100%

ONE HUNDRED PERCENT

COMPREHENSIVE
AUTHORITATIVE
WHAT YOU NEED

ONE HUNDRED PERCENT

Master all major
Python components
and see how they
work together

Leverage Python
standard libraries
for rapid application
development

Harness XML,
Unicode, and other
cutting-edge
technologies

-

INCLUDES A

COMPLETE
PYTHON

LANGUAGE
REFERENCE

HALooT)

Creates the usger interface'

LSC r€ntry, canvas

ele) s :old?n evervbody's messages

A place to draw
— Canvas(root,

canvas
rwd(*ow 07 Col—5)

Caqug (o g release messages

thon 2.1

Dave Brueck and Stephen Tanner

Python 2.1 Bible

Python 2.1 Bible

Dave Brueck and Stephen Tanner

>

Hungry Minds-

Hungry Minds, Inc.
New York, NY 4+ Cleveland, OH 4 Indianapolis, IN 4+

Python 2.1 Bible

Published by

Hungry Minds, Inc.
909 Third Avenue

New York, NY 10022
www.hungryminds.com

Copyright © 2001 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.

Library of Congress Catalog Card No.: 2001090703
ISBN: 0-7645-4807-7

Printed in the United States of America
10987654321

1B/RS/QW/QR/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa; by
Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland; by
Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc. for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for the
Caribbean and West Indies; by Micronesia Media
Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
Department within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including
discounts, premium and bulk quantity sales, and
foreign-language translations, please contact our
Customer Care Department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care Department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
Department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales Department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other
publicity information, please contact our Public
Relations Department at 317-572-3168 or fax
317-572-4168.

For authorization to photocopy items for corporate,
personal, or educational use, please contact

Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: All trademarks are the property of their respective owners. Hungry Minds, Inc., is not
associated with any product or vendor mentioned in this book.

HungryMinds- is a trademark of Hungry Minds, Inc.

Credits

Acquisitions Editor
Debra Williams Cauley

Project Editor
Barbra Guerra

Technical Editor
Joseph Traub

Copy Editors
Lisa Blake
Luann Rouff

Editorial Manager
Colleen Totz

About the Authors

Project Coordinator
Regina Snyder

Graphics and Production Specialists
Brian Torwelle

Quality Control Technicians
Laura Albert, Carl Pierce, Nancy Price,
Charles Spencer

Book Designer
Drew R. Moore

Proofreading and Indexing
TECHBOOKS Production Services

Dave Brueck is a professional software developer who loves to use Python when-
ever possible. His current projects include developing networked games, develop-
ing Python interfaces to his stockbroker’s C SDK, and plotting to overturn various
world governments. Previously Dave was a contributing author to 3D Studio Max R3
Bible by Kelly Murdock, published by Hungry Minds (formerly IDG Books

Worldwide).

Stephen Tanner is currently using Python to build a black-box software testing frame-
work. His side projects include Python tools to perform probabilistic derivatives-
trading analysis, and to download mass quantities of .mp3s.

Aside from their “real” jobs, Dave and Stephen enjoy convincing people to pay them

big bucks for consulting jobs.

To Jennie, Rachael, and Jacob— thanks for being patient.

To Pokey the Penguin— NOW who is going to the restaurant?
To the weeds in my unfinished back yard— playtime is over.
— Dave

For great justice!
— Stephen

Preface

Python is an object-oriented, interpreted programming language useful for a
wide range of tasks, from small scripts to entire applications. It is freely avail-
able in binary or source code form and can be used royalty-free on all major plat-
forms including Windows, Macintosh, Linux, FreeBSD, and Solaris.

Compared with most programming languages, Python is very easy to learn and is
considered by many to be the language of choice for beginning programmers.
Instead of outgrowing the language, however, experienced developers enjoy lower
maintenance costs without missing out on any features found in other major lan-
guages such as C++, Java, or Perl.

Python is well known for its usefulness as a rapid application development tool,
and we often hear of Python projects that finish in hours or days instead of the
weeks or months that would have been required with traditional programming lan-
guages. It boasts a rich, full-featured set of standard libraries as well as the ability
to interface with libraries in other languages like C++.

Despite being incredibly powerful and enabling very rapid application develop-
ment, the real reason we love to use Python is that it’s just plain fun. Python is like a
lever — with it, you can do some pretty heavy lifting with very little effort. It frees
you from lots of annoying, mundane work, and before long you begin to wonder
how you endured your pre-Python days.

About This Book

Although Python is a great first programming language, in this book we do assume
that you already have some programming experience.

The first section of the book introduces you to Python and tells you everything you
need to know to get started. If you're new to Python, then that section is definitely
the place to start; otherwise, it serves as a useful language reference with many
examples.

We've worked hard to ensure that the book works well as a quick reference. Often
the quickest way to understand a feature is to see it in use: Flip through the book’s
pages and you’ll see that they are dripping with code examples.

X

Python 2.1 Bible

All the examples in the book work and are things you can try on your own. Where
possible, the chapters also build complete applications that have useful and inter-
esting purposes. We've gone to great lengths to explain not only how to use each
module or feature but also why such a feature is useful.

What You Need

Besides the book, all you need is a properly installed copy of Python. Appendix A
lists some Python resources available online, but a good place to start is
www.python.org; it has prebuilt versions of Python for all major platforms as well
as the Python source code itself. Once you’ve downloaded Python you’ll be under-
way in a matter of minutes.

If you're a user of Microsoft Windows, you can download an excellent distribution
of Python from www.activestate.com. ActiveState provides a single download
that includes Python, a free development environment and debugger, and Win32
extensions.

PythonWare (www.pythonware.com) also offers a distribution of Python that
comes bundled with popular third-party Python modules. PythonWare’s version
peacefully coexists with older versions of Python, and the small distribution size
makes for a quick download.

No matter which site you choose, Python is free, so go download it and get started.

How the Book Is Organized

We've tried to organize the book so that related topics are close together. If you find
the topic of one chapter particularly interesting, chances are that the chapters
before and after it will pique your interest too.

Part I: The Python Language

The first chapter in this section is a crash course in Python programming. If you
have many programming languages under your belt or just want to whet your
appetite, try out the examples in that chapter to get a feel for Python’s syntax and
powerful features.

The remaining chapters in this first section cover the same material as Chapter 1
but in much greater detail. They work equally well as an initial tutorial of the
Python language and as a language reference for seasoned Pythonistas.

Preface

Part Il: Files, Data Storage, and
Operating System Services

This part covers Python’s powerful string and regular expression handling features
and shows you how to access files and directories. In this section we also cover
how Python enables you to easily write objects to disk or send them across net-
work connections, and how to access relational databases from your programs.

Part IlI: Networking and the Internet

Python is an ideal tool for XML processing, CGI scripting, and many other network-
ing tasks. This part guides you through Internet programming with Python, whether
you need to send e-mail, run a Web site, or just amass the world’s largest .mp3
collection.

Part IV: User Interfaces and Multimedia

This part covers Tkinter and wxPython, two excellent tools for building a GUI in
Python. In this part, we also cover Python’s text interface tools, including support
for Curses. This section also delves into Python’s support for graphics and sound.

Part V: Advanced Python Programming

This part answers the questions that come up in larger projects: How do I create
multithreaded Python applications? How can I optimize my code, or glue it to C
libraries? How can I make my program behave correctly in other countries? We also
cover Python’s support for number crunching and security.

Part VI: Deploying Python Applications

This part covers what you need to know to deploy your Python programs quickly
and painlessly. Python’s distribution utilities are great for bundling and distributing
applications on many platforms.

Part VII: Platform-Specific Support

Sometimes it’s nice to take advantage of an operating system’s strengths. This part
addresses some Windows-specific topics (like accessing the registry), and some
UNIX-specific topics (like file descriptors).

Xl

Xii

Python 2.1 Bible

Appendixes

Appendix A is a guide to online Python resources. Appendix B introduces you to
IDLE and PythonWin —two great IDEs for developing Python programs. It also
explains how to make Emacs handle Python code.

Conventions Used in This Book

Source code, function definitions, and interactive sessions appear in monospaced
font. Comments appear in bold monospaced font preceded by a hash mark for
easy reading. For example, this quick interpreter session checks the version of the
Python interpreter. The >>> at the start of a line is the Python interpreter prompt
and the text after the prompt is what you would type:

>>> import sys # This is a comment.
>>> print sys.version
2.0 (#8, 0Oct 16 2000, 17:27:58) [MSC 32 bit (Intel)]

References to variables in function definitions appear in italics. For example, the
function random.choice(seq) chooses a random element from the sequence seq
and returns it.

We divided up the writing of this book’s chapters between ourselves. So, through-
out the book’s body, we use “I” (not “we”) to relate our individual opinions and
experiences.

What the Icons Mean

New

Throughout the book, we’ve used icons in the left margin to call your attention to
points that are particularly important.

\ _ This icon indicates that the material discussed is new to Python 2.0 or Python 2.1.

Feature

[

Tip

The Note icons tell you that something is important — perhaps a concept that may
~—~ help you master the task at hand or something fundamental for understanding
subsequent material.

Tip icons indicate a more efficient way of doing something or a technique that
_» may not be obvious.

Preface XII

Caution Caution icons mean that the operation we're describing can cause problems if
you're not careful.

¢ Cross- We use the Cross-Reference icon to refer you to other sections or chapters that
Reference \ 1 ave more to say on a subject.

Visit Us!

We've set up a Web site for the book at www.pythonapocrypha.com. On the site
you'll find additional information, links to Python Web sites, and all the code sam-
ples from the book (so you can be lazy and not type them in). The Web site also has
a section where you can give feedback on the book, and we post answers to com-
mon questions.

Have fun and enjoy the book!

Acknowledgments

Although this book represents many hours of work on our part, there are many
others without whom we would have failed.

First and foremost is Guido van Rossum, Python’s creator and Benevolent Dictator
for Life. We're glad he created such a cool language and that many others have
joined him along the way.

Many thanks go to the good people at Hungry Minds: Debra Williams Cauley, our
acquisitions editor, for making it all possible; Barb Guerra, our project editor, for
keeping everything on track; Joseph Traub, our technical editor, for clarifying expo-
sition and squashing bugs; and Lisa Blake and Luann Rouff, our copy editors, who
fixed more broken grammar and passive-voice constructions than a stick could be
shaken at.

Contents at a Glance

Preface ix
Acknowledgments xiv
Part I: The Pythonlanguage 1
Chapter 1: PythoninanHour 3
Chapter 2: Identifiers, Variables, and Numeric Types 19
Chapter 3: Expressions and Strings, 29
Chapter 4: Advanced Data Types 49
Chapter 5: Control Flow e 73
Chapter 6: Program Organization 87
Chapter 7: Object-Oriented Python 99
Chapter 8:Inputand Output 119
Part lI: Files, Data Storage, and Operating System Services 131
Chapter 9: Processing Strings and Regular Expressions 133
Chapter 10: Working with Files and Directories 155
Chapter 11: Using Other Operating System Services 179
Chapter 12: Storing Dataand Objects 195
Chapter 13: Accessing Dateand Time 219
Chapter 14: Using Databases 229
Part Ill: Networking and the Internet 245
Chapter 15: Networking i 247
Chapter 16: Speaking Internet Protocols 275
Chapter 17: Handling Internet Data 303
Chapter 18: Parsing XML and Other Markup Languages 325
Part IV: User Interfaces and Multimedia 345
Chapter 19: Tinkering with Tkinter 347
Chapter 20: Using Advanced Tkinter Widgets 371
Chapter 21: Building User Interfaces with wxPython 391
Chapter 22: Using Curses o i it ittt e e e e e 415
Chapter 23: Building Simple Command Interpreters 433

Chapter 24: Playing Sound 453

Part V: Advanced Python Programming 465

Chapter 25: ProcessingImages 467
Chapter 26: Multithreading 481
Chapter 27: Debugging, Profiling, and Optimization 497
Chapter 28: Security and Encryption 515
Chapter 29: Writing Extension Modules 527
Chapter 30: Embedding the Python Interpreter 553
Chapter 31: Number Crunching 581
Chapter 32: Using NumPy 589
Chapter 33: Parsing and Interpreting PythonCode 605
Part VI: Deploying Python Applications 617
Chapter 34: Creating Worldwide Applications 619
Chapter 35: Customizing Import Behavior 629
Chapter 36: Distributing Modules and Applications 643
Part VII: Platform-SpecificSupport 659
Chapter 37: Windows e 661
Chapter 38: UNIX-Compatible Modules 671
Appendix A: OnlineResources 685
Appendix B: Python Development Environments 689

Contents

Jumping In: Starting the Python Interpreter 3
Experimenting with Variables and Expressions 4
Pocket calculator 4
Variables 5
Defining a Function 5
Running a PythonProgram 6
Loopingand Control, 6
Integer division 7
Looping 8
Branching with if-statements 8
Breaking and continuing o o oo oo 8
Listsand Tuples e 9
Tuples 9
Slicinganddicing 9
Dictionaries 10
Reading and Writing Files 11
Sample Program: Word Frequencies 11
Loading and UsingModules 14
CreatingaClass. i 14
Some quick objectjargon 14
Object orientation, Pythonstyle. 15

Keep off the grass — Accessing class members 15
Example: the pointclass 15
Recommended Reading 17
Chapter 2: Identifiers, Variables, and Numeric Types 19
Identifiers and Operators 19
Reservedwords 20
Operators 20
Numeric Types e 21
Integers 21
Longintegers 21

Floating point numbers, 22

XVIII Python 2.1 Bible

Imaginary numbers 22
Manipulating numeric types 23
Assigning Valuesto Variables 26
Simple assignment statements, 26
Multiple assignment, 27
Augmented assignment 27
Chapter 3: Expressions and Strings 29
Expressions 29
Comparing numerictypes 29
Compound exXpressions. 31
Complex expressions 32
Operator precedence 33
Strings 34
String literals 35
Manipulating strings 37
Comparing strings 42
Unicode string literals 43
Converting Between Simple Types 43
Converting to numericaltypes 44
Convertingtostrings 45
Chapter 4: Advanced DataTypes 49
Grouping Data with Sequences 49
Creatinglists 50
Creatingtuples 52
Working with Sequences 52
Joining and repeating with arithmetic operators 52
Comparing and membership testing 53
Accessing parts of sequences 53
Iterating withfor...in 55
Using sequence utility functions 55
Using Additional List Object Features 57
Additional operations L 57

List objectmethods 58
Mapping Information with Dictionaries 60
Creating and adding to dictionaries 61
Accessing and updating dictionary mappings 61
Additional dictionary operations 62
Understanding References 63
Objectidentity 63
Countingreferences 64
Copying Complex Objects, 65
Shallow copies 65

Deep copies 66

Contents

Identifying Data Types 67
Working with Array Objects 68
Creatingarrays. i 68
Converting betweentypes 69
Array methods and operations 71
Chapter5:Control Flow 73
Making Decisions with If-Statements 73
Using For-Loops e 74
Anatomyofaforloop 74
Looping example: encoding strings 75
Rangesand xranges 76
Breaking, continuing, and else-clauses 77
Changing horses in midstream 78
Using While-Loops 79
Throwing and Catching Exceptions 79
Passing the buck: propagating exceptions 80
Handling an exception 80
Moreonexceptions 81
Defining and raising exceptions 82
Cleaning up withfinally 82
Debugging with Assertions 83
AssertionsinPython o L. 83
Toggling assertions 84
Example: Gameof Life L. 84
Chapter 6: Program Organization 87
Defining Functions 87
Pass by objectreference 88

All about parameters 88
Arbitrary arguments 89
Apply: passing arguments fromatuple 90

A bit of functional programming L. 90
Grouping CodewithModules 91
Layingoutamodule 91
Taking inventoryofamodule 92
Importing Modules 92
What else happens upon import? 93
Reimportingmodules 93
Exoticimports 94
LocatingModules 94
Pythonpath 94
Compiledfiles 95
Understanding ScopeRules 95
Isitlocalorglobal? 95
Listing namespace contents, 96
Grouping Modules into Packages 96

Compiling and Running Programmatically 97

XiX

XX Python 2.1 Bible

Chapter 7: Object-Oriented Python 99
Overview of Object-Oriented Python 99
Creating Classes and Instance Objects 100

Creating instance objects 101
More on accessing attributes o0 00000 101
Deriving New Classes from Other Classes 102
Multiple inheritance 0. .. 103
Creatinga customlistclass 104
Creating a custom stringclass 105
Creating a custom dictionaryclass 106
Hiding PrivateData 106
Identifying Class Membership 107
Overloading Standard Behaviors 108
Overloading basic functionality 109
Overloading numeric operators 111
Overloading sequence and dictionary operators 112
Overloading bitwise operators 114
Overloading type conversions 115
Using Weak References 115
Creating weak references 116
Creating proxy objects 117

Chapter 8: InputandOQutput 119
PrintingtotheScreen L . 119
Accessing KeyboardInput oo oL 120

raw_input 120
input 121
Opening, Closing, and Positioning Files 121
[0) 5] L 122
File object information 123
close . . . 123
File position 123
Writing Files 124
Reading Files 125
Accessing Standard [/O L 126
Using Filelike Objects 127

Part II: Files, Data Storage, and

Operating System Services

Chapter 9: Processing Strings and Regular Expressions 133
Using String Objects e 133
String formatting methods, 134

String case-changing methods 134

String format tests (the issmethods) 135

Contents

String searchingmethods 135
String manipulation methods L. 137
Using the StringModule, 138
Character categories 138
Miscellaneous functions 139
Defining Regular Expressions 140
Regular expressionsyntax 140
Backslashes and raw strings 142
Character groups and other backslash magic 142
Nongreedy matching 143
Extensions 143
Creating and Using Regular Expression Objects 144
Using regular expression objects 145
Applying regular expressions without compiling 147
Using Match Objects 147
group([groupid,...]) 148
groups([nomatch]). o o o 148
groupdict([nomatch]) 148
start([groupid]), end([groupid]), span([groupid]) 148
re,string,pos,endpos, 149
Treating Strings as Files, 149
Encoding Text e 151
Using Unicode strings 151
Reading and writing non-ASCIl strings 151
Using the Unicode database 153
Formatting Floating Point Numbers 154
fix(number,precision) L. 154
sci(number,precision) oo L. 154
Chapter 10: Working with Files and Directories 155
Retrieving File and Directory Information 155
The piecemeal approach 156

The [-want-it-allapproach 159
Building and DissectingPaths 161
Joining pathparts 161
Breaking paths intopieces 162
Other path modifiers 162
Listing Directories and Matching File Names 163
Obtaining Environment and Argument Information 165
Environment variables 165
Current working directory 165
Command-line parameters 166
Example: Recursive Grep Utility 166
Copying, Renaming, and Removing Paths 168
Copyingand linking, 168
Renaming 168

Removing 169

XXI

XXIi

Python 2.1 Bible

Creating Directories and Temporary Files 169
Comparing Files and Directories 171
Working with File Descriptors 173
General file descriptor functions 173
Pipes 174
Other File Processing Techniques 174
Randomly accessing linesintextfiles 174
Using memory-mapped files 175
Iterating over severalfiles. 176
Chapter 11: Using Other Operating System Services 179
Executing Shell Commands and Other Programs 179
Spawning Child Processes 181
popen functions 181
spawn functions o 182

fork 183
Process management and termination 183
Handling Process Information 185
Retrieving System Information 187
Managing Configuration Files 188
Understanding Exrror Names 190
Handling Asynchronous Signals 191
Chapter 12: Storing Data and Objects 195
Data Storage Overview 195
Textversusbinary 195
Compression 196

Byte order (“Endianness™) 196
Objectstate 196
Destination 196
Onthereceivingend, 196
Loading and Saving Objects, 197
Pickling with pickle 197

The marshalmodule 200
Example: Moving Objects Across aNetwork 200
Using Database-Like Storage 203
Converting to and from C Structures 204
Converting Data to Standard Formats 208
Sun’s XDRformat L 208
Otherformats 210
CompressingData 210
zlib .o 211

BZID . o 213

zipfile e 214

Contents XX

Chapter 13: Accessing DateandTime 219
Telling Time inPython 219
Ticks . . . o 219
TimeTuple e 220
Stopwatchtime, 220
Converting Between Time Formats 221
Parsing and Printing Dates and Times 222
Fancy formatting 222
Parsingtime 223
Localization 223
Accessingthe Calendar 224
Printing monthly and yearly calendars 224
Calendar information 225
Leapyears. o o i i e 226
Using Time Zones e 226
Allowing Two-Digit Years 227
Chapter 14: Using Databases 229
Using Disk-Based Dictionaries 229
DBM Example: Tracking Telephone Numbers 231
Advanced Disk-Based Dictionaries 232
dbm 232
gdbm 232
dbhash 233
Using BSD database objects 233
Accessing Relational Databases 234
Connectionobjects 234
Transactions 234
Cursorobjects 235
Example: “Sounds-Like” Queries, 235
Examining Relational Metadata 237
Example: Creating Auditing Tables 238
Advanced Featuresof the DBAPI 240
Input and outputsizes 241
Reusable SQL statements 242
Database library information 242
Error hierarchy o 243

Part Ill: Networking and the Internet

Chapter 15: Networking 247

Networking Background 247
Working with Addresses and Host Names 248

XX[V Python 2.1 Bible

Communicating with Low-Level Sockets 250
Creating and destroying sockets 250
Connectingsockets, 251
Sending and receivingdata 252
Using socketoptions 253
Convertingnumbers 256

Example: A Multicast Chat Application 256

Using SocketServers e 261
The SocketServer family 261
Requesthandlers 263

Processing Web Browser Requests 264
BaseHTTPRequestHandler 265
SimpleHTTPRequestHandler 266
CGIHTTPRequestHandler 267
Example: form handler CGIscript 267

Handling Multiple Requests Without Threads 269
ASYNICOYE & & v v v v e e e e e e e e e e e e e e 271

Chapter 16: Speaking Internet Protocols 275

Python’s Internet Protocol Support 275

Retrieving Internet Resources 276
Manipulating URLs 276
TreatingaURLasafile 277
URLopeners e 277
Extended URLopening 278

Sending HTTP Requests, 279
Building and using request objects 279

Sending and Receiving E-Mail 281
Accessing POP3accounts 281
Accessing SMTP accounts 283
AccessingIMAP accounts, 285

Transferring FilesviaFTP 289

Retrieving Resources Using Gopher 291

Working with Newsgroups 292

Using the Telnet Protocol 296
Connecting e 296
Reading and writing, 296
Watching and waiting 297
Othermethods, 297

Writing CGI Scripts 298
Settingup CGIscripts 298
Accessing formfields 299
Advanced CGIfunctions 301
Anoteondebugging, 301

Anoteonsecurity 302

Contents

Chapter 17: Handling InternetData 303
Manipulating URLs 303
Formatting Text e 304

Formatter interface 304
Writerinterface 305
Other moduleresources 306
Reading Web Spider Robot Files 307
Viewing FilesinaWebBrowser 308
Dissecting E-Mail Messages, 309
Parsingamessage 309
Retrieving headervalues 309
Othermembers 310
Addresslists 310
rfc822 utility functions o oL 311
MIME messages o v v v v it e e e e e e 311
Working with MIME Encoding 312
Encoding and decoding MIME messages 312
Parsing multipart MIME messages 313
Writing out multipart MIME messages 313
Handling documenttypes 316
Encoding and Decoding MessageData 317
Uuencode 317
Base64 318
Quoted-printable 319
Working with UNIX Mailboxes 320
Working with MH mailboxes 320
Using Web Cookies 321
Cookies e 322
Morsels e 322
Example: a cookie importer L. 323

Chapter 18: Parsing XML and Other Markup Languages 325

Markup Language Basics, 325
Tags are for metatext 326
Tagrules 326
Namespaces v v v v it e e e 327
Processing XML 327

Parsing HTML Files 327
HTMLParser methods 328
Handlingtags 328
Other parsingmethods 328
Handling unknown or bogus elements 329

Example:BoldOnly 330

Example: WebRobot 331

XXV

XXV| Python 2.1 Bible

Parsing XML with SAX 334
Usinga ContentHandler 334
Example: blood-type extractor 335
Using parser (XMLReader) objects 336
SAX exceptions 337

Parsing XML withDOM 338
DOMnodes i 338
Elements, attributes, andtext 338
The documentnode (DOM) 339
Example: data import and export withDOM 339

Parsing XML withxmllib 341
Elements and attributes 0 000, 342
XMLhandlers 343
Other XMLParser members 343

Part IV: User Interfaces and Multimedia

Getting Your Feet Wet 347
Creatinga GUI 348
Building an interface withwidgets 348
Widgetoptions 349
Laying Out Widgets 349
Packeroptions 350
Gridoptions 351
Example: Breakfast Buttons 352
Using Common Options 354
Coloroptions 354
Sizeoptions 355
Appearanceoptions 355
Behavioroptions 355
GatheringUserInput 356
Example: Printing Fancy Text 357
Using Text Widgets 359
Building Menus 360
Using Tkinter Dialogs 361
Filedialogs 362
Example: Text Editor 362
Handling ColorsandFonts 365
Colors e 365
Fonts 366
Drawing Graphics 366
Thecanvaswidget 366
Manipulating canvasitems, 367
Using Timers e 368

Example: A Bouncing Picture 368

Contents XX\/i |

Chapter 20: Using Advanced Tkinter Widgets 371
HandlingEvents 371
Creatingeventhandlers 371
Binding mouseevents o oL 372
Binding keyboardevents 372
Eventobjects 373
Example: ADrawingCanvas i 373
Advanced Widgets 375
Listbox 375
Scale 376
Scrollbar 376
Example: Color Scheme Customizer 377
Creating Dialogs 381
Supporting Drag-and-Drop Operations 382
Using Cursors ittt 385
Designing New Widgets, 387
Further Tkinter Adventures 389
Additional widgets 389
Learning more 389
Chapter 21: Building User Interfaces with wxPython 391
IntroducingwxPython 391
Creating Simple wxPython Programs 392
Choosing Different Window Types 394
Managed windows 394
Nonmanaged windows 395
Using wxPython Controls 399
Commoncontrols, 399
Treecontrols 400
Editorcontrols 401
Controlling Layout 401
Specifying coordinates o L. 402
Sizers. 403
Layout constraints 406
Layout algorithms 407
Using Built-in Dialogs 407
Drawing with Device Contexts 408
Adding Menus and Keyboard Shortcuts 411
Accessing Mouse and KeyboardInput 412
Other wxPython Features 412
Clipboard, drag and drop, and cursors 413
Graphics e 413
Dateandtime 413
Fonts 413
HTML . . . 414
Printing 414

Other e 414

XXVIII Python 2.1 Bible

Chapter22: UsingCurses.ouvinnurnnrnnnn 415
ACurses Overview i 415
Starting Up and ShuttingDown 416
Displayingand Erasing Text 416

Reading from the window (screen-scraping) 417
Erasing 418
Refreshing 418
Boxesandlines 418
The window background 418
Example: maskingabox 419
Moving the Cursor 420
GettingUserInput 421
Readingkeys 422
Other keyboard-related functions 422
Fancycharacters 422
Reading mouseinput, 423
Example: yes,no,ormaybe 424
Managing Windows 425
Pads 425
Stackingwindows o 426
Editing Text e 426
Using Color e 427
Numbering e 427
Settingcolors 428
Tweakingthecolors 428
Example: A Simple Maze Game, 428

Chapter 23: Building Simple Command Interpreters 433
Beginning with the EndinMind 433
Understanding the Lepto Language 435
Creating a Lepto Lexical Analyzer 436

Theshlexmodule 436
Putting shlextowork 437
Adding Interactive-Mode Features 440
Usingthecmdmodule 440
Subclassingemd.Cmd L. 442
Executing Lepto Commands 445

Chapter 24: PlayingSound 453
Sound FileBasics 453
PlayingSounds 454

Playing soundonWindows 454
Playing and recording sound on SunOS 455

Examining Audio Files 456

Contents XXiX

Reading and Writing AudioFiles 456
Reading and writing AIFF files with aifc 457
Reading and writing AU files with sunau 458
Reading and writing WAV files withwave 458
Example: Reversing an audiofile 458
Reading IFF chunkeddata 460

Handling Raw AudioData 461
Examining a fragment 461
Searching and matching L. 462
Translating between storage formats 462
Manipulating fragments 0 000 463

Part V: Advanced Python Programming 465
Chapter 25: Processinglmages 467

ImageBasics 467

Identifying Image File Types, 468

Converting Between Color Systems 469
Colorsystems i i i e e 469
Converting from one system to another 470

Handling Raw ImageData 472

Using the Python Imaging Library 472
Retrieving image information L. 473
Copying and convertingimages 474
Using PILwith Tkinter 475
Cropping and resizing images 476
Modifying pixeldata 476
Other PlLfeatures 480

Chapter 26: Multithreading 481

Understanding Threads 481

Spawning, Tracking, and Killing Threads 482
Creating threads with the thread module 482
Starting and stopping threads with the threading module 483
Thread status and information under threading 484
Finding threads under threading 484
Waiting for a thread tofinish 484

Avoiding Concurrencylssues 485
Locking withthread 485
Locking with threading 486

Preventing Deadlock 488

Example: Downloading from Multiple URLs 489

Porting Threaded Code, 494

Weaving Threads Together with Queues 495

Technical Note: How Simultaneous Is Simultaneous? 495

For More Information 496

XXX

Python 2.1 Bible

Chapter 27: Debugging, Profiling, and Optimization 497
Debugging PythonCode, 497
Starting and stopping the debugger 497
Examining the stateof things 498
Setting breakpoints oL 499
Running 500
Aliases 500
Debugging tips 500
Working with docstrings 501
Automating Tests 502
Synching docstrings withcode 502
Unittesting 503
Finding Bottlenecks 505
Profilingcode 505
Using Profileobjects 506
Calibrating the profiler 507
Customizing statistics, 507
Common Optimization Tricks 509
Sorting 509
Looping e 510

/O e 510
Strings 511
Threads e 511
Taking out the Trash —the Garbage Collector 512
Reference counts and Pythoncode 512
Reference counts and C/C++code 513
Chapter 28: Security and Encryption 515
Checking Passwords 515
Running in a Restricted Environment 516
Therexecsandbox 517
Usingaclassfortress 520
Creating Message Fingerprints 521
MD5 . . 522

SHA . . e 522
Otheruses. 523
Using 1940s-Era Encryption 523
Chapter 29: Writing Extension Modules 527
Extending and Embedding Overview 527
Writing a Simple ExtensionModule 528
Building and Linking 531
Converting Python DatatoC 532
Unpacking normal arguments 532
Using special format characters 535
Unpacking keyword arguments 537

Unpacking zero arguments 538

Contents

Converting C DatatoPython 538
Creating simple Python objects 539
Creating complex Python objects 540
Embedding the Interpreter 541
Asimpleexample. 541
Shuttingdown 541
Other setup functions 542
System information functions 542
Running Python Code from C 543
Using ExtensionTools 546
SWIG . .. 546

XX o 549
Extensionclasses. 550
Chapter 30: Embedding the Python Interpreter 553
Tracking Reference Counts 553
Types of reference ownership 553
Reference conventions 554
Commonpitfalls 555
Using the Abstract and Concrete Object Layers 555
Objectlayers e 556
Working with genericobjects 556
Working with Number Objects 558
Any numericaltype 558
Integers 560
Longs e 560
Floating-point numbers 561
Complexnumbers 561
Working with Sequence Objects 561
Any sequencetype 562
Strings 563

Lists 564
Tuples 565
Buffers 566
Unicodestrings 567
Working with Mapping Objects 569
Functions for any mappingtype 569
Dictionaries 570
Using Other Object Types 571
TyPe . o e 571
None e 571

File e 571
Module. 572
CObjects o o e 574
Creating Threads and Sub-Interpreters 574
Threads e 575

Sub-interpreters 576

XXXI

XXXil Python 2.1 Bible

Handling Errors and Exceptions 576
Checking forerrors, 577
Signaling error conditions, 577
Creating custom exceptions 578
Raisingwarnings 578

Managing Memory 579

Chapter 31: Number Crunching 581

Using Math Routines 581
Rounding and fractional parts 581
General mathroutines, . 582
Logarithms and exponentiation 582
Trigonometric functions 582

Computing with Complex Numbers 583

Generating Random Numbers 583
Random numbers 583
Example: shufflingadeck 585
Random distributions L 00 585
Example: plotting distributions using Monte Carlo sampling 586

Using Arbitrary-Precision Numbers 587

Chapter 32: UsingNumPycvvurn.. 589

Introducing Numeric Python 589
Installing NumPy 589
Some quick definitions L 590
Meetthearray, 590

Accessing and Slicing Arrays 590
Contiguous arrays o v v v v it e 592
Converting arrays to lists and strings 592

Calling Universal Functions 593
Ufunc destinations 594
Example: editing an audio stream 594
Repeatingufuncs 595

Creating Arrays o o i i 597
Array creation functions, 597
Seeding arrays with functions 598

Using Element Types e 600

Reshaping and Resizing Arrays 600

Using Other Array Functions 601
sort(array,[axis=-1]) 601
where(condition,X)Y) 602
swapaxes(array,axisl,axis2), 602
Matrix operations 602

Array Example: Analyzing Price Trends 603

Contents XXXIII

Chapter 33: Parsing and Interpreting Python Code 605
Examining Tracebacks 605
Printing a traceback—print_exc and friends 605
Extracting and formatting exceptions 606
Example: reporting exceptionsinaGUI 607
Eating arbitrary exceptions is bad foryou 607
Introspection 608
Review: basic introspection 608
Browsingclasses o 609
Browsing function information00 609
Checking Indentation 611
Tokenizing PythonCode 611
Example: Syntax-Highlighting Printer 612
Inspecting Python Parse Trees 613
Creatingan AST e 613
ASTsandsequences 614
Using ASTs e 614
Low-Level Object Creation 614
Disassembling PythonCode 615

Part VI: Deploying Python Applications

Chapter 34: Creating Worldwide Applications 619
Internationalization and Localization 619
Preparing Applications for Multiple Languages 620

AnNLSexample 620
Whatitallmeans 623
Formatting Locale-Specific Output 624
Changing thelocale 624
Locale-specific formatting 625
Propertiesoflocales, 626

Chapter 35: Customizing Import Behavior 629
Understanding Module Importing 629
Finding and Loading Modules withimp 631
Importing Encrypted Modules 633
Retrieving Modules from a Remote Source 636

Subclassing Importer 636
Creating the remote Importer 637

Testing the remote Importer 640

XXXiV Python 2.1 Bible

Chapter 36: Distributing Modules and Applications 643
Understanding distutils 643
Creating a simple distribution 644
Installing the simple distribution. 645
Other distutils Features 647
Distributing packages 647
Including otherfiles 648
Customizingsetup 650
Distributing Extension Modules 650
Creating Source and Binary Distributions 651
Source distributions L L Lo 652
Binary distributions 0 0 0oL 653
Installers L 653
Building Standalone Executables 655
DY2EXE . . o i i i e e e e e e e e e e e e 655
Freeze 656
Othertools 657

Part VII: Platform-Specific Support

Chapter37:Windowsccirnnnn.. 661
Usingwin32all e 661
Datatypes v v v i e e 661
Errorhandling 662

Finding whatyouneed 662

Example: Using Some Windows APIs 662
Accessing the Windows Registry 664
Accessing the registry withwin32all 664

Example: setting the Internet Explorer home page 666

Creating, deleting, and navigatingkeys 666

Example: recursive deletionofakey 667

Other registry functions 668

Accessing the registry with _winreg 668

Using msvert Goodies 669
ConsoleI/O 669
Otherfunctions 670

Chapter 38: UNIX-Compatible Modules 671
Checking UNIX Passwords and Groups 671
Accessing the System Logger 673
Calling Shared Library Functions 675

Providing Identifier and Keyword Completion 675

Contents XXXV

Retrieving File System and Resource Information 677

File system information, 678
Resourceusage 678
Resourcelimits L 679
Controlling File Descriptors 680
Handling Terminals and Pseudo-Terminals 681
Interfacing with Sun’s NIS “Yellow Pages” 682
Appendix A: Online Resourcesccvuuunnn 685
Appendix B: Python Development Environments 689

The Python
Language

+ 0+ o+

Chapter 1
Python in an Hour

Chapter 2
|dentifiers, Variables,
and Numeric Types

Chapter 3
Expressions and
Strings

Chapter 4
Advanced Data

Types

Chapter 5
Control Flow

Chapter 6
Program
Organization

Chapter 7
Obiject-Oriented
Python

Chapter 8
Input and Output

R R

Python in
an Hour

Python is a rich and powerful language, but also one that
is easy to learn. This chapter gives an overview of
Python’s syntax, its useful data-types, and its unique features.

As you read, please fire up the Python interpreter, and try out
some of the examples. Feel free to experiment, tinker, and
wander away from the rest of the tour group. Everything in
this chapter is repeated, in greater detail, in later chapters, so
don’t worry too much about absorbing everything at once.
Try some things out, get your feet wet, and have fun!

Jumping In: Starting the
Python Interpreter

The first thing to do, if you haven’t already, is to install
Python. You can download Python from www.python.org. As
of this writing, the latest versions of Python are 2.0 (stable)
and 2.1 (still in beta).

You can start the Python interpreter from the command line.
Change to the directory where the interpreter lives, or add
the directory to your path. Then type:

python

On UNIX, Python typically lives in /usr/local/bin;on
Windows, Python probably lives in c: \python20.

On Windows, you can also bring the interpreter up from
Start => Programs = Python 2.0 => Python (command line).

CHAPTER

+ 0+ 0+
In This Chapter

Jumping in: Starting
the Python interpreter

Experimenting with
variables and
expressions

Defining a function

Running a Python
program

Looping and control
Lists and tuples
Dictionaries

Reading and writing
files

Loading and using
modules

Creating a class

+ 0+ o+

4

Part | + The Python Language

/Lme

Once you start the interpreter, Python displays something like this:

Python 2.0 (#8, Oct 16 2000, 17:27:58) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>

The interpreter displays the >>> prompt to show that it’s ready for you to type in
some Python. And so, in the grand tradition of programming books everywhere, we
proceed to the “Hello world” example:

>>> print "Hello world!"
Hello world!

To exit the interpreter, type the end-of-file character (Ctrl-Z on Windows, or Ctrl-D
on Linux) and press Enter.

You may prefer to interact with the interpreter in IDLE, the standard Python IDE.

~ IDLE features syntax coloring, a class browser, and other handy features. See

Appendix B for tips on starting and using IDLE.

Experimenting with Variables
and Expressions

Python’s syntax for variables and expressions is close to what you would see in C
or Java, so you can skim this section if it starts looking familiar. However, you
should take note of Python’s loose typing (see below).

Pocket calculator

Python understands the standard arithmetic operators, including +, -, / (division),
and * (multiplication). The Python interpreter makes a handy calculator:

>>> 8/2

4

>>> b+4*6
29

Note that the second example evaluates 29 (and not 54); the interpreter multiplies 4
by 6 before adding 5. Python uses operator precedence rules to decide what to do
first. You can control order explicitly by using parentheses:

>>> (5+4)*6
54

In practice, it’s often easiest to use parentheses (even when they aren’t required) to
make code more readable.

Chapter 1 4+ Python in an Hour

Variables

You can use variables to hold values over time. For example, this code computes
how long it takes to watch every episode of Monty Python’s Flying Circus (including
the two German episodes of Monty Python'’s Fliegende Zirkus):

>>> NumberOfEpisodes=47

>>> Episodelength=0.5

>>> PythonMarathonLength=(NumberOfEpisodes*EpisodelLength)
>>> PythonMarathonlength

23.5

A variable is always a reference to a value. Variables do not have types, but objects
do. (Python is loosely typed; the same variable may refer to an integer value in the
morning and a string value in the afternoon.)

Python does not require variable declarations. However, you cannot access a
variable until you have assigned it a value. If you try to access an undefined vari-
able, the interpreter will complain (the wording of the error may be different in
your version of Python):

>>> print Scrumptious
Traceback (most recent call Tlast):
File "<stdin>", line 1, in ?
NameError: There is no variable named 'Scrumptious'’

This example raised an exception. In Python, most errors are represented by excep-
tion objects that the surrounding code can handle. Chapter 5 describes Python'’s
exception-handling abilities.

Python is case-sensitive. This means that names that are capitalized differently
refer to different variables:

>>> FavoriteColor="blue"

>>> favoritecolor="yellow"

>>> print FavoriteColor,favoritecolor
blue yellow

e

Defining a Function

Assume you and some friends go out to dinner and decide to split the bill evenly.
How much should each person pay? Here is a function that calculates each
person’s share:

>>> def SplitBil1(Bill1,NumberOfPeople):
The hash character (j#) starts a comment. Python
ignores everything from # to the end of the line.
TotalWithTip = Bi11 * (1.15) # Add a 15% tip.

6 Part | + The Python Language

return (TotalWithTip / NumberOfPeople)

>>> SplitBil1(23.35,3)
8.9508333333333336

The statement def FunctionName (parameter,...): starts a function definition. I
indented the following four lines to indicate that they are a control block—a
sequence of statements grouped by a common level of indentation. Together, they
make up the body of the function definition.

Python statements with the same level of indentation are grouped together. In this
example, Python knows the function definition ends when it sees a non-indented
line. Grouping statements by indentation-level is common practice in most pro-
gramming languages; in Python it is actually part of the syntax. Normally, one
indentation level equals four spaces, and eight spaces equals one tab.

Running a Python Program

A text file consisting of Python code is called a program, or a script, or a module.
There is little distinction between the three terms — generally a script is smaller
than a program, and a file designed to be imported (rather than executed directly)
is called a module. Normally, you name Python code files with a . py extension.

To run a program named spam.py, type the following at a command prompt:
python spam.py

In Windows, you can run a program by double-clicking it. (If the file association for
the . py extension is not set up at installation time, you can configure it by right-
clicking the script, choosing “Open With...” and then choosing python.exe.)

In UNIX, you can run a script directly by using the “pound-bang hack.” Add this line
at the top of the Python script (replacing the path with the path to env if it’s differ-
ent on your system):

f#1/usr/bin/python

Then make the file executable (by running chmod +x <filename>), and you can run
it directly.

Looping and Control

Listing 1-1 illustrates Python’s looping and conditional statements. It prints out all
the prime numbers less than 500.

Chapter 1 4+ Python in an Hour

Listing 1-1: PrimeFinder.py

print 1
Loop over the numbers from 2 to 499:
for PrimeTest in range(2,500):
Assume PrimeTest prime until proven otherwise:
IsPrime = 1 # 0 is false, nonzero is true
Loop over the numbers from 2 to (PrimeTest-1):
for TestFactor in range(2,PrimeTest):
a % b equals the remainder of a/b:
if (PrimeTest % TestFactor == 0):
J# PrimeTest divides TestFactor (remainder is 0).
IsPrime=0
break # Jump out of the innermost for-loop.

if (IsPrime):
print PrimeTest

Integer division

The modulo operator, %, returns the remainder when the first number is divided by
the second. (For instance, 8 % 5 is equal to 3.) If PrimeTest is zero modulo
TestFactor, then this remainder is zero, so TestFactor is one of PrimeTest’s
divisors.

In Python, dividing one integer by another returns another integer —the quotient,
rounded down:

>>> 8/3 # I want an integer, not the "right answer."
2

So, here is a sneaky replacement to line 7 of PrimeFinder.py.If TestFactor does
not divide PrimeTest evenly, then the quotient is rounded off, and so the compari-
son will fail:

if ((PrimeTest/TestFactor)*TestFactor == PrimeTest)

Python uses the f1oat class for floating-point (decimal) numbers. The f1oat func-
tion transforms a value into a float:

>>> 8.0/3.0

2.6666666666666665

>>> float(8)/float(3) # Give me the "real" quotient.
2.6666666666666665

7

8

Part | + The Python Language

Looping
The for statement sets up a loop—a block of code that is executed many times.

The function range(startnum,endnum) provides a list of integers starting with
startnum and ending just before endnum.

In the example, PrimeTest takes on each value in the range in order, and the outer
loop executes once for each value of PrimeTest. The inner loop iterates over the
“possible factors” of PrimeTest, starting at 2 and continuing until (PrimeTest-1).

Branching with if-statements

The statement if expression: begins a control block that executes only if
expression is true. You can enclose the expression in parentheses. As far as
Python is concerned, the number 0 is false, and any other number is true.

Note that in a condition, we use the == operator to test for equality. The = operator
is used only for assignments, and assignments are forbidden within a condition.
(Here Python differs from C/C++, which allows assignments inside an if-condition,
even though they are usually a horrible mistake.)

In an if statement, an else-clause executes when the condition is not true. For
example:

if (MyNumber % == 0):

print "MyNumber is even!"”
else:

print "MyNumber is odd!"

Breaking and continuing

The break statement jumps out of a loop. It exits the innermost loop in the current
context. In Listing 1-1, the break statement exits the inner TestFactor loop, and
continues on line 11. The continue statement jumps to the next iteration of a loop.

Loops can also be set up using the while statement. The syntax while (expres-
sion) sets up a control block that executes as long as expression is true. For
example:

print out powers of 2 less than 2000
X=2
while (X<2000):

print X

X=X*2

Chapter 1 4+ Python in an Hour

Lists and Tuples

A list is an ordered collection of zero or more elements. An element of a list can be
any sort of object. You can write lists as a comma-separated collection of values
enclosed in square brackets. For example:

Fibonaccilist=[1,1,2,3,5,8]

FishList=[1,2,"Fish"] # Lists can contain various types.
AnotherlList=[1,2,FishList] # Lists can include other 1lists.
YetAnotherList=[1,2,3,] # Trailing commas are ok.
RevengeOfThelist=[] # The empty 1list

Tuples

A tuple is similar to a list. The difference is that a tuple is immutable —it cannot be
modified. You enclose tuples in parentheses instead of brackets. For example:
FirstTuple=("spam","spam","bacon
SecondTuple=() # The empty tuple
LonelyTuple=(5,) # Trailing comma is *required*, since (5) is
just a number-in-parens, not a tuple.

,"spam")

Slicing and dicing
Lists are ordered, so each list element has an index. You can access an element with
the syntax Tistname[index]. Note that index numbering begins with zero:

>>> FoodList=["Spam","Egg","Sausage"]

>>> FoodList[0]

'Spam’

>>> FoodList[2]

'Sausage’

>>> FoodList[2]="Spam" # Modifying Tist elements in place
>>> FoodlList

['Spam', 'Egg', 'Spam']

Sometimes it’s easier to count from the end of the list backwards. You can
access the last item of a list with 1istname[-11], the second-to-last item with
listname[-2], and so on.

You can access a sublist of a list via the syntax Tistname[start:end]. The sublist
contains the original list elements, starting with index start, up to (but not includ-
ing) index end. Both start and end are optional; omitting them makes Python go all
the way to the beginning (or end) of the list. For example:

>>>WordList=["And","now","for","something","completely",
"different"]

>>> WordList[0:2] # From index 0 to 2 (not including 2)
["And', 'now']

10

Part | + The Python Language

>>> WordList[2:5]

['for', 'something', 'completely']

>>> WordList[:-1]1 # A1l except the last

["And', 'now', 'for', 'something', 'completely']

Substrings

Lists, tuples, and strings are all sequence types. Sequence types all support indexed
access. So, taking a substring in Python is easy:

>>> Word="pig"

>>> PiglLatinWord=Word[1:]+Word[0J]+"ay"
>>> PiglLatinWord

"igpay’

Immutable types
Tuples and strings are immutable types. Modifying them in place is not allowed:

FirstTuple[0]="Egg" # Object does not support item assignment.

You can switch between tuples and lists using the tuple and 11 st functions. So,
although you cannot edit a tuple directly, you can create a new-and-improved tuple:

>>> FoodTuple=("Spam","Egg","Sausage")
>>> FoodList=list(FoodTuple)

>>> FoodlList

['Spam', 'Egg', 'Sausage']

>>> FoodlList[2]="Spam"

>>> NewFoodTuple=tuple(FoodList)

>>> NewFoodTuple

('Spam', 'Egg', 'Spam")

Dictionaries

A dictionary is a Python object that cross-references keys to values. A key is an
immutable object, such as a string. A value can be any object. A dictionary has a
canonical string representation: a comma-separated list of key-value pairs, enclosed
in curly braces: {key:value, key:value}. For example:

>>> PhoneDict={"bob":"555-1212","fred":"555-3345"}

>>> EmptyDict={} # Initialize a new dictionary.

>>> PhoneDict["bob"] # Find bob's phone number.

'555-1212"

>>> PhoneDict["cindy"]1="867-5309" # Add an entry.

>>> print "Phone 1ist:",PhoneDict

Phone Tist: {'fred': '555-3345', 'bob': '555-1212"', 'cindy"':
'867-5309"}

Chapter 1 4+ Python in an Hour

Looking up a value raises an exception if the dictionary holds no value for the key.
The function dictionary.get(key,defaultValue) performs a “safe get”; it looks
up the value corresponding to key, but if there is no such entry, returns
defaultValue.

>>> PhoneDict["luke"] # May raise an exception.
Traceback (most recent call Tlast):
File "<stdin>", line 1, in ?
KeyError: Tuke
>>> PhoneDict.get("joe", "unknown")
"unknown'

Often a good default value is the built-in value None. The value None represents
nothing (it is a little Zen-like). The value None is similar to NULL in C (or nul11 in
Java). It evaluates to false.

>>> DialAJoe=PhoneDict.get("joe",None)
>>> print DialAdJdoe
None

Reading and Writing Files

To create a file object, use the function open(filename,mode). The mode
argument is a string explaining what you intend to do with the file —typical values

are “w” to write and “r” to read. Once you have a file object, you can read() from it
or write() to it, then close() it. This example creates a simple file on disk:

>>> fred = open("hello","w")
>>> fred.write("Hello world!")
>>> fred.close()

>>> barney = open("hello",
>>> FileText = barney.read(
>>> barney.close()

>>> print FileText

Hello world!

r,n)
)

Sample Program: Word Frequencies

Different authors use different words. Patterns of word use form a kind of “author
fingerprint” that is sometimes used as a test of a document’s authenticity.

Listing 1-2 counts occurrences of a word in a body of text, and illustrates some
more Python power in the process. (Don’t be intimidated by all the comments —it’s
actually only 26 lines of code.)

12 Part| + The Python Language

Listing 1-2: WordCount.py

Import the string module, so we can call Python's standard
string-related functions.
import string

def CountWords(Text):
"Count how many times each word occurs in Text."
A string immediately after a def statement is a
"docstring"” - a comment intended for documentation.
WordCount=1{}
We will build up (and return) a dictionary whose keys
are the words, and whose values are the corresponding
number of occurrences.

CurrentWord=""

To make the job cleaner, add a period at the end of the
text; that way. we are guaranteed to be finished with

the current word when we run out of letters:
Text=Text+"."

We assume that ' and - don't break words, but any other
nonalphabetic character does. This assumption isn't

entirely accurate, but it's close enough for us.

J string.letters is a string of all alphabetic characters.
PiecesOfWords = string.letters + "'-"

J Iterate over each character in the text. The

J# function len () returns the Tength of a sequence,

such as a string:

for CharacterIndex in range(0,len(Text)):
CurrentCharacter=Text[CharacterIndex]

The find() method of a string finds
the starting index of the first occurrence of a
substring within a string, or returns -1
if it doesn't find the substring. The next
line of code tests to see whether CurrentCharacter
is part of a word:
if (PiecesOfWords.find(CurrentCharacter)!=-1):
Append this letter to the current word.
CurrentWord=CurrentWord+CurrentCharacter
else:
J# This character is not a letter.
if (CurrentWord!=""):
We just finished off a word.
Convert to lowercase, so "The" and "the"
fall in the same bucket.
CurrentWord = string.lower(CurrentWord)

Now increment this word's count.
CurrentCount=WordCount.get(CurrentWord,0)
WordCount[CurrentWord]=CurrentCount+1

Chapter 1 4+ Python in an Hour

Start a new word.
CurrentWord=""
return (WordCount)
if (__name__=="_main__"):
J# Read the text from the file song.txt.
TextFile=open("poem.txt","r")
Text=TextFile.read()
TextFile.close()

J# Count the words in the text.
WordCount=CountWords(Text)
Alphabetize the word Tist, and print them all out.
SortedWords=WordCount.keys()
SortedWords.sort()
for Word in SortedWords:

print Word,WordCount[Word]

Listing 1-3: poem.txt

Shall I compare thee to a summer's day?

Thou art more Tovely and more temperate:

Rough winds do shake the darling buds of May,
And summer's Tease hath all too short a date:
Sometime too hot the eye of heaven shines

And often is his gold complexion dimmed;

And every fair from fair sometimes declines,

By chance or nature's changing course untrimmed;
But thy eternal summer shall not fade,

Nor lose possession of that fair thou ow'st:

Nor shall Death brag thou wander'st in his shade,
When in eternal Tines to time thou grow'st:

So long as men can breathe, or eyes can see,

So Tong Tlives this, and this gives life to thee.

Listing 1-4: WordCount output

all 1

and 5

art 1

as 1

brag 1

[. . .omitted for brevity. . .]
too 2
untrimmed 1
wander'st 1
when 1
winds 1

13

14 Part

| + The Python Language

Loading and Using Modules

fro

Python comes with a collection of libraries to do all manner of useful things. To use
the functions, classes, and variables in another Python module, you must first
import that module with the statement import modulename. (Note: No parenthe-
ses.) After importing a module, you can access any of its members using the syntax
moduleName.itemName. For instance, this line (from the preceding example) calls
the function 1ower in the module string to convert a string to lowercase.

