JAAN KILUSALAAS

Numerical Methods in
Engineering with Python

SECOMD EDITIOM

wiww.cambridge.org/9780521191326

http://www.cambridge.org/9780521191326

This page intentionally left blank

Numerical Methods in Engineering with Python

Second Edition

Numerical Methods in Engineering with Python, Second Edition, is a
text for engineering students and a reference for practicing engineers,
especially those who wish to explore Python. This new edition fea-
tures 18 additional exercises and the addition of rational function in-
terpolation. Brent’s method of root finding was replaced by Ridder’s
method, and the Fletcher-Reeves method of optimization was dropped
in favor of the downhill simplex method. Each numerical method is
explained in detail, and its shortcomings are pointed out. The ex-
amples that follow individual topics fall into two categories: hand
computations that illustrate the inner workings of the method and
small programs that show how the computer code is utilized in solv-
ing a problem. This second edition also includes more robust com-
puter code with each method, which is available on the book Web site
(www.cambridge.org/kiusalaaspython). This code is made simple and
easy to understand by avoiding complex bookkeeping schemes, while
maintaining the essential features of the method.

Jaan Kiusalaas is a Professor Emeritus in the Department of Engineer-
ing Science and Mechanics at Pennsylvania State University. He has
taught computer methods, including finite element and boundary el-
ement methods, for more than 30 years. He is also the co-author of four
other books — Engineering Mechanics: Statics, Engineering Mechanics:
Dynamics, Mechanics of Materials, and an alternate version of this work
with MATLAB® code.

NUMERICAL
METHODS IN
ENGINEERING

WITH PYTHON

Second Edition

Jaan Kiusalaas
Pennsylvania State University

I CAMBRIDGE

%3 UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
Sado Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521191326

© Jaan Kiusalaas 2010

This publication is in copyright. Subject to statutory exception and to the
provision of relevant collective licensing agreements, no reproduction of any part
may take place without the written permission of Cambridge University Press.

First published in print format 2010

ISBN-13 978-0-511-68592-7 eBook (Adobe Reader)
ISBN-13 978-0-521-19132-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy
of urls for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

http://www.cambridge.org/9780521191326
http://www.cambridge.org

Contents

Preface to the First Edition............ viii
Preface to the Second Edition.......... X

1 Introduction to Pythonccooiiiiiiiiiiii e 1
1.1 General Information 1

1.2 Core PythoN . .. 3

1.3 Functions and Modules.cooiiiiiiiiii e 15

1.4 Mathematics Modules...........uuiiiiiiiii e 17

1.5 numpy Module. ... e 18

1.6 Scoping of Variables...........ccooi 24

1.7 Writing and RUNNING Programscoooiuiiiieiiee i eaeeeannnns 25

2 Systems of Linear Algebraic Equations.............c.cccciiiiiiiiiennnnnnns. 27
2.1 INtrodUCHioN .. s 27

2.2 Gauss Elimination Method ... 33

2.3 LU Decomposition Methodscooveiiiiiiiiiiiiii s 40
Problem Set 2.1 s 51

2.4 Symmetric and Banded Coefficient Matrices................oooooiiiiiiia... 54

2.5 PIVO NG e e 64
Problem SEt 2.2. ... 73

¥2.6 MatrixX INVEISION ...ttt 79

*2.7 Iterative Methods........cooiiiiiii i e 82
Problem Set 2.3. e 93
¥2.8 Other Methods. ..o e 97

3 Interpolation and Curve Fittingcooiiiriiiiii i eeeaen 99
3.1 INtrodUCtioN .. 99

3.2 Polynomial Interpolation....... ..o 99

3.3 Interpolation with CubicSpline.......cccovviii 114
Problem Set 3.1 ..., 121

3.4 Least-Squares Fit.oooouiii s 124
Problem Set 3.2 ... e 135

4 RoOtS Of EQUAtIONScvveiiiiii i seeenseaa s s s eeennnnnaannseennennnns 139

0 I 1 o 4 Yo [Tt oY 139

Contents

4.2 Incremental Search Method ... 140

4.3 Method of BiseCtion........ccoviiiiiiiii e e 142

4.4 Methods Based on Linear Interpolation.................iiiiiiiiiiiinn, 145

4.5 Newton-Raphson Method..........oooiiiiiiiiii e 150

4.6 Systems Of EQUAtIONS....ooeieiee ittt 155
Problem SEt 4.1 e 160
*4.7 Zeroes of Polynomials.........oooiiiiiiiiiii e 166
Problem SEt 4.2 e 174

5 Numerical Differentiationcccooviiiiiiiiiii e 177
700 I 0 e Yo ¥t e o T 177

5.2 Finite Difference ApproxXimations...........ooiiiiiiiiiiiiiiiiieeeeeenn. 177

5.3 Richardson Extrapolation ... 182

5.4 Derivatives by Interpolation........cccovviiiiiiiii i 185
Problem Set 5. ... e, 189

6 Numerical Integration...........ccoovvvviiiiiii 193
6.1 INtrodUCHION. 193

6.2 Newton-Cotes Formulas..........cooooiiiiiii e 194

6.3 Romberg Integration..........coooiiiiiiiiii 202
Problem Set 6.1 ... e 207

6.4 Gaussian Integrationoooiiiiiii e 211
Problem SEt 6.2cou i 225
*6.5 Multiple Integrals. ... 227
Problem SEt 6.3 e 239

7 Initial Value Problems...........ccooiiiiii e 243
7.1 INtrodUCtioN . .o 243

7.2 Taylor Series Method e eeeas 244

7.3 Runge-Kutta Methods...........coiiiiiiii e 249
Problem Set 7.1 ... e 260

7.4 Stability and Stiffnessoooiiii e 266

7.5 Adaptive Runge-Kutta Method...........cooiiiiiiiiii 269

7.6 Bulirsch-Stoer Method...........oiiiiii e 277
Problem SEt 7.2 284

7.7 Other Methods e i eeees 289

8 Two-Point Boundary Value Problems...............ccciiiiiiiiiiiinnns 290
8.1 INtrodUCHiONt s 290

8.2 Shooting Method. i 291
Problem Set 8.1 e 301

8.3 Finite Difference Method....... ... 305
Problem SEt 8.2coue e e, 314

9 Symmetric Matrix Eigenvalue Problemsccccciiiiiiinnnnns 319
9.1 INTrodUCHION . .. e 319

9.2 Jacobi Methodcoouiii e 321

9.3 Power and Inverse Power Methods...........cooviiiiiiiiiiiii i, 337
Problem Set 9.1 e 345

9.4 Householder Reduction to Tridiagonal Formooiee.an. 351

9.5 Eigenvalues of Symmetric Tridiagonal Matrices..................ccoouuinn 358

Contents

Problem Set 9.2 ...
9.6 Other Methodsoviiiiii i

10 Introduction to Optimization..................ccccuee.
10.1 Introduction......ooviiiiiiiii
10.2 Minimizationalongaline.............oooiiiiiiiiiiinnnn

10.3 Powell’s Method

A2 Matrix Algebra

10.4 Downhill Simplex Method ...t
Problem Set 10.7o e
10.5 Other Methodsccooviiiiiiii e

ATl Taylor Series.ovviiiii

................... 399

Preface to the First Edition

This book is targeted primarily toward engineers and engineering students of ad-
vanced standing (juniors, seniors, and graduate students). Familiarity with a com-
puter language is required; knowledge of engineering mechanics (statics, dynamics,
and mechanics of materials) is useful, but not essential.

The text attempts to place emphasis on numerical methods, not programming.
Most engineers are not programmers, but problem solvers. They want to know what
methods can be applied to a given problem, what are their strengths and pitfalls, and
how to implement them. Engineers are not expected to write computer code for basic
tasks from scratch; they are more likely to utilize functions and subroutines that have
been already written and tested. Thus, programming by engineers is largely confined
to assembling existing bits of code into a coherent package that solves the problem
at hand.

The “bit” of code is usually a function that implements a specific task. For the
user the details of the code are unimportant. What matters is the interface (what goes
in and what comes out) and an understanding of the method on which the algorithm
is based. Since no numerical algorithm is infallible, the importance of understanding
the underlying method cannot be overemphasized; it is, in fact, the rationale behind
learning numerical methods.

This book attempts to conform to the views outlined above. Each numerical
method is explained in detail and its shortcomings are pointed out. The examples
that follow individual topics fall into two categories: hand computations that illus-
trate the inner workings of the method, and small programs that show how the com-
puter code is utilized in solving a problem. Problems that require programming are
marked with B.

The material consists of the usual topics covered in an engineering course on
numerical methods: solution of equations, interpolation and data fitting, numerical
differentiation and integration, and solution of ordinary differential equations and
eigenvalue problems. The choice of methods within each topic is tilted toward rel-
evance to engineering problems. For example, there is an extensive discussion of
symmetric, sparsely populated coefficient matrices in the solution of simultaneous
equations. In the same vein, the solution of eigenvalue problems concentrates on
methods that efficiently extract specific eigenvalues from banded matrices.

Preface to the First Edition

An important criterion used in the selection of methods was clarity. Algorithms
requiring overly complex bookkeeping were rejected regardless of their efficiency and
robustness. This decision, which was taken with great reluctance, is in keeping with
the intent to avoid emphasis on programming.

The selection of algorithms was also influenced by current practice. This disqual-
ified several well-known historical methods that have been overtaken by more recent
developments. For example, the secant method for finding roots of equations was
omitted as having no advantages over Ridder’s method. For the same reason, the mul-
tistep methods used to solve differential equations (e.g., Milne and Adams methods)
were left out in favor of the adaptive Runge—Kutta and Bulirsch-Stoer methods.

Notably absent is a chapter on partial differential equations. It was felt that
this topic is best treated by finite element or boundary element methods, which
are outside the scope of this book. The finite difference model, which is commonly
introduced in numerical methods texts, is just too impractical in handling multi-
dimensional boundary value problems.

As usual, the book contains more material than can be covered in a three-credit
course. The topics that can be skipped without loss of continuity are tagged with an
asterisk (¥).

The programs listed in this book were tested with Python 2.5 under Win-
dows XP and Red Hat Linux. The source code is available on the Web site
http://www.cambridge.org/kiusalaaspython.

Preface to the Second Edition

The major change in the second edition is the replacement of NumArray (a Python

extension that implements array objects) with NumPy. As a consequence, most rou-

tines listed in the text required some code changes. The reason for the changeover is

the imminent discontinuance of support for NumArray and its predecessor Numeric.
We also took the opportunity to make a few changes in the material covered:

e Rational function interpolation was added to Chapter 3.

e Brent’s method of root finding in Chapter 4 was replaced by Ridder’s method.
The full-blown algorithm of Brent is a complicated procedure involving elaborate
bookkeeping (a simplified version was presented in the first edition). Ridder’s
method is as robust and almost as efficient as Brent’s method, but much easier
to understand.

e The Fletcher-Reeves method of optimization was dropped in favor of the down-
hill simplex method in Chapter 10. Fletcher-Reeves is a first-order method that
requires knowledge of the gradients of the merit function. Because there are few
practical problems where the gradients are available, the method is of limited
utility. The downhill simplex algorithm is a very robust (but slow) zero-order
method that often works where faster methods fail.

Introduction to Python

General Information
Quick Overview

This chapter is not a comprehensive manual of Python. Its sole aim is to provide suf-
ficient information to give you a good start if you are unfamiliar with Python. If you
know another computer language, and we assume that you do, it is not difficult to
pick up the rest as you go.

Python is an object-oriented language that was developed in the late 1980s as
a scripting language (the name is derived from the British television show Monty
Python’s Flying Circus). Although Python is not as well known in engineering circles
as some other languages, it has a considerable following in the programming com-
munity — in fact, Python is used by more programmers than Fortran. Python may be
viewed as an emerging language, because it is still being developed and refined. In
the current state, it is an excellent language for developing engineering applications —
Python’s facilities for numerical computation are as good as those of Fortran or
MATLAB®

Python programs are not compiled into machine code, but are run by an in-
terpreter.! The great advantage of an interpreted language is that programs can be
tested and debugged quickly, allowing the user to concentrate more on the princi-
ples behind the program and less on programming itself. Because there is no need
to compile, link, and execute after each correction, Python programs can be devel-
oped in a much shorter time than equivalent Fortran or C programs. On the negative
side, interpreted programs do not produce stand-alone applications. Thus, a Python
program can be run only on computers that have the Python interpreter installed.

Python has other advantages over mainstream languages that are important in a
learning environment:

¢ Python is open-source software, which means that it is free; it is included in most
Linux distributions.

1 The Python interpreter also compiles byte code, which helps to speed up execution somewhat.

Introduction to Python

e Python is available for all major operating systems (Linux, Unix, Windows, Mac
OS, etc.). A program written on one system runs without modification on all
systems.

e Python is easier to learn and produces more readable code than do most lan-
guages.

e Python and its extensions are easy to install.

Development of Python was clearly influenced by Java and C++, but there is also
a remarkable similarity to MATLAB (another interpreted language, very popular in
scientific computing). Python implements the usual concepts of object-oriented lan-
guages such as classes, methods, and inheritance. We will not use object-oriented
programming in this text. The only object that we need is the N-dimensional array
available in the NumPy module (the NumPy module is discussed later in this
chapter).

To get an idea of the similarities between MATLAB and Python, let us look at the
codes written in the two languages for solution of simultaneous equations Ax = b by
Gauss elimination. Here is the function written in MATLAB:

function x] = gaussElimin(a,b)
n = length(b);
for k = 1:n-1
for i= k+1:n
if a(i,k) =0
lam = a(i,k)/a(k,k);
a(i,k+1:n) = a(i,k+1:n) - lam*a(k,k+1:n);
b(i)= b(i) - lam*b(k);
end
end
end
for k = n:-1:1
b(k) = (b(k) - a(k,k+1:n)*b(k+1:n))/a(k,k);
end
x = b;

The equivalent Python function is:

from numpy import dot
def gaussElimin(a,b):
n = len(b)
for k in range(0O,n-1):
for i in range(k+1l,n):
if afi,k] != 0.0:
lam = a [i,k]/alk,k]
ali,k+1:n] = a[di,k+1:n] - lam*al[k,k+1:n]
b[i] = b[i] - lam*b[k]

1.2 Core Python

for k in range(n-1,-1,-1):
b[k] = (b[k] - dot(alk,k+1:n],b[k+1:n]))/alk,k]

return b

The command from numpy import dot instructs the interpreter to load the
function dot (which computes the dot product of two vectors) from the module
numpy. The colon (:) operator, known as the slicing operator in Python, works the
same way it does in MATLAB and Fortran90 - it defines a slice of an array.

The statement for k = 1:n-1in MATLAB creates a loop that is executed with
k=1,2,...,n—1. The same loop appears in Python as for k in range(n-1).
Here the function range (n-1) creates thelist [0, 1, ..., n — 2]; k then loops over the
elements of the list. The differences in the ranges of k reflect the native offsets used
for arrays. In Python, all sequences have zero offset, meaning that the index of the first
element of the sequence is always 0. In contrast, the native offset in MATLAB is 1.

Also note that Python has no end statements to terminate blocks of code (loops,
subroutines, etc.). The body of a block is defined by its indentation; hence indenta-
tion is an integral part of Python syntax.

Like MATLAB, Python is case sensitive. Thus, the names n and N would represent
different objects.

Obtaining Python

The Python interpreter can be downloaded from the Python Language Website
www . python.org. It normally comes with a nice code editor called Idle that allows
you to run programs directly from the editor. For scientific programming, we also
need the NumPy module, which contains various tools for array operations. It is ob-
tainable from the NumPy home page http://numpy.scipy.org/. Both sites also
provide documentation for downloading. If you use Linux, it is very likely that Python
is already installed on your machine (but you must still download NumPy).

You should acquire other printed material to supplement the on-line doc-
umentation. A commendable teaching guide is Python by Chris Fehly (Peachpit
Press, CA, 2002). As a reference, Python Essential Reference by David M. Beazley
(New Riders Publishing, 2001) is recommended. By the time you read this, newer
editions may be available. A useful guide to NumPy is found at http://www.
scipy.org/Numpy Example List.

Core Python
Variables

In most computer languages the name of a variable represents a value of a given type
stored in a fixed memory location. The value may be changed, but not the type. This

Introduction to Python

it not so in Python, where variables are typed dynamically. The following interactive
session with the Python interpreter illustrates this (>>> is the Python prompt):

>>> b = 2 # b is dinteger type
>>> print b

2

>>> b = b*2.0 # Now b is float type
>>> print b

4.0

The assignment b = 2 creates an association between the name b and the in-
teger value 2. The next statement evaluates the expression b*2. 0 and associates the
result with b; the original association with the integer 2 is destroyed. Now b refers to
the floating point value 4.0.

The pound sign (#) denotes the beginning of a comment - all characters between
and the end of the line are ignored by the interpreter.

Strings

A string is a sequence of characters enclosed in single or double quotes. Strings are
concatenated with the plus (+) operator, whereas slicing (:) is used to extract a por-
tion of the string. Here is an example:

>>> stringl = ’Press return to exit’
>>> string2 = ’the program’

>>> print stringl + + string?2 # Concatenation
Press return to exit the program
>>> print stringl[0:12] # Slicing

Press return

A string is an immutable object — its individual characters cannot be modified
with an assignment statement, and it has a fixed length. An attempt to violate im-
mutability will result in TypeError, as shown here:

>>> s = ’Press return to exit’
>>> s[0] = 'p’
Traceback (most recent call last):
File ’'’<pyshell#1>’’, line 1, in ?
s[0] = ’'p’

TypeError: object doesn’t support item assignment

Tuples

A tuple is a sequence of arbitrary objects separated by commas and enclosed in
parentheses. If the tuple contains a single object, a final comma is required; for

1.2 Core Python

example, x = (2,).Tuplessupport the same operations as strings; they are also im-
mutable. Here is an example where the tuple rec contains another tuple (6,23, 68):

>>> rec = (’Smith’,’John’,(6,23,68)) # This is a tuple
>>> lastName, firstName,birthdate = rec # Unpacking the tuple
>>> print firstName

John

>>> birthYear = birthdate[2]

>>> print birthYear

68

>>> name = rec[1l] + ’ ’ + rec[O0]

>>> print name

John Smith

>>> print rec[0:2]

(’Smith’, ’John’)

Lists

A list is similar to a tuple, but it is mutable, so that its elements and length can be
changed. A list is identified by enclosing it in brackets. Here is a sampling of opera-
tions that can be performed on lists:

>>> a = [1.0, 2.0, 3.0] # Create a list

>>> a.append(4.0) # Append 4.0 to list

>>> print a

[1.0, 2.0, 3.0, 4.0]

>>> a.insert(0,0.0) # Insert 0.0 in position O
>>> print a

(0.0, 1.0, 2.0, 3.0, 4.0]

>>> print len(a) # Determine length of list
5

>>> a[2:4] = [1.0, 1.0, 1.0] # Modify selected elements
>>> print a

(0.0, 1.0, 1.0, 1.0, 1.0, 4.0]

If a is a mutable object, such as a list, the assignment statementb = a does not
result in a new object b, but simply creates a new reference to a. Thus any changes
made to b will be reflected in a. To create an independent copy of a list a, use the
statement ¢ = al[:], as shown here:

>>> a = [1.0, 2.0, 3.0]

>>> b = a # b’ is an alias of ’a

>>> b[0] = 5.0 # Change ’'b’

>>> print a

[5.0, 2.0, 3.0] # The change is reflected in ’a’

>>> ¢ = a[:] # ’c’ is an independent copy of ’'a’

Introduction to Python

>>> c[0] = 1.0 # Change ’'c’
>>> print a
[5.0, 2.0, 3.0] # ’a’ is not affected by the change

Matrices can be represented as nested lists with each row being an element of
the list. Here is a 3 x 3 matrix a in the form of a list:

>>>a = [[1, 2, 3], \
[4, 5, 6], \

[7, 8, 9]1]
>>> print al[l] # Print second row (element 1)
[4, 5, 6]
>>> print al[l1l][2] # Print third element of second row

6

The backslash (\) is Python’s continuation character. Recall that Python se-
quences have zero offset, so that a[0] represents the first row, a[1] the second row,
and so forth. With very few exceptions, we do not use lists for numerical arrays. It
is much more convenient to employ array objects provided by the NumPy module.
Array objects are discussed later.

Arithmetic Operators

Python supports the usual arithmetic operators:

+ | Addition
— | Subtraction

Multiplication

/ | Division

x* | Exponentiation

% | Modular division

Some of these operators are also defined for strings and sequences as illustrated
here:

’

>>> s = ’'Hello
>>> t = 'to you’

>> a = [1, 2, 3]

>>> print 3*s # Repetition
Hello Hello Hello

>>> print 3*a # Repetition

[, 2, 3, 1, 2, 3, 1, 2, 3]

>>> print a + [4, 5] # Append elements
[1, 2, 3, 4, 5]

>>> print s + t # Concatenation
Hello to you

>>> print 3 + s # This addition makes no sense

1.2 Core Python

Traceback (most recent call last):

File ’'’<pyshell#9>’’, line 1, in ?
print n + s
TypeError: unsupported operand types for +: ’int’ and ’str’

Python 2.0 and later versions also have augmented assignment operators, such as
a+ = b, that are familiar to the users of C. The augmented operators and the equiva-
lent arithmetic expressions are shown in the following table.

a+=b a=a+b
a-=>b a=a-b
a *=b a = a*b
a/=Db a = a/b
a **= b | a = a**b
a %= b a = a%b

Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These opera-
tors are:

< | Lessthan
> | Greater than
<= | Less than or equal to

>= | Greater than or equal to

== | Equalto

= | Notequalto

Numbers of different type (integer, floating point, etc.) are converted to a common
type before the comparison is made. Otherwise, objects of different type are consid-
ered to be unequal. Here are a few examples:

>>> a = 2 # Integer
>>> b = 1.99 # Floating point
>>> ¢ = 2’ # String

>>> print a > b

1

>>> print a == cC

0

>>> print (a > b) and (a != c)
1

>>> print (a > b) or (a == b)

Introduction to Python

Conditionals

The if construct

if condition:
block

executes a block of statements (which must be indented) if the condition returns true.
If the condition returns false, the block is skipped. The i f conditional can be followed
by any number of e1if (short for “else if”) constructs

elif condition:
block

which work in the same manner. The else clause

else:

block

can be used to define the block of statements that are to be executed if none of
the if-elif clauses is true. The function sign_of_a illustrates the use of the
conditionals:

def sign_of_a(a):

if a < 0.0:

sign = ’negative’
elif a > 0.0:

sign = ’'positive’
else:

sign = ’zero’

return sign

a=1.5

print ’a is + sign_of_a(a)
Running the program results in the output

a is positive

Loops

The while construct

while condition:
block

executes a block of (indented) statements if the condition is true. After execution of
the block, the condition is evaluated again. If it is still true, the block is executed

1.2 Core Python
again. This process is continued until the condition becomes false. The else clause

else:

block

can be used to define the block of statements that are to be executed if the condition
is false. Here is an example that creates the list [1, 1/2, 1/3, .. .]:

nMax = 5
n=1
a =[] # Create empty list

while n < nMax:
a.append(1.0/n) # Append element to list
n=n-+»1

print a
The output of the program is
[1.0, 0.5, 0.33333333333333331, 0.25]

We met the for statement before in Section 1.1. This statement requires a tar-
get and a sequence (usually a list) over which the target loops. The form of the
construct is

for target in Sequence:
block

You may add an else clause that is executed after the for loop has finished. The
previous program could be written with the for construct as

nMax = 5

a =[]

for n in range(1l,nMax):
a.append(1.0/n)

print a

Here nis the target and thelist [1, 2, ..., nMax — 1], created by calling the range
function, is the sequence.

Any loop can be terminated by the break statement. If there is an else cause
associated with the loop, it is not executed. The following program, which searches
for a name in a list, illustrates the use of break and else in conjunction with a for
loop:
list = ['Jack’, 'Jill’, ’Tim’, ’Dave’]
name = eval(raw_input(’Type a name: ’')) # Python input prompt
for i in range(len(list)):

if list[i] == name:
print name,’is number’,i + 1,’on the list’
break

Introduction to Python

else:

print name,’is not on the list’
Here are the results of two searches:

Type a name: ’'Tim’

Tim is number 3 on the list

Type a name: ’'June’

June is not on the 1list

The
continue

statement allows us to skip a portion of the statements in an iterative loop. If the
interpreter encounters the continue statement, it immediately returns to the begin-
ning of the loop without executing the statements below continue. The following
example compiles a list of all numbers between 1 and 99 that are divisible by 7.

x = [] # Create an empty list

for i in range(1,100):
if i%7!= 0: continue # If not divisible by 7, skip rest of loop
x.append(i) # Append i to the list

print x

The printout from the program is

[7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]

Type Conversion

If an arithmetic operation involves numbers of mixed types, the numbers are au-
tomatically converted to a common type before the operation is carried out. Type
conversions can also be achieved by the following functions:

int(a) Converts a to integer
long(a) Converts a to long integer
float(a) Converts a to floating point
complex(a) Converts to complexa + 0j
complex(a,b) | Convertsto complexa + bj

The foregoing functions also work for converting strings to numbers as long as
the literal in the string represents a valid number. Conversion from a float to an inte-
ger is carried out by truncation, not by rounding off. Here are a few examples:

>>> a = 5
>> b = -3.6

1.2 Core Python

>>> d = "4.0’

>>> print a + b

1.4

>>> print int(b)

-3

>>> print complex(a,b)

(5-3.63)

>>> print float(d)

4.0

>>> print int(d) # This fails: d is not Int type

Traceback (most recent call last):

File ’'’<pyshell#7>’’, line 1, in ?

print int(d)

ValueError: invalid literal for int(): 4.0

Mathematical Functions

Core Python supports only a few mathematical functions:

abs(a) Absolute value of a

max (sequence) | Largest element of sequence

min(sequence) | Smallest element of sequence

round(a,n) Round a to n decimal places
—-lif a < b
cmp(a,b) Returns 0if a = b
lif a > b

The majority of mathematical functions are available in the math module.

Reading Input
The intrinsic function for accepting user input is
raw_input (prompt)

It displays the prompt and then reads a line of input that is converted to a string. To
convert the string into a numerical value, use the function

eval (string)
The following program illustrates the use of these functions:

a = raw_input(’Input a: ’)

print a, type(a) # Print a and its type
b = eval(a)

print b,type(b) # Print b and its type

Introduction to Python

The function type(a) returns the type of the object g; it is a very useful tool in
debugging. The program was run twice with the following results:

Input a: 10.0
10.0 <type ’'str’>
10.0 <type ’'float’>

Input a: 11%**2
11**2 <type ’'str’>
121 <type ’'int’>

A convenient way to input a number and assign it to the variable ais

a = eval(raw_input(prompt))

Printing Output

Output can be displayed with the print statement:
printobjectl, object2, . ..

which converts object1, object2, and so on to strings and prints them on the same line,
separated by spaces. The newline character *\n’ can be used to force a new line. For
example,

>>> a = 1234.56789

>>> b = [2, 4, 6, 8]

>>> print a,b

1234.56789 [2, 4, 6, 8]

>>> print ’a =’,a, '\nb =’,b
a 1234.56789

b =1[2, 4, 6, 8]

The modulo operator (%) can be used to format a tuple. The form of the conver-
sion statement is

‘%formatl %format2 ---° % tuple

where formatl, format2---are the format specifications for each object in the tuple.
Typically used format specifications are:

wd Integer

w.df | Floating point notation

w.de | Exponential notation

where w is the width of the field and d is the number of digits after the decimal point.
The output is right-justified in the specified field and padded with blank spaces

1.2 Core Python

(there are provisions for changing the justification and padding). Here are a couple
of examples:

>>> a = 1234.56789
>>> n = 9876
>>> print '%7.2f’ % a

1234.57

>>> print 'n = %6d’ % n # Pad with spaces
n = 9876

>>> print 'n = %06d’ % n # Pad with zeroes
n = 009876

>>> print ’%12.4e %6d’ % (a,n)
1.2346e+003 9876

Opening and Closing a File

Before a data file can be accessed, you must create a file object with the command

file_object = open(filename, action)

where filename is a string that specifies the file to be opened (including its path if
necessary) and action is one of the following strings:

v’ Read from an existing file.

‘w’ Write to a file. If filename does not exist, it is created.
a’ Append to the end of the file.

r+’ | Read to and write from an existing file.

