
	 4.	Open the file.
	 5.	Print the first 40 lines of the file.
	 6. Prompt the user, asking if he or she would like to quit the program.

6	 Methods in Medical Informatics﻿

	 7.	If the user enters “QUIT” after the prompt, exit the program.
	 8.	Otherwise, repeat steps 4, 5, and 6.

Perl Script
#!/usr/local/bin/perl
print “What file do you want to read?”;
$filename = <STDIN>;
chomp($filename);
open (TEXT, $filename)||die”Can’t open file”;
$line = “ “;
while ($line ne “”)
 {
 for ($count = 1; $count <= 40; $count++)
 {
 $line = <TEXT>;
 print $line;
 }
 print “Type QUIT if you want to quit. Otherwise press any key\n”;
 $response = <STDIN>;
 if ($response =~ /QUIT/i)
 {
 last;
 }
 }
exit;

Python Script
#!/usr/local/bin/python
import sys
import string
print “What file would you like to read?\n”
line = sys.stdin.readline()
line = line.rstrip()
infile = open (line, “r”)
print “\n”
while(1):
 for iterations in range(40):
 print infile.readline().rstrip()
 print “Type QUIT if you want to quit. Otherwise press any key\n”;
 response = sys.stdin.readline().rstrip()
 if (response == “QUIT”):
 break
infile.close()
exit

Ruby Script
#!/usr/local/bin/ruby
puts “What file would you like to read?”;
filename = gets.chomp

	 Parsing and Transforming Text Files	 7

file_in = File.open(filename,”r”)
response = “”
count = 0
while 1
 file_in.each_line do
 |line|
 count = count + 1
 print line
 if count == 40
 count = 0
 puts “Type QUIT if you want to quit. Otherwise press any key.”;
 response = gets.chomp
 exit if response == “QUIT”
 exit if response == “quit”
 end
 end
end
exit

1.2.2 � Analysis

If you want to try this script, be sure to provide the name of a text file (a file consisting
of standard ASCII characters) at the prompt, and give the full path to the file if it does
not reside in the same subdirectory as your script.

Programming languages can open a file for reading, without loading the entire
file into memory. When a file is opened for reading, file information can be accessed
by sequential line readings, or by direct access to any selected byte location in the
file. These operations are done very quickly. Regardless of the size of the file you
want to access, each line will appear on your monitor before you can lift your finger
from the Enter key. The rate-limiting factor is the speed with which your monitor
can display text.

1.3 � Extracting Lines that Match a Regular Expression

Perl, Python, and Ruby support regular expression (regex) operations. Regex is a con-
ventional way of describing string patterns.

An example of a regular expression is:

^[A-Z][a-z]+\s[0-9]*

This regex specifies the following pattern, “The string begins with an uppercase letter,
followed by one or more lowercase letters followed by a space, followed by a succession
of zero or more numerical digits.”

With regex, you can search for classes of data. For example, an uppercase C fol-
lowed by 7 numeric characters may specify a nomenclature code. A series of A,C,G,T
characters may represent a gene sequence. A specific word or phrase, followed by as

8	 Methods in Medical Informatics﻿

many as 50 characters of any value, followed by another specific word or phrase, may
constitute a so-called proximity match (i.e., the relative co-location of two phrases). A
set of alphabetic characters, forming a word, and beginning with a particular sequence
of letters, may be the pattern that can pull every word with a common root.

Beyond pattern matching, regex is used for pattern substitution. Scripts can locate all
the matches to a pattern and substitute another sequence of characters. The substitution
sequence can be a specific word or character string, or it may be the product of an opera-
tion on the matched string (e.g., return the matched string as an all-uppercase string).

Regex is an extremely powerful tool for anyone working in the information field.
Here is a basic regex script that parses through a file, extracting lines that contain a
sequence that matches the user-provided regex pattern.

1.3.1 � Script Algorithm

	 1.	Send a prompt to the monitor asking for the name of a file to be searched.
	 2.	Receive the line of text entered by the user and clip off the newline character.
	 3.	Put the received keyboarded response into a variable that contains the name

of the file to be searched.
	 4.	Send a prompt to the monitor asking for a word, phrase, or regular expression

to be searched.
	 5.	Receive the line of text entered by the user, clipping off the newline character.
	 6.	Put the received keyboarded response into a variable that contains the name

of the regular expression that will be matched against every line in the file.
	 7.	Open the file to be searched for reading.
	 8.	Open a file, named “result.out”, for writing. This file will hold your search

results.
	 9.	Parse through every line of the search file.
	 10.	Whenever a line is encountered that matches your search expression, print it

to the screen, and print it to the “result.out” file.
	 11.	Exit. The opened files will automatically close when the script exits.

Perl Script

#!/usr/local/bin/perl
print “What file would you like to search?\n”;
$filename = <STDIN>;
chomp($filename);
print “Enter a word, phrase or regular expression to search.\n”;
$regex = <STDIN>;
chomp($regex);
open (TEXT, “$filename”);
open (OUT, “>result.out”);
while (<TEXT>)

	 Parsing and Transforming Text Files	 9

 {
 $line = <TEXT>;
 if ($line =~ /$regex/i)
 {
 print OUT $line;
 print $line;
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import sys
import string
import re
print “What file would you like to search?”;
filename = sys.stdin.readline()
filename = filename.rstrip()
print “Enter a word, phrase or regular expression to search.”
regex = sys.stdin.readline()
regex = regex.rstrip()
infile = open (filename, “r”)
outfile = open (“result.out”, “w”)
regex_object = re.compile(regex, re.I)
for line in infile:
 m= regex_object.search(line)
 if m:
 print line,
 outfile.write(line)
exit

Ruby Script

#!/usr/local/bin/ruby
puts “What file would you like to search?”;
filename = gets.chomp
puts “Enter a word, phrase or regular expression to search.”;
regex = gets.chomp
f_in = File.open(filename,”r”)
f_out = File.open(“result.out”, “w”)
f_in.each do
 |line|
 if (line =~ /#{regex}/)
 print line
 f_out.print line
 end
end
exit

10	 Methods in Medical Informatics﻿

1.3.2 � Analysis

When you try this script, be sure to provide the name of a text file (a file consisting
of standard ASCII characters) at the prompt, and provide the full path to the file if
it does not reside in the same subdirectory as your script. If you do not know how to
compose a regular expression, just enter a search word or phrase at the prompt. The
script will display every line from the provided file that contains a string that matches
your search word or phrase, and will send a copy of the results to an external file.

1.4 � Changing Every File in a Subdirectory

String substitution is a common computational task. Maybe you will want to switch
every occurrence of the word “tumor” with “tumour” when submitting a manuscript
to a British journal. Maybe a calculation, repeated throughout your quality assurance
report, was incorrect; you want to substitute the correct number wherever the incor-
rect number appears. Maybe you have been spelling “Massachusetts” in a consistent,
but incorrect manner.

The following script will parse through every file in a subdirectory, making a spe-
cific substitution at every matching sequence within every file.

1.4.1 � Script Algorithm

	 1.	Open a directory for reading. Do not run your script from the same directory
as you are opening, because we will be modifying the files in the directory,
and we do not want to modify our script while it is executing.

	 2.	Put the list of files in the directory into an array.
	 3.	Close the directory for reading.
	 4.	Change the current directory to the directory that you previously opened.
	 5.	For each file in your file list array, do the following: open the file, read through

every line in the file, make the desired substitution for each matching sequence
in each line, and close the file when you’re finished.

	 6.	After all of the files in the list have been parsed, exit.

Perl Script

#!/usr/local/bin/perl
opendir(FTPDIR, “c\:\\ftp\\some\\”) || die (“Unable to open
directory”);
@files = readdir(FTPDIR);
closedir(FTPDIR);
chdir(“c\:\\ftp\\some\\”);
undef($/);
foreach $file (@files)
 {

	 Parsing and Transforming Text Files	 11

 open (TEXT, $file);
 $line = <TEXT>;
 $line =~ s/\nexit\;/\nso long\;/g;
 close TEXT;
 unlink $file;
 open (TEXT, “>$file”);
 print TEXT $line;
 close TEXT;
 }
exit;

Python Script

#!/usr/local/bin/python
import sys, os, re
filelist = os.listdir(“c:\\ftp\\some\\”)
os.chdir(“c:\\ftp\\some\\”)
for file in filelist:
 infile = open(file,’r’)
 filestring = infile.read()
 infile.close()
 pattern = re.compile(“exit”)
 filestring = pattern.sub(‘so long’, filestring)
 outfile = open(file,’w’)
 outfile.write(filestring)
 outfile.close
exit

Ruby Script

#!/usr/local/bin/ruby
filelist = Dir.glob(“c:/ftp/some/*.*”)
filelist.each do
 |filepathname|
 contents = IO.read(filepathname)
 contents.gsub!(“exit”,”so long”) if contents.include? “exit”
 outfile = File.open(filepathname, “w”)
 outfile.write(contents)
 outfile.close
end
exit

1.4.2 � Analysis

Programming languages provide a simple way to determine the names of the files in a
subdirectory. Once the names of the files are determined, it becomes straightforward
to open files, examine the contents of files, and transform files.

In this case, I preloaded into my c:\ftp\some\ subdirectory a collection of scripts
that I knew contained an “exit” line. For every file, the script substitutes the words “so

12	 Methods in Medical Informatics﻿

long” for the exit line (not a wise change if you expect to actually execute any of the
scripts in the subdirectory).

If you were writing your own multifile substitution script, you might want to change
a defunct Web address wherever it appears in any file, or you might want to change a
common spelling error in many files at once.

Programming languages typically provide a variety of file operations, including
file tests (e.g., to determine whether a file exists or whether a directory file is a text file
or a binary file), and file stats (descriptive information on the file such as file size,
file creation date, or file modification date).

1.5 � Counting the Words in a File

It is easy to write a short script that counts the words in a file, but it is difficult to do
the job to everyone’s liking. Depending on the type of text, and the intended use of the
word count, the criteria for counting a word may change. For example, should numbers
be counted as words? Should a Web address be counted as a word? How about e-mail
addresses? Do you want to count single characters as words? Maybe you would want
to include “a”, “A”, and “I” as words, but not “z” and “h”. Or, you may want to count “A”
as a word when it appears within a sentence, but not when it begins an alphabetically
organized list, as in “A. Chapter 1”. Because there are many way to count words, you
cannot always use the word counters commonly provided in commercial word proces-
sors. There will be occasions when you will want to write your own script that counts
words just as you prefer. Here is a minimalist word counting script. You can modify the
script to serve your own specific needs.

1.5.1 � Script Algorithm

	 1.	For word counting exercises, we will use the OMIM® file, a well-written, public
domain text corpus, described in detail in Chapter 8. The OMIM file (which
exceeds 100 MB in length) is available for download by anonymous ftp from:

ftp://ftp.ncbi.nih.gov and subdirectory: /repository/omim/omim.txt.Z

		 Gunzip is a popular and open source decompression utility. If you don’t
have decompression software that can gunzip a gzipped file, the utility can
be downloaded from http://www.gzip.org/. Gunzip the omim.txt.Z file and
rename the file, for use with this script, “OMIM”.

			 You do not need to use the OMIM file. Feel free to substitute any plain-
text file you prefer, changing the file name within the script, of course.

	 2.	Parse through the file, line by line.
	 3.	For each line, split the line wherever a sequence of one or more spaces is

encountered, and put the resulting line fragments into an array. This has the
effect of producing an array of the individual words in the line.

	 Parsing and Transforming Text Files	 13

	 4.	Reduce the size of the array by eliminating array items that are empty. This
is necessary because splits on spaces can produce empty list items if a space
precedes or ends the line.

	 5.	Determine the size of the array. In this instance, the size of the array equals
the number of words in the line.

	 6.	Add the number of words on the current line to the running total of words in
the file.

	 7.	When you reach the end of the file, print the total number of words counted,
and exit the script.

Perl Script

#!/usr/local/bin/perl
open (TEXT, “c\:\\big\\omim”)||die”cannot”;
$textvar = “ “;
while ($textvar ne “”)
 {
 $textvar = <TEXT>;
 @line_array = split(/[\n]+/,$textvar);
 @reduced_array = grep($_ ne “”,@line_array);
 $total = $total + scalar(@reduced_array);
 }
print $total;
exit;

Python Script

#!/usr/local/bin/python
import re
import string
total = 0
line_list = []
line_reduced = []
in_text = open(‘C:\\big\\omim’, “r”)
for line in in_text:
 line_list = re.split(r’[\n]+’,line)
 line_reduced = [var for var in line_list if var != ‘’]
 total = total + len(line_reduced)
print total
exit

Ruby Script

#!/usr/local/bin/ruby
intext = File.open(“c\:\\big\\omim”, “r”)
total = 0
intext.each_line(){|line| total = total + line.split.size}
puts total
exit

14	 Methods in Medical Informatics﻿

1.5.2 � Analysis

The script produces the word count, for the OMIM file, currently over 20 million
words, in under a minute.

1.6 � Making a Word List with Occurrence Tally

Sometimes, you need to have a listing of all the different words in a document, and
the number of occurrences of each word. A word frequency list tells you a lot about
a document. Simple books tend to have a limited number of different words (a few
thousand). Books written for advanced readers tend to have a large number of differ-
ent words (20,000 or more). Word frequency lists can characterize the subject matter
of a document, and can sometimes identify the author. Scanning down a list of unique
words is also an excellent way to find misspellings. Misspellings can also be found by
comparing the word list from your document with a word list of properly spelled words
(i.e., a dictionary list). Words that are on the word list for your document, but absent
from a dictionary list, are often misspelled words. In some cases, word list entries that
are absent from dictionary lists are abbreviations of proper words, or names, or words
from a highly specialized subject domain.

1.6.1 � Script Algorithm

	 1.	Open a text file. In this case, we will use the OMIM file.
	 2.	Pass the entire contents of the file into a string variable. This requires com-

puter memory that can absorb the entire file in active memory. (Note: If your
computer cannot manage this step, you can use a smaller input file, or you can
break the file into sections or lines.)

	 3.	Match the entire text against the general pattern of a word. In this case, the
general pattern of a word consists of a word-break pattern, followed by 3 to
15 letters. We make the somewhat arbitrary decision that strings less than
three characters in length are either abbreviations, or they are high-frequency
words of no particular interest (e.g., of, if, in, or). Srings with a length exceed-
ing 15 characters are likely to be nonword letter sequences (e.g., a gene or
protein sequence). The match is repeated sequentially for the entire text.

	 4.	At each match, extract each string that matches the pattern (i.e., each word),
and assign it as a key in a dictionary variable. Increment the value of the key
by one. This keeps a frequency tally of each encountered word.

	 5.	After the entire file is parsed, word by word, you are left with a dictionary
wherein the keys are the different words in the text, and the key values are the
frequency of occurrence of each of the different words in the text.

	 6.	Sort the keys in the dictionary object alphabetically and print out every key–
value pair to an external file.

	 Parsing and Transforming Text Files	 15

Perl Script

#!/usr/local/bin/perl
open (OUT, “>omimword.txt”);
open (TEXT, “c\:\\big\\omim”);
undef($/);
$textvar = (<TEXT>);
while ($textvar =~ /(\b[a-z]{3,15}\b)/ig)
 {
 $freq{$1}++;
 }
foreach $word (sort(keys(%freq)))
 {
 print OUT $word . “ - “ . $freq{$word} . “\n”;
 }
exit;

Python Script

#!/usr/local/bin/python
import re
import string
word_list = []
freq_list = []
freq = {}
in_text = open(‘C:\\big\\omim’, “r”)
in_text_string = in_text.read()
out_text = open(“omimword.txt”, “w”)
in_text_string = string.lower(in_text_string)
word_list = re.findall(r’(\b[a-z]{3,15}\b)’, in_text_string)
for item in word_list:
 count = freq.get(item,0)
 freq[item] = count + 1
freq_list = freq.keys()
sort_list = sorted(freq_list)
for i in sort_list:
 print>>out_text, i, freq[i]
exit

Ruby Script

#!/usr/local/bin/ruby
freq = Hash.new(0)
file_out = File.open(“omimword.txt”,”w”)
file1 = File.open(“c\:\\big\\omim”)
file1.read.downcase.scan(/\b[a-z]{3,15}\b/){|word| freq[word] =
freq[word]+1}
freq.keys.sort.each {|k| file_out.print k, “ - “, freq[k], “\n”}
exit

16	 Methods in Medical Informatics﻿

1.6.2 � Analysis

We loaded the entire text of OMIM, a text file exceeding 135 MB in length, and con-
taining about 20 million words, into a variable. The script executed in about 20 seconds,
creating an output file containing about 168,000 different words, and the number of
times each word occurred within the text. Here is a short sampling of the output file:

kidney—7449
kidneys—928
kido—33
kidoguchi—1
kidokoro—1
kidon—2
kidou—1
kidouchi—4
kidowaki—1
kidron—2
kidson—16

Most languages contain between 20,000 and 60,000 words. Comprehensive diction-
aries, that contain many more than 60,000 words, include all of the variant forms for
a single word (e.g., soft, softer, softest, soften, softens, softening, softener), orthographic
variants (advertise, advertize), obsolete or denigrated variants (publicly and publically),
technical words, slang, or proper names.

When we examine the OMIM output list, we see that most of the so-called words
are names of people, or misspellings. If you have a 135 MB text, and a word occurs
fewer than three times, it is unlikely to be a valid word. When we find a very high-
frequency word, such as with, which occurs 212,312 times in OMIM, it is probably a
low-information-content word used to connect other words. When we find a middle-
frequency word, such as kidney (7,449 occurrences), it is almost certainly a high-infor-
mation-content word relevant to the document’s knowledge domain.

1.7 � Using Printf Formatting Style

Printf, like regex, is another programming convention that transcends individual
programming languages. Many different languages support the same printf syntax.
The purpose of printf is to provide a simple way of specifying the arrangement of
data printed to an output line. Printf produces output in neat columns. If you have
a word, followed by three numbers, and two of the three numbers have a decimal
point followed by two digits, and one of the numbers is an integer that should be
left-padded with zeros to produce an integer length of 8, and you want the word and
numbers in a particular order, separated by a specific number of spaces, you will want

	 Parsing and Transforming Text Files	 17

to use printf. There are numerous Web resources that will help you compose elegant
printf statements.

1.7.1 � Script Algorithm

	 1.	We will use the MeSH (Medical Subject Headings) file for this exercise. In
Chapter 5, we will be discussing the MeSH nomenclature, at some length. At
this point, all we need to know about MeSH is that it is freely available as a
large text file, from the following site:

http://www.nlm.nih.gov/mesh/filelist.html

		 Download the d2009.bin file (referred to as the ASCII MeSH download file).
This plain-text file is about 28 MB in length and contains over 25,000 MeSH
records. The record format of the d2009.bin file is described in the appendix.

			 You can substitute any plain-text file you prefer.
			 I have downloaded the file into my computer’s c:\big subdirectory, and the

script reflects this location.
	 2.	Open the d2009.bin file for reading.
	 3.	Create and open and output file, “meshword.txt”.
	 4.	Put the entire contents of the MeSH file (about 28 MB) into a variable.
	 5.	Put each encountered word string (defined as a sequence of 3 to 15 lowercase

letters) into a dictionary object key and increment its value by 1.
	 6.	After the entire file is parsed, sort the keys, and print each key, padded to

20 spaces, followed by its value (the number of occurrences of the key in the
MeSH file) as a padded six-digit integer, to the output file.

Perl Script

#!/usr/local/bin/perl
open (TEXT, “c\:\\big\\d2009.bin”);
open (OUT, “>meshword.txt”);
undef($/);
$textvar = (<TEXT>);
while ($textvar =~ /(\b[a-z]{3,15}\b)/g)
 {
 $freq{$1}++;
 }
foreach $word (sort(keys(%freq)))
 {
 printf OUT (“%-20.20s %8.06d\n”, $word, $freq{$word});
 }
exit;

18	 Methods in Medical Informatics﻿

Python Script

Strictly speaking, Python has no printf function. It uses the % operator instead, but it
serves the same purpose and uses an equivalent syntax.
#!/usr/local/bin/python
import re
import string
word_list = []
freq_list = []
freq = {}
in_text = open(‘C:\\big\\d2009.bin’, “r”)
in_text_string = in_text.read()
out_text = open(“meshword.txt”, “w”)
in_text_string = string.lower(in_text_string)
word_list = re.findall(r’(\b[a-z]{3,15}\b)’, in_text_string)
for item in word_list:
 count = freq.get(item,0)
 freq[item] = count + 1
freq_list = freq.keys()
sort_list = sorted(freq_list)
for i in sort_list:
 print>>out_text, “%-20.20s %8.06d” % (i, freq[i])
exit

Ruby Script
#!/usr/local/bin/ruby
freq = Hash.new(0)
file1 = File.open(“c\:\\big\\2009.bin”)
file1.read.downcase.scan(/[a-z]+/){|word| freq[word] = freq[word]+1}
freq.keys.sort.each {|k| printf “%-20.20s %8.06d\n”, k, freq[k]}
exit

1.7.2 � Analysis

Here is a partial output, showing the tail-end of the output file, listing each occurring
word and the number of occurrences in the file:

zygosaccharomyces	 000001
zygote	 000023
zygotene	 000006
zygotes	 000008
zygout	 000001
zyklon	 000001
zyloprim	 000001
zyloric	 000001
zyma	 000005
zymafluor	 000001

	 Parsing and Transforming Text Files	 19

Exercises

	 1.	Using Perl, Python, or Ruby, write a word-counting script that finds and joins
words that are split by hyphens at the end of lines, and counts the connected
string, as a single word.

	 2.	Using Perl, Python, or Ruby, write a word-counting script that counts all the
sentences from a file, using a period followed by one or two spaces, followed
by an uppercase letter, as the sentence delimiting pattern.

	 3.	Using Perl, Python, or Ruby, write a word-counting script that displays the
first 200 and the last 200 bytes in a file of any size.

	 4.	Using Perl, Python, or Ruby, write a script that extracts, from a file of any size,
every five-word phrase that begins or contains the word carcinoma or carcinomas.

	 5.	The word-frequency script sorts words alphabetically, with each word trailed
by its frequency in OMIM. Using Perl, Python, or Ruby, rewrite the script to
list the words by their decreasing frequency of occurrence.

21

2
Utility Scripts

Utilities are small programs that perform a specific task, very efficiently. Most pro-
grammers treasure their personal collections of utility programs, which may include
software for file compression, file searching, directory searching, file comparisons,
image conversions, etc. In this chapter, we will provide some general utility scripts
that will be applied in later chapters.

2.1 � Random Numbers

Random numbers are used extensively in Monte Carlo simulations of biological events.
The simulations are also used in statistics (e.g., calculating normal distributions), and
can even provide simple computational approaches to formal mathematical problems
that would otherwise require advanced numerical methods.

2.1.1 � Script Algorithm

	 1.	Create an iterator that repeats 10 times.
	 2.	Generate and print a random number (technically, a pseudorandom number)

between zero and one.

Perl Script

#!/usr/local/bin/perl
for (0..9)
 {
 print rand() . “\n”;
 }
exit;

Python Script

#!/usr/local/bin/python
import random
for iterations in range(10):
 print random.uniform(0,1)
exit

22	 Methods in Medical Informatics﻿

Ruby Script

#!/usr/local/bin/ruby
(1..10).each{puts rand()}
exit

2.1.2 � Analysis

Here is a sample output, listing 10 random numbers in the range 0 to 1:

0.594530508550135
0.289645594799927
0.393738321195123
0.648691742041396
0.215592023796071
0.663453594144743
0.427212189295081
0.730280586218356
0.768547788018729
0.906096189758145

Had we chosen, we could have rendered an integer output by multiplying each ran-
dom number by 10 and rounding up or down to the closest integer.

2.2 � Converting Non-ASCII to Base64 ASCII

Almost every computer user has made the mistake of trying to view a non-ASCII
file (such as a binary image, or a word-processed file stored in a proprietary format)
in a plain-text viewer. You will see a funny-looking page, containing happy faces
and hearts, and you might even hear a few shrill beeps. Sometimes, the file, and
your application will abruptly close. When a text viewer application opens a file, it
converts every sequential octet of 0s and 1s (of which there are 258 possibilities) into
one of the 258 standard ASCII symbols. When the file is a plain-text file, the ASCII
symbols correspond to the standard keyboard symbols that we use to express written
language. The standard keyboard keys account for about 64 of the 258 ASCII sym-
bols. When the plain-text file is a non-text binary file, the octets of 0s and 1s may
correspond to some of the reserved high-ASCII and low-ASCII symbols that do not
appear on your keyboard.

ASCII text files, such as plain-text files, HTML files, and XML files, must only
contain the standard keyboard symbols. If you want to convey a binary file (such as an
image) within a text file, you must first convert the binary data to the subset of ASCII
that corresponds to keyboard symbols. The converted sequence is called BASE64
encoded data. Once converted to BASE64, the text can be decoded back to binary

	 Utility Scripts	 23

data by reversing the algorithm. Perl, Python, and Ruby contain standard modules
that will convert any file into BASE64. We will be using the BASE64 modules when
we start working with image data conveyed in XML files.

2.2.1 � Script Algorithm

1.	Call the base64 external module into your script.
2.	Read a sample file into a string variable. (In this case, the script requires you

to provide a file named “z.text”.)
3.	Pass the string variable to the base64 encoding method provided by the module.
4.	Print the base64 encoded string.
5.	Pass the base64 encoded string to the decode method provided by the module.
6.	Print the decoded string.

Perl Script

#!/usr/local/bin/perl
use MIME::Base64;
open (TEXT,”z.txt”);
binmode TEXT;
$/ = undef;
$string = <TEXT>;
close TEXT;
$encoded = encode_base64($string);
print $encoded;
$decoded = decode_base64($encoded);
print “\n\n$decoded”;
exit;

Python Script

#!/usr/local/bin/python
import base64
sample_file = open (“z.txt”, “rb”)
string = sample_file.read()
sample_file.close()
print base64.encodestring(string)
print base64.decodestring(base64.encodestring(string))
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘base64’
e_file = File.open(“z.text”).binmode
e_file_string = e_file.read
b64 = Base64.encode64(e_file_string)
puts b64.slice(0,300)

24	 Methods in Medical Informatics﻿

regular = Base64.decode64(b64)
puts regular.slice (0,300)
exit

2.2.2 � Analysis

Here is an example of a string encoded into Base64:

This is the original string … The secret of life
This is the encoded text … VGhlIHNlY3JldCBvZiBsaWZl
This is the decoded text … The secret of life

When we use Base64, we produce output files that are larger than the original
(binary) files.

2.3 � Creating a Universally Unique Identifier

In Chapter 18, we will learn about Research Description Framework (RDF), a seman-
tic device that binds metadata (data that describes data) and data to a unique infor
mation object. For RDF to have any value, information objects must be assigned a
unique identifier that multiple users can apply (to the same object) across network
domains. There are several strategies for applying unique identifiers to objects, one
of which is the Universally Unique Identifier (UUID), also known as the Globally
Unique Identifier (GUID).

The UUID is an algorithm for creating unique strings of uniform format composed
of name and time information, and distributed without a central registration process.

A typical UUID may look like this:

4c108407-0570-4afb-9463-2831bcc6e4a4

The UUID can be assigned to an information object through an RDF statement
and can be used to collect information related to an object, or any of the objects from
the same class as the unique object or from any of the classes related to the class of the
unique object (more on this in Chapter 18).

Unique identifiers are described at length in my book Biomedical Informatics (Jones
& Bartlett Publishers, 2007, pp. 78–85).

Perl, Python, and Ruby all have modules that will generate UUIDs.

2.3.1 � Script Algorithm

	 1.	Call the external module that creates UUID strings.
	 2.	Create a new UUID object.
	 3.	Print the UUID string.

	 Utility Scripts	 25

Perl Script

The UUID::Tiny module is available from the Perl Packet Manager (ppm).

#!/usr/local/bin/perl
use UUID::Tiny;
print create_UUID_as_string();
exit;

Python Script

The UUID module is included in the standard python distribution and can be called
directly from the script.

#!/usr/local/bin/python
import uuid
print uuid.uuid4()
exit

Ruby Script

The GUID module is available as a gem and can be installed with the following
command:

gem install guid

#!/usr/local/bin/ruby
require ‘guid’
puts Guid.new
exit

2.3.2 � Analysis

The algorithms for creating UUIDs, and all of the standard versions of the algorithm,
are described in a publicly available Request for Comments file:

http://www.ietf.org/rfc/rfc4122.txt

2.4 � Splitting Text into Sentences

Many text parsing algorithms proceed sentence by sentence, not line by line. This is
important in machine translation and natural language exercises that use grammar
rules to extract concepts whose parts are scattered through the sentence.

Not infrequently, the information specialist begins a script by teasing out the sen-
tences from a narrative text.

26	 Methods in Medical Informatics﻿

2.4.1 � Script Algorithm

	 1.	Start with a variable containing text.
	 2.	Split the text wherever there is an occurrence of a period (or other sentence

delimiter, such as a question mark or quotation mark), followed by one or
more spaces, followed by an uppercase letter.

	 3.	Put the resulting sequences (which should consist largely of sentences) into
an array.

Perl Script

#!/usr/local/bin/perl
$all_text = “I am here. You are here. We are all here.”;
$all_text =~ s/([^A-Z]+\.[]{1,2})([A-Z])/$1\n$2/g;
print $all_text;
exit;

Python Script

#!/usr/local/bin/python
import re
all_text = “I am here. You are here. We are all here.”;
sentence_list = re.split(r’[\.\!\?] +(?=[A-Z])’, all_text)
print ‘\n’.join(sentence_list)
exit

Ruby Script

#!/usr/local/bin/ruby
all_text = “I am here. You are here. We are all here.”;
all_text.split(/[\.\!\?] +(?=[A-Z])/).each {|phrase| puts phrase}
exit

2.4.2 � Analysis

The input is:

“I am here. You are here. We are all here.”

The output is:

I am here
You are here
We are all here.

Notice that only the last sentence is terminated by a period. This is because the last sen-
tence does not match the regex pattern. The period of the last sentence is not followed
by one or more spaces and an uppercase letter. The last sentence is included in the

	 Utility Scripts	 27

output only because it was split from the prior match. There are many ways by which
we could have corrected for this particular limitation, but sometimes a programmer
needs to decide when the performance of a less-than-perfect script is sufficient for his
intended purposes. In the case of our sentence parser, some sequences that are not sen-
tences would be split off by the regex pattern. One example is a number, followed by a
period, followed by spaces and an uppercase letter. You may encounter such a sequence
in a list. In addition, sentences are often separated by whitespace characters other
than the space character (such as a newline character or a tab character). Our sentence
parser does not account for these types of legitimate sentence delimiters. The point
is that programmers must be ready to redesign their scripts to account for the kinds
of textual material they are likely to encounter. Expanding a regex pattern or adding
additional pattern filters will slow the script and will almost certainly have unintended
consequences (requiring more programming). We will be using this simple sentence
parsing pattern in later scripts, as we parse through large public domain text files. We
can always incrementally modify the sentence parsing patterns when we inspect the
output from our scripts.

2.5 � One-Way Hash on a Name

A one-way hash is an algorithm that transforms a string into another string in such
a way that the original string cannot be calculated by operations on the hash value
(hence the term “one-way” hash). Examples of public domain one-way hash algo-
rithms are MD5 and the Secure Hash Algorithm (SHA). These differ from encryp-
tion protocols that produce an output that can be decrypted by a second computation
on the encrypted string.

The resultant one-way hash values for text strings consist of near-random strings of
characters, and the length of the strings (e.g., the strength of the one-way hash) can be
made arbitrarily long. Therefore, name spaces for one-way hashes can be so large that
the chance of hash collisions (two different names or identifiers hashing to the same
value) is negligible. For the fussy among us, protocols can be implemented guarantee-
ing a data set free of hash collisions, but such protocols may place restrictions upon
the design of the data set.

In theory, one-way hashes can be used to anonymize patient records while still
permitting researchers to accrue data over time to a specific patient’s record. Names
of patients and other identifiers are replaced by their one-way hash values. If a patient
returns to the hospital and has an additional procedure performed, the record iden-
tifier, when hashed, will produce the same hash value held by the original data set
record. The investigator simply adds the data to the “anonymous” data set record con-
taining the same one-way hash value. Since no identifier in the anonymized data set
record can be used to link back to the patient, confidentiality is preserved.

28	 Methods in Medical Informatics﻿

Quantin and Bouzelat have standardized a protocol for coding names using SHA
one-way hashes.*

There is no practical algorithm that can take an SHA hash and determine the
name (or the social security number or the hospital identifier, or any combination
of the above) that was used to produce the hash string. In France, the name-hashed
files are merged with files from many different hospitals and used in epidemiologic
research. They use the hash codes to link patient data across hospitals. Their methods
have been registered with Service Central de la Securite des Systemes d’information
(SCSSI).

Implementation of one-way hashes involve certain practical problems. Attacks on
one-way hash data may take the form of hashing a list of names and looking for match-
ing hash values in the data set. This type of attack, the so-called dictionary attack, can
be countered by encrypting the hash or by hashing a secret combination of identifier
elements or both or keeping the hash value private (hidden). Issues arise related to the
multiple ways that a person may be identified within a hospital system (Tom Peterson
on Monday, Thomas Peterson on Tuesday), resulting in inconsistent hashes on a single
person. Resolving these problems is an interesting area for further research.

The text in this section is an excerpt from a public domain document (Berman J. J.
Confidentiality for medical data miners. Artificial Intelligence in Medicine 26:25–36,
2002.)

2.5.1 � Script Algorithm

	 1.	Call the external MD5 module from your script.
	 2.	Prompt the user to enter a name.
	 3.	Collect the entered name, remembering to strip the newline terminator

(produced by pressing the return key).
	 4.	Pass the entered phrase to the MD5 method module.
	 5.	Print the returned one-way hash value, in hexadecimal format.

Perl Script

#!/usr/local/bin/perl
use Digest::MD5 qw(md5 md5_hex md5_base64);
print “What is your full name?\n”;
$phrase = <STDIN>;
$phrase =~ s/\n//;
print md5_hex($phrase);
exit;

*	 Quantin C., Bouzelat H., et al. Automatic record hash coding and linkage for epidemiological follow-up
data confidentiality. Meth Inf Med 37:271–277, 1998.

	 Utility Scripts	 29

Two sample script executions:

What is your full name?
jules j berman
Output:
f1f78b23dea43a15ffd73ab7d5731022

What is your full name?
Jules J Berman
Output:
c9941f26601fe1d2183ba05dd2a199ee

Python Script

#!/usr/local/bin/python
import sys, string, md5
print “What is your full name?”
line = sys.stdin.readline()
line = line.rstrip()
md5_object = md5.new()
md5_object.update(line)
print md5_object.hexdigest()
exit

Two sample script executions:

What is your full name?
jules j berman
Output:
f1f78b23dea43a15ffd73ab7d5731022

What is your full name?
Jules J Berman
Output:
c9941f26601fe1d2183ba05dd2a199ee

Ruby Script

#!/usr/local/bin/ruby
require ‘digest/md5’
puts “What is your full name?”
phrase = gets.chomp
hexstring = Digest::MD5.hexdigest(phrase)
puts hexstring
exit

Two sample script executions:

What is your full name?
jules j berman
Output:
f1f78b23dea43a15ffd73ab7d5731022

30	 Methods in Medical Informatics﻿

What is your full name?
Jules J Berman
Output:
c9941f26601fe1d2183ba05dd2a199ee

2.5.2 � Analysis

There are several available one-way hash algorithms. MD5 is available as a standard
module for many different programming languages, but the SHA algorithm is also
available. Notice that the output is case-sensitive. The hash value for “jules j berman” is
completely different from the hash value of “Jules J Berman.” Those who wish to substi-
tute a hash value for a name must be careful to use a consistent format for each name.

2.6 � One-Way Hash on a File

All values produced by the one-way hash algorithm are fixed-length. The one-way
hash value for a 10 megabyte (MB) file will have the same length as a one-way hash
value for a patient’s name. A change of a single character in a file will result in a com-
pletely different one-way hash value for the file.

By sending a one-way hash value for a file, along with the file itself, you can, with a
high degree of confidence, authenticate your file. When others receive your file, along
with its MD5 hash that you created, they can recompute the MD5 hash on the file
and compare the output with the MD5 hash that you sent. If the two hash numbers
are identical, then they can be fairly certain that the file was not altered from the
original file (for which the original MD5 value was computed).

Of course, there is always the possibility that the file and its one-way hash were
intercepted en route, and that both file and hash were altered. In this case, compar-
ing hashes will not help. A variety of transmission protocols have been developed to
thwart simple interception attacks.

2.6.1 � Script Algorithm

	 1.	Import an external standard module that computes the MD5 one-way hash.
	 2.	Read the contents of the file into a string. In this case, we use the file, “us.gif,”

but any file would suffice.
	 3.	Call the module function to create the MD5 digest value on the contents of

the file.
	 4.	Print out the digest value in hex format.

Perl Script

#!/usr/local/bin/perl
use Digest::MD5 qw(md5 md5_hex md5_base64);

	 Utility Scripts	 31

open (TEXT,”us.gif”);
binmode TEXT;
$/ = undef;
$line = <TEXT>;
print md5_hex($line);
exit;

Python Script

#!/usr/local/bin/python
import md5
import string
md5_object = md5.new()
sample_file = open (“us.gif”, “rb”)
string = sample_file.read()
sample_file.close()
md5_object.update(string)
md5_string = md5_object.digest()
print ‘’.join([“%02X “ % ord(x) for x in md5_string]).strip()
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘digest/md5’
file_contents = File.new(“us.gif”).binmode
hexstring = Digest::MD5.hexdigest(file_contents.read)
puts hexstring
exit

2.6.2 � Analysis

The script’s output is

39842f5ed1516d7c541155fd2b093b36

The alphanumeric sequence is the MD5 message digest of the us.gif image file.
Changing a single byte in the original file, and repeating the MD5 digest operation
will yield an entirely different digest value.

2.7 � A Prime Number Generator

A prime number, by definition, cannot be the product of two integers. If a number is
prime, then there will be no smaller number that will divide into the number without
producing a remainder. To determine if a number is prime, we can test each smaller
number, to see if it divides into the number without leaving a remainder. If not, then
the number is a prime.

We can use a little trick to shorten the process, by stopping the iterations when we
have examined every smaller number in ascending order up to the square root of the

32	 Methods in Medical Informatics﻿

number. If there were an integer larger than the square root of the number that could
be multiplied by another integer to give the number, then the other integer would
need to be smaller than the square root of the number (otherwise, the two integers
would produce a product larger than the number). But we have already tested all of
the numbers smaller than the square root of the number, and they all yielded a non-
zero remainder. So we do not need to test the integers greater than the square root of
the number.

Here is how you can generate a very long list of prime numbers with just a few lines
of code.

2.7.1 � Script Algorithm

	 1.	Create a loop for all of the integers up to an arbitrary maximum (1,000 in
this case).

	 2.	If an integer is prime, then there will be no smaller integer that will divide
into the number with a remainder of 0. For each number in the outer loop,
loop through the numbers smaller than the integer (a nested loop) to see if any
of the smaller numbers divides into the larger number with anything other
than a zero remainder. If not, then the larger number must be a prime.

	 3.	As we loop through the smaller numbers (the nested loop numbers), we can
save some computational time by stopping when we reach the square root of
the larger number. If there were an integer larger than the square root of the
number, which could be multiplied by another integer to give the number,
then the other integer would need to be smaller than the square root of the
number (otherwise, the two integers would produce a product larger than the
number). But we’ve already tested all of the numbers smaller than the square
root of the number, and they all yielded a nonzero remainder. So we don’t
need to test the integers greater than the square root of the number.

Perl Script

#!/usr/local/bin/perl
print “2,3,”;
for($i=4;$i<10000;$i++)
 {
 for $thing (2 .. int(sqrt($i)))
 {
 $state = 1;
 if ($i % $thing == 0)
 {
 $state = 0;
 last;
 }

	 Utility Scripts	 33

 }
 print “$i\,” unless ($state == 0);
 }
exit;

Python Script

#!/usr/local/bin/python
import math
print “2,3,”
state = 1
for i in range(4, 10000):
 upper = math.sqrt(i)
 upper = int(upper)
 for thing in range(2, upper):
 state = 1
 if (i % thing == 0):
 state = 0
 break
 if (state == 1):
 print i,
exit

Ruby Script

#!/usr/local/bin/ruby
state = Numeric.new
print “2,3,”
(4..10000).each do
 |i|
 (2..(Math.sqrt(i).ceil)).each do
 |thing|
 state = 1
 if (i.divmod(thing)[1] == 0)
 state = 0
 break
 end
 end
 print “#{i}\,” unless (state == 0)
end
exit

Ruby has an even simpler way to produce primes, using the built-in Prime Class.

#!/usr/local/bin/ruby
require ‘Mathn’
generator = Prime.new
count = 0
generator.each{|i| puts i; count = count + 1; break if count > 100}
exit

34	 Methods in Medical Informatics﻿

2.7.2 � Analysis

Every biomedical scientist who uses medical records and other confidential data can
benefit by understanding the role of prime numbers. Almost every cryptographic
method relies on methods that produce large prime numbers, which, when multiplied
together, produce a number that cannot be factored by a quick computation.

Here is the partial output of our method for producing prime numbers:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,1
03,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,19
7,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307
,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,42
1,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,5
47,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,
659,661,673,677,683,691,701,709

Exercises

	 1.	 In the script from Section 2.2, we converted a file to Base64. Modify the
script to query the user for a string, then write (to the monitor) the Base64
encoded string.

	 2.	Sentences can end in characters other than a period (such as “!” or “?”, or quotation
marks). Rewrite the sentence parser to include these sentence terminators.

	 3.	The biggest weakness of every one-way hash algorithm is the dictionary
attack. Suppose you have a one-way hash sequence, composed of seemingly
random letters and numbers. You would like to know the word, phrase, or file
that, when hashed, produced the sequence. You know that there is no way to
produce the original text by examining the sequence. However, you also know
that there are a limited number of sources for the sequence. If the sequence
represents a one-way hash on an English word, you can perform the one-way
hash on every word in the English language (from a word list). When you
come to a word that produces a hash sequence that is identical to the sequence
you are trying to analyze, then you know that the word must be source of the
sequence. Likewise, if you know that the one-way hash sequence represents
the name of a person, you can start with a list of names (for example, the names
of a phone book) and determine the one-way hash for each of the names in the
list, stopping when you find a match to the hash-sequence at-hand.

			 Here are five one-way hash sequences produced by five English words:
a4704fd35f0308287f2937ba3eccf5fe
f85b785512fe9685dde7fda470fe2b9f
c30635cc93c51c6f6731806dbd149a51
a7c291d9a3df61237f8415d5f0149ac7
a58a246f88b5442d91c01fadc4bb7831
5fed3411faf832174ef1f040028b2c21

		 Using Perl, Python, or Ruby, write a script that discovers the original five
words that yielded the five hash sequences.

	 Utility Scripts	 35

Hint: Parse through OMIM, selecting each different word, and produc-
ing three MD5 hash sequences for each word (the lowercase word,
the word with the first letter uppercase and the subsequent letters
lowercase, and the word with all letters uppercase). For each word
encountered, check to see if there is a match to any of the five pro-
vided one-way hash sequences. Repeat until the unique words in the
OMIM file are exhausted.

	 4.	What well-known and universal constant is approximated by the following
script (in Perl, Python or Ruby)? Explain how the scripts works.

#!/usr/local/bin/perl
for (1..10000000)
 {
 $x = rand();
 $y = rand();
 $r = sqrt(($x*$x) + ($y*$y));
 if ($r < 1)
 {
 $totr = $totr + 1;
 }
 $totsq = $totsq + 1;
 }
print eval(4 * ($totr / $totsq));
exit;

#!/usr/bin/python
import random
from math import sqrt
totr = 0
totsq = 0
for iterations in range(1000000):
 x= random.uniform(0,1)
 y= random.uniform(0,1)
 r= sqrt((x*x) + (y*y))
 if r < 1:
 totr = totr + 1
 totsq = totsq + 1
print float(totr)*4.0/float(totsq)
exit

#!/usr/local/bin/ruby
x = y = totr = totsq = 0.0
(1..100000).each do
 x = rand()
 y = rand()
 r = Math.sqrt((x*x) + (y*y))
 totr = totr + 1 if r < 1
 totsq = totsq + 1
end
puts (totr *4.0 / totsq)
exit

	 5.	Because an entire file can be represented as a one-way hash value, your friend
Bob was inspired with an idea. Bob will compute the file’s one-way hash value

36	 Methods in Medical Informatics﻿

and then insert the value into the top line of the file. He sends the file to you.
You perform a one-way hash operation on the received file. If your one-way
hash exactly matches the one-way hash inserted into the top line of the file,
then you know that the file has not been altered during transit. This is actually
a terrible idea and cannot possibly succeed. Why not?

37

3
Viewing and Modifying Images

Everyone who deals with data will eventually need a simple way of representing their
data in images. There are many different image formats that are currently available.
Here are a few:

JPEG—Joint Photographic Experts Group, a compressed image format, partic-
ular suited to photographs, commonly used by digital cameras, and appearing
on many Web pages.

PNG—Portable Network Graphics, an image format created as a patent-free
alternative to GIF. GIF contains a patented compression algorithm (LZW).
Though the patent used by GIF has now expired, PNG still serves as a popu-
lar GIF-like format, used extensively on Web pages.

TIFF—Tagged Image File Format, an image and line-drawing file format
that is widely supported by page layout, character recognition, and publish-
ing applications.

GIF—Graphics Interchange Format, an image format, first introduced by
Compuserve, particularly well-suited for schematic and line-drawing images,
that is used extensively on Web pages.

DICOM—Digital Imaging and Communications in Medicine, a medical imag-
ing format used primarily in radiology services.

The most popular image format on the Web is JPEG. This is the format used in most dig-
ital cameras, and there are billions of JPEG images distributed through the Internet.

Here is how you can display any JPEG image on your monitor. We will be using
this technique in later chapters, when we create charts, graphs, and mashups to visual-
ize our work.

3.1 � Viewing a JPEG Image

Every programming language should have a method of creating a “window” on your
monitor, in which you can view images, text, and media. Perl, Python, and Ruby
all use Tk, an open source utility that provides functional widgets (buttons, menus,
canvases, text boxes, frames, labels, and so on). By calling the Tk module from Perl,
Python, or Ruby, you can create applications with a sophisticated graphic user inter-
face (GUI). With Tk, you can write scripts that display images.

38	 Methods in Medical Informatics﻿

3.1.1 � Script Algorithm

	 1.	Call the Tk module.
	 2.	Create a window widget.
	 3.	Create an image object, supplying the filename of an image to view. We could

have used any image in a wide variety of image formats. In this case, we will
use 3320.jpg. The image file can be downloaded at:

http://www.julesberman.info/book/3320.jpg

	 4.	Pack the image into the widget.
	 5.	Begin the Tk operational loop.

Perl Script

#!/usr/local/bin/perl
use Image::Magick;
my $im_fna = Image::Magick->new;
$im_fna -> ReadImage(“c\:\\ftp\\3320.jpg”);
$im_fna -> write (“gif:c\:\\ftp\\3320.gif”);
$im_fna -> resize (“0.4”);
use Tk;
$mw = MainWindow->new();
$image = $mw->Photo(-file => “c\:\\ftp\\3320.gif”);
$mw->Label(-image=>$image)->pack;
MainLoop;
exit;

Python Script

#!/usr/local/bin/python
import Tkinter
import Image, ImageTk
im_fna = Image.open(‘c:/ftp/3320.jpg’)
im_fna.save(‘c:/ftp/3320.gif’)
im_fna = im_fna.resize((400,400))
root = Tkinter.Tk()
tkim_fna = ImageTk.PhotoImage(im_fna)
Tkinter.Label(root, image=tkim_fna).pack()
root.mainloop()
exit

Python permits an even simpler method for viewing images, using PIL (Python
Image Library). PIL is freely available from

http://www.pythonware.com/products/pil/

	 Viewing and Modifying Images	 39

We can easily display an image by calling the show() method provided in PIL (the
Python Image library).

#!/usr/local/bin/python
import Image
im=Image.open(“c:/ftp/neo1.gif”)
im.show()
exit

The show() method makes a surreptitious operating system call to your default image
viewing application. This means that if your operating system has no default image
viewer, or if the operator system cannot call an image viewer, or if the image viewer,
for any reason, cannot respond properly to a call to display an image, this script will
not work.

Python’s TKinter will provide better control over the images you display than will
PIL’s show() method.

Ruby Script

You will need to install RMagick, Ruby’s open source interface to the ImageMagick
open source library. Instructions for obtaining RMagick and ImageMagick are avail-
able in the appendix of this book.

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
im_fna = ImageList.new(“c:/ftp/3320.jpg”).resize!(0.4)
im_fna.write(“c:/ftp/3320.gif”)
require ‘tk’
root = TkRoot.new {title “Ruby View”}
TkButton.new(root) do
 image TkPhotoImage.new{file “c:/ftp/3320.gif”}
 command {exit}
 pack
end
Tk.mainloop
exit

3.1.2 � Analysis

The script produces a window displaying the image (Figure 3.1). Perl, Python, and
Ruby produce the same Tk window object, but with a language-specific heading in
the window bar (top).

With a few lines of code, you can view any selected image. With this basic func-
tionality, you can build complex graphical user interfaces that display images selected
from a list or multiple images.

40	 Methods in Medical Informatics﻿

3.2 � Converting between Image Formats

Most people choose one image format that they use consistently for the bulk of their
work. Often, this will be the format that best displays the kinds of images they cre-
ate or capture in their customary projects. Those who use images containing texture,
lighting variations, and many small detailed objects may prefer JPEG files. Those
who create line drawings and schematics may prefer GIF or PNG. Those who com-
bine publication-quality pages, mixing images, and text may prefer PDF. Rather than
learn new tricks, it is often easiest to convert images to your preferred format. When
you want to export images to colleagues who prefer another format, you will need
software that reverses the process.

3.2.1 � Script Algorithm

	 1.	Call the image library into your script.
	 2.	Create a new image object, and provide the name of an image file to the new

image object.
	 3.	Create another image object.
	 4.	Write the second image object to whatever image formats you prefer, by

assigning the preferred suffix to the filename.

Figure 3.1  Sample image from script, displayed with Ruby’s Tk interface.

	 Viewing and Modifying Images	 41

Perl Script

#!/usr/local/bin/perl
use Image::Magick;
my $image = Image::Magick->new;
$image -> ReadImage(“neo1.jpg”);
$image -> write (“gif:neo1.gif”);
$image -> write (“png:neo1.png”);
$image -> write (“pdf:neo1.pdf”);
exit;

Python Script

#!/usr/local/bin/python
import Image
im = Image.open(“neo1.jpg”)
im.save(“neo1.gif”)
im.save(“neo1.png”)
im.save(“neo1.pdf”)
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
image = ImageList.new(“neo1.jpg”)
image_copy = image.copy
image_copy.write(“neo1.png”)
image_copy.write(“neo1.pdf”)
image_copy.write(“neo1.gif”)
exit

3.2.2 � Analysis

Though it is easy to convert between different image formats, you should keep in mind
that the specifications for the varying image formats are constantly changing. The ver-
sion of an image format produced by your Perl, Python, or Ruby script may not be the
version required by your specialized image applications. When images are converted
between image formats, unexpected modifications in the image may result. It is good
practice to always save the image that you start with, making your conversions on a copy
of the original image. Be prepared to lose some information, particularly text annotations
placed in the header of the image, when the image is converted to another format.

42	 Methods in Medical Informatics﻿

3.3 � Batch Conversions

When you write your own image software, you can automate activities that would
otherwise require repeated operations, on multiple image files, with off-the-shelf
image processing software. For example, you might want to delete, add, or modify
annotations for a group of images, or you might want to resize an image collection to
conform to specified dimensions. When you have more than a few images, you will
not want to repeat the process by hand, for each image. When you have thousands of
images, stored in a variety of image formats, it will be impossible to implement global
conversions, if you do not know how to batch your operations.

Here is an example of a script that converts a batch of images from color to grayscale.

3.3.1 � Script Algorithm

	 1.	Import the image module for your programming language.
	 2.	For this example, the source images are all located in the c:\ftp\rgbfigs\

subdirectory. Every file in the subdirectory is an image file. The images are
color images in .jpg, .gif, or .png formats.

	 3.	Collect the names of all of the images in the c:\ftp\rgbfigs\subdirectory.
	 4.	Loop through each image name in the subdirectory.
	 5.	If the image name contains the suffix “.db”, go to the next image name. This

step is required because the exported image modules will insert a file with a
.db extension into the image subdirectory. The .db file is not an image file and
cannot be converted to a grayscale image. You will need to ignore this file.

	 6.	For each image file in the subdirectory, create an image object.
	 7.	Convert the image object to grayscale.
	 8.	Write the image object to a new file, with the same name, in another sub

directory. In this script we use c:\ftp\bwfigs\ as the target subdirectory.
	 9.	Repeat for each image.

Perl Script

#!/usr/local/bin/perl
use Image::Magick;
@array = glob(“c:\\ftp\\rgbfigs*.*”);
foreach $file_path (@array)
 {
 next if $file_path =~ /\.db/;
 $file_path =~ /\\([a-z0-9_\.\-]+)$/i;
 $filename = $1;
 $image = Image::Magick->new;
 $image -> ReadImage($file_path);
 $image->Quantize(colorspace=>’gray’);

	 Viewing and Modifying Images	 43

 $file_new = “c:\\ftp\\bwfigs\\” . $filename;
 $image -> Write ($file_new);
 }
exit;

Python Script

#!/usr/local/bin/python
import Image, sys, os, re
filelist = os.listdir(“c:\\ftp\\rgbfigs”)
os.chdir(“c:\\ftp\\rgbfigs”)
for file in filelist:
 if re.search(‘\.db’, file):
 continue
 im = Image.open(file).convert(“L”)
 newfile = “c:\\ftp\\bwfigs\\” + file
 im.save(newfile)
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
filelist = Dir.glob(“c:/ftp/rgbfigs/*.*”)
filelist.each do
 |filepathname|
 filepathname = filepathname.chomp
 filepathname =~ /c:\/ftp\/rgbfigs\//
 filename = $’
 next if filename =~ /\.db/
 newpathname = “c:/ftp/bwfigs/” + filename
 bw_image = ImageList.new(filepathname).quantize(number_colors=256,
 colorspace=Magick::GRAYColorspace, dither=true, tree_depth=0,
 measure_error=false)
 bw_image.write(newpathname)
end
exit

3.3.2 � Analysis

The script produces grayscale versions of all the images in the c:\ftp\rgbfigs sub
directory and inserts them in the c:\ftp\bwfigs subdirectory. Conversion from color to
grayscale is somewhat slow. If you have hundreds of images, the script may take longer
than a minute to execute.

In this example, we chose a simple function, grayscale conversion. There are hun-
dreds of ImageMagick functions, and we could have written a script that employs
many different conversion steps on every image.

44	 Methods in Medical Informatics﻿

3.4 � Drawing a Graph from List Data

One of the simplest and most useful ways of visualizing list data (i.e., arrays of
data) is the bar graph. The task of converting data lists into bar graphs is so com-
mon that most spreadsheet applications, and some word processing applications,
will build graphs from data. Nonetheless, serious informaticians should know how
to build a bar graph from their own data sources. When you write your own
scripts for building graphs, you have the flexibility to automate and modify the
process of graph creation. You can build graphs from very large data arrays or
from data extracted from multiple, diverse data sets, and you can create hundreds
or thousands of graphs, virtually instantaneously, from multiple data arrays. You
can write scripts that build graphs and export the graphs into Web pages. All of
these efforts begin with the simple technique of converting a list of numbers into
a bar graph.

3.4.1 � Script Algorithm

	 1.	Import an image library.
	 2.	Open (or create) a blank image object. In this case, we use a blank GIF image,

named empty.gif. It is a simple 500 pixel by 500 pixel image, with a white
background. If you would like to use the same image for your own scripts, you
can download it at:

http://www.julesberman.info/book/empty.gif

	 3.	Split the input data list into an array. In this case, we use the following input
data list:

	 “1 1 1 3 4 9 27 45 89 89 32 51 69 92 11 11 80 43”

	 4.	Use each array item as a “height” quantity to be added to the baseline y-coor-
dinate for the graph, and increment each x-coordinate by some predetermined
number for each successive array item.

	 5.	Use the image library’s draw method to add lines to your image.
	 6.	Write your image object to a new image file.

Perl Script

Uses Image::Magick, available as an external module from the ActiveState ppm
service.

#!/usr/local/bin/perl
use Image::Magick;
my $image = Image::Magick->new;
$image -> ReadImage(“c\:\\ftp\\metajpg\\empty.gif”);

	 Viewing and Modifying Images	 45

$data_string = “1 1 1 3 4 9 27 45 89 89 32 51 69 92 11 11 80 43”;
@data_array = split(/ /,$data_string);
$x_coordinate = 15;
foreach $thing (@data_array)
 {
 $x_coordinate = $x_coordinate + 25;
 $y_coordinate = 300 - $thing;
 $image -> Draw (stroke => “black”, width => “2”, primitive => “line”,
 points => “$x_coordinate,300 $x_coordinate,$y_coordinate”);
 }
$image -> write (“empty1.gif”);
exit;

Python Script

#!/usr/local/bin/python
import Image, ImageDraw
im = Image.open(“c:/ftp/metajpg/empty.gif”)
draw = ImageDraw.Draw(im)
data_string = “1 1 1 3 4 9 27 45 89 89 32 51 69 92 11 11 80 43”
data_array = data_string.split(“ “)
x_coord = 20
for i in data_array:
 x_coord = x_coord + 25
 y_coord = 300 - int(i)
 draw.line((x_coord,300) + (x_coord, y_coord), width=4, fill=000)
im.save(“c:/ftp/metajpg/empty1.jpg”)
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
img = Magick::ImageList.new(“c:/ftp/metajpg/empty.gif”)
gc = Magick::Draw.new
gc.fill_opacity(0)
gc.stroke(‘black’).stroke_width(3)
data_string = “1 1 1 3 4 9 27 45 89 89 32 51 69 92 11 11 80 43”
data_array = data_string.split(/ /)
baseline = 30
data_array.each do
 |x|
 gc.line(baseline,(300 - x.to_i), baseline,300)
 baseline = 25 + baseline
end
gc.draw(img)
img.write(“c:/ftp/empty1.gif”)
exit

46	 Methods in Medical Informatics﻿

3.4.2 � Analysis

The script produces an image, containing a simple graph, without designated coordi-
nates, for the provided list data (Figure 3.2).

Image Magick supports hundreds of operations for drawing images and modifying
existing images. Most of the Image Magick operations can be directly called from
your own scripts. The Image Magick Web site is

http://www.imagemagick.org/script/index.php

3.5 � Drawing an Image Mashup

A mashup is a computational trick that uses complex data from one or more sources
and displays the data in a new context, often employing images to create a simplified
representation of data or concepts. Web-based mashups use the power of the Web to
draw information (news, images, etc.) from multiple sources to produce dynamic ser-
vices. Simple mashups, such as the ones that we will create here, take information from
one or more data set files and present the aggregated information in charts or images.

3.5.1 � Script Algorithm

	 1.	Import an image module into your script.
	 2.	Determine the northern and southern latitudes, and the eastern and western

longitudes that mark the perimeter of the United States.
	 3.	Open the external file (loc_states.txt) that contains the map coordinates for

the geographic centers of each state. The first few lines of the file are shown
here, with the latitude and longitudes for Alaska, Alabama, and Arkansas.

“AK,61.3850,-152.2683”
“AL,32.7990,-86.8073”
“AR,34.9513,-92.3809”

	 These three lines mean the following:

Alaska Latitude 61.3850 (North) Longitude 152.2683 (West)
Alabama Latitude 32.7990 (North) Longitude 86.8073 (West)
Arkansas Latitude 34.9513 (North) Longitude 92.3809 (West)

Figure 3.2  The graph produced from the input array, “1 1 1 3 4 9 27 45 89 89 32 51 69 92 11 11 80 43”.

	 Viewing and Modifying Images	 47

	 The file was obtained from the following source:

http://www.maxmind.com/app/state_latlon

	 State longitudes and latitudes, obtained from the state_latlon file, and used in
this script, are available at

http://www.julesberman.info/book/loc_states.txt

	 For this script, we deposited loc_states.txt in the c:\ftp\ subdirectory of our
hard drive.

	 4.	Create two dictionary objects. In both, the two-letter state codes are the keys.
In one, the values are the latitude locations of the states. In the other, the
values are the longitude locations of the states.

	 5.	Open an image file consisting of a map of the United States. We use here
the public domain image obtained from the U.S. National Oceanic and
Atmospheric Administration.

http://www.nssl.noaa.gov/papers/techmemos/NWS-SR-193/images/fig7.gif

	 I “erased” the interior of the map, leaving a minimalist outline of the United
States upon which to project the state-specific data. You can use any map, so
long as you know the longitude and latitude boundaries.

		 In general, this method works best with maps of modest geographic con-
tent (i.e., less than or equal to the size of the United States). The reason for
this is that the algorithm requires a rectangular coordinate system. For large
areas of the earth, surface curvature makes this difficult. When you attempt
to project latitude-longitude points onto large area maps, simple proportion-
ate scale can produce strange results. This is not a problem for maps that cover
a small surface (i.e., a few hundred miles).

			 The file used in this sample script (Figure 3.3) is available for download at

http://www.julesberman.info/book/us.gif

Figure 3.3  The input image, the outline of the (contiguous) United States.

48	 Methods in Medical Informatics﻿

	 6.	The coordinates of the perimeter of the map are as follows:

North = 49 degrees; #northernmost latitude of map in degrees north
South = 25 degrees; #southernmost latitude of map in degrees north
West = 125 degrees; #westernmost longitude of map in degrees west
East = 66 degrees; #easternmost longitude of map in degrees west

		 The location of each state can be positioned to a specific point on the map
by calculating the fraction of the map’s north–south and east–west distances
(in degrees) that is occupied by each state’s latitude and longitude.

	 7.	Determine the number of columns and rows in the map image. This gives you
the width (columns) and height (rows) of the full image.

	 8.	For each state, translate the global coordinates for each state as x,y coordinates
on the map image.

	 9.	Draw circles on the map, using the x,y coordinates for each state as the center
for each circle.

	 10.	Write the resulting image to an external image file.

Perl Script

#!/usr/local/bin/perl
use Image::Magick;
$north = 49; #Northernmost latitude of map in degrees north
$south = 25; #Southernmost latitude of map in degrees north
$west = 125; #Westernmost longitude of map in degrees west
$east = 66; #Easternmost longitude of map in degrees west
open(TEXT, “c\:\\ftp\\loc_states.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 $line =~ /^([A-Z]{2})\,([0-9\.]+)\,\-?([\.0-9]+) *$/;
 $state = $1;
 $latitude = $2;
 $longitude = $3;
 $lathash{$state} = $latitude;
 $lonhash{$state} = $longitude;
 }
my $imgl = Image::Magick->new;
$imgl -> ReadImage(“us.gif”);
$width = $imgl -> Get(‘columns’);
$height = $imgl -> Get(‘rows’);
print “$width $height\n”;
while ((my $key, my $value) = each(%lathash))
 {
 $state = $key;

	 Viewing and Modifying Images	 49

 $latitude = $value;
 $longitude = $lonhash{$key};
 $offset_y = int((($north - $latitude) / ($north - $south)) *
$height);
 $offset_x = int((($west - $longitude) / ($west - $east)) *
$width);
 $radius = $offset_x - 15;
 $imgl -> Draw (
 stroke => “red”,
 primitive => “circle”,
 points => “${offset_x}, ${offset_y}, ${radius}, ${offset_y}”);
 }
$imgl -> write (“gif:us_out.gif”);
exit;

Python Script

#!/usr/local/bin/python
import sys
import Image, ImageDraw
import re
lathash = {}
lonhash = {}
north = 49
south = 25
west = 125
east = 66
infile = open (“loc_states.txt”, “r”)
for line in infile:
 match_tuple = re.match(r’^([A-Z]{2})\,([0-9\.]+)\,\-?([\.0-9]+)
*$’,line)
 state = match_tuple.group(1)
 latitude = float(match_tuple.group(2))
 longitude = float(match_tuple.group(3))
 lathash[state] = latitude
 lonhash[state] = longitude
im = Image.open(“us.jpg”)
print im.mode
[width, height] = im.size
draw = ImageDraw.Draw(im)
for state, latitude in lathash.iteritems():
 longitude = lonhash[state]
 offset_y = int(((north - latitude) / (north - south)) * height)
 offset_x = int(((west - longitude) / (west - east)) * width)
 print offset_x,offset_y
 draw.ellipse((offset_x, offset_y, (offset_x + 10), (offset_y +
10)), outline=0xff0000, fill=0x0000ff)
im.save(“us_out.jpg”)
exit

50	 Methods in Medical Informatics﻿

Ruby Script

#!/usr/local/bin/ruby
require ‘RMagick’
north = 49.to_f #degrees latitude
south = 25.to_f #degrees latitude
west = 125.to_f #degrees longitude
east = 66.to_f #degrees longitude
#corresponds to the us continental extremities
text = File.open(“c\:\\ftp\\loc_states.txt”, “r”)
lathash = Hash.new
lonhash = Hash.new
text.each do
 |line|
 line =~ /^([A-Z]{2})\,([0-9\.]+)\,\-?([\.0-9]+) *$/
 state = $1
 latitude = $2
 longitude = $3
 lathash[state] = latitude.to_f
 lonhash[state] = longitude.to_f
end
text.close
imgl = Magick::ImageList.new(“c\:\\ftp\\us\.gif”)
width = imgl.columns
height = imgl.rows
gc = Magick::Draw.new
lathash.each do
 |key,value|
 state = key
 latitude = value.to_f
 longitude = lonhash[key].to_f
 offset_y = (((north - latitude) / (north - south)) * height).ceil
 offset_x = (((west - longitude) / (west - east)) * width).ceil
 gc.fill_opacity(0)
 gc.stroke(‘red’).stroke_width(1)
 gc.circle(offset_x, offset_y, (offset_x - 15), (offset_y))
 gc.fill(‘black’)
 gc.stroke(‘transparent’)
 gc.text((offset_x - 5), (offset_y + 5), state)
 gc.draw(imgl)
end
imgl.border!(1,1, ‘lightcyan2’)
imgl.write(“us_out.gif”)
exit

3.5.2 � Analysis

The output is a U.S. map, without state borders, but with each state marked with a dot,
at the location of its latitude and longitude (Figure 3.4).

	 Viewing and Modifying Images	 51

Techniques whereby data files from one source are combined with maps, charts,
or other visual tools are extremely useful. They permit us to examine complex data
sources within a simple and familiar visual context. In later chapters, we will use
data mashups to develop and test biomedical hypotheses.

Exercises

	 1.	In Section 3.3 we created an image, but we did not display the image. Using
Perl, Python, or Ruby, modify the script with Tk and display your created
image in a widget.

	 2.	Using your preferred language, and any image, “burn” your name into its
lower-left corner of the image created in Exercise 1.

	 3.	Using your preferred language, divide a photographic image (your choice) into
25 images of equal size.

	 4.	Using any source you prefer (Google Earth, or any other map service), find the
latitude and longitude of five hospitals. Modify the script to produce a map of
the United States, marking the locations of these hospitals.

	 5.	Using the data from Exercise 4, for at least one of the hospitals that you
have found, find a county or state map that includes the hospital, and repeat
Exercise 4, marking the location of the hospital within the state or county.
You can see how this technique can track the disease occurrences of an
epidemic if you know the latitude and longitudes of the homes contain-
ing individuals that contract the disease. It is now extremely easy to find
the latitude and longitude of virtually every house in the United States and
other countries.

Figure 3.4  The output image, with circles at the coordinates of states.

53

4
Indexing Text

A book index (Latin, from indicare, “to indicate”) is a collection of significant words
with page numbers as pointers to the location of those terms in the text. Likewise, our
index finger is the pointer used to indicate the location of objects. A common miscon-
ception among some ebook enthusiasts is that the book index has been made obsolete
by fast search features. In a typical ebook search, the user enters a term, and the com-
puter scans the text until it encounters the first occurrence of the term. Each time the
user presses the search button, the computer moves instantly to the next occurrence
of the term. These searches are conducted without the benefit of an electronic index.
When it is so easy and fast to do word or phrase searches, why would anyone want to
build a book index?

Indexing, and a variety of related text organizing methods, are more important
today than they have ever been, for reasons that have nothing to do with ebook
searches. Text parsing searches that seem rapid for a 1 megabyte (MB) ebook will
become excruciatingly slow when applied to a 1 terabyte data set produced by a hos-
pital or a major healthcare agency. More importantly, searches on a single term will
never suffice when the term has a dozen synonymous or related terms that must be
included in a thorough review of the available data. Computational indexing tech-
niques can automatically expand a term search into a term-relation search. Currently,
the algorithms required to create detailed and comprehensive indices on very large
data collections, are readily available. In this chapter, you will learn the rudiments of
text indexing. We will use these fundamental algorithms again, in Chapter 14, when
we discuss autocoding.

4.1 � ZIPF Distribution of a Text File

In almost every segment of life, a small number of items usually account for the bulk
of the observed activities. Though there are millions of authors, a relatively small num-
ber of authors account for the bulk of the books sold (think J.K. Rowling). A small
number of diseases account for the bulk of deaths (think cardiovascular disease and
cancer). A few phyla account for the bulk of the diversity of animals on earth (think
arthropods). A few hundred words account for the bulk of all word occurrences in
literature (think in, be, a, an, the, are). This phenomenon was observed and described
by George Kingsley Zipf, who devised Zipf ’s law as a mathematical description.

54	 Methods in Medical Informatics﻿

Zipf ’s law applies to the diagnoses rendered in a pathology department. I helped
write an early paper wherein 3 years’ worth of a hospital’s surgical pathology reports
were collected and reviewed.

There were 64,921 diagnostic entries that were accounted for by 1,998 different
morphologic diagnoses. A mere 21 diagnostic entities accounted for 50% of the dif-
ferent diagnoses collected by the pathology department. The data served to reassert
Zipf ’s law, as it applies to pathology specimens.

You can create a Zipf distribution for any text file, listing the words that occur in
the file, in descending order of their frequencies of occurrence.

4.1.1 � Script Algorithm

	 1.	Create a new file, meshzipf.txt, which will receive the output of the zipf
distribution.

	 2.	Obtain MeSH (Medical Subject Headings). In Chapter 5, we will be discuss-
ing the MeSH nomenclature, at some length. At this point, all we need to
know about MeSH is that it is freely available as a large text file, from the
following site:

	 http://www.nlm.nih.gov/mesh/filelist.html

	 Download the d2009.bin file (referred to as the ASCII MeSH download file).
This plain-text file is about 28 MB in length and contains over 25,000 MeSH
records. The record format of the d2009.bin file is described in the appendix.

	 3.	Open the file, d2009.bin. On my computer, I’ve uploaded the file to my c:\big\
subdirectory, and the sample script is written to reflect this location.

	 4.	Load the entire contents of the d2009.bin file into a string variable.
	 5.	Parse the string variable, matching against each occurrence of a letter (uppercase

or lowercase) followed by at least 2, and at most 15, lowercase letters, with the
sequence bounded on either size by a word boundary. This pattern will bypass
short words (one or two characters in length), or exceedingly long words. It will
also exclude number, mixed alphanumerics, and words that are all-uppercase.

	 6.	Create a dictionary object that will include words (keys) and number of occur-
rences (values).

	 7.	Each time a word is matched by the regular expression, increment its number
of occurrences by one.

	 8.	After the dictionary object is complete (after the string variable containing the
text has been parsed), format the values in the dictionary, as a zero-padded
string of uniform length. This will permit the values to be sensibly sorted.

	 9.	Sort the key–value pairs by values, ranging from the most frequently occur-
ring word to the least frequently occurring word.

	 10.	Print out the sorted value–key pairs to the meshzipf.txt output file.

	I ndexing Text	 55

Perl Script
#!/usr/local/bin/perl
open (OUT, “>meshzipf.txt”);
open (TEXT, “c\:\\big\\d2009.bin”);
undef($/);
$textvar = (<TEXT>);
while ($textvar =~ /(\b[A-Za-z][a-z]{2,15}\b)/g)
 {
 $freq{$1}++;
 }
$textvar = “”;
while ((my $key, my $value) = each(%freq))
 {
 $value = “000000” . $value;
 $value = substr($value,-6,6);
 push (@termarray, “$value $key”)
 }
@finalarray = reverse (sort (@termarray));
print OUT join(“\n”,@finalarray);
exit;

Python Script
#!/usr/local/bin/python
import re
import string
word_list = []
freq_list = []
format_list = []
freq = {}
in_text = open(‘C:\\big\\d2009.bin’, “r”)
in_text_string = in_text.read()
out_text = open(“meshzipf.txt”, “w”)
word_list = re.findall(r’(\b[A-Za-z][a-z]{2,15}\b)’, in_text_string)
in_text_string = “”
for item in word_list:
 count = freq.get(item,0)
 freq[item] = count + 1
for key, value in freq.iteritems():
 value = “000000” + str(value)
 value = value[-6:]
 format_list += [value + “ “ + key]
format_list = reversed(sorted(format_list))
print>>out_text, “\n”.join(format_list)
exit

Ruby Script
#!/usr/local/bin/ruby
freq = Hash.new(0)

56	 Methods in Medical Informatics﻿

zipfarray = []
file_out = File.open(“meshzipf.txt”,”w”)
file1 = File.open(“c\:\\big\\d2009.bin”, “r”)
file1.read.scan(/\b[A-Za-z][a-z]{2,15}\b/){|word| freq[word] =
freq[word]+1}
file1 = “”
freq.each do
 |key, value|
 value = “000000” + value.to_s
 value = value.slice(-6,6)
 key = key.downcase
 zipfarray.push(“#{value} #{key}”)
end
zipfarray.sort.reverse.each {|item| file_out.puts item}
exit

4.1.2 � Analysis

The first 10 entries from the zipf file for the MeSH file are:

038979 the
027634 and
025435 abcdef
025430 abbcdef
017424 was
015772 see
015456 with
012759 under
010858 use
010034 for

For these scripts, the entire content of a file is loaded into a string variable. The string
variable is subsequently parsed into words, with each occurrence of the word counted.
If the file is very large (exceeding the capacity of your computer’s memory to process
as a string), the script can be modified to read the file line by line, incrementing the
word/frequency tally for the words contained in each line.