CurrentWord = string.lower(CurrentWord)

When you import a module, any code at module level (that is, code that isn’t part of
a function or class definition) executes. To set aside code to execute only when
someone runs your script from the command line, you can enclose it in an i f

(__name__=="__main__") block, as in Listing 1-2 above.

As an alternative to “import foo,” you can use the syntax from foo import
itemName to import a function or variable all the way into the current namespace.
For example, after you include the line frommath import sqrt in a Python script,
you can call the square-root function sqrt directly, instead of calling math.sqrt.
You can even bring in everything from a module with from foo import *. However,
although this technique does save typing, it can become confusing — especially if
you import functions with the same name from several different modules!

Python does not enforce “privacy” in modules; you can call any of a module’s
functions. It is generally a good idea to be polite and only call those you are sup-
posed to.

e

Creating a Class

Python is an object-oriented language. In fact, every piece of Python data is an
object. Working with objects in Python is easy, as you will soon see.

Some quick object jargon

A class is a mechanism for tying together data and behavior. An instance of a partic-
ular class is called an object. Class instances have certain methods (functions) and
attributes (data values). In Python, all data items behave like objects, even though a
few base types (like integers) are not actual instances of a class.

You can derive a class from a parent class; this relationship is called inheritance.
Instances of the child (derived) class have the same attributes and methods of the
parent class. The child class may add new methods and attributes, and override
methods of the parent. A class may be derived from more than one parent class;
this relationship is called multiple inheritance.

Chapter 1 4+ Python in an Hour

Object-oriented programming (OOP) is a mindset that may take some getting used
to. When inheritance becomes natural, and you start talking about your data in
anthropomorphic terms, you will know that your journey to the OO side is com-
plete. See the References section for some resources that explain object-oriented
programming in detail.

Object orientation, Python style

You define a new class with the syntax class ClassName. The control block
following the class statement is the class declaration; it generally consists of sev-
eral method definitions. You define a child class (using inheritance) via the syntax
class ClassName(ParentClass).

You create an object via the syntax NewObject = ClassName (). When you create
an object, Python calls its constructor, if any. In Python, a constructor is a member
function with the name __init__. A constructor may require extra parameters

to create an object. If so, you provide them when creating the object: NewObject =
ClassName(paraml,param?,...).

Every object method takes, as its first parameter, the argument sel f, which is a
reference to the object. (Python self is similar to this in C++/Java, but self is
always explicit.)

You do not explicitly declare attributes in Python. An object’s attributes are not
part of the local namespace —in other words, to access an object’s attribute foo in
one of its methods, you must type self.foo.

Keep off the grass — Accessing class members

Attributes and methods are all “public” —they are visible and available outside the
object. However, to preserve encapsulation, many classes have some attributes or
methods you should not access directly. The motivation for this is that an object
should be something of a “black box” — code outside the object should only care
what it does, not how it does it. This helps keep code easy-to-maintain, especially in
big programs.

Example: the point class

Listing 1-5 defines a class representing a point in the plane (or on a computer
screen):

15

16

Part | + The Python Language

Listing 1-5: Point.py

import math
The next statement starts our class declaration; the
J# function declarations inside the indented control block are
the class's methods.
class Point:
The method __init__ is the class's constructor. It
J executes when you create an instance of the class.
When __init__ takes extra parameters (as it does here),
you must supply parameter values in order to create an
J# instance of the class. Writing an _ init__ method is
optional.
def __init__(self,X,Y):
X and Y are the attributes of this class. You do not
J# have to declare attributes. I 1ike to initialize
all my attributes in the constructor, to ensure that
the attributes will be available when I need them.
self. X=X
self.Y=Y

def DistanceToPoint(self, OtherPoint):
"Returns the distance from this point to another"
SumOfSquares = ((self.X-0therPoint.X)**2) +\
((self.Y-OtherPoint.Y)**2)
return math.sqrt(SumOfSquares)

def IsInsideCircle(self, Center, Radius):
"""Return 1 if this point is inside the circle,
0 otherwise"""
if (self.DistanceToPoint(Center)<Radius):
return 1
else:
return O

This code tests the point class.
PointA=Point(3,5) # Create a point with coordinates (3,5)
PointB=Point(-4,-4)

How far is it from point A to point B?
print "A to B:",PointA.DistanceToPoint(PointB)

What if I go backwards?
print "B to A:",PointB.DistanceToPoint(PointA)

Who lives inside the circle of radius 5 centered at (3,3)?
CircleCenter=Point(3,3)

print "A in circle:",PointA.IsInsideCircle(CircleCenter,b)
print "B in circle:",PointB.IsInsideCircle(CircleCenter,5)

Chapter 1 4+ Python in an Hour

Recommended Reading

If you are new to computer programming, you may find this tutorial useful:
http://www.honors.montana.edu/~jjc/easytut/easytut/.

To learn all about the language on one (large!) page, see the Python Quick
Reference at http://starship.python.net/quick-refl_52.html.

If you like to learn by tinkering with finished programs, you can download a
wide variety of source code at the Vaults of Parnassus: http://www.vex.net/
parnassus/.

Summary

This wraps up our quick tour of Python. We hope you enjoyed the trip. You now
know most of Python’s notable features. In this chapter, you:

4 Ran the Python interpreter for easy interaction.

4 Grouped statements by indentation level.

4 Wrote functions to count words in a body of text.

4 Created a handy Point class.

The next chapter digs a little deeper and introduces all of Python’s standard types
and operators.

+ o+ 4

17

Identifiers,
Variables, and
Numeric Types

OHe of the simplest forms of data on which your pro-
grams operate is numbers. This chapter introduces the

numeric data types in Python, such as integers and floating
point numbers, and shows you how to use them together in
simple operations like assignment to variables.

As with Chapter 1, you'll find it helpful to have a Python inter-
preter up and running as you read this and the following chap-
ters. Playing around with the examples in each section will
pique your curiosity and help keep Python’s features firmly
rooted in your brain.

Identifiers and Operators

Variable names and other identifiers in Python are similar to
those in many other languages: they start with a letter (A-Z or
a-z) or an underscore (“_") and are followed by any number
of letters, numbers, and underscores. Their length is limited
only by your eagerness to type, and they are case-sensitive
(that is, spam and Spam are different identifiers). Regardless of
length, choose identifiers that are meaningful. (Having said
that, I'll break that rule for the sake of conciseness in many of
the examples in this chapter.)

The following are some examples of valid and invalid identifiers:

wordCount

y_axis

errorField?

_logFile

2 # Technically valid, but not a
good idea

CHAPTER

<+

In This Chapter

<+

4

Identifiers and

operators

Numeric types

Assigning values to
variables

<+

<+

4

<+

4

20 Part| + The Python Language

7Index # Invalid, starts with a number
won't_work # Invalid due to apostrophe character
ﬁlote Python considers these forms to have special meaning:

0

_name — Not imported by “from x import *” (see Chapter 6)
__name__ —System name (see Chapter 6)

__name — Private class member (see Chapter 7)

When you’re running the Python interpreter in interactive mode, a single underscore
character () is a special identifier that holds the result of the last expression evalu-
ated. This is especially handy when you’re using Python as a desktop calculator:

>>> "Hello"
'Hello'
>0
'"Hello'
>>> 5 + 2
7

>o> _ * 2
14

>>> 4+ 5
19

>o0

Reserved words

Although it would make for some interesting source code, you can’t use the follow-
ing words as identifiers because they are reserved words in the Python language:

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass

def finally in print
Operators

Python has the following operators, each of which we’ll discuss in context with the
applicable data types they operate on:

I = 9 & * Kk / A | ~
+ < << <

Chapter 2 4 Identifiers, Variables, and Numeric Types 21

Numeric Types

Tip

Python has four built-in numeric data types: integers, long integers, floating point
numbers, and imaginary numbers.

Integers

Integers are whole numbers in the range of -2147483648 to 2147483647 (that is, they
are signed, 32-bit numbers).

For convenience, the sys module has a maxint member that holds the maxi-

~, mum positive value of an integer variable:

>>> import sys
>>> sys.maxint
2147483647

In addition to writing integers in the default decimal (base 10) notation, you can
also write integer literals in hexadecimal (base 16) and octal (base 8) notation by
preceding the number with a 0x or 0, respectively:

>>> 300 # 300 in decimal
300

>>> 0x12c J# 300 in hex
300

>>> 0454 J 300 in octal
300

Keep in mind that for decimal numbers, valid digits are 0 through 9. For hexa-
decimal, it’s 0 through 9 and A through F, and for octal it’s 0 through 7. If you’re not
familiar with hexadecimal and octal numbering systems, or if you are but they don’t
thrill you, just nod your head and keep moving.

Long integers

Long integers are similar to integers, except that the maximum and minimum val-
ues of long integers are restricted only by how much memory you have (yes, you
really can have long integers with thousands of digits). To differentiate between the
two types of integers, you append an “L” to the end of long integers:

>>> 200L # A long integer Titeral with a value of 200
200L

>>> 11223344 * 55667788 # Too big for normal integers...
Traceback (innermost Tast):

File "<interactive input>", line 1, in ?
OverflowError: integer multiplication

>>> 11223344L * 55667788L 4 ...but works with long integers
624778734443072L

22 Part| + The Python Language

Tip The “L" on long integers can be uppercase or lowercase, but do yourself a favor
» and always use the uppercase version. The lowercase “L" and the one digit look
4 too similar, especially if you are tired, behind schedule on a project, or both.

Floating point numbers

Floating point numbers let you express fractional numeric values such as 3.14159.
You can also include an optional exponent. If you include neither an exponent nor a
decimal point, Python interprets the number as an integer, so to express “the float-
ing point number two hundred,” write it as 200. 0 and not just 200. Here are a few
examples of floating point numbers:

200.05
9.80665

1

20005e-2
6.0221367E23

‘\Iote Occasionally you may notice what appear to be rounding errors in how Python
~ displays floating point numbers:

>>> 0.3
0.29999999999999999

Don’t worry; this display is not indicating a bug, but is just a friendly reminder that
your digital computer just approximates real world numbers. See “Formatting
strings” in Chapter 3 to learn about printing numbers in a less ugly format.

The valid values for floating point numbers and the accuracy with which Python
uses them is implementation-dependent, although it is at least 64-bit, double-
precision math and is often IEEE 754 compliant.

Imaginary numbers

Unlike many other languages, Python has language-level support for imaginary
numbers, making it trivial to use them in your programs. You form an imaginary
number by appending a “j” to a decimal number (integer or floating point):

3]
2.5e-3]

When you add a real and an imaginary number together, Python recognizes the
result as a complex number and handles it accordingly:

>>> 2 + 5j
(2+57)

S>> 2 % (2 + 5j)
(4+10j)

Chapter 2 4 Identifiers, Variables, and Numeric Types

Manipulating numeric types

You can use most of Python’s operators when working with numeric data types.

Numeric operators
Table 2-1 lists operators and how they behave with numeric types.

Table 2-1
Operations on Numeric Types

Operator Description Example Input Example Output

Unary Operations

+ Plus +2 2
- Minus -2 2

-(-2) 2
~ Inversion' =l 6

Binary Operations

+ Addition 5+7 12
5+7.0 12.0
- Subtraction 5-2 3
5-2.0 3.0
* Multiplication 2.5%2 5.0
/ Division 5/°2 2
5/2.0 2.5
% Modulo (remainder) 5%2 1
7.5%2.5 0.0
ok Power 5 **x 2 25
1.2**2.1 1.466. ..

Binary Bitwise Operations?

& AND 5&2 0
11&3 3
| OR 52 7
1113 11
2 XOR (exclusive-or) 5~ 2
1173 8

Continued

23

24

Part | + The Python Language

Table 2-1 (continued)

Operator Description Example Input Example Output

Shifting Operations?
<< Left bit-shift 5<<2 20
>> Right bit-shift 50 >> 3 6

1 Unary bitwise inversion of a number x is defined as —(x+1).

2 Numbers used in binary bitwise and shifting operations must be integers or long integers.

It is important to notice what happens when you mix standard numeric types
(adding an integer and a floating point number, for example). If needed, Python first
coerces (converts) either of the numbers according to these rules (stopping as
soon as a rule is satisfied):

1. If one of the numbers is a complex number, convert the other to a complex
number too.

2. If one of the numbers is a floating point number, convert the other to floating
point.

3. If one of the numbers is a long integer, convert the other to a long integer.

4. No previous rule applies, so both are integers, and Python leaves them
unchanged.

Other functions

Python has a few other built-in functions for working with numeric types, as
described in the following sections.

Absolute value — abs

The abs (x) function takes the absolute value of any integer, long integer, or floating
point number:

>>> abs(-5.0)
5.0
>>> abs(-20L)
20L

When applied to a complex number, this function returns the magnitude of the num-
ber, which is the distance from that point to the origin in the complex plane. Python
calculates the magnitude just like the length of a line in two dimensions: for a com-
plex number (a + bj), the magnitude is the square root of a squared plus b
squared:

>>> abs(5 - 23)
5.3851648071345037

Chapter 2 4 Identifiers, Variables, and Numeric Types 25

Convert two numbers to a common type — coerce(x, y)

The coerce function applies the previously explained numeric conversion rules to
two numbers and returns them to you as a tuple (we cover tuples in detail in the
next chapter):

>>> coerce(5,2L)

(5L, 2L)
>>> coerce(5.5,2L)
(5.5, 2.0)

>>> coerce(5.5,5 + 23)
((5.5+03), (b+23))

Quotient and remainder — divmod(a, b)
This function performs long division on two numbers and returns the quotient and
the remainder:

>>> divmod(5,2)

(2, 1)
>>> divmod(5.5,2)
(2.0, 1.5)

Power — pow(x, y [, z])
The pow function is similar to the power (**) operator in Table 2-1:

>>> pow(5,2)

25

>>> pow(l.2,2.1)
1.4664951016517147

As usual, Python coerces the two numbers to a common type if needed. If the
resulting type can’t express the correct result, Python yells at you:

>>> pow(2.0,-1) # The coerced type is a floating point.
0.5
>>> pow(2,-1) 4 The coerced type is an integer.
Traceback (innermost Tast):

File "<interactive input>", line 1, in ?
ValueError: integer to the negative power

An optional third argument to pow specifies the modulo operation to perform on
the result:

>>> pow(2,5)

32

>>> pow(2,5,10)
2

>>> (2 **5) % 10
2

26

Part | + The Python Language

The result is the same as using the power and modulo operators, but Python
arrives at the result more efficiently. (Speedy power-and-modulo is useful in some
types of cryptography.)

Round —round(x [, n])
This function rounds a floating point number x to the nearest whole number.
Optionally, you can tell it to round to n digits after the decimal point:

>>> round(5.567)
6.0

>>> round(5.567,2)
5.57

math and numerical data types.

@j Chapter 31, “Number Crunching,” covers several Python modules that deal with
eference

Assigning Values to Variables

With basic numeric types out of the way, we can take a break before moving on to
other data types, and talk about variables and assignment statements. Python cre-
ates variables the first time you use them (you never need to explicitly declare
them beforehand), and automatically cleans up the data they reference when they
are no longer needed.

Refer back to “Identifiers and Operators” at the beginning of this chapter for the
rules regarding valid variable names.

Simple assignment statements

The simplest form of assignment statements in Python are of the form variable = value:

>>> a
>>> b
>>> a
5

>>> b
10
>>> a + b
15

>>> a > b
0

5
10

@ “Understanding References” in Chapter 4 goes into more depth about how and
eference

when Python destroys unneeded data, and “Taking Out the Trash” in Chapter 26
covers the Python garbage collector.

Chapter 2 4 Identifiers, Variables, and Numeric Types

A Python variable doesn’t actually contain a piece of data but merely references a
piece of data. The details and importance of this are covered in Chapter 4, but for
now it’s just important to note that the type of data that a variable refers to can
change at any time:

>>> a 10

>>> a # First it refers to an integer.

10

>>> a 5.0 + 2]

>>> a # Now it refers to a complex number.
(5+23)

Multiple assignment

Python provides a great shorthand method of assigning values to multiple variables
at the same time:

>>> a,b,c = 5.5,2,10
>>> a

5.5

>>> b

2

>>> ¢

10

You can also use multiple assignment to swap any number of variables. Continuing
the previous example:

>>> a,b,c = c,a,b
>>> a

10

>>> b

5.5

>>> ¢

2

@j Multiple assignment is really tuple packing and unpacking, covered in Chapter 4.
eierence

Augmented assignment

Another shorthand feature is augmented assignment, which enables you to combine
an assignment and a binary operation into a single statement:

>>> a =10
>>> a +=5
>>> a

15

27

28 Part| + The Python Language

gevtv \ _ Augmented assignment was introduced in Python 2.0.
eature

Python provides these augmented assignment operators:

4= -= *= /= 9= K,k =
>>= K= &= |

A=

The statement a += 5 is nearly identical to the longer form of a = a + 5 with two
exceptions (neither of which you need to worry about too often, but are worth
knowing):

1. In augmented assignment, Python evaluates a only once instead of the two
times in the longhand version.

2. When possible, augmented assignment modifies the original object instead of
creating a new object. In the longhand example above, Python evaluates the
expression a + 5, creates a place in memory to hold the result, and then re-
assigns a to reference the new data. With augmented assignment, however,
Python places the result in the original object.

Summary

Python has several built-in data types and many features to help you work with
them. In this chapter you:

4 Learned the rules for valid Python variable names and other identifiers.

4+ Created variables using integer, floating point, and other numerical data.

4 Used augmented assignment statements to combine basic operations such as

addition with assignment.

In the next chapter you discover how to use expressions to compare data and you
learn how character strings work in Python.

¢+ o+ 4

Expressions
and Strings

' haracter strings can hold messages for users to read

(ala “Hello, world!”), but in Python they can also hold a
sequence of binary data. This chapter covers how you use
strings in your programs, and how you can convert between
strings, numbers, and other Python data types.

Before you leave this chapter, you’ll also have a solid grasp of
expressions and how your programs can use them to make
decisions and compare data.

Expressions

Expressions are the core building blocks of decision making in
Python and other programming languages, and Python evalu-
ates each expression to see if it is true or false.

The most basic form of a Python expression is any value: if
the value is nonzero, it is considered to be “true,” and if it
equals 0, it is considered to be “false.”

r Cross- Chapter 4 goes on to explain that Python also considers
\ Reference \ 4ny nonempty and non-None objects to be true.

More common, however, is the comparison of two or more
values with some sort of operator:

>>> 12 > 5 # This expression is true.
1
>>> 2 < 1 4§ This expression is false.
0

Comparing numeric types

Python supplies a standard set of operators for comparing
numerical data types. Table 3-1 lists these comparison opera-
tors with examples.

CHAPTER

L S S 2
In This Chapter
Expressions

Strings

Converting between
simple types

+ 0+ o+

30 Part | + The Python Language

Table 3-1
Comparison Operators

Operator Description Sample Input Sample Output
< Less than 10<5 0
> Greater than 10>5 1
<= Less than or equal 3I<=I5 1

3<=3 1
>= Greater than or equal 3>=5 0
== Equality 3=3 1

3=5 0
= Inequality” 31=5 1

* Python also supports an outdated inequality operator: <>. It may not be supported in the future.

Before comparing two numbers, Python applies the usual coercion rules if
necessary.

A comparison between two complex numbers involves only the real part of each
number if they are different. Only if the real parts of both are the same does the
comparison depend on the imaginary part:

>>> 3+ 10j < 2 + 1000j
0
>>> 3+ 10j < 3 + 1000]
1

Python doesn’t restrict you to just two operands in a comparison; for example, you
can use the common a < b < ¢ notation common in mathematics:

>>> a,b,c = 10,20,30
>>> a << b <c
J# True because 10 < 20 and 20 < 30

Note that a < b < ¢ is the same as comparing a < b and then comparing b < c, except
that b is evaluated only once (besides being nifty, this could really make a differ-
ence if evaluating b required a lot of processing time).

Expressions like a < b > ¢ are legal but discouraged, because to the casual observer
(for example, you, late at night, searching for a bug in your code) they appear to
imply a comparison or relationship between a and c, which is not really the case.

Python has three additional functions that you can use when comparing data:

Chapter 3 4 Expressions and Strings 31

min (x[, y,z,-..])

The min function takes two or more arguments of any type and returns the smallest:

>>> min(10,20.5,5,100L)
5

max (x[, y,z,...])

Similarly, max chooses the largest of the arguments passed in:

>>> max(10,20.5,5,100L)
100L

Both min and max can accept a sequence as an argument (See Chapter 4 for infor-
mation on lists and tuples.):

>>> Ages=[42,37,26]
>>> min(Ages)
26

cmp (x,y)

The comparison function takes two arguments and returns a negative number, 0, or
a positive number if the first argument is less than, equal to, or greater than the
second:

>>> cmp(2,5)
-1

>>> cmp(5,5.0)
0

>>> cmp(5,2)

1

Do not rely on the values being strictly 1, -1, or 0, especially when calling cmp with
other data types (for example, strings).

Compound expressions

A compound expression combines simple expressions using the Boolean operators
and, or, and not. Python treats Boolean operators slightly differently than many
other languages do.

and

When evaluating the expression a and b, Python evaluates a to see if it is false, and
if so, the entire expression takes on the value of a. If a is true, Python evaluates b
and the entire expression takes on the value of b. There are two important points
here. First, the expression does not evaluate to just true or false (0 or 1):

32

Part | + The Python Language

>>> a,b = 10,20

>>> a and b # a is true, so evaluate b
20

>>> a,b =10,5

>>> a and b

0

Second, if a (the first expression) evaluates to false, then Python never bothers to
evaluate b (the second expression):

>>> 0 and 2/0 Jf Doesn't cause division by zero error
0

or

With the expression a or b, Python evaluates a to see if it is true, and if so, the
entire expression takes on the value of a. When a is false, the expression takes on
the value of b:

>>> a,b = 10,20
>>> a or b

10

>>> a,b =10,5
>>> a or b

5

Similar to the and operator, the expression takes on the value of either a or b
instead of just 0 or 1, and Python evaluates b only if a is false.

not
Finally, not inverts the “truthfulness” of an expression: if the expression evaluates
to true, not returns false, and vice versa:

>>> not b

0

>>> not O

1

>>> not (0 > 2)
1

Unlike the and and or operators, not always returns a value of 0 or 1.

Complex expressions

You can form arbitrarily complex expressions by grouping any number of expres-
sions together using parentheses and Boolean operators. For example, if you just
can’t seem to remember if a number is one of the first few prime numbers, this
expression will bail you out:

Chapter 3 4 Expressions and Strings 33

>>>
>

—~
.
Il
Il
I o

2) or (i %2 !'=0and 0 < i < 9)

>>>
>0
1
>>>
>
0

—~
.
Il
Il
I~

2) or (i %2 !'=0and 0 < i < 9)

—~
.
Il
Il
&~

2) or (i %2 !'=0and 0 < i < 9)

If the number is 2, the first sub-expression (i == 2) evaluates to true and Python
stops processing the expression and returns 1 for true. Otherwise, two remaining
conditions must be met for the expression to evaluate to true. The number must
not be evenly divisible by 2, and it must be between 0 and 9 (hey, I said the first few
primes, remember?).

Parentheses let you explicitly control the order of what gets evaluated first. Without
parentheses, the order of evaluation may be unclear and different than what you
expect (and a great source of bugs):

>>> 4 or 1 * 2
4

A well-placed pair of parentheses clears up any ambiguity:

>>> (4 or 1) * 2
8

Operator precedence

Python uses the ordering in Table 3-2 to guide the evaluation of complex expres-
sions. Expressions using operators higher up in the table get evaluated before
those towards the bottom of the table. Operators on the same line of the table have
equal priority or precedence. Python evaluates operators with the same prece-
dence from left to right.

Table 3-2
Operator Precedence (from lowest to highest)
Operators Description
e String conversion
{key:datum, ...} Dictionary
[x,y,...] List
(X,Y,...) Tuple

Continued

34 Part | + The Python Language

Table 3-2 (continued)

Operators Description
f(x,y,...) Function call
x[J:k] Slice

x[J] Subscription

x.attribute

Attribute reference

= Bitwise negation (inversion)
+x, -X Plus, minus

kel Power

*, /% Multiply, divide, modulo
i, = Add, subtract

<<, o> Shifting

& Bitwise AND

A Bitwise XOR

| Bitwise OR

G K=,==,1=,>=,> Comparisons

is, isnot Identity

in, not in Membership

not x Boolean NOT

and Boolean AND

or Boolean OR

Tambda Lambda expression

r Cross- See Chapters 4 through 7 for more information on operators and data types such
Reference :
as lists and tuples that we have not yet covered.

Strings

A string is Python’s data type for holding not only text but also “non-printable” or
binary data. If you’'ve done much work with strings in languages like C or C++, pre-
pare to be liberated from mundane memory management tasks as well as a plethora
of bugs lying in wait. Strings in Python were not added as an afterthought or tacked
on via a third party library, but are part of the core language itself, and it shows!

Chapter 3 4 Expressions and Strings 35

String literals

A string literal is a sequence of characters enclosed by a matching pair of single or
double quotes:

"Do you like green eggs and ham?"
"Amu vian najbaron'
"Tuesday' # Illegal: quotes do not match.

Which of the two you use is more of a personal preference (in some nerdy way |
find single-quoted strings more sexy and “cool”), but sometimes the text of the
string makes one or the other more convenient:

"Quoth the Raven, _Nevermore._ '
Monty Python's Flying Circus
_Enter your age (I'11 know if you're lying, so don't): _

Python automatically joins two or more string literals separated only by whitespace:

>>> "one" 'two' "three"
'onetwothree'

A single backslash character inside a string literal lets you break a string across
multiple lines:

>>> 'Rubber baby \
... buggy bumpers'
'Rubber baby buggy bumpers'

If your string of text covers several lines and you want Python to preserve the exact
formatting you used when typing it in, use triple-quoted strings (the string begins
with three single or double quotes and ends with three more of the same type of
quote). An example:

>>> s = """"Knock knock."
"Who's there?"
"Knock knock."
"Who's there?"
"Knock knock."
"Who's there?"
"Philip Glass."
>>> print s
"Knock knock."
"Who's there?"
"Knock knock."
"Who's there?"
"Knock knock."
"Who's there?"
"Philip Glass."

36 Part | + The Python Language

String length
Regardless of the quoting method you use, string literals can be of any length. You
can use the 1en(x) function to retrieve the length of a string:

>>> len('Pokey")

5

>>> s = "Data:\x00\x01"
>>> len(s)

7

Escape sequences

You can also use escape sequences to include quotes or other characters inside a
string (see Table 3-3):

>>> print "\"Never!\" shouted Skeptopotamus."
"Never!" shouted Skeptopotamus.

Table 3-3
Escape Sequences

Sequence Description
\n Newline (ASCII LF)
\' Single quote
\" Double quote
\\ Backslash
\t Tab (ASCII TAB)
\b Backspace (ASCII BS)
\r Carriage return (ASCII CR)
\xhh Character with ASCII value hh in hex
\0oo Character with ASCII value 000 in octal
\ f Form feed (ASCII FF)"
\a Bell (ASCII BEL)
\v Vertical tab (ASCII VT)

* Not all output devices support all ASCII codes. You won't use \v very often, for example.

Table 3-3 lists the valid escape sequences. If you try to use an invalid escape
sequence, Python leaves both the backslash and the character after it in the string:

>>> print 'Time \z for foosball!'’
Time \z for foosball!

Chapter 3 4 Expressions and Strings 37

As shown in Table 3-3, you can specify the characters of a string using their ASCII
value:

>>> "\x50\x79\x74\x68\x6f\x6e"
'Python’

r Cross- See “Converting Between Simple Types” later in this chapter for more on the ASCII
\@ codes for characters.
The values can be in the range of 0 to 255 (the values that a single byte can have).
Remember: a string in Python doesn’t have to be printable text. A string could hold
the raw data of an image file, a binary message received over a network, or any-
thing else.

Raw strings

One final way to specify string literals is with raw strings, in which backslashes can
still be used as escape characters, but Python leaves them in the string. You flag a
string as a raw string with an r prefix. For example, on Windows systems the path
separator character is a backslash, so to use it in a string you’d normally have to
type ‘\\’ (the escape sequence for the backslash). Alternatively, you could use a
raw string:

>>> s = r"c:\games\half-life\hl.exe"
>>> s

"c:\\games\\half-Tife\\hl.exe'

>>> print s
c:\games\half-life\hl.exe

¢ Cross- The os.path module provides easy, cross-platform path manipulation. See
Reference’\ chapter 10 for details.

Manipulating strings

You can use the plus and multiply operators to build strings. The plus operator
concatenates strings together:

>>> a = 'ha '
>>> a t+ a + a
"ha ha ha '

The multiply operator repeats a string:

38 Part | + The Python Language

Note that operator precedence rules apply, as always:

>>> '"Wh' + 'e' * 10 +' !
'"Wheeeeeeeeee!"'

Augmented assignment works as well:

>>> a = '"Ah'

>>> a += ' Hah! '
>>> a

"Ah Hah! '

>>> a *= 2

>>> a

"Ah Hah! Ah Hah! '

Accessing individual characters and substrings

Because strings are sequences of characters, you can use on them the same opera-
tors that are common to all of Python’s sequence types, among them, subscription
and slice.

g See Chapter 4 for a discussion of Python sequence types.
Reference

Subscription lets you use an index number to retrieve a single character from a
Python string, with 0 being the first character:

>>> s = "Python'
>>> s[1]
o

Additionally, you can reference characters from the end of the string using negative
numbers. An index of -1 means the last character, -2 the next to last, and so on:

>>> "Hello'[-1]
lol
>>> "Hello'[-5]
"H

Python strings are immutable, which means you can’t directly change them or indi-
vidual characters (you can, of course, assign the same variable to a new string):

>>> s = 'Bad'
>>> s[2] = 'c' 4§ Can't modify the string value
Traceback (innermost Tast):

File "<interactive input>", line 1, in ?
TypeError: object doesn't support item assignment
>>> s = 'Good' # Can reassign the variable

Chapter 3 4+ Expressions and Strings

Strings Are Objects

Python strings are actually objects with many built-in methods:

>>> s = 'Dyn-o-mite!’
>>> s.upper()

"DYN-O-MITE!"
>o> ! text ‘'.strip()
"text'

Refer to Chapter 9 for a discussion of all the String methods and how to use them.

Slicing is similar to subscription except that with it you can retrieve entire sub-
strings instead of single characters. The operator takes two arguments for the
lower and upper bounds of the slice:

>>> '"Monty'[2:4]
Nt

It’s important to understand that the bounds are not referring to character indices
(as with subscription), but really refer to the spots between characters:

Monty

A
012345

So the slice of 2: 4 is like telling Python, “Give me everything from the right of 2 and
to the left of 4,” which is the substring “nt”.

The lower and upper bounds of a slice are optional. If omitted, Python sticks in the
beginning or ending bound of the string for you:

>>> s = "Monty'
>>> sl[:2]

Mo

>>> s[2:]

lntyl

>>> sl:]
"Monty'

Don’t forget: Python doesn’t care if you use negative numbers as bounds for the
offset from the end of the string. Continuing the previous example:

>>> s[1:-11
‘ont'
>>> s[-3:-1]

lntl

Part | + The Python Language

You can also access each character via tuple unpacking. This feature isn’t used as
often because you have to use exactly the same number of variables as characters
in the string:

>>> a,b,c = "YES'
>>> print a, b, ¢
Y ES

Alote Python does not have a separate ‘character’ data type; a character is just a string of
~ length 1.

Formatting strings

The modulo operator (%) has special behavior when used with strings. You can use
it like the C printf function for formatting data:

>>> "It's %d past %d, %s!" % (7,9,"Fred")
"It's 7 past 9, Fred!"”

Python scans the string for conversion specifiers and replaces them with values
from the list you supply. Table 3-4 lists the different characters you can use in a
conversion and what they do; those in bold are more commonly useful.

Table 3-4
String Formatting Characters
Character Description
dor I Decimal (base 10) integer
f Floating point number
s String or any object
c Single character
u Unsigned decimal integer
X or x Hexadecimal integer (upper or lower case)
0 Octal integer
eorkE Floating point number in exponential form
gorG Like %f unless exponent <-4 or greater than the
precision. If so, acts like %e or %E
r repr () version of the object’
% Use %% to print the percentage character.

* 0s prints the str() version, %r prints the repr() version. See “Converting Between Simple Types” in this chapter.

Chapter 3 4+ Expressions and Strings

Here are a few more examples:

>>> 'kx %X' % (57005,48879)

"dead BEEF'

>>> pi = 3.14159

>>> "%t %E %G % (pi,pi,pi)

'3.141590 3.141590E+000 3.14159"

>>> print "%s %r' % ('Hello','Hello")
Hello 'Hello'

Beyond these features, Python has several other options, some of which are
holdovers from C. Between the % character and the conversion character you
choose, you can have any combination of the following (in this order):

Key name

Instead of a tuple, you can provide a dictionary of values to use (dictionaries are
covered in Chapter 4). Place the key names (enclosed in parentheses) between the
percent sign and the type code in the format string. This one is best explained with
an example (although fans of Mad-Libs will be at home):

>>> d = {'name':'Sam', 'num':32, 'amt':10.12}

>>> '%(name)s is %(num)d years old. %(name)s has $%(amt).2f"' %
d

'Sam is 32 years old. Sam has $10.12'

-or0

A minus indicates that numbers should be left justified, and a 0 tells Python to pad
the number with leading zeros. (This won’t have much effect unless used with the
minimum field modifier, explained below.)

+

A plus indicates that the number should always display its sign, even if the number
is positive:

>>> "kh+d %+d" % (5,-5)
‘45 g

Minimum field width number

A number indicates the minimum field this value should take up. If printing the
value takes up less space, Python adds padding (either spaces or zeros, see above)
to make up the difference:

>>> '"%5d'" % 2 4 Don't need () if there's only one value
1 2!

>>> '%-5d, %05d' % (2,2)

"2 , 00002'

41

42

Part | + The Python Language

Additional precision-ish number

This final number is a period character followed by a number. For a string, the
number is the maximum number of characters to print. For a floating-point number,
it’s the number of digits to print after the decimal point, and for integers it’s the
minimum number of digits to print. Got all that?

>>> '"%.3s" % 'Python’

Pyt
>>> "%05.3f" % 3.5
'3.500'

>>> "%-8.5d" % 10
'00010 '

Last but not least, you can use an asterisk in place of any number in a width field. If
you supply an asterisk, you also provide a list of values (instead of a single num-
ber). Python looks in the list of values for that width value:

>>> "kr.xf % (6,3,1.41421356)
" 1.414°

Comparing strings
String comparison works much the same way numeric comparison does by using

the standard comparison operators (<, <=, !=, ==, >=, >). The comparison is
lexicographic (‘A’ < ‘B’) and case-sensitive:

>>> 'Fortran' > 'Pascal'
0

>>> '"Perl' < 'Python'

1

For a string in an expression, Python evaluates any nonempty string to true, and an
empty string to false:

>>> '0K' and 5
5

>>> not 'fun'
0

>>> not "'

1

This behavior provides a useful idiom for using a default value if a string is empty.
For example, suppose that the variable s in the following example came from user
input instead of you supplying the value. If the user chose something, name holds
its value; otherwise name holds the default value of 'index.html"'.

>>> s = "'; name = s or 'index.html'
>>> name
"index.html'

Chapter 3 4 Expressions and Strings 43

>>> s = 'page.html'; name = s or 'index.html'
>>> name
"page.html’

You can use the min, max, and cmp functions on strings:

>>> min('abstract') # Find the least character in the string.
'a
>>> max('i','love', 'spam') # Find the greatest string.
'spam’

>>> cmp('Vader','Maul"') # Vader is greater.

9

Strings (and other sequence types) also have the in (and not in) operator, which
tests if a character is a member of a string:

>>> 'u' in 'there?'

0

>>> '"i' not in 'teamwork' # Cheesy
1

@ Chapter 9 covers advanced string searching and matching with regular expressions.
eierence

Unicode string literals

Many computer languages limit characters in a string to values in the range of 0 to
255 because they store each one as a single byte, making nearly impossible the sup-
port of non-ASCII characters used by so many other languages besides plain old
English. Unicode characters are 16-bit values (0 to 65535) and can therefore handle
just about any character set imaginable.

gevtv \ _ Full support for Unicode strings was a new addition in Python 2.0.
eature

You can specify a Unicode literal string by prefixing a string with a u:

>>> u'Rang'
u'Rang'

r Cross- See Chapter 9 for more on using Unicode strings.
Reference

Converting Between Simple Types

Python provides many functions for converting between numerical and string data
types in addition to the string formatting feature in the previous section.

44

Part | + The Python Language

Converting to numerical types

The int, Tong, float, complex, and ord functions convert data to numerical types.

int (x[, radix])
This function uses a string and an optional base to convert a number or string to an
integer:

>>> int('15")

15

>>> int('15',16) # In hexadecimal, sixteen is written "10"
21

The string it converts from must be a valid integer (trying to convert the string 3.5
would fail). Alternatively, the int function can convert other numbers to integers:

>>> int(3.5)
3
>>> int(10L)
10

The int function drops the fractional part of a number. To find the “closest” inte-
ger, use the round function (below).

long (x|, radix])
The 1ong function can convert a string or another number to a long integer (you
can also include a base):

>>> Tong('125")
125L

>>> long(17.6)
17L

>>> long('1E',16)
30L

float (x)

You should be seeing a pattern by now:

>>> float(12.1)

12.1

>>> float(10L)

10.0

>>> int(float("3.5")) # int("3.5") is illegal.
3

The exception is with complex numbers; use the abs function to “convert” a
complex number to a floating-point number.

Chapter 3 4+ Expressions and Strings

round (num[, digits])
This function rounds a floating point number to a number having the specified

number of fractional digits. If you omit the digits argument, the result is a whole
number:

>>> round(123.5678,3)
123.568

>>> round(123.5678)
124.0

>>> round(123.4)
123.0

complex (real[, imaginary])
The complex function can convert a string or number to a complex number, and it
also takes an optional imaginary part to use if none is supplied:

>>> complex('2+5j")
(2+53)

>>> complex('2")
(2+403)

>>> complex(6L,3)
(6+33)

ord (ch)
This function takes a single character (a string of length 1) as its argument and
returns the ASCII or Unicode value for that character:

>>> ord(u'a')
97
>>> ord('b")
98

Converting to strings

Going the other direction, the following functions take numbers and make them into
strings.

chr (x) and unichr (x)
Inverses of the ord function, these functions take a number representing an ASCII
or Unicode value and convert it to a character:

>>> ¢chr(98)
lbl

45

46

Part | + The Python Language

New
Feature

oct (x) and hex (x)
These two functions take numbers and convert them to octal and hexadecimal
string representations:

>>> oct(123)
'0173"
>>> hex(123)
'Ox7b"

str (obj)
The str function takes any object and returns a printable string version of that
object:

>>> str(b)

>>> str(5.5)
'5.5"

>>> str(3+23)
"(3+2§)"

Python calls this function when you use the print statement.

repr (obj)

The repr function is similar to str except that it tries to return a string version of
the object that is valid Python syntax. For simple data types, the outputs of str and
repr are often identical. (See Chapter 9 for details.)

A popular shorthand for this function is to surround the object to convert in back
ticks (above the Tab key on most PC keyboards):

>>> a=>5
>>> 'Give me ' + a # Can't add a string and an integer!
Traceback (innermost Tast):

File "<interactive input>", Tine 1, in ?
TypeError: cannot add type "int" to string
>>> 'Give me ' + “a # Convert to a string on-the-fly.
"Give me 5'

N\ Asof Python 2.1, str and repr display newlines and other escape sequences the
same way you type them (instead of displaying their ASCII code):

>>> 'Hello\nWorld"'
"Hello\nWorld'

When you use the Python interpreter interactively, Python calls repr to display
objects. You can have it use a different function by setting the value of sys.
displayhook:

Chapter 3 4 Expressions and Strings 47

>>> 5.3

5.2999999999999998 4 The standard representation is ugly.
>>> def printstr(s):

print str(s)

>>> import sys

>>> sys.displayhook = printstr

>>> 5.3

5.3 4 A more human-friendly format

New '\ The sys.displayhook feature is new in Python 2.1.
Feature

Summary

Python has a complete set of operators for building expressions as complex as you
need. Python’s built-in string data type offers powerful but convenient control over
text and binary strings, freeing you from many maintenance tasks you’d be stuck
with in other programming languages. In this chapter you:

4 Built string literals and formatted data in strings.

4+ Used Python’s operators to modify and compare data.

4 Learned to convert between various data types and strings.

In the next chapter you'll unleash the power of Python’s other built-in data types
including lists, tuples, and dictionaries.

+ o+

Advanced
Data Types

The simple data types in the last few chapters are com-
mon to many programming languages, although often not
so easily managed and out-of-the-box powerful. The data
types in this chapter, however, set Python apart from lan-
guages such as C, C++, or even Java, because they are built-in,
intuitive and easy to use, and incredibly powerful.

Grouping Data with Sequences

Strings, lists, and tuples are Python’s built-in sequence data
types. Each sequence type represents an ordered set of data
elements. Unlike strings, where each piece of data is a single
character, the elements that make up a list or a tuple can be
anything, including other lists, tuples, strings, and so on.
Though much of this section applies to strings, the focus here
is on lists and tuples.

Cross- Go directly to Chapter 3 to learn more about strings. Do
Reference not pass Go.

The main difference between lists and tuples is one of muta-
bility: you can change, add, or remove items of a list, but you
cannot change a tuple. Beyond this, though, you will find a
conceptual difference on where you apply each. You'd use a
list as an array to hold the lines of text from a file, for exam-
ple, and a tuple to represent a 3-D point in space (x,y,z). Put
another way, lists are great for dealing with many items

that you'd process similarly, while a tuple often represents
different parts of a single item. (Don’t worry —when you go to
use either in a program it becomes pretty obvious which one
you need.)

CHAPTER

+ 0+ 0+
In This Chapter

Grouping data with
sequences

Working with
sequences

Using additional list
object features

Mapping information
with dictionaries

Understanding
references

Copying complex
objects

Identifying data types

Working with array
objects

¢+ 4+ 0+

50

Part | + The Python Language

Creating lists

Creating a list is straightforward because you don’t need to specify a particular
data type or length. You can surround any piece of data in square brackets to create
a list containing that data:

>>> x =[] # An empty 1list

>>> y = ['Strawberry', 'Peach']

>>> z = [10, 'Howdy',y] # Mixed types and a list within a list
>>> z

[10, 'Howdy', ['Strawberry', 'Peach']]
You can call the 1ist(seq) function to convert from one sequence type to a list:

>>> 1ist((5,10)) # A tuple

[5, 10]
>>> Tist("The World")
[lTl, lhl’ lel,) l’ lwl’ IOI’ lr‘l’ l'll, Idl]

If you call 1ist on an object that is already a list, you get a copy of the original list
back.

Ej See “Copying Complex Objects” in this chapter for more on copying objects.
Reference

Ranges

You use the range([Tower,] stopl, step]) function to generate a list whose
members are some ordered progression of integers. Instead of idling away your
time typing in the numbers from 0 to 10, you can do the same with a call to range:

>>> range(10)
[0, 1, 2, 3, 4,5, 6, 7,8, 9] # 10 items, starting at 0

You can also call the function with start and stop indices, and even a step to tell it
how quickly to jump to the next item:

>>> range(6,12)

(6, 7, 8, 9, 10, 111 # Stops just before the stop index.
>>> range (2,20,3)

(2, 5, 8, 11, 14, 171

>>> range (20,2,-3) 4 Going down!

(20, 17, 14, 11, 8, 51

You most commonly use the range function in looping (which we cover in the next
chapter):

>>> for i in range(10):
R print 1,
0123456789

New
Feature

Chapter 4 4 Advanced Data Types

The xrange ([Tower,] stopl, step]) function is similar to range except that
instead of creating a list, it returns an xrange object that behaves like a list but
doesn’t calculate each list value until needed. This feature has the potential to save
memory if the range is very large or to improve performance if you aren’t likely to
iterate through every single member of the equivalent list.

List comprehensions

One final way to create a list is through list comprehensions, which are great if you
want to operate on each item in a list and store the result in a new list, or if you
want to create a list that contains only items that meet certain criteria. For
example, to generate a list containing x? for the numbers 1 through 10:

>>> [x*x for x in range(1,11)]
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

\ _ List comprehensions are new in Python 2.0.

Python uses the range(1,11) to generate a list containing the numbers 1 through
10. Then, for each number in that list, it evaluates the expression x*x and adds the
result to the output list.

You can add an i f to the list comprehension so that items get added to the new list
only if they pass some test. For example, to generate the same list as above while
weeding out odd numbers:

>>> [x*x for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]

But wait, there’s more! You can list more than one for statement and Python evalu-
ates each in order, processing the rest of the list comprehension each time:

>>> [a+b for a in '"ABC' for b in '123']
[lAll’ 'AZ', 'A3', lBll, lev, 'B3', lCl‘, ICZ', lC3l]

Python loops through each character of 'ABC' and for each one goes through the
entire loop of each characterin '123".

See where this is going? You can have as many for statements as you want, and
each one can have an i f statement (but if you think you need five or six then you
might want to break them into separate statements for sanity’s sake):

>>> [a+b+c for a in "HI" for b in "JOE" if b != "E'
for ¢ in '123" if cl= '2']
['HJ1", 'HJ3', 'HOLl', 'HO3', "IJl1', "IJ3', "I01', "I03']

51

52 Part | + The Python Language

Finally, the expression that Python evaluates to generate each item in the new list
doesn’t have to be a simple data type such as an integer. You can also have it be
lists, tuples, and so forth:

>>> [(x,ord(x)) for x in 'Ouch']
(¢'o', 79y, ('u', 117), ('c', 99), ('h", 104)]

Creating tuples

Creating a tuple is similar to creating a list, except that you use parentheses instead
of square brackets:

>>> x = () {# Any empty tuple
>>> y = 22407, 'Fredericksburg' # ()'s are optional
>>> z = ('Mrs. White','Ballroom', 'Candlestick"')

Parentheses can also enclose any expression, so Python has a special syntax to des-
ignate a tuple with only one item. To create a tuple containing the string ‘lonely’:

>>> x = ("lTonely"',)

Use the tuple(seq) function to convert one of the other sequence types to a tuple:

>>> tuple('tuple')

(l.tl’ lul, lpl’ l'll’ lel)
>>> tuple(l[1,2,31)

(1, 2, 3)

Working with Sequences

Now that you have your list or tuple, what do you do with it? This section shows
you the operators and functions you can use to work on sequence data.

Joining and repeating with arithmetic operators

Of the arithmetic operators, Python defines addition and multiplication for working
with sequences. As with strings, the addition operator concatenates sequences and
the multiplication operator repeats them:

>>> [1,2]1 + [5]1 + ['EGBDF"]
[1, 2, 5, "EGBDF']

>>> ("FACEG',) + (17,88)
('FACEG", 17, 88)

>>> (1,3+43) * 2

(1, (3+47), 1, (3+4j))

Chapter 4 4+ Advanced Data Types 53

The augmented assignment version of these operators works as well (although for
strings and tuples Python doesn’t perform the operation in place but instead cre-
ates a new object):

>>> z = ['bow','arrow']

>o> 7z *= 2
>>> 7z
['bow', 'arrow', 'bow', 'arrow']

>>> q = (1,2)
>>> q += (3,4)
>>> q

(1, 2, 3, 4)

Comparing and membership testing

You can use the normal comparison (<, <=, >=, >) and equality (!=, ==) operators
with sequence objects:

>>> ['five','"two'] != [5,2]
1

>>> (0.5,2) < (0.5,1)

0

Python checks the corresponding element of each sequence until it can make a
determination. When the items in two sequence objects are equal except that one
has more items than the other, the longer is considered greater:

>>> [1,2,31 > [1,2]
1

You can use the in operator to test if something is in a list or tuple, and not in to
test if it is not:

>>> trouble = ('Dan','Joe','Bob")
>>> 'Bob' in trouble

1

>>> 'Dave' not in trouble

1

Accessing parts of sequences

When you need to retrieve data from a sequence object, you have several
alternatives.

Subscription

When you want to access a single element of a sequence object, you use the sub-
script or index of the element you want to reference, with the first element having
an index of zero (For some reason I get strange looks when I say, “Back to square
zero!”):

54

Part | + The Python Language

Tip

>>> num = ['dek', "dudek','tridek"']
>>> num[1]
"dudek’

>>> num[-1] # A negative index starts from the other end.
"tridek’

Slices

Slices let you create a new sequence containing all or part of another sequence. You
specify a slice in the form of [start:end] and for each element Python adds that
element to the new sequence if its index i is start <=1 <end.

Conceptually, thinking of the slice parameters as pointing between items in a
~, sequence is helpful.
N

>>> meses = ['marzo','abril','mayo','junio']

>>> meses[1:3]

['abril', 'mayo']

>>> meses[0:-2] 4 Parameters can count from the right, too.
['marzo', 'abril'l]

The start and end parameters are both optional, and Python silently corrects
invalid input:

>>> meses[2:]
['mayo', 'junio'l]
>>> meses[:2]
['marzo', 'abril']
>>> meses[-2:5000]
['mayo', 'junio']

ples of using slices.

@ See “Accessing individual characters and substrings” in Chapter 3 for more exam-
eierence

AI ote

Unpacking
Just as you can create a tuple by assigning a comma-separated list of items to a

single variable, you can unpack a sequence object (not just tuples!) by doing the
opposite:

>>> s = 801,435,804
>>> X,y,Zz = S

>>> print x,y,z
801 435 804

Keep in mind that the number of variables on the left must match the length of the
sequence you're unpacking on the right.

Multiple assignment (in Chapter 3) is really just a special case of tuple packing and

unpacking: you pack the objects into a single tuple and then unpack them into the
same number of original variables.

-

Chapter 4 4+ Advanced Data Types 55

Iterating with for...in

A common task is to loop over all the elements of a list or tuple and operate on
each one. One of the easiest ways to do this is with a for. .. in statement:

>>> for op in ['sin','cos', 'tan']:
print op

sin
cos
tan

Using sequence utility functions

Python provides a rich complement of sequence processing functions.

len (x), min (x[, y,z....]), and max (x[, y.z....])
These three aren’t really specific to sequences, but they’re quite useful nonetheless:

>>> data = [0.5, 12, 18, 2, -5]

>>> len(data) # Count of items in the sequence
5

>>> min(data) # The minimum item in the sequence
-5

>>> max(data) # The maximum item in the sequence
18

filter (function, list)

When you call filter it applies a function to each item in a sequence, and returns
all items for which the function returns true, thus filtering out all items for which
the function returns false. In the following example I create a tiny function,
nukeBad, that returns false if the string passed in contains the word 'bad"’.
Combining filter with nukeBad eliminates all those ‘bad’ words:

>>> def nukeBad(s):

return s.find('bad') == -1

>>> s = ['bad', 'good','Sinbad', 'bade', 'welcome"']
>>> filter(nukeBad,s)

['good', 'welcome']

If you pass in None for the function argument, fi1ter removes any 0 or empty
items from the list:

>>> stuff = [12,0,'Hey"',[1,""',[1,2]]
>>> filter(None,stuff)
[12, 'Hey', [1, 211

The filter function returns the same sequence type as the one you passed in. The
example below removes any number characters from a string and returns a new
string:

56 Part | + The Python Language

>>> filter(lambda d:not d.isdigit(),"P6ythl2on")
'"Python'

r Cross- See Chapter 6 for more information on lambda expressions.
Reference

map (function, list], list, ...])

The map function takes a function and a sequence and returns to you the result of
applying the function to each item in the original sequence. Regardless of the type
of sequence you pass in, map always returns a list:

>>> dimport string

>>> s = ['chile','canada', 'mexico']
>>> map(string.capitalize,s)
['Chile', 'Canada', 'Mexico']

You can pass in several multiple lists, too, as long as the function you supply takes
the same number of arguments as the number of lists you pass in:

>>> import operator

>>> s = [2,3,4,5]; t = [5,6,7,8]

>>> map(operator.mul,s,t) # s[j]l * t[j]
(10, 18, 28, 40]

r Cross- Chapter 7 covers the operator class, which contains function versions of the
Reference . . .
standard operators so you can pass them into functions like map.

If the lists you use are of different lengths, map uses empty (None) items to make up
the difference. Also, if you pass in None instead of a function, map combines the cor-
responding elements from each sequence and returns them as tuples (compare this
to the behavior of the z1ip function, later in this section):

>>> a =1[1,2,3]; b =1[4,5,6]; ¢ =[7,8,9]
>>> map(None,a,b,c)
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

reduce (function, seq], init])

This function takes the first two items in the sequence you pass in, passes them to
the function you supply, takes the result and the next item in the list, passes them
to the function, and so on until it has processed all the items:

>>> import operator
>>> reduce(operator.mul,[2,3,4,5])
120 # 120 = ((2*3)*4)*5

An optional third parameter is an initializer reduce uses in the very first calcula-
tion, or when the list is empty. The following example starts with the string “-” and
adds each character of a word to the beginning and end of the string (because
strings are sequences, reduce calls the function once for each letter in the string):

Chapter 4 4+ Advanced Data Types 57

>>> reduce(lambda x,y: y+x+y, "Hello", "-")
'olTeH-Hello'

zip (seq|, seq, ...])

