
Web Development > Python Developer's Handbook See All Titles

Front Matter
Table of Contents
Index
About the Author

Python Developer's Handbook

André Dos Santos Lessa
Publisher: Sams Publishing

First Edition December 12, 2000
ISBN: 0-672-31994-2, 960 pages

Buy Print Version

The Python Developer’s Handbook is designed to expose experienced developers
to Python and its uses. Beginning with a brief introduction to the language and its
syntax, the book moves quickly into more advanced programming topics,
including embedding Python, network programming, GUI toolkits, JPython, Web
development, Python/C API, and more. Python is an interpreted, object-oriented
programming language. Its syntax is simple and easy to learn, and it encourages
programmers to write and think clearly. The Python Developer’s Handbook is
carefully written, well-organized introduction to this powerful, fast-growing
programming language for experienced developers.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
http://www.informit.com/safari/author_bio.asp?ISBN=0672319942
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/printed.asp?editor=informit&mode=add&locale=en-US-INFM02&CF__AUX_STORE_FRONT=IT&sku=0672319942&ofrurl=http%3A%2F%2Fsafari%2Eoreilly%2Ecom%2Fmain%2Easp

Web Development > Python Developer's Handbook > Introduction See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145093180142147166131082

Introduction
When I was a little kid, I had this dream where a snake would rule and dominate the entire world
(actually, I guess that a penguin was also part of the dream…but never mind). I didn't pay much
attention to the fact at that time because I thought the dream was caused by an overexposure to all those
Japanese series that were popping up on the screens. Later, in my teenage years, there was this science
project where I had to spend some time studying snakes to display at an exhibition. After analyzing
Red Tail boas and coral snakes, I found this 3-year old giant of 10 feet, 40+ pounds. Instantly, I
recognized that snake as being the same one that I had seen in my dream years before. Its name was
Python, but at that time, I still couldn't figure out what was the relationship between that reptile and the
world domination.

Fifteen years ago, I was trying to select a channel in my old TV set, when a special program caught my
attention—A huge animated foot was dancing in the opening titles. After the program started, there
were a group of funny guys who were playing jokes about parrots and lumberjacks. After watching
tons of episodes and all their five films, I decided to write a book about them. I noticed that they were
called Python too. Maybe that was the answer. That troupe would dominate the entire world. I wanted
to let everyone know about it. Initially I had planned to write about the actors and their most famous
sketches, but I had to abandon the idea when I realized that my editors wouldn't give me enough time to
write a book of approximately 25,030 pages. That would be a nice bestseller, though.

Even though none of the previous facts has really happened, both have at least one thing in
common—the name Python. Python is also a scripting language whose name's origin has much to do
with the English troupe than with the legless reptile. This book will guide you step-by-step through the
universe of Python, a fantastic programming language that can help you to implement solutions for
almost all types of IT challenges that you might face. Almost all IT-related tasks, such as the
manipulation of database systems, or the design of Web-driven applications can be managed using
Python. Maybe that's the answer for my dream.

For the last couple of months, I've been trying to organize all the information about Python that I have
available, arranging them in this book. I can't say that I have included every little thing in the book, but
I do know that I have covered the most important aspects of the Python language. Note that along the 5-
month development period of this book, Python had several version upgrades, which made things way
more difficult to organize. So, I apologize if something important is missing.

This book is organized into 18 chapters and some additional appendixes, where each one covers a
specific aspect of the language. Inside each chapter, you will find many hints about how to use Python

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A14%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=8&now=5%2F31%2F2002+4%3A14%3A18+PM

to meet your needs. As you might agree with me, it is impossible to cover every single aspect of the
language in such a complete and up-to-date way. That's why I choose to provide Web links to other
sources of material that I think will be useful for your learning.

What this book covers?

A short answer is

The book starts with a very extensive review of the language and the modules that come as part of the
Python distribution. It goes through Object-Oriented Programming, Networking, Web Development,
Graphical Interfaces, and other important topics. The last chapter covers JPython, a version of Python
that runs in Java systems.

A long answer is

Chapter 1 explains what Python is, why Python must be used, where to get support and how to go
through each installation process.

Chapter 2 is a complete review of the Python programming language. By the end of this chapter, you
will learn how to create Python applications.

Chapter 3 shows which main modules extensions are currently available and for what purposes they
can be used. The focus here is to expand your knowledge about the Python libraries, showing the
resources that you already have available in the Python programming language.

Chapter 4 demonstrates how to handle exception situations and how to avoid error messages.

Chapter 5 introduces the OO methodology in a very complete and direct way. You will be able to
easily create and use objects and classes in your programs after reading this chapter.

Chapter 6 discusses extending and embedding Python. You will learn how to extend Python methods
using other languages and how to call Python methods from within other applications.

Chapter 7 explains objects interfacing and distribution. The information provided in this chapter
explains objects distribution and how to use them from within other systems.

Chapter 8 shows all the database options available within Python. For those that don't know anything
about database yet, it explains how databases work and how to execute basic SQL statements.

Chapter 9 provides very useful information concerning the use and manipulation of some advanced
topics, including images, sounds, threads, and scientific Python Modules.

Chapter 10 explains basic network concepts and invites you to play with these concepts using Python
programs.

Chapter 11 provides information concerning how to use Python for Internet development. It also
introduces you to some well-known Python third-party Web applications.

Chapter 12 provides information concerning how to use Python for scripting programming.

Chapter 13 provides information concerning how to use Python for data parsing and manipulation, such
as XML parsing and mail processing.

Chapter 14 shows what the available GUI options for graphic designing in Python are.

Chapter 15 provides Tkinter information. For those that don't know yet, Tkinter is the standard Python
GUI.

Chapter 16 shows some performance suggestions, and guides you through the process of writing clean
code within style.

Chapter 17 introduces a handful programming tools. You will learn how to go through all the
development stages without fear, including how to debug, compile, and distribute Python applications.

Chapter 18 demonstrates how easy it is to mix Java and Python using JPython.

Now that you know that you have a lot of interesting material to learn, I suggest you accept my hint:

The best way to read this book is by sitting on a comfortable beach chair, or laying on your bed, and
relaxing. If for some reason, if you think the topic is getting boring, just turn the page and go to another
chapter until you find something that you like. Later, you can return to where you originally left. This
book can be read from the start, or you can go directly to the chapter that teaches a specific
functionality. It's your choice!

So, what are you waiting for? Turn this page at once, and get ready to start dominating the world.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=8

<= Return to book index

About the Author
Acknowledgments
Tell Us What You Think!
Introduction
I: Basic Programming
1. Introduction
 Introduction to Python
 Why Use Python?
 Main Technical Features
 Python Distribution
 Installing and Configuring Python
 Python and Other Languages
 Patches and Bugs List
 PSA and the Python Consortium
 Summary
2. Language Review
 Language Review
 The Shell Environment
 Programs
 Built-In Data Types
 Operators
 Expressions
 Control Statements
 Data Structures
 Functions and Procedures
 Modules and Packages
 Input and Output
 File Handling
 Summary
 Code Example
3. Python Libraries
 Python Libraries
 Python Services
 types
 UserDict
 UserList
 operator

 traceback
 linecache
 pickle
 cPickle
 copy_reg
 shelve
 copy
 marshal
 imp
 parser
 symbol
 token
 keyword
 tokenize
 pyclbr
 code
 codeop
 pprint
 repr
 py_compile
 compileall
 dis
 new
 site
 user
 __builtin__
 __main__
 The String Group
 Miscellaneous
 Generic Operational System
 Optional Operational System
 Debugger
 Profiler
 Internet Protocol and Support
 Internet Data Handling
 Restricted Execution
 Multimedia
 Cryptographic
 UNIX Specific

 SGI IRIX Specific
 Sun OS Specific
 MS Windows Specific
 Macintosh Specific
 Undocumented Modules
 Summary
4. Exception Handling
 Exception Handling
 Standard Exceptions (Getting Help from Other Modules)
 Raising Exceptions
 Catching Exceptions
 try/finally
 Creating User-defined Exceptions
 The Standard Exception Hierarchy
 Summary
 Code Examples
5. Object-Oriented Programming
 Object-Oriented Programming
 An Introduction to Python OOP
 Python Classes and Instances
 Methods Handling
 Special Methods
 Inheritance
 Polymorphism
 Encapsulation
 Metaclasses
 Summary
 Code Examples
II: Advanced Programming
6. Extending and Embedding Python
 Extending and Embedding Python
 The Python/C API
 Extending
 Compiling and Linking Extension Modules
 SWIG—The Simple Wrapper Interface Generator
 Other Wrappers
 Embedding
 Summary
 Code Examples

7. Objects Interfacing and Distribution
 Object Interfacing and Distribution
 Interfacing Objects
 Introduction to COM Objects
 Implementing COM Objects in Python
 Distributing Objects with Python
 Summary
 Code Examples
8. Working with Databases
 Working with Databases
 Flat Databases
 DBM (Database Managers) Databases
 Object Serialization and Persistent Storage
 The ODBC Module
 ADO (ActiveX Data Objects)
 Using SQL
 Python DB API
 Summary
9. Other Advanced Topics
 Other Advanced Topics
 Manipulating Images
 Working with Sounds
 Restricted Execution Mode
 Scientific Computing
 Regular Expressions
 Threads
 Summary
 Code Examples
III: Network Programming
10. Basic Network Background
 Networking
 Networking Concepts
 HTTP
 Accessing URLs
 FTP
 SMTP/POP3/IMAP
 Newsgroups—Telnet and Gopher
 Summary
11. Web Development

 Web Development
 Configuring Web Servers for Python/CGI Scripts
 Third-Party Internet Applications
 Other Applications
 Site Management Tools
 Summary
12. Scripting Programming
 Web Programming
 An Introduction to CGI
 The cgi Module
 Creating, Installing, and Running Your Script
 Python Active Scripting
 Summary
13. Data Manipulation
 Parsing and Manipulating Data
 XML Processing
 XML-RPC
 XDR Data Exchange Format
 Handling Other Markup Languages
 MIME Parsing and Manipulation
 Generic Conversion Functions
 Summary
IV: Graphical Interfaces
14. Python and GUIs
 Python GUI Toolkits
 The Tkinter Module
 Overview of Other GUI Modules
 Designing a Good Interface
 Summary
15. Tkinter
 Introduction to Tcl/Tk
 Tkinter
 Geometry Management
 Handling Tkinter Events
 Tkinter Widgets
 Designing Applications
 PMW—Python Mega Widgets
 Tkinter Resources
 Summary

V: Developing with Python
 Chapter
16. Development Environment
 Building Python Applications
 Development Strategy
 Integrated Development Environments
 IDLE
 Pythonwin
 Summary
17. Development Tools
 The Development Process of Python Programs
 Compiling Python
 Editing Code
 Python Scripts
 Generating an Executable Python Bytecode
 Interpreter
 Debugging the Application
 Profiling Python
 Distributing Python Applications
 Summary
VI: Python and Java
 Chapter
18. JPython
 Welcome to JPython
 Java Integration
 Downloading and Installing JPython
 The Interpreter
 The JPython Registry
 Creating Graphical Interfaces
 Embedding
 jpythonc
 Running JPython Applets
 Summary
VII: Appendixes
A. Python/C API
 Python/C API
 The Very High Level Layer
 Reference Counting
 Exception Handling

 Standard Exceptions
 Utilities
 Abstract Objects Layer
 Concrete Objects Layer
 Initialization, Finalization, and Threads
 Memory Management
 Defining New Object Types
B. Running Python on Specific Platforms
 Python on Win32 Systems
 Python on MacOS Systems
 Python on UNIX Systems
 Other Platforms
C. Python Copyright Notices
 Python 2.0 License Information
 Python's Copyright Notice (version 1.6)
 Python's Copyright Notice (until version 1.5.2)
 Copyright Notice of the profile and pstats Modules
 Copyright Notice of JPython with OROMatcher
 Copyright Notice of JPython without OROMatcher
D. Migrating to Python 2.0
 Python 1.6 or Python 2.0. Which One to Choose?
 New Development Process
 Enhancements
 Expected Code Breaking

Web Development > Python Developer's Handbook > About the Author See All Titles

 Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145090127105051247145253

About the Author
My name is André dos Santos Lessa. I decided to follow an IT career when I was just 11 years old;
that happened the day I first saw a real computer—well, actually it was just a TK85. On my next
birthday after that fateful day, I got a TK90X. Then came the MSX, 386, 486, and so forth. This long-
time background has opened many doors (and Windows!) to me. I got both my graduate and my post-
graduate degrees in the computer field.

At this time, I am an IT consultant with little more than eight years of professional IT experience,
ranging from database administration to Web design. Currently, I work for Emplifi Inc., where I use
my best technical skills to support projects at Deloitte Consulting.

As I really like undertaking new technologies, mostly anything Web related, I've created and designed
some interesting sites for the Web. www.lessaworld.com, www.bebemania.com.br, and
www.alugueaqui.com.br are my little toys.

The most recent endeavour that I became part of is called iTraceYou.com, which is an
international and well-grounded project that brings a new security philosophy to good old services that
we are used to. It is scheduled to be released by October, 2000.

I was born in Rio de Janeiro, Brazil, but I moved to the United States in 1998 in a quest for new
challenges for my career. When I am not working (just a few seconds per day), I try to spend some time
with my wife Renata. Currently, we live in the city of Pittsburgh, and she is pregnant with our first
child, who is called João Pedro.

If necessary, you can contact me by sending a note to my main email account, which is
webmaster@lessaworld.com.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

 Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=2
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A13%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=2&now=5%2F31%2F2002+4%3A13%3A19+PM
http://www.lessaworld.com/
http://www.bebemania.com.br/
http://www.alugueaqui.com.br/
mailto:webmaster@lessaworld.com
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=2

Web Development > Python Developer's Handbook > Acknowledgments See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145090127107186135200039

Acknowledgments
I would like to render my acknowledgments to the ones who most shared my life during the last few
months while I wrote this book, giving me support and inspiration to conclude this beautiful work.

 God
My parents, Neuza & Josué My wife, Renata
 Thank you all!

In addition, I would like to express gratitude to my entire family and friends for being so friendly, and
for supporting my wife and I in our decision to move to the United States.

… and of course, for sending Brazilian goodies and baby gifts to us by mail!

Beth, Bruno, Carol, Cleber, Dinda Teca, Djalminha, Gabriel Jorge, Gustavo, Jorge, Juliana, Lucas,
Matheus, Ney, Patricia Beatriz, Penha, Rafael, and Victor. And if I forgot about you, consider yourself
included in this list!

Thanks folks! (Valeu galera!)

Also, I would like to thank everyone at Macmillan for the patience and comprehension that they had
every time I was late in my milestones.

A special thank you goes to my Technical Editor James Henstridge for providing outstanding
suggestions and remarks about the contents of this book.

Rhonda, you were great correcting my English mistakes and reviewing my writings!

Thanks Katie, thanks Mandie. I do know I gave you a lot of work, didn't I?

Dawn, Amy, Scott, even though we didn't have much contact, I know that you were all there every time
this book needed you. God bless you all!

And last, but not least, Shelley, thanks for discovering me! I still remember that day, March 14, when I
got your email asking me if I had ever considered authoring. Well, this book says everything. Thank
you very much for this opportunity.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=4
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A13%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=4&now=5%2F31%2F2002+4%3A13%3A37+PM

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=4

Web Development > Python Developer's Handbook > Tell Us What You Think! See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145090127109039073237068

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

You can email or write me directly to let me know what you did or didn't like about this book—as well
as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone
or fax number. I will carefully review your comments and share them with the author and editors who
worked on the book.

Email: webdev_sams@mcp.com

Mail:

Mark Taber
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=6
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A13%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=6&now=5%2F31%2F2002+4%3A13%3A58+PM
mailto:webdev_sams@mcp.com
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=6

Web Development > Python Developer's Handbook > I: Basic Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145093180140053207029163

Part I: Basic Programming
Part I Basic Programming

Chapter 1 Introduction

Chapter 2 Language Review

Chapter 3 Python Libraries

Chapter 4 Exception Handling

Chapter 5 Object-Oriented Programming

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=10
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A14%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=10&now=5%2F31%2F2002+4%3A14%3A37+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=10

Web Development > Python Developer's Handbook > 1. Introduction See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145093180138002080231092

Chapter 1. Introduction
Nobody expects the Spanish Inquisition

This chapter explains to you why Python is considered to be a good language, why it should be used,
what its main features are, where you can find support, and how to go through each installation process.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=12
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A14%3A55+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=12&now=5%2F31%2F2002+4%3A14%3A55+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=12

Web Development > Python Developer's Handbook > 1. Introduction > Introduction to
Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145092168038024167188168

Introduction to Python

Python is an open source language that is getting a lot of attention from the market. It combines ease of
use with the capability to run on multiple platforms because it is implemented focusing on every major
operating system. Guido van Rossum created the language nearly 11 years ago and since then, Python
has changed through the years, turning itself into one of the most powerful programming languages
currently available.

Python is a good prototype language. In just a few minutes, you can develop prototypes that would take
you several hours in other languages. It also embodies all object-oriented concepts as part of its core
engine. Therefore, creating programming object-oriented applications in Python is much easier than it
would be in other languages such as Java or C++.

As I just said, Python is an open source project. Consequently, it is truly free. No copylefts or
copyrights are involved in its license agreement. You can change it, modify it, give it away, sell it, and
even freely distribute it for commercial use. Its copyright only protects the author from legal problems
that might occur if someone decides to sue the author for errors caused by using Python, or if someone
else tries to claim ownership of the language.

Maybe you still don't know Python, but many companies are out there using it. The problem is these
companies don't want to go public talking about it because they think that using Python without getting
the attention of their competitors is a good strategy. Okay, I know that you are curious to know who in
the world is using Python. Organizations like Industrial Light and Magic, Yahoo!, Red Hat, and NASA
are some of companies that run Python applications.

Note

You can always check out the latest news about Python by visiting

http://www.python.org/News.html.

Nowadays, many developers are contributing to Python's support. That means that, currently, a lot of
people are testing and designing modules for the language. If you spend some time visiting Python's

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=13
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A15%3A12+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=13&now=5%2F31%2F2002+4%3A15%3A12+PM
http://www.python.org/News.html

official Web site, you can get a list of several development groups that are working hard to give Python
some support to new technologies, such as XML and image processing.

Both Perl and Java already have a large group of programmers who are very devoted to their
programming languages, and, today, Python is starting to get there.

Notice that Python is a language extremely easy to code if you have ever programmed before. Guido
claims to have fun every time he has to do something using Python. Learning Python through this book
will be exciting too. Soon, you will have some practice and understand the reason I say that.

In this chapter, I give you a quick overview of Python's main features. The other chapters of this book
cover in detail the topics that I mention next.

Python!? What Is It?

Let's define Python:

Python is an interpreted, high-level programming language, pure object-oriented, and powerful server-
side scripting language for the Web. Like all scripting languages, Python code resembles pseudo code.
Its syntax's rules and elegant design make it readable even among multiprogrammer development
teams. The language doesn't provide a rich syntax, which is really helpful. The idea behind that is to
keep you thinking about the business rules of your application and not to spend time trying to figure out
what command you should use.

Quoting Guido van Rossum—"Rich syntax is more of a burden than a help."

It is also true (and later you will have a chance to check it out) that Python is interactive, portable, easy
to learn, easy to use, and a serious language. Furthermore, it provides dynamic semantics and rapid
prototyping capabilities.

Python is largely known as a glue language that connects existing components. It is embeddable in
applications from other languages (C/C++, Java, and so on), and it is also possible to add new modules
to Python, extending its core vocabulary.

Python is a very stable language because it has been in the market for the last 10 years and also because
its interpreter and all standard libraries have their source code available along with the binaries.
Distributing the sources for everyone is a good development strategy because it makes developers from
all around the world work together. Anyone can submit suggestions and patches to the official
development team, led by Python's creator—Guido van Rossum.

Guido is the coauthor of the second implementation of the scripting language ABC—a language that
was used, mostly, for teaching purposes in the '80s by a small number of people. Python is directly
derived from ABC.

Python was born in an educational environment, in the Christmas of 1989 at CWI in Amsterdam,
Netherlands. Guido was a researcher at CWI at that time. Initially, it was just a project to keep him
busy during the holidays. Later, it became part of the Amoeba Project at CWI. Its first public release
was in February of 1991.

For a long time, Python's development occurred at CNRI in Reston, VA in the United States. In June of
2000, the Python development team moved to PythonLabs, a member organization of the BeOpen
Network, which is maintained by the lead developers of the Python language, including Guido.

On October 27, 2000 the entire PythonLabs Team has left BeOpen.com because of some mutual
disagreements concerning the future of Python. The Team is now working for Digital Creations (the
makers of Zope - http://www.digicool.com/), and Guido has just announced the idea of creating a non-
profit organization called Python Software Foundation (PSF)in order to take ownership of future
Python developments.

By the way, Python was named after the British comedy troupe Monty Python. It had a comedy series
called Monty Python's Flying Circus on the BBC in the '70s. Guido is a huge fan.

As many Monty Python quotes are throughout the chapters of this book as in any other Python book.
That is something of a standard behavior among Python authors, and I won't be the one who will try to
change it.

Note

"Nobody expects the Spanish Inquisition" is one of the most famous quotes that is always recited by
Guido. Each chapter of this book is headed by a famous Monty Python quote.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.digicool.com/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=13

Index terms contained in this section

ABC scripting language
Amoeba Project
BBC (British Broadcasting Corporation)
BeOpen Network
British Broadcasting Corporation (BBC)
CNRI
code
 pseudo
CWI
Industrial Light and Magic
Internet
 Python news Web site
languages
 scripting
 ABC
Monty Python 2nd
Monty PythonÕ
 s Flying Circus
NASA
news site, Python
pseudo code
Python
 introduction to 2nd
PythonLabs
Red Hat
Rossum, Guido van 2nd 3rd 4th
scripting languages
 ABC
syntax
 Python
Web sites
 Python news
Yahoo!

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Why Use Python? See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145092168037200133079189

Why Use Python?

Let's take a look at an interesting scenario:

Imagine that you don't have a team of programmers who are professionally trained. In addition to that,
you are in a position to choose a programming language that would be the best solution for projects that
require GUI implementations and the use of complex routines along with OOP technology.
Unfortunately, and by chance, you don't have much money to spend in a big investment, well… If I
were you, I would pick up Python as my choice.

But if you are simply a programmer who, for this moment, only wants to know what the significant
advantages are that Python has to offer you, maybe you are asking yourself why you need this language
if you already know many others.

The answer is quite simple. Although the original plan is not to turn Python into an all-purpose
language, you can easily do almost anything if you know how. The next couple of paragraphs list and
explain why Python is a cool programming language and what things make Python more flexible than
other languages.

Readability

Python's syntax is clear and readable. The way Python's syntax is organized imposes some order to
programmers. Experts and beginners can easily understand the code and everyone can become
productive in Python very quickly. It is also important to mention that Python has fewer "dialects" than
other languages, such as Perl. And because the block structures in Python are defined by indentations,
you are much less likely to have bugs in your code caused by incorrect indentation.

It Is Simple to Get Support

The Python community always provides support to Python users. As we already know, Python code is
freely available for everyone. Therefore, thousands of developers worldwide are working hard to find
bugs and create patches to fix those bugs. Furthermore, many people are creating new enhancements to
the language and sending them for approval.

Fast to Learn

The language is very easy to learn because its source code resembles pseudo code. It doesn't ask for

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=14
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A15%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=14&now=5%2F31%2F2002+4%3A15%3A28+PM

long and strange lines of code. Therefore, less training is a direct result. Companies don't need to spend
much time to have their programmers coding in Python. Once you start learning Python, you can do
useful coding almost immediately. And after some practice, your productivity will suddenly increase.

You can design a high-level, object-oriented programming code in a friendly and interpreted Python
environment. This feature works great for small tasks.

Fast to Code

Python provides fast feedback in several ways. First, the programmer can skip many tasks that other
languages require him to take. Therefore, it reduces both the cost of program maintenance and the
development time. If necessary, Python enables a fast adaptation of the code. You can change the high-
level layer of your application without changing the business rules that are coded within your modules.

The interactive interpreter that comes with the Python distribution brings rapid development strategies
to your project. In spite of traditional programming languages that require several distinct phases (such
as compiling, testing, and running) and other scripting languages that require you to edit the code
outside the execution environment, Python is a ready-to-run language. Every time you use Python's
interactive interpreter, you just need to execute the code you have. A direct benefit of this feature over
Perl is the way you can interactively test and play around with your code.

Python provides a bottom-up development style in which you can build your applications by importing
and testing critical functions in the interpreter before you write the top-level code that calls the
functions.

The interpreter is easily extensible. It enables you to embed your favorite C code as a compiled
extension module.

Reusability

Python encourages program reusability by implementing modules and packages. A large set of modules
has already been developed and is provided as The Standard Python Library, which is part of the
Python distribution.

You can easily share functionality between your programs by breaking the programs into modules, and
reusing the modules as components of other programs.

Portability

Besides running on multiple systems, Python has the same interface on multiple platforms. Its design
isn't attached to a specific operational system because it is written in portable ANSI C. This means that
you can write a Python program on a Mac, test it using a Linux environment, and upload it to a
Windows NT server. Everything mentioned here is possible because Python supports most of its

features everywhere. However, you must know that some modules were developed to implement
specific mechanisms of some operational systems and, of course, programs that use those modules
don't work in all environments.

But, wait a minute. This problem affects only some specific modules. Usually, you can make most of
your applications run on multiple platforms without changing one line of code. How many other
languages can claim this type of behavior?

Python is well integrated with both UNIX and Windows platforms. The Macintosh environment also
supports Python applications, even though it doesn't provide a full set of solutions yet. But don't worry.
Developers are currently working on that.

Object-Oriented Programming

Usually, scripting languages have object-orientation support included in the language as an add-on.
However, everything in Python, as in Smalltalk, is designed to be object-oriented. You can start
programming using non-OO structures, but it doesn't take too long for you to find out that it is much
simpler if you use its OO features. Some of the implemented OO functionality in Python is inheritance
and polymorphism.

Overall Conclusion

The overall conclusion is that Python is a fantastic language that provides all these features for free. I
assure you that if you want all these features in any other language, you will have to buy costly third-
part libraries. Every detail in Python's project is part of a huge plan to have the most used and necessary
features of other languages in a unique environment.

If someone asks which are the cases that Python doesn't provide the best solution, I would have just one
answer: applications that require huge amounts of low-level data processing. That is said because, as
you already know, Python is an interpreted language; and for that reason, it is proven to be a little bit
slower than compiled languages. However, even in cases such as this, Python makes it easy to replace
bottlenecks with C implementations, which speeds things up without sacrificing Python's features.

If you have already decided that Python is exactly what you need, be sure to go through all the
following chapters. It will be fun.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=14

Index terms contained in this section

ANSI C language, portable
code
 pseudo
languages
 portable ANSI C
libraries
 Standard Python, The
portable ANSI C language
pseudo code
Python
 reasons for using 2nd 3rd 4th
reusability
 Python
Standard Python Library, The

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Main Technical
Features

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145092168035203035224155

Main Technical Features

Now that you already know many reasons why you should use Python, let's focus on some of its main
technical features.

Automatic Memory Management

Python objects are collected whenever they become unreachable. Python identifies the "garbage,"
taking the responsibility from you.

Exception Handling

The exception handling support helps you to catch errors without adding a lot of error checking
statements to the code. By the way, it is said that Python programs never crash; they always return a
traceback message.

Rich Core Library

Many extension modules were already developed and became part of The Standard Python Library of
tools, which can be used by programmers in any Python application. Besides those generic modules,
we have others that are specific for particular platforms or environments. The Standard Python Library
makes the tasks that are simple in theory also simple in practice.

In a short time, programmers can make their Python programs speak to HTTP, FTP, SMTP, Telnet,
POP, and many other services because Python modules perform all the common daily tasks. You can
download a Web page, parse HTML files, show windows on the screen, and even use—as part of your
programs—built-in interfaces that were created to handle many operational system services.

Web Scripting Support and Data Handling

Python enables you to write CGI programs that work fine in several environments. Have you ever
imagined switching platforms without changing the code? All right, it's possible if Python is the choice.
There is even more: You can parse XML, HTML, SGML, and every other kind of text by using Python
built-in classes and regular expression methods.

Built-In Elements

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=15
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A15%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=15&now=5%2F31%2F2002+4%3A15%3A49+PM

Python provides a huge list of useful built-in elements (the language's basic data structure) along with
many special operations that are required to correctly process them. This list is as follows:

● Data types—such as strings, tuples, lists, hash tables, and so on

● Operations—like searching routine statements (in and not in), sorting, and so on

Development Flow

Even though it doesn't have any compilation or linking process, Python supports byte compilation. The
compiled code is saved in an intermediate language called bytecode that can be accessed by any system
that has a Python virtual machine. This feature offers a kind of portability similar to the one that Java
also offers. Applications can be used in several different systems without the need for compilation.
Furthermore, you can create a standalone executable and securely distribute your applications.

Clear Syntax and a Diversity of Useful Lexical Elements

The way Python is organized seems to encourage object-oriented programming because everything is
an object. In addition to that, it has various helpful lexical elements, such as the following:

● Operator overloading—The same operator has different meanings according to the elements that
are being referenced.

● Dynamic typing—You don't need to assign types in your code. After you assign a value to an
object, it instantly knows what type it should assume. You can even assign different types to the
same variable within the same program.

● Name resolution—Each structure (module, class, and so on) defines its own scope of names.

● Indentation—There are no line-end markers as in Java and C++, where programmers need to
use semicolons. Python defines indentations by using block structures.

Embeddable and Extendable

Python can be embedded in applications written in many other programming and scripting languages.
Whenever you need to have a programmable interface for your applications, give Python a chance.
Python is well known for easily gluing everything.

Python also enables you to add low-level modules to the interpreter. Those built-in modules are easily
written in C and C++. Extension modules are easily created and maintained using Python. For tasks
like this, you can develop components in C and run them through Python subclasses.

Objects Distribution

Python can be used to implement routines that need to talk to objects in other applications. For
example, Python is a great tool to glue Windows COM components. Besides that, Python also has a
few CORBA implementations that enable you to use cross-platform distributed objects, as well.

Databases

Python has interfaces to all major commercial databases, provides several facilities to handle flat-file
databases, and implements object-persistence systems that can save entire objects to files. But the
greatest database feature is that Python defines a standard database API, which makes it easy to port
applications to different databases.

GUI Application

You can create applications that implement graphical user interfaces (GUIs), which are portable to
many system calls, libraries, and windowing systems such as Windows MFC, Macintosh, Motif, and
UNIX's X Window System. This is possible because many GUI bindings were developed for Python.
The Python distribution is bundled with Tkinter, a standard object-oriented interface to the Tk GUI API
that has become the official GUI development platform for Python.

Introspection

You can develop programs in Python to help in the creation of other programs in Python. The most
important examples are the Debugger and the Profiler. And there is even more: Python has an
Integrated Development Environment (IDLE) developed using Python for use with Python.

Third-Party Projects Integration

The Python Extension NumPy (Numerical Extensions to Python) along with the Python Library PIL
(Python Imaging Library) prove that everyone who contributes to the language can make his projects
almost a required complement to the standard Python distribution.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=15

Index terms contained in this section

data types
 Python
distribution
 objects
 Python
dynamic typing
IDLEÓ
 \t ?

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Python Distribution See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145095017065193092224124

Python Distribution

At the time of this writing, the last official version of Python is version 2.0, released on October 16,
2000. Prior to that, we had version 1.6 final released on September 5, 2000, and version 1.5.2 released
on April 13, 1999.

After release 2.0, Guido plans to work on two more 2. x releases that might be available by the end of
2000 or January 2001. After that, all his attention will be dedicated to a total Python redesign, a future
project called Python 3000. Despite many rumors that have been spread in the Python community,
Guido affirms that this mythical version is "not as incompatible as people fear."

This book was planned to be a Python 1.5.2 book. But it turned out to cover the migration from 1.5.2 to
2.0. That's why you will see much of the text focusing on release 1.5.2, and special notes about release
2.0.

The latest Python source codes for your UNIX, Windows, or Mac system are maintained under the
CVS revision control system. CVS (Concurrent Version System) is a version control system that stores
and manages the code that is in process of development. Remember! The source code available through
CVS might be slightly different from the one released along with the last official release.

If you want to download the source code from CVS, go to http://www.python.org/download/cvs.html
and check out the instructions that show how to get the appropriate CVS client for your system. The
Python CVS tree is currently hosted by SourceForge at http://sourceforge.net/projects/python/.

It is normal to have more than one Python installation in your system. You can install the official
version in one location and build the CVS source code in some other location.

Guido van Rossum, the creator of Python, maintains high-quality Python documentation at Python's
official Web site. You can download Python's documents from http://www.python.org/doc/. There are
versions in HTML, PostScript, and PDF. Part of this documentation is included in the distribution
packages.

The 1.5.2 distribution comes with five tutorials that you should wisely go through:

● The Python Tutorial

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=16
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A16%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=16&now=5%2F31%2F2002+4%3A16%3A04+PM
http://www.python.org/download/cvs.html
http://sourceforge.net/projects/python/
http://www.python.org/doc/

● The Library Reference

● The Language Reference

● Extending and Embedding Python

● The Python/C API

The new release 2.0 also contains the following manuals:

● Distributing Python Modules

● Installing Python Modules

● Documenting Python

The first two manuals above cover how to setup the the Python Distribution Utilities ("Distutils") in
order to create source and built distributions. The former uses the module developer's point-of-view,
and the latter uses the end-user's point-of-view.

The last manual shows how to follow some standard guidelines for documenting Python.

Python's current documentation is also available for download at
http://www.python.org/doc/current/download.html.

More information about Python 2.0 documentation and downloading can be found at
http://www.PythonLabs.com.

System Requirements

Python runs on many platforms. Its portability enables it to run on several brands of UNIX, Macintosh,
Windows, VMS, Amiga, OS/2, Be-OS, and many others. Most all platforms, which have a C compiler,
support Python. You can try to compile Python yourself in any architecture you want because the
source code is distributed along with the binaries.

You should also have a text editor because sometimes it is easier to use an application like emacs,
pico, notepad, or other similar one, instead of using the interpreter or the graphical development
environment. If you are using emacs, make sure that python-mode is installed because it makes it a
lot easier to develop Python code. See Chapter 17, "Development Tools," for details.

After downloading the source code at http://www.python.org/download/download_source.html, you

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/237#5.html
http://www.python.org/doc/current/download.html
http://www.pythonlabs.com/
http://www.python.org/download/download_source.html

can carefully play around with it and if you want to go one step further, port it to another platform.

If you are using UNIX, it's going to be necessary to have tar and the GNU gzip programs in-hand in
order to unpack the downloaded files.

If you are using Windows, you must have WinZip available for the task.

GNU gzip is available at http://www.gnu.org/software/gzip/gzip.html and WinZip is available at
http://www.winzip.com.

Depending on the system that you are using, you might need to get a C compiler in case you have need
to download the source code instead of the binary distribution.

Right now it is okay to use the binary distributions (whenever they are available), but when you
become more confident with the language, you might want to build a Python version that uses your
own extensions. So, you will need to have a C compiler.

Remember that you are free to use Python's source code any way you want. The full C source code is
freely available for download.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

1.5.2 release (Python)
 tutorials
2.0 release (Python)
 manuals 2nd
code
 source
 Concurrent Version System (CVS); downloading
 Python;downloading
Concurrent Version System (CVS)
CVSÓ
 ?

© 2002, O'Reilly & Associates, Inc.

http://www.gnu.org/software/gzip/gzip.html
http://www.winzip.com/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=16

Web Development > Python Developer's Handbook > 1. Introduction > Installing and
Configuring Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145095017064180212149176

Installing and Configuring Python

Setting up Python in your system is a very easy process because all versions are freely available and
highly documented. Check the following instructions that show how to download the files from the
binary repository. Each distribution includes reference manuals that demonstrate in detail how to install
and configure Python for that specific environment. See Chapter 17 for details about how to build
Python from source code.

Python's Web site—http://www.python.org/download—has a section that gives you access to all
distributions that are available for download (see Figure 1.1).

Figure 1.1. Python's download Web page is the place where you can get the latest Python releases.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=17
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A16%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=17&now=5%2F31%2F2002+4%3A16%3A17+PM
http://www.python.org/download
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/17#1.html

Up-to-date versions for the most popular distributions are always available.

Keep this URL because we will go to the site later to download other Python items that we might need.

UNIX Environment

The UNIX distribution is, in my opinion, the best distribution. It comes with POSIX bindings, and it
supports environment variables, files, sockets, and so on. It is perfect for all flavors of UNIX.

Linux Installation

These days, all the major Linux distributions include Python, which makes your life simple because
you don't have to download the files. Sometimes, Python is even automatically installed for you. Just
make sure that you have the latest version.

If you already have Python installed in your machine, and you've got a new Python RPM package, you
must execute the following command in order to update the RPM: (Note that this filename reflects the
1.5.2 version.)

rpm -Uhv python-1.5.2-2.i386.rpm

Otherwise, run the following command in your Linux prompt to install the RPM package.

rpm -ihv python-1.5.2-2.i386.rpm

When the installation process is over, check to see whether everything went fine by typing python at
the prompt. You should get access to the Python interpreter, and when you are satisfied, press Ctrl+D
to leave it.

Perfect! Now you are ready to start coding in Python.

In case you are using a Linux system that doesn't offer RPM support, you need to download the source
code and compile it in your machine. Or, check whether your Linux distribution included Python.
Instructions for compiling Python are provided in Chapter 17.

Other UNIX Systems

If you are running a UNIX system other than Linux, you need to download the source code and
compile it in your own machine.

Download the file py152.tgz from http://www.python.org/download/download_source.html. Note
that this file corresponds to version 1.5.2. You might need to change the filename for the latest version.

Following the instructions listed in the README file of the distribution will show you how to build and
install the source code.

Macintosh Environment

MacPython is a Python version available for the Macintosh. Jack Jansen maintains it, and you can have
full access to the entire documentation at his Web site. Currently, version 1.5.2 is available for
download at http://www.cwi.nl/~jack/macpython.html. Beta versions from version 1.6 are also
available.

You can also download this distribution at Python's official Web site at
http://www.python.org/download/download_mac.html. The full distribution is available in one unique
file that also contains Tkinter and an interactive development environment.

Windows Environment

The Win32 and COM extensions by Mark Hammond are the result of an excellent work that is
successfully reducing the distance between the overall performance of Python for UNIX and Python for
Windows platforms. The following instructions show how to install the Python version for Windows
systems. Note that to install the Win32 extensions, you need to install a separate package called
Win32all-xxx.exe. You should replace the xxx with the number of the latest available release.

The installation process is very straightforward within Win32 systems (Windows 95/98/2000 and NT).
Go to the Python for Windows download page at
http://www.python.org/download/download_windows.html and choose a location. If the location you
selected isn't available at the moment, choose a mirror site.

Let's download the py152.exe file (Python's version 1.5.2). Now that you have downloaded the file,
save it to a location on your local hard disk.

Double-clicking the file will launch an Installation Wizard as shown in Figure 1.2.

Figure 1.2. PythonWin's Installation Wizard guides you through a very simple installation process.

http://www.python.org/download/download_source.html
http://www.cwi.nl/~jack/macpython.html
http://www.python.org/download/download_mac.html
http://www.python.org/download/download_windows.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/17#7.html

Select everything and confirm the selections. The installation process will start and after Python is
installed, you will be asked if you also want to install Tcl/Tk (see Figure 1.3). I strongly suggest that
you install it too because later you will learn how to create GUI interfaces using Tkinter. After you
confirm it, the Wizard will guide you through Tcl's 8.0.5 for Windows installation. Choose the full
installation, confirm it, and that's it. Your Windows system is fully configured to use both PythonWin
and IDLE.

Figure 1.3. Installing Tcl/Tk now enables you to create GUI applications later.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/17#8.html

I suggest that you spend some time going through all the documentation that was installed in your
machine.

Right now you might have everything already set up in your environment.

If you decide later to download and build the source code, download the same source code that is
provided for UNIX systems at http://www.python.org/download/download_source.html.

Get the file py152.tgz and follow the instructions listed in the README file. It clearly explains how
you could use Microsoft Visual C++ 5.0 to build the source code. See Chapter 17 for more details.

If you are interested in downloading Python 2.0, the following link takes you directly to its download
page.

http://www.pythonlabs.com/products/python2.0/download_python2.0.html

At PythonLabs, you have the source tarball available to build Python from the source in the platform of
your choice. Note that if you are running Windows, you can download and run the Windows installer
as well.

The following links cover the 2.0 distribution.

News about Python 2.0

http://www.pythonlabs.com/products/python2.0/news.html

Python 2.0 Manuals

http://www.python.org/download/download_source.html
http://www.pythonlabs.com/products/python2.0/download_python2.0.html
http://www.pythonlabs.com/products/python2.0/news.html

http://www.pythonlabs.com/doc/manuals/python2.0/

Python 2.0 - The new license

http://www.pythonlabs.com/products/python2.0/license.html

Note

A special note is necessary here to let you know that Python 2.0 doesn't run a separate Tcl/Tk
installer anymore. It installs all the files it needs under the Python directory. This was made to avoid
conflicting problems with other Tcl/Tk installations that you might have on your system.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

code
 source
 Python;downloading 2nd 3rd
configuring
 Python 2nd 3rd 4th
downloading
 source code
 Python 2nd 3rd
 Windows installer
downloading:Python 2.0
installers
 Tcl/Tk
 Windows:downloading and running
installing
 Python 2nd 3rd 4th
Internet
 Python source code Web site 2nd 3rd
Jansen, Jack
links
 Python 2.0 2nd
 downloading
Linux

http://www.pythonlabs.com/doc/manuals/python2.0/
http://www.pythonlabs.com/products/python2.0/license.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=17

 installing Python
MacPython
Python
 installing and configuring 2nd 3rd 4th
Python 2.0
 downloading
 links 2nd
PythonLabs Web site
PythonWin Installation Wizard
RPM package
 installing
 Linux
running
 Windows insttaller
source code
 Python
 downloading 2nd 3rd
source tarball
tarball (source)
Tcl/Tk installer
Web sites
 Python source code 2nd 3rd
 PythonLabs
Windows
 installing Python 2nd
Windows installer
 downloading and running
wizards
 PythonWin

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Python and Other
Languages

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145095017069121013232009

Python and Other Languages

Scripting languages, as everyone knows, are slower than compiled languages. Python uses its
interpreter to manage most of the things you need to worry about when using compiled languages. The
consequence is that you have a productive application in a short period. However, the application
doesn't run as fast as a compiled version. Okay; it is slower, but who cares? Nowadays, the
development time is a great differential between companies. It doesn't matter whether an application
runs slower or faster in Python than in other languages. The fact is that you have saved a considerable
amount of time. And by the way, it's not as slow as many people say.

Python incorporates the best of scripting languages (Perl, Tcl, Awk) and systems languages (Java, C,
C++). If you work in large projects, the use of Python will give you fast and reliable results.

However, Python doesn't beat other languages all the time. C and C++ are good for performance-
critical modules of an application because they are system languages that talk almost directly to the
processor. For that reason, many programmers create Python extensions using these languages when
time is crucial for the project.

Python Versus C/C++

The following is a list of differences between Python and C/C++:

● Python's array constructs don't have the same number of problems that arrays written in C have.

● Most of the memory allocation and reference errors that we easily get when coding C/C++
programs are eliminated as Python performs automatic memory management.

● Python checks array references for boundary violations.

● In many cases, developing an application in Python requires much less code than an equivalent
application in C.

In general, Python is a great tool to test C/C++ applications. Python adds some contribution to C/C++
projects by gluing components and handling interfaces to test them.

In addition to C/C++, Python is often compared to Perl, Java, and Tcl.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=18
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A16%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=18&now=5%2F31%2F2002+4%3A16%3A44+PM

Python Versus Perl

Python is easier to learn than Perl, and it presents a more readable code. Perl is an excellent language
too. Perl is great for work that requires text manipulation and data extraction, and it is also a great
language for system administrators. The Windows distribution of Perl is apparently pretty good, so it
can be used productively under Windows. However, Perl is much more productive when used in a
UNIX environment. Python's productivity is platform-independent. Another important difference is that
Python was designed to be fully object-oriented and Perl had object-orientation implemented later as an
add-on to the language. One problem with Perl is that because "there's more than one way to do it,"
different programmers in large projects might know different subsets of the language and will not be
able to read each other's code.

Python Versus Tcl

Python's syntax is much clearer than Tcl's. Besides, it is the fastest one, and it needs less C extensions
than those Tcl requires when doing the same job. Similar to Tcl, Python uses Tk as its standard GUI.
Also, Python has more data types than just strings.

Python Versus Smalltalk

The following list shows some differences between Python and Smalltalk:

● Python has scalability because it can handle small routines and large applications equally well.

● Python is much easier to learn than Smalltalk.

● Python enables the use of C and C++ code in programs that require a good performance because
it is extensible.

● As most of Smalltalk's users come from the scientific society, the Numeric Python Extension
becomes helpful by covering many mathematical aspects and making them easily written in
Python.

Python Versus Java

Python offers dynamic typing and a rapid development environment that requires less code and no
compilation phase. Although Python runs slower than Java, it is the more portable one.

JPython

It's a new Python implementation that is 100% written in Java. You can use all the features of Python

languages along with the entire universe of Java classes. The integration between JPython and Java is
better than the integration between Python and C++ because JPython can use Java classes without
needing a wrapper generator. Several other reasons why you should consider giving JPython a try are
as follows:

● JPython is interactive, as is CPython.

● JPython applications can import Java classes directly and, whenever required, integrate Java
classes with their own JPython classes.

● JPython compiles directly to Java bytecode, generating Java .class files, which can be used
to create applets.

By the way, JPython programmers also refer to Non-Java Python as CPython in order to distinguish
Python's Java Implementation from Python's C implementation.

Conclusion

Now, just imagine projects that require several layers of application design. Do you think that these
projects'leaders have some kind of problem to scale up their applications? If you've been in a situation
like that, have you ever thought about using the same language for all your needs? Are you going to
have a programmer coding in JavaScript? (That language doesn't support exception handling.)

Say that you need to create some Java routines, using Servlets, for the back end. What if this
programmer doesn't know Java? Are you going to explain Java to him, or are you going to hire a Java
programmer?

Nowadays, technology and projects are moving too fast. You don't have time to teach new technologies
to the people who are coding your applications. This is one more reason to stick with Python. You have
the flexibility to play in all bases and do almost everything using the same language.

I am sure you are satisfied now that you know the reasons why Python is a fantastic language. What are
you waiting for? I strongly encourage you to use Python now.

For more information about Python versus other languages, check out the following URL:

http://www.python.org/doc/Comparisons.html.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.python.org/doc/Comparisons.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=18

Index terms contained in this section

C programming language
 vs. Python
C++ programming language
 vs. Python
Java programming language
 vs. Python
JPython
languages
 C and C++
 vs. Python
 Java
 vs. Python
 Perl
 vs. Python
 Smalltalk
 vs. Python
Perl programming language
 vs. Python
Python
 vs. C and C++
 vs. Java
 vs. Perl
 vs. Smalltalk
Smalltalk programming language
 vs. Python

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > Patches and Bugs
List

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145095017068070190021124

Patches and Bugs List

In case you notice something bizarre happening while you are coding, you can check it out in order to
find out whether it is a bug or not.

A query tool is provided by Python's official Web site to enable searches in the bug's list. Go to
http://www.python.org/search/search_bugs.html and perform your search. You will be able to identify
which bugs are opened, resolved, and so on.

If you think that you might have caught a new bug, you can fill out a form to let the developer's team
know about it. Remember to ALWAYS check the Python Bugs List before reporting a bug. It is also
good to take a look at the current CVS tree before reporting any bugs.

If you have fixed a bug and want to submit your patch to the PSA team, follow the standard Patch
Submission Guidelines at http://www.python.org/patches/.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

bug list
 Python
finding
 bugs
fixes
 bugs
Patch Submission Guidelines
patches
 Python
Python
 patches and bug list
searching
 bugs
submitting

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=19
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A16%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=19&now=5%2F31%2F2002+4%3A16%3A54+PM
http://www.python.org/search/search_bugs.html
http://www.python.org/patches/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=19

 bug fixes

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 1. Introduction > PSA and the
Python Consortium

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145094054189115074029031

PSA and the Python Consortium

The Python Software Activity (PSA) was established by CNRI Inc. to be the home of Python and to
guide its development according to the common interests of the Python development community. A
large number of contributions are submitted periodically. The PSA Web site stores the official
documentation and download area of Python distributions. PSA's creation has taken some of the
responsibility that Guido had. As a result, a group is working to develop Python, instead of just one
man. This fact helps propagate the maturity of Python's development strategy.

You can obtain more information about the PSA by visiting its official home page at
http://www.python.org (see Figure 1.4). That is the place where all the information about Python gets
officially organized and published. Note that with the move of Guido and his team to PythonLabs, the
future of PSA is uncertain. The information currently available says that CNRI, which manages the
existing PSA, will determine its future at the end of the current membership term, on October 1, 2000.

Figure 1.4. The Python Software Activity (PSA) official home page.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=20
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A17%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=20&now=5%2F31%2F2002+4%3A17%3A07+PM
http://www.python.org/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/20#1.html

Several Special Interest Groups (SIGs), hosted by PSA, are currently studying and developing special
topics of Python, such as XML Processing, String Processing, Python in Education, Distributed
Objects, and many other important topics. To find out what newest groups are being formed and to
participate in the discussions that are conducted in their mailing lists, take a look at
http://www.python.org/sigs/. Much of Python's real work takes place on Special Interest Group mailing
lists.

Behind the PSA, a group of companies and individuals helps to propagate the Python voice. They work
together, creating conferences and keeping their Web site up-to-date. If you want to be part of the PSA,
get more details at http://www.python.org/psa/.

After you become a member of the PSA, you are eligible to have an account on the Web site
http://starship.python.net.

Today, this site is filled with information provided by many Python developers from all around the
world.

On Oct 25, 1999, the Python Consortium was publicly announced and officially began its mission "to
ensure Python's continued support and development."

http://www.python.org/sigs/
http://www.python.org/psa/
http://starship.python.net/

The membership fees that are received by the Consortium members support the development of Python
and JPython. Many organizations have already registered as part of the Consortium (for more
information, see http://www.python.org/consortium/).

The Corporation for National Research Initiatives (CNRI) is a nonprofit organization that hosts the
Python Consortium. Check out its Web site at http://www.cnri.reston.va.us/.

Even with his transition to PythonLabs, Guido van Rossum remains the Technical Director of the
Python Consortium, and BeOpen.com continues to be just a member.

Support and Help

Python has a Usenet newsgroup called comp.lang.python. This newsgroup is an excellent source
of Python information and support. The guys who really know the language always hang out there.

One of the best ways to keep yourself up-to-date to the Python world is to sign up for the Python
general mailing lists and to always check the newsgroup for some information that might be helpful for
you.

Go to http://www.python.org/psa/MailingLists.html and look for the list that provides the level of
information that you need. At this time, there are four main mailing lists:

Tutor is a list for beginners who have basic knowledge and need simple and straight
answers.

JPython is a list that openly discusses the Python implementation for Java.

Announcements is a list that doesn't have huge traffic. The objective of this list is just to
publish important notices to the Python community.

An open discussion mailing list generates an average of 100 daily messages and covers
everything related to general Python discussion topics.

Python Conferences and Workshops

The Python community has organized many workshops and conferences to discuss Python hot topics.
You can have access to the materials that were used for the presentations, and you can also download
many technical documents provided by the people who have participated in the conferences and
workshops.

For more details about the latest events and upcoming ones, check out the Web page at

http://www.python.org/consortium/
http://www.cnri.reston.va.us/
http://www.python.org/psa/MailingLists.html

http://www.python.org/workshops/.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

BeOpen.com
CNRIÓ
 ?