At the top of the Zipf list are the high-frequency words, such as “the”, “and”,
and “was” that serve as connectors for lower-frequency, highly specific terms. Also
included at the top of the Zipf list are frequently recurring letter sequences pecu-
liar to the file; in this case, “abcdef ” and “abbcdef ”. Zipf distributions have many
uses in informatics projects, including the preparation of “stopword” lists (see
Section 4.3).

	I ndexing Text	 57

4.2 � Preparing a Concordance

A concordance is a special type of index, listing every location of every word in the
text. Concordances can be used to support very fast proximity searches (finding the
locations of words in proximity to other words), and phrase searches (finding sequences
of words located in an ordered sequence somewhere in the text. Using only a concor-
dance, it is a simple matter to computationally recreate the entire text. Preparing a
concordance is quite simple.

4.2.1 � Script Algorithm

	 1.	Open a text file for reading. In this case, we open the file titles.txt, a collection
of 100 public domain titles of journal articles. You can use any plain-text file
for this script, or you can download titles.txt at

http://www.julesberman.info/book/titles.txt

	 2.	Read the entire contents of the file into a string variable.
	 3.	Split the file into sentences. Rather than listing the page numbers where each

word appears, we will be providing the sentence number for each appearance of
each word in the text. We cannot provide page numbers for each word, because
the text could be divided into pages in many different and arbitrary ways.

	 4.	Parse each sentence into an array of words.
	 5.	As each sentence is parsed, collect the words contained in the sentence and

the location of the sentence. In this script, we indicate that the nth sentence of
the file has a sentence location of n.

	 6.	Add the location of the word to the dictionary object that contains the encoun-
tered words and their locations.

	 7.	After the text has been parsed, order the words in the dictionary object alphabeti-
cally, and print out each word in the dictionary object, along with the dictionary
value for each word (the locations where each word is found in the text).

Perl Script
#!/usr/local/bin/perl
open (TEXT, “titles.txt”);
undef($/);
$textfile = <TEXT>;
$textfile =~ s/\n/ /g;
@sentencearray = split(/[\.\!\?] +(?=[A-Z])/, $textfile);
for ($i=0;$i<(scalar(@sentencearray));$i++)
 {
 $location = $i + 1;
 $sentence = lc($sentencearray[$i]);

58	 Methods in Medical Informatics﻿

 while ($sentence =~ /\b[a-z]{3,15}\b/g)
 {
 if (exists($wordhash{$&}))
 {
 $wordhash{$&} = $wordhash{$&} . “,” . $location;
 }
 else
 {
 $wordhash{$&} = $location;
 }
 }
 }
foreach $key (sort(keys(%wordhash)))
 {
 print “$key $wordhash{$key}\n”;
 }
exit;

Python Script

#!/usr/local/bin/python
import re
import string
sentence_list = []
word_list = []
word_dict = {}
format_list = []
count = 0
stopfile = open(“stop.txt”,’r’)
stop_list = stopfile.readlines()
stopfile.close()
in_text = open(‘titles.txt’, “r”)
in_text_string = in_text.read()
in_text_string = in_text_string.replace(“\n”,” “)
in_text_string = in_text_string.replace(“ +”,” “)
sentence_list = re.split(r’[\.\!\?] +(?=[A-Z])’,in_text_string)
for sentence in sentence_list:
 count = count + 1
 sentence = string.lower(sentence)
 word_list = re.findall(r’(\b[a-z]{3,15}\b)’, sentence)
 for word in word_list:
 if word_dict.has_key(word):
 word_dict[word] = word_dict[word] + ‘,’ + str(count)
 else:
 word_dict[word] = str(count)
keylist = word_dict.keys()
keylist.sort()
for key in keylist:

	I ndexing Text	 59

 print key, word_dict[key]
exit

Ruby Script

#!/usr/local/bin/ruby
word_array = []
word_dict = {}
count = 0
text = IO.read(“titles.txt”)
text.gsub!(/\n+/,” “) if text.include? “\n”
sentence_array = text.split(/[\.\!\?] +(?=[A-Z])/)
sentence_array.each do
 |sentence|
 count = count + 1
 sentence = sentence.downcase
 word_array = sentence.scan(/\b[a-z]{3,15}\b/)
 word_array.each do
 |word|
 count.to_s
 if word_dict.has_key?(word)
 word_dict[word] = “#{word_dict[word]}\,#{count}”
 else
 word_dict[word] = “#{count}”
 end
 end
end
out_array = word_dict.keys.sort
out_array.each{|word| puts “#{word} #{word_dict[word]}”}
exit

4.2.2 � Analysis

The sample text consisted of 100 parsed sentences. Here are the first few lines of
the output, consisting of words followed by the sentence numbers (ranging from sen-
tence 1 to sentence 100), in which the word occurs.

ablation 32
ablative 47
absence 8
acetanilide 36
acid 24,37,44,71
acids 35
action 70
activation 6,19,20,35,46,57,95
activators 35

60	 Methods in Medical Informatics﻿

activity 14,36,58,63,71,75
acute 46
adaptive 27
adenocarcinoma 25
adenosine 52
adrenal 6
advanced 97
affects 69
after 29,32,38,46,79,97
against 43,61,71

4.3 � Extracting Phrases

All text is composed of words and phrases that represent specific concepts, that are
connected together into a sequence of meaningful statements.

Consider the following sentence:

“The diagnosis is chronic viral hepatitis.”

This sentence contains two very specific medical concepts: “diagnosis” and “chronic
viral hepatitis.” The concepts are connected to form a meaningful statement with the
words “the” and “is,” and the sentence delimiter, “.”.

“The,” “diagnosis,” “is,” “chronic viral hepatitis,” and “.”

A phrase can be defined as a sequence of uncommon words that are terminated by the
occurrence of a common word or by a sentence delimiter.

Here is another example:

“An epidural hemorrhage can occur after a lucid interval.”

The medical concepts “epidural hemorrhage” and “lucid interval” are composed of
uncommon words. These uncommon word sequences are bounded by sequences of
common words or of sentence delimiters (the beginning or the end of a sentence).

“An,” “epidural hemorrhage,” “can occur after a,” “lucid interval,” and “.”

If we had a list of all the words that were considered common, we could easily write
a program that extracts all the concepts found in any text of any length. Common
words are sometimes called “stopwords,” because they mark the endings of concepts
encountered in text.

The National Library of Medicine has published a list of public domain stopwords
(Figure 4.1), available at:

http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_170.html

	I ndexing Text	 61

4.3.1 � Script Algorithm

	 1.	Open the stop.txt file, containing a list of (common) stopwords.
		 Although most stopword lists will produce similar results, the stop.txt file,

used in this script, is available at

http://www.julesberman.info/book/stop.txt

	 2.	Split the contents of the stop.txt file into a list structure.
	 3.	Open the cancer_gene_titles.txt file. This file, prepared from a PubMed down-

load and described in Chapter 9, is available as a public domain text file at:

http://www.julesberman.info/book/cancer_gene_titles.txt

		 The file contains over 18,000 titles of scientific articles, without punctuation,
one title per line.

	 4.	Parse through the lines of the text. Substitute a newline character for every
occurrence of any stopword in the sentence.

	 5.	Split the resulting sentences at every newline character contained in the sen-
tence. The split fragments of each sentence comprise the concepts contained
in the sentence.

This is a partial list. Click on Help in the text to see a
full listing.

Stopwords
a it these
about its they
again itself this
all just those
almost kg through
also km thus
although made to
always mainly upon
among make use
an may used
and mg using
another might various
any ml very
are mm was
as most we
at mostly were

Figure 4.1  A partial listing of the National Library of Medicine’s list of stopwords.

62	 Methods in Medical Informatics﻿

	 6.	Put the concepts into a data structure that accumulates the concepts for each
sentence in the text.

	 7.	Remove duplicate items, sort the remaining items alphabetically, and print
them to an output file.

Perl Script

#!/usr/local/bin/perl
open (STOPFILE, “stop.txt”);
undef($/);
@stoparray = split(/\n/, <STOPFILE>);
$/ = “\n”;
open (TEXT, “cancer_gene_titles.txt”);
open (OUT, “>phrases.txt”);
$sentence = “ “;
while ($sentence ne “”)
 {
 $sentence = <TEXT>;
 $sentence =~ s/\n$/ /;
 foreach $stopword (@stoparray)
 {
 $sentence =~ s/ *\b$stopword\b */\n/g;
 }
 push(@phrasearray, (split(/\n/, $sentence)));
 }
%stophash = map{$_, “”} @phrasearray;
@phrasearray = sort(keys(%stophash));
print OUT join(“\n”,@phrasearray);
exit;

Python Script

#!/usr/local/bin/python
import re, string
item_list = []
stopfile = open(“stop.txt”,’r’)
stop_list = stopfile.readlines()
stopfile.close()
in_text = open(‘cancer_gene_titles.txt’, “r”)
count = 0
for line in in_text:
 count = count + 1
 for stopword in stop_list:
 stopword = re.sub(r’\n’, ‘’, stopword)
 line = re.sub(r’ *\b’ + stopword + r’\b *’, ‘\n’, line)
 item_list.extend(line.split(“\n”))
item_list = sorted(set(item_list))
out_text = open(‘phrases.txt’, “w”)

	I ndexing Text	 63

for item in item_list:
 print>>out_text, item
exit

Ruby Script

#!/usr/local/bin/ruby
phrase_array = []
stoparray = IO.read(“stop.txt”).split(/\n/)
sentence_array = IO.read(“cancer_gene_titles.txt”).split(/\n/)
out_text = File.open(“phrases.txt”, “w”)
sentence_array.each do
 |sentence|
 stoparray.each do
 |stopword|
 sentence.gsub!(/ *\b#{stopword}\b */, “\n”) if sentence.include?
stopword
 end
 phrase_array = phrase_array + sentence.split(/\n/)
end
out_text.puts phrase_array.sort.uniq
exit

4.3.2 � Analysis

The output is an alphabetic file of the phrases that might appear in a book’s index.
A sampling of the output is shown in Figure 4.2. We used the file consisting of
titles from a PubMed search. This file, cancer_gene_titles.txt, is about 1.1 MB in
length, the size of a typical book. We only required about a dozen lines of code
and a few seconds of execution time to create our list of index terms. Creating
the final index will require us to visually read the list, excluding unhelpful terms.
Afterwards, we can write a short script that assigns page numbers to the final list
of index terms.

4.4 � Preparing an Index

An index is a list of the important words or phrases contained in a book, along with
the locations where each of those words and phrases can be found.

An index differs from a concordance because the index does not contain every word
found in the text, and the index contains groups of selected phrases, in addition to
individual words.

A good index cannot be created exclusively by a software program. Although it
would be easy to write a script that finds every word and every sequence of words in a
text, and produces a file that lists all of these strings, and their locations, the resulting
product would have a length many times that of the original book.

64	 Methods in Medical Informatics﻿

For example, let’s pretend that we would like to publish a book that is only one
sentence in length and consists of the following text: “This book is short.” Here is the
complete index, listing each word and phrase and the word number in the sentence
where the word or phrase is found, in alphabetic order.

book – 2
book is – 2
book is short – 2
is – 3
is short – 3
short – 4
this – 1
this book – 1
this book is – 1
this book is short – 1

A complete index is always much longer than the length of a book. A useful index is
selective, containing only those words and phrases that would be of greatest interest
to the reader.

Figure 4.2  A small sampling of the text phrases extracted with the stopword method.

	I ndexing Text	 65

4.4.1 � Script Algorithm

	 1.	Create an array containing stopwords. You can use any stopword list you pre-
fer. In this script, we use stop.txt available at http://www.julesberman.info/
book/stop.txt

	 2.	Open a file to be indexed. You can use any file, but in this text, we use text.
txt, available at http://www.julesberman.info/book/text.txt

	 3.	Strip the text of any non-ASCII characters (not necessary if you are using a
plain-text file).

	 4.	Split the text into sentences and put the consecutive sentences into an array.
	 5.	Create a dictionary object, which will hold phrases as keys and a comma-

separated list of numbers, representing the sentences in which the phrases
appear, as the values.

	 6.	For each sentence in the array of consecutive sentences, split the sentence
wherever a stopword appears, and put the resulting phrases into an array.

	 7.	For each array of phrases, from each sentence, parse through the array of
phrases, assigning each phrase to a dictionary key, and concatenating the sen-
tence number in which the phrase occurs, to the comma-separated list of sen-
tence numbers that serves as the value for the key (phrase)

Perl Script
#!/usr/local/bin/perl
open (STOPFILE, “stop.txt”);
open (OUT, “>index.out”);
undef($/);
@stoparray = split(/\n/, <STOPFILE>);
open (TEXT, “text.txt”);
$textfile = <TEXT>;
$textfile =~ s/\n/ /g;
@sentencearray = split(/[\.\!\?] +(?=[A-Z])/, $textfile);
for ($i=0;$i<(scalar(@sentencearray));$i++)
 {
 $location = $i + 1;
 $sentence = lc($sentencearray[$i]);
 $sentence =~ s/\’s//;
 $sentence =~ tr/\000-\011\013-\014\016-\037\041-\055\173-\377//d;
 $sentence =~ s/^ +//;
 $sentence =~ s/ +$//;
 $sentence =~ s/ +/ /;
 foreach $stopword (@stoparray)
 {
 $sentence =~ s/\b$stopword\b/*/g;
 }
 @phrasearray = split(/ ** */, $sentence);
 foreach $phrase (@phrasearray)
 {
 if (exists($phrasehash{$phrase}))

66	 Methods in Medical Informatics﻿

 {
 $phrasehash{$phrase} = $phrasehash{$phrase} . “,” . $location;
 }
 else
 {
 next if ($phrase eq “”);
 next if ($phrase =~ /^[^a-z]/);
 $phrasehash{$phrase} = $location;

 }
 }
 }
foreach $key (sort(keys(%phrasehash)))
 {
 print OUT “$key $phrasehash{$key}\n”;
 }
exit;

Python Script

#!/usr/local/bin/python
import re
import string
item_list = []
item_dictionary = {}
place_string = “”
stopfile = open(“stop.txt”,’r’)
stop_list = stopfile.readlines()
stopfile.close()
in_text = open(‘text.txt’, “r”)
in_text_string = in_text.read()
in_text_string = in_text_string.replace(“\n”,” “)
in_text_string = in_text_string.replace(“ +”,” “)
sentence_list = re.split(r’[\.\!\?] +(?=[A-Z])’,in_text_string)
norm = string.maketrans(‘’,’’)
badascii = string.translate(norm,norm,string.printable)
badascii_table = badascii + (256 - len(badascii))*” “
junk_table = 256*” “
table = string.maketrans(badascii_table,junk_table)
count = 0
for item in sentence_list:
 count = count + 1
 count_string = str(count)
 item = string.lower(item)
 item = re.sub(r’\’s’, “”, item)
 item = item.translate(table)
 for stopword in stop_list:
 stopword = string.rstrip(stopword)
 item = re.sub(r’ *\b’ + stopword + r’\b *’, ‘\n’, item)

	I ndexing Text	 67

 item_list = item.split(“\n”)
 for phrase in item_list:
 phrasematch = re.match(r’^[0-9]’, phrase)
 if (phrasematch):
 continue
 if item_dictionary.has_key(phrase):
 item_dictionary[phrase] = item_dictionary[phrase] + ‘,’ +
count_string
 else:
 item_dictionary[phrase] = count_string
keylist = item_dictionary.keys()
keylist.sort()
for key in keylist:
 print key, item_dictionary[key]
exit

Ruby Script

#!/usr/local/bin/ruby
phrase_array = []
phrasehash = {}
stoparray = IO.read(“stop.txt”).split(/\n/)
text = IO.read(“text.txt”)
text.gsub!(/\n+/,” “) if text.include? “\n”
sentence_array = text.split(/[\.\!\?] +(?=[A-Z])/)
sentence_array.each do
 |sentence|
 count = sentence_array.rindex(sentence) + 1
 sentence = sentence.downcase.tr(‘^a-z0-9 ‘,’ ‘).strip.gsub(/ +/,”
“)
 stoparray.each do
 |stopword|
 stopword = stopword.chomp
 sentence.gsub!(/ *\b#{stopword}\b */, “\n”) if sentence.include?
stopword
 end
 sentence.split(/\n/).each do
 |phrase|
 next if phrase == “”
 next if phrase =~ /^[^a-z]/
 if phrasehash.has_key?(phrase)
 phrasehash[phrase]= “#{phrasehash[phrase]}\, #{count}”
 else
 phrasehash[phrase] = count
 end
 end
end
phrasehash.keys.sort.each {|key| puts “#{key} #{phrasehash[key]}”}
exit

68	 Methods in Medical Informatics﻿

4.4.2 � Analysis

An example of the kind of output produced by the script is shown:

adjustment 7,9
adjuvant chemotherapy 83
adjuvant imrt 23
adjuvant treatment 10
administered 82
adult 73
advanced stages 71
age 9
agree 52
aim 46,73,81
analysed 58
analyzed 48
anaplastic histology 24
apaap technique 85
april 1982 54
aspiration 86
associated obstructive jaundice 76
asymptomatic twin 43,44
attention 21
avoided 79

The numbers represent the sentence numbers in which each phrase occurs. Had we
been preparing an index for a book, we would have written the script to capture page
numbers. In a real index, we would probably be selective, deleting obvious or irrel-
evant entries. We might also wish to group related entries by indentation.

For example:

adjuvant
adjuvant chemotherapy 83
adjuvant imrt 23
adjuvant treatment 10

We might have combined equivalent words that have minor spelling variations.
For example:

analyzed (var. analysed) 48, 58

Automatic indexing invariably produces a product that a human indexer can improve.
The strength of automatic indexing is found when the texts are very long (gigabytes or
greater). Humans simply cannot index long texts. A flawed computer-generated index
is usually better than no index at all.

	I ndexing Text	 69

4.5 � Comparing Texts Using Similarity Scores

When you have extracted all of the phrases occurring in a text, as we did in the
prior section, you have created something akin to the signature of the text. The
phrases that comprise the text tell us a great deal about the contents of the text—
more so than the collection of included words. A phrase is a description in minia-
ture, and contains a sequence of words, in a very definite order, that characterizes
the way that the author expresses his or her ideas. It would be very unlikely for
two different documents to have the same phrase list, and unlikelier still to have
the same phrase list, with each phrase occurring at the same frequency in the two
different documents.

We can use the list of phrases occurring in a text, along with the frequencies of
occurrence of those phrases, to create a type of signature that identifies and describes
the full text. We can determine whether two different texts are similar, when we
compare their signatures.

Similarity scores are very useful in the medical sciences. We use similarity scores
to establish relatedness of objects (e.g., DNA sequences), to find trends and outliers in
population data, to provide “best-fit” search results, and to classify groups of items
(e.g., cluster analysis). These methods usually begin with calculations of the pairwise
similarity scores among objects in a population.

Often, the similarity score is based on comparing some set of measured features for
two different objects, and summing the squares of the differences in magnitude for
each measured feature. One such scoring system is the Pearson correlation, which pro-
duces a score that can vary from −1 to +1. Two objects with a high score (near +1) are
highly similar. In this section, we will determine the Pearson score of two books. The
measured feature of the books will be the list of phrases contained in the books, and
the number of their occurrences.

4.5.1 � Script Algorithm

	 1.	We could compare any two documents, but for this exercise we chose
Stevenson’s Treasure Island and Milton’s Paradise Lost. The two novels rep-
resent very different writing styles (gruff prose versus ornate verse), and
contain disparate vocabularies. The etext versions of these books are in the
public domain and can be downloaded from Project Gutenberg at the fol-
lowing URLs:

	 For Paradise Lost

http://www.gutenberg.org/dirs/etext91/plboss10.txt

	 For Treasure Island

http://www.gutenberg.org/etext/120

70	 Methods in Medical Informatics﻿

	 Name the two downloaded files “paradise.txt” and “treasure.txt”, respectively,
and put them into the same subdirectory containing your script.

	 2.	Put the names of each text file into an array. We will be performing the same
parsing steps on each of the two files.

	 3.	Open the stop.txt file, containing the high-frequency stopwords that we will
use to determine the boundaries of a phrase. (Remember: An index phrase is
a sequence of words bounded on both sides by a stop word or by the begin-
ning or the end of a sentence.) The stop file consists of one word per file line.
Put all of the words from the stop.txt file into an array, stripping the newline
character that separates each stop word from the subsequent stop word.

	 4.	Open the first text file (Paradise Lost), and read the entire text into a
string variable.

	 5.	Delete every newline character from the text file string, replacing it with a
space character.

	 6.	In the text file string, wherever there is a sequence of words bounded on either
side by a stopword, replace the stopwords with a newline character. Iterate
this determination and replacement, over the entire text file string, for every
stopword in our array of stop words.

	 7.	Wherever there is a “,”, “:”, “;”, “(“ or ”)” in the text file string, replace the punc-
tuation with a newline character. We do this because these punctuation marks
delineate the beginning and the end of an expression and, for the purposes of
delineating index phrases, these punctuation marks are equivalent to an end-
of-sentence marker.

	 8.	Wherever the text file string has a “.”, or “!” or “?” followed by one or more spaces,
followed by an uppercase letter, replace the punctuation and the following white
spaces with a newline character. We do this because the pattern is typical of a
sentence ending, and sentence endings mark the end of index phrases.

	 9.	Convert the modified text file string, which now marks the beginning and
ending of index phrases with newline characters, into lowercase.

	 10.	Convert the modified text file string, replacing all sequences consisting of
multiple space characters with a single space character.

	 11.	Split the text file string into an array, at every occurrence of a newline charac-
ter bordered by zero or more spaces. This results in an array that includes all
of the index phrases in the original text file.

	 12.	Iterate through every phrase in the newly created array of index phrases.
	 13.	For each phrase, if the phrase does not match a sequence of lowercase letters

followed by a space followed by a sequence of lowercase letters or spaces, skip
to the next item in the phrase array. We do this primarily to eliminate single
word phrases that do not contain a space intervening between words. This step
also eliminates phrases that contain numeric and nonalphabet characters.

	 14.	We will be using two dictionary objects: the dictionary object consisting of all
of the index phrases from Paradise Lost as keys, and the number of occurrences

	I ndexing Text	 71

of each index phrase in Paradise Lost as the values, as well as the index phrases
that occur exclusively in Treasure Island, all with the number “0” as the value.
The other dictionary object will consist of the index phrases from Treasure
Island as keys, and the number of occurrences of each index phrase from
Treasure Island, as the values, as well as the index phrases that occur exclusively
in Paradise Lost, all with the number “0” as the value. By creating these two
dictionary objects, we create two dictionary objects that have the same match-
ing set of keys, with one set of keys holding the number of occurrences of the
keys in Paradise Lost, and the other holding the number of occurrences of the
keys in Treasure Island. We can then compare each dictionary object key by
key and value by value.

	 15.	To create the two dictionary objects, increment each occurrence of a phrase
by one in the dictionary object for the text file in which it has occurred, and
create a key–value pair in the other text file’s dictionary object (if none exists)
consisting of the phrase and the value “0”.

	 16.	Repeat steps 4 to 15 for the second book, Treasure Island. When you have
repeated these steps for the second book you will have collected the two
dictionary objects that you will use to compute the Pearson score. At this
point, you could substitute any similarity correlation scores you prefer over the
Pearson score.

	 17.	Parse over every key–value pair in either dictionary object (we chose the dic-
tionary object for Paradise Lost, but the calculation, which depends on differ-
ences between the two dictionary objects, would yield the same score using
either dictionary object).

	 18.	Keep a count of the total number of key–value pairs.
	 19.	Produce a summation tally of the values in the Paradise Lost dictionary object

and in the Treasure Island dictionary object.
	 20.	Produce a summation tally of the squares of the values in the Paradise Lost diction-

ary object and the squares of the values in the Treasure Island dictionary object.
	 21.	Produce a summation tally of the products of each value in the Paradise Lost

dictionary object multiplied by the corresponding value (the value of the same
key) in the Treasure Island dictionary object.

	 22.	After the dictionary object is parsed, you will take the tally variables that you
just computed, and you will insert them into the Pearson formula.

	 23.	The Pearson score is the summation tally of the products minus the sum tally
of the first dictionary object times the sum tally of the second dictionary object
divided by the number of keys in the object all divided by the square root of
the tally of the squares of the values of the Paradise Lost dictionary object
times the square of the sum tally of Paradise Lost dictionary object divided
by the number of keys in the object, times the tally of the squares of the values
of the Treasure Island dictionary object times the square of the sum tally of
Treasure Island dictionary object divided by the number of keys in the object.

72	 Methods in Medical Informatics﻿

Step 23 is an example where the description of a mathematical expression, in
English, is much, much more confusing than the program code for the math-
ematical expression.

Perl Script

#!/usr/local/bin/perl
@filearray = (“paradise.txt”, “treasure.txt”);
undef($/);
foreach $filename (@filearray)
 {
 open (STOPFILE, “c\:\\ftp\\stop.txt”);
 @stoparray = split(/\n/, <STOPFILE>);
 open (TEXT, “$filename”)||die”cannot”;
 $textfile = <TEXT>;
 $textfile =~ s/\n/ /g;
 foreach $stopword (@stoparray)
 {
 $textfile =~ s/\b$stopword\b/\n/g;
 $textfile =~ s/[\,\:\;\(\)]/\n/g;
 }
 $textfile =~ s/[\.\!\?] +(?=[A-Z])/\n/g;
 $textfile = lc($textfile);
 $textfile =~ s/ +/ /g;
 @phrasearray = split(/ *\n */, $textfile);
 foreach $phrase (@phrasearray)
 {
 $phrase =~ s/ +/ /;
 $phrase =~ s/^ +//;
 $phrase =~ s/ +$//;
 next if ($phrase !~ /^[a-z]+ [a-z]+$/);
 if ($filename eq “paradise.txt”)
 {
 $paradise{$phrase}++;
 $treasure{$phrase} = 0 unless exists($treasure{$phrase});
 }
 if ($filename eq “treasure.txt”)
 {
 $treasure{$phrase}++;
 $paradise{$phrase} = 0 unless exists($paradise{$phrase});
 }
 }
 close TEXT;
 }
while ((my $key, my $value) = each(%paradise))
 {
 $count++;
 $sumtally1 = $sumtally1 + $value;
 $sumtally2 = $sumtally2 + $treasure{$key};

	I ndexing Text	 73

 $sqtally1 = $sqtally1 + $value**2;
 $sqtally2 = $sqtally2 + $treasure{$key}**2;
 $prodtally12 = $prodtally12 + ($value * $treasure{$key});
 }
$part1 = $prodtally12 - ($sumtally1 * $sumtally2 / $count);
$part2 = $sqtally1 - (($sumtally1)**2 / $count);
$part3 = $sqtally2 - (($sumtally2)**2 / $count);
$similarity12 = $part1 / sqrt($part2 * $part3);
print “The Pearson score is “ . $similarity12 . “\n”;
exit;

Output:

C:\>perl pearson.pl

The Pearson score is –0.477744298690063

Python Script

#!/usr/local/bin/python
import re
import string
from math import sqrt
from math import pow
treasure = {}
paradise = {}
filelist = [“treasure.txt”, “paradise.txt”]
stopfile = open(“stop.txt”,’r’)
stop_list = stopfile.readlines()
stopfile.close()
phraseform = re.compile(r’^[a-z]+ [a-z]+$’)
for filename in filelist:
 in_text = open(filename, “r”)
 in_text_string = in_text.read()
 in_text.close()
 in_text_string = in_text_string.replace(“\n”,” “)
 for stopword in stop_list:
 stopword = string.rstrip(stopword)
 in_text_string = re.sub(r’ *\b’ + stopword + r’\b *’,
‘\n’,in_text_string)
 in_text_string = re.sub(r’[\,\:\;\(\)]’,’\n’,in_text_string)
 in_text_string = re.sub(r’[\.\!\?] +(?=[A-Z])’, ‘\n’,
in_text_string)
 in_text_string = string.lower(in_text_string)
 item_list = re.split(r’ *\n *’, in_text_string)
 for phrase in item_list:
 phrase = re.sub(r’ +’,’ ‘, phrase)
 phrase = string.strip(phrase)
 phrasematch = phraseform.match(phrase)
 if not (phrasematch):
 continue

74	 Methods in Medical Informatics﻿

 if (filename == “paradise.txt”):
 if paradise.has_key(phrase):
 paradise[phrase] = paradise[phrase] + 1
 else:
 paradise[phrase] = 1
 if not (treasure.has_key(phrase)):
 treasure[phrase] = 0
 if (filename == “treasure.txt”):
 if treasure.has_key(phrase):
 treasure[phrase] = treasure[phrase] + 1
 else:
 treasure[phrase] = 1
 if not (paradise.has_key(phrase)):
 paradise[phrase] = 0
count = 0; sumtally1 = 0; sumtally2 = 0; sqtally1 = 0; sqtally2 = 0
prodtally12 = 0; part1 = 0; part2 = 0; part3 = 0;
keylist = paradise.keys()
for key in keylist:
 count = count + 1;
 sumtally1 = sumtally1 + paradise[key]
 sumtally2 = sumtally2 + treasure[key]
 sqtally1 = sqtally1 + pow(paradise[key],2)
 sqtally2 = sqtally2 + pow(treasure[key],2)
 prodtally12 = prodtally12 + (paradise[key] * treasure[key])
part1 = prodtally12 - (float(sumtally1 * sumtally2) / count)
part2 = sqtally1 - (float(pow(sumtally1,2)) / count)
part3 = sqtally2 - (float(pow(sumtally2,2)) / count)
similarity12 = float(part1) / float(sqrt(part2 * part3))
print “The Pearson score is”, similarity12
exit

Output:

C:\>python pearson.py

The Pearson score is –0.47774429869

The Python script requires importation of three external modules: re, string, and
math. The math module supports the sqrt (square root function) and the pow (expo-
nentiation) function.

Ruby Script

#!/usr/local/bin/ruby
require ‘mathn’
treasure = {}; paradise = {};
filelist = [“treasure.txt”, “paradise.txt”]
filelist.each do
 |filename|
 stoparray = IO.read(“stop.txt”).split(/\n/)

	I ndexing Text	 75

 text = IO.read(filename)
 text.gsub!(“\n”,” “) if text.include? “\n”
 stoparray.each do
 |stopword|
 stopword = stopword.chomp
 text.gsub!(/ *\b#{stopword}\b */, “\n”) if text.include?
stopword
 text.gsub!(/[\,\:\;\(\)]/, “\n”) if text =~ /[\,\:\;\(\)]/
 end
 text.gsub!(/[\.\!\?] +(?=[A-Z])/, “\n”) if text =~ /[\.\!\?]
+(?=[A-Z])/
 text.downcase.strip.split(/ *\n */).each do
 |phrase|
 phrase.gsub!(/ +/,” “) if phrase =~ / +/
 phrase.strip!
 next if phrase !~ /^[a-z]+ [a-z]+$/
 if filename == “paradise.txt”
 if paradise.has_key?(phrase)
 paradise[phrase] = paradise[phrase] + 1
 else
 paradise[phrase] = 1
 end
 treasure[phrase] = 0 unless treasure.has_key?(phrase)
 end
 if filename == “treasure.txt”
 if treasure.has_key?(phrase)
 treasure[phrase] = treasure[phrase] + 1
 else
 treasure[phrase] = 1
 end
 paradise[phrase] = 0 unless paradise.has_key?(phrase)
 end
 end
end
count = 0; sumtally1 = 0; sumtally2 = 0; sqtally1 = 0; sqtally2 = 0
prodtally12 = 0; part1 = 0; part2 = 0; part3 = 0;
paradise.each do
 |k,v|
 count = count + 1;
 sumtally1 = sumtally1 + v
 sumtally2 = sumtally2 + treasure[k]
 sqtally1 = sqtally1 + v**2;
 sqtally2 = sqtally2 + treasure[k]**2
 prodtally12 = prodtally12 + (v * treasure[k])
end
part1 = prodtally12 - ((sumtally1 * sumtally2).to_f / count.to_f)
part2 = sqtally1 - (((sumtally1)**2).to_f / count.to_f)
part3 = sqtally2 - (((sumtally2)**2).to_f / count.to_f)

76	 Methods in Medical Informatics﻿

similarity12 = part1.to_f / (Math.sqrt(part2 * part3)).to_f
puts “The Pearson score is #{similarity12}”
exit

Output:

C:\>ruby pearson.rb

The Pearson score is –0.477744298690063

The Ruby script requires importation of the mathn module, to support high precision
division, and uses the Math module’s sqrt (square root) method.

4.5.2 � Analysis

Pearson scores range from −1 to 1. A score of 1 occurs when a document is com-
pared against itself. When we compute the Pearson score between two highly dis-
similar texts, the yielded score is −0.4777. We expected and received a low-end
Pearson score.

Some correlation tests impose severe requirements on the set of values compared in
different objects. For example, a correlation test might require that each of two objects
have the same number and type of compared items, and that items must be associated
with a value that is confined to the same range in both objects. For example, if compar-
ing test scores for two students, you might need to have each student take the same set
of tests, with each test graded by the same grader, applying a test score within the same
range (e.g., 50 to 100). The Pearson score is popular because it tolerates a wide range
of disparities between the two correlated objects. In this example, we used two texts
that had different lengths, different words, and a wide range in the occurrence value
for the different words. The Pearson score compensates, producing a score that seems
to have some validity.

If you doubt the utility of the Pearson score, you can test it yourself, using highly
similar documents or dissimilar documents. To create two highly similar documents,
you can take one document and truncate it by half, determining the Pearson score of
the entire document against the first half of the document, or scoring the first half
of the document against the second half of the document. If you’re still unsatisfied,
feel free to develop your own similarity score. For a specific type of document, it is
quite possible to devise a scoring system that is superior to the Pearson score.

Exercises

	 1.	The script that extracts the different words of a text, and determines the fre-
quency of each word, begins by gobbling the entire file into a variable. If the
file size exceeds the memory constraints for string variables, the script will not
execute. Modify the script so that it parses the file in memory-tolerant parts,

	I ndexing Text	 77

building the list of different words, and their frequencies, with each file-read
operation, until the entire file, regardless of its length, is parsed.

	 2.	Using Perl, Python, or Ruby, prepare a phrase list for OMIM.
	 3.	Our script that produced a Zipf distribution of the MeSH file, produced an

output wherein each word in the MeSH file was listed, along with the number
of occurrences in the file, in decreasing number of occurrences. Using Perl,
Python or Ruby, modify or rewrite the script to produce a cumulative tally
of the percentage of all occurrences accounted for by words preceding and
including each line in the output.

			 For example, examine the Zipf distribution of the following 10-word sen-
tence: “When I am here, I am not there, but here.”

			 The Zipf distribution is
I 2
am 2
here 2
but 1
not 1
there 1
When 1

			 The cumulative tally is
I 20%
am 40%
here 60%
but 70%
not 80%
there 90%
When 100%

		 How many words account for 50% of the word occurrences in the MeSH file?
	 4.	The script that produces a concordance of a text file has several small bugs.

It will exclude words that contain an apostrophe (e.g., Hodgkin’s). It will
redundantly include sentence locations for words that occur more than once
within the sentence. Using your preferred language, rewrite the script to cor-
rect these bugs.

	 5.	There are many ways of computationally narrowing the number of impor-
tant words and phrases within a book. The easiest method is to select only
those phrases that fall into an allowed length (e.g., three words or less) or that
occur rarely (e.g., fewer than 10 times within the book), or that are composed
of words that do not occur in other phrases. Using any refinement method
you prefer (not necessarily from the suggestions above) prepare a script (in
your favorite language) that produces an index of reduced size by filtering out
undesirable terms.

	 6.	Using Perl, Python, or Ruby, create your own similarity method to replace
the Pearson method. You can do this by modifying the Pearson method, or by
devising a totally different approach to similarity scoring.

Hint: A similarity method may combine several different comparison
metrics for a document (number of bytes of document, average length

78	 Methods in Medical Informatics﻿

of a sentence in the document, degree of overlap of vocabulary in the
document, most frequently occurring word) and producing a score
that somehow combines all of these values.

	 7.	When you have a satisfactory way of measuring the similarity between two
things, the next step is to group the members of a set of items, based on simi-
larity. This is sometimes called “clustering.” A great many different clustering
algorithms have been produced, but each algorithm begins with choosing a
way of measuring the similarity between items in the group. Prepare a hier-
archical algorithmic scheme that performs repeated similarity scores on the
members of a group of items (e.g., documents), until each item is assigned into
a cluster of similar items. You can develop your own algorithm, or you can
reproduce an algorithm selected from the scientific literature.

IIPart

Medical Data
Resources

81

5
The National Library
of Medicine’s Medical

Subject Headings (MeSH)

Nomenclatures are comprehensive repositories of domain terminologies. Moreover,
modern nomenclatures are keys to all the knowledge pertaining to any of the terms
in the nomenclature. A well-organized, comprehensive nomenclature can be used to
annotate and index any information in any document, and permit that information
to be retrieved and merged with relevant information contained in other documents.
Under ideal conditions, a nomenclature creates new knowledge by exploiting the rela-
tionships among terms that annotate the biomedical literature.

MeSH (Medical Subject Headings) is a wonderful nomenclature of medical terms
available from the U.S. National Library of Medicine.

The download site is

http://www.nlm.nih.gov/mesh/filelist.html

The recent ASCII MeSH download file is

d2009.bin (27,369,460 bytes)

MeSH contains over 25,000 records. The first record in MeSH is shown in Figure 5.1.
MeSH is one of the greatest gifts provided by the U.S. National Library of Medicine

and can be used freely for a variety of projects involving indexing, tagging, searching,
retrieving, coding, analyzing, merging, and sharing biomedical text. In my opinion,
there are many projects that rely on commercial and legally encumbered nomencla-
tures that would be better served by MeSH.

My only quibble with MeSH is that it is incorrectly described as a tree structure.
Here is the official word (from the NLM Web site) on MeSH trees from http://

www.nlm.nih.gov/mesh/intro_trees2007.html: “Because of the branching structure
of the hierarchies, these lists are sometimes referred to as ‘trees.’ Each MeSH descrip-
tor appears in at least one place in the trees, and may appear in as many additional
places as may be appropriate. Those who index articles or catalog books are instructed
to find and use the most specific MeSH descriptor that is available to represent each
indexable concept.”

When you look at individual entries in MeSH, you find that a single entry may be
assigned multiple MeSH numbers.

82	 Methods in Medical Informatics﻿

For example, the MeSH term “Family” is assigned two MeSH numbers:

MN = F01.829.263
MN = I01.880.225

The parent “number” for any MeSH entry is found by removing the last set of decimal
demarcated digits.

For example:

F01.829.263 MeSH name, Family
F01.829 MeSH name, Psychology, Social
F01 MeSH name, Behavior and Behavior Mechanisms

For each MeSH number, there is a separate hierarchy.
It is tempting to think of each hierarchy for each number as a tree (then MeSH

could be envisioned as a dense forest), but each parent term could be assigned multiple
MeSH numbers, each producing a multibranching hierarchy.

Figure 5.1  The first record in the MeSH data file.

	T he National Library of Medicine’s MeSH	 83

Because each MeSH term (including the ancestral terms for a MeSH term) may
be assigned multiple MeSH numbers, each with its own hierarchy, the MeSH data
structure is more accurately thought of as a complex ontology, with terms existing in
multiple classes, with specified relationships among any class and its parent classes.

The tree metaphor breaks down because branches and nodes within a branch can be
connected to other branches and to other nodes. Trees do not do this kind of thing.

5.1 � Determining the Hierarchical Lineage for MeSH Terms

It is possible to write a script that parses through every MeSH entry, finds all of the
MeSH numbers for the entry, determines the parent terms for the MeSH numbers,
determines all of the alternate MeSH numbers for the parent terms, then finds all
of the grandparent terms for all of the parent terms, etc., until all of the hierarchical
terms for the term are found.

5.1.1 � Script Algorithm

	 1.	Open the ASCII version of the MeSH file, for reading.
	 2.	Open a file for writing. This file will receive the full hierarchy of the MeSH

terms.
	 3.	Parse through the MeSH file, line by line.
	 4.	When a line that begins with “MH = ” occurs, capture the MeSH term found

on the line.
	 5.	When a line that begins with “MN = ” occurs, capture the MeSH number

found on the line.
	 6.	Because the MeSH term always occurs before the MeSH number, the MeSH

number will always be the number that corresponds with the previously cap-
tured MeSH term. Use the captured number and the captured term to create
a new key–value pair for a dictionary object.

	 7.	Because a single MeSH term may have several different MeSH numbers listed
in its record, as additional lines are encountered, concatenate the list of MeSH
numbers for a single term into a string.

	 8.	Create another dictionary object with key–value pairs consisting of a MeSH
term key and the concatenated collection of all corresponding MeSH num-
bers, as the value.

	 9.	When the entire MeSH ASCII file has been parsed, close the file.
	 10.	Parse through the collection of key–value pairs in the dictionary object con-

taining the MeSH terms as keys and the MeSH numbers as values. For each
key–value pair, repeat steps 12–15.

	 11.	Print each key as a line on an external file.
	 12.	Create an array consisting of the different MeSH numbers corresponding to

the value of the key.

84	 Methods in Medical Informatics﻿

	 13.	For each mesh number, chop the item into an array of MeSH numbers con-
sisting of iterative truncations of the original mesh number, at the decimal
points in the MeSH number. This produces a list of the parent numbers of the
MeSH number.

	 14.	Alphabetize the MeSH numbers in the array, and print out each MeSH num-
ber, followed by its corresponding MeSH term.

Perl Script

#!/usr/local/bin/perl
open(MESH, “C\:\\BIG\\D2009.BIN”);
open(OUT, “>mesh.out”);
$line = “ “;
while ($line ne “”)
 {
 $line = <MESH>;
 $name = $1 if ($line =~ /MH = (.+)$/);
 if ($line =~ /MN = (.+)$/)
 {
 $number = $1;
 $numberhash{$number} = $name;
 if (exists($namehash{$name}))
 {
 $namehash{$name} = $namehash{$name} . “ “ . $number;
 }
 else
 {
 $namehash{$name} = $number;
 }
 }
 }
close(MESH);
while((my $key, my $value) = each (%namehash))
 {
 print OUT “\nTERM LINEAGE FOR “ . uc($key) . “\n”;
 my @valuelist = split(/ /,$value);
 my @cumlist;
 my %marked;
 foreach $meshno (@valuelist)
 {
 push(@cumlist, $meshno);
 while ($meshno =~ /\.[0-9]+$/)
 {
 $meshno = $`;
 push(@cumlist, $meshno);
 }
 }
 @cumlist = grep { $marked{$_}++; $marked{$_} == 1; }@cumlist;

	T he National Library of Medicine’s MeSH	 85

 @cumlist = reverse(sort(@cumlist));
 foreach my $thing (@cumlist)
 {
 print OUT “$thing $numberhash{$thing}\n”;
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import re
import string
mesh = open(‘C:\\big\\d2009.bin’, “r”)
out = open(“mesh.out”, “w”)
namehash = {}
numberhash = {}
for line in mesh:
 namematch = re.search(r’MH = (.+)$’, line)
 if (namematch):
 name = namematch.group(1)
 numbermatch = re.search(r’MN = (.+)$’,line)
 if numbermatch:
 number = numbermatch.group(1)
 numberhash[str(number)] = name
 if namehash.has_key(name):
 namehash[name] = namehash[name] + ‘ ‘ + str(number)
 else:
 namehash[name] = str(number)
mesh.close()
keylist = namehash.keys()
keylist.sort()
for key in keylist:
 print>>out,”\nTERM LINEAGE FOR “, key.upper()
 cumlist = []
 item_list = namehash[key].split(“ “)
 for phrase in item_list:
 cumlist.append(phrase)
 while re.search(r’\.’, phrase):
 phrase = re.sub(r’\.[0-9]+$’,””, phrase)
 cumlist.append(phrase)
 U = []
 for item in cumlist:
 if item not in U:
 U.append(item)
 U.sort()
 for thing in U:
 print>>out, thing, numberhash[str(thing)]
exit

86	 Methods in Medical Informatics﻿

Ruby Script

#!/usr/local/bin/ruby
mesh = File.open(“c\:\\big\\d2009.bin”, “r”)
out = open(“mesh.out”, “w”)
namehash = Hash.new(“”)
numberhash = Hash.new(“”)
name = “”
number = “”
mesh.each_line do
 |line|
 if (line =~ /MH \= (.+)$/)
 name = $1
 end
 if (line =~ /MN \= (.+)$/)
 number = $1
 numberhash[number] = name
 if namehash.has_key?(name)
 namehash[name] = namehash[name] + “ “ + number
 else
 namehash[name] = number
 end
 end
end
mesh.close
namehash.keys.sort.each do
 |k|
 out.puts “\nTERM LINEAGE FOR “ + k
 cumlist = []
 item_list = namehash[k].split(“ “)
 item_list.each do
 |phrase|
 cumlist.push(phrase)
 while (phrase =~ /\.[0-9]+$/)
 phrase = $`
 cumlist.push(phrase)
 end
 end
 cumlist.sort.uniq.each {|it| out.puts it + “ “ + numberhash[it]}
end
exit

5.1.2 � Analysis

The output file exceeds 8 megabytes (MB) in length. Here are a few output terms, and
their MeSH lineages:

	T he National Library of Medicine’s MeSH	 87

Term lineage for retinoschisis
C11.768.585.865 Retinoschisis
C11.768.585 Retinal Degeneration
C11.768 Retinal Diseases
C11 Eye Diseases

Term lineage for core binding factor beta subunit
D12.776.930.155.400 Core Binding Factor Beta Subunit
D12.776.930.155 Core Binding Factors
D12.776.930 Transcription Factors
D12.776 Proteins
D12 Amino Acids, Peptides, and Proteins

Term lineage for giant cells, foreign-body
A11.118.637 Leukocytes
A15.145.229.637 Leukocytes
A15.382.490 Leukocytes
A11.118.637.555 Leukocytes, Mononuclear
A15.145.229.637.555 Leukocytes, Mononuclear
A15.382.490.555 Leukocytes, Mononuclear
A15.378 Hematopoietic System
A11.148 Bone Marrow Cells
A15.378.316 Bone Marrow Cells
A12.207.152 Blood
A15.145 Blood
A11.118 Blood Cells
A15.145.229 Blood Cells
A11.329.372.376 Giant Cells, Foreign-Body
A11.502.376 Giant Cells, Foreign-Body
A11.627.624.480.376 Giant Cells, Foreign-Body
A11.733.397.376 Giant Cells, Foreign-Body
A15.382.680.397.376 Giant Cells, Foreign-Body
A15.382.812.522.376 Giant Cells, Foreign-Body
A11.329 Connective Tissue Cells
A11 Cells
A11.502 Giant Cells
A11.118.637.555.652 Monocytes
A11.148.580 Monocytes
A11.627.624 Monocytes
A11.733.547 Monocytes
A15.145.229.637.555.652 Monocytes

88	 Methods in Medical Informatics﻿

A15.378.316.580 Monocytes
A15.382.490.555.652 Monocytes
A15.382.680.547 Monocytes
A15.382.812.547 Monocytes
A11.627 Myeloid Cells
A11.733 Phagocytes
A15.382.680 Phagocytes
A15.382 Immune System
A15 Hemic and Immune Systems
A11.329.372 Macrophages
A11.627.624.480 Macrophages
A11.733.397 Macrophages
A15.382.680.397 Macrophages
A15.382.812.522 Macrophages
A15.382.812 Reticuloendothelial System
A12.207 Body Fluids
A12 Fluids and Secretions

When we examine the multilineage ancestry of “foreign body giant cells”, we see
that MeSH is not a tree hierarchy. This means that the MeSH data structure is
highly complex and requires some computational know-how to fully explore all the
term relationships.

5.2 � Creating a MeSH Database

The primary feature that distinguishes a database from a data object, such as a string
variable or a list or a dictionary, is persistence. When you exit a database application,
the data and the data structures created for the database, all persist, somewhere, on a
hard drive. When you start the database at a later time, it is not necessary to port the
data back into the application or to rebuild tables and relational structures; everything is
waiting for you. A data object, created by a script, drops out of existence when the script
stops executing. Data objects need to be rebuilt with each new execution of a script.

Perl, Python, and Ruby all have access to external database modules that can build
database objects that exist as external files, separate from the script and from the
scripting language; they persist after the script has executed. These database objects
can be called from any script, with the contained data accessed quickly, with a simple
command syntax.

5.2.1 � Script Algorithm

	 1.	Call the external database modules.
	 2.	Using the required syntax for the chosen language, name and create a new

database object and tie the object to a dictionary (hash) object.

	T he National Library of Medicine’s MeSH	 89

	 3.	Create a dictionary object and assign key–value pairs corresponding to the
codes and the terms of MeSH records (steps 4–9).

	 4.	Open the ASCII version of the MeSH file, for reading.
		 The download site is

http://www.nlm.nih.gov/mesh/filelist.html

		 Download the d2009.bin file (referred to as the ASCII MeSH download file).
This plain-text file is about 28 MB in length and contains over 25,000 MeSH
records. The record format of the d2009.bin file is described in the appendix.

	 5.	Open a file for writing. This file will receive the full hierarchy of the MeSH
terms.

	 6.	Parse through the MeSH file, line by line.
	 7.	When a line that begins with “MH = ” occurs, capture the MeSH term found

on the line.
	 8.	When a line that begins with “MN = ” occurs, capture the MeSH number

found on the line.
	 9.	Because the MeSH term always occurs before the MeSH number, the MeSH

number will always be the number that corresponds with the previously cap-
tured MeSH term. Use the captured number and the captured term to create
a new key–value pair for a dictionary object.

	 10.	Close the database object.

Perl Script

#!/usr/local/bin/perl
use Fcntl;
use SDBM_File;
tie %mesh_hash, “SDBM_File”, ‘mesh’, O_RDWR|O_CREAT|O_EXCL, 0644;
open (TEXT, “c\:\\big\\d2009.bin”)||die”Can’t open file”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 if ($line =~ /^MH = (.+)$/)
 {
 $term = $1;
 }
 if ($line =~ /^MN = (.+)$/)
 {
 $number = $1;
 $mesh_hash{$number} = $term;
 }
 }
untie %mesh_hash;
exit;

90	 Methods in Medical Informatics﻿

Python Script

#!/usr/local/bin/python
import anydbm, string, re
mesh_hash = anydbm.open(‘mesh’, ‘n’)
mesh_file = open(‘C:\\big\\d2009.bin’, “r”)
for line in mesh_file:
 namematch = re.search(r’^MH = (.+)$’, line)
 if (namematch):
 name = namematch.group(1)
 numbermatch = re.search(r’^MN = (.+)$’,line)
 if numbermatch:
 number = numbermatch.group(1)
 mesh_hash[str(number)] = name
mesh_hash.close()
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘dbm’
mesh_file = File.open(‘c:/big/d2009.bin’, ‘r’)
db = DBM.open(‘mesh’)
term = “ “
mesh_file.each_line do
 |line|
 if (line =~ /^MH = (.+)$/)
 term = $1.to_s
 end
 if (line =~ /^MN = (.+)$/)
 number = $1.to_s
 db[number] = term
 end
end
db.close
exit

5.2.2 � Analysis

The created database exists as an external file. The name of the prefix to the external
file is a parameter provided in the script statement that creates the database object:
“mesh” in this example.

5.3 � Reading the MeSH Database

Once a database has been created, the data can be efficiently called from within the
same script that created the database, or from any other script, at any time. You only

	T he National Library of Medicine’s MeSH	 91

need to remember two things: (1) not to delete the created database file, and (2) not to
assume that the database is an unchanged object; other scripts can add to or modify
the contents of the original database object.

5.3.1 � Script Algorithm

	 1.	Call the external database modules for your chosen language.
	 2.	Open the external database and tie the database to a dictionary object. The

example script requires the existence of an external database file (“mesh”) that
was created in the previous section of this chapter.

	 3.	Read and print every key–value pair in the dictionary.
	 4.	Untie the database from the dictionary object.

Perl Script

#!/usr/local/bin/perl
use Fcntl;
use SDBM_File;
tie %mesh_hash, “SDBM_File”, ‘mesh’, O_RDWR, 0644;
while(($key, $value) = each (%mesh_hash))
 {
 print “$key => $value\n”;
 }
untie %mesh_hash;
exit;

Python Script

#!/usr/local/bin/python
import anydbm, string, re
mesh_hash = anydbm.open(‘mesh’)
for number in mesh_hash.keys():
 print number, mesh_hash[number]
mesh_hash.close()
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘dbm’
db = DBM.open(‘mesh’)
db.each {|number,term| puts number + “ hello “ + term}
db.close
exit

92	 Methods in Medical Informatics﻿

5.3.2 � Analysis

External databases achieve data persistence, but there is a cost:

	 1.	You must keep track of the file names and directory locations of your exter-
nal databases. If you’re not careful, you can create hundreds of database files
sprinkled throughout your file system, all with the same filename.

	 2.	Programmers sometimes forget that external databases, unlike local variables,
carry their data forever. You may have inadvertently used an external data-
base file, with a secondary script, adding to its contents, without anticipating
the unintended consequences that occur when another script accesses the
same database file.

	 3.	External database files may return data slower than data objects created within
a script. In general, you will find that key–value pairs that are accessed repeat-
edly, within a script, will be accessed more quickly than seldom-accessed pairs.
Built-in memorization subroutines, whereby repeatedly accessed variables are
stored and retrieved from RAM memory, mitigate slow access times required
for hard-disk retrievals.

5.4 � Creating an SQLite Database for MeSH

SQL (Systems Query Language, pronounced like the word “sequel”) is a specialized
language used to query relational databases. SQL allows programmers to connect with
large, complex server-based network databases. Learning SQL is like learning any
programming language. A high level of expertise is needed to install and implement
software that creates server-based relational databases and that responds to multiuser
client-based SQL queries. Fortunately, users of Perl, Ruby, and Python all have easy
access to SQLite. SQLite is a no-cost, open source program that you can use to build a
relational database on your own computer. The SQLite database will respond to SQL
statements appearing within your Perl, Python, or Ruby scripts.

Database statements perform a small collection of tasks: create a new database file,
create a new table within the file, make records for the table, delete records, modify
records, and select records or parts of records based on a query’s selection criteria.

In the prior two sections, we showed how you could load a large text corpus into a
database object in Perl, Python, or Ruby. In this section, we will show how you can
perform the same task with SQLite, yielding a relational database file, residing on your
own computer, that can be modified or queried at a later time, with other scripts.

First, you must install SQLite and the language-specific interface to SQLite for
your preferred programming language. This can be easily accomplished, and the
instructions for acquiring and installing SQLite are described in the appendix. Once
done, you can access the MeSH ASCII data set, exactly as we did in the prior two
sections. Then use Perl, Python, or Ruby scripts to load the terms, and their MeSH
codes, into a relational database table.

	T he National Library of Medicine’s MeSH	 93

5.4.1 � Script Algorithm

	 1.	Call the SQL database module into your script.
	 2.	Create a dictionary object and assign key–value pairs corresponding to the

codes and the terms of MeSH records (steps 3–8).
	 3.	Open the ASCII version of the MeSH file, for reading.
		 The download site is:

http://www.nlm.nih.gov/mesh/filelist.html

		 Download the d2009.bin file (referred to as the ASCII MeSH download file).
This plain-text file is about 28 MB in length and contains over 25,000 MeSH
records. The record format of the d2009.bin file is described in the appendix.

	 4.	Open a file for writing. This file will receive the full hierarchy of the MeSH
terms.

	 5.	Parse through the MeSH file, line by line.
	 6.	When a line that begins with “MH = ” occurs, capture the MeSH term found

on the line.
	 7.	When a line that begins with “MN = ” occurs, capture the MeSH number

found on the line.
	 8.	Because the MeSH term always occurs before the MeSH number, the MeSH

number will always be the number that corresponds with the previously cap-
tured MeSH term. Use the captured number and the captured term to create
a new key–value pair for a dictionary object.

	 9.	Create a table for the new database object. We will call the new table “mesh”.
	 10.	Specify that the new table (“mesh”) will contain rows occupied by two values.

Each value in the row will be a character variable.
	 11.	Execute the SQL statements that prepare the table.
	 12.	Prepare the table for an SQL transaction in which it will receive pairs of val-

ues to be inserted as records for the table.
	 13.	Parse through the dictionary object (prepared in steps 3–8), that contains

MeSH codes as keys, and MeSH terms as the corresponding values to the
dictionary keys. As each pair of MeSH code and MeSH term is parsed, insert
them as records for the “mesh” table of your newly created SQLite database.

	 14.	When the key–value pairs of the dictionary object have been parsed, close
the INSERT transaction with the COMMIT statement, thus populating the
“mesh” table within the database object.

Perl Script

#!/usr/local/bin/perl
use DBI;
open (TEXT, “c\:\\big\\d2009.bin”)||die”Can’t open file”;
$line = “ “;
while ($line ne “”)

94	 Methods in Medical Informatics﻿

 {
 $line = <TEXT>;
 if ($line =~ /^MH = (.+)$/)
 {
 $term = $1;
 }
 if ($line =~ /^MN = (.+)$/)
 {
 $number = $1;
 $mesh_hash{$number} = $term;
 }
 }
close TEXT;
my $dbh = DBI->connect(“dbi:SQLite:dbname=dbfile”,””,””);
my $sth = $dbh->prepare(“CREATE TABLE mesh (number VARCHAR(64),
term VARCHAR(64))”);
$sth->execute;
$sth = $dbh->prepare(“INSERT INTO mesh (number,term) VALUES(?,?)”);
$dbh->do(“BEGIN TRANSACTION”);
while ((my $key, my $value) = each(%mesh_hash))
 {
 $sth->execute($key, $value);
 }
$dbh->do(“COMMIT”);
exit;

The resulting database is an external file, in the same directory as your Perl script,
named “dbfile”.

Python Script

#!/usr/local/bin/python
from pysqlite2 import dbapi2 as sqlite
import string, re, os
mesh_file = open(‘C:\\big\\d2009.bin’, “r”)
mesh_hash = {}
entry = ()
for line in mesh_file:
	 namematch = re.search(r’^MH = (.+)$’, line)
	 if (namematch):
	 name = namematch.group(1)
	 numbermatch = re.search(r’^MN = (.+)$’,line)
	 if numbermatch:
	 number = numbermatch.group(1)
	 mesh_hash[str(number)] = name
con=sqlite.connect(‘test1.db’)
cur=con.cursor()
cur.executescript(“””

	T he National Library of Medicine’s MeSH	 95

	 create table mesh
	 (
	 name varchar(64),
	 term varchar(64)
);
	 “””)
for key, value in mesh_hash.iteritems():
	 entry = (key, value)
	 cur.execute(“insert into mesh (name, term) values (?, ?)”,
entry)
con.commit()
exit

The resulting database is an external file, in the same directory as your Python script,
named “test1.db”.

Ruby Script

#!/usr/local/bin/ruby
require ‘sqlite3’
db = SQLite3::Database.new(“test.db”)
mesh_file = File.open(‘c:/big/d2009.bin’, ‘r’)
db_hash = Hash.new()
term = “ “
mesh_file.each_line do
 |line|
 if (line =~ /^MH = (.+)$/)
 term = $1.to_s
 end
 if (line =~ /^MN = (.+)$/)
 number = $1.to_s
 db_hash[number] = term
 end
end
sql = <<SQL
 create table mesh (
 a varchar2(64),
 b varchar2(64)
);
SQL
db.execute_batch(sql)
db.transaction
db_hash.each {|k,v| db.execute(“insert into mesh values (?,?)”,
k,v)}
db.commit
exit

The resulting database is an external file, in the same directory as your Ruby script,
named “test.db”.

96	 Methods in Medical Informatics﻿

5.4.2 � Analysis

Many database programmers write programs that connect to an existing database,
often residing on a remote server, replying to complex queries on the contained data.
Some database programmers concentrate on writing programs that can add single
reports to an existing database, entered by multiple users at multiple sites, a service
that a hospital information systems might provide. Creating a new relational database
by porting data from a large biomedical data set is a task more suited to a biomedical
scientist than to a database programmer. The typical SQL data insertion statement
commits the insertion and waits for the data to be loaded to disk before preparing the
next insertion statement. This step, repeated thousands or millions of time, greatly
impedes scripts such as ours, which loaded a data set into a database. In our script,
we used a method that opens a transaction process that parses our entire data set
before committing the process. This simple trick permits the rapid execution of the
script. On my modest computer (2.5 GHz CPU, with 512 MB of RAM memory), it
takes about 15 seconds to build the entire database, from the approximately 28 MB
MeSH file.

5.5 � Reading the SQLite MeSH Database

Once you have created an SQL relational database, as we have done in the prior section,
you can access the data through a Perl, Python, or Ruby interface. SQL provides several
ways of fetching and organizing data from a database, and there are a great many books
written on the subject. Most database programmers settle into a tried-and-true set of
SQL statements that suit their recurring needs. For now, we will write a very simple
script that connects to the database created in the prior section, enters the only table that
we prepared, and fetches all of the data elements. Using terminology from the field of
relational databases, this corresponds to the rows and the column entries for the table.

5.5.1 � Script Algorithm

	 1.	Call the SQL module.
	 2.	Open a file for writing. This file will receive the data elements extracted from

the database table.
	 3.	Connect to the SQLite database.
	 4.	In the prior section, we created a table named “mesh” and populated every row

of the table with two elements, corresponding to a MeSH code and its corre-
sponding MeSH term. Using the “select” statement, select every data element
from every 2-element row of “mesh” table.

	 5.	Execute the SQL select statement, printing the contents of each successive
row into the file prepared in step 2.

	 6.	Exit.

	T he National Library of Medicine’s MeSH	 97

Perl Script

#!/usr/local/bin/perl
use DBI;
open(OUT, “>meshdb.txt”);
my $dbh = DBI->connect(“dbi:SQLite:dbname=dbfile”,””,””);
$sth = $dbh->prepare(“SELECT number, term FROM mesh”);
$sth->execute;
while (@row = $sth->fetchrow_array())
 {
 print OUT “@row\n”;
 }
exit;

Python Script

#!/usr/local/bin/python
from pysqlite2 import dbapi2 as sqlite
out_text = open(“meshdb.txt”, “w”)
con=sqlite.connect(‘test1.db’)
cur=con.cursor()
cur.execute(“select * from mesh”)
for row in cur:
 print>>out_text, row[0], row[1]
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘sqlite3’
fout = File.open(“meshdb.txt”, “w”)
db = SQLite3::Database.new(“test.db”)
db.execute(“select * from mesh”) do
 |row|
 fout.puts row[0] + “ “ + row[1]
end

5.5.2 � Analysis

The output file of the script, meshdb.txt, is approximately 2 MB in length and contains
about 47,000 codes and corresponding terms. Here are a few lines of the output file:

D02.455.526.728.468 Mustard Gas
I01.880.735.580 Needle Sharing
G07.700.320.500.325.180 Embryonic Development
F04.754.720.864.363 Countertransference (Psychology)
C02.800.801.220 Condylomata Acuminata
C04.651.600 Multiple Endocrine Neoplasia

98	 Methods in Medical Informatics﻿

On my modest computer (2.5 GHz CPU, with 512 MB of RAM memory), it takes
about 1 second to download the entire database.

In the script, we used the SQL “select” statement to extract data from rows. The
“select” statement, along with about half a dozen optional parameters, is the key
method used by professional programmers to interrogate relational databases and
organize the extracted data. Healthcare professionals who master the intricacies of
SQL’s “select” statement will find that they can perform a wide range of database tasks
with ease.

Exercises

	 1.	In Perl, Python, or Ruby, determine the total number of different terms in
MeSH.

	 2.	In Perl, Python, or Ruby, write a script that parses through a text file and cre-
ates lists of every single word term in the file, every two word term in the file,
and every three word term in the file.

	 3.	In Perl, Python, or Ruby, write a script that lists every term in MeSH that is
classified as a disease (i.e., that has “disease” as an ancestor term).

	 4.	In Perl, Python, or Ruby, write a script that lists the immediate parent class of
each term in MeSH.

	 5.	 When we prepared the SDBM database and the relational database from the
MeSH file, we overlooked a curious property of MeSH terms. A single MeSH
term may have more than one MeSH code. For each MeSH record, our script
assigns a single MeSH code to each MeSH term. In Perl, Python, or Ruby,
modify the script that uses SDBM to make a database object, or the script that
uses SQLite to create a MeSH database, so that every MeSH code that cor-
responds to a MeSH term will be included as a database record.

	 6.	In Perl, Python, or Ruby, modify the script that reads the SQLite database, so
that the output file is sorted alphabetically, by MeSH term.

Hint: Use the “select” method’s optional “order by” parameter.

99

6
The International

Classification of Diseases

The International Classification of Diseases (ICD) is a nomenclature of the diseases
occurring in humans, with each listed disease assigned a unique identifying code.
The ICD is owned by the World Health Organization, but can be used freely by the
public. The currently used version of ICD is version 10 (ICD10). The World Health
Organization also produces a specialized cancer nomenclature, known as the ICD-O
(ICD-Oncology). The ICD is used worldwide. In the United States, ICD codes are
used by the CDC (Centers for Disease Control and Prevention) to designate the causes
of death listed on death certificates.

Causes of death listed in the CDC mortality record are represented by ICD10
codes. We will be using ICD and ICD-O in scripts throughout this book.

6.1 � Creating the ICD Dictionary

If we have a computer computer-parsable list of ICD codes, we can write a short pro-
gram that assigns human-readable terms (full names of diseases) to the codes in the
mortality files.

An electronic version of the ICD is provided from the CDC, under the filename
“each10.txt”. The each10.txt file is available by anonymous ftp from the ftp.cdc.gov
Web server at:

/pub/Health_Statistics/NCHS/Publications/ICD10/each10.txt

Here are the first few lines of this file:

A00Cholera
A00.0Cholera due to Vibrio cholerae 01, biovar cholerae
A00.1Cholera due to Vibrio cholerae 01, biovar el tor
A00.9Cholera, unspecified
A01Typhoid and paratyphoid fevers
A01.0Typhoid fever
A01.1Paratyphoid fever A
A01.2Paratyphoid fever B
A01.3Paratyphoid fever C
A01.4Paratyphoid fever, unspecified

100	 Methods in Medical Informatics﻿

A02Other salmonella infections
A02.0Salmonella gastroenteritis

We will create a dictionary data object consisting of ICD codes (as dictionary keys)
and their corresponding terms (as dictionary values).

6.1.1 � Script Algorithm

	 1.	Open the each10.txt file.
	 2.	Put the entire file into a string variable.
	 3.	Split the string variable wherever the newline character is followed by an

ICD code.
	 4.	For each split item, add the code (as the key) and the term (as the value) to

the dictionary.
	 5.	Print out all of the dictionary key–value pairs, with the keys sorted alphabeti-

cally, to the each10.out file.

Perl Script

You will need to place the each10.txt file in the same subdirectory as the Perl script.

#!/usr/local/bin/perl
open (ICD, “c\:\\ftp\\each10.txt”)||die”cannot”;
undef($/);
$line = <ICD>;
close ICD;
@linearray = split(/\n(?=[]*[A-Z][0-9\.]{1,5})/, $line);
foreach $thing (@linearray)
 {
 if ($thing =~ /^ *([A-Z][0-9\.]{1,5}) ?/)
 {
 $code = $1;
 $term = $’;
 $term =~ s/\n//;
 $term =~ s/[]+$//;
 $dictionary{$code} = $term;
 }
 }
open (TEXT, “>c\:\\ftp\\each10.out”);
foreach $key (sort keys %dictionary)
 {
 printf TEXT (“%-8.08s %s\n”, $key, $dictionary{$key});
 }
close TEXT;
exit;

	T he International Classification of Diseases	 101

Python Script

#!/usr/local/bin/python
import sys, os, re, string
linearray = []
dictionary = {}
code = “”
term = “”
in_text = open(‘C:\\ftp\\each10.txt’, “r”)
in_text_string = in_text.read()
in_text.close()
linearray = in_text_string.split(“\n”)
for item in linearray:
 m = re.search(r’^[*]*([A-Z][0-9\.]{1,7}) ?([^0-9].+)’, item)
 if m:
 code = m.group(1)
 term = m.group(2)
 dictionary[code] = term
out_text = open(“c:\\ftp\\each10.out”, “w”)
dict_list = dictionary.keys()
sort_list = sorted(dict_list)
for i in sort_list:
 print>>out_text, “%-8.08s %s” % (i, dictionary[i])
out_text.close()
exit

Ruby Script

#!/usr/local/bin/ruby
f = File.open(“c:/ftp/each10.txt”)
dictionary = Hash.new(“”)
f.each do
 |line|
 next unless (line =~ /^[*]*([A-Z][0-9\.]{1,7}) ?([^0-9].+)/)
 code = $1
 term = $2
 dictionary[code] = term
end
f.close
fout = File.open(“c:/ftp/each10.out”, “w”)
dictionary.keys.sort.each {|k| fout.printf “%-8.08s %s\n”, k,
dictionary[k]}
exit

6.1.2 � Analysis

The output file, each10.out, contains about 9,270 code–term pairs and has a length of
about 440,000 bytes.

102	 Methods in Medical Informatics﻿

A00 Cholera
A00.0 Cholera due to Vibrio cholerae 01, biovar cholerae
A00.1 Cholera due to Vibrio cholerae 01, biovar el tor
A00.9 Cholera, unspecified
A01 Typhoid and paratyphoid fevers
A01.0 Typhoid fever
A01.1 Paratyphoid fever A
A01.2 Paratyphoid fever B
A01.3 Paratyphoid fever C
A01.4 Paratyphoid fever, unspecified
A02 Other salmonella infections
A02.0 Salmonella gastroenteritis
A02.1 Salmonella septicemia
A02.2 Localized salmonella infections
A02.8 Other specified salmonella infections
A02.9 Salmonella infection, unspecified

6.2 � Building the ICD-O (Oncology) Dictionary

The ICD-Oncology (International Classification of Diseases, Oncology) is a special-
ized vocabulary created by the World Health Organization. ICD-O contains the dic-
tionary of neoplasm codes and terms used by cancer registrars. The U.S. National
Cancer Institute has been collecting millions of deidentified cancer records in its SEER
(Surveillance Epidemiology and End Results) program. The SEER data records rep-
resent the names of neoplasms by their ICD-O codes. We will be using the ICD-O
nomenclature in several different projects.

The ICD-O (Oncology) contains codes for 9,769 neoplasm terms, and is freely
available from SEER, as a PDF file at

http://seer.cancer.gov/icd-o-3/sitetype.icdo3.d08152007.pdf

The SEER file, reduced to ASCII text, is available at

http://www.julesberman.info/book/icdo3.txt

Additional information on the ICD-O file is found in the appendix.
Here are a few lines from the icdo3.txt file:

8000/3 Neoplasm, malignant
8001/3 Tumor cells, malignant
8002/3 Malignant tumor, small cell type
8003/3 Malignant tumor, giant cell type
8004/3 Malignant tumor, spindle cell type
8005/3 Malignant tumor, clear cell type
CARCINOMA, NOS 801 8010/2 Carcinoma in situ, NOS
8010/3 Carcinoma, NOS

	T he International Classification of Diseases	 103

8011/3 Epithelioma, malignant
8012/3 Large cell carcinoma, NOS
8013/3 Large cell neuroendocrine carcinoma
8014/3 Large cell carcinoma with rhabdoid phenotype
8015/3 Glassy cell carcinoma
CARCINOMA, UNDIFF., NOS 802 8020/3 Carcinoma, undifferentiated

type, NOS
8021/3 Carcinoma, anaplastic type, NOS
8022/3 Pleomorphic carcinoma

The ICD-O file can be parsed into code–term pairs.

6.2.1 � Script Algorithm

	 1.	Open the icdo3.txt file.
	 2.	Parse the icdo3.txt file, line by line.
	 3.	Each line begins with a code, consisting of four digits followed by a slash, fol-

lowed by one digit, followed by a space, followed by the term. Create a regex
expression for the line, placing the five digits from the code into a key variable,
and the term into a value variable, for a hash object.