The z1ip function combines corresponding items from two or more sequences and
returns them as a list of tuples, stopping after it has processed all the items in the
shortest sequence:

>>> zip([1,1,2,3,5],08,13,211)
[(1, 8), (1, 13), (2, 21)]

You may find the zip function convenient when you want to iterate over several
lists in parallel:

>>> names = ['Joe','Fred','Sam']

>>> exts [116,120,1001]

>>> ages [26,34,28]

>>> for name,ext,age in zip(names,exts,ages):

- print '%s (extension %d) is %d' % (name,ext,age)
Joe (extension 116) is 26

Fred (extension 120) is 34

Sam (extension 100) is 28

Passing in just one sequence to zip returns each item as a 1-tuple:

>>> zip((1,2,3.4))
[(1,), (2,), (3,), (4,)]

New N\ The zip function was introduced in Python 2.0.
Feature

Using Additional List Object Features

List objects have several methods that further facilitate their use, and because they
are mutable they support a few extra operations.

Additional operations

You can replace the value of any item with an assignment statement:

>>> todo = ['dishes', 'garbage', 'sweep', 'mow lawn', 'dust']
>>> todo[1] = 'boogie'

>>> todo

['dishes', 'boogie', 'sweep', 'mow Tawn', 'dust']

What gets replaced in the list doesn’t need to be limited to a single item. You can
choose to replace an entire slice with a new list:

58 Part | + The Python Language

>>> todo[1:3] = ['nap'] # Replace from 1 to before 3

>>> todo

['dishes', 'nap', 'mow lawn', 'dust']

>>> todo[2:] = ['eat','drink', 'be merry']

>>> todo

['dishes', 'nap', 'eat', 'drink', 'be merry']

And finally, you can delete items or slices using de:

>>> del z[0]

>>> z

['nap', 'eat', 'drink', 'be merry']
>>> del z[1:3]

>>> z

['nap', 'be merry']

List object methods

The following methods are available on all list objects.

append (obj) and extend (obj)
The append method adds an item to the end of a list like the += operator (Python

modifies the original list in place) except that the item you pass to append is not a
list. The extend method assumes the argument you pass it is a list:

>>> z = ['Nevada','Virginia'l]

>>> z.append('Utah")

>>>

['Nevada', 'Virginia', 'Utah'l]

>>> z.extend(['North Carolina', 'Georgia']l)
>>>

["'Nevada', 'Virginia', 'Utah', 'North Carolina', 'Georgia']

index (obj)
This method returns the index of the first matching item in the list, if present, and
raises the ValueError exception if not. Continuing the previous example:

>>> x.index(12)

1

>>> try: print x.index('Farmer")

... except ValueError: print 'NOT ON LIST!'
NOT ON LIST!

¢ Cross- See the next chapter for information on try. ..exception blocks.
Reference

count (obj)

You use the count method to find out how many items in the list match the one you
pass in:

Chapter 4 4+ Advanced Data Types 59

>>> x = [15,12,'Foo0',16,12]
>>> x.count(12)
2

g String objects also have count and index methods. See Chapter 9 for details.
Reference

insert (j, obj)
Use the insert method to add a new item anywhere in the list. Pass in the index of
the item you want the new one to come before and the item to insert:

>>> months = ['March', 'May', 'June"']
>>> months.insert(l, "April")

>>> months

['March', 'April', 'May', 'June'l]

Notice that insert is pretty forgiving if you pass in a bogus index:

>>> months.insert(-1, 'February') # Item added at start
>>> months.insert(5000,'July') # Item added at end

>>> months

['February', 'March', 'April', 'May', 'June', 'July']

remove (obj)

This function locates the first occurrence of an item in the list and removes it, if
present, and yells at you if not:

>>> months.remove('March')
>>> months
['February', 'February', 'April', 'May', 'June', 'July']
>>> months.remove("August")
Traceback (innermost Tlast):
File "<interactive input>", Tine 1, in ?
ValueError: Tist.remove(x): x not in Tist

pop([i])
If you specify an index, pop removes the item from that place in the list and returns

it. Without an index, the pop function removes and returns the last item from the
list:

>>> saludos = ['Hasta!','Ciao', 'Nos vemos']
>>> saludos.pop(1)

'Ciao'’

>>> saludos

['Hasta!"', 'Nos vemos']

>>> saludos.pop()

"Nos vemos'

60

Part | + The Python Language

Tip

Calling pop on an empty list causes it to raise IndexError.

reverse()
As named, the reverse function reverses the order of the list:

>>> names = ['Jacob', 'Hannah', 'Rachael', 'dennie']
>>> names.reverse()

>>> names

['Jennie', 'Rachael', 'Hannah', 'Jacob']

sort([func])

This function orders the items in a list. Continuing the previous example:

>>> names.sort()
>>> names
['"Hannah', '"Jacob', 'Jennie', 'Rachael']

Additionally, you can provide your own comparison function to use during the sort.
This function accepts two arguments and returns a negative number, 0, or a posi-
tive number if the first argument is less than, equal to, or greater than the second.
For example, to order a list by length of each item:

>>> names.sort(lambda a,b:len(a)-len(b)) # Ch 5 covers lambdas.
>>> names
['Jacob', 'Hannah', 'Jennie', 'Rachael']

If you want to add and remove items to a sorted list, use the bisect module.

» Whenyou insert an item using the insort(Tist, item) function, it uses a bisec-

e

tion algorithm to inexpensively find the correct place to insert the item so that the
resulting list remains sorted. The bisect(1ist, item) function in the same
module finds the correct insertion point without actually adding the item to the list.

Mapping Information with Dictionaries

A dictionary contains a set of mappings between unique keys and their values; they
are Python’s only built-in mapping data type. The examples in this section use the
following dictionary that maps login user names and passwords to Web site names
(who can ever keep track of them all?):

>>> logins = {'yahoo':('john','jyahooohn'),
"hotmail':('jrfb',"18thStreet')}

>>> logins['hotmail']l 4 What's my name/password for hotmail?
("jrf5"', '"18thStreet")

Chapter 4 4+ Advanced Data Types 61

Creating and adding to dictionaries

You create a dictionary by listing zero or more key-value pairs within curly braces.
The keys used in a dictionary must be unique and immutable, so strings, numbers,
and tuples with immutable items in them can all be used as keys. The values in the
key-value pair can be anything, even other dictionaries if you want.

Adding or replacing mappings is easy:

>>> logins['slashdot'] = ('juan','lemmein')

Accessing and updating dictionary mappings
If you try to use a key that doesn’t exist in the dictionary, Python barks out a
KeyError exception. When you don’t want to worry about handling the exception,

you can instead use the get (key[, obj]) method, which returns None if the
mapping doesn’t exist, and even lets you specify a default value for such cases:

>>> logins['sourceforge', 'No such login']
Traceback (innermost Tast):
File "<interactive input>", Tine 1, in ?

KeyError: ('sourceforge', 'No such login')
>>> logins.get('sourceforge') == None
1

>>> logins.get('sourceforge', "No such login")
"No such Togin'

The setdefault(key[, obj]) method works like get with the default parameter,
except that if the key-value pair doesn’t exist, Python adds it to the dictionary:

>>> logins.setdefault('sTashdot',("jimmy", "punk'))

('juan', 'lemmein') # Existing item returned

>>> Togins.setdefault('justwhispers',("jimmy', "punk'))
('"jimmy', 'punk') # New item returned AND added to dictionary

If you just want to know if a dictionary has a particular key-value pair (or if you
want to check before requesting it), you can use the has_key(key) method:

>>> logins.has_key('yahoo")
1

The del statement removes an item from a dictionary:
>>> del logins['yahoo']

>>> logins.has_key('yahoo')
0

62 Part| + The Python Language

“Hashability”

The more precise requirement of a dictionary key is that it must be hashable. An object’s
hash value is a semi-unique, internally generated number that can be used for quick com-
parisons. Consider comparing two strings, for example. To see if the strings are equal, you
would have to compare each character until one differed. If you already had the hash value
for each string, however, you could just compare the two and be done.

Python uses hash values in dictionary lookups for the same reason: so that dictionary
lookups will not be too costly.

You can retrieve the hash value of any hashable object by using the hash (obj) function:

>>> hash('hash')

-1671425852

>>> hash(10)

10

>>> hash(10.0) # Numbers of different types have the same hash.
10

>>> hash((1,2,3))

-821448277

The hash function raises the TypeError exception on unhashable objects (lists, for example).

You can use the update (dict) method to add the items from one dictionary to
another:

>>> z = {}
>>> z['slashdot'] = ('fred', ' 'fred")
>>> z.update (logins)

>O> Z
{"justwhispers': ("jimmy', 'punk'),
"slashdot': ('juan', 'lTemmein'), # Duplicate key overwritten

"hotmail': ('jrf5', '"18thStreet')}

Additional dictionary operations

Here are a few other functions and methods of dictionaries that are straightforward
and useful:

>>> len(logins) # How many items?

3

>>> Togins.keys() # List the keys of the mappings
['justwhispers', 'slashdot', 'hotmail']

>>> logins.values() # List the other half of the mappings
CC'Jimmy', 'punk'), ('juan', 'lemmein'), ('jrf5",
'18thStreet')]

>>> logins.items() # Both pieces together as tuples

Chapter 4 4 Advanced Data Types

[('justwhispers', ('jimmy', ‘'punk')), ('slashdot', ('juan',
"Temmein')), ('hotmail', ('jrf5', '18thStreet'))]

>>> logins.clear() # Delete everything

>>> logins

{}

You can destructively iterate through a dictionary by calling its popitem() method,
which removes a random key and its value from the dictionary:

>>>d = {'one':1, "two':2, 'three':3}
>>> try:
while 1:
.. print d.popitem()
. except KeyError: # Raises KeyError when empty
. pass
(‘one', 1)
("three', 3)
("two', 2)

New '\ popitemis new in Python 2.1.
Feature

Dictionary objects also provide a copy () method that creates a shallow copy of the

dictionary:
>>> a = {l:'one', 2:"two', 3:'three'}
>>> b = a.copy()
>>> b

{3: "three', 2: '"two', 1: 'one'}

r Cross- See “Copying Complex Objects” later in this chapter for a comparison of shallow
Reference’\ and deep copies.

Understanding References

Python stores any piece of data in an object, and variables are merely references to
an object; they are names for a particular spot in the computer’s memory. All
objects have a unique identity number, a type, and a value.

Object identity

Because the object, and not the variable, has the data type (for example, integer), a
variable can reference a list at one moment and a floating-point number the next.
An object’s type can never change, but for lists and other mutable types its value
can change.

64 Part | + The Python Language

Python provides the id(obj) function to retrieve an object’s identity (which, in the
current implementation, is just the object’s address in memory):

>>> shoppinglList = ['candy', 'cookies','ice cream']
>>> id(shoppinglList)

17611492

>>> 1d(5)

3114676

The is operator compares the identities of two objects to see if they are the same:

>>> junkFood = shoppinglList # Both reference the same object
>>> junkFood is shoppinglist

1

>>> yummyStuff = ['candy', 'cookies','ice cream']

>>> junkFood is not yummyStuff # Different identity, but...
1

>>> junkFood == yummyStuff # ...same value

1

Because variables just reference objects, a change in a mutable object’s value is
visible to all variables referencing that object:

>>>
>O>
>o0
>>>
[1,
>o>
>>>
>o>
6
>>> a a + 1 4 Python creates a new object to hold (a+l1)
>>> b # so b still references the original object.
6

[1,2,3,4]

—
[NSII]
[

Il
[Ga]

]
v O

Reference the same object for now.

TToONT Y TP
o1
S
[

Counting references

Each object also contains a reference count that tells how many variables are cur-
rently referencing that object. When you assign a variable to an object or when you
make an object a member of a list or other container, the reference count goes up.
When you destroy, reassign, or remove an object from a container the reference
count goes down. If the reference count reaches zero (no variables reference this
object), Python’s garbage collector destroys the object and reclaims the memory it
was using.

The sys.getrefcount(obj) function returns the reference count for the given
object.

Chapter 4 4+ Advanced Data Types 65

@ See Chapter 26 for more on Python's garbage collector.
Reference

New N\ As of version 2.0, Python now also collects objects with only circular references.
Featurs For example,

a=1[1; b=1[]

a.append(b); b.append(a)

a =5; b=10 4§ Reassign both variables to different
objects.

The two list objects still have a reference count of 1 because each is a member of
the other’s list. Python now recognizes such cases and reclaims the memory used
by the list objects.

Keep in mind that the del statement deletes a variable and not an object, although
if the variable you delete was the last to reference an object then Python may end
up deleting the object too:

>>>a =1[1,2,3]

>>> b = a 4 List object has 2 references now
>>> del a #f Back to 1 reference

>>> b

[1, 2, 31

¢ Cross- You can also create weak references to objects, or references that do not affect an
Reference’\ gbject's reference count. See Chapter 7 for more information.

Copying Complex Objects

Assigning a variable to a list object creates a reference to the list, but what if you
want to create a copy of the list? Python enables you to make two different types of
copies, depending on what you need to do.

Shallow copies

A shallow copy of a list or other container object makes a copy of the object itself
but creates references to the objects contained by the list. An easy way to make a
shallow copy of a sequence is by requesting a slice of the entire object:

>>> faceCards = ['A','K','Q","'J"]

>>> myHand = faceCards[:] # Create a copy, not a reference
>>> myHand is faceCards

0

>>> myHand == faceCards

1

66

Part | + The Python Language

You can also use the copy (obj) function of the copy module:

>>> import copy

>>> highCards = copy.copy(faceCards)

>>> highCards is faceCards, highCards == faceCards
(0, 1)

Deep copies

A deep copy makes a copy of the container object and recursively makes copies of
all the children objects. For example, consider the case when a list contains a list. A
shallow copy of the parent list would contain a reference to the child list, not a sep-
arate copy. As a result, changes to the inner list would be visible from both copies
of the parent list:

>>> myAccount = [1000, ['Checking', 'Savings']]

>>> yourAccount = myAccount[:]

>>> myAccount[1].remove('Savings') # Modify the child 1ist.
>>> myAccount

[1000, ['Checking']] # Different parent objects share a

>>> yourAccount # reference to the same child 1ist.
[1000, ['Checking']1]

Now look at the same example by using the deepcopy (0obj) function in the copy
module:

>>> myAccount = [1000, ['Checking', 'Savings']]

>>> yourAccount = copy.deepcopy(myAccount)

>>> myAccount[1].remove('Savings")

>>> myAccount

[1000, ['Checking']] # deepcopy copied the child Tist too.
>>> yourAccount

[1000, ['Checking', 'Savings']]

The deepcopy function tracks which objects it copied so that if an object directly
or indirectly references itself, deepcopy makes only one copy of that object.

Not all objects can be copied safely. For example, copying a socket that has an open
connection to a remote computer won’t work because part of the object’s internal
state (the open connection) is outside the realms of Python. File objects are
another example of forbidden copy territory, and Python lets you know:

f = open('foo','wt")
>>> copy.deepcopy(f)
Traceback (innermost Tlast):
File "<interactive input>", Tine 1, in ?
File "D:\Python20\Tib\copy.py", line 147, in deepcopy
raise error, \
Error: un-deep-copyable object of type <{type 'file'>

Chapter 4 4 Advanced Data Types

defining your own __getstate__and _ setstate__ methods you can control

@ Chapter 7 shows you how to override standard behaviors on classes you create. By
eierence
how your objects respond to shallow and deep copy operations.

Identifying Data Types

You can check the data type of any object at runtime, enabling your programs to
correctly handle different types of data (for example, think of the int function that
works when you pass it an integer, a float, a string, and so on). You can retrieve the
type of any object by passing the object to the type(obj) function:

>>> type(b)

{type 'int'>

>>> type('She sells seashells')
{type 'string'>

>>> type(operator)

<type 'module'>

The types module contains the type objects for Python’s built-in data types. The
following example creates a function that prints a list of words in uppercase. To
make it more convenient to use, the function accepts either a single string or a list
of strings:

>>> import types

>>> def upEm(words):

. if type(words) != types.ListType: # Not a list so

words = [words] # make it a Tist.

for word in words:

. print word.upper()

>>> upEm('horse")

HORSE

>>> upEm(['horse','cow', 'sheep'])

HORSE

COW

SHEEP

The following list shows a few of the more common types you’ll use.

BuiltinFunctionType
FunctionType
MethodType
BuiltinMethodType
InstanceType
ModuleType
ClassType

67

68 Part | + The Python Language

IntType
NoneType
DictType
LambdaType
StringType
FileType
ListType
TupleType
FloatType
LongType
Classes and instances of classes have the types ClassType and InstanceType,

respectively. Python provides the isinstance(obj) and issubclass(obj) func-
tions to test if an object is an instance or a subclass of a particular type:

>>> dsinstance(5.1,types.FloatType)
1
>>> class Foo:

pass

555 a = Foo()
>>> isinstance(a,Foo)
1

r Cross- Chapter 7 covers creating and using classes and objects.
Reference

Working with Array Objects

While lists are flexible in that they let you store any type of data in them, that flexi-
bility comes at a cost of more memory and a little less performance. In most cases,
this isn’t an issue, but in cases where you want to exchange a little flexibility for
performance or low level access, you can use the array module to create an array
object.

Creating arrays

An array object is similar to a list except that it can hold only certain types of sim-
ple data and only one type at any given time. When you create an array object, you
specify which type of data it will hold:

>>> import array
>>> z = array.array ('B') # Create an array of bytes
>>> z.append(5)

Chapter 4 4 Advanced Data Types

>>> z[0]

5

>>> q = array.array('i',[5,10,-12,13]) # Optional initializer
>>> q

array('i', [5, 10, -12, 131)

Table 4-1 lists the type code you use to create each type of array. You can retrieve

the size of items and the type code of an array object using its itemsize and
typecode members.

Table 4-1
Array Type Codes
Code Equivalent C Type Minimum Size in Bytes"
c char 1
b (B) byte (unsigned byte) 1
h (H) short (unsigned short) 2
i) int (unsigned int) 2
I (L) long (unsigned long) 4
f float 4
d double 8

* Actual size may be greater, depending on the implementation.

Converting between types

Array objects have built-in support for converting to and from lists and strings, and

for reading and writing with files. The following examples all deal with an array

object of two-byte short integers initially containing the numbers 10, 1000, and 500:

>>> z = array.array('h',[10,1000,5001)
>>> z.itemsize
2

Lists
The tolist() method converts the array to an ordinary list:

>>> z.tolist()
[10, 1000, 5001

69

70

Part | + The Python Language

The fromlist(1ist) method appends items from a normal list to the end of the
array:

>>> z.fromlist([2,4])
>>> z
array('h', [10, 1000, 500, 2, 41)

If any item in the list to add is of an incorrect type, fromlist adds none of the
items to the array object.

Strings

You can convert an array to a sequence of bytes using the tostring() method:

>>> z.tostring()

" An\x00\xe8\x03\xf4\x01\x02\x00\x04\x00"
>>> len(z.tostring())

6 # 3 items, 2 bytes each

The fromstring(str) method goes in the other direction, taking a string of bytes
and converting them to values for the array:

>>> z.fromstring('\x10\x00\x00\x02"') # x10 = 16, x0200 = 512
>>> z
array('h', [10, 1000, 500, 2, 4, 16, 5121)

Files

The tofile(file) method converts the array to a sequence of bytes (just like
tostring) and writes the resulting bytes to a file you pass in:

>o> z array.array('h',[10,1000,5001)
>>> f = open('myarray','wb') # Chapter 8 covers files.
>>> z.tofile(f)
>>> f.close()

The fromfile(file, count) method reads the specified number of items in from
a file object and appends them to the array. Continuing the previous example:

>>> z.fromfile(open('myarray','rb'),3) # Read 3 items.
>>> z
array('h', [10, 1000, 500, 10, 1000, 5001)

If the file ends before reading in the number of items you requested, fromfile raises
the EOFError exception, but still adds as many valid items as it could to the array.

r Cross- The marshal, pickle, and struct modules all provide additional —and often
Reference \ | etter — methods for converting to and from sequences of bytes for use in files

and network messages. See Chapter 12 for more.

Chapter 4 4 Advanced Data Types

Array methods and operations

Array objects support many of the same functions and methods of lists: 1en,
append, extend, count, index, insert, pop, remove, and reverse. You can access
individual members with subscription, and you can use slicing to return a smaller
portion of the array (although it returns another array object and not a list).

The buffer_info() method returns some low-level information about the current
array. The returned tuple contains the memory address of the buffer and the length
in bytes of the buffer. This information is valid until you destroy the array or it
changes length.

You can use the byteswap () method to change the byte order of each item in the
array, which is useful for converting between big-endian and little-endian data:

>>> z = array.array('I',[1,2,3])

>>> z.byteswap()

>>> z

array('I", [16777216L, 33554432L, 50331648L])

¢ Cross- See Chapter 12 for information on cross-platform byte ordering.
Reference

r Cross- NumPy (Numeric Python) is a Python extension that you can also use to create
Reference'\ 4rrays, but it has much better support for using the resulting arrays in calculations.

See Chapter 31 for more information on NumPy.

Summary

Python provides several powerful and easy-to-use data types that simplify working
with different types of data. In this chapter you:

4+ Learned the differences between Python’s sequence types.

4 Organized data with lists, sequences, and dictionaries.

4 Created shallow and deep copies of complex objects.

4 Used an object’s type to handle it appropriately.

4 Built array objects to hold homogenous data.

The next chapter shows you how to expand your programs to include loops and
decisions and how to catch errors with exceptions.

+ o+ 0+

CHAPTER

Control Flow

+ + + +
Aprogram is more than simply a list of actions. A program .
can perform an action several times (with for- and while- In This Chapter
loops), handle various cases (with if-statements), and cope
with problems along the way (with exceptions). Making decisions

with if-statements
This chapter explains how to control the flow of execution in
Python. A simple Game of Life program illustrates these tech- Using for-loops
niques in practice.

Using while-loops

Throwing and

Making DECiSiO“S catching exceptions
With |f-StatementS Debugging with

assertions
The if-statement evaluates a conditional expression. If the

expression is true, the program executes the if-block. For Example: Game
example: of [Ijfi=

if (CustomerAge>55):
print "You get a senior citizen's discount!” + + + +
An if-statement may have an else-block. If the expression is
false, the else-block (if any) executes. This code block prints
one greeting for Bob, and another for everyone else:

if (UserName=="Bob"):

print "Greetings, 0 supreme commander!"
else:

print "Hello, humble peasant."

An if-statement may have one or more elif-blocks (“elif” is
shorter to type than “else if” and has the same effect). When
Python encounters such a statement, it evaluates the if-
expression, then the first elif-expression, and so on, until one
of the expressions evaluates to true. Then, Python executes
the corresponding block of code.

When Python executes an if-statement, it executes no more
than one block of code. (If there is an else-block, then exactly
one block of code gets executed.)

74 Part | + The Python Language

Listing 5-1 is a sample script that uses an if-statement (shown in both italics and
bold) in a simple number-guessing game.

Listing 5-1: NumberGuess.py

import random
import sys

This 1line chooses a random integer >=1 and <=100.
(See Chapter 15 for a proper explanation.)
SecretNumber=random.randint(1,100)

print "I'm thinking of a number between 1 and 100."
J# Loop forever (at Teast until the user hits Ctrl-Break).
while (1):
print "Guess my number."
The following line reads a 1line of input from
the command-line and converts it to an integer.
NumberGuess=int(sys.stdin.readline())
if (NumberGuess==SecretNumber):
print "Correct! Choosing a new number..."
SecretNumber=random.randint(1,100)
elif (NumberGuess > SecretNumber):
print "Lower."
else:
print "Higher."

You can use many elif clauses; the usual way to write Python code that handles five
different cases is with an if-elif-elif-elif-else statement. (Veterans of C and Java, take
note: Python does not have a switch statement.)

ﬁ\lote Python stops checking if-expressions as soon as it finds a true one. If you write an

~— if-statement to handle several different cases, consider putting the most common
and/or cheapest-to-check cases first in order to make your program faster.

Using For-Loops

For-loops let your program do something several times. In addition, you can iterate
over elements of a sequence with a for-loop.

Anatomy of a for-loop

A simple for statement has the following syntax:

Chapter 5 4+ Control Flow

for <variable> in <sequence>:
(Toop body)

The statement (or block) following the for statement forms the body of the loop.
Python executes the body once for each element of the sequence. The loop variable
takes on each element’s value, in order, from first to last. For instance:

for Word in ["serious","silly","sTinky"]:
print "The minister's cat is a "+Word+" cat."

The body of a loop can be a single statement on the same line as the for-statement:
for Name in ["Tom","Dick","Harry"J: print Name

Some people (myself included) usually stick with the first style, because all-on-one-line
loops can lead to long and tricky lines of code.

Python can loop over any sequence type —even a string. If the sequence is empty,
the loop body never executes.

Looping example: encoding strings
Listing 5-2 uses for-loops to convert strings to a list of hexadecimal values, and

back again. The encoded strings look somewhat similar to the “decoder rings”
popular on old children’s radio programs.

Listing 5-2: DecoderRing.py
import string

def Encode(MessageString):
EncodedList=[]
Iterate over each character in the string
for Char in MessageString:
EncodedList.append("%x" % ord(Char))
return EncodedList

def Decode(SecretMessage):

DecodedList=[]

Iterate over each element in the list

for HexValue in SecretMessage:
The following line converts HexValue from
a hex-string to an integer, then finds the ASCII
symbol for that integer, and finally adds that
character to the 1ist.
Don't try this at home! :)
DecodedList.append(chr(int(HexValue,16)))

Continued

75

76 Part| + The Python Language

Listing 5-2 (continued)

J## Join these strings together, with no separator.
return string.join(DecodedList,"")

if (__name__=="_main__"):
SecretMessage=Encode("Remember to drink your Ovaltine!")
print SecretMessage
print Decode(SecretMessage)

Listing 5-3: DecoderRing.py output

[v52|, ’65', ’6d', ’65', ’6d', ’62', |65', |72|’ |20|, |74|’
'ef', '20', '64', '72', '69', '6e', '6b', '20', '79"', '6f",
‘75", '72', '20', '4f', '76', '61', '6Cc', '74', '69', '6e',
'65’, |21v:|

Remember to drink your Ovaltine!

Ranges and xranges

Many loops do something a fixed number of times. To iterate over a range of
numbers, use range. For example:

print 10 numbers (from 0 to 9)
for X in range(10):
print X

The function range returns a list of numbers that you can use anywhere (not just in
aloop). The syntax is: range(start[,end[,step]]). The numbers in the range
begin with start, increment by step each time, and stop just before end. Both start and
step are optional; by default, a range starts at 0 and increments by 1. For example:

>>> range(10,0,-1) # Countdown!
(10, 9, 8, 7, 6, 5, 4, 3, 2, 11
>>> range(5,10)
[5, 6, 7, 8, 9]

Code that does something once for each element of a sequence sometimes loops
over range(len(SequenceVariable)). This range contains the index of each ele-
ment in the sequence. For example, this code prints the days of the week:

DaysOfWeek=["Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"]
for X in range(len(DaysOfWeek)):

print "Day",X,"is",DaysOfWeek[X]

Chapter 5 4+ Control Flow

An xrange is an object that represents a range of numbers. You can loop over an
xrange instead of the list returned by range. The only real difference is that creat-
ing a large range involves creating a memory-hogging list, while creating an xrange
of any size is cheap. Try checking your system’s free memory while running these
interpreter commands:

>>> MemoryHog=range(1000000) # There goes lots of RAM!
>>> BigXRange=xrange(1000000) # Only uses a little memory.

To see the contents of an xrange in convenient list form, use the to11ist method:

>>> SmallXRange=xrange(10,110,10)
>>> SmallXRange.tolist()
(10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Breaking, continuing, and else-clauses

Python’s continue statement jumps to the next iteration of a loop. The break
statement jumps out of a loop entirely. These statements apply only to the inner-
most loop; if you are in a loop-within-a-loop-within-a-loop, break jumps out of only
the innermost loop.

You can follow the body of a for-loop with an else-clause. The code in the else-clause
executes after the loop finishes iterating, unless the program exits the loop due to a
break statement. (If you have no break statement in the loop, the else-clause
always executes, so you really have no need to put the code in an else-clause.)

Listing 5-4 illustrates break, continue, and an else-clause:

Listing 5-4: ClosestPoint.py

import math
def FindClosestPointAboveXAxis(PointList,TargetPoint):
""" Given a Tist of points and a target point, this function
returns the Tist's closest point, and its distance from the
target. It ignores all points with a negative y-coordinate. We
represent points in the plane (or on screen) as a two-valued
tuple of the form (x-coordinate,y-coordinate). """
ClosestPoint=None # Initialize.
ClosestDistance=None
Iterate over each point in the Tist.
for Point in PointlList:
Throw out any point below the X axis.
if (Point[11<0):
Skip to the next point in the Tist.
continue
Compute the distance from this point to the target.

Continued

77

78

Part | + The Python Language

Listing 5-4 (continued)

The following two 1ines are one statement;
indentation for clarity is optional.
DistToPoint=math.sqrt((TargetPoint[0]-Point[0])**2 +
(TargetPoint[1]-Point[1])**2)
if (ClosestDistance == None or
DistToPoint < ClosestDistance):
ClosestPoint=Point
ClosestDistance = DistanceToPoint
if (DistanceToPoint==0):
print "Point found in list"
Exit the Toop entirely, since no point will
be closer than this
break
else:
J# This clause executes unless we hit the break above.
print "Point not found in Tist"
return (ClosestPoint, ClosestDistance)

Here is the function in action:

>>> SomePoints=[(-1,-1),(4,5),(-5,7),(23,-2),(5,2)1]

>>> ClosestPoint.FindClosestPointAboveXAxis(SomePoints,(1,1))
Point not found in 1list

((5, 2), 4.1231056256176606)

>>> ClosestPoint.FindClosestPointAboveXAxis(SomePoints,(-1,-1))
Point not found in 1list

((5, 2), 6.7082039324993694)

>>> ClosestPoint.FindClosestPointAboveXAxis(SomePoints, (4,5))
Point found in Tist

((4, 5), 0.0)

Changing horses in midstream

Modifying the sequence that you are in the process of looping over is not recom-
mended—Python won’t get confused, but any mere mortals reading your program
will.

The loop variable keeps iterating over its reference sequence, even if you change a
sequence variable. For example, this loop prints the numbers from 0 to 99; chang-
ing the value that MyRange points to does not affect control flow:

MyRange=range(100)
for X in MyRange:
print X
MyRange = range(30) # No change in looping behavior!

Chapter 5 4+ Control Flow

However, changing the reference sequence does affect the loop. After executing for
the nth element in a sequence, the loop proceeds to the (n+1)th element, even if the
sequence changes in the process. For example, this loop prints even numbers from
0to 98:

MyRange=range(100)
for X in MyRange:
print X
del MyRange[0] # Changing the loop-sequence in place

Modifying the loop variable inside a for-loop is also inadvisable. It does not change
looping behavior; Python will continue the next iteration of the loop as usual.

Using While-Loops

If you could crossbreed an if-statement and a for-loop, you would get a while-
statement, Python’s other looping construct.

A while-statement has the form:

while (<expression>):
<block of code>

When Python encounters a while-statement, it evaluates the expression, and if the
expression is true, it executes the corresponding block of code. Python keeps exe-
cuting the block of code until the expression is no longer true. For example, this
code counts down from 10 to 1:

X=10

while (X>0):
print X

X -=1

Within a while-loop, you can use the continue statement to jump to the next itera-
tion, or the break statement to jump out of the loop entirely. A while-loop can also
have an else-block. Code in the else-block executes immediately after the last itera-
tion, unless a break statement exits the loop. These statements work similarly for
for-loops and while-loops. See the section on for-loops, above, for examples of
break, continue, and else.

Throwing and Catching Exceptions

Imagine a Python program innocently going about its business, when suddenly . . .

[dramatic, scary music] something goes wrong.

80

Part | + The Python Language

In general, when a function or method encounters a situation that it can’t cope
with, it raises an exception. An exception is a Python object that represents an
error.

Passing the buck: propagating exceptions

When a function raises an exception, the function must either handle the exception
immediately or terminate. If the function doesn’t handle the exception, the caller
may handle it. If not, the caller also terminates immediately as well. The exception
propagates up the call-stack until someone handles the error. If nobody catches the
exception, the whole program terminates.

In general, functions that return a value should return None to indicate a “reason-
able” failure, and only raise an exception for “unreasonable” problems. Just what is
reasonable is open to debate, so it is generally a good idea to clearly document the
exceptions your code raises, and to handle common exceptions raised by the code
you call.

Handling an exception

If you have some “suspicious” code that may raise an exception, you can defend
your program by placing the suspicious code in a try: block. After the try: block,
include an except statement, followed by a block of code which handles the prob-
lem (as elegantly as possible).

For example, the guess-the-number program from earlier in this chapter crashes if
you try to feed it something other than an integer. The error looks something like
this:

Traceback (most recent call Tlast):
File "C:\Python20\NumberGuess.py", Tline 7, in ?
NumberGuess=int(sys.stdin.readline())
ValueError: invalid literal for int(): whoops!

Listing 5-5 shows a new-and-improved script that handles the exception. The call to
sys.stdin.readline() isnowina try: block:

Listing 5-5: NumberGuess2.py

import random
import sys

This line chooses a random integer >=1 and <=100.
(See Chapter 15 for a proper explanation.)
SecretNumber=random.randint(1,100)

Chapter 5 4+ Control Flow

print "I'm thinking of a number between 1 and 100."
Loop forever (at least until the user hits Ctrl-Break).
while (1):
print "Guess my number."
The following 1ine reads a line of input from
the command 1ine and converts it to an integer.
try:
NumberGuess=int(sys.stdin.readline())
except ValueError:
print "Please type a whole number."
continue
if (NumberGuess==SecretNumber):
print "Correct! Choosing a new number..."
SecretNumber=random.randint(1,100)
elif (NumberGuess > SecretNumber):
print "Lower."
else:
print "Higher."

More on exceptions

An exception can have an argument, which is a value that gives additional informa-
tion about the problem. The contents (and even the type) of the argument vary by
exception. You capture an exception’s argument by supplying a variable in the
except clause: except ExceptionType,ArgumentVariable

You can supply several except clauses to handle various types of exceptions. In this
case, exceptions are handled by the first applicable except clause. You can also
provide a generic except clause, which handles any exception. If you do this, I
highly recommend that you do something with the exception. Code that silently
“swallows” exceptions may mask important bugs, like a NameError. Here is some
cookie-cutter code I use for quick-and-dirty error handling:

try:
DoDangerousStuff()
except:
The show must go on!
Print the exception and the stack trace, and continue.
(ErrorType,ErrorValue,ErrorTB)=sys.exc_info()
print sys.exc_info()
traceback.print_exc(ErrorTB)

After the except clause(s), you can include an else-clause. The code in the else-block
executes if the code in the try: block does not raise an exception. The else-block is a
good place for code that does not need the try: block’s protection.

Python raises an I0Error exception if you try to open a file that doesn’t exist. Here
is a snippet of code that handles a missing file without crashing. (This code grabs
the exception argument — a tuple consisting of an error number and error string —
but doesn’t do anything interesting with it.)

81

82

Part | + The Python Language

‘\I ote

try:
OptionsFile=open("SecretOptions.txt")
except IOError, (ErrorNumber,ErrorString):
Assume our default option values are all OK.
We need a statement here, but we have nothing
to do, so we pass.
pass
else:
This executes if we opened it without an IOError.
ParseOptionsFile(OptionsFile)

Defining and raising exceptions

You can raise exceptions with the statement raise exceptionType,argument.
ExceptionType is the type of exception (for example, NameError). Argument is a
value for the exception argument. Argument is optional; if not supplied, the excep-
tion argument is None.

An exception can be a string, a class, or an object. Most of the exceptions that the
Python core raises are classes, with an argument that is an instance of the class.
Defining new exceptions is quite easy, as this contrived example demonstrates:

def CalculateElfHitPoints(Level):
if Level<1:
raise "Invalid elf Tevell", Level
J# (The code below won't execute if we raise
the exception.)
HitPoints=0
for DieRoll in range(Level):
HitPoints += random.randint(1l,6)

In order to catch an exception, an “except” clause must refer to the same excep-

~ tion thrown. Python compares string exceptions by reference identity (i s, not=).

So, if you have code to raise “BigProblem” and an except-clause for “BigProblem,”
the except clause may not catch the exception. (The strings are equivalent, but
may not point to the same spot in memory.) To handle exceptions properly, use a
named constant string, or a class. (See Listing 5-6 for an example.)

Cleaning up with finally

An alternative mechanism for coping with failure is the finally block. The
finally block is a place to put any code that must execute, whether the try-block
raised an exception or not. You can provide except clause(s), or a finally clause,
but not both.

For example, multithreaded programs often use a lock to prevent threads from
stomping on each other’s data. If a thread acquires a lock and crashes without
releasing it, the other threads may be kept waiting forever — an unpleasant situa-
tion called deadlock. This example is a perfect job for the finally clause:

Chapter 5 4+ Control Flow

try:

Datalock.acquire()

... do things with the data
finally:

This code *must* execute. The fate of the
free world hangs in the balance!
DatalLock.release()

Debugging with Assertions

An assertion is a sanity-check that you can turn on (for maximum paranoia) or turn
off (to speed things up). Using an assertion can help make code self-documenting;
raising an AssertionError implies that a problem is due to programmer error and
not normal problems. Programmers often place assertions at the start of a function
to check for valid input, and after a function call to check for valid output.

Assertions in Python

You can add assertions to your code with the syntax assert <Expression>. When
it encounters an assert statement, Python evaluates the accompanying expres-
sion, which is hopefully true. If the expression is false, Python raises an
AssertionError.

You can include an assertion argument, via the syntax assert
Expression,ArgumentExpression. If the assertion fails, Python uses
ArgumentExpression as the argument for the AssertionError.

For example, here is a function that converts a temperature from degrees Kelvin to
degrees Fahrenheit. Since zero degrees Kelvin is as cold as it gets, the function bails
out if it sees a negative temperature:

>>> def KelvinToFahrenheit(Temperature):
. assert (Temperature >= 0),"Colder than absolute zero!"
- return ((Temperature-273)*1.8)+32
>>> KelvinToFahrenheit(273)
32.0
>>> int(KelvinToFahrenheit(505.78))
451
>>> KelvinToFahrenheit(-5)
Traceback (innermost Tlast):
File "<pyshell#186>", line 1, in ?
KelvinToFahrenheit(-5)
File "<pyshell#178>", line 2, in KelvinToFahrenheit
assert (Temperature >= 0),"Colder than absolute zero!"
Assertionkrror: Colder than absolute zero!

85

84 Part | + The Python Language

Toggling assertions

Normally, assertions are active. They are toggled by the internal variable __debug__.
Turning on optimization (by running python with the -O command-line argument)
turns assertions off. (Direct access to __debug__is also possible, but not
recommended.)

Tip In assert statements, avoid using expressions with side effects. If the assertion
.~ expression affects the data, then the “release” and “debug” versions of your scripts
s may behave differently, leaving you with twice as much debugging to do.

Example: Game of Life

Listing 5-6 simulates John Conway’s Game of Life, a simple, cellular automata. The
game is played on a grid. Each cell of the grid can be “alive” or “dead.” Each “gener-
ation,” cells live or die based on the state of their eight neighboring cells. Cells with
three living neighbors come to life. Live cells with two living neighbors stay alive.
All other cells die (or stay dead).

r Cross- This example introduces a class to represent the playing field. For further informa-
Reference \ 1,1y on classes, see Chapter 7.

Listing 5-6: LifeGame.py

J# We arbitrarily set the field size to 10x10. Naming the size
in upper-case implies that we shouldn't change its value.
FIELD_SIZE=10

Create two strings for use as exceptions. We raise and catch
these variables, instead of raw strings (which would be ==-
equivalent, but possibly not is-equivalent).
STEADY_STATE="Steady state"

EVERYONE_DEAD="Everyone dead"

class PlayField:
Constructor. When creating a PlayField, initialize the
grid to be all dead:
def __init_ (self):
self.LifeGrid={}
for Y in range(FIELD_SIZE):
for X in range(FIELD_SIZE):
self.LifeGrid[(X,Y)]=0
def SetAlive(self,X,Y):
self.LifeGrid[(X,Y)]=1
def SetDead(self,X,Y):
self.LifeGrid[(X,Y)]1=0
def PrintGrid(self,Number):
print "Generation",Number

Chapter 5 4+ Control Flow

for Y in range(FIELD_SIZE):
for X in range(FIELD_SIZE):
Trailing comma means don't print newline:
print self.LifeGridl(X,Y)],
Print newline at end of row:
print
def GetLiveNeighbors(self,X,Y):
The playing field is a "donut world", where the
J# edge cells join to the opposite edge.
LeftColumn=X-1
if (LeftColumn<0): LeftColumn=FIELD_SIZE-1
RightColumn=(X+1) % FIELD_SIZE
UpRow=Y-1
if (UpRow<0): UpRow=FIELD_SIZE-1
DownRow=(Y+1) % FIELD_SIZE
LiveCount=(self.LifeGrid[(LeftColumn,UpRow)]+
self.LifeGrid[(X,UpRow) 1+
self.LifeGrid[(RightColumn,UpRow)]+
self.LifeGrid[(LeftColumn,Y)]+
self.LifeGrid[(RightColumn,Y) 1+
self.LifeGrid[(LeftColumn,DownRow) J+
self.LifeGrid[(X,DownRow)]+
self.LifeGrid[(RightColumn,DownRow)])
return (LiveCount)
def RunGeneration(self):
NewGrid={}
Al1DeadFlag=1
for Y in range(FIELD_SIZE):
for X in range(FIELD_SIZE):
CurrentState=self.LifeGrid[(X,Y)]
LiveCount=self.GetLiveNeighbors(X,Y)
if ((LiveCount==2 and CurrentState)
or (LiveCount==3)):
NewGrid[(X,Y)]1=1
All1DeadFlag=0
else:
NewGrid[(X,Y)]1=0
if (Al1DeadFlag): raise EVERYONE_DEAD
if self.LifeGrid==NewGrid: raise STEADY_STATE
self.LifeGrid,01dGrid=NewGrid,self.LifeGrid
def ShowManyGenerations(self,GenerationCount):
try:
for Cycle in range(GenerationCount):
self.PrintGrid(Cycle)
self.RunGeneration()
except EVERYONE_DEAD:
print "The population is now dead."
except STEADY_STATE:
print "The population is no longer changing."
if (__name__=="_main__"):
This first grid quickly settles into a pattern
that does not change.

Continued

86 Part | + The Python Language

Listing 5-6 (continued)

BoringGrid=PlayField()
BoringGrid.SetAlive(2,2)
BoringGrid.SetAlive(2,3)
BoringGrid.SetAlive(2,4)
BoringGrid.SetAlive(3,2)
BoringGrid.ShowManyGenerations(50)

This grid contains a "glider"™ - a pattern of live
cells which moves diagonally across the grid.
GliderGrid=PlayField()

GliderGrid.SetAlive(0,0)

GliderGrid.SetAlive(1,0)

GliderGrid.SetAlive(2,0)

GliderGrid.SetAlive(2,1)

GliderGrid.SetAlive(1,2)
GliderGrid.ShowManyGenerations(50)

Summary

Python has several tools for controlling the flow of execution. In this chapter you:

4 Made decisions with if-statements.

4 Set up repeating tasks with for-loops and while-loops.

4 Built code that copes with problems by handling exceptions.
4 Learned to add test scaffolding with assertions.

In the next chapter you'll learn how to organize all your Python code into functions,
modules, and packages.

+ o+ 4

C H AgP T\E R

Program
Organization

+ 0+ o+

Python lets you break code down into reusable functions
and classes, then reassemble those components into
modules and packages. The larger the project, the more useful
this organization becomes.

This chapter explains function definition syntax, module and
package structure, and Python’s rules for visibility and scope.

Defining Functions

Here is a sample function definition:

def ReverseString(Forwards):

"""Convert a string to a Tist of
characters, reverse the

list, and join the 1ist back into a string

CharacterList=1ist(Forwards)
CharacterlList.reverse()
return string.join(CharacterList,"");

The statement def FunctionName([parameters,...])
begins the function. Calling the function executes the code
within the following indented block.

A string following the def statement is a docstring. A docstring
is a comment intended as documentation. Development envi-
ronments like IDLE display a function’s docstrings to show
how to call the function. Also, tools like HappyDoc can extract
docstrings from code to produce documentation. So, a doc-
string is a good place to describe a function’s behavior,
parameter requirements, and the like. Modules can also have
a docstring — a string preceding any executable code is taken
to be the module’s description.

In This Chapter
Defining functions

Grouping code with
modules

Importing modules
Locating modules

Understanding scope
rules

Grouping modules
info packages

Compiling and
running

programmatically

¢+ 4+ o+

88 Part | + The Python Language

The statement return [expression] exits a function, optionally passing back an
expression to the caller. A return statement with no arguments is the same as
return None. A function also exits (returning None) when the last statement fin-
ishes, and execution “runs off the end of” the function code block.

Pass by object reference

A Python variable is a reference to an object. Python passes function parameters
using call-by-value. If you change what a parameter refers to within a function, the
change does not affect the function’s caller. For example:

>>> def StupidFunction(InputlList):
InputlList=["I","Like","Cheese"]

>>> Mylist=[1,2,3]

>>> StupidFunction(MyList)

>>> print MyList # MyList is unchanged!
[1, 2, 31

The parameter InputList is local to the function StupidFunction. Changing InputList
within the function does not affect MyList. The function accomplishes nothing.

However, a function can change the object that a parameter refers to. For example,
this function removes duplicate elements from a list:

def RemoveDuplicates(InputlList):
ListIndex=-1
We iterate over the list from right to left, deleting
all duplicates of element -1, then -2, and so on. (Because
J# we are removing elements of the 1ist, using negative
indices is convenient: element -3 is still element -3
after we delete some items preceding it.)
while (-ListIndex<len(InputlList)):
Tist.index() returns a positive index, so get the
positive equivalent of ListIndex and name it
CurrentIndex (same element, new index number).
CurrentIndex=Ten(InputList)+ListIndex
CurrentElement=InputlList[ListIndex]
Keep removing duplicate elements as long as
an element precedes the current one.
while (InputlList.index(CurrentElement)<CurrentIndex):
Inputlist.remove(CurrentElement)
CurrentIndex=CurrentIndex-1
ListIndex=ListIndex-1

All about parameters

A function parameter can have a default value. If a parameter has a default value,
you do not need to supply a value to call the function.

Chapter 6 + Program Organization

When you call a function, you can supply its parameters by name. It is legal to name
some parameters and not others — but after supplying the name for one parameter,
you must name any other parameters you pass.

For example, this function simulates the rolling of dice. By default, it rolls ordinary
6-sided dice, one at a time:

>>> dimport whrandom
>>> def Roll1Dice(Dice=1,Sides=6):
Total=0
for Die in range(Dice):
Total += whrandom.randint(1,Sides)
return Total

>>> Rol1Dice()

5

>>> Ro11Dice(2) # Come on, snake-eyes!

8

>>> Rol1Dice(2,4) 4 Rol1l two four-sided dice.
5

>>> Ro11Dice(Sides=20) # Named parameter

17

>>> 4§ After naming one parameter, you must name the rest:
>>> Rol1Dice(Sides=5,4)

SyntaxError: non-keyword arg after keyword arg

A function evaluates its argument defaults only once. We recommend avoiding
dynamic (or mutable) default values. For example, if you do not pass a value to this
function, it will always print the time that you first called it:

def PrintTime(TimeStamp=time.time()):
time.time() is the current time in milliseconds,
time.localtime() puts the time into the
J# canonical tuple-form, and time.asctime() converts
the time-tuple to a cute string format.
The function's default argument, TimeStamp, does
not change between calls!

print time.asctime(time.localtime(TimeStamp))

This improved version of the function prints the current time if another time is not
provided:

def PrintTime(TimeStamp=None):
if (TimeStamp==None): TimeStamp=time.time()
print time.asctime(time.localtime(TimeStamp))

Arbitrary arguments

A function can accept an arbitrary sequence of parameters. The function collects
these parameters into one tuple. This logging function shows the internal object IDs
of a sequence of arguments:

89

90

Part | + The Python Language

def LogObjectIDs(LogString, *args):
print LogString
for arg in args: print id(arg)

A function can also accept an arbitrary collection of named parameters. The func-
tion collects these named parameters into one dictionary. This version of the log-
ging function lets you give names to the objects passed in:

def LogObjectIDs(LogString, **kwargs):
print LogString
for (ParamName,ParamValue) in kwargs.items():
print "Object:",ParamName,"ID:",id(ParamValue)

To make a truly omnivorous function, you can take a dictionary of arbitrary named
parameters and a tuple of unnamed parameters.

Apply: passing arguments from a tuple

The function apply(InvokeFunction,ArgumentSequence) calls the function
InvokeFunction, passing the elements of ArgumentSequence as arguments. The use-
fulness of apply is that it breaks arguments out of a tuple cleanly, for any length of
tuple.

For example, assume you have a function SetColor(Red,Green,Blue), and a tuple
representing a color:

>>> print MyColor

(255, 0, 255)

>>> SetColor(MyColor[0],MyColor[1]1,MyColor[2]) # Kludgy!
>>> apply(SetColor,MyColor) # Same as above, but cleaner.

A bit of functional programming

Python can define new functions on the fly, giving you some of the functional flexi-
bility of languages like Lisp and Scheme.

You define an anonymous function with the lambda keyword. The syntax is Tambda
[parameters,...]: <expression>.For example, here is an anonymous function
that filters list entries:

>>> SomeNumbers=[5,10,15,3,18,2]
>>> filter(lambda x:x>10, SomeNumbers)
[15, 18]

This code uses anonymous functions to test for primes:

Chapter 6 + Program Organization

def FindPrimes(EndNumber):

NumList = range(2,EndNumber)

Index=0

while (Index<len(NumList)):
NumList=filter(lambda y,x=NumlListl[Index]:

(y<=x or y%x!=0), NumList)

Index +=1

print NumList

Lambda functions can be helpful for event handling in programs with a GUIL For
example, here is some code to add a button to a Tkinter frame.

def AddCosmeticButton(ButtonFrame,ButtonLabel):
Button(ButtonFrame,text=ButtonlLabel,command = lambda
=ButtonLabel:LogUnimplemented(1)).pack()

Clicking the button causes it to call LogUnimplemented with the button label as an
argument. Presumably, LogUnimplemented makes note of the fact that somebody is
clicking a button that does nothing.

An anonymous function cannot be a direct call to print because 1ambda

~~ requires an expression.

Lambda functions have their own local namespace and cannot access variables
— other than those in their parameter list and those in the global namespace.

Grouping Code with Modules

A module is a file consisting of Python code. A module can define functions, classes,
and variables. A module can also include runnable code.

A stand-alone module is often called a script or program. You can use whichever
word you like, because Python makes no distinction between them.

Grouping related code into a module makes the code easier to understand and use.
When writing a program, split off code into separate modules whenever a file starts
becoming too large or performing too many different functions.

Laying out a module

The usual order for module elements is:

4 Docstring and/or general comments (revision log or copyright information,
and so on)

4+ Import statements (see below for more information on importing modules)

91

Part | + The Python Language

4 Definitions of module-level variables (“constants”)
4 Definitions of classes and functions

4 Main function, if any
This organization is not required, but it works well and is widely used.

Q‘\Iote People often store frequently used values in ALL_CAPS_VARIABLES to make later
~~ code easier to maintain, or simply more readable. For example, the standard
library ftplib includes this definition:

FTP_PORT = 21 # The standard FTP server control port

Such a variable is “constant by convention”—Python does not forbid modifica-
tions, but callers should not change its value.

Taking inventory of a module

The function dir(module) returns a list of the variables, functions, and classes
defined in module. With no arguments, dir returns a list of all currently defined
names. dir(__builtin__) returns a list of all built-in names. For example:

>>> dir() #f Just after starting Python

['__builtins__ ', '_doc_ ', '_name__ ']

>>> import sys

>>> dir()

['__builtins__', '__doc__', '__name__"', 'sys']

You can pass any object (or class) to dir to get a list of class members.

Importing Modules

To use a module, you must first import it. Then, you can access the names in the
module using dotted notation. For example:

>>> string.digits # Invalid, because I haven't imported string
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: There is no variable named 'string'
>>> import string # Note: No parentheses around module name.
>>> string.digits
'0123456789"

Another option is to import names from the module into the current namespace,
using the syntax from ModuleName import Name, Name?2, For example:

>>> from string import digits
>>> digits # Without a dot
'0123456789"

Chapter 6 + Program Organization

>>> string.digits # I don't know about the module, only digits.
Traceback (most recent call Tlast):

File "<stdin>", Tine 1, in ?
NameError: There is no variable named 'string'

To bring every name from a module into the current namespace, use a blanket
import: frommodule import *. Importing modules this way can make for confusing
code, especially if two modules have functions with the same name. But it can also
save a lot of typing.

The import statements for a script should appear at the beginning of the file. (This
arrangement is not required, but importing halfway though a script is confusing.)

What else happens upon import?

Within a module, the special string variable __name___is the name of the module.
When you execute a stand-alone module, its __name___is always __main__. This
provides a handy way to set aside code that runs when you invoke a module, but not
when you import it. Some modules use this code as a test driver. (See Listing 6-1.)