© 2002, O'Reilly & Associates, Inc.

http://www.python.org/workshops/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=20

Web Development > Python Developer's Handbook > 1. Introduction > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145094054191202066127114

Summary

Python is an interpreted, high-level programming language, pure object-oriented and powerful server-
side scripting language for the Web. It is an open source project that doesn't have any copylefts or
copyrights involved in its license agreement.

You should consider moving to Python because it is simple to get support from the Python community;
it is fast to learn and code it; it offers object-oriented programming support; and it provides a readable,
reusable, and portable coding language.

The main technical features that distinguish Python from the other languages are as follows:

● Automatic memory management

● Exception handling management

● Rich core library

● Web scripting support and data handling

● Rich built-in elements

● Clear syntax and useful lexical elements

● Embeddable and Extendable language

● Objects Distribution support

● Databases support

● GUI applications support

● Introspection

● Easily integrated to third-party projects.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=21
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A17%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=21&now=5%2F31%2F2002+4%3A17%3A25+PM

Python runs on many platforms, such as Microsoft Windows, Linux, and Macintosh. The source code
and the documentation are freely downloadable. It is also available for downloading the binaries for
some systems.

Python is always compared against other languages and, usually, it wins.

Python has an implementation in Java called JPython.

Two institutions have guided the Python community along the last few years: the Python Software
Activity (PSA) and The Python Consortium. The PSA took the responsibility of creating Python
conferences and workshops and keeping the Python official Web site up and running, whereas The
Python Consortium supported the development of Python and JPython. Today, the future of these two
institutions is a little uncertain because Guido and his whole development team have moved to
BeOpen.com to support PythonLabs.com.

The Python community has been doing a great job by providing help to new Python aficionados. Most
of this help is provided through the mailing lists, newsgroups, bug lists, and other available forms of
support.

By the way, Python has nothing to do with those legless reptiles. It was named after the British comedy
troupe Monty Python.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=21

Web Development > Python Developer's Handbook > 2. Language Review See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145094054190069171107214

Chapter 2. Language Review
Spam spam spam spam spam spam spam and spam!

This chapter offers a complete review of the Python programming language. After you finish reading it,
you will understand and master the concepts of this language. Furthermore, you will learn everything
that is necessary to write useful Python programs.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=23
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A17%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=23&now=5%2F31%2F2002+4%3A17%3A37+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=23

Web Development > Python Developer's Handbook > 2. Language Review > Language
Review

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145094054184113157147182

Language Review

Some people say that Python is a magic language because it enables you to do almost everything with a
minimum amount of code. The coding speed depends only on your effort to acquire the required
knowledge to decide which commands you should use. Different from other languages, Python doesn't
sell the idea of being able to code one task in many ways. The reason for that is because there is only
one dialect of Python. Therefore, the core language doesn't provide a huge number of grammar styles
and definitions. Consequently, you can keep the entire vocabulary in your mind without too much
effort.

After spending some time studying Python, you can easily master the whole set of instructions that
shapes the core language. As Python doesn't have any hard-to-remember commands, the language is
very comfortable and simple. Most of the work that you have to do is identify the right module for your
needs. By the way, Python's standard library of modules is very complete and well documented.

This chapter will guide you across the lines of code that are required to reach the stardom. Among
other things, handling control statements and performing files management will become easy tasks for
you.

Later, in the following chapters, you will learn how to go through each important Python module and
understand what it does and how useful it can be for you.

Now, let's roll up our sleeves and start working.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=24
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A17%3A55+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=24&now=5%2F31%2F2002+4%3A17%3A55+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=24

Web Development > Python Developer's Handbook > 2. Language Review > The Shell
Environment

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145081058108134082099064

The Shell Environment

The Python language is wrapped within a shell development environment. The main component of this
shell is a command line interpreter, which is perfect for practicing, learning, and testing your programs.

Command Line Interpreter

The command line interpreter is the heart of Python's shell environment. To access the command line
interpreter, you need to switch to the prompt of your operating system. The following examples
presume that the python directory is in your system's path environment variable.

On a UNIX system, you must type

$ python

If you are running MS Windows, just say

c:\> python

Note that in both cases, you just need to type the word python; the rest is part of the shell prompt.

The Python for Windows installation also provides access to the command line interpreter by clicking
its icon on the Start menu (see Figure 2.1).

Figure 2.1. By clicking on the Python (command line) icon, you gain access to the shell environment.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=25
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A18%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=25&now=5%2F31%2F2002+4%3A18%3A07+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#2.html

After the command line interpreter is loaded (see Figure 2.2), you can start coding your own programs.

Figure 2.2. Python's command line interface is now ready to use.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#3.html

Instead of using the command line interpreter, you can also use a graphical user interface called IDLE
(see Figure 2.3).

Figure 2.3. IDLE is Python's GUI interpreter.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#4.html

Note

See Chapter 16, "Development Environment," for details about using IDLE.

As you can see by looking at the coding area in both Figures 2.2 and 2.3, the interpreter's primary
prompt is a >>>.

Let's start interacting with Python by running a variation of the standard "hello world" program.

>>> print "Hello Python World"
Hello Python World

The previous example demonstrates that the screen is the standard output device for commands that are
typed in the interpreter's prompt. Next, another example is demonstrated. Note that the first command
doesn't print anything because it is just an assignment operation. The result of the operation is passed to
and stored at the informed variable. On the other hand, the second command has its output redirected to
the standard output, which enables you to see the result of the operation.

>>> alfa = 3 + 2
>>> alfa * 4
20

Python's syntax automatically indicates when a statement requires a subblock. The interpreter's
secondary prompt … means that the next line is a continuation from the current line and not a new line.
In some cases, when you finish entering a multiline statement, you need to type ENTER at the
beginning of the first line located after the end of the code block. By doing so, you will return to the
primary prompt.

Four basic situations that use a secondary prompt are as follows:

● When you explicitly add a line continuation with a backslash \ literal:

>>> print "I am a lumberjack " + \

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#3.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/25#4.html

… "and I am OK."
I am a lumberjack and I am OK.

● When parenthetical expressions are incomplete:

>>> print ("I am a lumberjack " + \
… "and I am OK.")
I am a lumberjack and I am OK.

>>> a = {
… 'song': 'lumberjack'
… }

● Multiline statements ending with a :

>>> if 1==2:
… print "This line will never be printed"
…
>>>

● When you comment a line:

>>> # The next function statement returns 2 plus 2.
… 2+2
4

Tip

If you need to quit the interpreter while working on UNIX or MS Windows systems, press
CTRL+D or CTRL+Z, respectively.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

accessing
 command line interpreter 2nd
applications
 hello world
command line interpreter 2nd 3rd
hello world program
interpreters
 command line 2nd 3rd
launching
 command line interpreter 2nd
opening
 command line interpreter 2nd
programs
 hello world
prompts
 secondary
running
 command line interpreter 2nd
secondary prompts
shell environment 2nd 3rd
software
 hello world
statements
 requirements for subblock
subblocks
 requirements in statements
syntax
 statements requiring subblocks

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=25

Web Development > Python Developer's Handbook > 2. Language Review > Programs See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145081058111154037148089

Programs

Until now, all the examples were written directly in the interpreter environment. However, most Python
programs are executed as external scripts, being loaded from files.

You can write your own Python scripts by using any text editor of your choice. Remember to always
save your files using the .py extension.

As with any other UNIX scripting language, Python scripts (for UNIX) need a special handling.

First, you need to put a "shebang" in the first line of the script. This line declares the location of
Python's interpreter in your system. For example

#!/usr/local/bin/python

Note that this example works only if Python was installed under the given mounting point. Most Linux
systems have Python installed under /usr by default, so the preceding example will not work. Today,
the following line of code seems to be more common, and does not depend on where Python is
installed:

#!/usr/bin/env python

If you are running your scripts on an MS Windows environment, you can keep this line of code for
portability purposes because the literal # is only used to identify comment lines that are ignored by the
interpreter, so it will cause no harm to your programs.

Tip

The "shebang" line is only meaningful when you work on a UNIX system.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=26
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A18%3A34+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=26&now=5%2F31%2F2002+4%3A18%3A34+PM

If you don't know where Python is located on your UNIX system, use the following command:

$ whereis python

Also, remember to set the permissions on your script to 755 in order to let every user be able to
execute it.

$ chmod +x scriptname.py

or

$ chmod 755 scriptname.py

As you cannot directly execute Python scripts in the MS Windows systems through the command line,
you have two options: Either double-click the file using Windows Explorer or call the interpreter,
passing the filename as an argument. For example,

c:\>python scriptname.py

Another way to call the interpreter on Windows systems is by typing start scriptname.py at
the shell prompt. This command will find and execute the program associated with the extension .py.

If you want to open the interpreter after executing a program, use the -i argument when calling the
script. The interpreter will run your script, and after it executes all the commands, it will open its
command-line interface for you. Here's how to call the script with a command-line option:

c:\python -i scriptname.py

Otherwise, after the script finishes its execution, it will automatically close the interpreter.

After spending some time creating Python programs, you might find some .pyc files in the same
directory in which you are saving your .py scripts. See Chapter 17, "Development Tools," to know
more about this other file extension.

Indentation

Python delimits code blocks by using indentation. There is no concept of {}s or Begin/Ends as in
other languages. When you indent a block of code, you define the way the statements are grouped. It
also reduces errors due to bad indentation. For instance, the following C or Perl code looks like a single
if statement, but the second statement is always executed:

if (expression)
 statement1;
 statement2;

Python doesn't suffer from this problem because indentation defines block structure.

Another great aspect of this implementation is that you can reduce the size of your code while using
indentation instead of conventional block delimiters.

Tip

Keep in mind that tabs are internally converted to spaces (1 tab = 8 spaces), and blank lines
are ignored when part of scripts.

I suggest you write one statement per line, using a newline (ENTER) to terminate each line. If you
decide to have more than one statement in the same line, you need to separate them by using
semicolons, as shown in the following:

>>> print "When AH "; print "were young…"

Remember that you must put a backslash \ at the end of lines that need to be broken into two lines:

>>> t = "Nobody expects " + \
… "the Spanish inquisition"

Lexical Analysis

It is unnecessary to declare the type of a variable in Python programs. The same variable name might
have different types at different occasions because it is re-initialized every time a value gets assigned to
it, as illustrated in the following:

>>> x = "Albatross!!"
>>> print x
Albatross!!
>>> x = 123
>>> print x
123

You can assign any object type to a variable (for example, functions, classes, and modules). The
following example shows how you can create a variable that references the round() function object:

>>> x = round
>>> print x(27.234523, 2)
27.23

You don't have to worry about deallocating variables in Python. Python objects are collected whenever
they become unreachable because Python does reference counting. This means that as long as there is a
reference to an object, the object isn't collected. When you delete a reference to an object, its reference
counting goes down by one, and when the count has dropped to 0, it is eligible for garbage collection.
Note that under CPython, objects are deallocated as soon as the reference count reaches 0.

The problem with reference counting is that you can create circular references, such as the following:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]

>>> a.append(b)
>>> a
[1, 2, 3, [4, 5, 6]]
>>> b.append(a)
>>> a
[1, 2, 3, [4, 5, 6, […]]]
>>> b
[4, 5, 6, [1, 2, 3, […]]]
>>> del a
>>> del b

Now, you can never refer to variables a and b, nor to their contents again, and because each one of
them is still referenced by the other list, they cannot be collected, either. Note that recursion is
indicated by the […] element. I know that it is fairly easy to fall into this trap, and although some work
is being done to cure this problem, I strongly suggest that you avoid recursive constructs. As you might
notice, del removes the reference to the object, which could cause it to be deallocated if its reference
count reaches 0.

You can monitor the reference counting of an object by using the sys.getrefcount() function:

>>> import sys
>>> sys.getrefcount(b)
3

Note that you can break the circular reference if you insert the following lines between the appends
and dels:

>>> del a[-1]
>>> del b[-1]

Actually, we are just breaking the references by removing the […] entries from the lists. Note that the
release 2.0 of Python makes sure that deleting objects is safe even for deeply nested data structures.
The Python interpreter is now using a new mechanism to collect unused objects. From time to time,
this mechanism performs a cycle detection algorithm that searches for inaccessible cycles and deletes
the participating objects. This process has been named Garbage Collection of Cycles.

There are a couple of parameters of the garbage collection that you can manipulate. The module gc
provides functions that helps you out with that. Of course, you always have the option to disable this
feature. To do so, simply specify the argument " -without-cycle-gc " when running the Python
configure script.

Reserved Words

Python has reserved a group of words for its own use. Those words have specific meanings that cannot
be changed. You cannot use these words as identifiers in your code.

"and, assert, break, class, continue, def, del, elif, else, except,
 exec, finally, for, from, global, if, import, in, is, lambda, not,
 or, pass, print, raise, return, try, while"

Identifiers

Python identifiers are any objects created by programmers (such as variables, classes, and so on).
Identifiers can be named using any of the following characters: A-Z, a-z, 0-9, and _. However,
they can't start with a digit.

You must write your code carefully because Python identifiers are case sensitive.

The special characters: $, %, and @, aren't allowed to be part of an identifier's name. Besides that, $
and @ can be used only in a program, inside quoted strings. The % character may be used in a program
because it is the mod operator.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=26

Index terms contained in this section

$ (dollar sign)
 identifier names
% (percent sign)
 identifier names
; (semicolon)
 separating statements on same line
@ (at sign)
 identifier names
[] element
[É
] entries
[nd]i argument
\ (backslash)
 adding line breaks
adding
 line breaks
applications
 opening interpreters after executing
arguments
 [nd]i
assigning
 objects to variables
at sign (@)
 identifier names
backslash (\)
 adding line breaks
blank lines in scripts
breaking
 circular references
breaks
 lines
case sensitivity
 identifiers
characters
 identifier names
circular references
classesÓ
 Ò
collecting
 garbage
 unused objects
commands
 del
 start scriptname.py
 whereis python

counting
 reference
creating
 line breaks
 scripts 2nd 3rd 4th 5th
deallocating
 variables
declaring
 variables
del command
dollar sign ($)
 identifier names
elements
 []
entries
 [É
]
executing
 scripts from Windows
finding
 Python in UNIX
functions
 round()
 sys getrefcount()
garbage collection
Garbage Collection of Cycles
identifiersÓ
 Ò
interpreters
 opening after executing programs
launching
 interpreters after executing programs
 scripts from Windows
line breaks
 adding
lines
 blank, in scripts
 separating statements on
 shebang
monitoring
 reference counting, objects
naming
 identifiers
numbers
 starting identifiers with
objects
 assigning to variables

 monitoring reference counting
 unused
 collecting
objectsÓ
 Ò
opening
 interpreters after executing programs
 scripts from Windows
percent sign (%)
 identifier names
permissions
 setting on scripts
programs
 opening interpreters after executing
recursion
 [] element
reference counting
references
 circular
round() function
running
 interpreters after executing programs
 scripts from Windows
scripts
 executing from Windows
 lines in
 setting permissions
 tabs in
 writing 2nd 3rd 4th 5th
searching
 Python in UNIX
semicolons (
)
 separating statements on same line
sensitivity
 case
 identifiers
separating
 lines
 statements on same line
setting
 permissions on scripts
shebang line
software
 opening interpreters after executing
start scriptname.py command
statements

 separating on same line
sys getrefcount() function
tabs in scripts
UNIX
 finding Python
 shebang line
unused objects
 collecting
variables
 assigning objects to
 deallocating
 declaring
variablesÓ
 Ò
whereis python command
Windows
 executing scripts from
writing
 scripts 2nd 3rd 4th 5th

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Built-In Data
Types

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145081058105061222103253

Built-In Data Types

Built-in data types are types that are already built into the interpreter. They are divided into two groups:

Immutable Data Types

These objects cannot have their values altered (for example, strings, numbers, and tuples).

Mutable Data Types

These objects can have their values manipulated (for example, lists and dictionaries).

Sometimes, it becomes necessary to assign a null value to a variable using the special data type known
as None:

>>> x = 1
>>> x
1
>>> print x
1
>>> x = None
>>> x
>>>

As you could see, nothing was returned. However, if you try to print this value, the print method of the
object will specially handle the None value by returning a None result. This is shown in the following:

>>> print x
None

Numbers

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=27
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A18%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=27&now=5%2F31%2F2002+4%3A18%3A51+PM

Python provides the following numeric data types: integer, floating-point, hexadecimal (base 16), and
octal (base 8). Some examples of these data types are 43, 1.5, 0xB3, and 045, respectively.

Tip

Hexadecimal numbers must always be preceded by 0x, and octal numbers must be preceded by 0.

Python can do a lot of things with numbers:

It can write equations:

>>> 3*(3.0/34)
0.264705882353

It can use functions:

>>> round(12.32,1)
12.3

It can make comparisons:

>>> x = 2
>>> 0<x<5
1

It can make binary operations, such as shifting and masking:

>>> 16<<2
64
>>> 40&0xab
40
>>> 2|1

3
>>> ~2
-3
>>> 3^4
7

A very important detail is the fact that Python truncates integer divisions:

>>> 3/2
1

If you really want the decimals, you have two options. Either you pass a converted number to the division
function, or you put a decimal point in your number, as illustrated here:

>>> x = 3
>>> float(x)/2
1.5
>>> x
3
>>> 3.0/2
1.5

Python supports long integers—with unlimited size. To let Python know that it should handle an integer
as a long integer, you need to put an L at the end of the number:

>>> 2L**100
1267650600228229401496703205376L

Otherwise you get an error message:

>>> 2**100
Traceback (innermost last):
 File "<stdin>", line 1, in ?
OverflowError: integer pow()

Chapter 4, "Exception Handling," teaches you how to interpret this exception message.

Python also handles complex numbers in the format (real part + imaginary part):

>>> 2j**2
(-4+0j)

Strings

Python considers a string as a sequence of characters. Therefore, every time you use, for example, the
string "Parrot", internally Python handles it as the sequence ["P", "a", "r", "r", "o",
"t"]. The first indexer value is always the number zero. Hence, to have access to the letter P, you need
to say "Parrot"[0] and to access the letter a, you need to say "Parrot"[1]. Using the same
concept, we can get access to all the other elements.

The following is an example of string operators:

>>> "dead parrot " + "sketch" # concatenation
"dead parrot sketch"
>>> "parrot " * 2 # repetition
"parrot parrot"
>>> "parrot"[1] # indexing
"a"
>>> "parrot"[-1] # indexing backward
"t"
>>> "parrot"[1:3] # slicing (*)
"ar"

When slicing, it isn't necessary to include both first and last elements. Whenever you omit one of the
elements, it is assumed that you want everything in that direction. Note that the second argument is
always a positional reference.

>>> "parrot"[1:]
"arrot"
>>> "parrot"[:3]

"par"

Always remember that assigning z = x doesn't make a copy of the object x. Instead, it creates a new
reference for that object (as you already saw in the earlier round example). If you have to create a copy
of a sequence named x, you need to type:

>>> z = x[:]

The variable z will identify the middle of the variable x, and it will be initialized with everything from
the left direction plus everything from the right direction. Note that since Python 1.5, id(s) ==
id(s[:]) for strings because of string interning.

Strings cannot be modified after creation. It isn't possible to assign a value to a substring because strings
are immutable. See the error message in the next example:

>>> t = "pxrrot"
>>> t[1:2] = "a"
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: object doesn't support slice assignment

In cases like this, the usual solution is a little trick:

s = s[:left_element] + new_substring + s[right_element:]

For example

>>> t = "pxrrot"
>>> t = t[:1] + "a" + t[2:]
>>> t
"parrot"

Let me show you other useful operations that you can do with strings:

>>> len("parrot") # Get its length
6
>>> "parrot" < "sketch" # Compare one string against another.
1
>>> "t" in "parrot" # This logical test needs a char left operand
1
>>> "\n, \0, \x" # Use escape codes
"\012, \000, \\x"

Table 2.1 lists the escape codes supported by Python strings.

Table 2.1. Escape Codes Supported by Python Strings

Escape Code Description
\\ backslash
\' single quote
\" double quote
\b backspace
\e escape
\0 null
\n linefeed, also known as \012
\v vertical tab
\t horizontal tab
\r carriage return
\f form feed
\0nn octal value, the nn domain is: 0..7
\xnn hexa value, the nn domain is: 0..9, A..F, a..f

Next is an example of escape code:

>>> print "I am a lumberjack\ nand I am OK"
I am a lumberjack
and I am OK

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/27#5.html

You can use either single quotes or double quotes. They are both interpreted the same way.

Both strings 'Spam' and "Spam" are basically the same thing.

Python also accepts triple quotes for remarks that span across several lines:

>>> t = """I am a lumberjack
… and I am OK"""
>>> print t
I am a lumberjack
and I am OK
>>> t
"I am a lumberjack\ 012and I am OK"

Note that the escape code \012 becomes part of the string.

If you need to create strings with the / (slash literal), you must use raw strings. Raw strings are identified
by the letter r right before the first quote, as shown in the following:

>>> print r"\n, \f, \x"
\n, \f, \x

There is one more thing that I think you should know about strings. The enclosing backticks `` tell the
interpreter to understand that the enclosed object is of string data type:

>>> n = 123
>>> print `n` + " Parrot"
123 Parrot

Note

Python doesn't treat the contents of back quotes as commands to execute, as do Perl and sh.

Prior to version 2.0, you had to rely on the string module to manipulate your string objects because the
string-manipulation functionality was in the string module. With this new release, the methods were
pushed to the string type. Note that old string module was not removed from the distribution because it
is still necessary for backwards compatibility.

The following example shows how to call a method from a string object.

>>> 'Python '.join('World')
Python World

Note that 'Python '.join('World') is equivalent to the old string module:
string.join("World", "Python ")

Besides the methods that were inherited from the string module, two new methods were added:
startswith() and endswith().

s.startswith(t) is equivalent to s[:len(t)] == t

and

s.endswith(t) is equivalent to s[-len(t):] == t.

Unicode Support

Unicode is a new immutable string data type supported by Python 2.0. Basically, it can represent
characters using 16-bit numbers, instead of the 8-bit numbers used by the ASCII standard, which means
that Unicode strings can support up to 65,536 distinct characters. Note that when combining an 8-bit
string and an Unicode string, the resulting string is an Unicode string.

In order to write a Unicode string in Python, you need to use the notation u"string". If you need to
write arbitrary Unicode characters, you can use the new escape sequence, \uHHHH, where HHHH is a 4-
digit hexadecimal number from 0000 to FFFF. Note that you can also use the existing \xHHHH escape
sequence. Another option is to use octal escapes whenever you need to write characters up to U+01FF
(represented by \777).

True and False Logical Values

Falsity is represented by zeros, empty structures, or the value None (for example, 0, [], {}, (),
None).

Logical Truth is represented by results different from zero and non-empty structures (for example, 1,
[2], (1,2,3), "abc"). The following if statement checks whether the variable t has any value;
in this case, the statement returns true, allowing the block contents to be executed:

>>> t = "Parrot"
>>> if t:
… print "Parrot"
…
Parrot

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

/ (slash literal)
 creating strings
\\ escape code
\Ó
 escape code
\Õ
 escape code
` (back quotes)
 strings
`` (backticks)
 strings
assigning
 null values to variables
 values to substrings
back quotes (`)
 strings
backticks (``)
 strings
binary operations
 numbers in

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=27

calling
 methods
 from string objects
charactersÓ
 Ò
codes
 escape
comparisons
 numbers
complex numbers
 handling
copying
 objects
creating
 strings, slash literal (/)
data types
 immutable
 None
decimals in numbers
double quotes (Ò
)
 strings
duplicating
 objects
endswith() method
equations
 numbers in
error messages
 assigning values to substrings
 handling long integers
escape code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
escape codes
floating-point numbers
functions
 numbers in
handling
 complex numbers
 long integers
hexadecimal numbers
immutable data types
indexer values
 strings
integers
 division of, truncations
 long
 handling
long integers
 handling
masking

 numbers in
messages
 error
 assigning values to substrings
 handling long integers
methods
 calling from string objects
 endswith()
 print
 startswith()
modules
 string
None data types
null value
 assigning to variables
Ó
 (double quotes)
 strings
 Ó
 Ó (triple quotes);strings
Õ
 (single quote)
 strings
objects
 copying
 string
 calling methods
octal numbers
operations
 binary
 numbers in
print method
quotes
 strings 2nd
raw strings
 creating strings with slash literal (/)
shifting
 numbers in
single quotes (Ô
)
 strings
slash literal (/)
 creating strings
slicing
 strings
startswith() method
string modules
string objects
 methods

 calling
strings 2nd 3rd 4th
stringsÓ
 Ò
substrings
 assigning values
support
 Unicode 2nd
triple quotes (Ò
 Ó
 Ó)strings
truncations
 division of integers
Unicode support 2nd
values
 assigning to substrings
 indexer
 strings
 null
 assigning to variables

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Operators See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145080038239227044008125

Operators

Next, I list the available Python operators in their precedence order. I also provide some specific details
about some of them.

1. (), [], {}

2. `object`

3. object[i], object[l:r], object.attribute, function()

The . (dot) operator is used to access attributes and methods of a variable (object). In the
following example, the dot enables the object t to access its method append.

>>> t = ["p","a","r","r","o"]
>>> t.append("t")
>>> t
["p","a","r","r","o","t"]

4. +x, -x, ~x

These are bitwise operators.

5. x**y

6. x*y, x/y, x%y

The % (modulo) operator lets you know whether a number is divisible by another number. For
example, if a % b == 0, a is divisible by b.

7. x+y, x-y

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=28
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=28&now=5%2F31%2F2002+4%3A19%3A05+PM

8. x<<y, x>>y

These operators provide shifting operations. The << operator ensures left shifting (at bit level),
and the >> operator ensures right shifting (at bit level).

>>> x = 2 # the binary representation is 0010
>>> x << 1 # the binary representation will be 0100
4

9. x & y

The bitwise AND operator

10. x ^ y

The bitwise XOR (exclusive OR) operator

11. x | y

The bitwise OR operator

12. <, <=, >, >=, ==, !=, <>, is, is not, in, not in

The operators in and not in work only with lists. Another aspect of this group is that there's
an important difference between the == operator and the = assigning symbol.

is checks whether two variables refer to the same object. On the other hand, is not checks
whether two variables don't refer to the same object.

The == operator ensures equality testing, whereas = assigns a value to a variable.

Tip

Keep in mind that x = y doesn't create a new copy of y. Instead, it makes a reference to it.
However, if later you define x=x+1, a new reference for x is created, and then they become
different because the operator has created a new object.

Note that x.append(5) doesn't create a new reference to x because x changes itself without
using a = operator.

13. not

14. and

15. or, lambda args:expr

As a good programmer, you need to know that logical operations can also be emulated by using if
statements. Note that the return values are not limited to zeros and ones.

The operation a and b can be written as the following:

>>> def newand(a,b):
… if not a: #If a is false
… return a
… else:
… return b
…

The operation a or b can be written as the following:

>>> def newor(a,b):
… if a: #If a is true
… return a
… else:
… return b
…

The operation not a can be written as the following:

>>> def newnot(a):

… if not a: #If a is false
… return 0
… else:
… return 1
…

Augmented Assignment

Starting with Python 2.0, the language also implements a full set of augmented assignment operators.
That includes: +=, -=, *=, /=, %=, **=, &=, |=, ^=, »=, and «=

For example, instead of saying x = x+1, you can choose to say x += 1

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

% (modulo) operator
<
 <
 operator
. (dot) operator
= (equal) sign
== operator 2nd
AND operator
augmented assignment operators
bitwise operators 2nd
copying
 objects
dot (.) operator
duplicating
 objects
equal (=) sign
exclusive OR (XOR) operator
if statements
in operator
is not operator
is operator
left shifting

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=28

modulo (%) operator
not in operator
objects
 copying
operator
operators
 augmented assignment
OR operator
right shifting
shifting
statements
 if
XOR (exclusive OR) operator

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Expressions See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145080038238054061085253

Expressions

Python operators support a wide range of expressions, such as

>>> x,y,z = z-x, y*z, x+y # Parallel assignment: example 1
>>> x,y,z = 5,4,3 # Parallel assignment: example 2
>>> a,b = b,a # Switching assignments
>>> a = b = c = 10 # Multiple assignments
>>> string.atof(s) # Functions support
>>> 20 < x < 40 # Multiple range testing

The last example is equivalent to

>>> 20 < x and x < 40

Built-In Functions

The following functions are always available when you load the Python interpreter. You don't need to
import them because they are already part of the __builtin__ module, which is always imported
when you launch Python.

apply()

It executes a given function, passing the arguments provided.

basic syntax: apply(function, (tuple of positional arguments) [,
dictionary of keywords arguments])

>>> apply (raise_salary, (6000), {'employee':'John', 'id':13})

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=29
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=29&now=5%2F31%2F2002+4%3A19%3A17+PM

Note that starting at Python 1.6, the functionality of apply is now available with normal function
calling, such as

>>> args = (6000,)
>>> kwargs = { 'employee':'John', 'id':13}
>>> raise_salary(*args, **kwargs)

coerce()

coerce is used to try to convert the two given arguments x and y to the same type, returning them as
a tuple.

basic syntax: coerce(x, y)

>>> coerce(42,5.4)
 (42.0, 5.4)

filter()

It creates a new list by taking each element of list for which function evaluates to true.

basic syntax: filter(function, list)

>>> a = range (4)
>>> b = filter(lambda x: x < 3, a)
>>> print b
[0,1,2]

globals()

It returns the global namespace dictionary.

basic syntax: globals()

input()

It provides an input interface for the user. Only numbers are accepted.

basic syntax: input([prompt])

a = input("Please, type a number greater than 5: ")
if a<5:
 print "a is not greater than 5"

locals()

It returns the local namespace dictionary

basic syntax: locals()

map()

It applies a function to each element of list, producing another list. If function is set to None
and multiple lists are provided, a tuple matrix is generated in the format of a list.

basic syntax: map(function, list)

>>> lst = map(None, [1,2,3,4], [1,2,3,4,5,6])
>>> lst
[(1, 1), (2, 2), (3, 3), (4, 4), (None, 5), (None, 6)]

open()

It opens a file. (See the section "File Handling" for details.)

basic syntax: open(filename [,mode [,bufsize]])

pow()

It returns x**y or (x**y) % z, depending on the number of arguments that are transported.

basic syntax: pow(x, y [,z])

raw_input()

It reads from standard input (sys.stdin), returning the read data as a string. prompt is an optional
text that can be displayed in the screen.

basic syntax: raw_input([prompt])

reduce()

It applies a function cumulatively to the items in sequence (implied loop), returning a single
value. initializer is an optional starting value.

basic syntax: reduce(function, sequence [,initializer])

>>> import operator
>>> a = [1,2,3]
>>> print reduce(operator.add, a)
6

The equivalent Python code for this function is something like

def reduce(func, list):
 ret = list[0]
 for x in list[1:]:
 ret = func(ret, x)
 return ret

__import__()

This is a function invoked by the import statement. To import a module, you just need to inform the
module name.

basic syntax: __import__(module_name [,globals() [, locals() [,from
list]]])

>>> modname = "string"
>>> string = __import__(modname)
>>> string

reload()

It reloads an already imported module. Internally, it calls the __import__ function.

basic syntax: reload(module)

Sequence Functions

The next set is built-in functions that deal with sequences.

range()

It returns a list of numbers according to the transported information.

basic syntax: variable = range([initial_value,] final_value-1 [, step])

>>> lst = range(1,5)
>>> lst
[1, 2, 3, 4]

See the section "Data Structures" for details.

xrange()

It is similar to range(), but it doesn't assign the returned list to a variable, Therefore, it doesn't use
as much memory, so you won't run out of memory by typing xrange(2000000000), for instance.

basic syntax: xrange([initial_value,] final_value-1 [, step])

See the section "Data Structures" for details.

len()

It returns the length/number of elements of string.

basic syntax: len(variablename)

max()

It returns the maximum/largest element of sequence.

basic syntax: max(sequence)

>>> max(1, 2, 3)
3
>>> max("MY BRAIN HURTS")
"Y"

min()

It returns the minimum/smallest element of sequence.

basic syntax: min(sequence)

>>> min("MY BRAIN HURTS")
" "

zip()

It returns a list of tuples where each tuple contains the i-th element from each of the given sequences.
This function generates a resulting list whose length is exactly the same as of the shortest given
sequence. Note that, on the other hand, the function map(None, sequence1, sequence2, …)
pads the resulting list with None when the sequences don't have the same length.

basic syntax: zip(sequence1, sequence 2, sequence3, …)

Object Manipulation

The next set is built-in functions that deal with object handling.

setattr()

It sets a new value for object.name

basic syntax: setattr(object, name, value)

getattr()

It returns the attribute from object. This command is equivalent to object.attribute.

basic syntax: getattr(object, attribute)

hasattr()

It returns 1 if object has attribute, 0 if it doesn't.

basic syntax: hasattr(object, attribute)

delattr()

It deletes the attribute from object. This command is equivalent to del
object.attribute.

basic syntax: delattr(object, attribute)

type()

It returns the type of object.

basic syntax: type(object)

>>> type("andre")
<type "string">

dir()

It returns a list of attribute names from the active namespace. object can be anything (a variable, a
module, a class, and so on).

basic syntax: dir([object])

callable()

It returns 1 if object is callable. Otherwise, it returns 0.

basic syntax: callable(object)

hash()

It returns a hash value for object.

basic syntax: hash(object)

id()

It returns the system unique identifier of object.

basic syntax: id(object)

vars()

It returns the symbol table of object or a dictionary from the local namespace.

basic syntax: vars([object])

Mathematical/Logical Functions

The next set is built-in functions that deal with mathematical and logical operations.

abs()

It returns the absolute value of number.

basic syntax: abs(number)

>>> abs(-12), abs(34), abs(+20.23), abs(-10.82)

(12, 34, 20.23, 10.82)

cmp()

It returns -1 when x<y; 0 when x==y, 1 when x>y

basic syntax: cmp(x,y)

>>> cmp(10,20), cmp(25,25), cmp(30,25)
(-1, 0, 1)

round()

It rounds number to the given number of decimals. Note that the provided number is rounded to
an integer by default.

basic syntax: round(number [,decimals])

divmod()

It returns a tuple (quotient, remainder), resulting in the expression dividend/divisor.

basic syntax: divmod(dividend, divisor)

>>> divmod(25/3)
(8, 1)

Code Functions

The next set is built-in functions that deal with Python bytecode manipulation.

eval()

It evaluates the compiled code string object as if it were Python code, and returns the result.
globals and locals define the namespaces for the operation. Note that eval can evaluate

expressions only—not arbitrary statements. Therefore, eval('import string') won't work.

basic syntax: eval(string [,globals [,locals]])

>>> a = eval('2 * y + (20 / x)')

exec()

exec is a statement that executes a string containing Python code. globals and locals define
the namespaces for the operation.

basic syntax: exec string [in globals [,locals]]

>>> a='for b in range(4):\n print b,\n'
>>> exec a
0 1 2 3

execfile()

It executes the statements included in the file provided. globals and locals define the
namespaces for the operation.

basic syntax: execfile(file [,globals[,locals]])

>>> execfile("c:\\python\program2.py")

You can redefine the global and the local namespaces for these functions by creating dictionaries, just
like the next example shows. If you omit the values, the current environment namespace is always
used.

>>> globalsvar = {'x': 7}
>>> execfile("c:\\python\\program2.py", globalsvar)

compile()

It compiles a code object (string) that optionally might be located in a file. The type value
depends on the following: if string is a sequence of statements, type is "exec"; if string is a
single expression, type is "eval"; and if string is an executable statement, type is
"single".

basic syntax: compile(string, file, type)

>>> a = "for i in range(0,10): print i,"
>>> b = compile(a, "", "exec")
>>> exec b
0 1 2 3 4 5 6 7 8 9
>>> a = "123 * 2"
>>> c = compile(a, "", "eval")
>>> d = eval(c)
>>> d
246

Tip

If you need to evaluate or execute the same code many times in your application, the application
will get more optimized if you compile all the source code first.

Type Conversion

The next set is built-in functions that deal with data type conversion.

int()

It converts object to an integer number.

basic syntax: int(object)

long()

It converts object to a long integer.

basic syntax: long(object)

As of Python 2.0, the functions int() and long() have an optional base argument, which can be
used when the first argument is a string. Note that if you try to use this second argument with a value
that is not a string, you get a TypeError exception message. The following examples demonstrate
what happens when we use this argument: int('450', 10) returns 450, and int('25', 16)
returns 37.

float()

It converts object to a floating-point number.

basic syntax: float(object)

complex()

It creates a complex number in the format (real number + imaginary number)

basic syntax: complex(real [,imaginary])

str()

It returns the printable representation of object. It returns the same value that a " print object "
statement does.

basic syntax: str(object)

repr()

It is equivalent to the enclosing backticks ``. It returns an expression that can be evaluated.

basic syntax: repr(object)

You can use either repr() or `` to get the representation of an escape character.

>>> repr('spam\n')
"'spam\\012'"

tuple()

It creates a tuple based on sequence.

basic syntax: tuple(sequence)

list()

It creates a list based on sequence.

basic syntax: list(sequence)

chr()

It converts an integer into one character.

basic syntax: chr(integer)

ord()

It returns the ASCII value of string.

basic syntax: ord(string)

hex()

It converts an object into a hexadecimal value.

basic syntax: hex(object)

oct()

It converts an object into an octal value.

basic syntax: oct(object)

unicode()

This function takes an 8-bit string and creates a Unicode string.

basic syntax: unicode(string [, encoding] [, errors])

encoding and errors are some additional arguments that you can also provide to the function. The
first one is a string that names the encoding to use. errors defines what to do when an invalid
character is used for the current encoding. You have three options for values here: strict causes an
exception to be raised on any encoding error, ignore simply ignores any errors, and replace
replaces the invalid character with the official replacement character U+FFFD whenever it finds any
problem.

unichr()

This function returns a 1-length Unicode string containing the given character.

basic syntax: unichr(character)

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

arguments
 base
 functions
base arguments
 functions
built-in functions 2nd 3rd 4th 5th 6th 7th 8th
code functions 2nd
data type conversion functions 2nd
expressions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
functions
 built-in 2nd 3rd 4th 5th 6th 7th 8th
 code 2nd
 data type conversion 2nd
 handling objects 2nd
 int()
 base argument
 long()
 base argument
 mathematical/logical

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=29

 sequence
 syntax
 unichr()
 zip()
 unicode()
 syntax
 zip()
handling
 objects
 functions 2nd
int() function
 base argument
logical functions
mathematical functions
objects
 handling
 functions 2nd
sequence functions
syntax
 functions
 abs()
 apply()
 callable()
 chr()
 cmp()
 coerce()
 compile()
 complex()
 delattr()
 dir()
 divmod()
 eval()
 exec()
 execfile()
 filter()
 float()
 getattr()
 globals()
 hasattr()
 hash()
 hex()
 id()
 import ()
 input()
 int()
 len()

 list()
 locals()
 long()
 map()
 min()
 oct()
 open()
 ord()
 pow()
 range()
 raw input()
 reduce()
 reload()
 repr()
 round()
 sequence()
 setattr()
 str()
 tuple()
 type()
 unichr()
 unicode()
 vars()
 xrange()
 zip()
tuples
 zip() function
 syntax
type conversion functions 2nd
unichr() function
 syntax
unicode() function
 syntax
zip() function
 syntax

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Control
Statements

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145080038237082193198183

Control Statements

Python implements all the necessary types of control statements that your program might require. The
syntax provided by Python's if, for, and while statements should be enough for your needs.

Tip

Remember to type a colon at the end of each line where you enter a statement declaration.

if/elif/else

The general syntax for the if/elif/else statement is as follows:

1: if <condition>:
2: <statements>
3: [elif <condition>:
4: <statements>]
5: [elif <condition>:
6: pass]
7: …
8: [else:
9: <statements>]

Note that both elif and else clauses are optional. As you can see in lines 3 through 7, it is only
necessary to use elif when you need to handle multiple cases. That is exactly how you implement the
switch/case statements from other languages.

Line 6 introduces you to an empty clause that does nothing. It is called pass.

for

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=30
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A29+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=30&now=5%2F31%2F2002+4%3A19%3A29+PM

The for statement implements loops within a sequence (list). Each element in the sequence
assigns its value to variable on its turn. The general syntax is as follows:

for <variable> in <sequence>:
 <statements>
[else:
 <statements>]

The else clause is only executed when the for statement isn't executed at all, or after the last loop
has been executed. In other words, the else statement is always executed unless the break statement
is executed inside the loop.

Let's see some examples:

>>> for n in [1,2,3,4,5]:
… print n,
…
1, 2, 3, 4, 5
>>> t = [(1,2),(2,4),(3,6)]
>>> for t1, t2 in t:
… print t1, t2
…
1 2
2 4
3 6

while

The while statement implements a loop that executes the statements while the condition
returns true.

while <condition>:
 <statements>
[else:
 <statements>

The else clause is only executed when the while statement isn't executed at all, or after the last loop
has been executed. In other words, the else statement is always executed unless the break statement
is executed inside the loop.

The following example demonstrates the use of the while statement:

>>> x = 5
>>> while x > 0:
… print x,
… x = x-1
…
5 4 3 2 1

The next example implements an infinite loop because the pass statement does nothing and the
condition will always be true.

>>> while 1:
… pass

break/continue

Next are two commands that can be used inside for and while types of loop.

break

The break clause exits a loop statement without executing the else clause.

>>> for n in [1, 2, 3]:
… print n,
… if n == 2:
… break
… else:
… print "done"

…
1 2

continue

The continue clause skips the rest of the loop block, jumping all the way back to the loop top.

>>> x = 5
>>> while x > 0:
… x = x - 1
… if x == 3:
… continue
… print x,
…
4 2 1 0

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

control statements 2nd
else statement 2nd
if/elif/else statement
pass statement
statements
 control 2nd
 else 2nd
 if/elif/else
 pass
 while
syntax
 statements
 for
 if/elif/else
while statement

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=30

Web Development > Python Developer's Handbook > 2. Language Review > Data Structures See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145080038235019135135235

Data Structures

Python implements a variety of data structures, such as lists, tuples, ranges, and dictionaries (also known as
hash tables).

Lists

Lists are mutable sequences of objects indexed by natural numbers that can be changed after they are
created.

Lists are very flexible and easy to create. They are always enclosed in brackets:

>>> lst = [1,2,3,4] # this is simple list

A list can have elements of different data types:

>>> lst = [1, "ni!", 2]

Lists can also include other lists:

>>> lst = [1, "ni!", [1,2,"Albatross!!"]]

A list uses the same operators that strings use. For example, you need to use slice notation to grab a
range of elements from a list.

>>> lst = [1, "ni!", [1, 2, 3, 4, "Albatross!!", 3]]
>>> lst[1]
"ni!"

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=31
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=31&now=5%2F31%2F2002+4%3A19%3A40+PM

To grab elements from lists that are located inside other lists, you need to use a pair of brackets to represent
each list. Check out the next couple of examples.

>>> lst = [1, "ni!", [1, 2, 3, 4, "Albatross!!", 3]]
>>> lst[2][4]
"Albatross!!"
>>> lst[2][4][5]
"r"

Let's see some examples of operations that can be applied to a list.

Identifying an Entry

>>> lst = ["p", "a", "r", "r", "o", "t"]
>>> lst.index("o")
4

Assigning Values to a List

>>> lst = ["p", "a", "r", "r", "o", "t"]
>>> lst[1] = "aaaaaaaaaaaaa"
>>> lst
["p", "aaaaaaaaaaaaa", "r", "r", "o", "t"]

Assigning Values to a Slice

>>> lst = ["p", "a", "r", "r", "o", "t"]
>>> lst[1:4] = ["aaaaaaaaaaaaa", "rrr", "rrrr"]
>>> lst
["p", "aaaaaaaaaaaaa", "rrr", "rrrr", "o", "t"]

Inserting Values

The following example starts inserting values at index number 6.

>>> lst = ["p", "a", "r", "r", "o", "t"]
>>> lst[6:] = [" ", "s", "k", "e", "t", "c", "h"]
['p', 'a', 'r', 'r', 'o', 't', '', 's', 'k', 'e', 't', 'c', 'h']

If the list was longer than 6 elements, the statement would overwrite a portion of the list. Note that you can
also insert a value in this list with

>>> lst.insert(6, val)

Deleting a Value

>>> lst = ["p", "a", "r", "r", "o", "t"]
>>> del lst[-1]
>>> lst
["p", "a", "r", "r", "o"]
>>> del lst[0:2]
["r", "r", "o"]

The following example converts objects to their string representation:

>>> lst = [10,20,30,"inquisition","lumberjack"]
>>> text = ""
>>> for element in lst:
… text = text + `element`
… # enables the concatenation of any object
… print text
…
10
1020
102030
102030'inquisition'
102030'inquisition''lumberjack'

List Comprehension

Starting with release 2.0, there is a new notation to create lists whose elements are computed from another
list (or lists). The method is called List Comprehension, and it adopts the following format:

[expression for expression1 in sequence1
 [for expression2 in sequence2]
 [… for expressionN in sequenceN]
 [if condition]]

All for…in clauses are evaluated and iterated from left to right. That means that the resulting list is a
cartesian product of the given sequences. For example, if you have three lists of length 5, the output list has
125 elements. The if clause is optional, but when present, it can limit the number of pairs that will become
part of the resulting list by adding pairs to the resulting list only when the result condition of the if
statement evaluates to true. Check the following example:

letters = 'py'
numbers = (1.52, 1.6, 2.0)
>>> [(l,n) for l in letters for n in numbers]
[('p', 1.52), ('p', 1.6), ('p', 2.0), ('y', 1.52), ('y', 1.6),
('y', 2.0)]

This new concept is more efficient than a for loop with an if statement along with a list.append()
function call.

Built-In Methods

To list all the built-in methods of a list, go to the interpreter and type dir([]).

Let's practice the methods that you have found, and see what happens to our list lst.

>>> lst = [0, 1, 2]
>>> lst.append(5) # appends the element 5 to the list
>>> lst
[0, 1, 2, 5]
>>> lst.append((5, 6)) # appends the tuple (5, 6)
>>> lst
[0, 1, 2, 5, (5, 6)]
>>> lst.pop() # removes the last element of the list
(5, 6)

>>> lst
[0, 1, 2, 5]
>>> lst.insert(2,7) # inserts the element 7 at index number 2
>>> lst
[0, 1, 7, 2, 5]
>>> lst.pop(2) # removes the element at index number 2
7
>>> lst
[0, 1, 2, 5]
>>> lst.reverse() # reverse the list order
>>> lst
[5, 2, 1, 0]
>>> lst.sort() # sorts the list elements
>>> lst
[0, 1, 2, 5]
>>> lst.extend([3, 4, 5]) # adds this list to our original list
>>> lst
[0, 1, 2, 5, 3, 4, 5]
>>> lst.count(5) # counts the number of elements number 5 that exist.
2
>>> lst.index(3) # returns the associated index of element 3.
4
>>> lst.remove(2) # removes the element number 2 (not the index!!!)
>>> lst
[0, 1, 5, 3, 4, 5]

Note that up to release 1.5.2, whenever you used lst.append (1,2), a tuple (1,2) would be
appended to the list lst. Now, with release 2.0, when you do that, you get an TypeError exception
followed by a message like " append requires exactly 1 argument; 2 given ". Don't
panic! To fix that, you just need to add an extra pair of parenthesis, like this: lst.append ((1,2)).

Ranges

A range is an actual list of integers. The built-in function range() provides this data structure.

>>> r = range(2,5)
>>> print r
[2,3,4]

When the first argument is left out, it is assumed to be zero.

>>> r = range(3)
>>> print r
[0,1,2]

When you provide a third argument to the range() function, you specify the interval that you want to
exist between the list elements.

>>> r = range(2,10,2)
>>> print r
[2, 4, 6, 8]

Let's see an example of stepping backward:

>>> r = range(5,1,-1)
>>> print r
[5, 4, 3, 2]

The xrange() function computes the values only when they are accessed. This function returns an
XrangeType object, instead of storing a large list of numbers in a variable.

>>> for n in xrange(10):
… print n,
…
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

The previous example also works with the range() function, although it will store the whole list in
memory.

It is possible to assign a reference to the return value of the xrange() function to a variable, as you will
see next. Note that we are not storing the values, only a reference to the function.

>>> lst = xrange(10)

>>> lst
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

However, you can convert this reference later into a real list by using the tolist() method.

>>> lst.tolist()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Tuples

A tuple is a sequence of immutable Python objects.

The general syntax of a tuple is as follows:

variable = (element1, element2, …)

It looks like a list without the brackets. Note in the following examples that parentheses are optional.

>>> t = (1,)
>>> print t
(1,)
>>> t = 1,
>>> print t
(1,)
>>> t = () # this is an empty tuple.
>>> print t
()
>>> t = (1,2,3)
>>> print t
(1,2,3)
>>> t = 1,2,3
>>> print t
(1,2,3)

Note that in the previous example, it is necessary to use the comma when defining a length-1 tuple.

Otherwise, the variable being created wouldn't be defined as of type tuple. Instead, the interpreter would
think that you wanted to assign a numeric value to the variable.

A tuple really looks like a list. The difference between tuples and lists is that tuples are immutable.

You can bypass this rule if you bind a new structure to the old tuple variable.

>>> t = 10,15,20
>>> t = t[0],t[2]
>>> t
(10,20)

Other Interesting Facts About Tuples

● They support indexing.

>>> t = 10,20,30,40
>>> print t[1]
20

● You will see, later in this chapter, that you need to use tuples whenever you need to return more
than one value from a function.

>>> Def tuplefunction():
… return 10, 20, 30
…
>>> x, y, z = tuplefunction()
>>> print x, y, z
10 20 30

Dictionaries (hash tables)

Dictionaries illustrate the only mapping type of Python. They represent finite sets of objects indexed by
nearly arbitrary values. I say nearly because dictionary keys cannot be variables of mutable type, which are
compared by value rather than by object identity.

Python dictionaries are also known as associative arrays or hash tables. The general syntax

of a dictionary is as follows:

variable = {"key1":"value1", "key2":"value2", …}

Dictionaries are always enclosed in braces. They associate key elements with value elements—keys and
values are displayed separated by a colon.

The values of a dictionary can be of any type, but the keys must be of an immutable data type (such as
strings, numbers, or tuples). Dictionary keys have no natural order and are always listed in arbitrary order
because it uses a hash technique to implement a fast lookup.

Let's focus now on the operations that we can implement with dictionaries. First, let's create a simple
dictionary.

>>> dic = {"bird":"parrot", "fish":"tuna", "dino":"t-rex"}

Now, let's apply some operations to it:

>>> dic["fish"] # value lookup
"tuna"
>>> dic["animal"] # raises a KeyError exception
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: animal
>>> del dic["fish"] # deletes the key fish
>>> print dic
{'bird': 'parrot', 'dino': 't-rex'}
>>> dic["dino"] = "brontosaur" # updates an entry
>>> dic["parrot age"] = 58 # adds an entry
>>> dic
{"bird": "parrot", "dino": "brontosaur", "parrot age": 58}
>>> len(dic) # provides the number of keys
3

Built-In Methods

The following sequence of commands shows the built-in methods that are implemented for

dictionaries.

>>> dic = {"a":1, "b":2, "c":3}
>>> dic.keys() # creates a list of keys. Very used in for statements.
["a","b","c"]
>>> dic.values() # creates a list of values
["1","2","3"]
>>> dic.items() # creates a tuple with the dictionary elements
[("a","1"),("b","2"),("c","3")]
>>> dic.has_key("a") # returns 1 if key exists. Otherwise it returns 0.
1

dic.get(value, default)
If key exists, returns its value. Otherwise it returns the second arg.
>>> dic.get("b", None)
2

dic.update(dictionary)
adds the dictionary in the argument to the original dictionary.
>>> dic.update({"d":4})

>>> newdic = dic.copy() # creates a copy of the dictionary
>>> keys = dic.keys()
>>> keys.sort() # sorts the dictionary keys
>>> dic.clear() # removes all the items from the dictionary.