	 4.	Sort the keys of the hash object, and print the key (code)–value (term) pairs.

Perl Script

#!/usr/local/bin/perl
open (ICD, “c\:\\ftp\\icdo3\.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <ICD>;
 if ($line =~ /([0-9]{4})\/([0-9]{1}) +/o)
 {
 $code = $1 . $2;
 $term = $’;
 $term =~ s/ *\n//o;
 $term = lc($term);
 $dictionary{$code} = $term;
 }
 }
close ICD;
foreach $icd_code (sort(keys(%dictionary)))
 {
 print $icd_code . “ “ . $dictionary{$icd_code} . “\n”;
 }
exit;

104	 Methods in Medical Informatics﻿

Python Script

#!/usr/local/bin/python
import sys, os, re, string
f = open(“c:\\ftp\\icdo3.txt”, “r”)
codehash = {}
for line in f:
 linematch = re.search(r’([0-9]{4})\/([0-9]{1}) +(.+)$’, line)
 if (linematch):
 icdcode = linematch.group(1) + linematch.group(2)
 term = string.rstrip(linematch.group(3))
 codehash[icdcode] = term
f.close
keylist = codehash.keys()
keylist.sort()
for item in keylist:
 print item, codehash[item]
exit

Ruby Script

#!/usr/local/bin/ruby
f = File.open(“c:/ftp/icdo3.txt”)
fout = File.open(“SEER.OUT”, “w”)
codehash = Hash.new(“”)
f.each do
 |line|
 next unless (line =~ /([0-9]{4})\/([0-9]{1}) +/)
 icdcode = $1 << $2
 term = $’.chomp!
 codehash[icdcode] = term
end
f.close
codehash.keys.sort.each {|key| puts “#{key} #{codehash[key]}”}
exit

6.2.2 � Analysis

Here are a few of the code–term pairs from ICD-O:

99403 Hairy cell leukemia
99453 Chronic myelomonocytic leukemia, NOS
99463 Juvenile myelomonocytic leukemia
99483 Aggressive NK-cell leukemia
99503 Polycythemia vera
99603 Chronic myeloproliferative disease, NOS
99613 Myelosclerosis with myeloid metaplasia
99623 Essential thrombocythemia

	T he International Classification of Diseases	 105

99633 Chronic neutrophilic leukemia
99643 Hypereosinophilic syndrome
99803 Refractory anemia
99823 Refractory anemia with sideroblasts
99833 Refractory anemia with excess blasts
99843 Refract. anemia with excess blasts in transformation
99853 Refractory cytopenia with multilineage dysplasia
99863 Myelodysplastic syndr. with 5q deletion syndrome
99873 Therapy-related myelodysplastic syndrome, NOS
99893 Myelodysplastic syndrome, NOS

We will be using the ICD-Oncology dictionary in later chapters.

Exercises

	 1.	The ICD10 nomenclature is composed of line records, with each line consist-
ing of a code followed by a term. Using Perl, Python, or Ruby, write a script
that reverses the order for each line entry, with the term preceding the code,
and print the list of term/code pairs in alphabetical order.

	 2.	Repeat Exercise 1, using ICD-O (instead of ICD10).
	 3.	When we created the ICD Oncology dictionary, our output file listed each

code (in ascending numeric order), followed by the term. Using your favorite
programming language, revise the script to output each term (in alphabetical
order) followed by the code number. Format the output so that each term’s
code number lines up in a column with all of the other term–code pairs.

	 4.	The ICD10 is an imperfect nomenclature. Here are some of the entries:
M95.2 Other acquired deformity of head
M95.8 Other specified acquired deformities of musculoskeletal system
M99.8 Other biomechanical lesions
N00.8 Other
N01.8 Other
N02.8 Other
N03.8 Other
N04.8 Other
N05.8 Other
N06.8 Other
N07.8 Other
N11.8 Other chronic tubulo-interstitial nephritis
N13.3 Other and unspecified hydronephrosis
N13.8 Other obstructive and reflux uropathy

		 Though every code in the nomenclature is unique, some of the terms are
nonunique. There are many codes whose term is simply “Other”. This over-
sight is a throwback to the time when nomenclatures were not designed to be
computer-parsable. Human readers could look at a list of related terms and
infer the intended meaning of the nonunique terms.

106	 Methods in Medical Informatics﻿

			 Using Perl, Python, or Ruby, write a script that parses the each10.out file
(the dictionary of ICD10 codes and terms) and that collects all of the code–
term pairs containing a nonunique term. Confer uniqueness on the nonunique
terms by appending the parent term to the child term.

			 For example, there are numerous codes that have the same term, “Other”.
The term associated with N00.8 is “Other”. We know that the parent term for
N00.8 is N00, “Acute nephritic syndrome”.

N00 Acute nephritic syndrome
N00.0 Minor glomerular abnormality
N00.1 Focal and segmental glomerular lesions
N00.2 Diffuse membranous glomerulonephritis
N00.3 Diffuse mesangial proliferative glomerulonephritis
N00.4 Diffuse endocapillary proliferative glomerulonephritis
N00.5 Diffuse mesangiocapillary glomerulonephritis
N00.6 Dense deposit disease
N00.7 Diffuse crescentic glomerulonephritis
N00.8 Other
N00.9 Unspecified

		 We can put the parent term as the addendum to the child term, “Other
acute nephritic syndrome”. This creates a new term that is unique from every
other term in the dictionary and that conveys the full, intended meaning of
N00.8.

			 After collecting the nonunique terms in the ICD10 nomenclature, your
script should append the parent term to each of the nonunique terms, return-
ing the new, unique term to the dictionary.

107

7
SEER

The Cancer Surveillance, Epidemiology,
and End Results Program

SEER is the U.S. National Cancer Institute’s Surveillance, Epidemiology, and End
Results program. It is an amazing resource for information about the cancers that
occur in the United States. One of the products of SEER is the Public Use data sets,
which contain deidentified records on over 3.7 million cancers that have occurred
between 1973 and 2006.

When you have over 3.7 million cancer cases to study, you can draw certain types
of inferences that could not possibly be made with the data accumulated at any single
medical institution.

The SEER site allows users to make data queries directly. If you would like to
search the SEER data with the SEER search engine, the Web address is

http://seer.cancer.gov/canques/index.html

At the SEER site, users cannot make global queries (queries that compare every tumor
in the database against every other tumor in the database, by every tumor type, and all
at once). Global queries are what data mining is all about. Serious data miners write
their own scripts to parse through the SEER public data files.

7.1 � Parsing the SEER Data Files

Each SEER record is a cancer case, described by a series of 258 alphanumeric char-
acters, in byte-assigned positions, described by a data dictionary document. When
you have the byte locations for the data dictionary entries, you can easily write a short
script that can extract and compile data any way you wish.

The appendix contains detailed instructions for downloading the SEER data files.

7.1.1 � Script Algorithm

	 1.	Open the directory containing the SEER data files. The files comprising the
set of SEER data files are listed Exercise 1 of this chapter. I store my files in
the c:\seer subdirectory, and, in this example script, this is the subdirectory
that is opened.

108	 Methods in Medical Informatics﻿

	 2.	Create a new dictionary in which the keys will be the age of the patient in
the record, and the values will be the number of occurrences of the age in the
SEER files.

	 3.	Parse through each SEER data file, one line at a time.
	 4.	For each SEER record, for every SEER file, extract the sequence of three con-

secutive bytes, corresponding to byte 25, 26, and 27 from the record. These
bytes contain the age of the patient.

	 5.	As each age is encountered, increment, by 1, the number of occurrences of the
age (in the dictionary object that you have created in step 2).

	 6.	After every SEER file has been parsed, print out the sorted list of ages and
occurrences from the dictionary object.

Perl Script

#!/usr/local/bin/perl
opendir(SEERDIR, “c\:\\seer”) || die (“Unable to open directory”);
@files = readdir(SEERDIR);
closedir(SEERDIR);
chdir(“c\:\\seer”);
foreach $datafile (@files)
 {
 next if ($datafile !~ /\.txt/i);
 open (TEXT, $datafile);
 $line = “ “;
 while ($line ne “”)
 {
 $line = <TEXT>;
 $agehash{$&}++ if (substr($line,24,3) =~ /[01][0-9]{2}/)
 }
 }
foreach $age (sort(keys(%agehash)))
 {
 print “$age $agehash{$age}\n”;
 }
exit;

Python Script

#!/usr/local/bin/python
import sys, os, re
agehash = {}
filelist = os.listdir(“c:\\seer”)
os.chdir(“c:\\seer”)
for file in filelist:
 infile = open(file,’r’)
 for line in infile:
 age = line[24:27]
 if re.search(r’[01][0-9]{2}’,age):

	SEER 	 109

 if agehash.has_key(age):
 agehash[age] = agehash[age] + 1
 else:
 agehash[age] = 1
 infile.close()
keylist = agehash.keys()
keylist.sort()
for item in keylist:
 print item, agehash[item]
exit

Ruby Script

#!/usr/local/bin/ruby
filelist = Dir.glob(“c:/seer/*.TXT”)
agehash = {}
filelist.each do
 |filepathname|
 seer_file = File.open(filepathname)
 seer_file.each do
 |line|
 if (line.slice(24,3) =~ /[01][0-9]{2}/)
 if agehash.has_key? $&
 agehash[$&] = agehash[$&] + 1
 else
 agehash[$&] = 1
 end
 end
 end
end
agehash.keys.sort.each {|key| puts “#{key} #{agehash[key]}”}
exit

7.1.2 � Analysis

In the SEER files, age is a three-digit sequence that is occupies byte 25, 26, and 27
from each line record for each SEER file. Because Perl, Python, and Ruby count from
zero (not from one), bytes 25, 26, and 27 correspond to the 24th, 25th, and 26th bytes
of the line record.

The following columns depict the ages (from 000 to 115) and the number of SEER
records for each age:

000 2656
001 2276
002 2421
003 2209
004 1810
005 1527

006 1259
007 1189
008 1136
009 1073
010 1165
011 1209

012 1377
013 1576
014 1838
015 2090
016 2384
017 2971

110	 Methods in Medical Informatics﻿

018 3753
019 4454
020 5576
021 6746
022 8097
023 9231
024 10676
025 11786
026 12714
027 13852
028 14306
029 15319
030 15807
031 16308
032 16597
033 17266
034 17724
035 18906
036 19256
037 20003
038 21032
039 22136
040 24763
041 25583
042 27472
043 28812
044 30537
045 33185
046 35222
047 37600
048 39872
049 42087

050 45817
051 48099
052 50274
053 52985
054 55555
055 59398
056 62248
057 65734
058 68730
059 71403
060 75204
061 77693
062 80501
063 83004
064 85536
065 90965
066 92046
067 94336
068 95657
069 97415
070 97192
071 97525
072 97617
073 97079
074 94923
075 92417
076 89849
077 85938
078 81630
079 76125
080 70060
081 65250

082 59696
083 54535
084 48517
085 42474
086 37190
087 31861
088 27004
089 22319
090 17470
091 14116
092 11171
093 8588
094 6372
095 4618
096 3331
097 2171
098 1539
099 1007
100 579
101 355
102 245
103 137
104 84
105 40
106 36
107 16
108 11
109 3
110 1
113 2
115 1

A quick scan of the list shows that the mode (age with the greatest number of occur-
rences) is age 72, with 97,617 cancer occurrences. This confirms that cancer occurs
most frequently among seniors.

7.2 � Finding the Occurrences of All Cancers in the SEER Data Files

The SEER data files consist of individual records of individual cancer cases. We can
write simple scripts that parse the entire data set, counting the occurrences of each
type of cancer, and producing a ranked output.

	SEER 	 111

7.2.1 � Script Algorithm

	 1.	Open the ICD-O nomenclature file and produce a dictionary object, with
keys containing the five-digit code for each type of neoplasm, and the cor-
responding values consisting of the name of the neoplasm.

	 2.	Read the directory containing the SEER files, collecting the name of each
data file.

	 3.	Change the directory to the path of the SEER files, so that your script can
directly access the SEER files.

	 4.	Set up a loop that will parse through every SEER file, line by line, so that, by
the end of the loop, every record in SEER will be examined.

	 5.	For each SEER record, extract bytes that contain the ICDO2 code and the
ICDO3 code for each record (Figure 7.1).

	 6.	If an ICDO3 code exists, let it override the ICDO2 code.
	 7.	In a dictionary object, add the record’s code as a key in the dictionary object,

and increment the value of the object by 1 (i.e., increment the code’s occur-
rence tally every time the code appears in a record).

	 8.	After all of the SEER files are parsed, print out the key–value pairs from the
created dictionary object (now containing the codes occurring in the SEER
file, with their number of occurrences). For each code, provide the term-
equivalent for the code (held in the nomenclature dictionary object), and dis-
play the output by sorting on the occurrence number.

Perl Script

#!/usr/local/bin/perl
open (ICD, “c\:\\ftp\\icdo3\.txt”);

Sex 220 24–24
Age at diagnosis 230 25–27
Year of Birth 240 28–31
Birth Place 250 32–34
Sequence Number--Central 380 35–36
Month of diagnosis 390 37–38
Year of diagnosis 390 39–42
Primary Site 400 43–46
Laterality 410 47–47
Histology (92-00) ICD-O-2 420 48–51
Behavior (92-00) ICD-O-2 430 52–52
Histologic Type ICD-O-3 522 53–56
Behavior Code ICD-O-3 523 57–57

Figure 7.1  Partial listing of the SEER data dictionary, providing the fields covered by bytes 24 to 57 of each data
record.

112	 Methods in Medical Informatics﻿

$line = “ “;
while ($line ne “”)
 {
 $line = <ICD>;
 if ($line =~ /([0-9]{4})\/([0-9]{1}) +/o)
 {
 $code = $1 . $2;
 $term = $’;
 $term =~ s/ *\n//o;
 $term = lc($term);
 $dictionary{$code} = $term;
 }
 }
close ICD;
opendir(SEERDIR, “c\:\\seer”) || die (“Unable to open directory”);
@files = readdir(SEERDIR);
closedir(SEERDIR);
open (OUT, “>c\:\\ftp\\seerdist.txt”);
chdir(“c\:\\seer”);
foreach $datafile (@files)
 {
 next if ($datafile !~ /.txt/i);
 open (TEXT, $datafile);
 $line = “ “;
 while ($line ne “”)
 {
 $line = <TEXT>;
 $dx = substr($line, 47, 5);
 $dx2 = substr($line, 52, 5);
 if (exists($dictionary{$dx2}))
 {
 $dx = $dx2;
 }
 $dxhash{$dx}++;
 }
 close TEXT;
 }
while (($key, $value) = each(%dxhash))
 {
 if (exists($dictionary{$key}))
 {
 $value = “0000000” . $value;
 $value = substr($value, -7, 7);
 push(@distarray, “$value $dictionary{$key}”);
 }
 }
print join(“\n”, reverse(sort(@distarray)));
exit;

	SEER 	 113

Python Script

#!/usr/local/bin/python
import sys, os, re, string
f = open(“c:\\ftp\\icdo3.txt”, “r”)
fout = open(“SEER.OUT”, “w”)
codehash = {}
subhash = {}
for line in f:
 linematch = re.search(r’([0-9]{4})\/([0-9]{1}) +(.+)$’, line)
 if (linematch):
 icdcode = linematch.group(1) + linematch.group(2)
 term = string.rstrip(linematch.group(3))
 codehash[icdcode] = term
f.close()
filelist = os.listdir(“c:\\seer”)
os.chdir(“c:\\seer”)
for file in filelist:
 seer_file = open(file, “r”)
 for line in seer_file:
 code1 = line[47:52]
 code2 = line[52:57]
 if codehash.has_key(code2):
 code1 = code2
 if subhash.has_key(code1):
 subhash[code1] = subhash[code1] + 1
 else:
 subhash[code1] = 1
keylist = subhash.keys()
for item in keylist:
 print>>fout, “%-7.7d %8s” % (subhash[item], codehash[item])
fout.close()
orderfile = open(“c:\\ftp\\py\\SEER.OUT”, “r”)
line_array = orderfile.readlines()
line_array.sort()
line_array.reverse()
for item in line_array:
 print item,
exit

Ruby Script

#!/usr/local/bin/ruby
f = File.open(“c:/ftp/icdo3.txt”)
fout = File.open(“SEER.OUT”, “w”)
codehash = Hash.new(“”)
subhash = Hash.new(0)
f.each do
 |line|

114	 Methods in Medical Informatics﻿

 next unless (line =~ /([0-9]{4})\/([0-9]{1}) +/)
 icdcode = $1 << $2
 term = $’.chomp!
 codehash[icdcode] = term
end
f.close
filelist = Dir.glob(“c:/seer/*.TXT”)
begin_time = Time.new.to_f
filelist.each do
 |filepathname|
 seer_file = File.open(filepathname)
 seer_file.each do
 |line|
 code1 = line.slice(47,5)
 code2 = line.slice(52,5)
 code1 = code2 if codehash.has_key? code2
 subhash[code1] = subhash[code1] + 1
 end
end
subhash.each do
 |key,value|
 if codehash.has_key?(key)
 fout.printf(“%-7.07d %-s \n”, value, codehash[key])
 end
end
fout.close
fout = File.open(“SEER.OUT”)
final = File.open(“seer2.out”,”w”)
final.puts(fout.readlines.sort.reverse.join)
puts “\nTime to parse SEER files - #{Time.new.to_f - begin_time}
seconds”
exit

7.2.2 � Analysis

The output list consists of the names of 645 different types of neoplasms, and the
number of their occurrences in the SEER data files, listed in decreasing order. Here
are the first 20 items in the output list:

1021940 Adenocarcinoma, NOS
0333623 Infiltrating duct carcinoma, NOS
0247826 Squamous cell carcinoma, NOS
0182616 Carcinoma, NOS
0096537 Papillary trans. cell carcinoma
0063370 Squamous cell carcinoma in situ, NOS
0057571 Carcinoma in situ, NOS
0056558 Neoplasm, malignant

	SEER 	 115

0050243 Transitional cell carcinoma, NOS
0050173 Small cell carcinoma, NOS
0048315 Malignant melanoma, NOS
0045778 Mucinous adenocarcinoma
0040929 Superficial spreading melanoma
0037543 Renal cell carcinoma
0037088 ML, large B-cell, diffuse
0036429 Multiple myeloma
0035630 Intraductal carcinoma, noninfiltrating, NOS
0034336 Lobular carcinoma, NOS
0030328 B-cell chr. lymph. leuk./small lymphocytic lymphoma
0029592 Large cell carcinoma, NOS

The frequencies of the different kinds of cancers has a Zipf distribution. The most fre-
quently occurring form of cancer, adenocarcinoma, accounts for over 1 million cases.
The 20th item on the list is large cell carcinoma, NOS (not otherwise specified).
It accounts for about 30,000 cases. If we were to look at the frequencies of occur-
rence of cancers in the bottom half of the list, we would see that many of these can-
cers account for just a few dozen cancer cases. We can easily see that a few kinds of
cancers account for the bulk of the cancers that occur in humans.

7.3 � Finding the Age Distributions of the Cancers in the SEER Data Files

Diseases often occur in narrow age ranges within a population. When analyzing dis-
ease data, it is not always sufficient to know the average age of occurrence of a disease.
You really need to know the distribution of disease occurrences over a range of human
ages (usually 0 to 100 years). This is particularly true for diseases with a multimodal
age distribution.

7.3.1 � Script Algorithm

	 1.	Create a dictionary object consisting of code–term pairs from the ICD
nomenclature.

	 2.	Open the directory containing the SEER public data files.
	 3.	Put the list of files in the directory into an array.
	 4.	Parse every line of every file in the array. Each line represents a SEER data

record. There are over 3 million records that will be parsed by the script.
	 5.	For each parsed line, extract the diagnosis (represented as a five-digit ICD code)

and the age (represented by a three-digit number ranging from 000 to 115).
	 6.	Bin each age into one of 20 bins by dividing the age by 5, taking the integer

value of the result, and lumping all ages 95 and above to the same bin (the
20th bin).

116	 Methods in Medical Informatics﻿

	 7.	For each record, increment (by 1) the number of occurrences of the diagno-
sis (for the record), in the bin corresponding to the patient age listed for the
record, and put the record diagnosis and the incremented age distribution for
the diagnosis, as a key–value pair for a dictionary (hash) object.

	 8.	After all of the files are parsed, parse through the dictionary object containing
all of the diagnostic code/age distributions (steps 4–7).

	 9.	As each pair of diagnostic codes and age distributions is parsed, print the term
corresponding to the diagnostic code (from the dictionary object produced in
step 1), and the age distribution for the term on a separate line.

Perl Script

#!/usr/local/bin/perl
open (ICD, “c\:\\ftp\\icdo3\.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <ICD>;
 if ($line =~ /([0-9]{4})\/([0-9]{1}) +/o)
 {
 $code = $1 . $2;
 $term = $’;
 $term =~ s/ *\n//o;
 $term = lc($term);
 $dictionary{$code} = $term;
 }
 }
close ICD;
opendir(SEERDIR, “c\:\\seer”) || die (“Unable to open directory”);
@files = readdir(SEERDIR);
closedir(SEERDIR);
open (OUT, “>c\:\\ftp\\seerdist.txt”);
chdir(“c\:\\seer”);
foreach $datafile (@files)
 {
 next if ($datafile !~ /.txt/i);
 open (TEXT, $datafile);
 $line = “ “;
 while ($line ne “”)
 {
 $line = <TEXT>;
 $dx = substr($line, 47, 5);
 $dx2 = substr($line, 52, 5);
 if (exists($dictionary{$dx2}))
 {
 $dx = $dx2;
 }

	SEER 	 117

 unless (exists($dxhash{$dx}))
 {
 $dxhash{$dx} = “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0”;
 }
 $age_at_dx = substr($line,24,3);
 if ($age_at_dx > 95)
 {
 $age_at_dx = 95;
 }
 $age_at_dx = int($age_at_dx / 5);
 @agearray = split(“ “, $dxhash{$dx});
 $agearray[$age_at_dx]++;
 $dxhash{$dx} = join(“ “, @agearray);
 }
 close TEXT;
 }
while (($key, $value) = each(%dxhash))
 {
 if (exists($dictionary{$key}))
 {
 push(@distarray,”$dictionary{$key}\|$value”);
 }
 }
print OUT join(“\n”, sort(@distarray));
close OUT;
exit;

Python Script

#!/usr/local/bin/python
import os, re, string
f = open(“c:\\ftp\\icdo3.txt”, “r”)
fout = open(“SEER.OUT”, “w”)
codehash = {}
subhash = {}
agearray = []
for line in f:
 linematch = re.search(r’([0-9]{4})\/([0-9]{1}) +(.+)$’, line)
 if (linematch):
 icdcode = linematch.group(1) + linematch.group(2)
 term = string.rstrip(linematch.group(3))
 codehash[icdcode] = term
f.close()
filelist = os.listdir(“c:\\seer”)
os.chdir(“c:\\seer”)
for file in filelist:
 seer_file = open(file, “r”)
 for line in seer_file:
 code1 = line[47:52]
 code2 = line[52:57]

118	 Methods in Medical Informatics﻿

 if codehash.has_key(code2):
 code1 = code2
 age_at_dx = int(line[24:27])
 if (age_at_dx > 95):
 age_at_dx = 95
 age_at_dx = int(age_at_dx/5)
 if not subhash.has_key(code1):
 subhash[code1] = “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0”
 agearray = subhash[code1].split(“ “)
 old_value = agearray[age_at_dx]
 new_value = int(old_value) + 1
 agearray[age_at_dx] = str(new_value)
 subhash[code1] = “ “.join(agearray)
keylist = subhash.keys()
for item in keylist:
 if codehash.has_key(item):
 print>>fout, codehash[item] + “|” + subhash[item]
fout.close()
orderfile = open(“c:\\ftp\\py\\SEER.OUT”, “r”)
line_array = orderfile.readlines()
line_array.sort()
for item in line_array:
 print item,
exit

Ruby Script

#!/usr/local/bin/ruby
f = File.open(“c:/ftp/icdo3.txt”)
dxhash = Hash.new(“”)
codehash = Hash.new(“”)
distarray = []
fout = File.open(“SEER.OUT”, “w”)
f.each do
 |line|
 next unless (line =~ /([0-9]{4})\/([0-9]{1}) +/)
 icdcode = $1 << $2
 term = $’.chomp!
 codehash[icdcode] = term
end
f.close
filelist = Dir.glob(“c:/seer/*.TXT”)
filelist.each do
 |filepathname|
 seer_file = File.open(filepathname, “r”)
 seer_file.each do
 |line|
 code1 = line.slice(47,5)
 code2 = line.slice(52,5)
 code1 = code2 if codehash.has_key? code2

	SEER 	 119

 unless dxhash.has_key? code1
 dxhash[code1] = “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0”
 end
 age_at_dx = line.slice(24,3)
 next if age_at_dx !~ /[01][0-9]{2}/
 age_at_dx = age_at_dx.to_f
 if (age_at_dx > 95)
 age_at_dx = 95
 end
 age_at_dx = (age_at_dx / 5).to_i
 agearray = dxhash[code1].split(“ “)
 agearray[age_at_dx] = agearray[age_at_dx].to_i
 agearray[age_at_dx] = agearray[age_at_dx] + 1
 dxhash[code1] = agearray.join(“ “)
 end
end
dxhash.each do
 |key, value|
 if codehash.has_key? key
 distarray.push(“#{codehash[key]}\|#{value}”)
 end
end
print distarray.sort.join(“\n”)
exit

7.3.2 � Analysis

Here are 18 consecutive diagnoses and age distributions from the output file. Each
diagnostic entity is followed by the number of records of the tumor, in the SEER data
files, for each five-year age range from 0 years of age up to age 95 (and above).

Struma ovarii, malignant
0 0 0 0 1 1 2 1 3 4 1 1 0 0 1 1 0 0 0 0

Subcutaneous panniculitis-like T-cell lymphoma
0 0 0 2 0 0 0 3 1 0 3 5 2 4 2 2 2 0 0 0

Subependymoma
0 0 0 1 1 2 2 2 4 4 3 7 3 1 1 1 0 1 0 0

Supependymal giant cell astrocytoma
2 4 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Superficial spreading adenocarcinoma
0 0 0 0 0 2 2 3 5 14 13 19 22 30 29 16 18 7 2 1

Superficial spreading melanoma, in situ
2 0 5 35 103 238 332 441 509 480 478 432 385 354 294 246 124 63 19 7

120	 Methods in Medical Informatics﻿

Superficial spreading melanoma
0 10 50 329 1064 2127 3244 3908 4329 4259 4129 39 46 3589 3116 2710 2047

1227 596 175 74

Sweat gland adenocarcinoma
0 0 1 1 3 10 8 8 18 24 25 30 42 34 52 37 35 17 13 5

Synovial sarcoma, NOS
2 11 41 44 67 67 49 52 42 31 37 28 23 19 14 17 8 3 0 0

Synovial sarcoma, biphasic
0 6 13 21 18 14 20 13 12 11 6 9 3 5 3 1 0 1 0 0

Synovial sarcoma, epithelioid cell
0 0 0 0 0 1 1 2 0 0 1 0 2 1 0 0 0 0 0 0

Synovial sarcoma, spindle cell
1 2 9 21 14 19 21 19 13 9 15 18 4 3 4 5 1 0 0 0

Telangiectatic osteosarcoma
2 4 13 10 6 3 3 1 2 0 2 1 0 2 1 0 3 0 0 0

Teratocarcinoma
6 4 22 209 457 413 285 145 74 46 18 8 10 11 4 2 0 2 0 1

Teratoid medulloepithelioma
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Teratoma with malig. transformation
0 0 0 2 1 3 2 2 4 1 5 3 4 3 3 0 1 0 0 0

Teratoma, benign
1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Teratoma, malignant, NOS
141 32 90 178 223 204 163 93 37 25 15 8 6 10 5 7 4 1 0 0

Let us look at a single example:

Synovial sarcoma, NOS
2 11 41 44 67 67 49 52 42 31 37 28 23 19 14 17 8 3 0 0

Corresponding ages:
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 (and above)

We can see that some of the distributions peak in the middle of the distributions (age
50 and above), while others seem to peak early (in children).

In Chapter 25, we will learn how to convert age distribution data into graphs,
allowing us to visualize age-distribution curves.

	SEER 	 121

Exercises

	 1.	Following the instructions provided in the appendix, download the SEER
data files onto your own computer.

04/14/2009 01:50 PM 153,783,644 BREAST.TXT
04/14/2009 01:50 PM 116,050,746 COLRECT.TXT
04/14/2009 01:50 PM 71,956,724 DIGOTHR.TXT
04/14/2009 01:50 PM 98,253,484 FEMGEN.TXT
04/14/2009 01:50 PM 75,934,488 LYMYLEUK.TXT
04/14/2009 01:50 PM 128,405,116 MALEGEN.TXT
04/14/2009 01:50 PM 141,117,522 OTHER.TXT
04/14/2009 01:50 PM 136,211,152 RESPIR.TXT
04/14/2009 01:50 PM 63,487,816 URINARY.TXT

		 Using Perl, Python, or Ruby, write a script that counts the aggregate number
of cancer records contained in the SEER files.

	 2.	Using Perl, Python, or Ruby, find the total number of occurrences of all types
of cancer for women and for men, on separate output columns.

Hint: You will need the byte locations for gender. The data dictionary
contains this information.

	 3.	Using Perl, Python, or Ruby, write a script that determines the list of all
tumors that occur, in each and every five-year age group (0 to 95), and the
frequency of occurrence of those tumors in that age group.

	 4.	Using Perl, Python, or Ruby, find the total number of occurrences of all types
of cancer for each anatomic site.

Hint: You will need the byte locations for the anatomic site data in the
SEER data records. As shown in Figure 7.1, these constitute charac-
ters 43 to 46 of the record. The codes for the anatomic sites are found
in the appendix.

	 5.	The SEER data files contain millions of tumors, but it is not clear whether the
SEER data files contain examples of every tumor listed in the ICD-O. Using
Perl, Python, or Ruby, write a script that determines the number of different
tumors (i.e., different ICD-O codes) contained in SEER, and determine the
percentage of the total number of ICD-O codes (from the ICDO nomencla-
ture) that are accounted for in the SEER data records.

	 6.	It is possible that when the SEER data records were written, the cancer reg-
istrars (the people who create data records from cancer cases encountered in
hospitals and clinics) may have used nonstandard codes that are not included
in the version of the ICD-O that we have used in these exercises (i.e., not
included in the icdo3.txt file). Using Perl, Python, or Ruby, write a script that
lists (if any) the nonstandard ICD-O codes in the SEER data records.

123

8
OMIM

The Online Mendelian Inheritance in Man

OMIM is a listing of the known inherited conditions occurring in humans. Each con-
dition has biologic and clinical descriptions in a detailed textual narrative that includes
a listing of relevant citations. The OMIM text exceeds 135 megabytes (MB) in length
and can be downloaded from the National Center for Biotechnology Information’s
anonymous ftp site: ftp://ftp.ncbi.nih.gov and subdirectory: /repository/omim/.

OMIM is publicly available, at no cost, at

http://www.ncbi.nlm.nih.gov/sites/entrez

OMIM and Online Mendelian Inheritance in Man are registered trademarks of the
Johns Hopkins University.

OMIM is an ideal and challenging corpus for testing indexing and retrieval algo-
rithms because it contains free-text (paragraphs), structured text (lists), names (in
free-text and in citations suitable for testing deidentification algorithms), gene-related
terminology (names of genes, cytogenetic descriptors, proteins) and medical terms
(co-morbid features of inherited diseases) and both common and obscure medical
conditions. Additional information on OMIM is available at

http://www.ncbi.nlm.nih.gov/omim/

The version of OMIM available (April, 2009) is 135,191,286 bytes in length and
contains 20,287 records.

The first paragraph of the first record, of over 20,000 OMIM records, is shown:

FIELD TI
100050 AARSKOG SYNDROME
FIELD TX

Grier et al. (1983) reported a father and two sons with typical Aarskog syn-
drome, including short stature, hypertelorism, and shawl scrotum. They tabu-
lated the findings in 82 previous cases. An X-linked recessive inheritance has
been repeatedly suggested (see 305400). The family reported by Welch (1974)
had affected males in three consecutive generations. Thus, there is either genetic
heterogeneity or this is an autosomal dominant with strong sex-influence and
possibly ascertainment bias resulting from use of the shawl scrotum as a main

124	 Methods in Medical Informatics﻿

criterion. Stretchable skin was present in the cases of Grier et al. (1983). Teebi
et al. (1993) reported the case of an affected mother and four sons (including
a pair of monozygotic twins) by two different husbands. They suggested that
the manifestations were as severe in the mother as in the sons and that this
suggested autosomal-dominant inheritance. Actually, the mother seemed less
severely affected, which is compatible with an X-linked inheritance.

For further reading, I have described some informatics-related uses of OMIM in a
previously published public domain document at:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC441395/

8.1 � Collecting the OMIM Entry Terms

In the preceding section, the first paragraph of an OMIM record is shown. Note that
the title of the record (the OMIM number and the list of synonymous terms for the
disorder) follows the field delimiter “*FIELD* TI” and precedes the field delimiter
“*FIELD* TX”. The titles of records are very useful, because they allow us to link
OMIM records to records in other documents and data sets that contain the OMIM
number or a synonymous term. We can collect all of the OMIM title entries into a
single file, that we can use later in informatics projects.

8.1.1 � Script Algorithm

	 1.	Open OMIM.
	 2.	Parse through OMIM record by record.
	 3.	Extract from each record the portion of text that is within the title field

(*FIELD* TI).
	 4.	Add the output information to an output file, or display it directly on the

monitor.

Perl Script

#!/usr/local/bin/perl
$/ = “*RECORD*”;
open (TEXT, “c\:\\big\\omim”)||die”cannot”;
$line = <TEXT>;
$line = “ “;
$count = 0;
while ($line ne “”)
 {
 $line = <TEXT>;
 $getline = $line;
 $getline =~ s/\n/ /g;
 if ($getline =~ /*FIELD* TI(.+)*FIELD* TX/m)
 {

	O MIM	 125

 print lc($1) . “\n\n”;
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import re, string
count = 0
in_text = open(‘C:\\big\\omim’, “r”)
out_text = open(“omimword.txt”, “w”)
clump = “”
for line in in_text:
 namematch = re.match(r’*RECORD*’, line)
 if (namematch):
 count = count + 1
 clump = re.sub(r’\n’, ‘ ‘, clump)
 fieldmatch = re.search(r’*FIELD* TI(.+)*FIELD* TX’, clump)
 if fieldmatch:
 print>>out_text, string.lower(fieldmatch.group(1))
 clump = “”
 else:
 clump = clump + line
exit

Ruby Script

#!/usr/local/bin/ruby
file_in = File.open(“c\:\\big\\omim”)
file_in.each_line(“*RECORD*”) do
 |line|
 line =~ /*FIELD* TI(.+)*FIELD* TX/m
 puts $1.downcase if $1
end
exit

8.1.2 � Analysis

The output consists of the title line for each of the approximately 20,000 OMIM
records. The first four output lines are shown here:

100050 aarskog syndrome
#100070 aortic aneurysm, abdominal ;;aaa;; aaa1;; aneurysm, abdominal

aortic;; abdominal aortic aneurysm arteriomegaly, included;; aneurysms,
peripheral, included

100100 abdominal muscles, absence of, with urinary tract abnormality and cryp-
torchidism ;;prune belly syndrome;; eagle-barrett syndrome

100200 abducens palsy

126	 Methods in Medical Informatics﻿

This script demonstrates that if you have a text file, prepared in a consistent manner
that separates entries, records, or sections, you can easily write a script that extracts,
reorganizes, or transforms the specific kinds of information contained in the records.

8.2 � Finding Inherited Cancer Conditions

There are over 20,000 OMIM records covering every type of inherited diseases.
Occasionally, you will need to focus your attention on records that contain a particu-
lar feature of interest.

A cancer researcher may be interested in inherited syndromes that carry an increased
risk of developing benign or malignant tumors (neoplasms). The OMIM records con-
tain a special section, labeled “Oncology,” listing neoplasms that may occur as part of
the clinical syndrome. For example, OMIM entry 114900 contains the following text:

FIELD CS
Oncology:
Intestinal carcinoid;
Appendiceal carcinoid;
Malignant carcinoid of ileum
Inheritance:
Autosomal dominant

The syndrome-associated neoplasms are listed as indented terms following the
“Oncology:” header. We can use the uniform record notation to extract all of the neo-
plasms in inherited cancer syndromes.

8.2.1 � Script Algorithm

	 1.	Open the OMIM file for reading.
	 2.	Parse through the OMIM file record by record. Records in OMIM are delim-

ited by the line “*RECORD*”.
	 3.	In each record, extract the text between the lines “*FIELD* TX” and

“*FIELD* TI”. These lines enclose the OMIM record title.
	 4.	In each record, extract the text that follows the line, “Oncology:” and precedes

a line that begins with a word that begins flush against the beginning of a new
line. This happens to enclose the format of a listing of the names of neoplasms
associated with an OMIM syndrome.

	 5.	In each record, if there is an oncology record, print out the OMIM record
title, followed by the list of neoplasms associated with the record.

Perl Script

#!/usr/local/bin/perl
$/ = “*RECORD*”;

	O MIM	 127

open (TEXT, “c\:\\big\\omim”)||die”cannot”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 $line =~ /*FIELD* TX/m;
 $front = $`;
 if ($front =~ /*FIELD* TI/m)
 {
 $front = $’;
 }
 if ($line =~ /Oncology\:/)
 {
 $oncoterms = $’;
 $oncoterms =~ /\n[A-Z]/;
 $oncoterms = $`;
 if ($oncoterms)
 {
 print lc($front) . lc($oncoterms);
 }
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import re, string
in_text = open(‘C:\\big\\omim’, “r”)
clump = “”
for line in in_text:
 namematch = re.match(r’*RECORD*’, line)
 if namematch:
 section = re.sub(r’\n’, ‘ ‘, clump)
 fieldmatch = re.search(r’*FIELD* TI(.+)*FIELD* TX’, section)
 if fieldmatch:
 oncopiece = re.sub(r’\n’, ‘@’, clump)
 oncomatch = re.search(r’Oncology:(.+?)\@[A-Z]’, oncopiece)
 if oncomatch:
 oncopiece = re.sub(r’@’, ‘\n’, string.lower(oncomatch.
group(1)))
 print string.lower(fieldmatch.group(1)) + “ “ + oncopiece +
“\n”
 clump = “”
 else:
 clump = clump + line
exit

128	 Methods in Medical Informatics﻿

Ruby Script

#!/usr/local/bin/ruby
file_in = File.open(“c\:\\big\\omim”)
file_in.each_line(“*RECORD*”) do
 |line|
 line =~ /*FIELD* TI(.+)*FIELD* TX/m
 entry = $1
 if entry
 line =~ /Oncology:(.+?)\n[A-Z]/m
 oncoterms = $1;
 puts entry.downcase + oncoterms.downcase if oncoterms
 end
end
exit

8.2.2 � Analysis

The first five records of the output are shown:

102660 adamantinoma of long bones
adamantinoma of long bones

104600 amenorrhea-galactorrhea syndrome
pituitary adenoma

105580 anal canal carcinoma cloacogenic carcinoma, included
anal canal squamous carcinoma

*108330 cytochrome p450, subfamily i, polypeptide 1; cyp1a1;;cytochrome
p450, aromatic compound-inducible;;aryl hydrocarbon hydroxylase;
ahh;;flavoprotein-linked monooxygenase;;cytochrome p1-450, dioxin-
inducible;;cytochrome p1-450, inducible by 2,3,7,8-tetrachlorodibenzo-
p-dioxin;;tcdd-inducible cytochrome p450;p450dx;;polycyclic aromatic
compound-inducible p450
? high-inducibility phenotype at greater risk for bronchogenic carcinoma

%109350 gastroesophageal reflux;;ger;;gastroesophageal reflux disease; gerd1;;
gastroesophageal reflux, pediatric barrett metaplasia, included;;barrett esoph-

agus, included;;adenocarcinoma of esophagus, included
adenocarcinoma of the esophagus risk about 10%

In just a few seconds, we can collect all of the OMIM conditions that are associated with a
specific “Oncology” field that lists the neoplastic conditions associated with the disorder.

	O MIM	 129

Exercises

	 1.	Using Perl, Python, or Ruby, determine the total number of records in OMIM.
	 2.	Some disorders are characterized by G-to-A mutations. Using Perl, Python,

or Ruby, write a script that collects from OMIM all records that contain the
term “G-to-A”.

	 3.	G-to-A transitions may occur as homozygous or heterozygous mutations.
Using Perl, Python, or Ruby, write a script that collects, from OMIM all
records that contain the term “G-to-A” and the word “heterozygous” or the
word “homozygous”.

	 4.	Records that contain two closely related terms (i.e., a term that is relevant
to the meaning of another term) usually occur in close proximity within the
text. Using Perl, Python, or Ruby, write a script that collects from OMIM all
records that contain the term “G-to-A” within 10 words (preceding or follow-
ing) the word “heterozygous” or the word “homozygous”.

131

9
PubMed

PubMed is the U.S. National Library of Medicine’s public search engine for about
19 million citations from the medical literature. Each citation consists of the authors,
the title, and the journal reference for each article. For the vast majority of articles,
PubMed includes an abstract summarizing the research. For many articles, PubMed
includes a link to the electronic version of the complete article.

You can access the PubMed data at

http://www.ncbi.nlm.nih.gov/pubmed/

or

http://www.pubmed.org/

At the same site, search engines linked to a variety of large biology databases are pro-
vided by the National Center for Biotechnology Information.

9.1 � Building a Large Text Corpus of Biomedical Information

It is remarkably easy to create a large public domain text corpus for almost any medical
specialty. All you need to do is to enter a PubMed query and send the results to a file
on your computer’s hard disk.

Here is an example of a PubMed search on the following query term:

cancer OR sarcoma OR carcinoma OR tumor OR adenocarcinoma OR neo-
plasm OR lymphoma OR leukemia AND gene

This returns a list of about 360,000 citations, which can be downloaded, along with
abstracts of the cited papers, and saved as a text file (Figure 9.1). Under “Format”,
choose “Medline” to produce an output that provides detailed information on each
record. The “Choose Destination” box in the upper-right corner of the image permits
the user to download the complete search results. By selecting “File”, the results will
be downloaded into a file on your hard drive.

The downloaded file of the returned citation list exceeds 200 megabytes (MB)
in length.

The U.S. Copyright office stipulates that the names of authors and the titles of
works are excluded from copyright. This makes sense because if you cannot freely
publish the names of authors or the titles of their works, how would anyone know that

132	 Methods in Medical Informatics﻿

the work exists? The abstracts, included in PubMed downloads, are covered by copy-
right, and cannot be republished. If you want to have a corpus of text extracted from a
PubMed download that you can freely distribute, you will want to extract the titles.

9.1.1 � Script Algorithm

	 1.	Open the PubMed download file.
	 2.	Open an output file.
	 3.	PubMed download files contain records that consistently begin with “PMID- ”.

Parse through the PubMed download file, record by record, using “PMID- ”
as the record separator.

	 4.	Within the record, the title field is preceded by “TI - ”, and the title ends with
a newline character followed by another field designator, such as the abstract
field designator, “AB - ”.
	 For example:

TI—A Wnt Survival Guide: From Flies to Human Disease.
AB—It has been two decades since investigators discovered the…

		 From each record, extract the text that lies between the title field designator
and the next field designator.

	 5.	Convert the title to lowercase.
	 6.	Clean the title line by removing nonalphanumeric characters, extra spaces,

possessive markers (“’s”), and the plural forms of tumor names.
	 7.	Write titles to an external output file.

Perl Script

#!/usr/local/bin/perl
$/ = “PMID- “;

Figure 9.1  PubMed screen of query results, showing the first page of returned citations.

	 PubMed	 133

open(TEXT,”c\:\\big\\cancer_gene_pubmed.txt”)||die”cannot”;
open(OUT,”>cancer_gene_titles.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 if ($line =~ /\nTI \-(.+)\n[A-Z]{2} \-/)
 {
 $title = $1;
 $title = lc($title);
 $title =~ s/\’s//g;
 $title =~ s/\W/ /g;
 $title =~ s/omas/oma/g;
 $title =~ s/tumour/tumor/g;
 $title =~ s/\n/ /g;
 $title =~ s/^ +//;
 $title =~ s/ +$//;
 $title =~ s/ +/ /g;
 next if ($title !~ /[a-z]+/);
 print OUT “$title\n”;
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import string, re
in_text = open(“c:\\big\\cancer_gene_pubmed.txt”, “r”)
out_text = open(“cancer_gene_titles.txt”, “w”)
clump = “”
for line in in_text:
 record_match = re.match(r’PMID- ‘, line)
 if record_match:
 title_match = re.search(r’\nTI -(.+)\n[A-Z]{2} -’, clump)
 if title_match:
 title = title_match.group(1)
 title = string.lower(title)
 title = re.sub(r’\’s’, “”, title)
 title = re.sub(r’\W’, “ “, title)
 title = re.sub(r’omas’, “oma”, title)
 title = re.sub(r’tumour’, “tumor”, title)
 title = re.sub(r’\n’, “ “, title)
 title = string.rstrip(title)
 title = string.lstrip(title)
 title = re.sub(r’ +’, “ “, title)
 text_match = re.search(r’[a-z]+’, title)
 if not text_match:
 clump = “”

134	 Methods in Medical Informatics﻿

 continue
 print>>out_text, title
 clump = “”
 else:
 clump = clump + line
exit

Ruby Script

#!/usr/local/bin/ruby
$/ = “PMID- “
in_text = File.open(“c:/big/cancer_gene_pubmed.txt”, “r”)
out_text = File.open(“cancer_gene_titles.txt”, “w”)
in_text.each_line do
 |line|
 if (line =~ /\nTI \-(.+)\n[A-Z]{2} \-/)
 title = $1.downcase
 title.gsub!(/\’s/, “”) if title =~ /\’s/
 title.gsub!(/\W/, “ “) if title =~ /\W/
 title.gsub!(/omas/, “oma”) if title =~ /omas/
 title.gsub!(/tumour/, “tumor”) if title =~ /tumour/
 title.gsub!(/\n/, “ “) if title =~ /\n/
 title = title.strip
 title.gsub!(/ +/, “ “) if title =~ / +/
 next if (title !~ /[a-z]+/)
 out_text.puts title
 end
end
exit

9.1.2 � Analysis

The output is a public domain file consisting of lowercase reference titles, without
punctuation (Figure 9.2).

A public domain file of titles related to cancer genes and tumors is available at

http://www.julesberman.info/book/cancer_gene_titles.txt

We will use this file in the next section.

9.2 � Creating a List of Doublets from a PubMed Corpus

Autocoding is a specialized form of machine translation. The general idea behind
machine translation is that computers have the patience, stamina, and speed to quickly
parse through gigabytes of text, matching text terms with equivalent terms from an
external vocabulary. Human translators often scoff at the output of machine trans-
lators, noting the high rate of comical errors. An often-cited, perhaps apocryphal,

	 PubMed	 135

example of poor machine translation is the English to Russian transformation of “out
of sight, out of mind” to the Russian equivalent of “invisible idiot.”

Despite limitations, machine translation is the only way to transform gigabytes and
terabytes of text. As long as clinicians, pathologists, radiologists, nurses, and scientists
continue to type messages, reports, manuscripts, and notes into electronic documents,
we will need computers to parse and organize the resulting text.

One of the many problems in the field of machine translation is that expressions
(multiword terms) convey ideas that transcend the meanings of the individual words
in the expression. Consider the following sentence:

“The ciliary body produces aqueous humor.”

The example sentence has unambiguous meaning to anatomists, but each word in the
sentence can have many different meanings. “Ciliary” is a common medical word, and
usually refers to the action of cilia. Cilia are found throughout the respiratory and
GI tract and have an important role locomoting particulate matter. The word “body”
almost always refers to the human body. The term “ciliary body” should (but does
not) refer to the action of cilia that move human bodies from place to place. The word
“aqueous” always refers to water. Humor relates to something being funny. The term
“aqueous humor” should (but does not) relate to something that is funny by virtue of its
use of water (as in squirting someone in the face with a trick flower). Actually, “ciliary
body” and “aqueous humor” are each examples of medical doublets whose meanings
are specific and contextually constant (i.e., always mean one thing). Furthermore, the
meanings of the doublets cannot be reliably determined from the individual words
that constitute the doublet, because the individual words have several different mean-
ings. Basically, you either know the correct meaning of the doublet or you don’t.

Figure 9.2  Some of the lowercase, unpunctuated PubMed article titles in the output file.

136	 Methods in Medical Informatics﻿

Any sentence can be examined by parsing it into an array of intercalated doublets:

“The ciliary, ciliary body, body produces, produces aqueous, aqueous humor.”

The important concepts in the sentence are contained in two doublets (ciliary body
and aqueous humor). A nomenclature containing these doublets would allow us to
extract and index these two medical concepts. A nomenclature consisting of single
words might miss the contextual meaning of the doublets.

What if the term were larger than a doublet? Consider the tumor “orbital alveolar
rhabdomyosarcoma.” The individual words can be misleading. This orbital tumor is not
from outer space, and the alveolar tumor is not from the lung. The three-word term
describes a sarcoma arising from the orbit of the eye that has a morphology character-
ized by tiny spaces of a size and shape as may occur in glands (alveoli). The term “orbital
alveolar rhabdomyosarcoma” can be parsed as “orbital alveolar, alveolar rhabdomyosar-
coma.” Why is this any better than parsing the term into individual words, as in “orbital,
alveolar, rhabdomyosarcoma”? The doublets, unlike the single words, are highly specific
terms that are unlikely to occur in association with more than a few specific concepts.

What if a term is a singleton (a single word term)? Very few medical terms are
singletons. In “The developmental lineage classification and taxonomy of neoplasms”
there are about 130,000 unique terms for neoplasms. All but a few hundred of these
are multiword terms.

The text in this section is an excerpt from a public domain document (Berman J. J.,
Doublet method for very fast autocoding. BMC Med Inform Decis Mak, 4:16, 2004).

We will be using doublets in later chapters, for a variety of different informatics
projects. For all these projects, we will need to create an electronic list of the doublets
contained in a text corpus. Let us create a doublet list from the PubMed corpus pre-
pared in the previous section.

9.2.1 � Script Algorithm

	 1.	Open a text file. In this case, we will use cancer_gene_titles.txt, a list of
28,102 titles prepared in Section 9.1. Because the titles of copyrighted works
are exempted from copyright restrictions, the file belongs to the public domain.
A copy of the file can be downloaded at

http://www.julesberman.info/book/cancer_gene_titles.txt

	 2.	Parse through the file, line by line.
	 3.	For each line of the file, parse through every doublet on the line. This means,

looking at each two-word doublet consisting of each word in the line, with the
word that follows.

	 4.	As each doublet is encountered, add the doublet to a dictionary object. The dic-
tionary object will have doublets as keys and the empty string, “”, as the value

	 PubMed	 137

for each doublet. Some doublets will occur more than once in the text. A rep-
licate doublet will generate a preexisting key–value pair and will not increase
the size of the dictionary object.

	 5.	After the text is parsed, print out the keys of the dictionary object to an exter-
nal file.

Perl Script
#!/usr/local/bin/perl
open (TEXT, “c\:\\big\\cancer_gene_titles.txt”)||die”Can’t open file”;
open (OUT, “>doubs.txt”)||die”Can’t open file”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 $line =~ s/\n//;
 @hoparray = split(/ /,$line);
 for ($i=0;$i<(scalar(@hoparray)-1);$i++)
 {
 $doublet = “$hoparray[$i] $hoparray[$i+1]”;
 if ($doublet =~ /^[a-z]+ [a-z]+$/)
 {
 $doubhash{$doublet}=””;
 }
 }
 }
while ((my $key, my $value) = each(%doubhash))
 {
 print OUT “$key\n”;
 }
exit;

Python Script
#!/usr/local/bin/python
import re
import string
intext = open(“c:\\big\\cancer_gene_titles.txt”, “r”)
outtext = open(“doubs.txt”, “w”)
doubhash = {}
doublet = “”
doub_match = re.compile(r’^[a-z]+ [a-z]+$’)
for line in intext:
 line = line.strip()
 line_array = re.split(r’\s+’,line)
 line_array.append(“”)
 for i in range(len(line_array)-1):
 doublet = line_array[i] + “ “ + line_array[i+1]
 if doub_match.search(doublet):
 doubhash[doublet]=””

138	 Methods in Medical Informatics﻿

for k,v in doubhash.iteritems():
 print>>outtext, k
exit

Ruby Script

#!/usr/local/bin/ruby
intext = File.open(“c:/big/cancer_gene_titles.txt”, “r”)
outtext = File.open(“doubs.txt”, “w”)
doubhash = Hash.new(0)
line_array = Array.new(0)
while record = intext.gets
 oldword = “”
 line_array = record.chomp.strip.split(/\s+/)
 line_array.each do
 |word|
 doublet = [oldword, word].join(“ “)
 oldword = word
 next unless (doublet =~ /^[a-z]+\s[a-z]+$/)
 doubhash[doublet] = “”
 end
end
doubhash.each {|k,v| outtext.puts k }
exit

9.2.2 � Analysis

The output file, doubs.txt is 1,266,865 bytes in length and contains 77,257 doublets.
The file is available for download at

http://www.julesberman.info/book/doubs.txt

A few doublet entries from the output file are shown:

development of
favorable neuroblastoma
show evidence
carcinoma atypical
mediastinum a
localized hepatic
combining microarray
neoplastic metastasis
pathophysiology of
erbb receptor
illuminate intersection
by knock

	 PubMed	 139

ct antigen
candidate pro
hemangioma after
proper activation
lipoproteins and
of granular
the microscope

When the original text has no identifying, misspelled, profane, or otherwise objec-
tionable text, the resulting doublets can be used as “safe” for inclusion in confidential
text (see Chapter 15). In this case, we extracted doublets from a corpus consisting of
the titles of scientific articles. These titles would not be expected to contain identify-
ing or objectionable doublets.

9.3 � Downloading Gene Synonyms from PubMed

At the PubMed site, select “Gene” as your Search Engine, and enter “geneid” as your
query. PubMed will return a large set of geneid entries (230,201 in the example),
which you can download (Figure 9.3).

The records serve as a text corpus from which you can extract a gene nomenclature.

Figure 9.3  A large data set of gene names and related information can be obtained by searching in the “Gene” data-
base, and entering “geneid”) as your query term. Three entries are shown. Click on the “Send to” box and select “File.” The
download produces a file exceeding 42 MB.

140	 Methods in Medical Informatics﻿

9.4 � Downloading Protein Synonyms from PubMed

Select the “Protein” database, and enter the query (Figure 9.4):

((protein AND human) AND “Homo sapiens”[porgn:__txid9606]) AND
“Homo sapiens”[porgn:__txid9606]

In this example, the results yielded 292,180 entries. It is easy to see that the output file
can be easily parsed, and protein information can be integrated with any other data
sets that contain information on any virtually any protein.

Proteins, along with their ontologic relationships, are also available for download
from GO, the Gene Ontology project.

http://www.geneontology.org/ontology/gene_ontology_edit.obo

This file is curated and updates are frequent. Currently (2009), the file exceeds 16 MB.
The entries in the GO databases are formatted as shown in the following example:

[Term]
id: GO:0000001
name: mitochondrion inheritance
namespace: biological_process
def: “The distribution of mitochondria, including the mitochondrial genome, into

daughter cells after mitosis or meiosis, mediated by interactions between mitochon-
dria and the cytoskeleton.” [GOC:mcc, PMID:10873824, PMID:11389764]

synonym: “mitochondrial inheritance” EXACT []
is_a: GO:0048308 ! organelle inheritance
is_a: GO:0048311 ! mitochondrion distribution

Figure 9.4  The first three entries of a PubMed search. All 292,180 query results can be downloaded by clicking on the
“Send to” list box, in the upper right corner, and choosing “File.”

	 PubMed	 141

Exercises

	 1.	Our script that extracts doublets from a large PubMed corpus is imperfect.
Because it parses line by line, instead of sentence by sentence or paragraph
by paragraph, it cannot find doublets that flank the end of one line and the
beginning of the next line. Using your preferred language, write a script that
overcomes this deficit.

	 2.	Write a script that parses through a paragraph of text, extracting every sub-
sequence of words, of every possible number (i.e., the individual words in the
paragraph plus the two-word phrases in the paragraph plus the three-word
phrases and so on until you have the sequence of words that comprise the
entire paragraph.

	 3.	There are more records in the protein corpus (286,280) than in the gene corpus
(214,763). The protein corpus only includes human proteins, whereas the gene
corpus includes genes from many different organisms. Using Perl, Python, or
Ruby, write a script that parses through the geneid data file, collecting only
those genes that occur in humans. What is the ratio of the number of different
human genes compared with number of different human proteins?

	 4.	Modify the script from Section 9.2.2, to create a list of doublets, with the
number of occurrences of each doublet in the corpus preceding the doublet
term. Order the doublets in an output file by descending frequency. Inspect
the output file. Are there any generalizations you can make regarding the
potential utility of terms near the top of the file (the most frequently occur-
ring terms), the bottom of the file (terms that occur just once or twice in the
corpus), and the middle of the file (terms that occur occasionally throughout
the corpus)?

143

10
Taxonomy

Taxonomy.dat is a large, publicly available list of organisms. The file is available from
the European Bioinformatics Institute (EBI). It contains over 580,000 species:

A sample record in Taxonomy.dat
ID : 50
PARENT ID : 49
RANK: genus
GC ID : 11
SCIENTIFIC NAME : Chondromyces
SYNONYM : Polycephalum
SYNONYM : Myxobotrys
SYNONYM : Chondromyces Berkeley and Curtis 1874
SYNONYM : “Polycephalum” Kalchbrenner and Cooke 1880
SYNONYM : “Myxobotrys” Zukal 1896
MISSPELLING : Chrondromyces

The Taxonomy.dat file exceeds 100 megabytes (MB) in length.
The Taxonomy.dat file is available for public download through anonymous ftp.

ftp://ftp.ebi.ac.uk/pub/databases/taxonomy/

More information on the Taxonomy.dat file is found at

http://www.ebi.ac.uk/msd-srv/docs/dbdoc/ref_taxonomy.html

Notice that the sample entry (above) provides an ID number for the entry organism,
Chondromyces, and for its parent class. Since every organism and class has a parent,
you can write a script that reconstructs the full phylogenetic lineage for any entry
in Taxonomy.dat.

10.1 � Finding a Taxonomic Hierarchy

The script parses through Taxonomy.dat, build a hash of all the child–parent relation-
ships, then re-parse the file, building the phylogenetic lineage of each organism using
the child-parent hash that was built in the first pass.

144	 Methods in Medical Informatics﻿

10.1.1 � Script Algorithm

	 1.	Open the Taxonomy.dat file for reading.
	 2.	Records in the Taxonomy.dat file are separated by a “//” occurring at the

beginning of a line. Parse through the Taxonomy.dat file, line by line.
	 3.	Each record of taxonomy contains the name of the organism featured in the

record, the taxonomy code for the organism, and the taxonomy code for the
parent class of the organism. As each record is parsed, pass key–value pairs into
two dictionary objects. One dictionary object holds the code number of the
record’s organism as its key and the code number of the organism’s parent class
as its value. The other dictionary object holds the code number of the record’s
organism as its key and the scientific name of the organism as its hash.

	 4.	After the Taxonomy.dat file has been parsed, the two dictionary object con-
tain all the information needed to reconstruct the full taxonomic hierarchy for
any organism.

	 5.	Close and open the Taxonomy.dat file, so that every record can be parsed
once more. We will use the second parse to collect the names of organisms in
the taxonomy.

	 6.	As the Taxonomy.dat file is parsed, extract the name of the organism of record,
determine that record’s scientific name, and print it out. Use the dictionary
containing the parent code to determine the direct parent of the organism.
Use the dictionary object containing the scientific names of organisms to
determine the scientific name of the parent organism. Print the parent code
and the parent scientific name. Repeat this until the hierarchy is exhausted
(i.e., when the lineage reaches “root.”)

	 7.	Repeat this for each record in Taxonomy.dat.

Perl Script

#!/usr/local/bin/perl
open(TAXO, “taxonomy.dat”);
open(OUT, “>taxo.txt”);
$/ = “//”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TAXO>;
 $line =~ /\nID +\: *([0-9]+) *\n/;
 $id_name = $1;
 $line =~ /\nPARENT ID +\: *([0-9]+) *\n/;
 $parent_id_name = $1;
 $parenthash{$id_name} = $parent_id_name;
 $line =~ /\nSCIENTIFIC NAME +\: *([^\n]+) *\n/;
 $scientific_name = $1;
 $namehash{$id_name} = $scientific_name;
 }

	T axonomy	 145

close(TAXO);
open(TAXO, “taxonomy.dat”);
$line = “ “;
while ($line ne “”)
 {
 $line = <TAXO>;
 $getline = $line;
 $getline =~ s/\/\///o;
 print OUT $getline . “HIERARCHY\n”;
 $line =~ /\nID +\: *([0-9]+) *\n/;
 $id_name = $1;
 for(1..30)
 {
 print OUT “$namehash{$id_name}\n”;
 $id_name = $parenthash{$id_name};
 last if ($namehash{$id_name} eq “root”);
 }
 print OUT “//”;
 }
exit;

Python Script

#!/usr/local/bin/python
import re
intext = open(“taxonomy.dat”, “r”)
outtext = open(“taxo.txt”, “w”)
parenthash = {}
namehash = {}
cum_line = “”
childnumber = “”
parentnumber = “”
child_match = re.compile(‘ID\s+\:\s*(\d+)\s*’)
parent_match = re.compile(‘PARENT ID\s+\:\s*(\d+)\s*’)
name_match = re.compile(‘SCIENTIFIC NAME\s+\:\s*([^\n]+)\s*’)
end_match = re.compile(‘\/\/’)
for line in intext:
 p = end_match.search(line)
 if p:
 m = child_match.search(cum_line)
 if m:
 childnumber = m.group(1)
 x = parent_match.search(cum_line)
 if x:
 parentnumber = x.group(1)
 parenthash[childnumber] = parentnumber
 y = name_match.search(cum_line)
 if y:
 scientific_name = y.group(1)
 namehash[childnumber] = scientific_name

146	 Methods in Medical Informatics﻿

 cum_line = “”
 continue
 else:
 cum_line = cum_line + line
cum_line = “”
intext.close
intext = open(“taxonomy.dat”, “r”)
for line in intext:
 p = end_match.search(line)
 if p:
 print>>outtext, cum_line + “HIERARCHY”
 z = child_match.search(cum_line)
 if z:
 id_name = z.group(1)
 for i in range(30):
 if namehash.has_key(id_name):
 print>>outtext, namehash[id_name]
 if parenthash.has_key(id_name):
 id_name = parenthash[id_name]
 print>>outtext, “//”
 cum_line = “”
 continue
 else:
 cum_line = cum_line + line
cum_line = “”
exit

Ruby Script

#!/usr/local/bin/ruby
intext = File.open(“taxonomy.dat”, “r”)
outtext = File.open(“taxo.txt”, “w”)
parenthash = Hash.new()
namehash = Hash.new()
intext.each_line(“//”) do
 |line|
 line =~ /\nID\s+\:\s*([0-9]+)\s*\n/
 child_id = $1
 line =~ /\nPARENT ID\s+\:\s*([0-9]+)\s*\n/
 parent_id = $1
 parenthash[child_id] = parent_id
 line =~ /\nSCIENTIFIC NAME\s+\:\s*([^\n]+)\s*\n/
 scientific_name = $1
 namehash[child_id] = scientific_name
end
intext.close
intext = File.open(“taxonomy.dat”, “r”)
intext.each_line(“//”) do
 |line|
 getline = line

	T axonomy	 147

 getline.sub!(/\/\//,””)
 outtext.puts(getline, “HIERARCHY”)
 line =~ /\nID\s+\:\s*([0-9]+)\s*\n/
 id_name = $1
 (1..30).each do
 outtext.puts(namehash[id_name])
 id_name = parenthash[id_name]
 break if namehash[id_name].nil?
 end
 outtext.print(“//”)
end
exit

10.1.2 � Analysis

These scripts produce an output file, taxo.txt, that exceeds 224 MB in length. The out-
put consists of the taxonomic entries from Taxonomy.dat, along with the phylogentic
lineage for each organism.

It takes under a minute to execute these scripts on a desktop computer running at
2.5 GHz with 512 MB RAM.

Sample output for the phylogenetic hierarchy for Homo sapiens:

9606 Homo sapiens
9605 Homo
207598 Homo/Pan/Gorilla group
9604 Hominidae
314295 Hominoidea
9526 Catarrhini
314293 Simiiformes
376913 Haplorrhini
9443 Primates
314146 Euarchontoglires
9347 Eutheria
32525 Theria
40674 Mammalia
32524 Amniota
32523 Tetrapoda
8287 Sarcopterygii
117571 Euteleostomi
117570 Teleostomi
7776 Gnathostomata
7742 Vertebrata
89593 Craniata
7711 Chordata

148	 Methods in Medical Informatics﻿

33511 Deuterostomia
33316 Coelomata
33213 Bilateria
6072 Eumetazoa
33208 Metazoa
33154 Fungi/Metazoa group
2759 Eukaryota
131567 cellular organisms
1 root

A Web site that automatically generates the phylogenetic lineage of any entered spe-
cies (listed in Taxonomy.dat) is available:

http://www.julesberman.info/post.htm

10.2 � Finding the Restricted Classes of Human Infectious Pathogens

There are just a few hundred infectious organisms that produce diseases in humans. A
list of the generally accepted human pathogens is available for download at

http://www.julesberman.info/book/infect.txt

For every infectious pathogen of man, we can determine its taxonomic lineage. By
grouping pathogens by their lineage, we reach several important results.

	 1.	We can quantify which phyla are the most dangerous to man (and these would
be the small number of phyla known to contain pathogenic organisms).

	 2.	We can simplify the task of learning the biology of individual species (because
we can generalize a great number of species under the inherited properities of
a small number of biological classes).

	 3.	We can better guess the potential pathogenicity of organisms that are, for the
first time, isolated from human lesions (because organisms of the same class
are apt to cause disease through similar biological mechanisms).

	 4.	We can better guess the drugs that will be effective against a new human
pathogen (if we know the class of organisms in which it belongs).

10.2.1 � Script Algorithm

	 1.	Open Taxonomy.dat and parse through every organism record (there are 583,049
records in the version of taxonomy that I downloaded on June 5, 2009).

	 2.	As each record is parsed, contribute key–value pairs to four different diction-
ary objects:

	 a.	 The dictionary object whose keys are the standard identifiers for the
organisms or class names. Identifiers are numeric. The values will be the

	T axonomy	 149

scientific names that correspond to the numeric identifiers. The key–value
pair for us is 9606/Homo sapiens. Humans are identified by “9606” in a
wide variety of biomedical databases.

	 b.	 The reverse dictionary object whose keys are the scientific name of
the organisms or class names and whose values are the corresponding
numeric identifiers.

	 c.	 A parent dictionary object whose keys are the identifiers of the organisms
or classes and whose values are the names of the parent of the organism or
class (provided in each Taxonomy.dat record).

	 d.	 The dictionary object whose keys are the numeric id of the organism or
class and whose values are the corresponding ranks of the organism or
class. Every record in Taxonomy.dat corresponds to the name of an organ-
ism (the species name) or to the name of a class of organisms. The classes
are given scientific ranks (such as domain, kingdom, phylum, class, order,
family, genus, species).

	 3.	When the Taxonomy.dat file has been entirely parsed, and all four dictionary
objects have been built, we can reconstruct the entire lineage of any organism
by iterating over the name of the parent class for the entry, until the parental
lineage is exhausted. If we are interested in any particular ranking (the organ-
ism’s phyla in this case), we can stop the iteration loop when an ancestor with
rank “phyla” is encountered.

	 4.	Open the infect.txt file, containing the list of most infectious organisms of
humans, with one organism assigned to each line of the file.

	 5.	Parse through the infect.txt file, looping through the lineage of each organism
by determining successive parent names.

	 6.	When a parent name is encountered whose rank is “phyla,” increment the
value of a dictionary object whose keys are the names of the phyla and whose
values are the total number of times the phyla name has been encountered in
the lineages of the list of infectious organisms.

	 7.	Print the lineages of each infectious organism to an output file.
	 8.	Print the phyla dictionary object, with the value (number of occurrences of the

phyla) followed by the name of the phyla, listed from most frequently occur-
ring phyla to least frequently occurring phyla.

Perl Script

#!/usr/local/bin/perl
open(TAXO, “c\:\\ftp\\taxonomy.dat”);
$/ = “//”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TAXO>;

150	 Methods in Medical Informatics﻿

 $line =~ /\nID +\: *([0-9]+) *\n/;
 $id_name = $1;
 $line =~ /\nPARENT ID +\: *([0-9]+) *\n/;
 $parent_id_name = $1;
 $parenthash{$id_name} = $parent_id_name;
 $line =~ /\nSCIENTIFIC NAME +\: *([^\n]+) *\n/;
 $scientific_name = lc($1);
 $namehash{$id_name} = $scientific_name;
 $termhash{$scientific_name} = $id_name;
 $line =~ /\nRANK *\: *([a-z]+) *\n/;
 $rank = $1;
 $rankhash{$id_name} = $rank;
 }
close(TAXO);
open(TAXO, “c\:\\ftp\\infect.txt”);
open(OUT, “>phylum.txt”);
$/ = “\n”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TAXO>;
 $scientific_name = lc($line);
 $scientific_name =~ s/\n$//o;
 my @darwin;
 next unless (exists($termhash{$scientific_name}));
 $id_name = $termhash{$scientific_name};
 for(1..30)
 {
 push(@darwin, ucfirst($namehash{$id_name}));
 if ($rankhash{$id_name} eq “phylum”)
 {
 $term_name = $namehash{$id_name};
 $phyla_count{$term_name}++;
 last;
 }
 $id_name = $parenthash{$id_name};
 }
 @darwin = reverse(@darwin);
 print OUT join(“:”, @darwin);
 print OUT “\n”;
 }
while ((my $key, my $value) = each(%phyla_count))
 {
 if ($value > 0)
 {
 $value = “000” . $value;
 $value = substr($value, -2, 2);
 push(@count_array, “$value $key”);
 }
 }

	T axonomy	 151

@count_array = reverse(sort(@count_array));
print join(“\n”,@count_array);
exit;

Python Script

#!/usr/local/bin/python
import re, string
in_file = open(“c:/ftp/taxonomy.dat”, “r”)
parenthash = {}
namehash = {}
termhash = {}
rankhash = {}
phyla_count = {}
old_line = “\n”
for line in in_file:
 line_end = re.match(r’//’,line)
 if line_end:
 line = old_line
 id_match = re.search(r’\nID +\: *([0-9]+) *\n’, line)
 if id_match:
 id_name = id_match.group(1)
 parent_match = re.search(r’\nPARENT ID +\: *([0-9]+) *\n’, line)
 if parent_match:
 parent_id_name = parent_match.group(1)
 parenthash[id_name] = parent_id_name
 science_match = re.search(r’\nSCIENTIFIC NAME +\: *([^\n]+)
*\n’, line)
 if science_match:
 scientific_name = science_match.group(1)
 scientific_name = string.lower(scientific_name)
 namehash[id_name] = scientific_name
 termhash[scientific_name] = id_name
 rank_match = re.search(r’\nRANK *\: *([a-z]+[a-z]) *\n’, line)
 if rank_match:
 rank = rank_match.group(1)
 rankhash[id_name] = rank
 old_line = “\n”
 else:
 old_line = old_line + line
in_file.close()
in_file = open(“c:/ftp/infect.txt”, “r”)
out_file = open(“phylum.txt”, “w”)
for line in in_file:
 scientific_name = string.lower(line)
 scientific_name = string.rstrip(scientific_name)
 darwin = []
 if not (termhash.has_key(scientific_name)):
 continue
 id_name = termhash[scientific_name]

152	 Methods in Medical Informatics﻿

 for iterations in range(30):
 if namehash.has_key(id_name):
 darwin.append(namehash[id_name])
 if rankhash.has_key(id_name):
 if (rankhash[id_name] == “phylum”):
 term_name = namehash[id_name]
 if phyla_count.has_key(term_name):
 phyla_count[term_name] = int(phyla_count[term_name]) + 1
 else:
 phyla_count[term_name] = 1
 break
 id_name = parenthash[id_name]
 darwin.sort()
 darwin.reverse()
 print>>out_file, ‘:’.join(darwin)
count_array = []
for key,value in phyla_count.iteritems():
 if int(value) > 0:
 value = “000” + str(value)
 value = value[-2:]
 count_array.append(value + “ “ + key)
count_array.sort()
count_array.reverse()
print ‘\n’.join(count_array)
exit

Ruby Script

#!/usr/local/bin/ruby
in_file = File.open(“c:/ftp/taxonomy.dat”, “r”)
$/ = “//”
parenthash = {}
namehash = {}
termhash = {}
rankhash = {}
phyla_count = {}
in_file.each_line do
 |line|
 line =~ /\nID +\: *([0-9]+) *\n/;
 id_name = $1;
 line =~ /\nPARENT ID +\: *([0-9]+) *\n/
 parent_id_name = $1
 parenthash[id_name] = parent_id_name
 line =~ /\nSCIENTIFIC NAME +\: *([^\n]+) *\n/
 if $1
 scientific_name = $1.downcase
 namehash[id_name] = scientific_name
 termhash[scientific_name] = id_name
 end
 line =~ /\nRANK *\: *([a-z]+) *\n/

	T axonomy	 153

 if $1
 rank = $1;
 rankhash[id_name] = rank;
 end
end
in_file.close
in_file = File.open(“c:/ftp/infect.txt”, “r”)
out_file = File.open(“phylum.txt”, “w”)
$/ = “\n”
in_file.each_line do
 |line|
 scientific_name = line.downcase
 scientific_name.chomp!
 darwin = []
 next unless termhash.has_key? scientific_name
 id_name = termhash[scientific_name]
 (1..30).each do
 |n|
 darwin.push(namehash[id_name])
 if rankhash[id_name] == “phylum”
 term_name = namehash[id_name]
 phyla_count[term_name] = phyla_count[term_name].to_i + 1
 break
 end
 id_name = parenthash[id_name]
 end
 out_file.puts darwin.reverse.join(“:”)
end
count_array = []
phyla_count.each do
 |key,value|
 if value > 0
 value = “000” + value.to_s
 value = value.slice(-2, 2)
 count_array.push(value + “ “ + key)
 end
end
puts count_array.sort.reverse.join(“\n”)
exit

10.2.2 � Analysis

Here is the output consisting of the phyla accounting for infectious diseases in humans,
and their frequency of occurrence in the list of pathogens.