'w+’ | Same as ’r+’, but filename is created if it does not exist.

a+’ | Same as ’w+’, but data is appended to the end of the file.

It is good programming practice to close a file when access to it is no longer re-
quired. This can be done with the method

file_object.close ()
Reading Data from a File
There are three methods for reading data from a file. The method

file_object.read (n)
reads n characters and returns them as a string. If n is omitted, all the characters in

the file are read.
If only the current line is to be read, use

file_object.readline(n)

Introduction to Python

which reads n characters from the line. The characters are returned in a string that
terminates in the newline character \n. Omission of #n causes the entire line to be
read.

All the lines in a file can be read using

file_object.readlines ()

This returns a list of strings, each string being a line from the file ending with the
newline character.

Writing Data to a File
The method

file_object.write ()

writes a string to a file, whereas

file_object.writelines()

is used to write a list of strings. Neither method appends a newline character to the
end of a line.

The print statement can also be used to write to a file by redirecting the output
to a file object:

print >> file_object, objectl, object2, ...

Apart from the redirection, this statement works just like the regular print com-
mand.

Error Control

When an error occurs during execution of a program, an exception is raised and the
program stops. Exceptions can be caught with try and except statements:

try:

do something
except error:

do something else

where error is the name of a built-in Python exception. If the exception error is not
raised, the try block is executed; otherwise, the execution passes to the except
block. All exceptions can be caught by omitting error from the except statement.
Here is a statement that raises the exception ZeroDivisionError:
>>> c = 12.0/0.0
Traceback (most recent call last):
File ’'’<pyshell#0>’’, line 1, in ?
c =12.0/0.0

ZeroDivisionError: float division

1.3 Functions and Modules
This error can be caught by

try:
c =12.0/0.0
except ZeroDivisionError:

print ’'Division by zero’

Functions and Modules
Functions

The structure of a Python function is

def func_name(paraml, param?2,...) :
statements
return return_values

where paraml, param2,. .. are the parameters. A parameter can be any Python ob-
ject, including a function. Parameters may be given default values, in which case the
parameter in the function call is optional. If the return statement or return_values
are omitted, the function returns the null object.

The following example computes the first two derivatives of arctan(x) by finite
differences:

from math import atan

def finite_diff(f,x,h=0.0001): # h has a default value
df =(f(x+h) - f(x-h))/(2.0%*h)
ddf =(£f(x+h) - 2.0*f(x) + f(x-h))/h**2
return df,ddf

x = 0.5

df,ddf = finite_diff(atan,x) # Uses default value of h
print ’'First derivative =’,df

print ’'Second derivative =’,ddf

Note that atan is passed to finite_diff as a parameter. The output from the
program is

First derivative = 0.799999999573

Second derivative -0.639999991892

The number of input parameters in a function definition may be left arbitrary.
For example, in the function definition

def func(xl,x2,*x3)

Introduction to Python

x1 and x2 are the usual parameters, also called positional parameters, whereas x3 is a
tuple of arbitrary length containing the excess parameters. Calling this function with

func(a,b,c,d,e)
results in the following correspondence between the parameters:
a<—x1, b<«—x2, (c,d,e) «<— x3

The positional parameters must always be listed before the excess parameters.
If a mutable object, such as a list, is passed to a function where it is modified, the
changes will also appear in the calling program. Here is an example:

def squares(a):
for i in range(len(a)):
afi] = a[i]**2

a=[1, 2, 3, 4]
squares(a)

print a

The output is

Lambda Statement
If the function has the form of an expression, it can be defined with the lambda state-
ment

func_name = lambda paraml, param2,. . . : expression

Multiple statements are not allowed.
Here is an example:

>>> ¢ = lambda x,y : xX**2 + y**2
>>> print c(3,4)
25

Modules

It is sound practice to store useful functions in modules. A module is simply a file
where the functions reside; the name of the module is the name of the file. A module
can be loaded into a program by the statement

from module_.name import *

Python comes with a large number of modules containing functions and methods
for various tasks. Some of the modules are described briefly in the following section.

1.4 Mathematics Modules

Additional modules, including graphics packages, are available for downloading on
the Web.

Mathematics Modules
math Module

Most mathematical functions are not built into core Python, but are available by load-
ing the math module. There are three ways of accessing the functions in a module.
The statement

from math import *

loads all the function definitions in the math module into the current function or
module. The use of this method is discouraged because it not only is wasteful, but
can also lead to conflicts with definitions loaded from other modules.

You can load selected definitions by

from math import funcl, func2,...

as illustrated here:

>>> from math import log,sin
>>> print log(sin(0.5))
-0.735166686385

The third method, which is used by the majority of programmers, is to make the
module available by

import math

The module can then be accessed by using the module name as a prefix:

>>> import math
>>> print math.log(math.sin(0.5))
-0.735166686385

The contents of a module can be printed by calling dir (module). Here is how to
obtain a list of the functions in the math module:

>>> import math

>>> dir(math)

['’_doc_’, ’_name__’, ’acos’, ’asin’, ’atan’,
’atan2’, ’'ceil’, ’'cos’, ’cosh’, ’e’, ’exp’, ’'fabs’,
"floor’, ’fmod’, ’frexp’, ’'hypot’, ’ldexp’, ’log’,
’logl0’, ’modf’, ’pi’, ’pow’, ’'sin’, ’sinh’, ’sqrt’,

"tan’, ’'tanh’]

Introduction to Python

Most of these functions are familiar to programmers. Note that the module in-
cludes two constants: = and e.

cmath Module

The cmath module provides many of the functions found in the math module, but
these accept complex numbers. The functions in the module are:

[’_doc_’, ’_name__’, ’acos’, ’'acosh’, ’asin’, ’asinh’,
’atan’, ’'atanh’, ’cos’ 'cosh’, ’e’, ’exp’, ’log’,
’logl0’, ’pi’, ’sin’ ’sinh’, ’sqrt’, ’'tan’, ’tanh’]

Here are examples of complex arithmetic:

>>> from cmath import sin

>>> x = 3.0 -4.5j

>>> vy =1.2 + 0.8j

>>> z = 0.8

>>> print x/y
(-2.56205313375e-016-3.753)
>>> print sin(x)
(6.35239299817+44.55264336493)
>>> print sin(z)
(0.7173560909+03)

numpy Module
General Information

The NumPy module? is not a part of the standard Python release. As pointed out
before, it must be obtained separately and installed (the installation is very easy).
The module introduces array objects that are similar to lists, but can be manipulated
by numerous functions contained in the module. The size of an array is immutable,
and no empty elements are allowed.

The complete set of functions in numpy is far too long to be printed in its entirety.
The following list is limited to the most commonly used functions:

[’complex’, ’'float’, ’'abs’, ’'append’, arccos’,
’arccosh’, ’arcsin’, ’arcsinh’, ’'arctan’, ’'arctan2’,
'arctanh’, ’argmax’, ’argmin’, ’'cos’, ’'cosh’, ’diag’,
’diagonal’, ’dot’, ’'e’, ’exp’, ’floor’, ’'identity’,
’inner, ’inv’, ’log’, ’'logl0’, ’'max’, ’'min’,
’ones’,’outer’, ’pi’, ’prod’ ’'sin’, ’sinh’, ’'size’,
’solve’,’sqrt’, ’sum’, ’'tan’, ’'tanh’, ’trace’,
’transpose’, ’'zeros’, ’vectorize’]

2 NumPy is the successor of older Python modules called Numeric and NumArray. Their interfaces
and capabilities are very similar. Although Numeric and NumArray are still available, they are no
longer supported.

1.5 numpy Module

Creating an Array

Arrays can be created in several ways. One of them is to use the array function to
turn a list into an array:

array(list,dtype = type_specification)
Here are two examples of creating a 2 x 2 array with floating-point elements:

>>> from numpy import array,float
>>> a = array([[2.0, -1.0],[-1.0, 3.011)
>>> print a
[[2. -1.1
[-1. 3.11
>>> b = array([[2, -1],[-1, 3]],dtype = float)
>>> print b
[[2. -1.]
[-1. 3.11

Other available functions are
zeros((diml,dim2) ,dtype = type_specification)
which creates a diml x dim?2 array and fills it with zeroes, and
ones((diml,dim2) ,dtype = type_specification)

which fills the array with ones. The default type in both cases is float.
Finally, there is the function

arange (from, to, increment)

which works just like the range function, but returns an array rather than a list. Here
are examples of creating arrays:

%

>>> from numpy import
>>> print arange(2,10,2)
[2 4 6 8]
>>> print arange(2.0,10.0,2.0)
[2. 4. 6. 8.]
>>> print zeros(3)
[0. 0. 0.]
>>> print zeros((3),dtype=int)
[0 O 0]
>>> print ones((2,2))
[[1. 1.]
[1. 1.]7]

Introduction to Python

Accessing and Changing Array Elements

If a is a rank-2 array, then a[i,j] accesses the element in row i and column j,
whereas a[1i] refers to row i. The elements of an array can be changed by assign-
ment:

>>> from numpy import *
>>> a = zeros((3,3),dtype=int)

>>> print a

[[0 0 0]
[0 0 0]
[0 0 0]]
>>> a[0] = [2,3,2] # Change a row
>>> a[l,1] =5 # Change an element

>>> a[2,0:2] = [8,-3] # Change part of a row

>>> print a

(L 2 3 2]
[0 5 0]
[8 -3 0]]

Operations on Arrays

Arithmetic operators work differently on arrays than they do on tuples and lists — the
operation is broadcast to all the elements of the array; that is, the operation is applied
to each element in the array. Here are examples:

>>> from numpy import array
>>> a = array([0.0, 4.0, 9.0, 16.0])
>>> print a/16.0

[0. 0.25 0.5625 1.]
>>> print a - 4.0
[-4. 0. 5. 12.]

The mathematical functions available in NumPy are also broadcast:

>>> from numpy import array,sqrt,sin

>>> a = array([1.0, 4.0, 9.0, 16.0]1)

>>> print sqrt(a)

[1. 2. 3. 4.]

>>> print sin(a)

[0.84147098 -0.7568025 0.41211849 -0.28790332]

Functions imported from the math module will work on the individual elements,
of course, but not on the array itself. Here is an example:

>>> from numpy import array

>>> from math import sqrt

1.5 numpy Module

>>> a = array([1.0, 4.0, 9.0, 16.0])
>>> print sqrt(al[l])

2.0

>>> print sqrt(a)

Traceback (most recent call last):

TypeError: only length-1 arrays can be converted to Python scalars

Array Functions

There are numerous functions in NumPy that perform array operations and other
useful tasks. Here are a few examples:

>>> from numpy import

>>> A = array([[4,-2,1],[-2,4,-2],[1,-2,3]],dtype=float)
>>> b = array([1l,4,3],dtype=float)

>>> print diagonal(A) # Principal diagonal

[4. 4. 3.1

>>> print diagonal(A,1) # First subdiagonal

[-2. -2.]

>>> print trace(A) # Sum of diagonal elements

11.0

>>> print argmax(b) # Index of largest element

1

>>> print argmin(A,axis=0) # Indecies of smallest col. elements
[1 0 1]

>>> print identity(3) # Identity matrix

[l 1. 0. o0.]
[0. 1. 0.1
[0. 0. 1.11

There are three functions in NumPy that compute array products. They are illus-
trated by the program listed below For more details, see Appendix A2.

from numpy import

x = array([7,3])

y array([2,1])

A = array([[1,2],[3,2]]1)
B = array([[1,1],[2,2]1)

Dot product

print "dot(x,y) =\n",dot(x,y) # {x}.{y}
print "dot(A,x) =\n",dot(A,x) # [AT{x}

print "dot(A,B) =\n",dot(A,B) # [A][B]

Introduction to Python

Inner product
print "inner(x,y) =\n",inner(x,y) # {x}.{v}
print "inner(A,x) =\n",inner(A,x) # [Al{x}

print "inner(A,B) =\n",inner(A,B) # [A][B_transpose]

Outer product
print "outer(x,y) =\n",outer(x,y)
print "outer(A,x) =\n",outer(A,x)

print "Outer(A,B) =\n",outer(A,B)
The output of the program is

dot(x,VY)
17
dot(A,x) =
[13 27]
dot(A,B)
[[5 5]

[7 711
inner(x,y) =
17
inner(A,x) =
[13 27]
inner(A,B) =
(L 3 6]

[51011
outer(x,y) =
[[14 7]

[6 311
outer(A,x) =
[7 31

[14 6]

[21 9]

[14 611
Outer(A,B) =
[[1 12 2]

[2 2 4 4]

[3 3 6 6]

[2 2 4 4]]

Linear Algebra Module

NumPy comes with a linear algebra module called linalg that contains routine tasks
such as matrix inversion and solution of simultaneous equations. For example:

1.5 numpy Module

>>> from numpy import array
>>> from numpy.linalg import inv,solve
>>> A = array([[4.0, -2.0, 1.07, \
[-2.0, 4.0, -2.01, \
[1.0, -2.0, 3.01D)
>>> b = array([1.0, 4.0, 2.0])

>>> print inv(A) # Matrix inverse
[[0.33333333 0.16666667 O.]
[0.16666667 0.45833333 0.25 1
[O. 0.25 0.5 1]
>>> print solve(A,b) # Solve [A]l{x} = {b}
[1., 2.5, 2.1
Copying Arrays

We explained before that if a is a mutable object, such as a list, the assignment state-
mentb = a does not result in a new object b, but simply creates a new reference to
a, called a deep copy. This also applies to arrays. To make an independent copy of an
array a, use the copy method in the NumPy module:

b = a.copy()

Vectorizing Algorithms

Sometimes the broadcasting properties of the mathematical functions in the NumPy
module can be utilized to replace loops in the code. This procedure is known as vec-
torization. Consider, for example, the expression

X [in i
s= —sin —
2 106 ¥ 00
i=0
The direct approach is to evaluate the sum in a loop, resulting in the following “scalar”
code:

from math import sqrt,sin,pi
x=0.0; sum = 0.0
for i in range(0,101):
sum = sum + sqrt(x)*sin(x)
x =x + 0.01%pi

print sum
The vectorized version of algorithm is

from numpy import sqrt,sin,arange
from math import pi

x = arrange(0.0,1.001*pi,0.01*pi)
print sum(sqrt(x)*sin(x))

Introduction to Python

Note that the first algorithm uses the scalar versions of sqrt and sin functions
in the math module, whereas the second algorithm imports these functions from the
numpy. The vectorized algorithm is faster, but uses more memory.

Scoping of Variables

Namespace is a dictionary that contains the names of the variables and their values.
The namespaces are automatically created and updated as a program runs. There are
three levels of namespaces in Python:

e Local namespace, which is created when a function is called. It contains the vari-
ables passed to the function as arguments and the variables created within the
function. The namespace is deleted when the function terminates. If a variable
is created inside a function, its scope is the function’s local namespace. It is not
visible outside the function.

¢ Aglobal namespaceis created when a module isloaded. Each module has its own
namespace. Variables assigned in a global namespace are visible to any function
within the module.

e Built-in namespace is created when the interpreter starts. It contains the func-
tions that come with the Python interpreter. These functions can be accessed by
any program unit.

When a name is encountered during execution of a function, the interpreter tries
to resolve it by searching the following in the order shown: (1) local namespace,
(2) global namespace, and (3) built-in namespace. If the name cannot be resolved,
Python raises a NameError exception.

Because the variables residing in a global namespace are visible to functions
within the module, it is not necessary to pass them to the functions as arguments
(although is good programming practice to do so), as the following program illus-
trates:

def divide():
c = a/b

print ’a/b =’,c

a = 100.0
b =5.0
divide()

>>>
a/b = 20.0

Note that the variable c is created inside the function divide and is thus not
accessible to statements outside the function. Hence an attempt to move the print
statement out of the function fails:

1.7 Writing and Running Programs

def divide():
c = a/b

a = 100.0
b =5.0
divide()

print 'a/b =’,c

>>>
Traceback (most recent call last):
File ’'’C:\Python22\scope.py’’, line 8, in ?

print c

NameError: name ’'c’ is not defined

Writing and Running Programs

When the Python editor Idle is opened, the user is faced with the prompt >>>, in-
dicating that the editor is in interactive mode. Any statement typed into the editor is
immediately processed upon pressing the enter key. The interactive mode is a good
way to learn the language by experimentation and to try out new programming ideas.

Opening a new window places Idle in the batch mode, which allows typing and
saving of programs. One can also use a text editor to enter program lines, but Idle
has Python-specific features, such as color coding of keywords and automatic inden-
tation, that make work easier. Before a program can be run, it must be saved as a
Python file with the . py extension, for example, myprog. py. The program can then
be executed by typing python myprog.py; in Windows, double-clicking on the pro-
gram icon will also work. But beware: the program window closes immediately after
execution, before you get a chance to read the output. To prevent this from happen-
ing, conclude the program with the line

raw_input(’press return’)

Double-clicking the program icon also works in Unix and Linux if the first line
of the program specifies the path to the Python interpreter (or a shell script
that provides a link to Python). The path name must be preceded by the sym-
bols #!. On my computer the path is /usr/bin/python, so that all my programs
start with the line #! /usr/bin/python. On multiuser systems the path is usually
/usr/local/bin/python.

When a module is loaded into a program for the first time with the import state-
ment, it is compiled into bytecode and written in a file with the extension .pyc.
The next time the program is run, the interpreter loads the bytecode rather than the
original Python file. If in the meantime changes have been made to the module, the

Introduction to Python

module is automatically recompiled. A program can also be run from Idle using the
Run/Run Module menu.

It is a good idea to document your modules by adding a docstring at the begin-
ning of each module. The docstring, which is enclosed in triple quotes, should ex-
plain what the module does. Here is an example that documents the module error
(we use this module in several of our programs):

module error

err(string).

Prints ’string’ and terminates program.

import sys
def err(string):
print string
raw_input(’Press return to exit’)

sys.exit()

The docstring of a module can be printed with the statement

printmodule_.name. __doc__

For example, the docstring of error is displayed by

>>> import error
>>> print error.__doc__
err(string).

Prints ’'string’ and terminates program.

Systems of Linear Algebraic Equations

Solve the simultaneous equations Ax = b

Introduction

In this chapter we look at the solution of n linear, algebraic equations in # unknowns.
It is by far the longest and arguably the most important topic in the book. There is a
good reason for this — it is almost impossible to carry out numerical analysis of any
sort without encountering simultaneous equations. Moreover, equation sets arising
from physical problems are often very large, consuming a lot of computational re-
sources. It is usually possible to reduce the storage requirements and the run time
by exploiting special properties of the coefficient matrix, such as sparseness (most
elements of a sparse matrix are zero). Hence, there are many algorithms dedicated to
the solution of large sets of equations, each one being tailored to a particular form of
the coefficient matrix (symmetric, banded, sparse, etc.). A well-known collection of
these routines is LAPACK - Linear Algebra PACKage, originally written in Fortran77.!

We cannot possibly discuss all the special algorithms in the limited space avail-
able. The best we can do is to present the basic methods of solution, supplemented
by a few useful algorithms for banded and sparse coefficient matrices.

Notation

A system of algebraic equations has the form
Anxi +Apx+ -+ Aipxn = b

Ao X1 +ApXy + -+ AapnXy = by (2.1)

Anlxl +An2x2 + - +Annxn = bn

1 LAPACK is the successor of LINPACK, a 1970s and 80s collection of Fortran subroutines.

Systems of Linear Algebraic Equations

where the coefficients A;; and the constants b; are known, and x; represent the un-
knowns. In matrix notation the equations are written as

A A - Ay X by
Apy Az - Ay Xp b,
. . . = . 2.2)
An A - Ap Xn b,
or, simply,
Ax=Db (2.3)

A particularly useful representation of the equations for computational purposes
is the augmented coefficient matrix obtained by adjoining the constant vector b to the
coefficient matrix A in the following fashion:

A A - Al b
Az Az - Aol b

[alp]=|" T (2.4)
Anl An2 e An3 bﬂ

Uniqueness of Solution

A system of n linear equations in n unknowns has a unique solution, provided that
the determinant of the coefficient matrix is nonsingular; thatis, |A| # 0. The rows and
columns of a nonsingular matrix are linearly independent in the sense that no row (or
column) is a linear combination of other rows (or columns).

If the coefficient matrix is singular, the equations may have an infinite number of
solutions, or no solutions at all, depending on the constant vector. As an illustration,
take the equations

2x+y=3 4x4+2y=6

Because the second equation can be obtained by multiplying the first equation by 2,
any combination of x and y that satisfies the first equation is also a solution of the
second equation. The number of such combinations is infinite. On the other hand,
the equations

2x+y=3 4x+2y=0

have no solution because the second equation, being equivalent to 2x + y = 0, con-
tradicts the first one. Therefore, any solution that satisfies one equation cannot sat-
isfy the other one.

Ill Conditioning

The obvious question is: what happens when the coefficient matrix is almost singu-
lar, that is, if |A|] is very small? In order to determine whether the determinant of the

2.1 Introduction

coefficient matrix is “small,” we need a reference against which the determinant can
be measured. This reference is called the norm of the matrix and is denoted by ||A]|.
We can then say that the determinant is small if

IAl << lIA]l

Several norms of a matrix have been defined in existing literature, such as the eu-
clidean norm

Z ZAl?j (2.5a)

i=1 j=1

Alle =

and the row-sum norm, also called the infinity norm
n
Al = {2121515121: |4 (2.5b)
]:

A formal measure of conditioning is the matrix condition number, defined as
cond(A) = |A] |A7!| (2.5¢)

If this number is close to unity, the matrix is well conditioned. The condition number
increases with the degree of ill-conditioning, reaching infinity for a singular matrix.
Note that the condition number is not unique, but depends on the choice of the ma-
trix norm. Unfortunately, the condition number is expensive to compute for large
matrices. In most cases it is sufficient to gauge conditioning by comparing the deter-
minant with the magnitudes of the elements in the matrix.

If the equations are ill conditioned, small changes in the coefficient matrix result
in large changes in the solution. As an illustration, take the equations

2x+y=3 2x+1.00ly=0

that have the solution x = 1501.5, y = —3000. Because |A| = 2(1.001) — 2(1) = 0.002
is much smaller than the coefficients, the equations are ill conditioned. The effect of
ill-conditioning can be verified by changing the second equation to 2x + 1.002y = 0
and re-solving the equations. The result is x = 751.5, y = —1500. Note that a 0.1%
change in the coefficient of y produced a 100% change in the solution!

Numerical solutions of ill-conditioned equations are not to be trusted. The rea-
son is that the inevitable roundoff errors during the solution process are equiva-
lent to introducing small changes into the coefficient matrix. This in turn introduces
large errors into the solution, the magnitude of which depends on the severity of ill-
conditioning. In suspect cases the determinant of the coefficient matrix should be
computed so that the degree of ill-conditioning can be estimated. This can be done
during or after the solution with only a small computational effort.

Systems of Linear Algebraic Equations

Linear Systems

Linear, algebraic equations occur in almost all branches of numerical analysis. But
their most visible application in engineering is in the analysis of linear systems
(any system whose response is proportional to the input is deemed to be linear).
Linear systems include structures, elastic solids, heat flow, seepage of fluids, elec-
tromagnetic fields, and electric circuits, that is, most topics taught in an engineering
curriculum.

If the system is discrete, such as a truss or an electric circuit, then its analysis
leads directly to linear algebraic equations. In the case of a statically determinate
truss, for example, the equations arise when the equilibrium conditions of the joints

are written down. The unknowns x;, Xy, ..., X, represent the forces in the members
and the support reactions, and the constants by, b, .. ., b, are the prescribed external
loads.

The behavior of continuous systems is described by differential equations, rather
than algebraic equations. However, because numerical analysis can deal only with
discrete variables, it is first necessary to approximate a differential equation with a
system of algebraic equations. The well-known finite difference, finite element, and
boundary element methods of analysis work in this manner. They use different ap-
proximations to achieve the “discretization,” but in each case the final task is the
same: to solve a system (often a very large system) of linear, algebraic equations.

In summary, the modeling of linear systems invariably gives rise to equations
of the form Ax = b, where b is the input and x represents the response of the sys-
tem. The coefficient matrix A, which reflects the characteristics of the system, is in-
dependent of the input. In other words, if the input is changed, the equations have
to be solved again with a different b, but the same A. Therefore, it is desirable to have
an equation-solving algorithm that can handle any number of constant vectors with
minimal computational effort.

Methods of Solution

There are two classes of methods for solving systems of linear, algebraic equations:
direct and iterative methods. The common characteristic of direct methods is that
they transform the original equations into equivalent equations (equations that have
the same solution) that can be solved more easily. The transformation is carried out
by applying the three operations listed here. These so-called elementary operations
do not change the solution, but they may affect the determinant of the coefficient
matrix as indicated in parentheses.

e Exchanging two equations (changes sign of |A|).

¢ Multiplying an equation by a non-zero constant (multiplies |A| by the same con-
stant).

e Multiplying an equation by a nonzero constant and then subtracting it from an-
other equation (leaves |A| unchanged).

2.1 Introduction

Iterative or indirect methods start with a guess at the solution x, and then re-
peatedly refine the solution until a certain convergence criterion is reached. Itera-
tive methods are generally less efficient than their direct counterparts because of the
large number of iterations required. But they do have significant computational ad-
vantages if the coefficient matrix is very large and sparsely populated (most coeffi-
cients are zero).

Overview of Direct Methods

Table 2.1 lists three popular direct methods, each of which uses elementary opera-
tions to produce its own final form of easy-to-solve equations.

In the table, U represents an upper triangular matrix, L is a lower triangular ma-
trix, and I denotes the identity matrix. A square matrix is called triangular if it con-
tains only zero elements on one side of the leading diagonal. Thus, a 3 x 3 upper
triangular matrix has the form

Ui Uz Us
U=| 0 U, Us
0 0 Us

and a 3 x 3 lower triangular matrix appears as

L 0 0
L=|Ly Ly O
L3; L3 Las

Triangular matrices play an important role in linear algebra, because they sim-
plify many computations. For example, consider the equations Lx = ¢, or

Lyxi=a
Loy + Lopxy = ¢
L31x1 + L3z Xxp + Lagxs = ¢3

If we solve the equations forward, starting with the first equation, the computations
are very easy, because each equation contains only one unknown at a time. The

Method Initial form | Final form
Gauss elimination Ax=b Ux=c
LU decomposition Ax=Db LUx=b
Gauss-Jordan elimination Ax=Db Ix=c

Table 2.1

Systems of Linear Algebraic Equations

solution would thus proceed as follows:

X =a/Ln
Xy = (€2 — La1x1)/ L

X3 = (€3 — L1 X1 — L32Xp)/ L33

This procedure is known as forward substitution. In a similar way, Ux = ¢, encoun-
tered in Gauss elimination, can easily be solved by back substitution, which starts
with the last equation and proceeds backward through the equations.

The equations LUx = b, which are associated with LU decomposition, can also
be solved quickly if we replace them with two sets of equivalent equations: Ly = b
and Ux = y. Now Ly = b can be solved for y by forward substitution, followed by the
solution of Ux = y by means of back substitution.

The equations Ix = ¢, which are the produced by Gauss-Jordan elimination, are
equivalent to x = c (recall the identity Ix = x), so that c is already the solution.

EXAMPLE 2.1
Determine whether the following matrix is singular:

21 -0.6 1.1
A=132 47 -0.8
31 —-6.5 4.1

Solution Laplace’s development of the determinant (see Appendix A2) about the first
row of A yields

47 -0.8
—-6.5 41

32 08
31 4.1

32 47

Al = 2.1
31 —6.5

—(-0.6) +1.1

= 2.1(14.07) 4+ 0.6(15.60) + 1.1(35.37) =0

Because the determinant is zero, the matrix is singular. It can be verified that the
singularity is due to the following row dependency: (row 3) = (3 x row 1) — (row 2).

EXAMPLE 2.2
Solve the equations Ax = b, where

8 -6 2 28
A=|-4 11 -7 b= -40
4 -7 6 33

knowing that the LU decomposition of the coefficient matrix is (you should verify
this)

2.2 Gauss Elimination Method

Solution We first solve the equations Ly = b by forward substitution:

2y =28 y; =28/2=14
N +2y,=—40 ¥y, =(-40+y1)/2=(—40+14)/2 = -13
VNi—Y2+¥y3=33 y3=33-y1+).,=33-14-13=6

The solution x is then obtained from Ux = y by back substitution:

2x3=1Y3 X3=)3/2=6/2=3
4% —3x3=)2 X2 =0 +3x3)/4=[-134+3@3)]/4=-1
41 =3%+x3=y x1=0+3x0-—x)/4=[14+3(-1)-3]/4=2

T
Hence, the solution is x = [2 -1 3] .