Python 2.0 contains a brand-new method for dictionaries, which is called setdefault(). This method
returns the value for the given key (exactly as the get() method would do). However, if the given key is
not found, it returns the given default value, and at the same time, it initializes the given key with the
default value, as demonstrated in the following code.

if dict.has_key(key):
 return dict[key]
else:
 dict[key] = ["default value"]
 return dict[key]

is the same of saying

return dict.setdefault(key, "default value")

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

()_(parenthesis)
 1st append
1st.append
 () (parenthesis)
applying
 operations to dictionaries
arguments
 range() function
backward stepping
converting
 references into lists
creating
 dictionaries
data structures 2nd 3rd 4th 5th 6th
dictionaries
 methods
functions
 returning values from, tuples
 xrange()
indexing
 support, tuples
List Comprehension 2nd
lists 2nd
 converting references into
 vs. tuples
medhots
 tolist()
methods
 for dictionaries
 setdefault
operations
 applying to dictionaries
operators
 lists
parenthesis (_)
 1st append
references

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=31

 converting into lists
returning
 values from functions, tuples
setdefault() method
stepping backward
structures
 data 2nd 3rd 4th 5th 6th
support
 indexing, tuples
syntax
 tuples
tolist() method
tuples
values
 returning from functions, tuples
xrange() function

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Functions and
Procedures

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162145080038234097053096052

Functions and Procedures

Functions and procedures are blocks of code that you can access from several different parts of your code.
As you already know, Python gives you some built-in functions, but you can also create your own
functions. Yours are called user-defined functions. Functions and procedures provide better
modularity for your application and a high degree of code reusing.

Procedures are functions that don't return a value. The only difference between a function and a procedure
is that a procedure has either a return command without arguments (that returns None), or it doesn't
have any return statement. From now on, I will use only the word function.

While functions are being executed, they create their own namespace.

Every time you invoke a function, such as function (a,b,c)

● Python does a search within its namespaces looking for function to identify whether this is a
python object.

● Python creates a tuple of the arguments that were passed. Following our example, we have
arguments=(a,b,c).

● Python invokes the function internally like this: apply(function,arguments).

As you can see, tuples are an unavoidable concept inside the language.

Python, by nature, allows introspection to an unprecedented degree. You can separate a function name from
its parameters, store them in some place, play around with them, and later use the apply built-in
function to execute the function.

Functions

Functions always start with the abbreviation def. Their end is defined by the last line of the indented
block of code that goes underneath.

The general format of a function is as follows:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=32
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A19%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=32&now=5%2F31%2F2002+4%3A19%3A53+PM

def functionname(arg1, arg2, …): # tuple of arguments
 "documentation string" # optional
 <statements>

Let's see a real example now:

>>> def addnumbers(x,y):
… "This function returns arg1 + arg2"
… return x + y
…
>>> addnumbers(3,4)
9

Remember that to call a function without arguments, it's necessary to use empty parentheses.

>>> variable = name() # instead of variable = name

As a matter of fact, remember that you can assign functions to variables.

>>> x = abs
>>> print x(-2) # it's the same as saying print abs(-2)
-2

x = abs returns the own function, and assigns its value to x.

Python uses dynamic namespaces. In order to show that, the next example uses the value of n, available at
the time of calling the function, because n isn't defined inside the function nor is it part of its list of
arguments. n is part of the global namespace of the function.

>>> def add_to_n(arg):
… return n + arg
…

Variables that have values assigned to them inside a function always belong to the function namespace.
Study the next example to learn how to change a global variable inside a function by using the keyword
global.

>>> x = 10
>>> def nudge():
… global x
… x = 20
… return x
…

Python implements procedural abstraction. Although this topic has a scary name, it is something very easy
and simple. Python offers this feature by providing anonymous functions implemented with the keyword
lambda. This type of abstraction can be used when the function is just an expression. In other words,
lambda is just another way of writing def, except that it doesn't have to be named, and you can only put
an expression in it. (The return is implicit.) It is intended to be just a shorthand to write small functions
easier as shown in the following:

>>> f = lambda x: x * 2
>>> f(20)
40

The previous case can also be written as follows:

>>> def f(x):
… return x * 2
>>> f(30)
60

Here's another example:

>>> def compose(func1,func2,y):
… f = lambda x, f1=func1, f2=func2: f1(f2(x))
… return f(y)

…
>>> compose(chr,abs,-65)
'A'

Note that in this last example, it is necessary to pass the default arguments to the lambda function because
Python has only local and global namespaces.

lambda is very useful for functions—such as map, filter, and reduce—that need a function as an
argument.

>>> def listtostring(list):
… return reduce(lambda string, item: string + chr(item), list, "")
…
>>> listtostring([1,2,3,4,5])
"\001\002\003\004\005"

Parameters

All parameters (arguments) in the Python language are passed by reference. Modules, classes, instances,
and other functions can be used as arguments to functions and examined dynamically. Keep in mind that
you don't need to specify the object type of an argument. By default, arguments have a positional behavior,
and you need to inform them in the same order that they were defined.

>>> def powerdivision(x,y):
… return x/y
…
>>> print powerdivision(4,2)
2

Whenever mutable objects (dictionaries and lists)—that are transported to a function as arguments—change
within the function, their external values also change.

>>> a = [1]
>>> def changelist(argument):
… argument.append(4)
…
… changelist(a)

>>> a
[1,4]

Python also offers you named arguments. This type is different from positional arguments because it
enables you to call a function and pass argument names and values in an arbitrary way—the order isn't
important at all.

Both function calls

>>> connect(port=80, name="www.bebemania.com.br")

and

>>> connect(name="www.bebemania.com.br", port=80)

are executed perfectly well and in the same way (when the function is implemented, of course).

Default arguments are also allowed by the syntax. If the argument isn't provided, the default value takes
place. The default value is optional. Even though its absence doesn't break your program, its presence cuts
many lines from your code, as shown in the following:

>>> def connect(port=80):

The following example demonstrates namespace handling along with default arguments:

>>> a = 5
>>> def test(b = a):
… print b
…
>>> test()
5
>>> test(2)
2
>>> a = 10

>>> test() # Note that the b wasn't reassigned
5

This effect is because the value of a was collected when the function was created.

In some cases, you cannot pre-identify the number of arguments that you might need. For this kind of
situation, you can use the special symbols * and ** next to a generic argument name.

*args gets a tuple of values in the received order; **args gets a dictionary mapping
argumentname:value.

>>> def showargs(*args):
… # defines a list of an undefined number of arguments.
… print args
…
>>> showargs(10,20,30)
(10, 20, 30)

>>> def add(*args):
… sum=0
… for arg in args:
… sum=sum+arg
… return sum
…
>>> add(1,2,3,4)
10
>>> add(1,2,3,4,5,6,7)
28

Returning Values

The return expression halts the execution of a function, but when it's followed by an expression, it
returns the expression.

>>> def returnargument(x):
… return x
…
>>> 5
5

A function can return multiple values by using tuples.

>>> def returntuple(s,p):
… return (s,p)
…
>>> x = 10
>>> y = 20
>>> a, b = returntuple(x,y) # or (a, b) = returntuple(x,y)
>>> print a, b
10, 20

It is also possible for a function to have no return at all. When that happens, the value None is returned.

Built-In Methods

When you have a function f, the following built-in methods can be accessed:

>>> f.__doc__ or f.func_doc # "documentation string"
>>> f.__name__ or f.func_name # "function name"
>>> f.func_code # byte-compile code
>>> f.func_defaults # tuple containing the default arguments
>>> f.func_globals # dictionary defining the global namespace

Let's get the documentation string of the join function, which is part of the string module.

>>> import string
>>> print string.join.__doc__
join(list [,sep]) -> string
joinfields(list [,sep]) -> string
Return a string composed of the words in list, with intervening
occurences of sep. Sep defaults to a single space.
(join and joinfields are synonymous)

Dynamic Namespace

Maybe you haven't noticed yet, but Python uses dynamic namespace concepts. Each function, module, and
class defines its own namespace when it is created.

When you inform an instruction, command, or statement to Python, it searches first inside the local
namespace and afterwards inside the global namespace.

Python has the following namespaces:

Built-in names— int, string, def, print, and so on

Global names— Declared as global and assigned at the top-level of a module

Local names— Assigned inside a function

When you are writing your code, you have two forms of writing an object name. You can use qualified
names and unqualified names. Qualified names use object namespaces as references, for example:

>>> print objectnamespace.objectname

Unqualified names deal with scopes, provided the object is in your namespace. For example

>>> print objectname

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=32

Index terms contained in this section

* (asterisk)
 identifying number of arguments, functions
**
 identifying number of arguments, functions
abbreviations
 def, functions
abstraction
 procedural 2nd
arguments
 calling functions without
 functions
assigning
 functions to variables
asterisk (*)
 identifying number of arguments, functions
calling
 functions without arguments
changing
 global variables inside functions
commands
 return
def abbreviation, functions
default arguments
dynamic namespaces
editing
 global variables inside functions
format
 functions
functions 2nd 3rd 4th 5th
 assigning to variables
 calling without arguments
 changing global variables inside
 formats of
 namespace 2nd 3rd
 user-defined
global keyword
global variables
 changing inside functions
handling
 namespaces
identifying
 number of arguments, functions
keywords
 global
 lambda
lambda keyword

modifying
 global variables inside functions
multiple values
 returning, functions
named arguments
namespace function 2nd 3rd
namespaces
 dynamic
positional arguments
procedural abstraction 2nd
procedures 2nd 3rd 4th 5th
return command
returning
 values
tuples
 returning multiple values, functions
user-defined functions
values
 returning
variables
 assigning functions to
 global
 changing inside functions

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Modules and
Packages

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146122163095031239122038

Modules and Packages

A module is a collection of classes, functions, and variables saved in a text file.

When referencing a module within your Python application, you don't need to specify the file
suffix—your program text files must carry a .py extension. Modules can be written in Python or in C.
No matter what option you use, you call both types of modules using the same syntax. The following
syntax imports and creates the global namespace for a module:

import <module>

A module filename called yourmodule.py should be mentioned in your import clause as follows:

>>> import yourmodule

It is also possible to have multiple modules imported at the same time, using just one import statement
as follows:

>>> import m1, m2, m3

Tip

An interesting fact you should know is that all the code is executed when it is imported for the first
time.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=33
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=33&now=5%2F31%2F2002+4%3A20%3A05+PM

Some modules are always available in Python. Others (including yours) are files and need to be
imported (in most cases, those files have .py or .pyc suffixes). To be imported, a file must have been
saved in one of the directories listed in the sys.path variable.

If you need your module to be runnable and importable at the same time, you need to put something
like the following line of code at the end of the file:

If __name__ == "__main__": your_function()

Tip

Remember that in UNIX, you need to change the permission of a file to make it executable.

You can find out the contents of a module by typing:

dir(<module>)

For example,

>>> dir(math)

Now we will talk about packages.

A package is a collection of modules in the same directory. Package names must be subdirectories of
one of the directories listed in the sys.path variable.

A package directory must have, at least, an empty __init__.py file, and it might contain
subpackages (subdirectories). Each subdirectory also needs, at least, an empty __init__.py file.

In the statement

>>> import a.b

the module named a.b designates a submodule named b inside a package called a.

When you import a package, its subpackages aren't imported all together. You need to explicitly say
that in the __init__.py file.

It would be similar to saving the following line in the __init__.py file of your package:

import subpackage1, subpackage2, subpackage3

Remember that to locate modules and packages, Python uses the paths that are stored at sys.path.
This variable is a simple list, like any other, and you can add any directory to this list that you want.
Type sys.path at the prompt of your interpreter to know the current contents of this variable.

A new feature incorporated to release 2.0 is the possibility to rename modules when importing them.
The syntax for that can be either

import module as newname

or

from module import name as newname

This feature is equivalent to the code

import module
newmodule = module
del module

Built-In Methods

All these built-in functions are part of the __builtin__ module, and you can use them after you
have a module or package named m.

>>> m.__dict__ # lists the module dictionary
>>> m.x = m.__dict__["x"] # provides access to a specific attribute
>>> m.__doc__ # returns the documentation string
>>> m.__name__ # returns the name of the module
>>> m.__file__ # returns the file name
>>> m.__path__ # returns the fully qualified package name

from in Contrast to import

The import and from statements allow one module to refer to objects from another module's
namespace. They help eliminate problems with different modules that have some internal names equal.
The next examples discuss the possible ways to use these statements.

>>> import string
>>> print string.join(list)

The previous example imports the string module as a local reference to an external module,
allowing fully qualified references to any other objects in the string namespace.

The next example adds the join() function to the namespace of the current module. This method
allows you to control exactly which names you import into your local namespace from a module.

>>> from string import join
>>> print join(list)

Now, take a look at the next line:

>>> from string import *

The problem with this syntax is that if the string module defines its own dosomething()
function, you lose the dosomething() that might exist in your current namespace.

If you instead do a simple import string, you will keep your current dosomething()
function. However, the dosomething() function from the string module will now be accessed
by string.dosomething().

Tip

The main reason that you don't want to do from <module> import * is to avoid namespace
clashing.

Also, let me tell you that identifiers beginning with _ (one underscore), such as _salary, aren't
imported by a from <module> import * clause.

>>> import package1.string
>>> print package1.string.join(list)

The previous example loads the module string from the package package1.

>>> from package1 import string
>>> print string.join(list)

In order to access the string module, you need to reference its objects by typing
string.<object>. This is the recommended notation to import a module from a package.

>>> from package1.string import join
>>> print join(list)

In the syntax form <package.module> import <object>, the <object> can be a
subpackage of the package, a function, a class, a variable, and so on.

>>> from package1 import *

If you just say from package import *, it isn't guaranteed that all modules will be import
unless you insert the following piece of code in the __init__.py file of the package.

__all__ = ["module1","module2","module3"]

This is a list containing the names of the package modules that should be imported:

>>> from package.subpackage.module import *

Whenever you use a structure like package.subpackage.module, Python ensures that the
package's __init__.py is loaded first. Afterwards, the subpackage's __init__.py is loaded, and
only after they have been imported will the module finally be imported. After a package is loaded,
there is no difference between a package and a module. Module objects represent both of them.

Releasing and Reloading Modules

After you have imported a module, you can release it from the system memory at anytime you want.
The following example is to give you an idea of what I am talking about:

import string, sys
 lst = ["a","b","c","d"]
 print string.join(lst,"-")
del string
del sys.modules["string"]

Note that you also need to delete the module's reference, which exists in the sys.module variable.

The command reload <module> reloads and re-executes a module. Note that objects created
before the reloading will use the previous version until they are re-created. Try to avoid using this
command.

You can easily find out what the imported modules are by typing

>>> sys.modules.key()
['os.path', 'operator', 'os', 'exceptions', '__main__', 'ntpath',
'strop', 'nt', 'sys', '__builtin__', 'site', 'signal', UserDict',
'string', 'stat', 'cmath']

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

.py extension
commands
 reload module
creating
 global namespaces, modules
directories
 packages
dosomething() function 2nd
extensions
 .py
finding
 contents of modules
foldersÓ
 Ò
from statement 2nd 3rd
functions
 dosomething() 2nd
 join()
global namespaces
 importing and creating, modules
import statement 2nd 3rd
importing
 global namespaces, modules
 modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=33

 syntax to rename
 modules from packages 2nd
join() function
modules 2nd 3rd 4th
 renaming
 syntax
 string
namespaces
 global
 importing and creating, modules
 string
packages 2nd 3rd 4th
reload module command
renaming
 modules
 syntax
searching
 contents of modules
statements
 from 2nd 3rd
 import 2nd 3rd
string module
string namespace
syntax
 importing and creating global namespaces, modules
 modulles
 renaming

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Input and
Output

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146122163094222089189188

Input and Output

Python, as any other language, provides means to get input from the user and also to display
information to him.

Let's see how we can handle it.

>>> x = input ("type anything: ")
>>> print "You have typed ", x

Note that the input prompt can be anything, even an empty one.

If the user types 5, x is properly treated as a number. To make x become a string, the user must
explicitly type the quotes.

To avoid this problem, you can use the raw_input function:

>>> x = raw_input ("type anything: ")
>>> print "You have typed ", x

Now, it doesn't matter whether the user types the quotes.

Note that the print command requires objects to be separated by commas:

>>> print "parrot", "sketch"
parrot sketch

Displaying Information

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=34
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=34&now=5%2F31%2F2002+4%3A20%3A17+PM

Let's delve a little bit deeper into this topic.

Python has three standard file objects, which are available from the sys module. The interpreter uses
them to provide input and output facilities. (Refer to Chapter 3, "Python Libraries," for details and
examples—the sys module.)

They are known as sys.stdin, sys.stdout, sys.stderr

print statements are mapped to the sys.stdout. Hence, they send the textual representation of
objects to the standard output stream:

>>>import sys
>>>sys.stdout.write("Nudge-nudge\n")
Nudge-nudge

Did you know that it is possible to re-map the standard output device?

Yes, that is possible.

You can run the following code to write to a file:

>>> sys.stdout = open("outputtest.txt", "w")
>>> print "hello"
>>> sys.stdout.close

>>> sys.stdout = sys.__stdout__
>>> sys.exit()

Note that sys.__stdout__ stores the original stdout.

The last line restores the sys.__stdout__ original value to such an extent that new print
statements will display onscreen, instead of being sent to a file.

As additional information, this program uses sys.exit() to quit its execution (refer to Chapter 3 for
details).

Starting with release 2.0, the print statement can have its output directed to a file-like object, as it is
demonstrated in the following example.

print >> sys.stderr, "Sorry, you cannot do that!"

Formatting Operations

Python provides formatting operations similar to the printf() function from the C language.

Take a look at the following example:

>>> print "Mr. Lumberjack! do not sing!"

What if you don't want to hard-code the name inside the string? Compare the previous line of code
against the following one:

>>> print "Mr. %s, do not sing!" % someone

Flexible, don't you think? And by the way, the order of the elements doesn't affect the final result.

Therefore, saying

>>> print "Mr. %s" % someone

is the same as saying

>>> print someone % "Mr. %s"

As a matter of fact, the following example shows how Python handles multiple format arguments. Note

that you need to provide a tuple of values to fill the position indicated by the formatting operators (see
Table 2.2).

>>> print "The %s has %i wings" % ("parrot", 2)

Table 2.2. Formatting Operators Table

Formatting Operator Description
%d decimal integer
%i decimal integer
%u unsigned integer
%o octal integer
%x hexadecimal integer
%X hexadecimal integer (uppercase letters)
%f floating point as [-]m.dddddd
%e floating point as [-]m.dddddde±xx
%E floating point as [-]m.ddddddE±xx
%g, %G floating point where the exponent is less than -4 or greater than the precision
%s any printable object (such as strings)
%c a single character
%% the literal %

The following code is another simple example:

>>> value = 14
>>> print "The value is %d" % value
The value is 14

Next, you will see some special ways to format operations by putting special characters between the %
literal and the formatting operator. Before going through the examples, we need to initialize some
variables.

>>> intg = 42

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/34#3.html

>>> fltn = 13.142783
>>> strg = "hello"
>>> dict = {"xx":13, "yy":1.54321, "zz":"parrot"}

● You can use dictionary key names in parentheses.

>>> print "%(zz)s" % dict
parrot

● By using the - literal, you can left align the string block.

>>> print "%-8dend" % fltn
"13 end"

● By using the + literal, you can show positive and negative numerical signs.

>>> print "%+d" % intg
+42

● If you insert a zero, you will get a zero-filling.

>>> print "%08d " % intg
"0000042"

● Maximum field width (strings)

>>> print "%0.2s" % strg
"he"

● Period (.) + precision (floating-point numbers)

>>> print "%0.2f" % fltn
13.14

● Minimum number of digits (integer)

>>> print "%0.10f" % intg
0000000042

Tip

A * can be used in the place of any number. It uses the next value that matches that format in a
tuple.

>>> print "%*.*f" % (5,3,2.45)
2.450

Note

Python 2.0 contains a new format string called %r, which prints the repr() value of the given
argument. You can clearly see the difference between %r and %s by looking at the following
example.

'%r %s'% ('Python', 'Python')

returns the string

'Python'Python

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

%% formatting operator
%c formatting operator
%d formatting operator
%e formatting operator
%E formatting operator
%f formatting operator
%g formatting operator
%G formatting operator
%i formatting operator
%o formatting operator
%r format string
 comparing with %s format string
%s format string
 comparing with %r format string
%s formatting operator
%u formatting operator
%x formatting operator
%X formatting operator
* (asterisk)
 replacing numbers with
asterisks (*)
 replacing numbers with
comparing
 %r and %s format strings
displaying
 input and output
format strings
 %r and %s
 comparing
formatting operations 2nd
input
 users 2nd 3rd

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=34

modules
 sys
numbers
 replacing with asterisks (*)
operations
 formatting 2nd
output
 print statements
 users 2nd 3rd
print statement
print statements
 output
replacing
 numbers with asterisks (*)
statements
 print
 output
strings
 format
 %r and %s, comparing
sys module
tuples
 replacing numbers with asterisks (*)
users
 input and output 2nd 3rd
viewing
 input and output

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > File Handling See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146122163093009182053228

File Handling

Python's core language supports all the basic functions that are necessary to manipulate files. It isn't
necessary to import any modules to use them. Whenever you use the open function to get access to a
file, Python creates a file object that supports all the built-in methods that apply to this new object.

Opening a File

basic syntax: file = open (filename[, mode[, buffersize]])

The mode can be r, w, or a (read, write, and append, respectively). If none of them are
mentioned, read mode is assumed.

If you are working with a binary file, add the letter b to the mode indicator (for example, rb or wb).
The b stands for binary mode (text translation mode).

You can also place a + sign to the mode letter to indicate a read/write open (for example, r+ or
w+)—it is useful when you need to perform both operations (read and write) in the file. Remember that
if you use w+, it will first truncate the file length to zero.

The last argument in the open syntax is the buffersize clause, which means

● 0 = unbuffered

● 1 = line buffered

● If buffersize is greater than 1, its value is equal to the buffer size, in bytes.

● If negative, the buffer size is the system default(default behavior).

Here's an example:

file = open("foo.txt", "r")
line = file.readline()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=35
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=35&now=5%2F31%2F2002+4%3A20%3A28+PM

line = line[:-1] #chop off the newline character
while line:
 print line
 line = file.readline()
 line = line[:-1]
file.close()

Supported Methods

The following methods are supported by all file objects.

read()

It reads up to n bytes. But, if you don't provide any argument, read() reads all available data
from the file.

basic syntax: file.read([nbytes])

>>> file = open("foo.txt").read()

If you say file = open("foo.txt").read(100), Python will read the file up to its first 100
bytes.

readline()

It reads only one line at a time (until, and including, the newline character).

basic syntax: file.readline()

>>> file=open("test.txt","r")
>>> while 1:
… line = file.readline()
… if not line:
… break
…

Both read() and readline() functions return an empty string for EOF.

readlines()

It reads the entire file into a list of strings.

basic syntax: file.readlines()

>>> file=open("test.txt","r")
>>> for line in file.readlines():
… print line
…

write()

It writes a string to a file.

basic syntax: file.write(string)

>>> file.write('Spam')

writelines()

It writes a list of strings to a file.

basic syntax: file.writelines(list)

>>> file.writelines(["We are the knights who say …","ni!"])

seek()

It goes to a new file position. If how=0, it starts from the beginning of the file; if how=1, the
position is relative to the current position; if how=2, the position is relative to the end of the file. The

default value for how is 0.

basic syntax: file.seek(position[, how])

tell()

It returns the current file pointer.

basic syntax: file.tell()

Fileno()

It returns an integer file descriptor.

basic syntax: file.fileno()

flush()

It flushes the internal buffer.

basic syntax: file.flush()

close()

It closes the file.

basic syntax: file.close()

truncate()

It truncates the file.

basic syntax: file.truncate([size])

Now, let's mix two distinct concepts. The next line of code takes the filename and the file extension
from two variables, and combines them to create the name of a file that should be opened.

>>> file=open ("%s.%s" % (file_name, file_extension)).read()

Remember that you need to escape your backslashes to prevent them from being interpreted as
beginning a character code. See the next example.

>>> file=open('C:\Autoexec.bat') # wrong way
>>> file=open('C:\\Autoexec.bat') # right way

The functions that you saw in this chapter are perfect for handling strings. Chapter 8, "Working with
Databases," explains how to use other file handling functions to save entire objects into a file.

File Object Attributes

Some special attributes for files are as follows:

>>> file.closed # returns 0 if the file is closed; 1 otherwise
>>> file.mode # returns the I/O mode for the file
>>> file.name # returns the name of the file

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

+ (addition) sign
\ (backslash)
 escaping
a (append) mode
addition (+) sign
append (a) mode
b (binary) mode
backslash (\)
 escaping
binary (b) mode
buffersize statement
clausesÓ
 Ò
escaping

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=35

 backslashes (\)
file handling 2nd
functions
 handling files 2nd
handling
 files 2nd
methodsÓ
 Ò
modes
 append (a)
 binary (b)
 read (r)
 text translationÓ
 Ò
 write (w)
plus (+) sign
r (read) mode
read (r) mode
statement
 buffersize
syntax
 close() function
 Fileno() function
 flush() function
 opening files
 read() function
 readline() function
 readlines() function
 tell() function
 truncate() function
 write() function
 writelines() function
text translation modeÓ
 Ò
w (write) mode
write (w) mode

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 2. Language Review > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146122163092196020231211

Summary

Python is a language that doesn't ask too much from programmers while they are learning it. A
programmer can code almost anything using a minimum amount of code. Python provides a command-
line interpreter, which is the interface to its shell environment.

Python programs can be typed and executed directly in the interpreter or stored and called from files.
No matter where the programmer is entering the code, indentation is vital. It is extremely critical that
all code blocks follow the indentation rules defined by the language.

Python does object reference counting in order to keep you away from the job of deallocating variables
by doing its own memory management.

The language has two groups of built-in data types that already exist in the interpreter: the immutable
data types (for example, strings, numbers, and tuples) and the mutable data types (for example, lists and
dictionaries).

Python also provides a number of built-in functions that are always available when you load the
interpreter. Besides that, it enables you to define and use your own group of functions, which are called
user-defined functions. Apart from that, Python also implements procedural abstraction using the
function lambda.

The basics control statements if, for, and while are provided by Python too. They all have
predictable behavior. However, the statements for and while also implement the else structure.

Python defines three types of dynamic namespace: built-in names, global names, and local names. This
feature allows you to encapsulate your objects within distinct scopes.

You can use modules and packages (collections of modules) to store your programs. Both are well
supported by Python.

All the regular features that provide input and output operations are currently supported by Python.
Along with that, Python's core language supports all the basic functions necessary to manipulate files.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=36
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A39+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=36&now=5%2F31%2F2002+4%3A20%3A39+PM

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=36

Web Development > Python Developer's Handbook > 2. Language Review > Code Example See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146122163090063130189016

Code Example

This is a very simple benchmark application that offers you a general overview of Python programming. Note
that this version doesn't provide any type or error handling and the interface is still very rough.

Before going through the code, you must first understand what the program does. Figure 2.4 shows an
interaction with the program.

Figure 2.4. This example covers many aspects of basic Python concepts.

The program consists of two questions that should be answered by an n number of companies. These questions
cover the number of IT employees and the total IT cost of a company. The benchmark uses the total cost

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=37
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A20%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=37&now=5%2F31%2F2002+4%3A20%3A50+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/37#1.html

/ employee value to calculate the statistics.

After checking the results, you have the option to save them in a file, and later when opening the application
again, you get the option to visualize them again.

Listing 2.1 Benchmark Tool (File benchmark.py)

 1: ###
 2: # Program: Benchmark tool
 3: # Author: Andre S Lessa
 4: ###
 5:
 6: ### import modules
 7:
 8: import sys
 9: import string
 10: import operator
 11:
 12: ### create dictionary of questions
 13:
 14: def definequiz():
 15: questions = { }
 16: questions["1"] = "What is the number of IT employees of this
 company?"
 17: questions["2"] = "What is the total IT cost of this company?"
 18:
 19: return questions
 20:
 21: ### Loop to collect companies data
 22:
 23: def collectresults():
 24: company = getcompanyname()
 25: while company:
 26: if company == "":
 27: break
 28:
 29: quizkeys = quiz.keys()
 30: quizkeys.sort()
 31: for question in quizkeys:
 32: showquestion(lo_question=question, lo_company=company)
 33:
 34: company = getcompanyname()
 35:
 36: if len(answers) > 0:
 37: generateresults()
 38: showresults(gl_companies, gl_avg, gl_max, gl_min)
 39:

 40: userinput = raw_input ("Do you want to save your results ? ")
 41: if string.upper(userinput[0]) == "Y":
 42: saveresults(gl_companies, gl_avg, gl_max, gl_min)
 43:
 44: return
 45:
 46: ### Generate benchmark results
 47:
 48: def generateresults():
 49: global gl_companies, gl_avg, gl_max, gl_min
 50:
 51: gl_companies = string.join(answers.keys(), ",")
 52:
 53: company_count = len(answers.keys())
 54:
 55: lo_avg = []
 56:
 57: for company in answers.keys():
 58: lo_employees = answers[company][0][1]
 59: lo_cost = answers[company][1][1]
 60: average = (float(lo_cost) / int(lo_employees))
 61: lo_avg = lo_avg + [average]
 62:
 63: gl_max = max(lo_avg)
 64: gl_min = min(lo_avg)
 65: gl_avg = reduce(operator.add, lo_avg) / company_count
 66:
 67: return
 68:
 69: ### Interface to enter company name
 70:
 71: def getcompanyname():
 72: print "Please enter the company name, " }
 73: "or press ENTER when you are done."
 74: userinput = raw_input()
 75: return userinput
 76:
 77: ### Displays questions and collect results
 78:
 79: def showquestion(lo_question, lo_company):
 80: print quiz[lo_question]
 81: if answers.has_key(lo_company):
 82: answers[lo_company] = answers[lo_company] + }
 83: [coerce(lo_question, raw_input())]
 84: else:
 85: answers[lo_company] = [coerce(lo_question, raw_input())]
 86: return

 87:
 88: ### Save results in a file
 89:
 90: def saveresults(*arguments):
 91: file = open(filename, "w")
 92: for value in arguments:
 93: file.write(repr(value)+"\ n")
 94: file.close
 95: showresults(gl_companies, gl_avg, gl_max, gl_min)
 96: print "The results were saved."
 97: print
 98:
 99: ### Load results from a file
100:
101: def loadresults():
102: count = 0
103: file = open(filename, "r")
104: line = file.readline()
105: line = line[:-1]
106: while line:
107: if count == 0:
108: lo_companies = line
109: if count == 1:
110: lo_avg = float(line)
111: elif count == 2:
112: lo_max = float(line)
113: elif count == 3:
114: lo_min = float(line)
115: line = file.readline()
116: line = line[:-1]
117: count = count + 1
118: file.close()
119: return(lo_companies, lo_avg, lo_max, lo_min)
120:
121: ### Show results in the screen
122:
123: def showresults(lo_companies, lo_avg, lo_max, lo_min):
124: print "Companies : "
125: print lo_companies
126: print "-------------------------------------"
127: print "%0.2f is the average cost/employees" % lo_avg
128: print "%0.2f is the maximum cost/employees" % lo_max
129: print "%0.2f is the minimum cost/employees" % lo_min
130: print
131: return
132:
133: ### Main action block

134:
135: def main():
136: print
137: print "Welcome to the benchmark tool!"
138: print
139:
140: userinput = raw_input("Do you want to load the saved results ? ")
141:
142: if userinput == "":
143: collectresults()
144: elif string.upper(userinput[0]) == "Y":
145: gl_companies, gl_avg, gl_max, gl_min = loadresults()
146: showresults(gl_companies, gl_avg, gl_max, gl_min)
147: else:
148: collectresults()
149:
150: print
151: sys.exit()
152:
153: ### Global Variables
154:
155: quiz = definequiz()
156: answers = { }
157: filename = "results.txt"
158: gl_companies = ""
159: gl_avg = 0
160: gl_max = 0
161: gl_min = 0
162:
163: main()

Note that the program effectively starts at line 155, when the global variables are declared, and soon after that,
the main() function is executed.

The following list shows some of the important concepts that are provided by this simple example.

Lines 8-10—Loads the required modules.

Lines 15-17, 53, 81—Dictionary manipulation.

The answers dictionary has the following structure:

{company1: [(question1,answer1), (question2,answer2), company2: [(question1,answer1),
(question2,answer2), …}

Note that the dictionary values are lists of tuples.

Line 27—break statement that exits the while loop.

Lines 29,30—Sorts dictionary keys.

Line 32—Named arguments.

Line 40—User input.

Lines 41, 51—Uses functions from imported modules.

Line 41—String manipulation.

Lines 53, 63-65—Uses built-in functions.

Line 90—Function with undefined number of arguments.

Lines 81-85—Creates and inserts a tuple in the dictionary.

Line 93—Adds a newline character to the value.

Line 104—Reads a line (delimited by the newline character).

Line 105—Removes the newline character.

Line 127—Formats the numbers to display only two decimals.

Line 151—Exits the application.

Line 163—Calls to the function that initializes the program.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=37

Index terms contained in this section

benchmark tool source code
code
 benchmark tool
source code
 benchmark tool
tools
 benchmark
 source code
utilities
 benchmark
 source code

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146123188001151180148209

Chapter 3. Python Libraries
All right, it's a fair cop, but society is to blame.

This chapter shows what main module services and extensions are currently available for the Python
programming language. The focus here is to expand your knowledge by introducing the most used
modules and listing some examples for you.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=39
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=39&now=5%2F31%2F2002+4%3A21%3A07+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=39

Web Development > Python Developer's Handbook > 3. Python Libraries > Python
Libraries

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146123188003082091048148

Python Libraries

The first chapter has given you a good introduction about the Python core language. Everything you
have successfully learned will be applied from now on. All the topics covered in the previous chapters
are the building blocks for your Python mastering.

Now we will concentrate on this chapter. Python's standard distribution is shipped with a rich set of
libraries. These libraries intend to offer flexibility to the programmers.

The libraries (also known as modules) cover many topics, such as the following:

Python core services— A group of modules, such as sys and os, that enable you to
interact with what is behind the interpreter.

Network and Internet services— Python has modules for almost everything that is
Internet related. You have many network client protocol implementations that handle the
most used Internet services, such as HTTP and FTP. Python also provides support for
parsing mark-up languages, like XML and HTML.

Regular expressions— The re module is a very comprehensive choice for text
manipulation because it provides Perl 5 style patterns and matching rules.

These are just some of the features implemented by the modules that are reviewed by this chapter.

The Library Reference

The robustness of Python's library is something amazing. Many users have contributed to the
development of these modules during the last few years.

Some modules were written in C and are built into the interpreter. Others are written in Python and can
be loaded by using the import command.

Keep in mind that some of the interfaces may change slightly (for instance, bug fixes) with the next
release. Therefore, I suggest that you visit Python's Web site once in a while, and keep yourself up-to-
date. You can always browse the latest version of the Python Library Reference at

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=40
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=40&now=5%2F31%2F2002+4%3A21%3A21+PM

http://www.python.org/doc/lib

I encourage you to use this chapter in order to get a quick overview about the existing Python libraries.
After you have exhausted all the material provided by this book, check out the online Python Library
Reference to see the minor details about each one of these Python module interfaces.

This chapter introduces you to the practical side of several modules'utilization. The next pages show
what main functions each module exposes, and, whenever possible, some examples are listed.

Some of the modules—such as debugger(pdb), profiler, Tkinter (the standard Python
GUI API) and re—aren't deeply studied here because they are presented in detail in other chapters of
this book. Whenever this happens, the chapter number is mentioned next to the module name.

The Standard Library of Modules

This book covers the latest version of the Standard Library of Modules that is available at the time of
this writing. The modules are presented in the same order as they are shown in Python's official
documentation. This was done to make the work of cross-referencing easier for you.

The following topics are the group names that organize the modules you will find.

Python Services

String

Miscellaneous

Generic Operational System

Optional Operational System

Debugger

Profiler

Internet Protocol and Support

Internet Data Handling

Restricted Execution

http://www.python.org/doc/lib

Multimedia

Cryptographic

UNIX Specific

SGI IRIX Specific

Sun OS Specific

MS Windows Specific

Macintosh Specific

Undocumented Modules

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 Python Library Reference
 Standard Library of Modules
Python Library Reference
Standard Library of Modules

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=40

Web Development > Python Developer's Handbook > 3. Python Libraries > Python Services See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146123188002200092133207

Python Services

This first group of modules is known as Python Services. These modules provide access to services related to
the interpreter and to Python's environment.

sys

The sys module handles system-specific parameters, variables, and functions related to the interpreter.

sys.argv

This object contains the list of arguments that were passed to a program.

If you pass arguments to your program, for example, by saying,

c:\ python program.py -a -h -c

you are able to access those arguments by retrieving the value of sys.argv:

>>> import sys
>>> sys.argv
["program.py", "-a", "-h", "-c"]

You can use this list to check whether certain parameters are transported to the interpreter.

>>> If "-h" in sys.argv:
>>> print "Sorry. There is no help available."

sys.exit()

This is a function used to exit a program. Optionally, it can have a return code. It works by raising the
SystemExit exception. If the exception remains uncaught while going up the call stack, the interpreter shuts

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=41
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=41&now=5%2F31%2F2002+4%3A21%3A33+PM

down.

basic syntax: sys.exit([return_code])

>>> import sys
>>> sys.exit(0)

The return_code argument indicates the return code that should be passed back to the caller application.

The sys module also contains three file objects that take care of the standard input and output devices (see
Chapter 1, "Introduction," for more details about these objects).

sys.stdin— File object that is used to read data from the standard input device. Usually it is
mapped to the user keyboard.

sys.stdout— File object that is used by every print statement. The default behavior is to
output to the screen.

sys.stderr— It stands for standard error output. Usually, it is also mapped to the same object
of sys.stdout.

Example:

>>> import sys
>>> data = sys.stdin.readlines()
>>> str = "Counted %d lines." % len(data)
>>> sys.stdout.write (str)

Now, save the previous example in a file named countlines.py, and test it by typing the following
instructions on your prompt:

On Unix: cat coutlines.py | python countlines.py
On DOS and Windows: type countlines.py | python countlines.py

sys.modules

It is a dictionary that contains the modules that were loaded by the current session.

sys.platforms

This is a string that shows the current platform (for example, "win32", "mac", "linux-i386").

You can test which platform is running a program by doing something like this:

if sys.platforms == "win32"
 <do something>
elif sys.platform == "mac"
 <do something else>

sys.path

This is the list of directories that are searched to find the location of a module at the time of importing it.

>>> import.sys
>>> sys.path
['', 'C:\\Program Files\\Python\\Lib\\plat-win',
'C:\\Program Files\\Python\\Lib', 'C:\\Program Files\\Python\\DLLs',
'C:\\Program Files\\Python\\Lib\\lib-tk','C:\\PROGRAM FILES\\PYTHON\\DLLs',
'C:\\PROGRAM FILES\\PYTHON\\lib',
'C:\\PROGRAM FILES\\PYTHON\\lib\\plat-win',
'C:\\PROGRAM FILES\\PYTHON\\lib\\lib-tk',
'C:\\PROGRAM FILES\\PYTHON']

You can easily update this list to include your own directories.

sys.builtin_module_names

This is the list of modules that are not imported as files.

>>> import sys
>>> sys.builtin_module_names
('__builtin__', '__main__', '_locale', '_socket', 'array', 'audioop',
 'binascii', 'cPickle', 'cStringIO', 'cmath', 'errno', 'imageop', 'imp',
 'marshal', 'math', 'md5', 'msvcrt', 'new', 'nt', 'operator', 'pcre',
'regex', 'rgbimg', 'rotor', 'select', 'sha', 'signal', 'soundex', 'strop',
'struct', 'sys', 'thread', 'time', 'winsound')

For all the next sys objects, see Chapter 4, "Exception Handling," for details.

sys.exc_info()

Provides information about the current exception being handled.

sys.exc_type, sys.exc_value, sys.exc_traceback

It is another way to get the information about the current exception being handled.

sys.last_type, sys.last_value and sys.last_traceback

Provides information about the last uncaught exception.

Python 2.0 contains a mode detailed version information function called sys.version_info. This function
returns a tuple in the format (major, minor, micro, level, serial). For example, suppose the version number of
your Python system is 3.0.4alpha1, the function sys.version_info() returns (3, 0, 4,
'alpha', 1). Note that the level can be one of the following values: alpha, beta, or final.

Another set of functions added to Python 2.0 are: sys.getrecursionlimit() and
sys.setrecursionlimit(). These functions are responsible for reading and modifing the maximum
recursion depth for the routines in the system. The default value is 1000, and you can run the new script
Misc/find_recursionlimit.py in order to know the maximum value suggested for your platform.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

arguments
 return code
file objects
 sys module
functions
 sys.exec.traceback()
 sys.exec.value()
 sys.getrecursionlimit()
 sys.last.value()
 sys.recursionlimit()
 sys.version_info()
libraries
 Python Services 2nd
modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=41

 sys 2nd 3rd
objects
 file
 sys module
Python Services 2nd
return code argument
syntax
 sys.exit() function
sys module 2nd 3rd
sys.exec.traceback() function
sys.exec.value() function
sys.getrecursionlimit() function
sys.last.value() function
sys.recursionlimit() function
sys.version_info() function

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > types See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146123188005206244093015

types

The types module stores the constant names of the built-in object types.

FunctionType, DictType, ListType, and StringType are examples of the built-in type
names.

You can use these constants to find out the type of an object.

>>> import types
>>> if type("Parrot") == types.StringType:
… Print "This is a string!"
…
This is a string

The complete list of built-in object types, that are stored at the types module, can be found in Chapter
5, "Object-Oriented Programming."

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
 types
types module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=42
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=42&now=5%2F31%2F2002+4%3A21%3A47+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=42

Web Development > Python Developer's Handbook > 3. Python Libraries > UserDict See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146123188004241011242224

UserDict

The UserDict module is a class wrapper that allows you to overwrite or add new methods to
dictionary objects.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 Python Services
Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=43
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A21%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=43&now=5%2F31%2F2002+4%3A21%3A58+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=43

Web Development > Python Developer's Handbook > 3. Python Libraries > UserList See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146120131237047110137149

UserList

The UserList module is a class wrapper that allows you to overwrite or add new methods to list
objects.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=44
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=44&now=5%2F31%2F2002+4%3A22%3A11+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=44

Web Development > Python Developer's Handbook > 3. Python Libraries > operator See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146120131238196102016122

operator

The operator module stores functions that access the built-in standard operators. The main reason
for the operator module is that operator.add, for instance, is much faster than lambda a,b:
a+b.

For example, the line

>>> import operator
>>> operator.div(6,2)
3

provides the same result that the next line does.

>>> 6 / 2
3

This module is mostly used when it becomes necessary to pass an operator as the argument of a
function. For example

1: import sys, glob, operator
2: sys.argv = reduce(operator.add, map(glob.glob, sys.argv))
3: print sys.argv

To run the previous example, save the code in a file and execute it by switching to your OS prompt and
typing:

python yourfilename.py *.*

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=45
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=45&now=5%2F31%2F2002+4%3A22%3A23+PM

The heart of this example is Line 2. Let's interpret it:

The glob.glob() function is applied for each element of the original sys.argv list object (by
using the map() function). The result is concatenated and reduced into a single variable sys.argv.
The concatenation operation is performed by the operator.add() function.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

functions
 glob.glob()
 map()
 operator.add()
glob.glob() function
libraries
 Python Services
map() function
modules
 operator
operator module
operator.add() function
Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=45

Web Development > Python Developer's Handbook > 3. Python Libraries > traceback See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146120131239141099177194

traceback

The traceback module supports print and retrieve operations of the traceback stack. This
module is mostly used for debugging and error handling because it enables you to examine the call
stack after exceptions have been raised.

See Chapter 4 for more details about this module.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

call stack
stacks
 call
 traceback
traceback stack

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=46
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=46&now=5%2F31%2F2002+4%3A22%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=46

Web Development > Python Developer's Handbook > 3. Python Libraries > linecache See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146120131232127233152067

linecache

The linecache module allows you to randomly access any line of a text file.

For example, the next lines of code belong to the file c:\ temp\ interface.py.

import time, sys
name = raw_input("Enter your name: ")
print "Hi %s, how are you?" % name
feedback = raw_input("What do you want to do now? ")
print "I do not want to do that. Good bye!"
time.sleep(3)
sys.exit()

Check the result that is retrieved when the function

linecache.getline(file,linenumber) is called.

>>> import linecache
>>> print linecache.getline("c:\ \ temp\ interface.py",4)
feedback = raw_input("What do you want to do now? ")

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=47
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=47&now=5%2F31%2F2002+4%3A22%3A48+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=47

Web Development > Python Developer's Handbook > 3. Python Libraries > pickle See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146120131233222061046165

pickle

The pickle module handles object serialization by converting Python objects to/from portable strings
(byte-streams).

See Chapter 8, "Working with Databases," for details.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
 pickle
pickle module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=48
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A22%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=48&now=5%2F31%2F2002+4%3A22%3A59+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=48

Web Development > Python Developer's Handbook > 3. Python Libraries > cPickle See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146121241246105076095092

cPickle

The cPickle module is a faster implementation of the pickle module.

See Chapter 8 for details.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 Python Services
Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=49
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A23%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=49&now=5%2F31%2F2002+4%3A23%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=49

Web Development > Python Developer's Handbook > 3. Python Libraries > copy_reg See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146121241245182187191165

copy_reg

The copy_reg module extends the capabilities of the pickle and cpickle modules by registering
support functions.

See Chapter 8 for details.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=50
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A23%3A22+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=50&now=5%2F31%2F2002+4%3A23%3A22+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=50

Web Development > Python Developer's Handbook > 3. Python Libraries > shelve See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146121241244083248053033

shelve

The shelve module offers persistent object storage capability to Python by using dictionary objects.
The keys of these dictionaries must be strings and the values can be any object that the pickle
module can handle.

See Chapter 8 for more details.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=51
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A23%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=51&now=5%2F31%2F2002+4%3A23%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=51

Web Development > Python Developer's Handbook > 3. Python Libraries > copy See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146121241243114186239102

copy

The copy module provides shallow and deep object copying operations for lists, tuples, dictionaries,
and class instances.

copy.copy()

This function creates a shallow copy of the x object.

>>> import copy
>>> x = [1, 2, 3, [4, 5, 6]]
>>> y = copy.copy(x)
>>> print y
[1, 2, 3, [4, 5, 6]]
>>> id(y) == id(x)
0

As you can see at the end of the previous example, the new list is not the old one.

As you can see, this function provides the same result that y=x[:] does. It creates a new object that
references the old one. If the original object is a mutable object and has its value changed, the new
object will change too.

copy.deepcopy()

It recursively copies the entire object. It really creates a new object without any link to the original
structure.

basic syntax: variable = copy.deepcopy(object)

>>> import copy
>>> listone = [{ "name":"Andre"} , 3, 2]
>>> listtwo = copy.copy(listone)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=52
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A23%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=52&now=5%2F31%2F2002+4%3A23%3A48+PM

>>> listthree = copy.deepcopy(listone)
>>> listone[0]["name"] = "Renata"
>>> listone.append("Python")
>>> print listone, listtwo, listthree
[{ "name":"Renata"} , 3, 2, "Python"]
[{ "name":"Renata"} , 3, 2]
[{ "name":"Andre} , 3, 2]

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 Python Services
Python Services
syntax
 functions
 copy.deepcopy()

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=52

Web Development > Python Developer's Handbook > 3. Python Libraries > marshal See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146126011048158195156164

marshal

The marshal module is an alternate method to implement Python object serialization. It allows you to
read/write information in a binary format, and convert data to/from character strings. Basically, it is just
another way to do byte stream conversions by using serialized Python objects. It is also worth
mentioning that marshal is used to serialize code objects for the .pyc files.

This module should be used for simple objects only. Use the pickle module to implement persistent
objects in general.

See Chapter 8 for details.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

marshal module
modules
 marshal

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=53
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A24%3A00+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=53&now=5%2F31%2F2002+4%3A24%3A00+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=53

Web Development > Python Developer's Handbook > 3. Python Libraries > imp See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146126011049175157212025

imp

The imp module provides mechanisms to access the internal import statement implementation. You might
want to use this module to overload the Python import semantics. Note that the ihooks module provides
an easy-to-use interface for this task.

imp.find_module()

This function identifies the physical location of a given module name.

basic syntax: file, path, desc = imp.find_module(modulename)

imp.load_module()

This one loads and returns a module object based on the information provided.

basic syntax: obj = imp.load_module(modulename,file,path,desc)

>>> import imp
>>> def newimport(modulename):
… file, path, desc = imp.find_module(modulename)
… moduleobj = imp.load_module(modulename,file,path,desc)
… return moduleobj
…
… math = newimport(math)
… math.e
2.71828182846

imp.getsuffixes()

It lists the precedence order in which files are imported when using the import statement.

Typing the following commands in my environment accomplishes this:

>>> import imp

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=54
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A24%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=54&now=5%2F31%2F2002+4%3A24%3A13+PM

>>> imp.get_suffixes()
[('.pyd', 'rb', 3), ('.dll', 'rb', 3), ('.py', 'r', 1), ('.pyc', 'rb', 2)]

Note that if I have a module stored in a file called mymodule.pyc, and I enter the command import
mymodule at the interpreter, the system initially searches for a file called mymodule.pyd, and then for
one called mymodule.dll, one called mymodule.py, and finally it searches for a file called
mymodule.pyc.

Tip

When importing packages, this concept is ignored because directories precede all entries in this list.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

imp module 2nd
importing
 packages
libraries
 Python Services
modules
 imp 2nd
packages
 importing
Python Services
syntax
 functions
 imp.find.module()
 imp.load.module()

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=54

Web Development > Python Developer's Handbook > 3. Python Libraries > parser See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146126011051154018069206

parser

The parser module offers you an interface to access Python's internal parser trees and code
compiler.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=55
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A24%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=55&now=5%2F31%2F2002+4%3A24%3A31+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=55

Web Development > Python Developer's Handbook > 3. Python Libraries > symbol See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146126011052078052161045

symbol

The symbol module includes constants that represent the numeric values of internal nodes of Python's
parse trees. This module is mostly used along with the parser module.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 Python Services
Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=56
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A24%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=56&now=5%2F31%2F2002+4%3A24%3A46+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=56

Web Development > Python Developer's Handbook > 3. Python Libraries > token See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146127173242160088020010

token

The token module is another module that is used along with the parser module. It stores a list of all
constants (tokens) that are used by the standard Python tokenizer. These constants represent the
numeric values of leaf nodes of the parse trees.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=57
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A00+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=57&now=5%2F31%2F2002+4%3A25%3A00+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=57

Web Development > Python Developer's Handbook > 3. Python Libraries > keyword See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146127173243174102010110

keyword

The keyword module tests whether a string is a Python keyword. Note that the keyword-checking
mechanism is not tied to the specific version of Python being used.

keyword.kwlist

This is a list of all Python keywords.

>>> import keyword
>>> keyword.kwlist
['and', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
 'else', 'except', 'exec', 'finally', 'for', 'from', 'global', 'if',
 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'print', 'raise',
 'return', 'try', 'while']

keyword.iskeyword()

This function tests whether a string is a Python keyword:

>>> import keyword
>>> str = "import"
>>> keyword.iskeyword(str)
1

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=58
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=58&now=5%2F31%2F2002+4%3A25%3A13+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=58

Web Development > Python Developer's Handbook > 3. Python Libraries > tokenize See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146127173240146079209217

tokenize

The tokenize module is an analysis tool that provides a lexical scanner for Python source code.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
 tokenize
tokenize module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=59
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=59&now=5%2F31%2F2002+4%3A25%3A24+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=59

Web Development > Python Developer's Handbook > 3. Python Libraries > pyclbr See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146127173241181240153226

pyclbr

The pyclbr module offers class browser support in order to provide information about classes and
methods of a module.

See Chapter 5 for details.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=60
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=60&now=5%2F31%2F2002+4%3A25%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=60

Web Development > Python Developer's Handbook > 3. Python Libraries > code See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146127173246035191208004

code

The code module interprets base classes, supporting operations that pertain to Python code objects. In
other words, it can simulate the standard interpreter's interactive mode.