63 proteobacteria
35 actinobacteria
27 nematoda

154	 Methods in Medical Informatics﻿

22 platyhelminthes
19 ascomycota
13 firmicutes
08 apicomplexa
05 spirochaetes
04 tenericutes
02 microsporidia
02 fusobacteria
02 chlamydiae
02 bacteroidetes
01 chlorophyta

The script also produces a file, with the lineage of each organism included in the
infect.txt file, truncated at the phylum rank (phylum.txt)

A sample line from the output file, phylum.txt, is shown here:

Proteobacteria:Gammaproteobacteria:Legionellales:Legionellaceae:Legionella:
Legionella pneumophila

Not all of the lines in the file have lineages that stop at the “phylum” level. Here is
another line from phylum.txt:

:Root::Root::Root::Root::Root::Root::Root::Root::Root::Root::Cellular organis
ms:Eukaryota:Euglenozoa:Kinetoplastida:Trypanosomatidae:Leishmania:Le
ishmania:Leishmania aethiopica species complex:Leishmania aethiopica

What happened here? The script loops through the parental lineage up to 30 times, or
until an ancestor with the rank of “phyla” is encountered. Most lineages in Taxonomy.dat
have an ancestor with the rank of “phyla,” but when a lineage excludes any ancestor
with a “phyla” rank, the loop continues 30 times, producing an unattractive output.

How could we have prevented this problem? The only remedy is to go into the
Taxonomy.dat file and try to determine why the organism lacked an ancestor of rank
“phyla”. This may require expertise in the field of taxonomy. It may require the inves-
tigator to contact the curators of the Taxonomy.dat file. It may require a qualifying
remark indicating that the phyla counts are somewhat inaccurate. The moral of the
story is that medical informatics often requires biological expertise in addition to pro-
gramming skills.

Exercises

	 1.	Write a script that computes the closest common ancestor for any two selected
organisms (in the taxonomy).

	 2.	Apicomplexa is a class of Protoctists that can burrow into other organisms
and live as symbiotrophs. Not surprisingly, class Apicomplexa contains some
of the most dangerous pathogens of humans and other animals. Using Perl,

	T axonomy	 155

Python, or Ruby, write a script that collects all of the organisms that are
descendants of Class Apicomplex, and listed in Taxonomy.dat.

	 3.	The pathal.txt file contains the names of 396 organisms that cause diseases in
humans. The file is available at

http://www.julesberman.info/book/pathal.txt

Here are the first few lines of the file
Acanthamoeba castellanii
Actinobacillus actinomycetemcomitans
Actinomadura madurae
Actinomadura pelletieri
Actinomyces gerencseriae
Actinomyces israelii
Actinomyces pyogenes
Alcaligenes species
Ancylostoma duodenale
Angiostrongylus cantonensis
Angiostrongylus costaricensis
Anisakis simplex
Arcanobacterium haemolyticum, Corynebacterium haemolyticum
Arenaviridae, LCM-Lassa-virus complex Ippy
Arenaviridae, LCM-Lassa-virus complex Lassa fever
Arenaviridae, LCM-Lassa-virus complex Lujo
Arenaviridae, LCM-Lassa-virus complex Lymphocytic choriomeningitis

		 The first word in each line is the genus of the species. Using Perl, Python,
or Ruby, write a script that builds the taxonomic hierarchy for each genus
in the pathal.txt file (i.e., the hierarchy for Acanthamoeba, Actinobacillus,
Actinomadura, Actinomyces, Alcaligenes, etc.), that is found in the
Taxonomy.dat file. This project will yield all of the major and minor taxo-
nomic classes for the pathogens of humans.

	 4.	Among the angiosperms (flowering plants), the most important class divi-
sion are the monocots (Liliopsida) and the dicots (eudicotyledons). Using Perl,
Python, or Ruby, write a script that lists all of the plants that are monocots
and, in another list, all the plants that are dicots.

	 5.	Using Perl, Python, or Ruby, write a script that produces the lineage for each
organism in Taxonomy.dat, with each line consisting of the lineage list.

Hint: There are 583,049 organisms in Taxonomy.dat, and this will be the
number of lines expected in the output file.

		 An example of the one line from the output file is:
		 cellular organisms:Eukaryota:Alveolata:Apicomplexa:Aconoidasida

:Haemosporida:Plasmodium:Plasmodium (Laverania):Plasmodium
falciparum:Plasmodium falciparum FCM17/Senegal

		 The output will look something similar to Figure 10.1.
	 6.	Modify your script from Exercise 5 to include the rank of each listed ancestor

for each species.

156	 Methods in Medical Informatics﻿

	 7.	Using Perl, Python, or Ruby, write a script that determines the total num-
ber of phyla included in Taxonomy.dat. In the last section of the chapter, we
found that the 14 phyla accounted for the list of human pathogens. What does
this tell us about the likelihood that a terrestrial phyla contains any human
infectious organisms?

Figure 10.1  A partial output of the taxonomy lineage output file.

157

11
Developmental Lineage

Classification and
Taxonomy of Neoplasms

Samuel Johnson defined a lexicographer as a “harmless drudge.” The drudgery of the
lexicographer’s tasks is beyond dispute. In the domain of medical nomenclatures, how-
ever, the harmlessness of the lexicographer is far from certain. The misuse of medical
terminology can lead to medical errors, as indicated by the U.S. Joint Commission on
Accreditation of Healthcare Organization’s recent ban on certain common medical
abbreviations. This action was taken to reduce the occurrence of medication errors
that result when nonstandard abbreviations are misinterpreted. The U.S. Institute of
Medicine has advocated standardized methods for collecting codified diagnostic data
as a strategy for reducing medical errors.

Because modern nomenclatures are used to annotate medical data so that clinical
information can be merged with heterogeneous data sources (e.g., tissue bank records,
research data sets, epidemiologic databases), the duties of lexicographers have broad-
ened to include a range of informatics activities. For this reason, the modern curator
is involved in codifying terms (providing a unique identifier to a term and all its syn-
onyms) and mapping terms between different nomenclatures. In the past, nomencla-
tures were recorded on paper documents. Brevity was appreciated, and rare lesions
may have been neglected. Modern nomenclatures are stored electronically. With no
barriers to the size of nomenclatures, there is no reason to exclude any used terms.

As a sample implementation of a modern nomenclature, the Developmental
Lineage Classification and Taxonomy of Neoplasms, hereinafter called “the neoplasm
taxonomy,” was used. The neoplasm taxonomy has several properties that make it
particularly suitable for students:

	 1.	It is a free, open-access medical nomenclature.
	 2.	It has been described in the medical literature.
	 3.	New versions of the nomenclature are made available for public download by

the author at

http://www.julesberman.info/devclass.htm.

	 4.	It is an easily parsed XML document, with every term appearing as a lower-
case alphanumeric phrase.

	 5.	It is intended to be a comprehensive listing of all items in the knowledge
domain (i.e., names of neoplasms).

158	 Methods in Medical Informatics﻿

The purpose of the taxonomy is to provide a listing of all names of neoplasms, with syn-
onyms grouped under a common code number. The current version of the Neoplasm
Classification contains over 135,000 unique names of neoplasms. In constructing the
taxonomy, enormous effort was made to list every variant name for every known neo-
plasm of man. Variant names included different terms for the same concept and dif-
ferent ways of expressing an individual term (e.g., variations in word order).

11.1 � Building the Doublet Hash

The utility of the doublet method is derived in part from the observation that most
medical terms are multiword terms. In the Neoplasm Classification, all but about
250 terms are multiword terms. Unlike single words, which often have several dif-
ferent meanings, multiword medical terms, with very rare exceptions, have a single,
specific meaning.

In Chapter 9, Section 9.2, we learned that any multiword term can be constructed
by a concatenation of overlapping doublets.

For example:

Serous borderline ovarian tumor -> (“serous borderline,” “borderline ovarian,”
“ovarian tumor”)

The doublets composing the multiword terms from the neoplasm nomenclature can
be combined into a list. The list of nomenclature doublets can be used to determine
whether a fragment of text is composed from doublets included in the list.

We would like to build a persistent data object (see Chapter 5, Section 5.2) con-
taining all of the doublet terms found in the Neoplasm Classification. We will use the
doublet list for a variety of informatics projects featured in this book.

11.1.1 � Script Algorithm

	 1.	Create two external database objects.
	 2.	We will tie one external database object to a dictionary object composed of

key–value pairs, where the keys are the neoplasm terms in the Neoplasm
Classification, and the values are the empty character (“ ”).

	 3.	We will tie another external database object to a dictionary object composed
of key–value pairs, where the keys are the collection of word doublets from the
Neoplasm Classification, and the values are the empty character (“ ”).

	 4.	Open the Neoplasm Classification for parsing. The compressed file is available
for download at

http://www.julesberman.info/neoclxml.gz.

		 Make certain that the unzipped file is named neocl.xml and that your script
lists its correct subdirectory location on your computer.

	D evelopmental Lineage Classification of Neoplasms	 159

	 5.	Parse through the file, line by line.
	 6.	Neoplasm terms are flanked by angle brackets and can be extracted with a

simple regex expression.
	 7.	The neoplasm term is added as a new key to the dictionary object containing

the terms in the nomenclature.
	 8.	The term is parsed into doublets by iterating through each word in the term

and appending the next consecutive word. Add each doublet term to the dic-
tionary object containing word doublets as keys.

	 9.	After the entire nomenclature file is parsed, the two dictionary objects achieve
persistence through the external database objects to which they were tied.

Perl Script

#!/usr/local/bin/perl

use Fcntl;

use SDBM_File;

tie %doubhash, “SDBM_File”, ‘doub’, O_RDWR|O_CREAT|O_EXCL, 0644;

tie %literalhash, “SDBM_File”, ‘literal’, O_RDWR|O_CREAT|O_EXCL, 0644;

open (TEXT,”c\:\\ftp\\neocl.xml”)||die”Cannot”;

my $line = “ “;

while ($line ne “”)

 {

 $line = <TEXT>;

 $line =~ /\”\> ?(.+) ?\<\//;

 $phrase = $1;

 $phrase =~ s/\b([a-z]+oma)s/$1/g;

 $phrase =~ s/\b(tumo[u]?r)s/$1/g;

 $literalhash{$phrase} = “”;

 @hoparray = split(/ /,$phrase);

 for ($i=0;$i<(scalar(@hoparray)+1);$i++)

 {

 if (exists $doubhash{“$hoparray[$i] $hoparray[$i+1]”})

 {

 next;

 }

 if ($hoparray[$i+1] ne “”)

 {

 $doubhash{“$hoparray[$i] $hoparray[$i+1]”}= “”;

 }

 }

 }

close TEXT;

untie %doubhash;

untie %literalhash;

exit;

160	 Methods in Medical Informatics﻿

Python Script

#!/usr/local/bin/python
import anydbm, string, re
doubhash = anydbm.open(‘doub’, ‘n’)
literalhash = anydbm.open(‘literal’, ‘n’)
in_file = open(‘c:\\ftp\\neocl.xml’, “r”)
singular = re.compile(‘omas’)
england = re.compile(‘tumou?rs?’)
phrase = “”
for line in in_file:
 neoplasm_match = re.search(r’\”\> ?(.+) ?\<’, line)
 if neoplasm_match:
 phrase = neoplasm_match.group(1)
 phrase = singular.sub(“oma”,phrase)
 phrase = england.sub(“tumor”,phrase)
 literalhash[phrase] = “”
 hoparray = phrase.split()
 hoparray.append(“ “)
 for i in range(len(hoparray)-1):
 doublet = hoparray[i] + “ “ + hoparray[i + 1]
 if doubhash.has_key(doublet):
 continue
 doubhash_match = re.search(r’[a-z]+ [a-z]+’, doublet)
 if doubhash_match:
 doubhash[doublet] = “”
doubhash.close()
literalhash.close()
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘dbm’
mesh_file = File.open(‘c:/ftp/neocl.xml’, ‘r’)
doublethash = DBM.open(‘doub’)
literalhash = DBM.open(‘literal’)
hoparray = Array.new()
phrase = String.new()
mesh_file.each_line do
 |line|
 line =~ /\”\> ?(.+) ?\<\//
 phrase = $1
 phrase.sub!(/\b([a-z]+oma)s/,’\1’) if phrase =~ /\b([a-z]+oma)s/
 phrase.sub!(/\b(tumou?r)s/,’\1’) if phrase =~ /\b(tumou?r)s/
 literalhash[phrase] = “”
 if phrase =~ /[a-z]+ [a-z]+/
 hoparray = phrase.split
 else
 next

	D evelopmental Lineage Classification of Neoplasms	 161

 end
 hoparray.push(“ “)
 hoparray.each_index do
 |i|
 next if doublethash.has_key? “hoparray[i] $hoparray[i+1]”
 if hoparray[i+1] =~ /[a-z]/
 doublethash[hoparray[i] + “ “ + hoparray[i+1]] = “”
 end
 end
end
doublethash.close
literalhash.close
exit

11.1.2 � Analysis

We now have persistent data objects in external database files (i.e., the terms object
and the doublets object) that we can use in the next section.

11.2 � Scanning the Literature for Candidate Terms

Here is a simple method for extracting candidate new terms from any large corpus
of text.

The method depends on the empirical observation that terms in a nomenclature are com-
posed almost exclusively of doublets found in other terms in the same nomenclature.

The current version of the neoplasm nomenclature contains 135,000 unique terms.
Of these terms, 126,756 terms are classified terms and are composed of at least two
words (i.e., are doublets or greater in length). Of these 126,756 terms, all but 6,308
(4.97%) are composed entirely of doublets extracted from other terms in the reference
nomenclature. This means that 95% of the classified terms from the nomenclature are
formed entirely of doublet terms found in other terms from the same nomenclature.

The method compares connected word doublets in a medical text against a list of
word doublets found in a nomenclature. Text phrases composed of sequences of word
doublets found in an existing nomenclature are candidate new nomenclature terms.
This general method can be used with any text and any existing nomenclature. This
method permits curators to continually enhance their nomenclatures with new terms,
an essential activity needed to ensure the proper coding and annotation of biomedi-
cal data.

11.2.1 � Script Algorithm

The following algorithm parses through text, extracting candidate term phrases:

162	 Methods in Medical Informatics﻿

	 1.	Collect all the doublets that occur in the entire nomenclature (i.e., use the
database object created in Section 11.1).

	 2.	Parse text (in this case individual abstract titles) into an ordered array of
overlapping doublets (as per the example shown for the text string, “serous
borderline ovarian tumor”).

			 The text file that we use is cancer_gene_titles.txt (1,752,432 bytes), created
in Chapter 9, Section 9.1. It contains 28,102 titles related to the topic of genes
and cancer or tumors. It is available for download at

http://www.julesberman.info/book/cancer_gene_titles.txt.

			 Alternatively, you can create your own file of titles by downloading a
PubMed search on a topic of your own interest and collecting the titles, using
the script provided in the previous section.

	 3.	Compare each consecutive text doublet against the array of doublets from
the nomenclature to determine whether the doublet exists somewhere in the
nomenclature.

	 4.	If the doublet from the text does not exist in the nomenclature, it can be
deleted. If it exists in the nomenclature, it is concatenated with the following
doublet if the following doublet exists in the nomenclature. Otherwise, it is
deleted. This process continues, concatenating doublets that exist somewhere
in the nomenclature. Extraneous leading words (the, in, of, with, and) and
trailer words (the, and, with, from, a) are automatically deleted from the final
concatenated sequence. Final concatenated sequences of two or greater con-
secutive doublets that match to doublets from the nomenclature are saved as
candidate terms.

Perl Script

#!/usr/local/bin/perl
use Fcntl;
use SDBM_File;
tie %doubhash, “SDBM_File”, ‘doub’, O_RD, 0644;
tie %literalhash, “SDBM_File”, ‘literal’, O_RD, 0644;
open (TEXT, “c\:\\big\\cancer_gene_titles.txt”)||die”cannot”;
$line = “ “;
$count = 0;
while ($line ne “”)
 {
 $bigline = $line = <TEXT>;
 $bigline =~ s/\n//;
 $bigline =~ s/\b([a-z]+oma)s/$1/g;
 $bigline =~ s/\b(tumo[u]?r)s/$1/g;
 $englishline = “”;
 @hoparray = split(/ /,$bigline);
 for ($i=0;$i<(scalar(@hoparray));$i++)

	D evelopmental Lineage Classification of Neoplasms	 163

 {
 $doublet = “$hoparray[$i] $hoparray[$i+1]”;
 if (exists $doubhash{$doublet})
 {
 if ($englishline ne “”)
 {
 $englishline = $englishline . “ $hoparray[$i+1]”;
 }
 else
 {
 $englishline = $doublet;
 }
 }
 else
 {
 if ($englishline ne “”)
 {
 $englishline =~ s/^the //o;
 $englishline =~ s/ the$//o;
 $englishline =~ s/^in //o;
 $englishline =~ s/ in$//o;
 $englishline =~ s/^of //o;
 $englishline =~ s/ of$//o;
 $englishline =~ s/^and //o;
 $englishline =~ s/ and$//o;
 $englishline =~ s/^with //o;
 $englishline =~ s/ with$//o;
 $englishline =~ s/^from //o;
 $englishline =~ s/ from$//o;
 $englishline =~ s/ a$//o;
 $englishline =~ s/^a //o;
 next if (exists $literalhash{$englishline});
 next if (exists $newhash{$englishline});
 next if ($englishline !~ / [a-z]+ /);
 $count++;
 print $count . “ “ . $englishline . “\n”;
 $newhash{$englishline} = “”;
 }
 }
 }
 }
untie %doubhash;
untie %literalhash;
exit;

Python Script

#!/usr/local/bin/python
import anydbm, string, re
doubhash = anydbm.open(‘doub’)

164	 Methods in Medical Informatics﻿

literalhash = anydbm.open(‘literal’)
newhash = {}
in_file = open(‘c:\\big\\cancer_gene_titles.txt’, ‘r’)
line = “ “
count = 0
singular = re.compile(‘omas’)
england = re.compile(‘tumou?rs?’)
for line in in_file:
 bigline = line.rstrip(“ \n”)
 bigline = singular.sub(“oma”, bigline)
 bigline = england.sub(“tumor”, bigline)
 englishline = “”
 hoparray = bigline.split()
 hoparray.append(“ “)
 for i in range(len(hoparray) - 1):
 doublet = hoparray[i] + “ “ + hoparray[i + 1]
 if doubhash.has_key(doublet):
 if (englishline != “”):
 englishline = englishline + “ “ + hoparray[i + 1]
 else:
 englishline = doublet
 else:
 if englishline != “”:
 englishline = englishline.strip()
 englishline = re.sub(r’^the ‘, “”, englishline)
 englishline = re.sub(r’^in ‘, “”, englishline)
 englishline = re.sub(r’^of ‘, “”, englishline)
 englishline = re.sub(r’^and ‘, “”, englishline)
 englishline = re.sub(r’^with ‘, “”, englishline)
 englishline = re.sub(r’^from ‘, “”, englishline)
 englishline = re.sub(r’^ a’, “”, englishline)
 englishline = re.sub(r’ the$’, “”, englishline)
 englishline = re.sub(r’ in$’, “”, englishline)
 englishline = re.sub(r’ of$’, “”, englishline)
 englishline = re.sub(r’ and$’, “”, englishline)
 englishline = re.sub(r’ with$’, “”, englishline)
 englishline = re.sub(r’ from$’, “”, englishline)
 englishline = re.sub(r’ a$’, “”, englishline)
 if literalhash.has_key(englishline):
 continue
 if newhash.has_key(englishline):
 continue
 phrase_match = re.search(r’ [a-z]+ ‘, englishline)
 if phrase_match:
 count = count + 1
 print str(count) + “ “ + englishline
 newhash[englishline] = “”
doubhash.close()

	D evelopmental Lineage Classification of Neoplasms	 165

literalhash.close()
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘dbm’
in_file = File.open(‘c:/big/cancer_gene_titles.txt’, ‘r’)
doublethash = DBM.open(‘doub’)
literalhash = DBM.open(‘literal’)
newhash = Hash.new()
hoparray = Array.new()
phrase = String.new()
count = 0
in_file.each_line do
 |line|
 line.chomp!
 line.sub!(/\b([a-z]+oma)s/,’\1’) if line =~ /\b([a-z]+oma)s/
 line.sub!(/\b(tumou?r)s/,’\1’) if line =~ /\b(tumou?r)s/
 englishline = String.new()
 hoparray = line.split
 hoparray.push(“ “)
 hoparray.each_index do
 |i|
 next unless hoparray[i+1]
 if doublethash.has_key? hoparray[i] + “ “ + hoparray[i+1]
 if englishline =~ /[a-z]/
 englishline = englishline + “ “ + hoparray[i+1]
 else
 englishline = hoparray[i] + “ “ + hoparray[i+1]
 end
 else
 if englishline
 englishline.strip!
 englishline.sub!(/^the /, “”) if englishline =~ /^the /
 englishline.sub!(/ the$/, “”) if englishline =~ / the$/
 englishline.sub!(/^in /, “”) if englishline =~ /^in /
 englishline.sub!(/ in$/, “”) if englishline =~ / in$/
 englishline.sub!(/^of /, “”) if englishline =~ /^of /
 englishline.sub!(/ of$/, “”) if englishline =~ / of$/
 englishline.sub!(/^and /, “”) if englishline =~ /^and /
 englishline.sub!(/ and$/, “”) if englishline =~ / and$/
 englishline.sub!(/^with /, “”) if englishline =~ /^with /
 englishline.sub!(/ with$/, “”) if englishline =~ / with$/
 englishline.sub!(/^from /, “”) if englishline =~ /^from /
 englishline.sub!(/ from$/, “”) if englishline =~ / from$/
 englishline.sub!(/^a /, “”) if englishline =~ /^a /
 englishline.sub!(/ a$/, “”) if englishline =~ / a$/
 next if literalhash.has_key? englishline

166	 Methods in Medical Informatics﻿

 next if newhash.has_key? englishline
 next if englishline !~ / [a-z]+ /
 count = count + 1
 puts count.to_s + “ “ + englishline
 newhash[englishline] = “”
 end
 end
 end
end
in_file.close
doublethash.close
literalhash.close
exit

11.2.2 � Analysis

Parsing the file cancer_genes_titles.txt, we found about 4,100 new candidate neo-
plasm terms. Here are some final terms from the output list:

intraneural perineurioma of the oral mucosa
due to promyelocytic leukemia
spinal cord primary extragonadal
spinal cord primary extragonadal sac tumor
epithelioid and spindle cell haemangioma of bone
cervical malformation neurofibromatosis type 1
osteoblastoma of the scapula
ameloblastic carcinoma in
pancreatic serous cystadenoma endocrine tumor
extrarenal rhabdoid tumor of the cervical spine
diffuse type cell tumor of the subcutaneous
ewing sarcoma neuroectodermal tumor of the kidney
low grade fibromyxoid sarcoma of the colon
inflammatory myofibroblastic tumor of the tongue
superficial angiomyxoma the floor of the mouth
young adult with acute lymphoblastic leukemia
burkitt lymphoma in pediatric
peripheral primitive neuroectodermal tumor of the maxilla
anaplastic large cell lymphoma of bone

A cursory examination of this small portion of the 4077 returned candidate terms
indicates that some of the terms seem to be legitimate names of neoplasms, which
should be added to our neoplasm vocabulary:

intraneural perineurioma of the oral mucosa
epithelioid and spindle cell haemangioma of bone

	D evelopmental Lineage Classification of Neoplasms	 167

osteoblastoma of the scapula
pancreatic serous cystadenoma endocrine tumor
extrarenal rhabdoid tumor of the cervical spine
low grade fibromyxoid sarcoma of the colon
inflammatory myofibroblastic tumor of the tongue
peripheral primitive neuroectodermal tumor of the maxilla
anaplastic large cell lymphoma of bone

The majority of terms are phrases that happen to consist of doublets from our nomen-
clature, but do not rise to the level of a new neoplasm term:

due to promyelocytic leukemia
spinal cord primary extragonadal
spinal cord primary extragonadal sac tumor
cervical malformation neurofibromatosis type 1
ameloblastic carcinoma in
diffuse type cell tumor of the subcutaneous
ewing sarcoma neuroectodermal tumor of the kidney
young adult with acute lymphoblastic leukemia
burkitt lymphoma in pediatric

There was one term that seems to be a poorly worded representation of a proper neo-
plasm’s name:

superficial angiomyxoma the floor of the mouth

It should be

superficial angiomyxoma of the floor of the mouth

The original file of abstracts that contained the words cancer and gene exceeded
213 megabytes (MB) in length. The perfect curator would have read each abstract,
writing down the names of neoplasms that were not contained in the nomenclature.
The modern curator had the option of extracting the titles from the articles, and pars-
ing through the titles, extracting about 4,100 candidate terms, and then examining
the candidate terms to find likely new terms for the nomenclature. The semiautomated
process takes about one-half hour and provides hundreds of new terms that can be
added to the nomenclature.

11.3 � Adding Terms to the Neoplasm Classification

One of the most common tasks in informatics is the preparation of a subtraction list
(items present in one list and absent from another).

168	 Methods in Medical Informatics﻿

Curators need to prepare a subtraction list whenever they want to add terms to a
preexisting nomenclature. The list of candidate terms must be checked against the list
of terms found in the nomenclature, with removal of redundant terms in the new list.

We can use the Neoplasm Classification as a sample nomenclature. We will use the
file neocl.lst (available at http://www.julesberman.info/book/neocl/lst), which con-
tains the following list of candidate terms:

prostate cancer
adenocarcinoma of prostate
spiradenocylindroma of the kidney
spiradenocylindroma
pleomorphic myxoid liposarcoma
spindle cell myxoid liposarcoma
matrix producing carcinoma of breast
matrix producing carcinoma of the breast
dini of breast
precancer flat epithelial atypia
matrix-producing carcinoma of the breast
early onset cancer
early-onset neoplasm
early-onset neoplasia
carcinoma of the bellini collecting duct
adenocarcinoma of the prostate

We need to know which terms, among the candidate terms, are already included in
the Neoplasm Classification.

11.3.1 � Script Algorithm

	 1.	Open the Neoplasm Classification file.
	 2.	Parse through the file, collecting every code/term pair in the Neoplasm

Classification, and assigning each pair as the key and value (respectively) for a
dictionary object.

	 3.	Open the file containing the list of candidate terms to be added to the
Neoplasm Classification.

	 4.	Parse each term from the list, checking to see if it is already contained as a key
in the dictionary object.

	 5.	For each term, if the term does not already exist as a key in the dictionary
object, print it to an external file.

	 6.	After the script executes, you have a new file containing terms that can be
added to the Neoplasm Classification.

	D evelopmental Lineage Classification of Neoplasms	 169

Perl Script

#!/usr/local/bin/perl
open (TEXT,”c\:\\ftp\\neocl.xml”)||die”Cannot”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 next if ($line !~ /C[0-9]{7}/);
 $line =~ /\”\> ?(.+) ?\<\//;
 $phrase = $1;
 $doubhash{$phrase}=””;
 }
close TEXT;
open (TEXT,”c\:\\ftp\\neocl.lst”)||die”Cannot”;
open (OUT,”>new.out”)||die”Cannot”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 $line =~ s/\n//o;
 next if ($line eq “”);
 if (exists $doubhash{$line})
 {
 print “$line already exists\n”;
 }
 else
 {
 print OUT “$line\n”;
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import re, string
vocab_in = open(“c:\\ftp\\neocl.xml”, “r”)
doub_hash = {}
for line in vocab_in:
 code_match = re.search(r’C[0-9]{7}’, line)
 if not code_match:
 continue
 line_match = re.search(r’\”\> ?(.+) ?\<\/’, line)
 if line_match:
 phrase = line_match.group(1)
 doub_hash[phrase] = “”
vocab_in.close()

170	 Methods in Medical Informatics﻿

candidate_file = open(“c:\\ftp\\neocl.lst”, “r”)
out_file = open(“new.out”, “w”)
for line in candidate_file:
 line = re.sub(r’\n’,””, line)
 if (line == “”):
 continue
 if doub_hash.has_key(line):
 print line + “ already exists”
 else:
 print>>out_file, line
exit

Ruby Script

#!/usr/local/bin/ruby
vocab_in = File.open(“c:/ftp/neocl.xml”, “r”)
doub_hash = {}
vocab_in.each_line do
 |line|
 next if (line !~ /C[0-9]{7}/)
 line =~ /\”\> ?(.+) ?\<\//
 phrase = $1
 doub_hash[phrase] = “”
end
vocab_in.close
candidate_file = File.open(“c:/ftp/neocl.lst”, “r”)
out_file = File.open(“new.out”, “w”)
candidate_file.each_line do
 |line|
 line.sub!(/\n/,””)
 next if (line == “”)
 if doub_hash.has_key? line
 puts line + “ already exists”
 else
 out_file.puts line
 end
end
exit

11.3.2 � Analysis

The script splits the output into the set of terms already contained in the Neoplasm
Classification, displayed on the computer monitor:

prostate cancer already exists
adenocarcinoma of prostate already exists
spiradenocylindroma of the kidney already exists
matrix producing carcinoma of breast already exists

	D evelopmental Lineage Classification of Neoplasms	 171

matrix producing carcinoma of the breast already exists
matrix-producing carcinoma of the breast already exists
adenocarcinoma of the prostate already exists

And an output file, containing the list of terms that are not already included in the
Neoplasm Classification:

spiradenocylindroma
pleomorphic myxoid liposarcoma
spindle cell myxoid liposarcoma
dini of breast
precancer-flat epithelial atypia
early onset cancer
early-onset neoplasm
early-onset neoplasia
carcinoma of the bellini collecting duct

11.4 � Determining the Lineage of Every Neoplasm Concept

Biological classifications drive down the complexity of nomenclatures by assigning
every term to a class of objects that contain similar features, inherited from a lineage
of ancestral objects. We have seen, in the prior chapter, that knowing the lineages of
organisms can lead to treatments for newly encountered pathogens. Similarly, know-
ing the lineage of neoplasms may help us find the tumors most likely to respond, as
a biological class, to molecular-targeted cancer treatments. The importance of tumor
lineage is one of the important concepts discussed in my book, Neoplasms: Principles of
Development and Diversity (Jones & Bartlett Publishers, 2009).

The Neoplasm Classification contains about 135,000 names of neoplasms, orga-
nized under about 6,000 concepts. A concept is the collection of synonyms for a spe-
cific type of neoplasm. Every neoplasm term and concept can be assigned a unique
position within a simple class hierarchy, consisting of several dozen ancestral classes
(Figure 11.1).

The Neoplasm Classification is packaged as an XML (eXtensible Markup Language)
file. The terms in the nomenclature are marked up with tags that provide each term
with a code number describing each term. Each term in the Neoplasm Classification
is nested under another element that names a class of neoplasms. Each named class of
neoplasms is nested under elements for the father of the class, and this nesting contin-
ues up the classification hierarchy.

XML is a markup language created for the Internet, and data that is delivered
in XML files permits us to search for related information located anywhere in the
Internet. In Chapter 18, we will be describing XML in much more detail. For now,
we will take advantage of language-specific modules designed to parse XML, and we

172	 Methods in Medical Informatics﻿

will determine the full neoplasm lineage for every term contained in the Neoplasm
Classification. If you are unfamiliar with XML, you can skip this section of the chap-
ter and come back to it after reading Chapter 18.

11.4.1 � Script Algorithm

	 1.	Call the XML parser module into your script.
	 2.	Define subroutines that process XML information for specific events that

occur as the XML file is parsed. These events happen whenever the script
encounters the start of an XML element; the script encounters the end of an
XML element; and the script encounters the data described by the XML tag.

	 3.	Provide the parser object with the name of the XML file that you would like
to parse. In this case, it is the neocl.xml file.

	 4.	When an element is encountered, the parser passes the name of the element
and any attributes within the element (in this case, the code number for the
term) to a list of variables. When the data contents of the element are encoun-
tered, the parser passes the data to a variable. In this case, the data associated
with an element is the neoplasm term.

	 5.	As the parser works its way down the hierarchy, it concatenates the names of
the ancestors into a string. When it finally encounters the lowest element in

Neural Tube

Odontogenic

Endoderm/Ectoderm
Primitive

Endoderm/Ectoderm
Endocrine

Parenchymal

SurfaceMelanocytic
Neural Crest

Primitive

Neural Crest
Endocrine

Peripheral
Nervous System

Ectomesenchymal

Differentiated

Primordial

Mesoderm
Primitive

Subcoelomic

Coelomic Mesenchymal

Molar

Trophoblast

Neuroectoderm
Primitive

Trophectoderm
Mesoderm

Germ Cell

Neoplasm

Neural Crest

Neuroectoderm

Endoderm/
Ectoderm

Figure 11.1  Schematic drawing of the class structure of the Neoplasm Classification.

	D evelopmental Lineage Classification of Neoplasms	 173

the hierarchy, it concatenates the data (the name of the term), and the attribute
(the code for the term), appends the hierarchical list of elements (ancestors) to
the string, and prints it to an external file. When it backs up through the hier-
archy (when it moves through different class lineages), it truncates the previ-
ously built string of concatenated classes to exclude nonancestral classes.

Perl Script

#!/usr/local/bin/perl
open (STDOUT, “>neoself”)||die”Cannot”;
my ($text, $lastname, $name, $count);
use XML::Parser;
my $parser = XML::Parser->new(Handlers => {
 Start => \&handle_elem_start,
 End => \&handle_elem_end,
 Char => \&handle_char_data,
 });
$file = “neocl.xml”;
$parser -> parsefile($file);
sub handle_elem_start
 {
 ($expat, $name, %atts) = @_;
 if (exists $atts{“nci-code”})
 {
 $code = $atts{“nci-code”};
 }
 else
 {
 $lastname = $name . “\>” . $lastname;
 }
 }
sub handle_elem_end
 {
 ($expat, $name) = @_;
 if ($name eq “name”)
 {
 $count++;
 $text =~ s/\n//g;
 print $count . “\|” . $text . “\|” . $code . “\|” . $lastname .
“\n”;
 $text = “”;
 }
 $lastname =~ s/${name}\>//g;
 }
sub handle_char_data
 {
 ($expat, $characters) = @_;
 $text = $text . $characters;

174	 Methods in Medical Informatics﻿

 }
exit;

Python Script

#!/usr/local/bin/python
import xml.parsers.expat
import re
parsefile = open(‘c:\\ftp\\neocl.xml’,’r’)
filestring = parsefile.read()
lastname = “”
code = “”
count = 0
text = “”
def start_element(name, attrs):
 global lastname
 global code
 if attrs.has_key(“nci-code”):
 code = attrs[“nci-code”]
 else:
 lastname = name + “>” + lastname
def end_element(name):
 global count
 global code
 global text
 global lastname
 if name == “name”:
 count = count + 1
 print str(count) + “|” + text + “|” + code + “|” + lastname +
“\n”
 text = “”
 lastname = re.sub(name + r’>’,’’, lastname)
def char_data(data):
 global text
 text = repr(data)
 textmatch = re.search(r’\’(.+)\’’,text)
 if textmatch:
 text = textmatch.group(1)
p = xml.parsers.expat.ParserCreate()
p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data
p.Parse(filestring)
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘rexml/document’
require ‘rexml/streamlistener’
include REXML

	D evelopmental Lineage Classification of Neoplasms	 175

class Listener
 include StreamListener
 @@out = File.open(“neoruby.txt”,”w”)
 @@count = 0
 @lastname = “”
 @neoplasm_name = “”
 @code = “”
 def tag_start(name, attributes)
 @code = “#{attributes}”
 @code = $& if (@code =~ /[0-9]{7}/)
 @lastname = “#{name}\>#{@lastname}” if (@code !~ /[0-9]{7}/)
 end
 def text(text)
 @neoplasm_name = text
 end
 def tag_end(name)
 @@count = @@count+1
 @@out.puts(“#{@@count}\|#{@neoplasm_name}\|#{@code}\|#{@
lastname}”) if (name =~/name/)
 @lastname.gsub!(/#{name}\>/, “”) #if (@lastname =~ /#{name}\>/)
 end
end
listener = Listener.new
parser = Parsers::StreamParser.new(File.new(“neocl.xml”), listener)
parser.parse
exit

11.4.2 � Analysis

The neocl.xml file is over 10 MB in length. It takes several seconds, on most comput-
ers (with 2–3 GHz CPUs) to run this script, producing an output file that exceeds
17 MB in length. Here are a few lines of the output file:

1|teratoma|C3403000|totipotent_or_multipotent_differentiating>
primitive_differentiating>primitive>embryonic>neoplasms>
tumor_classification>

2|embryonal ca|C3752000|totipotent_or_multipotent_differentiating>
primitive_differentiating>primitive>embryonic>neoplasms>
tumor_classification>

3|embryonal cancer|C3752000|totipotent_or_multipotent_differentiating>
primitive_differentiating>primitive>embryonic>neoplasms>
tumor_classification>

4|embryonal carcinoma|C3752000|totipotent_or_multipotent_differentiating>
primitive_differentiating>primitive>embryonic>neoplasms>
tumor_classification>

176	 Methods in Medical Informatics﻿

Because we know the structure of the Neoplasm Classification file, we could have
written a parsing script without using an external XML parser, if we had so chosen.
The script would have been similar to the script that we used to find the lineage of
organisms from the Taxonomy.dat file (Chapter 10). However, because the neocl.xml
file is created as an XML file, it is better to use the readily available XML parsing
module. Doing so shortens our script and, if you do much work with XML, is easy
to read. Once you have learned to parse XML files, you will be able to write scripts
that collect, transform, and analyze data from multiple, different XML files, collected
from anywhere on the Internet.

Exercises

	 1.	Parse through the Neoplasms Classification to determine the total number of
concepts and terms in the nomenclature. Neoplasm Classification in XML
format can be obtained at

http://www.julesberman.info/neoclxml.gz.

	 2.	Using the Neoplasms Classification in XML format, verify that no term in
the nomenclature occurs more than once in the nomenclature (i.e., verify
term uniqueness).

	 3.	Using the Neoplasms Classification in XML format, verify that no concept
in the nomenclature occurs more than once in the nomenclature (i.e., con-
cept uniqueness).

	 4.	It is an interesting fact that every proper term (a term composed of one or
more words) in the Neoplasm Classification contains an “o”, an “a”, and an
“e”. The only entries in the Neoplasm Classification that lack one or more of
these three letters are nonword abbreviations. These abbreviations are mmgct,
mgct, itgcn, itgcnu, igcnu, xp, scc, cis, bcc, sil, hsil, hgsil, dcis, ipmt, hlrcc,
bnct, ncmh, dsrct, gist, ptgc, cgl, cml, sctcl, idl, lphd, nlphd, dlbcl, upsc, cin,
sspc, jgct, gtni, mnti, mpnst, pstt, punlmp, vin. In Perl, Python, or Ruby,
write a script that tests every term in the Neoplasm Classification, ensuring
that it contains an “o”, an “a”, and an “e”.

	 5.	In Chapter 8, we developed a script that extracted, from OMIM, all
records that contained a specific “Oncology” section, listing the neoplas-
tic conditions associated with a specific genetic disorder. Many records in
OMIM are associated with neoplastic terms but lack an “Oncology” sec-
tion. Using Perl, Python, or Ruby, write a new script that extracts all of
the OMIM records that contain any of the neoplastic terms contained in
the Neoplasm Classification.

	 6.	Using Perl, Python, or Ruby, modify the script from Exercise 5 to extract the
OMIM record number (of each OMIM record that containing a neoplasm term)
followed by the list of neoplastic terms that are present in the OMIM record.

177

12
U.S. Census Files

The Census 2000 Modified Race Data Summary File (MR(31)-CO.txt) contains
population data for U.S. states and counties and Puerto Rico. Data is stratified for 31
categorized races and ethnicities (Figure 12.1).

The MR(31)-CO.txt is a public domain file, about 65 megabytes (MB) in length
(Figure 12.2), available from the U.S. Census Bureau at:

http://www.census.gov/popest/archives/files/MR-CO.txt

A Web page providing some background information on this file is available at

http://www.census.gov/popest/archives/files/MRSF-01-US1.html

And a data dictionary for the file is available at

http://www.census.gov/popest/archives/files/MRSF-01-US1.pdf

12.1 � Total Population of the United States

One of the easiest uses of the MR(31)-CO.txt file is to count the population of the
United States, or of any collection of states, or counties within states. The file lists
population data for states, stratified by age, and then breaks down the populations of
states by their counties (Figure 12.3).

The dictionary key for the first 8 bytes of each record is shown in Figure 12.4.
If we look at just the first record (top line of Figure 12.3), we see that the record

applies to state “01”, which happens to be Alabama, that it applies to the entire state
(i.e., is not restricted to a county), and that the data applies to age group “1” (infants
under 1 year of age). Bytes 9 and above contain population counts for 31 races and
ethnicities. Line 20 marks the beginning of records for specific counties.

12.1.1 � Script Algorithm

	 1.	Open the 65+ MB MR(31)-CO.txt file.
	 2.	Parse through each line (record) of the file, ignoring lines that contain county

populations. (Note: The state population records lack a county code in bytes 3
to 5, and thus byte 3 is a space in the noncounty records.)

178	 Methods in Medical Informatics﻿

1. White alone
2. Black or African American alone
3. American Indian and Alaska Native alone
4. Asian alone
5. Native Hawaiian and Other Pacific Islander alone
6. White and Black or African American
7. White and American Indian and Alaska Native
8. White and Asian
9. White and Native Hawaiian and Other Pacific Islander

10. Black or African American and American Indian and Alaska Native
11. Black or African American and Asian
12. Black or African American and Native Hawaiian and Other Pacific Islander
13. American Indian and Alaska Native and Asian
14. American Indian and Alaska Native and Native Hawaiian and Other Pacific Islander
15. Asian and Native Hawaiian and Other Pacific Islander
16. White and Black or African American and American Indian and Alaska Native
17. White and Black or African American and Asian
18. White and Black or African American and Native Hawaiian and Other Pacific Islander
19. White and American Indian and Alaska Native and Asian
20. White and American Indian and Alaska Native and Native Hawaiian and Other Pacific

Islander
21. White and Asian and Native Hawaiian and Other Pacific Islander
22. Black or African American and American Indian and Alaska Native and Asian
23. Black or African American and American Indian and Alaska Native and Asian and

Native Hawaiian and Other Pacific Islander
24. Black or African American and Asian and Native Hawaiian and Other Pacific Islander
25. American Indian and Alaska Native and Asian and Native Hawaiian and Other Pacific

Islander
26. White and Black or African American and American Indian and Alaska Native and

Asian
27. White and Black or African American and American Indian and Alaska Native and

Native Hawaiian and Other Pacific Islander
28. White and Black or African American and Asian and Native Hawaiian and Other

Pacific Islander
29. White and American Indian and Alaska Native and Asian and Native Hawaiian and

Other Pacific Islander
30. Black or African American and American Indian and Alaska Native and Asian and

Native Hawaiian and Other Pacific Islander
31. White and Black or African American and American Indian and Alaska Native and

Asian and Native Hawaiian and Other Pacific Islander

Figure 12.1  Ethnicity data dictionary for Census 2000 Modified Race Data Summary File.

	 U.S. Census Files	 179

	 3.	Extract bytes 9 to 993 of each record.
	 4.	Add all the number entries within the byte 9 to 993 character string.
	 5.	Add the sum to the population tally.
	 6.	After the entire file is parsed, the population tally represents the total popula-

tion of states and Puerto Rico.
	 7.	Print the final tally to the monitor.

Figure 12.2  Download Page for the Census 2000 Modified Race Data Summary File.

Figure 12.3  The first few records in the Census 2000 Modified Race Data Summary File.

180	 Methods in Medical Informatics﻿

Perl Script

#!/usr/local/bin/perl
open (TEXT, “c\:\\big\\mr\(31\)\-co\.txt”)||die”cannot”;
$line = “ “;
$total = 0;
while ($line ne “”)
 {
 $line = <TEXT>;
 next if (substr($line,2,1) !~ / /);
 $amount = substr($line, 8, 992);
 @lineitems = split(/ +/,$amount);
 $subtotal = 0;
 foreach $item (@lineitems)
 {
 $subtotal = $subtotal + $item;
 }

ASCII FILE LAYOUT

Character Description
1–2 FIPS state code

3–5 FIPS county code

6 Blank

7–8 Five–year age groups

  1 = age 0
  2 = ages 1–4
  3 = ages 5–9
  4 = ages 10–14
  5 = ages 15–19
  6 = ages 20–24
  7 = ages 25–29
  8 = ages 30–34
  9 = ages 35–39
10 = ages 40–44
11 = ages 45–49
12 = ages 50–54
13 = ages 55–59
14 = ages 60–64
15 = ages 65–69
16 = ages 70–74
17 = ages 75–79
18 = ages 80–84
19 = ages 85+

Figure 12.4  Data dictionary, from file MRSF-01-US1.pdf, covering the first 8 bytes of the Census 2000 Modified Race
Data Summary File.

	 U.S. Census Files	 181

 $total = $total + $subtotal;
 }
print “The total US population and Puerto Rico is $total\n”;
exit;

Python Script

#!/usr/local/bin/python
import re, string
from decimal import Decimal
census_file = open(‘c:\\big\\mr(31)-co.txt’, “r”)
total = 0
for line in census_file:
 if line[2:3] == “ “:
 amount = line[8:1000]
 lineitems = re.split(r’ +’,amount)
 for item in lineitems:
 if item.isdigit():
 total = total + int(item)
print “The total US population and Puerto Rico is “ + str(total)
exit

Ruby Script

#!/usr/local/bin/ruby
census_file = File.open(“c:\\big\\mr\(31\)\-co\.txt”)
total = 0
census_file.each do
 |line|
 next if (line.slice(2,1) !~ / /)
 lineitems = line.slice(8,992).split(/ +/)
 subtotal = 0
 lineitems.each {|item| subtotal = subtotal + item.to_i}
 total = total + subtotal
end
puts “The total US population and Puerto Rico is #{total}”;
exit

12.1.2 � Analysis

The script produces the following output:

“The total US population and Puerto Rico is 285230516”

With a slight modification of the script, you can determine the year 2000 population
for any state or county, by gender, age, or ethnic group. These data are used frequently
to represent medical data as a percentage of the year 2000 subpopulations or to adjust
rate data collected in any year against the standard year 2000 population.

182	 Methods in Medical Informatics﻿

12.2 � Stratified Distribution for the U.S. Census

The MR(31)-CO.txt file can be used to determine the year 2000 population, for each
age category.

12.2.1 � Script Algorithm

	 1.	Open the 65+ MB MR(31)-CO.txt file.
	 2.	Parse through each line (record) of the file, ignoring lines that contain county

populations. (Note: The state population records lack a county code in bytes 3
to 5, and thus byte 3 is a space in the noncounty records.)

	 4.	Extract bytes 7 and 8 from the record. These two bytes contain the age cat-
egory for the record.

	 3.	Extract bytes 9 to 993 of each record (containing the population counts for the
race categories).

	 4.	Add all the number entries within the byte 9 to 993 character string.
	 5.	Create a dictionary object, with each of the 19 age categories as a different

key for the dictionary object, and with the sum of the population categories
for the age as the dictionary value. Every time a record is encountered, add
the value of the records population tally to the dictionary value for its age
category (key).

	 6.	After the entire file is parsed, the dictionary object holds the total population
for each of the age categories (keys).

	 7.	Sort the dictionary keys, and print out the key and the value for all the key–
value pairs of the dictionary object.

Perl Script

#!/usr/local/bin/perl
open (TEXT, “c\:\\big\\mr\(31\)\-co\.txt”)||die”cannot”;
$line = “ “;
$total = 0;
while ($line ne “”)
 {
 $line = <TEXT>;
 next if (substr($line,2,1) !~ / /);
 $age = substr($line,6,2);
 $age =~ s/ /0/;
 $amount = substr($line, 8, 992);
 @lineitems = split(/ +/,$amount);
 $subtotal = 0;
 foreach $item (@lineitems)
 {
 $subtotal = $subtotal + $item;
 }

	 U.S. Census Files	 183

 $agepop{$age} = $agepop{$age} + $subtotal;
 $total = $total + $subtotal;
 }
print “The total US population and Puerto Rico is $total\n”;
@keysarray = sort(keys(%agepop));
foreach $key (@keysarray)
 {
 print “$key $agepop{$key}\n”;
 }
exit;

Python Script

#!/usr/local/bin/python
import re, string
from decimal import Decimal
census_file = open(‘c:\\big\\mr(31)-co.txt’, “r”)
total = 0
agepop = {}
for line in census_file:
 if line[2:3] == “ “:
 amount = line[8:1000]
 age = line[6:8]
 age = age.lstrip()
 lineitems = re.split(r’ +’,amount)
 subtotal = 0
 for item in lineitems:
 if item.isdigit():
 subtotal = subtotal + int(item)
 if agepop.has_key(age):
 agepop[age] = int(agepop[age]) + subtotal
 else:
 agepop[age] = subtotal
 total = total + subtotal
print “The total US population and Puerto Rico is “ + str(total)
keylist = agepop.keys()
keylist = [int(x) for x in keylist]
keylist = sorted(keylist)
keylist = [str(x) for x in keylist]
for key in keylist:
 print key, agepop[key]
exit

Ruby Script

#!/usr/local/bin/ruby
census_file = File.open(“c:\\big\\mr\(31\)\-co\.txt”)
total = 0
agepop = Hash.new(0)

184	 Methods in Medical Informatics﻿

census_file.each do
 |line|
 next if (line.slice(2,1) !~ / /)
 age = line.slice(6,2)
 age.sub!(/ /,”0”) if age.include? “ “
 lineitems = line.slice(8,992).split(/ +/)
 subtotal = 0
 lineitems.each {|item| subtotal = subtotal + item.to_i}
 agepop[age] = agepop[age] + subtotal
 total = total + subtotal
end
puts “The total US population and Puerto Rico is #{total}”
agepop.keys.sort.each {|k| print k, “ “, agepop[k], “\n”}
exit

12.2.2 � Analysis

Here is the output of the script:

The total US population and Puerto Rico is 285230516
01 3863691
02 15607513
03 20854667
04 20833872
05 20533326
06 19265192
07 19652843
08 20773213
09 22971513
10 22692677
11 20325524
12 17815464
13 13658120
14 10966011
15 9667826
16 8964111
17 7498891
18 4998769
19 4287293

The top line states the total population. The next 19 lines provide the population for
each of the 19 age groups.

	 U.S. Census Files	 185

12.3 � Adjusting for Age

Suppose you are studying disease rates of whooping cough (a disease of childhood) in
two populations. If the first population has a large proportion of children, then it will
likely have a higher incidence of whooping cough in its population compared with
another population with a low proportion of children, because the “at-risk” popula-
tion is higher. To determine whether the first population has a true, increased rate of
whooping cough, we need to somehow adjust for the differences in the proportion of
young people in the two populations.

An age-adjusted rate is the crude rates of cancer in an age category, weighted against
the proportion of persons in the age groups of a standard population. When we age-
adjust rates, we cancel out the changes in the rates of disease occurrence in different pop-
ulations that result from differences in the proportion of people in different age groups.

The NCI SEER program provides a step-by-step example demonstrating how it
age-adjusts population-based cancer data (Figure 12.5), available at

http://seer.cancer.gov/seerstat/tutorials/aarates/step3.html

Let us use SEER’s data to recompute the age-adjusted cancer incidence rate for the
United States.

Here is a data abstraction of the SEER data sample. Each line record consists of the age
group, the number of cancer cases in the age group, the sample population size, and the

Figure 12.5  Figure of a sample age-adjusted data set, produced by SEER.

186	 Methods in Medical Informatics﻿

total population of the age group, in the United States, for a selected standard year. Each
entry of each line record is separated by a comma (so-called CSV, or comma-separated
value format). You can check that these are the same numbers provided in the SEER sam-
ple. With these numbers, we can calculate all of the columns found in the SEER chart:

0,29,139879,3794901
1,87,553189,15191619
5,87,736212,19919840
10,71,770999,20056779
15,87,651390,19819518
20,177,639159,18257225
25,290,676354,17722067
30,657,736557,19511370
35,1072,724826,22179956
40,1691,700200,22479229
45,2428,617437,19805793
50,2931,516541,17224359
55,2881,361170,13307234
60,2817,259440,10654272
65,2817,206204,9409940
70,2744,172087,8725574
75,2634,142958,7414559
80,1884,99654,4900234
85,1705,92692,4259173

Note that the last column, the population data for each age category, provided by
SEER for this example, is very close to the data we calculated in the prior section,
from the entire MR(31)-CO.txt file.

The age-adjusted cancer rate for the sample population requires a succession of very
simple calculations.

12.3.1 � Script Algorithm

	 1.	Load the comma-separated data (above) into an external file, which you can
name pop_data.txt. The data.txt file is available at http://www.julesberman.info/
book/pop_data.txt.

	 2.	Open the file, and parse each of the lines of the data file, splitting the indi-
vidual comma-separated items of each line into an array object.

	 3.	Calculate the age-specific crude cancer incidence (the number of cases divided
by the size of the age-specific population in the studied community), and create
a dictionary object with the age as the key, and the crude incidence as the value.
Create an incrementing tally of the standard U.S. population by adding item
three of each line array (the population of the age group in the United States).

	 U.S. Census Files	 187

	 4.	After the data file has been parsed, we are left with a dictionary object con-
taining all of the crude cancer incidence rates for each age group, and a vari-
able containing the total population of the United States.

	 5.	Close and reopen the data file. This will reset the file to its beginning.
	 6.	Parse through the line arrays of the data file once more. For each data line,

calculate the weight of the age-group population (the fraction of the total
U.S. population for the particular age group), and the weighted cancer inci-
dence rate for the age group (the crude age-specific cancer incidence rate mul-
tiplied by the age-group weight).

	 7.	As you parse through the data file, keep an incremental tally of the age-
adjusted cancer incidence rate for the total population by adding each new
age-weighted cancer incidence rate.

	 8.	Print out a summary list, with all of the columns and entries of the SEER file.
	 9.	Print out the total age-adjusted cancer incidence rate for the U.S. population, and

the total population of the standard U.S. population applied in the exercise.

Perl Script

#!/usr/local/bin/perl
open (CSV, “c\:\\ftp\\pop_data.txt”)||die”cannot”;
open (OUT, “>pop_data.out”);
$line = “ “;
$total_age = 0;
while($line ne “”)
 {
 $line = <CSV>;
 @age_array = split(/\,/,$line);
 if ($age_array[2] != 0)
 {
 $crude_rate = ($age_array[1] / $age_array[2]) * 100000;
 $crude_dict{$age_array[0]} = $crude_rate;
 $total_age = $total_age + $age_array[3]
 }
 }
close CSV;
open (CSV, “c\:\\ftp\\pop_data.txt”)||die”cannot”;
$line = “ “;
$total_rate = 0;
while($line ne “”)
 {
 $line = <CSV>;
 @age_array = split(/\,/,$line);
 if ($age_array[2] != 0)
 {
 $weight = ($age_array[3] / $total_age);
 $age_rate = $weight * $crude_dict{$age_array[0]};
 $total_rate = $total_rate + $age_rate;

188	 Methods in Medical Informatics﻿

 printf OUT (“%-3.3d %-6.6d %-8.8d %-10.04f %-10.10d %-2.04f
%-6.03f\n”,
 $age_array[0], $age_array[1], $age_array[2],
 $crude_dict{$age_array[0]}, $age_array[3], $weight, $age_rate);
 }
 }
print OUT “\nThe age-adjusted population cancer rate is “ .
$total_rate . “\n”;
print OUT “The total population is “ . $total_age . “\n”;
exit;

Python Script

#!/usr/local/bin/python
import re, string
data_in = open(“c:/ftp/pop_data.txt”, “r”)
data_out = open(“pop_data.out”, “w”)
age_array = []
crude_dict = {}
total_age = 0
for line in data_in:
 line = string.rstrip(line)
 age_array = re.split(r’,’, line)
 if (age_array[2]):
 crude_rate = (float(age_array[1]) / float(age_array[2])) *
100000
 crude_dict[age_array[0]] = crude_rate
 total_age = total_age + int(age_array[3])
data_in.close()
data_in = open(“c:/ftp/pop_data.txt”)
total_rate = 0;
for line in data_in:
 line = string.rstrip(line)
 age_array = re.split(r’,’, line)
 if (age_array[2]):
 weight = (float(age_array[3]) / total_age)
 age_rate = weight * float(crude_dict[age_array[0]])
 total_rate = total_rate + age_rate
 print_format = “%-3.3d %-6.6d %-8.8d %-10.04f %-10.10d %-2.04f
%-6.03f”
 print>>data_out, print_format % (int(age_array[0]),
int(age_array[1]),
 int(age_array[2]), float(crude_dict[age_array[0]]),
int(age_array[3]),
 float(weight), float(age_rate))
print>>data_out, “\nThe age-adjusted population cancer rate is “ +
str(total_rate)
print>>data_out, “The total population is “ + str(total_age)
exit

	 U.S. Census Files	 189

Ruby Script

#!/usr/local/bin/ruby
require ‘mathn’
data_in = File.open(“c:/ftp/pop_data.txt”, “r”)
data_out = File.open(“pop_data.out”, “w”)
age_array = []
crude_dict = {}
total_age = 0
data_in.each_line do
 |line|
 line.chomp!
 age_array = line.split(/\,/)
 if (age_array[2])
 crude_rate = (age_array[1].to_i / age_array[2].to_i).to_f *
100000
 crude_dict[age_array[0]] = crude_rate
 total_age = total_age + age_array[3].to_i
 end
end
data_in.close()
data_in = File.open(“c:/ftp/pop_data.txt”)
total_rate = 0;
data_in.each_line do
 |line|
 line.chomp!
 age_array = line.split(/\,/)
 if (age_array[2])
 weight = (age_array[3].to_i / total_age).to_f
 age_rate = weight * crude_dict[age_array[0]]
 total_rate = total_rate + age_rate
 data_out.printf(“%-3.3d %-6.6d %-8.8d %-10.04f %-10.10d %-2.04f
%-6.03f\n”,
 age_array[0], age_array[1], age_array[2], crude_dict[age_
array[0]],
 age_array[3], weight, age_rate)
 end
end
data_out.puts “\nThe age-adjusted population cancer rate is “ +
total_rate.to_s
data_out.puts “The total population is “ + total_age.to_s
exit

12.3.2 � Analysis

The output is shown in Figure 12.6.
Check this output against the official SEER data we reviewed at the beginning of

this section. The calculated data are identical.

190	 Methods in Medical Informatics﻿

Exercises

	 1.	In Section 12.2, we stratified the U.S. population into 19 age bins. Using Perl,
Python, or Ruby, modify the script so that the first column in the output is the
age range included in each bin number, rather than the bin number itself.

	 2.	Using Perl, Python, or Ruby, determine the most populous county for each state.
	 3.	Using Perl, Python, or Ruby, determine the state with the youngest popula-

tion and the state with the oldest population (by average age).
	 4.	A summary table of U.S. population and racial subpopulations (Figure 12.7)

can be found in the data dictionary file, at

http://www.census.gov/popest/archives/files/MRSF-01-US1.pdf

Table 1. Summary of Modified Race and Census 2000 Race Distributions for the United States

Subject Modified Race Census 2000

Number Percent Number Percent

TOTAL POPULATION 281,421,906 100.00 281,421,906 100.00

One race 277,524,226 98.62 274,595,678 97.57

  Specified race only 277,524,226 98.62 259,236,605 92.12

   White 228,104,485 81.05 211,460,626 75.14

   Black or African American 35,704,124 12.69 34,658,190 12.32

   American Indian and Alaska Native 2,663,818 0.95 2,475,956 0.88

   Asian 10,589,265 3.76 10,242,998 3.64

   Native Hawaiian and Other Pacific Islander 462,534 0.16 398,835 0.14

Figure 12.7  Modified Race Data Summary table from the year 2000 United States Census.

Figure 12.6  Output of the age-adjusted total population cancer incidence rate.

	 U.S. Census Files	 191

		 Using Perl, Python, or Ruby, and the MR(31)-CO.txt file, write a script that
calculates the populations for the same racial categories as shown in the sum-
mary table. Are your numbers close to the numbers provided in the table?

	 5.	Using Perl, Python, or Ruby, modify the script you wrote for Exercise 3, list-
ing the populations for the same racial categories but for each state.

193

13
Centers for Disease Control

and Prevention Mortality Files

The CDC (U.S. Centers for Disease Control and Prevention) prepares a public use
data set containing the deidentified records of virtually every death occurring in the
United States, over a period of a year. These yearly data files each exceed 1 GB in
length, and contain several million records.

With access to the CDC mortality files, we can glean a wealth of information related
to the immediate, underlying, and contributing causes of death in the United States.

Because each record contains multiple conditions related to the death of individu-
als, or conditions present in the individual at the time of death, it is possible to draw
inferences about the relationships among the different conditions, and the likelihood
of coexistences among conditions.

Because demographic information is provided in the mortality records, it is possible
to determine the frequency of occurrence of conditions in age groups, ethnic groups,
localities, and genders.

Because the records meticulously preserve the order and organization of the original
death certificate, it is possible to relate conditions by their order of causation (which
conditions lead to which other conditions).

Because the disease conditions are coded using International Classification of
Diseases, Version 10 (ICD10), all of the disease entries can be understood and cor-
related with terms from any other data set, coded with the same nomenclature.

Because there are over 2.3 million records in the CDC data set, it is possible to find
large numbers of cases for hundreds of different conditions.

Because every record conforms to a consistent organization, it is possible to reor-
ganize and merge these records with data from other sources, increasing the value of
the original data.

In this report, we will use simple, open source, and freely available techniques to
analyze the public use CDC mortality files.

13.1 � Death Certificate Data

Much of what we think we know about the ways that Americans die comes from anal-
yses of death certificates. Annual death certificate data for the entire U.S. population

194	 Methods in Medical Informatics﻿

have been collected since 1935 by the Vital Statistics Program of the National Center
for Health Statistics. Death certificate data is notoriously error prone, and the prob-
lems seem to extend beyond national borders, as a similar set of complaints have been
voiced in the United States and the United Kingdom. The most common error occurs
when a mode of death is listed as the cause of death (e.g., cardiac arrest, cardiopul-
monary arrest), thus nullifying the potential value of the death certificate. A recent
survey of 49 national and international health atlases has shown that there is virtually
no consistency in the way that death data is presented.

Members of the public may believe that death certificates are completed after a
formal autopsy is conducted. This is seldom the case. Autopsies are conducted in only
a small percentage of deaths worldwide. Autopsies can take weeks before the final
report is issued. Doctors who complete the death certificate, usually within minutes
or hours of the patient’s death, do so without the benefit of a pathologist’s postmortem
examination. The death certificate contains a doctor’s best guess of the patient’s cause
of death, but the best guess may be inaccurate.

Complicating the “cause of death” data is the rather strange ways we have come to
think about the biological steps leading to death. For centuries, the cause of death has
been encapsulated in a backwardly sequential list of conditions.

The example lists an underlying cause of death leading to an immediate cause of
death:

	 a.	Bleeding of esophageal varices
	 b.	Portal hypertension
	 c.	Liver cirrhosis
	 d.	Hepatitis B

Hepatitis B is the underlying cause of death. Hepatitis led to the development of liver
cirrhosis, which, in turn, produced portal hypertension. Portal hypertension led to the
development of esophageal varices. The varices bled. The patient’s proximate cause of
death was internal bleeding (from esophageal varices). Hepatitis B was the antecedent
for every condition listed.

How would this be entered on the patient’s death certificate? Let us look at a blank
form (Figure 13.1). This figure is extracted from a U.S. government publication avail-
able at

ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/mortality/
Mort99doc.pdf

In Part 1 of Item 27, hepatitis B would be listed on line “d”; liver cirrhosis on line
“c”; portal hypertension on line “b”; and bleeding of esophageal varices on line “a.”
Additional significant medical conditions that did not cause the patient’s death are
listed in Part 2 of Item 27. Nothing could be easier!

	 CDC and Prevention Mortality Files	 195

Seemingly intractable problems arise when

There are multiple, sometimes unrelated, conditions that contribute to the
patient’s death.

The doctor filling out the death certificate is not familiar with the patient’s history.
The doctor has not been trained in the proper procedure for completing the

death certificate.
The doctor does not make the effort to provide a complete and accurate death

certificate.
The cause of death is obscure or contentious.
The doctor has a reason to conceal conditions leading to the cause of death.

Figure 13.1  Prototypical death certificate. Item 27 collects the causes of death, Part 1, and other significant conditions,
Part 2.

196	 Methods in Medical Informatics﻿

Thousands of instructional pages have been written on the proper way to complete
a death certificate. Though we strive to do our best, it is unlikely that humans can
be expected to prepare consistent and accurate summaries of what has always been a
phenomenon shrouded by ignorance.

In the next section, we will discuss how the data on every death certificate is trans-
formed into a mortality record consisting of an alphanumeric sequence.

13.2 � Obtaining the CDC Data Files

The CDC data sets are available by anonymous ftp from the ftp.cdc.gov server. Most
browsers come equipped for the ftp protocol, and you can just enter the ftp address
much as you might enter an http protocol Web address.

The address for the mortality data site is

ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/DVS/mortality/

The CDC server’s subdirectory is shown in Figure 13.2.
For medical data miners, this is a very important server site. When these files are

unzipped, they provide an aggregate database of deidentified records, collected over
several decades, of information culled from many millions of death certificates. This

Figure 13.2  Ftp index of the CDC yearly mortality files.

	 CDC and Prevention Mortality Files	 197

site alone can keep an epidemiologist busy and productive for his or her entire career.
There is no limit to the utility of this site, when its data is merged with data from
other biomedical resources. Using these files is no different than making a cake from a
recipe: you assemble your ingredients, follow a series of steps, wait a few moments for
the cake to cook, and enjoy the results.

The key file that we will be using is available by anonymous ftp from the CDC server:

ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/mortalityMort99us.zip
(88,077,536 bytes)

This file unzips to: Mort99us.dat (1,058,532,982 bytes)

Each record has the following general structure:

0 11019993630101999999913630103299115401 10111073402009 6 1010075
990999 99999 199901015010150450 009 7 J449267000860622800511J969
12J449 61E109 62I709 63I500 03 C259 E149 I10

This example is a composite record selected from string sequences in several different
records. It is not necessary or appropriate to show an actual record from the CDC file.

Looking at the record, a seeming jumble of alphanumerics and spaces, you might
conclude that extracting any useful information would be a formidable task, well
beyond the capacity of nonspecialists. Actually, all of the data in the 1 GB file can be
parsed, reassembled, and analyzed in a matter of seconds, with a few lines of code that
anyone can understand and implement.

The CDC provides a data dictionary file that explains the meaning of each byte
location in each mortality record:

ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/mortality/
Mort99doc.pdf

The diseases listed in the CDC records are encoded as ICD10 (International
Classification of Diseases, version 10) alphanumerics. We will need to have a nomen-
clature file to translate the ICD10 codes to English terms.

We will need the compilation of ICD codes prepared in Chapter 6, Section 6.1.

13.3 � How Death Certificates Are Represented in Data Records

In this section, we will discuss how the data on every death certificate is transformed
into a mortality record consisting of an alphanumeric sequence.

We will use the large (1 GB) CDC public mortality file and its data dictionary.

Mort99us.dat (1,058,532,982 bytes)

198	 Methods in Medical Informatics﻿

and

Mort99doc.pdf (4,911,017 bytes)

We could have just as easily used mortality data from other years. They are also
available from the CDC ftp site.

The Mort99us.dat file consists of millions of records, one record per line, each line
consisting of a long string of alphanumerics.

The portion of the line record sequence that we are most interested in is the stretch
of alphanumerics extending from bytes 162 to 301.

The data dictionary file, on page 36, explains the significance of this stretch of
characters (Figure 13.3).

Each 7-digit piece of this stretch of characters represents another diagnosis and
consists of:

First character. Line indicator: The first byte represents the line of the death
certificate on which the code appears. Six lines (1–6) are allowable, with the
fourth and fifth lines denoting that an additional condition was written in
beyond the four lines provided in Part I of the U.S. Standard Certificate of
Death. Line 6 represents Part II of the death certificate.

Second character. Position indicator: The next byte indicates the position of the
code on the line; that is, it is the first (1), second (2), third (3), …, eighth (8)
code on the line.

Third through sixth character. These four bytes represent the ICD10 (Inter
national Classification of Disease, version 10) code.

Seventh character. The seventh and last byte is blank.

This protocol permits us to capture all of the information conveyed in the cause of
death section from the death certificate, including line number and number of causes
on the line. The highest numbered cause of death line number (5 is the highest per-
missible number) indicates the underlying cause of death that leads, ultimately, to the
proximate cause of death.

An example of a cause of death record sequence is

11I219 21I251 61I500 62R54

In this example, there are two causes of death:

11I219 (first line, first condition on line, ICD diagnosis I219)

and

21I251 (second line, first condition on line, ICD diagnosis I251)

In addition, there are two medical conditions that the doctor listed as “other signifi-
cant conditions” that were not listed with the underlying causes of death (these are
always designated with a “6”).

	 CDC and Prevention Mortality Files	 199

1999
Mortality Multiple Cause-of-Death Public Use Record

Tape Field

Location Size Item and Code Outline

162–301 140 ENTITY - AXIS CONDITIONS

Space has been provided for maximum of 20 conditions. Each condition takes 7 positions
in the record. The 7th position will be blank. Records that do not have 20 conditions are
blank in the unused area.

Position 1: Part/line number on certificate

1		 …	 Part I, line 1 (a)

2		 …	 Part I, line 2 (b)

3		 …	 Part I, line 3 (c)

4		 …	 Part I, line 4 (d)

5		 …	 Part I, line 5 (e)

6		 …	 Part II

Position 2: Sequence of condition within part/line

1–7	 …	 Code range

Position 3–6: Condition code

See Table 1 for a complete list of codes

162–168 7 1st Condition

169–175 7 2nd Condition

176–182 7 3rd Condition

183–189 7 4th Condition

190–196 7 5th Condition

197–203 7 6th Condition

204–210 7 7th Condition

211–217 7 8th Condition

218–224 7 9th Condition

225–231 7 10th Condition

232–238 7 11th Condition

239–245 7 12th Condition

Figure 13.3  Data dictionary describing byte locations for diseases listed in the death certificate.

200	 Methods in Medical Informatics﻿

61I500 (“other significant condition” list, item one, ICD code I500)
62R54 (“other significant condition” list, item two, ICD code R54)

The file does not tell us the term equivalent of the listed codes.
For this, we need to use an ICD10 dictionary.

I219 = (I21.9, Acute myocardial infarction unspecified)
I251 = (I25.1 Atherosclerotic heart disease)
I500 = (I50.0 Congestive heart failure)
R54 = (R54 Senility)

Note that the actual ICD10 codes contained a dot, and the CDC mortality sequence
did not.

So, now we see the full picture of the cause-of-death section of the death cer-
tificate. Atherosclerotic heart disease was considered the underlying cause of death.
Acute myocardial infarction was considered the proximate cause of death. Congestive
heart failure and senility were considered “other significant conditions.”

13.4 � Ranking, by Number of Occurrences, Every Condition in the CDC Mortality Files

When we have the collected death certificates for the U.S. population (i.e., the CDC
mortality files), the byte locations for the causes of death in each record (as a list of
ICD codes), and a dictionary that translates ICD codes into medical terms, we can
easily collect a list of causes of death and their frequency.

13.4.1 � Script Algorithm

	 1.	Open the ICD nomenclature file (each10.txt, described in Chapter 6,
Section 6.1), and load the entire file into a string object.

	 2.	Purge the string object of non-ASCII characters.
	 3.	Create a text array by splitting the file wherever a newline character is fol-

lowed by an ICD code (an uppercase letter, followed by up to five digits,
including a “.” character).