Gauss Elimination Method
Introduction

Gauss elimination is the most familiar method for solving simultaneous equations. It
consists of two parts: the elimination phase and the solution phase. As indicated in
Table 2.1, the function of the elimination phase is to transform the equations into the
form Ux = c. The equations are then solved by back substitution. In order to illustrate
the procedure, let us solve the equations

4x] —2xp + x3 =11 (@
—2x1 +4x, —2x3 = —16 (b)
X1 — 2% +4x3 =17 (9]

Elimination Phase

The elimination phase utilizes only one of the elementary operations listed in Table
2.1 — multiplying one equation (say, equation j) by a constant A and subtracting it
from another equation (equation). The symbolic representation of this operation is

Eq. (i) < Eq. (i) — 1 x Eq. () (2.6)
The equation being subtracted, namely, Eq. (j), is called the pivot equation.
We start the elimination by taking Eq. (a) to be the pivot equation and choosing

the multipliers A so as to eliminate x; from Egs. (b) and (c):

Eq. (b) < Eq. (b) — (— 0.5) x Eq. (a)
Eq. (c) <« Eq. (c) — 0.25 x Eq. (a)

Systems of Linear Algebraic Equations

After this transformation, the equations become

4x1 —2xp +x3 =11 (@
3x, — 1.5x3 = —10.5 (b)
—1.5x, + 3.75x3 = 14.25 (©

This completes the first pass. Now we pick (b) as the pivot equation and eliminate x;
from (c):

Eq. (¢) < Eq. (¢) — (— 0.5) x Eq.(b)

which yields the equations

4x; —2x) +x3 =11 (@)
3x, — 1.5x3 = —10.5 (b)
3x3=9 (©)

The elimination phase is now complete. The original equations have been replaced
by equivalent equations that can be easily solved by back substitution.

As pointed out before, the augmented coefficient matrix is a more convenient
instrument for performing the computations. Thus, the original equations would be
written as

4 -2 1] 11
-2 4 -2|-16
1 -2 4| 17

and the equivalent equations produced by the first and the second passes of Gauss
elimination would appear as

4 =2 1 11.00
0 3 —1.5|—-10.50
0 —-15 3.75| 14.25

4 -2 1 11.0
0 3 -15/-105
0 O 3 9.0

It is important to note that the elementary row operation in Eq. (2.6) leaves the
determinant of the coefficient matrix unchanged. This is rather fortunate, since the
determinant of a triangular matrix is very easy to compute - it is the product of the
diagonal elements (you can verify this quite easily). In other words,

Al = [U] = U x Up2 x -+ X Upn 2.7

2.2 Gauss Elimination Method

Back Substitution Phase
The unknowns can now be computed by back substitution in the manner described
in the previous section. Solving Egs. (c), (b), and (a) in that order, we get

x3=9/3=3
X2 = (=10.5 + 1.5x3)/3 = [—10.5 + 1.5(3)]/3 = —2

X1 =0142x —x3)/4=[114+2(-2)-3]/4=1

Algorithm for Gauss Elimination Method

Elimination Phase

Let us look at the equations at some instant during the elimination phase. Assume
that the first k rows of A have already been transformed to upper-triangular form.
Therefore, the current pivot equation is the kth equation, and all the equations be-
low it are still to be transformed. This situation is depicted by the augmented co-
efficient matrix shown next. Note that the components of A are not the coefficients
of the original equations (except for the first row), because they have been altered
by the elimination procedure. The same applies to the components of the constant
vector b.

(A1 A A - A o A oo Anlb
0 Axp Axp - Ap -+ Azj - As|b
0 0 Asg -+ Asc -+ Asj - As,|bs
0 0 0 - A - Ay - Awn|bi| « pivot row
0 0 0 - Ag - Ay - Aulb < row being
. . . transformed
[0 0 0 - Aw - Ay - Au|bn]

Let the ith row be a typical row below the pivot equation that is to be trans-
formed, meaning that the element A;; is to be eliminated. We can achieve this by
multiplying the pivot row by A = A;;/Akr and subtracting it from the ith row. The
corresponding changes in the ith row are

Aij <_Aij_)\Akj» j:k,k+ 1,...,n (2.8a)
bi < bl’ —)»bk (2.8b)

In order to transform the entire coefficient matrix to upper-triangular form, k and
i in Egs. (2.8) must have the ranges k=1,2,...,n—1 (chooses the pivot row),

Systems of Linear Algebraic Equations

i=k+1,k+2...,n (chooses the row to be transformed). The algorithm for the
elimination phase now almost writes itself:

for k in range(0O,n-1):
for i in range(k+1l,n):
if a[i,k] != 0.0:
lam = a[i,k]/alk, k]
ali,k+1:n] = a[i,k+1:n] - lam*al[k,k+1:n]
b[i] = b[i] - lam*b[k]

In order to avoid unnecessary operations, this algorithm departs slightly from
Egs. (2.8) in the following ways:

o If A;; happens to be zero, the transformation of row i is skipped.

e The index j in Eq. (2.8a) starts with k + 1 rather than k. Therefore, A;; is not re-
placed by zero, but retains its original value. As the solution phase never accesses
the lower triangular portion of the coefficient matrix anyway;, its contents are ir-
relevant.

Back Substitution Phase
After Gauss elimination the augmented coefficient matrix has the form

An A Az - Al

0 Axp Ay -+ Awp|b

[A ‘ b] = 0 0 Azz -+ Azl bs
0 0 0 - Aplby

The last equation, A, X, = by, is solved first, yielding
Xp = bp/Ann (2.9)

Consider now the stage of back substitution where x,, x,-1, ..., Xx;+1 have been
already been computed (in that order), and we are about to determine x; from the
kth equation

Akl X + Ak k1Xk41 + -+ AgnXn = Die
The solution is
- 1
xe=|bi— > Agyxj|—, k=n-1Ln-2,..,1 (2.10)
= Ak
j=k+1
The corresponding algorithm for back substitution is:

for k in range(n-1,-1,-1):
x[k]l=(b[k] - dot(alk,k+1:n],x[k+1:n]))/alk,k]

2.2 Gauss Elimination Method

Operation Count

The execution time of an algorithm depends largely on the number of long opera-
tions (multiplications and divisions) performed. It can be shown that Gauss elimi-
nation contains approximately #n3/3 such operations (7 is the number of equations)
in the elimination phase, and n?/2 operations in back substitution. These numbers
show that most of the computation time goes into the elimination phase. Moreover,
the time increases very rapidly with the number of equations.

B gaussElimin

The function gaussElimin combines the elimination and the back substitution
phases. During back substitution b is overwritten by the solution vector x, so that
b contains the solution upon exit.

module gaussElimin
'’’’ x = gaussElimin(a,b).
Solves [a]l{b} = {x} by Gauss elimination.

from numpy import dot

def gaussElimin(a,b):
n = len(b)
Elimination phase
for k in range(0,n-1):
for i in range(k+1,n):
if al[i,k] != 0.0:
lam = a [i,k]/alk,k]
ali,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]
b[i] = b[i] - lam*b[k]
Back substitution
for k in range(n-1,-1,-1):
b[k] = (b[k] - dot(alk,k+1:n],b[k+1:n]))/alk,k]

return b

Multiple Sets of Equations

As mentioned before, it is frequently necessary to solve the equations Ax = b for sev-
eral constant vectors. Let there be m such constant vectors, denoted by by, by, ..., by,
and let the corresponding solution vectors be x;, Xz, . . ., X;;. We denote multiple sets
of equations by AX = B, where

X=[x1x2-«- xm] B=[b1 by --- bm]

are n x mmatrices whose columns consist of solution vectors and constant vectors,
respectively.

Systems of Linear Algebraic Equations

An economical way to handle such equations during the elimination phase is
to include all m constant vectors in the augmented coefficient matrix, so that they
are transformed simultaneously with the coefficient matrix. The solutions are then
obtained by back substitution in the usual manner, one vector at a time. It would
be quite easy to make the corresponding changes in gaussElimin. However, the LU
decomposition method, described in the next section, is more versatile in handling
multiple constant vectors.

EXAMPLE 2.3
Use Gauss elimination to solve the equations AX = B, where

6 —4 1 -14 22
A=|-4 6 —4 B= 36 —18
1 —4 6 6 7

Solution The augmented coefficient matrix is

6 —4 1|-14 22
—4 6 —4| 36 -18
1 -4 6 6 7

The elimination phase consists of the following two passes:

TOw 2 <— row 2 + (2/3) x row 1

row 3 < row 3 — (1/6) x row 1

6 —4 1] —14 22
0 10/3 -10/3|80/3 —10/3
0 -10/3 35/6|25/3 10/3

and

row 3 < row 3 + row 2
6 -4 1 —14 22
0o 10/3 -10/3|80/3 —10/3
0 0 5/2 35 0

In the solution phase, we first compute x; by back substitution:

35
Xy = 2 =14
5/2
80/3 + (10/3) X3 80/3 + (10/3)14
Xo1 = - —22
10/3 10/3
—14+4X5, — X —14 +4(22) — 14
Xy = +4Xn 31 +4(22) — 10

6 a 6

2.2 Gauss Elimination Method

Thus, the first solution vector is
T T
x1=[X11 Xo, Xgl] =[10 22 14]

The second solution vector is computed next, also using back substitution:

X3 =0
~10/3+ (10/3) Xz —10/3+0
X22 = = = —1
10/3 10/3
22 +4X5, — X- 224+4(-1)—-0
X = + 4 X2 52 _ 22+ (=1 _3
6 6
Therefore,
T T
Xp = [XIZ X X32] = [3 -1 0]
EXAMPLE 2.4

An n x nVandermode matrix A is defined by
Aj=vl, i=1,2...,n j=1,2,...,n

where vis a vector. Use the function gaussE1limin to compute the solution ofAx = b,
where A is the 6 x 6 the Vandermode matrix generated from the vector

v=[1.0 12 14 16 18 2.0]T
and
b:[o 1010 1]T

Also evaluate the accuracy of the solution (Vandermode matrices tend to be ill con-
ditioned).

Solution

#!/usr/bin/python
example2_4
from numpy import zeros,array,prod,diagonal,dot

from gaussElimin import *

def vandermode(Vv):
len(v)

a = zeros((n,n))

n

for j in range(n):
al:,3] = v¥*(n-j-1)

return a

v = array([1.0, 1.2, 1.4, 1.6, 1.8, 2.0])
b = array([0.0, 1.0, 0.0, 1.0, 0.0, 1.01)

a = vandermode(v)

Systems of Linear Algebraic Equations

alrig a.copy() # Save original matrix

bOrig = b.copy() # and the constant vector

x = gaussElimin(a,b)

det = prod(diagonal(a))

print 'x =\n’,x

print ’'\ndet =’,det

print ’'\nCheck result: [a]l{x} - b =\n’,dot(alOrig,x) - bOrig

raw_input ("\nPress return to exit")

The program produced the following results:

X =

[416.66666667 -3125.00000004 9250.00000012 -13500.00000017
9709.33333345 -2751.00000003]

det = -1.13246207999e-006

Check result: [al{x} - b =
[4.54747351e-13 2.27373675e-12 4.09272616e-12 1.50066626e-11
-5.00222086e-12 6.04813977e-11]

As the determinant is quite small relative to the elements of A (you may want to
print A to verify this), we expect detectable roundoff error. Inspection of x leads us to
suspect that the exact solution is

T
x:[1250/3 —3125 9250 —13500 29128/3 —2751]

in which case the numerical solution would be accurate to about 10 decimal places.
Another way to gauge the accuracy of the solution is to compute Ax — b (the result
should be 0). The printout indicates that the solution is indeed accurate to at least 10
decimal places.

LU Decomposition Methods
Introduction

It is possible to show that any square matrix A can be expressed as a product of a
lower triangular matrix L and an upper triangular matrix U:

A=1U0 (2.11)

The process of computing L and U for a given A is known as LU decomposition or
LU factorization. LU decomposition is not unique (the combinations of L and U for
a prescribed A are endless), unless certain constraints are placed on L or U. These
constraints distinguish one type of decomposition from another. Three commonly
used decompositions are listed in Table 2.2.

2.3 LU Decomposition Methods

Name Constraints

Doolittle’s decomposition | L; =1, i=1,2,...,n

Crout’s decomposition U;=1 i=12,..,n

Choleski’s decomposition | L = U”

Table 2.2

After decomposing A, it is easy to solve the equations Ax = b, as pointed out
in Section 2.1. We first rewrite the equations as LUx = b. Upon using the notation
Ux =y, the equations become

Ly=b
which can be solved for y by forward substitution. Then
Ux=y

will yield x by the back substitution process.

The advantage of LU decomposition over the Gauss elimination method is that
once A is decomposed, we can solve Ax = b for as many constant vectors b as we
please. The cost of each additional solution is relatively small, since the forward and
back substitution operations are much less time consuming than the decomposition
process.

Doolittle’s Decomposition Method

Decomposition Phase

Doolittle’s decomposition is closely related to Gauss elimination. In order to illustrate
the relationship, consider a 3 x 3 matrix A and assume that there exist triangular ma-
trices

1 0 0 Ui U2 Us
L= L21 1 0 U= 0 []22 (-]23
L3y L3y 1 0 0 Usg

such that A = LU. After completing the multiplication on the right-hand side, we get

Un Uz Uss
A= |UiLly UpgLy+ U Uis Loy + Uoz (2.12)
UnLsy ULz + UspLzy UisLsy + Usz L3y + Uss

Let us now apply Gauss elimination to Eq. (2.12). The first pass of the elimina-
tion procedure consists of choosing the first row as the pivot row and applying the
elementary operations

row 2 < row 2 — Ly; x row 1 (eliminatesA,;)

row 3 < row 3 — L3; x row 1 (eliminatesAs;)

Systems of Linear Algebraic Equations
The result is
Un Ui U3
A=10 Uz Uns
0 UxlLsp UsLs:+ Uss

In the next pass we take the second row as the pivot row and utilize the operation

row 3 < row 3 — L3, x row 2 (eliminatesAs,)

ending up with
Ui Uy Us
A'=U=| 0 U, Us
0 0 Us

The foregoing illustration reveals two important features of Doolittle’s decompo-
sition:

e The matrix U is identical to the upper triangular matrix that results from Gauss
elimination.

e The off-diagonal elements of L are the pivot equation multipliers used during
Gauss elimination, that is, L;; is the multiplier that eliminated A;;.

It is usual practice to store the multipliers in the lower triangular portion of the
coefficient matrix, replacing the coefficients as they are eliminated (L;; replacing A;;).
The diagonal elements of L do not have to be stored, because it is understood that
each of them is unity. The final form of the coefficient matrix would thus be the fol-
lowing mixture of L and U:

Ui Uz Us
(L\U] = [Loy U, U3 (2.13)
Ly L3 Uss

The algorithm for Doolittle’s decomposition is thus identical to the Gauss elimi-
nation procedure in gaussElimin, except that each multiplier A is now stored in the
lower triangular portion of A :

for k in range(0O,n-1):
for i in range(k+1l,n):
if a[i,k] != 0.0:
lam = a[i,k]/alk, k]
ali,k+1:n] = a[i,k+1:n] - lam*al[k,k+1:n]
ali,k] = lam

2.3 LU Decomposition Methods

Solution Phase
Consider now the procedure for the solution of Ly = b by forward substitution. The
scalar form of the equations is (recall that L; = 1)

n="bh
Lay+y:=b

Ly + Liey: + - + L k—1Yk—1 + Y& = b

Solving the kth equation for yj yields

k-1
J’k:bk_ZijYj, k=23,..,n (2.14)
j=1

Therefore, the forward substitution algorithm is

y[0] = b[0]
for k in range(l,n):
y[k] = b[k] - dot(alk,0:k],y[0:k])

The back substitution phase for solving Ux = y is identical to what was used in
the Gauss elimination method.

B LUdecomp

This module contains both the decomposition and solution phases. The decompo-
sition phase returns the matrix [L\U] shown in Eq. (2.13). In the solution phase, the
contents of b are replaced by y during forward substitution Similarly, the back sub-
stitution overwrites y with the solution x.

module LUdecomp
’’’ a = LUdecomp(a).

LU decomposition: [L][U] = [a]. The returned matrix
[a]l] = [L\U] contains [U] in the upper triangle and

the nondiagonal terms of [L] in the lower triangle.

x = LUsolve(a,b).
Solves [L][U]{x} = b, where [a] = [L\U] is the matrix
returned from LUdecomp.

from numpy import dot

Systems of Linear Algebraic Equations

def LUdecomp(a):
n = len(a)
for k in range(0O,n-1):
for i in range(k+1,n):
if a[i,k] !'= 0.0:

lam = a [i,k]/alk,k]
al[i,k+1:n] = a[i,k+1:n] - lam*al[k,k+1:n]
al[i,k] = lam

return a

def LUsolve(a,b):
n = len(a)
for k in range(l,n):
b[k] = b[k] - dot(alk,0:k],b[0:k])
for k in range(n-1,-1,-1):
b[k] = (b[k] - dot(alk,k+1:n],b[k+1:n]))/alk,k]

return b

Choleski’s Decomposition Method
Choleski’s decomposition A = LL” has two limitations:

e Because LL” is always a symmetric matrix, Choleski’s decomposition requires A
to be symmetric.

e The decomposition process involves taking square roots of certain combinations
of the elements of A. It can be shown that in order to avoid square roots of nega-
tive numbers A must be positive definite.

Choleski’s decomposition contains approximately 7n®/6 long operations plus n
square root computations. This is about half the number of operations required in
LU decomposition. The relative efficiency of Choleski’s decomposition is due to its
exploitation of symmetry.

Let us start by looking at Choleski’s decomposition

A=LLT (2.15)
of a 3 x 3 matrix:
A A A Ly O 0 Ly Ly Ly
Ay App Aps| =L Ly 0 0 Ly Lz
Az Az As L3y L3 Lss 0 0 L33

After completing the matrix multiplication on the right-hand side, we get

A Ap A L% Ly Ly Ly L3
An Ap Ap | =|LuLn L3+ L3 Ly L3y + Lyp L3 (2.16)
Az Az Asz LiiLsi LoiLsy + LypLsp L3, + L3, + L2,

2.3 LU Decomposition Methods

Note that the right-hand-side matrix is symmetric, as pointed out before. Equating
the matrices A and LL” element by element, we obtain six equations (because of sym-
metry only lower or upper triangular elements have to be considered) in the six un-
known components of L. By solving these equations in a certain order, it is possible
to have only one unknown in each equation.

Consider the lower triangular portion of each matrix in Eq. (2.16) (the upper tri-
angular portion would do as well). By equating the elements in the first column, start-
ing with the first row and proceeding downward, we can compute Lj;, Ly, and Ls;
in that order:

AH = L%l Lll = VAll
Az = Li1Ly Ly = Az /Ln
Ay = Li1L3; L3; = Az1/Ln

The second column, starting with second row, yields Ly, and Ls;:
A = L5, + L3, Loy = JAp — L3,
Azy = Ly1 L3 + Loy L3 L3y = (A3 — Loy L31)/ Ly
Finally, the third column, third row gives us Lsjs:

Ass = L5 + L3, + L5, L3z =/ A3z — L3, - L,

We can now extrapolate the results for an 7 x n matrix. We observe that a typical
element in the lower triangular portion of LL” is of the form

Jj
(LL")jj = LuLj + LpLjp + -+ LijLjj = Z LicLjr, i>j
k=1

Equating this term to the corresponding element of A yields
J
A=Y LaLjx, i=j,j+1,...,n j=12..n (2.17)
k=1

The range of indices shown limits the elements to the lower triangular part. For the
first column (j = 1), we obtain from Eq. (2.17)

Ly =vVAn Li=An/Ln, i=2,3,..,n (2.18)

Proceeding to other columns, we observe that the unknown in Eq. (2.17) is L;; (the
other elements of L appearing in the equation have already been computed). Taking
the term containing L;; outside the summation in Eq. (2.17), we obtain

Aij = Liijk+Liijj

Systems of Linear Algebraic Equations

If i = j (a diagonal term), the solution is

(2.19)

For a nondiagonal term we get
j-1

Lij: Aij_ZLiijk /ij, j:2,3,...,n—1, i:j+1,j+2,...,n (2.20)
k=1

B choleski

Before presenting the algorithm for Choleski’s decomposition, we make a useful ob-
servation: A;; appears only in the formula for L;;. Therefore, once L;; has been com-
puted, A;; is no longer needed. This makes it possible to write the elements of L
over the lower triangular portion of A as they are computed. The elements above the
leading diagonal of A will remain untouched. The function listed next implements
Choleski’s decomposition. If a negative diagonal term is encountered during decom-
position, an error message is printed and the program is terminated.

After the coefficient matrix A has been decomposed, the solution of Ax = b can
be obtained by the usual forward and back substitution operations. The function
choleskiSol (given here without derivation) carries out the solution phase.

module choleski
>’’’ L = choleski(a)
Choleski decomposition: [L][L]transpose = [a]

x = choleskiSol(L,b)

Solution phase of Choleski’s decomposition method
from numpy import dot
from math import sqrt

import error

def choleski(a):
n = len(a)
for k in range(n):
try:
alk,k] = sqgrt(alk,k] - dot(al[k,0:k],al[k,0:k]))
except ValueError:
error.err(’Matrix is not positive definite’)
for i in range(k+1,n):
ali,k] = (a[i,k] - dot(al[i,0:k],alk,0:k]))/alk,k]
for k in range(l,n): a[0:k,k] = 0.0

return a

2.3 LU Decomposition Methods

def choleskiSol(L,b):
n = len(b)
Solution of [L]{y} = {b}
for k in range(n):
b[k] = (b[k] - dot(L[k,0:k],b[0:k]))/L[k,k]
Solution of [L_transpose]l{x} = {y}
for k in range(n-1,-1,-1):
b[k] = (b[k] - dot(L[k+1:n,k],b[k+1:n]))/L[k,k]

return b

Other Methods

Crout’s Decomposition

Recall that the various decompositions A = LU are characterized by the constraints
placed on the elements of L or U. In Doolittle’s decomposition, the diagonal elements
of Lwere set to 1. An equally viable method is Crout’s decomposition, where the 1’s lie
on the diagonal of U. There is little difference in the performance of the two methods.

Gauss-Jordan Elimination
The Gauss-Jordan method is essentially Gauss elimination taken to its limit. In the
Gauss elimination method only the equations that lie below the pivot equation are
transformed. In the Gauss-Jordan method the elimination is also carried out on
equations above the pivot equation, resulting in a diagonal coefficient matrix.

The main disadvantage of Gauss-Jordan elimination is that it involves about n®/2
long operations, which is 1.5 times the number required in Gauss elimination.

EXAMPLE 2.5
Use Doolittle’s decomposition method to solve the equations Ax = b, where

1 4 1 7
A=11 6 -1 b= 13
-1 2 5

Solution We first decompose A by Gauss elimination. The first pass consists of the
elementary operations

row2 < row?2 — 1 x row 1 (eliminates A»;)

row 3 < row3 — 2 x row 1 (eliminates As;)

Storing the multipliers L,; = 1 and L3; = 2 in place of the eliminated terms, we ob-
tain

Systems of Linear Algebraic Equations

The second pass of Gauss elimination uses the operation
row 3 <« row 3 — (—4.5) x row 2 (eliminates Az»)

Storing the multiplier L3, = —4.5 in place of A3, we get

1 4 1
A'=[L\U]=|1 2 =2
2 —45 -9

The decomposition is now complete, with

1 0 0 1 4 1
L=|1 1 0 U=|0 2 -2
2 —45 1 0 0 -9

Solution of Ly = b by forward substitution comes next. The augmented coeffi-
cient form of the equations is

1 0 o|7
[L\b]: 1 1 0|13
2 —45 1| 5

The solution is
n=7
y2=13—y =13-7=6
y3=5—2y + 4.5y, =5—2(7) + 4.5(6) = 18

Finally, the equations Ux =y, or

14 1|7
[uly]=]0 2 —2| 6
0 0 —9/18

are solved by back substitution. This yields

18
X3 = ?9 = _2
6+2x3 6+42(-2)
xZ = = = 1
2 2

X1=7—-4x—-x3=7—-41)—-(-2)=5
EXAMPLE 2.6

Compute Choleski’s decomposition of the matrix

4 =2 2
A=|-2 2 —4
2 -4 11

2.3 LU Decomposition Methods

Solution First, we note that A is symmetric. Therefore, Choleski’s decomposition is
applicable, provided that the matrix is also positive definite. An a priori test for posi-
tive definiteness is not needed, since the decomposition algorithm contains its own
test: if the square root of a negative number is encountered, the matrix is not positive
definite and the decomposition fails.

Substituting the given matrix for A in Eq. (2.16) we obtain

4 -2 2 L2, L1 Ly LiLsy
-2 2 —4|=|Lyly L% +13 Ly L3y + Loo Lsy
2 -4 11 LinLsi LoLay + Lo Ly, L3, + L3, + L3,

Equating the elements in the lower (or upper) triangular portions yields
Ly=+vi=2
Ly = —2/Ly = —-2/2=-1
Ly =2/Li1 =2/2=1

Ly =42-13=y2-12=1

—4—Lylsy —4—-(-1DA) _

L = = _3
32 L22 1
Lyz = /11— L% — L%, =11 - ()2 - (-3)2 =1
Therefore,
2 0 0
L=]|-1 1 0
1 -3 1

The result can easily be verified by performing the multiplication LL”.

EXAMPLE 2.7
Write a program that solves AX = B with Doolittle’s decomposition method and com-
putes |A|. Utilize the functions LUdecomp and LUsolve. Test the program with

3 -1 4 6 —4
A=|-2 0 5 B=|3 2
7 2 =2 7 =5

Solution

#!/usr/bin/python

example2_7

from numpy import array,prod,diagonal
from LUdecomp import *

a = array([[3.0, -1.0, 4.0], \
[-2.0, 0.0, 5.01, \
[7.0, 2.0, -2.011)

Systems of Linear Algebraic Equations

b = array([[6.0, 3.0, 7.0], \
[-4.0, 2.0, -5.011)
a = LUdecomp(a) # Decompose [a]
det = prod(diagonal(a))
print "\nDeterminant =", det
for i in range(len(b)): # Back-substitute one
x = LUsolve(a,b[i]) # constant vector at a time
print "x",i+1,"=",x

raw_input ("\nPress return to exit")

Running the program produced the following display:
Determinant = -77.0
x1=10[1. 1. 1.]

x 2 =[-1.00000000e+00 1.00000000e+00 2.30695693e-17]

EXAMPLE 2.8
Solve the equations Ax = b by Choleski’s decomposition, where

144 -036 552 0.00 0.04
A— -036 1033 -7.78 0.00 b— —2.15
552 778 2840 9.00 0
0.00 0.00 9.00 61.00 0.88

Also check the solution.

Solution

#!/usr/bin/python
example2_8
from numpy import array,dot

%

from choleski import

a = array([[1.44, -0.36, 5.52, 0.01, \
[-0.36, 10.33, -7.78, 0.01, \
[5.52, -7.78, 28.40, 9.0]1, \
[0.0, 0.0, 9.0, 61.011)
b = array([0.04, -2.15, 0.0, 0.88])

aOrig = a.copy()
L = choleski(a)
x = choleskiSol(L,b)

print "x =",x
print ’'\nCheck: A*x =\n’,dot(aOrig,x)

raw_input ("\nPress return to exit")

2.3 LU Decomposition Methods

The output is:

x = [3.09212567 -0.73871706 -0.8475723 0.13947788]

Check: A*x =
[4.00000000e-02 -2.15000000e+00 -5.10702591e-15 8.80000000e-01]

PROBLEM SET 2.1

1. Byevaluating the determinant, classify the following matrices as singular, ill con-
ditioned, or well conditioned.

1 2 3 211 -0.80 1.72
@ A=1]2 3 4 (b) A=|-184 3.03 129
3 4 5 —-1.57 525 4.30

2 -1 o0 4 3 -1
© A=|-1 2 -1 d A=|7 -2 3
0 -1 2 5 —18 13

2. Given the LU decomposition A = LU, determine A and |A]| .

1 0 o 1 2 4
@ L=|1 1 0 U=|0 3 21
1 5/3 1 00 O
2
by L=]-1
|1 -3 1
3. Utilize the results of LU decomposition
1 o o[z -3 -1
A=LU=|3/2 1 o0]||o0 132 -7/2
(12 1113 1][0 o0 32/13

to solve Ax = b, where b” = [1 -1 2f.
4. Use Gauss elimination to solve the equations Ax = b, where

2 -3 -1 3
A=13 2 -5 b=| -9
2 4 -1 -5

5. Solve the equations AX = B by Gauss elimination, where

|

—
SN = O

o

—
S O O+~
o = O O

Systems of Linear Algebraic Equations

6.