The next code opens a new interpreter within your interpreter:

>>> import code
>>> interpreter = code.InteractiveConsole()
>>> interpreter.interact()

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 Python Services
Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=61
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=61&now=5%2F31%2F2002+4%3A25%3A48+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=61

Web Development > Python Developer's Handbook > 3. Python Libraries > codeop See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146127173247102037201097

codeop

The codeop module offers a function to compile Python code. This module is accessed by the code
module and shouldn't be used directly.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

codeop module
modules
 codeop

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=62
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A25%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=62&now=5%2F31%2F2002+4%3A25%3A59+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=62

Web Development > Python Developer's Handbook > 3. Python Libraries > pprint See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146124202000005016003049

pprint

The pprint (pretty printer) module prints Python objects so that the interpreter can use them as input
for other operations.

>>> import pprint
>>> var = [(1,2,3),"Parrot"]
>>> pprint.pprint(var)
[(1,2,3),"Parrot"]

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=63
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A26%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=63&now=5%2F31%2F2002+4%3A26%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=63

Web Development > Python Developer's Handbook > 3. Python Libraries > repr See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146124202003028005215228

repr

The repr module is an alternate repr() function implementation that produces object
representations that limit the size of resulting strings.

>>> import repr
>>> var = ["Spam" * 10]
>>> print var
['SpamSpamSpamSpamSpamSpamSpamSpamSpamSpam']
>>> print repr.repr(var)
['SpamSpamSpam…mSpamSpamSpam']

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
 repr
repr module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=64
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A26%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=64&now=5%2F31%2F2002+4%3A26%3A21+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=64

Web Development > Python Developer's Handbook > 3. Python Libraries > py_compile See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146124202005176183134021

py_compile

The py_compile module is a single function that compiles Python source files, generating a byte-
code file.

>>> import py_compile
>>> py_compile.compile("testprogram.py")

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
 py_compile
py_compile module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=65
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A26%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=65&now=5%2F31%2F2002+4%3A26%3A44+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=65

Web Development > Python Developer's Handbook > 3. Python Libraries > compileall See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146124202004060157134003

compileall

The compileall module compiles all Python source files that are stored in a specific directory tree.
Note that compileall uses py_compile.

compileall.compile_dir()

This function byte-compiles all source files stored in the provided directory tree.

basic syntax: compile.compile_dir(directory)

>>> import compileall
>>> compileall.compile_dir("c:\\temp")
Listing c:\temp …
Compiling c:\temp\program3.py …
Compiling c:\temp\program4.py …
Compiling c:\temp\program5.py …
1

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=66
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A26%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=66&now=5%2F31%2F2002+4%3A26%3A56+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=66

Index terms contained in this section

compileall module
libraries
 Python Services
modules
 compileall
Python Services
syntax
 functions
 compileall.compile.dir()

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > dis See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146125093107094243208020

dis

The dis module is a Python byte-code dissassembler. This module enables you to analyze Python
byte-code.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

dis module
modules
 dis

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=67
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=67&now=5%2F31%2F2002+4%3A27%3A09+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=67

Web Development > Python Developer's Handbook > 3. Python Libraries > new See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146125093105008081200168

new

The new module implements a runtime interface that allows you to create various types of objects such
as class objects, function objects, instance objects, and so on.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=68
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=68&now=5%2F31%2F2002+4%3A27%3A21+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=68

Web Development > Python Developer's Handbook > 3. Python Libraries > site See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146125093104118062088222

site

The site module performs site-specific packages'initialization. This module is automatically imported
during initialization.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=69
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A34+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=69&now=5%2F31%2F2002+4%3A27%3A34+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=69

Web Development > Python Developer's Handbook > 3. Python Libraries > user See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146125093111206109013101

user

The user module is a user-specific mechanism that allows one user to have a standard and customized
configuration file.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=70
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=70&now=5%2F31%2F2002+4%3A27%3A47+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=70

Web Development > Python Developer's Handbook > 3. Python Libraries > __builtin__ See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146125093110085189089241

__builtin__

The __builtin__ module is a set of built-in functions that gives access to all built-in
Python identifiers. You don't have to import this module because Python automatically imports it.

Most of the content of this module is listed and explained in the section "Built-In Functions" of Chapter
2, "Language Review."

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=71
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A27%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=71&now=5%2F31%2F2002+4%3A27%3A57+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/29#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=71

Web Development > Python Developer's Handbook > 3. Python Libraries > __main__ See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146114164073099105243081

__main__

The __main__ module is the top-level script environment object in which the interpreter's main
program executes. This is how the if __name__ == '__main__' code fragment works.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 Python Services
Python Services

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=72
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A28%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=72&now=5%2F31%2F2002+4%3A28%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=72

Web Development > Python Developer's Handbook > 3. Python Libraries > The String
Group

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146114164074005176090117

The String Group

This group is responsible for many kinds of string services available. These modules provide access to
several types of string manipulation operations.

Note that since release 2.0, all these functions are tied directly to string objects, as methods. The
string module is still around only for backward compatibility.

string

The string module supports common string operations by providing several functions and constants
that manipulate Python strings.

string.split()

This function splits a string into a list. If the delimiter is omitted, white-spaces are used.

basic syntax: string.split(string [,delimiter])

>>> print string,split("a b c")
["a","b","c"]

string.atof()

It converts a string to a floating number.

basic syntax: string.atof(string)

string.atoi()

It converts a string to an integer. atoi takes an optional second argument: base. If omitted, the
start of the string (for instance, 0x for hexadecimal) is used to determine the base.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=73
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A28%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=73&now=5%2F31%2F2002+4%3A28%3A23+PM

basic syntax: string.atoi(string[, base])

string.atol()

It converts a string to a long integer. atol takes an optional second argument: base. If omitted,
the start of the string (for instance, 0x for hexadecimal) is used to determine the basic syntax:
string.atol(string[, base])

string.upper()

It converts a string to uppercase.

basic syntax: string.upper(string)

string.find()

It returns the index position of the substring within string. Optionally, you can specify the
string's range that should be used in the search.

basic syntax: string.find(string, substring[, start [,end]])

string.join()

This function joins the string elements of a list using separator to separate them.

basic syntax: string.join(list, separator)

string.capitalize()

It capitalizes the first character of string.

basic syntax: string.capitalize(string)

string.capwords()

This function capitalizes the first letter of each word in string and removes repeated, leading, and
trailing whitespace.

basic syntax: string.capwords(string)

string.lower()

It converts all characters in string to lowercase.

basic syntax: string.lower(string)

string.lstrip(),string.rstrip() and string.strip()

These functions remove leading and/or trailing whitespace from string.

basic syntaxes:

string.lstrip(string)
string.rstrip(string)
string.strip(string)

string.ljust(),string.rjust() and string.center()

These functions define the alignment of string within a variable of width characters.

basic syntaxes:

string.ljust(string, width)
string.rjust(string, width)
string.center(string, width)

string.replace()

It replaces a maximum number of occurrences of oldtext with newtext in string. If maximum
is omitted, all occurrences are replaced.

basic syntax: string.replace(string, oldtext, newtext [,maximum])

string.zfill()

It inserts zeros on the left side of a string that has width characters.

basic syntax: string.zfill(string, width)

Next, I list a few constants that can be used to test whether a certain variable is part of a specific
domain:

>>> import string
>>> string.digits
"0123456789"
>>> string.octdigits
"01234567"
>>> string.uppercase
"ABCDEFGHIJKLMNOPQRSTUVWXY"
>>> string.hexdigits
"0123456789abcdefABCDEF"
>>> string.lowercase
"abcdefghijklmnopqrstuvwxy"

Let's write an example that uses string.uppercase:

>>> text = "F"
>>> if text in string.uppercase:
… print "%s is in uppercase format" % text
…
"F is in uppercase format"

string.maketrans()

Returns a translation table that maps each character in the from string into the character at the same
position in the to string. Then this table is passed to the translate function. Note that both from and
to must have the same length.

basic syntax: string.maketrans(from, to)

string.translate()

Based on the given table, it replaces all the informed characters, according to the table created by the
string.maketrans function. Optionally, it deletes from the given string all characters that are

presented in charstodelete.

basic syntax: string.translate(string, table[, charstodelete])

re

The re module performs Perl-style regular expression operations in strings, such as matching and
replacement.

Tip

As a suggestion, always use raw string syntax when working with regular expression because
it makes the work of handling special characters simpler.

>>> import re
>>> data = r"Andre Lessa"
>>> data = re.sub("Lessa", "L.", data)
>>> print data
Andre L.

See Chapter 9, "Other Advanced Topics," for more details about creating regular expression patterns.

Note

It is expected that in version 1.6, the re module will be changed to a front end to the new sre
module.

regex

The regex module is an obsolete module since Python version 1.5. This module used to support
regular expression search and match operations.

If necessary, you can use the regex-to-re HOWTO to learn how to migrate from the regex

module to the re module. Check out the address http://www.python.org/doc/howto/regex-to-re/.

regsub

The regsub module is another obsolete module. It also handles string operations (such as substitution
and splitting) by using regular expressions. The functions in this module are not thread-safe, so be
careful.

struct

The struct module interprets strings as packed binary data. It processes binary files using the
functions pack(),unpack(), and calcsize(). This module allows users to write platform-
independent, binary-file manipulation code when using the big-endian or little-endian format
characters. Using the native formats does not guarantee platform independence.

fpformat

The fpformat module provides functions that deal with floating point numbers and conversions.

StringIO

The StringIO module creates a string object that behaves like a file, but actually, it reads and writes
data from string buffers. The StringIO class, which is exposed by the StringIO module supports
all the standard file methods.

>>> import StringIO
>>> str = StringIO.StringIO("Line 1\ nLine 2\ nLine 3")
>>> str.readlines()
['Line1\ 012', 'Line2\ 012', 'Line3']

An additional method provided by this class is StringIO.getvalue()

It returns and closes the string object.

basic syntax: variable = stringobject.getvalue()

>>> import StringIO
>>> text = "Line 1\ nLine 2\ nLine 3"

http://www.python.org/doc/howto/regex-to-re/

>>> str = StringIO.StringIO()
>>> str.write(text)
>>> result = str.getvalue()
"Line 1\ 012Line 2\ 012Line 3"

cStringIO

The cStringIO is a faster version of the StringIO module. The difference is that you cannot
subclass this module. It is necessary to use StringIO instead.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

calcsize() function
cStringIO module
functions
 calcsize()
 pack()
 string.rjust()
 string.rstrip()
 string.uppercase()
 unpack()
functionsÓ
 Ò
libraries
 String Group 2nd 3rd 4th 5th 6th
methods
 StringIO.getvalue()
methodsÓ
 Ò
modules
 cStringIO
 re
 regex
 string 2nd 3rd 4th
pack() function
raw string syntax
re module

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=73

regex module
String Group library 2nd 3rd 4th 5th 6th
string module 2nd 3rd 4th
string.rjust() function
string.rstrip() function
string.uppercase() function
StringIO.getvalue() method
syntax
 functions
 string.atof()
 string.atoi()
 string.capitalize()
 string.capwords()
 string.center() 2nd
 string.find()
 string.join()
 string.ljust()
 string.lower()
 string.lstrip()
 string.maketrans()
 string.replace()
 string.rjust()
 string.rstrip()
 string.split()
 string.translate()
 string.upper()
 string.zfill()
 raw string
 StringIO.getvalue() method
unpack() function

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Miscellaneous See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146114164075115182035241

Miscellaneous

This group handles many functions that are available for all Python versions.

math

The math module provides standard mathematical functions and constants. It doesn't accept complex
numbers, only integers and floats. Check out the following example:

import math
>>> math.cos(180)
-0.598460069058
>>> math.sin(90)
0.893996663601
>>> math.sqrt(64)
8.0
>>> math.log(10)
2.30258509299
>>> math.pi # The mathematical constant pi
3.14159265359
>>> math.e # The mathematical constant e
2.71828182846

cmath

The cmath module also provides standard mathematical functions and constants. However, its
implementation enables it to accept complex numbers as arguments. All the returned values are
expressed as complex numbers.

random

The random module generates pseudo-random numbers. This module implements all the randomizing
functions provided by the whrandom module plus several pseudo-random real number generators.
These random modules aren't very secure for encryption purposes.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=74
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A28%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=74&now=5%2F31%2F2002+4%3A28%3A37+PM

random.choice()

It randomly picks one element from list.

basic syntax: random.choice(list)

>>> lst = ["A","l","b","a","t","r","o","s","s","!","!"]
>>> while lst:
… element = random.choice(lst)
… lst.remove(element)
… print element, # inserts a linefeed
…
b l o A s r ! ! t s a

random.random()

It returns a random floating-point number between 0.0 and 1.0.

basic syntax: random.random()

random.randint()

It returns a random integer n, where x <= N <= y.

basic syntax: random.randint(x,y)

whrandom

The whrandom module provides a Wichmann-Hill floating-point pseudo-random number generator.
This module is mostly useful when you need to use multiple independent number generators.

whrandom.whrandom()

This function initializes multiple random generators using the same seed.

>>> import whrandom
>>> rga = whrandom.whrandom(2,1,3)

>>> rgb = whrandom.whrandom(2,1,3)
>>> rga.random()
0.0337928613026
>>> rgb.random()
0.0337928613026

bisect

The bisect module has an array bisection algorithm that provides support for keeping lists in sorted
order without the need for sorting them out all the time.

array

The array module is a high efficiency array implementation that handles large lists of objects. The
array type is defined at the time of creation.

By using this module, you can create an ArrayType object that behaves exactly like any other list,
except that it isn't recommended for storing elements of different types.

>>> import array
>>> s = "This is a string"
>>> a = array.array("c", s)
>>> a[5:7] = array.array("c", "was")
>>> print a.tostring()
This was a string

Note that NumPy provides a superior array implementation, which can be used for more than just
numeric algorithms.

Note that Python 2.0 has improved the array module, and new methods were added to its array
objects, including: count(), extend(), index(), pop(), and remove().

ConfigParser

The ConfigParser module is a basic configuration file parser that handles structures similar to
those found in the Microsoft Windows INI file.

Note

Note that as of Release 2.0, the ConfigParser module is also able to write config files as well as
read them.

fileinput

The fileinput module helps you by writing a loop that reads the contents of a file, line by line.

>>> import fileinput
>>> for line in fileinput.input("readme.txt"):
… if line.isfirstline:
… print "<< This is the first line >>"
… print "filename = %s" % line.filename
… print " ---------------------------"
… else:
… print "<< This is the line number %d>>" % line.lineno
… print line
…

calendar

The calendar module provides general calendar-related functions that emulate the UNIX cal
program, allowing you to output calendars, among other things.

cmd

The cmd module is a simple interface used as a framework for building command line interpreters and
shells. You just need to subclass its cmd.Cmd class in order to create your own customized
environment.

shlex

The shlex module helps you write simple lexical analyzers (tokenizers) for syntaxes that are similar
to the UNIX shell.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

array module
 methods
ArrayType object
bisect module 2nd
calendar module 2nd
cmath module
ConfigParser module
 files
files
 ConfigParser module
libraries
 Miscellaneous 2nd 3rd
methods
 array module
Miscellaneous library 2nd 3rd
modules
 array
 methods
 bisect 2nd
 calendar 2nd
 cmath
 ConfigParser
 files
 random
objects
 ArrayType
random module
syntax
 functions
 random.choice()
 random.randint()
 random.random()

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=74

Web Development > Python Developer's Handbook > 3. Python Libraries > Generic Operational System See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146114164077159075058132

Generic Operational System

This group of services provides interfaces to operating system features that you can use in almost every platform. Most of
Python's operating system modules are based on the Posix interface.

os

The os module is a portable OS API that searches for Operating-System–dependent built-in modules (mac, posix, nt),
and exports their functionality using the same interface. Certain tools are available only on platforms that support them.
However, it is highly recommended that you use this module instead of the platform-specific modules, which are really an
implementation detail of os. By using the os module, you make your program more portable.

os.environ

This is a dictionary that contains all the environment variables.

You can search for a specific variable:

>>> import os
>>> path = os.environ["PATH"] #USER, EDITOR, etc…

or list all of them:

>>> for key in os.environ.keys():
… print key, " = " , os.environ[key]
…

os.name

It returns the name of the current system.

>>> name = os.name # "posix","dos","mac","nt"
nt

os.getcwd()

This function returns the current working directory.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=75
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A28%3A52+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=75&now=5%2F31%2F2002+4%3A28%3A52+PM

>>> os.getcwd()
'C:\ \ Program Files\ \ Python'

os.curdir

This is a simple constant that returns the OS-specific string used to identify the current directory.

>>> os.curdir
'.'

os.listdir()

If directory is omitted, it lists the filenames of the current directory. Otherwise, it lists the filenames of directory.

basic syntax: os.listdir([directory])

>>> files = os.listdir(os.curdir)

os.rename()

It renames a file.

basic syntax: os.rename(oldfile, newfile)

os.chmod()

It changes the file mode. This is a UNIX command.

basic syntax: os.chmod(file, mode)

os.system()

It opens an Operating System subshell and executes the command.

basic syntax: os.system(command)

>>> os.system("rm -rf " + filename)

os.popen()

This is a UNIX function that returns a file-like object. It allows you to execute a shell command and read the standard

output of external pipes (by setting mode to r) or write to their standard input (by setting mode to w). The default mode is
r. Note that even though popen is a UNIX function, it is also implemented on the other Python ports.

basic syntax: os.popen(shell command, mode)

>>> file = os.popen('sed \ 's/yes/no/g'> output','w')
>>> file.write("yes\ n")
>>>
>>> file = os.popen('cat manual.txt', 'r')
>>> f = file.read()

os.remove()

It deletes a file.

basic syntax: os.remove(file)

os.mkdir()

It creates a new directory.

basic syntax: os.mkdir(directory)

os.rmdir()

It removes an existing directory.

basic syntax: os.rmdir(directory)

os.removedirs()

It is a wrapper for rmdir that deletes everything under the directory.

basic syntax: os.removedirs(directory)

os.path

The os.path is a module imported by the os module that exposes useful common functions to manipulate pathnames.
Remember that you don't have to explicitly import os.path. You get it for free when you import os.

os.path.exists()

It returns true if path really exists.

basic syntax: os.path.exists(path)

os.path.isfile()

It returns true if the specified path is a file.

basic syntax: os.path.isfile(path)

os.path.isdir()

It returns true if the specified path is a directory.

basic syntax: os.path.isdir(path)

os.path.split()

It splits filename, returning a tuple that contains the directory structure and filename, which together combine the original
filename argument.

basic syntax: os.path.split(filename)

dircache

The dircache module reads directory listings using a cache. Note that this module will be replaced by the new module
filecmp in Python 1.6.

stat

The stat module works along with the os module by interpreting information about existing files that is extracted by the
os.stat() function and stored on a tuple structure. This tuple contains the file size, the file owner group,
the file owner name, the last accessed and last modified dates, and its mode.

statcache

The statcache module is a simple optimization of the os.stat() function.

statvfs

The statvfs module stores constants that are used to interpret the results of a call to the os.statvfs() function. By the
way, the os.statvfs provides information about your file system.

>>> import statvfs, os
>>> stat = os.statvfs(".")
>>> maxfnl = stat[statvfs.F_NAMEMAX]
>>> print "%d is the maximum file name length" % maxfnl
>>> print "that is allowed on your file system."
255

cmp

The cmp module is used to compare files. Note that this module will be replaced by the new module filecmp in Python
1.6.

cmpcache

The cmpcache module is a more efficient version of the cmp module for file comparisons. Note that this module will be
replaced by the new module filecmp in Python 1.6.

time

The time module exposes functions for time access and conversion. It is important to remember that there are no Year 2000
issues in the Python language.

time.time()

It returns the current timestamp in seconds since the UNIX epoch began (start of 1970, UTC - Universal Time Coordinated).

basic syntax: time.time()

time.localtime()

It converts a time expressed in seconds into a time tuple. This tuple has the following format: (4digitsyear, month, day, hour,
minute, second, day of week, day of year, daylight savings flag).

basic syntax: time.locatime(seconds)

time.asctime()

It converts a time tuple into a 24-character string.

basic syntax: time.asctime(tuple)

>>> import time
>>> time.time()
957044415.14
>>> time.localtime(time.time())
(2000, 4, 29, 17, 42, 14, 5, 120, 1)
>>> time.asctime(time.localtime(time.time()))
'Sat Apr 29 17:42:59 2000'

time.sleep()

It suspends the execution of a program for a specific number of seconds.

basic syntax: time.sleep(seconds)

>>> import time

>>> time.sleep(10) # waits for 10 seconds

sched

The sched module implements a general-purpose event scheduler.

getpass

The getpass module implements a portable function that enables the user to type a password without echoing the entry in
the screen.

basic syntax: getpass.getpass([prompt])

This module also provides a function to collect information about the user's login.

basic syntax: getpass.getuser()

import getpass
defaultpwd = "Ahhhhh"
user = getpass.getuser()
print "Hello %s," % user
pass = getpass.getpass("Please, type the password. ")
if pass == defaultpwd:
 print "Welcome back to the system!!
else:
 print r"You've just activated the detonation process.Sorry"

curses

The curses module is a terminal independent I/O interface to the curses UNIX library.

For more details, check out the curses HOWTO at http://www.python.org/doc/howto/curses/curses.html.

getopt

The getopt module is a parser for command-line options and arguments (sys.argv). This module provides the standard
C getopt functionality.

1: >>> import getopt
2: >>> args = ['-h','-r','origin.txt','—file','work.txt','755','777']
3: >>> opts, pargs = getopt.getopt(args, 'hr:', ['file='])
4: >>> opts
5: [('-h', ''), ('-r','origin.txt') , ('—file','work.txt')]
6: >>> pargs
7: ['755','777']

http://www.python.org/doc/howto/curses/curses.html

Before transporting arguments to this function, line 2 shows you that single options must be preceded by a single hyphen and
long options must be preceded by double hyphens.

In line 3, note that single options that require an argument must end with a colon. On the other hand, long options that require
an argument must end with an equal sign.

The getopt.getopt() returns two values: A tuple that contains pairs of (option, argument) values (line 5), and a
list of standalone arguments that aren't associated with any options (line 7).

tempfile

The tempfile module generates unique temporary filenames based on templates defined by the variables
tempfile.tempdir and tempfile.template.

tempfile.mktemp()

This function returns a temporary filename. It doesn't physically create or remove files.

basic syntax: filename = tempfile.mktemp()

>>> import tempfile, os
>>> temp = tempfile.mktemp()
>>> open(temp, 'w')
>>> os.close(file)
>>> os.remove(file)

tempfile.TemporaryFile()

This function returns a file object that is saved in your temporary local folder (/tmp or c:/temp, for example). The
system removes this file after it gets closed.

basic syntax: fileobject = tempfile.TemporaryFile()

errno

The errno module makes available the standard errno system symbols, such as EACCES, EADDRINUSE, and
EDEADLOCK.

Each symbol is associated to a constant error code value.

>>> import errno
>>> errno.ELOOP
10062

More information about this module and its symbols is provided in Chapter 4.

glob

The glob module finds and returns pathnames matching a specific pattern, just like the UNIX shell does.

basic syntax: glob.glob(pattern)

>>> import glob
>>> lst = glob.glob("c:\ \ *.txt")
>>> print lst
['c:\ \ FRUNLOG.TXT', 'c:\ \ DETLOG.TXT', 'c:\ \ BOOTLOG.TXT', 'c:\ \ SETUPLOG.TXT',
 'c:\ \ NETLOG.TXT', 'c:\ \ RESETLOG.TXT']

fnmatch

The fnmatch module uses wildcards to provide support for UNIX shell-style filename pattern matching. These wildcards
are different from those normally used by the re module.

fnmatch.fnmatch()

This function returns 1 (true) if the provided filename matches the pattern defined.

basic syntax: fnmatch.fnmatch()filename, pattern)

>>> import fnmatch
>>> fnmatch.fnmatch("foo.gif", "*.gif")
1

fnmatch.translate()

This function converts a fnmatch-style pattern into a regular expression.

basic syntax: variable == fnmatch.translate(pattern)

>>> import fnmatch
>>> regexpr = fnmatch.translate("*.txt")
>>> print regexpr
.*\ .txt$

shutil

The shutil module provides high-level file operations. Essentially, it offers many file-copying functions and one directory

removal function.

shutil.copyfile()

It makes a straight binary copy of the source file, calling it newcopy.

basic syntax: shutil.copyfile(source, newcopy)

shutil.rmtree()

It deletes the path directory, including all of its subdirectories, recursively. If ignore_errors is set to 0, errors are
ignored. Otherwise, the onerror function argument is called to handle the error. If the clause onerror is set to None, an
exception is raised when an error occurs.

basic syntax: shutil.rmtree(path, ignore_errors=0, onerror=None)

locale

The locale module provides access to the POSIX locale mechanism, enabling internationalization services. This module
defines a set of parameters that describe the representation of strings, time, numbers, and currency.

The good thing about using this module is that programmers don't have to worry about the specifics of each country where
their applications are executed.

mutex

The mutex module defines a mutex class that allows mutual-exclusion support via acquiring and releasing locks.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

cmp module
curses module
finding
 variables
fnmatch module
functions
 getopt.getopt()
 getpass.getpass()
 getpass.getuser()
 glob.glob()
 os.statvfs()
Generic Operational System library 2nd 3rd 4th 5th 6th 7th 8th 9th
getopt.getopt() function
getpass.getpass() function
getpass.getuser() function
glob.glob() function

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=75

libraries
 Generic Operational System 2nd 3rd 4th 5th 6th 7th 8th 9th
listing
 variables
modules
 cmp
 curses
 fnmatch
 mutex
 os 2nd 3rd
 os.path 2nd
 sched
 shutil 2nd
 stat
 tempfile
mutex module
os module 2nd 3rd
os.path module 2nd
os.statvfs() function
sched module
searching
 variables
shutil module 2nd
stat module
syntax
 functions
 fnmatch.fnmatch()
 fnmatch.translate()
 getpass.getpass()
 getpass.getuser()
 glob.glob()
 os.chmod()
 os.listdir()
 os.mkdir()
 os.path.exists()
 os.path.isdir()
 os.path.isfile()
 os.path.split()
 os.popen()
 os.remove()
 os.removedirs()
 os.rename()
 os.rmdir()
 os.system()
 shutil.copyfile()
 shutil.rmtree()
 tempfile.mktemp()
 tempfile.Temporary File()
 time.asctime()
 time.sleep()
 time.time()
tempfile module
variables
 finding
 listing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Optional
Operational System

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146115096221049202205219

Optional Operational System

The next set of modules implements interfaces to optional operational system features. Keep in mind
that these features are not available for all platforms.

signal

The signal module provides mechanisms to access POSIX signals in order to let the programmer set
her own signal handlers for asynchronous events.

A good example is the case when it is necessary to monitor the users, checking whether they press
CTRL+C to stop the execution of a program. Although Python provides default handlers, you can
overwrite them by creating your own.

import signal, sys
def signal_handler(signal, frame):
 print "You have pressed CTRL+C"
 signal.signal(signal.SIGINT, signal.SIG_IGN)
 print "Now, you can\ 't stop the script with CTRL+C " }
 "for the next 10 seconds!"
 signal.signal(signal.SIGALRM, alarm_handler)
 signal.alarm(10)
 while 1:
 print "I am looping"

def alarm_handler(signal, frame):
 print "Now you can leave the program"
 sys.exit(0)

signal.signal(signal.SIGINT, signal_handler)
print "Press CTRL+C"
while 1:
 continue

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=76
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=76&now=5%2F31%2F2002+4%3A29%3A13+PM

Some of the available signals you can use are as follows:

SIGALRM Alarm
SIGCONT Continue
SIGING Terminal interrupt character
SIGQUIT Terminal Quit character
SIGTERM Termination
SIG_IGN Signal handler that ignores a signal

socket

The socket module provides access to a low-level BSD socket-style network interface.

See Chapter 10, "Basic Network Background," for details.

select

The select module is used to implement polling and to multiplex processing across multiple I/O
streams without using threads or subprocesses. It provides access to the BSD select() function
interface, available in most operating systems.

On windows it only works for sockets. On UNIX, it is used for pipes, sockets, files, and
so on.

See Chapter 10 for details.

thread

The thread module supports lightweight process threads. It offers a low-level interface for working
with multiple threads.

See Chapter 9 for details.

threading

The threading module provides high-level threading interfaces on top of the thread module.

See Chapter 9 for details.

Queue

The Queue module is a synchronized queue class that is used in thread programming to move Python
objects between multiple threads.

See Chapter 9 for details.

anydbm

The anydbm module is a generic dbm-style interface to access variants of the dbm database.

See Chapter 8 for details.

dumbdbm

The dumbdbm module is a simple, portable, and slow database implemented entirely in Python.

See Chapter 8 for details.

dbhash

The dbhash module provides a function that offers a dbm-style interface to access the BSD
database library.

See Chapter 8 for details.

whichdb

The whichdb module provides a function that guesses which dbm module (dbm, gdbm, or
dbhash) should be used to open a specific database.

See Chapter 8 for details.

bsddb

The bsddb module provides an interface to access routines from the Berkeley db library.

See Chapter 8 for details.

zlib

The zlib module provides functions that allow compression and decompression using the zlib
library. The compression that is provided by this module is compatible with gzip.

For more details check out the zlib library home page at http://www.cdrom.com/pub/infozip/lib.

gzip

The gzip module offers support for gzip files. This module provides functions that allow
compression and decompression using the GNU compression program gzip.

This module has a class named GzipFile that can be used to read and write files compatible with the
GNU gzip program. The objects that are generated by this class behave just like file objects. The only
exception is that the seek and tell methods aren't part of the standard implementation.

>>> import gzip
>>> gzipfile = gzip.GzipFile("backup.gz")
>>> contents = gzipfile.read()
>>> print contents

rlcompleter

The rlcompleter module provides a completion function for the readline module.

The readline module is a UNIX module that is automatically imported by rlcompleter. It uses
a compatible GNU readline library to activate input editing on UNIX.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.cdrom.com/pub/infozip/lib
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=76

Index terms contained in this section

completion function
functions
 completion
libraries
 Optional Operational System 2nd 3rd
modules
 rlcompleter
 signal 2nd
Optional Operational System library 2nd 3rd
rlcompleter module
signal module 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Debugger See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146115096222175249196015

Debugger

The pdb module defines an interactive source code debugger for Python programs. You can use this
tool to verify and modify variables and to set and examine breakpoints. It allows inspection of stack
frames, single stepping of source lines, and code evaluation. This module is based on the module bdb,
which implements a generic Python debugger base class.

See Chapter 17,"Development Tools," for details.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
 pdb
pdb module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=77
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=77&now=5%2F31%2F2002+4%3A29%3A28+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=77

Web Development > Python Developer's Handbook > 3. Python Libraries > Profiler See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146115096223203225251117

Profiler

The profiler module is a code execution profiler. This tool can be used to analyze statistics about
the runtime performance of a program. It helps you to identify what parts of your program are running
slower than the expected and what can be done to optimize it. The pstats module works along with
the profiler module in order to analyze the collected data.

See Chapter 17 for details.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

modules
 pstats
pstats module

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=78
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A38+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=78&now=5%2F31%2F2002+4%3A29%3A38+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=78

Web Development > Python Developer's Handbook > 3. Python Libraries > Internet
Protocol and Support

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146115096216154163153162

Internet Protocol and Support

These are the modules that implement internet protocols and support for related technology.

For examples and details about the following modules, refer to Chapters 10–12.

cgi

The cgi module is used to implement CGI (common gateway interface) scripts and process form
handling in Web applications that are invoked by an HTTP server.

See Chapter 12, "Scripting Programming," for details.

urllib

The urllib module is a high-level interface to retrieve data across the World Wide Web. It opens any
URL using sockets.

See Chapters 10 and 12 for details.

httplib

The httplib module implements the client side of the HTTP (Hypertext Transfer Protocol) protocol.

Tip

HTTP is a simple text-based protocol used for World Wide Web applications.

See Chapters 10 and 12 for details.

ftplib

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=79
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=79&now=5%2F31%2F2002+4%3A29%3A45+PM

The ftplib module implements the client side of the FTP protocol. You can use it for mirroring FTP
sites. Usually the urllib module is used as an outer interface to ftplib.

See Chapters 10 and 12 for details.

gopherlib

The gopherlib module is a minimal client-side implementation of the Gopher protocol.

poplib

The poplib module provides a low-level, client-side interface for connecting to a POP3 server using
a client protocol, as defined in the Internet standard RFC 1725.

See Chapter 10 for details.

imaplib

The impalib module provides a low-level, client-side interface for connecting to an IMAP4 mail
server using the IMAP4rev1 client protocol, as defined in the Internet standard RFC 2060.

See Chapter 10 for details.

nntplib

The nntplib module implements a low-level interface to the client side of the NNTP (Network News
Transfer Protocol) protocol—a service mostly known for implementing newsgroups.

See Chapter 10 for details.

smtplib

The smtplib module provides a low-level client interface to the SMTP protocol that can be used to
send email to any machine in the Internet that has an SMTP or ESMTP listener daemon.

See Chapter 10 for details.

telnetlib

The telnetlib module implements a client for the telnet protocol.

urlparse

The urlparse module manipulates a URL string, parsing it into tuples. It breaks a URL up into
components, combines them back, and converts relative addresses to absolute addresses.

See Chapters 10 and 12 for details.

SocketServer

The SocketServer module exposes a framework that simplifies the task of writing network servers.
Rather than having to implement servers using the low-level socket module, this module provides four
classes that implement interfaces to the mostly used protocols: TCPServer, UDPServer,
UnixStreamServer, and UnixDatagramServer. All these classes process requests
synchronously.

See Chapter 10 for details.

BaseHTTPServer

The BaseHTTPServer module defines two base classes for implementing basic HTTP servers (also
known as Web servers).

See Chapter 10 for details.

SimpleHTTPServer

The SimpleHTTPServer module provides a simple HTTP server request-handler class. It has an
interface compatible with the BaseHTTPServer module that enables it to serve files from a base
directory.

See Chapter 10 for details.

CGIHTTPServer

The CGIHTTPServer module defines a simple HTTP server request-handler class. It has an interface
compatible with BaseHTTPServer that enables it to serve files from a base directory, but it can also
run CGI scripts.

See Chapters 10 and 12 for details.

asyncore

The asyncore module provides the basic infrastructure for writing and handling asyncronous socket
service clients and servers that are the result of a series of events dispatched by an event loop.

See Chapter 10 for details.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

httplib module
Internet
 libraries
 Internet Protocol and Support 2nd 3rd
libraries
 Internet Protocol and Support 2nd 3rd
modules
 httplib
 smtplib
protocols
 Internet Protocol and Support library 2nd 3rd
smtplib module
support
 Internet Protocol and Support library 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=79

Web Development > Python Developer's Handbook > 3. Python Libraries > Internet Data
Handling

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162146115096217178215107072

Internet Data Handling

This group covers modules that support encoding and decoding of data handling formats and that are
largely used in Internet applications.

For more details and examples about using these modules, see Chapter 13, "Data Manipulation."

sgmllib

The sgmllib module is an SGML (Standard Generalized Markup Language) parser subset. Although
it has a simple implementation, it is powerful enough to build the HTML parser.

htmllib

The htmllib module defines a parser for text files formatted in HTML (Hypertext Markup
Language).

htmlentitydefs

The htmlentitydefs module is a dictionary that contains all the definitions for the general entities
defined by HTML 2.0.

xmllib

The xmllib module defines a parser for text files formatted in XML (Extensible Markup Language).

formatter

The formatter module is used for generic output formatting by the HTMLParser class of the
htmllib module.

rfc822

The rfc822 module parses mail headers that are defined by the Internet standard RFC 822. The

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=80
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A29%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=80&now=5%2F31%2F2002+4%3A29%3A53+PM

headers of this form are used in a number of contexts including mail handling and in the HTTP
protocol.

mimetools

The mimetools module provides utility tools for parsing and manipulation of MIME multipart and
encoded messages.

Tip

MIME (multipurpose Internet mail extensions) is a standard for sending multipart multimedia data
through Internet mail.

MimeWrite

The MimeWrite module implements a generic file-writing class that is used to create MIME-encoded
multipart files.

multifile

The multifile module enables you to treat distinct parts of a text file as file-like input objects.
Usually, this module uses text files that are found in MIME encoded messages.

binhex

The binhex module encodes and decodes files in binhex4 format. This format is commonly used to
represent files on Macintosh systems.

uu

The uu module encodes and decodes files in uuencode format. This module does its job by
transferring binary data over an ASCII-only connection.

binascii

The binascii module implements methods to convert data between binary and various ASCII-
encoded binary representations.

base64

The base64 module performs base64 encoding and decoding of arbitrary binary strings into text
strings that can be safely emailed or posted. This module is commonly used to encode binary data in
mail attachments.

xdrlib

The xdrlib module is used extensively in applications involving Remote Procedure Calls (RPC).
Similarly, it is often used as a portable way to encode binary data for use in networked applications.
This module is able to encode and decode XDR data because it supports the external data
representation (XDR) Standard.

mailcap

The mailcap module is used to read mailcap files and to configure how MIME-aware applications
react to files with different MIME types.

Note

mailcap files are used to inform mail readers and Web browsers how to process files with
different MIME types.

mimetypes

The mimetypes module supports conversions between a filename or URL and the MIME type
associated with the filename extension.

Essentially, it is used to guess the MIME type associated with a file, based on its extension, as shown in
Table 3.1.

Table 3.1. Some MIME Type Examples

Filename Extension MIME Type Associated

.html text/html

.rdf application/xml

.gif image/gif

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/80#17.html

quopri

The quopri module performs encoding and decoding of MIME quoted printable data. This format is
primarily used to encode text files.

mailbox

The mailbox module implements classes that allow easy and uniform access to read various mailbox
formats in a UNIX system.

mhlib

The mhlib module provides a Python interface to access MH folders and their contents.

mimify

The mimify module has functions to convert and process simple and multipart mail messages to/from
the MIME format.

netrc

The netrc module parses, processes, and encapsulates the .netrc configuration file format used by
the UNIX FTP program and other FTP clients.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

data
 handling
 Internet Data Handling library 2nd 3rd 4th
handling
 data
 Internet Data Handling library 2nd 3rd 4th
Internet Data Handling library 2nd 3rd 4th
libraries
 Internet Data Handling 2nd 3rd 4th
mailcap module
modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=80

 mailcap
 xdrlib
xdrlib module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Restricted
Execution

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147036037065242179178094

Restricted Execution

Restricted Execution is the basic framework in Python that allows the segregation of trusted and
untrusted code. The next modules prevent access to critical operations mostly because a program
running in trusted mode can create an execution environment in which untrusted code can be executed
with limited privileges.

rexec

The rexec module implements a basic restricted execution framework by encapsulating, in a class,
the attributes that specify the capabilities for the code to execute. Code executed in this restricted
environment will only have access to modules and functions that are believed to be safe.

Bastion

The Bastion module provides restricted access to objects. This module is able to provide a way to
forbid access to certain attributes of an object.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

execution
 Restricted Execution library
libraries
 Restricted Execution
Restricted Execution library

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=81
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A01+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=81&now=5%2F31%2F2002+4%3A30%3A01+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=81

Web Development > Python Developer's Handbook > 3. Python Libraries > Multimedia See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147036037064080119238172

Multimedia

The next several modules implement algorithms and interfaces that are mainly useful for multimedia
applications.

audioop

The audioop module manipulates raw audio data, such as samples and fragments.

imageop

The imageop module manipulates raw image data by operating on images consisting of 8- or 32-bit
pixels stored in Python strings.

aifc

The aifc module is devoted to audio file access for AIFF and AIFC formats. This module offers
support for reading and writing files in those formats.

sunau

The sunau module provides an interface to read and write files in the Sun AU sound format.

wave

The wave module provides an interface to read and write files in the WAV sound format. It doesn't
support compression/decompression, but it supports mono/stereo channels.

chunk

The chunk module provides an interface for reading files that use EA IFF 85 data chunks. This
format is used in the AIFF/AIFF-C, RMFF, and TIFF formats.

colorsys

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=82
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=82&now=5%2F31%2F2002+4%3A30%3A10+PM

The colorsys module defines bidirectional conversions of color values between colors expressed in
RGB and three other coordinate systems: YIQ, HLS, and HSV.

rgbimg

The rgbimg module allows Python programs to read and write SGI imglib .rgb files—without
requiring an SGI environment.

imghdr

The imghdr module determines the type of an image contained in a file or byte stream.

sndhdr

The sndhdr module implements functions that try to identify the type of sound contained in a file.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 Multimedia 2nd
Multimedia library 2nd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=82

Web Development > Python Developer's Handbook > 3. Python Libraries > Cryptographic See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147036037064089094099064

Cryptographic

The following modules implement various algorithms of cryptographic nature.

For more information about this topic, you can also check out the following Web site:

http://starship.python.net/crew/amk/python/crypto.html

It contains cryptographic modules written by Andrew Kuchling for reading and decrypting PGP files.

md5

The md5 module is a cryptographically secure hashing algorithm that implements an interface to RSA's
MD5 message digest algorithm. Based on a given string, it calculates a 128-bit message signature.

sha

The sha module is a message digest algorithm that implements an interface to NIST's secure hash
algorithm, known as sha. This module takes a sequence of input text and generates a 160-bit hash
value.

mpz

The mpz module implements the interface to part of the GNU multiple precision integer libraries.

rotor

The rotor module implements a permutation-based encryption and decryption engine. (The design is
derived from the Enigma device, a machine used by the Germans to encrypt messages during WWII.)

>>> import rotor
>>> message = raw_input("Enter the message")
>>> key = raw_input("Enter the key")
>>> newr = rotor.newrotor(key)
>>> enc = newr.encrypt(message)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=83
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=83&now=5%2F31%2F2002+4%3A30%3A19+PM
http://starship.python.net/crew/amk/python/crypto.html

>>> print "The encoded message is: ", repr(enc)
>>> dec = newr.decrypt(enc)
>>> print "The decoded message is: ", repr(dec)

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

devices
 Enigma
Enigma device

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=83

Web Development > Python Developer's Handbook > 3. Python Libraries > UNIX Specific See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147036037067009093198057

UNIX Specific

This group of modules exposes interfaces to features that are specific to the UNIX environment.

posix

The posix module provides access to the most common POSIX system calls. Do not import this
module directly; instead, I suggest that you import the os module.

>>> uid = posix.getuid() # returns the user id

pwd

The pwd module provides access to the UNIX passwd (password database) file routines.

pwd.getpwnam()

Returns the password of a given user.

basic syntax: password = getpwnam(username)[1]

>>> import pwd, getpass
>>> pw = pwd.getpwnam(getpass.getuser())[1]

grp

The grp module provides access to the UNIX group database.

crypt

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=84
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=84&now=5%2F31%2F2002+4%3A30%3A28+PM

The crypt module offers an interface to the UNIX crypt routine. This module has a hash function
based on a modified DES algorithm that is used to check UNIX passwords.

To encrypt:

newpwd = crypt.crypt(passwordstring, salt)

salt consists of a two-random character seed used to initialize the algorithm.

To verify:

If newpwd == crypt.crypt(passwordstring, newpwd[:2])
import getpass
import pwd
import crypt

uname = getpass.getuser() # get username from environment
pw = getpass.getpass() # get entered password

realpw = pwd.getpwnam(uname)[1] # get real password
entrpw = crypt.crypt(pw, realpw[:2]) # returns an encrypted password
if realpw == entrpw: # compare passwords
 print "Password Accepted"
else:
 print "Get lost."

dlmodule

The dlmodule module exposes an interface to call C functions in shared objects that handle
dynamically linked libraries. Note that this module is not needed for dynamic loading of Python
modules. The documentation says that it is a highly experimental and dangerous device for calling
arbitrary C functions in arbitrary shared libraries.

dbm

The dbm module is a database interface that implements a simple UNIX (n)dbm library access
method. dbm objects behave like dictionaries in which keys and values must contain string objects. This

module allows strings, which might encode any python objects, to be archived in indexed files.

See Chapter 8 for details.

gdbm

The gdbm module is similar to the dbm module. However, their files are incompatible. This module
provides a reinterpretation of the GNU dbm library.

See Chapter 8 for details.

termios

The termios module provides an interface to the POSIX calls for managing the behavior of the
POSIX tty.

TERMIOS

The TERMIOS module stores constants required while using the termios module.

tty

The tty module implements terminal controlling functions for switching the tty into cbreak and
raw modes.

pty

The pty module offers utilities to handle the pseudo-terminal concept.

fcntl

The fcntl module performs file and I/O control on UNIX file descriptors. This module implements
The fcntl() and ioctl() system calls, which can be used for file locking.

pipes

The pipes module offers an interface to UNIX shell pipelines. By abstracting the pipeline concept, it
enables you to create and use your own pipelines.

posixfile

The posixfile module provides file-like objects with support for locking. It seems that this module
will become obsolete soon.

resource

The resource module offers mechanisms for measuring and controlling system resources used by a
program.

nis

The nis module is a thin wrapper around Sun's NIS library.

syslog

The syslog module implements an interface to the UNIX syslog library routines. This module
allows you to trace the activity of your programs in a way similar to many daemons running on a typical
GNU/Linux system.

import syslog
syslog.syslog('This script was activated')
print "I am a lumberjack, and I am OK!"
syslog.syslog('Shutting down script')

Use the command tail -f /var/log/messages to read what your script is writing to the log.

popen2

The popen2 module allows you to create processes by running external commands and to connect their
accessible streams (stdin, stdout, and stderr) using pipes.

import os,popen2
str1 = os.popen('ls','r').read()
print str1
out1,in1 = popen2.popen2('cat')
in1.write(str1)
in1.close()
str2 = out1.read()
out1.close()

print str2

Note

Note that as of release 2.0, functions popen2, popen3, popen4 are supported on the Windows
Platform.

commands

The commands module provides functions that execute external commands under UNIX by
implementing wrapping functions for the os.popen() function. Those functions get a system
command as a string argument and return any output generated by that command.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

checking
 UNIX passwords
dlmodule module
encrypting
 UNIX passwords
functions
 popen2
 popen3
 popen4
gdbm module
grp module
libraries
 operating systems
 UNIX Specific 2nd
modules
 dlmodule
 gdbm
 grp
 pwd
passwords

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=84

 UNIX, encrypting
 UNIX, verifying
popen2 function
popen3 function
popen4 function
pwd module
syntax
 functions
 pwd.getpwnam()
UNIX Specific library 2nd
verifying
 UNIX passwords

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > SGI IRIX
Specific

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147036037066072192197218

SGI IRIX Specific

The following features are specific to SGI's IRIX Operating System.

al

The al module implements access to the audio functions of the SGI Indy and Indigo workstations.

AL

The AL module stores constants that are used with the al module.

cd

The cd module provides an interface to the Silicon Graphics CD-ROM Library.

fl

The fl module provides an interface to the FORMS Library (by Mark Overmars) for GUI
applications.

FL

The FL module stores constants that are used with the fl module.

flp

The flp module defines functions that can load stored form designs created by the form designer
(fdesign) program that comes with the FORMS library (the fl module).

fm

The fm module implements an interface that provides access to the IRIS font manager library.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=85
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=85&now=5%2F31%2F2002+4%3A30%3A36+PM

gl

The gl module implements an interface that provides access to the Silicon Graphics graphic library.
Note that this is different for OpenGL. There is a wrapper for OpenGL called PyOpenGL. More details
can be found at Chapter 14, "Python and GUIs."

DEVICE

The DEVICE module defines the constants that are used with the gl module.

GL

The GL module stores the constants that are used with the gl module.

imgfile

The imgfile module implements support to access SGI's imglib image files.

jpeg

The jpeg module provides image file access (read and write) to the JPEG compressor and
decompressor format written by the Independent JPEG Group (IJG).

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

gl module
IRIX Operating System
 SGI IRIX Specific library 2nd
libraries
 operating systems
 SGI IRIX Specific 2nd
modules
 gl
SGI IRIX Specific library 2nd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=85

Web Development > Python Developer's Handbook > 3. Python Libraries > Sun OS
Specific

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147036037069182057170143

Sun OS Specific

These modules implement interfaces that are specific to the Sun OS Operating System.

sunaudiodev

The sunaudiodev module implements an interface that gives you access to the Sun audio hardware.

SUNAUDIODEV

The SUNAUDIODEV module stores the constants that are used with the sunaudiodev module.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=86
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=86&now=5%2F31%2F2002+4%3A30%3A45+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=86

Web Development > Python Developer's Handbook > 3. Python Libraries > MS Windows
Specific

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147036037068003073149039

MS Windows Specific

The next modules define interfaces that are specific to the Microsoft Windows Operating System.

msvcrt

The msvcrt module implements many functions that provide access to useful routines from the
Microsoft Visual C++ runtime library.

winsound

The winsound module implements an interface that provides access to the sound-playing
environment provided by Windows Platforms.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 operating systems
 MS Windows Specific
MS Windows Specific library
Windows
 MS Windows Specific library

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=87
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A30%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=87&now=5%2F31%2F2002+4%3A30%3A54+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=87

Web Development > Python Developer's Handbook > 3. Python Libraries > Macintosh
Specific

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147037129065145157222127

Macintosh Specific

The following modules implement specific interfaces to the Macintosh Operating System.

For more information about Macintosh module, take a look at the online Macintosh Library Reference
at http://www.python.org/doc/mac.

findertools

The findertools module provides access to some of the functionality presented in the Macintosh
finder. It launches, prints, copies, and moves files; it also restarts and shuts down the machine.

macfs

The macfs module is used to manipulate files and aliases on the Macintosh OS.

macostools

The macostools module implements functions for file manipulation on the Macintosh OS.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

libraries
 operating systems
 Macintosh Specific
Macintosh Specific library
Windows
 Macintosh Specific library

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=88
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=88&now=5%2F31%2F2002+4%3A31%3A04+PM
http://www.python.org/doc/mac
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=88

Web Development > Python Developer's Handbook > 3. Python Libraries > Undocumented
Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147037129064192252024235

Undocumented Modules

Currently, the modules listed in this section don't have any official documentation. However, you might
find some information about them in this book, by browsing an updated version of the online library
reference, or by checking some other Web site.

Frameworks

The next modules represent some Python frameworks that don't have any official documentation yet.

Tkinter— This module allows you to create GUIs (graphical user interfaces) because
it implements an interface to the Tcl/Tk windowing libraries (see Chapter 15, "Tkinter,"
for details).

Tkdnd— This module provides drag-and-drop support for Tkinter.

test— This package is responsible for the regression-testing framework.

Miscellaneous Useful Utilities

At this time this book went to press, the following modules didn't have any official documentation.

dircmp

This module defines a class on which to build directory comparison tools.

tzparse

This module is an unfinished work to parse a time zone specification.

ihooks

The ihooks module is a framework that manages the co-existence of different import routines.

Platform Specific Modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=89
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=89&now=5%2F31%2F2002+4%3A31%3A13+PM

These are implementation details of the os module.

dospath, macpath, posixpath, ntpath

These modules are for their platforms what the os.path module is for the UNIX platform. They can
all be used by any platform in order to handle pathnames of different platforms.

Multimedia

At the time this book went to press, the following modules didn't have any official documentation.

audiodev, sunaudio, toaiff

Obsolete

The following modules became obsolete as of release 1.6:

stdwin, soundex, cml, cmpcache, dircache, dump, find, grep, packmail, poly, zmod, strop, util, and
whatsound.

Note that release 2.0 hasn't made any module obsolete. All modules that were replaced were moved to
the lib-old subdirectory of the distribution. That list, includes: cmp, cmpcache, dircmp, dump, find,
grep, packmail, poly, util, whatsound, zmod.

ni

Before version 1.5a4, the ni module was used to support import package statements.

dump

The dump module prints the definition of a variable. Note that this module can be substituted for the
pickle module.