Listing 6-1: Alpha.py
import string

def Alphabetize(Str):
"Alphabetize the letters in a string”
CharList=1ist(Str)
CharList.sort()
return (string.join(CharList,""))

if (__name__=="__main__"):
J# This code runs when we execute the script, not when
we import it.
X=string.upper("BritneySpears")
Y=string.upper("Preshyterians")
Strange but true!
print (Alphabetize(X)==Alphabetize(Y))

else:
This code runs when we import (not run) the module.
print "Imported module Alpha"

Reimporting modules

Once Python has imported a module once, it doesn’t import it again for subsequent
import statements. You can force Python to “reimport” a module with a call to
reload(LoadedModule). This procedure is useful for debugging — you can edit a

93

94

Part | + The Python Language

module on disk, then reload it without having to restart an interactive interpreter
session.

Exotic imports

A module can override standard import behavior by implementing the function
__import__ (name[, globals[, Tocals[, fromlist]]]).Because a module is a
class, defining __import__ in a module amounts to overriding the default version
of __import__.

Caution We don't recommend overriding __import__ as it is a very low-level operation

for such a high-level language! See the libraries imp, ihooks, and rexec for exam-
ples of overridden import behavior.

Locating Modules

When you import a module, the Python interpreter searches for the module in the
current directory. If the module isn’t found, Python then searches each directory in
the PythonPath. If all else fails, Python checks the default path. On Windows, the
default path consists of c: \python20\11ib\ and some subdirectories; on UNIX, this
default path is normally /usr/Tocal/Tib/python/. (The code for Python’s stan-
dard libraries is installed into the default path. Some modules, such as sys, are
built into the Python interpreter, and have no corresponding .py files.)

Python stores a list of directories that it searches for modules in the variable
sys.path.

Python path

The PythonPath is an environment variable, consisting of a list of directories. Here
is a typical PythonPath from a Windows system:

set PYTHONPATH=c:\python20\Tib;c:\python20\Tib\projl;c:\python20\Tib\bob
And here is a typical PythonPath from a UNIX system:
set PYTHONPATH=/home/stanner/python;/usr/bin/python/Tib

[generally use a scratch folder to hold modules I am working on; other files I put in
the lib directory (or, if they are part of a package, in subdirectories). I find that set-
ting the PythonPath explicitly is most useful for switching between different ver-
sions of a module.

Chapter 6 4+ Program Organization o5

Compiled files

You can compile a Python program into system-independent bytecodes. The inter-
preter stores the compiled version of a module in a corresponding file with a . pyc
extension. This precompiled file runs at the same speed, but loads faster because
Python need not parse the source code. Files compiled with the optimization flag
on are named with a . pyo extension, and behave like .pyc files.

When you import a module foo, Python looks for a compiled version of foo. Python
looks for a file named foo.pyc that is as new as foo.py. If so, Python loads foo.
pyc instead of re-parsing foo.py. If not, Python parses foo.py, and writes out the
compiled version to foo.pyc.

Alote When you run a script from the command line, Python does not create (or look

~ for) a precompiled version. To save some parsing time, you can invoke a short
“stub” script that imports the main module. Or, you can compile the main script by
hand (by importing it, by calling py_compile.compile(ScriptFileName), or
by calling compileall.compile_dir(ScriptDirectoryName)), then invoke
the . pyc file directly. However, be sure to precompile the script again when you
change it!

Understanding Scope Rules

Variables are names (identifiers) that map to objects. A namespace is a dictionary
of variable names (keys) and their corresponding objects (values). A Python state-
ment can access variables in a local namespace and in the global namespace. If
(heaven forfend!) a local and a global variable have the same name, the local vari-
able shadows the global variable.

Each function has its own local namespace. Class methods follow the same scoping
rule as ordinary functions. Python accesses object attributes via the self argu-
ment; attributes are not brought separately into the namespace.

At the module level, or in an interactive session, the local namespace is the same as
the global namespace. For purposes of an eval, exec, execfile, or input state-
ment, the local namespace is the same as the caller’s.

Is it local or global?

Python makes educated guesses on whether variables are local or global. It
assumes that any variable assigned a value in a function is local. Therefore, in order
to assign a value to a global variable within a function, you must first use the global
statement. The statement global VarName tells Python that VarName is a global
variable. Python stops searching the local namespace for the variable.

96

Part | + The Python Language

For example, Listing 6-2 defines a variable NumberOfMonkeys in the global name-
space. Within the function AddMonkey, we assign NumberOfMonkeys a value —
therefore, Python assumes NumberOfMonkeys is a local variable. However, we
access the value of the local variable NumberOfMonkeys before setting it, so an
UnboundLocalError is the result. Uncommenting the global statement fixes the
problem.

Listing 6-2: Monkeys.py
NumberOfMonkeys = 11

def AddMonkey():
Uncomment the following line to fix the code:
#global NumberOfMonkeys
NumberOfMonkeys = NumberOfMonkeys + 1

print NumberOfMonkeys
AddMonkey ()
print NumberOfMonkeys

Listing namespace contents

The built-in functions 1ocals and globals return local and global namespace con-
tents in dictionary form. These operations are handy for debugging.

Grouping Modules into Packages

You can group related modules into a package. Packages can also contain subpack-
ages, and sub-subpackages, and so on. You access modules inside a package using
dotted notation —for example, seti.log.FlushLogFile() calls the function
FlushLogFiTe in the module 10g in the package seti.

Python locates packages by looking for a directory containing a file named
__init__.py. The directory can be a subdirectory of any directory in sys.path.
The directory name is the package name.

The script __init__.py runs when the package is imported. It can be an empty
file, but should probably at least contain a docstring. It may also define the special
variable __al1__, which governs the behavior of a blanket import of the form from
PackageName import *.If defined, __all__is a list of names of modules to bring into

Chapter 6 4+ Program Organization o7

the current namespace. If the script __init__.py does not define __all__, then a
blanket-import brings into the current namespace only the names defined and
modules importedin __init__.py.

¢ Cross- See Chapter 36 for information on how to install new modules and packages, and
Reference \ 1o\ to distribute your own code.

Compiling and Running Programmatically

The exec statement can run an arbitrary chunk of Python code. The syntax is exec
ExecuteObject [in GlobalDict[, LocalDict]]. ExecuteObjectis a string, file
object, or code object containing Python code. GlobalDict and LocalDict are diction-
aries used for the global and local namespaces, respectively. Both GlobalDict and
LocalDict are optional. If you omit LocalDict, it defaults to GlobalDict. If you omit
both, the code runs using the current namespaces.

The eval function evaluates a Python expression. The syntax is eval
(ExpressionObject[,GlobalDictl[,LocalDict]]). ExpressionObjectis a string
or a code object; GlobalDict and LocalDict have the same semantics as for exec.

The execfile function has the same syntax as exec, except that it takes a file
name instead of an execute object.

These functions raise an exception if they encounter a syntax error.

The compile function transforms a code string into a runnable code object. Python
passes the code object to exec or eval. The syntax is
compile(CodeString,FileName,Kind). CodeString is a string of Python code.
FileName is a string describing the code’s origin; if Python read the code from a file,
FileName should be the name of that file. Kind is a string describing the code:

4 “exec” —one or more executable statements

4 “eval”’— a single expression

4 “single” —a single statement, which is printed upon evaluation if not None
Alote Multiline expressions should have two trailing newlines in order for Python to pass

‘ ~ them to compile or exec. (This requirement is a quirk of Python that may be
fixed in a later version.)

o8 Part | + The Python Language

Summary

Program organization helps make code reusable, as well as more easily compre-
hended. In this chapter you:

4 Defined functions with variable argument lists.
4 Organized code into modules and packages.

4 Compiled and ran Python code on-the-fly.

In the next chapter you’ll harness the power of object-oriented programming in
Python.

¢+ o+ 0+

Object-Oriented
Python

Python has been an object-oriented language from day
one. Because of this, creating and using classes and
objects are downright easy. This chapter helps you become an
expert in using Python’s object-oriented programming support.

Overview of Object-Oriented
Python

If you don’t have any previous experience with object-oriented
(00) programming, you may want to consult an introductory
course on it or at least a tutorial of some sort so that you have
a grasp of the basic concepts.

Python’s object-oriented programming support is very
straightforward and easy: you create classes (which are some-
thing akin to blueprints), and you use them to create instance
objects (which are like the usable and finished versions of
what the blueprints represent).

An instance object (or just “object,” for short) can have any
number of attributes, which include data members (variables
belonging to that object) and methods (functions belonging to
that object that operate on that object’s data).

You can create a new class by deriving it from one or more
other classes. The new child class, or subclass, inherits the
attributes of its parent classes, but it may override any of
the parent’s attributes as well as add additional attributes
of its own.

CHAPTER

+ 0+ 0+
In This Chapter

Overview of object-
oriented Python

Creating classes and
instance objects

Deriving new classes
from other classes

Hiding private data

Identifying class
membership

Overloading
standard behaviors

Using weak
references

¢+ + o+ o+

100 Part

| + The Python Language

Creating Classes and Instance Objects

Alote

Below is a sample class and an example of its use:

>>> class Wallet:
"Where does my money go?"
walletCnt = 0
def __init_ (self,balance=0):
self.balance = balance
Wallet.walletCnt += 1

def getPaid(self,amnt):
self.balance += amnt
self.displayBalance()

def spend(self,amnt):
self.balance -= amnt
self.displayBalance()

def displayBalance(self):
print 'New balance: $%.2f' % self.balance

The class statement creates a new class definition (which is itself also an object)
called Wallet. The class has a documentation string (which you can access via
Wallet._ doc_), acount of all the wallets in existence, and three methods.

You declare methods like normal functions with the exception that the first argu-
ment to each method is self, the conventional Python name for the instance of the
object (it has the same role as the this object in Java or the this pointer in C++).
Python adds the self argument to the list for you; you don’t need to include it
when you call the methods. The first method is a special constructor or initializa-
tion method that Python calls when you create a new instance of this class. Note
that it accepts an initial balance as an optional parameter. The other two methods
operate on the wallet’s current balance.

All methods must operate on an instance of the object (if you're coming from
~~ C++, there are no “static methods").

Objects can have two types of data members: walletCnt, which is outside of any
method of the class, is a class variable, which means that all instances of the class
share it. Changing its value in one instance (or in the class definition itself) changes
it everywhere, so any wallet can use walletCnt to see how many wallets you've
created:

>>> myWallet = Wallet(); yourWallet = Wallet()
>>> print myWallet.walletCnt, yourWallet.walletCnt
2,2

Chapter 7 + Object-Oriented Python

The other type of data member is an instance variable, which is one defined inside a
method and belongs only to the current instance of the object. The balance mem-
ber of WalTet is an instance variable. So that you're never confused as to what
belongs to an object, you must use the self parameter to refer to its attributes
whether they are methods or data members.

Creating instance objects

To create an instance of a class, you “call” the class and pass in whatever argu-
ments its __init__ method accepts, and you access the object’s attributes using
the dot operator:

>>> w = Wallet(50.00)
>>> w.getPaid(100.00)
New balance $150.00
>>> w.spend(25.0)

New balance $125.00
>>> w.balance

125.0

An instance of a class uses a dictionary (named __dict__) to hold the attributes
and values specific to that instance. Thus object.attribute is the same as
object.__dict__['attribute']. Additionally, each object and class has a few
other special members:

>>> Wallet.__name__ # Class name

"Wallet'

>>> Wallet.__module__ 4 Module in which class was defined
' main__"

>>> w._ class__ J# Class definition for this object
<class __main__.Wallet at 010C1CFC>

>>> w.__doc__ # Doc string

'"Where does my money go?'

More on accessing attributes

You can add, remove, or modify attributes of classes and objects at any time:

>>> w.owner = 'Dave' # Add an 'owner' attribute.
>>> w.owner = 'Bob' 4 Bob stole my wallet.
>>> del w.owner # Remove the 'owner' attribute.

Modifying a class definition affects all instances of that class:

>>> Wallet.color = 'blue' # Add a class variable.
>>> w.color
"blue’

101

102 Partl + The Python Language

Note that when an instance modifies a class variable without naming the class, it’s
really only creating a new instance attribute and modifying it:

>>> w.color = 'red' # You might think you're changing the

>>> Wallet.color J# class variable, but you're not!
"blue’
Tip Because you can modify a class instance at any time, a class is a great way to

~,_ mimic a more flexible version of a C struct:

class myStruct: pass
z = myStruct()
z.whatever = 'howdy'

Instead of using the normal statements to access attributes, you can
use the getattr(obj, name[, default]), hasattr(obj,name),
setattr(obj,name,value),and delattr(obj, name) functions:

>>> hasattr(w, 'color") #f Does w.color exist?

1

>>> getattr(w,'color') # Return w.color please.
"red’

>>> setattr(w,'size',10) # Same as 'w.size = 10'.
>>> delattr(w, 'color') # Same as 'del w.color'.

As with functions, methods can also have data attributes. The method of the follow-
ing class, for example, includes an HTML docstring for use with a Web browser-
based class browser:

>>> class SomeClass:

def deleteFiles(self, mask):

os.destroyFiles(mask)

.. deleteFiles.htmldoc = '<bold>Use with care!</bold>"'
>>> hasattr(SomeClass.deleteFiles, '"htmldoc')
1
>>> SomeClass.deleteFiles.htmldoc
'<bold>Use with care!</bold>"'

- Cross- You can read more about function attributes in Chapter 6.
Reference

New N Method attributes are new in Python 2.1.
Feature

Deriving New Classes from Other Classes

Instead of starting from scratch, you can create a class by deriving it from a pre-
existing class by listing the parent class in parentheses after the new class name:

Chapter 7 4 Object-Oriented Python] (03

>>> class GetAwayVehicle:
topSpeed = 200
def engageSmokeScreen(self):
print '<Cough!>"
def fire(self):
print 'Bang!’
>>> class SuperMotorcycle(GetAwayVehicle):
topSpeed = 250
def engageQilSTick(self):
print 'Enemies destroyed.'
def fire(self):
GetAwayVehicle.fire(self) # Use method in parent.
print 'Kapow!'

The child class (SuperMotorcycle) inherits the attributes of its parent class
(GetAwayVehicle), and you can use those attributes as if they were defined in the
child class:

>>> myBike = SuperMotorcycle()
>>> myBike.engageSmokeScreen()
<Cough!>

>>> myBike.engageQilSlick()
Enemies destroyed.

A child class can override data members and methods from the parent. For
example, the value of topSpeed in child overrides the one in the parent:

>>> myBike.topSpeed
250

The fire method doesn’t just override the original version in the parent, but it also
calls the parent version too:

>>> myBike.fire()
Bang!
Kapow!

Multiple inheritance

When deriving a new child class, you aren’t limited to a single parent class:

>>> class Glider:
def extendWings(self):
print 'Wings ready!’
def fire(self):
print 'Bombs away!'
>>> class FlyingBike(Glider,SuperMotorcycle):
pass

104

Part | + The Python Language

Tip

In this case a F1yingBike enjoys all the benefits of being both a G1ider and a
SuperMotorcycle (which is also a GetAwayVehicle). When searching for an
attribute not defined in a child class, Python does a left-to-right, depth-first search
on the base classes until it finds a match. If you fire with a F1yingBike, it drops
bombs, because first and foremost, it's a G1ider:

>>> betterBike = FlyingBike()
>>> betterBike.fire()
Bombs away!

You can get a list of base classes using the __bases__ member of the class
definition object:

>>> for base in FlyingBike.__bases_ :

print base

__main__.Glider # __main__ is the module in
__main__.SuperMotorcycle # which you defined the class.

Just because multiple inheritance lets you have child classes with many parents
~,_ (and other strange class genealogies) doesn’t always mean it's a good idea. If your

"4 design calls for more than a few direct parent classes, chances are you need a new

design.

Multiple inheritance really shines with mix-ins, which are small classes that over-
ride a portion of another class to customize behavior. The SocketServer module,
for example, defines a generic TCP socket server class called TCPServer that han-
dles a single connection at a time. The module also provides several mix-ins, includ-
ing ForkingMixIn and ThreadingMixIn that provide their own process_request
method. This lets the TCPServer code remain simple while making it easy to create
multi-threaded or multi-process socket server classes:

class ThreadingServer(ThreadingMixIn, TCPServer): pass
class ForkingServer(ForkingMixIn, TCPServer): pass

Furthermore, you can use the same threading and forking code to create other
types of servers:

class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass

r Cross- See Chapter 15 for information on networking and socket servers.
Reference

Creating a custom list class

The UserList class (in the UserlList module) provides a listlike base class that
you can extend to suit your needs. UserlList accepts a list to use as an initializer,
and internally you can access the actual Python list via the data member. The fol-
lowing example creates an object that behaves like an ordinary list except that it
also provides a method to randomly reorder the items in the list:

Chapter 7 + Object-Oriented Python

>>> dimport UserList, whrandom

>>> from whrandom import randint

>>> class Manglelist(UserList.UserList):

- def mangle(self):

data = self.data

count = len(data)

for i in range(count):

- data.insert(randint(0,count-1),data.pop())
>>> z = Manglelist([1,2,3,4,5])
>>> z.mangle() ; print z

[1, 3, 5, 4, 2]

>>> z.mangle() ; print z

[5, 4, 1, 2, 3]

Creating a custom string class

You can also create your own custom string behaviors using the UserString class
in the UserString module. As with UserLists and lists, a UserString looks and
acts a lot like a normal string object:

>>> from UserString import *

>>> s = UserString('Goal!")

>>> s.data # Access the underlying Python string.
"Goal!l'

>>> s

"Goal!'

>>> s.upper()

"GOAL!"'

>>> sl2]

lal

Of course, the whole point of having the UserString class is so that you can sub-
class it. As an example, the UserString module also provides the MutableString
class:

>>> m = MutableString('2 + 2 is 5')
>>>m

"2 + 2 is 5!

>>> m[9] = '4'

>>>m

"2+ 2 is 4!

@ MutableString does its magic by overriding (among other things) the
Reference

__setitem__ method, which is a special method Python calls to handle the
index-based assignment in the example above. We cover _ setitem__ and
other special methods in the “Overloading Standard Behaviors” section later in
this chapter.

105

106 Partl + The Python Language

Creating a custom dictionary class

And finally, Python also has the UserDict class in the UserDict module so that
you can create your own subclasses of dictionaries:

>>> from UserDict import *

>>> d = UserDict({l:'one',2:"two"',3:"three'})
>>> d

{3: "three', 2: '"two', 1: 'one'}

>>> d.data

{3: 'three', 2: '"two', 1: 'one'}

>>> d.has_key(3)

1

The following example creates a dictionary object that, instead of raising an excep-
tion, returns None if you try to use a nonexistent key:

>>> from UserDict import *
>>> class NoFailDict(UserDict):
def __getitem__(self,key):
try:
value = self.datalkey]
except KeyError:
value = None
. return value
>>> q = NoFailDict({'orange':'OxFF6432"',"yellow':"'OxFFFF00'})
>>> print ql'orange']
OxFF6432
>>> print g['blue']
None

Hiding Private Data

In other object-oriented languages such as C++ or Java, an object’s attributes may

or may not be visible outside the class definition (you can say a member is public,
private, or protected). Such conventions help keep the implementation details hid-
den and force you to work with objects through well-defined interfaces.

Python, however, takes more of a minimalist approach and assumes you know what
you’re doing when you try to access attributes of an object. Python programs usu-
ally have smaller and more straightforward implementations than their C++ or Java
counterparts, so private data members aren’t as useful or necessary (although if
you’re accustomed to using them you may feel a little “overexposed” for awhile).

Having said that, there still may come a time when you really don’t want users of an
object to have access to the implementation, or maybe you have some members in
a base class that you don’t want children classes to access. For these cases, you
can name attributes with a double underscore prefix, and those attributes will not
be directly visible to outsiders:

Chapter 7 + Object-Oriented Python

>>> class FooCounter:

__secretCount =0

def foo(self):

self.__secretCount += 1
. print self.__secretCount
>>> foo = FooCounter()
>>> foo.foo()
1
>>> foo.foo()
2
>>> foo.__secretCount
Traceback (innermost Tast):
File "<{interactive input>", line 1, in ?

AttributeError: 'FooCounter' instance has no attribute
'__secretCount’

Python protects those members by internally changing the name to include the
class name. You can be sneaky and thwart this convention (valid reasons for
doing this are rare!) by referring to the attribute using its mangled name:
_className__attrName:

>>> foo._FooCounter__secretCount
2

Identifying Class Membership

Class definitions and instance objects each have their own data type:

>>> class Tree:

- pass

>>> class Oak(Tree):

- pass

>>> seedling = 0ak()

>>> type(seedling); type(0Oak)
{type 'instance'>

{type 'class'>

Ej Refer to Chapter 4 for more on identifying the data types of an object.
Reference

Because the type is instance or class, all class definitions have the same type and
all instance objects have the same type. If you want to see if an object is an instance
of a particular class, you can use the isinstance(obj,class) function:

>>> dsinstance(seedling,Oak)

1

>>> isinstance(seedling,Tree) # True because an Oak is a Tree.
1

The issubclass(class,class) checks to see if one class is a descendent of
another:

107

108 Partl ¢ The Python Language

Tip

>>> issubclass(0ak,Tree)
1

>>> issubclass(Tree,0ak)
0

You can also retrieve the string name for a class using the __name__ member:

>>> seedling.__class__._ name__

"Oak’

>>> seedling.__class__.__bases_ [0].__name__
'"Tree'

Your programs will often be more flexible if, instead of depending on an object's
~, type or dlass, they check to see if an object has a needed attribute. This enables
" you and others to use your code with data types that you didn’t necessarily con-
sider when you wrote it. For example, instead of checking to see if an object
passed in is a file before you write to it, just check for a write method, and if pre-
sent, use it. Later you may find it useful to call the same routine passing in some
other object that also has a write method. “Using Filelike Objects” in Chapter 8
covers this theme in more detail.

L 8

Overloading Standard Behaviors

Suppose you’ve created a Vector class to represent two-dimensional vectors. What
happens when you use the plus operator to add them? Most likely Python will yell
at you. You could, however, define the __add__ method in your class to perform
vector addition, and then the plus operator would behave:

>>> class Vector:
def __init__(self,a,b):
self.a a
self.b =b
def __str_ (self):
return 'Vector(%d,%d)"' % (self.a,self.b)
def __add__ (self,other):
- return Vector(self.atother.a,self.b+other.b)
>>> vl Vector(2,10)
>>> V2 Vector(5,-2)
>>> print vl + v?2
Vector(7,8)

Not only do users now have an intuitive way to add two vectors (much better than
having them call some clunky function directly), but vectors also display them-
selves nicely when converted to strings (thanks to the __ str__ method).

The operator module defines many functions for which you can overload or define
new behavior when used with your classes. The following sections describe these
functions and how to use them.

Chapter 7 4 Object-Oriented Python 1 (09

Note that some functions have two or even three very similar versions. For exam-
ple, in the numeric operators, you can create an __add__ function,an __iadd___
function, and an __radd__ function all for addition. The first is to implement nor-
mal addition (x +y), the second for in-place addition (x +=y), and the third for x + y
when x does not have an __add__ method (so Python calls y.__radd(x) instead). If
you don’t define in-place operator methods, Python checks for an overloaded ver-
sion of the normal operator (for example, if you don’t define __iadd__,x+=y
causes Python to still call __add__if defined). For simplicity, it’s best to leave the
in-place operators undefined unless your class in some way benefits from special
in-place processing (such as a huge matrix class that could save memory by per-
forming addition in place).

Overloading basic functionality

Table 7-1 lists some generic functionality that you can override in your own classes.

Table 7-1

Base Overloading Methods
Method Sample Call
__init__ (self[, args...1) obj =className(args)
__del__ (self) del obj
_call__ (self[, args...1) , callable function obj(5)
__getattr__ (self, name) obj.foo
__setattr__ (self, name, value) obj.foo=5
__delattr__ (self, name) del obj.foo
__repr__ (self) “obj or repr(obj)
_str__ (self) str(obj)
_cmp__ (self, x) cmp(obj,x)
_1t__(self, x) obj < x
__le_ (self,x) obj <= x
_eq__(self,x) obj ==x
__ne_ (self,x) obj !'=x
_ gt (self, x) obj > x
__ge_ (self,x) obj >= x
__hash__ (self) hash(obj)

__nonzero__ (self) nonzero(obj)

110

Part | + The Python Language

Note that with the del statement, Python won'’t call the __del__ method unless the
object’s reference count is finally 0.

Python invokes the _ call__ method any time someone tries to treat an instance
of your object as a function. Users can test for “callability” using the
callable(obj) function, which tries to determine if the object is callable
(callable may return true and be wrong, but if it returns false, the object really
isn’t callable).

Python calls the __getattr__ function only after a search through the instance dic-
tionary and base classes comes up empty-handed. Your implementation should
return the desired attribute or raise an AttributeError exception. If __setattr__
needs to assign a value to an instance variable, be sure to assign it to the instance
dictionary instead (self.__dict_ [name] =val) to prevent a recursive call to
__setattr__.Ifyourclass hasa__setattr__method, Python always calls it to
set member variable values, even if the instance dictionary already contains the
variable being set.

The hash and cmp functions are closely related: if you do not implement _ cmp__,
you should not implement __hash__.If you providea ___cmp__butno __hash__,
then instances of your object can’t act as dictionary keys (which is correct if your
objects are mutable). Hash values are 32-bit integers, and two instances that are
considered equal should also return the same hash value.

The nonzero function performs truth value testing, so your implementation should
return 0 or 1. If not implemented, Python looks for a __len__ implementation to use,
and if not found, then all instances of your object will be considered “true.”

Youusethe 1t , gt_ ,and other methods to implement support for rich
comparisons where you have more complete control over how objects behave dur-
ing different types of comparisons. If present, Python calls any of these methods
before looking for a __cmp__ method. The following example prints a message each
time Python calls a comparison function so you can see what happens:

>>> class Simple:
def __cmp__(self, obj):

print '__cmp__'
return 1
def __1t_ (self, obj):

print '__1t__"'
return 0O
>>> s = Simple()
>>> s < b
__1t__ 4 Python uses rich comparisons first.
0
>>> s > 5

_cmp__ # Uses __cmp__ if there are no rich comparison methods.

—_

Tip

New
Feature

Chapter 7 + Object-Oriented Python

Your rich comparison methods can return Not Implemented to tell Python that you
don’t want to handle a particular comparison. For example, the following class imple-
ments an equality method that works on integers. If the object to which it is compar-
ing isn’t an integer, it tells Python to figure out the comparison result on its own:

>>> class MylInt:
def __init__(self, val):
self.val = val
def __eq_ (self, obj):
print '__eq_ '
if type(obj) != type(0):
print 'Skipping'
return NotImplemented

return self.val == obj
>>> m = MyInt(16)

>>> m == 10

__eq__

0

>>> m == "Hi'

_eq__

Skipping

0

Although _ cmp__ methods must return an integer to represent the result of the

»,_ comparison, rich comparison methods can return data of any type or raise an

%
4 exception if a particular comparison is invalid or meaningless.

\ _ Rich comparisons are new in Python 2.1.

Overloading numeric operators

By overloading the numeric operators methods, your classes can correctly respond
to operators like +, -, and so on. Note that Python calls the right-hand side version
of operators (for example, _radd_) if the left-hand operator doesn’t have a corre-
sponding method defined (__add__):

>>> class Add:
def __init__(self,val):
self.val = val
def __add_ (self,obj):
print 'add',obj
return self.val + obj
def __radd__ (self,obj):
print 'radd',obj
. return self.val + obj
>>> a = Add(10)
>>> a
<__main__.Add instance at 00E5D354>
>>> a + 5 4 Calls a.__add_ (5).

111

112 Partl + The Python Language

add b5

15

>>> 5+ a { Calls a.__radd_ (5).
radd 5

15

Table 7-2 lists the mathematic operations (and the right-hand and in-place variants)
that you can overload and examples of how to invoke them.

Table 7-2

Numeric Operator Methods
Method Sample Call
_add__ (self, obj), __radd__, _ iadd__ obj +10.5
_sub__ (self,obj), _rsub_, disub__ obj -16
_mul__ (self, obj), _rmul__, imul__ obj *5.1
_div__ (self, obj), __rdiv__, __idiv__ obj /15
__mod__ (self, obj), _rmod__, imod_ _ obj %2
_ divmod__ (self, obj), __rdivmod__ divmod(obj,3)
__pow__ (self, obj[, modulol), pow(obj,3)
__rpow__(self,obj)
__neg__ (self) -obj
__pos__ (self) +obj
_abs__ (self) abs(obj)
__invert__ (self) ~obJ

Overloading sequence and dictionary operators

If you create your own sequence or mapping data type, or if you just like those nifty
bracket operators, you can overload the sequence operators with the methods
listed in Table 7-3.

Chapter 7 4 Object-Oriented Python |13

Table 7-3

Sequence and Dictionary Operator Methods
Method Sample Call
__len__ (self) len(obj)
__getitem__ (self, key) obj['cheese']
__setitem__ (self, key, value) obj[5]1=(2,5)
__delitem__ (self, key) del obj['no"']
__setslice_ (self, i, j, sequence) obj[l:7]1="Fellow'
__delslice__ (self, i, J) del objl[5:71]
__contains__(self,obj) X in obj

This class overrides the slice operator to provide an inefficient way to create a list
of numbers:

>>> class DumbRange:
. def __getitem_ (self,slice):

step = slice.step

if step is None:

step = 1

- return range(slice.start,slice.stop+l,step)
>>> d = DumbRange()
>>> dl2:5]
[2, 3, 4, 5]
>>> d[2:10:2]1 4 Extended (step) slicing!
(2, 4, 6, 8, 101

The argument to __getitem__ is either an integer or a slice object. Slice objects
have start, stop, and step attributes, so your class can support the extended slic-
ing shown in the example.

If the key passed to __getitem__ is of the wrong type, your implementation should
raise the TypeError exception, and the slice methods should reject invalid indices
by raising the IndexError exception.

If your __getitem__ method raises IndexError on an invalid index, Python can
iterate over object instances as if they were sequences. The following class behaves
like a range object with a user-supplied step, but it limits itself to only 6 iterations:

114 Partl 4+ The Python Language

>>> class Stepper:
def __init__ (self, step):
self.step = step
def __getitem__(self, index):
if index > 5:
raise IndexError
. return self.step * index
>>> s = Stepper(3)
>>> for i in s:
. print i
0 4 Python calls _ getitem__ with index=0
3

6
9
12
15 # Python stops after a __getitem__call raises an exception

Overloading bitwise operators

The bitwise operators let your classes support operators such as << and xor:

>>> class VectoreD:
def __init_ (self,i,j):
self.i i
self.j Jj
def __Tshift__ (self,x):
return Vector2D(self.i << x, self.j << x)
def __repr_ (self):
- return 'Vector2D(%s,%s)"' % (“self.i”, self.j")
>>> vl = Vector2D(5,2)
>>> vl KK 2
Vector2D(20,8)

Table 7-4 lists the methods you define to overload the bitwise operators.

Table 7-4

Bitwise Operator Methods
Method Sample Call
_ _Ishift__ (self, obj), __rishift__, 0bj <<'3
__ilshift__
__rshift__ (self, obj), _rrshift__, obj>>1
__irshift__
_and__ (self, obj), __rand__, _ _iand__ obj & 17
_or__(self,obj), _ror_, dor__ obj | otherObj

__xor__ (self, obj), __rxor__, __ixor__ obj » OxFE

Chapter 7 4 Object-Oriented Python |15

Overloading type conversions

By overloading type conversion methods, you can convert your object to different
data types as needed:

>>> class Five:
def __int__(self):

return 5
>>> f = Five()

>>> int(f)

5

Python calls these methods when you pass an object to one of the type conversion
routines. Table 7-5 lists the methods, sample Python code that would invoke them,
and sample output they might return.

Table 7-5

Type Conversion Methods
Method Sample Call Sample Output
__int__(self) int(obj) 53
__long__ (self) Tong(obj) 12L
_ float__(self) float(obj) 3.5
__complex_ (self) complex(obj) 2+3j
__oct_ (self) oct(obyj) ‘012"
__hex__(self) hex(obj) "OxFE'

Python calls the _ coerce_ (self, obj) method, if present, to coerce two numer-
ical types into a common type before applying an arithmetic operation. Your imple-
mentation should return a 2-item tuple containing self and obj converted to a
common numerical type or None if you don’t support that conversion.

Using Weak References

Like many other high-level languages, Python uses a form of garbage collection to
automatically destroy objects that are no longer in use. Each Python object has a
reference count that tracks how many references to that object exist; when the ref-
erence count is 0, then Python can safely destroy the object.

While reference counting saves you quite a bit of error-prone memory management
work, there can be times when you want a weak reference to an object, or a refer-
ence that doesn’t prevent Python from garbage collecting the object if no other

116

Part | + The Python Language

New
Feature

‘\I ote

references exist. With the weakref module, you can create weak references to
objects, and Python will garbage collect an object if its reference count is 0 or if the
only references that exist are weak references.

\ _ Theweakref module is new in Python 2.1.

Creating weak references

You create a weak reference by calling ref (obj[, callback]) in the weakref
module, where obj is the object to which you want a weak reference and callback
is an optional function to call when Python is about to destroy the object because
no strong references to it remain. The callback function takes a single argument, the
weak reference object.

Once you have a weak reference to an object, you can retrieve the referenced
object by calling the weak reference. The following example creates a weak refer-
ence to a socket object:

>>> ref = weakref.ref(a)

>>> from socket import *

>>> import weakref

>>> s = socket(AF_INET,SOCK_STREAM)

>>> ref = weakref.ref(s)

>>> s

<{socket._socketobject instance at 007B4A94>

>>> ref

<weakref at 0x81195c; to 'instance' at 0x7b4a94>
>>> ref() 4§ Call it to access the referenced object.
{socket._socketobject instance at 007B4A94>

Once there are no more references to an object, calling the weak reference returns
None because Python has destroyed the object.

Most objects are not accessible through weak references.

-

The getweakrefcount(obj) and getweakrefs(obj) functions in the weakref
module return the number of weak references and a list of referents for the given
object.

Weak references can be useful for creating caches of objects that are expensive to
create. For example, suppose you are building a distributed application that sends
messages between computers using connection-based network sockets. In order to
reuse the socket connections without keeping unused connections open, you
decide to keep a cache of open connections:

Chapter 7 + Object-Oriented Python |17/

import weakref
from socket import *

socketCache = {}
def getSocket(addr):
'Returns an open socket object’
if socketCache.has_key(addr):
sock = socketCachel[addr]()
if sock: # Return the cached socket.
return sock

No socket found, so create and cache a new one.
sock = socket (AF_INET,SOCK_STREAM)

sock.connect (addr)

socketCache[addr] = weakref.ref(sock)

return sock

In order to send a message to a remote computer, your program calls getSocket to
obtain a socket object. If a connection to the given address doesn’t already exist,
getSocket creates a new one and adds a weak reference to the cache. When all
strong references to a given socket are gone, Python destroys the socket object and
the next request for the same connection will cause getSocket to create a new one.

The mapping([dict[,weakkeys]]) function in the weakref module returns a
weak dictionary (initializing it with the values from the optional dictionary dict). If
weakkeys is 0 (the default), the dictionary automatically removes any entry whose
value no longer has any strong references to it. If weakkeys is nonzero, the dictio-
nary automatically removes entries whose keys no longer have strong references.

Creating proxy objects

Proxy objects are weak reference objects that behave like the object they reference
so that you don’t have to first call the weak reference to access the underlying
object. Create a proxy by calling weakref’s proxy(obj[, callback]) function.
You use the proxy object as if it was the actual object it references:

>>> from socket import *

>>> import weakref

>>> s = socket (AF_INET,SOCK_STREAM)

>>> ref = weakref.proxy(s)

>>> s

<{socket._socketobject instance at 007E4874>

>>> ref # It lTooks Tike the socket object.
{socket._socketobject instance at 007E4874>

>>> ref.close() # The object's methods work too.

118 Partl ¢ The Python Language

The callback parameter has the same purpose as the ref function. After
Python deletes the referenced object, using the proxy results in a
weakref.Referencekrror:

>>> del s

>>> ref

Traceback (most recent call Tast):
File "<stdin>", Tine 1, in ?

,J‘\Iote This example assumes that Python immediately destroys the object once the last
~ string is gone. While true of the current garbage collector implementation, future
versions may be different.

Summary

Python fully supports object-oriented programming while requiring minimal effort
from you, the programmer. In this chapter you:

4+ Created your own custom classes.

4 Derived new classes from other classes.

4+ Extended built-in data types like strings and lists.

4 Defined custom behaviors for operations on your classes.

In the next chapter you learn to create programs that interact with the user and
store and retrieve data.

¢+ o+ 0+

Input and
Output

In order to be useful, most programs must interact with the
“outside world” in some way. This chapter introduces
Python’s functions for reading and writing files, printing to the
screen, and retrieving keyboard input from the user.

Printing to the Screen

The simplest way to produce output is using the print state-
ment, which converts the expressions you pass it to a string
and writes the result to standard output, which by default is
the screen or console. You can pass in zero or more expres-
sions, separated by commas, between which print inserts a
space:

>>> print "It is',5+7,'past',3
It is 12 past 3

Before printing each expression, print converts any non-
string expressions using the str function. If you don’t want
the spaces between expressions, you can do the conversions
yourself:

>>> a =5.1; z = (0,5,10)

>>> print "(%0.1f + %0.1f) = \n%0.1f"' %
(a,a,a*2)

(5.1 +5.1) =

10.2

>>> print 'Move to '+str(z)

Move to (0, 5, 10)

>>> print 'Two plus ten is '+°2+10° # ~~ 1is
the same as repr.

Two plus ten is 12

Cross- Chapter 3 covers converting different data types to strings.
Reference

CHAPTER

YR SR St
In This Chapter
Printing fo the screen

Accessing keyboard
input

Opening, closing,
and positioning files

Writing files
Reading files

Accessing standard

I/O
Using filelike objects

¢+ 4+ o+

120 Partl + The Python Language

If you append a trailing comma to the end of the statement, print won’t move to
the next line:

>>> def addEm(x,y):
print x,
print 'plus',
print vy,
print 'is"',

print x+y

>>> addEm(5,2)

5 plus 2 is 7

Python uses the softspace attribute of stdout (stdout is in the sys module) to
track whether it needs to output a space before the next item to be printed. You can
use this feature to manually shut off the space that would normally appear due to
using a comma:

>>> import sys

>>> def joinEm(a,b):
print a,
sys.stdout.softspace = 0
print b

55> joinEm('Thanks','giving")
Thanksgiving

An extended form of the print statement lets you redirect output to a file instead
of standard output:

>>> print >> sys.stderr ,"File not found"
File not found

yevtv \ _ The extended form of print was introduced in Python 2.0.
eature

Any filelike object will do, as you will see in the “Using Filelike Objects” section later
in this chapter.

Accessing Keyboard Input

Going the other direction, Python provides two built-in functions to retrieve a line
of text from standard input, which by default comes from the user’s keyboard. The
examples in this section use italics for text you enter in response to the prompts.

raw_input

The raw_input([prompt]) function reads one line from standard input and
returns it as a string (removing the trailing newline):

Chapter 8 4+ Inputand Output 2]

>>> s = raw_input()
Uncle Gomez
>>> print s
Uncle Gomez

You can also specify a prompt for raw_input to use while waiting for user input:

>>> s = raw_input('Command: ")
Command: Taunch missiles

>>> print '"Ignoring command to',s
Ignoring command to launch missiles

If raw_input encounters the end of file, it raises the EOFError exception.

input

The input([prompt]) function is equivalent to raw_input, except that it assumes
the input is a valid Python expression and returns the evaluated result to you:

>>> input('Enter some Python: ')
Enter some Python: [x*5 for x in range(2,10,2)]
[10, 20, 30, 401

Note that input isn’t at all error-proof. If the expression passed in is bogus, input
raises the appropriate exception, so be wary when using this function in your
programs.

r Cross- Chapter 38 covers the read1ine module for UNIX systems. If enabled, this mod-
Reference’\ je adds command history tracking and completion to these input routines (and

Python’s interactive mode as well).

¢ Cross- You may have noticed that you can't read one character at a time (instead you
Reference’\ have to wait until the user hits Enter). To read a single character on UNIX systems

(or any system with curses support), you can use the getch function in the
curses module (Chapter 22). For Windows systems, you can use the getch func-
tion in the msvcrt module (Chapter 37).

Opening, Closing, and Positioning Files

The remaining sections in this chapter show you how to use files in your programs.

r Cross- Part 1l of this book — “Files, Data Storage, and Operating System Services” — covers
Reference\ 1 any additional features you'll find useful when using files.

122

Part | + The Python Language

open
Before you can read or write a file, you have to open it using Python’s built-in
open(name[, mode[, bufsizel]) function:

>>> f = open('foo.txt','wt',1) # Open foo.txt for writing.
>>> f
<open file 'foo.txt', mode 'wt' at 010C0488>

The mode parameter is a string (similar to the mode parameter in C’s fopen
function) and is explained in Table 8-1.

Table 8-1
Mode Values for open
Value Description
R Opens for reading.
W Creates a file for writing, destroying any previous file with the
same name.
A Opens for appending to the end of the file, creating a new one if
it does not already exist.
r+ Opens for reading and writing (the file must already exist).
w+ Creates a new file for reading and writing, destroying any

previous file with the same name.

a+ Opens for reading and appending to the end of the file, creating
a new file if it does not already exist.

If you do not specify a mode string, open uses the default of 'r'. To the end of the
mode string you can append a ‘t’ to open the file in text mode or a ‘b’ to open it in
binary mode:

>>> f = open('somepic.jpg', 'w+b') # Open/create binary file.

If you omit the optional buffer size parameter (or pass in a negative number), open
uses the system’s default buffering. A value of 0 is for unbuffered reading and writing,
avalue of 1 buffers data a line at a time, and any other number tells open to use a
buffer of that size (some systems round the number down to the nearest power of 2).

If for any reason the function call fails (file doesn’t exist, you don’t have permis-

sion), open raises the I0Error exception.

functions as additional ways to obtain file objects. You can also create a filelike object
wrapping an open socket with the socket.makefile function (Chapter 15).

g The os module (Chapter 10) provides the fdopen, popen, popen2, and popen3
Reference

Chapter 8 + Inputand Output |23

File object information

Once you have a file object, you can use the name, fileno(), isatty(), mode, and
closed methods and attributes to get different information about the object’s
status:

>>> f = open('foo.txt", 'wt")
>>> f.mode # Get the mode used to create the file object.

'Wt’

>>> f.closed # Boolean: has the file been closed already?
0

>>> f.name # Get the name of the file.

"foo.txt'

>>> f.isatty() # Is the file connected to a terminal?

0

>>> f.fileno() # Get the file descriptor number.

0

r Cross- With the file descriptor returned by the fileno method you can call read and
Reference \ ,ther functions in the 0s module (Chapter 10).

close

The cTose () method of a file object flushes any unwritten information and closes
the file object, after which no more writing can occur:

>>> f = open('foo.txt', 'wt")
>>> f.write('Fool!l")
>>> f.close()

File position
The tel1() method tells you the current position within the file (in other words,
the next read or write will occur at that many bytes from the beginning of the file):

>>> f = open('tell.txt','w+') # Open for reading AND writing.
>>> f.write('BRAWN') # Write 5 characters.

>>> f.tell()

5 4 Next operation will occur at offset 5 (starting from 0).

The seek(offset[, from]) method changes the current file position. The follow-
ing example continues the previous one by seeking to an earlier point in the file,
overwriting some of the previous data, and then reading the entire file:

>>> f.seek(2) #f Move to offset 2 from the start of the file.
>>> f.owrite('AIl")

>>> f.seek(0) # Now move back to the beginning.

>>> f.read() 4§ Read everything from here on.

"BRAIN'

124 Partl 4+ The Python Language

You can pass an additional argument to seek to change how it interprets the first
parameter. Use a value of 0 (which is the default) to seek from the beginning of the
file, 1 to seek relative to the current position, and 2 to seek relative to the end of the
file. Using the previous example:

>>> f.seek(-4,2) # Seek 4 bytes back from the end of the file.
>>> f.read()
'"RAIN'

Caution When you open a file in text mode on a Microsoft Windows system, Windows
silently and automatically translates newline characters (\n’) into \r\n’ instead. In
such cases use seek only with an offset of O (to seek to the beginning or the end
of the file) or to seek from the beginning of the file with an offset returned from a
previous call to tell.

Writing Files

The write(str) method writes any string to an open file (keep in mind that
Python strings can have binary data and not just text). Notice that write does not
add a newline character (‘\n’) to the end of the string:

>>> f = open('snow.txt', 'w+t")

>>> f.write('Once there was a snowman,\nsnowman, snowman.\n')
>>> f.seek(0) # Move to the beginning of the file.

>>> print f.read()

Once there was a snowman,

snowman, snowman.

Thewritelines(1ist) method takes a list of strings to write to a file (as with
write, it does not append newline characters to the end of each string you pass
in). Continuing the previous example:

>>> lines = ['Once there was a snowman ','tall, tall,','tall!"]
>>> f.writelines(lines)

>>> f.seek(0)

>>> print f.read()

Once there was a snowman,

snowman, snowman.

Once there was a snowman tall, tall, tall!

Tip Like stdout, all file objects have a softspace attribute (covered in the first sec-

~, tion of this chapter) telling whether or not Python should insert a space before
A writing out the next piece of data. As with stdout, you can modify this attribute to
shut off that extra space.

L\

The truncate([offset]) method deletes the contents of the file from the current
position until the end of the file:

Chapter 8 + Inputand Output |25

>>> f.seek(10)

>>> f.truncate()
>>> f.seek(0)

>>> print f.read()
Once there

Optionally you can specify a file position at which to truncate instead of the current
file position:

>>> f.seek(0)

>>> f.truncate(b)
>>> print f.read()
Once

You can also use the f1ush () method to commit any buffered writes to disk.

r Cross- See the pickle, shelve, and struct modules in Chapter 12 for information on
Reference’) \yriting Python objects to files in such a way that you can later read them back in

as valid objects.

Reading Files

The read([count]) method returns the specified number of bytes from a file (or
less if it reaches the end of the file):

>>> f = open('read.txt','w+t') # Create a file.
>>> for i in range(3):

f.write('Line #%d\n' % 1)

>>> f.seek(0)

>>> f.read(3) # Read 3 bytes from the file.
"Lin'

If you don’t ask for a specific number of bytes, read returns the remainder of the file:

>>> print f.read()
e {0

Line {1

Line {f2

The readline([count]) method returns a single line, including the trailing new-
line character if present:

>>> f.seek(0)
>>> f.readline()
"Line #0\012"

126

Part | + The Python Language

You can have readline return a certain number of bytes or an entire line
(whichever comes first) by passing in a size argument:

>>> f.readline(b)
'"Line '
>>> f.readline()
"#1\012"

The readlines([sizehint]) method repeatedly calls readline and returns a list
of lines read:

>>> f.seek(0)
>>> f.readlines()
['Line #0\012"', 'Line #1\012', 'Line #2\012"']

‘\Iote Once they reach the end of the file, the read and readline methods return
~~ empty strings, and the read1ines method returns an empty list.

The optional sizehint parameter limits how much data readlines reads into
memory instead of reading until the end of the file.

When you’re processing the lines of text in a file, you often want to remove the new-
line characters along with any leading or trailing whitespace. Here’s an easy way to

open the file, read the lines, and remove the newlines all in a single step (this exam-
ple assumes you have the read.txt file from above):

>>> [x.strip() for x in open('read.txt').readlines()]
['Line #0', 'Line #1', 'Line #2'] # Yay. Python!

One drawback to the readlines method is that it reads the entire file into memory
before returning it to you as a list (unless you supply a sizehints parameter, in
which case you have to call readlines over and over again until the end of the
file). The xreadlines works like readlines but reads data into memory as
needed:

>>> for line in open('read.txt').xreadlines():
. print Tine.strip().upper() # Print uppercase version of
lines.

New N\ The xreadlines function is new in Python 2.1.
Feature

Accessing Standard 1/0

The sys module provides three file objects that you can always use: stdin
(standard input), stdout (standard output), and stderr (standard error). Most
often stdin holds input coming from the user’s keyboard while stdout and stderr
print messages to the user’s screen.

Chapter 8 4+ Input and Output

,Alote Some IDEs like PythonWin implement their own version of stdin, stdout,
~~ input, and so on, so redirecting them may behave differently. When in doubt, try
it out from the command line.

Routines like input and raw_input read from stdin, and routines like print write
to stdout, so an easy way to redirect input and output is to put file objects of your
own into sys.stdinand sys.stdout:

>>> import sys

>>> sys.stdout = open('fakeout.txt','wt")

>>> print "Now who's going to the restaurant?"”
>>> sys.stdout.close()

>>> sys.stdout = sys._ stdout__

>>> open('fakeout.txt').read()

"Now who's going to the restaurant?\012"

As the example shows, the original values are inthe _ stdin__, stdout__,and
__stderr__ members of sys; be a good Pythonista and point the variables to their
original values when you’re done fiddling with them.

ﬁ\lote External programs started via os.system or os.popen do not look in

~ sys.stdin or sys.stdout. As a result, their input and output come from the
normal sources, regardless of changes you've made to Python's idea of stdin and
stdout.

Using Filelike Objects

One of the great features of Python is its flexibility with data types, and a neat
example of this is with file objects. Many functions or methods require that you
pass in a file object, but more often than not you can get away with passing in an
object that acts like a file instead.

The following example implements a filelike object that reverses the order of any-
thing you write to it and then sends it to the original version of stdout:

>>> dimport sys,string
>>> class Reverse:
def write(self,s):
s = list(s)
s.reverse()
sys.__stdout__.write(string.join(s,"'"))
sys.__stdout__.flush()

Not much of a file object is it? But, you’d be surprised at how often it’ll do the trick:
>>> sys.stdout = Reverse()

>>> print 'Python rocks!'
Iskcor nohtyP

127

128

Part | + The Python Language

Detecting Redirected Input

Suppose you're writing a nifty utility program that would most often be used in a script
where the input would come from piped or redirected input, but you also want to provide
more of an interactive mode for other uses. Instead of having to pass in a command line
parameter to choose the mode, your program could use the isatty method of sys.stdin to
detect it for you.

To see this in action, save this tiny program to a file called myutil.py:

import sys
if sys.stdin.isatty():

print 'Interactive mode!'’
else:

print 'Batch mode!'

Now run it from an MS-DOS or UNIX shell command prompt:

C:\temp>python myutil.py
Interactive mode!

Run it again, this time redirecting a file to stdin using the redirection character (any file
works as input—in the example below I chose myutil.py because you're sure to have it in
your directory):

C:\temp>python myutil.py < myutil.py
Batch mode!

Likewise, a more complex (and hopefully more useful) utility could automatically behave
differently depending on whether a person or a file was supplying the input.

In fact, you can trick most of Python into using your new file object, even when
printing error messages:

>>> sys.stderr = Reverse()

>>> Reverse.foo # This action causes an error.
:)tsal 1lac tnecer tsom(kcabecarT

?ni ,1 enil ,">nidts<" eliF rorrEetubirttA :oof

The point here is that no part of the Python interpreter or the standard libraries
has any knowledge of your special file class, nor does it need to. Sometimes a cus-
tom class can act like one of a different type even if it’s not derived from a common
base class (that is, files and Reverse do not share some common “generic file”
superclass).

One instance in which this feature is useful is when you’re building GUI-based
applications (see Chapter 19) and you want text messages to go to a graphical
window instead of to the console. Just write your own filelike class that sends a

Chapter 8 + Inputand Output |29

string to the window, replace sys.stdout (and probably sys.stderr), and
magically output goes to the right place, even if some third-party module that is
completely ignorant of your trickery generates the output.

This flexibility comes in handy at other times too. For example, map lets you pass in
the function to apply. The ability to recognize cases where it is both useful and intu-
itive is a talent worth cultivating.

Tip As of Python 2.1, you can create a xreadlines object around any filelike object
that implements a read1ines method:

import xreadlines

obj = SomeFilelLikeObject()

for Tine in xreadlines.xreadlines(obj):
. do some work ...

Summary

Whether you're using files or standard I/O, Python makes handling input and output
easy. In this chapter you:

4 Printed information to the user’s console.

4 Retrieved input from the keyboard.

4 Learned to read and write text and binary files.

4+ Used filelike objects in place of actual file objects.
In the next chapter you'll learn to use Python’s powerful string handling features.

With them you can easily search strings, match patterns, and manipulate strings in
your programs.

+ o+ 0+

Files, Data
Storage, and -
Operating

and Regular

System Services -

Chapter 10
Working with Files
and Directories

Chapter 11
Using Other
Operating System
Services

Chapter 12
Storing Data and
Objects

Chapter 13
Accessing Date
and Time

Chapter 14
Using Databases

4+ + +

CHAPTER

Processing
Strings and L
Regu I a r In This Chapter

Using string objects

o
ExpreSSIons Using the string

module

Defining regular

expressions
Strings are a very common format for data display, input,))
and output. Python has several modules for manipulat- Creating and Uelig
ing strings. The most powerful of these is the regular expres- regulor expression
sion module. Python also offers classes that can blur the objects

separation between a string (in memory) and a file (on disk).
Using match objects

This chapter covers all of the things you can do with strings,
ordered from the crucial to the seldom used. Treating strings as
files

USing String Objects Encoding text

Formatting floating

String objects provide methods to search, edit, and format the point numbers
string. Because strings are immutable, these functions do not
alter the original string. They return a new string: + + + +

>>> bob="hi there"

>>> bob.upper() # Say it LOUDER!

'"HI THERE'

>>> bob # bob is immutable, so he didn't
mutate.