	 4.	For each item in the array, extract the code and the corresponding term.
	 5.	Create a dictionary object with ICD codes as keys and corresponding terms

as values.
	 6.	Close the ICD nomenclature file (each10.txt), and open the 1 GB U.S. mor-

tality file for 1999. This is the Mort99us.dat file, which I happen to keep in
my hard drive’s c:\big subdirectory.

	 7.	Parse through the mortality file, line by line.
	 8.	For each parsed line, extract bytes 162 to 302, containing the list of ICD-

coded conditions listed for each death certificate record.

	 CDC and Prevention Mortality Files	 201

	 9.	Each code in the list of conditions is followed by a space. Split the codes on
the space, and place them into an array object.

	 10.	Create a counting dictionary object, with each encountered ICD code as a key,
and the number of occurrences of the code (in the mortality file) as the value.

	 11.	Each time a code is encountered, increment its value by 1.
	 12.	After the mortality file is parsed, collect the key–value pairs in the counting

dictionary object as string items in an array.
	 13.	Print the sorted array items, along with the medical term associated with each

ICD code.

Perl Script

We will use this file in the next Perl script, to determine the total number of each
condition appearing in the 1 gigabyte mort99us.dat file. You will need to place the
Mort99us.dat file in the same subdirectory as this Perl script.

#!/usr/local/bin/perl
open (ICD, “c\:\\ftp\\each10.txt”)||die”cannot”;
undef($/);
$line = <ICD>;
$line =~ tr/\000-\011//d;
$line =~ tr/\013-\014//d;
$line =~ tr/\016-\037//d;
$line =~ tr/\041-\055//d;
$line =~ tr/\173-\377//d;
@linearray = split(/\n(?=[]*[A-Z][0-9\.]{1,5})/, $line);
foreach $thing (@linearray)
 {
 if ($thing =~ /^ *([A-Z][0-9\.]{1,5}) ?/)
 {
 $code = $1;
 $term = $’;
 $term =~ s/\n//;
 $term =~ s/[]+$//;
 $code =~ s/\.//;
 $dictionary{$code} = $term;
 }
 }
close ICD;
$/ = “\n”;
open (ICD, “c\:\\big\\Mort99us\.dat”);
$line = “ “;
while ($line ne “”)
 {
 $line = <ICD>;
 $codesection = substr($line,161,140);
 $codesection =~ s/ *$//;

202	 Methods in Medical Informatics﻿

 @codearray = split(/ +/,$codesection);
 foreach $code (@codearray)
 {
 $code =~ /[A-Z][0-9]+/;
 $code = $&;
 $counter{$code}++;
 }
 }
close ICD;
open (OUT, “>cdc.out”);
while ((my $key, my $value) = each(%counter))
 {
 $value = “000000” . $value;
 $value = substr($value,-6,6);
 push(@filearray, “$value $key $dictionary{$key}”);
 }
$outfile = join(“\n”, reverse(sort(@filearray)));
print OUT $outfile;
exit

Python Script

#!/usr/local/bin/python
import re, string
icd_file = open(“c:\\ftp\\each10.txt”, “r”)
icd_string = icd_file.read()
line_array = re.split(r’\n(?= *[A-Z][0-9\.]{1,5})’, icd_string)
dictionary = {}
counter = {}
codearray = []
results_array = []
for thing in line_array:
 thing_match = re.search(r’^ *([A-Z][0-9\.]{1,5}) ?(.+)$’, thing)
 if thing_match:
 code = thing_match.group(1)
 term = thing_match.group(2)
 term = re.sub(r’[^a-zA-Z]’,””, term)
 term = string.rstrip(term)
 code = re.sub(r’\.’,””, code)
 dictionary[code] = term
mort_txt = open(“c:\\big\\mort99us.dat”, “r”)
for line in mort_txt:
 codesection = line[161:302]
 codesection = re.sub(r’ *$’, “”, codesection)
 codearray = re.split(r’ +’, codesection)
 for code in codearray:
 code_match = re.search(r’([A-Z][0-9]+)’, code)
 if code_match:
 code = code_match.group(1)

	 CDC and Prevention Mortality Files	 203

 if dictionary.has_key(code):
 if counter.has_key(code):
 counter[code] = int(counter[code]) + 1
 else:
 counter[code] = 1
mort_txt.close()
out_mort = open(“cdc.out”, “w”)
for key,value in counter.iteritems():
 value = str(value)
 value = “000000” + value
 value = value[-6:]
 results_array.append(value + “ “ + key + “ “ + dictionary[key])
results_array.sort()
results_array.reverse()
print>>out_mort, ‘\n’.join(results_array)
exit;

Ruby Script

#!/usr/local/bin/ruby
icd_string = IO.read(“c:/ftp/each10.txt”)
linearray = icd_string.split(/\n(?= *[A-Z][0-9\.]{1,5})/)
dictionary = {}
counter = Hash.new(0)
codearray = []
results_array = []
linearray.each do
 |thing|
 if (thing =~ /^ *([A-Z][0-9\.]{1,5}) ?/)
 code = $1
 term = $’
 term.sub!(/[^a-zA-Z]/,””)
 term.sub!(/[]+$/,””)
 code.sub!(/\./,””)
 dictionary[code] = term
 end
end
mort_txt = File.open(“c:/big/Mort99us.dat”, “r”)
mort_txt.each_line do
 |line|
 codesection = line.slice(161,140)
 codesection.sub!(/ *$/, “”)
 codearray = codesection.split(/ +/)
 codearray.each do
 |code|
 code =~ /[A-Z][0-9]+/
 code = $&
 if dictionary.has_key?(code)
 counter[code] = counter[code] + 1

204	 Methods in Medical Informatics﻿

 end
 end
end
mort_txt.close
out_mort = File.open(“cdc.out”, “w”)
counter.each_pair do
 |key, value|
 value = value.to_s
 value = “000000” + value
 value = value.slice(-6,6)
 results_array.push(value + “ “ + key + “ “ + dictionary[key])
end
out_mort.puts results_array.sort.reverse.join(“\n”)
exit

13.4.2 � Analysis

On my 2.5 GHz CPU/512 megabyte (MB) RAM desktop computer, it takes well
under a minute to parse through the 1 gigabyte (GB) CDC mortality data set and
produce the desired output file (cdc.out). The total number of records parsed by the
script was 2,394,871. There are 5,650 different conditions included in the 1999 CDC
mortality data set.

The first lines of the output file are shown in Figure 13.4.

Figure 13.4  A sample of script output, listing the number of occurrences of a disease in the CDC mortality records (in
descending order), followed by the ICD code for the diagnosis, followed by the term name for the diagnosis.

	 CDC and Prevention Mortality Files	 205

The top line is

412827 I251 Atherosclerotic heart disease

It indicates that atherosclerotic heart disease is the most common condition listed in
the death certificates in 1999 in the United States. It was listed 412,827 times. The
ICD10 code for atherosclerotic heart disease is I25.1.

Some of the output lines do not seem particularly helpful. For example:

000456 D487 Other specified sites
000451 C482 Peritoneum unspecified
000448 C210 Anus unspecified

Nobody dies from “Peritoneum unspecified.” The strange diagnosis is explained by
the rather unsatisfactory way that the ICD assigns terms to codes. In this case, Perito
neum unspecified is a subterm in the general category of “C48, Malignant neoplasm
of retroperitoneum and peritoneum.”

Whenever an ICD term appears uninformative, we can return to the each10.txt file
and clarify its meaning by examining the root term for the subterm.

Exercises

	 1.	Rank by the number of occurrences of death certificate diseases by gender.
	 2.	Rank by the number of occurrences of death certificate diseases by ethnicity.
	 3.	Rank by the number of occurrences of death certificate diseases by ages

(divided into 10-year intervals).
	 4.	Determine the disease that is listed most often as a co-occurring condition in

the list of diseases contained in U.S. death certificates. That is, if a death cer-
tificate lists more than one disease, what disease is most likely to be included
among the multiple-occurring diseases? Is this the same disease as the most
commonly occurring disease listed on U.S. death certificates?

IIIPart

Primary Tasks of
Medical Informatics

209

14
Autocoding

In the field of biomedical informatics, it is often necessary to extract medical terms
from text and attach a nomenclature concept code to the extracted term. By doing
so, concepts of interest contained in text can be retrieved regardless of the choice
of words used to describe them. For example, hepatocellular carcinoma, liver cell
cancer, liver cancer, and hcc might all be given the same code number in a neo-
plasm nomenclature. Documents using any of these terms can be collected and
merged if all of the terms are annotated with the same concept code. A software
product that computationally parses and codes medical text is called an autocoder
or an automatic coder.

Many people believe that it is difficult to write autocoding software (that can
parse text, find and extract medical terms, and add nomenclature codes to terms).
Furthermore, many people believe that it is impossible to write fast autocoding soft-
ware. People accept autocoder speeds that code a typical pathology report at a rate of
one report (about 1,000 bytes) per second.

Both of these notions are false. A superb autocoder can be written in a few dozen
lines of code. In this chapter, we will write a short, simple autocoding script that
improves on the rate of other autocoders by at least 100-fold.

14.1 � A Neoplasm Autocoder

The script requires two external files, neocl.xml, the Neoplasm Classification in XML
format, available for download as a gzipped file from

http://www.julesberman.info/neoclxml.gz

There are about 135,000 unique terms in the nomenclature. Each term is listed in a
consistent format, as shown in these two examples:

<name nci-code = “C3084300”>polymorphous haemangioendothelioma</name>
<name nci-code = “C3085000”>angioma</name>

The terms are enclosed by angle brackets:

>polymorphous haemangioendothelioma<
>angioma<

210	 Methods in Medical Informatics﻿

The codes are enclosed by quotations:

“C3084300”
“C3085000”

Terms and corresponding codes can be easily extracted by a simple regex expression.
We will use an external file that we can autocode. For this sample project, we will

parse through tumorabs.txt, a file of 20,000 abstract titles extracted from PubMed
and available for download at

http://www.julesberman.info/book/tumorabs.txt

A portion of the file is shown in Figure 14.1.
We described the process of obtaining PubMed search result files in Chapter 9,

Section 9.1.

14.1.1 � Script Algorithm

	 1.	Open the nomenclature file, which will be the source of coded terms to match
against the text that needs to be autocoded. For this example, we will use the
neoplasm taxonomy, but it could be any nomenclature that consists of codes
listed with their corresponding medical terms.

	 2.	Create a dictionary object with keys corresponding to the terms (names of
neoplasms, in this case) of the medical nomenclature and values comprising
the corresponding codes for the terms.

	 3.	Open the file to be parsed (tumorabs.txt).
	 4.	Parse through the file, line by line, each line containing a sentence.
	 5.	As each sentence is parsed, break the file into every possible ordered subse-

quence of words (a phrase array). For example, “Everybody loves to eat pizza”
would be broken into an array containing the following items:

Everybody loves to eat pizza
Everybody loves to eat
Everybody loves
Everybody
loves to eat pizza
loves to eat
loves to
loves
to eat pizza
to eat
to
eat pizza
eat
pizza

	Au tocoding	 211

l
o
c
a
l

v
e
r
s
u
s

d
i
f
f
u
s
e

r
e
c
u
r
r
e
n
c
e
s

o
f

m
e
n
i
n
g
i
o
m
a
s

f
a
c
t
o
r
s

c
o
r
r
e
l
a
t
e
d

t
o

t
h
e

e
x
t
e
n
t

o
f

t
h
e

r
e
c
u
r
r
e
n
c
e

t
h
e

e
f
f
e
c
t

o
f

a
n

u
n
p
l
a
n
n
e
d

e
x
c
i
s
i
o
n

o
f

a

s
o
f
t

t
i
s
s
u
e

s
a
r
c
o
m
a

o
n

p
r
o
g
n
o
s
i
s

o
b
s
t
r
u
c
t
i
v
e

j
a
u
n
d
i
c
e

a
s
s
o
c
i
a
t
e
d

b
u
r
k
i
t
t

l
y
m
p
h
o
m
a

m
i
m
i
c
k
i
n
g

p
a
n
c
r
e
a
t
i
c

c
a
r
c
i
n
o
m
a

e
f
f
i
c
a
c
y

o
f

z
o
l
e
d
r
o
n
a
t
e

i
n

t
r
e
a
t
i
n
g

p
e
r
s
i
s
t
i
n
g

i
s
o
l
a
t
e
d

t
u
m
o
r

c
e
l
l
s

i
n

b
o
n
e

m
a
r
r
o
w

i
n

p
a
t
i
e
n
t
s

w
i
t
h

b
r
e
a
s
t

c
a
n
c
e

m
e
t
a
s
t
a
t
i
c

l
y
m
p
h

n
o
d
e

n
u
m
b
e
r

i
n

e
p
i
t
h
e
l
i
a
l

o
v
a
r
i
a
n

c
a
r
c
i
n
o
m
a

d
o
e
s

i
t

h
a
v
e

a
n
y

c
l
i
n
i
c
a
l

s
i
g
n
i
f
i
c
a
n
c
e

e
x
t
e
n
d
e
d

t
h
r
e
e

d
i
m
e
n
s
i
o
n
a
l

i
m
p
e
d
a
n
c
e

m
a
p

m
e
t
h
o
d
s

f
o
r

i
d
e
n
t
i
f
y
i
n
g

u
l
t
r
a
s
o
n
i
c

s
c
a
t
t
e
r
i
n
g

s
i
t
e
s

a
b
e
r
r
a
n
t

e
x
p
r
e
s
s
i
o
n

o
f

c
o
n
n
e
x
i
n

2
6

i
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

l
u
n
g

m
e
t
a
s
t
a
s
i
s

o
f

c
o
l
o
r
e
c
t
a
l

c
a
n
c
e
r

m
i
c
r
o
r
n
a

e
x
p
r
e
s
s
i
o
n

p
r
o
f
i
l
e
s

o
f

e
s
o
p
h
a
g
e
a
l

c
a
n
c
e
r

s
t
a
t
e

a
n
d

t
r
a
i
t

a
n
x
i
e
t
y

a
n
d

d
e
p
r
e
s
s
i
o
n

i
n

p
a
t
i
e
n
t

w
i
t
h

p
r
i
m
a
r
y

b
r
a
i
n

t
u
m
o
r
s

b
e
f
o
r
e

a
n
d

a
f
t
e
r

s
u
r
g
e
r
y

1

y
e
a
r

l
o
n

l
a
p
a
r
o
s
c
o
p
i
c

r
e
s
e
c
t
i
o
n

o
f

l
a
r
g
e

a
d
r
e
n
a
l

g
a
n
g
l
i
o
n
e
u
r
o
m
a

c
a
s
e

r
e
c
o
r
d
s

o
f

t
h
e

m
a
s
s
a
c
h
u
s
e
t
t
s

g
e
n
e
r
a
l

h
o
s
p
i
t
a
l

c
a
s
e

4

2
0
0
8

a

3
3

y
e
a
r

o
l
d

p
r
e
g
n
a
n
t

w
o
m
a
n

w
i
t
h

s
w
e
l
l
i
n
g

o
f

t
h
e

e
v
a
l
u
a
t
i
o
n

o
f

h
i
g
h
e
r

o
r
d
e
r

t
i
m
e

d
o
m
a
i
n

p
e
r
t
u
r
b
a
t
i
o
n

t
h
e
o
r
y

o
f

p
h
o
t
o
n

d
i
f
f
u
s
i
o
n

o
n

b
r
e
a
s
t

e
q
u
i
v
a
l
e
n
t

p
h
a
n
t
o
m
s

a
n
d

m
e
n
i
n
g
e
a
l

m
e
l
a
n
o
c
y
t
o
s
i
s

i
n

a

y
o
u
n
g

p
a
t
i
e
n
t

a
n

a
u
t
o
p
s
y

d
i
a
g
n
o
s
i
s

o
n
c
o
g
e
n
i
c

h
y
p
o
p
h
o
s
p
h
a
t
a
e
m
i
c

o
s
t
e
o
m
a
l
a
c
i
a

b
i
o
m
a
r
k
e
r

r
o
l
e
s

o
f

f
i
b
r
o
b
l
a
s
t

g
r
o
w
t
h

f
a
c
t
o
r

2
3

1

2
5

d
i
h
y
d
r
o
x
y
v
i
t
a
m
i
n

d
3

m
i
c
r
o
r
n
a

e
x
p
r
e
s
s
i
o
n

p
r
o
f
i
l
e
s

a
s
s
o
c
i
a
t
e
d

w
i
t
h

p
r
o
g
n
o
s
i
s

a
n
d

t
h
e
r
a
p
e
u
t
i
c

o
u
t
c
o
m
e

i
n

c
o
l
o
n

a
d
e
n
o
c
a
r
c
i
n
o
m
a

m
a
n
i
f
e
s
t
a
t
i
o
n

o
f

m
a
l
a
k
o
p
l
a
k
i
a

i
n

a

u
r
e
t
h
r
a
l

d
i
v
e
r
t
i
c
u
l
u
m

i
n

a

f
e
m
a
l
e

p
a
t
i
e
n
t

s
i
x

v
e
r
s
u
s

e
i
g
h
t

c
y
c
l
e
s

o
f

b
i

w
e
e
k
l
y

c
h
o
p

1
4

w
i
t
h

o
r

w
i
t
h
o
u
t

r
i
t
u
x
i
m
a
b

i
n

e
l
d
e
r
l
y

p
a
t
i
e
n
t
s

w
i
t
h

a
g
g
r
e
s
s
i
v
e

c
d
2
0

g
i
a
n
t

a
b
d
o
m
i
n
a
l

t
u
m
o
r

o
f

t
h
e

o
v
a
r
y

a
n

u
p

t
o

d
a
t
e

a
n
t
i

c
a
n
c
e
r

t
r
e
a
t
m
e
n
t

s
t
r
a
t
e
g
y

f
o
c
u
s
i
n
g

o
n

h
i
f

l
a
l
p
h
a

s
u
p
p
r
e
s
i
o
n

i
t
s

a
p
p
l
i
c
a
t
i
o
n

f
o
r

r
e
f
r
a
c
t
o
r
y

o
b
e
s
i
t
y

a
l
t
e
r
s

c
y
t
o
k
i
n
e

g
e
n
e

e
x
p
r
e
s
s
i
o
n

a
n
d

p
r
o
m
o
t
e
s

l
i
v
e
r

i
n
j
u
r
y

i
n

r
a
t
s

w
i
t
h

a
c
u
t
e

p
a
n
c
r
e
a
t
i
t
i
s

i
n
t
r
a

c
a
r
d
i
a
c

l
y
m
p
h
o
m
a

w
i
t
h

r
i
g
h
t

h
e
a
r
t

f
a
i
l
u
r
e

a

t
h
e
r
a
p
e
u
t
i
c

e
m
e
r
g
e
n
c
y

i
n

t
w
o

p
a
t
i
e
n
t
s

Fi
gu

re
 1

4.
1 

Th
e

fir
st

 fe
w

lin
es

 o
f t

he
 tu

m
or

ab
s.

tx
t fi

le
, w

ith
 e

ac
h

se
nt

en
ce

 a
ss

ig
ne

d
to

 a
 s

ep
ar

at
e

lin
e

of
 th

e
fil

e.

212	 Methods in Medical Informatics﻿

	 6.	For each item in the phrase array, determine whether the item matches a term
in the neoplasm dictionary object.

	 7.	If there is a match, print the phrase and the corresponding code to an exter-
nal file.

	 8.	The external file will consist of the lines from the text, followed by the phrases
from the lines that are neoplasm terms, along with their nomenclature codes.

Perl Script

#!/usr/local/bin/perl
open(TEXT, “neocl.xml”);
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 next if ($line !~ /\”(C[0-9]{7})\”/);
 $line =~ /\”(C[0-9]{7})\”/;
 $code = $1;
 $line =~ /\”\> ?(.+) ?\<\//;
 $phrase = $1;
 if ($phrase =~ /[a-z]/)
 {
 $literalhash{$phrase} = $code;
 }
 }
$phrase = “”;
close TEXT;
print “Neoplasm code hash has been created. Autocoding will start
now\n”;
open(ABSFILE, “tumorabs.txt”)||die”cannot”;
open(OUTFILE, “>tumorab2.out”)||die”cannot”;
$line = “ “;
while($line ne “”)
 {
 $line = <ABSFILE>;
 $sentence = $line;
 $sentence =~ s/\n//o;
 $sentence =~ s/omas/oma/g;
 $sentence =~ s/tumo[u]?rs/tumor/g;
 print OUTFILE “\nTitle...” . ucfirst($sentence) . “.” . “\n”;
 @sentence_array = split(/ /,$sentence);
 $cycles = scalar(@sentence_array);
 for($n=0;$n<$cycles;$n++)
 {
 for($i=0;$i<scalar(@sentence_array);$i++)
 {
 @part_array = @sentence_array[0..$i];
 $phrase = join(“ “, @part_array);
 if (exists($literalhash{$phrase}))

	Au tocoding	 213

 {
 print OUTFILE “Autocoded tumor...” . ucfirst($phrase)
. “ “ . $literalhash{$phrase} . “\n”;
 }
 }
 shift(@sentence_array);
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import re
text = open(“neocl.xml”, “r”)
literalhash = {}
codematch = re.compile(‘\”(C\d{7})\”’)
phrasematch = re.compile(‘\”\> ?(.+) ?\<\/’)
for line in text:
 m= codematch.search(line)
 if m:
 code = m.group(1)
 else:
 continue
 x = phrasematch.search(line)
 if x:
 phrase = x.group(1)
 else:
 continue
 literalhash[phrase] = code
text.close()
print “Neoplasm code hash has been created. Autocoding will start
now”
absfile = open(“tumorabs.txt”, “r”)
outfile = open(“tumorpy.out”, “w”)
singular = re.compile(‘omas’)
england = re.compile(‘tumo[u]?rs’)
for line in absfile:
 sentence = line
 sentence = singular.sub(“oma”,sentence)
 sentence = england.sub(“tumor”,sentence)
 sentence = sentence.rstrip()
 print>>outfile,”\nAbstract title...” + sentence + “.”
 sentence_array = sentence.split(“ “)
 length = len(sentence_array)
 for i in range(length):
 for place_length in range(len(sentence_array)):
 last_element = place_length + 1
 phrase = ‘ ‘.join(sentence_array[0:last_element])

214	 Methods in Medical Informatics﻿

 if literalhash.has_key(phrase):
 print>>outfile,”Neoplasm term...” + phrase + “ “ +
literalhash[phrase]
 sentence_array.pop(0)
exit

Ruby Script

#!/usr/local/bin/ruby
text = File.open(“neocl.xml”, “r”)
literalhash = Hash.new
text.each do
 |line|
 next if (line !~ /\”(C[0-9]{7})\”/)
 line =~ /\”(C[0-9]{7})\”/
 code = $1;
 line =~ /\”\> ?(.+) ?\<\//
 phrase = $1;
 if (phrase =~ /[a-z]/)
 literalhash[phrase] = code
 #puts phrase
 end
end
text.close
puts “Neoplasm code hash has been created. Autocoding will start
now”
absfile = File.open(“tumorabs.txt”, “r”)
outfile = File.open(“tumorabs.out”, “w”)
absfile.each do
 |sentence|
 sentence.chomp!
 sentence.gsub!(/omas/, “oma”)
 sentence.gsub!(/tumo[u]?rs/, “tumor”)
 outfile.puts “\nAbstract title...” + sentence.capitalize + “.”
 sentence_array = sentence.split
 length = sentence_array.size
 length.times do
 (1..sentence_array.size).each do
 |place_length|
 phrase = sentence_array.slice(0,place_length).join(“ “)
 if literalhash.has_key?(phrase)
 outfile.puts “Neoplasm term...” + phrase.capitalize +
“ “ + literalhash[phrase]
 end
 end
 sentence_array.shift
 end
end
exit

	Au tocoding	 215

14.1.2 � Analysis

The output of the coder is virtually perfect. Browse through the 10,000 abstract titles
on this page and look for the named neoplasms in the abstract text. See if you can find
named neoplasms included in the abstract title that were excluded from the autocoded
terms that follow each abstract title.

Each abstract line parsed from the tumorabs.txt file is printed and then followed by
the list of autocoded terms extracted from the title.

Note that the terms coded “C0000000” are general neoplasm terms such as “tumor”
or “cancer” and not specific names of neoplasms, or they are names of neoplasms that
have not yet been classified within the neoplasm taxonomy. Also, the program codes
each occurrence of a neoplasm term, even if it is repeated.

Abstract title. Local versus diffuse recurrences of meningioma factors correlated
to the extent of the recurrence.

Neoplasm term. Meningioma C3230000.

Abstract title. The effect of an unplanned excision of a soft tissue sarcoma on
prognosis.

Neoplasm term. Soft tissue sarcoma C9306000.
Neoplasm term. Sarcoma C0000000.

Abstract title. Obstructive jaundice associated burkitt lymphoma mimicking
pancreatic carcinoma.

Neoplasm term. Jaundice C0000000.
Neoplasm term. Burkitt lymphoma C7188000.
Neoplasm term. Lymphoma C7065000.
Neoplasm term. Pancreatic carcinoma C3850000.
Neoplasm term. Carcinoma C0000000.

Abstract title. Efficacy of zoledronate in treating persisting isolated tumor cells
in bone marrow in patients with breast cancer a phase II pilot study.

Neoplasm term. Tumor C0000000.
Neoplasm term. Breast cancer C4872000.
Neoplasm term. Cancer C0000000.

Abstract title. Metastatic lymph node number in epithelial ovarian carcinoma
does it have any clinical significance.

Neoplasm term. Epithelial ovarian carcinoma C4908000.
Neoplasm term. Ovarian carcinoma C4908000.
Neoplasm term. Carcinoma C0000000.

216	 Methods in Medical Informatics﻿

Abstract title. Extended three-dimensional impedance map methods for identi-
fying ultrasonic scattering sites.

Abstract title. Aberrant expression of connexin 26 is associated with lung metas-
tasis of colorectal cancer.

Neoplasm term. Colorectal cancer C5105000.
Neoplasm term. Cancer C0000000.

Abstract title. Microrna expression profiles of esophageal cancer.
Neoplasm term. Esophageal cancer C3513000.
Neoplasm term. Cancer C0000000.

Abstract title. State and trait anxiety and depression in patients with primary
brain tumor before and after surgery 1 year longitudinal study.

Neoplasm term. Primary brain tumor C0000000.
Neoplasm term. Brain tumor C0000000.
Neoplasm term. Tumor C0000000.

Abstract title. Laparoscopic resection of large adrenal ganglioneuroma.
Neoplasm term. Ganglioneuroma C3049000.

Abstract title. Case records of the Massachusetts general hospital case 4 2008 a
33- year-old pregnant woman with swelling of the left breast and shortness
of breath.

Abstract title. Evaluation of higher order time domain perturbation theory of
photon diffusion on breast equivalent phantoms and optical mammograms.

Abstract title. Meningeal melanocytosis in a young patient an autopsy diagnosis.

Abstract title. Oncogenic hypophosphataemic osteomalacia biomarker roles of
fibroblast growth factor 23 1 25 dihydroxyvitamin d3 and lymphatic vessel
endothelial hyaluronan receptor 1.

Abstract title. Microrna expression profiles associated with prognosis and thera-
peutic outcome in colon adenocarcinoma.

Neoplasm term. Colon adenocarcinoma C4349000.
Neoplasm term. Adenocarcinoma C0000000.

14.2 � Recoding

I may be the world’s worst writer, but I’m the world’s best rewriter.

—James Michener

The medical informatics literature has lots of descriptions of medical autocoders, but
most of these descriptions fail to include their speed. The autocoder included here is

	Au tocoding	 217

fast, coding 20,000 citations in about 20 seconds or less on my 2.5 GHz desktop CPU
with 512 megabytes [MB] RAM). This is a rate of about 100 kilobytes per second. By
the time this book is published, most readers will have computers that operate much
faster than mine, providing a much faster autocoding rate.

Why is it important to have a fast autocoder? Why can’t you load your parser with
a big file and let it run in the background, taking as long as it takes to finish?

There are three reasons why you absolutely must have a fast autocoder:

	 1.	Medical files today are large. It is not unusual for a large medical center to
generate a terabyte of data each week. A slow autocoder could never keep up
with the volume of medical information that is produced each day.

	 2.	Autocoders, and the nomenclatures they draw terms from, need to be modi-
fied to accommodate unexpected oddities in the text that they parse (particu-
larly formatting oddities and the inclusion of idiosyncratic language to express
medical terms). The cycles of running a program, reviewing output, making
modifications in software or nomenclatures, and repeating the whole process
many times cannot be undertaken if you need to wait a week for your autocod-
ing software to parse your text.

	 3.	Autocoding is as much about recoding as it is about the initial process of pro-
viding nomenclature codes.

You need to recode (supply a new set of nomenclature codes for terms in your medical
text) whenever you want to change from one nomenclature to another.

You need to recode whenever you introduce a new version of a nomenclature.
You need to recode whenever you want to use a new coding algorithm (e.g., parsi-

monious coding versus comprehensive, or linking code to a particular extracted por-
tion of report).

You need to recode whenever you add legacy data to your laboratory informa-
tion systems.

You need to recode whenever you merge different medical data sets (especially,
medical data sets that have been coded with different medical nomenclatures).

All of this recoding adds to the data burden placed on a medical autocoder.
It has been my personal observation that computational tasks that take much time

(more than a few seconds) tend to be put on the back burner. The same observations
would apply to medical deidentification software (Chapter 15), software designed to
classify data into related groups (so-called intelligent computing) and software that
draws inferences from classes of data (so-called artificial intelligence). Smart informa-
ticians understand that program execution speed is always very important.

218	 Methods in Medical Informatics﻿

Exercises

	 1.	Using Perl, Python, or Ruby, write a script that inserts the code, in parenthe-
sis, immediately following each encountered neoplasm term in the file can-
cer_gene_titles.txt (created in Chapter 9, Section 9.1, and available at

http://www.julesberman.info/book/cancer_gene_titles.txt

Use the ICD-Oncology nomenclature, available at

http://www.julesberman.info/book/icdo3.txt

		 Additional information on the ICD-Oncology nomenclature is available in
the appendix.

	 2.	Repeat Exercise 1, using the Neoplasm Classification file, available in gzipped
form at

www.julesberman.info/neoclxml.gz

		 Additional file information is available in the appendix.
	 3.	Using Perl, Python, or Ruby, write a script that collects the neoplasm terms

that are present in ICD-O (i.e., the icdo3.txt file) and absent from the
Neoplasm Classification (i.e., the neocl.xml file).

	 4.	Do the opposite of Exercise 3. Using Perl, Python, or Ruby, write a
script that collects the neoplasm terms that are present in the Neoplasm
Classification (i.e., the neocl.xml file) and absent from ICD-O (i.e., the
icdo3.txt file).

	 5.	Using Perl, Python, or Ruby, write a script that collects all the neoplasm terms
that are present in the Neoplasm Classification that have the word precancer in
the term.

	 6.	Modify the script from Exercise 5 to collect all the neoplasm terms that are
present in the Neoplasm Classification that have the word precancer in the
term, along with all of the terms that have the same code as any of the terms
that contain the word precancer in the term. Remember, multiple synonymous
or near-synonymous terms will have the same concept code.

219

15
Text Scrubber for

Deidentifying Confidential Text

Throughout history, people have tried very hard to remove confidential, private, offen-
sive, or otherwise objectionable text from documents. With chisel, stylus, pen, white-
out, magic marker, or mouse in hand, legions of censors have been reading our most
intimate letters and stories, eager to blot out expletives, formulas, locations, names,
and times, in the hope that their efforts will render text safe to share.

Human censors do an adequate job when the data flow is small, but the amount of
sensitive information created in our electronic age is immense. Large hospitals create
terabytes of information every week, and a good portion of that information comes in
the form of free text (i.e., unstructured text, or text not constrained to fields in a form
or template). The medical records of patients are confidential. Those who want to use
this information for research purposes have two options: (1) obtain informed consent
from patients to use their records (an impossible task if you want to analyze data from
thousands of human subjects), or (2) deidentify the records by removing any informa-
tion that could link the contents of a medical record to an individual patient.

In the past several decades, a variety of programs have been written that attempt to
automatically remove identifying, private, or objectionable information from medical
records. These programs are sometimes called “scrubbers”, and most of these programs
use the following algorithm:

	 1.	Prepare lists of patient names, hospital staff names, addresses, obscenities,
objectionable hospital slang, and hospital identifier numbers.

	 2.	Parse through the text, deleting or replacing entries from the list with non
informational characters.

	 3.	Match the text against a series of regex patterns that might indicate the pres-
ence of identifying information (e.g., formalisms such as Mr., Dr., Mrs. fol-
lowed by another word, or numeric values, or date components), and remove
these strings.

These methods are the software equivalent of the human who reads through letters
and documents and marks over the objectionable parts. Parsing scripts that pass docu-
ments through a long series of regex filters are always slow, and they never completely
remove objectionable material. They merely reduce the occurrences of objectionable
text, without eliminating the problem.

220	 Methods in Medical Informatics﻿

There is a better way that is essentially the reverse of censorship. You create a list
of acceptable phrases, and you parse through the text, deleting everything that is not
included on your list. This method can parse text very quickly, because it has no regex
filters. The method is potentially perfect, because the only text that appears in the final
document is text composed of words and phrases that were preapproved.

15.1 � Script Algorithm

	 1.	In Chapter 9, Section 9.2, we created a list of word doublets from a PubMed
corpus, consisting of titles of research papers written on the subject of cancer
genes. For this chapter, we created a similar doublet list, available for down-
load at http://www.julesberman.info/book/doublets.txt.

	 2.	Begin your script by prompting the user to enter a sentence. The user may feel
free to enter a sentence that is offensive, incriminating, filled with the names
of people, or with sensitive information.

	 3.	The entered text is parsed, word doublet by word doublet, with each doublet
consisting of every word in the text followed by the next consecutive word.

	 4.	Comparisons are made against the list of preapproved doublets (doublets.txt
in this case).

	 5.	Word doublets in the text that match word doublets on the list are saved.
Everything else is replaced by an asterisk.

Perl Script

#!/usr/local/bin/perl
open (TEXT, “c:\\ftp\\doublets.txt”)||die”cannot”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 $line =~ s/\n//o;
 $line =~ s/ +$//o;
 $doubhash{$line} = “”;
 }
close TEXT;
print “What text would you like scrubbed?\n”;
$line = <STDIN>;
$line =~ s/\n//;
$line = lc($line);
$phrase =~ s/\’s//g;
$phrase =~ s/\,/ /g;
$line =~ s/[^a-z0-9 \-]/ /g;
@hoparray = split(/ +/,$line);
for ($i=0;$i<(scalar(@hoparray));$i++)
 {
 $doublet = “$hoparray[$i] $hoparray[$i+1]”;

	T ext Scrubber for Deidentifying Confidential Text	 221

 if (exists $doubhash{$doublet})
 {
 print “ $hoparray[$i]”;
 $lastword = “ $hoparray[$i+1]”;
 }
 else
 {
 print $lastword;
 $lastword = “ *”;
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import sys, re, string
doub_file = open(“c:\\ftp\\doublets.txt”, “r”)
doub_hash = {}
for line in doub_file:
 line = string.rstrip(line)
 doub_hash[line] = “ “
doub_file.close()
print “What would you like to scrub?”
line = sys.stdin.readline()
line = string.lower(line)
line = string.rstrip(line)
linearray = re.split(r’ +’, line)
lastword = “*”
for i in range(0, len(linearray)):
 doublet = “ “.join(linearray[i:i+2])
 if doub_hash.has_key(doublet):
 print “ “ + linearray[i],
 lastword = “ “ + linearray[i+1]
 else:
 print lastword,
 lastword = “ *”
 if (i == len(linearray) + 1):
 print lastword
exit

Ruby Script

#!/usr/local/bin/ruby
doub_file = File.open(“c:/ftp/doublets.txt”, “r”)
doub_hash = {}
doub_file.each_line{|line| line.chomp!; doub_hash[line] = “ “}
doub_file.close
puts “What would you like to scrub?”
linearray = gets.chomp.downcase.split
arraysize = linearray.length - 2

222	 Methods in Medical Informatics﻿

lastword = “*”
for arrayindex in (0 .. arraysize)
 doublet = linearray[arrayindex] + “ “ + linearray[arrayindex+1]
 if doub_hash.key?(doublet)
 print “ “ + linearray[arrayindex]
 lastword = “ “ + linearray[arrayindex+1]
 else
 print lastword
 lastword = “ *”
 end
 if arrayindex == arraysize
 print lastword
 end
end
exit

15.2 � Analysis

Sample output:

Input: Dr. Frankenstein killed his patient.
Output: * * * *

Input: The patient refused treatment
Output: the patient * *

Input: The patient has a poorly differentiated prostate carcinoma
Output: the patient has a poorly differentiated prostate carcinoma

Input: Sloan Kettering Hospital has admitted several patients with hepatomas.
Output: * hospital has * several patients with *

Input: Cancer can often be treated with surgery
Output: cancer can often be treated with surgery

The doublet method script, with minor modifications, can scrub any length of any
text. To illustrate, I downloaded a public domain book from Project Gutenberg.

Project Gutenberg is a remarkable resource that publishes plain-text versions of
literary gems that have passed out of copyright. I used Anomalies and Curiosities of
Medicine by George M. Gould and Walter Lytle Pyle. This book has lots of medi-
cal terminology and vaguely resembles the kind of text that might be included in a
pathology report. Anyone can download the same text from

http://www.gutenberg.org/etext/747

An example of output paragraph is shown below. As expected with the doublet
method, there are many blocked words. This is a limitation of the doublet method.
If you use the standard list of doublets on any random book, you are bound to block

	T ext Scrubber for Deidentifying Confidential Text	 223

some innocent doublets that were not included in the “approved” list. The only way to
get around this limitation is to try to add safe doublets (from the text) to the approved
list.

In this important *, *, * * some historical *, describes a long series of experiments performed
on * in order to * the passage of *, *, *, *, *, *, * * the placenta. The placenta shows a real affin-
ity for * substances; in it * copper and mercury, but *, and it is therefore * it that the * * *;
in addition to its *, intestinal, and *, * * glycogen and acts as an * *, and so resembles in its
action the liver; * * of the fetus * only a potential *. * up of * in the placenta is not so general
as * of them in the liver of the mother. It may be * the placenta does not form a barrier
to the passage of * the circulation of the fetus; this would seem to * * *, which was always
found in the * never in the fetal organs. In * * lead and * accumulation of the * in the fetal
tissues is * in the maternal, perhaps from differences in * * or from greater diffusion. * it is
* * barrier to the passage of *, * * * * degree of obstruction: it allows copper and * * *, * with
greater difficulty. The * toxic substances in the fetus does not follow the same * * the adult.
They * more widely in the fetus. In the * liver is the chief * *. *, which in * * to accumulate
in the liver, is in the fetus * in the skin; copper accumulates in the fetal liver, * system, and
sometimes in the skin; * which is * in the maternal liver, but also in the skin, has * in the
skin, liver, * centers, and elsewhere * *. The frequent presence of * in the fetal * its physi-
ologic importance. It has probably not * * influence on its *. On the * in the placenta and
nerve * * * * abortion and the birth of dead *) Copper and lead did not cause *, * * so in two
out of six *. Arsenic is a * agent in the *, * * * * *. An important * is that * * is frequently and
seriously affected in syphilis, * * the special * for the accumulation of *. * * * * * action in
this disease? The * of lead in the central nervous system of the * the frequency and serious
character of * lesions. The presence of * in the * * * an explanation of the therapeutic results
of * of this substance in skin *.

The deidentified output for the entire book is available at

http://www.julesberman.info/aacom10.htm

The strengths of the doublet method are accuracy and speed (the 2.4 megabyte [MB]
book was deidentified in 3 seconds). I have never encountered an identifier (name of
person, personal information, or any other data that can be linked to a specific person)
in text scrubbed by the doublet method.

Exercises

	 1.	In Section 15.1, we examined the output of the scrubber operating on a public
domain book. We did not provide the script that does the job. Using Perl,
Python, or Ruby, modify the script described in Section 15.1 to accept a book,
or any plain-text file, as input.

	 2.	Choose a book or plain-text file. You can use the same Project Gutenberg
book used in Section 15.1, if you wish. Scrub the entire book, using the
script you wrote in Exercise 1. Read the first few pages of the output. Can

224	 Methods in Medical Informatics﻿

you find any identifying terms (names of people, places, identifying code,
etc.) in the output?

	 3.	In Chapter 14, we described an autocoder. In this chapter, we described a
scrubber. Why not do both at once?

			 I have prepared a large text file of 95,260 citation titles. Each line of the file
is an unpunctuated title. The titles all relate, in one way or another, to tumors,
making the file suitable for autocoding with the Neoplasm Classification. The
gzipped file, which you can use in this exercise, can be downloaded at http://
julesberman.info/book/tumor_ti.gz.

			 A script that autocodes and scrubs all 95,260 titles, in about 1 minute, has
been prepared. It produced an output that consists of each original title, fol-
lowed by the scrubbed version of the title, followed by the autocoded terms
within the title. The text of the output of the combined autocoder/scrubber
can be downloaded at http://julesberman.info/tu_both.gz.

			 Some of the output can be viewed at http://www.julesbermsn.info/
tu_both.htm (Figure 15.1).

			 Using Perl, Python, or Ruby, write your own script that autocodes and
scrubs text.

	 4.	In Exercise 3, the scrubber and autocoder does not need to preserve the origi-
nal punctuation of the reference title, because all of the titles in the sample text
have been converted to lowercase, and have had their punctuation removed.

			 A text file, with its original case and punctuation intact, is available at
http://www.julesberman.info/book/pathol5.txt.

			 Using Perl, Python, or Ruby, modify the combined autocoder and scrub-
ber to produce an automatic autocoder and scrubber that uses an unmodified
input text (with uppercase letters and punctuation) and preserves the original
case and punctuation in the output text.

	T ext Scrubber for Deidentifying Confidential Text	 225

O
r
i
g
i
n
a
l
	

–
	

c
a
r
c
i
n
o
i
d

t
u
m
o
r

o
f

t
h
e

c
o
m
m
o
n

b
i
l
e

d
u
c
t

a

r
a
r
e

c
o
m
p
l
i
c
a
t
i
o
n

o
f

v
o
n

h
i
p
p
e
l

l
i
n
d
a
u

s
y
n
d
r
o
m
e

S
c
r
u
b
b
e
d
	

–
	

c
a
r
c
i
n
o
i
d

t
u
m
o
r

o
f

t
h
e

c
o
m
m
o
n

b
i
l
e

d
u
c
t

a

r
a
r
e

c
o
m
p
l
i
c
a
t
i
o
n

o
f

v
o
n

*

*

*
.

A
u
t
o
c
o
d
e
	

–
	

c
a
r
c
i
n
o
i
d

C
4
1
3
9
1
0
0

A
u
t
o
c
o
d
e
	

–
	

t
u
m
o
r

C
0
0
0
0
0
0
0

A
u
t
o
c
o
d
e
	

–
	

c
a
r
c
i
n
o
i
d

t
u
m
o
r

C
4
1
3
9
1
0
0

O
r
i
g
i
n
a
l
	

–
	

e
s
t
a
b
l
i
s
h
m
e
n
t

a
n
d

c
h
a
r
a
c
t
e
r
i
z
a
t
i
o
n

o
f

a

n
e
w

c
e
l
l

l
i
n
e

d
e
r
i
v
e
d

f
r
o
m

h
u
m
a
n

c
o
l
o
r
e
c
t
a
l

l
a
t
e
r
a
l
l
y

S
c
r
u
b
b
e
d
	

–
	

*

a
n
d

c
h
a
r
a
c
t
e
r
i
z
a
t
i
o
n

o
f

a

n
e
w

c
e
l
l

l
i
n
e

d
e
r
i
v
e
d

f
r
o
m

h
u
m
a
n

c
o
l
o
r
e
c
t
a
l

*

*

*
.

A
u
t
o
c
o
d
e
	

–
	

t
u
m
o
r

C
0
0
0
0
0
0
0

O
r
i
g
i
n
a
l
	

–
	

i
n

v
i
v
o

a
n
t
i

t
u
m
o
r

e
f
f
e
c
t

o
f

h
y
b
r
i
d

v
a
c
c
i
n
e

o
f

d
e
n
d
r
i
t
i
c

c
e
l
l
s

a
n
d

e
s
o
p
h
a
g
e
a
l

c
a
r
c
i
n
o
m
a

c
e
l
l
s

S
c
r
u
b
b
e
d
	

–
	

i
n

v
i
v
o

*

*

e
f
f
e
c
t

o
f

*

*

*

d
e
n
d
r
i
t
i
c

c
e
l
l
s

a
n
d

e
s
o
p
h
a
g
e
a
l

c
a
r
c
i
n
o
m
a

c
e
l
l
s

o
n

e
s
o
p
h
a
g
e
a
l

c
a
r
c

A
u
t
o
c
o
d
e
	

–
	

t
u
m
o
r

C
0
0
0
0
0
0
0

A
u
t
o
c
o
d
e
	

–
	

e
s
o
p
h
a
g
e
a
l

c
a
r
c
i
n
o
m
a

C
3
5
1
3
0
0
0

A
u
t
o
c
o
d
e
	

–
	

c
a
r
c
i
n
o
m
a

C
0
0
0
0
0
0
0

O
r
i
g
i
n
a
l
	

–
	

m
o
d
e
l
i
n
g

i
n
t
r
a

t
u
m
o
r

p
r
o
t
e
i
n

e
x
p
r
e
s
s
i
o
n

h
e
t
e
r
o
g
e
n
e
i
t
y

i
n

t
i
s
s
u
e

m
i
c
r
o
a
r
r
a
y

e
x
p
e
r
i
m
e
n
t
s

S
c
r
u
b
b
e
d
	

–
	

*

*

t
u
m
o
r

p
r
o
t
e
i
n

e
x
p
r
e
s
s
i
o
n

h
e
t
e
r
o
g
e
n
e
i
t
y

i
n

t
i
s
s
u
e

*

*
.

A
u
t
o
c
o
d
e
	

–
	

t
u
m
o
r

C
0
0
0
0
0
0
0

O
r
i
g
i
n
a
l
	

–
	

c
a
v
e
o
l
i
n

1

a

t
u
m
o
r

p
r
o
m
o
t
i
n
g

r
o
l
e

i
n

h
u
m
a
n

c
a
n
c
e
r

S
c
r
u
b
b
e
d
	

–
	

*

*

a

t
u
m
o
r

*

r
o
l
e

i
n

h
u
m
a
n

c
a
n
c
e
r
.

A
u
t
o
c
o
d
e
	

–
	

c
a
n
c
e
r

C
0
0
0
0
0
0
0

A
u
t
o
c
o
d
e
	

–
	

t
u
m
o
r

C
0
0
0
0
0
0
0

Fi
gu

re
 1

5.
1 

W
eb

 p
ag

e
sh

ow
in

g
th

e
co

m
bi

ne
d

sc
ru

bb
ed

 a
nd

 a
ut

oc
od

ed
 o

ut
pu

t f
or

 a
 li

st
 o

f r
ef

er
en

ce
 ti

tle
s.

227

16
Web Pages and CGI Scripts

There are many network protocols for exchanging information over the Internet, and
for using remotely located applications. The number of standard protocols increases
every day. The bad news is that if you are a healthcare worker, with limited program-
ming skills and limited time for computer-related activities, you cannot master the
field of distributed network computation.

Nonetheless, you should definitely learn the fundamentals of HTTP (HyperText
Transfer Protocol) and CGI (Common Gateway Interface) programming. HTTP is
the language that your browser uses to fetch Web pages from servers. Automating
HTTP requests is extremely simple, and we provide a sample script in this chapter.
Also, we will show you how CGI uses your own server-side scripts to grab informa-
tion passed by a Web client (i.e., a browser), and return a Web page that is created on
the fly, by your script, using any and all of the computational facilities available on the
server. Once you have learned how to build a CGI script, all of the interactive, infor-
mational, and computational potential of the Internet is at your service.

16.1 � Grabbing Web Pages

Accessible Web pages are files (usually in HTML format) that reside on servers which
accept HTTP requests from clients connected to the Internet. Browsers are software
applications that send HTTP requests and display the received Web pages. Using
Perl, Python, or Ruby, you can automate HTTP requests. For each language, the
easiest way to make an HTTP request is to use a module that comes bundled as a
standard component of the language.

16.1.1 � Script Algorithm

	 1.	Import the module that makes HTTP requests.
	 2.	Make the HTTP request.
	 3.	If the request returns the Web page, print the page. Otherwise, print a mes-

sage indicating the request was unsuccessful.

Perl Script
#!/usr/local/bin/perl
use LWP::Simple;
$good_url = qq|http://julesberman.info/factoids/batch.htm|;

228	 Methods in Medical Informatics﻿

$content = get($good_url);
if (defined ($content))
 {
 print $content;
 }
else
 {
 print “\nSorry, the get() call returned undef for $good_url”;
 }
$bad_url = qq|http://julesberman.info/factoids/xxxxx.htm|;
$content = get($bad_url);
if (defined ($content))
 {
 print $content;
 }
else
 {
 print “\nSorry, the get() call returned undef for $bad_url”;
 }
exit;

For Perl, the module is LWP::Simple. A Web page that explains the module syntax
is available at

http://search.cpan.org/~gaas/libwww-perl-5.834/lib/LWP/Simple.pm

Python Script
#!/usr/local/bin/python
import urllib2
req = urllib2.Request(‘http://www.julesberman.info/factoids/batch.htm’)
try:
 response = urllib2.urlopen(req)
except urllib2.HTTPError, e:
 print ‘The server couldn\’t fulfill the request.’
 print ‘Error code: ‘, e.code
except urllib2.URLError, e:
 print ‘We failed to reach a server.’
 print ‘Reason: ‘, e.reason
else:
 print urllib2.urlopen(req).read()
req = urllib2.Request(‘http://www.julesberman.info/factoids/xxxxx.htm’)
try:
 response = urllib2.urlopen(req)
except urllib2.HTTPError, e:
 print ‘The server couldn\’t fulfill the request.’
 print ‘Error code: ‘, e.code
except urllib2.URLError, e:
 print ‘We failed to reach a server.’
 print ‘Reason: ‘, e.reason
else:
 print urllib2.urlopen(req).read()
exit

	W eb Pages and CGI Scripts	 229

An excellent Web tutorial explaining the urllib2 module is available at

http://docs.python.org/dev/howto/urllib2.html

Ruby Script
#!/usr/local/bin/ruby
require ‘net/http’
Net::HTTP.start(‘www.julesberman.info’) do
 |http|
 response = http.get(‘/factoids/batch.htm’)
 if response.body[400,3].nil?
 puts “Code = #{response.code}”
 puts “Message = #{response.message}”
 response.each{|key,value| puts key + “ “ + value}
 else
 puts response.body[400,10000]
 end
 response = http.get(‘/factoids/xxxxx.htm’)
 if response.body[400,300].nil?
 puts “Code = #{response.code}”
 puts “Message = #{response.message}”
 response.each{|key,value| puts key + “ “ + value}
 else
 puts response.body[400,300]
 end
end
exit

For Ruby, the Net::HTTP module comes bundled with the Ruby interpreter, in the stan-
dard library. Another module, Net::FTP, requests files by FTP (File Transfer Protocol).

More information on Ruby’s Net::HTTP module is available at

http://ruby-doc.org/stdlib/libdoc/net/http/rdoc/index.html

16.1.2 � Analysis

Perl, Python, and Ruby use their own external modules for HTTP transactions. Each
language’s module has its own peculiar syntax. Still, the basic operation is the same:
your script initiates an HTTP request for a Web file at a specific network address (the
URL, or Uniform Resource Locator). A response is received, and the Web page is
retrieved, if possible. Otherwise, the response will contain some information indicat-
ing why the page could not be retrieved.

In the example script, two Web pages were requested. The first is located at http://
www.julesberman.info/factoids/batch.htm, and is a valid URL. The second is located
at http://www.julesberman.info/factoids/xxxxx.htm, and is an invalid address.

You can see that, with a little effort, you can use this basic script to collect and
examine a large number of Web pages. With a little more effort, you can write your

230	 Methods in Medical Informatics﻿

own spider software that searches for Web addresses, and iteratively collects informa-
tion from Web links within Web pages.

16.2 � CGI Script for Searching the Neoplasm Classification

Here are the steps for using CGI scripts:

	 1.	Get yourself a server account with access to a “public_html” directory and a
“cgi-bin” subdirectory. This is usually accomplished by paying a commercial
ISP (Internet Service Provider) for a Web account, or by asking your company
or academic sponsor for an account. When you get your account, the provider
will explain to you how you can deposit, via FTP, Web pages (that you create)
onto the public_html directory. The provider will also explain how you can
deposit your CGI scripts onto the cgi-bin subdirectory. He will also explain
how you can assign settings to your CGI scripts that restrict access to certain
sets of users. The provider will also tell you if there are limitations on the kinds
of scripts permitted on the server (e.g., specific versions of a language might be
required by the server, and the server may be set up for one language and not
another).

	 2.	Create a Web page that creates an HTML form. Almost every HTML book
contains information about forms. Forms are HTML objects that accept user
input and send the input to a designated server. Text boxes and radio but-
tons are commonly encountered form objects. They can be created in just a
few lines of HTML code. You will put the Web page in your public_html
directory. This Web page will be accessible to anyone in the world who hap-
pens to know the Web address of the HTML page. Your server manager will
provide you with the Web address of your public_html directory, and the
complete address of the Web page is simply the HTML file name appended
to the directory address.

	 3.	Create a script that sits in the cgi-bin subdirectory of a server, whose specific
address is included in the form that you previously included in your Web
page. When anyone viewing your Web page, enters information in the form,
and submits the information (usually by clicking on a button in the form), the
information will be sent to your server-side script and processed.

This describes the basic steps for a CGI script. With a little imagination, you can see
the enormous power of this approach. The best thing about CGI is that you do not
need to learn another language. You simply apply the programming skills you have
already mastered.

The neoplasm taxonomy is an example of a medical nomenclature that is easy to
parse, search, and produce an output in a preferred format. We can use the neoplasm

	W eb Pages and CGI Scripts	 231

taxonomy to search for neoplasm terms that match words and phrases submitted on a
Web page. This will be our introductory CGI script.

16.2.1 � Script Algorithm

	 1.	Create a very simple Web page, consisting of a simple form containing a text box
for user input (Figure 16.1). The form will contain the URL (Universal Resource
Locator, or Web address) for the cgi-bin where your CGI script resides.

	 2.	Upload the HTML document (your Web page) to the public_html directory
on your Web server. Clients will send requests by entering information on the
HTML document.

	 3.	Create a script that you will upload to the cgi-bin of your server, which has the
address specified in the Web page form (steps 1 and 2). The script will execute
steps 4–8 when it receives a request from a client.

	 4.	Capture the character string sent by the Web page, using command syntax
specific to your preferred programming language, and place the text into a
string object.

	 5.	Print out the HTML header of the Web page that will be returned to the cli-
ent (the user, sitting at a browser, somewhere on planet Earth, and looking at
your Web page).

	 6.	Process the text that the user sent to the CGI script. In this case, the informa-
tion will be matched against every line in the neoself document, a 17+ megabyte
(MB) collection of neoplasm terms that we previously created in Chapter 11.
The neoself document must be deposited onto the server’s cgi-bin.

	 7.	Parse through every line of the neoself document. When a line that contains
the string entered by the Web user is encountered, it is printed.

	 8.	Print the HTML tags that mark the end of the Web page.

Perl Script

HTML text for client (requesting) web page:

<html>
<head>
<title>post</title>
</head>

Figure 16.1  A Web page search box that will send a character string to your CGI script. In this case, we have entered
the word “rhabdoid” into the text box.

232	 Methods in Medical Informatics﻿

<body>

<form name=”sender” method=”GET”
action=”http://www.julesberman.info/cgi-bin/neopull.pl”>

<center><input type=”text” name=”tx” size=38
maxlength=48 value=””>
<input type=”submit” name=”bx” value=”SUBMIT”></center>
</form>

</body>
</html>

#!/usr/local/bin/perl
print “Content-type: text/html\n\n”;
$buffer = ($ENV{‘QUERY_STRING’});
#read(STDIN, $buffer, $ENV{‘CONTENT_LENGTH’});
print qq|<html><head><title></title></head><body>\n\n|;
if ($buffer =~ /Delete\+this\+and\+enter/)
 {
 print qq|\n

You didn’t enter an neoplasm name in the
submit box, above |;
 print qq|\n

</body></html> \n\n\n\n |;
 exit;
 }
if ($buffer =~ /^[a-zA-Z]+$/)
 {
 print qq|\n

Only letters and spaces permitted.|;
 print qq|\n

</body></html> \n\n\n\n |;
 exit;
 }
if ($buffer =~ /eval/i)
 {
 print qq|\n

No eval operators please |;
 print qq|\n

</body></html> \n\n\n\n |;
 exit;
 }
$buffer =~ /tx\=([^&]+)&/;
$term = $1;
$term =~ s/%(..)/pack(“c”,hex($1))/ge;
print “Your entry was \<b\>$term\<\/b\>”;
$term =~ s/omas/oma/o;
$term =~ s/tumo[u]*rs/tumor/o;
$term =~ s/neoplasms/neoplasm/o;
$term =~ s/kemias/kemia/o;
open (TERMS, “neoself”);
$line = “ “;
while ($line ne “”)
 {
 $line = <TERMS>;
 if ($line =~ /$term/i)
 {

	W eb Pages and CGI Scripts	 233

 $state = 1;
 print “\<br\>\n”;
 $line =~ s/\|/\<br\>\n/g;
 print “\<br\>$line\n”;
 }
 }
print qq|\n

</body></html> \n\n\n\n |;
exit;

Python Script

HTML text for client (requesting) web page:

<html>
<head>
<title>post</title>
</head>
<body>

<form name=”sender” method=”GET”
action=”http://www.julesberman.info/cgi-bin/neopull.py”>

<center><input type=”text” name=”tx” size=38
maxlength=48 value=””>
<input type=”submit” name=”bx” value=”SUBMIT”></center>
</form>

</body>
</html>

#!/usr/local/bin/python
import cgi, re, sys
import cgitb; cgitb.enable()
print “Content-type: text/html”
print
print “<html><head><title>Sample CGI Script</title></head><body>”
form = cgi.FieldStorage()
message = form.getvalue(“tx”, “(no message)”)
term_check = re.search(r’[A-Za-z]+$’, message)
if not term_check:
 print “
Only alphabetic letters and spaces are permitted in
the query box”
 print “</body></html>”
 sys.exit()
print “
Your query term is “ + message + “
”
in_text = open(“neoself”, “r”)
for line in in_text:
 query_match = re.search(message, line)
 if query_match:
 line = re.sub(r’\|’,”
”, line)
 print “
” + line + “
”
exit

234	 Methods in Medical Informatics﻿

Ruby Script

HTML text for client (requesting) web page:

<html>

<head>

<title>post</title>

</head>

<body>

<form name=”sender” method=”GET”

action=”http://www.julesberman.info/cgi-bin/neopull.rb”>

<center><input type=”text” name=”tx” size=38

maxlength=48 value=””>

<input type=”submit” name=”bx” value=”SUBMIT”></center>

</form>

</body>

</html>

#!/usr/local/bin/ruby

print “Content-type: text/html\r\n\r\n”

print “<html><body></body></html>\r\n”

require ‘cgi’

$SAFE = 1

cgi = CGI.new

query_term = cgi.params[“tx”].to_s

if (query_term =~ /^[a-z\s]+$/i)

 query_term.untaint

else

 print “\<br\>Only alphabetic letters and spaces are permitted in

the query box\n”

 exit

end

print “\<br\>Your query term is #{query_term}\<br\>\<br\>\r\n”

text = File.open(“neoself”, “r”)

text.each do

 |line|

 if (line =~ /#{query_term}/)

 line.gsub!(/\|/,”\<br\>\r\n”)

 puts “\<br\>#{line}\<br\>”

 end

end

print “</body></html>\r\n”

exit;

	W eb Pages and CGI Scripts	 235

16.2.2 � Analysis

In this case, the user entered the word “rhabdoid” into the Web page query box.
The output immediately appears, as another Web page, in the same user’s browser
(Figure 16.2).

Notice that when the user pushes the “submit” button, all of the transmitted infor-
mation appears in the browser’s entry box, at the top of the Web page:

Exercises

	 1.	Using Perl, Python, or Ruby, write a script that opens a Web page, searches
for Web page addresses included in the Web page, and collects all of the con-
tents of all the corresponding Web pages, putting the aggregate data into a
single file.

	 2.	Forms send information to server-side CGI scripts through either of two con-
venient message formats, “GET” or “POST.” When a GET message is sent
by an HTML form, the string containing the GET message appears at the
browser’s entry box. When a POST message is sent, the message does not
appear in the browser. In the example provided in this chapter, the form sent
a GET message. If the message were sent as a POST, the html form would
appear as shown here:

Figure 16.2  Output of search for “rhabdoid”.

236	 Methods in Medical Informatics﻿

<html>
<head>
<title>post</title>
</head>
<body>

<form name=”sender” method=”POST”
action=”http://www.julesberman.info/cgi-bin/neopull.py”>

<center><input type=”text” name=”tx” size=38
maxlength=48 value=””>
<input type=”submit” name=”bx” value=”SUBMIT”></center>
</form>

</body>
</html>

		 Using Perl, Python, or Ruby, revise your CGI script to accept a POST mes-
sage (instead of a GET message).

	 3.	In the example in this chapter, the output of the CGI script (the reply HTML
Web page) contains the terms from the Neoplasm Classification that match
the query term that was entered in the HTML page. Users who receive a
reply to a form will expect to receive another form, just like the one they used
originally, so that they can send another query. Using Perl, Python, or Ruby,
revise the CGI script to insert a form (in the output html page, returned to the
client) that will allow the user to submit another neoplasm term query.

	 4.	In Chapter 10, Section 10.1, we developed a script that determines the lineage
of organisms in Taxonomy.dat. Using Perl, Python, or Ruby, write an HTML
page (for client input) and a CGI script that accepts the name of an organism
as input and returns the ancestral lineage of the organism.

			 Your project should look something like the following search engine
page:

http://www.julesberman.info/post.htm

	 5.	In Chapter 3, Section 3.4, we showed how we can take an array of numbers
and transform it into a simple bar graph. Using Perl, Python, or Ruby, write
an HTML page that allows clients to input a series of comma-separated non-
negative numeric values, and a CGI script that returns a graph representing
the numeric array.

237

17
Image Annotation

This chapter is written for people who need to annotate their photomicrographs in a
manner that binds descriptive data to the image, so that

	 1.	Collections of photomicrographs can be searched based on their descriptive
content, or by their image content, or both.

	 2.	Individual images can be sent to colleagues, and the person who receives
the image can extract, from the image file, descriptive text that the sender
included with the image.

	 3.	After inserting text inside an image, the person who prepared the image can be
certain that years later, after all the clinical and pathologic details associated with
the image have been long forgotten, the image will still provide this information.

	 4.	The data included in the image can be prepared in a standard form that is
computer-parsable and understandable to software agents that search files on
the Web.

Biomedical images have no value unless they are annotated with information that
describes the image.

Important descriptors of an image might include

File information
Image-capture information
Image-format information
Specimen information
Patient information
Pathology information
Region-of-interest information

The easiest way of annotating an image is to compose a free-text description of your
image and any other information you would like to add, such as your name, and add-
ing the information as a Comment field in the header of the image file. The Comment
will not alter the binary content of the image or the visual form of the image. When
the file is copied, the header comment will be retained, and anyone receiving the
image can read what you have added, using a simple script.

Professional curators may be held to a slightly higher standard. The Dublin Core is
basic information designed by librarians to provide a minimal set of data to describe
the contents of any electronic document. There are about 15 Dublin Core elements,

238	 Methods in Medical Informatics﻿

including the name of the person who created the file, the date that the file was cre-
ated, and the usage rights of the file. A professional image should contain all of the
Dublin Core elements in its header. This chapter contains methods for inserting anno-
tations into the popular formats for electronic images.

17.1 � Inserting a Header Comment

Image files consist of binary information about the pixels (color spots) comprising the
visual image, together with an image header that provides information explaining
how the pixel data is organized (i.e., format-specific information). Within the image
header are reserved blocks that can be enlarged with textual annotations. Using a
reserved header block is an excellent way of conveying descriptive information within
an image.

There are three common ways of inserting text data into the header of a binary
image. You can add data to a comment field (sometimes called COM data), or your can
add data to the two standard data fields used by camera manufacturers and commercial
imaging applications (the EXIF and IPTC fields). We will show you simple scripts
whereby you can enter and extract data contained in any of these three header blocks.

Additional information on EXIF is available at

http://www.exif.org/

Additional information on IPTC is available at

http://iptc.cms.apa.at/cms/site/index.html?channel=CH0099

17.1.1 � Script Algorithm

	 1.	Import the language-specific external module that supports modifications to
image headers.

	 2.	Create an image object, providing it with the filename of the image or images
that you would like to modify. In this example script, you will need to substi-
tute your own image files for any file names that appear in the script.

	 3.	Add a comment to the image header, using the external module’s com-
mand syntax.

	 4.	Save the modified file. It is advisable to save the modified file as a second file,
under a newly created filename, if you have not made backup copies of the
original file.

Perl Script

Download the external module Image::MetaData::JPEG from the Perl packet man-
ager (if ActiveState Perl is installed on your system, simply enter ppm as your com-
mand line and follow the instructions on the packet manager client).

	Im age Annotation	 239

#!/usr/local/bin/perl
use Image::MetaData::JPEG;
$file = new Image::MetaData::JPEG(“saturn.jpg”);
$file->add_comment(“hello world”);
$file->save(“saturn2.jpg”);
exit;

Python Script

#!/usr/local/bin/python
def pngsave(im, file):
 from PIL import PngImagePlugin
 meta = PngImagePlugin.PngInfo()
 for k,v in im.info.iteritems():
 meta.add_text(k, v, 0)
 im.save(file, “PNG”, pnginfo=meta)
from PIL import Image
image = Image.open(“saturn.jpg”)
image.save(“saturn.png”)
im = Image.open(“saturn.png”)
im.info[“hello”] = “goodby”
im.info[“now”] = “then”
pngsave(im, “saturn2.png”)
exit

Ruby Script

Here is a Ruby script that inserts a comment into a PNG image and saves it as a
JPEG image:
#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
walnut = ImageList.new(“neo1.png”)
walnut.cur_image[:Comment] = “Hello World”
walnut_copy = ImageList.new
walnut_copy = walnut.cur_image.copy
walnut_copy.write(“out.jpg”)
exit

Here is a Ruby script that inserts a Comment and a Label into the JPEG header:
#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
walnut = ImageList.new(“c\:\\ftp\\rb\\CT4192~1.JPG”)
walnut.cur_image[:Label] = “Salutations”
walnut.cur_image[:Comment] = “Hello World”
#walnut.properties{|name, value| print “#{name} #{value}\n”}
walnut_copy = ImageList.new
walnut_copy = walnut.cur_image.copy
exit

240	 Methods in Medical Informatics﻿

This Ruby script inserts a header into a TIFF file:

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
tissue = ImageList.new(“submu_bw.tif”)
tissue.cur_image[:Comment] = “Hello world”
tissue_copy = ImageList.new
tissue_copy = tissue.cur_image.copy
tissue_copy.write(“submu_2.tif”)
exit

17.1.2 � Analysis

After a comment has been inserted into an image header, it can be modified at a later
date. Modifications should be dated and recorded within the image header.

17.2 � Extracting the Header Comment in a JPEG Image File

Once you have prepared a file with your own comments inserted into the image header,
you will need a way to extract that information.

17.2.1 � Script Algorithm

	 1.	Import any necessary image modules.
	 2.	Create an image object, providing the filename of the image of interest. In

this example script, you will need to substitute your own image files for any
file names that appear in the script.

	 3.	Using the module operator that gets header comments, fetch the comments
and output the returned text to the monitor.

Perl Script

#!/usr/local/bin/perl
use Image::MetaData::JPEG;
$file = new Image::MetaData::JPEG(“saturn2.jpg”);
print join(“”, $file->get_comments());
exit;

Python Script

#!/usr/local/bin/python
from PIL import Image
im = Image.open(“saturn2.png”)
print im.info
exit

	Im age Annotation	 241

Ruby Script

To extract just the Comment section:

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
walnut = ImageList.new(“out.jpg”)
print walnut.properties.fetch(“Comment”)
exit

The same method works for most image formats:

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
tissue = ImageList.new(“submu_2.tif”)
print tissue.properties[‘Comment’]
exit

To extract all of the annotated properties, including the Comment section:

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
walnut = ImageList.new(“out.jpg”)
walnut.properties{|name, value|puts “#{name} #{value}”}
exit

The same script words for PNG images:

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
img = Magick::Image::read(“c\:\\ftp\\py\\mes.png”).first
img.properties{|name,value| puts “#{name} #{value}”}
exit

17.2.2 � Analysis

Comments can be lost by inadvertently overwriting an old comment when a new
comment is inserted. It is good practice to convert a copy of an image (rather than the
original image) when changing image formats. When inserting comment text into
an image, make sure there is no preexisting comment that may be overwritten by the
new comment. If there is a preexisting comment, you can concatenate it with the new
comment, and insert the combined text as your new header text.

Reading embedded image comments is a simple operation, and scripts should not
avoid checking on header content.

242	 Methods in Medical Informatics﻿

17.3 � Inserting IPTC Annotations

Photographers who license their images often insert copyright and contact informa-
tion in IPTC (International Press Telecommunications Council) headers. As a bio-
medical professional, you will not need to insert IPTC data. You can insert copyright
and contact information in the comment section, as Dublin Core tags (see Chapter 18,
Section 18.2).

17.4 � Extracting Comment, EXIF, and IPTC Annotations

Whenever you receive an image that you intend to use for patient care, research, or any
medical activity, you should examine the header contents. Luckily, it is much easier to
extract the textual contents of an image than to insert data. Image Magick’s “Identify”
command extracts header data inserted in Comment, EXIF (used by many digital
cameras), or IPTC formats.

17.4.1 � Script Algorithm

	 1.	Use a system call to invoke Image Magick’s Identify command.
	 2.	Modify the Identify command to produce a verbose output. In this example

script, you will need to substitute your own image files for any file names that
appear in the script.

	 3.	Redirect the output to a text file.

Perl Script

#!/usr/local/bin/perl
system(“Identify -verbose c\:\\ftp\\3320_out.jpg \>myimage.txt”);
exit;

Python Script

#!/usr/local/bin/python
import os
os.system(“Identify -verbose c:/ftp/3320.jpg >myimage.txt”);
exit

Ruby Script

#!/usr/local/bin/ruby
system(“Identify -verbose c:/ftp/3320.jpg >myimage.txt”)
exit

17.4.2 � Analysis

Although scripting languages have their own interfaces to ImageMagick, and
ImageMagick has specific methods for extracting the information in the Comment,

	Im age Annotation	 243

EXIF, and IPTC header sections, there really is no advantage in using any of these
language-specific techniques. If you have ImageMagick installed on your computer,
a (language-independent) system call to the “Identify” command will collect any and
all information that is in the image header. A partial listing of the output is shown in
Figure 17.1.

When EXIF or IPTC data is included in an image header, the header output will
contain the word “Profile”, followed by “8BIM” to mark the beginning of IPTC infor-
mation; and APP1, to mark the beginning of EXIF data. You may occasionally see
“Profile”, followed by APP12. APP12 was used in early digital cameras.

17.5 � Dealing with DICOM

In the field of biomedicine, DICOM (Digital Imaging and Communications in
Medicine) is the format currently used for radiologic images and in hospital-based
picture archiving and communication systems (PACS). DICOM was developed
over several decades. DICOM is very complex, using a model for data storage that
is unlike any other image file format. The DICOM standard includes transfer and

Figure 17.1  The verbose output of ImageMagick’s “Identify” command for the 3320_out.jpg image file, showing all the
header information, with the exception of the “Histogram” listing, which is many lines in length. Near the bottom is the
“Comment” that we inserted into the header, in Chapter 18, Section 18.3.

244	 Methods in Medical Informatics﻿

communication protocols, used to negotiate the exchange of information between
radiologic devices or different parts of a single device (e.g., between CT machine and
CT workstation). Very few people outside the radiology device field fully understand
the DICOM standard.

For most purposes, you will likely be using images saved in the JPEG format,
which is the favored format for millions (possibly billions) of Web images. Most digi-
tal cameras save images as JPEG files, and, as we have seen, programming libraries
have access to free modules that modify or convert JPEG images. If you work in a
medical center or have colleagues who use medical center PACS software, you may
need to deal with DICOM. Unless you specialize in radiologic images, you will prob-
ably want to convert DICOM images to JPEG or some other popular image format,
that can be easily handled with Perl, Python, or Ruby. If you need to deliver images in
DICOM format to your medical colleagues, it is easy enough to convert your JPEG
images back to DICOM, as necessary.

17.6 � Finding DICOM Images

You can find many DICOM images by anonymous ftp at

ftp://ftp.erl.wustl.edu/pub/dicom/images/version3/RSNA95/

These images can be used as practice files for your own scripts.
DICOM has a header that can be extracted from the DICOM image file; it con-

tains textual descriptive information about the image (Figure 17.2).
As you can see, most of the header information in a DICOM file is radiology oriented.

Figure 17.2  Part of a typical DICOM header.