>>> import dump
>>> var = (10, 20, 30, 40)
>>> dump.dumpvar("newvar", var)
newvar = (10, 20, 30, 40)

Extension Modules

The following modules are obsolete tools to support GUI implementations.

stdwin— This module provides an interface to the obsolete STDWIN. STDWIN is an
unsupported platform-independent GUI interface that was replaced by Tkinter.

stdwinevents— Interacts with the stdwin module by providing piping services.

New Modules on Python 2.0

Next, you a have a list of new modules that were introduced to Python recently. As always, I suggest
you take a look at the 2.0 documentation for details about any given module.

atexit— Registers functions to be called when Python exits. If you already use the
function sys.exitfunc(), you should change your code to import atexit, and
call the function atexit.register(), passing as an argument the function that you
want to call on exit.

codecs— Provides support (base classes) for Unicode encoders and decoders, and
provides access to Python's codec registry. You can use the functions provided by this
module to search for existing encodings, or to register new ones. Most frequently, you
will adhere to the function codecs.lookup(encoding), which returns a 4-
function tuple: (encoder, decoder, stream_reader, stream_writer). This module along with
the unicodedata module was added as part of the new Unicode support to Python 2.0.
The condec class defines the interface for stateless encoders and decoders. The
following functions and classes are also available in this module.

codec.encode()— Takes a Unicode string, and returns a 2-tuple (8-bit-string,
length). The length part of the tuple shows how much of the Unicode string was
converted.

codec.decode()— Takes an 8-bit string, and returns a 2-tuple (ustring, length). The
length part of the tuple shows how much of the 8-bit string was consumed.

codecs.stream_reader(file_object)— This is a class that supports
decoding input from a stream. Objects created with this class carry the read(),
readline(), and readlines() methods, which allow you to take the given

encoding of the object, and read as a Unicode string.

codecs.stream_writer(file_object)— This is a class that supports
encoding output to a stream. Objects created with this class carry the write() and
writelines() methods, which allow you to pass Unicode string to the object, and let
the object translate them to the given encoding on output.

unicodedata— This module provides access to the Unicode 3.0 database of character
properties. The following functions are available:

unicodedata.category(u'P') returns the 2-character string 'Lu', the 'L'denoting
it's a letter, and 'u'meaning that it's uppercase.

unicodedata.bidirectional(u'\ x0660') returns 'AN', meaning that
U+0660 is an Arabic number.

encodings— This is a package that supplies a wide collection of standard codecs.
Currently, only the new Unicode support is provided.

distutils— Package of tools for distributing Python modules.

filecmp— This module comes into place of both the cmp.py, the cmpcache.py and
dircmp.py modules.

gettext— Provides an interface to the GNU gettext message catalog library in order to
supply internationalization (I18N) and localization (L10N) support for Python programs.

imputil— This module is an alternative API for writing customized import hooks in a
simpler way. It is similar to the existing ihooks module.

linuxaudiodev— Provides audio for any platform that supports the Open Sound System
(OSS). Most often, it is used to support the /dev/audio device on Linux boxes. This
module is identical to the already existing sunaudiodev module.

mmap— This module works on both Windows and Unix to treat a file as a memory
buffer, making it possible to map a file directly into memory, and make it behave like a
mutable string.

pyexpat— This module is an interface to the Expat XML parser.

robotparser— Initially at Tools/webchecker/, this module parses a

robots.txt file, which is used for writing web spiders.

sre— This module is a new implementation for handling regular expressions. Although
it is still very raw, its features include: faster mechanism, and support to unicode. The
idea of the development team is to reimplement the re module using sre (without making
changes to the re API).

tabnanny— Originally at Tools/scripts/, this module checks Python sources for
tab-width dependance (ambiguous indentation).

urllib2— This module is an experimental version of urllib, which will bring new and
enhanced features, but will be incompatible with the current version.

UserString— This module exposes a base class for deriving objects from the string
type.

xml— This package covers the whole-new XML support and it is organized in three
subpackages: xml.dom, xml.sax, and xml.parsers.

webbrowser— A module that provides a platform independent API to launch a web
browser on a specific URL.

_winreg— This module works as an interface to the Windows registry. It contains an
enhanced set of functions that has been part of PythonWin since 1995.

zipfile— This module reads and writes zip-format archives (the format produced by
PKZIP and zip applications. Not the one produced by the gzip program!).

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=89

Index terms contained in this section

_winreg module
atexit module
codecs module 2nd
disutils module
encodings module
filecmp module
gettext module
imputil module
libraries
 Undocumented Modules
linuxaudiodev module
mmap module
modules
 _winreg
 atexit
 codecs 2nd
 disutils
 encodings
 filecmp
 gettext
 imputil
 linuxaudiodev
 mmap
 obsolete
 pyexpat
 robotparser
 sre
 tabnanny
 Undocumented
 unicodedata
 urllib2
 UserString
 webbrowser
 xml
 zipfile
obsolete modules
pyexpat module
robotparser module
sre module
tabnanny module
Undocumented Modules
unicodedata module
urllib2 module

UserSTring module
webbrowser module
xml module
zipfile module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 3. Python Libraries > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147037129067126240013132

Summary

Python's standard distribution is shipped with a rich set of libraries (also known as modules). This
chapter introduces you to the practical side of several modules'utilization.

The following items are groups that organize all the modules that are mentioned in this chapter.

Python Services

The modules from this group provide access to services related to the interpreter and to Python's
environment.

The String Group

This group is responsible for many kinds of string services available. Its modules provide access to
several types of string manipulation operations.

Miscellaneous

This group handles many functions that are available for all Python versions, such as mathematical
operations and randomizing functions.

Generic Operational System

This group of services provides interfaces to operating system features that you can use in almost every
platform.

Optional Operational System

This set of modules implements interfaces to optional operational system features.

Debugger

The pdb module defines an interactive source code debugger for Python programs.

Profiler

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=90
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=90&now=5%2F31%2F2002+4%3A31%3A23+PM

The profiler module is a code execution profiler.

Internet Protocol and Support

These are the modules that implement internet protocols and support for related technology.

Internet Data Handling

This group covers modules that support encoding and decoding of data handling formats and that are
largely used in Internet applications.

Restricted Execution

These modules prevent access to critical operations.

Multimedia

This group of modules implements algorithms and interfaces that are mainly useful for multimedia
applications.

Cryptographic

These modules implement various algorithms of cryptographic nature.

OS Specific (UNIX, SGI IRIX, SUN OS, MS Windows, and Macintosh)

These groups of modules expose interfaces to features that are specific to the OS environment of each
one of them.

Undocumented Modules

This group contains the modules that currently don't have any official documentation.

New Modules in Python 2.0

These are the new modules that will be part of the next release of Python.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=90

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147037129067116025186242

Chapter 4. Exception Handling
Oh my God, he's fallen off the edge of the cartoon.

This chapter's aim is to teach you how to handle exception situations and how to manage error
messages. Certainly the next couple of pages will guide you through a fantastic "catch-all-errors" kind
of programming experience.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=92
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A29+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=92&now=5%2F31%2F2002+4%3A31%3A29+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=92

Web Development > Python Developer's Handbook > 4. Exception Handling > Exception
Handling

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147037129069031188131198

Exception Handling

Exceptions are mostly used for error handling and event notification. They work by breaking the
regular flow of a program and jumping to a special set of statements that handle the exception case.
Python has many standard exceptions, which are exceptions already built into the language. Python
also supports user-defined exceptions, which are exceptions created by users. The provided exceptions
are almost no different from user-defined exceptions—the only difference is that they are defined in
one of the files in the standard library (exceptions.py).

Any unexpected program behavior drives the interpreter to raise an exception. Many scenarios can help
an exception to be raised, such as dividing a number by zero or reading from a nonexistent file. Note
that the programmer can also manually raise exceptions with the raise statement.

The default behavior of Python, when it encounters unhandled exceptions, is to terminate the program
and to display a traceback message that describes the error condition. My goal in this chapter is to show
you how to handle those exceptions.

If you don't handle exceptions in your program, Python's interpreter returns a traceback message that
shows the error message, the exception type, the function that contains the error, and the line of code
that has caused the error. Hence, a complete history of what has caused the error is provided.

So that you can start learning how Python raises and handles exceptions, I will define the following
example:

>>> a = { "a":1,"b":2}
>>> def returnelement(element):
… print a[element]
…

Now, we will call this function:

>>> print returnelement("c")

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=93
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=93&now=5%2F31%2F2002+4%3A31%3A40+PM

Note that "c" is not part of the a dictionary. Therefore, Python raises an exception that displays the
following traceback message.

Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in returnelement
KeyError: c

The last line of the traceback message tells us what exception was raised and what element has caused
the exception to be triggered. If we run the previous code in the interpreter, the File clause is set to
"<stdin>" by default because the code lines come from the keyboard and not from a file. However, if
we run the code from an external file, the filename becomes part of the File clause. It is also worth
mentioning that the line numbers are relative to the statement where the error occurred when the code
was entered interactively. So, we get line 2 in the traceback because the exception occurred on the
second line of the function, which was treated as a single statement. The outermost part of the trace
says line 1 because the call to returnelement was treated as a one-line statement.

Next to the filename, we have a line number, which is the line in which the error has been triggered.
Next to the line number is the name of the function that caused the error.

Tip

By handling exceptions, you can save a lot of time while testing your code.

Exceptions can be handled by using either try/except or try/finally statements. The
difference between them is that an except clause is only executed when an exception is raised, and a
finally clause is always executed; it doesn't matter whether an exception is raised or not. Also, the
try/finally block doesn't catch the exception like try/except can.

Next is the standard structure for a try/except statement:

try:
 <statements>

except [<exception_name> [, <instance_variable>]]:
 <exception handling statements>
[else:
 <statements executed only when no exception is raised>]

The else block must be inserted after the last exception block, and it is only executed when the try
block doesn't raise any errors.

In order to handle multiple exceptions, you can use multiple except clauses for the same try block.

The next example raises an error message whenever it can't find a given element.

>>> name = ["Andre","Renata","Joao","Rebecca"]
>>> def getname(order):
… try:
… if order < 10:
… data = name[order]
… else:
… file = open("names.txt")
… data = file.readline()
… file.close()
… return data
… except IndexError:
… print "This name is not in the list."
… except IOError:
… print "The file names.txt does not exist."
…
>>> getname(0)
"Andre"
>>> getname(8)
"This name is not in the list."
>>> getname(20)
"The file names.txt does not exist."

Python syntax also enables you to use a single except clause that handles all exceptions. The general
syntax for the except clause for handling all exceptions is to not specify any exception types at all,
such as

try:
 <statements>
except:
 <exception handling statements>

Next, you have the syntax and an example for handling multiple exception types.

except (exception1, exception 2, exception 3)[, variable]:

>>> name = ["Andre","Renata","Joao","Rebecca"]
>>> def getname(order):
… try:
… if order < 10:
… data = name[order]
… else:
… file = open("names.txt")
… data = file.readline()
… file.close()
… return data
… except (IndexError, IOError):
… print "Data not available."
…
>>> getname(8)
"Data not available."
>>> getname(20)
"Data not available."

You can also use try/except statements to ignore exceptions. The next structure uses a pass
statement to ignore an exception whenever it gets raised. However, note that if an exception is raised,
all the remaining statements in the try block will not be executed.

try:
 <statements>
except <exception_name>:
 pass

In the next example, we use exceptions not to catch and handle an unexpected error, but to ignore
errors that we know might happen when the code is running. As you can see, an exception is raised
every time you try to convert a text string into a float number in line 6. However the pass statement in
line 8 simply ignores the problem.

 1: >>> import string
 2: >>> list = ["1","3","Monkey","Parrot","10"]
 3: >>> total = 0
 4: >>> for z in list:
 5: >>> try:
 6: >>> total = total + string.atof(z)
 7: >>> except:
 8: >>> pass
 9: >>> print total
10: 14

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

exceptions
 handling 2nd 3rd
 raising
handling
 exceptions 2nd 3rd
pass statement
raise statement
raising
 exceptions
statements
 pass
 raise
 try/except 2nd
 try/finally
syntax
 handling multiple exceptions
try/except statement 2nd
try/finally statement

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=93

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Standard Exceptions
(Getting Help from Other Modules)

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147037129069022086011090

Standard Exceptions (Getting Help from Other Modules)

Apart from the exception module, other Python modules offer you some advanced functionality to handle
exceptions. We will talk about the sys and the traceback modules.

You can use the sys.exc_info() thread-safe function to get information about the current exception being
handled. This function returns a tuple of values that is equivalent to the values provided by three other sys
module objects:

sys.exc_type—Returns the exception type

sys.exc_value—Returns the exception value

sys.exc_traceback—Returns a traceback object

Note that these objects only work when called from within an except clause.>>>
import sys
>>> try:
… 1/0
… except:
… print sys.exc_type, ":", sys.exc_value
exceptions.ZeroDivisionError : integer division or modulo

The last example can also be implemented as

>>> import sys
>>> try:
… 1/0
… except:
… info = sys.exc_info()
… exc_type = info[0]
… exc_value = info[1]
… exc_traceback = info[2]
… print exc_type, ":", exc_value
…
exceptions.ZeroDivisionError : integer division or modulo

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=94
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A49+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=94&now=5%2F31%2F2002+4%3A31%3A49+PM

A more compact way to assign the values to the variables is by using sequence unpacking, as is demonstrated by the
following:

exc_type, exc_value, exc_traceback = self.exc_info()

The Python module called traceback, which is part of the standard Python library, helps you to debug the call
stack after an exception has been raised.

 1: >>> import traceback
 2: >>> try:
 3: … 1/0
 4: … except:
 5: … print "The next lines show the traceback message"
 6: … print "---"
 7: … traceback.print_exc()
 8: … print "---"
 9: …
10: The next lines show the traceback message
11: ---
12: Traceback (innermost last):
13: File "<stdin>", line 2, in ?
14: ZeroDivisionError: integer division or modulo
15: ---

The previous program chooses the right time to display the traceback message by using the
traceback.print_exc() function (line 7).

You can also extract the traceback information by parsing the results of sys.exc_traceback.

>>> import sys, traceback
>>> try:
… result = 1/0
… except:
… trace = traceback.extract_tb(sys.exc_traceback)
… for filename, lineno,function,message in trace:
… print "File name: ", filename
… print "Error message: ", message
… print "Line: ", lineno
… print "Function: ", function
…

By using the objects sys.last_type, sys.last_value, and sys.last_traceback, you can get the
details about the last uncaught exception. When I say that, I mean the last exception that had a traceback message
displayed.

>>> import sys
>>> x = 0
>>> 1 / x
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo
>>> 1.0 / 10
0.1
>>> print sys.last_type
exceptions.ZeroDivisionError
>>> print sys.last_value
integer division or modulo

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

exceptions
 standard
 uncaught
functions
 traceback.print_exc()
modules
 sys 2nd 3rd
 tradeback 2nd
objects
 sys module
 values 2nd
 sys.last_traceback
 sys.last_type
 sys.last_value
standard exceptions
sys module 2nd 3rd
sys.exe_traceback value 2nd
sys.exe_type value
sys.exe_value value
sys.last_traceback object
sys.last_type object
sys.last_value object
traceback.print_exc() function

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=94

tradeback module 2nd
uncaught exceptions
values
 sys module objects 2nd
 sys.exe_traceback 2nd
 sys.exe_type
 sys.exe_value

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Raising
Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147037129068180064019224

Raising Exceptions

There are several ways to raise exceptions. You can either raise your own exceptions or Python standard
exceptions by using any of the four techniques listed as follows:

● raise class

● raise exception, argument

● raise exception, (argument1, argument2, …)

● raise exception (argument1, argument2, …)

Note that the second and third forms of raising exceptions use the old form of passing arguments with
the exception. I recommended using only the first and fourth forms.

Passing None, as the second argument, to the raise statement is equivalent to omitting it.

raise class, None is equivalent to raise class()

Check the following cases.

raise IndexError()
raise IndexError
raise IndexError("x is out of range")
raise IndexError, "x is out of range"

In the previous lines, the examples use a standard exception called IndexError. However, you can
raise any one of the supported built-in exceptions.

Look at another example that uses a different exception:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=95
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A31%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=95&now=5%2F31%2F2002+4%3A31%3A58+PM

op = raw_input("Enter an operator: ")
op1 = input("Enter first operand: ")
op2 = input("Enter second operand: ")
if op == "+":
 print op1 + op2
else:
 raise RuntimeError("I don't know this command")

In the next chapter, after learning how you can handle classes, you will be able to easily understand this
next example. For the present time, take a deep breath and just have some fun.

This example raises an exception that blocks your access to nonexistent members of the c class.

 1: >>> class c:
 2: … def __init__(self, name):
 3: … self.name = name
 4: … def __getattr__(self, attr):
 5: … if attr <> "name":
 6: … raise AttributeError
 7: …
 8: >>> a = c("Andre")
 9: >>> a.name
10: 'Andre'
11: >>> a.age

The following traceback message is generated after running the command located at line 11.

Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 6, in __getattr__
AttributeError

As you can see, line 5 checks the name of the attribute that is being passed to the method. That makes
the exception in line 6 to always be raised when the attribute name is not "name".

However, note that if you assign something to a.age, as demonstrated next, getting the value of

a.age will no longer cause the error. To handle that, you would need to write a code to deal with the
__setattr__ method, but that would be another example.

>>> a.age = 32
>>> print a.age
32

Raising an Exception to Leave the Interpreter

Raising the SystemExit exception is a generic way to leave the Python interpreter.

C:\Program Files\Python>python
Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> raise SystemExit
C:\Program Files\Python>

The next example demonstrates how you can trap the SystemExit exception.

>>> try:
… raise SystemExit
… except SystemExit:
… print "Sorry. You can not leave."
…
Sorry. You can not leave.

The sys.exit() function raises an exception SystemExit that, if not caught, causes the thread to
exit silently.

>>> import sys
>>> try:
… sys.exit()
… except SystemExit:
… print "I have already told you. You can not leave."

…
I have already told you. You can not leave.

Raising an Exception to Leave Nested Loops

Sometimes you are so deeply involved in your data structures that you only want to get out of all your
nested loops quickly. Normally, you would have to use break for each level of interaction. The next
example demonstrates how to handle this situation by using exceptions.

>>> ExitLoop = "ExitLoop"
>>> try:
… i=1
… while i < 10:
… for j in xrange(1,5):
… print i,j
… if (i==2) and (j==3):
… raise ExitLoop
… i = i + 1
… except ExitLoop:
… print "i=2 and j=3 is a special case."
…
1 1
1 2
1 3
1 4
2 1
2 2
2 3
i=2 and j=3 is a special case.

Raising String Exceptions

Older versions used to support only strings for both Python standard exceptions and user-defined
exceptions.

>>> NetworkError = "NetworkError"
>>> raise NetworkError, "Bad hostname"

Nowadays, Python supports both strings and exception classes. There are costs to using class exceptions
because they must be instantiated to be caught. Note that most people don't use exceptions to control the
flow of their program, so they don't occur much.

However, classes give you much more flexibility to generalize the type of error that you want to catch.

Tip

Try to define your own exceptions as classes instead of strings.

Instancing an Exception Class

Every time an exception is raised, an instance of the exception class is created. The next syntax
demonstrates how to catch a class instance in your program.

try:
 <statements>
except exception, instance:
 <statements>

The instance variable is an instance of the raised exception. Therefore, it inherits attributes from the
exception class.

Each instance has an attribute called args that returns the error string in a tuple format.

>>> try:
… a = [1,2]
… print a[4]
… except IndexError, b:
… print b.args
…
('list index out of range',)

Particularly, the EnvironmentError exception has a 2-tuple or 3-tuple structure that can be

translated as (error number, string error message, and an optional filename).

>>> try:
… file = open("Parrot")
… except EnvironmentError, b:
… print b.args
…
(2, 'No such file or directory')

When the instance belongs to a SyntaxError class exception, four special attributes are also
returned: filename, lineno, offset, and text.

>>> try:
… a = "x===10"
… exec a
… except SyntaxError, b:
… print b.args
…
('invalid syntax', (None, 1, 4, 'x===10'))

Note

Modules are parsed before being run, so syntax errors in a file can't be caught by try/except
blocks that surround the error. You can catch it from the bit of code that imported the module,
however.

Debugging Your Code

Exceptions are very good for helping to debug your code. You can use the assert command to raise a
debugging exception that transports a message to your exception handling code.

The syntax is assert <TestStatement> [,argument]

This command raises an AssertionError exception whenever <TestStatement> evaluates to
false.

For example

>>> def divide (a,b):
… assert b != 0, "Can't divide by zero"
… return a/b
>>>
>>> divide(10,0)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in divide
AssertionError: Can't divide by zero

The assert command is equivalent to

>>> if __debug__:c
>>> if not (<TestStatement>):
>>> raise AssertionError [, argument]

__debug__ is a built-in name and has its value set to true by default. To set __debug__ to
false, it is necessary to change the interpreter to run in optimized mode.

Tip

Calling the interpreter with the -O option activates the optimized mode.

c:\>python -O

Currently, Python's command-line option -X turns all standard exceptions into strings. Version 1.6 is
expected to have this option removed, and make all standard exceptions into classes. User code that
deals with string exceptions will still be supported, but not encouraged.

See Chapter 17, "Development Tools," for more details about other command-line options that you
can transport as configuration parameters to the interpreter.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

[nd]O option
[nd]X option
args attribute
assert command 2nd
attributes
 args
catching
 class instances
class instances
 catching
classes
 exception
 instancing 2nd
code
 debugging
 exceptions
commands
 assert 2nd
debugging
 code
 exceptions
EnvironmentError exception
exception classes
 instancing 2nd
exceptions
 EnvironmentError
 IndexError
 raising 2nd 3rd 4th 5th
 string
 raising
 SyntaxError
 SystemExit 2nd
functions
 raise class()
 sys.exit()
IndexError exception
instance variable

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=95

instances
 class
 catching
instancing
 exception classes 2nd
interpreters
 raising exceptions to leave
modes
 optimized
modules
 parsing
optimized mode
options
 [nd]O
 [nd]X
parsing
 modules
raise class() function
raise statement
raising
 exceptions 2nd 3rd 4th 5th
source code
 debugging
 exceptions
statements
 raise
 try/except
string exceptions
 raising
syntax
 commands
 assert command
SyntaxError exception
sys.exit() function
SystemExit exception 2nd
try/except statement
variables
 instance

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Catching Exceptions See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147038000012206233109254

Catching Exceptions

Look at an example that shows how to catch a specific exception message.

 1: >>> def zerodivision(x):
 2: … return 1/x
 3: …
 4: >>> def test(x):
 5: … try:
 6: … print zerodivision(x)
 7: … except ZeroDivisionError:
 8: … print "You can not divide this number by Zero"
 9: …
10: test(0)

In line 7, we are specifying the exact exception type that we want to catch.

You can also replace lines 7 and 8 from the previous example with the text from the next snippet. The difference is
that this new scenario also shows the error message provided by the interpreter.

except ZeroDivisionError, error_message:
 print "You can't divide this number by Zero - ", error_message

Besides catching Python standard exceptions, it is also possible to catch user-defined, non-Error exceptions.

>>> found = "Item found"
>>> def searcher(arg):
… if arg == 1:
… print "executing the routine."
… else:
… raise found
…
>>> try:
… searcher()
>>> except found:
… print "The routine has failed."

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=96
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=96&now=5%2F31%2F2002+4%3A32%3A06+PM

… else:
… print "The routine was successfully concluded"

The next example re-raises an exception because the win32pipe module is not present in the system.

>>> try:
… import win32pipe
… except:
… raise ImportError, "The module is not available"
Traceback (innermost last):
 File "<stdin>", line 4, in ?
ImportError: The module is not available

The next example actually shows how to raise the same exception (provided the exception is a class exception).
This type of implementation doesn't require you to know the name of the exception being raised.

>>> import sys
>>> try:
… import win32pipe
… except:
… raise sys.exc_value
Traceback (innermost last):
 File "<stdin>", line 4, in ?
ImportError: No module named win32pipe

The following code catches an IOError exception and raises a SystemExit exception by using the
sys.exit() function.

>>> import sys
>>> try:
… file = open("file.txt")
… except IOError:
… print "Error opening file for reading"
… sys.exit(0)

Catching Standard Errors

The errno module makes available the standard errno system symbols, which can be used to check the

meaning of an error.

>>> import errno
>>> try:
>>> file = open("test.py")
>>> except IOError, (errcode, errmsg):
>>> if errcode == errno.ENOENT:
>>> print "File does not exist!"
>>>

You can check the entire list of error symbols by typing,

>>> import errno
>>> dir(errno)
['E2BIG', 'EACCES', 'EADDRINUSE', 'EADDRNOTAVAIL', EAFNOSUPPORT', 'EAGAIN',
 'EALREADY', 'EBADF', 'EBUSY', 'ECHILD', 'ECONNABORTED', 'ECONNREFUSED',
 'ECONNRESET', 'EDEADLK', 'EDEADLOCK', 'EDESTADDRREQ', 'EDOM', 'EDQUOT',
 'EEXIST', 'EFAULT', 'EFBIG', 'EHOSTDOWN', 'EHOSTUNREACH', 'EILSEQ',
 'EINPROGRESS', 'EINTR', 'EINVAL', 'EIO', 'EISCONN', 'EISDIR', 'ELOOP',
 'EMFILE', 'EMLINK', 'EMSGSIZE', 'ENAMETOOLONG', 'ENETDOWN', 'ENETRESET',
 'ENETUNREACH', 'ENFILE', 'ENOBUFS', 'ENODEV', 'ENOENT', 'ENOEXEC', 'ENOLCK',
 'ENOMEM', 'ENOPROTOOPT', 'ENOSPC', 'ENOSYS', 'ENOTCONN', 'ENOTDIR',
'ENOTEMPTY', 'ENOTSOCK', 'ENOTTY', 'ENXIO', 'EOPNOTSUPP', 'EPERM',
 'EPFNOSUPPORT', 'EPIPE', 'EPROTONOSUPPORT', 'EPROTOTYPE', 'ERANGE',
 'EREMOTE', 'EROFS', 'ESHUTDOWN', 'ESOCKTNOSUPPORT', 'ESPIPE', 'ESRCH',
 'ESTALE', 'ETIMEDOUT', 'ETOOMANYREFS', 'EUSERS', 'EWOULDBLOCK', 'EXDEV',
 'WSABASEERR', 'WSAEACCES', 'WSAEADDRINUSE', 'WSAEADDRNOTAVAIL',
 'WSAEAFNOSUPPORT', 'WSAEALREADY', 'WSAEBADF', 'WSAECONNABORTED',
 'WSAECONNREFUSED', 'WSAECONNRESET', 'WSAEDESTADDRREQ', 'WSAEDISCON',
 'WSAEDQUOT', 'WSAEFAULT', 'WSAEHOSTDOWN', 'WSAEHOSTUNREACH',
 'WSAEINPROGRESS', 'WSAEINTR', 'WSAEINVAL', 'WSAEISCONN', 'WSAELOOP',
 'WSAEMFILE', 'WSAEMSGSIZE', 'WSAENAMETOOLONG', 'WSAENETDOWN',
 'WSAENETRESET', 'WSAENETUNREACH', 'WSAENOBUFS', 'WSAENOPROTOOPT',
 'WSAENOTCONN', 'WSAENOTEMPTY', 'WSAENOTSOCK', 'WSAEOPNOTSUPP',
 'WSAEPFNOSUPPORT', 'WSAEPROCLIM', 'WSAEPROTONOSUPPORT', 'WSAEPROTOTYPE',
 'WSAEREMOTE', 'WSAESHUTDOWN', 'WSAESOCKTNOSUPPORT', 'WSAESTALE',
 'WSAETIMEDOUT', 'WSAETOOMANYREFS', 'WSAEUSERS', 'WSAEWOULDBLOCK',
 'WSANOTINITIALISED', 'WSASYSNOTREADY', 'WSAVERNOTSUPPORTED', '__doc__',
 '__name__', 'errorcode']

Use the os.strerror() function to \ retrieve the system message associated to a specific error symbol.

>>> import os, errno
>>> os.strerror(errno.EPERM)
"Operation not permitted"

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

catching
 exceptions 2nd
displaying
 error symbols
errno module
error symbols
 viewing
exceptions
 catching 2nd
functions
 os.sterror()
messages
 system
 retrieving
modules
 errno
os.sterror() function
retrieving
 system messages
system messages
 retrieving
viewing
 error symbols

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=96

Web Development > Python Developer's Handbook > 4. Exception Handling > try/finally See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147038000013112057241206

try/finally

The try/finally statement is good for clean-up actions. The code in the finally block is always
executed, no matter whether the try block fails or not.

1: try:
2: f = open("c:\\autoexec.bat")
3: lines = f.readlines()
4: finally:
5: f.close() # it is always executed
6: print "It is done" # it is executed on success only

The previous piece of code opens a file and tries to read its lines. It is not necessary to check whether
the process raises an error in order to close the file because the close function in line 5 is always
executed, no matter what. Now, take a look at line 6. The print statement is only executed when the
finally block is bypassed because when an error is raised, the finally block is executed and the
program is terminated immediately afterwards if the exception is not handled, leaving the exception
unhandled.

Tip

finally and except clauses cannot be used together along with a unique try clause.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=97
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A12+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=97&now=5%2F31%2F2002+4%3A32%3A12+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=97

Index terms contained in this section

clauses
 except
 finally 2nd
 try
except clause
exceptions
 try/finally statement 2nd
finally clause 2nd
statements
 try/finally 2nd 3rd
try clause
try/finally statement 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Creating
User-defined Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147038000014099175001108

Creating User-defined Exceptions

Python allows you to create your own exceptions by subclassing any standard Python exception.

Note

Take a look at Chapter 5, "Object-Oriented Programming," for more details about working with
classes.

>>> import exceptions
>>> class ConfigError (exceptions.Exception):
… def __init__(self, arg=None):
… self.args = arg
…
>>> try:
… raise ConfigError("Bad hostname")
… except ConfigError, e:
… print e.args
…
Bad hostname

The import statement from the previous example isn't really necessary because the exceptions
module contents are automatically imported by the interpreter. Remember that you can't use the prefix
"exceptions" because the exceptions module is not available in the __main__ namespace
until you import it.

The next example uses the class created in the previous example as a base class to create a new class.

>>> class TimeoutError(ConfigError):

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=98
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=98&now=5%2F31%2F2002+4%3A32%3A21+PM

… def printargs(self):
… print self.args
…
>>> try:
… raise TimeoutError, "Timeout"
… except TimeoutError, e:

… e.printargs()
…
Timeout

As you could see, just by overriding the __init__ method, you are able to create your own exception
classes.

You can also change the output of a traceback message by overwriting the __str__ method.

>>> class ConfigError(Exception):
… def __init__(self, args=None):
… self.args = args

… def __str__(self):
… return "\ nError in the module configuration\ n" + }
… `self.args` + "\ n"…
>>> raise ConfigError, "bad hostname"
Traceback (innermost last):
 File "<stdin>", line 1, in ?
__main__.ConfigError
Error in the module configuration
bad hostname

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=98

Index terms contained in this section

creating
 user-defined exceptions
exceptions
 subclassing 2nd
 user-defined, creating
import statement
statements
 import
subclassing
 exceptions 2nd
user-defined exceptions
 creating

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > The
Standard Exception Hierarchy

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147038000015002063037178

The Standard Exception Hierarchy

Python comes filled with many built-in exceptions. All these exceptions are part of the exceptions
module, which is always loaded prior to any program execution.

The following structure identifies the standard exception hierarchy, and, immediately afterwards, it is
given the description of each exception type.

This structure, which resembles a tree, shows you that all exceptions are derived from a base class
named Exception. If we highlight, for example, the ImportError exception, we note that it is a
subclass of the StandardError class. In addition to that, the StandardError class is a subclass
of the Exception class. Table 4.1 shows the structure.

Table 4.1. The Exception Class Hierarchy

Exception
SystemExit
StandardError

KeyboardInterrupt

ImportError

EnvironmentError

IOError

OSError

EOFError

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=99
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=99&now=5%2F31%2F2002+4%3A32%3A30+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/99#1.html

RuntimeError

NotImplementedError

NameError

UnboundLocalError

AttributeError

SyntaxError

TypeError

AssertionError

LookupError

IndexError

KeyError

ArithmeticError

OverflowError

ZeroDivisionError

FloatingPointError

ValueError

SystemError

MemoryError

Exception— This is the root class. All exception classes are subclasses of this base
class. Every user exception class should be derived from this class too.

SystemExit— This is an exception because it isn't really an error message. Instead, it

can be used to exit a program. The important thing is that this exception doesn't return
any traceback message.

StandardError— It is the base class for all errors (except for SystemExit, of
course).

KeyboardInterrupt— It is raised when an interrupt key, such as CTRL+C, is
pressed.

ImportError— It is raised when Python cannot find a module to import.

EnvironmentError— This is the base class for errors that occur outside the Python
environment. The IOError and OSError classes subclass it.

IOError— It is raised by I/O operation errors.

OSError— This one is raised by operating system errors, usually generated by the os
module.

EOFError— Exception raised when an End-of-File (EOF) error occurs.

RuntimeError— This is a special type of exception raised by errors that aren't
covered by any of the other exceptions.

NotImplementedError— Methods or functions that aren't implemented should
raise this exception.

>>> def updateregistry():
>>> raise NotImplementedError

NameError— It is raised when the interpreter finds a name that is neither in the
local nor in the global namespace.

UnboundLocalError— This is a new exception that was created for version 1.6. It
subclasses the NameError exception, raising an error when a local variable is
undefined.

AttributeError— It is raised by attribute reference and attribute assignment kinds

of errors. Note that starting with version 1.6, this exception will have a more friendly
error message, which is expected to break some code that assumes the message to be
exactly equivalent to the attribute name.

SyntaxError— It is raised by syntax errors.

TypeError— This exception is raised when you try to apply a function operation to
an object of inappropriate type.

AssertionError— This kind of exception is raised when an assert statement
fails by evaluating to false.

LookupError— This is the base class for indexing and key errors. The
IndexError and KeyError classes subclass it.

IndexError— It is raised by "sequence out of range" errors.

KeyError— It is raised when a key is not found in a dictionary.

ArithmeticError— This is the base class for arithmetic errors. The classes
OverflowError, ZeroDivisionError, and FloatingPointError subclass
it.

OverflowError— This exception is raised when the result is so large that it makes
the operation overflow.

ZeroDivisionError— It is raised when an operation that tries to divide a number
by zero is performed.

FloatingPointError— This exception is raised by floating-point operation
errors. Note that on Linux systems, you are required to enable the SIGFPE handling
with the fpectl module to use this exception.

ValueError— This one is raised when you try to perform an action using the right
type but the wrong value.

SystemError— It is raised if a Python's interpreter internal error takes place.

MemoryError— This exception is raised by a recoverable out-of-memory error.

As exception classes are grouped within other exception classes (known as base classes), it becomes
much easier to catch several different types of errors/exceptions by using just one except clause.

Base classes are never raised, but can be used to catch up errors.

The next scenario shows how to cover multiple exceptions by declaring only the base class exception.

>>> dict = { 1:"First Element",2:"Second Element"}
>>> list = [13,14,15,16]

Based on these structures, we get the following error messages when we try any out-of-range type of
operations.

>>> dict[3]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: 3
>>> list[8]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range

The following example is able to catch both IndexError and KeyError exceptions.

>>> def getelement(element):
>>> try:
>>> if element < 10:
>>> print dict[element]
>>> else:
>>> print list[element]
>>> except LookupError:
>>> print "Sorry. This element does not exist"
>>> getelement(1)
First Element
>>> getelement(20)
Sorry. This element does not exist

Now, let's talk about release 2.0. Check the next code.

def showcounter():
 print "counter=", counter
 counter = counter + 1
showcounter()

The previous code raises an exception on the print statement in both 1.5.2 and 2.0 release. However,
in 1.5.2 a NameError exception is raised, while in 2.0 a new exception is raised. This new exception
is called UnboundLocalError, which is a subclass of the NameError exception.

Talking about new exceptions, the Python 2.0 release comes with two more brand-new exceptions.
They are called TabError and IndentationError, and they are subclasses of the
SyntaxError exception.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

classes
 NameError
code:Python 2.0
 standard exceptions
exceptions
 standard 2nd 3rd
 Pyton 2.0 code
hierarchies
 standard exceptions 2nd 3rd
NameError class
operations
 out-of-range
out-of-range operations
Python 2.0
 code
 standard exceptions
standard exceptions 2nd 3rd

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=99

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 4. Exception Handling > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147038000015005142037106

Summary

Python exceptions are mostly used for error handling and event notification. If you don't handle
exceptions in your program, Python's interpreter returns traceback messages.

Python comes filled with many built-in exceptions. All these exceptions are part of the exceptions
module, which is always loaded prior to any program execution.

Exceptions can be handled by using either try/except or try/finally statements. The
difference between them is that an except clause is only executed when an exception is raised, and a
finally clause is always executed, no matter whether an exception is raised or not. The
try/finally statement is good for clean-up actions, but remember that it doesn't actually catch the
exceptions.

Python supports both strings and exception classes. As exception classes are grouped within other
exception classes (known as base classes), it becomes much easier to catch several different types of
errors/exceptions by using just one except clause. Base classes are never raised, but can be used to
catch up errors.

You can either raise your own exceptions or use Python standard exceptions. Python allows you to
create your own exceptions by subclassing any standard Python exception.

Exceptions can be raised for several purposes (for example, exit the interpreter, leaving nested loops,
and so on). Every time an exception is raised, an instance of the exception class is created.

The assert command helps debug your code by raising a debugging exception.

Besides the exceptions module, the sys, the errno, and the traceback modules also offer
you some advanced functionality to handle exceptions.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=100
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=100&now=5%2F31%2F2002+4%3A32%3A37+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=100

Web Development > Python Developer's Handbook > 4. Exception Handling > Code Examples See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147038000008098125033022

Code Examples

This first example returns the square root of a given input value. If the input value is negative or if it is a
character, two traceback messages are displayed.

Listing 4.1 Square root (File squareroot.py)

 1: ###
 2: # Program: Square root
 3: # Author: Andre S Lessa
 4: ###
 5:
 6: ### import modules
 7:
 8: import sys, traceback, math
 9:
10: try:
11: n = float(raw_input("Please, enter a number: "))
12: print "The sqrt of %f is %f" % (n, math.sqrt(n))
13:
14: except (ValueError, TypeError, OverflowError):
15: print "---"
16: print "This is the standard traceback message:"
17: print ""
18: traceback.print_exc()
19:
20: print "---"
21: print "This is the customized traceback message:"
22: print ""
23: info = sys.exc_info()
24: exc_type = info[0]
25: exc_value = info[1]
26: exc_traceback = info[2]
27:
28: trace = traceback.extract_tb(sys.exc_traceback)
29: print "Exception Type: ", exc_type
30: print "Error Message: ", exc_value
31: print "File name: ", trace[0][0]
32: print "Error message: ", trace[0][1]
33: print "Line: ", trace[0][2]
34: print "Function: ", trace[0][3]

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=101
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=101&now=5%2F31%2F2002+4%3A32%3A43+PM

35: else:
36: print "Everything went just fine."

The except clause in line 14 covers ValueError, OverflowError, and TypeError exceptions.

The else clause in line 35 is only executed when no exception is raised.

The next lines show the two traceback messages that are displayed by this program: Python standard traceback
message and a customized version.

C:\python> s:\python\squareroot.py
Please, enter a number: i

This is the standard traceback message:

Traceback (innermost last):
 File "s:\python\squareroot.py", line 11, in ?
 n = float(raw_input("Please, enter a number: "))
ValueError: invalid literal for float(): i

This is the customized traceback message:

Exception Type: exceptions.ValueError
Error Message: invalid literal for float(): i
File name: s:\python\squareroot.py
Error message: 11
Line: ?
Function: n = float(raw_input("Please, enter a number: "))

This example uses multiple except clauses (lines 17 and 20). It also takes advantage of the assert
command to raise a debug exception (line 15).

Listing 4.2 Internet country codes (File countrycode.py)

 1: ###
 2: # Program: Country code
 3: # Author: Andre S Lessa
 4: ###
 5:
 6: ### import modules
 7:
 8: import sys, string
 9:
10: matrix = { "brazil":"br","france":"fr","argentina":"ar","usa":"us"}

11:
12: def getcode(country):
13: try:
14: data = matrix[string.lower(country)]
15: assert data != "br", "You cannot select this country " + }
 "for this action!"
16: return data
17: except KeyError:
18: print sys.exc_type, ":", "%s is not in the list." % }
 sys.exc_value
19: print
20: except AssertionError, b:
21: print b
22: print
23:
24: while 1:
25: country = raw_input("Enter the country name or press x to exit: ")
26: if country == "x":
27: break
28: code = getcode(country)
29: if code != None:
30: print "%s's country code is %s" % (country, code)
31: print

The following screen dump shows the execution of this program. Note that the program doesn't end after an
exception has been raised.

C:\>python s:\python\ countrycode.py
Enter the country name or press x to exit: Mexico
exceptions.KeyError : mexico is not in the list.

Enter the country name or press x to exit: USA
USA's country code is us

Enter the country name or press x to exit: Brazil
You cannot select this country for this action!

Enter the country name or press x to exit: Argentina
Argentina's country code is ar

Enter the country name or press x to exit: x

C:\Python>

See more exception handling cases in the final section of the next chapter.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=101

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147038000009138179151046

Chapter 5. Object-Oriented Programming
Is it a bird? No! Is it a plane? No! It's bicycle repair man!

This chapter introduces object-oriented methodology in a very complete and straightforward way. You
will be able to easily create and use objects and classes in your programs after going through the next
pages of material.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=103
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A32%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=103&now=5%2F31%2F2002+4%3A32%3A51+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=103

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming >
Object-Oriented Programming

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147039203228125244193003

Object-Oriented Programming

Python uses the traditional class architecture for object-oriented programming (OOP).

The object-oriented model adopted by Python

● Promotes modular design

● Promotes and facilitates Python software reusability

● Uses notions of real-world objects to develop programs

● Results in better quality software (but, of course, you can write bad code with any paradigm)

Object-oriented programming promotes data abstraction, information hiding, encapsulation, and
modular programming.

Saying that OOP promotes data abstraction means that we define the functions that operate on the data.
The ideal scenario provides encapsulated data that can be accessible only through the class methods.
However, in Python, we cannot totally block the programmer from accessing the information that is
stored inside a class.

Encapsulation, Inheritance, and Polymorphism are the most important thoughts provided by OOP.
Python doesn't strictly follow the standard concepts, but you will see how far it goes.

Encapsulation— Data can only be accessed or manipulated by means of a set of
interface functions. Encapsulation of data enables information hiding. Python provides
encapsulation through conventions rather than strictly enforcing it, which can be
preferable.

Inheritance— With inheritance, the derived class (also known as subclass, descendant,
or child class) inherits the data members and class methods of its base (parent) class.

Polymorphism— It enables a function to have several different kinds of interfaces.
Depending on the parameters used by the caller, the class knows which interface should
be used. Python achieves this through its dynamic typing and late binding.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=104
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=104&now=5%2F31%2F2002+4%3A33%3A02+PM

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

object-oriented programming (OOP)
programming
 object-oriented (OOP)

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=104

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming >
An Introduction to Python OOP

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147039203228119224069233

An Introduction to Python OOP

A class defines a category of objects in terms of the data it encapsulates and the operations on the data
that are allowed by the interface functions. Essentially, a class is a template from which objects can be
created.

Each object created from a class is an instance of a class. They all look alike and exhibit a similar
behavior.

A class stores object attributes (also known as data members) and the behavior of objects (mostly
known as methods). This behavior can be inherited from other (base) classes. The non-method
attributes of the class are usually referred to as class members or class attributes so that they are not
confused with instance attributes.

Each class has its own namespace in which all the assignments and function definitions occur.

Class Instances

A class instance is a Python object, and similar to every Python object, it has the following properties:
identity, object type, attributes, methods, and value.

I will use the following class definition as the basis for the next explanations. First, let's declare the c
class, and then we will create an instance of this class called obj.

>>> class c:
… def __init__(self, value=None):
… self.name = value
…
>>> obj = c()
>>> obj.name = "Andre"

The identity is the memory location allocated for the object. It can be identified by using the id()
function.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=105
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=105&now=5%2F31%2F2002+4%3A33%3A08+PM

>>> id(obj)
6623988

The object type is the object's internal representation. It defines the supported methods and operation
for each object. You can use the type() function in order to find out the type of a specific object.

>>> type(obj)
<type 'ínstance'>

>>> type(obj.name)
<type 'string'>

While we're talking about object types, let's take a quick break from the whole class issue and examine
the types for Python objects defined in extension modules, which do not necessarily act like classes.

Table 5.1 lists all Python built-in object types defined by the types module. Note that almost all the
types shown in this table are unrelated to Python classes.

Table 5.1. Built-In Object Types Defined by the types Module

Built-In Object Type Description
NoneType the None (null) object
IntType integer
LongType arbitrary precision integer
FloatType floating point
ComplexType complex number
StringType list of characters
ListType list
TupleType tuple
XrangeType returned by xrange()
DictType dictionary
BuiltinFunctionType built-in functions
BuiltinMethodType built-in methods

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/105#2.html

FuntionType user-defined function
ClassType class object/definition
InstanceType class object instance/class instance
MethodType bound class method
UnboundMethodType unbound class method
ModuleType module
FileType file
CodeType* raw byte-compiled code
FrameType* represent execution frame
TracebackType* stacks the traceback information of an exception
SliceType* generated by extended slices
EllipsisType* it is used in extended slices
*The checked types indicate internal Python objects that can be exposed to the user.

The attributes and methods of an object are bound properties that must be accessed by putting a dot (.)
after the object name.

>>> obj.name
"Andre"

At last, the value of an object is better visualized by an example.

>>> obj.name = "Andre"

The string "Andre" is the value assigned to the name attribute of the object obj.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=105

Index terms contained in this section

attributes
 classes
 instance
attributes property
base classes
BuiltinFunctionType object type
BuiltinMethodType object type
class attributes
class instances 2nd 3rd
class members
classes
 base
ClassType object type
CodeType object type
ComplexType object type
DictType object type
EllipsisType object type
FileType object type
FloatType object type
FrameType object type
FunctionType object type
identity property
instance attributes
instances
 classes 2nd 3rd
InstanceType object type
IntType object type
ListType object type 2nd
LongType object type
members
 class
methods property
MethodType object type
modules
 types
 built-in object types
ModuleType object type
NoneType object type
object type property 2nd
object types
 types module
object-oriented programming (OOP) 2nd 3rd
programming

 object-oriented (OOP) 2nd 3rd
properties
 attributes
 identity
 methods
 object type 2nd
 value
SliceType object type
StringType object type
TracebackType object type
TupleType object type
types module
 built-in object types
UnboundMethodType object type
value property
XrangeType object type

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > Python Classes and
Instances

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147039203229248005010102

Python Classes and Instances

In Python, a class is a user-defined data type, and as in most other languages, you define Python classes using the keyword
class.

class <class name>:
 <class statements>

The class statements section contains any valid Python statement that defines class constants or class methods. Note that the
contents of the variable namespace formed by executing the commands in the class statement make up the class dictionary.

Two ways to create classes are

● You can define it from scratch.

class <class name>:
 ["documentation text"]
 <class statements>

● You can create a new class that inherits properties of other classes. This is called subclassing, and you will learn more
about it later in this chapter.

class <class name> [(baseclass1, baseclass2, …)]:
 ["documentation text"]
 <statements>

A class definition starts at the keyword class and ends at the last line of the indented block of code that goes underneath.

Methods and class constants define a class namespace. Usually, a class has several methods, and they must all start with the
keyword def.

Tip

Methods are how to call functions in a class.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=106
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=106&now=5%2F31%2F2002+4%3A33%3A18+PM

All methods have the additional argument self as the first argument in the method header—The convention is to call it
self because it could be any other name. Python's self argument is similar to the this keyword in C++. Its function is to
transport a reference of the object in a way that when a method is called, it knows which object should be used.

>>> class a:
… def __init__(self):
… print self
…
>>> b = a()
>>> b
<__main__.a instance at 795420>

In order to reference an attribute within a class, you need to use either self.attribute or classname.attribute.
Note that the self.attribute syntax is to remove ambiguities between instance variables and function local variables.
Also, self.attribute and classname.attribute are different. The second sets class attributes, which will affect
all instances of the class.

>>> class c:
… def __init__(self, value=None):
… self.name = value
…

To reference an attribute while using a class instance, you have to use instancename.attribute.

>>> obj.name

A class can also contain class variable assignments. These variables are shared by all the class instances. Class variables are
useful when the assignment of default values to instances is required. Class variables do not have the self. prefix.

For example

>>> class Student:
… default_age = 20 # class variable
… def __init__ (self):
… self.age = Student.default_age # instance variable

Note that in the previous example, we had to use Student.default_age instead of using only default_age because
the global namespace for a method is the module in which it was defined—not the class namespace.

The next example creates an instance variable that has the same name of the class variable.

>>> class Student:
… default_age = 20 # class variable
… def __init__ (self, age):
… self.default_age = age # instance variable

Suppose that you have the following code stored in a file called c:\ python\ studentfile.py. This code defines
three different variables named default_age (at lines 2, 4, and 9).

1: class Student:
2: default_age = 20 # base class variable
3: def __init__(self, age):
4: self.default_age = age # base class instance variable
5:
6: class Newstudent(Student):
7: "New student class"
8: def __init__(self, age=20):
9: self.default_age = age # instance variable

The following code imports the previous module. Which variable is being used by the instance call at line 5?

1: >>> import sys
2: >>> sys.path = sys.path + ['c:\ \ python']
3: >>> import studentfile
4: >>> Joao = studentfile.Newstudent(15)
5: >>> Joao.default_age
6: 15

Tip

In order for Python to find your modules, the directory where you save them must be an entry of the sys.path list.

The answer is the instance variable of the newstudent class (line 9 from the first listing). In cases like this, the search order is
defined as

1. instance variables

2. class variables

3. base classes variables—note that the search order for base classes makes the deepest-level classes used first

>>> Renata = studentfile.newstudent()

>>> print Renata.default_age
20

The following variation is slightly different than the previous code. This example shows what you need to do to make the
class Newstudent call the superclass's __init__ method.

6: class Newstudent(Student):
7: "New student class"
8: def __init__(self):
9: Student.__init__(self, Student.default_age)

Note that we are calling the __init__ method of the Student class (the superclass). The class constant
Student.default_age is also used in this example. It is important to say that when calling unbound methods (methods
that are not tied to an instance) like this one, you must explicitly say that the first argument is self.

1: >>> Joao = studentfile.Newstudent()
2: >>> Joao.default_age
3: 20

Attributes of a Class

Next, I list the attributes that classes expose to programmers.

classname.__dict__— This attribute contains the class namespace dictionary.

>>> studentfile.newstudent.__dict__
{ '__init__': <function __init__ at 799e90>, '__doc__': 'New student
 class', '__module__': 'studentfile'}

classname.__doc__— This one returns the documentation string of the class.

>>> studentfile.newstudent.__doc__
'New student class'

classname.__name__— This attribute returns the class name.

>>> studentfile.newstudent.__name__
'newstudent'

classname.__module__— This one provides the module name that contains the class.

>>> studentfile.newstudent.__module__
'studentfile'

classname.__bases__— This is a tuple containing the names of the base classes.

>>> studentfile.newstudent.__bases__
(<class studentfile.student at 799e00>,)

The Python Class Browser

The pyclbr module offers you the possibility of browsing all the information about classes that is stored in a specific
module.

readmodule()

This function reads the module and returns a dictionary in the format { classname:classinfo}, where classinfo
is an instance object of the class.

basic syntax: variable = pyclbr.readmodule(module)

>>> import pyclbr
>>> moduletobrowse = pyclbr.readmodule("profile")
>>> for classname, classinfo in moduletobrowse.items():
… print "Class name: %s" % classname
…
Class name: HotProfile
Class name: OldProfile
Class name: Profile

or, if you use our student example

>>> import pyclbr
>>> moduletobrowse = pyclbr.readmodule("studentfile")
>>> for classname, classinfo in moduletobrowse.items():
… print "Class name: %s" % classname
…
Class name: student
Class name: newstudent

If you need to go deeper than that, you can look at the classinfo object.