10.

11.

12.

Solve the equations Ax = b by Gauss elimination, where

00 2 1 2 1
01 0 2 -1 1
A=|1 2 0 -2 0 b=| -4
00 0 -1 1 -2
01 -1 1 -1 -1

Hint: reorder the equations before solving.

Find L and U so that
4 -1 0
A=1LU=|-1 4 -1
0 -1 4

using (a) Doolittle’s decomposition; (b) Choleski’s decomposition.
Use Doolittle’ decomposition method to solve Ax = b, where

-3 6 —4 -3
A= 9 -8 24 b= 65
—-12 24 -26 —42

. Solve the equations AX = b by Doolittle’s decomposition method, where

234 —-4.10 1.78 0.02
A=1]-198 3.47 222 b=| -0.73
236 —-15.17 6.18 —6.63

Solve the equations AX = B by Doolittle’s decomposition method, where

4 -3 6 1 0
A= 8 -3 10 B=|0 1
-4 12 -10 0 0

Solve the equations Ax = b by Choleski’s decomposition method, where

1 11
A=1[1 2 2 b=|3/2
1 2 3 3
Solve the equations
4 -2 -3 X1 1.1
12 4 -10 X | = 0
—-16 28 18 X3 —-2.3

by Doolittle’s decomposition method.

2.3 LU Decomposition Methods

13. Determine L that results from Choleski’s decomposition of the diagonal matrix

o 0 0
0 o2 0
A=10 0 s

14. W Modify the function gaussElimin so that it will work with m constant vectors.
Test the program by solving AX = B, where

2 -1 0 1 0 0
A=|-1 2 -1 B=|0 1 0
0 -1 2 0 01

15. W A well-known example of an ill-conditioned matrix is the Hilbert matrix

1 12 1/3
12 1/3 1/4
A=113 174 15

Write a program that specializes in solving the equations Ax = b by Doolittle’s
decomposition method, where A is the Hilbert matrix of arbitrary size n x n, and

n
bi = ZAij
j=1

The program should have no input apart from n. By running the program, de-
termine the largest n for which the solution is within 6 significant figures of the
exact solution

x=[1 11]T

16. Derive the forward and back substitution algorithms for the solution phase of
Choleski’s method. Compare them with the function choleskiSol.

17. W Determine the coefficients of the polynomial y = ag + a1 x + a;x*> + azx® that
passes through the points (0, 10), (1, 35), (3, 31), and (4, 2).

18. W Determine the fourth-degree polynomial y(x) that passes through the points
(0,-1),(1, 1), (3, 3), (5,2), and (6, —2).

19. W Find the fourth-degree polynomial y(x) that passes through the points (0, 1),
(0.75, —0.25), and (1, 1) and has zero curvature at (0, 1) and (1, 1).

20. MW Solve the equations Ax = b, where

3.50 277 -0.76 1.80 7.31
A— —-1.80 2.68 3.44 -0.09 b— 4.23
0.27 5.07 6.90 1.61 13.85
1.71 5.45 2.68 1.71 11.55

By computing |A| and Ax, comment on the accuracy of the solution.

Systems of Linear Algebraic Equations

21. Compute the condition number of the matrix

1 -1 -1
A=1|0 1 -2
0 0 1

based on (a) the euclidean norm and (b) the infinity norm. You may use the func-
tion inv(A)in numpy.linalg to determine the inverse of A.

22. m Write a function that returns the condition number of a matrix based on the
euclidean norm. Test the function by computing the condition number of the
ill-conditioned matrix

1 4 9 16
|4 9 16 25
"1 9 16 25 36

16 25 36 49

Use the function inv(A)in numpy.linalg to determine the inverse of A.

Symmetric and Banded Coefficient Matrices
Introduction

Engineering problems often lead to coefficient matrices that are sparsely populated,
meaning that most elements of the matrix are zero. If all the nonzero terms are clus-
tered about the leading diagonal, then the matrix is said to be banded. An example of
a banded matrix is

o o o K
© o X X X
© X X X o
XXX o o

> o o o

X

where X’s denote the nonzero elements that form the populated band (some of these
elements may be zero). All the elements lying outside the band are zero. The matrix
shown above has a bandwidth of 3, because there are at most three nonzero elements
in each row (or column). Such a matrix is called tridiagonal.

If a banded matrix is decomposed in the form A = LU, both L and U will retain
the banded structure of A. For example, if we decomposed the matrix just shown, we
would get

X 0 0 0 O X X 0 0 0
XX 0 00 0 X X 0 0
L=|0 X X 0 0 U=]|0 0 X X 0
0 0 XX O 0 0 0 X X
0 0 0 X X 0 0 0 0 X

2.4 Symmetric and Banded Coefficient Matrices

The banded structure of a coefficient matrix can be exploited to save storage and
computation time. If the coefficient matrix is also symmetric, further economies are
possible. In this section we show how the methods of solution discussed previously
can be adapted for banded and symmetric coefficient matrices.

Tridiagonal Coefficient Matrix

Consider the solution of Ax = b by Doolittle’s decomposition, where A is the n x n
tridiagonal matrix

d] e 0 0 0
C1 dé € 0 0
0 C2 ah €3 0
A:
0 0 C3 dﬁ 0
(0 0 ... 0 G dy]

As the notation implies, we are storing the nonzero elements of A in the vectors

d
C1 d €]
2
C2 €
c -1 e
n—1 n—1
dn

The resulting saving of storage can be significant. For example, a 100 x 100 tridiag-
onal matrix, containing 10,000 elements, can be stored in only 99 + 100 + 99 = 298
locations, which represents a compression ratio of about 33:1.

Let us now apply LU decomposition to the coefficient matrix. We reduce row k
by getting rid of c¢x_; with the elementary operation

row k < row k — (cx_1/dg_1) xrow (k—1), k=2,3,...,n
The corresponding change in dy is
di < di — (Cr—1/dp-1)€x1 (2.21)

whereas ey is not affected. In order to finish up with Doolittle’s decomposition of the
form [L\U], we store the multiplier > = cx_1/dj_1 in the location previously occupied
by ck-1:

Ck—1 < Ck—1/0dk—1 (2.22)
Thus, the decomposition algorithm is

for k in range(l,n):
lam = c[k-1]1/d[k-1]
d[k] = d[k] - lam*e[k-1]
c[k-1] = lam

Systems of Linear Algebraic Equations

Next we look at the solution phase, that is, the solution of Ly = b, followed by
Ux =y. The equations Ly = b can be portrayed by the augmented coefficient matrix

1 0 0 O 0| b
a1 0 0 0| b2
0 o 1 0 0 bg
[L‘b]: 0 0 ¢ 1 0| b,
[0 0 -+ 0 ¢y 1|by]

Note that the original contents of ¢ were destroyed and replaced by the multipliers
during the decomposition. The solution algorithm for y by forward substitution is

y[0] = b[0]
for k in range(l,n):
y[k]l = b[k] - c[k-11*y[k-1]

The augmented coefficient matrix representing Ux = y is

dl e 0 ce 0 0 N
0 dz e - 0 0)2
[uly]=
0 0 0 - dy1 en1|Yn
|00 0 -+ 0 dy| Y

Note again that the contents of d were altered from the original values during the
decomposition phase (but e was unchanged). The solution for x is obtained by back
substitution using the algorithm

x[n-1] = y[n-1]1/d[n-1]
for k in range(n-2,-1,-1):

x[k] = (y[k] - elk]l*x[k+1])/d[k]
end do

B LUdecomp3

This module contains the functions LUdecomp3 and LUsolve3 for the decomposi-
tion and solution phases of a tridiagonal matrix. In LUsolve3, the vector y writes
over the constant vector b during forward substitution. Similarly, the solution vector
x overwrites y in the back substitution process. In other words, b contains the solu-
tion upon exit from LUsolve3.

module LUdecomp3
’’’ ¢,d,e = LUdecomp3(c,d,e).
LU decomposition of tridiagonal matrix [c\d\e]. On output

{c},{d} and {e} are the diagonals of the decomposed matrix.

2.4 Symmetric and Banded Coefficient Matrices

x = LUsolve(c,d,e,b).
Solves [c\d\el]{x} = {b}, where {c}, {d} and {e} are the

vectors returned from LUdecomp3.

def LUdecomp3(c,d,e):
n = len(d)
for k in range(l,n):
lam = c[k-1]/d[k-1]
dl[k] = d[k] - lam*e[k-1]
c[k-1] = lam

return c,d,e

def LUsolve3(c,d,e,b):
n = len(d)
for k in range(l,n):
b[k] = b[k] - c[k-11*b[k-1]
b[n-1] = b[n-11/d[n-1]
for k in range(n-2,-1,-1):
b[k] = (b[k] - e[k]l*b[k+1])/d[k]

return b

Symmetric Coefficient Matrices

More often than not, coefficient matrices that arise in engineering problems are sym-
metric as well as banded. Therefore, it is worthwhile to discover special properties of
such matrices and learn how to utilize them in the construction of efficient algo-
rithms.

If the matrix A is symmetric, then the LU decomposition can be presented in the
form

A=1LU=1LDL" (2.23)

where D is a diagonal matrix. An example is Choleski’s decomposition A = LL” that
was discussed in the previous section (in this case, D = I). For Doolittle’s decomposi-
tion we have

Dl 0 0 0 1 Lgl L31 e Lnl
o b, 0 --- 0 0 1 L3y -+ Lp
U=pL’=|0 O Dy --- 0|0 O 1 L3

=)
(o]
—

0 0 0 -+ D,

Systems of Linear Algebraic Equations

which gives

Dy, DLy DLy -+ DLpn
0 D, DLy -+ DoLlp

u=10 0 Dy -+ Dsls (2.24)
0 0 0 - D

We now see that during decomposition of a symmetric matrix only U has to be stored,
because D and L can be easily recovered from U. Thus Gauss elimination, which re-
sults in an upper triangular matrix of the form shown in Eq. (2.24), is sufficient to
decompose a symmetric matrix.

There is an alternative storage scheme that can be employed during LU decom-
position. The idea is to arrive at the matrix

Dy Ly L3 Ln
0 D Ly Ly

U=1(0 0 Dy .- Ly (2.25)
0 o0 0 D,

Here U can be recovered from U;; = D;Lj;. It turns out that this scheme leads to a
computationally more efficient solution phase; therefore, we adopt it for symmetric,
banded matrices.

Symmetric, Pentadiagonal Coefficient Matrix

We encounter pentadiagonal (bandwidth = 5) coefficient matrices in the solution of
fourth-order, ordinary differential equations by finite differences. Often these matri-
ces are symmetric, in which case an n x n coefficient matrix has the form

(dy ee i O 0 0 0 |
e dz € ﬁ 0 0 0
ﬁ (%) dg e3 fé 0 0
0 fé €3 d4 €4 ﬁ; e 0

A= . .)) . i) (2.26)

0 -+ 0 fos €3 duz ez [fuo
0 --- 0 0 fo-z e dp e

L o --- 0 0 0 fo—2 e d, i

2.4 Symmetric and Banded Coefficient Matrices

As in the case of tridiagonal matrices, we store the nonzero elements in the three
vectors

d, .
s 1 f
. € b
d = : e = f = .
dn—z ey o
dn—l en— fn—2
i dn | n—1

Let us now look at the solution of the equations Ax = b by Doolittle’s decomposi-
tion. The first step is to transform A to upper triangular form by Gauss elimination. If
elimination has progressed to the stage where the kth row has become the pivot row,
we have the following situation:

di e f | O 0 0]«
e diy1 €| firn O 0
fi e dir| €2 firr O
0 fit1 etz |dis3s €ky3 fits

The elements e and f; below the pivot row (the kth row) are eliminated by the oper-
ations

row (k + 1) < row (k + 1) — (ex/dy) x row k

row (k + 2) < row (k + 2) — (fi/di) x row k

The only terms (other than those being eliminated) that are changed by the foregoing
operations are

dip1 < dip — (ex/di)ex
€kl < €yl — (ek/dk)fk (2.27a)
diyo < diyo — (fi/di) fr

Storage of the multipliers in the upper triangular portion of the matrix results in

e < ex/dy Je < fi/dk (2.27b)

Systems of Linear Algebraic Equations

At the conclusion of the elimination phase, the matrix has the form (do not confuse
d, e, and f with the original contents of A)

_dl e ﬁ 0 s 0]
0 dg e fé 0
0 0 d3 €3 0
U =
0 0 B 0 dn—l €n—1
(0 0 -~ 0 0 dy

Now comes the solution phase. The equations Ly = b have the augmented coef-
ficient matrix

1 0 0 0 0l b

ee 1 0 0 0 b

fie 1 0 0| b
[L‘b]: 0 f e 1 0

by

0 0 0 fiz ey 1|by

Solution by forward substitution yields

= b
Y2=by—en (2.28)

Ve = bk — fie2Vk—2 —e1Yik-1, k=3,4,...,n

The equations to be solved by back substitution, namely, Ux =y, have the aug-
mented coefficient matrix

d1 d1 e dlﬁ 0 v 0 N
0 dg dgeg dgfé o 0 yg
0 0 dg d3e3 s 0 V3
[uly]= L .
0 0 o 0 dn—l dn—len—l Yn—1
o 0 - 0 0 dn | Yn |

the solution of which is obtained by back substitution:
Xp = J’n/dn

Xn-1 = J/n—l/dn—l — €p—1Xpn:

Xk = Vi/dx — exXes1 — fiXkre, k=n—-2,n-3,...,1

2.4 Symmetric and Banded Coefficient Matrices

B LUdecomp5

The function LUdecomp5 decomposes a symmetric, pentadiagonal matrix A of the
form A = [f\e\d\e\f]. The original vectors d, e, and f are destroyed and replaced by
the vectors of the decomposed matrix. After decomposition, the solution of Ax = b
can be obtained by LUsolve5. During forward substitution, the original b is replaced
byy. Similarly, y is written over by x in the back substitution phase, so that b contains

the solution vector upon exit from LUsolve5.

module LUdecomp5

def

def

d,e,f = LUdecomp5(d,e,f).

LU decomposition of symmetric pentadiagonal matrix

[f\e\d\e\f]. On output {d},{e} and {f} are the

diagonals of the decomposed matrix.

x = LUsolve5(d,e,f,b).

Solves [f\e\d\e\fl]{x} = {b}, where {d}, {e} and {f}

are the vectors returned from LUdecomp5.
LUdecomp5(d,e,f):
n = len(d)
for k in range(n-2):
lam = e[k]/d[k]
d[k+1] = d[k+1] - lam*e[k]
e[k+1] = el[k+1] - lam*f[k]
e[k] = lam
lam = f[k]/d[k]
d[k+2] = d[k+2] - lam*f[k]
f[k] = lam
lam = e[n-2]/d[n-2]
d[n-1] = d[n-1] - lam*e[n-2]
e[n-2] = lam

return d,e,f

LUsolve5(d,e,f,b):
n = len(d)
b[1] = b[1] - e[0]*b[0O]
for k in range(2,n):
b[k] = b[k] - e[k-1]1*b[k-1] - f[k-2]*b[k-2]
b[n-1] = b[n-1]/d[n-1]
b[n-2] = b[n-2]/d[n-2] - e[n-2]*b[n-1]
for k in range(n-3,-1,-1):
b[k]l = bl[k]l/d[k] - elk]*b[k+1] - f[k]l*b[k+2]

return b

Systems of Linear Algebraic Equations

EXAMPLE 2.9
As aresult of Gauss elimination, a symmetric matrix A was transformed to the upper
triangular form

4 -2 1 0
u_ |0 3 32 1
0 0 3 -3/2
0 0 0 35/12

Determine the original matrix A.

Solution First, we find L in the decomposition A = LU. Dividing each row of U by its
diagonal element yields

1 —-1/2 1/4 0
LT — 0 1 -1/2 1/3
0 0 1 -1/2
0 0 0 1
Therefore, A = LU, or
1 0 0 0|4 -2 1 0
A -1/2 1 0 0|0 3 -3/2 1
N 1/4 —-1/2 1 0]]0 0 3 -3/2
0 1/3 -1/2 1| |0 0 0 35/12

4 -2 1 0
-2 4 -2 1
1 -2 4 -2
0 1 -2 4

EXAMPLE 2.10
Determine L and D that result from Doolittle’s decomposition A = LDL” of the sym-
metric matrix

3 -3 3
A=|-3 5 1
3 1 10

Solution We use Gauss elimination, storing the multipliers in the upper triangular
portion of A. At the completion of elimination, the matrix will have the form of U* in
Eq. (2.25).

The terms to be eliminated in the first pass are A,; and As; using the elementary
operations

row2 < row2 — (—1) x row 1

row3 < row3 — (1) x row 1

2.4 Symmetric and Banded Coefficient Matrices

Storing the multipliers (—1 and 1) in the locations occupied by A;; and A;3, we get

3 -1 1
A=10 2 4
0 4 7

The second pass is the operation
row 3 <~ row 3 — 2 x row 2

which yields, after overwriting A,3 with the multiplier 2,

3 -1 1
A’=[0\D\L']=|0 2 2
0 0 -1
Hence,
1 00 30 0
L=|(-1 10| D=|0 2 0
1 21 00 -1

EXAMPLE 2.11
Utilize the functions LUdecmp3 and LUsolve3 to solve Ax = b, where

2 -1 0 0 O 5

-1 2 -1 0 0 -5

A= 0 -1 2 -1 0 b= 4
0 0 -1 2 -1 -5

0 0O 0 -1 2 5

Solution

#!/usr/bin/python
example2_11
from numpy import array,ones

from LUdecomp3 import *

d = ones((5))*2.0

c = ones((4))*(-1.0)

b = array([5.0, -5.0, 4.0, -5.0, 5.01)
e = c.copy()

c,d,e = LUdecomp3(c,d,e)

x = LUsolve3(c,d,e,b)

print '’\nx =\n’’,x

raw_input(’ ’\nPress return to exit’’)

The output is:

— X
Il

Systems of Linear Algebraic Equations
Pivoting
Introduction

Sometimes the order in which the equations are presented to the solution algorithm
has a profound effect on the results. For example, consider the equations

2x1—x =1
—X1+2x—x3=0
X +x3=0

The corresponding augmented coefficient matrix is

2 —1 o1
[A\b]: -1 2 -1lo0 (@)
0 -1 1]0

Equations (a) are in the “right order” in the sense that we would have no trouble
obtaining the correct solution x; = x; = x3 = 1 by Gauss elimination or LU decom-
position. Now suppose that we exchange the first and third equations, so that the
augmented coefficient matrix becomes

0 -1 1]o
[A\b]: -1 2 -1lo0 (b)
2 —1 o1

Because we did not change the equations (only their order was altered), the solution
is still x; = x» = x3 = 1. However, Gauss elimination fails immediately as a result of
the presence of the zero pivot element (the element A;;).

The foregoing example demonstrates that it is sometimes essential to reorder the
equations during the elimination phase. The reordering, or row pivoting, is also re-
quired if the pivot element is not zero, but very small in comparison to other elements
in the pivot row, as demonstrated by the following set of equations:

e -1 1]o0
[A\b]: -1 2 -1lo0 ©
2 —1 o1

These equations are the same as Egs. (b), except that the small number ¢ replaces the
zero element in Eq. (b). Therefore, if we let ¢ — 0, the solutions of Egs. (b) and (c)
should become identical. After the first phase of Gauss elimination, the augmented
coefficient matrix becomes

[,

Because the computer works with a fixed word length, all numbers are rounded off
to a finite number of significant figures. If ¢ is very small, then 1/¢ is huge, and an

e -1 1 o
b/]= 0 2-1/e —1+1/¢|0 d)
0 —142/e —2/6 |1

2.5 Pivoting

element such as 2 — 1/¢ is rounded to —1/¢. Therefore, for sufficiently small ¢, Egs.
(d) are actually stored as

e —1 1 o
b/]: 0 —1/e 1/e |0
0 2/ —2/¢|1

[/

Because the second and third equations obviously contradict each other, the solution
process fails again. This problem would not arise if the first and second, or the first
and third, equations were interchanged in Egs. (c) before the elimination.

The last example illustrates the extreme case where ¢ was so small that roundoff
errors resulted in total failure of the solution. If we were to make ¢ somewhat bigger

so that the solution would not “bomb” any more, the roundoff errors might still be
large enough to render the solution unreliable. Again, this difficulty could be avoided
by pivoting.

Diagonal Dominance

An n x nmatrix A is said to be diagonally dominant if each diagonal element is larger
than the sum of the other elements in the same row (we are talking here about abso-
lute values). Thus, diagonal dominance requires that

n
Al > Y |Ay| (=1,2,..,n) (2.30)
j=1
J#
For example, the matrix

-2 4 -1
1 -1 3
4 -2 1

is not diagonally dominant, but if we rearrange the rows in the following manner:

4 -2 1]
2 4 -1
1 -1 3

then we have diagonal dominance.

It can be shown that if the coefficient matrix of the equations Ax = b is diagonally
dominant, then the solution does not benefit from pivoting, that is, the equations are
already arranged in the optimal order. It follows that the strategy of pivoting should
be to reorder the equations so that the coefficient matrix is as close to diagonal dom-
inance as possible. This is the principle behind scaled row pivoting, discussed next.

Gauss Elimination with Scaled Row Pivoting

Consider the solution of Ax = b by Gauss elimination with row pivoting. Recall that
pivoting aims at improving diagonal dominance of the coefficient matrix, that is,

Systems of Linear Algebraic Equations

making the pivot element as large as possible in comparison to other elements in the
pivot row. The comparison is made easier if we establish an array s with the elements

s;=max|A;|, i=12.,n (2.31)
J

Thus, s;, called the scale factor of row i, contains the absolute value of the largest
element in the ith row of A. The vector s can be obtained with the algorithm

for i in range(n):

s[i] = max(abs(ali,:1))
The relative size of an element A;; (that is, relative to the largest element in the
ith row) is defined as the ratio
|Ajj|
Si

I‘,‘j = (2.32)

Suppose that the elimination phase has reached the stage where the kth row has
become the pivot row. The augmented coefficient matrix at this point is

(A1 A Az A - A by

0 Axp Ay Ax - Ay|b

0 0 A33 A34 A3n b3

o - 0 Aw - Awn|be| <«
L0 -~ 0 Aw - Awm|bn]

We don’t automatically accept A as the next pivot element, but look in the kth col-
umn below Ay for a “better” pivot. The best choice is the element A ;. that has the
largest relative size, that is, we choose p such that

rpk = max(ryx), jzk

If we find such an element, then we interchange the rows k and p and proceed with
the elimination pass as usual. Note that the corresponding row interchange must also
be carried out in the scale factor array s. The algorithm that does all this is

for k in range(0,n-1):

Find row containing element with largest relative size
p = argmax(abs(alk:n,k])/s[k:n]) + k

If this element is very small, matrix is singular
if abs(alp,k]) < tol: error.err(’Matrix is singular’)

Check whether rows k and p must be interchanged
if p != k:

2.5 Pivoting

Interchange rows if needed
swap .swapRows (b, k,p)
swap.swapRows (s, k,p)
swap.swapRows(a,k,p)

Proceed with elimination

The Python statement argmax (v) returns the index of the largest element in the
vector v. The algorithms for exchanging rows (and columns) are included in the mod-
ule swap shown next.

B swap

The function swapRows interchanges rows i and j of a matrix or vector v, whereas
swapCols interchanges columns i and j of a matrix.

module swap

swapRows(v,i,j).

Swaps rows i and j of vector or matrix [V].

swapCols(v,i,j).

Swaps columns i and j of matrix [v].

def swapRows(v,i,j):
if len(v.getshape()) ==
v[il,v[j] = v[j],v[il]

else:
temp = v[i].copy()
v[il = v[j]
v[j]l = temp

def swapCols(v,i,j):
temp = v[:,J].copy()
vli:,J] = v[:,i]
v[:,i] = temp

B gaussPivot

The function gaussPivot performs Gauss elimination with row pivoting. Apart from
row swapping, the elimination and solution phases are identical to gaussEliminin
Section 2.2.

module gaussPivot

'’’’ x = gaussPivot(a,b,tol=1.0e-9).
Solves [a]l{x} = {b} by Gauss elimination with
scaled row pivoting

Systems of Linear Algebraic Equations

from numpy import zeros,argmax.dot
import swap

import error

def gaussPivot(a,b,tol=1.0e-9):
n = len(b)

Set up scale factors
s = zeros(n)
for i in range(n):

s[i] = max(abs(al[i,:]1))
for k in range(0O,n-1):

Row interchange, if needed
p = argmax(abs(alk:n,k])/s[k:n]) + k
if abs(a[p,k]) < tol:
error.err(’Matrix is singular’)
if p !'= k:
swap . swapRows (b, k,p)
swap . swapRows (s, k,p)
swap . swapRows(a, k,p)

Elimination
for i in range(k+1,n):
if afi,k] != 0.0:
lam = a[i,k]/alk, k]
ali,k+1:n] = a [i,k+1:n] - lam*al[k,k+1:n]
b[i] = b[i] - lam*b[k]
if abs(al[n-1,n-1]) < tol:

error.err(’Matrix is singular’)

Back substitution
for k in range(n-1,-1,-1):
b[k] = (b[k] - dot(alk,k+1:n],b[k+1:n]))/alk,k]

return b

B LUpivot

The Gauss elimination algorithm can be changed to Doolittle’s decomposition with
minor changes. The most important of these is keeping a record of the row inter-
changes during the decomposition phase. In LUdecomp this record is kept in the
array segq. Initially, seq contains [0, 1, 2, ...]. Whenever two rows are interchanged,

2.5 Pivoting

the corresponding interchange is also carried out in seq. Thus seqg shows the order
in which of the original rows have been rearranged. This information is passed on to
the solution phase (LUsolve), which rearranges the elements of the constant vector
in the same order before proceeding to forward and back substitutions.

module LUpivot

’’’ a,seq = LUdecomp(a,tol=1.0e-9).
LU decomposition of matrix [a] using scaled row pivoting.
The returned matrix [a] = [L\U] contains [U] in the upper
triangle and the nondiagonal terms of [L] in the lower triangle.
Note that [L][U] is a row-wise permutation of the original [a];

the permutations are recorded in the vector {seq}.

x = LUsolve(a,b,seq).
Solves [L][U]{x} = {b}, where the matrix [a] = [L\U] and the
permutation vector {seq} are returned from LUdecomp.

from numpy import argmax,abs,dot,zeros,float,array

import swap

import error

def LUdecomp(a,tol=1.0e-9):
n = len(a)

seq = array(range(n))

Set up scale factors
s = zeros((n),dtype=float)
for i in range(n):

s[i] = max(abs(ali,:]))
for k in range(0,n-1):

Row interchange, if needed

p = int(argmax(abs(alk:n,k])/s[k:n])) + k

if abs(al[p,k]) < tol:
error.err(’Matrix is singular’)

if p !'= k:
swap .swapRows (s, k,p)
swap.swapRows(a,k,p)
swap.swapRows(seq, k,p)

Elimination
for i in range(k+1l,n):
if a[i,k] != 0.0:

Systems of Linear Algebraic Equations

lam = a[i,k]/alk,k]
ali,k+1:n] = a[i,k+1:n] - lam*al[k,k+1:n]
ali,k] = lam

return a,seq

def LUsolve(a,b,seq):

n = len(a)

Rearrange constant vector; store it in [x]
x = b.copy()
for i in range(n):
x[1i] = b[seq[i]]

Solution
for k in range(l,n):
x[k] = x[k] - dot(alk,0:k],x[0:k])
for k in range(n-1,-1,-1):
x[k] = (x[k] - dot(alk,k+1:n],x[k+1:n]))/alk,k]

return x

When to Pivot

Pivoting has a couple of drawbacks. One of these is the increased cost of computa-
tion; the other is the destruction of symmetry and banded structure of the coefficient
matrix. The latter is of particular concern in engineering computing, where the co-
efficient matrices are frequently banded and symmetric, a property that is utilized
in the solution, as seen in the previous article. Fortunately, these matrices are often
diagonally dominant as well, so that they would not benefit from pivoting anyway.