>>> '"hi there'’

>>> string.upper(bob) # Module function, same
as bob.upper

'"HI THERE'

String object methods are also available (except as noted
below) as functions in the string module. The corresponding
module functions take, as an extra first parameter, the string
object to operate on.

134 Partll + Files, Data Storage, and Operating System Services

g See Chapter 3 for an introduction to string syntax and formatting in Python.
Reference

String formatting methods

Several methods are available to format strings for printing or processing. You can
justify the string within a column, strip whitespace, or expand tabs.ljust(width),
center(width), or rjust(width). These methods right-justify, center, or left-justify a
string within a column of a given width. They pad the string with spaces as neces-
sary. If the string is longer than width, these methods return the original string.

This kind of formatting works in a monospaced font, such as Courier New, where all
characters have the same width. In a proportional font, strings with the same length
generally have different widths on the screen or printed page.

>>> M"antici".1just(10)+"pation".rjust(10)
"antici pation'

Istrip, rstrip, strip

Istrip returns a string with leading whitespace removed, rstrip removes trailing
whitespace, and strip removes both. “Whitespace” characters are defined in
string.whitespace — whitespace characters include spaces, tabs, and newlines.

>>> " hello world ".1strip()

"hello world '

>>> _.rstrip() # Interpreter trick: _ = Tast expression value
"hello world'

expandtab([tabsize])

This method replaces the tab characters in a string with tabsize spaces, and returns
the result. The parameter tabsize is optional, defaulting to eight. This method is
equivalent to replace("\t"," "*tabsize).

String case-changing methods

You can convert strings to UPPERCASE, lowercase, and more.

lower, upper

These methods return a string with all characters shifted to lowercase and
uppercase, respectively. They are useful for comparing strings when case is not
important.

capitalize, title, swapcase
The method capitalize returns a string with the first character shifted to uppercase.

Chapter 9 + Processing Strings and Regular Expressions | 35

The method title returns a string converted to “titlecase.” Titlecase is similar to the
way book titles are written: it places the first letter of each word in uppercase, and
all other letters in lowercase. Python assumes that any group of adjacent letters
constitutes one word.

The method swapcase returns a string where all lowercase characters changed to
uppercase, and vice versa.

>>> "hello world".title()
"Hello World'

>>> "hello world".capitalize()
"Hello world'

>>> "hello world".upper()
"HELLO WORLD'

String format tests (the is-methods)

These methods do not have corresponding functions in the string module. Each
returns false for an empty string. For instance, "".isalpha() returns 0.

4 isalpha— Returns true if each character is alphabetic. Alphabetic characters
are those in string.letters. Returns false otherwise.

4 isalnum — Returns true if each character is alphanumeric. Alphanumeric
characters are those in string.letters or string.digits. Returns false otherwise.

4 isdigit— Returns true if each character is a digit (from string.digits). Returns
false otherwise.

4 isspace —Returns true if each character is whitespace (from string.
whitespace). Returns false otherwise.

4+ islower — Returns true if each letter in the string is lowercase, and the string
contains at least one letter. Returns false otherwise. For example:

>>> "2 + 2".islower() # No letters, so test fails!
0

>>> "2 plus 2".islower() # A-ok!

1

4 isupper — Returns true if each letter in the string is uppercase, and the string
contains at least one letter. Returns false otherwise.

4 istitle —Returns true if the letters of the string are in titlecase, and the string
contains at least one letter. Returns false otherwise. (See the tit1e formatting
method discussed previously for a description of titlecase.)

String searching methods

Strings offer various methods for simple searching. For more powerful searching,
use the regular expressions module (covered later in this chapter).

136

Part Il + Files, Data Storage, and Operating System Services

find(substring], firstindex], lastindex]])

Search for substring within the string. If found, return the index where the first
occurrence starts. If not found, return -1.

A callto str.find searches the slice str[firstindex:Tastindex]. So, the
default behavior is to search the whole string, but you can pass values for firstindex
and lastindex to limit the search.

>>> str="the rest of the story"
>>> str.find("the")

0

>>> str.find("the",1) # Start search at index 1.
12

>>> str.find("futplex")

-1

Here are some relatives of find, which you may find useful:

4+ index — Same syntax and effect as find, but raises the exception ValueError
if it doesn’t find the substring .

4 rfind — Same as find, but returns the index of the last occurrence of the
substring.

4 rindex — Same as index, but returns the index of the last occurrence of the
substring.

startswith(substr[firstindex[,lastindex]])

Returns true if the string starts with substr. A call to str.startswith compares
substr against the slice str[firstindex:lastindex]. You can pass values for
firstindex and lastindex to test whether a slice of your string with substr. No equiva-
lent function in the string module.

endswith(substr[firstindex[,lastindex]])

Same as startswith, but tests whether the string ends with substr. The string module
contains no equivalent function.

count(substr],firstindex[,lastindex]])
Counts the number of occurrences of substr within a string. If you pass indices,
count searches within the slice [firstindex:lastindex].

This example gives the answer to an old riddle: “What happens once today, three
times tomorrow, but never in three hundred years?”

>>> RiddleStrings=["today","tomorrow","three hundred years"]
>>> for str in RiddleStrings: print str.count("o")

1
3
0

Chapter 9 + Processing Strings and Regular Expressions | 37

String manipulation methods

Strings provide various methods to replace substrings, split the string on delim-
iters, or join a list of strings into a larger string.

translate(table[,deletestr])

Returns a string translated according to the translation string table. If you supply a
string deletestr, translate removes all characters in that string before applying the
translation table. The string table must have a length of 256; a character with ASCII
value n is replaced with table[n]. The best way to create such a string is with a
callto string.maketrans, as described below.

For example, this line of code converts a string to “Hungarian style,” with words
capitalized and concatenated. It also swaps exclamation points and question marks:

>>>ProductName="power smart report now?"
>>>ProductName.title().translate(string.maketrans("?2!","1?") string.whitespace)
"PowerSmartReportNow!'

replace(oldstr,newstr[,maxreplacements])

Returns a string with all occurrences of oldstr replaced by newstr. If you provide
maxreplacements, replace replaces only the first maxreplacements occurrences of
oldstr.

>>> "Siamese cat".replace("c","b")
'Siamese bat'

split([separators[,maxsplits]])

Breaks the string on any of the characters in the string separators, and returns a list
of pieces. The default value of separators is string.whitespace. If you supply a
value for maxsplits, then sp1it performs up to maxsplits splits, and no more.

This method is useful for dealing with delimited data:

>>> StockQuoteline = "24-Nov-00,45.9375,46.1875,44.6875,45.1875,3482500,45.1875"
>>> ClosingPrice=float(StockQuotelLine.split(",")[4])

>>> ClosingPrice

45.1875

splitlines([keepends])

Splits a string on line breaks (carriage return and/or line feed). If you set keepends
to true, splitlines retains the terminating character on each line. The string
module has no corresponding function. For example:

>>> "The\r\nEnd\n\n".splitlines()
['The', 'End', '']

>>> "The\r\nEnd\n\n".splitlines(1)
['The\015\012"', 'End\012', '\012']

138 Partll + Files, Data Storage, and Operating System Services

join(StringSequence)
Returns a string consisting of all the strings in StringSequence concatenated
together, using the string as a delimiter.

This method in generally used in the corresponding function form:
string.join(StringSequencel, Delimiter]). The default value of Delimiter is a
single space.

>>> Words=["Ready","Set","Go"]

>>> ", . ", join(Words) 4 weird-looking
'Ready...Set...Go'
>>> string.join(Words,"...") # equivalent, and more intuitive

'Ready...Set...Go'

encode([scheme[,errorhandling]])

Returns the same string, encoded in the encoding scheme scheme. The parameter
scheme defaults to the current encoding scheme. The parameter errorhandling
defaults to “strict,” indicating that encoding problems should raise a ValueError
exception. Other values for errorhandling are “ignore” (do not raise any errors),
and “replace” (replace un-encodable characters with a replacement marker). See
the section “Encoding Text,” for more information.

Using the String Module

Because strings have so many useful methods, it is often not necessary to import
the string module. But, the string module does provide many useful members.

Character categories

The string module includes several constant strings that categorize characters as
letters, digits, punctuation, and so forth. Avoid editing these strings, as it may break
standard routines.

4 letters — All characters considered to be letters; consists of lowercase +
uppercase.

4+ lowercase — All lowercase letters.

4 uppercase — All uppercase letters.

4 digits — The string '0123456789".

4 hexdigits — The string '0123456789abcdefABCDEF .

Chapter 9 + Processing Strings and Regular Expressions | 39

4 octdigits — The string '01234567".
4 punctuation — String of all the characters considered to be punctuation.

4 printable — All the characters that are considered printable. Consists of
digits, letters, punctuation, and whitespace.

4+ whitespace — All characters that are considered whitespace. On most sys-
tems this string includes the characters space, tab, linefeed, return, formfeed,
and vertical tab.

Miscellaneous functions

Most of the functions in the string module correspond to methods of a string
object, and are covered in the section on string methods. The other functions,
which have no equivalent object methods, are covered here.

atoi,atof,atol

The function string.atoi (str) returns an integer value of str, and raises a
ValueError if str does not represent an integer. It is equivalent to the built-in
function int(str).

The function atof (str) converts a string to a float; it is equivalent to the float
function.

The function atol (str) converts a string to a long integer; it is equivalent to the
1ong function.

>>> print string.atof('3.5")+string.atol('2")
5.5

capwords(str)

Splits a string (on whitespace) into words, capitalizes each word, then joins the
words together with one space between them:

>>> string.capwords("The end...or is it?")
'The End...or Is It?'

maketrans(fromstring,tostring)

Creates a translation table suitable for passing to maketrans (or to regex.compile).
The translation table instructs maketrans to translate the nth character in fromstring
into the nth character in fostring. The strings fromstring and tostring must have the
same length.

The translation table is a string of length 256 representing all ASCII characters, but
with fromstring[n] replaced by tostring[n].

14(Q Partll + Files, Data Storage, and Operating System Services

splitfields,joinfields

These functions have the same effect as sp1it and join, respectively. (Before
Version 2.0, splitfields and joinfields accepted a string of separators, and
split and join did not.)

fill(str,width)

Given a numeric string str and a desired width width, returns an equivalent numeric
string padded on the left by zeroes. Similar to rjust. For example:

>>> string.zfil1("-3",5)
'-0003"

Defining Regular Expressions

A regular expression is an object that matches some collection of strings. You can
use regular expressions to search and transform strings in sophisticated ways.
Regular expressions use their own special syntax to describe strings to match.
They can be very efficient, but also very cryptic if taken to extremes. Regular
expressions are widely used in UNIX world. The module re provides full support for
Perl-like regular expressions in Python.

The re module raises the exception re.error if an error occurs while compiling or
using a regular expression.

Prior to Version 1.5, the modules regex and regsub provided support for regular
expressions. These modules are now deprecated.

Regular expression syntax

The definition of a regular expression is a string. In general, a character in the regu-
lar expression’s definition matches a character in a target string. For example, the
regular expression defined by fred matches the string “fred,” and no others. Some
characters have special meanings that permit more sophisticated matching.

A period (dot) matches any character except a newline. For example,
b.g matches “big,” “bag,” or “bqg,” but not “b\ng.” If the DOTALL flag is
set, then dot matches any character, including a newline.

[1 Brackets specify a set of characters to match. For example, p[ieIn
matches “pin” or “pen” and nothing else. A set can include ranges: the set
[a-ex-z]is equivalent to [abcdexyz]. Starting a set with * means
“match any character except these.” For example, b[*ae]d matches “bid”
or “b%d,” but not “bad” or “bed.”

An asterisk indicates that the preceding regular expression is optional,
and may occur any number of times. For example, ba*n* matches
“banana” or “baaaa” or “bn” or simply “b.”

{m,n}

Chapter 9 + Processing Strings and Regular Expressions |4]

A plus sign indicates that the preceding regular expression must occur at
least once, and may occur many times. For example, [sweatrd]+
matches various words, the longest of which is “stewardesses.” The reg-
ular expression [0-9]+/[0-9]+ matches fractions like “13/64” or “2/3.”

A question mark indicates that the preceding regular expression is
optional, and can occur, at most, once. For example, co1?d matches
either “cod” or “cold,” but not “colld.” The question mark has other
uses, explained below in the sections on “Nongreedy matching” and
“Extensions.”

The general notation for repetition is two numbers in curly-braces. This
syntax indicates that the preceding regular expression must appear at
least m times, but no more than n times. If m is omitted, it defaults to 0.
If n is omitted, it defaults to infinity. For example, [*a-zA-71{3,}
matches any sequence of at least three non-alphabetic characters.

A caret matches the beginning of the string. If the MULTILINE flag is set,
it also matches the beginning of a new line. For example, »bob matches
“bobsled” but not “discombobulate.” Note that the caret has an unre-
lated meaning inside brackets [].

A dollar sign matches the end of the string. If the MULTILINE flag is set,
it also matches the end of a line. For example, is$ matches “this” but
not “fish.” It matches “This\nyear” only if the MULTILINE flag is set.

A vertical slash splits a regular expression into two parts, and matches
either the first half or the last half. For example, ab | cd matches the
strings “ab” and “cd.”

Enclosing part of a regular expression in parentheses does not change
matching behavior. However, Python flags the regular expression
enclosed in parentheses as a group. After the first match, you can match
the group again using backslash notation. For instance, the regular
expression “[\w]*(\w)\1[\w]*$ matches a single word with double
letters, like “pepper” or “narrow” but not “salt” or “wide.” (The syntax
\w, explained below, matches any letter.) A regular expression can have
up to 99 groups, which are numbered starting from 1.

Grouping is useful even if the group is only matched once. For example,
Ste(ph]|v)en matches “Stephen” or “Steven.” Without parens,
Steph|ven matches only the strings “Steph” and “ven.”

Python also uses parentheses in extensions (see “Extensions” later in
this chapter).

Escape special characters. You can use a backslash to escape any spe-
cial characters. For example, ca\$h matches the string “ca$h.” Note that
without the backslash, ca$h could never match anything (except in
MULTILINE mode). The backslash also forms character groups, as
described below.

1472 Partll + Files, Data Storage, and Operating System Services

Backslashes and raw strings

You should generally write the Python string defining a regular expression as a raw
string. Otherwise, because you must escape backslashes in the regular expression’s
definition, the excessive backslashes become confusing:

>>> ThePath="c:\\temp\\download\\"

>>> print ThePath

c:\temp\download\

>>> re.search(r"c:\\temp",ThePath) # Raw. Reasonably clear.
<SRE_Match object at 007CC7A8>

>>> re.search("c:\\temp",ThePath) # no match!

>>> re.search("c:\\\\temp",ThePath) # Less clear than raw
<SRE_Match object at 007ACFDO>

The second search fails to find a match, because the regular expression defined by
¢:\temp matches only the string consisting of “c:,” then a tab, then “emp”!

Character groups and other backslash magic

In addition to escaping special characters, you can also use the backslash in con-
junction with a letter to match various things. A rule of thumb is that if backslash
plus a lowercase letter matches something, backslash plus the uppercase letter
matches the opposite.

\1,\2,etc. = Matches a numbered group. If part of a regular expression is
enclosed in parentheses, Python flags it as a group. Python num-
bers groups, starting from 1 and proceeding to 99. You can match
groups again by number. For example, (.+)\1 matches the
names of 80’s bands “The The,” “Mister Mister,” and “Duran
Duran.”

Python interprets escaped three-digit numbers, or numbers start-
ing with 0, as the octal value of a character. For example, \012
matches a newline.

Inside set brackets [], Python treats all escaped numbers as

characters.
\A Matches the start of the string: equivalent to ".
\b Matches a word boundary. Here “word” means “sequence of

alphanumeric characters.” For example, snow\b matches “snow
angel” but not “snowball.” Note that \b in the middle of a word
indicates backspace, just as it would in an ordinary string. For
instance, “bozo\b\b\b\bgentleman” matches the string consist-
ing of “bozo,” four backspace characters, then “gentleman.”

\B Matches a non-word-boundary. For example, \Bne\B matches
part of “planet,” but not “nest” or “lane.”

\d Matches a digit: equivalent to [0-9].

Chapter 9 + Processing Strings and Regular Expressions |43

\D Matches a non-digit: equivalent to [*0-9].

\s Matches a whitespace character: equivalent to [\t\n\r\f\v].

\S Matches a non-whitespace character: equivalent to [\t\n\r\f\v].
\w Matches an alphanumeric character: equivalent to

[a—zA-Z0-9_]. If the LOCALE flag is set, \w matches [0-9_] or any
character defined as alphabetic in the current locale. If the
UNICODE flag is set, matches [0-9_] or any character marked as
alphanumeric in the full Unicode character set.

\W Matches a non-alphanumeric character.
\Z Matches the end of the string: equivalent to $.
\\ Matches a backslash. (Similarly, \. matches a period, \? matches

a question mark, and so forth.)

Nongreedy matching

The repetition operators ?,+,* and {m,n} normally match as much as the target
string as possible. You can modify the operators with a question mark to be “non-
greedy,” and match as little of the target string as possible. For example, when
matched against the string “over the top,” \b.*\b would normally match the entire
string. The corresponding non-greedy version, \b.*?\b, matches only the first
word, “over.”

Extensions

Syntax n of the form (?...) marks a regular expression extension. The meaning of
the extension depends on the character after the question mark.

?#..) Is a comment. Python ignores this portion of the regular
expression.

(?P<names>...) Creates a named group. Named groups work like numbered
groups. You can match them again using (?P=name). For example,
this regular expression matches a single word that begins and
ends with the same letter: » (?P<letter>\w)\w*(?P=Tletter)s.
A named group receives a number, and can be referred to by num-
ber or by name.

.. Are non-grouping parentheses. You can use these to enhance read-
ability; they don’t change the regular expression’s behavior. For
example, (?:\w+) (\d)\1 matches one or more letters followed
by a repeated digit, such as “bob99” or “x22.” The string (?: \w+)
does not create a group, so \ 1 matches the first group, (\d).

), (?L), Are REs that set the flags re.l, re.L, re.M, re.S, re.U, and re.X
(?m),(?s), respectively. Note that (?L) uses an uppercase letter; the
(),(?x) others are lowercase.

144 Partil + Files, Data Storage, and Operating System Services

@

2

Is a lookahead assertion. Python matches the enclosed regular
expression, but does not “consume” any of the target string. For
example, blue(?=berry) matches the string “blue,” but only if
it is followed by “berry.”

Is a negative lookahead assertion. The enclosed regular
expression must not match the target string. For example,
electron(?!ic\b) matches the string “electron” only when it
is not part of the word “electronic.”

Creating and Using Regular

Expression Objects

The function re.compile(pattern[, flags]) compiles the specified pattern
string and returns a new regular expression object. The optional parameter flags
tweak the behavior of the expression. Each flag value has a long name and an
equivalent short name.

You can combine flags using bitwise or. For example, this line returns a regular
expression that searches for two occurrences of the word “the,” ignoring case, with
any character (including newline) in between.

re.compile("the.the",re.IGNORECASE | re.DOTALL)

re.IGNORECASE,

re

re

re

re

re

.LOCALE,

re.L

.MULTILINE, r

.DOTALL,

.UNICODE,

.VERBOSE,

re.S

re.

re.

re.

e

U

X

M

I

Performs case-insensitive matching.

Interprets words according to the current locale.
This interpretation affects the alphabetic group
(\w and \W), as well as word boundary behavior
(\b and \B).

Makes $ match the end of a line (not just the end
of the string) and makes " match the start of any
line (not just the start of the string).

Makes a period (dot) match any character, includ-
ing a newline.

Interprets letters according to the Unicode char-
acter set. This flag affects the behavior of \w, \W,
\b, \B.

Permits “cuter” regular expression syntax. It
ignores whitespace (except inside a set [] or when
escaped by a backslash), and treats unescaped #
as a comment marker. For example, the following
two lines of code are equivalent. They match a sin-
gle word containing three consecutive pairs of
doubled letters, such as “zrqgxxyy.” (Finding an

Chapter 9 + Processing Strings and Regular Expressions |45

English word matching this description is left as
an exercise for the reader.) Note that the second
VERBOSE form of the regular expression is a bit
more readable.

NewRE = re.compile(r" \w*(\w)\1(\w)\2(\w)\3\w*$")
NewRE = re.compile(r" \w* (\w)\1 (\w)\2 (\w)\3 \w*$fthree doubled letters"”,
re.VERBOSE)

Using regular expression objects

You can use regular expressions to search, replace, split strings, and more.

search(targetstring[,startindex[,endindex]])

The core use of a regular expression! The method search(targetstring) scans
through targetstring looking for a match. If it finds one, it returns a MatchObject
instance. If it finds no match, it returns None. (See below for MatchObject meth-
ods.) The search method searches the slice targetstring[startindex:
endindex]—by default, the whole string.

The characters $ and » match the beginning and ending of the entire string, not nec-
essarily the start or end of the substring. For example, “friends$ does not match
the string “are friends electric?” even if one takes the slice “friends” from index 4 to
index 11.

match(targetstring[,startindex[,endindex]])

Attempts to match the regular expression against the first part of targetstring. The
match method is more restrictive than search, as it must match the first zero or
more characters of targetstring. It returns a MatchObject instance if it finds a match,
None otherwise. The parameters startindex and endindex function here as they do
in search.

findall(targetstring)
Matches against fargetstring and returns a list of nonoverlapping matches. For
example:

>>> re.compile(r"\w+").findal1("the Tarch") # Greedy matching
['the', 'larch']

>>> re.compile(r"\w+?").findall("the Tarch") # Nongreedy
('t', 'h', 'e', "1, 'a', 'r', 'c', 'h']

If the regular expression contains a group, the list returned is a list of group values
(in tuple form, if it contains multiple groups). For example:

>>> re.compile(r"(\w+)(\w+)").findall("the larch")
[(lth” lel), ("lar.\cl’ lhl)]

146 Partll + Files, Data Storage, and Operating System Services

split(targetstring[,maxsplit])

Breaks targetstring on each match of the regular expression, and returns a list of
pieces. If the regular expression consists of a single large group, then the list of
pieces includes the delimiting strings; otherwise, the list of pieces does not include
the delimiters. If you specify a nonzero value for maxsplit, then sp1it makes, at
most, maxsplit cuts, and the remainder of the string remains intact.

For example, this regular expression removes all ifs, ands, and buts from a string:

>>> MyRE=re.compile(r"\bif\b|\band\b|\bbut\b",re.I)
>>> LongString="1 would if I could, and I wish I could, but I

can't mu
>>> MyRE.split(LongString)
['T would ', " I could, ', " I wish I could, ", " I can't."]

>>> MyRE=re.compile(r"(\bif\b|\band\b|\bbut\b)",re.I)

>>> MyRE.split(LongString) # Keep the matches in the 1list.
['T would ', "if', " I could, ', 'and', " I wish I could, ',
"but', " I can't."]

sub(replacement, targetstring[, count])

Search for the regular expression in targetstring, and perform a substitution at each
match. The parameter replacement can be a string. It can also be a function that
takes a MatchObject as an argument, and returns a string. If you specify a nonzero
value for count, then sub makes, at most, count substitutions.

This example translates a string to “Pig Latin.” (It moves any leading consonant
cluster to the end of the word, then adds “ay” so that “chair” becomes “airchay.”)

>>> def Piglatinify(thematch):

>0 .. return thematch.group(2)+thematch.group(1l)+"ay"
>o> ...

>>> WordRE=re.compile(r"\b([b-df-hj-np-tv-z1*)(\w+)\b",re.I)
>>> WordRE.sub(PigLatinify, "fetch a comfy chair")

'etchfay aay omfycay airchay'

If replacement is a string, it can contain references to groups from the regular expres-
sion. For example, sub replaces a \1 or \g<1> in replacement with the first group
from the regular expression. You can insert named groups with the syntax \g<name>.

The sub method replaces empty (length-0) matches only if they are not adjacent to
another substitution.

subn(replacement, targetstring[, count])

Same as sub, but returns a two-tuple whose first element is the new string, and
whose second element is the number of substitutions made.

Chapter 9 + Processing Strings and Regular Expressions |47/

Applying regular expressions without compiling

The methods of a regular expression object correspond to functions in the re
module. If you call these functions directly, you don’t need to call re.compile in
your code. However, if you plan to use a regular expression several times, it is more
efficient to compile and reuse it. The following module functions are available:

escape(str)

Returns a copy of str with all special characters escaped. This feature is useful for mak-
ing a regular expression for an arbitrary string. For example, this function searches for
a substring in a larger string, just like string. find, but case-insensitively:

def InsensitiveFind(BigString,SubString):
TheMatch = re.search(re.escape(SubString),BigString,re.1)
if (TheMatch):
return TheMatch.start()
else:
return -1

search(pattern,targetstring],flags])

Compiles pattern into a regular expression object with flags set, then uses it to per-
form a search against targetstring.

match(pattern,targetstring[,flags])

Compiles pattern into a regular expression object with flags set, then uses it to per-
form a match against fargetstring.

split(pattern,targetstring[,maxsplit])

Compiles pattern into a regular expression object, then uses it to split targetstring.

findall(pattern,targetstring)

Compiles pattern into a regular expression object, then uses it to find all matches in
targetstring.

sub(pattern,replacement,targetstring[,count])

Compiles pattern into a regular expression object, then calls its sub method with
parameters replacement, targetstring, and count. The function subn is similar, but
calls the subn method instead.

Using Match Objects

Searching with a regular expression object returns a MatchObject, or None if the
search finds no matches. The match object has several methods, mostly to provide
details on groups used in the match.

148 Partll + Files, Data Storage, and Operating System Services

group([groupid....])

Returns the substring matched by the specified group. For index 0, it returns the
substring matched by the entire regular expression. If you specify several group
identifiers, group returns a tuple of substrings for the corresponding groups. If the
regular expression includes named groups, groupid can be a string.

groups([nomatch])

Returns a tuple of substrings matched by each group. If a group was not part of
the match, its corresponding substring is nomatch. The parameter nomatch defaults
to None.

groupdict([nomatch])

Returns a dictionary. Each entry’s key is a group name, and the value is the sub-
string matched by that named group. If a group was not part of the match, its corre-
sponding value is nomatch, which defaults to None.

This example creates a regular expression with four named groups. The expression
parses fractions of the form “1 1/3,” splitting them into integer part, numerator, and
denominator. Non-fractions are matched by the “plain” group.

>>> FractionRE=re.compile(
e " (2P<pTain>ANd+$) 2 (2P<int>N\d+ (2=))?
2(2P<numdN\d+(?7=/))7?/?(?P<den>\d+$)7?")

>>> FractionRE.match("1 1/3").groupdict()
{'den': '3", 'num': '1', 'plain': None, '"int': '1'}
>>> FractionRE.match("42").groupdict("x")
{'den': 'x', 'num': 'x', ‘'plain': '42', "int': 'x'}

start([groupid]), end([groupid]), span([groupid])

The methods start and end return the indices of the substring matched by the
group identified by groupid. If the specified group didn’t contribute to the match,
they return -1.

The method span(groupid) returns both indices in tuple form:
(start(groupid),end(groupid)).

By default, groupid is 0, indicating the entire regular expression.

Chapter 9 + Processing Strings and Regular Expressions | 49

re,string,pos,endpos,

These members hold the parameters passed to search or match:

4 re —The regular expression object used in the match
4 string — The string used in the match
4 pos—First index of the substring searched against

4+ endpos — Last index of the substring searched against

Treating Strings as Files

The module StringlO defines a class named StringlO. This class wraps an in-memory
string buffer, and supports standard file operations. Since a StringlO instance does
not correspond to an actual file, calling its c10se method simply frees the buffer.
The StringlO constructor takes, as a single optional parameter, an initial string for
the bulffer.

The method getvalue returns the contents of the buffer. It is equivalent to calling
seek(0) and then read().

r Cross- See Chapter 8 for a description of the standard file operations.
Reference

The module cStringlO defines a similar class, also named StringlO. Because
¢StringlO.StringlO is implemented in C, it is faster than StringlO.StringlO; the one
drawback is that you cannot subclass it. The module cStringlO defines two addi-
tional types: InputType is the type for StringlO objects constructed with a string
parameter, and OutputType is the type for StringlO objects constructed without a
string parameter.

The StringlO class is useful for building up long strings without having to do many
small concatenations. For instance, the function demonstrated in Listing 9-1 builds
up an HTTP request string, suitable for transmission to a Web server:

Listing 9-1: httpreq.py

import re
import urlparse
import cStringl0
import string
import socket

Continued

150 Partll + Files, Data Storage, and Operating System Services

Listing 9-1 (continued)

STANDARD_HEADERS = """HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible)
def CreateHTTPRequest(URL, CookieDict):
""" Create an HTTP request for a given URL (as returned by
urlparse.urlparse) and a dictionary of cookies (where key
is the host string, and the value is the cookie in the
form "param=value". """
Buffer = ¢StringlI0.StringI0()
Buffer.write("GET ")
FileString = URL[2] # File name
if URLL3]!="": # Posted values
FileString = FileString + ";" + URL[3]
if URL[4]1!="": 4 Query parameters
FileString = FileString + "?" + URL[4]
FileString = string.replace(FileString," ","%20")
Buffer.write(FileString+"\r\n")
Buffer.write(STANDARD_HEADERS)
Add cookies to the request.
GotCookies=0
for HostString in CookieDict.keys():
Perform a case-insensitive search. (Call re.escape so
special characters like . are searched for normally.)
if (re.search(re.escape(HostString),URL[1],re.1)):
if (GotCookies==0):
Buffer.write("\r\nCookie: ")
GotCookies=1
else:
Buffer.write("; ")
Buffer.write(CookieDict[HostStringl)
if (GotCookies):
Buffer.write("\r\n")
Buffer.write("Host: "+URL[1])
Buffer.write("\r\n\r\n")
RequestString=Buffer.getvalue()
Buffer.close()
return RequestString

if (__name__ =="_main__"):
CookieDict={}
CookieDict["python"]="cookiel=valuel"
CookieDict["python.ORG"]="cookie2=value2"
CookieDict["amazon.com"]="cookie3=value3"
URL = urlparse.urlparse("http://www.python.org/2.0/")
print CreateHTTPRequest(URL,CookieDict)

Chapter 9 + Processing Strings and Regular Expressions |5]

Encoding Text

All digital data, including text, is ultimately represented as ones and zeroes. A
character set is a way of encoding text as binary numbers. For example, the ASCII
character set represents letters using a number from 0 to 255. The built-in function
ord returns the number corresponding to an ASCII character; the function chr
returns the ASCII character corresponding to a number:

>>> ord('a'")
97
>>> chr(97)
lal

The ASCII character set has limitations —it does not contain Cyrillic letters, Chinese
ideograms, et cetera. And so, various character sets have been created to handle
various collections of characters. The Unicode character set is the mother of all
character sets. Unicode subsumes ASCII and Latin-1. It also includes all widely used
alphabets, symbols of some ancient languages, and everything but the kitchen sink.

Using Unicode strings

A Unicode string behaves just like an ordinary string —it has the same methods.
You can denote a string literal as Unicode by prefixing it with a u. You can denote
Unicode characters with \u followed by four hexadecimal digits. For example:

>>> MyUnicodeString=u"Hello"

>>> MyString="Hello"

>>> MyUnicodeString==MyString # Legal comparison

1

>>> MyUnicodeString=u"\ucafe\ubabe"

>>> Ten(MyUnicodeString)

2

>>> MyString="\ucafe\ubabe" # No special processing!
>>> len(MyString)

12

For a reference on the Unicode character set, and its character categories, see
http://www.unicode.org/Public/UNIDATA/UnicodeData.html.

Reading and writing non-ASCII strings

You cannot use Unicode characters with an ordinary file object created by the open
function:

152 Partll + Files, Data Storage, and Operating System Services

>>> MyUnicodeString=u"\ucafe\ubabe"
>>> ASCIIFile=open("test.txt","w") # This file can't handle
unicode!
>>> ASCIIFile.write(MyUnicodeString)
Traceback (innermost Tast):
File "<pyshell#39>", line 1, in ?
ASCIIFiTe.write(MyUnicodeString)
UnicodeError: ASCII encoding error: ordinal not in range(128)

The codecs module provides file objects to help read and write Unicode text.

open(filename,mode[,encoding[,errorhandler|,buffering]]])

The function codecs.open returns a file object that can handle the character set
specified by encoding. The encoding parameter is a string specifying the desired
encoding. The errorhandler parameter, which defaults to “strict,” specifies what to
do with errors. The “ignore” handler skips characters not in the character set; the
“strict” handler raises a ValueError for unacceptable characters. The mode and
buffering parameters have the same effect as for the built-in function open.

>>> Bob=codecs.open("test-uni.txt","w","unicode-escape")
>>> Bob.write(MyUnicodeString)

>>> Bob.close()

>>> Bob=codecs.open("test-utfle.txt","w","utfle")

>>> Bob.write(MyUnicodeString)

>>> Bob.close()

You should generally read and write files using the same character set, or extreme
garbling can result. The function sys.getdefaultencoding returns the name of
the current default encoding.

EncodedFile(fileobject,sourceencoding[fileencoding|,errorhandler]])

The function codecs.EncodedFile returns a wrapper object for the file fileobject
to handle character set translation. This function translates data written to the file
from the sourceencoding character set to the fileencoding character set; data read
from the file does the reverse. For example, this code writes a file using UTF-8
encoding, then translates from UTF-8 to escaped Unicode:

>>> UTFFile=codecs.open("utf8.txt","w","utf8")

>>> UTFFile.write(MyUnicodeString)

>>> UTFFile.close()

>>> MyFile=open("utf8.txt","r")

>>> Wrapper=codecs.EncodedFile(MyFile,"unicode-escape","utf8")
>>> Wrapper.read()

"\\UCAFE\\UBABE"

Chapter 9 + Processing Strings and Regular Expressions |53

Using the Unicode database

The module unicodedata provides functions to check a character’s meaning in the

Unicode 3.0 character set.

Categorization

These functions give information about a character’s general category:

category(unichr)

bidirectional(unichr)

combining(unichr)
mirrored(unichr)

decomposition(unichr)

Numeric characters

Returns a string denoting the category of unichr.
For example, underscore has category “PC” for
connector punctuation.

Returns a string denoting the bidirectional
category of unichr. For example, unicode.
bidirectional(u"e") is “L,” indicating that

@,

e” is normally written left-to-right.

Returns an integer indicating the combining class
of unichr. Returns 0 for non-combining characters.

Returns 1 if unichr is a mirrored character, 0
otherwise.

Returns the character-decomposition string corre-
sponding to unichr, or a blank string if no decom-
position exists.

These functions give details about numeric characters:

decimal(unichr[,default])

numeric(unichr[,default])

digit(unichr[,default])

Returns unichr’'s decimal value as an integer. If
unichr has no decimal value, returns default or (if
default is unspecified) raises a ValueError.

Returns unichr’'s numeric value as a float. If unichr
has no decimal value, returns default or (if default
is unspecified) raises a ValueError.

Returns unichr’s digit value as an integer. If unichr
has no digit value, returns default or (if default is
unspecified) raises a ValueError.

154 Partll + Files, Data Storage, and Operating System Services

Formatting Floating Point Numbers

The fpformat module provides convenience functions for displaying floating point
numbers.

fix(number,precision)

Formats floating point value number with at least one digit before the decimal point,
and at most precision digits after. The number is rounded to the specified precision
as needed. If precision is zero, this function returns a string with the number
rounded to the nearest integer. The parameter number can be either a float, or a
string that can be passed to the function f1oat.

sci(number,precision)

Formats floating point value number in scientific notation — one digit before the
decimal point, and the exponent indicated afterwards. The parameters number and
precision behave as they do for the function i x.

Here are some examples of formatting with fpformat:

>>> fpformat.fix(3.5,0)

141

>>> fpformat.fix(3.555,2)
'3.56"

>>> fpformat.sci(3.555,2)
'3.56e+000"

>>> fpformat.sci("0.03555",2)
'3.56e-002"

These functions raise the exception fpformat.NotANumber (a subclass of ValueError)
if the parameter number is not a valid value. The exception argument is the value of
number.

Summary

Python offers a full suite of string-manipulation functions. It also provides regular
expressions, which enable even more powerful searching and replacing. In this
chapter you:

4+ Searched, formatted, and modified string objects.
4+ Searched and parsed strings using regular expressions.

4+ Formatted floating point numbers cleanly and easily.
In the next chapter you'll learn how Python can handle files and directories.

+ o+ 0+

Working with
Files and
Directories

Chapter 8 discussed the basics of file input and output in
Python, but the routines covered there assume you
know what file you want to read and write and where it’s
located. This chapter explains operating system features that
Python supports such as finding a list of files that match a
given search pattern, navigating directories, and renaming
and copying files.

This chapter and the next cover many modules, primarily os,
0s.path, and sys. Instead of organizing the chapters around
the functions provided in each module, we'’ve tried to group
them by feature so that you can find what you need quickly. For
example, you can find a file’s size with os.stat(filename)
[stat.ST_SIZE] or with os.path.getsize(filename)
(something you wouldn’t know unless you read through both
the os and os.path modules), so I cover them in the same sec-
tion. Where this is not possible, I've added cross-references to
help guide you.

Retrieving File and Directory
Information

With the exception of a few oddballs, modern operating sys-
tems let you store files in directories (locations in a named
hierarchy or tree) for better organization. (Just imagine the
mess if everything was in one chaotic lump.) This and the
following sections consider a path to be a directory or file
name. You can refer to a path relative to another one
(..\temp\bob.txt means go up the tree a step, down into
the temp directory to the file called bob. txt) while others are
absolute (/usr/local/bin/destroystuff tells how to go
from the top of the tree all the way down to destroystuff).

CHAPTER

+ 0+ 0+
In This Chapter

Retrieving file and
directory information

Building and
dissecting paths

Listing directories and
matching file names

Obtaining
environment and
argument information

Example: Recursive

Grep Utility

Copying, renaming,
and removing paths

Creating directories
and temporary files

Comparing files and
directories

Working with file
descriptors

Other file processing
techniques

¢+ 4+ 0+

156 Partll + Files, Data Storage, and Operating System Services

The Secret Identities of os and os.path

The os module contains plenty of functions for performing operating system-ish stuff like
changing directories and removing files, while os.path helps extract directory names, file
names, and extensions from a given path.

The great thing is that these modules work on any Python-supported platform, making your
programs much more portable. For example, to join a directory name with a file name,
using os.path.join makes sure the result is correct for the current operating system:

>>> print os.path.join('maps', 'dungeonl2.map')

maps\dungeonl?2.map # Result when run on Windows
>>> print os.path.join('maps', 'dungeonl2.map')
maps/dungeonl?2.map # Result when run on UNIX

To make this happen, each platform defines two modules to do the platform-specific work.
(On Macintosh systems they are mac and macpath; on Windows they're nt and ntpath,
and so on.) When the os module is imported, it looks inside sys.builtin_module_names
for the name of a platform-specific module (such as nt), loads its contents into the os
namespace, and then loads the platform-specific path module and renames it to os . path.

You can check the os.name variable to see which operating system-specific module os
loaded, but you should rarely need to use it. The whole point of os and os.path is to make
your programs blissfully ignorant of the underlying operating system.

You can choose how you want to access path information: Python provides several
functions to retrieve a single bit of information (does this path exist?) or all of it in
one big glob (give me creation time, last access time, file size, and so forth).

/\Iute Please note that many of the examples in this chapter use file and directory names
' ~— that may not exist in your system. Accept the examples on faith or substitute valid
file names of your own (just don't go and erase something important, though).

The piecemeal approach

The access(path, mode) function tests to see that the current process has
permission to read, write, or execute a given path. The mode parameter can be any
combination of 0s.R_OK (read permission), 0s.W_OK (write permission), or
0s.X_OK (execute permission):

>>> os.access('/usr/local',os.R_OK | os.X_0K)

1 # 1 have read AND execute permissions...
>>> o0s.access('/usr/local',os.W_0K)

0 # ...but not write permissions.

Tip

ﬁ\lote

Chapter 10 4 Working with Files and Directories

You can also use a mode of 0s.F_OK to test if the given path exists. Or you can use
the os.path.exists(path) function:

>>> os.path.exists('c:\\winnt"') # '\\' to "escape" the slash
1

The inverse of access is os.chmod(path, mode) which lets you set the mode for
the given path. The mode parameter is a number created by adding different octal
values listed in Table 10-1. For example, to give the owner read/write permissions,
group members read permissions, and others no access to a file:

os.chmod('secretPlans.txt',0640)

The first few times you use this function you may forget that the values in Table

» 10-1 are octal numbers. This is a convention held over from the underlying C

’ chmod function; as octals, the different mode values combine in that cute way
while making the implementation easier. Remember to stick in the leading zero
on the mode so that Python sees it as an octal, and not a decimal, number.

Table 10-1
Values for os.chmod

Value Description

0400 Owner can read the path.

0200 Owner can write the path.

0100 Owner can execute the file or search the directory.

0040 Group members can read the path.

0020 Group members can write the path.

0010 Group members can execute the file or search the directory.

0004 Others can read the path.

0002 Others can write the path.

0001 Others can execute the file or search the directory.

Different operating systems handle permissions differently (Windows, for

— example, doesn't really manage file permissions with owners and groups). You

should try a few tests out before relying on a particular behavior. Also, consult the
UNIX chmod man page for additional mode values that vary by platform.

The os.path.isabs(path) function returns 1 if the given path is an absolute path.
On UNIX systems, a path is absolute if it starts with ‘/’; on Windows, paths are abso-
lute if they either start with a backlash or if they start with a drive letter followed
by a colon and a backslash:

157

158 Partll + Files, Data Storage, and Operating System Services

AI ote

>>> os.path.isabs('c:\\temp")
1

>>> os.path.isabs('"temp\\foo")
0

The following four functions in the 0s.path module, isdir(path), isfile(path),
isTlink(path),and ismount(path), test what kind of file system entry the given
path refers to:

>>> os.path.isdir('c:\\winnt') # Is it a directory?

i>> os.path.isfile('c:\\winnt"') # Is it a normal file?

[>)>> os.path.islink('/usr/X11R6/bin/X"') # Is it a symbolic 1ink?
%>> os.path.ismount('c:\\") # It is a mount point?

On platforms that support symbolic links, isdir and isfi1e return true if the path
is a link to a directory or file, and the os.readlink(path) function returns the
actual path to which a symbolic link points.

A mounting point is essentially where two file systems connect. On UNIX, i smount
returns true if path and path/. . have a different device or inode. On Windows,
ismount returns true for paths like c:\ and \\endor\.

An inode is a UNIX file system data structure that holds information about a direc-

~~ tory entry. Each directory entry is uniquely identified by a device number and an

inode number. Some of the following routines may return inode numbers; for UNIX
machines these are valid, but for other platforms they are just dummy values.

You can retrieve a file’s size in bytes using os.path.getsize(path):

>>> os.path.getsize('c:\\winnt\\uninst.exe")
299520 # About 290K

The os.path.getatime(path) and os.path.getmtime(path) functions return
the path’s last access and modified times, respectively, in seconds since the epoch
(you know, New Year’s Eve 1969):

>>> os.path.getmtime('c:\\winnt\\readme.exe")

786178800

>>> os.path.getatime('c:\\winnt\\readme.exe")

956901600

>>> import time

>>> time.ctime(os.path.getatime('c:\\winnt\\readme.exe"'))
"Fri Apr 28 00:00:00 2000

Chapter 10 + Working with Files and Directories 159

Going the other direction, the os.utime(path, (atime, mtime)) function sets the
time values for the given path. The following example sets the last access and modi-
fication times of a file to noon on March 1, 1977:

>>> sec = time.mktime((1977,3,1,12,0,0,-1,-1,-1))
>>> os.utime('c:\\temp\\foo.txt", (sec,sec))

You can also “touch” a file’s times so that they are set to the current time:

>>> os.utime('c:\\temp\\foo.txt',None) # Set to current time.

r Cross- See the time module in Chapter 13 for a discussion of its features and a better
Reference’\ jefinition of the epoch.

UNIX-compatible systems have the os.chown(path, userID, groupID) that
changes the ownership of a path to that of a different user and group:

0s.chown('grumpy.png',os.getuid(),os.getgid())

g Chapter 11 covers functions to get and set group and user IDs.
Reference

Non-Windows systems include the os.path.samefile(pathl,path?) and os.path.
sameopenfile(fl,f2) functions that return true if the given paths or file objects
refer to the same item on disk (they reside on the same device and have the same
inode).

The I-want-it-all approach

If you want to know several pieces of information about a path (for example, you
need to know a file’s size as well as the time it was last modified), the previous func-
tions are inefficient because each one results in a call to the operating system. The
os.stat(path) function solves this problem by returning a tuple with ten pieces of
information all at once (many of the previous section’s functions quietly call os.stat
behind the scenes and throw away the information you didn’t request):

>>> os.stat('c:\\winnt\\uninst.exe")
(33279, 0, 2, 1, 0, 0, 299520, 974876400, 860551690, 955920365)

Don’t worry too much if the numbers returned look useless! The stat module pro-
vides names (listed in Table 10-2) for indexes into the tuple:

>>> import stat
>>> os.stat('c:\\winnt\\uninst.exe')[stat.ST_SIZE] # File size
299520 4 Hmm... still about 290K

160 Partll + Files, Data Storage, and Operating System Services

Table 10-2
Index Names for os.stat Tuple

Name Description
ST _SIZE File size (in bytes)
ST_ATIME Time of last access (in seconds since the epoch)
ST_MTIME Time of last modification (in seconds since the epoch)
ST_MODE Mode (see below for possible values)
ST_CTIME Time of last status change (access, modify, chmod, chown, and so on)
ST_UID Owner’s user ID
ST_GID Owner's group ID
ST_NLINK Number of links to the inode
ST_INO inode’s number
ST_DEV inode’s device

Once you have a path’s mode value (stat.ST_MODE), you can use other stat-
provided functions to test for certain types of path entries (see Table 10-3 for the
complete list):

>>> mode = os.stat('c:\\winnt')[stat.ST_MODE]
>>> stat.S_ISDIR(mode) # Is it a directory?

1 # Yes!
Table 10-3
Path Type Test Functions

Function Returns true for
S_ISREG(mode) Regular file
S_ISDIR(mode) Directory
S_ISLNK(mode) Symbolic link
S_ISFIFO(mode) FIFO (named pipe)
S_ISSOCK(mode) Socket
S_ISBLK(mode) Special block device

S_ISCHR(mode) Special character device

Chapter 10 + Working with Files and Directories 16]

When you call os.stat with a path to a symbolic link, it returns information about
the path that the link references. The os.Tstat(path) function behaves just like
0s.stat except that on symbolic links it returns information about the link itself
(although the OS still borrows much of the information from the file it references).

r Cross- See “Working with File Descriptors” later in this chapter for coverage of the
Reference’\ s fstat function that returns stats for open file descriptors.

On UNIX-compatible systems you can call os.samestat(statl,stat?) to seeif
two sets of stats refer to the same file (it compares the device and inode number).

The Python standard library also comes with the statcache module, which
behaves just like 0s.stat but caches the results for later use:

>>> import statcache
>>> statcache.stat('c:\\temp")
(16895, 0, 2, 1, 0, 0, 0, 975999600, 969904112, 969904110)

You can call forget(path) to remove a particular cached entry, or reset () to
remove them all. The forget_prefix(prefix) function removes all entries that
start with a given prefix, and forget_except_prefix(prefix) removes all that do
not start with the prefix (removing a cache entry means a call to stat will have to
check with the operating system again). The forget_dir(prefix) function
removes all entries in a directory, but not in its subdirectories.

Building and Dissecting Paths

The different path conventions that operating systems follow can make path manip-
ulation a nuisance. Fortunately Python has plenty of routines to help.

Joining path parts

The os.path.join(part[, part...]) joins any number of path components into
a path valid for the current operating system:

>>> print os.path.join('c:"','r2d2"','c3po','r5d4")
c:\r2d2\c3po\rbd4

>>> print os.path.join(os.pardir,os.pardir, "tmp")
o\ \tEmp

The separator character used is defined in 0s.sep. You can use os.curdir and
0s.pardir with join when you want to refer to the current and parent directories,
respectively.

162 Partll + Files, Data Storage, and Operating System Services

Breaking paths into pieces

Given a path, it’s not too hard to separate it into its pieces (file name, extension,
directory name, and so on) using one of the os.path.split functions:

>>> os.path.split(r'c:\temp\foo.txt') # Yay, raw strings!
('c:\\temp', 'foo.txt') # Split into path and filename.

>>> os.path.splitdrive(r'c:\temp\foo.txt")

('c:', "\\temp\\foo.txt"') # Sp1it off the drive.

>>> os.path.splitext(r'c:\temp\foo.txt")

("c:\\temp\\foo', '.txt') # Split off the extension.

>>> os.path.splitunc(r'\\endor\temp\foo.txt")
("\\\\endor\\temp', '\\foo.txt') # Split off machine and mount.

The splitdrive function is present on UNIX systems, but for any path just returns
the tuple ("' ,path);the sp1itunc function is available only on Windows.

The os.path.dirname(path) and os.path.basename(path) functions are short-
hand functions that together return the same information as sp1it:

>>> os.path.dirname(r'c:\temp\foo.txt")
"c:\\temp'

>>> os.path.basename(r'c:\temp\foo.txt")
'foo.txt'

Other path modifiers

The os.path.normcase(path) function normalizes the case of a path (makes it all
lowercase on case-insensitive platforms, leaves it unchanged on others) and
replaces forward slashes with backwards slashes on Windows platforms:

>>> print os.path.normcase('kEwL/TAmeR/hAckUr/d00d")
kewl\Tamer\hackur\d00d

The os.path.normpath(path) function normalizes a given path by removing
redundant separator characters and collapsing references to the parent directory
(it also fixes forward slashes for Windows systems):

>>> print os.path.normpath(r'c:\work\\\temp\..\..\games")
c:\games

The os.path.abspath(path) function normalizes the path and then converts it to
an absolute path:

>>> o0s.getcwd()

"/export/home’

>>> os.path.abspath('fred/backup/../temp/cool.py")
"/export/home/fred/temp/cool.py’

Chapter 10 + Working with Files and Directories |63

The os.path.expandvars(path) function searches the given path for variable

names of the form $varname and ${varname}. If the variables are defined in the
environment, expandvars substitutes in their values, leaving undefined variable
references in place (you can use $$ to print $):

>>> os.environ.update({'WORK"': 'work", 'BAKFILE":"kill.bak"})

>>> p = os.path.join("$WORK","${BAKFILE}")

>>> print os.path.expandvars(p)

work\kilT.bak
The os.path.expanduser(path) function replaces “~” or “~username” at the
beginning of a path with the path to the user’s home directory. For “~” (meaning the
current user), expanduser uses the value of the HOME environment variable if pre-
sent. On Windows, if HOME is not defined, then it also tries to find and join
HOMEDRIVE and HOMEPATH, returning the original path unchanged if it fails. For
users other than the current user (“~username”), Windows always returns the
original path and UNIX uses the pwd module to locate that user’s home directory.

r Cross- See Chapter 38 to learn more about the pwd module.
Reference

Listing Directories and Matching File Names

This section lists several ways to retrieve a list of file names, whether they are all the
files in a particular directory or all the files that match a particular search pattern.

The os.Tistdir(dir) function returns a list containing all the files in the given
directory:

>>> os.listdir('c:\\sierra')
["LAND', 'Half-Life', 'SETUP.EXE']

The dircache module provides its own 1istdir function that maintains a cache to
increase the performance of repeated calls (and uses the modified time on the
directory to detect when a cache entry needs to be tossed out):

>>> import dircache
>>> dircache.listdir('c:\\sierra')
['Half-Life', 'LAND', 'SETUP.EXE']

The list returned is a reference, not a copy, so modifying it means your modifications
are returned to future callers too. The module also has an annotate(head, Tist)
function that adds a slash to the end of any entry in the list that is a directory:

>>> x = dircache.listdir('c:\\sierra')[:] # Make a copy
>>> dircache.annotate('c:\\sierra',x)

>>> X

['Half-Life/', 'LAND/', 'SETUP.EXE']

164 Partil + Files, Data Storage, and Operating System Services

Use the head parameter to join to each item in the list so that annotate can then
call os.path.isdir.

The os.path.commonprefix(1ist) function takes a list of paths and returns the
longest prefix that all items have in common:

>>> 1 = ["c:\\ax\\nine.txt", 'c:\\ax\\ninja.txt"','c:\\axle']
>>> os.path.commonprefix(1)
"c:\\ax'

The os.path.walk(top,func,arg) function walks a directory tree starting at top,
calling func in each directory. The function func should take three arguments: arg
(whatever you passed to arg in the call to walk), dirname (the name of the current
directory being visited), and names (a list of directory entries in this directory).
The following example prints the names of any executable files in the d: \games
directory or any of its subdirectories:

>>> def walkfunc(ext,dir,files):
goodFiles = [x for x in files if x.find(ext) != -1]
if goodFiles:
print dir,goodFiles

>>> os.path.walk('d:\\games' ,walkfunc,'.exe")
d:\games\Half-Life ['10051013.exe"']
d:\games\qg3a ['quake3.exe']
d:\games\g3a\Extras\cs ['sysinfo.exe']

With the fnmatch module you can test to see if a file name matches a specific pat-
tern. Asterisks match everything, question marks match any single character:

>>> import fnmatch

>>> fnmatch.fnmatch('python', 'p*n')

1 4 It's a match!