Python Instances

Each instance defines its own namespace of data, and it inherits behavior from the class (and possible base classes) that have
originated it.

In order to create a new instance of a class, you just need to say

newinstance = classname()

Suppose that you have a Person class like this

class Person:
 def __init__(self, name):
 self.name = name
 self.family = []
 def addmember(self, member):
 self.family.append(member)

For example, if you want to create a new instance of the chef class, you must type:

>>> anthony = Person()

You can also pass arguments to the __init__ function of the class. These arguments can be used to set the initial values of
an object. Let's see how it works.

>>> anthony = Person("anthony")

To call the methods of a class, you have to use the dot notation:

>>> anthony.addmember("son")

You also need to use the dot notation to have access to variables (attributes) of each instance.

>>> anthony.family
["son"]

An interesting detail about Python object attributes is that they don't need to be declared inside the class before they get used
because they can be created dynamically.

>>> class DummyClass:
… pass
…
>>> colors = DummyClass()
>>> color.alarm = "red"

The next example dynamically creates multiple attributes for the colors instance.

>>> class record:
… def __init__(self, **args):
… self.__dict__.update(args)
…
>>> colors = record(alarm="red", normal="green")
>>> colors.normal
'green'

isinstance() and issubclass()

The built-in functions isinstance() and issubclass() are always available without the need for importing any
module because they are part of the __builtin__ module.

isinstance()

This function tests whether an object is an instance of a class. It returns 1 if the object is an instance. Otherwise, it returns 0.
Note that this function handles subclass relationships as well—for instance, isinstance(subclassinstance,
superclass) returns true.

basic syntax: isinstance(instance_object, class_object)

>>> class a:
… pass
…
>>> inst = a()
>>> isinstance(inst,a)
1

As you can see next, you can also use this function to identify the object's type. Note however, that this is behavior that works
for non–instance objects. Floats and ints act quite differently from Python class instances (for instance, there is no way to

subclass types.IntType).

>>> import types
>>> isinstance(3, types.IntType)
1
>>> isinstance(3, types.FloatType)
0

issubclass()

This function returns 1 if the class object classobj1 is a subclass (derived class) of the class object classobj2.

basic syntax: issubclass(classobj1, classobj2)

>>> class a:
… pass
…
>>> class b(a):
… pass
…
>>> issubclass(a,b)
1

Instance Attributes

obj.__dict__—This is the dictionary that contains all the attributes defined for the obj instance.

>>> colors.__dict__
{ 'alert': 'yellow', 'alarm': 'red', 'norma': 'green'}

obj.__class__—It shows the class that has created the obj instance.

>>> colors.__class__
<class __main__.record at 7883a0>

To get just the name of the class, use

>>> colors.__class__.__name__
'record'

obj.__methods__—This attribute is a list of all supported methods of the obj instance. Note that this
attribute is available for lists and dictionaries, which are not class instances.

>>> a=[1,2]
>>> a.__methods__
['append', 'count', 'extend', 'index', 'insert', 'pop', 'remove','reverse',
 'sort']

>>> b={ 1:''}
>>> b.__methods__
['clear', 'copy', 'get', 'has_key', 'items', 'keys', 'update', 'values']

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

accessing
 variables
 instances
arguments
 self
attributes
 classname.__bases
 classname.__dict
 classname.__doc
 classname.__module
 classname.__name
 obj.__class__
 obj.__dict__
 obj.__methods__
browsing
 classes
calling
 methods
 classes
class instances
 creating
class keyword 2nd
class statements
classes 2nd 3rd 4th 5th 6th
classname.__bases attribute
classname.__dict attribute
classname.__doc attribute
classname.__module attribute
classname.__name attribute
constants
 classes
creating
 class instances

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=106

def keyword
definitions
 classes
functions
 isinstance()
 issubclass()
instances 2nd 3rd 4th 5th 6th
 accessing variables
 classes
 creating
isinstance() function
issubclass() function
keywords
 class 2nd
 def
methods
 classes
 calling
modules
 pyclbr
 browsing classes
obj.__class__ attribute
obj.__dict__ attribute
obj.__methods__ attribute
object-oriented programming (OOP)
 Python classes and instances 2nd 3rd 4th 5th 6th
programming
 object-oriented (OOP)
 Python classes and instances 2nd 3rd 4th 5th 6th
pyclbr module
 browsing classes
self argument
statements
 class
syntax
 functions
 isinstance()
 issubclass()
 readmodule()
variables
 accessing
 instances
 classes 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming >
Methods Handling

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147039203230084227186105

Methods Handling

Whenever you have to write methods in your classes, always keep in mind that the namespace
searching order for attributes and methods is instance, class, and base classes; and don't forget that
self is always the first or only argument to be used in method headers.

Accessing Unbounded Methods

The next example shows what you should do in order to unbind a class method and use it outside the
class definition.

1: obj = classname()
2: umethod = classname.methodname()
3: umethod(obj, args)

Line 1: Creates a class instance object.

Line 2: Creates an object that references the class method. The method is still unattached to the object
at this stage.

Line 3: Executes the class method by transporting the instance reference (obj) and the list of
arguments (args).

Note that the first argument to an unbound method must be an instance of the correct class, or an
exception will be thrown.

Handling Global Class Variables

The next example defines a function that prints a class variable. Every time a new instance is created,
Globalcount increases.

>>> def printGlobalcount():

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=107
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=107&now=5%2F31%2F2002+4%3A33%3A25+PM

… print Globalcount.n
…
>>> class Couting:
… n = 0
… def __init__(self):
… Globalcount.n = Globalcount.n + 1
…
>>> inc = Couting()
>>> inc = Couting()
>>> printGlobalcount()
2

The next code overwrites the class variable x when subclassing the baseclass class.

>>> class baseclass:
… x = 5
… def multiply(self, a):
… return a * (self.__class__.x)
…
>>> class inherited(baseclass):
… x = 9
…
>>> x = inherited()
>>> x.multiply(2)
18

After a method is defined, it uses the variable values that are associated to the current namespace.

>>> class A:
… n = 1
… def printn(self):
… print self.n
…
>>> class B(A):
… n = 2
…
>>> class C(B):
… n = 3

…
>>> obj1 = C()
>>> obj1.printn()
3
>>> obj2 = B()
>>> obj2.printn()
2

Calling Methods from Other Methods

The next code exposes how simple it is to create a method to call another method.

>>> class c:
… def funcx(self):
… self.funcy()
… def funcy(self):
… print "Ni!"
…
>>> obj = c()
>>> obj.funcx()
Ni!

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

accessing
 unbounded method
handling
 methods
methods
 handling
 unbounded
 accessing
object-oriented programming (OOP)
 handling methods
programming

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=107

 object-oriented (OOP)
 handling methods
unbounded methods
 accessing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming >
Special Methods

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147039203231208138019083

Special Methods

Python exposes some special methods that are easily highlighted in the code because they start and end
with __ (double underscores). These methods override (inherit) built-in functions of the same name
that are provided by Python itself. The next list shows some of the most used special methods.

__init__(self)— This is the constructor method, which is called during creation of
instances. Usually, this is the place where the instance variables are initialized, among
other things.

__str__(self)— This method is called when str() is called on instances of this
type. It specifies how the object must be displayed when it is used as a string (for
example, when a print command is applied to an object).

__repr__(self)— This method is called when repr() is called on instances of this
type. This method provides a readable representation of the object. Usually, it is possible
to re-create an object by using this method. Although not guaranteed, and the standard
repr of an instance can't be executed to re-create the instance.

__getattr__(self, name)— Implement this method to trap or modify the access
to nonexisting members, for example, returning the attribute self.name.

__setattr__(self, name, value)— This method allows you to control setting
of attributes in the instance. It assigns the given value to the self.name instance's
attribute. Note that you can also use "self.__dict__['attr'] = …" to set
attributes from within __setattr__ (if you do it the normal way, you will get infinite
recursion).

__delattr__(self,name)— Implement this method to delete a specific attribute
of an object. It's like saying del self.name.

__del__(self)— The __del__ method covers the deletion of the object. Be careful
because sometimes it isn't immediately used when an object is destroyed (JPython
behavior). CPython's garbage collector destructs objects as soon as their reference count

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=108
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=108&now=5%2F31%2F2002+4%3A33%3A33+PM

reaches zero.

__cmp__(self,other)— Implement this method to compare and return a negative,
zero, or positive number.

__hash__(self)— Implement this method to generate a 32-bit hash index.

__nonzero__(self)— Implement this method to return 0 or 1 for truth-value
testing.

__call__(self)— Classes that implement the __call__ method are callable, and
their instances can be invoked like a function. This is the concept used by the built-in
functions. The syntax obj(*args) is equivalent to obj.__call__(*args).

__getitem__(self, index)— This method supports list indexing, returning
self[index].

>>> class Seq:
… def __getitem__(self, i):
… if i < 5:
… return i
… else:
… raise IndexError
…
>>> s = Seq()
>>> for i in s:
>>> print i,
0, 1, 2, 3, 4
>>> print s[2]
2
>>> print s[6]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 6, in __getitem__
IndexError

Next, you have some more special methods that deal with sequence and number-related methods.

__len__(self)—This method is called to return the length of the instance when

len() is called on an instance of this type.

__add__ (self, other)— Implement this method to return self + other.

__sub__ (self, other)— Implement this method to return self – other.

__mul__ (self, other)— Implement this method to return self * other.

__div__ (self, other)— Implement this method to return self / other.

__mod__ (self, other)— Implement this method to return self % other.

__neg__ (self)— Implement this method to return self negated.

__pos__ (self)— Implement this method to return self positive.

__abs__ (self)— This method is called to return the absolute value of self when
abs() is called on instances of this type.

__inv__ (self)— Implement this method to return the inverse of self.

__lshift__ (self, other)— Implement this method to return self shifted
left by other.

__rshift__ (self, other)— Implement this method to return self shifted
right by other.

__and__ (self, other)— Implement this method to return the bitwise and value
of self and other.

__or__ (self, other)— Implement this method to return the bitwise or value of
self and other.

__xor__ (self, other)— Implement this method to return the bitwise exclusive
or value of self and other.

__not__ (self)— Implement this method to return the outcome of not self.
(Note that there is no __not__() discipline for object instances; only the interpreter
core defines this operation.)

__setitem__ (a, b, c)— Implement this method to set the value of a at index b
to c.

__delitem__ (a, b)— Implement this method to remove the value of a at index
b.

__getslice__ (a, b, c)— Implement this method to return the slice of a from
index b to index c–1.

__setslice__ (a, b, c, v)— Implement this method to set the slice of a from
index b to index c–1 to the sequence v.

__delslice__ (a, b, c)— Implement this method to delete the slice of a from
index b to index c–1.

The next example has a class definition that overrides some methods. Note that every instance of this
class is callable.

>>> class Author:
…def __init__(self, argname):
… self.name = argname
…def __str__(self):
… return self.name
…def __repr__(self):
… return `self.name`
…def __call__(self, other):
… return self.name + other
…
>>> obj = Author("Andre")
>>> print obj
Andre
>>> obj
'Andre'
>>> obj(" Lessa")
'Andre Lessa'

Python 2.0 has added a special set of operators to the language, which are called augmented assignment
operators. These operators can be overriden by inserting an 'i'in front of the name, for example,

__isub__ implements in-place __sub__ (in other words, the -= operator).

Also in this new release, you have access to the built-in method __contains__, which gives you
access to customize the in operator.

Method Attributes

A method implements some special attributes that can be accessed from within the class that
implements it.

Suppose that you have a method called method:

method.__doc__— Returns the documentation string of method.

method.__name__— Returns the method name.

method.im_class— Returns the class that has defined method.

method.im_self— Returns the instance associated with method.

The next example retrieves and prints the __init__ method's documentation string.

>>> class c:
… def __init__(self):
… "This is a method "
… print self.__init__.__doc__
…
>>> obj = c()
This is a method

Overloading Operators

Python operators are implemented for a class by implementing the equivalent special methods. This
feature is called operator overloading.

Extensive support exists for operators overloading via the double-underscored special methods such as
__add__ and __init__.

Note that the following expressions are equivalent:

a * b = __mul__(a, b)

len(a) = __len__(a)

a + b = __add__(a,b)

The following example overrides the __add__ method and returns a tuple of results.

>>> class c:
… def __init__(self, x, y):
… self.x = x
… self.y = y
… def __add__(self, other):
… return (self.x + other.x, self.y + other.y)
…
>>> obj1 = c(5,2)
>>> obj2 = c(10,4)
>>> print obj1 + obj2
(15, 6)

Of course, in real life, you would be more likely to want to return an instance of the class c, rather
than just a tuple.

Some others built-in methods you can use or overwrite are as follows:

__sub__(self, other)

__div__(self, other)

__abs__(self)

__hex__(self)

__int__(self)

Another small example

>>> class C:
… def __init__(self, value):
… self.value = value
… def __sub__(self, other):
… return self.value - other.value
…
>>> vara = C(5)
>>> varb = C(3)
>>> varc = vara - varb
>>> print varc
2

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

__call__(self) method
__cmp__(self,other) method
__del__(self) method
__delattr__(self, name) method
__getattr__(self, name) method
__getitem__(self, index) method 2nd
__hash__(self) method
__init__(self) method
__len__(self) method
__nonzero__(self) method
__repr__(self) method
__setattr__(self, name, value) method
__str__(self) method
augmented assignment operators
 overriding
handling
 methods 2nd 3rd 4th 5th 6th
methods
 __call__(self)
 __cmp__(self,other)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=108

 __del__(self)
 __delattr__(self, name)
 __getattr__(self, name)
 __getitem__(self, index) 2nd
 __hash__(self)
 __init__(self)
 __len__(self)
 __nonzero__(self)
 __repr__(self)
 __setattr__(self, name, value)
 __str__(self)
 handling 2nd 3rd 4th 5th 6th
 special 2nd 3rd
object-oriented programming (OOP)
 handling methods 2nd 3rd 4th 5th 6th
operators
 augmented assignment
 overriding
 overloading
overloading
 operators
overriding
 augmented assignment operators
programming
 object-oriented (OOP)
 handling methods 2nd 3rd 4th 5th 6th
special method 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming >
Inheritance

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147039203224235124168114

Inheritance

A subclass is a class that inherits attribute names and methods from another class—the operation is called
subclassing.

A base class (superclass) is defined as a class that another class inherits attributes from. Base classes are
listed in parentheses in a subclass header. You have to separate base classes by putting commas between
them, within the parentheses.

When you create a subclass, you can add or overwrite any methods of its base classes.

Python classes can be created:

● From scratch

>>> class A:
… pass
…

● By using single inheritance

>>> class B(A):
… pass
…

● By using multiple inheritance

>>> class D(B,C):
… pass
…

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=109
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=109&now=5%2F31%2F2002+4%3A33%3A42+PM

For a conceptual standpoint, take a look at the following example

Where,

Base class = writing tools

subclass = pen

subclass = chalk

Both subclasses pen and chalk inherit characteristics of the base class writing
tools.

The subsequent class defines a complex class called Employee.

class Employee:
 def __init__(self,name,salary=0):
 self.name = name
 self.salary = salary
 self.family = []
 def raisesalary(self, percent):
 self.salary = self.salary + (self.salary * percent)
 def work (self):
 print self.name, "writes computer code."
 def hasfamily(self):
 return len(self.family) == 0 # returns a boolean result
 def addmember(self, x):
 self.family.append(x)
 def removemember(self, x):
 if len(self.family) > 0:
 x = self.family[-1]
 del self.family[-1]
 return x

The next class is a subclass of the Employee class.

class Person(Employee):
 "this is the class Person"

 def __init__ (self, name):
 Employee.__init__ (self, name, 50000)
 def work (self):
 print self.name, "works like any other employee."

Inherited methods of base classes aren't automatically called. It is necessary to call them explicitly. That's
why, in the previous example, the Person.__init__ method had to call the Employee.__init__
method.

It is always necessary to pass the self argument because base classes don't know what instance is being
used. The previous example passes three parameters to the base class's __init__ method (the self
reference, an argument, and a default value for the other argument).

Multiple inheritance is defined by entering multiple classes in the header of a new class. The order used
for informing the base classes really does matter. The precedence order, for a search in the base classes,
starts at the classes located at the left side.

class A:
 pass
class B(A):
 pass
class C:
 pass
class D(B,C):
 pass

The precedence order for class D inheritance is: B, A, C.

Tip

You always have to use fully qualified names when calling a superclass's method (if it has been
overridden) because if the class has multiple base classes containing the same symbol, the first one
found is used.

>>> class A:
…def __init__(self, name):

… self.name = name
…def printname(self):
… print 'The name %s belongs to class A!'% self.name
…
>>> class B(A):
…__baseclass=A
…def __init__(self, name):
… self.__ baseclass.__init__(self,name)
…def printname(self):
… print 'The name %s belongs to class B!'% self.name
… self.__ baseclass.printname(self)
…
>>> class C(B):
…__baseclass=B
…def __init__(self, name):
… self.__ baseclass.__init__(self,name)
…def printname(self):
… print 'The name %s belongs to class C!'% self.name
… self.__ baseclass.printname(self)
…
>>> A("monkey").printname()
The name monkey belongs to class A!
>>> B("parrot").printname()
The name parrot belongs to class B!
The name parrot belongs to class A!
>>> C("ant").printname()
The name ant belongs to class C!
The name ant belongs to class B!
The name ant belongs to class A!

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=109

Index terms contained in this section

base class
classes
 base
creating
 subclasses 2nd 3rd
inheritance 2nd
multiple inheritance
object-oriented programming (OOP)
 inheritance 2nd
programming
 object-oriented (OOP)
 inheritance 2nd
subclass
superclassing
superclassÓ
 Ò
writing
 subclasses 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming >
Polymorphism

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147039203225032135115025

Polymorphism

The concept of polymorphism doesn't really apply to Python objects because Python doesn't offer type
declaration. This concept (having a function or method work for multiple argument types) is something
you get for free with Python because of the dynamic typing. It does exist, but you don't usually
explicitly code for it. When handling an obj.method expression, the meaning of method depends
on the type, or class, of the object obj.

Python doesn't know what type of object implements an interface until the program is running. This
feature is called runtime binding.

Python variables are typed, just not explicitly so. They are typed implicitly as the program uses them.
For instance, if a program invokes abs(x), it doesn't make sense for x to be any object but a number.
Therefore, the variable x is informally typed.

The capability of dealing with objects at different levels of abstraction is one of the most important
features of object-oriented programming and a very important part of Python.

The next example shows how you can use just one function to implement poly morphism in Python.
C++ refers to this variety of polymorphism as method overloading.

>>> class polymorph:
…def handle_int(self, argint):
… print '%d is an int'% argint
…def handle_str(self, argStr):
… print '%s is a string'% argStr
…def handle(self, arg):
… if type(arg) == type(1):
… self.handle_int(arg)
… elif type(arg) == type(''):
… self.handle_str(arg)
… else:
… print "%s is not a string nor an integer" % arg
…
>>> p = polymorph()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=110
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=110&now=5%2F31%2F2002+4%3A33%3A50+PM

>>> p.handle(10)
10 is an integer

>>> p.handle("Albatross!!")
Albatross!! is a string

The following code implements a class that does not work because the program tries to apply the
general concept of polymorphism. This is a very common mistake that always catches programmers
who don't know this concept doesn't exist in Python.

Note that we try to define two different implementations of the same method (see lines 3 and 6). Right
below this sample of code, you can see a traceback message that is provided by the interpreter when we
try to run it.

 1:>>> ## Beginning of a Python class THAT DOES NOT WORK…
 2:…
 3:>>> class Polimorpherror:
 4:… def __init__(self):
 5:… print 'No arguments!'
 6:… def __init__(self, args):
 7:… print 'One argument!'
 8:… self.args = args
 9:…
10:>>> ## End of a python class THAT DOES NOT WORK
11:…
12:>>> x = Polimorpherror()
>>> x = Polimorpherror()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: not enough arguments; expected 2, got 1

You cannot do method overloading as shown in the previous example. The next example presents a
suggestion for the correct way to implement a solution for this problem.

>>> class Polimorpherror:
…def __init__(self, args=None):
… if args == None:
… print 'No arguments!'

… if args == 1:
… print 'One argument!'
… self.args = args
…

The behavior of overloaded functions and methods is better implemented in Python using default
arguments or by explicitly looking at the types of the arguments passed into the function.

If you have a class for which you need to specify both a default constructor and a constructor that takes
initial values of state as arguments, I suggest that you do so by transporting default arguments to the
__init__ method.

>>> class Animal:
…def __init__(self, name = "Parrot"):
… self.name = name
…def printAnimal(self):
… print self.name
…
>>> p = Animal()
>>> p.printAnimal()
Parrot
>>> p = Animal("Monkey")
>>> p.printAnimal()
Monkey

If you want to initialize a variable but you don't want to enforce an object type, you can use the None
type.

>>> class Animal:
…def __init__(self, name = None):
… self.name = name
…def printAnimal(self):
… print self.name
…

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

binding
 runtime
implementing
 polymorphism 2nd
initializing
 variables
method overloading 2nd
object-oriented programming (OOP)
 polymorphism
overloading
 method 2nd
polymorphism
programming
 object-oriented (OOP)
 polymorphism
runtime binding
typed variables
variables
 initializing
 typed

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=110

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming >
Encapsulation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147039203225041225189172

Encapsulation

All Python attributes (variables and methods) are public. Even though you cannot have private
attributes in Python, you can use the following two agreements:

● By convention, attributes preceded with a single underscore (for example, _n) are to be viewed
as internal variables, not to be used externally.

● Attributes starting with double underscores (for example, __n) aren't explicitly exported. They
are renamed to _Class__Variablename when byte compiled. Because the name of a class
is used as part of the variable name, the attribute __n (when inside a subclass) isn't the same
__n variable defined at a base class. This is probably the closest to private that you will get.
But, it isn't really a private implementation because when you know the name of the class, you
can access the attribute. C++ programmers probably know this as name mangling.

We cannot say that Python supports private attributes because it is still possible to have access to the
attributes if you know the class and attributes names. For example, in a class called C, the attribute
self.__attr becomes self._C__attr, when exported from the class. Hence, you can access
this attribute by referencing it as _C__attr.

>>> class Number:
…def __init__(self, value):
… self._n = value
… self.__n = value
…def __repr__(self):
… return '%s(%s)'% (self.__class__.__name__, self._n)
…def add(self, value):
… self._n = self._n + value
…def incr(self):
… self._n = self._n + 1
…

Based on the previous class, we will have some interactive examples next.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=111
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A33%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=111&now=5%2F31%2F2002+4%3A33%3A59+PM

>>> a = Number(20)
>>> a
Number(20)
>>> a.add(4)
>>> a
Number(24)
>>> a.incr()
>>> a
Number(25)
>>> a._n
25
>>> a._n = 30
>>> a
Number(30)
>>> a._Number__n
20

The important thing to remember is that nothing in Python is private (unless it is hidden within a C
extension type).

To demonstrate that you can use default arguments to help storing the environment variables in a
variable from the class namespace, the next example initializes the value of the variable n by using a
default argument. The value of n is assigned at the time of defining the function and is stored at the
class namespace.

>>> v = 10
>>> class C:
…def storen(self, n=v):
… return n
…
>>> objA = C()
>>> objA.storen()
10
>>> v = 20
>>> objB = C()
>>> objB.storen()
10
>>> n = 30
>>> objC = C()

>>> objC.storen()
10

Note that the value of n remains constant for all instances of the class C.

The following example shows that it is possible to manipulate the internal attributes of an object by
directly accessing the members of a class.

>>> class fun:
…def __init__(self):
… self.total = None
…
>>> a = fun()
>>> b = fun()
>>> a.total = 2
>>> b.total = 3
>>> print a, b
2 3

In this next example, we hide the a() method definition by preceding it with two underscores. Note
that if you later need to access this method (and you don't want to rename it), you must create a
reference to the method, as shown in the following example.

>>> class C:
…def __a(self):
… print "ni!"
…b = __a
…
>>> a = C()
>>> a.b()
ni!

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=111

Index terms contained in this section

accessing
 private attributes 2nd
attributes
 objects
 changing
 private
 accessing 2nd
changing
 object attributes
class namespaces 2nd
editing
 object attributes
encapsulation
mangling
 name
manipulating
 object attributes
modifying
 object attributes
name mangling
namespaces
 class 2nd
object-oriented programming (OOP)
 encapsulation
objects
 changing attributes
private attributes
 accessing 2nd
programming
 object-oriented (OOP)
 encapsulation

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming >
Metaclasses

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147032037055053230108169

Metaclasses

A metaclass is just a class that is used as a template to create class-like entities.

Normally, you create instances based on classes. The goal here is to create classes (metainstances)
based on other classes (metaclasses). The resulting metainstances are used as base classes for your own
classes.

The whole idea is to offer you the possibility of operating Python's internal class-handling engine.
Everything that usually happens behind the scenes while manipulating your classes and objects now
can be accessed and changed. The meta instance makes it easier for you to handle the task of modifying
the attribute lookup behavior of objects.

Prior to Python, version 1.5, it was necessary to use C extensions in order to define metaclasses.

The subsequent code defines a simple metaclass and its supporting classes. Note that this structure
doesn't cover the whole model.

 1: >>> import types
 2: >>> class METACLASS:
 3: … def __init__(self, name, bases, namespace):
 4: … self.__name__ = name
 5: … self.__bases__ = bases
 6: … self.__namespace__ = namespace
 7: … def __call__(self):
 8: … return METAINSTANCE(self)
 9: …
10: >>> class METAINSTANCE:
11: …def __init__(self, metaclass):
12: … self.__metaclass__ = metaclass
13: …def __getattr__(self, name):
14: … try:
15: … value = self.__metaclass__.__namespace__[name]
16: … except KeyError:
17: … raise AttributeError, name
18: … if type(value) is not types.FunctionType:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=112
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=112&now=5%2F31%2F2002+4%3A34%3A09+PM

19: … return value
20: … return METHODWRAPPER(value, self)
21: …
22: >>> class METHODWRAPPER:
23: …def __init__(self, function, metainstance):
24: … self.function = function
25: … self.instance = metainstance
26: … self.__name__ = self.function.__name__
27: …def __call__(self, *args):
28: … return apply(self.function, (self.instance,) + args)
29: …

Line 2 : Defines the metaclass METACLASS.

Lines 3-6 : Creates a new metaclass. The __init__ method expects three arguments: The metainstance
name, a tuple of base classes, and a dictionary of the metainstance namespace.

Lines 7-8 : Invokes METAINSTANCE.__init__ when METACLASS is called, returning a
metainstance.

Line 10 : Defines the metainstance METAINSTANCE.

Line 13 : Handles the access to attributes of the user instance by checking whether it is part of the user
class namespace (lines 14-17). If the attribute is a value, it returns the value. Otherwise, if the attribute
is a function, it returns an instance of the METHODWRAPPER class, which is actually the result of the
function call.

Line 22 : Defines the METHODWRAPPER class, which handles all the accesses to the method attributes
of the user class.

Now that we are ready to call metaclasses, you can use metainstances as base classes of your own
classes, trapping the access to your class objects. The next line of code creates an instance of a
metainstance.

>>> BASECLASS = METACLASS('BASECLASS', (), { })

Let me explain to you what is really happening here:

We are creating a class called BASECLASS whose behavior is inherited from the METACLASS
constructor class. The METACLASS.__init__ method is invoked at this stage.

From now on, every class that you create—which uses BASECLASS as the base class—will inherit the
whole behavior that you have specified in the METACLASS definition.

The following code exemplifies a user class that has our BASECLASS as the base class.

>>> class CEO(BASECLASS):
… def push(self, name):
… self.name = [name]
… def pop(self):
… if len(self.name) > 0:
… item = self.name[-1]
… del self.name[-1]
… print item
…

Now it's time to illustrate the use of this whole concept.

>>> ITCEO = CEO()
>>> ITCEO.push("Andre")
>>> ITCEO.pop()
['Andre']
>>> ITCEO.name
[]

Note that ITCEO = CEO() invokes METACLASS.__call__, which creates a METAINSTANCE
instance, whereas all the other calls invoke METAINSTANCE.__getattr__.

More details about metaclasses can be found at the following addresses:

http://www.python.org/doc/essays/metaclasses/

and Mess—The Meta-Extension System Set (old stuff) at
http://starship.python.net/crew/da/mess/doc/Tutorial.

http://www.python.org/doc/essays/metaclasses/
http://starship.python.net/crew/da/mess/doc/Tutorial

Mess is a set of extensions that allows the creation of new types, among other things. It's not certain
whether it will ever be integrated into Python, but its documentation can provide a lot of help in
understanding metaclass concepts.

Maybe you will like to take a look at the ExtensionClass extension by Digital Creations that uses
metaclasses to allow creation of class-like objects in C (and is a lot easier to use than Mess). This
extension illustrates how the Python class mechanism can be extended, and provides a lightweight
mechanism developed for making Python extension types more class-like. Classes can be developed in
an extension language, such as C or C++, and treated like other Python classes.

http://www.digicool.com/releases/ExtensionClass/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

creating
 instances
 metainstances
Digital Creations
 ExtensionClass extension
ExtensionClass extension
extensions
 ExtensionClass
 Mess
instances
 metainstances
 creating
Mess
metaclasses 2nd
metainstances
 creating instances of
object-oriented programming (OOP)
 metaclasses 2nd
programming
 object-oriented (OOP)
 metaclasses 2nd

© 2002, O'Reilly & Associates, Inc.

http://www.digicool.com/releases/ExtensionClass/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=112

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming >
Summary

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147032037054067155175126

Summary

Python is a language that implements object-oriented programming (OOP) by supporting classes and
class instances.

A class is a template from which objects can be created. It has its own namespace and stores object
attributes and methods, which can be inherited from other base classes—a process called subclassing.

A class can also contain class variable assignments. These variables are shared by all the class
instances, and they are part of the class namespace. All class attributes (variables and methods) are
public.

In order to identify the right variable that is used when you get multiple variables with the same name
within your code, the following search order is followed: instance variables, class variables, and base
class variables.

Python has a module called pyclbr (Python Class Browser) that offers you the possibility of
browsing all the information about classes that is stored in some other specific module. Note that most
of this information can also be deduced through introspection. pyclbr gives you another benefit in
that you don't need to import the module.

Each object created from a class is an instance of a class, which has some specific properties: identity,
object type, attributes, methods, and value.

Classes and instances have built-in attributes that provide access to their internal definitions
(namespace, name, and so on).

The built-in functions isinstance() and issubclass() are provided to help determine the
inheritance properties of instance and class objects.

Each instance defines its own namespace of data, and it inherits behavior from the class (and possible
base classes) that have originated it.

Python object attributes don't need to be declared inside the class before they get used because they can
be created dynamically.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=113
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=113&now=5%2F31%2F2002+4%3A34%3A17+PM

Class methods can be unbound and used outside a class definition. They also carry some special
attributes that can be called from within the class that implements them. These attributes enable the
access to the method's name, the method's documentation string, and so on.

All method definitions must carry the argument self, whose function is to transport a reference of
the object in a way so that when a method is called, it knows which object should be affected.

Python exposes some special methods, such as __init__(), __str__(), and so on. These
methods inherit built-in functions of the same name that are provided by Python itself.

Python operators can be re-created by remapping their built-in functions and methods. This feature is
called operator overloading. Extensive support exists for operators overloading via the double-
underscored special methods such as __add__() and __div__().

Python classes can be created from scratch by using single inheritance and multiple inheritance.

A subclass is a class that inherits attribute names from another class, whereas a base class is defined as
a class that another class inherits attributes from. When you create a subclass, you can add or overwrite
any method from its base classes. However, inherited methods of base classes aren't automatically
called. It is necessary to call them explicitly.

The order used to inform the base classes in a class header is really important. The precedence order for
attribute searches in the base classes starts at the class located at the left side.

Python doesn't offer type declaration because it doesn't know what type of object implements an
interface until the program is running. This feature is called runtime binding.

A single underscore preceding the attribute name is used to point out internal attributes that shouldn't
be used externally. Attributes starting with double underscores aren't explicitly exported.

Python also offers you the possibility of operating its internal class handling engine by using
metaclasses and metainstances. A metaclass is just a class used as a template to create class-like
entities, and the use of metainstance makes it easier for you to handle the task of modifying the
attribute lookup behavior of objects.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=113

Web Development > Python Developer's Handbook > 5. Object-Oriented Programming > Code
Examples

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147032037053063250095198

Code Examples

This application subclasses an exception class and executes the commands stored in a file. The filename is asked
by the application.

Listing 5.1 Configuration File (File configfile.py)

 1: ###
 2: # Program: Configuration File
 3: # Author: Andre S Lessa
 4: ###
 5:
 6: ### import modules
 7:
 8: import exceptions, sys
 9:
10: configfile = raw_input("Configuration File: ")
11:
12: class ConfigError (exceptions.Exception):
13: def __init__(self, arg=None):
14: self.args = arg
15:
16: try:
17: try:
18: file = open(configfile)
19: lines = file.readlines()
20: finally:
21: file.close()
22: except:
23: print "Error. Invalid file name."
24: sys.exit()
25:
26: lines[0] = lines[0][:-1]
27:
28: if lines[0] != "CFG2000":
29: raise ConfigError, "Invalid header."
30:
31: lines = lines[1:]
32:
33: for line in lines:
34: try:
35: exec line

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=114
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=114&now=5%2F31%2F2002+4%3A34%3A25+PM

36: except LookupError, b:
37: if b.args[0] == "list index out of range":
38: print "Error. Invalid index entry"
39: else:
40: print "Error. Generic LookupError entry"
41: except SystemExit:
42: print "Error. sys.exit() cannot be used."

Lines 12-14: The class ConfigError is created. It inherits all the attributes from the
exceptions.Exception class.

Line 29: Raises our new exception class.

In order to test this program, we have to create a file called config.txt that contains the following lines:

CFG2000
print
print "Configuration File"
print "------------------"
server = "SRV001"
port = 80
print "Server: ", server
print "Port: ", port

The next interaction shows how to call the program. It also shows the results provided by the program when no
exception is raised.

C:\ Python>python configfile.py
Configuration File: config.txt

Configuration File

Server: SRV001
Port: 80

C:\ Program Files\ Python>

This simple program creates a class structure that stores and prints a list of groceries.

Listing 5.2 Groceries List (File groceries.py)

 1: ###
 2: # Program: Groceries List

 3: # Author: Andre S Lessa
 4: ###
 5:
 6: ### import modules
 7:
 8:
 9: class grocery:
10: "Items that you need to buy at the grocery store."
11: def __init__(self, name, quantity=1):
12: self.name = name
13: self.quantity = quantity
14:
15: items = { }
16: print "Type ENTER when you are done."
17: while 1:
18: name = raw_input("Grocery name: ")
19: if name == "":
20: break
21: quantity = raw_input("%s quantity: " % (name))
22: if quantity == "":
23: items[name] = grocery(name)
24: else:
25: items[name] = grocery(name,quantity)
26:
27: print "------------------------\ nList of groceries to buy"
28: print "------------------------"
29:
30: for item in items.keys():
31: print "Grocery : ", items[item].name,
32: print "\ tQuantity: ", items[item].quantity
33:
34: print "---------"

Line 9: Declares the grocery class.

Line 10: The class's documentation text.

Line 11: A default value is defined for the quantity argument.

Lines 22-25: Uses a different interface to initialize the object, depending on the information provided.

Lines 31-32: Provides access to the object attributes.

The next interaction shows how the program works.

C:\ Python>python groceries.py
Type ENTER when you are done.

Grocery name: bananas
bananas quantity: 12
Grocery name: apples
apples quantity: 6
Grocery name: pears
pears quantity: 8
Grocery name: pineapple
pineapple quantity:
Grocery name:

List of groceries to buy

Grocery : pineapple Quantity: 1
Grocery : pears Quantity: 8
Grocery : apples Quantity: 6
Grocery : bananas Quantity: 12

C:\ Python>

This file introduces two classes and one function that extensively manipulate class methods and attributes.

Listing 5.3 Company employees (File company.py)

 1: ###
 2: # Program: Company employees
 3: # Author: Andre S Lessa
 4: ###
 5:
 6: ### import modules
 7:
 8: import types
 9:
10: class Employee:
11: "Generic class for all company employees"
12:
13: __employees = 0
14:
15: def __init__(self,name,salary=500.00):
16: self.name = name
17: self.salary = salary
18: self.family = []
19: Employee.__employees = Employee.__employees + 1
20:
21: def __str__(self):
22: return "employee: %s" % self.name
23:

24: def raisesalary(self, percent):
25: self.salary = self.salary + (self.salary * (1.0/percent))
26:
27: def job(self):
28: print self.name, "writes Python code."
29:
30: def hasfamily(self):
31: return len(self.family) > 0
32:
33: def addmember(self, name):
34: self.family.append(name)
35:
36: def removemember(self, arg):
37: if len(self.family) > 0:
38: if type(arg) == type(1):
39: self.removemember_int(arg)
40: elif isinstance(arg, types.StringType):
41: self.removemember_str(arg)
42:
43: def removemember_int(self, index):
44: member = self.family[index]
45: del self.family[index]
46: return member
47:
48: def removemember_str(self, name):
49: for member in self.family:
50: if member == name:
51: del self.family[self.family.index(member)]
52: return member
53:
54: def __getitem__(self, index):
55: member = self.family[index]
56: return member
57:
58: class Leader(Employee):
59: "Company's Leader of the employees"
60: def __init__ (self, name):
61: Employee.__init__ (self, name, 1500.00)
62: def job(self):
63: print self.name, "supervises who writes Python code."
64:
65: def totalemployee():
66: return Employee._employee_employees

Line 10: Defines the Employee class.

Line 13: Class variable __employees.

Line 19: Increments the number of employees.

Line 31: Returns a logical value (0 or 1).

Lines 36-41: Implements polymorphism by enabling the user to enter both string and integer values.

Lines 43-52: Helper methods for the polymorphism implementation.

Line 54: Enables the slicing of employees instances.

Line 58: Defines a subclass Leader that inherits attributes from the Employee class.

Lines 60-63: The __init__() and the job() methods are overwritten.

Line 65: Provides a function that returns the total number of employees who are currently part of the class.

The following interaction shows how the classes must be used.

>>> import company
>>> andre = company.employee("Andre") # Creates an employee instance
>>> print andre
employee: Andre
>>> print andre.salary
500
>>> andre.raisesalary(10) # Raises his salary in 10 percent
>>> andre.salary
550.0
>>> andre.job() # Shows his job description
Andre writes Python code.
>>> andre.hasfamily()
0
>>> andre.addmember("Renata") # Add a member to his family
>>> andre.addmember("Joao Pedro") # Add a member to his family
>>> andre.addmember("Rebecca") # Add a member to his family
>>> andre.hasfamily() # Returns 1 or 0
1
>>> andre.family
['Renata', 'Joao Pedro', 'Rebecca']
>>> andre.removemember("Joao Pedro") # Remove string member from list
>>> andre.family
['Renata', 'Rebecca']
>>> andre.removemember("Renata
>>> andre.family
['Rebecca']
>>> andre.removemember(0) # Remove index member from list
>>> andre.family
[]

>>> andre.addmember("Joao Pedro")
>>> andre.addmember("Renata")
>>> andre.addmember("Rebecca")
>>> andre[0]
'Joao Pedro'
>>> andre[1
'Renata'
>>> andre[2]
'Rebecca'
>>> company.totalemployee()# Shows the total number of employees
1
>>> renata = company.employee("Renata")
>>> company.totalemployee()
2
>>> Joao = company.Leader("Joao Pedro") # Creates a leader instance
>>> Joao.salary
1500.0
>>> Joao.job()
Joao Pedro makes food
>>> company.totalemployee()
3
>>>

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

code
 company employees
company employees
 source code
employees
 source code
lists
 company employees
 source code
source code
 company employees

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=114

Web Development > Python Developer's Handbook > II: Advanced Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147032037052223186065006

Part II: Advanced Programming
Part II Advanced Programming

Chapter 6 Extending and Embedding Python

Chapter 7 Objects Interfacing and Distribution

Chapter 8 Working with Databases

Chapter 9 Other Advanced Topics

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=116
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=116&now=5%2F31%2F2002+4%3A34%3A33+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=116

Web Development > Python Developer's Handbook > 6. Extending and Embedding
Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147032037051110038255132

Chapter 6. Extending and Embedding Python
What is your name? … What is your quest? … What is your favorite color?

The information provided in this chapter is a big step for those who want to be highly specialized in
Python programming. It demonstrates how you can create Python extension modules in C and C++,
and how you can embed Python objects in other non-Python applications.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

creating
 Python extension modules
embedding
 Python objects

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=118
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=118&now=5%2F31%2F2002+4%3A34%3A42+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=118

Web Development > Python Developer's Handbook > 6. Extending and Embedding
Python > Extending and Embedding Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147032037050242144229076

Extending and Embedding Python

Python has the capability to glue applications together. No doubt this is one of Python's most important
and well-known features. The reason for that is mostly because Python provides a two-way
communication channel to C by supporting both embedding and extending functionality. Whenever
you use Python code to call C code, you are extending Python. On the other hand, if you use C code to
call Python code, you are embedding Python. Even though these features can bring great results to your
application, most programmers never need to use these Python capabilities. Well, most programmers
will have to use the results of someone else extending Python.

We already know that Python can be used to write simple code in a shorter time. However, we can also
use C/C++ code to provide efficient and fast data processing, such as create built-in modules containing
functions, variables, exceptions; define new built-in object types in C; and call C library functions and
system calls.

Python has a good relationship with C because Python's interpreter is written in C, and since the
beginning, the interpreter has been ready to work with extension modules. Furthermore, the fact that C
is supported on almost all platforms makes Python a good choice between cross-platform languages.
By writing extension modules in Python, you can generate tight C/C++ interfaces that can be used both
in production environments and in efficient prototype testing wrappers.

Currently, many Python-contributed modules (implemented as C extensions) provide interfaces to
many different system components. Those extension modules allow Python to talk to already existing
subroutine libraries, to native application programmer interfaces, and to special-purpose devices. They
are imported and handled the same as any other Python module written in Python.

The extension modules are used mostly to add new functionality to Python when there is no other way
to interface Python with a particular system or hardware. Sometimes, when Python code is inefficient,
extension modules are also used to boost performance.

If you need to call Python routines from inside your application, you can use the embedding
functionality to have them called by your application.

In order to write Python extensions, you must have the source code for the Python interpreter and
access to a C or C++ compiler. If you are running Windows, your compiler choice should be Microsoft
Visual C++ version 5 or later. Note that most Linux distributions have a package that contains all the

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=119
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=119&now=5%2F31%2F2002+4%3A34%3A51+PM

necessary files needed for compiling extensions, so you don't need a full source distribution in this
case. On Red Hat like systems, this package is called python-devel.

The Python official documentation and the links that are listed throughout this chapter are a good
source of information about this topic.

Embedding and Extending the Python Interpreter:

http://www.python.org/doc/current/ext/ext.html

Some people using Win32 claim to have successfully used the Free Borland Compiler to compile
Python extension modules.

Free Borland Compiler:

http://www.borland.com/bcppbuilder/freecompiler/

Some people also successfully used GNU gcc with the mingw32 runtime. There is some info at
http://starship.python.net/crew/kernr/mingw32/Notes.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 non-Python
 embedding Python objects in
C programming language
 extending and embedding Python
C++ programming language
 extending and embedding Python
creating
 Python extension modules
embedding
 Python objects
extension modules
 creating
modules
 extension
 creating
objects

http://www.python.org/doc/current/ext/ext.html
http://www.borland.com/bcppbuilder/freecompiler/
http://starship.python.net/crew/kernr/mingw32/Notes.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=119

 embedding in non-Python applications
programming languages
 C
 extending and embedding Python
 C++
 extending and embedding Python
programs
 non-Python
 embedding Python objects in
software
 non-Python
 embedding Python objects in

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding
Python > The Python/C API

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147032037050251011120109

The Python/C API

Python provides an intuitive and clean C Application Programmers Interface (API) that exposes the
interface to the Python runtime system. This API provides a great number of functions to manipulate
Python objects and built-in types from C and C++. Most of the functions work in much the same way
as they would when called from the interpreter.

To include this API in your C/C++ program, you just need to add the header "<Python.h>" to your
source code.

Internally, this header file includes both Python and C header files, including: <stdio.h>,
<string.h>, <errno.h>, and <stdlib.h>. Therefore, you don't need to include these again
once you include "<Python.h>".

Python/C API Reference Manual (This link takes you to the official and latest
documentation about the Python/C API.):

http://www.python.org/doc/current/api/api.html

Check Appendix A, "Python/C API" of this book for more details and for a complete list of the
interface functions provided by the Python/C API.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=120
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A34%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=120&now=5%2F31%2F2002+4%3A34%3A58+PM
http://www.python.org/doc/current/api/api.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=120

Index terms contained in this section

<
 Python.h header file
adding
 Python/C Application Programmers Interface (API)
Application Programmers Interface (API)
 Python/C
 extending and embedding
applications
 non-Python
 embedding Python objects in;Python/C Application Programmers Interface (API)
C programming language
 extending and embedding Python
C++ programming language
 extending and embedding Python
creating
 Python extension modules
 Python/C Application Programmers Interface (API)
embedding
 Python objects
 Python/C Application Programmers Interface (API)
files
 header
 <Python.h
header files
 <
 Python.h
inserting
 Python/C Application Programmers Interface (API)
interfaces
 Python/C Application Programmers (API)
 extending and embedding
objects
 Python
 embedding in non-Python applications;Python/C Application Programmers Interface (API)
programming languages
 C
 extending and embedding Python
 C++
 extending and embedding Python
programs
 non-Python
 embedding Python objects in;Python/C Application Programmers Interface (API)
Python/C Application Programmers Interface (API)
 extending and embedding
software
 non-Python

 embedding Python objects in;Python/C Application Programmers Interface (API)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding Python
> Extending

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147033230215011031082157

Extending

Because Python cannot access C/C++ functions in a straightforward way, it is necessary to handle the
conversion between Python and C/C++ data types when putting them to work together. That is when we
use the Python extension modules. These extensions work like a thin wrapper of functions written in
C/C++ that are necessary to bring the C/C++ functionality to the developer.

It is widely known that interpreted languages execute intensive applications slower than compiled
languages. As a result, it is a good choice to implement as extension modules the application routines
that need to run fast, such as network access, database manipulation, and routines that intensively use
the graphical interface.

Keep in mind that you always have to think about whether it is really necessary to implement routines as
extension modules. Are you sure that the processing speed will get better by calling C functions instead
of just using plain Python?

Before starting to implement anything in C, I suggest that you analyze and test your Python code. Check
to see whether it can be optimized. Profile it, and only if you find some big problem, create C
extensions. As an example, if you have the execution time of a function that only accounts for 1% of the
program execution time, you have only reduced total execution time by 0.5%.

And remember, before you implement some surreal extension, to first check the Python distribution and
the contributed modules. What you need might already be there.

Some good links to where you can check for existing modules are

The Python contributed modules page at

http://www.python.org/download/Contributed.html

The Vaults of Parnassus collection of Python resources at

http://www.vex.net/~x/parnassus/

The extension modules should be used to write specific operations, and not complete applications. By
doing this, you will spend less time developing the wrapping interfaces.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=121
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A35%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=121&now=5%2F31%2F2002+4%3A35%3A05+PM
http://www.python.org/download/Contributed.html
http://www.vex.net/~x/parnassus/

The next two links provide a good source of information about writing an extension module:

"How to Write a Python Extension," by Michael P. Reilly:

http://starship.python.net/crew/arcege/extwriting/pyext.html

"Extension Classes, Python Extension Types Become Classes," by Jim Fulton:

http://www.digicool.com/releases/ExtensionClass/

Creating New Extensions

I presume that if you came this far, you are sure that you want to use extension modules. So, let's start
developing something.

First, in many places, you will see the naming convention for extension module files defined as
modulenamemodule. c. Second, all extension modules must include the Python/C API
"<Python.h>" system header file.

The next example is an extension module called helloworldmodule.c that is used to demonstrate
how easy it is to create a Python extension.

/* File: helloworldmodule.c */

#include "<Python.h>"

/* external function*/
static PyObject *sayhello(PyObject *self)
{
 return Py_BuildValue("s","Hello Python World!");
}

/* name binding table */
static PyMethodDef hellomethods[] = {
 {"say", sayhello, METH_VARARGS },
 {NULL, NULL} /* sentinel */
};

/* initialization function*/
DL_EXPORT(void) inithello()
{
 Py_InitModule("hello", hellomethods);

http://starship.python.net/crew/arcege/extwriting/pyext.html
http://www.digicool.com/releases/ExtensionClass/

}

After linking this module to your interpreter, it becomes promptly accessible for your use (see Figure
6.1).

Figure 6.1. As you can see, there is no difference between the way you use an extension module and
the other modules.

It is important to stick to the naming convention because when the module is first imported, the
initmodulename() function is called.

Every time you implement a C function that Python will call, you have to define two arguments. The
first one is called self, and it is a pointer to the called object. The argument self is used when
implementing built-in methods to point to the bound object. When a function is implemented, self is
set to NULL.

The other argument is usually called args, which is a pointer to a tuple object that contains the
arguments of the function.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#2.html

Check out another example. This one passes arguments between Python and C.

/* File: systemmodule.c*/

#include "<Python.h>"

static PyObject *system_command(PyObject *self, PyObject *args)

{
 int return_status;
 char *program;
 char *argument;
 static char statement[255];

 if (!PyArg_ParseTuple(args, "ss", &program, &argument))
 return NULL;

 sprintf(statement, "%s %s", program, argument);

 return_status = system(statement);
 return Py_BuildValue("i", return_status);
}

static PyMethodDef systemmethods[] = {
 {"command", system_command, METH_VARARGS},

 {NULL, NULL}
};

DL_EXPORT(void) initsystem() {
 Py_InitModule("system", systemmethods);
}

The next set of instructions calls the command() function that is part of the system module, which is
stored in the systemmodule.c file.

>>> import system
>>> system.command("dir","|more")

All interface items are Python objects. Thus, function arguments and return values are pointers to
PyObject structures. PyObjects are C representations of real Python objects. All PyObjects have
a reference count.

You shouldn't declare a variable of type PyObject. Instead, you have to declare PyObject *
pointers to the actual storage of the object. Because all Python objects have a similar behavior, they can
be represented by a single C type (PyObject *). Note that a variable of type PyObject can be
defined, but it won't be of much use.

In order to implement basic extensions, you essentially use the following commands:

PyArg_ParseTuple(args, format, arg1 [, arg2 [,…]])—Checks the
argument types and converts them to C values. It returns a true value when the checking
and the conversion doesn't return any errors.

PyArg_ParseTuple—Used to parse the PyObject that contains the function
arguments (args). The second argument is a format string that lists the object types that
you expect to collect, and all the other arguments are pointers to be filled with values from
the parsing operation. Note that you can add the function name to the format string to
make error messages a bit more informative.

Py_BuildValue(format, Cvar1 [, Cvar2 [,…]])—Converts C objects into
Python Objects based on the formatting string. Py_BuildValue is mostly used when it
is necessary to return values to the Python interpreter.

Tip

C functions that return a void argument must return the Python type called None.

Py_INCREF(Py_None);
return Py_None;

For this other example, let's create a function that takes two Python objects and returns a pointer to a
Python object.

/* File: divisionmodule.c*/

#include "<Python.h>"

static PyObject *division_function(PyObject *self, PyObject *args)

 { PyObject *result = NULL;
 long a, b;

 if (PyArg_ParseTuple(args, "ii", &a, &b)) {
 result = Py_BuildValue("i", a / b);
 }

 return result;
 }

static PyMethodDef divisionmethods[] = {
 {"divide", division_function, METH_VARARGS},
 {NULL, NULL},
};

DL_EXPORT(void) initdivision()
 {
 Py_InitModule("division", divisionmethods);
 }

Importing an Extension Module

As you could see in the previous example, in order to allow Python to import your module, a few steps
are required.