There are no infallible rules for determining when pivoting should be used. Ex-
perience indicates that pivoting is likely to be counterproductive if the coefficient
matrix is banded. Positive definite and, to a lesser degree, symmetric matrices also
seldom gain from pivoting. And we should not forget that pivoting is not the only
means of controlling roundoff errors — there is also double-precision arithmetic.

It should be strongly emphasized that the preceding rules of the thumb are only
meant for equations that stem from real engineering problems. It is not difficult to
concoct “textbook” examples that do not conform to these rules.

EXAMPLE 2.12

Employ Gauss elimination with scaled row pivoting to solve the equations Ax = b,
where

2.5 Pivoting

Solution The augmented coefficient matrix and the scale factor array are

2 —2 6|16 6
[A\b]: 2 4 3| 0 s=|4
1 8 4|-1 8

Note that s contains the absolute value of the biggest element in each row of A. At this
stage, all the elements in the first column of A are potential pivots. To determine the
best pivot element, we calculate the relative sizes of the elements in the first column:

m |A11] /81 1/3
fo1 | = | |Aa1l/s2 | = | 1/2
r31 |As1] /3 1/8

Because 1) is the biggest element, we conclude that A,; makes the best pivot ele-
ment. Therefore, we exchange rows 1 and 2 of the augmented coefficient matrix and
the scale factor array, obtaining

2 4 3] 0] <« 4
[A\b]: 2 -2 6|16 s=|6
1 8 4|-1 8

Now the first pass of Gauss elimination is carried out (the arrow points to the pivot
row), yielding

24 3] 0 4
[/b/]= 02 9|16 s=|6
0 6 5/2|-1 8

The potential pivot elements for the next elimination pass are A%, and Aj,. We
determine the “winner” from

* * *
ra | = | |A2l/s2 | =] 1/3
I3y |As2]| /3 3/4

Note that r, is irrelevant, since row 1 already acted as the pivot row. Therefore, it
is excluded from further consideration. As rs, is bigger than r,;, the third row is the
better pivot row. After interchanging rows 2 and 3, we have

24 3] o0 4
[’b’]: 0 6 52|-1|< s=|8
02 916 6

The second elimination pass now yields

[//

This completes the elimination phase. It should be noted that U is the matrix that
would result from LU decomposition of the following row-wise permutation of A (the

-2 4 3 0
R R ERg AP

Systems of Linear Algebraic Equations

ordering of rows is the same as achieved by pivoting):

-2 4 3
-1 8 4
2 -2 6

Because the solution of Ux = ¢ by back substitution is not affected by pivoting, we
skip the details computation. The result is x” = [1 -1 2].

Alternate Solution

It is not necessary to physically exchange equations during pivoting. We could ac-
complish Gauss elimination just as well by keeping the equations in place. The elim-
ination would then proceed as follows (for the sake of brevity, we skip repeating the
details of choosing the pivot equation):

2 —2 6|16

[A\b]: 2 4 3| 0] «
1 8 4|-1
02 916

[A/ b/]: 24 3|0

0 6 5/2|-1]| «

0 0 49/6|49/3
b”]= 24 3|0
06 52| -1

[,,

But now the back substitution phase is a little more involved, because the order in
which the equations must be solved has become scrambled. In hand computations
this is not a problem, because we can determine the order by inspection. Unfortu-

nately, “by inspection” does not work on a computer. To overcome this difficulty, we
have to maintain an integer array p that keeps track of the row permutations during
the elimination phase. The contents of p indicate the order in which the pivot rows
were chosen. In this example, we would have at the end of Gauss elimination

2
p=|3
1
showing that row 2 was the pivot row in the first elimination pass, followed by row 3 in
the second pass. The equations are solved by back substitution in the reverse order:
equation 1 is solved first for x3, then equation 3 is solved for x;, and finally equation
2yields x;.

By dispensing with swapping of equations, the scheme just outlined would prob-
ably result in a faster (and more complex) algorithm than gaussPivot, but the
number of equations would have to be quite large before the difference becomes
noticeable.

2.5 Pivoting

PROBLEM SET 2.2

1. Solve the equations Ax = b by utilizing Doolittle’s decomposition, where

3 -3 3 9
A=|-3 5 1 b=| -7
3 1 5 12

2. Use Doolittle’s decomposition to solve Ax = b, where

4 8 20 24
A=| 8 13 16 b= 18
20 16 -91 —119

3. Determine L and D that result from Doolittle’s decomposition of the symmetric
matrix

2 =2 0 0 O

-2 5 -6 0 0

A= 0 -6 16 12 O
0 0 12 39 -6

0O 0 0 -6 14

4. Solve the tridiagonal equations Ax = b by Doolittle’s decomposition method,

where
6 2 00 O 2
-1 7 2 0 0 -3
A= 0 -2 8 2 0 b= 4
0 0 3 7 -2 -3
0 0 0 3 5 1

5. Use Gauss elimination with scaled row pivoting to solve

4 -2 1 X1 2
-2 1 -1 X | =] —1
-2 3 6 X3 0

6. Solve Ax = b by Gauss elimination with scaled row pivoting, where

234 —410 1.78] 0.02
A=|198 3.47 —2.22 b=| -073
236 -1517 6.8l ~6.63

7. Solve the equations

2 -1 0 0][x
0 0 -1 1||x
0 -1 2 —1||x

-1 2 -1 0|

oS O O

by Gauss elimination with scaled row pivoting.

Systems of Linear Algebraic Equations

8. W Solve the equations

-2 -1 3 1 X3

9. M Solve the symmetric, tridiagonal equations

4x1—x2:9

—Xi1+4X;i— X1 =5, i=2,...

—Xp—1+4x, =5

with n = 10.
10. W Solve the equations Ax = b, where

1.3174 2.7250 2.7250 1.7181
0.4002 0.8278 1.2272 2.5322
0.8218 1.5608 0.3629 2.9210
1.9664 2.0011 0.6532 1.9945

11. W Solve the equations

10 -2 -1 2 3 1 —4
5 11 3 10 -3 3 3
7 12 1 5 3 12 2
8 7 =2 1 3 2 2
2 =15 -1 1 4 -1 8
4 2 9 1 12 -1 4

-1 4 -7 -1 1 1 -1

-1 3 4 1 3 —4 7

-3
_ 3
I)
5
,n—1
b=
71 [X1)
—4 X
3 X3
4 X4
X5
1 X6
-3 X7
6_ L Xg |

8.4855
4.9874
5.6665
6.6152

12. W The system shown in Fig. (a) consists of n linear springs that support n masses.
The spring stiffnesses are denoted by k;, the weights of the masses are W, and
x; are the displacements of the masses (measured from the positions where the
springs are undeformed). The displacement formulation is obtained by writing
the equilibrium equation of each mass and substituting F; = k;(x;;1 — x;) for the
spring forces. The result is the symmetric, tridiagonal set of equations

(k1 + k)x1 — koxo = W

—kixi1+ (ki + kiz)x — kiaxip = W,

_knxn—l + knxn = an

i=23,...

,n—1

Write a program that solves these equations for given values of n, k, and W. Run

the program with n = 5 and

k1=k2:k3:10N/mm k4:k5:5N/mm

W =W =W;=100 N W, =W, =50N

2.5 Pivoting

E g

1 ac
2 Ky &%
])
(@ (b)

13. B The displacement formulation for the mass-spring system shown in Fig. (b)
results in the following equilibrium equations of the masses:

W,
W,
3
T

k1 + ko + ks + ks —k3 —ks X1 W
—ks ks+ks —ky X =W
—ks —ks ks + ks X3 W3

where k; are the spring stiffnesses, I, represent the weights of the masses, and
x; are the displacements of the masses from the undeformed configuration of
the system. Write a program that solves these equations, given k and W. Use the
program to find the displacements if

ki=ks=ki=k ky = ks =2k

14. m

45 kN

The displacement formulation for a plane truss is similar to that of a mass-spring
system. The differences are: (1) the stiffnesses of the members are k; = (EA/L);,

Systems of Linear Algebraic Equations

where E is the modulus of elasticity, A represents the cross-sectional area, and L
is the length of the member; and (2) there are two components of displacement
at each joint. For the statically indeterminate truss shown, the displacement for-
mulation yields the symmetric equations Ku = p, where

2758 7.004 -7.004 0 0

7.004 29.57 -5.253 0 —24.32
K=|-7004 -5253 29.57 0 0| MN/m

0 0 0 2758 -7.004

0 —24.32 0 —-7.004 29.57

p=[0 00 0 —45]TkN

Determine the displacements ; of the joints.
15. |

In the force formulation of a truss, the unknowns are the member forces P,. For
the statically determinate truss shown, the equilibrium equations of the joints
are

-1 1 -1/¥/2 0 0 o] A 0
0 0 1//2 1 0 0| B 18
0 -1 0 0 —1/V2 0| P| | O
0 0 0 0 1//2 o||R| |12
0 0 0 0 1//2 1|]| B 0
L 0 0 0 -1 -1/v2 o] | R | [0]

where the units of P, are kN. (a) Solve the equations as they are with a computer
program. (b) Rearrange the rows and columns so as to obtain a lower triangu-
lar coefficient matrix, and then solve the equations by back substitution using a
calculator.

2.5 Pivoting

16. m

The force formulation of the symmetric truss shown results in the joint equilib-
rium equations

c 1 0 0 O P 0
0 s 0 01 p, 0
0 0 2s 0 O pl=]1
0 —¢c ¢ 10 I 0
0 s s 00 by 0

where s = sinf, ¢ = cos6, and P, are the unknown forces. Write a program that
computes the forces, given the angle 6. Run the program with 6 = 53°.
17. 1

2000 5Q 550V

oV

The electrical network shown can be viewed as consisting of three loops. Apply-
ing Kirchoff’s law (> _voltage drops =) ‘voltage sources) to each loop yields the
following equations for the loop currents i, i, and i:
5§y + 15(@; — i3) = 220V
R(ip —i3) + 5@ + 10i, = 0

203 + R(i3 — i) + 15(53 — i) = 0

Compute the three loop currents for R = 5, 10, and 20 €.

Systems of Linear Algebraic Equations

18. m

120V L] +120V

15Q
AMAM
10Q

5Q

25Q 20Q2
G : G
o Iy 2
30Q2

Determine the loop currents 7 to iy in the electrical network shown.
19. W Consider the n simultaneous equations Ax = b, where

n—1
Aj=G+)* bi=) Ay i=01,...,n-1, j=0,1,...,n-1
j=0
T
Clearly, the solution is x = [1 1 ... 1| . Write a program that solves these

equations for any given n (pivoting is recommended). Run the program with n =
2,3, and 4 and comment on the results.

20. m
8m%s 6m?%/s 3mY¥s 2m?/s
L= L— T L= =]
o JelJol]al]o
[4m¥s om¥s | B5ms 4ms '?
4 m3/s? 6m3/s¢ 2m?3/s
¢=20 mg/m3 c= 15 mg/m?3

The diagram shows five mixing vessels connected by pipes. Water is pumped
through the pipes at the steady rates shown on the diagram. The incoming wa-
ter contains a chemical, the amount of which is specified by its concentration
¢ (mg/m3). Applying the principle of conservation of mass

mass of chemical flowing in = mass of chemical flowing out

*2.6 Matrix Inversion
to each vessel, we obtain the following simultaneous equations for the concen-
trations ¢; within the vessels:
—8c) +4c, = —-80
8c; —10¢, +2¢c3 =0
6cy — 11lcs3+5¢4, =0
3c3 —7¢c4 +4c5 =0
2¢y —4c5 = —30

Note that the mass flow rate of the chemical is obtained by multiplying the vol-
ume flow rate of the water by the concentration. Verify the equations and deter-
mine the concentrations.

2. m

c¢= 50 mg/m3

Four mixing tanks are connected by pipes. The fluid in the system is pumped
through the pipes at the rates shown in the figure. The fluid entering the system
contains a chemical of concentration c as indicated. Determine the concentra-
tion of the chemical in the four tanks, assuming a steady state.

Matrix Inversion

Computing the inverse of a matrix and solving simultaneous equations are related
tasks. The most economical way to invert an # x n matrix A is to solve the equations

AX =1 (2.33)

where I is the n x n identity matrix. The solution X, also of size n x n, will be the
inverse of A. The proof is simple: after we premultiply both sides of Eq. (2.33) by A1,
we have A~1AX = A~'I, which reduces to X = A1,

Inversion of large matrices should be avoided whenever possible because of its
high cost. As seen from Eq. (2.33), inversion of A is equivalent to solving Ax;= b; with
i=1,2,...,n, where b; is the ith column of I. Assuming that LU decomposition is

Systems of Linear Algebraic Equations

employed in the solution, the solution phase (forward and back substitution) must be
repeated 7 times, once for each b;. Because the cost of computation is proportional
to n® for the decomposition phase and rn? for each vector of the solution phase, the
cost of inversion is considerably more expensive than the solution of Ax = b (single
constant vector b).

Matrix inversion has another serious drawback — a banded matrix loses its struc-
ture during inversion. In other words, if A is banded or otherwise sparse, then A~! is
fully populated. However, the inverse of a triangular matrix remains triangular.

EXAMPLE 2.13
Write a function that inverts a matrix using LU decomposition with pivoting. Test the
function by inverting

06 —-04 1.0
A=]-03 02 05
06 —-1.0 05

Solution The function matInv listed here uses the decomposition and solution pro-
cedures in the module LUpivot.

#!/usr/bin/python

example2_13

from numpy import array,identity,dot
from LUpivot import *

def matInv(a):
n = len(al0])
alnv = identity(n)
a,seq = LUdecomp(a)
for i in range(n):
aInv[:,i] = LUsolve(a,alInv[:,i],seq)

return alnv

a = array([[0.6, -0.4, 1.0],\
[-0.3, 0.2, 0.5],\
[0.6, -1.0, 0.511)
aOrig = a.copy() # Save original [a]
aInv = matInv(a) # Invert [a] (original [a] is destroyed)
print "\nalInv =\n",alInv
print "\nCheck: a*alInv =\n", dot(aOrig,alnv)

raw_input ("\nPress return to exit")

The output is
alnv =
[[1.66666667 -2.22222222 -1.11111111]
[1.25 -0.83333333 -1.66666667]

[0.5 1. 0. 11

*2.6 Matrix Inversion

Check: a*alnv =

[[1.00000000e+00 -4.44089210e-16 -1.11022302e-16]
[0.00000000e+00 1.00000000e+00 5.55111512e-17]
[0.00000000e+00 -3.33066907e-16 1.00000000e+0011]

EXAMPLE 2.14
Invert the matrix

2 -1 0 0 0
-1 2 -1 0 0

0 -1 2 -1 0
0 -1 2 -1
0 0 -1 2 -
0 O 0 -1

o= O O O O

S O O

Solution Because the matrix is tridiagonal, we solve AX = I using the functions in the
module LUdecomp3 (LU decomposition of tridiagonal matrices).

#!/usr/bin/python
example2_14
from numpy import ones,identity

from LUdecomp3 import

6

ones((n))*2.0

= ones((n-1))*(-1.0)
e.copy()

d[n-1] = 5.0

aInv = identity(n)

c,d,e = LUdecomp3(c,d,e)

for i in range(n):

o QB
I

C

aInv[:,i] = LUsolve3(c,d,e,aInv[:,i])

print ’'’\nThe inverse matrix is:\n’’,alnv

raw_input(’ ’\nPress return to exit’’)
Running the program results in the following output:

The inverse matrix is:

[[0.84 0.68 0.52 0.36 0.2 0.04]
[0.68 1.36 1.04 0.72 0.4 0.08]
[0.52 1.04 1.56 1.08 0.6 0.12]
[0.36 0.72 1.08 1.44 0.8 0.16]
[0.2 0.4 0.6 0.8 1. 0.2]
[0.04 0.08 0.12 0.16 0.2 0.24111

Note that A is tridiagonal, whereas A~! is fully populated.

Systems of Linear Algebraic Equations

Iterative Methods
Introduction

So far, we have discussed only direct methods of solution. The common character-
istic of these methods is that they compute the solution with a finite number of op-
erations. Moreover, if the computer were capable of infinite precision (no roundoff
errors), the solution would be exact.

Iterative, or indirect methods, start with an initial guess of the solution x and then
repeatedly improve the solution until the change in x becomes negligible. Because
the required number of iterations can be large, the indirect methods are, in general,
slower than their direct counterparts. However, iterative methods do have the follow-
ing advantages that make them attractive for certain problems:

1. It is feasible to store only the nonzero elements of the coefficient matrix. This
makes it possible to deal with very large matrices that are sparse, but not neces-
sarily banded. In many problems, there is no need to store the coefficient matrix
atall.

2. Iterative procedures are self-correcting, meaning that roundoff errors (or even
arithmetic mistakes) in one iterative cycle are corrected in subsequent cycles.

A serious drawback of iterative methods is that they do not always converge to
the solution. It can be shown that convergence is guaranteed only if the coefficient
matrix is diagonally dominant. The initial guess for x plays no role in determining
whether convergence takes place — if the procedure converges for one starting vector,
it would do so for any starting vector. The initial guess affects only the number of
iterations that are required for convergence.

Gauss-Seidel Method
The equations Ax = b are in scalar notation
n
ZA,']'XJ' = bi, i= 1, 2, .o n
j=1
Extracting the term containing x; from the summation sign yields
n
Ajix; + ZAijx]' =b, i=12,..,n
j=1
J#

Solving for x;, we get

1

Xi =
Ajj

n
bi—ZA,-jxj s i:1,2,...,n
j=1

i

*2.7 Iterative Methods

The last equation suggests the following iterative scheme:

n
Xj < Ai bi—ZAinj , i = 1,2, .o n (2.34)
12 .
i

We start by choosing the starting vector x. If a good guess for the solution is not avail-
able, x can be chosen randomly. Equation (2.34) is then used to recompute each ele-
ment of X, always using the latest available values of x;. This completes one iteration
cycle. The procedure is repeated until the changes in x between successive iteration
cycles become sufficiently small.

Convergence of the Gauss-Seidel method can be improved by a technique
known as relaxation. The idea is to take the new value of x; as a weighted average
of its previous value and the value predicted by Eq. (2.34). The corresponding itera-
tive formula is

n
w .
X < Af b; — E A,’jx]' +(1-w)x, i=12,..,n (2.35)

122]=l
J#

where the weight o is called the relaxation factor. It can be seen that if ® = 1, no
relaxation takes place, because Egs. (2.34) and (2.35) produce the same result. If » <
1, Eq. (2.35) represents interpolation between the old x; and the value given by Eq.
(2.34). This is called under-relaxation. In cases where » > 1, we have extrapolation,
or over-relaxation.

There is no practical method of determining the optimal value of beforehand;
however, a good estimate can be computed during run time. Let Ax®) = [x*=1 — x®
be the magnitude of the change in x during the kth iteration (carried out without
relaxation, that is, with = 1). If k is sufficiently large (say, k > 5), it can be shown?
that an approximation of the optimal value of w is

2
Wopt X (2.36)

1+ \/1 — (Axtktp / Axh) /P

where pis a positive integer.
The essential elements of a Gauss-Seidel algorithm with relaxation are:

1. Carry out k iterations with @ = 1 (k = 10 is reasonable). After the kth iteration,
record Ax™®,

2. Perform an additional p iterations and record Ax**? for the last iteration.

3. Perform all subsequent iterations with w = wqp;, Where wop; is computed from
Eq. (2.36).

2 See, for example, Terrence J. Akai, Applied Numerical Methods for Engineers (John Wiley & Sons,
1994), p. 100.

Systems of Linear Algebraic Equations

B gaussSeidel

The function gaussSeidel is an implementation of the Gauss—Seidel method with
relaxation. It automatically computes wqp: from Eq. (2.36) using k = 10 and p = 1.
The user must provide the function iterEgs that computes the improved x from
the iterative formulas in Eq. (2.35) — see Example 2.17. The function gaussSeidel
returns the solution vector x, the number of iterations carried out, and the value of
wopt used.

module gaussSeidel
'’’’ x,numlIter,omega = gaussSeidel(iterEgs,x,tol = 1.0e-9)
Gauss-Seidel method for solving [A]l{x} = {b}.

The matrix [A] should be sparse. User must supply the
function iterEqgs(x,omega) that returns the improved {x},
given the current {x} (’omega’ is the relaxation factor).

from numpy import dot

from math import sqrt

def gaussSeidel(iterEgs,x,tol = 1.0e-9):
omega = 1.0
k = 10
p=1
for i in range(1,501):
x01d = x.copy()
x = iterEgs(x,omega)
dx = sqrt(dot(x-x01d,x-x01d))
if dx < tol: return x,i,omega
Compute of relaxation factor after k+p iterations
if i == k: dx1 = dx
if i == k + p:
dx2 = dx
omega = 2.0/(1.0 + sgrt(l.0 - (dx2/dx1)**(1.0/p)))
print ’'Gauss-Seidel failed to converge’

Conjugate Gradient Method

Consider the problem of finding the vector x that minimizes the scalar function
1
fx) = ExTAx —b'x (2.37)

where the matrix A is symmetric and positive definite. Because f(x) is minimized
when its gradient V f = Ax — b is zero, we see that minimization is equivalent to
solving

Ax=Db (2.38)

*2.7 Iterative Methods

Gradient methods accomplish the minimization by iteration, starting with an
initial vector xy. Each iterative cycle k computes a refined solution

Xk+1 = Xk + Xk Sk (2.39)

The step length o is chosen so that Xi;; minimizes f(Xi.1) in the search direction si.
That is, x;,; must satisfy Eq. (2.38):

AX +ars) =b (@)
When we introduce the residual
ry = b - AXk (2.40)

Eq. (a) becomes «As; = rr. Premultiplying both sides by s,{ and solving for oy, we
obtain
sire

oA = (2.41)
k sy Asy

We are still left with the problem of determining the search direction s. Intuition
tells us to choose sy = —V f = rg, because this is the direction of the largest negative
change in f(x). The resulting procedure is known as the method of steepest descent. It
is not a popular algorithm because its convergence can be slow. The more efficient
conjugate gradient method uses the search direction

Sk+1 = Fip1 + BrSk (2.42)

The constant 8. is chosen so that the two successive search directions are conjugate
to each other, meaning

Sii1Ask =0 (b)

The great attraction of conjugate gradients is that minimization in one conjugate di-
rection does not undo previous minimizations (minimizations do not interfere with
one another).

Substituting si; from Eq. (2.42) into Eq. (b), we get

(rii, + Bisi)Ask =0
which yields

T
_l‘k+1ASk

Bx = (2.43)

sy As;
Here is the outline of the conjugate gradient algorithm:

e Choosex, (any vector will do, but one close to solution results in fewer iterations)
e ryp < b—Ax,

Systems of Linear Algebraic Equations

e sy < 1o (lacking a previous search direction, choose the direction of steepest
descent)
e dowithk=0,1,2,...

T
Skl‘k
s} Asy
Xk+1 < Xk + 0k Sk

A <

I < b —Axp

if |rx41| < ¢ exit loop (¢ is the error tolerance)
T
r; . As;
k+1
B <« ————

T
s Asy

Sk+1 < Trq1 + BrSk

end do

It can be shown that the residual vectors ry, r,, rs3, . .. produced by the algorithm
are mutually orthogonal, thatis, r; - xr; = 0, i # j. Now suppose that we have carried
out enough iterations to have computed the whole set of n residual vectors. The resid-
ual resulting from the next iteration must be a null vector (r,;; = 0), indicating that
the solution has been obtained. It thus appears that the conjugate gradient algorithm
is not an iterative method at all, because it reaches the exact solution after n compu-
tational cycles. In practice, however, convergence is usually achieved in fewer than n
iterations.

The conjugate gradient method is not competitive with direct methods in the
solution of small sets of equations. Its strength lies in the handling of large, sparse
systems (where most elements of A are zero). It is important to note that A enters the
algorithm only through its multiplication by a vector, that is, in the form Av, where v
is a vector (either X1 or si). If A is sparse, it is possible to write an efficient subrou-
tine for the multiplication and pass it, rather than A itself, to the conjugate gradient
algorithm.

B conjGrad

The function conjGrad shown here implements the conjugate gradient algorithm.
The maximum allowable number of iterations is set to n (the number of unknowns).
Note that conjGrad calls the function Av, which returns the product Av. This func-
tion must be supplied by the user (see Example 2.18). We must also supply the start-
ing vector Xy and the constant (right-hand-side) vector b. The function returns the
solution vector x and the number of iterations.

module conjGrad
77 x, numIter = conjGrad(Av,x,b,tol=1.0e-9)

Conjugate gradient method for solving [A]l{x} = {b}.
The matrix [A] should be sparse. User must supply

the function Av(v) that returns the vector [A]{v}.

*2.7 Iterative Methods

from numpy import dot

from math import sqgrt

def conjGrad(Av,x,b,tol=1.0e-9):

n = len(b)

r = b - Av(x)

s = r.copy()

for i in range(n):
u = Av(s)

alpha = dot(s,r)/dot(s,u)

X = X + alpha*s

r =>b - Av(x)

if(sgrt(dot(r,r))) < tol:
break

else:
beta = -dot(r,u)/dot(s,u)
s = r + beta*s

return x,1i

EXAMPLE 2.15
Solve the equations

4 -1 1 X1 12
-1 4 -2 X |[=]-1
1 -2 4 X3 5

by the Gauss—Seidel method without relaxation.

Solution With the given data, the iteration formulas in Eq. (2.34) become

1

X = 1(12+x2—x3)
1

X = Z(—1+x1+2)€3)
1

X3 = 1(5—x1—|—2x2)

Choosing the starting values x; = x, = x3 = 0, the first iteration gives us

1
x1=1(12—|—0—0)=3

1
n::ZF1+3+2®H:05

1
X3 = 1 [5—-3+2(0.5)]=0.75

Systems of Linear Algebraic Equations
The second iteration yields
1
Xo=g (12+0.5—-0.75) = 2.9375

1
X2 = 4 [=1+2.9375 +2(0.75)] = 0.85938

1
X3 1 [5—2.9375+2(0.85938)] = 0.94531
and the third iteration results in

1
X = 1 (12 + 0.85938 — 0.94531) = 2.978 52

1
X2 1 [—142.97852 4 2(0.94531)] = 0.967 29

1
X3 = 1 [5 —2.97852 + 2(0.96729)] = 0.989 02

After five more iterations the results would agree with the exact solution x; = 3,
X, = x3 = 1 within five decimal places.

EXAMPLE 2.16
Solve the equations in Example 2.15 by the conjugate gradient method.