>>> fnmatch.fnmatch('python', 'pyth?n")
1

You can also enclose in square brackets a sequence of characters to match:

>>> fnmatch.fnmatch('python', 'pla,e,i,o,u,y,0-9]thon")

1 # Matches p + [any vowel or number] + thon

>>> fnmatch.fnmatch('p5thon', 'pla,e,i,0,u,y,0-9]1thon")

1

>>> fnmatch.fnmatch('p5thon', 'p[!0-9]thon")

0 4 Doesn't match p + [any char EXCEPT a digit] + thon
>>> fnmatch.fnmatch('python', 'p[!0-9]thon")

1

The fnmatch module also has a fnmatchcase(filename,pattern) function that
forces a case-sensitive comparison regardless of whether or not the filesystem is
case-sensitive.

Chapter 10 + Working with Files and Directories] 65

The g1ob module takes the fnmatch module a step further by returning all the
paths matching a search pattern you provide:

>>> import glob

>>> for file in glob.glob('c:\\da*\\?ytrack\\s*.*[y,e]l"'):
.. print file

:\dave\pytrack\sdaily.py

:\dave\pytrack\std.py

:\dave\pytrack\StkHistInfo.py
:\dave\mytrack\sdkaccessl.exe
:\dave\mytrack\sdkaccess2.exe

OO 000 -

Obtaining Environment and
Argument Information

It’s often useful to know a little about the world around Python. This section
explains how to get and set environment variables, how to discover and change the
current working directory, and how to read in options from the command line.

Environment variables

When you import the 0s module, it populates a dictionary named environ with all
the environment variables currently in existence. You can use normal dictionary
access to get and set the variables, and child processes or shell commands your
programs execute see any changes you make:

>>> os.environ['SHELL']

"/usr/Tocal/bin/tcsh'

>>> os.environ['B00'] = "2 + 2° # Convert value to string.
>>> print os.popen('echo $B00').read() # Use %B00% on Win32.
4

@ See Chapter 11 for information on child processes and executing shell commands.
eference

The dictionary used is actually a subclass of UserDict, and requires that the value
you assign be a string.

Current working directory

The current working directory is initially the directory in which you started the
Python interpreter. You can find out what the current directory is and change to
another directory using the 0s.getcwd() and os.chdir(path) functions:

166

Part Il + Files, Data Storage, and Operating System Services

>>> os.chdir('/usr/home")
>>> os.chdir('..")

>>> os.getcwd()

"/Jusr'

Command-line parameters

The sys.argv variable is a list containing the command-line parameters passed to
the program on startup. Save the tiny program in Listing 10-1 to a file called
args.py and try the following example from a command prompt:

C:\temp>args.py pants beable
There are 3 arguments
['C:\\temp\\args.py', 'pants', 'beable']

Listing 10-1: args.py — Display Command-Line Arguments

#!/usr/bin/env python
Prints out command-line arguments

import sys
print 'There are %d arguments' % Ten(sys.argv)
print sys.argv

The sys.argv list always has a length of at least one; as in C, the item at index zero
is the name of the script that is running. If you’re running the Python interpreter in
interactive mode, however, that item is present but is the empty string.

Example: Recursive Grep Utility

Listing 10-2 combines several of the features covered so far in this chapter to create
rgrep, a grep-like utility that searches for a string in a list of files in the current
directory or any subdirectory. The sample output below shows searching for “def”
in any file that matches the pattern “d*.py” or “h*”:

:\Dev\pytrack>\rgrep.py def d*.py h*

:\Dev\pytrack\dataio.py 185 def __init_ (self,sTick):
:\Dev\pytrack\dataio.py 189 def getData(self):
:\Dev\pytrack\histInfo.py 9 def sum(self,count,tups,index):
:\Dev\pytrack\histInfo.py 16 def ave(self,count,tups,index):
:\Dev\pytrack\old\dataio.py 12 def __init_ (self,sTick):
:\Dev\pytrack\old\dataio.py 16 def getData(self):

oo OoOoo

Chapter 10 + Working with Files and Directories

Listing 10-2: rgrep.py — Recursive File Search Utility

#!/usr/bin/env python
J# Recursively searches for a string in a file or list of files.

import sys, os, fnmatch

def walkFunc(arg,dir,files):
"Called by os.path.walk to process each dir"
pattern,masks = arg

Cycle through each mask on each file.
for file in files:
for mask in masks:
if fnmatch.fnmatch(file,mask):

Filename matches!
name = os.path.join(dir,file)
try:
Read the file and search.
data = open(name,'rb").read()

Do a quick check.

if data.find(pattern) != -1:
i=0
data = data.split('\n")

Now a line-by-line check.
for Tine in data:
i+=1
if line.find(pattern) != -1:
print name,i,line
except (0SError,IOError):
pass
break # Stop checking masks.
if __name__ == '_main__":
if len(sys.argv) < 3:
print 'Usage: %s pattern file [files...]' % sys.argv[0]
else:
try:

os.path.walk(os.getcwd(),walkFunc, (sys.argv[1l],sys.argv[2:1))
except KeyboardInterrupt:
print '** Halted **'

Tip UNIX shells usually expand wildcards before your program gets them, so when
» running this on UNIX you'd have to enclose in quotes command-line parameters
4 that contain asterisks:

/usr/bin> rgrep.py alligator "*.txt"

167

168 Partil + Files, Data Storage, and Operating System Services

You can use rgrep as a starting point for a more powerful search tool. For example,
you could make it accept true regular expressions (as seen in Chapter 9) or make it
support case-insensitive searches too. Although performance is pretty decent, you
could fix the fact that rgrep reads the entire file into memory by reading the files
one piece at a time.

Copying, Renaming, and Removing Paths

The routines to copy, rename, and remove paths are in the os and shutil modules.
The shutil module aims to provide features normally found in command shells.

Copying and linking

The shutil.copyfile(src, dest) function copies a file from src to dest;
shutil.copy(src, dest) does about the same thing, except that if dest is a direc-
tory it copies the file info that directory (just like when you copy a file in an MS-DOS
or UNIX shell). copy also copies the permission bits of the file. The shutil.copy?2
(src, dest) function is identical to copy except that it also copies last access and
last modification times of the original file. shutil.copyfileobj(src, dest[,
buflen]) copies two file-like objects, passing the optional buf1en parameter to the
source object’s read function.

r Cross- See Chapter 8 for more information on filelike objects.
Reference

The shutil.copymode (src, dest) function copies the permission bits of a file
(see 0s.chmod earlier in this chapter), as does shutil.copystat(src, dest),
which also copies last access and last modification times.

The shutil.copytree (src, dest[, symlinks]) function uses copy? to recur-
sively copy an entire tree. copytree raises an exception if dest already exists. If
the symlinks parameter is 1, any symbolic links in the source tree also become
symbolic links in the new copy of the tree. If sym1inks is omitted or equal to zero,
the copy of the tree contains copies of the files referenced by symbolic links.

On platforms that support links, os.symlink(src,dest) creates a symbolic link to
src and names it dest, and 0os.1ink(src,dest) creates a hard link to src named
dest.

Renaming

The os.rename(old,new) function renames a path, and os.renames(old,new)
renames an entire path from one thing to another, creating new directories as
needed and removing empty ones to cleanup when done. For example:

os.renames('cache/Togs',"'/usr/home/dave/backup/0105")

Chapter 10 + Working with Files and Directories] 69

basically moves the 10gs directory in cache to /usr/home/dave/backup and calls
it 0105. If the cache directory is empty after the move, the function deletes it.
Before the move, renames creates any intermediate directories along the way to
make /usr/home/dave/backup/0105 a valid path. The o1d and new parameters
can be individual files and not just entire directories.

Removing

The os.remove(filename) function deletes a file, os.rmdir(dir) removes an
empty directory, and os.removedirs(dir) removes an empty directory and all
empty parent directories.

If a directory is not empty, neither rmdir nor removedirs removes it. That job is
reserved for shutil.rmtree(pathl, ignore_errors[, onerror]]), which
recursively deletes all files in the given directory (including the directory itself) as
well as any subdirectories and their files. ignore_errors is 0 by default, if you
supply a value of 1 then rmtree attempts to continue processing despite any errors
that occur, and won'’t bother to tell you about them. You can provide a function in
the onerror parameter to handle any errors that occur. The function must take
three arguments, as shown in this example:

>>> def errFunc(raiser,problemPath,excInfo):

.. print raiser.__name__,'had problems with',problemPath
>>> shutil.rmtree('c:\\temp\\foo',0,errFunc)

rmdir had problems with c:\temp\foo\bar\yeah

rmdir had problems with c:\temp\foo\bar

rmdir had problems with c:\temp\foo

The arguments passed to your error function are the function object that raised an
exception, the particular path it had a problem on, and information about the
exception, equivalent to a call to sys.exc_info().

Caution Please be careful with rmt ree; it assumes you're smart and trusts your judgment.
If you tell it to erase all your files on your hard drive, it'll obediently do so and with-
out hesitation.

Creating Directories and Temporary Files

The os.mkdir(dir[, mode]) function creates a new directory. The optional mode
parameter is for the permissions on the new directory, and they follow the form of
those listed for os.chmod in Table 10-1. (If you don’t supply mode, the directory has
read, write, and execute permissions for everyone.)

The os.makedirs(dir[, mode]) function creates a new directory and any inter-
mediate directories needed along the way:

>>> os.makedirs(r'c:\a\b\c\d\e\f\g\h\i")
>>> os.removedirs(r'c:\a\b\c\d\e\f\g\h\i")

170 Partil + Files, Data Storage, and Operating System Services

Even though my computer didn’t have an a directory or an a\b directory, and so
on, makedirs took care of creating them until at last it created i, a subdirectory of
h (and then [used os.removedirs to clean up the mess).

The tempfile module helps when you need to use a file as a temporary storage
area for data. In such cases you don’t generally care about a file name or where the
file lives on disk, so tempfile takes care of that for you. Temporary files can help
conserve memory by storing temporary information on disk instead of keeping it all
loaded in memory.

The tempfile.mktemp([suffix]) function returns the absolute path to a unique
temporary file name that does not exist at the time of the call, and includes the suffix
in the file name if you supply it. Although two calls to mktemp won’t return the same
file name, it doesn’t create the file, so it’s possible (although quite unlikely) that if
you wait long enough someone else may create a file by the same name. While it’s
safe to use the file name as soon as you get it, it isn’t as safe to save a copy of the
name and then at a later date expect to create a file by that name, for example.

You can set the tempfile.tempdir variable to tell mktemp where to store tempo-
rary files. By default, it tries its best to find a good home for them, first checking the
values of the environment variables $TMPDIR, $TEMP, and $TMP. If none of them are
defined, it then checks if it can create temporary files in known temporary file
safe-havens such as /var/temp, /usr/tmp, or /tmp on UNIX and c:\temp or \temp

on Windows. If all these fail, it’ll try to use the current working directory.
tempfile.gettempprefix() returns the prefix of the temporary files you

have (you can set this value via tempfile.template).

The ultimate in hassle-free temporary files comes from the tempfile.
TemporaryFile class. It gives you a file or filelike object that you can read and
write to without worrying about cleanup when you’re done. You use
tempfile.TemporaryFile([model[, bufsize[, suffix]]]) to create a new
instance object. The following example figures out how many digits it takes to write
out the numbers from 1 to high. (Of the many better ways to do this, the simplest
improvement is simply to add the length of each number to a counter instead of
building the entire string and taking its length, but that wouldn’t give me an oppor-
tunity to use TemporaryFile now would it?):

>>> def digitCount(high):
import tempfile
f = tempfile.TemporaryFile()
for i in range(l,high+1):
fowrite(i)
f.flush()
f.seek(0)
return Ten(f.read())
>>> digitCount(12)
15 # 1en('123456789101112') = 15
>>> digitCount(100)
192
>>> digitCount(100000)
488895

Chapter 10 + Working with Files and Directories |7/]

By default, mode is ‘w+b’ so you can read and write data and not worry about the
type of data you're writing (binary or text). The optional bufsize argument gets
passed to the open function, and the optional suffix argument is passed to
mktemp. On UNIX systems, the file doesn’t even have a directory entry, making it
more secure. Other systems delete the temporary file as soon as you call close or
when Python garbage collects the object.

On UNIX systems, the 0s module has three functions for working with temporary
files. os.tmpfile() creates a new file object that you can read and write to. As
with tempfile’s TemporaryFile class, the file has no directory entry and ceases
to exist when you close the file.

The os.tmpnam() function returns an absolute path to a unique file name suitable
for use as a temporary file (it doesn’t create an actual file). os. tempnam([dir,
[prefix]]) does the same as tmpnam except that it enables you to specify the
directory in which the file name will live, as well as supplies an optional prefix to
use in the temporary file’s name.

Comparing Files and Directories

The filecmp module aids in comparing files and directories. To compare two files,
call filecmp.cmp(fl,f2[,shallow[,use_statcachell):

>>> dimport filecmp

>>> open('one','wt').write('Hey")
>>> open('two','wt').write('Hey")
>>> filecmp.cmp('one', "two")

1 4 Files match

The shallow parameter defaults to 1, which means that if both are regular files
with the same size and modification time, the comparison returns true. If they
differ (or if shal1ow=0), the function compares the contents of the two. The
use_statcache parameter defaults to 0 and cmp calls os.stat for file info. If 1, cmp
calls statcache.stat.

The filecmp.cmpfiles(a, b, common[, shallow[, use_statcache]]) function
takes a list of file names located in two directories (each file is in both directory a
and b) and returns a three-tuple containing a list of files that compared equal, a list
of those that were different, and a list of files that weren’t regular files and therefore
weren’'t compared. The shallow and use_statcache parameters behave the same
as for cmp.

The dircmp class in the filecmp module can help you generate that list of common
files, as well as do some other comparison work for you. You use filecmp.
dircmp(a, b[, ignorel[, hide]]) to create a new instance:

172 Partll + Files, Data Storage, and Operating System Services

>>> d = filecmp.dircmp('c:\\Program Files"', 'd:\\Program Files")
>>> d.report()
diff c:\Program Files d:\Program Files

Only in c:\Program Files : ['Accessories', 'Adobe', ...<snip>
Only in d:\Program Files : ['AnalogX', 'Paint Shop Pro...<snip>
Common subdirectories : ['WinZip', 'Yahoo!','work']

The ignore function is a list of file names to ignore (it defaults to [‘/RCS’, ‘CVS’, ‘tags’])
and hide is a list of file names not to show in the listings (it defaults to [os.curdir,
os.pardir], the entries corresponding to the current and parent directories).

The dircmp.report() method prints to standard output a comparison between a
and b. dircmp.report_partial_closure() does the same, but also compares
common immediate subdirectories. dircmp.report_full_closure() goes the
whole nine yards and compares all common subdirectories, no matter how deep.

After you create a dircmp object, you can access any of the attributes listed in
Table 10-4 for more information about the comparison.

Table 10-4

Other dircmp Object Attributes
Attribute Description
left_list Items in a after being filtered through hide and ignore
right_list Items in b after being filtered through hide and ignore
common ltems in both a and b
left_only Items only in a
right_only Items only in b

common_dirs
common_files

common_funny

same_files
diff_files
funny_files

subdirs

Subdirectories found in both a and b
Files found in both a and b

Items found in both a and b, but either the type differs
between a and b or 0s.stat reports an error for that item

Common_T1i1les that are identical
Common_f1iles that are different
Common_f1iTles that couldn't be compared

Dictionary of dircmp objects —keys are common_dirs

Tip The Python distribution comes with ndiff (Tools/Scripts/ndiff.py), a utility that pro-
~, vides the details of what differs between two files (similar to the UNIX diff and
4 Windows windiff utilities).

Chapter 10 4 Working with Files and Directories

Working with File Descriptors

An alternative to using Python’s file objects is to use file descriptors, a somewhat
lower level approach to working with files.

General file descriptor functions

You create a file descriptor with the os.open(file, flags[, mode]) function. You
can combine various values from the next table, Table 10-5, for the f1ags parame-
ter, and the mode values are those you pass to 0s.chmod:

>>> fd = os.open('fumble.txt',0s.0_WRONLY|os.0_CREAT)
>>> os.write(fd,'I Tike fudge')

12 4 Wrote 12 bytes.

>>> os.close(fd)

>>> open('fumble.txt').read() # Use the nice Python way.
'T Tike fudge'

The os.dup(fd) function returns a duplicate of the given descriptor, and
0s.dup2(fdl, fd2) makes fd2 a duplicate of fd1, but closes fd? first if necessary.

Given a file descriptor, you can use os.fdopen(fd[, mode[, bufsize]]) to create
an open Python file object connected to the same file. The optional mode and
bufsize arguments are the same as those used for the normal Python open function.

Table 10-5

File Descriptor Open Flags
Name Description
O_RDONLY Allow reading only
O_WRONLY Allow writing only
0_RDWR Allow reading and writing
0_BINARY Open in binary mode
O_TEXT Open in text mode
0_CREAT Create file if it does not exist
0_EXCL Return error if create and file exists
0_TRUNC Truncate file size to 0
0_APPEND Append to the end of the file on each write

0_NONBLOCK Do not block

173

174 Partll + Files, Data Storage, and Operating System Services

The 0s module also has other flags such as 0_DSYNC, 0_RSYNC, 0_SYNC, and
0_NOCTTY. Their behavior varies by platform so you should consult the UNIX open
man page for your system for details.

r Cross- The os.openpty function returns two file descriptors for a new pseudo-terminal.
Reference) See Chapter 38 for details.

The following os file descriptor functions closely mirror their file method counter-
parts covered mostly in Chapter 8, “Input and Output”:

close(fd) isatty(fd) lseek(fd,pos,how) read(fd,n)
write(str) fstat(fd) ftruncate(fd,len)

UNIX systems can use the os.ttyname(fd) to retrieve the name of the terminal
device the file descriptor represents (if it is a terminal):

>>> os.ttyname(1l) # 1 is stdout
"/dev/ttyvl'

Pipes
A pipe is a communications mechanism through which you can read or write data
as if it were a file. You use 0s.pipe() to create two file descriptors connected via
a pipe:

>>> r,w = os.pipe() # One for reading, one for writing

>>> os.write(r, 'Pipe dream')

>>> os.write(w, 'Pipe dream")

10

>>> os.read(r, 1000)
'Pipe dream'

On UNIX, the os.mkfifo(path[, mode]) function creates a named pipe (FIFO) that
you can use to communicate between processes. The mode defaults to read and

write permissions for everyone (0666). After you create the FIFO on disk, you open
it and read or write to it just like any other file.

Other File Processing Techniques

The modules below provide alternative methods for operating on file contents.

Randomly accessing lines in text files

The Tinecache module returns to you any line in any file you want:

>>> import linecache

Chapter 10 + Working with Files and Directories |75

>>> linecache.getline('linecache.py',5)
"that name.\012'

The first time you request a line from a particular file, it reads the file and caches
the lines, but future calls for lines from the same file won’t have to go back to the
disk. Line numbers are 1-based (yes, line one is line one).

If keeping too many files around makes you nervous, you can call Tinecache.
clearcache() to empty the cache. Also, calling Tinecache.checkcache() tosses
out cached entries that are no longer valid.

This module was designed to read lines from modules (Python uses it to print
~ traceback information in exceptions), so if Tinecache can't find the file you
named it also searches for the file in the module search path.

Using memory-mapped files

A memory-mapped file (in the mmap module) behaves like some sort of file-mutable
string hybrid. You can access individual characters and slices as well as change
them, and you can use memory-mapped files with many routines that expect strings.
(The re module, for example, is quite happy to do regular expression searching and
mapping on a memory-mapped file.) They also work well for routines that operate
on files, and you can commit to disk any changes you make to their contents.

When you create a new mmap object, you supply a file descriptor to a file opened for
reading and writing and a length parameter specifying the number of bytes from the
file the memory map will use:

>>> f = open('mymap"', 'w+b')

>>> f.write('And now for something completely different"')
>>> f.flush()

>>> import mmap

>>> m = mmap.mmap(f.fileno(),45) # Use the open file mymap.
>>> m[5:10] 4 It slices.

"ow fo'

>>> m[5:10] = 'ew fi' # It dices.

>>> m[5:10]

"ew fi'

>>> m.flush(); m.close() # But wait, there's more!
1

>>> open('mymap').read()
"And new fir something completely different\000\000\000"

The Windows version for creating a new mmap object accepts an optional third argu-
ment of a string that represents the tag name for the mapping (Windows lets you
have many mappings for the same file). If you use a mapping that doesn’t exist,
Python creates a new one; otherwise the mapping by that name is opened.

176 Partll + Files, Data Storage, and Operating System Services

Tip

The UNIX version optionally takes f1ags and prot arguments. f1ags can be either
MAP_PRIVATE or MAP_SHARED (the default), signifying that changes are visible only
to the current process or are visible to all processes mapping the same portions of
the file. The prot argument is the logical OR of arguments specifying the type of
protection that mapping has, such as PROT_READ | PROT_WRITE (the default).

Avoid using the optional flags if possible so that your code will work on Windows
~, or UNIX.

s

You can use mmap.size() to retrieve the size of a mmap object, and
mmap.resize(newsize) to change it:

>>> m.size()
50
>>> m.resize(100)

Call mmap.flush([offset, size]) to save changes to disk. Passing no arguments
flushes all changes to disk, otherwise the memory map flushes only size bytes
starting at offset.

Caution Don't forget to flush. If you don't call flush, you have no guarantee that your

changes will make it to disk.

All mmap objects have the close(), tell1(), seek(), read(num), write(str),
readline(),and find(str[, start]) methods which behave just like their file
and string counterparts. The mmap.read_byte() and mmap.write_byte(byte)
methods are useful for reading and writing one byte at a time (the bytes are passed
and returned as strings of length 1). You can copy data from one location to another
within the memory-mapped file using mmap.move(dest, src, count). It copies
count bytes from src to dest.

Iterating over several files

The fileinput class lets you iterate over several files as if they were a single file,
eliminating a lot of the housekeeping involved. Its designed use is for iterating all
files passed in on the command line, processing each line individually:

>>> import fileinput
>>> for Tine in fileinput.input():
print line

The above example iterates over the files listed in sys.argv[1:] and prints out each line.
The input(files,inplace,backup) function uses the command-line arguments if
you don'’t pass it a fiTes list. Any file (or command-line argument) that is just *-’ reads
from stdin instead. If the inplace parameteris 1, fileinput copies each file to a
backup and routes any output on stdout to the original file, thus enabling in-place
modification or filtering of each file. If inpTace is 1 and you supply a value for backup
(in the form of ‘. ext"), fileinput uses backup’s value as an extension when creating
backups of the original files, and it doesn’t erase the backups when finished.

Chapter 10 + Working with Files and Directories |77/

While iterating over the files, you can call fileinput.filename() to get the name of
the current file, and filename.isstdin() to test if the current file is actually stdin.

The fileinput.Tineno() function gives you the overall line number of the line
just read, and fileinput.filelineno() returns the number of that line within the
current file. You can also call fileinput.isfirstline() to seeif it is the first line
of that file.

The fileinput.nextfile() function skips the rest of the current file and moves
to the next one in the sequence, and fileinput.close() closes the sequence and

quits.

Tip You can customize the fileinput functionality by subclassing the fileinput.
~», Filelnput class.
e

Summary

Python gives you a full toolbox of high-level functions to manipulate files and paths.
In this chapter you learned to:

4 Manipulate paths and retrieve file and directory information.

4+ Traverse directory trees and match file names to search patterns.

4 Create and destroy directories and temporary files.

4 Use file descriptors.

The next chapter covers more of Python’s operating system features. You’'ll learn to
access process information, start child processes, and run shell commands.

¢+

Using Other
Operating
System Services

I his chapter finishes coverage of Python’s main operating
system services. One of the main points of focus is work-

ing outside the boundaries in which the interpreter is running.

After you're done with this chapter you’ll be able to execute

commands in a sub-shell or spawn off an entirely new process.

Executing Shell Commands and
Other Programs

The simplest way to execute a shell command is with the
0s.system(cmd) function (which is just a wrapper for the C
system function). The following example uses the shell com-
mand echo to write contents to a file, including an environ-
ment variable set from within the Python interpreter:

>>> import os

>>> os.environ['GRUB'] = 'spam!’

>>> os.system('echo Mmm, %GRUB% > mm.txt') #
Use $GRUB on UNIX

0
>>> print open('mm.txt').read()
Mmm, spam!

The return values vary by system and command, but 0 gener-

ally means the command executed successfully.

Unfortunately, 0s.system has some limitations. On Windows,

your command runs in a separate MS-DOS window that rears
its ugly head until the command is done, and on all operating

systems it’s kind of a pain to retrieve the output from the com-

mand (especially if the output is on both stdout and

CHAPTER

0+ o+
In This Chapter
Executing shell
commands and other

programs

Spawning child
processes

Handling process
information

Retrieving system
information

Managing
configuration files

Understanding error
names

Handling
asynchronous signals

¢+ 4+ 0+

180 Partll + Files, Data Storage, and Operating System Services

Tip

stderr). The next section shows how to get around this using the much cleaner
calls to 0s.popen and friends.

Windows systems can use os.startfile(path) tolaunch a program by sending a
file to the program associated with its file type. For example, if the current direc-
tory has a file called yoddTe.html, you can launch a Web browser to view that file
like this:

>>> os.startfile('yoddle.html")

The os . exec family of functions executes another program, but in doing so
replaces the current process — your program doesn’t continue when the exec func-
tion returns. Instead, your program terminates and at the same time launches a dif-
ferent program. Each of the exec functions comes in two versions: one that accepts
a variable number of arguments and one that takes all the program’s arguments in a
list or tuple. All arguments are strings, and you always need to provide argument 0,
which is just the name of the program being executed.

The os.execv(path,args) and os.execl(path, arg0, argl, ...) functions
execute the program pointed to by path and pass it the arguments. The following
example shuts down the Python interpreter and launches the Windows calculator
(the location of the calc program may vary):

>>> os.execv('c:\\winnt\\system32\\calc',['calc"'])

The os.execvp(file, args) and os.execlp(file, arg0, argl, ...) functions
work the same as execv, except they look in the PATH environment variable to find
the executable, so you don’t have to name its absolute path. This example calls
another Python interpreter, telling it to just print out a message. Note the use of the
variable-argument form (exec1p) and that you still have to list the program twice,
once for the file argument, and once as argument 0:

>>> os.execlp('python', 'python',"'-c',""print \'Goodbye!\'"")

If you need to modify the PATH environment variable, you can use os.defpath
_» tosee the default PATH used if it isn't set in the environment. os . pathsep is the
#4 separator character used between each directory listed in the PATH variable.
The os.execve(path, args, env) and os.execle(path, arg0, argl, ..., env)

functions are also like execv, except that you pass in a dictionary containing all the
environment variables to be defined for the new program. The dictionary should
contain string keys mapping to string values.

The final exec functions, os.execvpe(file, args, env) and os.execlpe(file,
arg0, argl, ..., env), are like execve and execvp combined. You pass in a file
name instead of an absolute path because the functions search through the path for
you, and you also pass in a dictionary of environment variables to use.

Chapter 11 4 Using Other Operating System Services | 8]

ﬁ\lote You don't really have to name the program twice for the exec calls. When supply-
~ ing a value for argument O, you can actually use any value you want. Be advised,
however, that some programs (like gzip and gunzip) may expect argument O to

have certain values.

Spawning Child Processes

Depending on your needs, you can start child processes using the popen, spawn,
and fork functions.

popen functions

The popen family of functions opens pipes to communicate with a child process.

The os.popen(cmd[, mode[, bufsize]]) function opens a single pipe to read or
write to another process. You pass in the command to execute in the cmd parame-
ter, followed by an optional mode parameter to tell whether you’ll be reading (‘r”)
or writing (‘w”) with the pipe. An optional third parameter is a buffer size like the
one used in the built-in open function. popen returns a file object ready for use:

>>> a = os.popen('dir /w /ad e:\\') # Mode defaults to 'r'.
>>> print a.read()

Volume in drive E has no label.

Volume Serial Number is 2C40-1AF5

Directory of e:\

[RACER] [maxdev] [VideoDub]
[FlaskMPEG] [Diablo II] [archive]
[VNC] [dxsdk] [VMware]

[AnalogX] [Python20]

The close () method of the file object returns None if the command was successful,
or an error code if the command was unsuccessful.

The os.popen2(cmd[, bufsizel, mode]]) function is a more flexible alternative
to popen; it returns to you the two-tuple (stdin, stdout) containing the standard
input and output of the child process (the mode parameter is ‘t’ for text or ‘b’ for
binary). The following example uses the external program grep to look through
lines of text and print any that have a colon character in them:

>>> someText = """
. def printEvents():
for i in range(100):
ifi% == 0:
print i

182 Partll + Files, Data Storage, and Operating System Services

Tip

New
Feature

>>> w,r = o0s.popen2('grep
>>> w.write(someText)
>>> w.close()
>>> print r.read()
def printEvents():
for i in range(100):
if i % 2 ==

) # Grep for lines with

Depending on the program you execute, you often need to flush or even close
~, stdin of the child process in order to have it produce its output.

s

The os.popen3(cmd[, bufsizel[, model]) function does the same work as
popen? but instead returns the three-tuple (stdin, stdout, stderr) of the child
process. 0s.popend(cmd[, bufsizel[, mode]l]) does the same except that it
returns the output of stdout and stderr together in a single stream for conve-
nience. This function is a great way to execute arbitrary shell commands cleanly
because you have to look in only one place for the output, and no matter what the
command is, your users won'’t see error output sneaking past you and onto the
screen. And on Windows systems, you don’t get the ugly MS-DOS window while
your command executes:

>>> w,r = os.popend('iblahblahasdfasdfr *.foo")

>>> print r.read()

"iblahblahasdfasdfr' is not recognized as an internal or
external command, operable program or batch file.

\ The popen2, popen3, and popen4 functions were new in Python 2.0.

spawn functions

The spawn functions start a child process that doesn’t replace the current process
(like the exec functions do) unless specifically asked to. For example, to start up
another Python interpreter (assuming it lives in D: \Python20) without stopping
the current one:

>>> o0s.spawnl (os.P_NOWAIT, "d:\\python20\\python", "python")
400 # Process ID of new interpreter

Like the exec functions, the spawn functions have many variations, as shown in the
following paragraphs.

0s.spawnv(mode, path, args) and os.spawnl (mode, path, arg0, argl, ...)
start a new child process.

0s.spawnve(mode, path, args, env) and os.spawnle(mode, path, argQ,
argl, ..., env) start a child process using the environment variables contained
in the dictionary env.

Chapter 11 4 Using Other Operating System Services] 83

On UNIX systems, variants of each of the above functions search the current path
for the program to execute, and are named spawnlp, spawnlpe, spawnvp, and
spawnvpe.

The arguments passed in should include the program name for argument 0. A mode
of os.P_WAIT forces the current thread to wait until the child process ends.
0S.P_NOWAIT runs the child process concurrently, and os.P_0VERLAY terminates
the calling process before running the child process (making it identical to the exec
functions). os.P_DETACH also runs the process concurrently, but in the background
where it has no access to the console or the keyboard.

When you start a child process concurrently, the spawn function returns the pro-
cess ID of the child process. If you use os.P_WAIT instead, the function returns the
exit code of the child once the child process finally quits.

fork

The os.fork() function (available on UNIX systems) creates a new process that is
a duplicate of the current process. To distinguish between the two processes,
os.fork() returns 0 in the child process, and in the parent process it returns the
process ID of the child:

>>> def forkFunc():
pid = os.fork()
if pid == 0:
print 'T am the child!"’
0s._exit(0)
else:
. print 'T am the parent. Child PID is',pid
>>> forkFunc()
I am the parent. Child PID is 1844
I am the child!

Notice that the child process can force itself to terminate by calling
0s._exit(status), which terminates a process without the usual cleaning up
(which is good because the parent and child processes access some of the same
resources, such as open file descriptors).

¢ Cross- Chapter 38 has information on the pty (pseudo-terminal) module, its fork and
Reference'\ 1,5\ functions, and the os . forkpty function.

Process management and termination

When you call os._exit() to end a process, Python skips the normal cleanup opera-
tions. The normal way to end the current process is by calling sys.exit([status]).
The status parameter can be a numerical status code that Python returns to the par-
ent process (which by convention is 0 for success and nonzero for an error), or any
other object. For non-numeric objects, sys.exit prints the object to stderr and then

184 Partil + Files, Data Storage, and Operating System Services

New
Feature

exits with a status code of 1, making it a useful way for programs to exit when users
supply invalid command-line arguments:

>>> import sys
>>> sys.exit('Usage: zapper [-forcel')
Usage: zapper [-force]

C:\>

Other ways to shut down

Another way to terminate the current process is by raising the SystemExit excep-
tion (which is what sys.exit does anyway). You can cause the process to termi-
nate abnormally by calling os.abort (), causing it to receive a SIGABRT signal.

The atexit module provides a way for you to register cleanup functions for Python
to call when the interpreter is shutting down normally. You can register multiple
functions, and Python calls them in the reverse order of how you registered them.
Use atexit.register(func [, args]) toregister each function, where args are
any arguments (normal or keyword) that you want sent to the function:

>>> import atexit
>>> def bye(msg):
print msg

>>> def allDone(*args):
print 'Here are my args:',args

>>> atexit.register(bye,"I'm melting!")
>>> atexit.register(allDone,1,2,3)

>>> raise SystemExit 4 Shut down.

Here are my args: (1, 2, 3)

I'm melting!

\ _ The atexit module was new in Python 2.0.

Waiting around

On UNIX systems, you can call os.wait([option]) to wait for any child process to
stop or terminate, or os.waitpid(pid,option) to wait for a particular child pro-
cess. The values available to use for the option parameter vary by system, but you
can always use 0s.WNOHANG to tell wait to return immediately if no processes have
a termination to report, or 0 to wait. The wait functions return a two-tuple
(pid,status), and you can decipher the status using any of the os functions listed
in Table 11-1. The following example forks off a child process that sleeps for five
seconds and then exits. The parent waits until the child finishes and then prints the
exit information for the child:

Chapter 11 4 Using Other Operating System Services] 85

>>> import os,time
>>> def useless():
z = os.fork()
if z ==
for i in range(5):
time.sleep(l)
0S._exit(h)
else:
print 'Waiting on ',z
status = os.waitpid(z,0)[1]
print 'Exited normally:',os.WIFEXITED(status)
. print 'Exit code:',0s.WEXITSTATUS(status)
>>> useless()
Waiting on 1915
Exited normally: 1
Exit code: b5

Table 11-1

Wait Status Interpretation Functions
Function Value returned
WIFSTOPPED(status) 1 if process was stopped (and not terminated)
WSTOPSIG(status) Signal that stopped the process if WIFSTOPPED was true
WIFSIGNALED(status) 1 if process was terminated due to a signal
WTERMSIG(status) Signal that terminated the process if WIFSIGNALED was true
WIFEXITED(status) 1 if the process exited due to _exit() orexit()

WEXITSTATUS(status) Status code if WIFEXITED was true

¢ Cross- Instead of spawning off separate processes to do your bidding, you may just need
Reference\ {4 use threads. Chapter 26 covers multithreaded Python programs.

Handling Process Information

Table 11-2 lists the plethora of functions in the os module for getting and setting
information about the current process. Except where noted, the functions are
available only on UNIX.

186

Part Il + Files, Data Storage, and Operating System Services

Table 11-2
Process Information Functions in os
Functions Description
getpid() Gets the current process ID (Windows and UNIX).
getppid() Gets the parent process ID.

getegid() /setegid(id)

getgid() /setgid(id)
getuid() /setuid(id)

geteuid() /seteuid(id)
getprgrp() /setprgrp()

ctermid()
getgroups()
getlogin()
setpgid(pid, pgrp)

setreuid(ruid, euid)
setregid(rgid, egid)
tcgetprgrp(fd)

tcsetpgrp(fd, pg)

setsid()

umask(mask)

Nice(inc)

Gets/sets effective group ID.

Gets/sets group ID.

Gets/sets user ID.

Gets/sets effective user ID.

Gets/sets process group ID.

Gets the file name of the controlling terminal.
Gets list of group IDs for this process.

Gets actual login name for current process.

Sets the process group for process pid (or the current
process if pid is 0).
Sets real and effective user IDs for the current process.

Sets real and effective group IDs for the current process.

Gets the process group ID associated with fd (an open
file descriptor of a terminal device).

Sets the process group ID associated with fd (an open
file descriptor of a terminal device).

Creates a new session/process group and returns the
process group ID. The calling process is the group
leader of the new process group.

Sets the process’s file mode creation mask and returns
the previous mask (Windows and UNIX).

Adds inc to the process's nice value. The more you
add, the lower the scheduling priority of that process
(nicer means less important to the task scheduler).

For example, the following gets the current process’s ID:

>>> o0s.getpid()

1072 # Hi, I'm process 1072.

Chapter 11 4 Using Other Operating System Services | 87/

Retrieving System Information

Many programs don’t need to know too much about the platform on which they run,
but when they do need to know, there’s plenty of information available to them:

>>> dimport os, sys
>>> os.name # Name of the os module implementation

'posix’

>>> sys.byteorder # Is the processor big or Tlittle endian?
"Tittle!

>>> sys.platform # Platform identifier

'freebsd3d’

>>> os.uname() # UNIX only

('FreeBSD', '', '3.4-RELEASE', 'FreeBSD 3.4-RELEASE #0','i386")

The five-tuple returned by os.uname is (sysname, nodename, release, version,
machine).

r Cross- See Chapter 38 for coverage of the UNIX statvfs module, useful for retrieving
Reference - ; ;
file system information.

UNIX system configuration information is available through os.confstr,
os.sysconf,os.pathconf, and os.fpathconf:

os.confstr(name) Returns the string value for the specified
configuration item; the list of items defined
for the current platform is in os.confstr_
names.

os.sysconf(name) Similar to os.confstr(name) except that
the values 0s.sysconf(name) returns are
integers. It also lists the names of the items
you can retrieve.

os.pathconf(path,name) and Return system configuration information

os.fpathconf(fd,name) relating to a specific path of an open file
descriptor. os.pathconf_names lists valid
names.

For example, to retrieve the system memory page size you can use the following:

>>> os.sysconf('SC_PAGESIZE")
8192

r Cross- Chapter 37 covers the winreg module that lets you access system information
Reference) stored in the Windows registry.

188 Partil + Files, Data Storage, and Operating System Services

Managing Configuration Files

The ConfigParser module makes reading and writing configuration files simple.
Users can simply edit the configuration files to set various run-time options to cus-
tomize your program’s behavior. The config files are normal text files, organized
into sections that contain key-value pairs. The files can have comments and can
contain variables that ConfigParser evaluates when your program accesses them.
If you save the file shown in Listing 11-1 to your current working directory as
sample.cfg, you can then follow along with the examples.

Listing 11-1: sample.cfg - Sample Configuration File

This 1isting is a sample configuration file.

Comment Tines start with pound symbols or semicolons.
[Server]

Address=171.15.2.5

Port=50002

[Hoth]

ID: %(team)s-1

Team=gold
DefaultName=%(__name__)s_User

Notice that the file can contain blank and comment lines, and that key-value pairs
can be separated by equal signs or colons. A value can be anything, and you can
use variable substitution to create values from other values. For example,
%(team)s evaluates to the value of the team variable, and % (__name__)s evaluates
to the name of the current section. If ConfigParser does not find a variable name
in the current section, it also looks in a section named DEFAULT. The variable
name in parentheses should be lowercase.

You create a ConfigParser by calling ConfigParser.ConfigParser([defaults]),
where defaults is an optional dictionary containing values for the DEFAULT section.
The readfp(f[, filename]) method reads a config file from an open filelike object.
If the filelike object has a fi1ename attribute, ConfigParser uses that for the config
file’s name (some exceptions it raises include the file name). You can also pass in an
optional file name to use. The read(filenames) method reads in the contents of one
or more config files. It fails silently on nonexistent files, making it safe to pass in a list
of potential config files that may or may not exist:

>>> import ConfigParser

>>> cfg = ConfigParser.ConfigParser()
>>> cfg.read('sample.cfg"')

['Server', "Hoth']

Chapter 11 4 Using Other Operating System Services] 89

When ConfigParser encounters an error while reading a file or retrieving values, it
raises one of the exceptions listed in Table 11-3.

Table 11-3
ConfigParser Exceptions

Exception Raised when
NoSectionError The specified section does not exist.
DuplicateSectionError A section with the specified name already exists.
NoOptionError An option with the specified name does not exist.
InterpolationError A problem occurred while performing variable

evaluation.
InterpolationDepthError The variable evaluation required too many

recursive substitutions.
MissingSectionHeaderError A key-value pair is not part of any section.
ParsingError ConfigParser encountered a syntactic problem

not covered by any of the other exceptions.

Once you have a valid ConfigParser instance object, you can use its methods to get
and set values or learn more about the configuration file. The defaults () method
returns a dictionary containing the default key-value pairs for this instance.
sections() returns a list of section names for this config file (not including
DEFAULT), and has_section(section) is a quick way to see if a given section exists.
For any section, the options(section) method returns a list of options in that sec-
tion, and has_option(section, option) tests for the existence of a particular
option in that section:

>>> cfg.has_option('Server', 'port")
1

>>> cfg.options('Server"')
['address', 'port']

Use the get(section, option[, rawl, vars]]) method to retrieve the value of
an option in a given section. If raw is 1, no variable evaluation takes place. You can
optionally pass in a dictionary of key-value pairs that get uses in the variable
evaluation:

>>> cfg.get('Hoth',"ID',1) # Raw version
'%(team)s-1"

>>> cfg.get('Hoth','ID') # After variable evaluation
'gold-1"

>>> cfg.get('Hoth',"'ID',vars={"team':"'blue'})
'blue-1" # Override values in the file

190 Partll + Files, Data Storage, and Operating System Services

ConfigParser has a few other get convenience methods. getint(section,
option) coerces the value into an integer before returning it, getfloat(section,
option) does the same for floats, and getboolean(section,option) makes sure
the value is a 0 or a 1 and returns it as an integer.

You can create a new section using the add_section(section) method, and you
can set the value for an option by calling set (section, option, value):

>>> cfg.get('Server', 'port")

'50002"

>>> cfg.set('Server','port','4000"') # Use string values!
>>> cfg.get('Server', 'port")

"4000"

The write(file) method writes the configuration file out to the given filelike
object. The output is guaranteed to be readable by a future call to read or readfp.

The remove_option(section, option) method removes the given option from
the given section. If the option didn’t exist, remove_option returns 0, otherwise 1.
remove_section(section) removes the given section from the config file. As with
remove_option, remove_section returns 0 if the section didn’t even exist, 1
otherwise.

Understanding Error Names

When an error occurs in the 0s module, it usually raises the 0SError exception
(found in 0s.error). 0SError is a class, and instances of this class have the errno
and strerror members that you can access to learn more about the problem:

>>> try:
. os.close(-1) # A bogus file descriptor
except OSError, e:

print 'Blech! %s [Err #%d1' % (e.strerror,e.errno)

Blech! Bad file descriptor [Err #9]

The strerror member is the result of calling os.strerror(code) with the errno
member of the exception:

>>> os.strerror(2)
'"No such file or directory'

The errno module contains the textual message for each error code. The list of
defined errors varies by system (for example, the Windows version includes some
Winsock error messages), but you can access the whole list through the errno.
errorcode dictionary.

Chapter 11 4 Using Other Operating System Services]9 1]

For errors involving files or directories, the filename member of 0SError has a
non-empty value:

>>> try:
. 0os.open('asdfsf',os.0_RDONLY)
except OSError, e:

print e.errno, e.filename, e.strerror

é.ésdfsf No such file or directory

Handling Asynchronous Signals

The signal module lets your programs handle asynchronous process signals. If
you’ve used the underlying C equivalents, you'll find that the Python version is
pretty similar. A signal is just a message sent from the operating system or a pro-
cess to the current process; most signals aren’t handled directly by the process but
are handled by default behavior in the operating system.

The signal module lets you register handler functions that override the default
behavior and let your process respond to the signal itself. To register a signal han-
dler, call signal.signal(num,handler) where num is the signal to handle and
handler is your handler function. A signal handler should take two arguments, the
signal number and a frame object containing the current stack frame. Instead of a
function, handler can also be signal.SIG_DFL (meaning that you want the default
behavior to occur for that signal) or signal.SIG_IGN (meaning that you want that
signal to be ignored). The signal function returns the previous value of handler.

The signals that you can process vary by platform and are defined in your plat-
form’s signal.h file, but Table 11-4 lists some of the most common signals.

Table 11-4

Common Signals
Name Description
SIGINT Interrupt (Ctrl-C hit)
SIGQUIT Quit the program
SIGTERM Request program termination
SIGFPE Floating point error occurred (for example, division by zero, overflow)
SIGALRM Alarm signal (not supported on Windows)
SIGBUS Bus error
SIGHUP Terminal line hangup

SIGSEGY lllegal storage access

192 Partll + Files, Data Storage, and Operating System Services

The getsignal(signalnum) function returns the current handler for the specified
signal. It returns a callable Python object, SIG_DFL, SIG_IGN, or None (for non-
Python signal handlers). default_int_hand1er is the default Python signal handler.

Except for handlers for SIGCHD, all signal handlers ignore the underlying implementa-
tion and continue to work until they are reset. Even though the signal handling hap-
pens asynchronously, Python dispatches the signals between bytecode instructions,
so a long call into a C extension module could delay the arrival of some signals.

On UNIX, you can call signal.pause() to wait until a signal arrives (at which time
the correct handler receives it). signal.alarm(time) causes the system to send a
STGALRM signal to the current process after time seconds; it returns the number of
seconds left until the previous alarm would have gone off (if any). alarm cancels
any previous alarm, and a time of 0 removes any current alarm. You can also call
0s.kiTl(pid, sig) to send the given signal to the process with the ID of pid.

Caution Be careful when using threads and signals in the same program. In such cases you
should call signal.signal only from the main thread (although other threads
cancallalarm, pause, and getsignal). Be aware that signals are always sent to
the main thread, regardless of the underlying implementation.

The following example prompts the user for input, but times out if the user doesn’t
respond in the allotted time (it uses signal.alarm, so it works on UNIX systems):

import signal,sys

def handler(sig, frm):
raise 'timeout' # Raise an exception when time runs out.

signal.signal(signal.SIGALRM,handler) # Set up the handler.
try:
signal.alarm(2.5) # Send ALARM signal in 2.5 seconds.
while 1:
print 'Enter code to halt detonation:',
s = sys.stdin.readline()

if s.strip() == 'stop':
print 'You did it!'
break

print 'Sorry.'
signal.alarm(0) 4 Disable the alarm.
except: # Handle all exceptions so Ctr1-C will blow you up too.
print "\nSorry. Too late.\n*KABOOM*'

I saved the file as sig.py. Here’s some sample output:

/work> python sig.py

Enter code to halt detonation: [Wait a few seconds.]
Sorry. Too late.

KABOOM

Chapter 11 4 Using Other Operating System Services]93

/work> python sig.py

Enter code to halt detonation: foo
Sorry.

Enter code to halt detonation: stop
You did it!

Summary

Python’s great support for executing shell commands makes it an ideal solution as
a scripting language or as a glue that holds various technologies together. Python
also has ample functionality for starting, controlling, and monitoring child pro-
cesses. In this chapter you learned to:

4 Launch other programs in the foreground or the background.

4 Access process and system configuration information.

4 Read and write human-readable configuration files.

4 Used file descriptors.

4 Interpret os error message codes.
In the next chapter you’ll learn to covert data between various formats, compress

it, and decompress it. You'll also learn to convert Python objects to byte streams
that can be saved for later retrieval or transmitted across a network.

+ o+ 0+

CHAPTER

Storing Data
and Objects

+ 0+ o+

In This Chapter

Data storage

I his chapter covers the many ways that you can convert -

Python objects to some form suitable for storage.
Storage, however, is not limited to just saving data to disk. By
the end of this chapter you’ll be able to take a Python object
and stick it in a database, compress it, send it across a net-
work connection, or even convert it to a format that a C pro-
gram could understand.

Loading and saving
objects

Example: moving
objects across a

network
L]
Data Storage Overview Uehig ¢ eisfzgelic

storage

Python’s data storage features are easy to use, but before you

say, “Hey, store this stuff” (it really is that easy), you should Converting to and

put some thought into how you might use the data down the from C structures

road. The issues listed below are merely some things you

should keep in mind; don’t worry too much yet about how Converting data to

actually to deal with them. standard formats

Compressing data

Text versus binary

If you're storing data to file, you have to choose whether to
store it in text or binary mode. A configuration file, for exam-
ple, is in text mode because humans have to be able to read it
and edit it with a text editor. It’s often easier to debug your
program if the output is stored in some human-readable for-
mat, and you can easily pass such a file around and use it on
different platforms. Of course, storing it in a human-readable
format means you handle the details of parsing it back in if
you need to load it.

R R

A binary mode representation of data often takes up less
space, and can be processed faster if it is stored in fixed-size
blocks or records.

196 Partll + Files, Data Storage, and Operating System Services

Compression

If the size of an object is an issue, compression may be something you want to con-
sider. In return for some additional processing power, compression often signifi-
cantly shrinks the size of your data, which could really help if you have a lot of data
or are transferring it over slow network connections.

Byte order (“Endianness”)

The way a processor stores multibyte numbers in memory is either big-endian or
little-endian:

>>> import sys
>>> print ""...%s-endian", Gulliver said.' % sys.byteorder
"...little-endian", Gulliver said. # On my Intel box

Most Python programs wouldn’t care about such a low-level detail, but if your data
has the potential to end up on another platform (by copying a data file, for exam-
ple), the program on the other end has to know the byte order of the data in order
to understand the data.

Object state

Before you store an object, you need to remember that some objects have state
“outside” the Python interpreter. If you tried to save an open socket connection to
disk, you certainly couldn’t expect the connection to be open once you reload the
socket.

Destination

You should keep in mind the destination of your data, because knowing that may let
you take advantage of features particular to that medium. Is it going to a file on
disk? How about a network connection or a database?

On the receiving end

One last thing to consider is what the receiving end of your data will be (who will
read it in the future?). If you are saving a file that your same program will read later,
you can use just about whatever storage format you like. If a C program is on the
other end, maybe you need to send it data in the form of a C structure. Or maybe
you don’t even know who will read the data, so an industry standard format such as
XDR or XML may be the answer.

Chapter 12 4 Storing Data and Objects |97/

Loading and Saving Objects

To save an object to disk, you convert it to a string of bytes that the program can
later read back in to recreate the original object. If you’re coming from a Java or C++
background, then you recognize this process as marshaling or serialization, but
Python refers to making preserves out of your objects as pickling.

Pickling with pickle
The pickle module converts most Python objects to and from a byte representation:

>>> import pickle

>>> stuff = [5,3.5,"Alfred"]

>>> pstuff = pickle.dumps(stuff)

>>> pstuff
"(1p0\01215\012aF3.5\012aS"'Alfred'\012p1\012a."
>>> pickle.loads(pstuff)

[5, 3.5, '"Alfred']

The pstuff variable in the above example is a string of bytes, so it’s easy to send it
to another computer via a network connection or write it out to a file.

The pickle.dumps(object[, bin]) function returns the serialized form of an
object, and pickle.dump(object, filel[, bin]) sends the serialized form to an
open filelike object. If the optional bin parameter is 0 (the default), the object is
pickled in a text form. A value of 1 generates a slightly more compact but less read-
able binary form. Either form is platform-independent.

The pickle.loads(str) function unpickles an object, converting the given string
to its original object form. pickle.Toad(file) reads a pickled object from the
given filelike object and returns the original, unpickled object.

The Toad and dump methods are really shorthand ways of instantiating the Pickle
and Unpickler classes:

>>> s = Stringl0.StringI0() # C eate a temp filelike object.
>>> p = pickle.Pickler(s,1) # 1 = binary

>>> p.dump([l 2,31)

>>> p.dump('Hello!")

>>> s.getvalue() # See the p1ck1ed form.
"1g\000(K\OOIK\NO02K\N003e.U\NOO6HelTo!g\001.

>>> s.seek(0) # Reset the "file."

>>> u = pickle.Unpickler(s)
>>> u.load()

[1, 2, 3]

>>> u.load()

"Hello!"

198 Partil + Files, Data Storage, and Operating System Services

Using the Pickler and Unpickler classes is convenient if you need to pickle many
objects, or if you need to pass the picklers around to other functions. You can also
subclass them to create a custom pickler.

The cPickle module is a C version of the pickle module, making it up to several
orders of magnitude faster than the pure Python pickle module. Anytime you need
to do lots of pickling, use cPickle. Objects pickled by cPickle are compatible
with those pickled by pickle, and vice versa. The only drawback to the cPickle
module is that you can’t subclass Pickler and Unpickler.

>>> import cPickle,pickle

>>> s = cPickle.dumps({'one":1,"two":2})
>>> pickle.loads(s)

{'one': 1, "two': 2}

As Python evolves, future versions could change the format of pickled objects. To
prevent disasters, each version of the format has a version number, and pickle has
a list of other versions (in addition to the current one) that it knows how to read:

>>> pickle.format_version

1.3

>>> pickle.compatible_formats

['1.0', '1.1', '1.2'1 # It can read some pretty old objects.

If you try to unpickle an unsupported version, pick]le raises an exception.

What can | pickle?

You can pickle numbers, strings, None, and containers (tuples, lists, and dictionar-
ies) that contain “picklable” objects.