	Im age Annotation	 245

17.7 � DICOM-to-JPEG Conversion

ezDICOM (copyright 2002, Wolfgang Krug and Chris Rorden) is a medical viewer
for DICOM images. It is distributed along with dcm2jpg, a command-line application
that can convert DICOM images into standard bitmap file formats (JPEG, PNG, and
BMP). In addition, it will convert a DICOM image to its textual header information.

You can download the freeware DICOM to JPEG converter from

http://www.cabiatl.com/mricro/ezdicom/

The downloaded zipped file is ezdicom.zip. When you de-archive the zip file, save
the dcm2jpg.exe file. The dcm2jpg.exe will convert a DICOM file (on the command
line) to a JPEG file. When you rename the .exe file, you change the default conversion
behavior:

dcm2jpg.exe 218,112 bytes—converts to DICOM to JPEG format
dcm2bmp.exe 218,112 bytes—converts to DICOM to BMP format
dcm2txt.exe 218,112 bytes—extracts the text header from a DICOM file

To extract the text header from a DICOM file, invoke the following command line in
the subdirectory containing dcm2txt.exe:

c:\ftp>dcm2txt.exe c:\ftp\1.dcm
1 Creating: c:\ftp\1.txt

This creates a text file that looks something like the sample header figure. Save this
text file. We can insert it into the Comment section of a JPEG image. The dcm2jpg.exe
software can be executed from within a Perl, Python, or Ruby script.

17.7.1 � Script Algorithm

	 1.	From the script, make a system call to the external program dcm2jpg.exe, sup-
plying the DICOM file name, and its full path. In this example script, you will
need to substitute your own image files for any file names that appear in the
script. This will create a JPEG file in the same directory as the DICOM file.

	 2.	From the script, make a system call to the external program dcm2txt.exe, sup-
plying the DICOM file name and its full path. This will create a text file of
the DICOM header in the same directory as the DICOM file.

Perl Script

#!/usr/local/bin/perl
system(“dcm2jpg.exe c\:\\ftp\\pl\\1.dcm”);
system(“dcm2txt.exe c\:\\ftp\\pl\\1.dcm”);
exit;

246	 Methods in Medical Informatics﻿

Python Script

#!/usr/local/bin/python

import os

os.system(“dcm2jpg.exe c:/ftp/py/1.dcm”)

os.system(“dcm2txt.exe c:/ftp/py/1.dcm”)

exit;

Ruby Script

#!/usr/local/bin/ruby

system(“dcm2jpg.exe c:/ftp/py/1.dcm”)

system(“dcm2txt.exe c:/ftp/py/1.dcm”)

exit

17.7.2 � Analysis

The script produces two files: 1.jpg and 1.txt. The JPEG file lacks the clinical header
that was contained in the DICOM file, but this information is now available to us in
the 1.txt file. The textual DICOM header can be inserted back into a JPEG file, using
the methods described earlier in this chapter.

Exercises

	 1.	Use Perl, Python, or Ruby to add a free-text comment into a JPEG file.
Convert your file to another file format using your favorite image software.
Use Perl, Python, or Ruby to extract your comment from the image file in its
new format. Was the comment preserved when the file format was changed?
Write a short script that extracts your comment from your JPEG image, con-
verts the JPEG image to another format, checks to see if the comment was
preserved, and reinserts the comment into the reformatted image if the com-
ment was not saved during the reformatting step.

	 2.	Using Perl, Python, or Ruby, write a script that parses a collection of at least
10 images, searching for EXIF, IPTC, and COM comments, and prepares
a file listing each image (by image filename), along with all of the extracted
metadata for each image.

	 3.	Create a subdirectory, and fill it with 10 images of your choice, in TIFF, PDF,
GIF, or PNG formats. Using Perl, Python, or Ruby, write a script that will
insert your name, and the date into the header for each image, yielding files of
the same name and format as the original image.

	 4.	Using Perl, Python, or Ruby, convert each of the images from Exercise 3 to a
JPEG image, carrying the same header.

	 5.	Using Perl, Python, or Ruby, write a script that will produce an HTML doc-
ument that displays each of the 10 images, with the header of each image
appearing directly below the image on the displayed page.

	Im age Annotation	 247

	 6.	Write a script, using Perl, Python, or Ruby, that converts a DICOM image to
a JPEG image, extracts the text header from the DICOM image, and inserts
the DICOM header into the comment section of the JPEG image.

	 7.	Write a new script, in Perl, Python, or Ruby, that opens the directory con-
taining at least 10 DICOM files, and converts each of the DICOM files to a
JPEG file.

249

18
Describing Data with

Data, Using XML

The importance of XML as a data-organizing tool cannot be overstated. As a data-
organizing technology, it is as important as the invention of written language (circa
3000 BC) or the mass-printed book (circa 1450 AD). At its simplest, XML is a method
for marking up files so that every piece of data is surrounded by bracketed text that
describes the piece of data (e.g., <number>5</number>). Markup allows us to convey
any message as XML (a pathology report, a radiology image, a genome database, a
software program, an e-mail).

XML markup tags are sets of alphanumeric descriptors enclosed by angle brackets.
Each tag is repeated at the beginning and end of the data element, the ending tag
demarcated by the slash character “/”.

The following are examples of XML markup:

<name_of_patient>John Public</name_of_patient>
<age_of_patient>25 years</age_of_patient>
<gender_of_ patient>Male</gender_of_ patient>
<birthdate_of_patient>January 1, 1954</birthdate_of_patient>

The same data could have been nested as children of a father tag:

<patient>
<name>John Public</name>
<age>25 years</age>
<gender>Male</gender>
<birthdate>January 1, 1954</birthdate>
</patient>

A file that contains XML markup is considered an XML file only if it is well
formed. That is, it must have a proper XML header; it must consist of text in a read-
able form (typically, the simple letters and punctuation found on a keyboard), and
it must follow the general rules for using tagging data. The header can vary some-
what, but it usually looks something like: <?xml version=“1.0”?>. Tags must have a
certain form (e.g., spaces are not permitted within a tag), and tags must be properly
nested (i.e., no overlapping). For example, <chapter><chapter_title>Informaticians
love XML</chapter_title></chapter> is nicely nested XML. <chapter><chapter_
title>Pathologists love XML</chapter></chapter_title> is improperly nested.

250	 Methods in Medical Informatics﻿

Because XML follows a strict syntax, it is relatively easy to write parsing scripts
that extract the data values and descriptors in XML files. It is also easy to write pars-
ing scripts that detect violations of XML syntax rules.

18.1 � Parsing XML

In Chapter 11, we wrote an XML parser for the neoplasm taxonomy. While parsing
the file, our script automatically checked to determine that the file is well-formed
XML (i.e., if it conforms to the rules of XML syntax). Had there been any noncon-
forming lines or characters anywhere in the 10+ megabyte (MB) neoplasm taxonomy
file, our script would have indicated the specific lines in the file where a syntactic error
occurred. Let us write a script whose only purpose is to check XML documents for
proper syntax.

18.1.1 � Script Algorithm

	 1.	Import an XML parsing module.
	 2.	Create a new parser object.
	 3.	Using a (parsing) method available in the parsing module, provide the method

with the name of the file you wish to parse.
	 4.	The parsing module will send a message to your screen if any parts of the file

are not well formed.

Perl Script

#!/usr/local/bin/perl
use XML::Parser;
my $parser = XML::Parser->new(Handlers => {
Init => \&handle_doc_start,
Final => \&handle_doc_end,
});
$parser -> parsefile(“c\:\\ftp\\neocl.xml”);
sub handle_doc_start
{
print “\nBeginning to parse file now\n”;
}
sub handle_doc_end
{
print “\nFinished. $file is a well-formed XML File.\n”;
}
exit;

Sample output:

Beginning to parse file now
mismatched tag at line 138649, column 2, byte 10228415
at C:/Perl/lib/XML/Parser.pm line 187

	D escribing Data with Data, Using XML	 251

Python Script

#!/usr/local/bin/python
import xml.sax
import pprint
parser = xml.sax.make_parser()
parser.parse(‘C:\\ftp\\neocl.xml’)
exit

Sample output:

C:\ftp\py>python rexml.py
Traceback (most recent call last):
File “rexml.py”, line 7, in <module>
parser.parse(‘C:\\ftp\\neocl.xml’)
File “C:\Python25\lib\xml\sax\expatreader.py”, line 107, in parse
xmlreader.IncrementalParser.parse(self, source)
File “C:\Python25\lib\xml\sax\xmlreader.py”, line 123, in parse
self.feed(buffer)
File “C:\Python25\lib\xml\sax\expatreader.py”, line 211, in feed
self._err_handler.fatalError(exc)
File “C:\Python25\lib\xml\sax\handler.py”, line 38, in fatalError
raise exception
xml.sax._exceptions.SAXParseException: C:\ftp\neocl.xml:138654:2:
mismatched tag

Ruby Script

#!/usr/local/bin/ruby
require ‘rexml/document’
require ‘rexml/streamlistener’
include REXML
class Listener
 include StreamListenerend
listener = Listener.new
parser = Parsers::StreamParser.new(File.new(“c:/ftp/neocl.xml”),
listener)
parser.parse
exit

Sample output:

C:\ftp\rb>ruby rexml.rb
c:/ruby/lib/ruby/1.8/rexml/parsers/baseparser.rb:315:in `pull’:
Missing end tag
for ‘stage’ (got “unclassified”) (REXML::ParseException)
Line: 138654
Position: 10228801
Last 80 unconsumed characters:
from c:/ruby/lib/ruby/1.8/rexml/parsers/streamparser.rb:16:in `parse’
from rexml.rb:12

252	 Methods in Medical Informatics﻿

18.1.2 � Analysis

This script takes just a few lines of code, and parses XML files very quickly. The script
determines whether the XML file is well formed. For this example, I deliberately
opened the 10+ MB neocl.xml file, and created a syntax error by removing the end
of the stage tag a few lines from the end of the file. The script found the error and
reported the file location where the error occurred. Syntax errors, when they occur,
are always detected.

There are basically two types of XML parsing methods: stream methods (such as
our script), and DOM (Document Object Model) methods.

Stream methods parse through the file, much like any text parser, until an XML
“event” occurs (such as an encounter with the beginning of an XML tag, or the end of
an XML tag). When an event occurs, information is collected that must be reconciled
with subsequent events (e.g., every tag must have an end tag, and child tags must end
before the parent tag ends). The streaming parsers permit users to add additional com-
mands to be executed during an event.

DOM parsers build a model of the XML structure (i.e., all the XML objects and
their relationships to each other). DOMs allow us to use the relationships among
XML objects in applications. The drawback of DOM parsers is that iterations up and
down the relational model, as the XML document is parsed, slow the script. A large
XML document (many megabytes) with a complex XML structure can take a very
long time to parse.

Because I tend to use big XML documents, with many child elements, that have
long lineages, I use stream parsers exclusively. I suspect that healthcare workers, who
use large XML data sets, will tend to rely on stream parsers.

18.1.3 � Resource Description Framework (RDF)

The text in this section is an excerpt from an open access document (Berman,
J.J., Moore, G.W. Implementing an RDF Schema for Pathology Images, from
the Association for Pathology Informatics, APIII, Pittsburgh, PA, September 10,
2007. http://www.julesberman.info/spec2img.htm.)

RDF is a variant of XML, and conforms to the same tagging syntax as XML. The
key difference between RDF and XML is that paired data and metadata (the essence
of XML) is always bound to an identified object, forming a data “triple.”

Triples consist of specified subject, metadata, and data, in that sequence.
Examples of triples found in a medical data set:

“Mr. Rheeus” “blood glucose level” “77”

The data is the number, “77”. The metadata is the descriptor, “blood glucose level”. The
specific object is “Mr. Rheeus”.

	D escribing Data with Data, Using XML	 253

<Description>
<Description_object>Mr. Rheeus</Description_object>
<Blood_glucose_level>77</Blood_glucose_level>
</Description>

This kind of XML statement demonstrates the sharp distinction between data–
metadata pairs, and a meaningful assertion. A data–metadata pair does not make
a meaningful statement. When the data–metadata pair is bound to an object (the
thing that the data–metadata pair is “about”), then you have a meaningful assertion.
In this example, we are saying that there is a blood glucose level of 77 that belongs to
Mr. Rheeus. Triples can be parsed, collected, combined with other triples (bound to
the same object) collected from diverse data sources, repackaged (in new RDF docu-
ments), searched, and analyzed.

As you might expect, RDF has its own syntax for expressing triples:

<rdf:Description rdf:about=“http://www.patient_info.com/lab.htm#Mr_Rheeus”>
<lab:Blood_glucose_level>77</lab:Blood_glucose_level>
</rdf:Description>

In RDF, objects are specified by a Web address, or some identifier that uniquely dis-
tinguishes the object from all other objects.

An RDF document might look something like this:

<?xml version=“1.0” encoding=“UTF-8”?>
<rdf:RDF
xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:lab=“http://lab.org/elements/”>
<rdf:Description rdf:about=“http://www.patient_info.com/lab.htm#Mr_Rheeus”>
<lab:Blood_glucose_level>77</lab:Blood_glucose_level>
</rdf:Description>
</rdf:RDF>

An important feature of RDF is its ability to fully describe all of the metadata included
in an RDF document, and to provide a class hierarchy for metadata. The descriptions
and hierarchical organization of metadata are provided in external documents, called
Schemas, that are referenced from within RDF documents that use the metadata tags
described in the Schema.

In the short example here, the “Blood_glucose_level” tag is described in an external
document, at “http://lab.org/elements/”

RDF is the syntax and logic underlying the semantic Web, and every serious infor-
matician must learn to use RDF.

For the purposes of this book, we will only be examining a very specific example of
RDF annotation, the Dublin Core.

254	 Methods in Medical Informatics﻿

18.2 � Dublin Core Metadata

The Dublin Core consists of about 15 data elements, selected by a group of librarians,
that specify the kind of file information a librarian might use to describe a file, index
the described file, and retrieve files based on included information.

There are many publicly available documents that describe the Dublin Core elements:

http://www.ietf.org/rfc/rfc2731.txt

The Dublin Core elements can be inserted into HTML documents, simple XML
documents, or RDF documents. A public document explains exactly how the Dublin
Core elements can be used in these file formats:

http://dublincore.org/documents/usageguide/#rdfxml

An example of a simple, and shortened, Dublin Core file description in RDF format
is shown in Figure 18.1:

Because RDF is a dialect of XML, we can parse RDF files with the same scripts
that parse XML files. Because XML (and RDF) are ASCII files, they can be inserted
into the header sections of image files. When Dublin Core RDF is inserted into an
image file, it can be easily extracted and used to identify the file, and the individual
Dublin Core elements can be combined with Dublin Core elements from other files
to organize a wide range of data sources.

18.3 � Insert an RDF Document into an Image File

It is easy to insert an RDF document into the header of a JPEG image file, and it is
just as easy to extract the RDF triples.

- <rdf:RDF>

 - <rdf:Description rdf:about=”http://www.julesberman.info/”>

 <dc:creator> Jules J. Berman</dc:creator>

 <dc:title> Methods in Medical Informatics</dc:title>

 - <dc:description>

 Medical Informatics methods and algorithms in Perl, Python, and Ruby

 </dc:description>

 <dc:date>2010</dc:date>

 </rdf:Description>

 </rdf:RDF>

Figure 18.1  A simple RDF file, containing the Dublin Core elements: creator, title, description, and date.

	D escribing Data with Data, Using XML	 255

18.3.1 � Script Algorithm

	 1.	Prepare your RDF document. In this case, we will use the RDF file contain-
ing a few Dublin Core elements, available at

http://www.julesberman.info/book/rdf_desc.xml

	 2.	Open an image file. In this case, we use the JPEG file/3320.jpg, available at

http://www.julesberman.info/book/3320.jpg

	 3.	Insert the RDF document into the Comment section of the JPEG header.
	 4.	Save the file.
	 5.	Extract the header comments.

Perl Script

The Perl script requires the freely available open source module, Image::MetaData::
JPEG. You can download this module from CPAN (Comprehensive Perl Archive
Network, www.cpan.org).

#!/usr/local/bin/perl
use Image::MetaData::JPEG;
my $filename = “3320.jpg”; #comment:your filename here
my $file = new Image::MetaData::JPEG($filename);
die ‘Error: ‘ . Image::MetaData::JPEG::Error() unless $file;
print “Description of JPEG file\n”;
print $file->get_description();
print “\n\nRDF Annotations to JPEG file\n\n”;
open (TEXT, “rdf_desc.xml”)||die”cannot”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 $file->add_comment($line);
 }
unlink $filename;
$file->save($filename);
my $file = new Image::MetaData::JPEG($filename);
my @comments = $file->get_comments();
print join(“”,@comments);
exit;

Python Script

#!/usr/local/bin/python
def pngsave(im, file):
 from PIL import PngImagePlugin
 meta = PngImagePlugin.PngInfo()

256	 Methods in Medical Informatics﻿

 for k,v in im.info.iteritems():
 meta.add_text(k, v, 0)
 im.save(file, “PNG”, pnginfo=meta)
from PIL import Image
image = Image.open(“c:/ftp/3320.jpg”)
image.save(“c:/ftp/3320.png”)
rdf_file = open(“c:/ftp/rdf_desc.xml”, “rb”)
description = rdf_file.read()
rdf_file.close()
im = Image.open(“c:/ftp/3320.png”)
im.info[“description”] = description
pngsave(im, “c:/ftp/3320.png”)
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
text = IO.read(“c:/ftp/rdf_desc.xml”)
orig_image = ImageList.new(“c:/ftp/3320.jpg”)
orig_image.cur_image[:Comment] = text
copy_image = ImageList.new
copy_image = orig_image.cur_image.copy
copy_image.write(“c:/ftp/rb/3320_out.JPG”)
exit

18.3.2 � Analysis

When you include Dublin Core elements in your image headers, you accomplish sev-
eral very important goals at once:

	 1.	You provide your colleagues with important descriptive information about
the image.

	 2.	You provide indexing services and search engines with information that they can
extract, from your Web-residing images, that permits others to find your images.

	 3.	If you provide copyright information and language that fully explains the
rights of the creator and the user, you can ensure that anyone who acquires
your image will have the information they need to use your intellectual prop-
erty in a responsible and legal manner.

	 4.	You turn your image into a mini-database, that can be integrated with other
database files.

18.4 � Insert an Image File into an RDF Document

Though we distinguish text files from binary files, all files are actually binary files.
Sequential bytes of 8 bits are converted to ASCII equivalents, and if the ASCII

	D escribing Data with Data, Using XML	 257

equivalents are alphanumeric, we call the file a text file. If the ASCII values of 8-bit
sequential file chunks are nonalphanumeric, we call the files binary files.

Standard format image files are always binary files. Because RDF syntax is a pure
ASCII file format, image binaries cannot be directly pasted into an RDF document.
However, binary files can be interconverted to and from ASCII format, using a simple
software utility.

18.4.1 � Script Algorithm

	 1.	Call the external Base64 module.
	 2.	Use any image file. In the example, we use 3320.jpg, available for download at

http://www.julesberman.info/book/3320.jpg.

	 3.	Put the entire contents of the image file into a string variable.
	 4.	Encode the contents of the image file into base64, using the encoding method

from the external module.
	 5.	Open the RDF file. In this example, we will use the rdf_desc.xml file, avail-

able at

http://www.julesberman.info/book/rdf_desc.xml

	 6.	Split the file on the <dc:description> tag, and put the base64-encoded string
into this tagged data section.

	 7.	Mark the base64 text with “BEGIN” and “END.”
	 8.	Put the modified contents of the rdf_desc.xml file, now containing the base64

representation of the image file, into a new file, named rdf_image.xml.

Perl Script

#!/usr/local/bin/perl
use MIME::Base64::Perl;
open (JPGBIN,”c\:\\ftp\\3320.jpg”)||die”cannot”;
binmode JPGBIN;
$/ = undef;
$image_string = <JPGBIN>;
close JPGBIN;
$encoded = encode_base64($image_string);
open (RDF, “c:\\ftp\\rdf_desc.xml”)||die”cannot”;
$rdf_string = <RDF>;
print $rdf_string;
$rdf_string =~ /\<dc\:description\>/;
$contents = $` . $& . “BEGIN\n” . $encoded . “END\n” . $’;
open(OUT,”>c\:\\ftp\\rdf_image.xml”);
print OUT $contents;
exit;

258	 Methods in Medical Informatics﻿

Python Script

#!/usr/local/bin/python
import base64, re
image_file = open(“c:/ftp/3320.jpg”, “rb”)
image_string = image_file.read()
image_file.close()
contents = “”
encoded = base64.encodestring(image_string)
rdf_file = open(“c:/ftp/rdf_desc.xml”, “r”)
rdf_string = rdf_file.read()
rdf_file.close()
rdflist = re.split(r’dc:description>’, rdf_string)
contents = rdflist[0] + “dc:description>BEGIN\n” + \
encoded + “END\n” + rdflist[1] + “dc:description” + rdflist[2]
rdf_out = open(“c:/ftp/rdf_image.xml”, “w”)
print>>rdf_out, contents
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘base64’
image_string = File.new(“c:/ftp/3320.jpg”).binmode.read
encoded = Base64.encode64(image_string)
rdf_string = File.open(“c:/ftp/rdf_desc.xml”, “r”).read
rdf_string =~ /\<dc\:description\>/
contents = $` + $& + “BEGIN\n” + encoded + “END\n” + $’
rdf_out = File.open(“c:/ftp/rdf_image.xml”, “w”)
rdf_out.print contents
exit

18.4.2 � Analysis

The abbreviated output is shown in Figure 18.2.
The full file exceeds a megabyte in length. The central section of the base64 image

block is removed, to permit us to see the structure of the output file.
The sample script is not particularly robust. It requires the presence of a Dublin

Core description tag appearing in an exact format (i.e., <dc:description>). Otherwise,
the script would just fail. The script inelegantly shoves the base64 representation of
the binary image data into the Dublin Core description field. If this were a real RDF
implementation, you would prepare a specific RDF tag for the base64 data, and you
would prepare an external Schema document that defined the tag and its properties.

The script shows us that RDF files can hold binary data files (represented as base64
ASCII strings). There may be instances when you might prefer to insert an image file
into an RDF document, rather than inserting an RDF document into an image file.

	D escribing Data with Data, Using XML	 259

This might be the case when a single RDF file must contain information on multiple
different image files. Although it is nice to know that the option of inserting image
data into an RDF file is available, in most instances, you will simply point to the exter-
nal image file (using its Web address), and retrieve the image data from its URL.

18.5 � RDF Schema

RDF has a formal way of defining objects (and their properties, but we will not dis-
cuss properties here). This is called RDF Schema. You can think of RDF Schema as a
dictionary for the terms in an RDF data document. RDF Schema is written in RDF
syntax. This means that all RDF Schemas are RDF documents and consist of state-
ments in the form of triples.

The important point about RDF Schemas is that they clarify the relationships
among classes of objects in a knowledge domain. Here is an example of Class rela-
tionships formally specified as a Schema in RDF:

<rdfs:Class rdf:ID=”Neoplasm”>
<rdfs:subClassOf
rdfs:resource=”http://www.w3.org/2000/01/rdf-schema#Class”/>
</rdfs:Class>

Figure 18.2  Abbreviated contents of the output file rdf_image.xml.

260	 Methods in Medical Informatics﻿

<rdfs:Class rdf:ID=”Neural_crest”>
<rdfs:subClassOf
neo:resource=”#Neoplasm”/>
</rdfs:Class>

<rdfs:Class rdf:ID=”Germ_cell”>
<rdfs:subClassOf
neo:resource=”#Neoplasm”/>
</rdfs:Class>

<rdfs:Class rdf:ID=”Mesoderm”>
<rdfs:subClassOf
neo:resource=”#Neoplasm”/>
</rdfs:Class>

<rdfs:Class rdf:ID=”Coelomic”>
<rdfs:subClassOf
neo:resource=”#Mesoderm”/>
</rdfs:Class>

<rdfs:Class rdf:ID=”Sub_coelomic”>
<rdfs:subClassOf
neo:resource=”#Mesoderm”/>
</rdfs:Class>

<rdfs:Class rdf:ID=”Sub_coelomic_gonadal”>
<rdfs:subClassOf
neo:resource=”#Sub_coelomic”/>
</rdfs:Class>

RDF schemas can be transformed into directed graphs (graphs consisting of con-
nected nodes and arcs and directions for the arcs). The process of transforming an
RDF Schema into a graphic representation requires a special software application,
such as GraphViz.

18.6 � Visualizing an RDF Schema with GraphViz

GraphViz is a free, open source application that produces graphic representations of
hierarchical structures that are described in the GraphViz scripting language.

As an example, here is the hierarchical organization of the Neoplasm Classification,
described in the GraphViz scripting language:

digraph G {
size=”10,16”;
ranksep=”1.75”;

	D escribing Data with Data, Using XML	 261

node [style=filled color=gray65];
Neoplasm [label=”Neoplasm”];
node [style=filled color=lightgray];
EndodermEctoderm
[label=”Endoderm\/\nEctoderm”];
NeuralCrest [label=”Neural Crest”];
GermCell [label=”Germ cell”];
Neoplasm -> EndodermEctoderm;
Neoplasm -> Mesoderm;
Neoplasm -> GermCell;
Neoplasm -> Trophectoderm;
Neoplasm -> Neuroectoderm;
Neoplasm -> NeuralCrest;
node [style=filled color=gray95];
Trophectoderm -> Molar;
Trophectoderm -> Trophoblast;
EndodermEctoderm -> Odontogenic;
EndodermEctodermPrimitive
[label=”Endoderm\/Ectoderm\nPrimitive”];
EndodermEctoderm -> EndodermEctodermPrimitive;
Endocrine
[label=”Endoderm/Ectoderm\nEndocrine”];
EndodermEctoderm -> Endocrine;
EndodermEctoderm -> Parenchymal;
Odontogenic
[label=”Endoderm/Ectoderm\nOdontogenic”];
EndodermEctoderm -> Surface;
MesodermPrimitive
[label=”Mesoderm\nPrimitive”];
Mesoderm -> MesodermPrimitive;
Mesoderm -> Subcoelomic;
Mesoderm -> Coelomic;
NeuroectodermPrimitive
[label=”Neuroectoderm\nPrimitive”];
NeuroectodermNeuralTube
[label=”Central Nervous\nSystem”];
Neuroectoderm -> NeuroectodermPrimitive;
Neuroectoderm -> NeuroectodermNeuralTube;
NeuralCrestMelanocytic
[label=”Melanocytic”];
NeuralCrestPrimitive
[label=”Neural Crest\nPrimitive”];

262	 Methods in Medical Informatics﻿

NeuralCrestEndocrine
[label=”Neural Crest\nEndocrine”];
PeripheralNervousSystem
[label=”Peripheral\nNervous System”];
NeuralCrestOdontogenic
[label=”Neural Crest\nOdontogenic”];
NeuralCrest -> NeuralCrestPrimitive;
NeuralCrest -> PeripheralNervousSystem;
NeuralCrest -> NeuralCrestEndocrine;
NeuralCrest -> NeuralCrestMelanocytic;
NeuralCrest -> NeuralCrestOdontogenic;
GermCell -> Differentiated;
GermCell -> Primordial;
}

By eliminating the lowest level of subclasses, we can generate a simpler schematic
(Figure 18.3).

18.7 � Obtaining GraphViz

GraphViz is free software. The GraphViz download site is

http://www.graphviz.org/Download.php

Windows® users can download graphviz-2.14.1.exe (5,614,329 bytes). You can
install the software by running the .exe file.

Trophoblast

Endoderm_or_ectoderm_primitive

Endoderm_or_ectoderm_surface

Endoderm_or_ectoderm_endocrine

Neural_crest_endocrine

Peripheral_nervous_system

Neural_crest

Germ_cell

Trophectoderm

Neuroectoderm

Class
NeoplasmEndoderm_or_ectoderm

Neural_crest_primitive

Ectomesenchymal

Melanocytic Germinoma Teratoma

Molar

Figure 18.3  A truncated version of the digraph schema.

	D escribing Data with Data, Using XML	 263

GraphViz has subapplications: dot, fdp, twopi, neato, and circo. The twopi applica-
tion, which we use here, creates graphs that have a radial layout.

Extensive information on GraphViz is available at

http://www.graphviz.org/

18.8 � Converting a Data Structure to GraphViz

If you work with RDF (and every biomedical professional should understand how
RDF is used to specify data), you will want a method that can instantaneously
render a schematic of your RDF Schema (ontology) or of any descendant section of
your Schema.

Because the GraphViz language is designed with a similar purpose as RDF
Schema—to describe the relationships among hierarchical classes of object—it is
always possible to directly translate an RDF Schema into the GraphViz language. This
is a type of poor man’s metaprogramming (using a programming language to gener-
ate another program). When an RDF Schema has been translated into the GraphViz
language, the GraphViz software can display the class structure as a graph.

18.8.1 � Script Algorithm

	 1.	Open the file containing the Schema relationships, in RDF syntax (available
at www.julesberman.info/book/schema.txt).

	 2.	Open an output file, to write the transformed class relationships, in the
GraphViz language.

	 3.	Print the first lines of the GraphViz file, which begins with a statement indi-
cating that a digraph will follow (instructions for a directed graph), its size,
and the length of the separator lines between classes.

	 4.	Parse through the RDF classes, using the end tag “</rdfs:Class>” to indicate
the end of one class definition and the beginning of the next class definition.

	 5.	Obtain the name of the class and the name of the class to which the class is a
subclass (i.e., the name of the child class’s father).

			 All of the Schema class statements will have a form equivalent to the fol-
lowing example:

<rdfs:Class rdf:ID=“Neoplasm”>
<rdfs:subClassOf
rdfs:resource=“http://www.w3.org/2000/01/rdf-schema#Class”/>
</rdfs:Class>

		 The class name appears in quotes, after “rdf:ID=”. The superclass name appears
at the end of a resource statement: “resource=“http://www.w3.org/2000/01/
rdf-schema#”. Use regular expressions to obtain the name of the child class
and the father class from each RDF Schema statement.

264	 Methods in Medical Informatics﻿

	 6.	Print to the output file each encountered child, and father class in a GraphViz
statement of the following general form:

father class -> child class;
	 7.	After the schema is parsed, print “}” to the output file, to close the GraphViz

script.

Perl Script

#!/usr/local/bin/perl
open (TEXT, “schema.txt”);
open (OUT, “>schema.dot”);
$/ = “\<\/rdfs\:Class>”;
print OUT “digraph G \{\n”;
print OUT “size\=\”15\,15\”\;\n”;
print OUT “ranksep\=\”2\.00\”\;\n”;
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 last if ($line !~ /\<rdfs\:/);
 if ($line =~ /\:resource\=\”[a-z0-9\:\/_\.\-]*\#([a-z_]+)\”/i)
 {
 $father = $1;
 }
 if ($line =~ /rdf\:ID\=\”([a-z_]+)\”/i)
 {
 $child = $1;
 }
 print OUT “$father \-\> $child\;\n”;
 print “$father \-\> $child\;\n”;
 }
print OUT “\}”;
exit;

Python Script

#!/usr/local/bin/python
import re, string
in_file = open(‘schema.txt’, “r”)
out_file = open(“schema.dot”, “w”)
print>>out_file, “digraph G {“
print>>out_file, “size=\”15,15\”;”
print>>out_file, “ranksep=\”3.00\”;”
clump = “”
for line in in_file:
 namematch = re.match(r’\<\/rdfs\:Class>’, line)
 if (namematch):
 father = “”
 child = “”

	D escribing Data with Data, Using XML	 265

 clump = re.sub(r’\n’, ‘ ‘, clump)
 fathermatch = re.search(r’\:resource\=\”[a-zA-Z0-9\:\/_\.\-]*
\#([a-zA-Z_]+)\”’, clump)
 if fathermatch:
 father = fathermatch.group(1)
 childmatch = re.search(r’rdf\:ID\=\”([a-zA-Z_]+)\”’, clump)
 if childmatch:
 child = childmatch.group(1)
 print>>out_file, father + “ -> “ + child + “;”
 clump = “”
 else:
 clump = clump + line
print>>out_file, “}”
exit

Ruby Script

#!/usr/local/bin/ruby
in_file = File.open(“schema.txt”, “r”)
out_file = File.open(“schema.dot”, “w”)
$/ = “\<\/rdfs\:Class>”
out_file.puts “digraph G \{\n”
out_file.puts “size\=\”15\,15\”\;”
out_file.puts “ranksep\=\”3\.00\”\;”
in_file.each_line do
 |line|
 if line =~ /\:resource\=\”[a-z0-9\:\/_\.\-]*\#([a-z_]+)\”/i
 father = $1
 end
 if line =~ /rdf\:ID\=\”([a-z_]+)\”/i
 child = $1
 end
 if child
 if father
 out_file.puts father + “\-\> “ + child + “\;”
 end
 end
end
out_file.puts “\}”
exit

18.8.2 � Analysis

The output is the script, schema.dot, which is equivalent to the digraph (GraphViz
language) script shown at the beginning of this section.

After installing GraphViz, we can create the image schema.png, from the schema.dot
specification by invoking the twopi subapplication on a command line.

266	 Methods in Medical Informatics﻿

c:\ftp>twopi -Tpng schema.dot.dot -o schema.png

GraphViz produced the graph shown in Figure 18.3, from a GraphViz script produced
by transformations on a RDF Schema.

Exercises

	 1.	Using Perl, Python, or Ruby, write a short script that extracts the Dublin
Core RDF from the image header prepared in this chapter, and neatly prints
out the RDF tags (metadata) and data.

	 2.	Using Perl, Python, or Ruby, write a script that parses through the image files
in a directory, extracting any RDF text included in the headers, and produces
a summary RDF document, in proper RDF syntax, containing the Dublin
Core RDF data for every image (that contains RDF data).

	 3.	Using Perl, Python, or Ruby, write a script that will parse through the image
files in a directory, extracting the Dublin Core RDF (if there is any), and list
the filenames of every image file that shares the same creator, and also list the
name of the creator.

	 4.	Using any image file, write a script in Perl, Python, or Ruby that creates a
simple XML file containing the entire binary image file encoded as Base64
text as the contents for a single tag in the XML file, and the entire header of
the file as the contents of another tag in the file.

	 5.	Write another script that will take the XML file from Exercise 4, extract
the Base64 text from the file, convert the text to binary format, and display
the image in a viewer.

IVPart

Medical Discovery

269

19
Case Study

Emphysema Rates

Much of computational medicine can be described as a solution in search of a ques-
tion. We have many ways of analyzing data, but we often lack important questions
that can be solved with our available data. Let us focus on the kinds of biological ques-
tions that can be approached with the CDC data.

Alpha-1 antitrypsin disease is a prototypical serpinase disease (disease due to defi-
ciencies or abnormalities in the synthesis of serine proteinases). People with this dis-
order are homozygous for mutations in the alpha-1 antitrypsin gene. The full-blown
disease is characterized by cirrhosis and emphysema. The pathogenesis of this dis-
ease is somewhat complex, because there are a variety of different possible mutations
of the gene, and the clinical manifestations vary somewhat with the mutation type.
The cirrhosis is apparently due to the intracellular accumulation of abnormal alpha-1
antitrypsin molecules within hepatocytes, and the emphysema is apparently the
result of destructive effects of inflammation-inducing intrapulmonary trypsin levels,
unopposed by antitrypsin.

As is the case in most rare recessive genetic disorders, heterozygous mutations in the
alpha-1 antitrypsin gene are found as common gene variants in the general population.

If a double-dose (homozygous) of an altered gene causes disease, what is the effect
of a single (heterozygous) gene variant? Gene variations may be responsible for differ-
ences in the pathogenesis of disease among members of the apparently healthy public.
About 15% of smokers develop COPD (chronic obstructive pulmonary disease) or
emphysema. Why does one smoker develop COPD, while another smoker escapes
pulmonary toxicity? Might the difference be accounted for by gene variations, and
might a key gene be the alpha-1 antitrypsin gene?

Several researchers have provided data indicating that heterozygous carriers of
alpha-1 antitrypsin mutations are at increased risk for developing emphysema.*

*	 Lieberman, J. Heterozygous and homozygous alpha-1-antitrypsin deficiency in patients with pulmo-
nary emphysema. New Eng J Med 281:279–284, 1969; Stevens, P.M., Hnilica, V., Johnson, P.C., Bell,
R.L. Pathophysiology of hereditary emphysema. Ann Intern Med 74:672-680, 1971.

270	 Methods in Medical Informatics﻿

Population studies indicate that the African-American population has much lower
levels of alpha-1 antitrypsin disease gene variants than whites, the most prevalent
mutations occurring in people with European ancestry.*

We hypothesize that if alpha-1 antitrypsin disease mutations play a significant con-
tributory role in the pathogenesis of emphysema in the general population, we can
expect to see fewer emphysema cases in African-Americans (who are unlikely to be
heterozygous for alpha-1 antitrypsin diseases mutations) than in the white population.
We can test this hypothesis by determining the percentage of African-Americans who
die in the United States of emphysema, and comparing that number with the percent-
age of white Americans who die of the disease.

19.1 � Script Algorithm

	 1.	Open the CDC mortality data for 1999 (file: Mort99us.dat; download instruc-
tions provided in Chapter 13)

	 2.	Parse through each record (i.e., through each line in the file), keeping a tally of
the total number of records (by incrementing a variable at each parsing loop).

	 3.	From each line, extract the substring that contains the disease codes for the
death record (bytes 160 to 300).

	 4.	The ICD codes for emphysema and COPD (chronic obstructive pulmonary dis-
ease) begin with “J4,” followed by “3” or “4.” Determine whether the substring
containing the ICD codes matches the codes for emphysema or COPD.

	 5.	Race is assigned a two-digit code, 01 for White and 02 for Black, at bytes 60
and 61 of each record. Extract the substring containing the race code. If the
code corresponds to White (“01”), increment the variable containing the run-
ning tally of the encountered death records of white persons by 1. If the code
corresponds to Black (“02”), increment the variable containing the running
tally of the encountered death records of black persons by 1.

	 6.	If the record contains a diagnosis of emphysema or COPD, and the record
pertains to a white person (i.e., has a code of “01” at bytes 60 and 61), incre-
ment the running tally of white persons with emphysema or COPD by 1. If
the record contains a diagnosis of emphysema or COPD, and the record per-
tains to a black person (i.e., has a code of “02” at bytes 60 and 61), increment
the running tally of black persons with emphysema or COPD by 1.

	 7.	After the entire mortality file has been parsed, you will have collected the fol-
lowing variables: total number of records, total number of records of white per-
sons, total number of records of black persons, total number of black persons

*	 DeCroo, S., Kamboh, M.I., Ferrell, R.E. Population genetics of alpha-1-antitrypsin polymorphism in
US whites, US blacks and African blacks. Hum Hered 41:215–221, 1991; Hutchison, D.C.S. Alpha-1-
antitrypsin deficiency in Europe: Geographical distribution of Pi types S and Z. Resp Med 92:367–377,
1998.

	Emp hysema Rates	 271

with emphysema or COPD, and total number of white persons with emphy-
sema or COPD. Use these variables to determine the fraction of blacks with
emphysema or COPD and the fraction of whites with emphysema or COPD.

Perl Script

#!/usr/local/bin/perl
open (ICD, “Mort99us.dat”);
$line = “ “;
while ($line ne “”)
 {
 $line = <ICD>;
 $count++;
 $codesection = substr($line,161,140);
 $race = substr($line,59,2);
 $whitecount++ if ($race eq “01”);
 $blackcount++ if ($race eq “02”);
 if ($codesection =~ /J43/)
 {
 $whiteemp++ if ($race eq “01”);
 $blackemp++ if ($race eq “02”);
 }
 }
close ICD;
$whiteempfrac = 100 * ($whiteemp / $whitecount);
$blackempfrac = 100 * ($blackemp / $blackcount);
print “Total records in file is $count\n”;
print “Total African-Americans in file is $blackcount\n”;
print “Total Whites in file is $whitecount\n”;
print “Total African-Americans with emphysema is $blackemp\n”;
print “Total Whites with emphysema is $whiteemp\n”;
print “Percent African-Americans with emphysema is “;
print substr($blackempfrac,0,4) . “\n”;
print “Percent Whites with emphysema is “;
print substr($whiteempfrac,0,4) . “\n”;
exit;

Python Script

#!/usr/local/bin/python
import re, string
in_file = open(“c:\\big\\Mort99us.dat”)
count = 0
whitecount = 0
blackcount = 0
whiteemph = 0
blackemph = 0
for line in in_file:
 count = count + 1
 codesection = line[161:301]

272	 Methods in Medical Informatics﻿

 race = line[59:61]
 if race == “01”:
 whitecount = whitecount + 1
 if race == “02”:
 blackcount = blackcount + 1
 codematch = re.search(r’J43’, codesection)
 if codematch:
 if race == “01”:
 whiteemph = whiteemph + 1
 if race == “02”:
 blackemph = blackemph + 1
in_file.close()
whiteempfrac = str(100 * (float(whiteemph) / whitecount))
blackempfrac = str(100 * (float(blackemph) / blackcount))
print “Total records in file is “ + str(count)
print “Total African-Americans in file is “ + str(blackcount)
print “Total Whites in file is “ + str(whitecount)
print “Total African-Americans with emphysema is “ + str(blackemph)
print “Total Whites with emphysema is “ + str(whiteemph)
print “Percent African-Americans with emphysema is “ +
blackempfrac[0:4]
print “Percent Whites with emphysema is “ + whiteempfrac[0:4]
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘mathn’
in_file = File.open(“c:/big/Mort99us.dat”)
count = 0
whitecount = 0
blackcount = 0
whiteemph = 0
blackemph = 0
in_file.each_line do
 |line|
 count = count + 1
 codesection = line.slice(161,140)
 race = line.slice(59,2)
 whitecount = whitecount + 1 if race.eql?(“01”)
 blackcount = blackcount + 1 if race.eql?(“02”)
 if (codesection =~ /J43/)
 whiteemph = whiteemph + 1 if race.eql?(“01”)
 blackemph = blackemph + 1 if race.eql?(“02”)
 end
end
in_file.close
whiteempfrac = (100 * ((whiteemph / whitecount).to_f)).to_s
blackempfrac = (100 * ((blackemph / blackcount).to_f)).to_s
puts “Total records in file is “ + count.to_s

	Emp hysema Rates	 273

puts “Total African-Americans in file is “ + blackcount.to_s
puts “Total Whites in file is “ + whitecount.to_s
puts “Total African-Americans with emphysema is “ + blackemph.to_s
puts “Total Whites with emphysema is “ + whiteemph.to_s
puts “Percent African-Americans with emphysema is “ + blackempfrac.
slice(0,4)
puts “Percent Whites with emphysema is “ + whiteempfrac.slice(0,4)
exit

19.2 � Analysis

Here is the output from the script:

Total records in file is 2394871
Total African-Americans in file is 285276
Total Whites in file is 2064169
Total African-Americans with emphysema is 2125
Total Whites with emphysema is 32595
Percent African-Americans with emphysema is 0.74
Percent Whites with emphysema is 1.57

The Perl script examines 2.3 million death records in the CDC data set, and informs
us that African-Americans have about half the rate of emphysema and COPD com-
pared with the white population. This observation is consistent with our hypothesis
that the alpha-1 antitrypsin gene variant increases the risk of emphysema in the gen-
eral population.

Does this observation prove our hypothesis? Absolutely not. The same observa-
tion could be explained by many different hypotheses. We have shown, with a large
number of cases (nearly a quarter million emphysema/COPD cases), that African-
Americans have less emphysema than whites. This observation may justify further
laboratory work that conclusively determines whether the alpha-1 antitrypsin gene
contributes to the development of emphysema in heterozygous carriers.

This is the kind of analysis that uses existing CDC mortality data sets to develop
and test a hypothesis. In the next chapter, we will relate our available data with a
graphic representation.

Exercises

	 1.	Rewrite the script to include chronic bronchitis along with emphysema. The
relevant ICD codes are

J41 Simple and mucopurulent chronic bronchitis
J41.0 Simple chronic bronchitis
J41.1 Mucopurulent chronic bronchitis
J41.8 Mixed simple and mucopurulent chronic bronchitis
J42 Unspecified chronic bronchitis

274	 Methods in Medical Informatics﻿

J43 Emphysema
J43.0 MacLeod’s syndrome
J43.1 Panlobular emphysema
J43.2 Centrilobular emphysema
J43.8 Other emphysema
J43.9 Emphysema, unspecified
J44 Other chronic obstructive pulmonary disease
J44.0 Chronic obstructive pulmonary disease with acute lower respiratory

infection
J44.1 Chronic obstructive pulmonary disease with acute exacerbation,

unspecified
J44.8 Other specified chronic obstructive pulmonary disease
J44.9 Chronic obstructive pulmonary disease, unspecified

	 2.	Using Perl, Python, or Ruby, rewrite the script to determine the emphysema
rates in Hispanics.

	 3.	Using Perl, Python, or Ruby, rewrite the script to compare the emphysema
rates in white men, white women, African-American men, and African-
American women.

	 4.	Emphysema is a disease in which the airway spaces (the small spaces where
oxygen passes across a thin layer of tissue into the deoxygenated red blood
cells) are destroyed. Pathologists often divide emphysema into two morpho-
logic types: centrilobular emphysema (J43.2) and panlobular emphysema
(J43.1). In centrilobular emphysema, destruction of the airway spaces occurs
primarily in the center of the lobules (near the bronchi). In panlobular emphy-
sema, airway destruction is seen uniformly throughout the lobule. Using Perl,
Python, or Ruby, write a script to determine which of the two morphologic
types of emphysema is more common in the U.S. population.

	 5.	Modify your script from Exercise 4 to determine that average age at death of
each type of emphysema: centrilobular emphysema (J43.2), and panlobular
emphysema (J43.1).

	 6.	Modify your script from Exercise 5 to determine the gender differences in
the total number of occurrences and the average age at death of the two types
of emphysema.

	 7.	Modify your script from Exercise 6 to determine the difference between black
persons and white persons in the total number of occurrences and the average
age at death of the two types of emphysema.

275

20
Case Study

Cancer Occurrence Rates

The SEER data sets contain information on the race of each individual record. Because
there are over 3.7 million records in the SEER database, we can ask questions about
racial differences in the occurrences of every type of tumor, even rare tumors, and rare
variants of common tumors.

What is the value of race-based analysis? On occasion, a difference in the rate of
occurrence of tumors among races may be due to identifiable (and mutable) exposure
to carcinogens, or living conditions. Sometimes, socioeconomic conditions account for
the differences. Occasionally, the differences lie in genetic traits that are found more
often in one race than in another, and this may lead to an intervention that modifies
the effect of the trait on the development of cancer.

All of these discoveries begin with finding a difference between races, and the best way
of finding differences is by starting with a data set containing millions of cancer records.

20.1 � Script Algorithm

	 1.	SEER cancer diagnoses are coded with the ICD-O (International Classification
of Diseases–Oncology), discussed in Chapter 6, Section 6.2. The ICD-O dic-
tionary file is icdo3.txt. Create a dictionary object from the icdo3.txt file, in
which the keys are code numbers and the values are the corresponding neo-
plasm names.

	 2.	Parse through SEER files, line by line. Each line of a SEER file is the record
of a cancer occurrence, and there are over 3.7 million lines that will be
parsed. Instructions for obtaining the free, public use SEER files is found in
the appendix. In this example script, the SEER files are found in the c:\big\
seer2006 subdirectory.

	 3.	As each line of the file is parsed, extract the 5-character substring that begins
at character 48 and the 5-character substring that begins at character 53. These
represent the ICD-O code for the record. The string beginning at character
53 is the code for the newer version of ICD-O. If this string has a code that is
contained in the version of ICD-O that we are using (in the icdo3.txt file), we
will use this code, rather than the code contained in the substring that begins
at character 48.

276	 Methods in Medical Informatics﻿

	 4.	Create a dictionary object whose keys are the encountered neoplasm codes,
and whose values are the incremented tally of the number of encountered
SEER records that contain the code.

	 5.	Extract, from each record, the two-character sequence of characters 20 and
21. This two-character sequence contains the “race” field of the SEER record.
The assignments for the race sequence are shown in Figure 20.1. The code for
“Black” is “02”, and the code for “White” is “01”.

	 6.	If the code is “02”, increment the variable that contains a running tally of
number of black persons with cancer by 1. If the code is “02”, increment
by 1 the dictionary object that has as values a running tally of the number
of black persons that have a particular cancer and as keys the code for the
particular cancer.

	 7.	If the code is “01”, increment, by 1 the variable that contains a running tally of
the number of white persons with cancer. If the code is “01”, increment by 1
the dictionary object that has as values a running tally of the number of white

RACE/ETHNICITY
NAACCR ITEM #: N/A
SEER*Stat Name: Race/ethnicity
Item Length: 2

Field Description: � This field is created from Race1 and the Indian Health Service (IHS) Link
variables from the NAACCR File Format. If Race1 is white and there is a
positive IHS link, then Race/ethnicity is set to American Indian/Alaskan
Native, otherwise Race/Ethnicity is set to the Race1 value.

Codes

01 White
02 Black
03 American Indian, Aleutian, Alaskan Native or Eskimo (includes

all indigenous populations of the Western hemisphere)
04 Chinese
05 Japanese
06 Filipino
07 Hawaiian
08 Korean (Effective with 1/1/1998 dx)
09 Asian Indian, Pakistani (Effective with 1/1/1988 dx)
10 Vietnamese (Effective with 1/1/1988 dx)
11 Laotian (Effective with 1/1/1988 dx)
12 Hmong (Effective with 1/1/1988 dx)
13 Kampuchean (including Khmer and Cambodian) (Effective with

1/1/1988 dx)

Figure 20.1  Race codes for the SEER cancer files, SEERDIC6.PDF.

	 Cancer Occurrence Rates	 277

persons that have a particular cancer and as keys the code for the particu-
lar cancer.

	 8.	After all the SEER files have been parsed, we are left with a variable with the
total number of black persons with ICD-O encoded cancers; a variable with
the total number of white persons with ICD-O encoded cancers; a dictionary
object with ICD-O codes encountered in the SEER files as the keys and the
total number of occurrences of the cancer in black persons as the values; and
a dictionary object with ICD-O codes encountered in the SEER files as the
keys and the total number of occurrences of the cancer in white persons as
the values.

	 9.	Print to the monitor the total number of black persons with cancer in the
SEER data files. Print to the monitor the total number of white persons with
cancer in the SEER data files.

	 10.	Iterate over the key–value pairs in the dictionary object containing the neo-
plasm codes and occurrence numbers of the neoplasms occurring in black
persons.

			 For those neoplasms that have at least 5 occurrences in black persons and
5 occurrences in white persons, determine the relative frequency of occurrence
of neoplasms found in the white population compared with the black popula-
tion. This proportion is obtained using the following equation:

	 relative frequency of occurrence = (number of tumors occurring in whites
divided by the number of white persons) divided by (number of tumors
occurring in black persons divided by the number of black persons).

		 For example, if the relative frequency of a neoplasm were “10”, then the neo-
plasms occurred 10 times more frequently in the white population than in the
black population in the SEER data files. If the tumor accounted for the same
fraction of total cancer cases in the white and black populations, it would have
a ratio of 1.

	 11.	Open an external file. For each type of neoplasm, print to the external file
a formatted line containing the relative frequency of occurrence of the neo-
plasm, the number of occurrences of the neoplasm in the SEER data files, and
the name of the neoplasm.

Perl Script

#!/usr/local/bin/perl
open (ICD, “c\:\\ftp\\icdo3\.txt”);
$line = “ “;
$black_count = 0;
$white_count = 0;
while ($line ne “”)
 {

278	 Methods in Medical Informatics﻿

 $line = <ICD>;
 if ($line =~ /([0-9]{4})\/([0-9]{1}) +/o)
 {
 $code = $1 . $2;
 $term = $’;
 $term =~ s/ *\n//o;
 $dictionary{$code} = $term;
 }
 }
close ICD;
opendir(FTPDIR, “c\:\\big\\seer2006”) || die (“Unable to open
directory”);
@files = readdir(FTPDIR);
closedir(FTPDIR);
chdir(“c\:\\big\\seer2006”);
foreach $datafile (@files)
 {
 open (TEXT, $datafile);
 $line = “ “;
 while ($line ne “”)
 {
 $line = <TEXT>;
 $code = substr($line, 47, 5);
 $code2 = substr($line, 52, 5);
 if (exists($dictionary{$code2}))
 {
 $code = $code2;
 }
 if (exists($dictionary{$code}))
 {
 $code_count{$code}++;
 if (substr($line,19,2) eq “02”) #02 means black
 {
 $black_count++;
 $bl_count{$code}++;
 }
 if (substr($line,19,2) eq “01”) #01 means white
 {
 $white_count++;
 $wh_count{$code}++;
 }
 }
 }
 close(TEXT);
 }
print “\nNumber of black persons with cancer is $black_count\n”;
print “Number of white persons with cancer is $white_count\n”;

	 Cancer Occurrence Rates	 279

open(OUT, “>c\:\\ftp\\seer_out.txt”);
while((my $key, my $value) = each (%bl_count))
 {
 if ($bl_count{$key} > 5)
 {
 if ($wh_count{$key} > 5)
 {
 $whfract = ($wh_count{$key} / $white_count) / ($bl_
count{$key} / $black_count);
 printf OUT (“%05.2f %-6.6d %-55.55s\n”, $whfract,
$code_count{$key}, $dictionary{$key});
 }
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import sys, os, re, string
icd_in = open(“c:/ftp/icdo3.txt”, “r”)
dictionary = {}
bl_count = {}
wh_count = {}
code_count = {}
black_count = 0
white_count = 0
for line in icd_in:
 code_has = re.search(r’([0-9]{4})\/([0-9]{1}) +(.+)’, line)
 if code_has:
 code = code_has.group(1) + code_has.group(2)
 term = code_has.group(3)
 term = string.rstrip(term)
 dictionary[code] = term
 bl_count[code] = 0
 wh_count[code] = 0
 code_count[code] = 0
icd_in.close
filelist = os.listdir(“c:/big/seer2006”)
os.chdir(“c:/big/seer2006”)
for file in filelist:
 infile = open(file,’r’)
 for line in infile:
 code = line[47:52]
 code2 = line[52:57]
 if dictionary.has_key(code2):
 code = code2
 if dictionary.has_key(code):

280	 Methods in Medical Informatics﻿

 code_count[code] = code_count[code] + 1
 if (line[19:21] == “02”): #02 means black
 black_count = black_count + 1
 bl_count[code] = bl_count[code] + 1
 if (line[19:21] == “01”):
 white_count = white_count + 1
 wh_count[code] = wh_count[code] + 1
 infile.close()
os.chdir(“c:/ftp/py”)
print “Number of black persons with cancer is “ + str(black_count)
print “Number of white persons with cancer is “ + str(white_count)
print
seer_out = open(“c:/ftp/seer_out.txt”, “w”)
for key,value in bl_count.iteritems():
 if (bl_count[key] > 5):
 if (wh_count[key] > 5):
 wbfract = (float(wh_count[key]) / float(white_count)) /
(float(bl_count[key]) / float(black_count))
 print>>seer_out, “%05.2f %-6.6d %-55.55s” % (wbfract,
code_count[key], dictionary[key])
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘mathn’
icd_in = File.open(“c:/ftp/icdo3.txt”, “r”)
dictionary = {}
bl_count = Hash.new(0)
wh_count = Hash.new(0)
code_count = Hash.new(0)
white_count = 0
black_count = 0
icd_in.each_line do
 |line|
 if line =~ /([0-9]{4})\/([0-9]{1}) +/
 code = $1 + $2
 term = $’
 term = term.sub(/ *\n/, “”) if term =~ / *\n/
 dictionary[code] = term
 end
end
icd_in.close
seer_out = File.open(“c:/ftp/seer_out.txt”, “w”)
filelist = Dir.glob(“c:/big/seer2006/*.TXT”)
filelist.each do
 |filepathname|
 seer_in = File.open(filepathname)
 seer_in.each_line do
 |line|

	 Cancer Occurrence Rates	 281

 code = line.slice(47, 5)
 code2 = line.slice(52, 5)
 if dictionary.has_key?(code2)
 code = code2
 end
 if dictionary.has_key?(code)
 code_count[code] = code_count[code] + 1
 if line.slice(19,2).eql?(“02”) #02 means black race
 black_count = black_count + 1
 bl_count[code] = bl_count[code] + 1
 end
 if line.slice(19,2).eql?(“01”) #01 means white race
 white_count = white_count + 1
 wh_count[code] = wh_count[code] + 1
 end
 end
 end
 seer_in.close
end
puts “Number of black persons with cancer is “ + black_count.to_s
puts “Number of white persons with cancer is “ + white_count.to_s
puts
bl_count.each_pair do
 |key, value|
 if bl_count[key] > 5
 if wh_count[key] > 5
 hbfract = (wh_count[key].to_f / white_count.to_f) /
(bl_count[key].to_f / black_count.to_f)
 seer_out.printf “%05.2f %-6.6d %-55.55s\n”, hbfract,
code_count[key], dictionary[key]
 end
 end
end
exit

20.2 � Analysis

A partial output, which I have sorted by relative frequencies, is shown in Figure 20.2.
The first column is the case occurrence ratio (white/black). The second column is the

number of cases, for each tumor type, in the SEER public use data sets. The fourth col-
umn is the ICD-O (International Classification of Diseases–Oncology) neoplasm term.

The figure shows the first 12 and the last 16 entries from the output file, which con-
tains a list of hundreds of tumors. These selected entries cover the most extreme dif-
ferences between black persons and white persons in the rate of occurrence of tumors.
A file of the sorted raw data is available for download at

http://www.julesberman.info/book/seerblwh.txt

282	 Methods in Medical Informatics﻿

Let us look at the last 9 entries from the output file:

White/black ratio, No. of cases, ICD-O Diagnosis
11.55 000699 Mixed epithel. & spindle cell melanoma
13.07 051617 Malignant melanoma, NOS
16.75 001357 Spindle cell melanoma, NOS
25.81 009096 Nodular melanoma
30.62 007741 Lentigo maligna melanoma
32.93 024502 Melanoma in situ
39.46 042918 Superficial spreading melanoma
40.83 019950 Lentigo maligna
77.01 004805 Superficial spreading melanoma, in situ

00.11 000044 Pigmented dermato fibrosarcoma protuberans

00.16 000022 Malignant placental site trophoblastic tumor

00.17 000137 Adult T-cell leukemia/lymphoma (HTLV–1 pos.)

00.19 000017 Primary effusion lymphoma

00.19 000258 Adenoma, NOS

00.22 000024 Hepatosplenic gamma-delta cell lymphoma

00.23 000057 Granular cell tumor, malignant

00.24 000037 Adamantinomatous craniopharyngioma

00.26 000078 Collecting duct carcinoma

00.26 000068 Thymoma, type AB, malignant

00.26 000093 Ameloblastoma, malignant

00.27 000248 Cyst–associated renal cell carcinoma

.

LOTS MORE HERE

.

05.33 001140 Ewing sarcoma

05.66 003242 Embryonal carcinoma, NOS

05.94 000422 Epithelioid cell melanoma

05.96 000569 Choriocarcinoma combined w/ other germ cell
elements

06.09 000630 Seminoma, anaplastic

08.56 001873 Merkel cell carcinoma

08.60 000860 Paget disease, extramammary

11.55 000699 Mixed epithel. & spindle cell melanoma

13.07 051617 Malignant melanoma, NOS

16.75 001357 Spindle cell melanoma, NOS

25.81 009096 Nodular melanoma

30.62 007741 Lentigo maligna melanoma

32.93 024502 Melanoma in situ

39.46 042918 Superficial spreading melanoma

40.83 019950 Lentigo maligna

77.01 004805 Superficial spreading melanoma, in situ

Figure 20.2  Relative frequencies of occurrence of neoplasms in black persons and white persons; only a partial output
is shown.

	 Cancer Occurrence Rates	 283

The rate of occurrence of in situ superficial spreading melanoma is 77 times higher in
white persons than in black persons. Of the top nine tumors that occur disproportion-
ately more often in white persons than in black persons, all nine are types of melanoma.
Of course, this finding is not unexpected; melanin protects skin from the short-term
and long-term harmful effects of ultraviolet light: sunburn, solar elastosis, epidermal
skin cancer (primarily squamous cell carcinoma and basal cell carcinoma), and mela-
noma. It has long been known that black persons have a lower risk of melanoma than
white persons, and that fair-skinned white persons (particularly Irish, and red-haired
white persons) and anyone who sunburns easily has a higher risk of developing mela-
noma than white persons with black hair or a somewhat darker complexion.

The value of comparing melanoma incidence in black persons and white persons
in the SEER data set comes from the large numbers of occurrences and the variant
tumor types collected. We see remarkable internal consistency in the list. Where a
tumor appears, it is often closely followed by a variant of the same tumor. This indicates
that closely related tumors, which have the same general cell type (in this case, tumors
of melanocyte origin), most likely have the same biological causes. Otherwise, why
would they aggregate in the list?

One type of melanoma occurs in white persons and black persons at about the same
occurrence rate.

White/black ratio, No. of cases, ICD-O Diagnosis
00.90 000940 Acral lentiginous melanoma, malig.

Acral lentiginous melanoma is a variant of melanoma that occurs in nonpigmented
skin: the sole of the foot, the palm of the hand, under fingernails or toenails. Because
black persons and white persons have similar exposure to ultraviolet light on acral
skin, you would expect that black persons and white persons would have similar occur-
rence rates of acral lentiginous melanomas. This is precisely the case. The SEER data
set confers biologic consistency to the hypothesis that the differences in the occur-
rence rates of melanoma in white persons and black persons is based on the protective
effect of melanin in black persons. Moreover, the SEER data set includes a total of
940 cases of acral lentiginous melanoma, divided almost equally among black persons
or white persons. This is a very large number of cases of a relatively rare tumor. The
large number of cases adds credibility to the biological conclusions.

The top cases in the output are the tumors that occur disproportionately more often
in black persons than in white persons. Leading the list is a curious and rare tumor,
Pigmented dermatofibrosarcoma protuberans

White/black ratio, No. of cases, ICD-O Diagnosis
00.11 000044 Pigmented dermatofibrosarcoma protuberans

This tumor occurs 10 times more frequently in black persons than in white persons.
What might account for this difference? A pigmented dermatofibrosarcoma protu-
berans is a variant of dermatofibrosarcoma protuberans that happens to contain some

284	 Methods in Medical Informatics﻿

melanin. Because the cell of origin of dermatofibrosarcoma is not a melanocyte, the
origin of the melanin could certainly be of nonneoplastic origin (e.g., the result
of melanin produced in the overlying skin and dropping into the tumor matrix).
The high rate of occurrence of pigmented melanoma in black persons, compared
with white persons, strengthens the hypothesis that the melanin in the tumor is a
secondary phenomenon. Persons with a lot of skin melanin would be more likely
to deposit melanin within an underlying skin tumor than would persons with very
little skin melanin.

Decades of histologic analysis of these tumors provided very little insight into the
source of melanin in these tumors. The discovery, from the SEER data, that black
persons have 10 times the occurrence rate of pigmented dermatofibrosarcoma pro
tuberans than white persons indicates that the source of pigmentation in this tumor
is the overlying skin.

Another interesting finding in the data relates to Ewing sarcoma. Ewing sarcoma
is a rare, malignant tumor that occurs in children and young adults, often arising in
bones. Generations of pathologists have been taught that Ewing’s sarcoma almost
never occurs in black persons. Here are our findings:

White/black ratio, No. of cases, ICD-O Diagnosis
05.33 001140 Ewing sarcoma

The SEER data indicate that among 1,140 cases, Ewing sarcoma occurs 5.33 times
more commonly in white persons than in black persons. The data does not support the
assertion that Ewing tumor never (or rarely) occurs in black persons.

Exercises

	 1.	Using Perl, Python, or Ruby, modify the script from this chapter to display
the average age of occurrence in the black population and in the white popula-
tion, for each neoplasm.

Hint:
Age in Perl: $age_at_dx = substr($line,24,3);
Age in Python: age_at_dx = int(line[24:27])
Age in Ruby: age_at_dx = line.slice(24,3)

	 2.	Using Perl, Python, or Ruby, modify the script from this chapter to display
the average age of occurrence of each neoplasm, and the total number of
occurrences of the neoplasms, in black males and black females.

	 3.	Modify the script to produce a comparison between black persons and Chinese
persons contained in the SEER data files.

Hint: Substitute Chinese for White, and “04” for “01” (in the race
substring).

	 4.	Modify the script to produce an output in reverse sort (i.e., largest number to
smallest number) on the relative frequencies of occurrence of tumors.

285

21
Case Study

Germ Cell Tumor Rates across Ethnicities

In Chapter 20, Section 20.1, we compared the occurrences of all types of tumors in
black persons and white persons. Using the output file, seerblwh.txt, we can see that
two germ cell tumors (teratocarcinoma and seminoma) occurred about five times more
frequently in white persons than in black persons:

Ratio Number Of Occurrences Tumor Name

05.03 001732 Teratocarcinoma
04.35 010298 Seminoma, NOS

I wondered whether the same disproportionate occurrence of germ cell tumors is seen
in white Hispanic persons compared with black persons?

I went to the SEER site and used SEER’s public query engine to see if this observa-
tion could be verified.

The SEER query site is at

http://seer.cancer.gov/canques/index.html

The SEER search engine supports queries over a small number of parameters. I
searched for tumors in males, in testes, comparing white Hispanics with black per-
sons. A simple interface permits these selections.

The SEER interface produced a list of input parameters (Figure 21.1). The same
interface produced a bar chart of results (Figure 21.2).

You may be wondering, if I am interested in germ cell tumors, why did I do a query
on tumors of the testes? I did this because the SEER interface does not allow me to
query specific types of germ cell tumors or any specific testicular tumor. I know that
the vast majority of testicular tumors are germ cell tumors, so I guessed that if there
were a difference in the incidence of testicular tumors in white Hispanics compared
with black persons, the difference would be due to a difference in the rate of occur-
rence of germ cell tumors at this site.

And that is what happened. The SEER output demonstrated that white Hispanics had
a much higher incidence of testicular tumors, compared with African-Americans.

With a little work, we can write our own script that goes much further than the
public SEER database. We can determine the ratio of occurrence for each specific

286	 Methods in Medical Informatics﻿

germ cell tumor, in black persons and Hispanic persons, for any anatomic location, or
for all anatomic locations.

21.1 � Script Algorithm

	 1.	Use the icdo3.txt file, containing the list of neoplasm names and codes used in
the SEER data files, to create a dictionary object in which the keys are code
numbers and the values are the corresponding neoplasm names.

	 2.	Parse through your downloaded SEER files, line by line (over 3.7 million
lines). In this example script, the SEER files are found in the \seer2006
subdirectory.

White HispanicBlack
0

0.5

1.5

2.5

3.5

4.5

3

4

2

1

Race/ethnicity

Ra
te

 p
er

 1
00

,0
00

Figure 21.2  SEER search engine bar chart output, indicating the rates of testicular cancer in men, comparing black
persons and white Hispanic persons.

SEER Incidence - Crude Rates for Additional Races and 13 Registries, 1992–2005

Selections:
Statistic type = Crude rate;
SEER registry = Total (registries depend on race/ethnicity);
Site = Testis;
Year of diagnosis = 1992–2005;
Sex = Male;
Age at diagnosis = All ages;

Figure 21.1  Query parameters for the SEER search engine, specifying testicular tumors occurring between 1992 and
2005, among males of any age.

	G erm Cell Tumor Rates across Ethnicities	 287

	 3.	As each line of the file is parsed, extract the 5-character substring that begins
at character 48 and the 5-character substring that begins at character 53. These
represent the ICD-O code for the record. The string beginning at character
53 is the code for the newer version of ICD-O. If this string has a code that is
contained in the version of ICD-O that we are using (in the icdo3.txt file), we
will use this code rather than the code contained in the substring that begins
at character 48.

	 4.	Determine whether the record code corresponds to one of the codes of the
germ cell tumors.

			 Here is the section of the ICD-O listing for the germ cell tumors:

! GERM CELL TUMORS 906 9060/3 Dysgerminoma
9061/3 Seminoma, NOS
9062/3 Seminoma, anaplastic
9063/3 Spermatocytic seminoma
9064/3 Germinoma
9065/3 Germ cell tumor, nonseminomatous
EMBRYONAL CARCINOMA, NOS 907 9070/3 Embryonal carci-

noma, NOS
9071/3 Yolk sac tumor
9072/3 Polyembryoma
! TERATOMA 908 9080/3 Teratoma, malignant, NOS
9081/3 Teratocarcinoma
9082/3 Malignant teratoma, undiff.
9083/3 Malignant teratoma, intermediate
9084/3 Teratoma with malig. transformation
9085/3 Mixed germ cell tumor

		 All of the germ cell tumors have 5-digit codes that begin with 906, 907, or 908.
		 With a regular expression, match every record code and exclude records that

do not contain a neoplasm code beginning with “90” followed by “6”, “7”,
or “8”.

	 5.	SEER records contain a byte field (character 22) that specifies Hispanic status
(Figure 21.3). Non-Hispanics are designated as “0”, and Hispanics are desig-
nated with digits 1–9.

	 6.	SEER records contain a two-character sequence of characters 20 and 21, the
“race” field of the seer record. The code for “Black” is “02”, and the code for
“White” is “01”.

	 7.	As each record is parsed, determine whether the record is of a white Hispanic
person (i.e., Hispanic code of nonzero and a race code of “01”) or a black non-
Hispanic person.

288	 Methods in Medical Informatics﻿

	 8.	Create a dictionary object whose keys are the encountered neoplasm codes,
and whose values are the incremented tally of the number of encountered
SEER records that contain the code.

	 9.	Create another dictionary object whose keys are the codes of germ cell tumors
and whose values are the running tally of black non-Hispanic persons with
the diagnosis.

	 10.	Create another dictionary object whose keys are the codes of germ cell tumors and
whose values are the running tally of white Hispanic persons with the diagnosis.

	 11.	After all of the SEER files have been parsed, we are left with a variable con-
taining the total number of black non-Hispanic persons with germ cell tumors;
a variable containing the total number of white Hispanic persons with germ
cell tumors; a dictionary object with ICD-O codes for the germ cell tumors
as keys, and with the total number of occurrences of the cancer in black non-
Hispanic persons as the values; a dictionary object with ICD-O codes for the
germ cell tumors as keys, and the total number of occurrences of the cancer in
white Hispanic persons as the values.

	 12.	Print to the monitor the total number of black persons with cancer in the
SEER data files. Print to the monitor the total number of white Hispanic
persons with cancer in the SEER data files.

	 13.	Iterate over the key–value pairs in the dictionary object containing the neoplasm
codes and occurrence numbers of the neoplasms occurring in black persons.

			 For those neoplasms that occur at least 5 times in black non-Hispanic per-
sons and 5 times in white Hispanic persons, determine the relative frequency
of occurrence of neoplasms found in the white Hispanic population compared

Codes
0 Non-Spanish/Non-Hispanic
1* Mexican (includes Chicano)
2* Puerto Rican
3* Cuban
4* South or Central American (except Brazil)
5* Other specified Spanish/Hispanic origin (includes European;

excludes Dominican Republic)
6 Spanish, NOS; Hispanic, NOS; Latino, NOS (There is evidence, other than

surname or maiden name, that the person is Hispanic but he/she
cannot be assigned to any of the categories 1–5).

7** Spanish surname only (effective with diagnosis on or after 1/1/1994)
(The only evidence of the person’s Hispanic origin is the surname or
maiden name and there is no contrary evidence that the patient is
not Hispanic.)

8 Dominican Republic (effective with diagnosis on or after 1/1/2005)
9 Unknown whether Spanish/Hispanic or not

Figure 21.3  SEER Hispanic ethnicity codes.

	G erm Cell Tumor Rates across Ethnicities	 289

with the black non-Hispanic population. This proportion is obtained using
the following equation:

	 relative frequency of occurrence = (number of tumors occurring in white
Hispanics divided by the number of white Hispanic persons) divided by
(number of tumors occurring in black non-Hispanic persons divided by
the number of black non-Hispanic persons).

		 For example, if the relative frequency of a neoplasm were “10”, then the neo-
plasms occurred 10 times more frequently in the white Hispanic population
than in the black non-Hispanic population in the SEER data files.

	 14.	Open an external file. For each type of neoplasm, print to the external file
a formatted line containing the relative frequency of occurrence of the neo-
plasm, the number of occurrences of the neoplasm in the SEER data files, and
the name of the neoplasm.