Solution The conjugate gradient method should converge after three iterations.
Choosing again for the starting vector

x=[0 0 o]T

the computations outlined in the text proceed as follows:

First iteration
12 4 -1 1 0 12
rp=b-Axg=|-1|—-]-1 4 -2 0|=|-1
5 1 -2 4 0 5
12
So=rog=1| —1
5
4 -1 1 12 54
Asy = | -1 4 -2 -1 (=] -26
1 -2 4 5 34
T 2 2 2
S, I 12 -1 5
Qo= 22 = + D+ —0.20142

siAsy 12(54) + (—1)(—26) + 5(34)

*2.7 Iterative Methods

0 12 2.41704
X; =Xo+oapSog=|0|+020142| —1 | =| —0.20142
0 5 1.007 10
Second iteration
12 4 -1 1 2.41704 1.12332
rn=b-Ax=|-1|-1|-1 4 -2 —-0.20142 | = 4.23692
5 1 -2 4 1.007 10 —1.84828

rlAsg _ 1.12332(54) + 4.23692(—26) — 1.84828(34)

= = =0.133107
Fo s{Aso 12(54) + (—1)(—26) + 5(34)
1.12332 12 2.72076
St =r1+BeSo=| 423692 |+0.133107| -1 | = 4.103 80
—1.84828 5 —1.18268
4 -1 1 2.72076 5.596 56
As; = | -1 4 -2 410380 | = 16.059 80
1 -2 4 —1.18268 —10.21760
sir
o1 =
' sTAs,
_2.72076(1.12332) + 4.10380(4.236 92) + (—1.182 68)(—1.848 28)
= 2.72076(5.596 56) + 4.103 80(16.059 80) + (—1.18268)(—10.217 60)
= 0.24276
241704 2.72076 3.07753
X2 =X +a181 = | —0.20142 | 4 0.24276 4.10380 | = | 0.79482
1.00710 —1.18268 0.71999
Third iteration
12 4 -1 1 3.07753 —0.23529
rn=b-Ax=|-1|-|-1 4 -2 0.79482 | = 0.33823
5 1 -2 4]]0.71999 0.63215
g, — rfAs
' sTAs,

_ (-~0.23529)(5.596 56) + 0.338 23(16.059 80) + 0.632 15(—10.217 60)
~ 2.72076(5.596 56) + 4.103 80(16.059 80) + (—1.18268)(—10.217 60)

= 0.0251 452

Systems of Linear Algebraic Equations

—-0.23529 2.72076 —0.166 876
S =TI+ fB181 = 0.33823 | +0.025 1452 4.10380 | = 0.441421
0.63215 —1.18268 0.602411
4 -1 1 —0.166 876 —0.506 514
As; = | -1 4 -2 0.441421 | = 0.727738
1 -2 4 0.602411 1.359930
l'gSZ
oy = T
s, As;
_ (-0.23529)(—0.166876) + 0.338 23(0.441 421) + 0.632 15(0.602 411)
" (—0.166876)(—0.506 514) + 0.441 421(0.727 738) + 0.602 411(1.359 930)
= 0.464 80
3.07753 —0.166 876 2.99997
X3 =Xp + a8 = | 0.79482 | 4 0.464 80 0.441421 | = | 0.99999
0.71999 0.602411 0.99999

The solution x3 is correct to almost five decimal places. The small discrepancy is
caused by roundoff errors in the computations.

EXAMPLE 2.17
Write a computer program to solve the following n simultaneous equations by the
Gauss-Seidel method with relaxation (the program should work with any value of n®):

2 -1 0 0o ... 0 0 0 1 X1 0
-1 2 -1 0 0 0 0 X2 0
0 -1 2 -1 ... 0 0 0 0 X3 0
0 0 0 0o ... -1 2 -1 0 Xn—2 0
0 0 0 0o ... 0 -1 2 -1 Xn—1 0
.1 0 0 0 .. 0 0 -1 2| x | [1]
Run the program with n = 20. The exact solution can be shown to be x; = —n/4 +i/2,

i=12,.,n

Solution In this case the iterative formulas in Eq. (2.35) are
1 =0l —x)/2+ 1 - w)x
Xi=wX 1+ Xx:1)/24+1—-wx;, i=2,3,...,n—1 (a)
Xn =01 —x1+X,-1)/24+ (1 — w)x,

These formulas are evaluated in the function iterEgs.

3 Equations of this form are called cyclic tridiagonal. They occur in the finite difference formulation
of second-order differential equations with periodic boundary conditions.

*2.7 Iterative Methods

#!/usr/bin/python

example2_17

from numpy import zeros

from gaussSeidel import

%

def iterEqgs(x,omega):

n =

X =

n = len(x)

x[0]

=omega* (x[1]

for i in range(l,n-1):

x[1i] =
x[n-1] =

return

eval (raw_input ("Number of equations ==> "))

zeros(n)

X,numlter,omega

gaussSeidel (iterEgs,x)

print "\nNumber of iterations =",numlter
print "\nRelaxation factor =",omega
print "\nThe solution is:\n",x

raw_input ("\nPress return to exit")

The output from the program is:

Number of equations ==> 20

Number of iterations

Relaxation factor

The

[-4.
-2.
-4.

1.

solution is:

50000000e+00 -4.
50000000e+00 -2.
2.
2.

99999998e-01
50000000e+00

3.50000000e+00

4

= 259

1.70545231071

00000000e+00
00000000e+00
14046747e-09
00000000e+00

.00000000e+00

-3.
-1.
5.
2.

4

50000000e+00
50000000e+00
00000002e-01
50000000e+00

.50000000e+00

The convergence is very slow, because the coefficient

-3.
-9.
1.
3.
5.

- x[n-11)/2.0 + (1.0 - omega)*x[0]

omega*(x[i-1] + x[i+1]1)/2.0 + (1.0 - omega)*x[i]
omega*(1.0 - x[0] + x[n-2])/2.0 \
+ (1.0 - omega)*x[n-1]

b

00000000e+00
99999997e-01
00000000e+00
00000000e+00
00000000e+001]

matrix lacks diagonal

dominance — substituting the elements of A into Eq. (2.30) produces an equality
rather than the desired inequality. If we were to change each diagonal term of the
coefficient from 2 to 4, A would be diagonally dominant and the solution would con-
verge in only 17 iterations.

EXAMPLE 2.18
Solve Example 2.17 with the conjugate gradient method, also using n = 20.

Systems of Linear Algebraic Equations

Solution The program shown here utilizes the function conjGrad. The solution vec-
tor X is initialized to zero in the program, which also sets up the constant vector b.
The function Av(v) returns the product Av, where A is the coefficient matrix and v is
a vector. For the given A, the components of the vector Av are

(Av); =211 — V2 + Uy
AV); = -V + 20, — Vip1, i=2,3,...,n—1
AV)y, = —Vp1 + 20+ 11

which are evaluated by the function Av(v).

#!/usr/bin/python
example2_18
from numpy import zeros,sqrt

from conjGrad import *

def Ax(v):
n = len(v)
Ax = zeros(n)
Ax[0] = 2.0*v[0] - v[1]+v[n-1]
Ax[1:n-1] = -v[0:n-2] + 2.0*v[1l:n-1] -v [2:n]
Ax[n-1] = -v[n-2] + 2.0*v[n-1] + v[O0]

return Ax

n = eval(raw_input("Number of equations ==> "))
b = zeros(n)

b[n-1] = 1.0

x = zeros(n)

x,numIter = conjGrad(Ax,x,b)

print "\nThe solution is:\n",x

print "\nNumber of iterations =",numlIter

raw_input ("\nPress return to exit")
Running the program results in

Number of equations ==> 20

The solution is:
[-4.5 -4. -3.5 -3. -2.5 -2. -1.5 -1. -0.5 0. 0.5 1. 1.5
2. 2.5 3. 3.5 4. 4.5 5.]

Number of iterations = 9

Note that convergence was reached in only 9 iterations, whereas 259 iterations
were required in the Gauss-Seidel method.

*2.7 Iterative Methods

PROBLEM SET 2.3

1. Let
3 -1 2 0 1 3
A=] 0 1 3 B=| 3 -1 2
-2 2 -4 -2 2 -4

(note that B is obtained by interchanging the first two rows of A). Knowing that
05 0 025
A'=| 03 04 045
-0.1 02 -0.15

determine B~!.
2. Invert the triangular matrices

2 4 3 2 00
A=(0 6 5 B=(3 4 0
0 0 2 4 5 6
3. Invert the triangular matrix
1 1/2 1/4 1/8
A_ |0 11319
0 0 1 1/4
0 0 0 1
4. Invert the following matrices:
1 2 4 4 -1 0
@A=([1 3 9 b)B=|-1 4 -1
1 4 16 0 -1 4
5. Invert the matrix
4 -2 1
A=|-2 1 -1
1 -2 4
6. M Invert the following matrices with any method:
5 -3 -1 0 4 -1 0 O
-2 1 1 1 - —
A— B— 1 4 1 0
3 -5 1 2 0 -1 4 -1
0 8 —4 -3 0 0 -1 4
7. M Invert the matrix by any method:
1 3 -9 6 4
2 -1 6 7 1
A=|(3 2 -3 15 5
8 -1 1 4 2
11 1 -2 18 7

and comment on the reliability of the result.

Systems of Linear Algebraic Equations

8. M The joint displacements u of the plane truss in Problem 14, Problem Set 2.2,
are related to the applied joint forces p by

Ku=p (@

where

27.580 7.004 —7.004 0.000 0.000

7.004 29.570 —5.253 0.000 —24.320
K=|-7004 —-5.253 29.570 0.000 0.000 | MN/m

0.000 0.000 0.000 27.580 —7.004

0.000 -24.320 0.000 -7.004 29.570

is called the stiffness matrix of the truss. If Eq. (a) is inverted by multiplying each
side by K~!, we obtain u = K™'p, where K~! is known as the flexibility matrix.
The physical meaning of the elements of the flexibility matrix is K;; ! = displace-
ments u; (i =1, 2, ...5) produced by the unit load p; = 1. Compute (a) the flex-
ibility matrix of the truss; (b) the displacements of the joints due to the load
ps = —45 kN (the load shown in Problem 14, Problem Set 2.2).

9. W Invert the matrices

3 -7 45 21 1 111
12 11 1
A— 0 17 B— 1 2 2 2
6 25 —-80 -24 2 3 4 4
17 55 -9 7 4 5 6 7

10. W Write a program for inverting on #n x n lower triangular matrix. The inversion
procedure should contain only forward substitution. Test the program by invert-
ing the matrix

36 0 0 O
18 36 0 O
9 12 36 0
5 4 9 36

A=

11. Use the Gauss-Seidel method to solve

-2 5 9 X1 1
7 1 1 X | = 6
-3 7 -1 X3 —26

12. Solve the following equations with the Gauss—Seidel method:

12 -2 3 10[x 0
-2 15 6 -3||x| |0
1 6 20 —4||x]| |20

0 -3 2 9 Xy 0

*2.7 Iterative Methods

13. Use the Gauss-Seidel method with relaxation to solve Ax = b, where

4 -1 0 0 15
A— -1 4 -1 0 b— 10
0 -1 4 -1 10
0 0 -1 3 10

Take x; = b;/A;; as the starting vector and use w = 1.1 for the relaxation factor.
14. Solve the equations

2 -1 0 X1 1
-1 2 -1 X |=]1
0 -1 1 X3 1

by the conjugate gradient method. Start with x = 0.
15. Use the conjugate gradient method to solve

3 0 -1 X1 4
0 4 -2 X | = 10
-1 -2 5 X3 —10

starting with x = 0.
16. W Solve the simultaneous equations Ax = b and Bx = b by the Gauss-Seidel
method with relaxation, where

T
b:[lo ~8 10 10 -8 10]

3 —2 1 0 0
-2 4 -2 1 0 0

A_| 1 2 4 -2 1 0
0 1 -2 4 -2 1

0 0 -2 4 -2

0 0 0 1 -2 3
(3 —2 1 0 0 1]

-2 4 -2 0 0

B_| ! 2 4 -2 1 0
0 1 -2 4 -2 1

0 0 1 -2 4 -2

| 1 0 o0 1 -2 3]

Note that A is not diagonally dominant, but that does not necessarily preclude
convergence.

Systems of Linear Algebraic Equations

17. B Modify the program in Example 2.17 (Gauss-Seidel method) so that it will solve
the following equations:

(4 -1 0 0 -~ 0 0 0 11[x 0
-1 4 -1 0 -~ 0 0 0 0| x 0
0 -1 4 -1 0 0 0 0| x 0
0 0 0 0 -+ -1 4 —1 0| x0 0
0 0 0 0 0 -1 4 —1|| Xy 0

.1 0 0 0 -~ 0 0 -1 4]| x, | |100]

Run the program with n = 20 and compare the number of iterations with Exam-
ple 2.17.

18. W Modify the program in Example 2.18 to solve the equations in Problem 17 by
the conjugate gradient method. Run the program with n = 20.

19. m

T=0p—% 2 8 I7=100°

T=200°

The edges of the square plate are kept at the temperatures shown. Assuming
steady-state heat conduction, the differential equation governing the tempera-
ture T in the interior is

82T+ 9*T —o
ax2 3y

If this equation is approximated by finite differences using the mesh shown, we
obtain the following algebraic equations for temperatures at the mesh points:

*2.8 Other Methods

20.

21.

4 1 0 1 0 0 0o 0 O|[r 0
1 -4 1 0 1 0 0 o0 oflB 0
0O 1 -4 0 0 1 0 0 O0||B 100
1 0 0 -4 1 0 1 o oflln 0
0o 1 0 1 —4 1 0 1 o||B|=]| o
o 0 1 0 1 -4 0 0 1||% 100
o 0 0 1 0 0 -4 1 0fl|F% 200
o 0 0 0 1 0 1 —4 1||F 200

L0 0 0o 0 0 1 0 1 —4||T%]| [300]

Solve these equations with the conjugate gradient method.
|

2kN/m_ 3kN/m_ 3KkN/m_ 3kN/m_ 3kN/m 2 kN/m
AWMAIBONIAW MW WMICO N AW
1 2 3 4 5

The equilibrium equations of the blocks in the spring-block system are
3(x — x1) —2x; = —80
3(x3 —x%) =32 —x1) =0
3(xg —x3) —3(x3 —x2) =0
3(x5 — x4) — 3(x4 — x3) = 60

—2.X'5 — 3(JC5 — X4) =0

where x; are the horizontal displacements of the blocks measured in mm. (a)
Write a program that solves these equations by the Gauss—Seidel method with-
out relaxation. Start with x = 0 and iterate until four-figure accuracy after the
decimal point is achieved. Also print the number of iterations required. (b) Solve
the equations using the function gaussSeidel using the same convergence cri-

terion as in Part (a). Compare the number of iterations in Parts (a) and (b).

B Solve the equations in Prob. 20 with the conjugate gradient method utilizing
the function conjGrad. Start with x = 0 and iterate until four-figure accuracy

after the decimal point is achieved.

Other Methods

A matrix can be decomposed in numerous ways, some of which are generally useful,
whereas others find use in special applications. The most important of the latter are

the QR factorization and the singular value decomposition.

Systems of Linear Algebraic Equations

The QR decomposition of a matrix A is
A=QR

where Q is an orthogonal matrix (recall that the matrix Q is orthogonal if Q~! = QT)
and R is an upper triangular matrix. Unlike LU factorization, QR decomposition does
not require pivoting to sustain stability, but it does involve about twice as many op-
erations. Because of its relative inefficiency, the QR factorization is not used as a
general-purpose tool, but finds its niche in applications that put a premium on sta-
bility (e.g., solution of eigenvalue problems).

The singular value decomposition is useful in dealing with singular or ill-
conditioned matrices. Here the factorization is

A=UAV"
where U and V are orthogonal matrices and

A 0 0
0 4 0
A=10 0 14

is a diagonal matrix. The elements 1; of A can be shown to be positive or zero. If A
is symmetric and positive definite, then the As are the eigenvalues of A. A nice char-
acteristic of the singular value decomposition is that it works even if A is singular or
ill conditioned. The conditioning of A can be diagnosed from magnitudes of As: the
matrix is singular if one or more of the s are zero, and it is ill conditioned if Amax/Amin
is very large.

Interpolation and Curve Fitting

Given the n + 1 data points (x;, ¥;),i =0, 1, ..., n, estimate y(x).

Introduction

Discrete data sets, or tables of the form

X0 X1 X2 Xn
Yo | Vi | Vo " | Vn

are commonly involved in technical calculations. The source of the data may be ex-
perimental observations or numerical computations. There is a distinction between
interpolation and curve fitting. In interpolation we construct a curve through the
data points. In doing so, we make the implicit assumption that the data points are
accurate and distinct. Curve fitting is applied to data that contains scatter (noise),
usually due to measurement errors. Here we want to find a smooth curve that ap-
proximates the data in some sense. Thus the curve does not necessarily hit the
data points. The difference between interpolation and curve fitting is illustrated in
Fig. 3.1.

Polynomial Interpolation
Lagrange’s Method

The simplest form of an interpolant is a polynomial. It is always possible to construct
a unique polynomial of degree n that passes through n + 1 distinct data points. One
means of obtaining this polynomial is the formula of Lagrange,

Pyx) =) yiti(x) (3.1a)
i=0

Interpolation and Curve Fitting

Y
Curve fitting ~
-
| nte rpOIat|0n ~ Figure 3.1. Interpolation and curve fitting
of data.
—=
L Data points
L

X

where the subscript n denotes the degree of the polynomial and

X—Xy X—X X—Xi—1 X — Xip1 X — X

Li(x) =
Xi—Xo Xi—X1 Xi — Xi—1 Xi — Xi41 Xi — Xn
"ox— X
— X .
=11 , i=0,1,...,n (3.1b)
. xi—xj
Jj=0
jl

are called the cardinal functions.

For example, if n =1, the interpolant is the straight line P (x) = yplo(x) +
¥141(x), where
X — X X — X

1(x) =
Xo — X1 X1 — Xo

Lo(x) =

With n = 2, interpolation is parabolic: P,(x) = yolo(x) + y1£1(x) + y2£2(x), where now

(x —x1)(x — x2)

¢ =
o(%) (X0 — x1) (X0 — X2)
(x — X0)(x — x2)

Z =
1() (x1 — x0) (1 — x2)
o) = (x — Xo0)(x — x1)

(X2 — x0) (2 — x1)

The cardinal functions are polynomials of degree n and have the property

0ifi#j
ei(xf)z{lifi:]} =% 42
where §;; is the Kronecker delta. This property is illustrated in Fig. 3.2 for three-point
interpolation (n = 2) with xy = 0, x; = 2, and x, = 3.
To prove that the interpolating polynomial passes through the data points, we

substitute x = x; into Eq. (3.1a) and then utilize Eq. (3.2). The result is

n n
Py(xj) = Zyiﬁi(xj) = Zyi5ij =Y
i=0

i=0

3.2 Polynomial Interpolation

Figure 3.2. Example of quadratic cardi-
nal functions.

It can be shown that the error in polynomial interpolation is

(x—xO)(x—xl)m(x—xn)f(

(n+ D! e o3

fx) — Py(x) =

where £ lies somewhere in the interval (xy, x,,); its value is otherwise unknown. It is
instructive to note that the further a data point is from x, the more it contributes to
the error at x.

Newton’s Method

Although Lagrange’s method is conceptually simple, it does not lend itself to an
efficient algorithm. A better computational procedure is obtained with Newton’s
method, where the interpolating polynomial is written in the form

Py(x) =ao+ (x —xp)ar + (x — xp)(x — x1)az + -+ (x — x0) (X — x1) - - - (X — Xp—1)@p

This polynomial lends itself to an efficient evaluation procedure. Consider, for
example, four data points (n = 3). Here the interpolating polynomial is

P(x) = ap + (x — xp)ar + (x — xp) (x — x1)az + (X — xp) (x — X1)(x — X2)as

= ap + (x — xp) {ar + (x — x1) [a2 + (X — X)as]}
which can be evaluated backward with the following recurrence relations:

B(x) =as
Pi(x) =a; + (x — x) By(x)
Pz(X) =a + (x — xl)Pl(x)

B;(x) = ap + (x — xp) P> (x)
For arbitrary n, we have
B(x) =ay Px)=anrx+ X —Xp-r) 1), k=1,2,...,n (3.4)

Denoting the x-coordinate array of the data points by xData and the degree of the

Interpolation and Curve Fitting

polynomial by n, we have the following algorithm for computing P, (x):

p = a[n]
for k in range(l,n+1):
p = a[n-k] + (x - xData[n-k])*p

The coefficients of P, are determined by forcing the polynomial to pass through
each data point: y; = P,(x;), i=0,1,..., n. This yields the simultaneous equations

Yo = ao
Y1 = ao + (X1 — Xp)ay

Yo = ag + (X2 — Xo)ay + (X2 — Xo) (X2 — x1)a (a)

Y=o+ (X — Xo)ar + -+ + (X — X0) (X — X1) -+ (X — Xp—1)@ln
Introducing the divided differences
_Yi— Y

Vy;, = , 1=1,2,...,n
T
Vy;—V
V2y; = uy i=2,3,...,n
Xi — X1
V2y; — V?
Vy =~V g4 n (3.5)
Xi — X2
Vnyn _ anlyn _ anlyn_l
Xn — Xp—1
the solution of Egs. (a) is
a=yo @a=Vy a=Vy - a,=V'y, (3.6)

If the coefficients are computed by hand, it is convenient to work with the format in
Table 3.1 (shown for n = 4).

The diagonal terms (y, Vy1, V2y», V3y3, and V*y,) in the table are the coeffi-
cients of the polynomial. If the data points are listed in a different order, the entries
in the table will change, but the resultant polynomial will be the same - recall that a
polynomial of degree n interpolating n + 1 distinct data points is unique.

Xo || Yo
X || »n|Vn
X2 || ¥2 | Ve | Viye
X3 || ¥3 | Vys | Viys | Vs
X || Yo | Vya | Viya | Viyu | Vi

Table 3.1

3.2 Polynomial Interpolation

Machine computations can be carried out within a one-dimensional array a em-
ploying the following algorithm (we use the notation m = n+ 1 = number of data
points):

a = yData.copy()
for k in range(1l,m):
for i in range(k,m):
al[i] = (a[i] - al[k-1])/(xDatal[i] - xDatal[k-1])

Initially, a contains the y-coordinates of the data, so that it is identical to the
second column in Table 3.1. Each pass through the outer loop generates the entries
in the next column, which overwrite the corresponding elements of a. Therefore, a
ends up containing the diagonal terms of Table 3.1, that is, the coefficients of the
polynomial.

B newtonPoly

This module contains the two functions required for interpolation by Newton's
method. Given the data point arrays xData and yData, the function coeffts re-
turns the coefficient array a. After the coefficients are found, the interpolant P,(x)
can be evaluated at any value of x with the function evalPoly.

module newtonPoly
’’’ p = evalPoly(a,xData,x).
Evaluates Newton’s polynomial p at x. The coefficient

vector {a} can be computed by the function ’'coeffts’.

a = coeffts(xData,yData).

Computes the coefficients of Newton’s polynomial.

def evalPoly(a,xData,x):

n len(xData) - 1 # Degree of polynomial
p = aln]
for k in range(l,n+1):

p = a[n-k] + (x -xDatal[n-k])*p

return p

def coeffts(xData,yData):
m = len(xData) # Number of data points
a = yData.copy()
for k in range(l,m):
alk:m] = (alk:m] - al[k-1])/(xDatal[k:m] - xDatalk-1])

return a

Interpolation and Curve Fitting

Neville’s Method

Newton’s method of interpolation involves two steps: computation of the coeffi-
cients, followed by evaluation of the polynomial. This works well if the interpolation
is carried out repeatedly at different values of x using the same polynomial. If only
one point is to be interpolated, a method that computes the interpolant in a single
step, such as Neville’s algorithm, is a better choice.

Let P[x;, Xit1, ..., Xi+x] denote the polynomial of degree k that passes through
the k + 1 data points (x;, ¥1), (Xi+1, Vi+1)s - - -» (Xitk» Vi+k)- For a single data point, we
have

Blxi] =y (3.7)

The interpolant based on two data points is

(x — Xi11) Po[x:] + (6 — %) PolXi1]
Xi — Xiy1

Py [x;, xip1] =

It is easily verified that Pj[x;, x;;1] passes through the two data points; that is,
Pi[x;, Xiy1] = yi when x = x;, and Pi[x;, Xiy1] = Y1 when x = x;41.
The three-point interpolant is

(x = Xiy2) P (X, Xi1] + (6 — X) Py [Xiq1, Xigo]
Xi — Xi42

P2 [xir xH»l) xi+2] =

To show that this interpolant does intersect the data points, we first substitute x = x;,
obtaining

B[, Xiv1) Xiv2l = P, X1l = yi
Similarly, x = x;4, yields
Polxi, Xiv1, Xiv2l = PalXiy1, Xivol = Yigo
Finally, when x = x;;; we have
Pix;, X1l = PiXiy1, Xivol = Vi
so that
(Xir1 — Xig2) Yir1 + (X — Xip1)Yir1

P [X;, Xit1, Xiy2] = = Ji+1
Xi — Xit2

Having established the pattern, we can now deduce the general recursive for-
mula:

Pe[xi, X1, - o5 Xigk] (3.8)

(X — Xipk) P [, X1, - -5 Xige—1] + (G — X) Peo1 [Xig1, Xigos - -+ Xigi]
Xi — Xitk

3.2 Polynomial Interpolation

Given the value of x, the computations can be carried out in the following tabular
format (shown for four data points):

k=0 k=1 k=2 k=3
Xo || Bolxol = yo | Pilxo, x1l | Palxo, X1, %21 | Pslxo, X1, X2, X3]
x1 || Blxal =y | Plxi, %l | Palx, X, x3]

X2 Pl =y | Pilxe, x3]

X3 || Bolxsl = y3

Table 3.2

If we denote the number of data points by m, the algorithm that computes the
elements of the table is

y = yData.copy()
for k in range (1,m):
for i in range(m-k):
yv[i] = ((x - xDatal[i+k])*y[i] + (xDatal[i] - x)*y[i+1]1)/ \
(xDatal[i]-xDatal[i+k])

This algorithm works with the one-dimensional array y, which initially contains
the y values of the data (the second column in Table 3.2). Each pass through the outer
loop computes the elements of y in the next column, which overwrite the previous
entries. At the end of the procedure, y contains the diagonal terms of the table. The
value of the interpolant (evaluated at x) that passes through all the data points is the
first element of y.

B neville

The following function implements Neville’s method; it returns P, (x).

module neville
’’’ p = neville(xData,yData,x).
Evaluates the polynomial interpolant p(x) that passes

trough the specified data points by Neville’s method.

def neville(xData,yData,x):

m = len(xData) # number of data points
y = yData.copy()
for k in range(1l,m):

y[0:m-k] = ((x - xDatalk:m])*y[O0:m-k] + \
(xDatal[0:m-k] - x)*y[1l:m-k+1])/ \
(xData[0:m-k] - xDatalk:m])
return y[O0]

Interpolation and Curve Fitting

o | /I
™ 0.60 E /[R
0.40 : / \

N4 S/

_0'20 1 1 1 1 1 1
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

X

Figure 3.3. Polynomial interpolant displaying oscillations.

Limitations of Polynomial Interpolation

Polynomial interpolation should be carried out with the smallest feasible number
of data points. Linear interpolation, using the nearest two points, is often sufficient
if the data points are closely spaced. Three to six nearest-neighbor points produce
good results in most cases. An interpolant intersecting more than six points must be
viewed with suspicion. The reason is that the data points that are far from the point
of interest do not contribute to the accuracy of the interpolant. In fact, they can be
detrimental.

The danger of using too many points is illustrated in Fig. 3.3. There are 11 equally
spaced data points represented by the circles. The solid line is the interpolant, a poly-
nomial of degree 10, that intersects all the points. As seen in the figure, a polynomial
of such a high degree has a tendency to oscillate excessively between the data points.
A much smoother result would be obtained by using a cubic interpolant spanning
four nearest-neighbor points.

Polynomial extrapolation (interpolating outside the range of data points) is dan-
gerous. As an example, consider Fig. 3.4. There are six data points, shown as circles.
The fifth-degree interpolating polynomial is represented by the solid line. The inter-
polant looks fine within the range of data points, but drastically departs from the
obvious trend when x > 12. Extrapolating y at x = 14, for example, would be absurd
in this case.

If extrapolation cannot be avoided, the following three measures can be useful:

e Plot the data and visually verify that the extrapolated value makes sense.

e Use a low-order polynomial based on nearest-neighbor data points. Linear or
quadratic interpolant, for example, would yield a reasonable estimate of y(14)
for the data in Fig. 3.4.

3.2 Polynomial Interpolation

400

300

0
200

100

Figure 3.4. Extrapolation may not follow the trend of data.

e Work with a plot of log x versus log y, which is usually much smoother than the
x—y curve and thus safer to extrapolate. Frequently this plot is almost a straight
line. This is illustrated in Fig. 3.5, which represents the logarithmic plot of the
data in Fig. 3.4.

= 100

10

Figure 3.5. Logarithmic plot of the data in Fig. 3.4.

EXAMPLE 3.1
Given the data points

x[o] 2] 3
yll7]11]28

use Lagrange’s method to determine y at x = 1.

Interpolation and Curve Fitting

Solution
0o = -—x)x—x) (1-2)0-3) 1
(o —x)(%—x) (0-2)(0-3) 3
¢ = F—x)x—x) A-00-3) _
(t1 —x)(x1 —x) 2-0(2-3)
x—x)x—x) (1-0(01-2) 1
T e-—we-—x) B-0B-2 3
7 28
y=y0€0+y1€1+y2€2=§+11—?=4
EXAMPLE 3.2
The data points

x[=2[1] a[-1] 3] -4
yll-1]2]59] 4a|24]-53

lie on a polynomial. Determine the degree of this polynomial by constructing the
divided difference table, similar to Table 3.1.