When you pickle built-in functions, your own functions, or class definitions, pickle
stores its name along with the module name in which it was defined, but not its
implementation. In order to unpickle such an object, pickle first imports its mod-
ule, so you must define the function or class at the top level of that module.

To save an instance object, pickle callsits __getstate_ method, which
should return whatever information you need to capture the state of the object.
When Python loads the object, pickle instantiates a new object and calls its
__setstate__ method, passing it the unpickled version of its state:

>>> class Point:
def __init__(self,x,y):
self.x = x; self.y =y
def __ str_ (self):
return '(%d,%d)" % (self.x,self.y)
def _ getstate_ (self):
print 'Get state called!’
return (self.x,self.y)
def _ setstate_ (self,state):
print 'Set state called!’

Chapter 12 + Storing Data and Objects] 99

self.x,self.y = state

>>> p = Point(10,20)

>>> z = pickle.dumps(p)
Get state called!

>>> newp = pickle.loads(z)
Set state called!

>>> print newp

(10,20)

If an object doesn’t have a __getstate__ member, pickle saves the contents of its
__dict__ member. When unpickling an object, the 10ad function doesn’t normally
call the object’s constructor (__init__).If you really want 10ad to call the con-
structor, implement a ___getinitargs__ method. As it saves the object, pickle
calls __getinitargs__ for a tuple of arguments that it should passto __init__
when the object is later loaded.

You can add pickling support for data types in C extension modules using the
copy_reg module. To add support, you register a reduction function and a con-
structor for the given type by calling copy_reg.pickle(type, reduction_funcl,
constructor_ob]). For example, imagine you're creating a C extension module
that determines the right stocks to trade on the stock market, and that the module
defines a new data type called StockType (representing a particular security). Your
constructor object (such as a function) returns a new StockType object and takes
as arguments whatever data needed to create such an object. Your reduction func-
tion takes a StockType object and returns a two-tuple containing a constructor
object for creating a new StockType object (most likely the same constructor
function mentioned above). The reduction function also takes a tuple containing
arguments to pass to that constructor. After registering your functions for the new
type, any serialized StockType objects can use them.

r Cross- See Chapter 29 for information on writing your own extension modules.
Reference

Other pickling issues

Because pickling a class doesn’t store the class implementation, you can usually
change the class definition without breaking your pickled data (you can still
unpickle instance objects that were saved previously).

Multiple references to a particular object also reference a single object once you
unpickle it. In the following example, a list has two members that are both refer-
ences to another list. After pickling and unpickling it, the two members still refer to
a single object:

>>> z =11,2,3]

>> >y =1[z,z]

>>> y[0] is y[1] # Two references to the same object
1

>>> s = pickle.dumps(y)

200 Partll + Files, Data Storage, and Operating System Services

>>> x = pickle.loads(s)

>>> X

(c1, 2, 31, (1, 2, 371

>>> x[0] is x[1] # Both members still reference one object.
1

Of course, if you pickle an object, modify it, and pickle it again, pick1e saves only
the first version of the object.

Caution

If, while pickling to a filelike object, an error occurs (for example, you try to serial-
ize @ module), pickle raises the PicklingError exception, but it may have
already written bytes to the file. The contents of the file will be in an unknown
state and not too trustworthy.

The marshal module

Under the covers, the pickle module calls the marshal module to do some of its
work, but most programs should not use marshal at all. The one advantage of mar -
shal is that, unlike pickTe, it can handle code objects (the implementation itself):

>>> def adder(a,b):

R return atb

>>> adder(10,2)

12

>>> import marshal

>>> s = marshal.dumps(adder.func_code)
>>> def newadder():

R pass

>>> newadder.func_code = marshal.loads(s)
>>> newadder(20,10)

30

objects such as functions.

ﬁj Chapter 33 shows you how to access code objects and other attributes of Python
eference

Example: Moving Objects Across a Network

The example in this section puts all this pickling stuff to work for you. Listing 12-1 is
the swap module that creates a background thread that sends objects between two
Python interpreters running in interactive mode. Although it works on a single com-
puter, you can also run it between two separate computers if you change the IP
address it uses.

Chapter 12 4 Storing Data and Objects ()]

r Cross- Consider this example as a sneak preview. Chapter 15 covers networking and
\@ Chapter 26 covers threads.
Here is some sample output from the program in Listing 12-1 (I opened two sepa-
rate MS-DOS Windows on the same computer). After the sample output is a short
explanation of how the program works. The first half shows what is happening in
the first window, and the second in the other window, although both programs are
running at the same time and interacting:

C:\temp>python -i -c "import swap"

Listen thread started.

Use swap.send(obj) to send an object

Look in swap.obj to see a received object

>>> swap.send(['game','of',"'the','year']) # See 0bjl below.

Received new object

(5, 10) # 0bj2 from below

>>> swap.obj

(5, 10)

>>> swap.obj[1] # Yep, it's a real Python object!
10

C:\temp>python -i -c "import swap"

Listen thread started.

Use swap.send(obj) to send an object

Look in swap.obj to see a received object
Received new object

['game', 'of', 'the', 'year']l 4 Objl from above

>>> swap.obj[2] # Poke around a little
"the'
>>> swap.send((5,10)) # See 0bj2 above

Once both interpreters are up and running, they connect to each other via a net-
work socket. Anytime you call swap.send(obj) in one interpreter, swap sends your
object to the other interpreter, which stores it in swap.obj. Either side can send
any picklable object to the other.

Notice that [started the Python interpreter using the “-c” argument (telling it to exe-
cute the command import swap) and the “-i” argument (telling it to keep the inter-
preter running after it executes its command). This feature lets you start with the
swap module already loaded and running.

202 Partll + Files, Data Storage, and Operating System Services

Listing 12-1: swap.py — Swap Objects Between Python
Interpreters

from socket import *
import cPickle,threading

ADDR '127.0.0.1" 4 '127.0.0.1' = Tocalhost
PORT 50000
bConnected = 0

def send(obj):
"Sends an object to a remote listener”
if bConnected:
conn.send(cPickle.dumps(obj,1))
else:
print 'Not connected!'’

def TistenThread():
"Receives objects from remote side"
global bServer, conn, obj, bConnected

while 1:

Try to be the server.

s = socket(AF_INET,SOCK_STREAM)

try:
s.bind((ADDR,PORT))
s.listen(1)
bServer =1
conn = s.accept()[0]

except Exception, e:
Probably already in use, so I'm the client.
bServer = 0
conn = socket(AF_INET,SOCK_STREAM)
conn.connect((ADDR,PORT))

Now just accept objects forever.
bConnected = 1
while 1:

0 = conn.recv(8192)

if not o: break;

obj = cPickle.loads(o0)
print 'Received new object'
print obj

bConnected = 0

J# Start up Tisten thread.
threading.Thread(target=1listenThread).start()
print 'Listen thread started.'

print 'Use swap.send(obj) to send an object'’
print 'Look in swap.obj to see a received object'

Chapter 12 + Storing Data and Objects ()3

,J‘\Iote For the sake of simplicity, the example leaves out a lot of error checking that you'd
~ want if you were to use this for something important.

This module has two functions: send and TistenThread. send takes any object
you pass in, pickles it, and sends it out through the socket that is connected to the
other Python interpreter.

The 1istenThread function loops forever, waiting for objects to come in over the
socket. When the function first starts, it tries to bind to the given IP address and
port so it can act as the server side of the connection. If this attempt fails, it
assumes that the bind failed because the other interpreter is already acting as the
server, so listenThread tries to connect (thus becoming the client side of the
connection). Once connected, TistenThread receives each object, unpickles it,
prints it out and also saves it to the global variable obj so that you can then fiddle
with it in your interpreter.

At the module level, a call to threading.Thread().start() starts the listening
thread. By placing the call there, the background thread starts up automatically as
soon as you import the module.

After you've played around with this a little, sit back and relish the fact that all this
power required a measly 50 lines of Python code!

Using Database-Like Storage

The shelve module enables you to save Python objects into persistent, database-
like storage, similar to the dbm module.

g See Chapter 14 for information on dbm and other Python database modules.
Reference

The shelve.open(filel, mode]) function opens and returns a shelve object.
The mode parameter (which is the same as the mode parameter to dbm. open)
defaults to ‘c’, which means that the function opens the database for reading and
writing, and creates it if it doesn’t already exist. Use the c1ose () method of the
shelve object when you are finished using it.

You access the data as if the database were a dictionary:

>>> import shelve

>>> db = shelve.open('objdb') # Don't use a file extension!
>>> db['secretCombination'] = [5,23,17]

>>> db['account'] = 5671012

>>> db['secretCombination']

[5, 23, 17]

>>> del db['account']

>>> db.has_key('account")

0

204 Partll + Files, Data Storage, and Operating System Services

>>> db.keys()
['secretCombination']
>>> db.close()

The shelve module uses pickle, so you can store any objects that pickle can
store. shelve has the same limitations as dbm. Among other things, you should not
use it to store large Python objects.

Converting to and from C Structures

Although pickle makes converting Python objects to a byte stream easy, really
only Python programs can convert them back to objects. The struct module, how-
ever, lets you create a string of bytes equivalent to a C structure, so you could read
and write binary files generated by a non-Python program or send binary network
messages to something besides a Python interpreter.

Touse struct,youcall struct.pack(format, vl, vZ, ...) with a format string
describing the layout of the data followed by the data itself. Construct the format
string using format characters listed in Table 12-1.

Table 12-1

struct Format Characters
Character C type Python type
¢ Char string of length 1
S charl] string
o) (Pascal string) string
i Int integer
I Unsigned int integer or long*
b Signed char integer
B unsigned char integer
h Short integer
H unsigned short integer
1 Long integer
L unsigned Tong long
f Float float
d Double float
X (pad byte) -
P void * integer or long"

* The type Python uses is based on whether a pointer for this platform is 32 or 64 bits.

Chapter 12 + Storing Data and Objects ()5

For example, to create the equivalent of this C struct:

struct

{
int a;
int b;
char c;

}s
with the values 10, 20, and ‘Z,” use:

>>> import struct

>>> z = struct.pack('iic',10,20,'Z2")
>>> 7
"\012\000\000\000\024\000\000\000Z"

Given a string of bytes in a particular format, you can convert them to Python
objects by calling struct.unpack(format, data). It returns a tuple of the recon-
structed data:

>>> struct.unpack('iic',z)
(10, 20, 'Z")

The format string you pass to unpack must account for all the data in the string you
pass it, or struct raises an exception. Use the struct.calcsize(format) func-
tion to figure out how many bytes would be taken up by the given format string:

>>> struct.calcsize('iic")

9

>>> len(z) # The earlier example verifies this.
9

As a shortcut, you can put a number in front of any format character to repeat that
data type that many times:

>>> struct.pack('3f',1.2,3.4,5.6) # '3f' is the same as 'fff'
"\232\231\2317\232\231Y@33\263@"'

For clarity, you can put whitespace between format characters in your format string
(but not between the format character and a repeater number):

>>> struct.pack('2i h 3c',5,6,7,"a",'b","'c")
"\005\000\000\000\006\000\000\000\007\000abc"

The repeater number works a little differently with the ‘s’ (string) format character.
The repeater tells the length of the string (55 means a 5 character string). 0s means
an empty string, but 0c means zero characters.

The T format character unpacks the given number to a Python long integer if the C
int and 1ong are the same size. If the C int is smaller than the C Tong, ‘I converts
the number to a Python integer.

206

Part Il + Files, Data Storage, and Operating System Services

The ‘p’ format character is for a Pascal string. Pascal uses the first byte to store the
length of the string (so Pascal first truncates strings longer than the maximum
length of 255) and then the characters in the string follow. If you supply a repeater
number with this format character, it represents the total number of bytes in the
string including the length byte. If the string is less than the specified number of
bytes, pack adds empty padding characters to bring it up to snuff.

By default, struct stores numbers using the native format for byte order and struc-
ture member alignment (whatever your current platform’s C compiler would use).
You can override this behavior by starting your format string with one of the modi-
fiers listed in Table 12-2. For example, you can force struct to use network order, a
standard byte ordering for network messages:

>>> struct.pack('ic',65535,'D"') # Native is little-endian.
"\377\377\000\000D"

>>> struct.pack('!ic',65535,'D"') # Force network order.
"\000\000\377\377D"

Table 12-2
Order, Alignment, and Size Modifiers
Modifier Byte order Alignment Size
< Little-endian None Standard
> or | Big-endian (Network) None Standard
= Native None Standard
@ Native Native Native

If you don’t choose a modifier from Table 12-2, struct uses native byte ordering,
alignment, and size. When you use a modifier whose size is “standard,” a C short
takes up 2 bytes, an int, 1ong, or float uses 4, and a double uses 8.

If you need to have alignment but aren’t using the ‘@’ (native alignment) modifier,
you can insert pad bytes using the ‘x’ format character from Table 12-1. If you need
to force the end of a structure to be aligned according to the alignment rules for a
particular type, you can end your format string with the format code for that type
with a count of 0. The following example shows how to force a single-character
structure to end on an integer boundary:

>>> struct.pack('c','A")
IAI

>>> struct.pack('c0i',"A")
"A\N000\000\000"

The ‘P’ (pointer) format character is available with native alignment only:.

Chapter 12 + Storing Data and Objects ()7

The struct module is very useful for reading and writing binary files. For example,
if you read the first 36 bytes of a Windows WAV file, you can use struct to extract
some information about the file. The header of a WAV file starts with:

"RIFF" (4 bytes)

lTittle-endian length field (4 bytes)
"WAVE" (4 bytes)

"fmt ' (4 bytes)

format subchunk length (4 bytes)
format specifier (2 bytes)
number of channels (2 bytes)
sample rate in Hertz (4 bytes)
bytes per second (4 bytes)

bytes per sample (2 bytes)

bits per channel (2 bytes)

One way to represent this header would be with the format string
'<4s i 4s 4s ihhiihh'
The following code extracts this information from a WAV file:

>>> s = open('c:\\winnt\\media\\ringin.wav','rb"').read(36)
>>> struct.unpack('<4sidsdsihhiihh',s)
('RIFF', 10018, 'WAVE', 'fmt ', 16, 1, 1, 11025, 11025, 1, 8)

Extending that example, the following function rates the sound quality of a given
WAV file:

>>> def rateWAV(filename):
format = '<4sids4sihhiihh’
fsize = struct.calcsize(format)
data = open(filename,'rb').read(fsize)
data = struct.unpack(format,data)
if datal[0] != "RIFF' or datal[2] != "WAVE':
print 'Not a WAV file!’
rate = datal7]
if rate == 11025:
print 'Telephone quality!"’
elif rate == 22050:
print 'Radio quality!"’
elif rate == 44100:
print 'Oooh, CD quality!’
else:
print 'Rate is %d Hz' % rate

>>> rateWAV(r'c:\winnt\media\notify.wav"')
Radio quality!

>>> rateWAV('online.wav')

Oooh, CD quality!

208 Partll + Files, Data Storage, and Operating System Services

Converting Data to Standard Formats

Now that you have the struct module under your belt, you can build on that
knowledge to read and write just about any file format. If your data needs to be
readable by your own programs only, then you can create your own convention for
storing data. In other cases, however, you may find it useful to convert your data to
an industry-wide standard.

Sun’s XDR format

The XDR (eXternal Data Representation) format is a standard data format created
by Sun Microsystems. RFC 1832 defines the format, and it’s most common use is in
NFS (Network File System). Storing data in a standard format like XDR makes shar-
ing files easier for different hardware platforms and operating systems.

The xdr1ib module implements a subset of the XDR format, leaving out some of
the less-used data types. To convert data to XDR, you create an instance of the
xdrlib.Packer class, and to convert from XDR, you create an instance of
xdrlib.Unpacker.

Packer objects
The Packer constructor takes no arguments:

>>> import xdrlib
>>> p = xdrlib.Packer()

Once you have a Packer object you can use any of its pack_<type> methods to
pack basic data types:

>>> p.pack_float(3.5) # 32-bit floating point number
>>> p.pack_double(10.5) 4 64-bit floating point number
>>> p.pack_int(-15) # Signed 32-bit integer

>>> p.pack_uint(15) # Unsigned 32-bit integer
>>> p.pack_hyper(100) # Signed 64-bit integer

>>> p.pack_uhyper(200) # Unsigned 64-bit integer

>>> p.pack_enum(3) # Enumerated type

>>> p.pack_bool(1) # Booleans are 1 or 0

>>> p.pack_bool("Hi") # Value is true, so stores a 1

The pack_fstring(count, str) method packs a fixed-length string count charac-
ters long. The function does not store the size of the string, so to unpack it you
have to know how long it is beforehand. Better yet, use pack_string(str), which
lets you pack a variable-length string:

>>> p.pack_string('Lovely")
>>> p.pack_fstring(3, 'day"')

Chapter 12 + Storing Data and Objects 2(9

The pack_string function calls pack_uint with the size of the string and then
pack_fstring with the string itself. To more fully follow the XDR specification, a
Packer object also has pack_bytes and pack_opaque methods, but they are really
just calls to pack_string. Likewise, a call to pack_fopaque is really just a call to
pack_fstring.

The pack_farray(count, 1ist, packFunc) function packs a fixed-length array
(count items long) of homogenous data. Unfortunately, pack_farray requires that
you pass in the count as well as the list itself, but it won’t let you use a count that is
different from the length of the list (go figure). As with pack_fstring, the function
does not store the length of the array with the data, so you have to know the length
when you unpack it. Or you can call pack_array(1ist, packFunc) to pack the
size and then the list itself. The packFunc tells Packer which method to use to
pack each item. For example, if each item in the list is an integer:

>>> p.pack_array([1,2,3,4],p.pack_int)

The pack_list(list,packFunc) method also packs an array of homogenous data, but
it works with sequence objects whose size might not be known ahead of time. For
example, you could create a class that defines its own __getitem__ method:

>>> class MySeq:
def __getitem__ (self,i):
if i < b:
return i

A raise IndexError

>>> m = MySeq()

>>> for i in m:

print i

0
1
2
3
4
>>> p.pack_list(m,p.pack_int)

The get_buffer() method returns a string representing the packed form of all the
data you've packed. reset () empties the buffer:

>>> p.reset()
>>> p.pack_int(10)
>>> p.get_buffer()
"\000\000\000NO12"
>>> p.reset()
>>> p.get_buffer()

210 Partll + Files, Data Storage, and Operating System Services

Unpacker objects

Not surprisingly, an Unpacker object has methods that closely mirror those of a
Packer object. When you construct an Unpacker, you pass in a string of bytes for it
to decode, and then begin calling its unpack_<type> methods (each pack_ method
has a corresponding unpack_ method):

>>> dimport xdrlib

>>> p = xdrlib.Packer()

>>> p.pack_float(2.0)

>>> p.pack_fstring(4, 'Dave")

>>> p.pack_string('/export/home")

>>> u = xdrlib.Unpacker(p.get_buffer())
>>> u.unpack_float()

2.0

>>> u.unpack_fstring(4)

'Dave’

>>> u.unpack_string()

"/export/home’

>>> u.done()

The done () method tells the Unpacker that you are finished decoding data. If
Unpacker still has data left in its internal buffer, it raises an Error exception to
inform you that the internal buffer has leftover data.

Calling the reset (str) method replaces the current buffer with the data in str. At
any time, you can call the get_buffer() method to retrieve the string representa-
tion of the data stream.

You can use the get_position() and set_position(pos) methods to track and
reposition where in the buffer the Unpacker decodes from next. To be safe, set a
position to 0 or to a value returned from get_position.

Other formats

Of course, you might use many other data formats. XML is gaining popularity as a
data storage markup language; see Chapter 18 for more information.

For any given file format, a quick search on a Web search engine locates many
documents describing the details of that format (for example, try searching for
“WAV spec”). Once you have that information, creating format strings that struct
can understand is usually a straightforward process.

Compressing Data

This final section covers the use of the z11b, a module wrapping the free z1ib com-
pression library. The gzip and zipfile modules use z11ib to manipulate GZIP and
ZIP files, respectively.

Tip

Chapter 12 4 Storing Data and Objects

zlib
You can use the z11b module to compress any sort of data; if you are transferring

large messages over a network, it may be worthwhile to compress them first, for
example.

The most straightforward use of z11b is through the compress(stringl, Tevell)
and decompress(string[, wbits[, bufsize]]) functions. The Tevel used dur-
ing compression is from 1 (fastest) to 9 (best compression), defaulting to 6. During
decompression, the wbits argument controls the size of the history buffer, and
should have a value between 8 and 15 (the default). A higher value consumes more
memory but increases the chances of better compression. The bufsize argument
determines the initial size of the buffer used to hold decompressed data. The
library modifies this size as needed, so you never really have to change it from its
default of 16384. Both compress and decompress take a string of bytes and return
the compressed or decompressed equivalent:

>>> dimport zlib

>>> longString = 100 * 'That z1ib module sure is fun!'
>>> compressed = zlib.compress(longString)

>>> len(longString); len(compressed)

2900

62 @code:# Yay, zlib!

>>> zlib.decompress(compressed)[:40]

'That z1ib module sure is fun!That zlib m'

To learn more about z1ib’s features, visit the z1ib Web site at http://
#, www.info-zip.org/pub/infozip/zlib/.

4

The z11b module has two functions for computing the checksum of a string (useful
in detecting changes and errors in data or as a way to warm your CPU),
crc32(stringl, valuel) and adler32(stringl, valuel).If present, the
optional value argument is the starting value of the checksum, so you can calcu-
late the checksum of several pieces of input. The following example shows you how
to use a checksum to detect data corruption:

>>> data = 'My dog has no fleas!'

>>> zlib.adler32(data)

1193871046

>>> data = datal[:5]+'z'+datal[6:]

>>> data

'My doz has no fleas!' # A solar flare corrupts your data...
>>> zlib.adler32(data)

1212548825 # ...resulting in a different checksum.

The value returned from crc32 is more reliable than that returned from adler32,
but it also requires much more computation. (More reliable means that the function
is less likely to return the same checksum if the data changes at all.) Don’t forget to
dazzle your friends by informing them that Mark Adler wrote the decompression
portion of z11ib.

211

212 Partll + Files, Data Storage, and Operating System Services

If you have more data than you can comfortably fit in memory, z11b lets you

create compression and decompression objects. Create a compression object by
calling compressobj([Tevel]). Once you have your object, you can repeatedly call
its compress(string) method. Each call returns another portion of the com-
pressed version of the data, although some is saved for later processing. Calling the
compression object’s fTush([mode]) method finishes the compression and
returns the remaining compressed data:

>>> ¢ = zlib.compressobj(9)

>>> out = c.compress(1000 * "I will not throw knives")
>>> out += c.compress(200 * 'or chairs')

>>> out += c.flush()

>>> len(out) # out holds the entire compressed stream.
115

If you call f1ush with amode of Z_FULL_FLUSH or Z_SYNCH_FLUSH, all the currently
buffered compressed data is returned, but you can later compress more data with
the same object. Without those mode values, the compression object assumes
you're finished and doesn’t allow any additional compression.

You create a decompression object by calling z1ib’s decompressobj([wbits])
function. A decompression object lets you decompress a stream of data one piece
at a time (for example, you could decompress a file by repeatedly reading a chunk
of data, decompressing that chunk, and writing the result to an output file).

Call the decompress(string) method of your decompression object to decom-
press the next chunk of data. decompress returns the largest amount of decom-
pressed data that it can, although it may need to buffer some until you supply more
data to decompress. The following code decompresses the output from the previ-
ous example 20 bytes at a time:

>>> d = zlib.decompressobj() # Create a decompressor.
>>> msg = "'
>>> while out:

msg += d.decompress(out[:20]) # Decompress some.
- out = out[20:]
>>> msg += d.flush() # Let it know that we're all done.
>>> len(msg)
24800
>>> 1000 * Ten('I will not throw knives') +\
... 200 * len('or chairs')
24800 # Length matches that of the original message.
>>> msgl[:50] # Looks 1ike the message itself matches too.
'T will not throw knivesI will not throw knivesI wi'

Call the decompression object’s f1ush () method when you’re done giving it more
data (after this you can’t call decompress any more with that object).

AI ote

Chapter 12 4 Storing Data and Objects

Decompression objects also have an unused_data member that holds any leftover
compressed data from the last call to decompress. A nonempty unused_data
string means that the decompression object is still waiting on additional data to
finish decompressing this particular piece of data.

gZ1p
The gzip module lets you read and write . gz (GNU gzip) files as if they were ordi-

nary files (that is, your program can pretty much ignore the fact that compression/
decompression is taking place).

The GNU gzip and gunzip programs support additional formats (for example,

~ compress and pack), but the gzip Python module does not.

The gzip.GzipFile([filename[, mode[, compresslevell, fileobjl1111)
function constructs a new GzipFile object. You must supply either the filename
or the fileobj argument, although the file object can be anything that looks like a
file such as a cStringl0 object. The compresslevel parameter has the same
values as for z11b module earlier in this section.

If you don’t supply a mode, then gzip tries to use the mode of fileobj. If that’s not
possible, the mode defaults to 'rb' (open for reading). A GzipFile can’t be open
for both reading and writing, so you should use a mode of 'rb', "wb"', or "ab"'.

When you call the cTose () method of a GzipFile, the file object (if you supplied
one) remains open.

To further the illusion of normal file I/O, you can call the open(filenamel, mode[,
lTevel]]) function in the gzip module. The filename argument is required, so the
call looks very similar to Python’s built-in open function:

>>> f = gzip.open('small.gz','wb")
>>> f.owrite('''01d woman!
. Man!
. 01d Man, sorry. What knight Tives in that castle over
there?
.. I'm thirty-seven.
. What?
... I'm thirty-seven -- I'm not old!
.. Well, T can't just call you 'Man'.
... Well, you could say 'Dennis"'.
>>> f.close()

>>> f = gzip.open('small.gz")
>>> print f.read()

01d woman!

Man!

01d Man, sorry. What knight Tives in that castle over there?
I'm thirty-seven.

213

214 Part

Il + Files, Data Storage, and Operating System Services

What?

I'm thirty-seven -- I'm not old!
Well, T can't just call you 'Man'.
Well, you could say 'Dennis'.

zipfile
The zipfile module lets you read, write, and get information about files stored in
the common ZIP file format.

The zipfile module does not currently support ZIP files with appended com-
~~ ments or files that span multiple disks.
The ipfile.is_zipfile(filename) function returns true if the given file name
appears to be a valid zip file.

The zipfile module defines the ZipFile, ZipInfo,and PyZipFile classes.

The ZipFile class

This class is the primary one used to read and write a ZIP file. You create a ZipFile
instance object by calling the ZipFile(filename[, mode[, compression]])
constructor:

>>> import zipfile
>>> z = zipfile.ZipFile('room.zip")
>>> z.printdir() 4 Print formatted summary of the archive

File Name Modified Size
world 2000-09-05 09:25:14 10919
cryst.cfg 1999-03-07 06:14:34 27

The mode is ‘r’ (read, the default), ‘w’ (write), or ‘a’ (append). If you append to a ZIP
file, Python adds new files to it. If you append to a non-ZIP file, however, Python
adds a ZIP archive to the end of the file. Not all ZIP readers can understand this
format. The compression argument is either ZIP_STORED (no compressed) or
ZIP_DEFLATED (use compression).

The namelist() method of your ZipFile object returns the list of files the ZIP
contains. You can get a ZipInfo object (described in the next section) for any file
via the getinfo(name) method, or you can get a list of ZipInfos for the entire
archive with the infolist() method:

>>> z.namelist()

['world', 'cryst.cfg'] # The ZIP contains two files.

>>> z.getinfo('world') # Get some info for file named 'world.'
<zipfile.ZipInfo instance at 010FD14C>

>>> z.getinfo('world').file_size

10919

Tip

Chapter 12 + Storing Data and Objects 215

>>> z.infolist()
[Kzipfile.ZipInfo instance at 010FD14C>,
<zipfile.ZipInfo instance at 010E116C>]

If you open the ZIP in read or append mode, read(name) decompresses the speci-
fied file and returns its contents:

>>> print z.read('cryst.cfg')
[World]
MIXLIGHTS=true_rgb

The testzip() method returns the name of the first corrupt file or None if all files
are okay:

>>> z.testzip()
'world' 4 The file called 'world' is corrupt.

For ZIPs opened in write or append mode, the write(zipInfo, bytes) method
adds a new file to the archive. bytes contains the content of the file, and zipInfo
isa ZipInfo object (see the next section) with the file’s information. You don’t
have to fill in every attribute of ZipInfo, but at least {fill in the file name and
compression type.

Thewrite(filename[, arcnamel[, compress_typel]l) function adds the con-
tents of the file fiTename to the archive. If you supply a value for arcname, that is
the name of the file stored in the archive. If you supply a value for compress_type,
it overrides whatever compression type you used when you created the ZipFile.

After making any changes to a ZIP file, calling the c1ose () method is essential to
guaranteeing the integrity of the archive.

A ZipFile object has a debug attribute that you can use to change the level of
~,_ debug output messages. Most output comes with a value of 3, the least (no out-

"4 put) is with a value of 0, the default.

The ZipInfo class

Information about each member of a ZIP archive is represented by a ZipInfo
object. You can use the ZipInfo([filename[, date_time]l]) constructor to cre-
ateone; getinfo() and infolist() alsoreturn ZipInfo objects. The filename
should be the full path of the file and date_time is a six-tuple containing the last
modification timestamp (see the date_time attribute in Table 12-3).

Each ZipInfo instance object has many attributes; the most useful are listed in
Table 12-3.

216 Partll + Files, Data Storage, and Operating System Services

Table 12-3
ZipInfo Instance Attributes
Name Description
filename Name of the archived file
compress_size Size of the compressed file
file_size Size of the original file
date_time Last modification date and time, a six-tuple consisting of year,

month (1-12), day (1-31), hour (0-23), minute (0-59),
second (0-59)

compress_type Type of compression (stored or deflated)
CRC The CRC32 of the original file
comment Comment for this entry
extract_version Minimum software version needed to extract the archive
header_offset Byte offset to the file's header
file_offset Byte offset to the file's data
The PyZipFile class

The PyZipFile class is a utility class for creating ZIP files that contain Python mod-
ules and packages. PyZipFile is a subclass of ZipFile, so its constructor and
methods are the same as for ZipFile.

The only method that PyZipFile adds is writepy (pathname), which searches for
*.py files and adds their corresponding bytecode files to the ZIP file. For each
Python module (for example, file.py), writepy archives file.pyo if it exists. If not, it
adds file.pyc if it exists. If that doesn’t exist either, writepy compiles the module to
create file.pyc and adds it to the archive.

If pathname is the name of a package directory (a directory containing the __init__.py
file), writepy searches that directory and all package subdirectories for all *.py files.
If pathname is the name of an ordinary directory, it searches for *.py files in that
directory only. Finally, if pathname is just a normal Python module (for example,
file.py), writepy adds its bytecode to the ZIP file.

g Refer to Chapter 6 for more information on Python packages.
Reference

Chapter 12 4 Storing Data and Objects 17

Summary

Python makes a breeze of serializing or marshaling objects to disk or over a net-
work, and its support for compression and data conversion only makes life easier.
In this chapter you:

4 Serialized objects.

4+ Transported objects across a network connection.

4+ Converted objects to formats readable by C programs.

4 Stored objects in the standard XDR format.

4+ Compressed data to save space.

In the next chapter you'll learn to track how long parts of your program take to run,
retrieve the date and time, and print the date and time in custom formats.

+ o+ 4

CHAPTER

Accessing Date
and Time

Dates can be written in many ways. Converting between
date formats is a common chore for computers. Date
arithmetic — like finding the number of days between June 10
and December 13 —is another common task. Python’s time
and calendar modules help track dates and times. They even
handle icky details like daylight savings time and leap years.

Telling Time in Python

Time is usually represented as either a number or a tuple. The
time module provides functions for working with times, and
for converting between representations.

Ticks

You can represent a point in time as a number of “ticks” —the
number of seconds that have elapsed since the epoch. The
epoch is an arbitrarily chosen “beginning of time.” For UNIX
and Windows systems, the epoch is 12:00am, 1/1/1970. For
example, on my computer, my next birthday is 983347200 in
ticks (which translates into February 28, 2001).

The function time.time returns the current system time in
ticks. For example, here is the number of days from now until
my birthday:

>>> 983347200 - time.time()
7186162.7339999676

Note that Python uses a floating-point value for ticks. Because
time precision varies by operating system, time.time is
always an integer on some systems.

0+ o+
In This Chapter
Telling time in Python

Converting between
time formats

Parsing and printing
dates and times

Accessing the
calendar

Using time zones

Allowing two-digit
years

+ 0+ o+

220 Partll + Files, Data Storage, and Operating System Services

Date arithmetic is easy to do with ticks. However, dates before the epoch cannot be
represented in this form. Dates in the far future also cannot be represented this
way — the cutoff point is sometime in 2038 for UNIX and Windows.

Alote

Third-party modules such as mxDateTime provide date/time classes that function

~ outside the range 1970-2038.
TimeTuple
Many of Python’s time functions handle time as a tuple of 9 numbers, as shown in
Table 13-1:
Table 13-1
Time Functions
Index Field Values
0 4-digit year 1993
1 Month 1-12
2 Day 1-31
3 Hour 0-23 (0is 12 a.m.)
4 Minute 0-59
5 Second 0-61 (60 or 61 are leap-seconds)
6 Day of week 0-6 (0 is Monday)
7 Day of year 1-366 (Julian day)
8 Daylight savings -1,0,1

Note that the elements of the tuple proceed from broadest (year) to most granular
(second). This means that one can do linear comparisons on TimeTuples:

>>> TimeA (1972, 5, 15, 12, 55, 32, 0, 136, 1)
>>> TimeB (1972, 5, 16, 7, 9, 10, 1, 137, 1)
>>> TimeA<TimeB # TimeA is a day before TimeB.

1

Note that a TimeTuple does not include a time zone. To pinpoint an actual time, one
needs a time zone as well as a TimeTuple.

Stopwatch time

The clock function acts as a stopwatch for timing Python code —you call cTock
before doing something, call it again afterwards, and take the difference between

Chapter 13 4 Accessing Date and Time 20]

numbers to get the elapsed seconds. The actual values returned by clock are
system-dependent and generally don’t translate into a time-of-day. This code
checks how quickly Python counts to one million:

>>> def CountToOneMillion():
StartTime=time.clock()
for X in xrange(0,1000000): pass
EndTime=time.clock()
print EndTime-StartTime

>>> CountToOneMillion() # Elapsed time, in seconds
0.855862726726

‘\lote The proper way to pause execution is with time.sleep(n), where n is a floating

~ point number of seconds. In a Tkinter application, once can call the after
method on the root object to make a function execute after n seconds. (See
Chapter 19 for more on Tkinter.)

Converting Between Time Formats

The function localtime converts from ticks to a TimeTuple for the local time zone.
For example, this code gets the current time:

>>> time.localtime(time.time())
(2000, 12, 6, 20, 0, 9, 2, 341, 0)

Reading the fields of the TimeTuple, I can see that it is the year 2000, December 6,
at 20:00 (8 p.m.) and 9 seconds. The day of the week is 2 (Wednesday), it is the
341st day of the year, and local clocks are not currently on Daylight Savings Time.

The function gmtime also converts from EpochSeconds to a TimeTuple. It returns the
current TimeTuple for UTC (Universal Coordinated Time, formerly Greenwich Mean
Time). This call to gmtime shows that it is 4 a.m. in England (a bad time to telephone):

>>> time.gmtime(time.time())
(2000, 12, 7, 4, 4, 9, 3, 342, 0)

The function mktime converts from a TimeTuple to EpochSeconds. It interprets the
TimeTuple according to the local time zone. The function mktime is the inverse of
lTocaltime, and it is useful for doing date arithmetic. (The inverse function of
gmtime is calendar.timegm.) This code finds the number of seconds between two
points in time:

>>> TimeA (1972, 5, 15, 12, 55, 32, 0, 136, 1)
>>> TimeB (1972, 5, 16, 7, 9, 10, 1, 137, 1)
>>> time.mktime(TimeB)-time.mktime(TimeA)
65618.0

>>> _ / (60*60) 4§ How many hours is that?
18.227222222222224

2272 Partll + Files, Data Storage, and Operating System Services

Parsing and Printing Dates and Times

The asctime function takes a TimeTuple, and returns a human-readable timestamp.
It is especially useful in log files:

>>> Now=time.localtime(time.time()) # Now is a TimeTuple.
>>> time.asctime(Now)

'Sun Dec 10 10:09:41 2000

>>> §F In version 2.1, you can call asctime() and localtime()
>>> # with no arguments to use the current time:

>>> time.asctime()

"Sun Dec 10 10:09:41 2000

The function ctime returns a timestamp for a time expressed in ticks:

>>> time.ctime(time.time())
'Sun Dec 10 10:11:29 2000"'

Fancy formatting

The function strftime(format,timetuple) formats a TimeTuple in a format you
specify. The function strftime returns the string format after performing substitu-
tions on various codes marked with a percent sign, as shown in Table 13-2:

Table 13-2
Time Formatting Syntax
Code Substitution Example / Range
%a Abbreviated day name Thur
%A Full day name Thursday
%b Abbreviated month name Jan
%B Full month name January
%cC Date and time representation 12/10/00 10:09:41
(equivalent to %x %X)
%d Day of the month 01-31
%H Hour (24-hour clock) 00-23
%h Hour (12-hour clock) 01-12
%j Julian day (day of the year) 001-366
%m Month 01-12
%M Minute 00-59
%p A.M. or P.M. AM

ﬁ\lote

Chapter 13 4+ Accessing Date and Time

Code Substitution Example / Range
%S Second 00-61
%U Week number. Week starts with 00-53
Sunday; days before the first
Sunday of the year are in week 0.
%w Weekday as a number (0=Sunday) 0-6
%W Week number. Week starts with 00-53
Monday; days before the first Monday
of the year are in week 0.
%X Date 12/10/00
%X Time 10:09:41
%y 2-digit year 00-99
%Y 4-digit year 2000
%Z Time-zone name Pacific Standard Time

%%

Literal % sign

For example, I can print the current week number:

>>> time.strftime("It's week ZW!",Now)

"It's week 49!"

Here is the default formatting string (with the same results as calling ctime):

>>> time.strftime("%a %b %d %I1:%M:%S %Y",Now)
"Sun Dec 10 10:09:41 2000

Parsing time

The function strptime(timestring[,format]) is the reverse of strftime; it
parses a string and returns a TimeTuple. It guesses at any unspecified time compo-
nents. It raises a ValueError if it cannot parse the string timestring using the format
format. The default format is the one that ctime uses: “%a %b %d %L:%M:%S %Y”.

The strptime function is available on most UNIX systems; however, it is unavail-

~~ able on Windows.

Localization

Different countries write dates differently — for example, the string “2/5” means
“February 5” in the United States, but “May 2” in England. The function strftime
refers to the current locale when performing each substitution. For example, the

2253

224 Partll + Files, Data Storage, and Operating System Services

format string “%x” uses the correct day-month ordering for the current locale.
However, you still need to take locale into account when writing code — for
instance, the format string “%m/%d” is not correct for all locales.

r Cross- See Chapter 34 for an overview of the 1ocale module and other information on
Reference'\ nternationalization.

Accessing the Calendar

The calendar module provides high-level functions and constants that comple-
ment the lower-level functions in the time module. Because calendar uses ticks
internally to represent dates, it cannot provide calendars outside the epoch
(usually 1970-2038).

Printing monthly and yearly calendars

The following sections show examples of printing monthly and yearly calendars.

monthcalendar(yearnum,monthnum)

The function monthcalendar returns a list of lists, representing a monthly calen-
dar. Each entry in the main list represents a week. The sublists contain the seven
dates in that week. A 0 (zero) in the sublist represents a day from the previous or
next month:

>>> calendar.monthcalendar(2000,5) # 4 1/2 weeks in May, 2000
(ri, 2, 3, 4, 5, 6, 71, 8, 9, 10, 11, 12, 13, 147, [15, 16,
17, 18, 19, 20, 211, [22, 23, 24, 25, 26, 27, 281, [29, 30, 31,
0, 0, 0, 011

month(yearnum,monthnum[,width[linesperweek]])

The month function returns a multiline string that looks like a monthly calendar for
month monthnum of year yearnum. Months are numbered normally (from 1 for
January up to 12 for December). The parameter width specifies how wide each col-
umn is; the minimum (and default) value is 2. The parameter linesperweek specifies
how many rows to print for each week. It defaults to 1; setting it to a higher number
like 5 leaves space to write on a printed calendar. Here are two examples:

>>> print calendar.month(2002,5)
May 2002

Mo Tu We Th Fr Sa Su
1 2 3 4 5

6 7 8 910 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

Chapter 13 4+ Accessing Date and Time

>>> # 2 rows per week; 3 cols per day
>>> print calendar.month(2002,5,3,2)
May 2002

Mon Tue Wed Thu Fri Sat Sun

12 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26
27 28 29 30 31

The function prmonth(yearnum,monthnum[,width[,1inesperweek]]) prints the
corresponding output of month.

calendar(yearnum[,width[linesperweek[,columnpadding]]])

The function calendar prints a yearly calendar, with three months per row. The
parameters width and linesperweek function as for month. The parameter column-
padding indicates how many spaces to add between month-columns; it defaults to
6. The function prcalendar prints the corresponding output of calendar.

Calendar information

The weekday function looks up the day of the week for a particular date. The syntax
is weekday(year,month,day). Weekdays range from Monday (0) to Sunday (6).
Constants for each day (in all-caps) are available, for convenience and code-clarity:

>>> 4§ Is May 1, 2002 a Wednesday?
>>> calendar.weekday(2002,5,1)==calendar.WEDNESDAY
1

The function monthrange(yearnum,monthnum) returns a two-tuple: The weekday
of the first day of month monthnum in year yearnum, and the length of the month.

>>> calendar.monthrange(2000,2) # 2000 was a leap year!
(1, 29)

By default, calendar starts its weeks on Monday, and ends them on Sunday. I like
this setting best, because the week ends with the weekend. But you can start your
calendar’s weeks on another day by calling setfirstweekday(weekday). The func-
tion firstweekday tells you which day of the week is currently the first day of the
week:

225

226 Partll + Files, Data Storage, and Operating System Services

>>> calendar.setfirstweekday(calendar.WEDNESDAY)
>>> print calendar.month(2002,5)
May 2002

We Th Fr Sa Su Mo Tu

1 2 3 4 5 6 7

8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
>>> calendar.firstweekday() # Weeks start with day #2 (Wed.)
2

Leap years

The function isleap(yearnum) returns true if year yearnum is a leap year. The
function Teapdays(firstyear,lastyear) returns the number of leap days from
firstyear to lastyear, inclusive.

Using Time Zones

The value time.day11ight indicates whether a local DST (Daylight Savings Time)
time zone is defined. A value of 1 indicates that a DST time zone is available.

The value time.timezone is the offset, in seconds, from the local time zone to
UTC. This makes it easy to convert between time zones. The value time.altzone
is an offset from the local DST time zone to UTC. The offset altzone is more accu-
rate, but it is available only if time.daylight is 1.

>>> Now=time.time()

>>> time.ctime(Now) # Time in Mountain time zone, USA
'Sun Dec 10 10:44:49 2000

>>> time.ctime(Now+time.altzone) # Time in England
'Sun Dec 10 17:44:49 2000"'

The value time.tzname is a tuple. The first entry is the name of the local time
zone. The second entry, if available, is the name of the local Daylight Savings Time
time zone. The second entry is available only if time.day11ight is nonzero. For
example:

>>> time.tzname
("Pacific Standard Time', 'Pacific Daylight Time')

Chapter 13 4 Accessing Date and Time 07/

Allowing Two-Digit Years

Two-digit dates are convenient, but they can be ambiguous. For example, the year
“97” should precede the year “03” if the years are 1997 and 2003, but not if they are
1997 and 1903.

In 1999, programmers around the world began rooting through legacy code to solve
the Y2K Bug— a blanket term for all bugs caused by indiscriminate use of two-digit
years. Some people worried that the Y2K Bug would cause The End Of The World
As We Know It on January 1, 2000. Fortunately, it didn’t and we can all sleep safely
at night — at least until 2038 when epoch-based time starts to overflow.

Normally, Python adds 2000 to a two-digit year from 00 to 68, and adds 1900 to two-
digit years from 69 to 99. However, for paranoia’s sake, the value
time.accept2dyear can be set to 0; this setting causes all two-digit years to be
rejected. If you set the environment variable PYTHONZ2K, the value
time.accept2dyear is initialized to 0. For example:

>>> Y4=(2000, 12, 10, 10, 9, 41, 6, 345, 0)
>>> Y2=(00, 12, 10, 10, 9, 41, 6, 345, 0) # Same date
>>> time.mktime(Y4)
976471781.0
>>> time.mktime(Y2) # 2-digit year below 69; add 2000
976471781.0
>>> time.accept2dyear=0 # Zero tolerance for YY!
>>> time.mktime(Y2)
Traceback (most recent call Tlast):
File "<stdin>", 1ine 1, in ?
ValueError: year >= 1900 required

Summary

Python includes standard libraries for telling time, doing date arithmetic, and con-
verting between time zones. In this chapter, you:

4+ Converted time between tuple and ticks representations.

4 Formatted and parsed times in human-readable formats.

4 Checked months and days on a yearly calendar.

4 Handled various time zones, as well as Daylight Savings Time.

In the next chapter you will learn how to use Python to store and retrieve data from
databases.

+ o+ 0+

Using Databases

Databases support permanent storage of large amounts
of data. You can easily perform CRUD (Create, Read,

Update, and Delete) on database records. Relational
databases divide data between tables and support sophisti-
cated SQL operations.

Python’s standard libraries include a simple disk-dictionary
database. The Python DB API provides a standard way to
access relational databases. Various third-party modules
implement this API, providing easy access to many flavors of
database, including Oracle and MySQL.

Using Disk-Based Dictionaries

Python’s standard libraries provide a simple database that

takes the form of a single disk-based dictionary (or disktionary).

This functionality is based on the UNIX utility dbm — on UNIX,
you can access databases created by the dbm utility. Several
modules define such a database, as shown in Table 14-1.

Table 14-1
Disk-Based Dictionary Modules

Module Description

anydbm Portable database; chooses the best
module from among the others

dumbdbm Slow and limited, but available on all
platforms

dbm Wraps the UNIX dbm utility; available on
UNIX only

gdbm Wraps GNU’s improved dbm; available
on UNIX only

dbhash Wraps the BSD database library;

available on UNIX and Windows

C HIA P TYE R

+ 0+ 0+
In This Chapter

Using disk-based
dictionaries

DBM example:
tracking telephone
numbers

Advanced disk-based

dictionaries

Accessing relational
databases

Example: “sounds-
p
like” queries

Examining relational
metadata

Example: creating
auditing tables

Advanced features of
the DB API

¢+ 4+ o+

23(0 Partll + Files, Data Storage, and Operating System Services

In general, it is recommended that you use anydbm, as it is available on any plat-
form (even if it has to use dumbdbm!)

Each dbm module defines a dbm object and an exception named error. The fea-
tures in this section are available from every flavor of dbm; the “Advanced Disk-
Based Dictionaries” section describes extended features not available in dumbdbm.

The open function creates a new dbm object. The function’s syntax is open
(filename[,flagl[,mode]]). The filename parameter is the path to the file used
to store the data. The flag parameter is normally optional, but is required for
dbhash. It has the following legal values:

r [default] Opens the database for read-only access
w Opens the database for read and write access
C Same as w, but creates the database file if necessary
n Same as w, but always creates a new, empty database file
,Alote The flag parameter is required for dbhash.open.
/
Caution Some flavors of dbm (including dumbdbm) permit modifications to a database

opened read-only!

The optional parameter mode specifies the UNIX-style permissions to set on the
database file.

Once you have opened a database, you can access it much like a standard dictionary:

>>> SimpleDB=anydbm.open("test","c") # create a new datafile
>>> SimpleDB["Terry"]="Gilliam" # add a record

>>> SimpleDB["John"]="Cleese"

>>> print SimpleDB["Terry"] # access a record

Gilliam

>>> del SimpleDB["John"] # delete a record

The keys and values in a dbm must all be strings. For example:

>>> SimpleDB["Eric"1=5 # il1legal; value is not a string!
Traceback (most recent call Tlast):

File "<stdin>", 1line 1, in ?
TypeError: bsddb value type must be string

Attempting to access a key with no value raises a KeyError exception. You can use
the has_key method to verify that a key exists, or call keys to get a list of keys.
However, the safe get method from a dictionary is not available:

>>>

Chapter 14 4 Using Databases

SimpleDB.keys()

['Terry']

>>>
0

SimpleDB.has_key("Eric")

When you are finished with a dbm object, call its c1ose method to sync it to disk
and free its used resources.

DBM Example: Tracking Telephone Numbers

The example shown in Listing 14-1 uses a dbm object to track telephone numbers.
The dictionary key is a person’s name; the value is his or her telephone number.

Listing 14-1: Phone list

import anydbm
import sys

def

AddName (DB):

print "Enter a name. (Null name to cancel)"

Take the [:-1] slice to remove the \n at the end
NewName=sys.stdin.readline()[:-1]

if (NewName==""): return

print "Enter a phone number."”
PhoneNumber=sys.stdin.readline()[:-1]
DB[NewName]l=PhoneNumber # Poke value into database!

def PrintList(DB):
J# Note: A large database may have MANY keys (too many to
casually put into memory). See Listing 14-2 for a better
way to iterate over keys in dbhash.
for Key in DB.keys():
print Key,DB[Key]
if (__name__=="_main__"):
PhoneDB= dbhash.open("phone","c")

while (1):
print "\nEnter a name to look up\n+ to add a name"
print "* for a full listing\n. to exit"
Command=sys.stdin.readline()[:-1]
if (Command==""):
continue # Nothing to do; prompt again
if (Command=="+"):
AddName (PhoneDB)
elif (Command=="*"):
PrintList(PhoneDB)

Continued

231

232

Part Il + Files, Data Storage, and Operating System Services

Listing 14-1 (continued)

elif (Command=="."):
break # quit!
else:
try:
print PhoneDB[Command]
except KeyError:
print "Name not found."
print "Saving and closing..."
PhoneDB.close()

Advanced Disk-Based Dictionaries

The various flavors of dbm don’t use compatible file formats — for example, a
database created using dbhash cannot be read using gdbm. This means that the
only database file-format available on all platforms is that used by dumbdbm. The
whichdb module can examine a database to determine which flavor of dbm created
it. The function whichdb.whichdb(filename) returns the name of the module that
created the datafile filename, returns None if the file is unreadable or does not exist,
and returns an empty string if it can’t figure out the file’s format. For example, the
following code uses anydbm to create a database, and then queries the database to
see what type it really is:

>>> MysteryDB=anydbm.open("Unknown","c")

>>> MysteryDB.close() # write file so we can check its db-type
>>> whichdb.whichdb("Unknown™")

"dbhash’

dbm

The dbm module provides an extra string variable, 1ibrary, which is the name of
the underlying ndbm implementation.

gdbm

The gdbm module provides improved key navigation. The dbm method firstkey
returns the first key in the database; the method nextkey(currentkey) returns
the key after currentkey. After doing many deletions from a gdbm database, you can
call reorganize to free up space used by the datafile. In addition, the method sync
flushes any unwritten changes to disk.

Chapter 14 4 Using Databases

dbhash

The dbhash module also provides key navigation. The dbm methods first and
1ast return the first and last keys, respectively. The methods next (currentkey)
and previous(currentkey) return the key before and after currentkey, respec-
tively. In addition, the method sync flushes any unwritten changes to disk.

Databases can be very large, so accessing the list of all keys returned by the keys
method of a database may eat a lot of memory. The key-navigation methods pro-
vided by gdbm and dbhash enable you to iterate over all keys without loading them
all into memory. The code in Listing 14-2 is an improved replacement for the
PrintList method in the previous telephone list example.

Listing 14-2: Improved list iteration with dbhash

def PrintList(DB):
Record=None
try:
first() raises a KeyError if there are no entries
Record = DB.first()
except KeyError:
return # Zero entries
while 1:
print Record
try:
next() raises a KeyError if no next entry
Record = DB.next()
except KeyError:
return # all done!

Using BSD database objects

The bsddb module, available on UNIX and Windows, provides access to the
Berkeley DB library. It provides hashtable, b-tree, and record objects for data stor-
age. The three constructors—hashopen, btopen, and rnopen —take the same
parameters (filename, flag, and mode) as the dbm constructor. The constructors
take other optional parameters — they are passed directly to the underlying BSD
code, and should generally not be used.

BSD data objects provide the same functionality as dbm objects, as well as some
additional methods. The methods first, last, next, and previous navigate through
(and return) the records in the database. The records are ordered by key value for a
b-tree object; record order is undefined for a hashtable or record. In addition, the
method set_location(keyvalue) jumps to the record with key keyvalue:

233

234 Partll + Files, Data Storage, and Operating System Services

>>> bob=bsddb.btopen("names","c")
>>> bob["M"]="Martin"
>>> bob["E"]="Eric"
>>> bob["X"]="Xavier"
>>> bob.first() # E is first, since this is a b-tree
('E", '"Eric")
>>> bob.next()
('"M', 'Martin')
>>> bob.next()
("X', 'Xavier')
>>> bob.next() # navigating "off the edge" raises KeyError
Traceback (most recent call Tast):
File "<stdin>", line 1, in ?
KeyError
>>> bob.set_location("M")
("M', 'Martin')

The sync method of a BSD database object flushes any changes to the datafile.