Perl Script

#!/usr/local/bin/perl
open (ICD, “c\:\\ftp\\icdo3\.txt”);
$line = “ “;
$black_count = 0;
$hisp_count = 0;
while ($line ne “”)
 {
 $line = <ICD>;
 if ($line =~ /([0-9]{4})\/([0-9]{1}) +/o)
 {
 $code = $1 . $2;
 $term = $’;
 $term =~ s/ *\n//o;
 $dictionary{$code} = $term;
 }
 }
close ICD;
opendir(FTPDIR, “c\:\\big\\seer2006”) || die (“Unable to open
directory”);
@files = readdir(FTPDIR);
closedir(FTPDIR);
chdir(“c\:\\big\\seer2006”);
foreach $datafile (@files)
 {
 open (TEXT, $datafile);
 $line = “ “;
 while ($line ne “”)
 {
 $line = <TEXT>;
 $code = substr($line, 47, 5);

290	 Methods in Medical Informatics﻿

 $code2 = substr($line, 52, 5);
 if (exists($dictionary{$code2}))
 {
 $code = $code2;
 }
 if (exists($dictionary{$code}))
 {
 if (substr($line,21,1) eq “0”) #0 means non-hispanic
 {
 next unless (substr($line,19,2) eq “02”);
 $black_count++;
 next if ($code !~ /90[678]/);
 $bl_count{$code}++;
 }
 else
 {
 next if (substr($line,19,2) ne “01”);
 $hisp_count++;
 next if ($code !~ /90[678]/);
 $hi_count{$code}++;
 }
 $germ_count++;
 }
 }
 close(TEXT);
 }
print “\nNumber of black persons with cancer is $black_count\n”;
print “Number of hispanic persons with cancer is $hisp_count\n”;
print “Total number of germ cell tumor records is $germ_count\n\n”;
while((my $key, my $value) = each (%bl_count))
 {
 if ($bl_count{$key} > 5)
 {
 if ($hi_count{$key} > 5)
 {
 $hbfract = ($hi_count{$key} / $hisp_count) / ($bl_count{$key}
/ $black_count);
 printf (“%-3.02f %-35.35s\n”, $hbfract, $dictionary{$key});
 }
 }
 }
exit;

Python Script
#!/usr/local/bin/python
import sys, os, re, string
icd_in = open(“c:/ftp/icdo3.txt”, “r”)
dictionary = {}
bl_count = {}

	G erm Cell Tumor Rates across Ethnicities	 291

hi_count = {}
black_count = 0
hisp_count = 0
germ_count = 0
for line in icd_in:
 code_has = re.search(r’([0-9]{4})\/([0-9]{1}) +(.+)’, line)
 if code_has:
 code = code_has.group(1) + code_has.group(2)
 term = code_has.group(3)
 term = string.rstrip(term)
 dictionary[code] = term
 bl_count[code] = 0
 hi_count[code] = 0
icd_in.close
filelist = os.listdir(“c:/big/seer2006”)
os.chdir(“c:/big/seer2006”)
for file in filelist:
 infile = open(file,’r’)
 for line in infile:
 code = line[47:52]
 code2 = line[52:57]
 if dictionary.has_key(code2):
 code = code2
 hispanic_entry = re.match(r’[0-9]’, line[21])
 if not hispanic_entry:
 continue
 race_entry = re.match(r’[012]’, line[19])
 if not race_entry:
 continue
 if dictionary.has_key(code):
 if (line[21] == “0”): #0 means non-hispanic
 if not (line[19:21] == “02”): #01 means white
 continue
 black_count = black_count + 1
 germ_code_match = re.match(r’90[678]’, code)
 if not germ_code_match:
 continue
 bl_count[code] = bl_count[code] + 1
 else:
 if not (line[19:21] == “01”):
 continue
 hisp_count = hisp_count + 1
 germ_code_match = re.match(r’90[678]’, code)
 if not germ_code_match:
 continue
 hi_count[code] = hi_count[code] + 1
 germ_count = germ_count + 1
 infile.close()
os.chdir(“c:/ftp/py”)

292	 Methods in Medical Informatics﻿

print “Number of black persons with cancer is “ + str(black_count)
print “Number of hispanic persons with cancer is “ + str(hisp_count)
print “Total number of germ cell tumor records is “ + str(germ_count)
print
for key,value in bl_count.iteritems():
 if (bl_count[key] > 5):
 if (hi_count[key] > 5):
 hbfract = (float(hi_count[key]) / float(hisp_count)) /
(float(bl_count[key]) / float(black_count))
 print “%-3.02f %-35.35s” % (hbfract, dictionary[key])
exit

Ruby Script
#!/usr/local/bin/ruby
require ‘mathn’
icd_in = File.open(“c:/ftp/icdo3.txt”, “r”)
dictionary = {}
bl_count = Hash.new(0)
hi_count = Hash.new(0)
black_count = 0
hisp_count = 0
germ_count = 0
icd_in.each_line do
 |line|
 if line =~ /([0-9]{4})\/([0-9]{1}) +/
 code = $1 + $2
 term = $’
 term = term.sub(/ *\n/, “”) if term =~ / *\n/
 dictionary[code] = term
 end
end
icd_in.close
filelist = Dir.glob(“c:/big/seer2006/*.TXT”)
filelist.each do
 |filepathname|
 seer_in = File.open(filepathname)
 seer_in.each_line do
 |line|
 code = line.slice(47, 5)
 code2 = line.slice(52, 5)
 if dictionary.has_key?(code2)
 code = code2
 end
 if dictionary.has_key?(code)
 if line.slice(21,1).eql?(“0”) #0 means non-hispanic
 next unless line.slice(19,2).eql?(“02”) #01 means white
 black_count = black_count + 1
 next if code !~ /90[678]/
 bl_count[code] = bl_count[code] + 1

	G erm Cell Tumor Rates across Ethnicities	 293

 else
 next unless line.slice(19,2).eql?(“01”)
 hisp_count = hisp_count + 1
 next if code !~ /90[678]/
 hi_count[code] = hi_count[code] + 1
 end
 germ_count = germ_count + 1
 end
 end
 seer_in.close
end
puts “Number of black persons with cancer is “ + black_count.to_s
puts “Number of hispanic persons with cancer is “ + hisp_count.to_s
puts “Total number of germ cell tumor records is “ + germ_count.to_s
puts
bl_count.each_pair do
 |key, value|
 if bl_count[key] > 5
 if hi_count[key] > 5
 hbfract = (hi_count[key].to_f / hisp_count.to_f) /
(bl_count[key].to_f / black_count.to_f)
 printf “%-3.02f %-35.35s\n”, hbfract, dictionary[key]
 end
 end
end
exit

21.2 � Analysis

Here is the output:

Number of black persons with cancer is 318537
Number of hispanic persons with cancer is 130155
Total number of germ cell tumor records is 2100

The ratios of germ cell tumors in Hispanics compared with black persons are

2.65 Germinoma
7.08 Mixed germ cell tumor
3.50 Spermatocytic seminoma
7.10 Seminoma, anaplastic
6.14 Seminoma, NOS
3.44 Dysgerminoma
1.81 Yolk sac tumor
6.95 Teratocarcinoma
8.61 Embryonal carcinoma, NOS
1.99 Teratoma, malignant, NOS

294	 Methods in Medical Informatics﻿

There is a consistently higher incidence of cancer in the Hispanic population for every
type of germ cell tumor. This tells us a few things. First, that all of the germ cell
tumors are related to each other by more than histogenesis (cell of origin). They must
have a relationship that extends to causation and development. Second, it tells us that
the relatively high level of occurrence of germ cell tumors in white Hispanics is not
just a fluke occurring in one cancer of one particular site. It is a consistent phenom-
enon that extends to all of the germ cell tumors.

Exercises

	 1.	By adding three pound signs “#” to the script that compares germ cell occur-
rences in the Hispanic and black populations, you can produce a script that
compares the occurrences of all tumors in these two populations. Where
would you put the “#” signs?

	 2.	The high rate of germ cell tumors in white Hispanics compared to that of
black non-Hispanics may have one of two explanations: Hispanics may have
a high rate of germ cell cancer; or, blacks may have a low rate of germ cell
cancers. To resolve which possibility is correct, we could compare the relative
frequencies of occurrence of germ cell tumors in several more subpopulations.
If blacks have a consistently low frequency of occurrence of germ cell tumors,
compared to several different populations, then we would be dealing with an
unexplained low-risk population (rather than an unexplained high-risk popu-
lation). Modify the script to produce relative occurrences of germ cell tumors
in black persons compared with white non-Hispanic persons. Viewing this
data, what can you conclude?

	 3.	Modify the script to produce the same output, restricted to gender (male and
female). You can do this with two separate scripts, or with one script that
produces additional line items in the output file. What conclusions does this
data provide? What additional hypotheses do these data provide?

	 4.	Are the different rates of occurrence of germ cell tumors associated with
differences in the age of occurrence of these tumors? Using Perl, Python, or
Ruby, stratify the number of germ cell tumors occurring in white Hispanic
and black groups, by age. You may divide ages into 10-year intervals, if you
wish. What conclusions does this data provide? What additional hypoth-
eses do these data provide?

295

22
Case Study

Ranking the Death-Certifying Process, by State

As shown in Chapter 13, it is easy to parse a year’s worth of deidentified death certifi-
cate data contained in one of the CDC public use mortality files.

We have been using the 1999 mortality file, which contains about 2.3 million
records. Each record may list up to 20 diseases, representing the underlying and proxi-
mate causes of death and any significant additional conditions that the certifying doc-
tor deems noteworthy. When physicians fill out a death certificate, they can choose
to be thorough, by listing all diseases that lead to the patient’s death, as well as other
significant medical conditions affecting the patient at the time of death. Physicians
can also choose to be somewhat lazy, listing the proximate cause of death, and omit-
ting preceding and concurrent diseases. With a little effort, we can count the diseases
listed in each cause of death record, and determine the average number of diseases
reported for each state.

22.1 � Script Algorithm

	 1.	Because the CDC mortality files use a numeric code for each state, you must
create a dictionary object whose keys are the code numbers for each state and
whose values are corresponding names of states (or, in this case, the two-letter
abbreviation for each state). The public file that explains the byte fields in the
mortality files includes a state code listing, which we can extract as a simple
text file, cdc_states.txt. This file is available at www.julesberman.info/book/
cdc_states.txt. Parse through the cdc_states.txt file to build the state-by-state
dictionary object.

	 2.	Open the 1999 CDC mortality file.
	 3.	Create a new dictionary object whose key will be the state abbreviation and

whose value will be the total number of different records assigned to the state
(i.e., the number of recorded deaths in the state).

	 4.	Create a new dictionary object whose key will be the state abbreviation and
whose value will be the total number of different cause of deaths diagnoses
included in the aggregate of records for the state.

	 5.	For each line record in the file, extract the section of the record that contains
the various cause of death codes for the individual record (bytes 162 to 303).

296	 Methods in Medical Informatics﻿

	 6.	For each line record in the file, extract the two-digit state code (bytes 21 and
22) and assign it the corresponding dictionary value (i.e., state abbreviation).

	 7.	For each line record in the file, increment by 1 the dictionary object created in
step 3 for the state specified in the record.

	 8.	For each line record in the file, increment by 1 the dictionary object created
in step 4 with the number of different conditions listed in the cause of death
record. This is determined by the number of alphanumeric sequences that are
separated by a space in bytes 162 to 303 of the record.

	 9.	The rank of each state is determined by the total number of conditions recorded
for all of the death certificate records for the state, divided by the total number
of records for the state, and ranked by sorted numeric order for every state.

Perl Script

#!/usr/local/bin/perl
open (STATE, “cdc_states.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <STATE>;
 $line =~ /^[0-9]{2}/;
 $state_code = $&;
 $line =~ / +([A-Z]{2}) *$/;
 $state_abb = $1;
 $statehash{$state_code} = $state_abb;
 }
close STATE;
open (ICD, “Mort99us.dat”); #the CDC mortality file
$line = “ “;
while ($line ne “”)
 {
 $line = <ICD>;
 $codesection = substr($line,161,140);
 $code = substr($line,20,2);
 $state = $statehash{$code};
 $state_total{$state}++;
 $codesection =~ s/ +$//;
 $eager = scalar(split(“ “,$codesection));
 $state_eager{$state} = $state_eager{$state} + $eager;
 }
while ((my $key, my $value) = each(%state_total))
 {
 $goodness = substr(($state_eager{$key} / $value),0,5);
 push(@list_array, “$goodness $key”);
 }
print join(“\n”, (sort(@list_array)));
exit;

	R anking the Death-Certifying Process, by State	 297

Python Script

#!/usr/local/bin/python
import re, string
state_file = open(“c:\\ftp\\cdc_states.txt”, “r”)
state_hash = {}
state_eager = {}
state_total = {}
list_array = []
for line in state_file:
 codematch = re.match(r’([0-9]{2})’, line)
 if codematch:
 state_code = codematch.group(1)
 statematch = re.search(r’ +([A-Z]{2}) *$’, line)
 if statematch:
 state_abb = statematch.group(1)
 state_hash[state_code] = state_abb
 state_total[state_abb] = 0
 state_eager[state_abb] = 0
state_file.close()
cdc_file = open(“c:\\big\\Mort99us.dat”, “r”)
for line in cdc_file:
 codesection = line[161:300]
 code = line[20:22]
 state = state_hash[code]
 state_total[state] = state_total[state] + 1
 codesection = re.sub(r’ +$’, “”, codesection)
 eager = re.split(r’ +’, codesection)
 eager = len(eager)
 state_eager[state] = state_eager[state] + eager
for key in state_total.keys():
 goodness = str(float(state_eager[key]) / state_total[key])
 goodness = goodness[0:5]
 list_array.append(goodness + “ “ + key)
list_array = sorted(list_array)
for item in list_array:
 print item
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘mathn’
state_file = File.open(“c:/ftp/cdc_states.txt”)
state_hash = {}
state_eager = {}
state_total = {}
list_array = []
state_file.each_line do

298	 Methods in Medical Informatics﻿

 |line|
 line =~ /^[0-9]{2}/
 state_code = $&;
 line =~ / +([A-Z]{2}) *$/
 state_abb = $1;
 state_hash[state_code] = state_abb
end
state_file.close
cdc_file = File.open(“c:/big/Mort99us.dat”)
cdc_file.each_line do
 |line|
 codesection = line.slice(161,140)
 code = line.slice(20,2)
 state = state_hash[code]
 state_total[state] = state_total[state].to_i + 1
 codesection = codesection.sub(/ +$/, “”)
 eager = codesection.split(“ “).length
 state_eager[state] = state_eager[state].to_i + eager
end
state_total.each do
 |key, value|
 goodness = (state_eager[key] / value).to_f.to_s.slice(0,5)
 list_array.push(goodness + “ “ + key)
end
puts list_array.sort.join(“\n”)
exit

22.2 � Analysis

How many diagnoses are typically listed on a death certificate? About three. Many
certificates list only a single condition.

It is easy to rank the average number of conditions listed on the certificates, by state.
The lowest ranking state is AR (Arkansas), with an average of 2.442 conditions

listed on each certificate. Next in line is Louisiana, with 2.47 conditions listed.
Arizona follows with 2.501.

2.442 AR
2.479 LA
2.501 AZ
2.531 AL
2.554 MT
2.567 MA
2.579 NV
2.603 OK
2.603 VA
2.609 KY
2.621 IL

2.631 IN
2.632 WI
2.634 NM
2.649 OR
2.652 FL
2.663 MI
2.667 SD
2.678 MN
2.690 NJ
2.714 UT
2.768 AK

	R anking the Death-Certifying Process, by State	 299

2.774 PA
2.781 MS
2.789 KS
2.795 MO
2.796 ID
2.800 WY
2.802 GA
2.824 SC
2.831 IA
2.855 ME
2.875 CO
2.875 TX
2.879 WA
2.880 NC
2.883 TN

2.903 DE
2.909 NH
2.921 NE
2.935 DC
2.949 NY
2.955 MD
2.956 CT
3.083 ND
3.102 WV
3.125 VT
3.138 OH
3.195 RI
3.316 HI
3.363 CA

The highest-ranking state is California, with 3.363 conditions listed on each certifi-
cate. Next to the top is Hawaii, with 3.316 conditions.

What is a “lazy” death certificate? I would think that a lazy death certificate is
one that contains the absolutely minimal number of conditions required to certify
death (i.e., “1”). Let us rank the states by the fraction of death certificates, registered
in the state, that contain only one listed condition for the cause of death (by tweaking
the first script).

0.323 AL
0.304 MT
0.303 AR
0.291 KY
0.290 IN
0.288 LA
0.285 MN
0.277 VA
0.274 WI
0.270 SD
0.267 MI
0.267 IL
0.258 PA
0.255 OK
0.255 MA
0.252 OR
0.249 NM
0.249 NJ
0.245 MO

0.244 AZ
0.242 ID
0.241 ME
0.241 FL
0.239 AK
0.238 UT
0.238 KS
0.234 WA
0.233 IA
0.229 DE
0.228 WY
0.225 SC
0.222 TN
0.222 CO
0.221 NC
0.220 TX
0.219 NV
0.217 DC
0.214 MS

300	 Methods in Medical Informatics﻿

0.214 MD
0.200 GA
0.199 NH
0.196 OH
0.192 WV
0.190 ND
0.185 NE

0.180 RI
0.177 VT
0.176 CT
0.171 HI
0.129 NY
0.119 CA

Alabama has the worst performance, with nearly one-third of death certificates having
only one listed condition. California, once more, has the best performance of all the
states, with one condition reported in only about one-tenth of certificates (i.e., about
90% of certificates have more than one condition reported).

Just about every death involves multiple underlying causes of death leading to a
proximate cause of death. The number of conditions listed on a death certificate is, in
most cases, a matter of personal effort on the part of the certifying doctor.

It can be difficult to produce an accurate death certificate. Nonetheless, much of
what we know about human disease and the causes of human mortality comes from
examination of death certificates. Death certificates have profound importance for the
family of the deceased. Doctors should be trained to provide complete and accurate
entries for “causes of death” and “other significant conditions” on death certificates.

Exercises

	 1.	Every death certificate must have at least one disease entry for the cause of
death. Write a script that ranks each state by the percentage of death certifi-
cates that have only one disease listed in the cause of death section, as discussed
in the chapter. The laziest state would be the state with the highest percentage
of death certificates carrying only one disease listing for the cause of death.

	 2.	Assuming that a death certificate is completed for every death occurring in
the United States, write a script that determines the total number of deaths
that occurred in the United States in 1999.

	 3.	Determine whether there is a difference, based on ethnicity, between the
number of diseases listed in the cause of death section of death certificates.
Specifically, answer the question: “Do white persons, black persons, and
Hispanic persons have about the same number of listed conditions on their
respective death certificates?“

	 4.	Death certificates, as we have seen, code diseases using ICD, a coding sys-
tem that is entirely different from the ICD-O (the classification of cancers).
Nonetheless, the ICD does include cancers which are all prefixed with a “C“
in their code. For example, “C13.1“ is the ICD code for a cancer occurring in
the hypopharyngeal aspect of the aryepiglottic fold. Using Perl, Python, or
Ruby, write a script that counts the number of death certificates that contain
a cancer code (a code beginning with a “C“) and determine the proportion of
the total number of death certificates in the 1999 mortality file that include a
cancer diagnosis.

301

23
Case Study

Data Mashups for Epidemics

Data mashups combine and integrate different data sources to produce a graphi-
cal representation of data that could not be achieved with any single available data
source. Many people apply the term mashup to Web-based applications that employ
two or more Web services or that use two or more Web-based applications that
have Web-accessible APIs (application program interfaces) that permit their data
to be integrated into a derivative application. Because I am a biomedical informa-
tion specialist, I apply the term mashup to any application that integrates available
biomedical data sources to answer questions using a graphic output (with or without
Web involvement).

The classic medical mashup was performed by Dr. John Snow in London in 1854.
A major outbreak of cholera occurred in late August and early September of 1854, in
the Soho district of London. By the end of the outbreak, 616 people died.

At the time, nobody understood the biological cause of cholera. At the height of
the outbreak, Dr. Snow conducted a rapid, interview-based survey of the site of occur-
rences of new cases of cholera, producing a case-density map, hand-drawn by the
doctor himself (Figure 23.1).

Examination of the map revealed that the epidemic expanded from a water source,
the Broad Street pump. The pump was quickly shut. Dr. Snow’s historic mashup is
sometimes credited with ending the cholera epidemic and heralding a new age in sci-
entific biomedical investigation.

Today, epidemiologic inferences are drawn from diverse data sources. As described
by Donald McNeil for The New York Times, the track of an influenza epidemic, origi-
nating in Mexico might be predicted by following the flow of dollar bills between
Mexico and the United States.*

To create a map mashup, we will need a data source that lists occurrences of disease
and the localities in which they occur; a data source that provides the latitude and
longitude of localities; and a map whose East, West, North, and South boundaries
have known latitudes and longitudes.

*	 McNeil, D.G. Predicting Flu with the Aid of (George) Washington. The New York Times, May 3,
2009.

302	 Methods in Medical Informatics﻿

23.1 � Tally of Coccidioidomycosis Cases by State

We can use the CDC mortality data set to create a mashup of disease occurrences in
U.S. states.

Coccidioidomycosis (commonly misspelled Coccidiomycosis) is a fungus. Spores
can lodge in the lungs of humans, producing debilitating and chronic pulmonary dis-
ease (Figure 23.2).

Let us examine the geographic distribution of coccidioidomycosis. We can write a
short script that parses through every record in the CDC mortality file, pulling each
death for which the diagnosis of coccidioidomycosis was recorded, and tallying the
deaths for the states in which the deceased death certificate was recorded. This will tell
us something about the state-by-state distribution of coccidioidomycosis.

Figure 23.1  Cholera case occurrences in the 1854 London epidemic are shown in this early mashup of incidence data
and geography; at the epicenter is the infamous Broad Street pump. (Author note: This map is now in the public domain,
and a higher-resolution version of the map is available from Wikipedia at http://en.wikipedia.org/wiki/File:Snow-cholera-
map-1.jpg.)

	D ata Mashups for Epidemics	 303

23.1.1 � Script Algorithm

	 1.	Open the file, cdc_states.txt, which is the CDC’s code list for each state and
the District of Columbia (Figure 23.3). The two-digit state code corresponds
to the “state” field in byte locations 21 and 22 of the U.S. mortality records.

	 2.	Create a dictionary object whose keys are the state’s two-digit codes and
whose values are the corresponding state abbreviations. Use file available at
www.julesberman.info/book/cdc_states.txt.

	 3.	Open the 1999 U.S. mortality file (mort99us.dat), and parse through every
line record.

	 4.	As each line is parsed, extract the section of the record that contains the ICD
codes for the conditions listed on the death certificates (bytes 160 to 300).

	 5.	Match the regular expression containing the ICD code for coccidioidomyco-
sis (“B38”) against the record section containing the ICD codes.

	 6.	If there is a match, determine the state in which the record occurred (byte 21
and 22) and increment a dictionary object whose keys are the state abbrevia-
tions and whose values are the cumulative tallies of the number of cases of
coccidioidomycosis occurring in the state.

	 7.	After the mortality file has been parsed, print out the key–value pairs from
the dictionary object containing states and their coccidioidomycosis tallies.

Figure 23.2  Histologic specimen of Coccidioidomycosis immitis in a sputum specimen.

304	 Methods in Medical Informatics﻿

Perl Script

#!/usr/local/bin/perl
open (STATE, “cdc_states.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <STATE>;
 $line =~ /^[0-9]{2}/;
 $state_code = $&;
 $line =~ / +([A-Z]{2}) *$/;
 $state_abb = $1;
 $statehash{$state_code} = $state_abb;
 }
close STATE;
open (ICD, “Mort99us.dat”);
$line = “ “;

01 Alabama AL 27 Montana MT
02 Alaska AK 28 Nebraska NE
03 Arizona AZ 29 Nevada NV
04 Arkansas AR 30 New Hampshire NH
05 California CA 31 New Jersey NJ
06 Colorado CO 32 New Mexico NM
07 Connecticut CT 33 New York NY
08 Delaware DE 34 North Carolina NC
09 District of Columbia DC 35 North Dakota ND
10 Florida FL 36 Ohio OH
11 Georgia GA 37 Oklahoma OK
12 Hawaii HI 38 Oregon OR
13 Idaho ID 39 Pennsylvania PA
14 Illinois IL 40 Rhode Island RI
15 Indiana IN 41 South Carolina SC
16 Iowa IA 42 South Dakota SD
17 Kansas KS 43 Tennessee TN
18 Kentucky KY 44 Texas TX
19 Louisiana LA 45 Utah UT
20 Maine ME 46 Vermont VT
21 Maryland MD 47 Virginia VA
22 Massachusetts MA 48 Washington WA
23 Michigan MI 49 West Virginia WV
24 Minnesota MN 50 Wisconsin WI
25 Mississippi MS 51 Wyoming WY
26 Missouri MO

Figure 23.3  CDC’s two-digit codes for the 50 states and the District of Columbia.

	D ata Mashups for Epidemics	 305

while ($line ne “”)
 {
 $line = <ICD>;
 $state = 0;
 $codesection = substr($line,161,140);
 if ($codesection =~ /B38/)
 {
 $code = substr($line,20,2);
 $state = $statehash{$code};
 $state_tally{$state}++;
 }
 }
while ((my $key, my $value) = each(%state_tally))
 {
 print “$key $value\n”;
 }
exit;

Python Script

#!/usr/local/bin/python
import re, string
stat_in = open(“c:/ftp/cdc_states.txt”, “r”)
statehash = {}
state_tally = {}
for line in stat_in:
 code_match = re.match(r’([0-9]{2})’, line)
 if code_match:
 state_code = code_match.group(1)
 abb_match = re.search(r’ +([A-Z]{2}) *$’, line)
 if abb_match:
 state_abb = abb_match.group(1)
 statehash[state_code] = state_abb
 state_tally[state_abb] = 0
stat_in.close()
mort_in = open(“c:/big/Mort99us.dat”, “r”)
for line in mort_in:
 state = 0
 codesection = line[161:302]
 cocc_match = re.search(r’B38’, codesection)
 if cocc_match:
 code = line[20:22]
 state = statehash[code]
 state_tally[state] = state_tally[state] + 1
mort_in.close()
for key,value in state_tally.iteritems():
 if (value == 0):
 continue
 print key + “ “ + str(value)
exit

306	 Methods in Medical Informatics﻿

Ruby Script

#!/usr/local/bin/ruby
stat_in = File.open(“c:/ftp/cdc_states.txt”)
statehash = {}
state_tally = Hash.new(0)
stat_in.each_line do
 |line|
 line =~ /^[0-9]{2}/
 state_code = $&
 line =~ / +([A-Z]{2}) *$/;
 state_abb = $1;
 statehash[state_code] = state_abb
end
stat_in.close
mort_in = File.open(“c:/big/Mort99us.dat”)
mort_in.each_line do
 |line|
 state = 0
 codesection = line.slice(161,140)
 if (codesection =~ /B38/)
 code = line.slice(20,2)
 state = statehash[code]
 state_tally[state] = state_tally[state] + 1
 end
end
mort_in.close
state_tally.each_pair {|key,value| puts key + “ “ + value.to_s}
exit

23.1.2 � Analysis

The script produces a list of states and the tally of coccidioidomycosis cases, culled
from the 1999 U.S. mortality file. Here is the output of the script:

Az 62
Ca 53
Id 2
Il 2
In 1
Ks 1
Ky 1
Mn 1

Mo 1
Mt 1
Nc 2
Nm 3
Nv 3
Ny 1
Oh 1
Or 2

Pa 1
Tx 18
Ut 2
Wa 4
Wi 2
Wv 1

You will notice that fewer than 50 states are included in the list. States that had no
cases of coccidioidomycosis were not added to the list. We will see that this does not
affect the mashup.

	D ata Mashups for Epidemics	 307

23.2 � Creating the Map Mashup

Whenever we have a data set with numeric data associated with each state, we can use
that data to create a mashup that projects the data onto a map of the United States. If
the data has a recognizable geographic distribution, we will able to visualize the trend.

23.2.1 � Script Algorithm

	 1.	Import an image module into your script.
	 2.	Open the external file, which contains the map coordinates for the geographic

centers of each state. The file is available at the following location:

http://www.maxmind.com/app/state_latlon

		 State longitudes and latitudes, obtained from the state_latlon file, and used in
this script, is available at

http://www.julesberman.info/book/loc_states.txt

		 For this script, we deposited loc_states.txt in the c:\ftp\ subdirectory of our
hard drive.

			 The first few lines of the file are shown here, with the latitude and longi-
tudes for Alaska, Alabama, and Arkansas.

“AK,61.3850,-152.2683”
“AL,32.7990,-86.8073”
“AR,34.9513,-92.3809”

		 These three lines mean the following:

Alaska Latitude 61.3850 (North) Longitude 152.2683 (West)
Alabama Latitude 32.7990 (North) Longitude 86.8073 (West)
Arkansas Latitude 34.9513 (North) Longitude 92.3809 (West)

	 3.	Create three dictionary objects. In both objects, the two-letter state codes are
the keys. In one, the values are the latitude locations of the states. In the other,
the values are the longitude locations of the states. In the third, the values are
the number of cases of coccidioidomycosis occurring in the state (data pre-
pared in the prior section).

	 4.	Open an image file consisting of a map of the United States. We will use the
same U.S. map that we used in Chapter 3 to “mash up” the disease data.

http://www.julesberman.info/book/us.gif

	 5.	The coordinates of the perimeter of the map are as follows:

north = 49°; #Northernmost latitude of map in degrees north
south = 25°; #Southernmost latitude of map in degrees north

308	 Methods in Medical Informatics﻿

west = 125°; #Westernmost longitude of map in degrees west
east = 66°; #Easternmost longitude of map in degrees west

		 The location of each state can be positioned to a specific point on the map by
calculating the fraction of the map’s north-south and east-west distances (in
degrees) that is occupied by each state’s latitude and longitude.

	 6.	Determine the number of columns and rows in the map image. This gives you
the width (columns) and height (rows) of the full image.

	 7.	For each state, translate the global coordinates for each state as x,y coordinates
on the map image.

	 8.	Draw circles on the map, using the x,y coordinates for each state as the center
for each circle, and using the number of cases of coccidioidomycosis (for each
state) for the proportionate size of the radius of the circle for the state.

	 9.	After circles are drawn for each state, write the resulting image to an external
image file.

Perl Script

#!/usr/local/bin/perl
use Image::Magick;
$north = 49;
$south = 25;
$west = 125;
$east = 66;
open(TEXT, “c\:\\ftp\\loc_states.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 $line =~ /^([A-Z]{2})\,([0-9\.]+)\,\-?([\.0-9]+) *$/;
 $state = $1;
 $latitude = $2;
 $longitude = $3;
 $lathash{$state} = $latitude;
 $lonhash{$state} = $longitude;
 }
close(TEXT);
open(TEXT, “c\:\\ftp\\state_count.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <TEXT>;
 $line =~ / /;
 $state_abb = $`;
 $state_value = $’;
 $sizehash{$state_abb} = $state_value;
 }
my $imgl = Image::Magick->new;

	D ata Mashups for Epidemics	 309

$imgl -> ReadImage(“c\:\\ftp\\us.gif”);
$width = $imgl -> Get(‘columns’);
$height = $imgl -> Get(‘rows’);
while ((my $key, my $value) = each(%lathash))
 {
 $state = $key;
 $latitude = $value;
 $longitude = $lonhash{$key};
 $offset_y = int((($north - $latitude) / ($north - $south)) *
$height);
 $offset_x = int((($west - $longitude) / ($west - $east)) *
$width);
 if (exists($sizehash{$key}))
 {
 $radius = $offset_x + (2 * $sizehash{$key});
 }
 else #for the states with no cases of coccidioidomycosis
 {
 $radius = $offset_x + 0;
 }
 $imgl -> Draw (
 stroke => “red”,
 primitive => “circle”,
 points => “${offset_x}, ${offset_y}, ${radius},
${offset_y}”);
 }
$imgl -> write (“gif:cocc_pl.gif”);
exit;

Python Script

#!/usr/local/bin/python
import sys
import Image, ImageDraw
import re
lathash = {}
lonhash = {}
sizehash = {}
north = 49
south = 25
west = 125
east = 66
infile = open (“loc_states.txt”, “r”)
for line in infile:
 match_tuple = re.match(r’^([A-Z]{2})\,([0-9\.]+)\,\-?([\.0-9]+)
*$’,line)
 state = match_tuple.group(1)
 latitude = float(match_tuple.group(2))
 longitude = float(match_tuple.group(3))
 lathash[state] = latitude

310	 Methods in Medical Informatics﻿

 lonhash[state] = longitude
 sizehash[state] = 0
infile.close()
infile = open(“c:/ftp/state_count.txt”, “r”)
for line in infile:
 space_match = re.match(r’([A-Z]+) ([0-9]+)$’, line)
 if space_match:
 state_abb = space_match.group(1)
 state_value = space_match.group(2)
 sizehash[state_abb] = state_value
infile.close()
im = Image.open(“c:/ftp/us.jpg”, “r”)
print im.mode
[width, height] = im.size
draw = ImageDraw.Draw(im)
for state, latitude in lathash.iteritems():
 longitude = lonhash[state]
 offset_y = int(((north - latitude) / (north - south)) * height)
 offset_x = int(((west - longitude) / (west - east)) * width)
 radius = 2 * int(sizehash[state])
 draw.ellipse((offset_x, offset_y, (offset_x + radius), (offset_y
+ radius)), outline=0xff0000, fill=0x0000ff)
im.save(“cocc_py.jpg”)
exit

Ruby Script
#!/usr/local/bin/ruby
require ‘RMagick’
north = 49.to_f #degrees latitude
south = 25.to_f #degrees latitude
west = 125.to_f #degrees longitude
east = 66.to_f #degrees longitude
#corresponds to the continental perimeters
text = File.open(“c\:\\ftp\\loc_states.txt”, “r”)
lathash = Hash.new
lonhash = Hash.new
text.each do
 |line|
 line =~ /^([A-Z]{2})\,([0-9\.]+)\,\-?([\.0-9]+) *$/
 state = $1
 latitude = $2
 longitude = $3
 lathash[state] = latitude.to_f
 lonhash[state] = longitude.to_f
end
text.close
text = File.open(“c\:\\ftp\\state_count.txt”, “r”)
sizehash = Hash.new
text.each do

	D ata Mashups for Epidemics	 311

 |line|
 line =~ / /
 state_abb = $`
 state_value = $’
 sizehash[state_abb] = state_value
end
text.close
imgl = Magick::ImageList.new(“c\:\\ftp\\us\.gif”)
width = imgl.columns
height = imgl.rows
gc = Magick::Draw.new
lathash.each do
 |key,value|
 state = key
 latitude = value.to_f
 longitude = lonhash[key].to_f
 l_y = (((north - latitude) / (north - south)) * height).ceil
 l_x = (((west - longitude) / (west - east)) * width).ceil
 gc.fill_opacity(0)
 gc.stroke(‘red’).stroke_width(1)
 circlesize = ((sizehash[state].to_f)*2).to_i
 gc.circle(l_x, l_y, (l_x - circlesize), l_y)
 gc.fill(‘black’)
 gc.stroke(‘transparent’)
 gc.text((l_x - 5), (l_y + 5), state)
 gc.draw(imgl)
end
imgl.border!(1,1, ‘lightcyan2’)
imgl.write(“cocc_rb.gif”)
exit

23.2.2 � Analysis

The result is shown in Figure 23.4.
It took under a minute to generate this mashup map, parsing over one gigabyte of

deidentified death certificate data records, extracting data on occurrences of both dis-
eases and the states in which they were recorded, and producing a visual output that
conveys a detailed epidemiologic study that can be understood at a glance.

We showed how we can use the CDC mortality data set to create a mashup, using
short scripts. We started with a blank outline map of the United States, and we ended
with a map indicating the occurrences of coccidioidomycosis in each state. Each state
has been “pasted” into the U.S. map. States with red circles contained cases of cocci
dioidomycosis recorded on death certificates; the diameter of circles is proportionate
to the number of cases.

At a glance, we can see that coccidioidomycosis occurs primarily in the Southwest
United States. In fact, coccidioidomycosis, variously known as valley fever, San Joaquin

312	 Methods in Medical Informatics﻿

Valley fever, California valley fever, and desert fever, is a fungal disease caused by
Coccidioides immitis. In the United States, this disease is endemic to certain parts of
the Southwest.

Exercises

	 1.	In the script that calculated the occurrences of coccidioidomycosis in each
state, only states with documented cases were included in the output. Add one
line (or less) to the script (in Perl, Python, or Ruby) to produce an output that
lists all of the states, assigning zero as the occurrence number for the states
that had no coccidioidomycosis conditions on death certificates.

	 2.	The output of our mashup script is an image file that we can view in any image
viewing application. Revise the mashup script to automatically display the
image file, once it is created. (Hint: Append the image-viewing code devel-
oped in Chapter 3.)

	 3.	In the script that built the mashup map from the state-by-state data for coc-
cidioidomycosis, we could have easily added data for other diseases, assign-
ing different colors to the disease “circles” marking each disease in each
state. Histoplasmosis is endemic in the eastern half of the United States.
Conveniently, ICD codes for conditions resulting from C. immitis infection
(coccidioidomycosis) all begin with B38. Conditions for H. capsulatum (his-
toplasmosis) begin with B39. Using Perl, Python, or Ruby, tweak the two
prior scripts (to compute the occurrences of histoplasmosis in U.S. states, and
to superimpose the occurrences of histoplasmosis onto the map of coccidio
idomycosis occurrences. The output file should easily distinguish the geo-
graphic distribution of coccidioidomycosis and histoplasmosis (Figure 23.5).

	 4.	So far, we have represented the number of occurrences of coccidioidomycosis
in the different states. State-by-state raw occurrences of diseases can be mis-
leading. States with large populations (such as California) may seem to have
a much higher incidence of disease than a state with fewer people (such as
Montana). To avoid this problem, occurrences are usually expressed as a rate
(the number of cases in a state divided by the population of the state). For this,

Figure 23.4  Recorded death certificate occurrences of coccidioidomycosis, by state.

	D ata Mashups for Epidemics	 313

we can use a table that provides the population of each state in 1999, and we
can represent the occurrence count as the total number of occurrences divided
by the population of the state, multiplied by 100,000 (giving us the occur-
rences of the disease per 100,000 population).

			 Our data source was the U.S. mortality files for 1999. The CDC provides
supplemental data for the mortality files by anonymous ftp, from ftp.cdc.gov,
in the following subdirectory:

/pub/Health_Statistics/NCHS/Dataset_Documentation/mortality/
Mort99doc.pdf

		 This document provides the state populations (Figure 23.6).
			 The state population data from the Mort99doc.pdf file is available in a

simple text file that you can download and use in a script:

http://www.julesberman.info/book/statepop.txt

		 Using Perl, Python, or Ruby, revise the script that calculates the rate of occur-
rences of coccidioidomycosis in each state (number of occurrences divided by
the state population multiplied by 100,000) and displays the distribution in a
mashup map.

ME
NH

VI

NY MA
CTRI

NJ

WV

H

VA

DE
PA

IN
DCMD

KY

SD

WY

WA
MT

OR

CA

AZ

CO KS MO

WI
MI

OT

NV

NE
IA

MN

OK TN
AR

MS AL GA
SC

FL

DC

LATX

NM

ND

Figure 23.5  The geographic distributions of coccidioidomycosis and histoplasmosis. The black circles represent the
coccidioidomycosis rates of infection, as recorded on death certificates. The gray circles represent histoplasmosis rates.

314	 Methods in Medical Informatics﻿

Ta
bl

e
L.

 E
st

im
at

ed
 p

op
ul

at
io

n,
 b

y a
ge

, f
or

 th
e

Un
ite

d
St

at
es

, e
ac

h
di

vi
si

on
 a

nd
 S

ta
te

, P
ue

rto
, R

ic
o,

Vi
rg

in
 Is

la
nd

s,
 G

ua
m

, A
m

er
ic

an
 S

am
oa

, a
nd

 N
or

th
er

n
M

ar
ia

na
s:

 Ju
ly

1,
 1

99
9

[F
ig

ur
es

 in
cl

ud
e

Ar
m

ed
 F

or
ce

s
st

at
io

ne
d

in
 e

ac
h

ar
ea

, a
nd

 e
xc

lu
de

 A
rm

ed
 F

or
ce

s
st

at
io

ne
d

ou
ts

id
e

th
e

Un
ite

d
St

at
es

]

Ar
ea

To
ta

l
Un

de
r 1

ye

ar
1–

4
ye

ar
s

5–
14

ye

ar
s

15
–2

4
ye

ar
s

25
–3

4
ye

ar
s

35
–4

4
ye

ar
s

45
–5

4
ye

ar
s

55
–6

4
ye

ar
s

65
–7

4
ye

ar
s

75
–8

4
ye

ar
s

85
 ye

ar
s

an
d

ov
er

Un
ite

d
St

at
es

 ...
...

27
2,

69
0,

81
3

3,
81

9,
90

3
15

,1
22

,2
39

39
,4

95
,2

30
37

,7
73

,5
12

37
,9

35
,8

12
44

,8
12

,6
49

35
,8

02
,3

58
23

,3
89

,0
85

18
,2

18
,2

48
12

,1
46

,6
95

4,
17

5,
08

2

Al
ab

am
a .

...
...

...
...

4,
36

9,
86

2
59

,7
92

23
1,

04
1

59
0,

14
8

62
4,

73
0

61
4,

60
9

69
2,

77
8

58
2,

17
5

40
6,

63
7

31
0,

56
8

19
2,

41
2

64
,9

72

Al
as

ka
 ...

...
...

...
...

.
61

9,
50

0
9,

70
3

40
,0

62
11

3,
32

9
10

4,
65

4
72

,2
83

10
6,

34
9

91
,2

54
47

,1
16

21
,9

75
10

,3
77

2,
39

8

Ar
izo

na
 ...

...
...

...
...

4,
77

8,
33

2
76

,6
88

30
9,

30
0

73
9,

18
9

66
9,

06
5

62
8,

94
0

73
5,

99
0

58
8,

14
3

40
2,

38
4

34
1,

02
4

22
1,

70
4

65
,9

05

Ar
ka

ns
as

 ...
...

...
...

2,
55

1,
37

3
35

,7
99

14
1,

85
0

36
6,

12
9

36
7,

91
9

32
7,

57
5

37
8,

71
1

32
6,

20
5

24
5,

84
3

19
1,

32
8

12
5,

51
5

44
,4

99

Ca
lif

or
ni

a .
...

...
...

.
33

,1
45

,1
21

50
3,

22
7

1,
99

6,
03

1
5,

05
8,

62
8

4,
68

4,
22

1
5,

11
4,

99
0

5,
59

2,
33

7
4,

10
7,

38
4

2,
44

0,
77

1
1,

93
0,

88
9

1,
29

2,
56

6
42

4,
07

7

Co
lo

ra
do

 ...
...

...
...

.
4,

05
6,

13
3

58
,4

22
22

9,
79

3
59

2,
03

9
57

7,
95

9
52

3,
97

5
69

8,
67

4
60

7,
54

8
35

9,
95

0
22

1,
67

3
13

8,
47

9
47

,6
21

Co
nn

ec
tic

ut
 ...

...
..

3,
28

2,
03

1
42

,7
07

17
5,

45
8

47
8,

84
6

38
6,

96
3

44
6,

47
9

56
3,

66
3

43
6,

11
2

28
3,

22
7

23
1,

90
9

17
3,

45
6

63
,2

11

De
la

wa
re

 ...
...

...
...

75
3,

53
8

10
,2

99
39

,8
66

10
2,

23
8

99
,3

02
11

3,
22

1
13

0,
21

9
97

,0
62

63
,1

96
54

,4
77

33
,5

17
10

,1
41

Di
st

ric
t o

f
Co

lu
m

bi
a .

...
...

...
51

9,
00

0
5,

93
2

21
,3

68
54

,8
40

58
,8

21
95

,0
07

88
,7

18
72

,7
25

49
,4

87
38

,1
81

24
,6

98
9,

22
3

Fl
or

id
a .

...
...

...
...

...
15

,1
11

,2
44

19
0,

73
7

76
1,

63
7

2,
03

3,
25

8
1,

82
0,

20
3

1,
88

1,
16

9
2,

35
7,

16
8

1,
89

1,
46

8
1,

43
3,

75
5

1,
42

9,
98

4
99

1,
26

2
32

0,
60

3

Ge
or

gi
a .

...
...

...
...

..
7,

78
8,

24
0

11
9,

06
6

46
1,

08
4

1,
14

0,
25

2
1,

11
0,

40
1

1,
20

5,
24

9
1,

33
7,

84
6

1,
02

3,
43

6
62

9,
76

3
41

9,
25

7
25

6,
54

8
85

,3
38

Ha
wa

ii .
...

...
...

...
...

1,
18

5,
49

7
16

,7
42

63
,6

45
16

2,
14

3
16

6,
54

3
14

6,
81

7
19

8,
21

2
16

5,
65

9
10

3,
84

7
88

,0
18

56
,5

76
17

,2
95

Id
ah

o .
...

...
...

...
...

..
1,

25
1,

70
0

18
,8

63
73

,9
72

19
2,

03
2

20
9,

57
2

15
4,

20
8

18
6,

70
7

16
3,

29
8

11
1,

01
9

73
,5

10
50

,5
92

17
,9

27

Ill
in

oi
s .

...
...

...
...

...
12

,1
28

,3
70

17
6,

57
8

70
1,

10
1

1,
78

3,
93

8
1,

66
2,

91
8

1,
70

1,
96

8
2,

00
2,

80
5

1,
56

9,
66

6
1,

03
3,

21
9

77
1,

16
8

53
2,

62
1

19
2,

38
8

In
di

an
a .

...
...

...
...

..
5,

94
2,

90
1

82
,9

57
33

0,
71

8
85

0,
47

3
84

1,
15

3
82

3,
95

2
96

2,
92

5
78

4,
77

0
52

2,
93

3
39

1,
28

5
26

1,
48

0
90

,2
55

Io
wa

 ...
...

...
...

...
...

..
2,

86
9,

41
3

36
,3

80
14

6,
44

0
40

2,
03

9
41

7,
00

4
35

6,
64

1
44

0,
53

6
37

9,
68

7
26

2,
19

9
20

7,
76

6
15

6,
22

1
64

,5
00

Ka
ns

as
 ...

...
...

...
...

2,
65

4,
05

2
37

,3
82

14
6,

63
1

38
7,

72
5

39
8,

28
1

34
0,

48
4

42
7,

18
2

34
2,

69
5

21
9,

59
3

17
5,

17
1

12
7,

26
6

51
,6

42

Ke
nt

uc
ky

 ...
...

...
...

.
3,

96
0,

82
5

52
,6

21
20

6,
47

2
53

4,
11

4
57

6,
94

2
54

2,
57

4
64

0,
59

2
54

1,
55

6
37

2,
80

0
26

7,
64

5
16

8,
06

7
57

,4
42

Lo
ui

si
an

a .
...

...
...

..
4,

37
2,

03
5

64
,4

38
24

9,
71

2
65

9,
05

4
69

7,
81

5
57

1,
97

0
67

4,
90

5
56

8,
26

6
38

4,
41

7
27

7,
25

9
16

8,
29

1
55

,9
08

M
ai

ne
 ...

...
...

...
...

..
1,

25
3,

04
0

13
,4

39
53

,7
79

16
7,

70
3

16
6,

14
8

16
6,

47
2

21
8,

28
0

18
0,

81
0

11
1,

05
2

92
,6

15
60

,5
61

22
,1

81

M
ar

yla
nd

 ...
...

...
...

5,
17

1,
63

4
69

,8
52

27
7,

00
6

74
9,

68
5

65
4,

86
7

76
0,

26
2

93
7,

60
9

69
9,

07
7

42
6,

31
5

32
1,

63
9

20
8,

86
1

66
,4

61

Fi
gu

re
 2

3.
6 

U.
S.

 s
ta

te
s,

 w
ith

 to
ta

l p
op

ul
at

io
ns

, a
nd

 p
op

ul
at

io
ns

 s
tra

tifi
ed

 b
y a

ge
. T

hi
s

is
 a

 p
or

tio
n

of
 Ta

bl
e

L
fro

m
 th

e
pu

bl
ic

ly
av

ai
la

bl
e

fil
e,

 M
or

t9
9d

oc
.p

df
.

315

24
Case Study

Sickle Cell Rates

In 1949, Linus Pauling and co-workers showed that sickle cell anemia is a disease pro-
duced by an inherited alteration in hemoglobin, producing a molecule that is separable
from normal hemoglobin by electrophoresis. Electrophoresis is still used to distin-
guish sickle hemoglobin from normal hemoglobin.

In 1956, Vernon Ingram and J.A. Hunt sequenced the hemoglobin protein mol-
ecule (normal and sickle cell) and showed that the inherited alteration in sickle cell
hemoglobin is due to a single amino acid substitution in the protein sequence.

Because sickle cell hemoglobin can be detected by a simple blood test, it was
assumed, back in the 1950s, that new cases of this disease would be prevented through
testing, followed by genetic counseling. Today, there are a number of private and pub-
lic organizations that work to reduce the incidence of sickle cell disease.

I have been interested in knowing whether sickle cell incidence is decreasing in the
U.S. population. Despite PubMed and Web searches, I have not been able to find a
single data source on the subject. Let us investigate using the CDC (U.S. Centers for
Disease Control and Prevention) mortality data sets. We will need the CDC mortal-
ity files for the years 1996, 1999, 2002, and 2004, all of which contain deidentified
records listing multiple conditions, coded in ICD10 (International Classification of
Disease, version 10), for the underlying causes of death and other significant condi-
tions, found on U.S. death certificates.

24.1 � Script Algorithm

	 1.	Information for obtaining the free, public use, CDC mortality files is available
in the appendix. Put the filenames of the CDC mortality files into an array:

mort96us.dat, mort99us.dat, mort02us.dat, mort04us.dat

	 2.	Parse through each mortality file, line by line (about 5 GB total).
	 3.	Records in the mortality files comprise a single line, with the list of death cer-

tificate conditions concatenated in 140 bytes, starting from line byte 449 (in
the 1996 mortality file), 162 (in the 1999 mortality file), 163 (2002 mortality
file), or 165 (2004 mortality file).

	 4.	Extract the 140-byte section of each record, and match the conditions listed
against the codes for sickle-cell-related diseases.

316	 Methods in Medical Informatics﻿

	 5.	In the ICD, sickle cell disease and all variants of the disease begin with “D57”.
No other diseases have a code that begins with “D57”.

D57 Sickle cell disorders
D57.0 Sickle cell anemia with crisis
D57.00 with crisis (vasoocclusive pain)
D57.01 with - - - - acute chest syndrome
D57.02 splenic sequestration
D57.1 Sickle cell anemia without crisis
D57.2 Double heterozygous sickling disorders
D57.20 without crisis
D57.211 with - - - - - acute chest syndrome
D57.212 splenic sequestration
D57.219 with crisis (vasoocclusive pain)
D57.3 Sickle cell trait
D57.40 without crisis
D57.411 with - - - - - acute chest syndrome
D57.412 splenic sequestration
D57.419 with crisis (vasoocclusive pain)
D57.8 Other sickle cell disorders
D57.80 spherocytosis
D57.811 with - - - - - acute chest syndrome
D57.812 splenic sequestration
D57.819 with crisis

		 If a death certificate indicates that a person died with sickle cell disease,
the string sequence “D57” will occur somewhere in the 140-byte sequence
extracted from the record.

	 6.	Keep a tally of the occurrences of sickle cell conditions and the rate of occur-
rences (occurrences as a fraction of the population) for the available years
(1996, 1999, 2002, and 2004).

Perl Script
#!/usr/local/bin/perl
@filearray = qw(mort96us.dat mort99us.dat mort02us.dat mort04us.dat);
foreach $file (@filearray)
{
open (ICD, $file);
$line = “ “;
$popcount = 0;
$counter = 0;
while ($line ne “”)
 {
 $line = <ICD>;

	S ickle Cell Rates	 317

 $codesection = substr($line,448,140) if ($file eq “mort96us.dat”);
 $codesection = substr($line,161,140) if ($file eq “mort99us.dat”);
 $codesection = substr($line,162,140) if ($file eq “mort02us.dat”);
 $codesection = substr($line,164,140) if ($file eq “mort04us.dat”);
 $popcount++;
 if ($codesection =~ /D57/i)
 {
 $counter++;
 }
 }
close ICD;
$rate = $counter / $popcount;
$rate = substr((100000 * $rate),0,5);
print “\n\nDeath certificates listing sickle cell\n”;
print “ disease is $counter in $file file”;
print “\nDeath certificate rate of sickle cell disease\n”;
print “is $rate per 100,000 in $file file”;
}
exit;

Python Script
#!/usr/local/bin/python
import re
sickle_match = re.compile(‘D57’)
lst = (“mort96us.dat”,”mort99us.dat”,”mort02us.dat”,”mort04us.dat”)
for file in lst:
 intext = open(file, “r”)
 popcount = 0
 counter = 0
 codesection = “”
 for line in intext:
 if file == lst[0]:
 codesection = line[448:588]
 if file == lst[1]:
 codesection = line[161:301]
 if file == lst[2]:
 codesection = line[162:302]
 if file == lst[3]:
 codesection = line[164:304]
 popcount = popcount + 1
 p = sickle_match.search(codesection)
 if p:
 counter = counter + 1
 intext.close
 rate = float(counter) / float(popcount) * 100000
 rate = str(rate)
 rate = rate[0:5]
 print (‘\n\nRecords listing sickle cell is ‘)
 print (str(counter) + ‘ in ‘ + file + ‘ file’)

318	 Methods in Medical Informatics﻿

 print (‘\nSickle cell rate per 100,000 records is ‘)
 print(str(rate) + ‘ in ‘ + file + ‘ file’)
exit

Ruby Script
#!/usr/local/bin/ruby
filearray = Array.new
filearray = “mort96us.dat mort99us.dat mort02us.dat mort04us.dat”.
split
filearray.each do
 |file|
 text = File.open(file, “r”)
 counter = 0; popcount = 0;
 text.each_line do
 |line|
 codesection = line[448,140] if (file == filearray.fetch(0))
 codesection = line[161,140] if (file == filearray.fetch(1))
 codesection = line[162,140] if (file == filearray.fetch(2))
 codesection = line[164,140] if (file == filearray.fetch(3))
 popcount = popcount +1
 counter = (counter + 1) if (codesection =~ /D57/i)
 end
 text.close
 rate = ((counter.to_f / popcount.to_f) * 100000).to_s[0,5]
 puts “\nRecords listing sickle cell is #{counter} in #{file} file”
 puts “Sickle cell rate per 100,000 records is #{rate} in #{file}
file”
 end
exit

24.2 � Analysis

The script that parses through about 5 GB of CDC records and compiles the follow-
ing results:

In 1996, U.S. cases with sickle cell disease in death certificates is 708
In 1996, U.S. rate of sickle cell disease in death certificates is 30.54 per 100,000
In 1999, U.S. cases with sickle cell disease in death certificates is 799
In 1999, U.S. rate of sickle cell disease in death certificates is 33.36 per 100,000
In 2002, U.S. cases with sickle cell disease in death certificates is 827
In 2002, U.S. rate of sickle cell disease in death certificates is 33.79 per 100,000
In 2004, U.S. cases with sickle cell disease in death certificates is 876
In 2004, U.S. rate of sickle cell disease in death certificates is 36.47 per 100,000

For all four years examined, there has been a steady, increasing trend in the number of
death certificates listing sickle cell disease as a cause of death or a significant condition

	S ickle Cell Rates	 319

at the time of death. Likewise, the overall rate (per 100,000 certificates) has steadily
increased in every sampled year, covering 1996 to 2004.

Does this mean that efforts to reduce the incidence of sickle cell disease have failed?
Not necessarily. Death certificate data is unreliable. Whether a doctor thinks of add-
ing sickle cell disease as a medical condition on the death certificate may depend on a
variety of factors (as discussed previously). However, when you are dealing with very
large numbers, trends usually reflect reality.

The best data would be natality incidence rates, by year, measured between about
1960 and the present. However, I have not been able to find that kind of data, and the
CDC mortality files may be the next-best option.

Exercises

	 1.	Using Perl, Python, or Ruby, modify the script to examine the trends in the
occurrence of thalassemia in the CDC mortality files. The ICD codes for
thalassemia are

D56 Thalassemia
D56.0 Alpha thalassemia
D56.1 Beta thalassemia
D56.2 Delta-beta thalassemia
D56.3 Thalassemia trait
D56.4 Hereditary persistence of fetal hemoglobin [HPFH]
D56.8 Other thalassemias
D56.9 Thalassemia, unspecified

	 2.	Using Perl, Python, or Ruby, determine the trends for the occurrence of sickle
cell anemia by state. Are there some states where the occurrences of sickle cell
anemia (on death certificates) are dropping? (Hint: Use cdc_states.txt.)

	 3.	Using Perl, Python, or Ruby, determine the average age at death of patients
whose death certificates include a diagnosis of sickle cell anemia.

	 4.	Examine the file that lists all of the diseases coded by the ICD (each10.txt).
			 This file is available by anonymous ftp from the ftp.cdc.gov Web server in

the following subdirectory:

/pub/Health_Statistics/NCHS/Publications/ICD10/each10.txt

or at

http://www.julesberman.info/book/each10.txt

		 Choose a condition in which you have a particular interest, and repeat the
analysis from this chapter, substituting your chosen disease for sickle cell
anemia.

321

25
Case Study

Site-Specific Tumor Biology

We commonly speak of tumors as a general concept that has no specific anatomic
site. Squamous cell carcinomas are tumors of squamous cells, and they arise wherever
squamous cells happen to grow. The assumption is that squamous cell carcinomas all
have the same general biological properties wherever they arise. The same is true for
just about any tumor. A mesothelioma is a tumor that arises from the lining cells of
body cavities. We might expect mesotheliomas to have the same biological properties
wherever they might arise.

The problem with this way of thinking is that it depends on a large number of
assumptions about the early development, growth, and treatment of tumors of the
same name arising in different locations. Do we really know that mesotheliomas
of the pleura are caused by the same agents that cause mesotheliomas of the peri-
toneum? Do we know that mesotheliomas of pleura occur in the same population
of people as mesothelioma of the peritoneum? Might the cells of origin of pleural
mesotheliomas have a different set of properties compared with the cells of origin of
peritoneal mesotheliomas?

In prior chapters, we learned that different diseases occur with different frequencies
in different ethnic or racial subpopulations. In this chapter, we will examine a single
instance of a neoplasm that can occur in several different sites in the human body, and
we will ask whether the tumors arising in different sites will occur in different num-
bers, and in different age distributions.

25.1 � Anatomic Origins of Mesotheliomas

During embryonic development, cavities arise in the mesoderm (the middle embry-
onic layer), which eventually become the major body cavities, the pleura and the peri-
toneum. These cavities are lined by flat cells of mesodermal origin that produce small
quantities of lubricating fluid rich in hyaluronic acid and chondroitin sulfate. The
viscera of the chest (heart and lungs) hang within the pleural cavity (Figure 25.1).

The viscera of the abdomen (intestines, liver) are suspended wholly or partly within
the peritoneal cavity (Figure 25.2). Some organs lie beneath the pleura or the perito-
neum, and others lie in cavity recesses (the ovaries and para-ovarian tissues, and the
testes and para-testicular tissues).

322	 Methods in Medical Informatics﻿

Superior layer of
coronary ligament
Bare area of liver
Inferior layer of
coronary ligament

Pancreas

Duodenum

Aorta

Mesentery

Uterus
Rectovaginal
excavation
RectumVagina

Bladder

Uterovesical
excavation

Small intestine

Greater omentum

Transverse colon

Stomach

LIVER

Bristle in epiploic
foramen

Figure 25.2  Peritoneal cavity (from Gray’s Anatomy, 1918).

Pulmonary pleura

Transversus thoracis
Internal mammary vessels

Left phrenic
nerve

Sympathetic trunk
Thoracic duct Vagus nerves

Azygos vein

Costal pleura

Figure 25.1  Pleural cavity (from Gray’s Anatomy, 1918).

	S ite-Specific Tumor Biology	 323

Mesotheliomas are malignant tumors that arise from the surfaces lining the walls
of the body cavities, and from the surfaces of organs that lie within the body cavities.

25.2 � Mesothelioma Records in the SEER Data Sets

In the SEER data sets, records of mesotheliomas are coded with one of four different
ICD-O codes:

90503 = mesothelioma
90513 = fibrous mesothelioma
90523 = epithelial mesothelioma
90533 = biphasic mesothelioma

SEER records also contain a so-called topography code indicating the anatomic site
from which the tumor arose. When we evaluate the topographic locations from which
pleural and peritoneal mesotheliomas arise, we need to include topographic codes for
the pleural and peritoneal cavities, as well as the organs within those cavities. For this
exercise, we will lump together tumors that arise from the walls of the cavities (the
parietal mesothelium) and tumors that arise from the surfaces of viscera within body
cavities (the visceral mesothelium). A subset of mesotheliomas can arise from genital
organs (ovaries and testes) found in recesses of the peritoneum, and we will collect
separately those SEER records that account for mesotheliomas of ovary or testis.

The topography values are

C341 Upper lobe, lung
C342 Middle lobe, lung
C343 Lower lobe, lung
C348 Overlapping lesion of lung
C349 Lung NOS
C380 Heart
C381 Anterior mediastinum
C382 Posterior mediastinum
C383 Mediastinum NOS
C384 Pleura NOS
C388 Overlapping lesion of heart, mediastinum, and pleura
C390 Upper respiratory tract, NOS
C398 Overlapping lesion of respiratory system and intrathoracic organs
C399 Respiratory tract, NOS
C482 Peritoneum NOS
C488 Overlapping lesion of retroperitoneum and peritoneum
C540 Isthmus uteri
C541 Endometrium
C542 Myometrium

324	 Methods in Medical Informatics﻿

C543 Fundus uteri
C548 Overlapping lesion of corpus uteri
C549 Corpus uteri
C559 Uterus NOS
C569 Ovary
C570 Fallopian tube
C571 Broad ligament
C572 Round ligament
C573 Parametrium
C574 Uterine adnexa
C577 Wolffian body
C578 Overlapping lesion of female genital organs
C579 Female genital tract, NOS
C620 Undescended testis (site of neoplasm)
C621 Descended testis
C629 Testis NOS
C630 Epididymis
C631 Spermatic cord
C632 Scrotum, NOS
C637 Tunica vaginalis
C638 Overlapping lesion of male genital organs
C639 Male genital organs, NOS

25.2.1 � Script Algorithm

	 1.	Parse through SEER files, line by line. Each line of a SEER file is the record
of a cancer occurrence, and there are over 3.7 million lines that will be parsed.
Instructions for obtaining the free, public use SEER files are found in the
appendix. In this script, the SEER files happen to reside in my computer’s
c:\ftp\seer2006 subdirectory.

	 2.	As each line of the file is parsed, extract the 5-character substring that begins
at character 48 and the 5-character substring that begins at character 53. These
represent the ICD-O code for the record. The string beginning at character 53
is the code for the newer version of ICD-O.

	 3.	As we saw in a prior section of this chapter, the code numbers for mesothe-
lioma cases all begin with the sequence “905”. If neither of the old record’s
ICD-O codes begin with the sequence “905”, the record does not contain
a mesothelioma, and the parsing loop can begin a new iteration, beginning
with the next line.

	 4.	For the SEER records that contain a mesothelioma diagnosis, keep a running
tally of the total number of mesotheliomas.

	S ite-Specific Tumor Biology	 325

	 5.	For the SEER records that contain a mesothelioma diagnosis, determine the
topographic code for the record. The topographic code corresponds to a four-
character string sequence beginning at character 43 of the record. The topographic
codes that interest us can be described with the following five regex expressions:

C34[12389]—pleural tumors
C3[89][0123489]—pleural tumors
C48[28]—peritoneal tumors
C5[4567]—ovarian tumors
C6[23]—testicular tumors

	 6.	Capture the location of the mesothelioma as a variable, that will be one of the
following types:

mesothelioma_pleura
mesothelioma_peritoneum
mesothelioma_ovary
mesothelioma_testis

	 7.	As each line of the file is parsed, extract the three-digit number representing
the age of the patient at the time that the tumor was diagnosed. The age is
found in record characters 25, 26, and 27 (i.e., the 24th, 25th, and 26th char-
acters when character 1 is counted as the 0th character).

	 8.	Bin each age into one of 20 bins by dividing the age by 5, taking the integer
value of the result, and lumping all ages 95 and above to the same bin (the
20th bin).

	 9.	For each record, increment (by 1) the number of occurrences of the diagno-
sis (for the record), in the bin corresponding to the patient age listed for the
record, and save the record diagnosis and the incremented age distribution for
the diagnosis, as a key–value pair in a dictionary object.

	 10.	Build a dictionary object consisting of the four anatomic sites of mesothe-
liomas as keys and the incremented age distributions as the values.

	 11.	After the SEER files have been parsed, print out the key–value pairs of the
dictionary object containing the anatomic sites of the mesotheliomas as keys
and the age distributions of the occurrences of mesotheliomas as the values.

	 12.	Print out the variable containing the tally of the total number of mesothe-
lioma records in the SEER data sets.

Perl Script

#!/usr/local/bin/perl
opendir(SEERDIR, “c\:\\big\\seer2006”) || die (“Unable to open
directory”);
@files = readdir(SEERDIR);
closedir(SEERDIR);

326	 Methods in Medical Informatics﻿

chdir(“c\:\\big\\seer2006”);
foreach $datafile (@files)
 {
 next if ($datafile !~ /.txt/i);
 open (TEXT, $datafile);
 $line = “ “;
 while ($line ne “”)
 {
 $line = <TEXT>;
 $dx = substr($line, 47, 5);
 $dx2 = substr($line, 52, 5);
 next unless ($dx =~ /^905/ || $dx2 =~ /^905/);
 $count++;
 $place = substr($line,42,4);
 if ($place =~ /C34[12389]/)
 {
 $place = “pleura”;
 }
 elsif ($place =~ /C3[89][0123489]/)
 {
 $place = “pleura”;
 }
 elsif ($place =~ /C48[28]/)
 {
 $place = “peritoneum”;
 }
 elsif ($place =~ /C5[4567]/)
 {
 $place = “ovary”;
 }
 elsif ($place =~ /C6[23]/)
 {
 $place = “testis”;
 }
 else
 {
 next;
 }
 $dxp = “mesothelioma_” . $place;
 unless (exists($dxhash{$dxp}))
 {
 $dxhash{$dxp} = “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0”;
 }
 $age_at_dx = substr($line,24,3);
 if ($age_at_dx > 95)
 {
 $age_at_dx = 95;
 }
 $age_at_dx = int($age_at_dx / 5);

	S ite-Specific Tumor Biology	 327

 @agearray = split(“ “, $dxhash{$dxp});
 $agearray[$age_at_dx]++;
 $dxhash{$dxp} = join(“ “, @agearray);
 }
 close TEXT;
 }
while (($key, $value) = each(%dxhash))
 {
 @value_array = split(/ /, $value);
 print “$key\|$value\n”;
 }
print “Total number of mesotheliomas is $count\n”;
exit;

Python Script

#!/usr/local/bin/python
import os, re, string
count = 0
dxhash = {}
filelist = os.listdir(“c:/big/seer2006”)
os.chdir(“c:/big/seer2006”)
for file in filelist:
 infile = open(file,’r’)
 for line in infile:
 code = line[47:52]
 code2 = line[52:57]
 meso_match = re.match(r’905’, code)
 if not meso_match:
 meso_match = re.match(r’905’, code2)
 if not meso_match:
 continue
 count = count + 1
 place = line[42:46]
 pleura_yes = re.match(r’C34[12389]’, place)
 pleura_yes = re.match(r’C3[89][0123489]’, place)
 peri_yes = re.match(r’C48[28]’, place)
 ovi_yes = re.match(r’C5[4567]’, place)
 test_yes = re.match(r’C6[23]’, place)
 if pleura_yes:
 place = “pleura”
 elif pleura_yes:
 place = “pleura”
 elif peri_yes:
 place = “peritoneum”
 elif ovi_yes:
 place = “ovary”
 elif test_yes:
 place = “testis”

328	 Methods in Medical Informatics﻿

 else:
 continue
 dxp = “mesothelioma_” + place
 if not dxhash.has_key(dxp):
 dxhash[dxp] = “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0”
 age_at_dx = line[24:27]
 age_at_dx = int(age_at_dx)
 if (age_at_dx > 95):
 age_at_dx = 95
 age_at_dx = int(float(age_at_dx) / 5)
 agearray = dxhash[dxp].split(“ “)
 agearray[age_at_dx] = str(int(agearray[age_at_dx]) + 1)
 dxhash[dxp] = “ “.join(agearray)
keylist = dxhash.keys()
for item in keylist:
 print item + “|” + dxhash[item]
print “The total number of mesotheliomas is “ + str(count)
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘mathn’
count = 0
dxhash = {}
filelist = Dir.glob(“c:/big/seer2006/*.TXT”)
filelist.each do
 |filepathname|
 seer_file = File.open(filepathname, “r”)
 seer_file.each do
 |line|
 code1 = line.slice(47,5)
 code2 = line.slice(52,5)
 next unless (code1 =~ /^905/ || code2 =~ /^905/)
 count = count + 1
 place = line.slice(42,4)
 if place =~ /C34[12389]/
 place = “pleura”
 elsif place =~ /C3[89][0123489]/
 place = “pleura”
 elsif place =~ /C48[28]/
 place = “peritoneum”
 elsif place =~ /C5[4567]/
 place = “ovary”
 elsif place =~ /C6[23]/
 place = “testis”
 else
 next
 end
 dxp = “mesothelioma_” + place

	S ite-Specific Tumor Biology	 329

 unless dxhash.has_key? dxp
 dxhash[dxp] = “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0”
 end
 age_at_dx = line.slice(24,3)
 next if age_at_dx !~ /[01][0-9]{2}/
 age_at_dx = age_at_dx.to_f
 if (age_at_dx > 95)
 age_at_dx = 95
 end
 age_at_dx = (age_at_dx.to_f / 5).to_i
 agearray = dxhash[dxp].split(“ “)
 agearray[age_at_dx] = agearray[age_at_dx].to_i
 agearray[age_at_dx] = agearray[age_at_dx] + 1
 dxhash[dxp] = agearray.join(“ “)
 end
end
dxhash.each{|key, value| puts key + “|” + value}
puts “The total number of mesotheliomas is “ + count.to_s
exit

25.2.2 � Analysis

The resulting data is shown:

mesothelioma_pleura
0 0 0 3 4 9 27 45 89 189 324 510 691 921 1102 1111 804 325 9 3 12

mesothelioma_peritoneum
0 0 0 2 2 9 9 10 19 32 39 60 88 84 91 63 31 18 3 0

mesothelioma_testis
0 0 0 1 2 0 0 1 2 1 1 9 3 8 5 4 2 2 0 0

mesothelioma_ovary
0 0 0 1 0 0 2 1 3 3 4 2 1 1 1 1 0 1 0 0

Total number of mesotheliomas is 7163

We can see at a glance that there are many more mesotheliomas of the pleura than there
are mesotheliomas arising in other sites. The second most common site of mesotheliomas
is the peritoneum. Mesotheliomas arising from the testis or the ovary are quite rare.

25.3 � Graphic Representation

In the previous section, we produced the distribution of occurrences of mesothe-
liomas, by age, at different anatomic sites. The output of the data was a list of 20 num-
bers, corresponding to the 20 age categories ranging from age 0 to age 95 and above.
With these data, it is possible to create graphic representations of the data that can be

330	 Methods in Medical Informatics﻿

visually scanned, to find trends or anomalies of biologic importance that could not be
appreciated by inspecting stark lists of numbers.

25.3.1 � Script Algorithm

	 1.	Call the external ImageMagick module into your script.
	 2.	Create an image object.
	 3.	Read an external image into your new image object. In this case, the external

image serves as a blank object upon which you will draw the graphic repre-
sentations of the age distributions of occurrences of mesotheliomas, at four
anatomic sites.

			 We will use the image file, empty.gif, created as a 520 by 520 pixel gif file
available at

http://www.julesberman.info/book/empty.gif

			 Alternately, you can draw your own empty gif file, or you can simply create
an empty file, in your script, using ImageMagick.

	 4.	Create a dictionary object to hold the four distributions created in the previ-
ous section of this chapter. The keys will be the anatomic sites, and the values
will be a string with 18 values corresponding to the number of occurrences of
mesotheliomas, for the age range (beginning with age 0 and ending with age
85 and above) collected in the SEER data records.

	 5.	Parse through each key–value pair in the dictionary object.
	 6.	As each key–value pair is parsed, split the value string into an array of 18

items containing the cancer occurrences, by age.
	 7.	Determine the largest number in each array, and save it as a variable.
	 8.	Print the key (the anatomic site where the mesotheliomas arose) at a position

on the image object to the left of the position where the graph will appear.
	 9.	Build a graph of the age distribution, using the fraction of the size of each

member of the distribution, compared with the biggest item of the distribu-
tion multiplied by 50 as the height of each bar. This method guarantees that
all four graphs will fit on the image (because no graph will have a height
exceeding 50 pixels, and four 50-pixel graphs can easily fit on a canvas that is
520 pixels high). Likewise, each graph will have the same vertical height
(50 pixels), regardless of the size of individual members of the distribution.
For each member of the distribution, stagger its horizontal location on the
graph in 15-pixel increments, beginning with a pixel location 100 pixels from
the left border of the image.