Solution

il | v [V [y [Py | Vi | Voyi]

0| -2 -1

1 1 2 1

2 59 10 3

3| -1 4 5 -2 1

4 24 5 2 1 0

5| -4 | -53 26 -5 1 0 0

Here are a few sample calculations used in arriving at the figures in the table:

_ Y=y _39-ED

\% = =10
2 X2 — Xo 4—(—2)
Vy, —V 10-1
szz = yz yl = :3
Xo — X1 4—1
V2ys — V2 -5-3
Viys = Vs Y2 _ -1
X5 — X2 —4 -4

From the table we see that the last nonzero coefficient (last nonzero diagonal term)
of Newton'’s polynomial is V3 y3, which is the coefficient of the cubic term. Hence, the
polynomial is a cubic.

EXAMPLE 3.3
Given the data points

X 4.0 3.9 3.8 3.7
y || —0.06604 | —0.02724 | 0.01282 | 0.05383

determine the root of y(x) = 0 by Neville’s method.

3.2 Polynomial Interpolation

Solution This is an example of inverse interpolation, where the roles of x and y are
interchanged. Instead of computing y at a given x, we are finding x that corresponds
to a given y (in this case, y = 0). Employing the format of Table 3.2 (with x and y
interchanged, of course), we obtain

(i v [ml=x] AL [RL]RL,,IT]
0 | —0.06604 4.0 3.8298 | 3.8316 3.8317
1| —0.02724 3.9 3.8320 | 3.8318
2 0.01282 3.8 3.8313
3 0.05383 3.7

The following are sample computations used in the table:

¥ = y) Byol + (Yo — ¥) Pyl

P[)] =
e Yo—N
_ (0+0.02724)(4.0) 4+ (—0.06604 — 0)(3.9) — 3.8298
—0.06604 + 0.02724
(v = 33) Pily, 2] + 0 —) Pilya, 93]
Py, y2, 31 = Y=y Al ye =Yy ys

-
_ (0—-0.05383)(3.8320) + (—0.02724 — 0)(3.8313)
B —0.02724 — 0.05383
All the Ps in the table are estimates of the root resulting from different orders of
interpolation involving different data points. For example, Pi[yo, y1] is the root ob-
tained from linear interpolation based on the first two points, and P [y, y2, y3] is
the result from quadratic interpolation using the last three points. The root obtained
from cubic interpolation over all four data points is x = B[y, y1, y2, y3] = 3.8317.

= 3.8318

EXAMPLE 3.4

The data points in the table lie on the plot of f(x) = 4.8 cos];TJ)C Interpolate this data
by Newton’s method at x = 0, 0.5, 1.0, ..., 8.0 and compare the results with the “ex-
act” values y; = f(x;).

X 0.15 2.30 3.15 4.85 6.25 7.95
y || 4.79867 | 4.49013 | 4.2243 | 3.47313 | 2.66674 | 1.51909

Solution

#!/usr/bin/python

example3_4

from numpy import array,arange
from math import pi,cos

from newtonPoly import *

xData = array([0.15,2.3,3.15,4.85,6.25,7.95])

yData = array([4.79867,4.49013,4.2243,3.47313,2.66674,1.51909])
a = coeffts(xData,yData)

print '’ x yInterp yExact’’

Interpolation and Curve Fitting

oy vy

print ' -\--——— - —————
for x in arange(0.0,8.1,0.5):
y = evalPoly(a,xData,x)
yvExact = 4.8*cos(pi*x/20.0)
print '’'%3.1f %9.5f %9.5f’’'% (x,y,yExact)

raw_input(’ ’\nPress return to exit’’)

The results are:

0.0 4.80003 4.80000
0.5 4.78518 4.78520
1.0 4.74088 4.74090
1.5 4.66736 4.66738
2.0 4.56507 4.56507
2.5 4.43462 4.43462
3.0 4.27683 4.27683
3.5 4.09267 4.09267
4.0 3.88327 3.88328
4.5 3.64994 3.64995
5.0 3.39411 3.39411
5.5 3.11735 3.11735
6.0 2.82137 2.82137
6.5 2.50799 2.50799
7.0 2.17915 2.17915
7.5 1.83687 1.83688
8.0 1.48329 1.48328

Rational Function Interpolation

Some data is better interpolated by rational functions rather than polynomials. A ra-
tional function R(x) is the quotient of two polynomials:

Pn(x) _ a1x™ + apx™ ! + - + amX + Qi
Qu(x) b1 x" + box™ ' + -+« + bpX + bpyy

R(x) =

Because R(x) is a ratio, it can be scaled so that one of the coefficients (usually b,,;1)
is unity. That leaves m + n + 1 undetermined coefficients that must be computed by
forcing R(x) through m+ n+ 1 data points.

A popular version of R(x) is the diagonal rational function, where the degree of
the numerator is equal to that of the denominator (m = n) if m + nis even, or less by
1 (m = n—1)if m+ nis odd. The advantage of using the diagonal form is that the in-
terpolation can be carried out with a Neville-type algorithm, similar to that outlined
in Table 3.2. The recursive formula that is the basis of the algorithm is due to Stoer

3.2 Polynomial Interpolation

k=-1 k=0 k=1 k=2 k=3
X 0 Rlx1]l =y | Rlx, x2] | Rlx, X2, x3] | Rlx1, X2, X3, X4]
X 0 R[x2] = y» | RIx2, x3] | R[x2, X3, X4]
X3 0 Rlxs] = y3 | Rlx3, x4]
X4 0 Rlx4] = y4
Table 3.3

and Bulirsch.! It is somewhat more complex than Eq. (3.8) used in Neville’s method:

RI[x;, Xiy1, ..., Xigk) = RlXip1, Xigo, -+ Xigk] (3.9a)
R[xit1, Xiy2, - - Xigx] — RIX, X1, - Xigp—1]
l’
S
where
g X% (_ RIXiv1, Xiv2, .- Xigk] — RIXG, Xig, - - Xigk—1]) 1 (3.9b)
X — Xipk Rlxit1, Xiyo, - 5 Xigk] — RXig1, Xigo, -+ o Xipk—1]
In Egs. (3.9) RIx;, Xit1, - - -, Xi+k] denotes the diagonal rational function that passes
through the data points (x;, yi), (Xit+1, ¥i+1), - - -» (Xitk, Visk)- It is also understood that
RIx;, Xi41, ..., Xi—1] = 0 (corresponding to the case k = —1) and R[x;] = y; (the case
k=0).

The computations can be carried out in a tableau, similar to Table 3.2 used for
Neville’s method. An example of the tableau for four data points is shown in Table 3.3.
We start by filling the column k = —1 with zeroes and entering the values of y; in the
column k = 0. The remaining entries are computed by applying Egs. (3.9).

B rational

We managed to implement Neville’s algorithm with the tableau “compressed” to a
one-dimensional array. This will not work with the rational function interpolation,
where the formula for computing an R in the kth column involves entries in columns
k — 1 as well as k — 2. However, we can work with two one-dimensional arrays, one
array (called r in the program) containing the latest values of R while the other array
(r014d) saves the previous entries. Here is the algorithm for diagonal rational function
interpolation:

module rational
’’’ p = rational(xData,yData,x)

Evaluates the diagonal rational function interpolant p(x)
that passes through he data points

IR}

from numpy import zeros

1 7. Stoer, and R. Bulirsch, Introduction to Numerical Analysis (Springer, 1980).

m Interpolation and Curve Fitting

def rational(xData,yData,x):

m = len(xData)

r = yData.copy()

rO01ld = zeros(m)

for k in range(m-1):

for i in range(m-k-1):
if abs(x - xDatal[i+k+1]) < 1.0e-9:
return yData[i+k+1]

else:

return r[0]

EXAMPLE 3.5
Given the data

cl
c2

r[i+l] - r[i]
r[i+l] - rOld[i+1]

c3 = (x - xDatal[il])/(x - xData[i+k+1])
r[i] = r[i+1] + c1/(Cc3*(1.0 - c1l/c2) - 1.0)

rO0l1d[i+1] = r[i+1]
x| 0 0.6 0.8 0.95
y | 0] 1.3764 | 3.0777 | 12.7062

determine y(0.5) by the diagonal rational function interpolation.

Solution The plot of the data points indicates that y may have a pole at around x = 1.
Such a function is a very poor candidate for polynomial interpolation, but can be
readily represented by a rational function.

14.0

12.0

10.0
=~

8.0

[
/
j

6.0

4.0

2.0

0.0 ©

0.0

1.0

3.2 Polynomial Interpolation

We set up our work in the format of Table 3.3. After we complete the computa-
tions, the table looks like this:

k=-1 k=0 k=1 k=2 k=3

i=1 0 0 0 0 0.9544 | 1.0131
i=2] 06 0 1.3764 | 1.0784 | 1.0327

i=3]| 038 0 3.0777 | 1.2235

i=41095 0 12.7062

Let us now look at a few sample computations. We obtain, for example, R[xs, x4] by
substituting i = 3, k = 1 into Eqgs. (3.9). This yields

X — X3 R[x4] — R[x3]
S= 1-— -1
X — Xy < R[x4]—R[x4,...,x3]>

5—-0.8 12.7062 — 3.0777
_ 0 < —) —1=-0.83852

T 0.5-0.95 12.7062 — 0
R[x4] — Rlx
Rixs, xi] = Rlxi) + w
12.7062 — 3.0777
= 12.7062 + =1.2235
—0.83852

The entry R[x;, X3, X4] is obtained with i = 2, k = 2. The result is
g XX (1 _ Rlxs, x4] — Rlx,, xs]) B
X — X4 Rlx3, x4] — R[x3]
0.5-0.6 (1.2235 — 1.0784

= - —1=-0.76039
0.5-0.95 1.2235 - 3.0777

Rlxs, x4] — R,
Rlxs, %5, 1] = Rlxs, xg] + 20 Xl = Rz, xs)

S
1.2235 - 1.0784
=122354+ ——F - =1.0327
—0.76039

The interpolant at x = 0.5 based on all four data points is R[x;, X2, X3, X4] = 1.0131.

EXAMPLE 3.6
Interpolate the data shown at x increments of 0.05 and plot the results. Use both the
polynomial interpolation and the rational function interpolation.

X 0.1 0.2 0.5 0.6 0.8 1.2 1.5
y || —1.5342 | —1.0811 | —0.4445 | —0.3085 | —0.0868 | 0.2281 | 0.3824

Solution

#!/usr/bin/python

example 3_6

from numpy import array,arange
from rational import *

from neville import *

Interpolation and Curve Fitting

xData = array([0.1,0.2,0.5,0.6,0.8,1.2,1.5])

yData = array([-1.5342,-1.0811,-0.4445,-0.3085, \
-0.0868,0.2281,0.38241)

x = arange(0.1,1.55,0.05)

len(x)
y = zeros((n,2))

n

print X Rational Neville’

for i in range(n):
y[i,0] = rational(xData,yData,x[i])
y[i,1] = neville(xData,yData,x[i])

print '%4.2f %9.5f %9.5f’% (x[i],y[i,0],y[i,1])

A plot of the printed output (the printout is not shown) follows.

0.5

0 05 1 1.6

In this case, the rational function interpolant (solid line) is smoother and thus
superior to the polynomial interpolant (dotted line).

Interpolation with Cubic Spline

If there are more than a few data points, a cubic spline is hard to beat as a global
interpolant. It is considerably "stiffer” than a polynomial in the sense that it has less
tendency to oscillate between data points.

The mechanical model of a cubic spline is shown in Fig. 3.6. It is a thin, elastic
beam that is attached with pins to the data points. Because the beam is unloaded
between the pins, each segment of the spline curve is a cubic polynomial - recall from
beam theory that d*y/dx* = q/(EI), so that y(x) is a cubic since g = 0. At the pins,

3.3 Interpolation with Cubic Spline

Elastic strip

Pins (data points)
X

Figure 3.6. Mechanical model of natural cubic spline.

the slope and bending moment (and hence the second derivative) are continuous.
There is no bending moment at the two end pins; consequently, the second derivative
of the spline is zero at the end points. Because these end conditions occur naturally
in the beam model, the resulting curve is known as the natural cubic spline. The pins,
that is, the data points, are called the knots of the spline.

Figure 3.7 shows a cubic spline that spans n+ 1 knots. We use the notation
fii+v1(x) for the cubic polynomial that spans the segment between knots i and i + 1.
Note that the spline is a piecewise cubic curve, put together from the n cubics
Jo1(x), fA,2(x), ..., fu_1,n(x), all of which have different coefficients.

Denoting the second derivative of the spline at knot i by k;, continuity of second
derivatives requires that

i) = fia(a) = ki (a)

At this stage, each k is unknown, except for

The starting point for computing the coefficients of f;;;;(x) is the expression for
fi41(x), which we know to be linear. Using Lagrange’s two-point interpolation, we
can write

[l () = ki€i (%) + kiy1€i1 ()

fiis1(X)

Ya-1

n

| |

l |

| | |
X0 X Xi-1 X Xiiq Xn-1 Xn

Figure 3.7. Cubic spline.

Interpolation and Curve Fitting

where
X — X X — X
) = = =
Xi — Xit+1 Xit1 — X
Therefore,
ki(x — xi41) — ki1 (x — x3)
1/ i i+1 i+1 i
(X)) = b
Fia @ . (b)
Integrating twice with respect to x, we obtain
ki(x — xi41)% — ki (x — x)3
Pir1(X) = A(x — Xxi11) — Blx — x; (¢
ﬁ,1+1() 6(xi — xi+1) + (l+l) (1) ()

where A and B are constants of integration. The terms arising from the integration
would usually be written as Cx + D. By letting C = A — Band D = —Ax;;1 + Bx;, we
end up with the last two terms of Eq. (c), which are more convenient to use in the
computations that follow.

Imposing the condition f;;;1(x;) = y;, we get from Eq. (c)

ki(x; — x;41)3
T A — X — v
60y — xiay) 0T) =
Therefore,
N k;
A= — — — (% —X; d
% — X 6 (X% — Xi1) (d)
Similarly, f ;1 (Xi+1) = yi1 yields
) k:
B=—YHL S (%) ©)

X — Xit1 6

Substituting Eqgs. (d) and (e) into Eq. (c) results in

ki [(x— xi1)3
ﬁ.iﬂ(x) = 6 |:xl_7x-:l — (x = X)) (x5 — xi+1)]
. —)3
— klgl [u —(x = x)(x — xi+1)] (3.10)
Xi — Xit+1
+mu—nm—nﬂu—m
Xi — Xit1

The second derivatives k; of the spline at the interior knots are obtained from the
slope continuity conditions f_ L) =]j/ i1 (X0, wherei =1, 2, ..., n— 1. After a little
algebra, this results in the simultaneous equations

ki1 (o — %) + 2k (621 — Xip1) + Kig1 (6 — Xi)

:6<n4—%_%—wﬂ>,i:Lz”,n_1 3.11)
Xi1— X Xi— X1

Because Egs. (3.11) have a tridiagonal coefficient matrix, they can be solved econom-
ically with the functions in module L.Udecomp3 described in Section 2.4.

3.3 Interpolation with Cubic Spline

If the data points are evenly spaced at intervals i, then x;_; — x; = x; — ;11 = —h,
and Egs. (3.11) simplify to

6 .
ki +4ki+ ki = ﬁ(yz‘q —2Yi+¥y), i=12,...,n—-1 (3.12)

B cubicSpline

The first stage of cubic spline interpolation is to set up Egs. (3.11) and solve them for
the unknown ks (recall that ky = k,, = 0). This task is carried out by the function cur-
vatures. The second stage is the computation of the interpolant at x from Eq. (3.10).
This step can be repeated any number of times with different values of x using the
function evalSpline. The function findSegment embedded in evalSpline finds
the segment of the spline that contains x using the method of bisection. It returns the
segment number, that is, the value of the subscript i in Eq. (3.10).

module cubicSpline
'’’’ k = curvatures(xData,yData).
Returns the curvatures of cubic spline at its knots.

y = evalSpline(xData,yData,k,x).
Evaluates cubic spline at x. The curvatures k can be
computed with the function ’curvatures’.

from numpy import zeros,ones

%

from LUdecomp3 import

def curvatures(xData,yData):

n = len(xData) - 1

c = zeros(n)

d = ones(n+1l)

e = zeros(n)

k = zeros(n+l)

c[0:n-1] = xData[0:n-1] - xData[l:n]

d[1l:n] = 2.0*(xData[0:n-1] - xData[2:n+1])

e[l:n] xData[l:n] - xData[2:n+1]

k[1:n] =6.0*(yData[0:n-1] - yData[l:n]) \
/(xData[0:n-1] - xData[l:n]) \

-6.0*(yData[l:n] - yData[2:n+1]) \

/(xData[l:n] - xData[2:n+1])

LUdecomp3(c,d,e)

LUsolve3(c,d,e,k)

return k

Interpolation and Curve Fitting

def evalSpline(xData,yData,k,x):

def findSegment(xData,x):
iLeft = 0
iRight = len(xData)- 1
while 1:
if (iRight-iLeft) <= 1: return ilLeft
i =(ilLeft + iRight)/2
if x < xData[i]: iRight

]
[N

else: ileft = i

i = findSegment(xData,x)
h = xData[i] - xDatal[i+1]
y = ((x - xDatal[i+1])**3/h - (x - xData[i+1])*h)*k[i]/6.0 \
- ((x - xData[il)**3/h - (x - xData[i])*h)*k[i+1]/6.0 \
+ (yData[i]l*(x - xData[i+1]) \
- yDatal[i+1]*(x - xDatal[i]))/h

return y

EXAMPLE 3.7
Use the natural cubic spline to determine y at x = 1.5. The data points are

x||1]2|3|4]5
y{0]1]0]1

Solution The five knots are equally spaced at & = 1. Recalling that the second deriva-
tive of a natural spline is zero at the first and last knot, we have ky = k; = 0. The
second derivatives at the other knots are obtained from Eq. (3.12). Using i =1, 2, 3
results in the simultaneous equations

044k +k =6[0-2(1)+0] =-12
ki+4k, + ks =6[1—-2(0)+1] =12
ko +4ks +0=6[0—2(1)+0] = —12

The solution is k; = ks = —30/7, k, = 36/7.

The point x = 1.5 lies in the segment between knots 0 and 1. The corresponding
interpolant is obtained from Eq. (3.10) by settingi = 0. With x; — x;.; = —h = —1, we
obtain from Eq. (3.10)

ki k
ﬁﬂm:—éﬁu—mﬁ—u—mﬂ+é{u—mﬁ—u—mﬂ

— [Yo(x — x1) — y1(x — x0)]

3.3 Interpolation with Cubic Spline

Therefore,

y(1.5) = f,1(1.5)

=0+ % (—?) [15-1)°-(1.5-1)]—[0-1(1.5—1)]
= 0.7679

The plot of the interpolant, which in this case is made up of four cubic segments, is
shown in the figure.

|
1.00 -t
|
|
1

|
|
1
|
|
1
0.80 -4 \—- S
1
0.60 /4 t
|
|

0.40 [——fmprmmmcpomme e

e A

JE S A

B T W A e

EXAMPLE 3.8

Sometimes it is preferable to replace one or both of the end conditions of the cu-
bic spline with something other than the natural conditions. Use the end condition
f5.1(0) = 0 (zero slope), rather than f;’, (0) = 0 (zero curvature), to determine the cu-
bic spline interpolant at x = 2.6, given the data points

x[ol1] 2 [3
yl1]1]o05]0

Solution We must first modify Egs. (3.12) to account for the new end condition. Set-
ting i = 0 in Eq. (3.10) and differentiating, we get

ko |:3 (x — x1)? ks [(x — x)?

= — — —x)|——=13
fa'l(x) 6 Xo — X1 (%o 1)] 6 Xo — X1

Yo— 11
Xo — X1

— (% — xl)] +

Thus, the end condition ﬁ;,1 (x0) = Oyields

k k —
20 (0 — x1) + L (g —) + 22—
3 6 Xo — X1
or
Yo—N

2k + Ky = —6-L "I
o (% — x1)?

Interpolation and Curve Fitting
From the given data, we see that yy = y; = 1, so that the last equation becomes
2ko+ ki =0 (@
The other equations in Eq. (3.12) are unchanged. Knowing that k3 = 0, they are
ko + 4k +k, =6[1—-2(1)+05]=-3 (b)
k1 +4k, =6[1—-2(05+0]=0 (c)

The solution of Egs. (a)-(c) is ky = 0.4615, k; = —0.9231, k, = 0.2308.
The interpolant can now be evaluated from Eq. (3.10). Substitutingi = 2 and x; —
X;11 = —1, we obtain

k k
b)) = g [0 = x2)° + (x — 3] — g [— 0)° + (x —)]

=12 (x — x3) + y3(x — x2)

Therefore,

0.2308

¥(2.6) = f,3(2.6) =
= 0.1871

[-(~0.4)° 4+ (—0.4)] — 0 — 0.5(—0.4) + 0

EXAMPLE 3.9

Utilize the module cubicSpline to write a program that interpolates between given
data points with the natural cubic spline. The program must be able to evaluate the
interpolant for more than one value of x. As a test, use the data points specified in Ex-
ample 3.4 and compute the interpolant at x = 1.5 and x = 4.5 (because of symmetry,
these values should be equal).

Solution

#!/usr/bin/python
example3_9
from numpy import array,float

s

from cubicSpline import *

xData array([1,2,3,4,5],dtype=float)
yData = array([0,1,0,1,0],dtype=float)
k = curvatures(xData,yData)
while 1:
try: x = eval(raw_input(’’\nx ==> "))
except SyntaxError: break

print '’y =’’,evalSpline(xData,yData,k,x)

raw_input(’’Done. Press return to exit’’)

3.3 Interpolation with Cubic Spline

w

X

Running the program produces the following result:

==> 1.5
0.767857142857

==> 4.5
0.767857142857

==>

Done. Press return to exit

PROBLEM SET 3.1

1. Given the data points

x || —1.2 0.3 1.1
y | —576 | =5.61 | —3.69

determine y at x = 0 using (a) Neville’s method and (b) Lagrange’s method.
Find the zero of y(x) from the following data:

X 0 0.5 1 1.5 2 2.5 3
y || 1.8421 | 2.4694 | 2.4921 | 1.9047 | 0.8509 | —0.4112 | —1.5727

Use Lagrange’s interpolation over (a) three and (b) four nearest-neighbor data
points. Hint: After finishing part (a), part (b) can be computed with a relatively
small effort.

The function y(x) represented by the data in Problem 2 has a maximum at
x = 0.7692. Compute this maximum by Neville’s interpolation over four nearest-
neighbor data points.

Use Neville’s method to compute y at x = 7 /4 from the data points

X 0 0.5 1 1.5 2
y || —1.00 | 1.75 | 4.00 | 5.75 | 7.00

. Given the data

X 0 0.5 1 1.5 2
y || —0.7854 | 0.6529 | 1.7390 | 2.2071 | 1.9425

find y at x = 7 /4 and at 7 /2. Use the method that you consider to be most con-
venient.
The points

x| =21 4| -1 3 —4
vi-1]2]259 4|24 | =53

lie on a polynomial. Use the divided difference table of Newton’s method to de-
termine the degree of the polynomial.

Interpolation and Curve Fitting

7.

10.

11.

12.

13.

14.

Use Newton’s method to find the polynomial that fits the following points:

x| -3]12|-1| 3|1
yiI O|5|—-4|12|0

Use Neville’s method to determine the equation of the quadratic that passes
through the points

x || -1 1 3
¥ 17 | =7 | =15

. The density of air p varies with elevation £ in the following manner:

h (km) 0 3 6
p (kg/m3) || 1.225 | 0.905 | 0.652

Express p(h) as a quadratic function using Lagrange’s method.
Determine the natural cubic spline that passes through the data points

x||0]1]|2
y{0]2]|1

Note that the interpolant consists of two cubics, one valid in 0 < x < 1, the other
in 1 < x < 2. Verify that these cubics have the same first and second derivatives
atx =1.

Given the data points

x| 1][2]3]a]s5
yll13[15]12]9]13

determine the natural cubic spline interpolant at x = 3.4.
Compute the zero of the function y(x) from the following data:

X 0.2 0.4 0.6 0.8 1.0
y || 1.150 | 0.855 | 0.377 | —0.266 | —1.049

Use inverse interpolation with the natural cubic spline. Hint: reorder the data so
that the values of y are in ascending order.

Solve Example 3.6 with a cubic spline that has constant second derivatives within
its first and last segments (the end segments are parabolic). The end conditions
for this spline are ky = k; and k,,_; = k.

B Write a computer program for interpolation by Neville’s method. The program
must be able to compute the interpolant at several user-specified values of x. Test
the program by determining y at x = 1.1, 1.2, and 1.3 from the following data:

X -2.0 -0.1 -15 0.5
y || 2.2796 | 1.0025 | 1.6467 | 1.0635
X —0.6 2.2 1.0 1.8
y || 1.0920 | 2.6291 | 1.2661 | 1.9896

(Answer: y = 1.3262, 1.3938, 1.4639)

3.3 Interpolation with Cubic Spline

15.

16.

17.

18.

19.

20.

21.

W The specific heat ¢, of aluminum depends on temperature T as follows>:

T (°C) —250 —200 | —100 0 100 300
cp (kKJ/kg'K) || —0.0163 | 0.318 | 0.699 | 0.870 | 0.941 | 1.04

Plot the polynomial and the rational function interpolants from T = —250° to
500°. Comment on the results.
B Using the data

X 0 0.0204 | 0.1055 | 0.241 | 0.582 | 0.712 | 0.981
vy || 0.385 1.04 1.79 2.63 4.39 4.99 5.27

plot the rational function interpolant from x = 0 to x = 1.

B The table shows the drag coefficient cp of a sphere as a function of the Reynolds
number Re.2 Use the natural cubic spline to find ¢p at Re = 5, 50, 500, and 5000.
Hint: use log-log scale.

Re || 0.2 2 20 200 2000 | 20000
¢cp || 103 | 13.9 | 2.72 | 0.800 | 0.401 | 0.433

B Solve Prob. 17 using a polynomial interpolant intersecting four nearest-
neighbor data points (do not use log scale).

B The kinematic viscosity u; of water varies with temperature T in the following
manner:

T (°Q) 0 21.1 | 37.8 54.4 71.1 87.8 100
i (1073 m?/s) || 1.79 | 1.13 | 0.696 | 0.519 | 0.338 | 0.321 | 0.296

Interpolate . at T = 10°, 30°, 60°, and 90°C.
B The table shows how the relative density p of air varies with altitude h. Deter-
mine the relative density of air at 10.5 km.

h(km) || 0 | 1.525 3.050 | 4.575 6.10 7.625 9.150
0 1| 0.8617 | 0.7385 | 0.6292 | 0.5328 | 0.4481 | 0.3741

B The vibrational amplitude of a driveshaft is measured at various speeds. The
results are

Speed (rpm) 0 | 400 800 1200 1600
Amplitude (mm) || 0 | 0.072 | 0.233 | 0.712 | 3.400

Use rational function interpolation to plot amplitude versus speed from 0 to 2500
rpm. From the plot, estimate the speed of the shaft at resonance.

2 Source: Z. B. Black, and J. G. Hartley, Thermodynamics (Harper & Row, 1985).
3 Source: E Kreith, Principles of Heat Transfer (Harper & Row, 1973).

Interpolation and Curve Fitting

Least-Squares Fit
Overview

If the data are obtained from experiments, these typically contain a significant
amount of random noise due to measurement errors. The task of curve fitting is to
find a smooth curve that fits the data points “on the average.” This curve should have
a simple form (e.g., a low-order polynomial), so as to not reproduce the noise.

Let

fx) = flxsao, a1, ..., am)

be the function that is to be fitted to the n + 1 data points (x;, i), i=0,1,..., n.The
notation implies that we have a function of x that contains m + 1 variable parameters
ao, A, . . ., Ay, where m < n. The form of f(x) is determined beforehand, usually from
the theory associated with the experiment from which the data are obtained. The
only means of adjusting the fit are the parameters. For example, if the data represent
the displacements y; of an overdamped mass—spring system at time t;, the theory
suggests the choice f(t) = apte . Thus, curve fitting consists of two steps: choosing
the form of f(x), followed by computation of the parameters that produce the best fit
to the data.