Step 1. Create a method array. Each element of this array is a structure that contains:
the function's name to be exported to the Python interface, the C function's name and a
indicator that shows how arguments must be passed. Each function of the module to be
exported to Python must be an element in this array. Note that the last element of the
array works as a sentinel, and it must contain NULLs.

static PyMethodDef systemmethods[] = {
 {"command", system_command, METH_VARARGS},
 {NULL, NULL}
};

The third argument of each array entry can beMETH_VARARGS means that the
arguments are in a tuple format.METH_VARARGS | METH_KEYWORDS indicates that
keyword arguments are also allowed. It will just pass a NULL for the extra argument if no
keyword arguments are given.

The modulenamemethods[] array has a fourth optional element, which is a documentation
string.

Step 2. Create the initialization function of the module. This function should be declared
as non-static. All the others should be defined as static in order to avoid name conflicts
with other modules.

The initmodulename() function is automatically called by the interpreter. The
DL_EXPORT() definition is used to expose the module entry point. Note that the DL_EXPORT
macro only does something on the Win32 platform.

DL_EXPORT(void) initsystem() {
 Py_InitModule("system", systemmethods);

In this example, the Py_InitModule creates a "system" module object based on the array
systemmethods.

You can verify that by checking the sys.modules dictionary after importing the extension module.

Formatting Strings

Whenever you use the PyArg_ParseTuple() or the Py_BuildValue() function, you must
follow a mechanism that is based on some formatting tables, which are mentioned next, in order to make
the correct conversion between Python types and C types.

Both functions check the arguments type by looking at a formatting string. All the elements of the
formatting string must match in type and number with the variables that are also part of the function's
list of arguments.

Sometimes, it isn't strictly necessary to have both sides (C and Python) matching in type. The reality is
that the receiving field only has to be big enough to fit the received value; hence, the Python type called

float is easily stored by a C double variable. Of course, using a C type that doesn't match the format
character will cause problems that might only affect some platforms.

The literals |, :, and ; have special meanings when placed inside a formatting string.

|— The remaining arguments in the formatting string are optional. The C variables will
keep their original values in case they aren't assigned to any arguments. You should make
sure that the variables are initialized for optional arguments.

:— The string after the colon is the function name to be called in case of error messages.

;— The string after the semicolon is the user error message that must substitute for the
original error message.

Tip

A given formatting string must contain only one |with : or ; because : and ; are mutually
exclusive.

Table 6.1 covers all the elements that can be part of a PyArg_ParseTuple's formatting string. Just to
remind you, PyArg_ParseTuple() is used to convert Python objects into C objects.

Table 6.1. A PyArg_ParseTuple's Formatting String Elements

Element Python Type C Type Notes
s string char * The C string is NULL terminated;
 The Python string cannot be None and it cannot

contain embedded NULLs, otherwise, a
TypeError exception is raised.

s# string char *, int Pointer to the character string and its length.
Note that s# allows embedded NULLs in the string.

z string or None char * Python string can be None. If that happens, the
C pointer is set to NULL.

z# string or None char *, int Similar to s#.
b integer char Stores a tiny int (8-bit integer) in a char.
h integer short int
i integer int

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#5.html

l integer long int
c string of length 1 char
f float float
d float double
D complex Py_complex
O object PyObject * The C variable (of type PyObject *) stores an s

pointer to the address of the Python object. The
object reference count isn't increased.

O! object typeobject, PyObject * Similar to O, but it also looks at the address of the
Python-type object that specifies the required type.
If the Python object doesn't match the required
type, a TypeError exception is raised.

O& object function, variable Converts a Python object into a C variable of
arbitrary type (void *), using a function.

 It is equivalent to: status =
function(object, variable).

 The returned status should be 1 for success and
0 for failure.

S string PyStringObject * Similar to O, but it expects a string object. It
raises a TypeError exception otherwise.

Note

Using anything other than the given types could very easily cause problems on some architectures.

If the Python object is a tuple, the number of matching variables passed to the C function must be equal
to the number of formatting elements informed. A tuple is indicated in the formatting string by placing
the formatting elements between parenthesis.

The Py_BuildValue function is used to return values to the Python program that has called the
extension module. Its functionality is similar to PyArg_ParseTuple.

This function doesn't create a tuple of one element automatically, unless you enclose the single
formatting element in parentheses.

Table 6.2 covers the Py_BuildValue function and all the elements that can be part of its formatting
string. Just to remind you, this function is used to convert C objects into Python objects.

Table 6.2. A Py_BuildValue's Formatting String Elements

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#6.html

Element C type Python type Notes
s char * string If the C string pointer is NULL, None is returned.
s# char *, int string Converts the C pointer to a character string and its length into a

Python string object. If the C pointer is NULL, None is returned.
z char * string or None Similar to s.
z# char *, int string or None Similar to s#.
b char integer
h short int integer
i int integer
l long int integer
c char string of length 1
f float float
d double float
O PyObject * object It increments the reference count of the transported object.
O! typeobject,
 PyObject * object
O& function, variable object It returns a Python object, or NULL if an error occurs.
S PyObject * object Same as O.
N PyObject * object Similar to O, except that the reference count isn't incremented.

The following list complements the previous table by showing how Python tuples, lists, and dictionaries
are generated.

● Matching items between parenthesis are converted into a Python tuple.

● Matching items between square brackets are converted into a Python list.

● Matching items between curly braces are converted into a Python dictionary. Each consecutive
pair of values forms a dictionary entry in the format (key, value).

Exporting Constants

In addition to methods, you can also export constants back to Python. You just need to bind the constant
name to the module namespace dictionary.

/* File: pimodule.c*/

#include "<Python.h>"

static PyMethodDef pimethods[] = {
 {NULL, NULL}
};

DL_EXPORT(void)
initpi()
 { PyObject *module, *dictionary;
 PyObject *pivalue;

 module = Py_InitModule("pi", pimethods);
 dictionary = PyModule_GetDict(module);

 pivalue = PyFloat_FromDouble(3.1415926);
 PyDict_SetItemString(dictionary, "pi", pivalue);
 Py_DECREF(pivalue);
 }

Error Checking

You must indicate errors in your extension module by returning NULL to the interpreter because
functions signal errors by returning NULL. If your function has no return at all, you need to return
the None object.

return Py_BuildValue("");

or

Py_INCREF(Py_None);
return Py_None;

In case you need to raise an exception, you can do that prior to the return NULL statement. Note that
returning NULL without raising an exception is bad.

Handling Exceptions

Exceptions work as functions in the Python/C API. For example, to raise an IndexError exception,

you just need to call PyExc_SetString() prior to the return NULL statement.

Extension modules also support the creation of new exception types.

/* File: testexceptionmodule.c*/

#include "<Python.h>"

static PyObject *exception = NULL;

static PyMethodDef testexceptionmethods[] = {
 {NULL, NULL}
};

DL_EXPORT(void)
inittestexception()
 { PyObject *module, *dictionary;
 module = Py_InitModule("testexception", testexceptionmethods);
 dictionary = PyModule_GetDict(module);

 exception = PyErr_NewException("testexception.error", NULL, NULL);
 PyDict_SetItemString(dictionary, "error", exception);
 }

If you need to raise your just-created exception, just call it:

PyErr_SetString(exception, "I could not do that");

Check Appendix A for more information about the Python/C API exception functions, including how to
handle threads in your extensions.

Reference Counting

We all know that programmers are responsible for dynamic memory allocation and deallocation in C
and C++.

However, Python extensions don't benefit from all the security provided by the Python runtime system.
There are a lot of things that you have to be worried about. The main thing is reference counting.

The core Python counts references to every Python object that is created, which enables it to deallocate
an object when it doesn't have any more references.

If an object's reference count reaches 0, this object is marked for deallocation. If this same object
references other objects, their references are decremented too. The code for deallocating referenced
objects occurs in the object destructor.

The counter is incremented when a reference to the object is created, and it is decremented when the
reference is deleted. If the reference count becomes zero, the object is released. That's how Python
works.

However, Python extensions don't have this functionality built in. You have to increment (Py_INCREF)
and decrement (Py_DECREF) the references by yourself.

You can be sure that your reference counting is wrong if your system crashes when you either return a
value from the extension module or when you exit the application.

Too few Py_INCREFs can cause the application to freeze at an unspecific time, whereas too few
Py_DECREFs cause memory leaks that drive the application to use more and more memory for the
process.

An object reference count is defined as the number of owned references to it. The owner of a reference
is responsible for calling Py_DECREF(). It is also possible to borrow a reference to an object. The
borrower should neither call Py_DECREF() nor use the reference after the reference owner has
disposed of it. If you are borrowing a reference, make sure that you are absolutely certain the owner will
not release the reference while you are using it.

To make a borrowed reference to become an owned reference, you just need to call Py_INCREF() for
the mentioned object.

Take a look at following lines of code:

PyObject *O;
 if (! PyArg_ParseTuple(args, "O", &O)) return NULL;

You don't need to call Py_DECREF() before leaving the module that implements this kind of code
because PyArg_ParseTuple() returns borrowed references, and releasing references that you don't
own can cause you severe problems. Py_INCREF and Py_DECREF are implemented as macros, so
only pass a variable as the argument because the argument is evaluated twice after macro expansion.

Python Official Documentation—Reference Counts

http://www.python.org/doc/current/api/refcounts.html

"Debugging Reference Count Problems," by Guido van Rossum

http://www.python.org/doc/essays/refcnt.html

Building Extensions in C++

Python has a C-based interpreter, and it becomes a bit harder to adjust code to compile it as C++
because Python has some restrictions when it comes to creating extension modules using C++.
However, there are some things that you can do in order to reduce your problems. The next hints will
help you to link Python to a C++ compiler.

The problems depend on the C++ compiler that you are using. However the most common ones are
discussed in the following paragraphs.

If the Python interpreter is compiled and liked by a C compiler, you cannot use global or static C++
objects with constructors. Unless you use a C++ compiler. But, you can initialize the globals in the
module's init function instead.

You need to place extern "C" { … }around the Python include files. You need to define the
Python API as a C segment to the C++ compiler as well.

extern "C"{
#include "<Python.h>"
}

If the header files for Python on your machine already include the extern "C" { … }stuff, adding
an extra extern "C" block will cause an error on most compilers (as the extern "C" syntax is not
valid C).

Functions that are going to be called by the interpreter (in particular, module initialization functions)
have to be declared using extern "C".

extern "C" {
 DL_EXPORT(void)

http://www.python.org/doc/current/api/refcounts.html
http://www.python.org/doc/essays/refcnt.html

 initmodulename()
 {
 Py_InitModule("modulename", modulename_methods);
 }
}

This same declaration could also be written as

extern "C" DL_EXPORT(void)
 initmodulename()
 {
 Py_InitModule("modulename", modulename_methods);

You have these same concerns when building a dynamic module. In fact, there are more concerns (for
instance, the DL_EXPORT stuff isn't required if the module is statically linked to the interpreter).

You can use Python to access many C++ class libraries. You just need to have the right wrapper that
provides the necessary access to the libraries.

Tip

When embedding Python in your C++ code, it isn't necessary to recompile Python itself using C++.
However, if you want to use C++ extension modules, the Python interpreter might have to be
compiled with a C++ compiler though recent Linux distributions should work fine without a
recompile.

For more information, check out

"Binding Python to C++," by Guido van Rossum

http://www.python.org/workshops/1994-11/C++Python.txt

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.python.org/workshops/1994-11/C++Python.txt
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=121

Index terms contained in this section

applications
 non-Python
 embedding Python objects in 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
args argument
arguments
 args
 self
b element 2nd
blocks
 extern Ò
 CÓ { É }
 CÓ {É }
borrowed references
building
 extensions, C++ 2nd
c element 2nd
C programming language
 extending and embedding Python 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
C++ programming language
 building extensions 2nd
 extending and embedding Python 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
checking
 errors
 extension modules 2nd
command() function
commands
 implementing extensions
 Py_BuildValue(format, Cvar1 [, Cvar2 [,]])
 PyArg_ParseTuple
 PyArg_ParseTuple(args, format, arg1 [, arg2 [,]])
compiling
 Python
counters
 incrementing and decrementing 2nd 3rd
counting
 references
 extension modules 2nd
creating
 extensions
 extensions, C++ 2nd
 Python extension modules 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
d element
D element
d element

deallocating
 objects
declaring
 variables
 PyObject
decrementing
 counters 2nd 3rd
double variable
elements
 b 2nd
 c 2nd
 d
 D
 d
 f 2nd
 h 2nd
 i 2nd
 l 2nd
 N
 O 2nd
 O! 2nd
 O& 2nd
 s
 S
 s
 S
 s# 2nd
 z 2nd
 z# 2nd
embedding
 Python objects 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
error checking
 extension modules 2nd
exceptions
 handling
 extension modules 2nd
 raising
 returning NULL values
extension modules
 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 importing
extensions
 building, C++ 2nd
 creating
 implementing
extern Ò
 CÓ

 { É } block
 {É }block
f element 2nd
float variable
formatting
 strings 2nd 3rd 4th 5th
functions
 command()
 Py_BuildValue()
 string elements
 Py_DECREF() 2nd
 Py_INCREF() 2nd
 PyArg_ParseTuple()
 string elements 2nd
h element 2nd
handling
 exceptions
 extension modules 2nd
i element 2nd
implementing
 extensions
importing
 extension modules
incrementing
 counters 2nd 3rd
l element 2nd
modules
 extension
 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 importing
N element
NULL value
 checking errors, extension modules
 returning without raising exceptions
O element 2nd
O! element 2nd
O&
 element 2nd
objects
 deallocating
 embedding in non-Python applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
owned references
programming languages
 C
 extending and embedding Python 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 C++
 building extensions 2nd

 extending and embedding Python 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
programs
 non-Python
 embedding Python objects in 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
Py_BuildValue() function
 string elements
Py_BuildValue(format, Cvar1 [, Cvar2 [,]]) command
Py_DECREF() function 2nd
Py_INCREF() function 2nd
PyArg_ParseTuple command
PyArg_ParseTuple() function
 string elements 2nd
PyArg_ParseTuple(args, format, arg1 [, arg2 [,]]) command
PyObject
 declaring variables
Python
 recompiling
raising
 exceptions
 returning NULL values
recompiling
 Python
reference counting
 extension
 extension modules
references
 borrowed
 owned
returning
 NULL value without raising exceptions
s element
S element
s element
S element
s# element 2nd
self argument
software
 non-Python
 embedding Python objects in 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
strings
 formatting 2nd 3rd 4th 5th
values
 NULL
 checking errors, extension modules
 returning without raising exceptions
variables
 declaring

 PyObject
 double
 float
verifying
 errors
 extension modules 2nd
z element 2nd
z# element 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding Python
> Compiling and Linking Extension Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147033230213142232249029

Compiling and Linking Extension Modules

Two options are available for building Python extension modules. The first one compiles and links the
module into the interpreter. This option makes the module always available to the interpreter.

The second option doesn't require that you recompile the interpreter because it dynamically links the
modules to the system.

Linking Static Extensions to the Interpreter

Before starting, make sure that you have already compiled the interpreter's source code (refer to Chapter
17, "Development Tools," for more details). Building and installing Python before adding new modules
is essential to have the libraries and other files in the right places.

Static Extensions on UNIX

On UNIX, Python modules written in C are easily identified by looking at the
/usr/lib/Python1.5 directory. Most of the time, they are the shared library files with the .so
extension. Although, if you are using HPUX, the extension is .sl, and on some others it is just .o.

The next few steps show how to create static extensions on UNIX.

Step 1.

You need to copy your module to the Modules directory.

Step 2.

You have to add the following entry to the end of the /modules/Setup.in configuration
file, which is located in the Python source tree. This file has the list of all the external libraries
needed by the interpreter.

static
modulename filename

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=122
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A35%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=122&now=5%2F31%2F2002+4%3A35%3A24+PM

For example,

hello /mnt/hda/python/helloworldmodule.c

If your extension module requires additional libraries, add the argument -llibraryname at the end
of the line.

For example,

hello /mnt/hda/python/helloworldmodule.c -l/mnt/hda/python/auxmodule.c

The *static* flag builds the modules as static modules. The other option is to use the *shared*
flag, which means that they have to be built as shared modules (known as DLLs on Windows).

The last step is to recompile Python as normal to include the extra module by typing ./configure
and make in the top of the Python Source tree. The Python interpreter is rebuilt after that.

To execute the new interpreter and test your new extension module, just call it like this:

./python

Static Extensions on Windows

The following instructions are based on the use of Microsoft Visual C++ version 5.

First, you need to inform Python's include path. To do that, go to Tools, Options, Directories (see
Figure 6.2).

Figure 6.2. You need to inform the include path.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/122#4.html

It is also necessary to inform the library's location (see Figure 6.3). You need to add the
python15.lib directory to your Tools, Options, Directories, Library files.

Figure 6.3. You need to inform the python15.lib path.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/122#5.html

Now, the rest is easy.

1. Using a text editor, open the \PC\config.c file.

2. Look for the first comment. You need to add an external reference to the init function of your
module.

/* -- ADDMODULE MARKER 1 -- */
extern void initmodulename();

3. Locate the next comment. You need to add the module name and the init function.

/* -- ADDMODULE MARKER 2 -- */
{"modulename", initmodulename},

4. Using a text editor, open the /PCbuild/python15.dsp file.

5. Go to the end of the file. Locate the entry that references the yuvconvert.c source file. You
need to add the location of your module's source file just before that entry.

SOURCE=..\Modules\yourmodulenamemodule.c
End Source File
Begin Source File

SOURCE=..\Modules\yuvconvert.c
End Source File
End Target

End Project

6. Using Microsoft Visual C++, open the /PCbuild/pcbuild.dsw workspace.

7. Select the Batch Build option and say Rebuild All.

By default, the EXE file and the DLLs will be saved in your /Pcbuild/ directory.

Linking Dynamic Extensions to the Interpreter

Now look at what you should do in order to create dynamic extension modules.

Dynamic Extensions on UNIX

The next few steps show how to build Dynamic extensions on UNIX.

Step 1.

Put the reference to your module in the Setup.in file. If your module references other source
files, you should include them too. You might want to create a new Setup.in file in the
directory containing your module.

shared
spam helloworldmodule.c

Step 2.

Copy the Makefile.pre.in file to the directory where your module is located.

Step 3.

Type

make -f Makefile.pre.in boot
make

This process creates a helloworldmodule.so file.

You could also try

gcc -c -I/usr/local/include/python1.5 helloworldmodule.c
gcc -shared helloworldmodule.o -o helloworldmodule.so

Dynamic Extension on Windows

Next, how you can build a Dynamic Extension on Windows is illustrated.

Step 1. Create a directory in the Python top-level directory. Give it the name of your
module.

For example, c:\python\Python-1.5.2\pimodule

Step 2.

Copy your modulenamemodule. c file to this directory.

Step 3.

Copy the files example.def, example.dsp, example.dsw, and example.mak,
which are located at the /PC/example_nt directory of the standard distribution to your new

directory. Don't forget to rename the prefix of these files in order to match the name of your
module.

Step 4.

On each file, replace the occurrences of example with your module name.

Step 5.

Choose the Build Menu option in order to generate your modulename.dll.

A subdirectory was created underneath your working directory. This subdirectory, called Release,
contains your modulename.dll.

A tool created by David Ascher is very useful to create Python extension modules. It uses a UNIX
Setup.in file to generate and build a Microsoft Visual C++ project. This tool is called
compile.py.

To use it, you just need to put your C module and the compile.py file in the same directory, and
execute the tool. When fired, the program creates a MS Visual C++ project (.dsp extension) and the
workspace (.dsw extension).

Along with those files, it also creates a subdirectory called /pyds in which it stores the python
extension module (.pyd extension).

In order to use this extension in your application, the interpreter needs to be able to locate the .pyd file
by looking at the sys.path's variable.

compile.py is available at

http://starship.python.net:9673/crew/da/Code/compile

Installing and Using Dynamic Modules

You have four simple choices:

● Place your module.so or module.dll in a directory that is defined by your PYTHONPATH
environment variable. The site-packages directory under the lib directory is a good place
to put your extension modules.

http://starship.python.net:9673/crew/da/code/compile

● At runtime, you can add the extension module's path to sys.path.

● On Windows, you can place the extension module in the same directory of the python.exe
file.

● Put the extension in the current directory when you start Python.

You won't find any difference while running dynamic modules. They act exactly the same way as the
static modules that are linked to the interpreter.

Accessing Generic DLLs

Sam Rushing has created an extension module called calldll that enables Python to call any function
that is part of a Windows DLL. It doesn't matter whether the DLL is a Python extension.

The problem to remember is that errors caused by non-Python extension DLLs don't return exception
codes but error messages.

With this module you can call any function in any DLL. This means that you can do just about anything
on Win32. This module includes a library that gives access to lots of the system GUI features, and a
'callback'generator for i386, which lets external functions call back into Python as if it were C. (Much
of the Win32 API uses callbacks.)

Along with that, you can access ODBC by directly calling functions in odbc32.dll using a wrapper
module called odbc.py. The ODBC module is implemented using calldll, and it has a few extra
practical pieces; code for managing data sources, installing ODBC itself, and creating and maintaining
Jet (Microsoft Access) databases. It has also been tested with ODBC drivers from Oracle and
Objectivity. Of course, using calldll destroys any platform or architecture independence your
program may have had.

You can see more details at http://www.nightmare.com/software.html.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.nightmare.com/software.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=122

Index terms contained in this section

shared flag
static flag
applications
 non-Python
 embedding Python objects in;compiling and linking extension modules 2nd 3rd 4th 5th 6th 7th
Ascher, David
C programming language
 extending and embedding Python 2nd 3rd 4th 5th 6th
C++ programming language
 extending and embedding Python 2nd 3rd 4th 5th 6th
calldll module 2nd
compile.py tool 2nd
compiling
 extension modules 2nd 3rd 4th 5th 6th 7th
creating
 Python extension modules
 compiling and linking 2nd 3rd 4th 5th 6th 7th
dynamic extensions
 linking to interpreters 2nd 3rd 4th
dynamic modules
 installing and running
embedding
 Python objects
 compiling and linking extension modules 2nd 3rd 4th 5th 6th 7th
error messages
 non-Python extension dynamic link libraries (DLLs)
extension modules
 compiling and linking 2nd 3rd 4th 5th 6th 7th
extensions
 dynamic
 linking to interpreters 2nd 3rd 4th
 static
 linking to interpreters 2nd 3rd
flags
 shared
 static
installing
 dynamic modules
interpreters
 linking dynamic extensions 2nd 3rd 4th
 linking static extensions 2nd 3rd
linking
 dynamic extensions to interpreters 2nd 3rd 4th
 extension modules 2nd 3rd 4th 5th 6th 7th
 static extensions to interpreters 2nd 3rd

messages
 error
 non-Python extension dynamic link libraries (DLLs)
modules
 calldll 2nd
 dynamic
 installing and running
 extension
 compiling and linking 2nd 3rd 4th 5th 6th 7th
 odbc.py
objects
 Python
 embedding in non-Python applications;compiling and linking extension modules 2nd 3rd 4th 5th 6th 7th
odbc.py module
programming languages
 C
 extending and embedding Python 2nd 3rd 4th 5th 6th
 C++
 extending and embedding Python 2nd 3rd 4th 5th 6th
programs
 non-Python
 embedding Python objects in;compiling and linking extension modules 2nd 3rd 4th 5th 6th 7th
running
 dynamic modules
Rushing, Sam
software
 non-Python
 embedding Python objects in;compiling and linking extension modules 2nd 3rd 4th 5th 6th 7th
static extensions
 linking to interpreters 2nd 3rd
tools
 compile.py 2nd
UNIX
 linking static extensions to interpreters 2nd
utilities
 compile.py 2nd
Windows
 linking dynamic extensions to interpreters 2nd
 linking static extensions to interpreters

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding
Python > SWIG—The Simple Wrapper Interface Generator

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147033230210041176116136

SWIG—The Simple Wrapper Interface Generator

SWIG (Simple Wrapper and Interface Generator) is an automated tool create by David Beazley used to
write interfaces between Python and existing C libraries. These interfaces can contain several single
functions.

The programmer doesn't have to write any special wrapping functions to provide the glue between the
Python scripting language and the C functions.

SWIG works by reading an interface file that contains function and method prototypes. It automatically
does the necessary type conversion, checks the code for error, produces a C file, compiles the file, and
builds it into a shared object file.

It works by taking the declarations commonly found in C/C++ header files and using them to generate
the glue code (wrappers) that scripting languages need to access the underlying C/C++ code.

SWIG is better suited as a mechanism for controlling a variety of C programs because it enables
someone to combine bits and pieces of completely different software packages without waiting for
someone else to write a special purpose module.

The handling of datatypes when using SWIG for prototyping and control application is very easy
because whenever SWIG finds an unknown datatype, it simply assumes that it is some kind of complex
datatype. Consequently, wrapping a complex C program doesn't imply too much work.

SWIG provides a convenient way of building Python interfaces to libraries.

You just need to write simple interface definitions, which SWIG uses to generate the C program that
conforms to the Python/C extension guidelines.

SWIG makes it even easier to use scripting languages by automating the process of connecting
scripting languages to C/C++ code.

Many reasons you should try SWIG are as follows:

You can easily replace the main() function of a C program with Python's interpreter.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=123
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A35%3A51+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=123&now=5%2F31%2F2002+4%3A35%3A51+PM

C/C++ code is easily tested because you can call C functions and libraries directly from
your scripting environment.

Debugging your C code also becomes easier once you use Python's interpreter.
Remember that you don't need to change your C code in order to use SWIG.

SWIG can integrate different C/C++ programs together by turning them into extension
modules. After the extensions are created, Python can combine and use them to generate
new applications.

SWIG understands and parses ANSI C/C++ syntax.

The output of SWIG is a fully functional scripting language module.

As SWIG is designed to work with existing C/C++ code, it will be rarely necessary to
change your existing programs.

Your C/C++ code remains separate from your Python code.

SWIG output can be freely extended and customized.

Now, the most interesting thing is that you don't need to master all the details about the
Python/C API in order to use the basics of SWIG to create your Python extension
modules. SWIG automates the process of generating a Python extension based on the
header of the functions that you want to export.

Take a look at the following example and see how simple it is to generate a wrapper file. We will first
create an input file, and call it helloworld.i.

// file: helloworld.i

%module helloworld
%{
#include "helloworld.h"
%}

char *say();

Now, we will use SWIG to generate the wrapper file. We need to pass an argument to SWIG informing
that the wrapper must be created for the Python language. That's because SWIG works with many

different languages.

% swig -python helloworld.i
Generating wrappers for Python…
%

As you can see, a wrapper file called helloworld_wrap.c was created for you.

More information about SWIG can be found at the following Web pages:

SWIG official Web site:

http://www.swig.org

SWIG Users Guide—Chapter 9, "SWIG and Python" :

http://www.swig.org/Doc1.1/PDF/Python.pdf

"Using SWIG to Control, Prototype, and Debug C Programs with Python":

http://www.swig.org/papers/Py96/python96.html

"Feeding a Large-scale Physics Application to Python":

http://www.swig.org/papers/Py97/beazley.html

"Interfacing C/C++ and Python with SWIG":

http://www.swig.org/papers/PyTutorial97/PyTutorial97.pdf

"The Benefits of Scripting Languages," by John Ousterhout:

http://www.scriptics.com/people/john.ousterhout/scripting.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.swig.org/
http://www.swig.org/Doc1.1/PDF/Python.pdf
http://www.swig.org/papers/Py96/python96.html
http://www.swig.org/papers/Py97/beazley.html
http://www.swig.org/papers/PyTutorial97/PyTutorial97.pdf
http://www.scriptics.com/people/john.ousterhout/scripting.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=123

Index terms contained in this section

applications
 non-Python
 embedding Python objects in;Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
Beazley, David
C programming language
 extending and embedding Python 2nd 3rd 4th
C++ programming language
 extending and embedding Python 2nd 3rd 4th
code
 glueÓ
 Ò
creating
 Python extension modules
 Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
embedding
 Python objects
 Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
files
 wrapper
 generating 2nd
generating
 wrapper files 2nd
glue codeÓ
 Ò
objects
 Python
 embedding in non-Python applications;Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd
4th
programming languages
 C
 extending and embedding Python 2nd 3rd 4th
 C++
 extending and embedding Python 2nd 3rd 4th
programs
 non-Python
 embedding Python objects in;Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
software
 non-Python
 embedding Python objects in;Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
tools
 Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
utilities
 Simplified Wrapper and Interface Generator (SWIG) 2nd 3rd 4th
wrapper files

 generating 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding
Python > Other Wrappers

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147034164216200085016025

Other Wrappers

Besides SWIG, there are other very interesting wrapper projects, such as SIP, which is specifically
designed for integrating C++ class libraries with Python by generating compilable C++ code from a set
of specification files that are similar to C++ header files.

"SIP—Python Bindings for Qt and KDE," by Phil Thompson:

http://www.river-bank.demon.co.uk/software/

"Python + KDE Tutorial," by Boudewijn Rempt:

http://www.xs4all.nl/~bsarempt/python/tutorial.html

"SCXX (Simplified CXX) is a lightweight C++ wrapper for dealing with PyObjects," by
Gordon McMillan:

http://starship.python.net/crew/gmcm/scxx.html

"CXX—A facility for creating Python extensions in C++," by Paul F. Dubois:

http://www.foretec.com/python/workshops/1998-
11/proceedings/papers/dubois/dubois.html

Note that this last document is very instructive because it shows how to create new object types in
Python by using CXX.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=124
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A00+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=124&now=5%2F31%2F2002+4%3A36%3A00+PM
http://www.river-bank.demon.co.uk/software/
http://www.xs4all.nl/~bsarempt/python/tutorial.html
http://starship.python.net/crew/gmcm/scxx.html
http://www.foretec.com/python/workshops/1998-11/proceedings/papers/dubois/dubois.html
http://www.foretec.com/python/workshops/1998-11/proceedings/papers/dubois/dubois.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=124

Index terms contained in this section

applications
 non-Python
 embedding Python objects in;wrappers
C programming language
 extending and embedding Python
C++ programming language
 extending and embedding Python
creating
 Python extension modules
 wrappers
embedding
 Python objects
 wrappers
objects
 Python
 embedding in non-Python applications;wrappers
programming languages
 C
 extending and embedding Python
 C++
 extending and embedding Python
programs
 non-Python
 embedding Python objects in;wrappers
software
 non-Python
 embedding Python objects in;wrappers
wrappers
 creating extension modules and embedding Python objects

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding Python
> Embedding

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147034164216207026027225

Embedding

We will now talk about how to embed Python inside other programs. Python offers a clean interface that
allows embedding to occur.

You might be asking yourself why would you want to do it. Well, the answer is quite simple; as a
scripting language, Python can wire its interpreter into other programs to enable you to make calls to
specific Python functions and execute particular Python statements from them.

Those programs will have the capability to load Python scripts and execute Python services that belong
to specific Python modules. You can also call Python functions directly from your C code and access the
Python objects that are returned by them.

In order to embed Python inside a program, you just need to use the Python API—the Python EXE is not
necessary.

Implementing Callback Functions

Embedding Python allows you to access and use the Python interpreter from inside your application. But
what happens if you need to call back your application functions from inside Python?

For this reason, it is a good practice to provide a module written in C that exposes an API related to the
application. Therefore, when embedding Python within your routines, you can make your application
communicate both ways with your Python program by accessing the Python extension modules.

Embedding the Python Interpreter

The next example adds Python functionality to a C program.

// File: embedding.c

#include <stdio.h>
#include <Python.h>
int main(int argc, char **argv)
{

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=125
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=125&now=5%2F31%2F2002+4%3A36%3A07+PM

 Py_Initialize();
 PyRun_SimpleString("print 'Hello Python World'");
 printf("You are my visitor number %i", args);
 Py_Finalize();
 return(0);
}

Python provides a set of function calls that provide an interface to the Python interpreter. The most
important ones are

● Py_Initialize— Initializes and allocates the internal resources of the interpreter in order to
start using the API.

● PyRun_SimpleString— Executes Python code strings in the context of the __main__
module. Each string must be a complete Python command. This high-level function reads from a
character buffer and returns 0 for success and -1 when exceptions occur. Another function
called PyRun_String provides more control of the code execution. The source code of this
function is available in your installation in the Python/pythonrun.c file.

Tip

Remember that you need to inform the new line character at the end of each command line to make
sure that the interpreter validates the command.

Py_Finalize— Releases the internal resources and shuts down the interpreter. You
should always call this function before leaving the program.

PyRun_SimpleFile— Executes Python commands that are stored in a file. This
function reads from a FILE pointer.

Check out this other example:

// File: embedding2.c

#include "Python.h"
main(int argc, char **argv)
{

 Py_Initialize();
 PySys_SetArgv(int argc, char **argv);
 PyRun_SimpleString("print 'Hello Python World'\n");
 PyRun_SimpleString("print sys.argv\n");
 PyFinalize();
 Py_Exit(0);
}

● PySys_SetArgv— This function sets the values for the sys.argv list.

You can access a module written in Python from C by getting a pointer to the module object as follows:

module = PyImport_ImportModule("<modulename>");

If the module hasn't been imported yet (that is, it isn't yet present in sys.modules), this function
initializes the module; otherwise it simply returns the value of sys.modules["<modulename>"].

It doesn't enter the module into any namespace—it only ensures that it has been initialized and it is
stored in sys.modules.

You can then access the module's attributes (that is, any name defined in the module) using
PyObject_GetAttrString() as follows:

attr = PyObject_GetAttrString(module, "<attrname>");

It is also possible to assign values to variables in the module using the
PyObject_SetAttrString() function.

There is a very straightforward example of embedding Python in a C program in the file
/Demo/embed/demo.c, which is part of your Python distribution source code.

Embedding on UNIX

On UNIX, you must link your C application against the Python interpreter library, which is called
libpython1.5a.

When compiling the yourprogram.c into a object file (yourprogram.o), you need to specify the
directory of the Python distribution.

For example,

gcc -g -c yourprogram.c

Note

You need to make sure that the header files required by your program are correctly installed on your
system.

When compiling the object file into an executable file, you need to include the libraries and references
for any extension modules embedded into the Python interpreter itself.

Check the Makefile file of the Python interpreter to know the files that must be mentioned.

Listing 6.1 File: Makefile…
VERSION= 1.5

LIBPYTHON= $(blddir)/libpython$(VERSION).a

LIBS= -lreadline -ltermcap -lcurses -lgdbm -ltk8.0 -ltcl8.0 -lX11 -ldl
SYSLIBS= -lm
MODLIBS= -L/usr/X11R6/lib -I/usr/local/pgsql/include
-L/usr/local/pgsql/lib -lcrypt
ALLLIBS= $(LIBPYTHON) $(MODLIBS) $(LIBS) $(SYSLIBS)
…

All the libraries found in the Makefile file are used as arguments to the function that compiles the
object file, as you can see next.

gcc yourprogram.o /usr/local/contrib/Python-1.5.2/libpython1.5.a
-L/usr/X11R6/lib -I/usr/local/pgsql/include -L/usr/local/pgsql/lib

-lcrypt -lreadline -ltermcap -lcurses -lgdbm -ltk8.0 -ltcl8.0 -lX11
-ld1 -lm -o yourprogram

The last step is to type make to build the application.

Note

In order to compile an extension module for use with the embedded python interpreter, you just need
to compile the module into the executable and make sure that you call the init function for the
module after initializing the interpreter.

Embedding Python in C++

You don't have to recompile your interpreter. You just need to write your main program in C++ and use
a C++ compiler to compile and link your program.

Embedding Python in Other Applications

On Windows, Python itself is implemented in a DLL called Python15.dll. Note that the file
Python.exe is a small program that calls all the routines stored in the DLL. This is a good example
showing that it must be easy to embed Python because it already embeds itself.

Besides all this talk about embedding Python in C and C++ applications, Python can also be embedded
in other applications, such as Delphi. However, note that implicitly, the embedding process is at the C
level too.

Dr. Dietmar Budelsky and Morgan Martinet merged their two separate projects and created The Python
for Delphi project. The purpose of this project is to provide an interface to the Python language in
Delphi.

This project consists of a set of components that wrap the Python15.dll into Delphi. These
components let you easily execute Python scripts, create new Python modules and new Python types.
You can create Python extensions as DLLs and much more. Currently, it supports Delphi versions 3, 4,
and 5.

The Python for Delphi project:

http://www.multimania.com/marat/delphi/python.htm

http://www.multimania.com/marat/delphi/python.htm

NSAPI/NSAPY

A real-life example of how Python can be used by other applications is in the case of embedding Python
under Netscape HTTP Servers that support the NSAPI module protocol.

This marriage brings several add-ons to the Netscape Server mostly because of the general scripting
capabilities acquired from the Python language.

In order to do this embedding, it is necessary to use the Nsapy, which is an extension that works by
embedding the interpreter within Netscape HTTP Servers that use NSAPI.

NSAPI—The Netscape Server API:

http://oradb1.jinr.ru/netscape/NSAPI/

"Nsapy," by Gregory Trubetskoy:

http://www.ispol.com/home/grisha/nsapy/nsapy.html

Example of embedding Python under a Netscape Commerce server:

http://starship.python.net/crew/aaron_watters/embed/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

accessing
 module attributes
 modules
applications
 non-Python
 embedding Python objects in 2nd 3rd 4th 5th 6th 7th
assigning
 values to variables, modules
attributes
 modules
 accessing
Budelsky, Dietmar

http://oradb1.jinr.ru/netscape/nsapi/
http://www.ispol.com/home/grisha/nsapy/nsapy.html
http://starship.python.net/crew/aaron_watters/embed/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=125

C programming language
 extending and embedding Python 2nd 3rd 4th 5th 6th 7th
C++ programming language
 extending and embedding Python 2nd 3rd 4th 5th 6th 7th
callback functions
 implementing
compiling
 extension modules
creating
 Python extension modules 2nd 3rd 4th 5th 6th 7th
embedding
 interpreters 2nd 3rd 4th
 Python objects 2nd 3rd 4th 5th 6th 7th
extension modules
 compiling
 creating 2nd 3rd 4th 5th 6th 7th
files
 Makefile
functions
 callback
 implementing
 init()
 PyRun_String()
implementing
 callback functions
init() function
interpreters
 embedding 2nd 3rd 4th
Makefile file
Martinet, Morgan
module attributes
 accessing
module protocols
 NSAPI/NSAPY 2nd
modules
 accessing
 extension
 compiling
 creating 2nd 3rd 4th 5th 6th 7th
 Python15.dll
NSAPI/NSAPY module protocol 2nd
objects
 embedding in non-Python applications 2nd 3rd 4th 5th 6th 7th
programming languages
 C
 extending and embedding Python 2nd 3rd 4th 5th 6th 7th
 C++
 extending and embedding Python 2nd 3rd 4th 5th 6th 7th

programs
 non-Python
 embedding Python objects in 2nd 3rd 4th 5th 6th 7th
protocols
 module
 NSAPI/NSAPY 2nd
PyRun_String() function
Python15.dll module
software
 non-Python
 embedding Python objects in 2nd 3rd 4th 5th 6th 7th
UNIX
 embedding interpreters 2nd
values
 assigning to variables, modules
variables
 modules
 assigning values to

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding
Python > Summary

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147034164217144224003099

Summary

This chapter exposes the extending and embedding functionality that gives Python the credit of
possessing the capability to glue applications together.

Whenever you use Python code to call C code, you are extending Python. On the other hand, if you use
C code to call Python code, you are embedding Python.

Python has a good relationship with C because Python's interpreter is written in C, and since its
beginning, the interpreter has been ready to work with extension modules.

The extension modules are mostly used to add new functionality to Python when there is no other way
to interface Python with a particular system or hardware. Sometimes, when Python code is inefficient,
extension modules are also used to boost performance.

If you need to call Python routines from inside your application, you can use the embedding
functionality to have them called by your compiled language.

Python provides an intuitive and clean C Application Programmers Interface (API) that exposes the
interface to the Python runtime system. This API provides a great number of functions to manipulate
Python objects and built-in types from C and C++.

In order to use your new extension modules, you can't forget to create the initialization function of the
module and the method array that assigns the internal function names with the function names that are
exposed in the module's interface.

The most important functions of an extension module are PyArg_ParseTuple and
Py_BuildValue. They handle all the interfacing between C and Python. Both functions check the
argument's type by looking at a formatting string. Tables 6.1 and 6.2 (one for each function) list all the
possible formatting strings.

In addition to methods, you can also export constants back to Python. You just need to bind the
constant name to the module namespace dictionary.

You must indicate errors in your extension module by returning NULL to the interpreter because

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=126
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=126&now=5%2F31%2F2002+4%3A36%3A18+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/121#6.html

functions signal errors by returning NULL. You can also use exception functions defined by the
Python/C API. New exceptions can be created and stored at extension module as well.

Python extensions don't benefit from all the safety provided by the Python runtime system. There are a
lot of things that you have to be worried about. The main thing is reference counting, which is handled
by the Py_INCREF and Py_DECREF functions.

It becomes harder to adjust and compile code as C++ because Python has a C-based interpreter that has
some restrictions when it comes to creating extension modules using C++.

Two options are available for building Python extension modules. The first one compiles and links the
module into the interpreter. This option makes the module always available to the interpreter.

The second option doesn't require that you recompile the interpreter because it dynamically links the
modules to the system.

SWIG is an automated tool create by David Beazley that is used to write interfaces between Python and
existing C libraries. These interfaces can contain several single functions. The programmer doesn't
have to write any special wrapping functions to provide the glue between the Python scripting language
and the C functions. Besides SWIG, other applications (such as SIP and SCXX) are suitable for helping
programmers wrap their C code.

While embedding Python in your programs, you will have the ability to load Python scripts and execute
Python services that belong to specific Python modules. You can also call Python functions directly
from your C code and access the Python objects that are returned by them. In order to embed Python
inside a program, you just need to use the Python API—the Python EXE isn't necessary. When
embedding Python in your C++ code, it isn't necessary to recompile Python itself using C++.

In order to start the Python API service in your program, it is necessary to call the Py_Initialize
function. To shutdown the Python interpreter, it is necessary to call the Py_Finalize function.

Python can be easily embedded in various languages and applications, such as C++, Delphi and
Netscape Servers.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=126

Index terms contained in this section

applications
 non-Python
 embedding Python objects in 2nd
C programming language
 extending and embedding Python 2nd
C++ programming language
 extending and embedding Python 2nd
creating
 Python extension modules 2nd
embedding
 Python objects 2nd
extension modules
 creating 2nd
modules
 extension
 creating 2nd
objects
 embedding in non-Python applications 2nd
programming languages
 C
 extending and embedding Python 2nd
 C++
 extending and embedding Python 2nd
programs
 non-Python
 embedding Python objects in 2nd
software
 non-Python
 embedding Python objects in 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 6. Extending and Embedding Python > Code
Examples

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147034164218028208152157

Code Examples

Listing 6.1 Benchmark Extension (File benchmarkmodule.c)

 1: #include "<Python.h>"
 2:
 3: static PyObject *
 4: benchmark_generate(PyObject *self, PyObject *args);
 5: {
 6: int index, number_of_arguments;
 7: PyObject *numberslist = NULL;
 8: PyObject *check_value = NULL;
 9: PyFloatObject *aux_float = NULL;
10: double element_value;
11: double minimum_value = 100;
12: double maximum_value = 0;
13: char *exist_check;
14:
15: if (!PyArg_ParseTuple (args, "OO", &numberslist, &check_value))
16: return NULL;
17:
18: if (!PyList_Check(numberslist))
19: {
20: PyErr_SetString(PyExc_TypeError, "Invalid list of values !");
21: return NULL;
22: }
23:
24: if (!PyFloat_Check(check_value))
25: {
26: PyErr_SetString(PyExc_TypeError, "Invalid checking value !");
27: return NULL;
28: }
29:
30: number_of_arguments = PyList_Size(numberslist);
31: exist_check = "No";
32:
33: for (index=0; index<number_of_arguments; index++)
34: {
35: aux_float = (PyFloatObject *) PyList_GetItem(numberslist, index);
36: if (!PyFloat_Check(aux_float))
37: {
38: PyErr_SetString(PyExc_TypeError, "Invalid list value !");
39: return NULL;

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=127
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A26+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=127&now=5%2F31%2F2002+4%3A36%3A26+PM

40: }
41: element_value = PyFloat_AsDouble(aux_float);
42: if (element_value < 0)
43: {
44: PyErr_SetString(PyExc_TypeError, "The values cannot be less than 0
 !");
45: return NULL;
46: }
47:
48: if (element_value > 100)
49: {
50: PyErr_SetString(PyExc_TypeError,
 "The values cannot be greater than 100 !");
51: return NULL;
52: }
53:
54: if (element_value < minimum_value)
55: minimum_value = element_value;
56:
57: if (element_value > maximum_value)
58: maximum_value = element_value;
59:
60: if (element_value == PyFloat_AsDouble(check_value))
61: exist_check = "Yes";
62: }
63: return Py_BuildValue("(ffs)", minimum_value, maximum_value,
 exist_check);
64: }
65:
66: static PyMethodDef benchmark_methods[] = {
67: {"generate", benchmark_generate, METH_VARARGS, "Minimum Value,
 Maximum Value"},
68: {NULL, NULL}
69: };
70:
71: DL_EXPORT(void) initbenchmark()
72: {
73: Py_InitModule("benchmark", benchmark_methods);
74: }

Line 9: PyFloatObject is a subtype of PyObject.

Line 18: Checks whether the first argument is a list.

Line 24: Checks whether the type of the second argument is a float.

Line 26: Raises a TypeError exception.

Line 30: Returns the list's length.

Line 60: PyFloat_AsDouble converts a Python Float into a C double.

Next, you can see a small interaction with this program. To execute it, we have to pass two arguments: The first one
is a list of numbers, and the second one is a float number. This program returns the minimum and maximum values
from the list, along with a logical test that informs whether the float number is part of the list.

Python 1.5.2 (#0, May 30 2000, 00:16:14) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import benchmark
>>> benchmark.generate([1.1],1.1)
(1.1, 1.1, 'Yes')
>>> benchmark.generate([1,2,3],4.5)
(1.0, 3.0, 'No')
>>>

Wrapping C Functions

By wrapping functions, you can use C code files, without changing them. Every time you feel the need to include a
C source code file in your Python project, it is necessary to create a special module that wraps its functions, and to
include a reference to the file in the python15.dsp.

The next example wraps the functions stored in the cfunctions.c file.

Listing 6.2 File: cfunctions.c

#include <stdio.h>

void display_info(char *user, char *domain, char *country) {

 if (country == "USA")
 printf("%s@%s\n", user, domain);
 else
 printf("%s@%s.%s\n", user, domain, country);
}

int calc_year (int f_year, int m_year, int l_year) {
 int result;
 result = ((l_year + m_year + f_year) / 3);
 return result;
}

Listing 6.3 File: wrappermodule.c

 1: #include "Python.h"
 2:

 3: extern void display_info(char *, char *, char *);
 4: extern int calc_year(int, int, int);
 5:
 6: static PyObject *wrapper_display_info(PyObject *self, PyObject *args,
 PyObject *kwargs)
 7: {
 8: char *user = "None";
 9: char *domain = "None";
10: char *country = "None";
11: static char *keywords[] = {"user","domain","country",NULL};
12:
13: if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|sss", keywords,
 &user, &domain, &country)){
14: return NULL;
15: }
16:
17: display_info(user, domain, country);
18: return Py_BuildValue("");
19: }
20:
21: static PyObject *wrapper_calc_year(PyObject *self, PyObject *args) {
22: int f_year, m_year, l_year, result;
23: if (!PyArg_ParseTuple(args, "iii", &f_year, &m_year, &l_year)) {
24: return NULL;
25: }
26: result = calc_year(f_year, m_year, l_year);
27: return Py_BuildValue("i", result);
28: }
29:
30: static PyMethodDef wrappermethods[] = {
31: {"display_info", wrapper_display_info, METH_VARARGS|METH_KEYWORDS},
32: {"calc_year", wrapper_calc_year, METH_VARARGS},
33: {NULL, NULL}
34: };
35:
36: void initwrapper() {
37: Py_InitModule("wrapper", wrappermethods);
38: }

Lines 3 and 4: Identify which functions are external to this file.

Line 11: Creates a dictionary of keywords to be accepted by the function.

Line 13: PyArg_ParseTupleAndKeywords() parses the Python-level parameters by accepting a third
"PyObject *" parameter.

Line 31: The METH_VARARGS|METH_KEYWORDS clause makes it clear that keyword elements are expected.

Next, you can see a small interaction with this program. The first function builds an email address based on the

information provided. The other one calculates the average age of a family of three people based on the number of
years that are passed to the function.

Python 1.5.2 (#0, May 30 2000, 00:56:46) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import wrapper
>>> wrapper.display_info("andre2530","aol.com","br")
andre2530@aol.com.br
>>> wrapper.calc_year(10, 30, 35)
25
>>>

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=127

Web Development > Python Developer's Handbook > 7. Objects Interfacing and
Distribution

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147034164219054035099251

Chapter 7. Objects Interfacing and Distribution
This is an EX parrot!

This chapter provides information that explains how to interface objects from different applications
using Python. First, it demonstrates the techniques to control both external objects from Python and
Python objects from external programs. Later, it lists the Python projects currently being developed in
this area of study.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=129
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=129&now=5%2F31%2F2002+4%3A36%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=129

Web Development > Python Developer's Handbook > 7. Objects Interfacing and
Distribution > Object Interfacing and Distribution

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147034164220117214234061

Object Interfacing and Distribution

Python has very comprehensive support for object interfacing and distributing technologies. It is
particularly well integrated with the Windows platform; its programs can interact with COM and
DCOM services.

The win32com Python extensions developed by Mark Hammond can be used to interface Python to
Microsoft's COM and ActiveX architectures. This package, which is part of the PythonWin
distribution, enables Python to be used in Active Server Pages, or as a COM controller that can
exchange information with other COM-aware applications, such as Microsoft Word and Visual Basic.

Object-oriented design and programming is specifically beneficial in distributed environments where
the encapsulation and subsequent independence of objects enable distribution of an application over a
network.

The possibilities of heterogeneous machine architectures, physically distant locations, and independent
component failures make it difficult to program distributed object systems.

A number of distributed-processing environments, such as OMG's CORBA and Microsoft's DCOM,
have been developed to attempt to hide these problems from programmers, reducing the complexity of
their task. Besides the most famous object models, an international standard known as the Reference
Model for Open Distributed Processing (RM-ODP) is currently being developed.

Python is one of the languages supported by Xerox PARC's ILU (Inter-Language Unification), which is
a free CORBA-compatible distributed object system. To this date, many distributed applications
systems have been developed in Python using this technology.

The Hector project at the University of Queensland, Australia, also uses Python.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=130
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=130&now=5%2F31%2F2002+4%3A36%3A48+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=130

Index terms contained in this section

distributing
 objects
interfacing
 objects
objects
 interfacing and distributing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 7. Objects Interfacing and
Distribution > Interfacing Objects

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147034164221072169067081

Interfacing Objects

Currently, one of the biggest problems with both COM and DCOM architectures is that they are
supported only by Windows systems. However, most operating systems have their own native way of
connecting systems together at a remote procedure call level. At the time of this writing, there are some
unconfirmed rumors that Microsoft is planning to create an interface to the Windows operating system
using the XML-RPC protocol. This development would bring a whole new world to the Windows
applications by increasing their connectivity with all the other platforms. Note that Microsoft has
already produced a similar protocol called SOAP.

The COM-based technologies are the focus of Microsoft's development plans for Windows, ranging
from operating systems and languages to messaging and databases. Nowadays, new COM-based
technologies are found in a lot of places inside your Windows system, such as the ActiveX controls and
VBScript processing. OLEDB, for example, is the successor to ODBC. ODBC gives access to
relational databases, whereas OLEDB provides a more versatile level of access, so that the same API
can be used to retrieve data from all kinds of sources, ranging from flat text files, through Excel
spreadsheets, up to ODBC databases.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

distributing
 objects
interfacing
 objects
objects
 interfacing and distributing

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=131
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A36%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=131&now=5%2F31%2F2002+4%3A36%3A56+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=131

Web Development > Python Developer's Handbook > 7. Objects Interfacing and
Distribution > Introduction to COM Objects

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147035189204015059156047

Introduction to COM Objects

Let's learn a little about what is behind the Microsoft Common Object Model (COM) technology
before seeing how you can use it along with Python.