Accessing Relational Databases

Relational databases are a powerful, flexible way to store and retrieve many kinds
of data. There are many relational database implementations, which vary in scala-
bility and richness of features. The standard libraries do not include relational
database support; however, Python modules exist to access almost any relational
database, including Oracle, MySQL, DB/2, and Sybase.

The Python Database API defines a standard interface for Python modules that
access a relational database. Most third-party database modules conform to the API
closely, though not perfectly. This chapter covers Version 2.0 of the API.

Connection objects

The connect method constructs a database connection. The connection is used in
constructing cursors. When finished with a connection, call its close method to free
it. Databases generally provide a limited pool of connections, so a program should
not needlessly use them up.

The parameters of the connect method vary by module, but typically include dsn
(data source name), user, password, host, and database.

Transactions

Connections oversee transactions. A transaction is a collection of actions that must
execute atomically — completely, or not at all. For example, a bank transfer might
debit one account and credit another; this should be done within a single transac-
tion, as performing only one half of the transfer would obviously be unacceptable.

Chapter 14 4 Using Databases 35

Calling the commi t connection method completes the current transaction; calling
rol1back cancels the current transaction. Not all databases support transactions —
for example, Oracle does, MySQL doesn’t (yet). The commit method is always avail-
able; rol1back is only available where transaction support is provided.

Cursor objects

A cursor can execute SQL statements and retrieve data. The connection method
cursor creates and returns a new cursor. The cursor method execute(command
[.parameters]) executes the specified SQL statement command, passing any
necessary parameters. After executing a command that affects row data, the cursor
attribute rowcount indicates the number of rows altered or returned; and the
description attribute (described in the “Examining Relational Metadata” section)
describes the columns affected. After executing a command that selects data, the
method fetchone returns the next row of data (as a sequence, with one entry for
each column value). The method fetchmany ([size]) returns a sequence of

rows —up to size of them. The method fetchall returns all the rows.

After using a cursor, call its c1ose method to free it. Databases typically have a
limited pool of available cursors, so it is important to free cursors after use.

Example: “Sounds-Like” Queries

The example shown in Listing 14-3 uses the mxODBC module to look up people
whose names “sound like” another name. ODBC is a standard interface for rela-
tional databases; ODBC drivers are available for many databases, including Oracle
and MySQL. Therefore, the mxODBC module can handle most of the databases you
are likely to deal with. Listing 14-4 shows the output from the example.

Listing 14-3: Soundex.py

Replace this import with the appropriate one for your system:
import ODBC.Windows

J# Dictionary used for sounds-1ike coding

SoundexDict = {"B":"1","P":"1","F":"1","Vy":"1",
R A R A
"K":"Z","Q":"Z","X":"Z","Z":"2",
"DMit3, T3,

uLu:u4u ,
uMu:u5u,uNu:u5u,
"R":"6" ,

"A":"7","E":"7",":[":"7","O":"7","U":"7","Y":"7",
"H":"8","N":"8"}

Continued

2356

Part Il + Files, Data Storage, and Operating System Services

Listing 14-3 (continued)

These SQL statements may need to be tweaked for your database

(They work with MySQL)

CREATE_EMPLOYEE_SQL = """CREATE TABLE EMPLOYEE (
EMPLOYEE_ID INT NOT NULL,

FIRST_NAME VARCHAR(20) NOT NULL,

LAST_NAME VARCHAR(20) NOT NULL,

MANAGER_ID INT

)ll nn

DROP_EMPLOYEE _SQL="DROP TABLE EMPLOYEE"
INSERT_SQL = "INSERT INTO EMPLOYEE VALUES "

def SoundexEncoding(str):
"""Return the 4-character SOUNDEX code for a string. Take
first letter, then encode subsequent consonants as numbers.
Ignore repeated codes (e.g MM codes as 5, not 55), unless
separated by a vowel (e.g. SOS codes as 22)"""
if (str==None or str==""): return None
str = str.upper() # ignore case!
SoundexCode=str[0]
LastCode=SoundexDict[str[0]]
for char in str[l:]:
CurrentCode=SoundexDictl[char]
if (CurrentCode=="8"):
pass # Don't include, or separate used consonants
elif (CurrentCode=="7"):
LastCode=None # Include consonants after vowels
elif (CurrentCode!=LastCode): # Skip doubled letters
SoundexCode+=CurrentCode
if len(SoundexCode)==4: break # 1imit to 4 characters
Pad with zeroes (e.g. Lee is L000):
SoundexCode += "0"*(4-1en(SoundexCode))
return SoundexCode

Create the EMPLOYEE table
def CreateTable(Conn):
NewCursor=Conn.cursor()
try:
NewCursor.execute(DROP_EMPLOYEE_SQL)
NewCursor.execute(CREATE_EMPLOYEE_SQL)
finally:
NewCursor.close()
insert a new employee into the table
def CreateEmployee(Conn,DataValues):
NewCursor=Conn.cursor()
try:
NewCursor.execute(INSERT_SQL+DataValues)
finally:
NewCursor.close()

Do a sounds-like query on a name
def PrintUsersLike(Conn,Name):

Chapter 14 4 Using Databases 37/

if (Name==None or Name==""): return
print "Users with last name similar to",Name+":"
SoundexName = SoundexEncoding(Name)
QuerySQL = "SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME FROM"
QuerySQL+= " EMPLOYEE WHERE LAST_NAME LIKE '"+Name[O0]+"%'"
NewCursor=Conn.cursor()
try:

NewCursor.execute(QuerySQL)

for EmployeeRow in NewCursor.fetchall

if (SoundextEncoding(EmployeeRow[2]
print EmployeeRow

():
)==SoundexName) :
finally:

NewCursor.close()

if (__name__=="_main__"):
J pass clear_auto_commit=0, because MySQL doesn't support
J transactions (yet) and can't handle autocommit flag
J# Replace "MyDB" with your datasource name!
Conn=0DBC.Windows.Connect("MyDB",clear_auto_commit=0)
CreateTable(Conn)
CreateEmployee(Conn, ' (1,"Bob","Hilbert" ,Null)")
CreatekEmployee(Conn,'(2,"Sarah","Pfizer" ,Null)")
CreateEmployee(Conn,'(3,"Sandy","Lee",1)")
CreateEmployee(Conn, ' (4,"Pat","Labor",2)")
CreatekEmployee(Conn,'(5,"Larry","Helper" ,Null)")
PrintUserslLike(Conn,"Heilbronn")
PrintUsersLike(Conn,"Pfizer")
PrintUsersLike(Conn,"Washington")
PrintUsersLike(Conn,"Lieber")

Listing 14-4: Soundex output

Users with last name similar to Heilbronn:
(1.0, 'Bob', 'Hilbert")

(5.0, 'Larry', 'Helper'")

Users with last name similar to Pfizer:
(2.0, 'Sarah', 'Pfizer")

Users with last name similar to Washington:
Users with last name similar to Lieber:
(4.0, 'Pat', 'Labor')

Examining Relational Metadata

When a cursor returns data, the cursor attribute description is metadata—
definitions of the columns involved. A column’s definition is represented as a

seven-item sequence; description is a sequence of such definitions. The items in
the sequence are listed in Table 14-2.

2358

Part Il + Files, Data Storage, and Operating System Services

Table 14-2

Metadata Sequence Pieces
Index Data
0 Column name
1 Type code
2 Display size (in columns)
3 Internal size (in characters or bytes)
4 Numeric scale
5 Numeric precision
6 Nullable (if 0, no nulls are allowed)

For example, the following is metadata from the Employee table of the Soundex
example:

>>> mc.execute("select FIRST_NAME, MANAGER_ID from EMPLOYEE")
>>> mc.description

(('"FIRST_NAME', 12, None, None, 5, 0, 0), ('MANAGER_ID', 3,
None, None, 1, 0, 1))

The mxODBC module does not return display size and internal size.
/

Example: Creating Auditing Tables

Sometimes, it is useful to view old versions of data. For example, you may want to
know both someone’s current address and his or her old address. Or, a medical
database may track who changed a patient’s record, and when. One way to capture
this data is with a mirror table—whenever an insert or update or delete occurs
in the main table, a corresponding row is written to the mirror table. The mirror
rows contain data, a timestamp, and the ID of the editing user —therefore, they
provide a full audit trail of all data changes. Ideally, mirror rows should be inserted
in the same transaction as the data-manipulation, to ensure that the audit trail is
accurate.

The script shown in Listing 14-5 uses metadata to write SQL that creates a mirror
table for a data table. Listing 14-6 shows a sample of the script’s output.

Chapter 14 4 Using Databases

Listing 14-5: MirrorMaker.py

import ODBC.Windows

""" MirrorMaker builds mirror tables, for purposes of auditing.
For a table TABLEX, we create SQL to add a mirror table
TABLEX_M. The mirror table tracks version numbers, update
times, and updating users. """

Replace these constants with values for your database
SERVER_NAME = "MyDB"

USER_NAME = "eva"

PASSWORD = "destruction"

SAMPLE_TABLE = "EMPLOYEE"

J Metadata for the mirror table's special columns
VERSTON_NUMBER_COLUMN=("VERSTON_NUMBER",
0DBC.Windows .NUMERIC,None,None,0,0,0)
LAST_UPDATE_COLUMN=("LAST_UPDATE",
0DBC.Windows.TIMESTAMP,None,None,0,0,0)
UPDATE_USER_COLUMN=("UPDATE_USER_ID",
0DBC.Windows.NUMERIC,None,None,0,0,0)

def CreateColumnDefSQL(ColumnTuple):
ColumnSQL = ColumnTuplel[0] #fname
ColumnSQL += " "
The mx0DBC function sqltype returns the SQL name of a
(numeric) column type. (For a different database
module, you may need to code this translation yourself.)
OracleColumnType = 0DBC.Windows.sqltypelColumnTuplel[1]]
ColumnSQL += OracleColumnType
width of character fields
if (OracleColumnType == "VARCHARZ" or
OracleColumnType == "VARCHAR"):
Internal size not returned by mxODBC; so, use scale
ColumnSQL += "("+ ColumnTuple[4] +")" # width
if (OracleColumnType == "NUMBER"):
if (ColumnTuplel[4]): # precision+scale
ColumnSQL += "(" + “ColumnTuplel[4]" +
"L+ ColumnTuplel5]1°+")" #
if (ColumnTuplel61): # nullable
ColumnSQL += " NULL"
else:
ColumnSQL += " NOT NULL"
return ColumnSQL

def CreateMirrorTableDefSQL(MyConnection,TableName):
MyCursor = MyConnection.cursor()
This query returns no rows (because 1!=2), but returns
J## metadata (the definitions of each column in the table).

Continued

239

240

Part Il + Files, Data Storage, and Operating System Services

Listing 14-5 (continued)

J# Analogous to the SQL command "describe TABLENAME".

MyCursor.execute("SELECT * from "+TableName+" where 1=2");

SQLString = "CREATE TABLE "+TableName+"_M ("
Loop through columns, and create DDL for each
FirstColumn=1
for ColumnInfo in MyCursor.description:

if (FirstColumnl!=1):

SQLString=SQLString+","

FirstColumn=0

SQLString += "\n"+CreateColumnDefSQL(ColumnInfo)
Add SQL to create the special mirror-table columns

SQLString += ",\n" +
CreateColumnDefSQL(VERSION_NUMBER_COLUMN)
SQLString += ",\n" +

CreateColumnDefSQL(LAST_UPDATE_COLUMN)
SQLString += ",\n" +
CreateColumnDefSQL(UPDATE_USER_COLUMN)
SQLString += "\n)\n"
MyCursor.close()
return SQLString
if (__name__=="_main__"):
MyConnection =
0DBC.Windows.Connect (SERVER_NAME,USER_NAME,PASSWORD)
print CreateMirrorTableDefSQL(MyConnection, SAMPLE_TABLE)

Listing 14-6: MirrorMaker output

CREATE TABLE EMPLOYEE_M (
EMPLOYEE_ID DECIMAL NOT NULL,
FIRST_NAME VARCHAR(O) NOT NULL,
LAST_NAME VARCHAR(O) NOT NULL,
MANAGER_ID DECIMAL NULL,
VERSTON_NUMBER NUMERIC NOT NULL,
LAST_UPDATE TIMESTAMP NOT NULL,
UPDATE_USER_ID NUMERIC NOT NULL
)

Advanced Features of the DB API

Relational databases feature various column types, such as INT and VARCHAR. A
database module should export constants describing these datatypes; these con-
stants are used in description metadata. For example, the following code checks
a column type (12) against a module-level constant (VARCHAR):

Chapter 14 4 Using Databases

>>> MyCursor.execute("SELECT EMPLOYEE_NAME from EMPLOYEE where
FIRST_NAME="'Bob'")

>>> MyCursor.description[0]

("FIRST_NAME', 12, None, None, 3, 0, 0)

>>> MyCursor.description[0][1]==0DBC.Windows.VARCHAR

1

Some column types, such as dates, demand a particular kind of data. A database
module should export functions to construct date, time, and timestamp values. For
example, the function Date(year,month,day) constructs a date value (suitable for
insertion into the database) corresponding to the given year, month, and day. The
module mxDateTime provides the preferred implementation of date and time objects.

Input and output sizes

The cursor attribute arraysize specifies how many rows, by default, to return in
each call to fetchmany. It defaults to 1, but you can increase it if desired. Manipulating
arraysize is more efficient than passing a size parameter to fetchmany:

>>> MyCursor.execute("SELECT FIRST_NAME FROM EMPLOYEE")
>>> MyCursor.rowcount # total fetchable rows

5
>>> MyCursor.fetchmany() # default arraysize is 1
[('Bob',)]

>>> MyCursor.arraysize=5 # get up to 5 rows at once
>>> MyCursor.fetchmany() # (only 4 left, so I don't get 5)
[('"Sarah',), ('Sandy',), ('Pat',), ('Larry',)]

The cursor methods setinputsizes(size) and setoutputsize(size
[,columnindex]) let you set an “expected size” for columns before executing a
SQL statement. These methods are optional, and exist to improve performance and
memory usage.

The size parameter for setinputsizes is a sequence. Each entry in size should
specify the maximum length for each parameter. If an entry in size is None, then no
block of memory will be set aside for the corresponding parameter value (this is
the default behavior).

The method setoutputsize sets a maximum buffer size for data read from large
columns (LONG or BLOB). If columnindex is not specified, the buffer size is set for
all large columns in the result sequence. For example, the following code limits the
data read from the long DESCRIPTION column to 50 characters:

>>> MyCursor.setoutputsizes(1,50)

>>> MyCursor.execute("select GAME_NAME, DESCRIPTION from GAME")
>>> MyCursor.fetchone()

('005", ' You play a spy who must take a briefcase and suc')

241

247 Partll + Files, Data Storage, and Operating System Services

Reusable SQL statements

Before a SQL statement can be executed, it must be parsed. Vendors such as Oracle
cache recently parsed SQL commands so that the commands need not be re-parsed
if they are used again. Therefore, you should build re-usable SQL statements with
marked parameters, instead of hard-coded values. This way, the parameters can be
passed into the execute method. The following example re-uses the same SQL
statement to query a video game database twice:

>>> SQLQuery = "select GAME_NAME from GAME where GAME_ID = 7"
>>> MyCursor.execute(SQLQuery, (60,)) # tuple provides ID of 60
>>> MyCursor.fetchall()

[('Air Combat 22',)]

>>> MyCursor.execute(SQLQuery, (200,)) # no need to re-parse SQL
>>> MC.fetchall()

[('Badlands',)]

The syntax for parameter marking is described by the module variable paramstyle
(see the next section, “Database library information”). The cursor method
executemany (command,parametersequence) runs the same SQL statement
command many times, once for each collection of parameters in parametersequence.

Database library information
The module variable apilevel is a string describing the supported DB API level. It
should be either 1.0 or 2.0; if it is not available, assume the supported API level is 1.0.

The module variable threadsafety describes what level of concurrent access the
module supports:

Threads may not share the module

Threads may share the module

Threads may share connections

w N = O

Threads may share cursors

The module variable paramstyle describes which style of parameter marking the
module expects to see in SQL statements. Following are the legal values of param-
style and an example of such a marked parameter:

gmark WHERE NAME=?
numeric WHERE NAME-=.1
named WHERE NAME=.name
format WHERE NAME=%s

pyformat WHERE NAME=%(name)s

Error hierarchy

Database warnings and errors are subclasses of the class StandardError from the
module exceptions. You can catch the Error class to do general error handling, or
catch more specific exceptions. Figure 14-1 shows the inheritance hierarchy of
database exceptions. See Table 14-3 for a description of each exception.

Chapter 14 4 Using Databases

Database Exceptions

exceptions.StandardError

Error Warning
I
I I
InterfaceError DatabaseError
NotSupportedError ProgrammingError
OperationalError DataError
IntegrityError —

Figure 14-1: Database exception class hierarchy

Table 14-3
Database Exceptions

Type Meaning

Warning Significant warnings, such as data-value truncation during insertion.

Error Base class for other errors. Not raised directly.

InterfaceError Raised when the database module encounters an internal error.
An InterfaceError stems from the database module, not the
database itself.

DatabaseError Errors relating to the database itself. Mostly used as a base class
for other errors.

DataError Errors due to invalid data, such as an out-of-range numeric value.

Continued

243

244 Partll + Files, Data Storage, and Operating System Services

Table 14-3 (continued)

Type

Meaning

OperationalError
IntegrityError
InternalError

ProgrammingError

NotSupportedError

Operational errors, such as a failure to connect to the database.
Data integrity errors, such as a missing foreign key.
Internal database error, such as a cursor becoming disconnected.

Invalid call to the database module; for example, trying to use a
cursor that has been closed, or calling fetch on a cursor before
executing a command that returns data.

Some portions of the DB API are optional. A module that does
not implement optional methods may raise NotSupportedError if
you attempt to call them.

Summary

Python’s standard libraries include powerful tools for handling dictionaries on disk.
Modules implementing the Python Database API permit easy access to relational
databases. In this chapter, you:

4 Learned about Python’s flavors of dbm.

4 Stored and retrieved dictionary data on disk.

4 Looked up employees with a “sounds-like” query.

4 Used table metadata to easily build new relational tables.

In the next chapter, you learn how to harness Python for networking.

¢+

Networking and 1]
the Internet

+ 0+ o+

Chapter 15
Networking

Chapter 16
Speaking Internet
Protocols

Chapter 17
Handling Internet
Data

Chapter 18
Parsing XML and
Other Markup
Languages

¢+ 4+ o+

Networking

The modules covered in this chapter teach you everything
you need to know to communicate between programs on
a network. The networking topics covered here don’t require
more than one computer, however; you can use networking
for interprocess communication on a single machine.

Networking Background

This section provides a brief introduction to some of the
terms you’ll encounter in the rest of this chapter.

A socket is a network connection endpoint. When your Web
browser requests the main Web page of www.python.org, for
example, your Web browser creates a socket and instructs it
to connect to the Web server hosting the Python Web site,
where the Web server is also listening on a socket for incom-
ing requests. The two sides use the sockets to send messages
and other data back and forth.

When in use, each socket is bound to a particular IP address
and port. An IP address is a sequence of four numbers in the
range of 0 to 255 (for example, 173.15.20.201); port numbers
range from 0 to 65535. Port numbers less than 1024 are

reserved for well-known networking services (a Web server, for

example, uses port 80); the maximum reserved value is stored
in the socket module’s TPPORT_RESERVED variable. You can

use other port numbers for your own programs, although tech-

nically, ports 1024 to 5000 (socket . IPPORT_USERRESERVED)

are used for officially registered applications (although nobody

will yell at you for using them).

Not all IP addresses are visible to the rest of the world. Some,
in fact, are specifically reserved for addresses that are never
public (such as addresses of the form 192.168.y.z or 10.x.y.z).
The address 127.0.0.1 is the localhost address; it always refers
to the current computer. Programs can use this address to
connect to other programs running on the same machine.

C HIA P IL.ER

+ 0+ o+
In This Chapter

Networking
background

Working with
addresses and host

names

Communicating with
low-level sockets

Example: a multicast
chat application

Using SocketServers

Processing Web
browser requests

Handling multiple
requests without
threads

¢+ 4+ 0+

248 Partlil 4+ Networking and the Internet

Remembering more than a handful of I[P addresses can be tedious, so you can also
pay a small fee and register a host name or domain name for a particular address
(not surprisingly, more people visit your Web site if they can point their Web
browser at www.threemeat.com instead of 208.114.27.12). Domain Name Servers
(DNS) handle the task of mapping the names to the IP addresses. Every computer
can have a host name, even if it isn’t an officially registered one.

Exactly how messages are transmitted through a network is based on many factors,
one of which is the different protocols that are in use. Many protocols build upon
simpler, lower-level protocols to form a protocol stack. HTTP, for example, is the
protocol used to communicate between Web browsers and Web servers, and it is
built upon the TCP protocol, which is in turn built upon a protocol named IP.

When sending messages between two programs of your own, you usually choose
between the TCP and UDP protocols. TCP creates a persistent connection between
two endpoints, and the messages that you send are guaranteed to arrive at their
destination and to arrive in order. UDP is connectionless, a bit faster, but less reli-
able. Messages you send may or may not make it to the other end; and if they do
make it, they might arrive out of order. Occasionally, more than one copy of a
message makes it to the receiver, even if you sent it only once.

You can find volumes full of additional information on networking; this section
doesn’t even scratch the surface. It does, however, give you a head start on under-
standing the following sections.

Working with Addresses and Host Names

The socket module provides several functions for working with host names and
addresses.

‘\lote The socket module is a very close wrapper around the C socket library; and like
~— the C version, it supports all sorts of options. This chapter covers the most
common and useful features of sockets; consult the Winsock help file or the
UNIX socket man pages for coverage of more arcane features. In many cases, the
socket module defines variables that map directly to the C equivalent (for
example, socket.IP_MAX_MEMBERSHIPS is equivalent to the C constant of the

same name).

gethostname() returns the host name for the computer on which the program is
running:

>>> import socket
>>> socket.gethostname()
"endor'

Chapter 15 4 Networking

gethostbyname(name) tries to resolve the given host name to an IP address. First
a check is made to determine whether the current computer can do the translation.
If it doesn’t know, a request is sent to a remote DNS server (which in turn may ask
other DNS servers too). gethostbyname returns the name or raises an exception if
the lookup fails:

>>> socket.gethostbyname('endor")
'10.0.0.6"

>>> socket.gethostbyname('www.python.org")
'132.151.1.90"

An extended form, gethostbyname_ex(name), returns a 3-tuple consisting of the
primary host name of the given address, a list of alternative host names for the
same [P address, and a list of other IP addresses for the same interface on that
same host (both lists may be empty):

>>> socket.gethostbyname('www.yahoo.com")
'64.58.76.178"

>>> socket.gethostbyname_ex('www.yahoo.com')

('"www.yahoo.akadns.net', ['www.yahoo.com'],

['64.58.76.178"', '64.58.76.176"', '216.32.74.52",
'216.32.74.50", '64.58.76.179', '216.32.74.53",
'64.58.76.177"', '216.32.74.51"', '216.32.74.55"'7])

The gethostbyaddr(address) function does the same thing, except that you
supply it an IP address string instead of a host name:

>>> socket.gethostbyaddr('132.151.1.90")
('parrot.python.org', ['www.python.org'], ['132.151.1.90'1)

getservbyname(service, protocol) takes a service name (such as ‘telnet’ or
‘ftp”) and a protocol (such as ‘tcp’ or ‘udp’) and returns the port number used by
that service:

>>> socket.getservbyname('http', 'tcp")

80

>>> socket.getservbyname('telnet',"tcp"')

23

>>> socket.getservbyname('doom', "udp')

666 4 id Software registered this for the game "Doom"

Often, non-Python programs store and use IP addresses in their 32-bit packed form.
The inet_aton(ip_addr) and inet_ntoa(packed) functions convert back and
forth between this form and an IP address string:

>>> socket.inet_aton('177.20.1.201")
"\261\024\001\311" # A 4-byte string

>>> socket.inet_ntoa('"\x7F\x00\x00\x01")
'127.0.0.1"

249

250

Part Il 4 Networking and the Internet

socket also defines a few variables representing some reserved IP addresses.
INADDR_ANY and INADDR_BROADCAST are reserved IP addresses referring to any IP
address and the broadcast address, respectively; and INADDR_LOOPBACK refers to
the loopback device, always at address 127.0.0.1. These variables are in the
numeric 32-bit form.

The getfgdn([name]) function returns the fully qualified domain name for the given
hostname (if omitted, it returns the fully qualified domain name of the local host):

>>> socket.getfqgdn('")
"dialup84.Tasal.net’

\ getfqgdn was new in Python 2.0.

Communicating with Low-Level Sockets

Although Python provides some wrappers that make using sockets easier (you’ll
see them later in this chapter), you can always work with sockets directly too.

Creating and destroying sockets

The socket(family, typel, proto]) function in the socket module creates a
new socket object. The fami 1y is usually AF_INET, although others such as AF_IPX
are sometimes available, depending on the platform. The type is most often
SOCK_STREAM (for connection-oriented, reliable TCP connections) or SOCK_DGRAM
(for connectionless UDP messages):

>>> from socket import *
>>> s = socket (AF_INET,SOCK_STREAM)

The combination of family and type usually implies a protocol, but you can specify
it using the optional third parameter to socket using values such as IPPROTO_TCP
or IPPROTO_RAW. Instead of using the IPPROTO_ variables, you can use the
getprotobyname(proto) function:

>>> getprotobyname('tcp')
6

>>> IPPROTO_TCP
6

fromfd(fd, family, typel, proto]) is a rarely used function for creating a
socket object from an open file descriptor (returned from a file’s fileno()
method). The descriptor should be connected to a real socket, and not to a file. The
fileno() method of a socket object returns the file descriptor (an integer) for this
socket. See the section “Handling Multiple Requests Without Threads” later in this
chapter for an idea of where this might be useful.

Chapter 15 4 Networking

When you are finished with a socket object, you call the cTose() method, after
which no further operation on the object will succeed (sockets are automatically
closed when they are garbage collected, but it’s a good idea to explicitly close them
when possible, both to free up resources sooner and to make your program
clearer). Alternatively, you can use the shutdown (how) method to close one or
both halves of a connection. Passing a value of 0 prevents the socket from receiving
any more data, 1 prevents any additional sends, and 2 prevents additional transmis-
sion in either direction.

Connecting sockets

When two sockets connect (via TCP, for example), one side listens for and accepts
an incoming connection, and the other side initiates that connection. The listening
side creates a socket, calls bind(address) to bind it to a particular address and
port, calls Tisten(backlog) to listen for incoming connections, and finally calls
accept() to accept the new, incoming connection:

>>> s = socket(AF_INET,SOCK_STREAM)

>>> s.bind(('127.0.0.1",44444))

>>> s.listen(1)

>>> q,v = s.accept() # Returns socket g and address v

Note that the preceding code will block or appear to hang until a connection is pre-
sent to be accepted. No problem; just initiate a connection from another Python
interpreter. The connecting side creates a socket and calls connect (address):

>>> s = socket(AF_INET,SOCK_STREAM)
>>> s.connect(('127.0.0.1",44444))

At this point, the first side of the connection uses socket q to communicate with the
second side, using socket s. To verify that they are connected, enter the following
line on the first, or server, side:

>>> q.send('Hello from Python!")
18 @code:# Number of bytes sent

On the other side, enter the following:

>>> s.recv(1024) # Receive up to 1024 bytes
'Hello from Python!'

The addresses you pass to bind and connect are 2-tuples of (ipAddress,port) for
AF_INET sockets. Instead of connect, you can also call the connect_ex(address)
method. If the underlying call to the C connect returns an error, connect_ex will
also return an error (or 0 for success), instead of raising an exception.

251

252

Part Il 4 Networking and the Internet

When you call 1isten, you pass in a number specifying the maximum number of
incoming connections that will be placed in a wait queue. If more connections
arrive when the queue is full, the remote side is informed that the connection was
refused. The SOMAXCONN variable in the socket module indicates the maximum size
the wait queue can be.

The accept () method returns an address of the same form used by bind and
connect, indicating the address of the remote socket. The following uses the
v variable from the preceding example:

>>> v
('127.0.0.1", 1039)

UDP sockets are not connection-oriented, but you can still call connect to
associate a socket with a given destination address and port (see the next section
for details).

Sending and receiving data

send(stringl[, flags]) sends the given string of bytes to the remote socket.
sendto(stringl, flags], address) sends the given string to a particular
address. Generally, the send method is used with connection-oriented sockets, and
sendto is used with non-connection—-oriented sockets, but if you call connect on a
UDP socket to associate it with a particular destination, you can then call send
instead of sendto.

Both send and sendto return the number of bytes that were actually sent. When
sending large amounts of data quickly, you may want to ensure that the entire
message was sent, using a function like the following:

def safeSend(sock,msg):
sent = 0
while msg:
i = sock.send(msg)
if i == -1: # Error
return -1
sent += i
msg = msg[i:]
time.sleep(25) # Wait a 1ittle while the queue empties
return sent

This keeps resending part of the message as needed until the entire message has
been sent.

An even better solution to this problem is to avoid sending data until you know at
~, least some if it can be written. See “Handling Multiple Requests Without Threads”

"4 |ater in this chapter for details.

Chapter 15 4 Networking 253

The recv(bufsizel,flags]) method receives an incoming message. If a lot of data
is waiting, it returns only the first bufsize bytes that are waiting. recvfrom
(bufsize[,flags]) does the same thing, except that with AF_INET sockets the
return value is (data, (ipAddress,port)) so that you can see from where the
message originated (this is useful for connectionless sockets).

The send, sendto, recv, and recvfrom methods all take an optional f1ags
parameter that defaults to 0. You can use a bitwise-OR on any of the socket .MSG_*
variables to create a value for f1ags. The values available vary by platform, but
some of the most common are listed in Table 15-1.

Table 15-1
Flag Values for send and recv
Flag Description
MSG_00B Process out-of-band data.
MSG_DONTROUTE Don't use routing tables; send directly to the interface.
MSG_PEEK Return the waiting data without removing it from the queue.

For example, if you have an open socket that has a message waiting to be received,
you can take a peek at the message without actually removing it from the queue of
incoming data:

>>> q.recv (1024 ,MSG_PEEK)

"Hello!"'

>>> q.recv(1024,MSG_PEEK) # You could call this over and over.
"Hello!"'

The makefile([mode[, bufsize]]l) method returns a file-like object wrapping
this socket, so that you can then pass it to code that expects a file argument (or
maybe you prefer to use file methods instead of send and recv). The optional
mode and bufsize parameters take the same values as the built-in open function.

B Chapter 8 explains the use of files and filelike objects.
Reference

Using socket options

A socket object’s getpeername() and getsockname () methods both return a 2-
tuple containing an IP address and a port (just as you’d pass to connect or bind).
getpeername returns the address and port of the remote socket to which it is con-
nected, and getsockname returns the same information for the local socket.

By default, sockets are blocking, which means that socket method calls don’t return
until the action completes. For example, if the outgoing buffer is full and you try to

254

Part Il 4 Networking and the Internet

Tip

send more data, the call to send will try to block until it can put more data into the
buffer. You can change this behavior by calling the setblocking(flag) method
with a value of 0. When a socket is nonblocking, it will raise the error exception if
the requested action would cause it to block One useful application of this behavior
is that you can create servers that shut down gracefully:

= socket (AF_INET,SOCK_STREAM)
.bind(('10.0.0.6",55555))
.listen(5)
.setblocking(0)
hile bKeepGoing:

try:

q,v = s.accept()
except error:

=0 ononon

q = None
if q:
processRequest(q,v)
else:

time.sleep(0.25)

This server continuously tries to accept a new connection and send it off to the fic-
tional processRequest function. If a new connection isn’t available, it sleeps for a
quarter of a second and tries again. This means that some other part of your pro-
gram can set the bKeepGoing variable to 0, and the preceding loop will exit.

Another approach is to call select or pol1 on your listen socket to detect when
~, anew connection has arrived. See “Handling Multiple Requests Without Threads”

"4 Jlater in this chapter for more information.

Other socket options can be set and retrieved with the setsockopt(Tevel, name,
value) and getsockopt(Tevel, name[, buflen]) methods. Sockets represent
several layers of a protocol stack, and the 1evel parameter specifies at what level
the option should be applied. (For example, the option may pertain to the socket
itself, an intermediate protocol such as TCP, or a lower protocol such as IP.) The
values for Tevel start with SOL_ (SOL_SOCKET, SOL_TCP, and so on). The name of
the option identifies exactly which option you're talking about, and the socket
module defines whatever option names are available on your platform.

The C version of setsockopt requires that you pass in a buffer for the value
parameter, but in Python you can just pass in a number if that particular option
expects a numeric value. You can also pass in a buffer (a string), but it’s up to you
to make sure you use the proper format. With getsockopt, not specifying the
buflen parameter means you're expecting a numeric value, and that’s what it
returns. If you do supply buflen, getsockopt returns a string representing a
buffer, and its maximum length will be buf1en bytes.

Although there’s a ton of options in existence, Table 15-2 lists some of the more
common ones you'll need, along with what type of data the value parameter is sup-
posed to be. For example, use the following to set the send buffer size of a socket to
about 64 KB:

Chapter 15 4 Networking 255

>>> s = socket(AF_INET,SOCK_STREAM)
>>> s.setsockopt(SOL_SOCKET, SO_SNDBUF, 65535)

To get the time-to-live (TTL) value or number of hops a packet can make before
being discarded by a router, use this:

>>> s.getsockopt(SOL_IP, IP_TTL)
32

See the sample chat application in the next section for more examples of using
setsockopt.

Table 15-2
Common setsockopt and getsockopt Options

Option Name Value Description

Options for SOL_SOCKET

SO_TYPE (Get only) Socket type (for example, SOCK_STREAM)
SO_ERROR (Get only) Socket's last error

SO_LINGER Boolean Linger on close if data present

SO_RCVBUF Number Input (receive) buffer size

SO_SNDBUF Number Output (send) buffer size

SO_RCVTIMEO Time struct! Input (receive) timeout delay

SO_SNDTIMEO Time struct' Output (send) timeout delay
SO_REUSEADDR Boolean Enable multiple users of a local address/port

Options for SOL_TCP

TCP_NODELAY Boolean Send data immediately instead of waiting for
minimum send amount

Options for SOL_IP

IP_TTL 0-255 Maximum number of hops a packet can travel

IP_MULTICAST_TTL 0-255 Maximum number of hops a packet can travel

IP_MULTICAST_IF inet_aton(ip) Select interface over which to transmit

IP_MULTICAST_LOOP Boolean Enable sender to receive a copy of multicast
packets it sends out

IP_ADD_MEMBERSHIP ip_mreq? Join a multicast group

IP_DROP_MEMBERSHIP ip_mreq? Leave a multicast group

1 The struct is two C long variables to hold seconds and microseconds.

2 The struct is the concatenation of two calls to inet_aton —one for multicast address and one for local address.

256

Part Il 4 Networking and the Internet

Converting numbers

Because the byte ordering can vary by platform, a network order specifies a stan-
dard ordering to use when transferring numbers across a network. The nthol(x)
and ntohs(x) functions take a network number and convert it to the same number
using the current host’s byte ordering, and the htonl(x) and htons (x) functions
convert in the other direction (if the current host has the same byte ordering as
network order, the functions do nothing):

>>> import socket
>>> socket.htons(20000) # Convert a 16-bit value

8270

>>> socket.hton1(20000) # Convert a 32-bit value
541982720

>>> socket.ntohl1(541982720)

20000

Example: A Multicast Chat Application

The example in this section combines material from several chapters to create a
chat application that also enables you to draw on a shared whiteboard, as shown in

Figure 15-1.

Boh chatting on channel 235.0.50.5:54321

[Bob joined the chat)
EBob: Hella?

Fred: HiBob

Joe: Howdy! \
e Wwho wants to play hangman?

Fred: Me

Eob: 'l watch

Joe: Ok... here goes

Eiob: I that supposed to be 4 characters?
Joe: eah

Fred: Let's play tic tac toe instead

Joe: The board appears to have left the 2D plane and iz now —_—
falling away

Fred: I'd fix it but there's no eraze buttan. [
Eob: Lame

e Bob, you gueszed my hangman word!

[»

I Guit |

Figure 15-1: The chat/whiteboard application in action

Instead of using a client/server model, the program uses multicast sockets for its
communication. When you send a message to a multicast address (those addresses
in the range from 224.0.0.1 to 239.255.255.255, inclusive), the message is sent to all
computers that have joined that particular multicast group. This provides a simple
way to send messages to any number of other computers, without having to keep

Chapter 15 4 Networking

track of which computers are listening. (This could also be considered a security
hole —were this a “real-world” application, you’d want to encrypt the messages or
use some other means to prevent eavesdropping.)

Save the program in Listing 15-1 to a file named multichat.py. To start the applica-
tion, specify on the command line your name or alias and your color. The color is
passed to Tkinter (the module in charge of the user interface), so normal color
names such as blue or red work, but you can also use any of Tkinter’s niftier colors:

C:\temp> python multitest.py Bob SlateBlue4

You don’t need several computers to try this program out; just start multiple copies
and watch them interact.

r Cross- This application uses Tkinter for its user interface. To learn more about

\@ Tkinter, see Chapters 19 and 20. It also uses threads, which you can learn about
in Chapter 26. Finally, read Chapter 12 to learn about serializing Python objects
with pickle and cPickle.

Listing 15-1: multichat — Multicast chat/
whiteboard application

from Tkinter import *
from socket import *
import cPickle, threading, sys

Each message is a command + data
CMD_JOINED,CMD_LEFT,CMD_MSG,CMD_LINE,CMD_JOINRESP = range(5)
people = {) # key = (ipaddr,port), value = (name,color)

def sendMsg(msg):
sendSock.send(msg,0)

def onQuit():
"User clicked Quit button’
sendMsg(chr(CMD_LEFT)) 4 Notify others that I'm leaving
root.quit()

def onMove(e):
'Called when LButton is down and mouse moves'
global TlastlLine,mx,my
canvas.delete(lastlLine) # Erase temp Tline
mx,my = e.x,e.y

Draw a new temp Tine
lastlLine = \
canvas.create_line(dx,dy,mx,my,width=2,fi11="Black")

Continued

257

258 Partlil 4 Networking and the Internet

Listing 15-1 (continued)

def onBDown(e):
'"User pressed left mouse button’
global TastlLine,dx,dy,mx,my
canvas.bind('<Motion>',onMove) # Start receiving move msgs
dx,dy e.x,e.y
mx,my = e.x,e.y

Draw a temporary line
lastLine = \
canvas.create_line(dx,dy,mx,my,width=2,fill1="Black")

def onBUp(e):
'"User released left mouse button'’
canvas.delete(lastlLine) # Erase the temporary Tline
canvas.unbind('<Motion>') # No more move msgs, please!

Send out the draw-a-line command
sendMsg(chr(CMD_LINE)+cPickle.dumps((dx,dy,e.x,e.y),1))

def onEnter(foo):
'User hit the [Enter] key'
sendMsg(chr(CMD_MSG)+entry.get())
entry.delete(0,END) # Clear the entry widget

def setup(root):
'Creates the user interface’
global msgs,entry,canvas

The big window holding everybody's messages
msgs = Text(root,width=60,height=20)
msgs.grid(row=0,col=0,columnspan=3)

Hook up a scrollbar to see old messages
s = Scrollbar(root,orient=VERTICAL)
s.config(command=msgs.yview)
msgs.config(yscrollcommand=s.set)
s.grid(row=0,co1=3,sticky=N+S)

Where you type your message

entry = Entry(root)
entry.grid(row=1,col=0,columnspan=2,sticky=W+E)
entry.bind('<Return>',onEnter)
entry.focus_set()

b = Button(root,text="Quit',command=onQuit)
b.grid(row=1,col=2)

A place to draw

canvas = Canvas(root,bg="White")
canvas.grid(row=0,col=b)

Notify me of button press and release messages

def

Chapter 15 + Networking

canvas.bind('<ButtonPress-1>"',onBDown)
canvas.bind('<ButtonRelease-1>"',onBUp)

msgThread(addr,port,name):
"Listens for and processes messages'

J# Create a listen socket

s = socket(AF_INET, SOCK_DGRAM)
s.setsockopt(SOL_SOCKET,SO_REUSEADDR, 1)
s.bind(("",port))

Join the multicast group
s.setsockopt(SOL_IP,IP_ADD_MEMBERSHIP,\
inet_aton(addr)+inet_aton('"'))

while 1:
Get a msg and strip off the command byte
msg,msgFrom = s.recvfrom(2048)
cmd,msg = ord(msgl[0]),msgl[1:]

if cmd == CMD_JOINED: # New join
msgs.insert(END, '(%s joined the chat)\n' % msg)

Introduce myself
sendMsg(chr(CMD_JOINRESP)+ \
cPickle.dumps((name,myColor),1))

elif cmd == CMD_LEFT: # Somebody Teft
who = people[msgFrom][0]
if who == name: # Hey, _I_ left, better quit
break
msgs.insert(END, ' (%s Teft the chat)\n' % \
who,'color_"'+who)

elif cmd == CMD_MSG: # New message to display
who = peoplelmsgFrom][0]
msgs.insert(END,who, "color_%s' % who)
msgs.insert(END,"': %s\n' % msg)

elif cmd == CMD_LINE: # Draw a line
dx,dy,ex,ey = cPickle.loads(msg)
canvas.create_line(dx,dy,ex,ey,width=2,\
fill=peoplelmsgFrom][1])

elif cmd == CMD_JOINRESP: # Introducing themselves
peoplelmsgFrom] = cPickle.loads(msg)
who,color = people[msgFrom]

Create a tag to draw text in their color
msgs.tag_configure('color_' + who,foreground=color)

Continued

259

260 Partlil 4+ Networking and the Internet

Listing 15-1 (continued)

Leave the multicast group
s.setsockopt(SOL_IP,IP_DROP_MEMBERSHIP,\
inet_aton(addr)+inet_aton('"'))

if __name__ == '_main__":
argv = sys.argv
if len(argv) < 3:
print 'Usage:',argv[0], "<name> <color> "\
'[addr=<multicast address>] [port=<port>]'
sys.exit(l)

global name, addr, port, myColor
addr = '235.0.50.5" #f Default IP address
port = 54321 # Default port
name,myColor = argv[1:3]
for arg in argv[3:]:
if arg.startswith('addr="):
addr = arg[len('addr="):1]
elif arg.startswith('port="):
port = int(argllen('port="):1)

J# Start up a thread to process messages
threading.Thread(target=msgThread,\
args=(addr,port,name)).start()

This is the socket over which we send out messages
global sendSock

sendSock = socket(AF_INET,SOCK_DGRAM)
sendSock.setsockopt (SOL_SOCKET,SO_REUSEADDR, 1)
sendSock.connect((addr,port))

Don't let the packets die too soon
sendSock.setsockopt(SOL_IP,IP_MULTICAST_TTL,?2)

Create a Tk window and create the GUI

root = Tk()

root.title('%s chatting on channel %s:%d' % \
(name,addr,port))

setup(root)

Join the chat!
sendMsg(chr(CMD_JOINED)+name)
root.mainloop()

,/ﬂ\lote Although this application will work on a local network, it may have trouble work-
ing between computers on the Internet. Some routers are configured to ignore
multicast data packets, and the time-to-live (TTL) setting for the packets must be
high enough to make the necessary number of hops between each computer.

Chapter 15 4 Networking

As with most Python programs, this one packs a lot of punch in very few lines of
code (it weighs in at about 120 lines, ignoring comments). The first thing to note is
the msgThread function, which creates a socket to listen for incoming multicast
messages. It uses the SO_REUSEADDR socket option to enable you to run multiple
copies on one computer (otherwise, bind would complain that someone else was
already bound to that address and port). It also uses IP_ADD_MEMBERSHIP to join a
multicast group, and IP_DROP_MEMBERSHIP to leave it. The first byte of each mes-
sage is a predefined command character, which msgThread uses to determine what
to do with the message.

When you type a message into the text entry box at the bottom of the dialog box,
onEnter sends the text from the entry box to the multicast channel. Likewise,
pressing the left mouse button, dragging a line, and releasing it causes onBUp to
send the message to draw a new line. Note that neither of these actually displays a
message or draws a line—they just send a message to the multicast group, and all
running copies, including the one that originated the message, receive the message
and process it. The socket that sends these messages doesn’t need to join the mul-
ticast group; anyone can send to a group, but only members can receive messages.

When msgThread calls recvFrom to get a new message, it also gets the IP address
and port of the sender. The program uses this tuple as a dictionary key to map to
the name and color of the sender (each line is drawn in the sender’s color, as is that
user’s name when they send a text message).

One final thing to note is how the listening thread decides when to shut down.
When you click the Quit button, the application notifies everyone that you are
leaving the chat group. Your listener also hears this message, and recognizing that
the sender is itself, it stops waiting for more messages.

Using SocketServers

AI ote

The SocketServer module defines a base class for a group of socket server
classes —classes that wrap up and hide the details of listening for, accepting, and
handling incoming socket connections.

The SocketServer family

TCPServer and UDPServer are SocketServer subclasses that handle TCP and UDP
messages, respectively.

SocketServer also provides UnixStreamServer (a child class of TCPServer)

~—— and UnixDatagramServer (a child of UDPServer), which are the same as their

parent classes except that the listening socket is created with a family of AF_UNTX
instead of AF_INET.

261

262

Part Il 4 Networking and the Internet

By default, the socket servers handle connections one at a time, but you can use the
ThreadingMixIn and ForkingMixIn classes to create threading or forking versions
of any SocketServer. In fact, the SocketServer module helpfully provides the fol-
lowing classes to save you the trouble: ForkingUDPServer, ForkingTCPServer,
ThreadingUDPServer, ThreadingTCPServer, ThreadingUnixStreamServer, and
ThreadingUnixDatagramServer. Obviously, the threading versions work only on
platforms that support threads, and the forking versions work on platforms that
support 0s.fork.

r Cross- See Chapter 7 for an overview of mix-in classes, Chapter 11 for forking, and
Reference \ Chapter 26 for threads.

SocketServers handle incoming connections in a generic way; to make them useful,
you provide your own request handler class to which it passes a socket to handle. The
BaseRequestHandler class in the SocketServer module is the parent class of all
request handlers. Suppose, for example, that you need to write a multithreaded e-mail
server. First you create MailRequestHandler, a subclass of BaseRequestHandler,
and then you pass it to a newly created SocketServer:

import SocketServer
... # Create your MailRequestHandler class here

addr

= 75.15.30.2"', 25) # Listen address and port
server

"1
SocketServer.ThreadingTCPServer(addr,
MailRequestHandler)

(

server.serve_forever()

Each time a new connection comes in, the server creates a new MailRequestHandler
instance object and calls its hand1e () method so it can process the new request.
Because the server is derived from ThreadingTCPServer, with each new request it
starts a separate thread to handle the request, so that multiple requests will be
processed simultaneously. Instead of calling server_forever, you can also call
handle_request(), which waits for, accepts, and processes a single connection.
server_forever merely calls handle_request in an infinite loop.

Don’t worry too much about the details of the request handler just yet; the next
section covers everything you need to know.

Normally, you can use one of the socket servers as is, but if you need to create your
own subclass, you can override any of the following methods to customize it.

When the server is first created, the __init__ function calls the server_bind()
method to bind the listen socket (self.socket) to the correct address
(self.server_address). It then calls server_activate() to activate the server
(by default, this calls the 1isten method of the socket).

The socket server doesn’t do anything until the user calls either of the
handle_request or serve_forever methods. handle_request calls
get_request() to wait for and accept a new socket connection, and then calls

Chapter 15 4 Networking

verify_request(request, client_address) to see if the server should
process the connection (you can use this for access control — by default,
verify_request always returns true). If it’s okay to process the request,
handle_request then calls process_request(request, client_address), and
then handle_error(request, client_address) if process_request raised an
exception. By default, process_request simply calls finish_request(request,
client_address); the forking and threading mix-in classes override this behavior
to start a new process or thread, and then call finish_request. finish_request
instantiates a new request handler, which in turn calls its hand1e () method. If you
want to subclass a SocketServer, trace through this sequence of calls once or
twice to make sure it makes sense to you, and review the source code of
SocketServer for help.

When a SocketServer creates a new request handler, it passes to the handler’s
__init__ function the self variable, so that the handler can access information
about the server.

The SocketServer’s fileno() method returns the file descriptor of the listen
socket. The address_family member variable specifies the socket family of the
listen socket (for example, AF_INET), and server_address holds the address to
which the listen socket is bound. The socket variable holds the listen socket itself.

Request handlers

Request handlers have setup(), handle(), and finish() methods (none of which
do anything by default) that you can override to add your custom behavior. Normally,
you need to override only the hand1e method. The BaseRequestHandler’s
__init__ function calls setup() for initialization work, handle () to service the
request, and finish() to perform any cleanup, although finish isn’t called if
handle or setup raise an exception. Keep in mind that a new instance of your
request handler is created for each request.

The request member variable has the newly accepted socket for stream (TCP)
servers; for datagram (UDP) servers, it is a tuple containing the incoming message
and the listen socket. c1ient_address holds the address of the sender, and
server has a reference to the SocketServer (through which you can access its
members, such as server_address).

The following example implements EchoRequestHandler, a handler that repeats
back to the remote side any data it sends:

>>> import SocketServer
>>> class EchoRequestHandler(SocketServer.BaseRequestHandler):
def handle(self):
print 'Got new connection!’
while 1:
msg = self.request.recv(1024)
if not msg:
break

263

264

Part Il 4 Networking and the Internet

print Received :',msg
self.request.send(msg)
R print 'Done with connection’
>>> server = SocketServer.ThreadingTCPServer(\
. ('127.0.0.1",12321),EchoRequestHandler)
>>> server.handle_request() # It'11 wait here for a connection
Got new connection!
Received : Hello!
Received : I Tike Tuesdays!
Done with connection

In another Python interpreter, you can connect to the server and try it out:

>>> from socket import *

>>> s = socket(AF_INET,SOCK_STREAM)
>>> s.connect(('127.0.0.1',12321))
>>> s.send('Hello!")

6

>>> print s.recv(1024)

Hello!

>>> s.send('I like Tuesdays!"')

16

>>> print s.recv(1024)

I 1Tike Tuesdays!

>>> s.close()

The SocketServer module also defines two subclasses of BaseRequestHandler:

StreamRequestHandler and DatagramRequestHandler. These override the setup
and finish methods and create two file objects, rfile and wfile, that you can use
for reading and writing data to the client, instead of using the usual socket methods.

Processing Web Browser Requests

Now that you have a SocketServer, what do you do with it? Why, extend it, of
course! The standard Python library comes with BaseHTTPServer,
SimpleHTTPServer,and CGIHTTPServer modules that implement increasingly
complex Web server request handlers.

Most likely, you would use them as starting points on which to build, but to some
extent they do work on their own as well. For example, how many lines does it take
to implement a multithreaded Web server that supports running CGI scripts? Well,
at a bare minimum, it takes the following:

import SocketServer,CGIHTTPServer
SocketServer.ThreadingTCPServer(('127.0.0.1"',80),\
CGIHTTPServer.CGIHTTPRequestHandler).serve_forever()

Point your Web browser to http://127.0.0.1/fi1e (where file is the name of
some text file in your current directory) and verify that it really does work.

Chapter 15 4 Networking 265

BaseHTTPRequestHandler

The starting class for a Web server request handler is BaseHTTPRequestHandler
(in the BaseHTTPServer module), a child of StreamRequestHandler. This class
accepts an HTTP connection (usually from a Web browser), reads and extracts the
headers, and calls the appropriate method to handle the request.

Subclasses of BaseHTTPRequestHand1er should not override the _init__ or
hand1e methods, but should instead implement a method for each HTTP command
they need to handle. For each HTTP command (GET, POST, and so on),
BaseHTTPRequestHandler calls its do_<command> method, if present. For
example, if your subclass needs to support the HTTP PUT command, just add a
do_PUT() method to your subclass and it will automatically be called for any
HTTP PUT requests.

The request handler stores the original request line in its raw_request instance
variable, and its parts in command (GET, POST, and so on), path (for example, /
index.html), and request_version (for example, HTTP/1.0). headers is an instance
of mimetools.Message, and contains the parsed version of the request headers.

r Cross- See Chapter 17 for more information about the mimetools.Message class.

M Alternatively, you can specify a different class to use for reading and parsing the
headers by changing the value of the BaseHTTPRequestHandler.
MessageClass class variable.

Use the rfile and wfile objects to read and write data. If the request has addi-
tional data beyond the request headers, rfile will be positioned at the beginning
of that data by the time the handler calls the appropriate do_<command> method.

BaseHTTPRequestHandler uses the value in server_version when writing out a
Server response header; you can customize this from its default of BaseHTTP/0.x.
Additionally, the protocol_version variable defaults to HTTP/1.0, but you can set
it to a different version if needed.

In your do_<command> method, the first output you send should be via the
send_response(code[, message]) method, where code is an HTTP code (such as
200) and message is an optional text message explaining the code. (If the request is
invalid, you can instead call send_error(code[, message]), and then return from
the command method.) When you call send_response, BaseHTTPRequestHandler
adds in Date and Server headers.

After a call to send_response, you can call send_header(key, value) as needed
to write out MIME headers; call end_headers () when you're done:

def do_GET(self):
self.send_response(200)
self.send_header('Content-type', "text/html")
self.send_header('Content-length', len(data))
self.end_headers()
{# send the rest of the d