This brings us to the question: What is meant by “best” fit? If the noise is confined
to the y-coordinate, the most commonly used measure is the least-squares fit, which
minimizes the function

n

Slag, ay, ..., an) = Z [J/i — f(x,‘)]2 (3.13)
i=0
with respect to each a;. Therefore, the optimal values of the parameters are given by
the solution of the equations
95 _

=0, k=0,1,...,m (3.149)
oay

The terms r; = y; — f(x;) in Eq. (3.13) are called residuals; they represent the discrep-
ancy between the data points and the fitting function at x;. The function S to be min-
imized is thus the sum of the squares of the residuals. Equations (3.14) are generally
nonlinear in a; and may thus be difficult to solve. Often the fitting function is chosen
as a linear combination of specified functions f;(x):

f@) =aofo(x) +aifix)+ - + amfrn(x)

in which case Egs. (3.14) are linear. If the fitting function is a polynomial, we have
o) =1, fi(x) = x, £(x) = x?, and so on.

The spread of the data about the fitting curve is quantified by the standard devi-
ation, defined as

(3.15)

3.4 Least-Squares Fit

Note that if n = m, we have interpolation, not curve fitting. In that case both the nu-
merator and the denominator in Eq. (3.15) are zero, so that ¢ is indeterminate.

Fitting a Straight Line
Fitting a straight line

fx) =a+ bx (3.16)
to data is also known as linear regression. In this case, the function to be minimized
is

n n

S, b =Y [yi— fe]" = (yi—a-bx)

i=0 i=0

Equations (3.14) now become

Z;:Z—Z(yi—a—bx,-):2|:a(n+1)+b2x,-—2yi:| =0
i=0

i=0 i=0

aS n n n n
5 = Z—Z(yi—a—bx,-)xi=2<a2xi+b2xi2—2xiyi> =0

i=0 i=0 i=0 i=0
Dividing both equations by 2 (n + 1) and rearranging terms, we get

n

o 1) 1 <
a+ixb=y xa+<n+12xi>b=n+1;xi%

i=0
where

) R
n+lzxi V= n—i—lzyi 3.17)

i=0 i=0

are the mean values of the x and y data. The solution for the parameters is
a:ny?—Xinyi b:inJ’i—fCZJ’i
> x? — nx? > x? — nx?

These expressions are susceptible to roundoff errors (the two terms in each numera-
tor as well as in each denominator can be roughly equal). It is better to compute the
parameters from

(3.18)

b= >yl — %)
Y X — %)

which are equivalent to Egs. (3.18), but much less affected by rounding off.

a=j—xb (3.19)

Fitting Linear Forms

Consider the least-squares fit of the linear form

) =aofolx) + a1 fi(x) + ... + amfu(x) = Y a; fi(x) (3.20)
j=0

Interpolation and Curve Fitting

where each f;(x) is a predetermined function of x, called a basis function. Substitu-
tion in Eq. (3.13) yields

N

2
S= |:J/i—zajfj(xi):|

i=0 j=0

Thus, Egs. (3.14) are

BS n m
aak:—zl {y,-—Zajfj(x,-)} ﬁc(x,-)] =0, k=0,1,...,m

i=0 j=0

Dropping the constant (—2) and interchanging the order of summation, we get
m n n
> [Zf,-(xi)fk(xi)} aj=Y fwy, k=01,...,m
j=0 Li=0 i=0
In matrix notation, these equations are
Aa=D>b (3.21a)
where
n n
A=Y i fite) be=)_ filx)y (3.21b)
i=0 i=0
Equations (3.21a), known as the normal equations of the least-squares fit, can be
solved with the methods discussed in Chapter 2. Note that the coefficient matrix is
symmetric, thatis, Axj = Ajy.
Polynomial Fit

A commonly used linear form is a polynomial. If the degree of the polynomial is m,
we have f(x) = Z;”:O aj x/. Here the basis functions are

fw=x (=01..m (3.22)

so that Egs. (3.21b) become

n n
j+k k
A=) x b= x{vi
i=0 i=0

or
n x>« DD i Sy
Yxoo X Yx . Xt > xiyi
=1.) . L. =1. (3.23)
POECD SEUND SPCLLNN 3P I

where) stands for) ! . The normal equations become progressively ill condi-
tioned with increasing m. Fortunately, this is of little practical consequence, because
only low-order polynomials are useful in curve fitting. Polynomials of high order are
not recommended, because they tend to reproduce the noise inherent in the data.

3.4 Least-Squares Fit

W polyFit

The function polyFit in this module sets up and solves the normal equations
for the coefficients of a polynomial of degree m. It returns the coefficients of the
polynomial. To facilitate computations, the terms n, Y x;, inz, cey xl.z’" that
make up the coefficient matrix in Eq. (3.23) are first stored in the vector s and
then inserted into A. The normal equations are then solved by Gauss elimina-
tion with pivoting. Following the solution, the standard deviation o can be com-
puted with the function stdDev. The polynomial evaluation in stdDev is carried
out by the embedded function evalPoly — see Section 4.7 for an explanation of the
algorithm.

module polyFit
'’’’ ¢ = polyFit(xData,yData,m).

Returns coefficients of the polynomial

p(x) = c[0] + c[1l]x + c[2]x"2 +...+ c[m]x"m
that fits the specified data in the least

squares sense.

sigma = stdDev(c,xData,yData).
Computes the std. deviation between p(x)
and the data.

from numpy import zeros

from math import sqrt

*

from gaussPivot import

def polyFit(xData,yData,m):

a = zeros((m+1l,m+1))
b = zeros(m+1)
s = zeros(2*m+1)

for i in range(len(xData)):
temp = yDatali]
for j in range(m+1):
b[j]
temp = temp*xDatali]

b[j] + temp

temp = 1.0

for j in range(2*m+1):
s3]
temp = temp*xDatali]

s[j] + temp

for i in range(m+1):
for j in range(m+1):
al[i,jl = s[i+]]
return gaussPivot(a,b)

Interpolation and Curve Fitting

def stdDev(c,xData,yData):

def evalPoly(c,x):
m = len(c) - 1
p = c[m]
for j in range(m):
P = p*x + c[m-j-1]

return p

n len(xData) - 1
len(c) - 1

sigma = 0.0

m

for i in range(n+1):

p = evalPoly(c,xDatal[i])

sigma = sigma + (yDatal[i] - p)**2
sigma = sqrt(sigma/(n - m))

return sigma

Weighting of Data

There are occasions when our confidence in the accuracy of data varies from point to
point. For example, the instrument taking the measurements may be more sensitive
in a certain range of data. Sometimes the data represent the results of several exper-
iments, each carried out under different conditions. Under these circumstances, we
may want to assign a confidence factor, or weight, to each data point and minimize
the sum of the squares of the weighted residualsr; = W, [y,- - f(x,-)], where W, are the
weights. Hence, the function to be minimized is

Sa, a, ..., am) = Y W2 [yi — flx)|° (3.24)
i=0

This procedure forces the fitting function f(x) closer to the data points that have
higher weights.

Weighted Linear Regression
If the fitting function is the straight line f(x) = a + bx, Eq. (3.24) becomes

Sta, b) = WE(y; — a — bx;)? (3.25)

i=0
The conditions for minimizing S are

aS

—=-2) W(yi-a-bx)=
5 ; Fyi—a—bx)=0

3.4 Least-Squares Fit

or
n n n
ad WE+by Wx=Y Wy (3.26a)
i=0 i=0 i=0
n n n
a) Wxi+b) Wext=Y Wxy (3.26b)
i=0 i=0 i=0
Dividing Eq. (3.26a) by Y W? and introducing the weighted averages
W2 w2
POEDSLUE D DL (3.27)
W W
we obtain
a=7—bx (3.28a)
Substituting into Eq. (3.26b) and solving for b yields, after some algebra,
W2y;(x; —
b::2;4J§&£244é2 (3.28b)
> Wexi(x — %)

Note that Egs. (3.28) are quite similar to Egs. (3.19) for unweighted data.

Fitting Exponential Functions
A special application of weighted linear regression arises in fitting various exponen-
tial functions to data. Consider as an example the fitting function

flx) = ae’

Normally, the least-squares fit would lead to equations that are nonlinear in @ and b.
But if we fit In y rather than y, the problem is transformed to linear regression: fit the
function

Fx)=Inf(x) =1Ina+ bx

to the data points (x;, Iny;), i =0, 1, ..., n. This simplification comes at a price: the
least-squares fit to the logarithm of the data is not quite the same as the least-squares
fit to the original data. The residuals of the logarithmic fit are

R =Iny;— F(x;) =Iny; — (Ina + bx)) (3.29a)
whereas the residuals used in fitting the original data are
ri=yi— fla) = yi — ae’™ (3.29b)

This discrepancy can be largely eliminated by weighting the logarithmic fit. From
Eq. (3.29b) we obtain In(r; — ;) = In(ae®™) = Ina + bx;, so that Eq. (3.29a) can be
written as

1

R =Iny,—In(r; — y3) =In (1 - Q)

Interpolation and Curve Fitting

If the residuals r; are sufficiently small (r; << y;), we can use the approximation
In(1 — r;/y;) = r;/y;, so that

Ry =ri/yi

We can now see that by minimizing > R?, we have inadvertently introduced the
weights 1/y;. This effect can be negated if we apply the weights W, = y; when fitting
F(x) to (In y;, x;). That is, minimizing

S=> VR (3.30)
i=0

is a good approximation to minimizing }" r?.
Other examples that also benefit from the weights W, = y; are given in Table 3.4.

’ flx) ‘ F(x) ‘ Data to be fitted by F(x) ‘
axe?™ | In[f(x)/x] =Ina + bx [, In(yi/x)]
ax’ | In f(x) =Ina+ bIn(x) (In x;, In y;)
Table 3.4

EXAMPLE 3.10
Fit a straight line to the data shown and compute the standard deviation.

x[[00]10[20]25]30
y| 2937414450

Solution The averages of the data are

1 00+1.0+20+25+3.0

x:gin: - 1.7

! 29+37+41+44+50
7=y w= = =4.02

The intercept a and slope b of the interpolant can now be determined from Eq. (3.19):

b= Z J’i(xi - -7_6)
Y X — %)
_ 2.9(-1.7) +3.7(—-0.7) + 4.1(0.3) + 4.4(0.8) + 5.0(1.3)
T 0.0(=1.7) + 1.0(=0.7) + 2.0(0.3) + 2.5(0.8) + 3.0(1.3)
3.73

= =0.6431
5.8

a=jy—xb=4.02-1.7(0.6431) = 2.927

Therefore, the regression line is f(x) = 2.927 4 0.6431x, which is shown in the figure
together with the data points.

3.4 Least-Squares Fit

5.00

4.50

=~
4.00

3.50

We start the evaluation of the standard deviation by computing the residuals:

X 0.000 | 1.000 2.000 2.500 | 3.000

y 2.900 | 3.700 4.100 4.400 | 5.000
f) 2.927 | 3.570 4.213 4.535 | 4.856
y — f(x) || =0.027 | 0.130 | —0.113 | —0.135 | 0.144

The sum of the squares of the residuals is

S= Z [vi— f(xi)]2

= (=0.027)% + (0.130)% + (—=0.113)% + (—0.135)? + (0.144)? = 0.06936

so that the standard deviation in Eq. (3.15) becomes

/0.06

o= S = 936 = 0.1520
5-2 3

EXAMPLE 3.11

Determine the parameters a and b so that f(x) = ae’* fits the following data in the
least-squares sense.

x| 12| 28| 43| 54 6.8 7.9
Yyl 751161 | 389 | 67.0 | 146.6 | 266.2

Use two different methods: (1) fit In y; and (2) fit In y; with weights W} = y;. Compute
the standard deviation in each case.

Solution of Part (1) The problem is to fit the function In(ae”*) = Ina + bx to the data

X 1.2 2.8 43 5.4 6.8 7.9
z=Iny || 2.015 | 2.779 | 3.661 | 4.205 | 4.988 | 5.584

Interpolation and Curve Fitting

We are now dealing with linear regression, where the parameters to be found are
= Ina and b. Following the steps in Example 3.8, we get (skipping some of the arith-
metic details)

1 !
:éin:4.733 z:EZz,-:?:.B?Z
(—% 16716
_xaw—9 —0.5366 A—z—xb=1.3323
> xi(x;—x) 31.153

Therefore, a = ¢! = 3.790 and the fitting function becomes f(x) = 3.790¢*536, The
plots of f(x) and the data points are shown in the figure.

300 ‘ ‘ ‘] i i
L l l 1 1 1 1
| | | | | |
250 | e SRR S — -
A
2,200 [S A
B | | | | |
| | | | |
150 =+ I 1 R [S R
- 1 1 1 1 1
| | | | |
100 F——- T e P T R
L A
50 - I S b B
D e
0 ' ' 1 ' 11 1 ' 1 1 1 ' 1 1 1
1 2 3 4 5 6 7 8
X
Here is the computation of standard deviation:
X 1.20 2.80 4.30 5.40 6.80 7.90
y 7.50 | 16.10 | 38.90 | 67.00 | 146.60 | 266.20
fx) 7.21 | 17.02 | 38.07 | 68.69 | 145.60 | 262.72
y—fx) || 0.29 | —0.92 0.83 | —1.69 1.00 3.48
S=> v — f)]* =17.59
S
= [——=2.10
7TV6-2

As pointed out before, this is an approximate solution of the stated problem, be-
cause we did not fit y;, but In y;. Judging by the plot, the fit seems to be quite good.

Solution of Part (2) We again fit In(ae’*) = Ina + bx to z = Iny, but this time the
weights W, = y; are used. From Egs. (3.27) the weighted averages of the data are

3.4 Least-Squares Fit

(recall that we fitz =1n y)
S yixi 737.5 x 10°

X = = =7.474
YTy T 9867 x 108
5 Y ¥z 5282x10° 5 353
Yy 9867 x108
and Egs. (3.28) yield for the parameters
27 (x: — X 3
b > Yizi(x —%) 3539 x10 — 0.5440

Yyl —X) 65.05 x 103

Ina =Z2z— bx =5.353 — 0.5440(7.474) = 1.287
Therefore,
a=ée"" = e = 3,622

so that the fitting function is f(x) = 3.622¢%5440% As expected, this result is somewhat
different from that obtained in Part (1).
The computations of the residuals and the standard deviation are as follows:

X 1.20 2.80 | 4.30 5.40 6.80 7.90

y 7.50 | 16.10 | 38.90 | 67.00 | 146.60 | 266.20
fx) 6.96 | 16.61 | 37.56 | 68.33 | 146.33 | 266.20
y—f(x) || 0.54 | —0.51 1.34 | —1.33 0.267 0.00

S=>"[y - f)] =4.186

o= 78 =1.023
6-2

Observe that the residuals and standard deviation are smaller than those in Part (1),
indicating a better fit, as expected.

It can be shown that fitting y; directly (which involves the solution of a transcen-
dental equation) results in f(x) = 3.614€%%442, The corresponding standard deviation
is o = 1.022, which is very close to the result in Part (2).

EXAMPLE 3.12

Write a program that fits a polynomial of arbitrary degree m to the data points shown
in the table. Use the program to determine m that best fits these data in the least-
squares sense.

—0.04 0.93 1.95 2.90 3.83 | 5.00
—8.66 | —6.44 | —4.36 | —3.27 | —0.88 | 0.87
5.98 7.05 8.21 9.08 | 10.09
3.31 4.63 6.19 7.40 8.85

<R[|®

Interpolation and Curve Fitting

Solution The program shown below prompts for m. Execution is terminated by en-
tering an invalid character (e.g., the “return” character).

#!/usr/bin/python

example3_12

from numpy import array

from polyFit import *

xData = array([-0.04,0.93,1.95,2.90,3.83,5.0, \
5.98,7.05,8.21,9.08,10.091)
yData = array([-8.66,-6.44,-4.36,-3.27,-0.88,0.87, \
3.31,4.63,6.19,7.4,8.85]1)
while 1:
try:
m = eval(raw_input(’’\nDegree of polynomial ==> ’'’))
coeff = polyFit(xData,yData,m)
print ’'’Coefficients are:\n’’,coeff
print ’'’Std. deviation =’’,stdDev(coeff,xData,yData)
except SyntaxError: break

raw_input(’ ’Finished. Press return to exit’’)

The results are:
Degree of polynomial ==> 1
Coefficients are:
[-7.94533287 1.72860425]
Std. deviation = 0.511278836737

Degree of polynomial ==> 2
Coefficients are:

[-8.57005662 2.15121691 -0.04197119]
Std. deviation = 0.310992072855

Degree of polynomial ==> 3

Coefficients are:

[-8.46603423e+00 1.98104441e+00 2.88447008e-03 -2.98524686e-03]
Std. deviation = 0.319481791568

Degree of polynomial ==> 4

Coefficients are:

[-8.45673473e+00 1.94596071e+00 2.06138060e-02
-5.82026909e-03 1.41151619e-04]

Std. deviation = 0.344858410479

Degree of polynomial ==>

Finished. Press return to exit

3.4 Least-Squares Fit

Because the quadratic f(x) = —8.5700 + 2.1512x — 0.041971x? produces the
smallest standard deviation, it can be considered as the “best” fit to the data. But
be warned - the standard deviation is not a reliable measure of the goodness-of-fit.
It is always a good idea to plot the data points and f(x) before final determination is
made. The plot of our data indicates that the quadratic (solid line) is indeed a reason-
able choice for the fitting function.

10.0

5.0

0.0

-5.0

-10.0
-2

PROBLEM SET 3.2

Instructions Plot the data points and the fitting function whenever appropriate.

1. Show that the straight line obtained by least-squares fit of unweighted data al-
ways passes through the point (%, y).
2. Use linear regression to find the line that fits the data

x || =10 -0.5 0 0.5 1.0
y || —1.00 | —0.55 | 0.00 | 0.45 | 1.00

and determine the standard deviation.
3. Three tensile tests were carried out on an aluminum bar. In each test the strain
was measured at the same values of stress. The results were

Stress (MPa) 34.5 | 69.0 | 103.5 | 138.0
Strain (Test 1) || 0.46 | 0.95 | 1.48 1.93
Strain (Test2) || 0.34 | 1.02 | 1.51 2.09
Strain (Test3) || 0.73 | 1.10 | 1.62 2.12

where the units of strain are mm/m. Use linear regression to estimate the mod-
ulus of elasticity of the bar (modulus of elasticity = stress/strain).

4. Solve Problem 3 assuming that the third test was performed on an inferior ma-
chine, so that its results carry only half the weight of the other two tests.

Interpolation and Curve Fitting

5. M Fit a straight line to the following data and compute the standard deviation.

X 0 0.5 1 1.5 2 2.5
y || 3.076 | 2.810 | 2.588 | 2.297 | 1.981 | 1.912
X 3 3.5 4 4.5 5

y || 1.653 | 1.478 | 1.399 | 1.018 | 0.794

6. M The table displays the mass M and average fuel consumption ¢ of motor vehi-
cles manufactured by Ford and Honda in 2008. Fit a straight line ¢ = a + bM to
the data and compute the standard deviation.

Model ‘ M (kg) ‘ ¢ (km/liter) ‘
Focus 1198 11.90
Crown Victoria | 1715 6.80
Expedition 2530 5.53
Explorer 2014 6.38
F-150 2136 5.53
Fusion 1492 8.50
Taurus 1652 7.65
Fit 1168 13.60
Accord 1492 9.78
CR-V 1602 8.93
Civic 1192 11.90
Ridgeline 2045 6.38

7. W The relative density p of air was measured at various altitudes h. The results
were:

h(km) || 0| 1.525 | 3.050 | 4.575 6.10 7.625 9.150
0 1| 0.8617 | 0.7385 | 0.6292 | 0.5328 | 0.4481 | 0.3741

Use a quadratic least-squares fit to determine the relative air density at i =
10.5 km. (This problem was solved by interpolation in Problem 20, Problem
Set3.1.)

8. M The kinematic viscosity u; of water varies with temperature T as shown in the
table. Determine the cubic that best fits the data, and use it to compute p; at
T = 10°, 30°, 60°, and 90°C. (This problem was solved in Problem 19, Problem
Set 3.1, by interpolation.)

T (°Q) 0 211 | 378 | 544 | 71.1 87.8 100
wp 1073 m?/s) || 1.79 | 1.13 | 0.696 | 0.519 | 0.338 | 0.321 | 0.296

9. M Fit a straight line and a quadratic to the data

X 1.0 2.5 3.5 4.0 1.1 1.8 2.2 3.7
y || 6.008 | 15.722 | 27.130 | 33.772 | 5.257 | 9.549 | 11.098 | 28.828

Which is a better fit?

3.4 Least-Squares Fit

10.

11.

12.

13.

14.

15.

B The table displays thermal efficiencies of some early steam engines.* Deter-
mine the polynomial that provides the best fit to the data and use it to predict
the thermal efficiency in the year 2000.

’ Year H Efficiency (%) Type
1718 0.5 Newcomen
1767 0.8 Smeaton
1774 1.4 Smeaton
1775 2.7 Watt
1792 4.5 Watt
1816 7.5 Woolf compound
1828 12.0 Improved Cornish
1834 17.0 Improved Cornish
1878 17.2 Corliss compound
1906 23.0 Triple expansion

B The table shows the variation of relative thermal conductivity k of sodium with
temperature T. Find the quadratic that fits the data in the least-squares sense.

T(°Q 79 190 357 524 690
k 1.00 | 0.932 | 0.839 | 0.759 | 0.693

Let f(x) = ax® be the least-squares fit of the data (x;, y),i=0,1, ..., n, and let
F(x) =Ina + bln x be the least-squares fit of (In x;, In y;) — see Table 3.3. Prove
that R; = r;/y;, where the residuals are r; = y; — f(x;) and R; =Iny; — F(x;). As-
sume thatr; << y;.

Determine a and b for which f(x) = a sin(wx/2) + b cos(w x/2) fits the following
data in the least-squares sense.

X -0.5 -0.19 0.02 0.20 0.35 0.50
y | —3.558 | —2.874 | —1.995 | —1.040 | —0.068 | 0.677

Determine a and b so that f(x) = ax? fits the following data in the least-squares
sense.

x || 0.5 1.0 15 | 2.0 2.5
y | 0.49 | 1.60 | 3.36 | 6.44 | 10.16

Fit the function f(x) = axeb™ to the data and compute the standard deviation.

X 0.5 1.0 1.5 2.0 2.5
y | 0.541 | 0.398 | 0.232 | 0.106 | 0.052

4 Source: C. Singer, E. J. Holmyard, A. R. Hall, and T. H. Williams, A History of Technology (Oxford
University Press, 1958).

Interpolation and Curve Fitting

16. W The intensity of radiation of a radioactive substance was measured at half-year

17.

18.

intervals. The results were:

t (years) 0 0.5 1 1.5 2 2.5
y 1.000 | 0.994 | 0.990 | 0.985 | 0.979 | 0.977

t (years) 3 3.5 4 4.5 5 5.5
y 0.972 | 0.969 | 0.967 | 0.960 | 0.956 | 0.952

where y is the relative intensity of radiation. Knowing that radioactivity decays
exponentially with time, y (f) = ae

substance.

Linear regression can be extended to data that depend on two or more variables
(called multiple linear regression). If the dependent variable is z and indepen-

—b

t

dent variables are x and y, the data to be fitted has the form

X1 |\ n|a
X2 |)2 | 2
X3 | Y3 | %3
Xn | Yn | Zn

, estimate the radioactive half-life of the

Instead of a straight line, the fitting function now represents a plane:

fx,)=a+bx+cy

Show that the normal equations for the coefficients are

Use the multiple linear regression explained in Problem 17 to determine the

function

that fits the data

n XX Xy a
Tx; ZxF O Zxyi|| b
Ty Txyi SyF c

fx,y)=a+bx+cy

EIFA N
00| 1.42
011 1.85
10| 078
210 || 0.18
2|1 0.60
212 1.05

Xz
Y Xz
XYizi

Roots of Equations

Find the solutions of f(x) = 0, where the function fis given

Introduction

A common problem encountered in engineering analysis is this: given a function
f(x), determine the values of x for which f(x) = 0. The solutions (values of x) are
known as the roots of the equation f(x) = 0, or the zeroes of the function f(x).

Before proceeding further, it might be helpful to review the concept of a function.
The equation

y = fx)

contains three elements: an input value x, an output value y, and the rule f for com-
puting y. The function is said to be given if the rule f is specified. In numerical com-
puting the rule is invariably a computer algorithm. It may be a function statement,
such as

f(x) = cosh(x) cos(x) — 1

or a complex procedure containing hundreds or thousands of lines of code. As long
as the algorithm produces an output y for each input x, it qualifies as a function.

The roots of equations may be real or complex. The complex roots are seldom
computed, because they rarely have physical significance. An exception is the poly-
nomial equation

G+ax+ax’>+...+a,x"=0

where the complex roots may be meaningful (as in the analysis of damped vibra-
tions, for example). For the time being, we concentrate on finding the real roots of
equations. Complex zeroes of polynomials are treated near the end of this chapter.

In general, an equation may have any number of (real) roots, or no roots at all.
For example,

sinx—x=0

Roots of Equations

has a single root, namely, x = 0, whereas
tanx —x=0

has an infinite number of roots (x = 0, +4.493, £7.725, ...).

All methods of finding roots are iterative procedures that require a starting point,
that is, an estimate of the root. This estimate can be crucial; a bad starting value may
fail to converge, or it may converge to the “wrong” root (a root different from the one
sought). There is no universal recipe for estimating the value of a root. If the equa-
tion is associated with a physical problem, then the context of the problem (physical
insight) might suggest the approximate location of the root. Otherwise, a systematic
numerical search for the roots can be carried out. One such search method is de-
scribed in the next section. Plotting the function is another means of locating the
roots, but it is a visual procedure that cannot be programmed.

Itis highly advisable to go a step further and bracket the root (determine its lower
and upper bounds) before passing the problem to a root-finding algorithm. Prior
bracketing is, in fact, mandatory in the methods described in this chapter.

Incremental Search Method

The approximate locations of the roots are best determined by plotting the function.
Often a very rough plot, based on a few points, is sufficient to give us reasonable start-
ing values. Another useful tool for detecting and bracketing roots is the incremental
search method. It can also be adapted for computing roots, but the effort would not
be worthwhile, because other methods described in this chapter are more efficient
for that.

The basic idea behind the incremental search method is simple: If f(x;) and f(x,)
have opposite signs, then there is at least one root in the interval (x;, x2). If the inter-
val is small enough, it is likely to contain a single root. Thus, the zeroes of f(x) can be
detected by evaluating the function at intervals Ax and looking for change in sign.

There are a couple of potential problems with the incremental search method:

e Itis possible to miss two closely spaced roots if the search increment Ax is larger
than the spacing of the roots.

e A double root (two roots that coincide) will not be detected.

e Certain singularities (poles) of f(x) can be mistaken for roots. For example,
f(x) = tan x changes sign at x = i%nn, n=1,3,5,...,asshownin Fig. 4.1. How-
ever, these locations are not true zeroes, since the function does not cross the
x-axis.

B rootsearch

This function searches for a zero of the user-supplied function f{x) in the interval
(a,b) in increments of dx. It returns the bounds (x1,x2)of the root if the search

4.2 Incremental Search Method

10.0

5.0

0.0

-5.0

-10.0
0

Figure 4.1. Plot of tan x.

was successful; x1 = x2 = None indicates that no roots were detected. After the first
root (the root closest to a) has been detected, rootsearch can be called again with
areplaced by x2 in order to find the next root. This can be repeated as long as root-
search detects a root.

module rootsearch
'’’’ x1,x2 = rootsearch(f,a,b,dx).

Searches the interval (a,b) in increments dx for
the bounds (x1,x2) of the smallest root of f(x).

Returns x1 = x2 = None if no roots were detected.

def rootsearch(f,a,b,dx):

x1 = a; f1 = f(a)

x2 = a + dx; f2 = £(x2)

while f1*f2 > 0.0:
if x1 >= b: return None,None
x1 = x2; £f1 = f2
x2 = x1 + dx; f2 = £f(x2)

else:

return x1,x2

EXAMPLE 4.1
Use incremental search with Ax = 0.2 to bracket the smallest positive zero of f(x) =
x® — 10x% + 5.

Roots of Equations

Solution We evaluate f(x) at intervals Ax = 0.2, staring at x = 0, until the function
chan