









































































































































































































































































































































































































































































































































































































































































































































































































































	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Object-oriented Design
	Object-oriented?
	Objects and classes
	Specifying attributes and behaviors
	Data describes objects
	Behaviors are actions

	Hiding details and creating the public interface
	Composition and inheritance
	Inheritance
	Inheritance provides abstraction
	Multiple inheritance


	Case study
	Exercises
	Summary

	Chapter 2: Objects in Python
	Creating Python classes
	Adding attributes
	Making it do something
	Initializing the object
	Explaining yourself

	Modules and packages 
	Organizing the modules
	Absolute imports
	Relative imports


	Who can access my data?
	Case study
	Exercises
	Summary

	Chapter 3: When Objects are Alike
	Basic inheritance
	Extending built-ins
	Overriding and super

	Multiple inheritance
	The diamond problem
	Different sets of arguments

	Polymorphism
	Case study
	Exercises
	Summary

	Chapter 4: Expecting the Unexpected
	Raising exceptions
	Raising an exception
	What happens when an exception occurs?

	Handling exceptions
	Exception hierarchy
	Defining our own exceptions

	Exceptions aren't exceptional
	Case study
	Exercises
	Summary

	Chapter 5: When to Use Object-oriented Programming
	Treat objects as objects
	Using properties to add behavior to class data
	How it works
	Decorators: another way to create properties
	When should we use properties?

	Managing objects
	Removing duplicate code
	In practice
	Or we can use composition

	Case study
	Exercises
	Summary

	Chapter 6: Python Data Structures
	Empty objects
	Tuples and named tuples
	Named tuples

	Dictionaries
	When should we use dictionaries?
	Using defaultdict

	Lists
	Sorting lists

	Sets
	Extending built-ins
	Case study
	Exercises
	Summary

	Chapter 7: Python Object-oriented Shortcuts
	Python built-in functions
	Len
	Reversed
	Enumerate
	Zip
	Other functions

	Comprehensions
	List comprehensions
	Set and dictionary comprehensions
	Generator expressions

	Generators
	An alternative to method overloading
	Default arguments
	Variable argument lists
	Unpacking arguments

	Functions are objects too
	Using functions as attributes
	Callable objects

	Case study
	Exercises
	Summary

	Chapter 8: Python Design Patterns I
	Design patterns
	Decorator pattern
	Decorator example
	Decorators in Python

	Observer pattern
	Observer example

	Strategy pattern
	Strategy example
	Strategy in Python

	State pattern
	State example
	State versus strategy

	Singleton pattern
	Singleton implementation
	Module variables can mimic singletons

	Template pattern
	Template example

	Exercises
	Summary

	Chapter 9: Python Design Patterns II
	Adapter pattern
	Facade pattern
	Flyweight pattern
	Command pattern
	Abstract factory pattern
	Composite pattern
	Exercise
	Summary

	Chapter 10: Files and Strings
	Strings
	String manipulation
	String formatting
	Escaping braces
	Keyword arguments
	Container lookups
	Object lookups
	Making it look right

	Strings are Unicode
	Converting bytes to text
	Converting text to bytes

	Mutable byte strings

	File IO
	Placing it in context
	Faking files

	Storing objects
	Customizing pickles
	Serializing web objects

	Exercises
	Summary

	Chapter 11: Testing Object-oriented Programs
	Why test?
	Test-driven development

	Unit testing
	Assertion methods
	Additional assertion methods in Python 3.1

	Reducing boilerplate and cleaning up
	Organizing and running tests
	Ignoring broken tests

	Testing with py.test
	One way to do setup and cleanup
	A completely different way to set up variables
	Test skipping with py.test
	py.test extras

	How much testing is enough?
	Case Study
	Implementing it

	Exercises
	Summary

	Chapter 12: Common Python 3 Libraries
	Database access
	Introducing SQLAlchemy
	Adding and querying objects
	SQL Expression Language


	Pretty user interfaces
	TkInter
	PyQt
	Choosing a GUI toolkit

	XML
	ElementTree
	Constructing XML documents

	lxml

	CherryPy
	A full web stack?

	Exercises
	Summary

	Index