	 10.	Step 9 is repeated for each of the four distributions, raising the x-axis by
120 pixels for each succeeding graph.

	 11.	After all the distributions are parsed, write the image object to a newly created
image file.

	S ite-Specific Tumor Biology	 331

Perl Script

#!/usr/local/bin/perl
use Image::Magick;
my $image = Image::Magick->new;
$image -> ReadImage(“c\:\\ftp\\metajpg\\empty.gif”);
$dict{“meso_pleura”} = “0 0 0 3 4 9 27 45 89 189 324 510 691 921
1102 1111 804 430”;
$dict{“meso_peritoneum”} = “0 0 0 2 2 9 9 10 19 32 39 60 88 84 91
63 31 21”;
$dict{“meso_testis”} = “0 0 0 1 2 0 0 1 2 1 1 9 3 8 5 4 2 2”;
$dict{“meso_ovary”} = “0 0 0 1 0 0 2 1 3 3 4 2 1 1 1 1 0 1”;
$base_y = 580;
while (($key, $value) = each(%dict))
 {
 @data_array = split(/ /,$value);
 $big_item = 0;
 foreach $item (@data_array)
 {
 if ($item > $big_item)
 {
 $big_item = $item;
 }
 }
 $base_x = 100;
 $base_y = $base_y - 120;
 $image->Annotate(text => $key, x => ($base_x - 70), y =>
$base_y);
 foreach $item (@data_array)
 {
 $item = int(($item / $big_item)*50);
 $base_x = $base_x + 15;
 $peak_y = $base_y - $item;
 $image -> Draw (stroke => “black”, width => “2”, primitive =>
“line”,
 points => “$base_x,$base_y $base_x,$peak_y”);
 }
 }
$image -> write (“meso.gif”);
exit;

Python Script

#!/usr/local/bin/python
import Image, ImageDraw
im = Image.open(“c:/ftp/metajpg/empty.gif”)
draw = ImageDraw.Draw(im)
dict = {}
dict[“meso_pleura”] = “0 0 0 3 4 9 27 45 89 189 324 510 691 921
1102 1111 804 430”

332	 Methods in Medical Informatics﻿

dict[“meso_peritoneum”] = “0 0 0 2 2 9 9 10 19 32 39 60 88 84 91 63
31 21”
dict[“meso_testis”] = “0 0 0 1 2 0 0 1 2 1 1 9 3 8 5 4 2 2”
dict[“meso_ovary”] = “0 0 0 1 0 0 2 1 3 3 4 2 1 1 1 1 0 1”
base_y = 580
for key, value in dict.iteritems():
 data_array = value.split(“ “)
 big_item = 0
 for item in data_array:
 item = int(item)
 if item > big_item:
 big_item = item
 base_x = 30
 base_y = base_y - 120
 draw.text((base_x,base_y), key)
 for item in data_array:
 item = int((float(item) / big_item)*50)
 draw.line((base_x,base_y) + (base_x, (base_y - item)), width=1,
fill=000)
 base_x = base_x + 25
im.save(“meso.jpg”)
exit

Ruby Script

#!/usr/local/bin/ruby
require ‘RMagick’
include Magick
img = Magick::ImageList.new(“c:/ftp/metajpg/empty.gif”)
gc = Magick::Draw.new
gc.fill_opacity(0)
gc.stroke(‘black’).stroke_width(1)
dict = {}
dict[“meso_pleura”] = “0 0 0 3 4 9 27 45 89 189 324 510 691 921
1102 1111 804 430”
dict[“meso_peritoneum”] = “0 0 0 2 2 9 9 10 19 32 39 60 88 84 91 63
31 21”
dict[“meso_testis”] = “0 0 0 1 2 0 0 1 2 1 1 9 3 8 5 4 2 2”
dict[“meso_ovary”] = “0 0 0 1 0 0 2 1 3 3 4 2 1 1 1 1 0 1”
base_y = 580
dict.each do
 |key, value|
 data_array = value.split(/ /)
 base_x = 80
 base_y = base_y - 120
 gc.font_weight(“normal”)
 gc.text((base_x - 70),base_y, key)
 data_array.each do
 |item|
 item = (((item.to_f / data_array.max.to_f)*50).ceil)

	S ite-Specific Tumor Biology	 333

 gc.line(base_x,(base_y - item), base_x, base_y)
 base_x = 20 + base_x
 end
end
gc.draw(img)
img.write(“meso.gif”)
exit

25.3.2 � Analysis

From the numbers, it is clear that pleural mesothelioma occurs much more frequently
than peritoneal mesothelioma. Examination of the graphic representations of the data
allows us to draw some additional conclusions (Figure 25.3).

There seems to be about a 10-year difference in the peak age of occurrence of pleural
and peritoneal mesotheliomas. The peak age of occurrence of pleural mesothelioma is
75 years, and that of peritoneal mesotheliomas is 65 years. Unlike either peritoneal or
pleural mesotheliomas, both ovarian and testicular mesotheliomas occur in a younger
population than mesotheliomas that occur in the pleura and peritoneum. The peak age

meso_peritoneum

meso_testis

meso_pleura

meso_ovary

Figure 25.3  Age-incidence curves for mesotheliomas occurring at four different anatomic locations. The curves do not
have the same shape or the same age locations of incidence peaks.

334	 Methods in Medical Informatics﻿

of occurrence is of ovarian mesothelioma is much lower than mesotheliomas occur-
ring in pleura or peritoneum.

In Chapter 26, we will discuss the biological relevance of findings based on age
distributions of the occurrence of tumors. For now, it suffices to say that the SEER
data sets permit us to evaluate how the incidence of tumors may vary with a variety of
factors included in the SEER records. Simple modifications of the methods provided
in this chapter allow us to examine raw data and graphic representations of tumor
occurrences organized by age, ethnicity, race, gender, time, anatomic site, tumor sub-
type (recognized variants of a tumor that are recorded by ICD code), tumor type
(name of tumor), and tumor class (biologic category into which one or more tumors
may fall).

Exercises

	 1.	Using Perl, Python, or Ruby, modify the script to provide the total number
of mesotheliomas at each anatomic site for which there is an ICD topography
code and for which there is a record containing a mesothelioma diagnosis.

	 2.	Using Perl, Python, or Ruby, modify the script to find the age distributions
for mesotheliomas at the different sites, stratified by gender.

	 3.	Using Perl, Python, or Ruby, modify the script to find the age distributions
for mesotheliomas aggregated for all sites, and separated by race/ethnicity
(white persons, black persons, Hispanic persons, and Asian persons).

	 4.	Using Perl, Python, or Ruby, for each type of mesothelioma, write a script
that determines the total number of mesotheliomas, of the type, in the SEER
data sets, and the average age of occurrence of each type. The four types of
mesothelioma are

90503 = mesothelioma (general designation for mesotheliomas, without
subtyping)

90513 = fibrous mesothelioma
90523 = epithelial mesothelioma
90533 = biphasic mesothelioma

	 5.	Using Perl, Python, or Ruby, modify the script to determine the age distributions
of some tumor other than mesothelioma. Does this tumor also have the same dis-
cordance of curve shape and peak incidence that we have seen in mesothelioma?

335

26
Case Study

Bimodal Tumors

Most tumors have a simple, smooth age distribution, with a single peak (Figure 26.1).
Not all cancers have a single age-of-occurrence peak. Some have two or more peaks
of occurrence.

Well-known examples of recognized bimodal cancers are Hodgkin lymphoma
(which has two peaks in occurrence: in young adults and in middle-aged adults), and
Kaposi’s sarcoma (which has two peaks in occurrence: in young people, with AIDS,
and in older men, unassociated with AIDS).

Here are the causes for cancer multimodality (multiple peaks in a graph of cancer
occurrences by age).

	 1.	Two different types of cancer, occurring in two different peak age groups, are
mistakenly assigned the same name.

	 2.	Two or more environmental causes for the same cancer target different ages.
	 3.	Two or more genetic causes for the same cancer have different latencies (time

after birth when the cancer become clinically detected).
	 4.	Two or more human subpopulations, with different susceptibilities to devel-

oping the cancer, are pooled in the sample population.
	 5.	Faulty or insufficient data. Bimodality may be a distortion due to poor data that

does not adequately conform to the naturally occurring (unimodal) distribution.
	 6.	False conclusion based on accurate data. Statistical analysis is a form of intel-

ligent guessing. Scientists must never assume that any of their statistical con-
clusions are correct. All conclusions must be constantly reexamined in light of
new findings.

	 7.	Combinations of the above.

We see multimodal distributions when we mistakenly call several different kinds of
cancer by the same name. For example, lung cancer in young persons may have a
specific mutation that distinguishes these cancers from lung cancers occurring in an
older population. In particular, midline carcinoma of children and young adults has
a characteristic gene arrangement involving the NUT gene (lacking in lung cancers
occurring in older adults). Lung cancer of the young is grouped with lung cancer of
older adults. However, they are different cancers, with different tumor genetics. It may
turn out that lung cancer of the young may respond to a different treatment than lung
cancers caused by smoking.

336	 Methods in Medical Informatics﻿

Finally, we must consider that it is possible that some multimodal curves are simply
an artifact produced by the way we collect and analyze data. If the pathologists who
rendered the diagnoses used in the SEER data set were wrong (i.e., rendered mis-
diagnoses), we would expect multimodality on that basis (representing the different
tumors included under a category that should have included only one kind of cancer).

This actually happens. A good example is malignant fibrous histiocytoma. Current
thinking is that this diagnostic entity has been used as a grab-bag diagnosis for sarco-
mas that do not fit well into any particular category. There is substantial evidence that
many cases of malignant fibrous histiocytoma would have been better diagnosed as
leiomyosarcomas or liposarcomas or fibrosarcomas, and a host of rare sarcomas, each
with its own characteristic age distribution. By blending these different tumors under
a single name, you also blend the age distributions of the reported population.

The shape of the curve of cancer occurrences, by age, for the different types of
cancer, is a fascinating area of research. If we understood why some cancer curves
are bimodal, we could enhance our knowledge of carcinogenesis (the developmental
process of cancer) and tumor diagnosis (the features that identify a cancer and that
separate a particular type of cancer from all other types of cancer). We could also learn
a lot about the meaning of the data that we collect on cancers, and the ways that this
data can be analyzed. Most importantly, the insights gained can save lives, by uncov-
ering preventable cancers, and by finding new classes and subclasses of cancer that
may benefit from innovative cancer treatments.

In this chapter, we will make a scientific contribution to the field of multimodal
cancer incidence, by age, by finding every cancer in the SEER database, with a multi
modal distribution. The project consists of three steps:

	 1.	Determine the age distribution of every type of cancer included in the SEER
data sets, covering the years 1973–2006 (about 650 diagnostic types).

	 2.	Represent each distribution as a graph.
	 3.	Display all 650 graphs within a single document that can be visually scanned,

to find distributions that are bimodal (or multimodal).
	 4.	Collect the bimodal graphs in a single document that can be shared with the

scientific community.

Figure 26.1  A unimodal peak for infiltrating ductal carcinoma of the breast.

	 Bimodal Tumors	 337

Our first task is to prepare the age distribution of every type of cancer included in the
SEER data sets. In Chapter 7, we learned how to collect cancers by diagnostic code
from the SEER data sets, and to determine the distributions of occurrences of a cancer
by age. In this chapter, we will take this process two steps further, as we determine the
rate of occurrence of these cancers, as a fraction of the total population of the people in
the age group, in the United States, using U.S. census data, and applying the analysis
to every type of cancer contained in the SEER data sets. The script is similar to the
script that produced the age distributions of mesotheliomas at different anatomic sites
(Chapter 25). The key difference in this script is that the age-distributions for the
different cancers will be expressed as a population rate, not simply as raw occurrence
numbers. To produce a population rate, we need to know the number of people, in
the U.S. population, in each age group.

The U.S. Census Bureau provides a simple file containing the U.S. population, for
each year of age, from 0 to 100+ (Figure 26.2).

In this figure, the first item is the date, the second is the age, the third is the total
population for the age, the fourth is the male population for the age, and the fifth is
the female population for the age.

The file can be downloaded from

ht tp: //w w w.census.gov/popest /a rch ives/EST90INTERCENSAL/
US-EST90INT-07/US-EST90INT-07-2000.csv

or from

http://www.julesberman.info/book/censuage.txt

The number of occurrences of any cancer, in an age group, are divided by the number
of people, in the United States, in the age group, and then multiplied by 100,000. This
yields an incidence rate.

26.1 � Script Algorithm

	 1.	Open the external file, censuage.txt.
	 2.	Parse through every line of the censuage.txt file.
	 3.	The censuage.txt file provides population numbers, for the United States for

ages of individual years, up to age 100. We want to bin these ages into 20 five-
year intervals (i.e., 0 up to five, 5 up to 10, 10 up to 15, etc.) The first item
(following the 0th item) in the census record is the age, followed by the second
item, the U.S. population for the age. We divide each age by 5, round to an
integer, and sum all of the population values for the rounded integer, to build
a dictionary object whose keys are the 20 age groups, and whose values are the
aggregate population of the age group.

338	 Methods in Medical Informatics﻿

	 4.	Use the icdo3.txt file (see appendix), containing the list of neoplasm names and
codes used in the SEER data files, to create a dictionary object wherein the
keys are code numbers and the values are the corresponding neoplasm names.

	 5.	Parse through SEER files, line by line. Each line of a SEER file is the record
of a cancer occurrence, and there are over 3.7 million lines that will be parsed.
Instructions for obtaining the free, public use SEER files are found in the
appendix. In this example script, the SEER files are found in the \seer2006
subdirectory.

	 6.	As each line of the file is parsed, extract the 5-character substring that begins
at character 48 and the 5-character substring that begins at character 53. These
represent the ICD-O code for the record. The string beginning at character
53 is the code for the newer version of ICD-O. If this string has a code that is

Figure 26.2  Population of the United States, January 1, 2000, stratified by age and gender. The first item is the date,
the second is the age, the third is the total population for the age, the fourth is the male population for the age, and the
fifth is the female population for the age.

	 Bimodal Tumors	 339

contained in the version of ICD-O that we are using (in the icdo3.txt file), we
will use this code, rather than the code contained in the substring that begins
at character 48.

	 7.	As each line of the file is parsed, extract the three-digit number representing
the age of the patient at the time that the tumor was diagnosed. The age is
found in record bytes 25, 26, and 27.

	 8.	Bin each age into one of 20 bins by dividing the age by 5, taking the inte-
ger value of the result, and lumping all ages 95 and above to the same bin
(the 20th bin).

	 9.	For each record, increment (by 1) the number of occurrences of the diagno-
sis (for the record), in the bin corresponding to the patient age listed for the
record, and put the record diagnosis and the incremented age distribution for
the diagnosis, as a key–value pair for a dictionary object.

	 10.	After all of the files are parsed, parse through the dictionary object containing
all of the diagnostic code/age distributions.

	 11.	For each encountered value (a string containing 20 numbers corresponding to
the number of occurrences of the tumor in each of the 20 age groups), normal-
ize the occurrences into a population rate, using the following formula:

age group rate = crude number of occurrences in the age divided by the U.S.
population for the age group multiplied by 10000000

	 12.	Print out the keys and values into two separate output files: seer_all.txt
and seer_adj.txt.

	 13.	To the seer_all.txt file, for each of the cancers in the dictionary object, print
the name of the cancer (the value of the ICD-O code contained in the dic-
tionary object created by parsing through the icdo3.txt file), followed by the
age distributions of the crude cancer occurrence numbers for each age group,
followed by the population incidence rate normalized against the U.S. popu-
lation for the age group.

	 14.	To the seer_adj.txt file, print the name of the cancer (the value of the ICD-O
code contained in the dictionary object created by parsing through the icdo3.
txt file), followed by the population incidence rate normalized against the
U.S. population for the age group.

Perl Script

#!/usr/local/bin/perl
open (ICD, “c\:\\ftp\\censuage\.txt”)||die”cannot”;
$line = “ “;
while ($line ne “”)
 {
 $line = <ICD>;
 @linearray = split(/\,/, $line);
 {

340	 Methods in Medical Informatics﻿

 $age_at_dx = $linearray[1];
 $age_at_dx =~ s/\”//g;
 if ($age_at_dx > 95)
 {
 $age_at_dx = 95;
 }
 $age_at_dx = int($age_at_dx / 5);
 $total{$age_at_dx} = $total{$age_at_dx} + $linearray[2];
 }
 }
close ICD;
open (ICD, “c\:\\ftp\\icdo3\.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <ICD>;
 if ($line =~ /([0-9]{4})\/([0-9]{1}) +/o)
 {
 $code = $1 . $2;
 $term = $’;
 $term =~ s/ *\n//o;
 $term = lc($term);
 $dictionary{$code} = $term;
 }
 }
close ICD;
opendir(SEERDIR, “c\:\\big\\seer2006”) || die (“Unable to open
directory”);
@files = readdir(SEERDIR);
closedir(SEERDIR);
open (ALLOUT, “>c\:\\ftp\\seer_all.txt”);
open (ADJOUT, “>c\:\\ftp\\seer_adj.txt”);
chdir(“c\:\\big\\seer2006”);
foreach $datafile (@files)
 {
 next if ($datafile !~ /.txt/i);
 open (TEXT, $datafile);
 $line = “ “;
 while ($line ne “”)
 {
 $line = <TEXT>;
 $dx = substr($line, 47, 5);
 $dx2 = substr($line, 52, 5);
 if (exists($dictionary{$dx2}))
 {
 $dx = $dx2;
 }
 unless (exists($dxhash{$dx}))

	 Bimodal Tumors	 341

 {
 $dxhash{$dx} = “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0”;
 }
 $age_at_dx = substr($line,24,3);
 if ($age_at_dx > 95)
 {
 $age_at_dx = 95;
 }
 $age_at_dx = int($age_at_dx / 5);
 @agearray = split(“ “, $dxhash{$dx});
 $agearray[$age_at_dx]++;
 $dxhash{$dx} = join(“ “, @agearray);
 }
 close TEXT;
 }
while (($key, $value) = each(%dxhash))
 {
 if (exists($dictionary{$key}))
 {
 @value_array = split(/ /, $value);
 for ($i=0;$i<20;$i++)
 {
 $value_array[$i] = int(($value_array[$i] / $total{$i})
*10000000);
 }
 $rate_value = join(“ “, @value_array);
 print ALLOUT “$dictionary{$key}\n$value\n$rate_value\n\n”;
 print ADJOUT “$dictionary{$key}\|$rate_value\n”;
 }
 }
exit;

Python Script

#!/usr/local/bin/python
import os, re, string
census_in = open(“c:/ftp/censuage.txt”, “r”)
total = {}
linearray = []
for line in census_in:
 linearray = line.split(“,”)
 age_at_dx = linearray[1]
 age_at_dx = re.sub(r’”’, ‘’, age_at_dx)
 age_at_dx = float(age_at_dx)
 if age_at_dx > 95:
 age_at_dx = 95
 age_at_dx = int(age_at_dx/5)
 if total.has_key(age_at_dx):
 total[age_at_dx] = total[age_at_dx] + int(linearray[2])

342	 Methods in Medical Informatics﻿

 else:
 total[age_at_dx] = int(linearray[2])
census_in.close()
f = open(“c:\\ftp\\icdo3.txt”, “r”)
codehash = {}
subhash = {}
agearray = []
for line in f:
 linematch = re.search(r’([0-9]{4})\/([0-9]{1}) +(.+)$’, line)
 if (linematch):
 icdcode = linematch.group(1) + linematch.group(2)
 term = string.rstrip(linematch.group(3))
 codehash[icdcode] = term
f.close()
filelist = os.listdir(“c:/big/seer2006”)
os.chdir(“c:/big/seer2006”)
for file in filelist:
 seer_file = open(file, “r”)
 for line in seer_file:
 code1 = line[47:52]
 code2 = line[52:57]
 if codehash.has_key(code2):
 code1 = code2
 age_at_dx = int(line[24:27])
 if (age_at_dx > 95):
 age_at_dx = 95
 age_at_dx = int(float(age_at_dx)/5)
 if not subhash.has_key(code1):
 subhash[code1] = “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0”
 agearray = subhash[code1].split(“ “)
 old_value = agearray[age_at_dx]
 new_value = int(old_value) + 1
 agearray[age_at_dx] = str(new_value)
 subhash[code1] = “ “.join(agearray)
all_out = open(“c:/ftp/seer_all.txt”, “w”)
adj_out = open(“c:/ftp/seer_adj.txt”, “w”)
for key,value in subhash.iteritems():
 if codehash.has_key(key):
 value_array = value.split(“ “)
 for i in range(len(value_array)):
 value_array[i] = str(int(float(value_array[i]) /
float(total[i]) * 10000000))
 rate_value = “ “.join(value_array)
 print>>all_out, codehash[key] + “\n” + value + “\n” +
rate_value + “\n”
 print>>adj_out, codehash[key] + “|” + rate_value
exit

	 Bimodal Tumors	 343

Ruby Script

#!/usr/local/bin/ruby
require ‘mathn’
census_in = File.open(“c:/ftp/censuage.txt”, “r”)
total = Hash.new(0)
dxhash = {}
linearray = []
total = Hash.new(0)
census_in.each do
 |line|
 linearray = line.split(“,”)
 age_at_dx = linearray[1]
 age_at_dx = age_at_dx.gsub(/\”/, “”).to_i
 if age_at_dx > 95
 age_at_dx = 95;
 end
 age_at_dx = (age_at_dx.to_f / 5).to_i
 total[age_at_dx] = total[age_at_dx] + linearray[2].to_i
end
census_in.close
icd_in = File.open(“c:/ftp/icdo3.txt”, “r”)
dictionary = {}
icd_in.each_line do
 |line|
 if line =~ /([0-9]{4})\/([0-9]{1}) +/
 code = $1 + $2
 term = $’
 term = term.sub(/ *\n/, “”) if term =~ / *\n/
 dictionary[code] = term
 end
end
icd_in.close
all_out = File.open(“seer_all.txt”, “w”)
adj_out = File.open(“seer_adj.txt”, “w”)
filelist = Dir.glob(“c:/big/seer2006/*.TXT”)
filelist.each do
 |filepathname|
 seer_file = File.open(filepathname, “r”)
 seer_file.each do
 |line|
 code1 = line.slice(47,5)
 code2 = line.slice(52,5)
 code1 = code2 if dictionary.has_key? code2
 unless dxhash.has_key? code1
 dxhash[code1] = “0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0”
 end
 age_at_dx = line.slice(24,3)

344	 Methods in Medical Informatics﻿

 next if age_at_dx !~ /[01][0-9]{2}/
 age_at_dx = age_at_dx.to_f
 if (age_at_dx > 95)
 age_at_dx = 95
 end
 age_at_dx = (age_at_dx.to_f / 5).to_i
 agearray = dxhash[code1].split(“ “)
 agearray[age_at_dx] = agearray[age_at_dx].to_i
 agearray[age_at_dx] = agearray[age_at_dx] + 1
 dxhash[code1] = agearray.join(“ “)
 end
end
dxhash.each do
 |key, value|
 if dictionary.has_key?(key)
 value_array = value.split(“ “)
 value_array.each_index do
 |i|
 value_array[i] = ((value_array[i].to_f / total[i].to_f) *
10000000).to_i
 end
 rate_value = value_array.join(“ “)
 all_out.puts dictionary[key] + “\n” + value + “\n” +
rate_value + “\n”
 adj_out.puts dictionary[key] + “|” + rate_value
 end
end
exit;

26.2 � Analysis

The age distributions of 650 cancers in the SEER database are collected in two output
files (seer_all.txt and seer_adj.txt).

We have already seen, in Chapters 3 and 25, how we can represent one or many
age distributions, as simple graphs. We do not need to repeat the code examples from
these prior chapters. Some of the graphic representations of the 650 cancers, with age-
of-occurrence rate distributions, are shown in Figure 26.4.

A file of the 650 cancer age distributions is available for download at

http://www.julesberman.info/seerdist.pdf

We can visually inspect all of these cancers, looking for multimodal distributions.
Several dozen of the 650 cancers from the SEER data sets were collected. The multi-
modal graphs were assembled into a single file that is available at

http://www.julesberman.info/bimode.pdf

	 Bimodal Tumors	 345

Figure 26.5 is a sample of a bimodal graph, for serous papillary cystic tumor of bor-
derline malignancy. Two peaks are clearly evident. Here is another bimodal graph;
this time for rhabdomyosarcoma (Figure 26.6). The curves for the crude and the nor-
malized age distributions of rhabdomyosarcoma look very different from one another.
When we normalize age distributions against a standard population, the two areas
of the graph that look most different are the youngest age groups and the oldest age
groups. This is because the U.S. population of children is very large. A few occur-
rences of cancer, among children, produce a small blip in the age-normalized graph
because the rate of occurrence of a few tumors in a large population is small. At the
other extreme of the graph, people aged 85 and higher, the effect is the opposite. The
population of people over the age of 85 is small, so a few occurrences of cancer in this
population can produce a large age-specific rate of cancer. A cancer that occurs prefer-
entially in the very young and the very old (such as rhabdomyosarcoma), will produce
starkly different graphs when we compare crude occurrences with normalized rates
distributed over a range of ages. Nonetheless, the basic bimodality of the rhabdomyo-
sarcoma curves is seen in both varieties of graphs.

We have seen that serous papillary cystic tumor of borderline malignancy has a
bimodal distribution. Is bimodality a feature of all histologic subtypes of borderline
malignancy? Apparently, yes. We see bimodality in the graph of mucinous cystic
tumor of borderline malignancy. Papillary cystadenoma of borderline malignancy may
have two peaks. Two peaks are not quite so obviously present as the distribution of
mucinous cystic tumor of borderline malignancy (Figure 26.7).

Figure 26.3  Several of the 650 cancer age distributions from the SEER_all.txt file. Each cancer entry consists of the
name of each cancer, followed by the crude occurrences of the cancer by age group, followed by the occurrence rates of
the cancer by age group.

346	 Methods in Medical Informatics﻿

Fi
gu

re
 2

6.
4 

A
fe

w
of

 th
e

65
0

gr
ap

hs
 p

ro
du

ce
d

by
 th

e
sc

rip
t.

	 Bimodal Tumors	 347

Figure 26.5  Age distribution of occurrences of serous papillary cystic tumor of borderline malignancy. The top graph
represents the crude occurrences by age, in the SEER data sets. The bottom graph represents the occurrence rates, normal-
ized against the population of the age group, as determined by the U.S. Census, for the year 2000.

Figure 26.6  Age distribution of occurrences of rhabdomyosarcoma. The top graph represents the crude occurrences by
age, in the SEER data sets. The bottom graph represents the occurrence rates, normalized against the population of the age
group, as determined by the U.S. Census, for the year 2000.

Figure 26.7  Crude and normalized age distributions for the occurrences of mucinous cystic tumor of borderline malig-
nancy and papillary cystadenoma of borderline malignancy.

348	 Methods in Medical Informatics﻿

When we look at papillary mucinous cystadenoma borderline malignancy, the
bimodality of the graphs is obvious. The graphs of serous cystadenoma borderline
malignancy also shows two peaks, though the second peak (in the older population)
is small (Figure 26.8).

It is possible to see multiple peaks when none occur. Elise Whitley and Jonathan
Ball (in “Statistics review 1: Presenting and summarising data” Critical Care 6:66–71,
2002) explained that multiple peaks can come from data rounding errors (up or down).
When you are inspecting graphs, and peaks occur at values ending with zero (50, 100,
200, etc.), you should always suspect that the data artifactually aggregates at values to
which your measurements have been rounded.

You can also miss multimodality, even when it is present. Schilling and co-workers
have shown that bimodality can be missed if the difference in peak locations is small
relative to the standard deviations of the populations. For example, a mixture of two
normal distributions with equal standard deviations is bimodal only if the two means
differ by at least twice the common standard deviation (Schilling M. F., Watkins
A. E., Watkins W. Is human height bimodal? Am. Statistician 56:223–229, 2002).

Still, there are many reasons to believe that many of the bimodal distributions
found in the SEER data sets reveal true biological features of the cancer populations.

	 1.	The multimodal peaks are rare among cancers. Of the more than 650 cancers
collected in the complete file of cancer occurrences by age, only a couple dozen
show multimodality. If multimodality were a systemic artifact, would you not
expect to see it occurring in the majority of cancer distributions?

Figure 26.8  Crude and normalized age distributions for papillary mucinous cystadenoma borderline malignancy and
serous cystadenoma borderline malignancy.

	 Bimodal Tumors	 349

	 2.	The SEER data reproduces multimodal peaks in the same cancers for which
multimodal peaks have been established from other data sources. For exam-
ple, the SEER data shows bimodal peaks for Hodgkin lymphoma, Kaposi
sarcoma, and secretory carcinoma of the breast.

	 3.	The SEER data provides very large numbers of cases for many of the cancers
for which bimodal peaks are found. The shape of the curves cannot be attrib-
uted to sparse data, in these cases.

	 4.	We will also see that there is internal consistency of the observation of multi-
modality within the SEER data. In some cases, data is collected within SEER
on a single tumor and its variant forms. For example, the borderline tumors of
the ovary are listed under several closely related terms. In the case of border-
line ovarian tumors and its variants, multimodality was preserved among the
related cancers.

	 5.	Multimodality is a phenomenon that we would expect to occur in human
cancers, because we know that a given type of cancer can have many different
causes, and that these causes may exert biological effects in persons of specific
age groups.

When we examine the distribution files, we can discover new hypotheses about neo-
plasms in general, and bimodal tumors, in particular. The persistent message from this
chapter is that multimodality in a disease distribution is a puzzle worth investigating.

Exercises

	 1.	Using Perl, Python, or Ruby, write a script that takes the 650 tumor-specific
age distributions, produced by this chapter’s script, to produce 650 images,
each containing two vertically aligned graphs, one displaying the occurrences
of tumors by age group, and the other displaying the rate of occurrence of
tumors by age group.

	 2.	Using Perl, Python, or Ruby, modify your script from Exercise 1 to include an
embedded header, for each of the 650 images, containing your name, the date
of creation of the image, and the name of the tumor whose age distributions
are featured in the image.

	 3.	Using Perl, Python, or Ruby, modify your script from Exercise 2 to produce a
Web page that displays all of the 650 images produced in Exercises 1 and 2.

	 4.	In Chapter 25, we found the age distributions of the occurrences of mesothe-
liomas in four different anatomic sites. Using Perl, Python, or Ruby, modify
the script from Chapter 25 to provide a distribution of the rates of occurrence
of mesothelioma for the same age intervals and for the same anatomic sites.

351

27
Case Study

The Age of Occurrence of Precancers

I recently wrote a medical book, entitled Precancer: The Beginning and the End of Cancer
(Jones and Bartlett Publishers, 2010). This book was devoted to a specific type of lesion
pathologists encounter that precedes the development of cancer, sometimes by many
years. Unlike cancers, which grow relentlessly, invade neighboring tissues, and often
metastasize to distant organs, precancers are usually small noninvasive lesions that can
be treated quite easily. When we treat a precancer, we are eradicating the cancer that
might have developed from the precancer. In the book, I argue that the prevention
and treatment of precancers is the most effective way to reduce the number of cancer-
caused deaths.

Because precancers precede the development of cancers, we should be able to dem-
onstrate that, in a large population, the average age of occurrence of a precancer must
occur earlier than the average age of occurrence of the cancers that arise from the pre-
cancer. Furthermore, once we know the average age of development of a precancer, and
we know the average age of development of the subsequent cancer, we can determine
that length of time required for a precancer to progress to a cancer.

In this chapter, we will look at the ages of occurrence of precancers and cancers of
the uterine cervix, and we will determine the average age of occurrence of all of the
types of precancer and cancer at this anatomic location.

27.1 � Script Algorithm

	 1.	Open the icdo3.txt file (see appendix), containing the ICD-O (International
Classification of Diseases—Oncology) codes and corresponding neoplasm
names, used in the SEER data records.

	 2.	Build a dictionary object wherein the keys are the 5-character ICD-O codes
and the values are the corresponding neoplasm names.

	 3.	Parse through SEER files (see appendix), line by line. Each line of a SEER
file is the record of a cancer occurrence, and there are over 3.7 million lines
that will be parsed. Instructions for obtaining the free, public use SEER files
is found in the appendix. In this example script, the SEER files are found in
the c:\big\seer2006 subdirectory.

	 4.	As each line of the file is parsed, extract the 5-character substring that begins
at character 48 and the 5-character substring that begins at character 53. These

352	 Methods in Medical Informatics﻿

represent the ICD-O code for the record. The string beginning at character
53 is the code for the newer version of ICD-O. If this string has a code that is
contained in the version of ICD-O that we are using (in the icdo3.txt file), we
will use this code, rather than the code contained in the substring that begins
at character 48.

	 5.	The 4-character sequence for the topographic code for (the anatomic location
for the primary growth site of the neoplasm) is contained in bytes 43 to 46
of each SEER record. The appendix has instructions for obtaining the topo-
graphic codes used in the SEER records. Codes for the anatomic sites where
cervical cancer may arise are the following:

C530 Endocervix
C531 Exocervix
C538 Overlapping lesion of cervix uteri
C539 Cervix uteri

		 These four codes, and no others, fit a pattern matched by “C53” appearing at
the beginning of the record substring that contains the topographic code.

			 When each SEER record is parsed, extract bytes 43, 44, and 45 of the
record (i.e., the 42nd, 43rd, and 44th characters of the record), and match
them against “C53”. Unless there is a match, return to the beginning of the
iteration loop, and get the next line in the file.

	 6.	Create a dictionary object whose keys are the encountered neoplasm codes,
and whose values are the incremented tally of the number of encountered
SEER records that contain the code.

	 7.	Each SEER tumor record contains the age (in years) of the person, at the
time of diagnosis of the tumor. The age is contained in a three-character entry
occupying bytes 25 to 27 of the record. Extract the age from the record, and
put it into a variable.

	 8.	Create another dictionary object whose keys are the encountered neoplasm
codes and whose values are a string consisting of the sum of all of the ages
encountered that have the diagnosis referenced by the corresponding key, fol-
lowed by the word “and”, followed by the number of persons encountered that
have the diagnosis referenced by the corresponding key. When the entire set of
SEER records has been parsed, we will be able to compute the average age at the
time of diagnosis, of all persons whose tumors have the same code number.

	 9.	After all of the SEER records have been parsed, iterate through every key–
value pair in the dictionary object containing the summed ages and total
number of records for each neoplasm occurring in the cervix.

	 10.	Print a formatted output, consisting of the average age of occurrence of each
tumor, followed by the number of cases of the tumor, followed by the name of
the tumor.

	T he Age of Occurrence of Precancers	 353

Perl Script

#!/usr/local/bin/perl
open (ICD, “c\:\\ftp\\icdo3\.txt”);
$line = “ “;
while ($line ne “”)
 {
 $line = <ICD>;
 if ($line =~ /([0-9]{4})\/([0-9]{1}) +/o)
 {
 $code = $1 . $2;
 $term = $’;
 $term =~ s/ *\n//o;
 $term = lc($term);
 $dictionary{$code} = $term;
 $agehash{$code} = “0 and 0”;
 }
 }
close ICD;
opendir(FTPDIR, “C\:\\BIG\\SEER2006”) || die (“Unable to open
directory”);
@files = readdir(FTPDIR);
closedir(FTPDIR);
chdir(“C\:\\SEER”);
foreach $datafile (@files)
 {
 open (TEXT, $datafile);
 $line = “ “;
 while ($line ne “”)
 {
 $line = <TEXT>;
 $code = substr($line, 47, 5);
 $code2 = substr($line, 52, 5);
 if (exists($dictionary{$code2}))
 {
 $code = $code2;
 }
 next if ((substr($line,42,3) ne “C53”));
 $codecount{$code}++;
 if (exists($dictionary{$code}))
 {
 $age = substr($line, 24, 3);
 $oldcode = $agehash{$code};
 $oldcode =~ / and /;
 $oldage = $`;
 $oldcount = $’;
 $newage = $oldage + $age;
 $newcount = $oldcount + 1;
 $agehash{$code} = $newage . “ and “ . $newcount;

354	 Methods in Medical Informatics﻿

 }
 }
 }
while((my $key, my $value) = each (%agehash))
 {
 next if ($value eq “0 and 0”);
 next if ($codecount{$key} < 80);
 $number = $codecount{$key};
 $number = “000000” . $number;
 $number = substr($number,-6,6);
 $value =~ / and /;
 $totalage = $`;
 $count = $’;
 $average = int($totalage / $count);
 $average = “00” . $average;
 $average = substr($average,-3,3);
 push(@outarray, “$average $number $dictionary{$key}”);
 }
print join(“\n”, (sort(@outarray)));
exit;

Python Script
#!/usr/local/bin/python
import sys, os, re, string
icd_file = open(“c:\\ftp\\icdo3.txt”, “r”)
dictionary = {}
agehash = {}
codecount = {}
outarray = []
for line in icd_file:
 linematch = re.match(r’([0-9]{4})\/([0-9]{1})(.+)’, line)
 if linematch:
 code = linematch.group(1) + linematch.group(2)
 term = linematch.group(3)
 term = re.sub(r’ *\n’, “”, term)
 term = term.lower()
 term = term.lstrip()
 dictionary[code] = term
 agehash[code] = “0 and 0”
 codecount[code] = 0
icd_file.close()
filelist = os.listdir(“c:\\big\\seer2006”)
os.chdir(“c:\\big\\seer2006”)
for file in filelist:
 seer_file = open(file, “r”)
 for line in seer_file:
 code = line[47:52]
 code2 = line[52:57]
 if (dictionary.has_key(code2)):

	T he Age of Occurrence of Precancers	 355

 code = code2
 if not line[42:45] == “C53”:
 continue
 if dictionary.has_key(code):
 codecount[code] = codecount[code] + 1
 age = int(line[24:27])
 oldcode = agehash[code]
 oldcodematch = re.match(r’(.+) and (.+)’, oldcode)
 if oldcodematch:
 oldage = oldcodematch.group(1)
 oldcount = oldcodematch.group(2)
 newage = int(oldage) + age
 newcount = int(oldcount) + 1
 agehash[code] = str(newage) + “ and “ + str(newcount)
 seer_file.close()
for key, value in agehash.iteritems():
 if (value == “0 and 0”):
 continue
 if (codecount[key] < 80):
 continue
 number = codecount[key]
 number = “000000” + str(number)
 number = number[-6:]
 valuematch = re.match(r’(.+) and (.+)’, value)
 if valuematch:
 totalage = int(valuematch.group(1))
 count = int(valuematch.group(2))
 if (count > 0):
 average = int(float(totalage) / count)
 average = str(average)
 outarray.append(average + “ “ + number + “ “ + dictionary[key])
outarray = sorted(outarray)
for item in outarray:
 print item
exit

Ruby Script
#!/usr/local/bin/ruby
require ‘mathn’
icd_file = File.open(“c:/ftp/icdo3.txt”, “r”)
dictionary = {}
agehash = {}
codecount = {}
outarray = []
icd_file.each_line do
 |line|
 if (line =~ /([0-9]{4})\/([0-9]{1}) +/o)
 code = $1 + $2
 term = $’

356	 Methods in Medical Informatics﻿

 term.sub!(/ *\n/, “”)
 term = term.downcase
 dictionary[code] = term
 agehash[code] = “0 and 0”
 codecount[code] = 0
 end
end
icd_file.close
filelist = Dir.glob(“c:/big/seer2006/*.TXT”)
filelist.each do
 |filepathname|
 seer_file = File.open(filepathname, “r”)
 seer_file.each_line do
 |line|
 code = line.slice(47,5)
 code2 = line.slice(52,5)
 if (dictionary.has_key?(code2))
 code = code2
 end
 next unless (line.slice(42,3).eql?(“C53”))
 if dictionary.has_key?(code)
 codecount[code] = codecount[code] + 1
 age = line.slice(24, 3).to_i
 oldcode = agehash[code]
 oldcode =~ / and /
 oldage = $`.to_i
 oldcount = $’.to_i
 newage = oldage + age
 newcount = oldcount + 1
 agehash[code] = newage.to_s + “ and “ + newcount.to_s
 end
 end
 seer_file.close
end
agehash.each_pair do
 |key, value|
 next if (value.eql?(“0 and 0”))
 next if (codecount[key] < 80)
 number = codecount[key]
 number = “000000” + number.to_s
 number = number.slice(-6,6)
 value =~ / and /
 totalage = $`.to_i
 count = $’.to_i
 if (count > 0)
 average = (totalage / count).to_f
 average = average.floor.to_s
 outarray.push(average + “ “ + number + “ “ + dictionary[key])
 end

	T he Age of Occurrence of Precancers	 357

end
puts outarray.sort.join(“\n”)
exit

27.2 � Analysis

The results of the exercise confirmed our prediction. Every type of cervical precancer
had an average age of occurrence that was earlier than the average age of occurrence of
every cervical cancer (Figure 27.1). Moreover, minimally invasive cancer of the cervix,

Avg. Age at Diagnosis

occurrence
_

Precancers

34 049174 carcinoma in situ, nos

34 051911 squamous cell carcinoma in situ, nos

35 000359 sq. cell carcinoma, lg. cell, non-ker., in situ

37 000313 sq. cell carcinoma, keratinizing, nos, in situ

39 001348 adenocarcinoma in situ

39 018564 squamous intraepithelial neoplasia, grade iii

Microinvasive cancer

41 003262 sq. cell carcinoma, micro–invasive

Carcinoma

43 000130 adenocarcinoma, endocervical type

48 000093 large cell carcinoma, nos

48 001353 adenosquamous carcinoma

49 003189 sq. cell carcinoma, lg. cell, non–ker.

50 000272 endometrioid carcinoma

50 002573 carcinoma, nos

51 000105 sq. cell carcinoma, sm. cell, non–ker.

51 000253 small cell carcinoma, nos

51 000407 papillary adenocarcinoma, nos

51 002773 sq. cell carcinoma, keratinizing, nos

51 004268 adenocarcinoma, nos

52 000239 mucinous adenocarcinoma

52 019249 squamous cell carcinoma, nos

54 000098 papillary squamous cell carcinoma

54 000227 clear cell adenocarcinoma, nos

56 000142 mucin–producing adenocarcinoma

59 000304 neoplasm, malignant

Abbreviations: nos = not otherwise specified, sq = squamous, ker = keratinizing

Figure. 27.1  The average age of occurrence of the different types of precancers, and cancers occurring in the uterine
cervix. The data indicates that the average age of occurrence of the precancers precedes the average age of occurrence
of the cancers.

358	 Methods in Medical Informatics﻿

the earliest invasive cancer following cervical precancer and preceding the deeply invasive
cancer of the cervix, occurred at an age intermediate between precancers and invasive
cancers.

The precancers occurred with peak age in the mid to late 30s. The cancers occurred
with peak ages in the mid 40s to mid 50s. This means that, on average, it takes years,
possibly a decade or more, for precancers to develop into cancers.

Once again, an important medical question can be answered in a few lines of code,
if we have access to a large, curated, and well-annotated data set, such as SEER.

Exercises

	 1.	In this chapter’s script, we columnated the output lines by front-padding vari-
ables with zeros, and than extracting a fixed length of the rightmost charac-
ters of the numeric entries. We could have saved ourselves a few lines of code
by formatting the output lines with a printf statement. Using Perl, Python,
or Ruby, modify the script to produce a neat column output, using a printf
statement.

	 2.	Precancers, unlike cancers, have a tendency to regress (disappear over time).
In fact, precancer regression is thought to be a more frequent event than
precancer progression (toward cancer). If this were true, we would expect to
encounter many more cervical precancers than cancers in the SEER data sets.
In this chapter’s script, we did not actually tally the number of cervical pre-
cancers and cancers. Using Perl, Python, or Ruby, modify the script to capture
and display the number of cases of each cervical precancer and cancer. Which
lesions have the greatest frequency of occurrence in the SEER data records:
precancers or cancers?

	 3.	Cervical cancer in women is not the only type of cancer that has identifiable
precursor lesions that is recorded in the SEER data records. The refractory
anemias are thought to occur progressively over time (i.e., refractory anemia
precedes refractory anemia with sideroblasts, which precedes the development
of refractory anemia with excess blasts, which precedes the development of
refractory anemia with excess blasts in transformation.

			 Here are the ICD-O codes and terms for refractory anemia and related
lesions:

99803 Refractory anemia
99823 Refractory anemia with sideroblasts
99833 Refractory anemia with excess blasts
99843 Refract. anemia with excess blasts in transformation
99853 Refractory cytopenia with multilineage dysplasia
99863 Myelodysplastic syndr. with 5q deletion syndrome
99873 Therapy-related myelodysplastic syndrome, NOS
99893 Myelodysplastic syndrome, NOS

		 Using Perl, Python, or Ruby, write a script (you can modify the script in this
chapter if you wish), that parses through all of the SEER cases, determines
the average age of occurrence of each type of the lesions related to refractory

	T he Age of Occurrence of Precancers	 359

anemia, and lists them, in order of ascending age of average occurrence of
the lesion.

	 4.	When we analyzed the average age of occurrence of cervical precancer, we
did not need to perform a separate analysis of men and of women (because
men do not develop carcinoma of the uterine cervix). Both men and women
may develop refractory anemia. Using Perl, Python, or Ruby, write a script
that determines the number of occurrences of refractory anemia, and related
lesions, in men, and in women, and determines the average age of occurrence
of each type of related lesion, in men and in women.

361

Epilogue for Healthcare Professionals
and Medical Scientists

If you want to make your own important contributions to medical science using large
data sets, you will need to acquire an intimate intellectual relationship with the data,
and you will need to do some of your own programming to fully examine the data. If
you leave all of your programming tasks to other people, you will never learn the true
value of your data. If you follow a few simple suggestions, your data-intensive life will
be productive and enjoyable.

Learn One or More Open Source Programming Languages

Students and healthcare professionals often ask themselves whether it is worth the
pain and effort to learn another programming language. Those who use several pro-
gramming languages stand to benefit in several ways.

	 1.	When you rewrite a script in another language, you often discover mistakes
in the original script. The most difficult mistakes to find are the ones that do
not stop script execution. If you run three equivalent scripts, in three lan-
guages, and you find that each script produces a slightly different output,
you know that something is not working as you had thought in one of your
scripts. The process of reconciling this discrepancy, so that all three scripts
produce the same output, produces better scripts, in all three languages.

	 2.	Books are usually written with examples in one language only. Someday, you
will find a book that covers an area of great interest to you, but you won’t
understand the lingo. People often choose a programming language for its
popularity in their field. This is somewhat short-sighted. Today’s hot language
may be tomorrow’s dud. Sometimes, the best book in your field was written

362	Ep ilogue

a decade ago for a language that was wildly popular at the time, but is now
shunned by your contemporaries. By learning Perl, Python, and Ruby, you
gain some perspective on the different ways a programming language can
express common algorithmic tactics (conditionals, loops, assignments, ranges,
references, data structures, etc.). You will find that by learning several lan-
guages, you can comfortably read almost any book that contains lines of pro-
gramming code written for any language.

	 3.	Learning several programming languages has the same advantage as learn-
ing several spoken languages. You are likely to meet someone whose primary
language is different from your own, but with whom you share a second-
ary language. A shared language facilitates group efforts. Many C and Java
programmers know several additional languages. It’s likely that one of those
languages will be Perl, Python, or Ruby.

Don’t Agonize Over Which Language You Should Choose

Voltaire wrote, “The best is the enemy of the good.” It seems that Perl, Python, and
Ruby programmers are natural enemies, all jostling for the title of “best.” This book
demonstrates that, for the common computational tasks, it really doesn’t make any
difference which language is best. If you were a professional programmer, working
with a team of programmers, analysts, and engineers under a tight deadline to pro-
duce a complex software application, the selection of a programming language might
be important. But this is not the case here, and any language will serve you well.

Learn Algorithms

An algorithm is a step-by-step description of a procedure that solves a problem. I
like to think of algorithms as perfect machines. They can be understood completely.
If used correctly, they always work. They never grow old, never wear out, and never
require maintenance. They take up no space and can be stored forever. They cost noth-
ing and everyone can use them. Every process in the world that works reliably can be
described with one or more algorithms.

It is important to distinguish computational algorithms from computer software
applications. A software application is an assemblage of common algorithms, imple-
mented in a programming language and tethered to a graphic user interface. Good
computer programmers master hundreds of different algorithms. In well-written com-
puter applications, the algorithms work together seamlessly to produce a desired func-
tionality. Most people who use computer software applications are oblivious to the
contained algorithms.

By learning basic algorithms, you gain a deeper knowledge of your field, and a
comprehensive set of tools that can be used within any programming language that
you choose to study.

	Ep ilogue	 363

Unless You Are a Professional Programmer, Relax and Enjoy Being a Newbie

After a few minutes of instruction, you can learn the rudiments of chess, and you
can begin to play the game. You can spend the rest of your life trying to master the
game. The same is true for Perl, Python, and Ruby programming. Luckily, most of
the scripts that you will need in your professional life can be written with a very shal-
low skill set: open a file, read the lines of a file, look for a pattern in the file, make a
substitution, extract a string, store information in a data structure, add information,
count items, perform a numeric operation, and display the contents of a data structure.
These basic elements of programming are easy to perform.

Developing a project, asking a good question, obtaining complete and accurate
data, finding good co-workers, obtaining funding; these will always be the most dif-
ficult aspects of your professional life.

Do Not Delegate Simple Programming Tasks to Others

We cannot do everything for ourselves. In society, we often delegate tasks to trusted indi-
viduals who have specialized skills. We trust surgeons to remove our appendix when it is
inflamed, dentists to fill our cavities, builders to construct our homes, educators to teach
our children. Though it may seem absurd for healthcare professionals and medical scien-
tists to do their own programming; it is necessary, just the same. The reason is that aside
from the development of large applications (word processors, spreadsheets, databases,
Web browsers, e-mail clients), most professional computational tasks are short but highly
individualized operations. Most nonprogrammers do not have a programmer at their beck
and call, willing to interrupt their work to listen to your very detailed request for a very
small job. If you could find a programmer, what are the odds that they will understand
how to use the data sources that are important for your project? Will they understand the
words and concepts that are basic to your professional work? How will you compensate
the programmer? Will you need to write a request for proposal, and will you need to select
a contractor from among a list of responders? How much will you be willing to pay for an
effort that, in the end, could have been completed with a few lines of code?

In my own experience, I am constantly appalled by the money and time invested
in programming efforts that could have been achieved in a few hours by anyone with
a little working knowledge of Perl, Python, or Ruby. Because many programming
efforts require compliance with a set of specifications in a contract, on-the-fly changes
in the project may be difficult or impossible to achieve. Unfortunately for you, writing
a new program is like conducting a new experiment. You are constantly discovering
that your initial assumptions were wrong, and you need to rethink your plans. In
many cases, the program that eventually satisfies your needs is quite different than
the program you originally requested. It is often the case that applications developed
by professional programmers according to the terms of a contract do not provide the
functionality that is ultimately required.

364	Ep ilogue

Many of the computational tasks that you will face in your professional life cannot
be delegated. You will either do them for yourself, or they will not get done.

Break Complex Tasks into Simple Methods and Algorithms

Are you old enough to remember The Jetsons? This fabled cartoon show aired in the
1962–1963 TV season, and featured a futuristic family whose morning ablutions were
co-opted by a mechanism that performed the following services quickly and efficiently:
waking, washing, dressing, grooming, feeding, and depositing family members into
the rocket-car. Nearly 50 years later, our simplest tasks of living lack any serious auto-
mation. Why? We manage to get out the door every morning under our own steam, or
with the assistance of a few small devices (coffee maker, toaster, electric toothbrush),
and we don’t want a massive, complex device to control every step in the process.
Humans excel at small, connected tasks that, in the aggregate, compose our lives.

You will find that any task in the field of biomedical informatics, no matter how
daunting, can be broken into simple methods. Learning how to break a project into
small tasks is itself an important life-skill. Once you’ve mastered the simple methods
and algorithms in this book, you’ll start seeing complex problems as a series of small
problems that you will solve, confidently and eagerly.

Write Fast Scripts

I know from experience that the fastest way to kill any software project is to write a
slow script. The following is a fictional example, loosely based on a real-life example.

I am informed by my co-workers that they have prototyped an application that will
autocode medical reports. “How fast will the autocoder operate?” Nobody knows. The
next day they return with an answer: 500 bytes per second. “What is that, in terms
of the number of reports per second?” More confusion. The next day I learn that the
average report is 1000 bytes. So a typical report can be automatically autocoded in
2 seconds. The team has 10 million reports on file, so that means that the autocoder
can do its job in 20 million seconds. There are 604,800 seconds in a week. It would
require over 8 months to do the job.

The team goes back to the drawing board. By improving the program, and by dis-
tributing the workload among a bank of computers, they have improved the prototype
to the point that it can autocode 10 million reports in one week. The team is happy.
They can start the job, go about their business, and return a week later to find the
complete, autocoded output.

The plan is put into effect. A week later, when the output is reviewed, it is obvi-
ous that there is a flaw in the program. Many terms in the text are not provided with
codes … something to do with an unexpected use of phrase modifiers in the reports
that escaped the term matching subroutine. A correction is made, followed by another

	Ep ilogue	 365

week-long test of the autocoder. This is followed by the discovery of additional prob-
lems with the matching algorithms, based on the inclusion of unexpected characters,
misspellings, inappropriate separators, and a host of glitches. Each discovery prolongs
the agony. The team decides to test the prototype on a smaller number of cases. This
seems to work well, but the tests that worked well on a small sample of reports failed
against larger samplings.

Finally, way over schedule, we have a fully autocoded set of reports. When we
are asked to add 3 million reports, provided by a new hospital in the consortium, we
proceed with confidence. Unfortunately, our confidence is not based on a realistic
premise. The program fails miserably on the new reports, which were written in a
style and format that evaded many of the autocoder’s parsing routines.

More months pass. We finally produce an output that everyone could live with,
executed in under a week. Unfortunately, we are told that the medical nomencla-
ture that we had used was unsuitable. The administration has decided to switch to
another standard vocabulary recommended by the U.S. government as part of an
effort to standardize healthcare information. We need to start over, from scratch.

The scenario is always the same. Large data sets require fast software. You can-
not improve, modify, repeat, or adjust to new conditions when your software is slow.
When you think about it, the software you most enjoy is the software that responds
instantly to user input.

It is often best to have short scripts that quickly (in a few seconds or less) parse
through large data sets to produce an expected output. This is true, even if it means
that you will need to use several different scripts, in tandem, to produce the final
output you desire. Being able to inspect output by steps permits you to catch systemic
errors and to assign those errors to one of a small set of subroutines.

For many of my projects, I develop a list of short, fast scripts that I employ in a cer-
tain order. I check whether the output from one step is ready to be used as the input
for the next step.

When the project ends, I have an output file, but I do not have an application. There
really isn’t any need. Instead of having a deliverable software product, I end with a
speedy set of small scripts. I have found that this method allows me to finish projects
quickly and adapt to minor or major changes in the objectives of the project.

Concentrate on the Questions, Not the Answers

Analyses of large data sets most often produce somewhat tentative observations that
yield more questions than answers. You always need to ask yourself whether the data
set was built on faulty or inaccurate assumptions about reality, or whether there were
systemic flaws in the way that the data was collected. Under the best circumstances,
epidemiologic data yields statistical associations, without providing any proof of causal
mechanisms. The astute healthcare programmer develops a new set of questions from
every observation, and develops innovative methods to pursue those questions.

367

Appendix

How to Acquire Ruby

Ruby is a free, open source programming language that can be downloaded from
multiple Web sites.

Linux and Windows® users can download Ruby from

http://rubyforge.org/frs/?group_id=167

How to Acquire Perl

Perl is distributed with most Linux operating system packages.
CPAN (Comprehensive Perl Archive Network) is the source for Perl and Perl

modules:

http://www.cpan.org/

Windows users may find it convenient to use ActiveState’s free Perl installation, avail-
able at

http://www.activestate.com/

The ActiveState installation provides access to the ActiveState Perl Package
Manager, a quick way to install publicly available Perl modules.

How to Acquire Python

Python can be acquired at

http://www.python.org/download/releases/

368	App endix

How to Acquire RMagick

In Ruby, images are displayed using RMagick and Tk. RMagick is Ruby’s interface
to ImageMagick, a free software library for manipulating images. Tk is a free lan-
guage for creating GUIs (graphic user interfaces). Tk employs widgets (small win-
dows within the Tk window) for input and display structures.

After you have installed ImageMagick, RMagick, and Tk onto your computer, you
can “require” them into your Ruby scripts and create applications that create, modify,
evaluate, and display images. All three applications are available at no cost for users
of Windows or Linux/Unix operating systems. Ample instruction is available at the
Web sites listed later. Here are some suggestions for Windows users:

	 1.	Go to the RubyForge site:

http://rubyforge.org/frs/?group_id=12&release_id=8170

This page has a combined win32 binary package for RMagick and ImageMagick
Pick the binary that is appropriate for your version of Ruby.
I use Ruby 1.8.4, so I chose the following binary:

rmagick-1.13.0-IM-6.2.9-0-win32.zip 12.39 MB

	 2.	Download the binary (zip file) and expand it.
This produces the following subdirectory:

rmagick-1.13.0-IM-6.2.9-0-win32

The subdirectory contains a group of files:

ImageMagick-6.2.9-0-Q8-windows-dll.exe
readme-rmagick.html
readme-rmagick.txt
readme.html
rmagick-1.13.0-win32.gem

	 3.	Run the ImageMagick .exe file, and it will guide you through its installation.
	 4.	After ImageMagick is installed, you can install the RMagick gem file by

invoking Ruby’s gem tool with an install command followed by the name of
the gem file (add the full path to the gem file if you are not installing from its
current subdirectory).

c:\ruby>gem install rmagick-1.13.0-win32.gem

	 5.	All the information you need to start using RMagick from within your own
Ruby scripts is found at

http://www.simplesystems.org/RMagick/doc/

	App endix	 369

		 Then install Tcl/Tk by visiting ActiveState and downloading the Activebinary
for Windows users.

			 With these installations, you can write Ruby scripts that use and display
images.

How to Acquire SQLite

SQLite is an extremely popular implementation of an SQL database. SQLite source
code is in the public domain, and the application software is easily obtained and
installed. SQLite permits users to create an SQL database on their own computer.
Interfaces to SQLite have been written for many popular programming languages.

For Perl:

Perl’s DBD::SQLite module includes the entire SQLite library, and the Perl
interface to the library.

Information for the DBD::SQLite module is available at

http://search.cpan.org/~msergeant/DBD-SQLite-0.31/lib/DBD/SQLite.pm

The module can be downloaded and installed in one step from the ActiveState ppm
manager, under the module name DBD-SQLite2.

For Python:

Pysqlite is the Python interface to SQLite. It includes the SQLite database soft-
ware and the Python interface in a single distribution available from

http://code.google.com/p/pysqlite/downloads/list

The distribution can be built from source code, for Linux users, or installed as a
precompiled binary (.exe) file for Windows users. Windows users should select the
version of pysqlite that corresponds to the version of Python that resides on their own
computer. The precompiled binary contains its own wizard installation.

A usage guide to Python’s SQL interface is available at

http://koeritz.com/docs/python-pysqlite2/usage-guide.html

For Ruby:

Ruby users must first install SQLite on their computer, and then install the Ruby
interface to SQLite, available as a Ruby gem.

To acquire SQLite, go to the SQL public download page (www.sqlite.org/
download.html), and choose a download file appropriate for your computer’s operat-
ing system. For Windows users, there are precompiled binaries. After downloading
the precompiled binary for Windows, unzip the file and deposit the .dll in your ruby
script subdirectory.

370	App endix

Next, install the Ruby gem that supports Ruby’s interface to SQLite, calling the
gem from your C prompt.

c:\>gem install sqlite3-ruby -v=1.2.3

You may be asked to select a gem appropriate for your system:

Select which gem to install for your platform (i386-mswin32)
	 1.	 sqlite3-ruby 1.2.3 (ruby)
	 2.	 sqlite3-ruby 1.2.3 (x86-mingw32)
	 3.	 sqlite3-ruby 1.2.3 (mswin32)
	 4.	 Cancel installation

Windows users should select item 3.
A usage guide to Ruby’s SQL interface is available at

http://sqlite-ruby.rubyforge.org/sqlite3/faq.html

How to Acquire the Public Data Files Used in This Book

	 1.	Medical Subject Headings (MeSH)
		 The download site is

http://www.nlm.nih.gov/mesh/filelist.html

		 The file used in various scripts throughout this book is “d2009.bin”, referred to
as the ASCII MeSH download file. It is about 28 MB in length and contains
over 25,000 MeSH records. A typical MeSH record is shown in Chapter 5,
Figure 5.1.

	 2.	The International Classification of Disease
		 Let us start with the each10.txt file, available by anonymous ftp from the

ftp.cdc.gov Web server at

/pub/Health_Statistics/NCHS/Publications/ICD10/each10.txt

		 Here are the first few lines of this file:

A00Cholera
A00.0Cholera due to Vibrio cholerae 01, biovar cholerae
A00.1Cholera due to Vibrio cholerae 01, biovar el tor
A00.9Cholera, unspecified
A01Typhoid and paratyphoid fevers
A01.0Typhoid fever
A01.1Paratyphoid fever A
A01.2Paratyphoid fever B
A01.3Paratyphoid fever C

	App endix	 371

A01.4Paratyphoid fever, unspecified
A02Other salmonella infections
A02.0Salmonella gastroenteritis

	 3.	International Classification of Disease Oncology Codes and Terms

		 The ICD-O (Oncology) file is available at

http://seer.cancer.gov/icd-o-3/sitetype.icdo3.d08152007.pdf (Figure A.1)

		 In several of the projects in this book, we use icdo3.txt, a plain-text reduction
of the publicly available pdf file obtained at

http://www.julesberman.info/book/icdo3.txt

		 The ICD-O contains names of neoplasms. It was prepared by the SEER pro-
gram to cover the Oncology (i.e., cancer) terms and codes recommended in
the ICD by the World Health Organization, and referred to as version 3 of
the oncology dictionary (ICDO-3). It contains 9,769 terms and codes.

8021/3 Carcinoma, anaplastic type, NOS
8022/3 Pleomoic carcinoma

		 The SEER files contain 5-digit codes, equivalent to the ICD-O codes, but
with the “/” removed. For the SEER projects in this book, codes and terms are
extracted from the icdo3.txt file, and the “/” is stripped from each term.

	 4.	Data Dictionary for CDC Mortality Files
		 The data dictionary file is available by anonymous ftp from ftp.cdc.gov at the

following subdirectory:

/pub/Health_Statistics/NCHS/Dataset_Documentation/mortality/
Mort99doc.pdf

	 5.	CDC Mortality Files
		 The files that we will use can be downloaded by anonymous ftp from the

CDC server (ftp.cdc.gov)

The 1999 Mortality File

ftp server: ftp.cdc.gov
path: /pub/health_statistics/nchs/datasets/mortality
file: mort99us.dat (1,058,532,982 bytes)

2002 and 2004 Mortality Files

ftp server: ftp.cdc.gov
path: /pub/health_statistics/nchs/datasets/dvs/mortality
file: mort02us.dat (1,081,483,832 bytes)
file: mort04us.dat (1,176,686,000 bytes)

372	App endix

IC
D-

0-
3

SE
ER

 S
IT

E/
HI

ST
OL

OG
Y

VA
LI

DA
TI

ON
 L

IS
T

August

 1

5,
 2

00
7

M
os

t c
om

pa
ris

on
s

ca
n

be
 m

ad
e

to
 th

e
th

re
e-

di
gi

t h
is

to
lo

gy
 c

od
e

bu
t a

 fo
ur

-h
is

to
lo

gy
 c

om
pa

ris
on

 is
 re

qu
ire

d
wh

er
ev

er
 a

n
‘!’

 a
pp

ea
rs

 to
 th

e
le

ft
of

 th
e

th
re

e-
di

gi
t

hi
st

ol
og

y n
am

e.
Th

e
Si

te
/T

yp
e

ed
it

ed
its

 e
ac

h
m

or
ph

ol
og

y a
t t

he
 fo

ur
-d

ig
it

le
ve

l.

LI
P

C0
00

-C
00

6,
C0

08
-C

00
9

80
0

80
00

/3
Ne

op
la

sm
, m

al
ig

na
nt

NE
OP

LA
SM

80
01

/3
Tu

m
or

 c
el

ls
, m

al
ig

na
nt

80
02

/3
M

al
ig

na
nt

 tu
m

or
, s

m
al

l c
el

l t
yp

e
80

03
/3

M
al

ig
na

nt
 tu

m
or

, g
ia

nt
 c

el
l t

yp
e

80
04

/3
M

al
ig

na
nt

 tu
m

or
, s

pi
nd

le
 c

el
l t

yp
e

80
05

/3
M

al
ig

na
nt

 tu
m

or
, c

le
ar

 c
el

l t
yp

e

CA
RC

IN
OM

A,
 N

OS
80

1
80

10
/2

Ca
rc

in
om

a
in

 s
itu

, N
OS

80
10

/3
Ca

rc
in

om
a,

 N
OS

80
11

/3
Ep

ith
el

io
m

a,
 m

al
ig

na
nt

80
12

/3
La

rg
e

ce
ll

ca
rc

in
om

a,
 N

OS
80

13
/3

La
rg

e
ce

ll
ne

ur
oe

nd
oc

rin
e

ca
rc

in
om

a
80

14
/3

La
rg

e
ce

ll
ca

rc
in

om
a

wi
th

 rh
ab

do
id

 p
he

no
ty

pe
80

15
/3

Gl
as

sy
 c

el
l c

ar
ci

no
m

a

CA
RC

IN
OM

A,
 U

ND
IF

F.,
 N

OS
80

2
80

20
/3

Ca
rc

in
om

a,
 u

nd
iff

er
en

tia
te

d
ty

pe
, N

OS
80

21
/3

Ca
rc

in
om

a,
 a

na
pl

st
ic

 ty
pe

, N
OS

80
22

/3
Pl

eo
m

or
ph

ic
 c

ar
ci

no
m

a

GI
AN

T
&

SP
IN

DL
E

CE
LL

 C
AR

CI
NO

M
A

80
3

80
30

/3
Gi

an
t c

el
l a

nd
 s

pi
nd

le
 c

el
l c

ar
ci

no
m

a
80

31
/3

Gi
an

t c
el

l c
ar

ci
no

m
a

80
32

/3
Sp

in
dl

e
ce

ll
ca

rc
in

om
a

80
33

/3
Ps

eu
do

sa
rc

om
at

ou
s

ca
rc

in
om

a

Fi
gu

re
 A

.1
 

A
sa

m
pl

e
pa

ge
 fr

om
 th

e
IC

D-
On

co
lo

gy
 fi

le
.

	App endix	 373

The 1996 Mortality File (combines ICD9 and ICD10 encoded data)

ftp server: ftp.cdc.gov
path: /pub/health_statistics/nchs/datasets/comparability/icd9_icd10
file: ICD9_ICD10_comparability_public_use_ASCII.ZIP (130,240,471

bytes)

		 In this book, the expanded ICD9 ICD10 comparability public use file
was renamed to conform with the file names for the other mortality files:
mort96us.dat (1,601,884,492 bytes)

			 The 1996 mortality file stores line-record ICD10 codes and terms in a dif-
ferent byte location than that used in the 1999, 2002, and 2004 mortality files.
The data dictionaries for the 1996 mortality files contain the key to the byte
locations of data in the 1996 file.

	 6.	Online Mendelian Inheritance in Man (OMIM)
		 The compressed OMIM file (which exceeds 100 MB in length, uncompressed)

is available for download by anonymous ftp from

ftp server: ftp.ncbi.nih.gov
path: /repository/omim/
file: omim.txt.Z

	 7.	SEER data files
		 To get the SEER public use data files, you must first complete a data access

request available at

http://seer.cancer.gov/data/request.html

		 SEER sends you a username and password that you will need to access the
data files. The data is available on a DVD or by direct Internet download.

			 At the time that this book was written, the most recent SEER data covered
1973–2006, in the following release file:

04/15/2009 04:46 PM 223,935,710 SEER_1973_2006_TEXTDATA.
d04152009.exe

		 The decompressed file contains a data dictionary (pdf file) and a subdirectory
with the data files that are used in this book (Figure A.2):

04/14/2009 01:50 PM 153,783,644 BREAST.TXT
04/14/2009 01:50 PM 116,050,746 COLRECT.TXT
04/14/2009 01:50 PM 71,956,724 DIGOTHR.TXT
04/14/2009 01:50 PM 98,253,484 FEMGEN.TXT
04/14/2009 01:50 PM 75,934,488 LYMYLEUK.TXT

374	App endix

04/14/2009 01:50 PM 128,405,116 MALEGEN.TXT
04/14/2009 01:50 PM 141,117,522 OTHER.TXT
04/14/2009 01:50 PM 136,211,152 RESPIR.TXT
04/14/2009 01:50 PM 63,487,816 URINARY.TXT

		 These files contain over 3.7 million records. Each record is a line of the file,
and consists of 264 alphanumeric characters. A data dictionary provides the
byte location of the various field values contained in each record. For the
examples in this book, we will be using primarily age and diagnosis fields.

Figure A.2  Part of the SEER data dictionary, describing bytes 1 through 110 of each SEER record.

	App endix	 375

	 8.	Topography codes (also called anatomic codes) used by SEER and by the
WHO (World Health Organization) are available at

http://www.ncri.ie/data.cgi/html/icdo2sites.shtml

		 The first few codes are

C000 External lip upper
C001 External lip lower
C002 External lip NOS
C003 Upper lip, mucosa
C004 Lower lip, mucosa
C005 Mucosa lip, NOS
C006 Commissure lip
C008 Overlapping lesion of lip
C019 Base of tongue, NOS

	 9.	State Codes are available as Item 2 in the CDC mortality documentation, avail-
able at: ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/
mortality/Mort99doc.pdf. A copy of the state codes is also available at
www.julesberman.info/book/cdc_States.txt.

	 10.	Year 2000 Census Data
		 The MR(31)-CO.txt is a public domain file, 65,046,291 bytes in length, avail-

able from the U.S. Census Bureau at

http://www.census.gov/popest/archives/files/MR-CO.txt

		 A Web page providing a general description of this file is available at

http://www.census.gov/popest/archives/files/MRSF-01-US1.html

		 And a data dictionary for the file is available at

http://www.census.gov/popest/archives/files/MRSF-01-US1.pdf

		 This file is very important because it contains detailed year 2000 census and
ethnicity data for states and counties. The year 2000 is used as the stan-
dard population against which other population-based epidemiologic data is
adjusted.

	 11.	Year 2000 United States Age Population File
		 The file can be downloaded from

http://w w w.census.gov/popest /archives/EST90INTERCENSAL/
US-EST90INT-07/US-EST90INT-07-2000.csv

		 A copy of the file can be downloaded from

http://www.julesberman.info/book/censuage.txt

376	App endix

	 12.	The Developmental Lineage Classification and Taxonomy of Neoplasms is an
open source computer-parsable data set that can be used to organize, collect,
merge, share, analyze, understand, develop, and test hypotheses, and discover
new information related to neoplasia.

			 The Classification and Taxonomy contains about 6,000 classified types of
neoplasms and over 135,000 neoplasm names. It is the largest cancer nomen-
clature in existence and has been described in the following citation:

Berman JJ. Tumor classification: molecular analysis meets Aristotle. BMC
Cancer, BMC Cancer 2004, 4:10.

		 The Neoplasm Classification is available in XML, RDF, and flat-file formats,
available at

http://www.julesberman.info/devclass.htm

Other Publicly Available Files, Data Sets, and Utilities

	 1.	GZIP
		 GZIP compresses and decompresses files. Files with a .gz or .Z suffix usually

require GZIP decompression (with the companion GUNZIP utility)
			 Information and downloads are available at

http://www.gzip.org/

	 2.	7-ZIP
		 7-ZIP is open source software that can be obtained at

http://www.7-zip.org/

		 7-ZIP can compress, archive, decompress and de-archive using a variety of
popular archive and compression formats.

	 3.	Medical Word List
		 An open list of about 50,000 medical words is available at the OpenMedSpel

site:

http://www.e-medtools.com/openmedspel.html

	 4.	DICOM images
		 Many DICOM images are available at the following site:

ftp://ftp.erl.wustl.edu/pub/dicom/images/version3/RSNA95/

	Contents
	Preface
	Nota Bene
	About the Author
	Part I: Fundamental Algorithms and Methods of Medical Informatics

	Chapter 1: Parsing and Transforming Text Files
	Chapter 2: Utility Scripts
	Chapter 3: Viewing and Modifying Images
	Chapter 4: Indexing Text

	Part II: Medical Data Resources
	Chapter 5: The National Library of Medicine’s Medical Subject Headings (MeSH)
	Chapter 7: SEER
	Chapter 8: OMIM
	Chapter 9: PubMed
	Chapter 10: Taxonomy
	Chapter 11: Developmental Lineage Classification and Taxonomy of Neoplasms
	Chapter 12: U.S. Census Files
	Chapter 13: Centers for Disease Control and Prevention Mortality Files

	Part III: Primary Tasks of Medical Informatics
	Chapter 14: Autocoding
	Chapter 15: Text Scrubber for Deidentifying Confidential Text
	Chapter 16: Web Pages and CGI Scripts
	Chapter 17: Image Annotation
	Chapter 18: Describing Data with Data Using XML

	Part IV: Medical Discovery
	Chapter 19: Case Study
	Chapter 20: Case Study
	Chapter 21: Case Study
	Chapter 22: Case Study
	Chapter 23: Case Study
	Chapter 24: Case Study
	Chapter 25: Case Study
	Chapter 26: Case Study
	Chapter 27: Case Study

	Epilogue for Healthcare Professionalsand Medical Scientists
	Appendix