COM is the most widely used component software model in the world. It provides a rich set of
integrated services, a wide choice of easy-to-use tools, and a large set of available applications. COM
underlies a large majority of the new code developed for Windows and Windows NT operating
systems, whether created by Microsoft or by others.

COM consists of a well-defined, mature, stable, and freely available specification, as well as a
reference implementation, which has been widely tested and adopted worldwide. It provides the richest
set of existing services for applications today, as well as the largest set of development tools available
for any component or object model on the market. Of course, Windows is the only Operating System in
which you can be assured of finding COM, which makes us think that COM doesn't appear to be a
standard because it doesn't provide cross-platform solutions.

The COM Specification

COM is a specification and a set of services that enables you to create modular, object-oriented,
customizable and upgradable, distributed applications using a number of languages. You can even use
components that you already have written in other languages.

The COM specification describes the standards that you need to follow in order to create interoperable
COM components. This standard describes what COM objects should look like and how they should
behave. The specification is backed up by a set of services, or APIs. The COM library provides these
services, which are part of the operating system for Win32 platforms, and available as a separate
package for other operating systems.

COM components can be packaged as EXE or DLL files—COM provides the communication
mechanism to enable components in different modules to talk to each other. They are true objects in the
usual sense—they have identity, state, and behavior. COM components that implement a common
interface can be treated polymorphically, enabling easy customization and upgrades of your
applications.

COM components link with each other dynamically, and COM defines standard ways of locating

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=132
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A37%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=132&now=5%2F31%2F2002+4%3A37%3A04+PM

components and identifying their functionality, so individual components are swappable without
having to recompile the entire application.

COM provides a communication mechanism that enables components to interact across a network.
More importantly, COM provides location transparency to applications (if desired) that enables them to
be written without regard to the location of their components. The components can be moved without
requiring any changes to the application.

COM is a binary standard. Any language that can cope with the binary standard can create or use COM
objects. The number of languages and tools that support COM increases every day. C, C++, Java,
JScript, Visual Basic, VBScript, Delphi, and PowerBuilder form just part of that growing list, which
means that any one of these languages can easily interoperate with Python. Keep in mind that COM is a
standard for interaction between programs—an Object Request Broker service.

COM is the object model that underlies most of the Microsoft technologies; here are a few of those
COM applications:

● ActiveX uses COM to provide controls.

● OLE uses COM to combine documents.

● OLEDB and ADO use COM for data access.

● DirectX uses COM for graphics.

Any COM-aware program is able to interact with other COM-aware programs. One program can even
execute commands of the other. The program that executes the method call is called the COM server,
and the program that calls the object method is called the COM client. Because COM is a Microsoft
product, most applications for Windows can act as COM servers or clients.

Python's support for the COM technology is included in the Python for Windows (PythonWin)
extensions.

COM Interfaces

The COM technology is very broad and complex. Basically, it enables objects to be shared among
many applications, without applications knowing the implementation details of the objects. Objects that
implement the COM technology can communicate with each other without the need for knowing the
others'details.

COM components do business with interfaces. An interface defines functionality, but not
implementation. Objects must handle the implementation. COM objects are small pieces of self-

contained software that interact with other applications by exposing well-defined, language-
independent interfaces.

COM is an object model that relies heavily on interfaces. These interfaces are entirely separate from
their implementations. Although COM defines the interfaces, its model doesn't provide the interface's
implementation. Each object's class has the task of defining the implementations. The interfaces can be
standard ones that other objects also expose, or they can be special ones that are particular to that
object. A unique ID, called an IID (Interface ID), identifies each interface. IIDs use Universally Unique
Identifiers (UUID). UUID is a format used for many COM IDs to allocate a unique identification string
for objects. Many tools can generate unique UUIDs. As you will see later in this chapter, Python's
pythoncom module has a function called CreateGuid() that generates UUID strings.

In order to create an object, COM locates the required class and creates an instance of it. The concept
of COM classes is identical to the other Python classes. Additionally, each COM class needs to
implement two identifiers: Class ID (_reg_clsid_), which is another UUID, and Program ID
(_reg_progid_), which is a identification string that must be easier to remember than the Class ID.
This string is not guaranteed to be unique. In order to create an object, the programmer must specify
either the progid, or the clsid.

All interfaces are derived from the IUnknown interface. Therefore, they support its methods. The
IUnknown interface is the base of all COM interfaces. This interface contains only three methods:

● AddRef() and Release() are used for managing COM lifetimes, which are based on
reference counts.

● QueryInterface() is used for obtaining a reference to one of the other interfaces that the
object exposes. In other words, interfaces are obtained by using the
IUnknown::QueryInterface() method.

IStream, IStorage, and IPropertyPage are examples of standard interfaces defined by
COM. They define file-like operations, file system-like semantics, and how a control exposes a
property page, respectively. Besides the standard interfaces, COM also enables you to define your own
custom interfaces by using an Interface Definition Language (IDL).

The IDispatch interface enables any COM objects to be used from a scripting environment. This
interface was designed explicitly for languages that cannot use normal COM interfaces. The objects
that implement this interface are known as automation objects because they expose a programmable
interface that can be manipulated by another program. This interface exposes dynamic object models
whose methods and properties can be determined at runtime. Basically, this interface is used whenever
you are handling an object whose interface is not known at compile time, or if there is no compile time
at all.

Note

Note for CORBA programmers: IDispatch is equivalent to the interface repository and dynamic
invocation interface that are standard parts of CORBA.

To access a method or a property of an object, you can use either late or early binding. All the
examples that you see in this book use late bindings because the Python interpreter doesn't know what
the object interfaces look like. It doesn't know which are the methods and properties that compound the
object. It just makes the calls dynamically, according to the function names that you provide.

Late bindings use the IDispatch interface to determine the object model at runtime. Python function
win32com.client.Dispatch() provides this runtime facility. Most examples in this chapter use
the IDispatch interface. However, the win32com.client.Dispatch() function hides many
implementation details from us. Internally, Python converts the names into IDs using the internal
function GetIDsOfNames(). Then, this ID is passed as an argument to the Invoke() function.

You can try to improve the performance of your program by calling the Invoke() function directly.
Usually, the performance gets better when names are not resolved at runtime. Just be careful to provide
the right ID. If you implement this way, an early binding operation is executed.

For the early bindings, we have the concept of Type Libraries, wherein the object model is exposed at
compile time. In this kind of implementation, you don't call the methods and properties directly. The
GetIDsOfNames() method gets an ID for the method or property that you want to use, and the
Invoke() method makes the call.

For example, a function call would be invoked as

id = GetIDsOfNames("YourMethodCall")
Invoke(id, DISPATCH_METHOD)

And a property would be collected as

id = GetIDsOfNames("ObjectProperty")
Invoke(id, DISPATCH_PROP_GET)

Usually, you don't have to worry about this kind of implementation. You just say

YourObject.YourMethodCall()

and

YourObject.ObjectProperty

In order to implicitly call the Invoke() method without causing data type problems, the
IDispatch interface assumes the data type VARIANT for all variables. That's because late bindings
do not know the specific types of the parameters, whereas early bindings do.

Late bindings do not know about parameters passed by reference, so no parameters are passed by
reference. However, early bindings accept parameters passed by reference, and return them as tuples.

COM objects can be implemented as InProc objects, which are implemented as DLLs. These objects
are loaded into the calling process providing that best performance because no marshalling is required.
Of course, for most objects, some marshaling will be needed to marshal Python parameters into a form
that can be passed to the COM object.

The other option is to implement COM objects as LocalServer/ RemoteServer objects. This kind of
object is implemented as a standalone EXE, which is safer than the first option because of process
isolation.

COM can also be used to decide which implementation should be used. If both types of implementation
are available, the caller interface is able to decide which option is the best one to choose.

The Windows Registry

All the information concerning a COM object, such as the mapping between its progid and clsid, is
stored in the Windows Registry. The Windows Registry also stores the name of the DLL file of an
InProc object, and the name of the EXE LocalServer object. Object security, threading models,
and many other details are also stored there.

Check the following link for more details about the COM specification:

Microsoft— Common Object Model

http://www.microsoft.com/com/resources/specs.asp

ADO

ActiveX Data Objects (ADO) is an automation-based interface for accessing data. This technology uses
the OLE DB interface to access an extensive range of data sources, including but not limited to data
provided by the ODBC.

Microsoft Remote Data Service (RDS) is a component of ADO that provides fast and efficient data
frameworks for applications hosted in Microsoft Internet Explorer. RDS uses data-aware ActiveX
controls to provide data access programming to Web developers, who need to build distributed, data-
intensive applications for use over networks. RDS is based on a client/server, distributed technology
that works over HTTP, HTTPS (HTTP over Secure Sockets layer), and DCOM application protocols.

ActiveX

An ActiveX control is an OLE control that can live inside an HTML page; it can be simple Window
objects, such as buttons, text boxes, or scrollbars. It also can be quite complicated, for example, a bar
chart graph display can be an ActiveX control. An entire spreadsheet can also be a single control. Each
ActiveX control has properties and reacts to external events. Its properties can be modified to change
its appearance. For example, its containing program can set color and fonts. External events such as a
mouse click or keyboard input can cause a control's event handler to execute. Note that the ActiveX
technology is another Windows only thing, and not really any use in a cross platform environment.

Microsoft's Web browser, Internet Explorer, is ActiveX-aware, meaning that Web application
developers can package ActiveX components to create more dynamic content in their Web pages.

ActiveX controls use COM technologies to provide interoperability with other types of COM
components and services. ActiveX controls provide a number of enhancements specifically designed to
facilitate distribution of components over high-latency networks and to integrate controls into Web
browsers. These enhancements include features such as incremental rendering and code signing, which
enables users to identify the authors of controls before allowing them to execute.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.microsoft.com/com/resources/specs.asp
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=132

Index terms contained in this section

accessing
 methods and properties
 objects
ActiveX control
ActiveX Data Objects (ADOs) 2nd
AddRef() method
application program interfaces (APIs)
 Common Object Model (COM)
applications
 improving performance
automation objects
bindings
 early
 Type Libraries 2nd
 late
 IDispatch interface
browsers
 Internet Explorer
Common Object Model (COM) 2nd 3rd 4th 5th 6th 7th
control
 ActiveX
distributing
 objects
 Common Object Model (COM) 2nd 3rd 4th 5th 6th
functions
 GetIDsOfNames() 2nd
 Invoke()
 win32.com.client.Dispatch()
functionsÓ
 Ò
GetIDsOfNames() function 2nd
identifiers
 Interface (IID)
 Universally Unique (UUID)
IDispatch interface 2nd
IIDÓ
 Ò
improving
 performance, programs
InProc object
Interface Identifiers (IIDs)
interfaces
 application program (API)
 Common Object Model (COM)

 Common Object Model (COM) 2nd 3rd
 IDispatch 2nd
 IPropertyPage
 IStorage
 IStream
 IUnknown 2nd
interfacing
 objects
 Common Object Model (COM) 2nd 3rd 4th 5th 6th
Internet
 browsers
 Internet Explorer
Internet Explorer
Invoke() function
IPropertyPage interface
IStorage interface
IStream interface
IUnknown interface 2nd
late bindings
 IDispatch interface
libraries
 Type
LocalServer object
methods
 accessing
 objects
 AddRef()
 IUnknown interface 2nd
 QueryInterface()
 Release()
methodsÓ
 Ò
Microsoft Remote Data Service (RDS)
models
 Common Object (COM) 2nd 3rd 4th 5th 6th 7th
objects
 accessing methods and properties
 ActiveX Data (ADO) 2nd
 automation
 InProc
 interfacing and distributing
 Common Object Model (COM) 2nd 3rd 4th 5th 6th
 LocalServer
performance
 applications
 improving
programs

 improving performance
properties
 accessing
 objects
QueryInterface() method
RDSÓ
 Ò
Registry
 Common Object Model (COM) object storage
Release() method
Remote Data Service (RDS)
services
 Microsoft Remote Data (RDS)
software
 improving performance
speed
 applications
 improving
storage
 Common Object Model (COM) objects, Windows Registry
Type Libraries
Universally Unique Identifiers (UUIDs)
UUIDÓ
 Ò
win32.com.client.Dispatch() function
Windows
 Registry
 Common Object Model (COM) object storage

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 7. Objects Interfacing and Distribution >
Implementing COM Objects in Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147035189205032045199079

Implementing COM Objects in Python

In order to implement COM objects in the Python version of Windows, you need a set of extensions developed
by Mark Hammond and Greg Stein. Part of the win32com package, these extensions enable you to do
everything that is COM-related, including writing COM clients and COM servers.

The following link takes you to the download page of these extensions:

http://www.python.org/download/download_windows.html

All the Win32 extensions (including the COM extensions) are part of the win32all installation package. This
package also installs the PythonWin IDE in your machine.

The latest version of this whole package is located at the win32all home page. Search for the win32all.exe
file:

http://www.python.org/windows/win32all/

You can also go directly to Mark Hammond's starship home page, which might have more recent beta releases
of this package:

http://starship.python.net/crew/mhammond/

After installing the package in your machine, take a look at the readme.htm file, which is stored at the
win32com directory.

COM support for Python is compounded of the core PythonCOM module, which supports the C++ code, and
the other modules that implement helper code in Python. The whole package is known as win32com.

The win32com Package

The win32com support is standalone, as it does not require PythonWin. The win32com package itself does
not provide any functionality. Some of the modules contained in this package are

win32com.pythoncom— Provides core C++ support for COM objects and exposes COM object
methods, such as QueryInterface() and Invoke(), just as the C++ API does. Note that
all the reference counting is automatically done for you. Programmers rarely access this module

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=133
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A37%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=133&now=5%2F31%2F2002+4%3A37%3A13+PM
http://www.python.org/download/download_windows.html
http://www.python.org/windows/win32all/
http://starship.python.net/crew/mhammond/

directly. Instead, they usually use the win32com wrapper classes and functions written in
Python to provide a nice, programmable interface.

win32com.client— Provides support for COM clients (for example, using Python to start
Microsoft Excel and create a spreadsheet). The COM client support enables Python to manipulate
other COM objects via their exposed interfaces. All client-side IUnknown-derived objects,
including IDispatch, are supported.

win32com.server— Provides support for COM servers (for example, creating and registering a
COM server object in Python and using a language such as Visual Basic or Delphi to access the
Python objects). The COM server support enables Python to create COM servers, which can be
manipulated by another COM client. All server-side IUnknown-derived objects are supported.

win32com.axscript— This is the ActiveX Scripting implementation for Python.

win32com.axdebug— This is the Active Debugging implementation for Python.

win32com.mapi— Provides utilities for working with MAPI and the Microsoft Exchange
Server.

Talking to Windows Applications

The COM technology has been part of the Windows world for a long time. The COM genealogy can be traced
back to DDE (Dynamic Data Exchange). DDE was the first device for transferring data between various
applications in a multi-tasking computer. After some time, DDE was expanded to Object Linking and
Embedding (OLE)—note that COM was invented as part of OLE. The creation of the Visual Basic Extensions
(VBXs) enhanced the OLE technology for visual components, originating a new standard called OLE2, which
was based on top of COM. Soon, the OLE2 technology became more integrated with COM, which is a general-
purpose mechanism. Nowadays, COM is mostly known, in part, because of the ActiveX technology.

Professional applications such as Microsoft Office and the Netscape browser enable you to control their objects
using COM. Therefore, programs written in Python can be easily used to control those applications.

COM passes string objects as Unicode characters. Before using these objects in Python, it's necessary to convert
them to strings. The Python-2.0 Unicode string type is not the same as the string type, but it is easy to convert
between the two.

PythonWin comes with a basic COM browser (Python Object browser). This program helps you to identify the
current objects in your system that implement COM interfaces.

To run the browser, select it from the PythonWin Tools menu, or double-click on the file
win32com\client\combrowse.py.

Note that there are other COM browsers available, such as the one that comes with the Microsoft Visual C++.

If you study the file \python\win32com\servers\interp.py, which is installed as part of your
PythonWin distribution, you will learn how to implement a very simple COM server. This server exposes the
Python interpreter by providing a COM object that handles both the exec and eval methods. Before using
this object, register it by running the module from Python.exe. Then, from Visual Basic, use
CreateObject('Python.Interpreter') to initialize the object, and you can start calling the methods.

Word and Excel

Let's quit talking and get to some practicing. Our objective here is to open and manipulate Microsoft
applications from Python.

The first thing that you need to do is to import the COM client and dispatch the right object. In the next
example, a variable is assigned a reference to an Excel application:

>>> import win32com.client
>>> xl = win32com.client.Dispatch("Excel.Application")

The following does the same thing, but this time the reference is to a Word application.

>>> wd = win32com.client.Dispatch("Word.Application")

Excel.Application and Word.Application are the Program IDs (progid), which are the names of the
objects for which you want to create an instance. Internally, these objects have a Class ID (clsid) that uniquely
registers them in the Windows Registry. The matching table between progids and clsids is stored in the
Windows Registry and the matching is performed by the COM mechanism.

It is not an easy job to identify an application progid, or to find out object methods and attributes. You can use
COM browsers to see what applications have COM interfaces in your system.

For the Microsoft Products, you can take a look at the documentation; it is a good source of information.

Not necessarily every COM object implements the same interface. However, there are similarities.

For example, if the previous assignments have just created the objects and you want to make them visible, you
have to type

>>> xl.Visible = 1 # Sets the visible property for the Excel application
>>> wd.Visible = 1 # Sets the visible property for the Word application

To close both programs and release the memory, you need to say

>>> xl = None
>>> wd = None

or, you could use

>>> del xl, wd

These were simple examples of implementing COM clients in Python. Next, we will see how to implement a
Python COM server by creating a Python interface that exposes an object. The next block of code registers the
interface in the Windows Registry.

Note that every new COM object that you create must have a unique clsid, but you don't have to worry about it.
The complex algorithm that works behind the scenes is ready to generate a unique identification, as shown here:

>>> import pythoncom
>>> print pythoncom.CreateGuid()

Your COM server is defined next. You have to execute the program in order to make the COM object available
in the system. Store it on a file, and double-click on it.

 1: class TaxApplication:
 2: _public_methods_ = ['PAtax']
 3: _reg_progid_ = "Tax.Application"
 4: _reg_clsid_ = "{D2DEB6E1-3C6D-11D4-804E-0050041A5111}"
 5:
 6: def PAtax(self, amount, tax=0.07):
 7: return amount + (amount * tax)
 8:
 9: if __name__=='__main__':
10: print "Registering COM server"
11: import win32com.server.register
12: win32com.server.register.UseCommandLine(TaxApplication)

Line 2: Exposes the method to be exported.

Line 3: Defines the name that the COM client application must use to connect to the object.

Line 4: Defines the unique Class ID (clsid) used by the object.

Line 12: Registers the TaxApplication class.

In order to test the program, we need to have an external COM client. Let's use the Visual Basic for
Applications Editor, which is present in both Excel and Word.

Open your Microsoft application, type ALT+F8 in the Macro dialog box, and select the option that creates a
macro. Now, you need to type the following block of code:

Sub Tax()

 Set TaxApplication = CreateObject("Tax.Application")
 newamount = TaxApplication.PAtax(100)
 MsgBox newamount
 Set TaxApplication = Nothing

End Sub

Now, if you press F5, Visual Basic should display a message box showing the result of our simple tax
operation, which, in our case, is 107.

To unregister your COM object you can either pass the argument --unregister when calling your script, or
you can use the following line of code inside your Python program:

>>> win32com.server.register.UnregisterClasses(TaxApplication)

A very comprehensive example of using Microsoft Word and Excel is stored in the testMSOffice.py file,
which is part of your PythonWin distribution. It's worth checking out!!!

Word

The following code implements a simple wrapper for the Microsoft Word Application. To test it you need to
create a Word document and replace its path in the code. The program will open this file, replace the first
occurrence of the string "#name#" within the file, add a small bit of text to the end of the line, and print the
file.

import win32com.client
False = 0
True = -1
wdLine = 5

class WordApp:
 def __init__(self):
 self.app = win32com.client.Dispatch("Word.Application")
 def open(self, document_file):
 self.app.Documents.Open(document_file)
 def replace(self, source_selection, new_text):
 self.app.Selection.HomeKey(Unit=wdLine)
 self.app.Selection.Find.Text = source_selection
 self.app.Selection.Find.Execute()
 self.app.Selection.TypeText(Text=new_text)
 def addtext(self, new_text):
 self.app.Selection.EndKey(Unit=wdLine)
 self.app.Selection.TypeText(Text=new_text)
 def printdoc(self):
 self.app.Application.PrintOut()
 def close(self):
 self.app.ActiveDocument.Close(SaveChanges =False)

worddoc = WordApp()
worddoc.open(r"s:\ template.doc")
worddoc.replace("#name#", "Andre Lessa")
worddoc.addtext(" What do you want to learn ?")
worddoc.printdoc()
worddoc.close

If you type in the name of the object's attribute that accesses the Dispatch method, you get as a result, the
COM object name:

>>> worddoc.app
<COMObject Word.Application.>

This object is an example of a dynamic dispatch object. The provided name indicates that the object is a generic
COM object, and affirms that Python doesn't know anything about it, except the name that you used to create it.
All the information about this object is built dynamically.

Besides dynamic dispatches, you can also use static dispatches, which involve the generation of a .py file that
contains support for the specific COM object. In CORBA speak, this is called stub generation, or IDL
compilation.

In order to generate the Python files that support a specific COM object, you need to execute
win32com\client\makepy.py. A list of Type Libraries will be displayed. Select one (for example,
'Microsoft Word 8.0 Object Library') and click OK. You can also call the makepy.py program directly from the
command prompt by typing makepy.py "Microsoft Word 8.0 Object Library".

Now, Python knows exactly how to handle the interfaces before invoking the COM object. Although, you can't
see any differences, you can check that Python really knows something else now by querying the COM object:

>>> import win32com.client
>>> wd=win32com.client.Dispatch("Word.Application")
>>> wd
<win32com.gen_py.Microsoft Word 8.0 Object Library._Application>

Note that Python knows the explicit type of the object now.

All the compiled information is stored in a file in the win32com/gen_py directory. You probably won't
understand the filename because it is encoded. Actually, you don't need to use this file at all. All the interface
information is made available via win32com.client.Dispatch and
win32com.client.constants.

If you really need to identify the name of the module that was generated, you can use the
win32com.client.gencache module. This module has two functions: GetModuleForCLSID and
GetModuleForProgID that return Python module objects you can use in your code.

makepy.py also automatically installs all generated constants from a library of types in an object called
win32com.clients.constants. After creating the object, all the constants become available to you.

In the previous example, we had to initialize the constant wdLine, because the constants were not available.
Now, after running makepy.py, you can replace the line

self.app.Selection.EndKey(Unit=wdLine)

with

self.app.Selection.EndKey(Unit=win32com.clients.constants.wdLine)

and remove the initialization line

wdLine = 5

The next example uses the wdWindowStateMaximize constant to maximize Microsoft Word:

>>> w.WindowState = win32com.client.constants.wdWindowStateMaximize

Excel

Next, we'll see how to create COM clients using Microsoft Excel. The principle is very simple. Actually, it is
the same one used previously for wrapping Microsoft Word, as it is demonstrated in the following example.

>>> import win32com.client
>>> excelapp = win32com.client.Dispatch("Excel.Application")
>>> excelapp.Visible = 1

Note that we have to change the Visible property in order to see the Excel application. The default behavior
is to hide the application window because it saves processor cycles. However, the object is available to any
COM client that asks for it.

As you can see in the example, Excel's progid is Excel.Application.

After you create the Excel object, you are able to call its methods and set its properties. Keep in mind that the
Excel Object Model has the following hierarchy: Application, WorkBook, Sheet, Range, and Cell.

Let's play a little with Excel. The following statements write to the workbook:

>>> excelapp.Range("A1:C1").Value = "Hello", "Python", "World"
>>> excelapp.Range("A2:A2").Value = 'SPAM! SPAM! SPAM!'

Note that you can also use tuples to transport values:

>>> excelapp.Range("A1:C1").Value = ('Hello', 'Python', 'World')

To print a selected area, you need to use the PrintOut() method:

>>> excelapp.Range("A1:C1").PrintOut()

What about entering date and time information? The following examples will show you how to set the
Date/Time format for Excel cells.

First, call Excel's time function:

>>> excelapp.Cells(4,3).Value = "=Now()"
>>> excelapp.Columns("C").EntireColumn.AutoFit()

The AutoFit() function is required in order to display the information, instead of showing "#######".

Now, use Python to set the time you want:

>>> import time, pythoncom
>>> excelapp.Cells(4,1).Value = pythoncom.MakeTime(time.time())
>>> excelapp.Range("A4:A4").NumberFormat = "d/mm/yy h:mm"
>>> excelapp.Columns("A:C").EntireColumn.AutoFit()

Note that the Cells() structure works like a numeric array. That means that instead of using Excel's notation
of letters and numbers, you need to think of the spreadsheet as a numeric matrix.

Visual Basic

In order to implement a COM object using Python you need to implement a Python class that exposes the
functionality to be exported. It is also necessary to assign two special attributes to this class, as required by the
Python COM implementation.

The first attribute is the Class ID (_reg_clsid_). This attribute must contain a UUID, which can be
generated by calling the pythoncom.CreateGuid() function. The other attribute is a friendly string that
you will use to call the COM object (_reg_progid_), as follows:

class COMCalcServer:
 _reg_clsid_ = '{ C76BEA61-3B39-11D4-8A7C-444553546170} '

 _reg_progid_ = 'COMCALCSERVER.VERSION1'
 _public_methods_ = ['mul','div','add','sub']
 …

Other interesting attributes are

● _public_methods—A list of all method names that you want to publicly expose to remote COM
clients.

● _public_attrs—A list of all attribute names to be exposed to remote COM clients.

● _readonly_attrs—A list of all attributes that can be accessed, but not set. This list should be a
subset of the list exposed by _public_attrs.

After creating the class, you need to register your COM object. The general technique is to run the module that
implements the COM object as a script, in order to register the object:

if __name__ == '__main__':
 import win32com.server.register
 win32com.server.register.UseCommandLine(COMCalcServer)

Notice that you need to inform the class object, and not a class instance. After the UseCommandLine()
function has been successfully executed, the following message is returned by the Python interpreter:

Registered: COMCALCSERVER.VERSION1

When you have your COM object up and running, any automation-capable language, such as Python, Visual
Basic, Delphi, or Perl, can use it.

The following example is a complete program that implements a calculator. First, you need to collect the unique
IDs for your class:

Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import pythoncom
>>> print pythoncom.CreateGuid()
<iid:{C76BEA60-3B39-11D4-8A7C-444553546170}>

After informing the new clsid value to the _reg_clsid_ attribute, we have the following program:

File: comcalcserver.py

class COMCalcServer:
 _reg_clsid_ = '{C76BEA61-3B39-11D4-8A7C-444553546170}'
 _reg_progid_ = 'COMCALCSERVER.VERSION1'
 _public_methods_ = ['mul','div','add','sub']
 def mul(self, arg1, arg2):
 return arg1 * arg2
 def div(self, arg1, arg2):
 return arg1 / arg2
 def add(self, arg1, arg2):
 return arg1 + arg2
 def sub(self, arg1, arg2):
 return arg1 - arg2

if __name__ == '__main__':
 import win32com.server.register
 win32com.server.register.UseCommandLine(COMCalcServer)

Make sure that all methods are included in the _public_methods_. Otherwise, the program will fail. Now,
go to the DOS prompt and execute the program to register the COM object:

C:\python>c:\progra~1\python\python comcalcserver.py
Registered: COMCALCSERVER.VERSION1

To create the Visual Basic COM client, you need to create a Visual Basic Form that contains all the
implementation details (see Figure 7.1).

Figure 7.1. A design for creating the Visual Basic Form.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#7.html

Most of the time, the initialization steps are stored in the Form_Load section in order to be executed when the
application starts:

Dim COMCalcServer as Object
Set COMCalcServer = CreateObject("COMCALCSERVER.VERSION1")

Remember to always deallocate the objects before exiting the application. It's good practice to do it in the
Form_Unload section:

Set COMCalcServer = Nothing

Public COMCalcServer As Object
Private Sub Form_Unload(Cancel As Integer)
 Set COMCalcServer = Nothing
End Sub

Sub InitCOMCalcServer()
 Set COMCalcServer = CreateObject("COMCALCSERVER.VERSION1")
 Exit Sub
End Sub

Private Sub Command1_Click()
 Dim result As Double
 result = COMCalcServer.Mul(Val(Text1), Val(Text2))
 MsgBox Text1 & "*" & Text2 & "=" & Str(result)
End Sub
Private Sub Command2_Click()
 Dim result As Double
 result = COMCalcServer.Div(Val(Text1), Val(Text2))
 MsgBox Text1 & "/" & Text2 & "=" & Str(result)
End Sub
Private Sub Command3_Click()
 Dim result As Double
 result = COMCalcServer.Add(Val(Text1), Val(Text2))
 MsgBox Text1 & "+" & Text2 & "=" & Str(result)
End Sub
Private Sub Command4_Click()
 Dim result As Double
 result = COMCalcServer.Sub(Val(Text1), Val(Text2))
 MsgBox Text1 & "-" & Text2 & "=" & Str(result)
End Sub

Private Sub Form_Load()
 Text1 = 0
 Text2 = 0
 Command1.Caption = "Mul"
 Command2.Caption = "Div"
 Command3.Caption = "Add"
 Command4.Caption = "Sub"
 InitCOMCalcServer
End Sub

While executing the application (see Figure 7.2), your Visual Basic application will be talking to the Python
COM object behind the scenes.

Figure 7.2. A Visual Basic executable running.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#8.html

The next example is based on the previous one. This one implements a callback function. The VB program calls
a Python function that clearly manipulates the Visual Basic Form object.

You need to add or replace the following functions in the Visual Basic code:

Sub InitCOMCalcServer()
 Set COMCalcServer = CreateObject("COMCALCSERVER.VERSION2")
 Exit Sub
End Sub

Private Sub Form_Load()
 Text1 = 0
 Text2 = 0
 Command1.Caption = "Mul"
 Command2.Caption = "Div"
 Command3.Caption = "Add"
 Command4.Caption = "Sub"
 InitCOMCalcServer
 COMCalcServer.updatecaption Me
End Sub

The following new function must be created in the Python code, too. The VB function call uses the keyword Me
to send a reference of the Form object to Python's updatecaption() method:

def updatecaption(self, object):

 Form = win32com.client.Dispatch(object)
 Form.Caption = "Python COM Routine is Active"

The following code is a full replacement to be used with this example. Remember to create a new
_reg_clsid_ for this new example.

File: comcalcserver2.py

class COMCalcServer:
 _reg_clsid_ = '{ C76BEA64-3B39-11D4-8A7C-444553546170} '
 _reg_progid_ = 'COMCALCSERVER.VERSION2'
 _public_methods_ = ['mul','div','add','sub', 'updatecaption']
 def mul(self, arg1, arg2):
 return arg1 * arg2
 def div(self, arg1, arg2):
 return arg1 / arg2
 def add(self, arg1, arg2):
 return arg1 + arg2
 def sub(self, arg1, arg2):
 return arg1 - arg2
 def updatecaption(self, object):
 import win32com.client
 Form = win32com.client.Dispatch(object)
 Form.Caption = "Python COM Routine is Active"

if __name__ == '__main__':
 import win32com.server.register
 win32com.server.register.UseCommandLine(COMCalcServer)

The result of running this example is shown in Figure 7.3.

Figure 7.3. Python/Visual Basic callback implementation.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#9.html

Every script that defines a COM class can be used to unregister the class, too. Python automatically knows that,
when you pass the argument --unregister to the script, you want to remove all the references to this class
from the Windows Registry.

C:\python>python comcalcserver2.py --unregister
Unregistered: COMCALCSERVER.VERSION2

Handling Numbers and Strings

Whenever you have a Python method as part of a COM server interface that returns a number or a string, as
shown in the next few lines of code:

def GetNumber(self):
 return 25

def GetString(self, name):
 return 'Your name is %s'% name

The COM client written in Visual Basic must handle the methods as follows

Dim num as Variant
num = Server.GetNumber
Dim str as Variant
str = Server.GetString("Andre")
MsgBox str

Python and Unicode do not really work well together in the current version of Python. All strings that come
from COM will actually be Unicode objects rather than string objects. In order to make the previous code work
in a COM environment, the last line of the GetString() method must become

return 'Your name is %s'% str(name)

The conversion of the "name" to "str(name)" forces the Unicode object into a native Python string object.
In Python-2.0, if the win32com stuff starts using native Python Unicode strings, the str() call will cause the
Unicode string to be reencoded in UTF8.

Handling Lists and Tuples

When you have a Python method as part of a COM server interface that returns a list or a tuple, as illustrated in
the next example:

def GetList(self):
 return [1,2,3,4]

The COM client written in Visual Basic must handle the method as follows:

Dim arry as Variant
arry = Server.GetList
Debug.Print UBound(arry)
For Each item in arry
Debug.Print item
Next

Delphi

Using Delphi to implement a COM client is very similar to using Visual Basic. First, you need to register the
COM class. The following code is similar to the one used for the Visual Basic example.

File: comcalcserver.py

class COMCalcServer:
 _reg_clsid_ = '{ C76BEA61-3B39-11D4-8A7C-444553546170} '

 _reg_progid_ = 'COMCALCSERVER.VERSION1'
 _public_methods_ = ['mul','div','add','sub']
 def mul(self, arg1, arg2):
 return arg1 * arg2
 def div(self, arg1, arg2):
 return arg1 / arg2
 def add(self, arg1, arg2):
 return arg1 + arg2
 def sub(self, arg1, arg2):
 return arg1 - arg2

if __name__ == '__main__':
 import win32com.server.register
 win32com.server.register.UseCommandLine(COMCalcServer)

Now, you need to create a Delphi form to support all the COM client activities (see Figure 7.4).

Figure 7.4. Delphi design: A form with three Edit boxes and four buttons.

unit Calcform;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls, OLEAuto;

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#13.html

type
 TForm1 = class(TForm)
 Button1: TButton;
 Edit1: TEdit;
 Edit2: TEdit;
 Edit3: TEdit;
 Button2: TButton;
 Button3: TButton;
 Button4: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 procedure Button4Click(Sender: TObject);
 procedure Button3Click(Sender: TObject);
 procedure Button2Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;

var
 Form1: TForm1;
 COMCalcServer: Variant;
implementation

{ $R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 try
 COMCalcServer := CreateOleObject('COMCALCSERVER.VERSION1');
 Form1.Caption := 'Python COM Routine is Active';
 Edit1.text := '';
 Edit2.text := '';
 Edit3.text := '';
 Button1.Name := 'mul';
 Button2.Name := 'div';
 Button3.Name := 'add';
 Button4.Name := 'sub';

 except
 MessageDlg('An error has happened!', mtError, [mbOk],0);
 Application.Terminate;
 end;
end;

procedure TForm1.Button1Click(Sender: TObject);
var tmp1float, tmp2float : Real;

 tmp3string : String;
begin
 tmp1float := StrToFloat(Edit1.text);
 tmp2float := StrToFloat(Edit2.text);
 tmp3string := FloatToStr(COMCalcServer.mul(tmp1float, tmp2float));
 Edit3.text := tmp3string;
end;

procedure TForm1.Button2Click(Sender: TObject);
var tmp1float, tmp2float : Real;
 tmp3string : String;
begin
 tmp1float := StrToFloat(Edit1.text);
 tmp2float := StrToFloat(Edit2.text);
 tmp3string := FloatToStr(COMCalcServer.div(tmp1float, tmp2float));
 Edit3.text := tmp3string;
end;

procedure TForm1.Button3Click(Sender: TObject);
var tmp1float, tmp2float : Real;
 tmp3string : String;
begin
 tmp1float := StrToFloat(Edit1.text);
 tmp2float := StrToFloat(Edit2.text);
 tmp3string := FloatToStr(COMCalcServer.add(tmp1float, tmp2float));
 Edit3.text := tmp3string;
end;

procedure TForm1.Button4Click(Sender: TObject);
var tmp1float, tmp2float : Real;
 tmp3string : String;
begin
 tmp1float := StrToFloat(Edit1.text);
 tmp2float := StrToFloat(Edit2.text);
 tmp3string := FloatToStr(COMCalcServer.sub(tmp1float, tmp2float));
 Edit3.text := tmp3string;
end;

end.

After compiling and running the application, you should see the interface shown in Figure 7.5.

Figure 7.5. Delphi Calculator Application.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/133#14.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

_public_attrs() attribute
_public_methods() attribute
_readonly_attrs() attribute
applications
 Excel
 opening and manipulating from Python 2nd 3rd 4th 5th 6th
 transferring data between
 win32all
 win32com 2nd 3rd
 Word
 opening and manipulating from Python 2nd 3rd 4th 5th 6th
attributes
 _public_attrs()
 _public_methods()
 _readonly_attrs()
AutoFit() function
calculator object
 source code 2nd 3rd 4th 5th 6th
Cells() function
changing
 Visible property
clients
 Common Object Model (COM)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=133

 creating clients, Excel 2nd 3rd
 importing
closing
 Excel and Word
code
 calculator object 2nd 3rd 4th 5th 6th
Common Object Model (COM) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
creating
 Common Object Model (COM) clients
 Excel 2nd 3rd
 Python interfaces to expose objects 2nd
data
 transferring between applications
Date/Time format
 setting 2nd
Delphi programming language
 implementing Common Object Model (COM) objects 2nd
disabling
 registration
 Common Object Model (COM) objects
Dispatch method
dispatches
 static
distributing
 objects
 Common Object Model (COM) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
dynamic dispatch object
editing
 Visible property
Excel
 opening and manipulating from Python 2nd 3rd 4th 5th 6th
exiting
 Excel and Word
exposing
 objects, creating Python interfaces 2nd
finding
 generated modules
formats
 Date/Time
 setting 2nd
functions
 AutoFit()
 Cells()
 Pythoncom.CreateGuid()
generating
 modules
 identifying
Hammond, Mark
handling
 numbers 2nd
 strings 2nd
identifying

 generated modules
implementing
 objects
 Common Object Model (COM) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 Python Common Object Model (COM) server 2nd
 wrappers
 Word 2nd
importing
 Common Object Model (COM) client
interfacing
 objects
 Common Object Model (COM) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
librariesÓ
 Ò
makepy.py module
methods
 Dispatch
 PrintOut()
models
 Common Object (COM) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
modifying
 Visible property
modules
 generated
 identifying
 makepy.py
 win32.com.client.gencache
modulesÓ
 Ò
numbers
 handling 2nd
objects
 calculator
 source code 2nd 3rd 4th 5th 6th
 dynamic dispatch
 exposing, creating Python interfaces 2nd
 interfacing and distributing
 Common Object Model (COM) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
PrintOut() method
programming languages
 Delphi
 implementing Common Object Model (COM) objects 2nd
 Visual Basic (VB)
 implementing Common Object Model (COM) objects 2nd 3rd 4th 5th
programs
 Excel
 opening and manipulating from Python 2nd 3rd 4th 5th 6th
 transferring data between
 win32all
 win32com 2nd 3rd
 Word
 opening and manipulating from Python 2nd 3rd 4th 5th 6th

properties
 Visible
 changing
Pythoncom.CreateGuid() function
quitting
 Excel and Word
searching
 generated modules
servers
 Python Common Object Model (COM)
 implementing 2nd
setting
 Data/Time format 2nd
software
 Excel
 opening and manipulating from Python 2nd 3rd 4th 5th 6th
 transferring data between
 win32all
 win32com 2nd 3rd
 Word
 opening and manipulating from Python 2nd 3rd 4th 5th 6th
source code
 calculator object 2nd 3rd 4th 5th 6th
static dispatches
Stein, Greg
strings
 handling 2nd
testing
 Python interfaces 2nd
 wrappers
 Word
transferring
 data between applications
transporting
 values
 tuples
tuples
 transporting values
turning off
 registration
 Common Object Model (COM) objects
unregistering
 Common Object Model (COM) objects
values
 transporting
 tuples
Visible property
 changing
Visual Basic (VB) programming language
 implementing Common Object Model (COM) objects 2nd 3rd 4th 5th
win32.com.client.gencache module
win32all package

win32com package 2nd 3rd
Windows
 transferring data between applications
Word
 opening and manipulating from Python 2nd 3rd 4th 5th 6th
wrappers
 Word
 implementing 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 7. Objects Interfacing and
Distribution > Distributing Objects with Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147035189200148107205159

Distributing Objects with Python

There are some other packages that enable you to talk to other programs on platforms without COM
support. As for the object distribution models, Python has many projects currently being developed.

The Inter-Language Unification system (ILU) is a free and stable multi-language object interface
system.

The Object Request Broker is the mechanism that lets objects transparently make requests to—and
receive from—other objects located locally or remotely. The ORB component is also commonly
referred to as CORBA, which stands for Common Object Request Broker Architecture. omniORBpy is
an almost complete implementation of the current Python CORBA mapping.

Fnorb is an Object Request Broker (ORB) that is compliant with the CORBA 2.0 specification from the
Object Management Group (OMG). Fnorb implements a single language mapping from OMG IDL to
Python. This implementation is excellent for those who want to learn CORBA. Another project worth
mentioning is the ORBit-python project, which a binding for ORBit, the CORBA orb used by GNOME
and some other projects.

DCOM is the COM technology that distributes objects between different machines on the network. It
defines a protocol that enables software components to communicate directly over a network in a
reliable, secure, and efficient manner.

The Object Management Facility (OMF) is an object-oriented middleware environment for the process
automation area. Even though it doesn't contain any Python code, it is heavily tested using Python
scripts. The object model used by OMF is similar to other distributed object systems, such as OMG's
CORBA and Xerox's ILU. OMF is implemented in C++, with APIs for other languages, including
Python. It is said that the Python API was primarily created for writing test programs, but it has since
been used to write various tools for application development and runtime management.

Hector is a distributed object system developed at the University of Queensland, Australia. It is written
almost entirely in Python. Hector attempts to provide application objects with a consistent
environment, regardless of their physical location, through a series of transparencies.

Inter-Language Unification (ILU)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=134
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A37%3A48+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=134&now=5%2F31%2F2002+4%3A37%3A48+PM

The Inter-Language Unification system (ILU) is a free and stable multi-language object interface
system, whose interfaces hide implementation distinctions between different languages, address spaces,
and operating system types. ILU can be used to build multilingual, object-oriented class libraries with
well-specified, language-independent interfaces. It can also be used to implement distributed systems
and to define and document interfaces between the modules of nondistributed programs. ILU interfaces
can be specified in either the OMG's CORBA Interface Definition Language (OMG IDL) or ILU's
Interface Specification Language (ISL).

ILU is primarily about interfaces between modules of program structure. Each module encapsulates the
part of a program that has high adhesion internally and low connection to other parts of the program.
The main goal of ILU is to create object-oriented interfaces that can communicate with those modules.
ILU does all the translating and communicating necessary to use all kinds of modules in a single
program. Its mechanism optimizes calls across module interfaces to involve only what it is necessary
for the calling and called modules to interact. The notion of a module should not be confused with the
independent concept of a program instance, which is translated as a combination of code and data
running in one memory image, such as the UNIX processes.

ILU standardizes many of the issues involved in providing proper inter-module independence, such as
memory management and error detection and recovery strategies. ILU also includes an implementation
of the Object Management Group's CORBA Internet Inter-Orb Protocol (IIOP), and can be used to
write CORBA services or clients, as well. ILU provides a standard notation to write its
interfaces—ISL, which stands for Interface Specification Language. ISL is a declarative language,
which can be processed by computer programs that enables you to define exceptions, constants, object
and non-object types. Next, you have a sample of what ISL looks like:

INTERFACE CalcMachine;
EXCEPTION DivideByZero;
TYPE Calculator = OBJECT
 METHODS
 SetValue (v : REAL),
 GetValue () : REAL,
 Divide (v : REAL) RAISES DivideByZero END
 END;

ILU provides a program, islscan, which can be used to check the syntax of an ISL specification,
parse the specification, and summarize it to standard output.

After you've defined an interface, you then need to supply an implementation of your module, which
can be done in any language supported by ILU.

The program python-stubber is used to read an ISL file, and generate all the Python code that is
required to support the ISL interface. One of the files generated is 'Interface.py', which
contains the definitions of all the Python types for that interface:

% python-stubber CalcMachine.isl
client stubs for interface "CalcMachine" to CalcMachine.py …
server stubs for interface " CalcMachine " to CalcMachine__skel.py …
%

To provide an implementation of your interface, subclass the generated Python class for the Calculator
class:

CalculatorImpl.py
import CalcMachine, CalcMachine__skel
class Calculator (CalcMachine__skel.Calculator):
 def __init__ (self):
 self.value = 0.0
 def SetValue (self, value):
 self.value = value
 def GetValue (self):
 return self.value
 def Divide (self, value):
 try:
 self.value = self.value / value
 except ZeroDivisionError:
 raise CalcMachine.DivideByZero

Each instance of a CalculatorImpl.Calculator object inherits from
CalcMachine__skel.Calculator, which in turn inherits from
CalcMachine.Calculator. Each has an instance variable called value, which maintains a
running total of the accumulator for that instance. We can create an instance of a
CalcMachine.Calculator object by simply calling CalculatorImpl.Calculator().

A very simple program to demonstrate the use of the CalcMachine module is listed next. To run this
program, you have to type the command python divide.py <NUMBER_TO_DIVIDE>.

File: divide.py
import CalcMachine, CalculatorImpl, sys, string

def main (argv):
 calc = CalculatorImpl.Calculator()
 if not calc:
 error("Error creating the calculator")
 calc.SetValue (10.0)
 divisor = string.atof(argv[1])
 calc.Divide(divisor)
 print "the division result is", calc.GetValue()
 sys.exit(0)
main(sys.argv)

This program would be compiled and run as follows:

% python divide.py 5.0
the division result is 2.0
%

ILU also supports the use of the interface definition language OMG IDL, defined by the Object
Management Group (OMG) for its Common Object Request Broker Architecture (CORBA). That kind
of support allows more programmers to easily use ILU because OMG's IDL uses a syntax similar to
C++. However, because CORBA doesn't implement some of the concepts found in ILU, programmers
can't implement all types of ILU interface using OMG IDL.

ILU is available for free at

ftp://ftp.parc.xerox.com/pub/ilu/ilu.html

Using ILU with Python: A Tutorial

ftp://parcftp.parc.xerox.com/pub/ilu/misc/tutpython.html

CORBA Binding and Implementation

The Object Request Broker (ORB) is the mechanism that lets objects transparently make requests
to—and receive from—other objects located locally or remotely. The ORB is the middleware that
establishes the client/server relationship between objects.

ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
ftp://parcftp.parc.xerox.com/pub/ilu/misc/tutpython.html

Using an ORB, a client object can transparently invoke a method on a server object, which can be on
the same machine or across a network. The ORB intercepts the call and is responsible for finding an
object that can implement the request, pass it the parameters, invoke its method, and return the results.
The client does not have to be aware of where the object is located, its programming language, its
operating system, or any other system aspects that are not part of an object's interface. The client is not
aware of the mechanisms used to communicate with, activate, or store the server objects. The ORB
serves as the foundation for building distributed object applications. Note that CORBA can short circuit
requests to objects in the same address space, as ILU and COM can, if the implementation supports
this.

The ORB component, or CORBA, is a set of specifications defining the ways software objects should
work together in a distributed environment. The organization that drives the specifications, the Object
Management Group (OMG), has hundreds of members representing a major portion of the software
industry. The members work together to propose, review, and finally adopt a set of specifications to
enable software objects to be developed independently and yet work together in a harmonic fashion.

The fundamental piece of CORBA is the ORB, or Object Request Broker. The ORB can be viewed like
a channel carrying objects between the clients (those that consume the objects) and the servers (those
that produce the objects). The consumers are provided with object interfaces, which are defined using a
language called the Interface Definition Language. The detailed implementation of the objects by the
producers is totally shielded from the consumers. The ORB is usually just a library that the program
links to that marshals object requests. The promised benefits of making the software objects from
different vendors publicly known made those vendors highly endorse OMG's specifications.

At the most basic level, CORBA is a standard for distributed objects. CORBA enables an application to
request that an operation be performed by a distributed object and that the results of the operation be
returned to the application making the request. The application communicates with the distributed
object performing the operation. This is basic client/server functionality, in which a client issues a
request to a server, and the server responds to the client. Data can pass from the client to the server and
is associated with a particular operation on a particular object. Data is then returned to the client in the
form of a response. Note that just like COM/DCOM, CORBA can be used to access objects that are
local to the process, machine, or non-local.

DCOM is a Microsoft-specific distribution solution, whereas CORBA products are available from
more than 20 different vendors, and they support Microsoft and non-Microsoft operating systems.
CORBA is an excellent mechanism to bridge between Microsoft desktops and UNIX servers.

There is no explicit need to choose between DCOM and CORBA. Distributed applications can be
developed using both CORBA and DCOM. For example, a client application might be developed to
access a set of OLE automation objects, and OLE automation objects might in turn access CORBA
Objects running on a non-Microsoft platform such a UNIX. The OMG has defined a COM/CORBA
interworking specification that standardizes this sort of bridging.

Note

Python can be used to create wrappers between COM and CORBA systems.

CORBA is more mature than DCOM; it has existed since 1990, and commercial implementations have
been available since 1992. DCOM wasn't available in beta form until 1996. Also, a large number of
different companies have developed CORBA ORBs. This level of competition increases the robustness
of CORBA solutions on the whole. It also ensures compatibility—a vendor's CORBA ORB is of much
greater value if it can talk to a competitor's ORBs.

One of the advantages of DCOM over CORBA is the fact that DCOM is well suited to front-end
application development. If entire distributed application runs under Microsoft platforms, DCOM
might be a good choice. DCOM can also be used with CORBA. Of course, using DCOM will lock you
into Win32 in the future, which might not be a good thing even if you are using Win32 at the moment.

The CORBA distributed object system is becoming an important standard in developing industrial-
strength client/server and Web applications. It is also used as an IPC layer between a number of
components in both the Gnome and KDE desktop environments for UNIX.

In the current development phase of the CORBA binding for Python, the OMG board of directors has
adopted the specification, and the finalization task force has completed its report. After approval, this
report will become an available specification. omniORBpy is an almost complete implementation of
the current Python/CORBA mapping. It is currently in beta, but is very stable.

More information about the omniOrbpy interface, which is provided by omniORB, can be found at

http://www.uk.research.att.com/omniORB/omniORB.html

Other interesting links for you include

CORBA IDL Parser—by Sam Rushing

http://www.nightmare.com/software.html

This parser uses Aaron Watters' kwParsing parser-generator package to construct a
CORBA IDL parser in Python.

Object Management Group

http://www.uk.research.att.com/omniORB/omniORB.html
http://www.nightmare.com/software.html

Common Object Request Broker Architecture 2.0

OMG TC Document 96.03.04, July 1995

http://www.omg.org/docs/ptc/96-03-04.ps

Python Distributed Objects Special Interest Group

http://www.python.org/sigs/do-sig/

Fnorb

Fnorb is written in Python and its framework supports only Python. The implementation provided by
this object-model helps you to learn more about CORBA systems.

Fnorb is an object request broker (ORB) compliant with the CORBA 2.0 specification from the Object
Management Group (OMG). Fnorb implements a single language mapping from OMG IDL to Python.
Because of the interpreted and interactive nature of Python, and the simplicity of the mapping (as
compared to mappings with C++ and Java), Fnorb is ideally suited as a tool for the rapid prototyping,
testing, and scripting of CORBA systems and architectures.

The pair Python/Fnorb is ideal for prototyping complex CORBA architectures, for using as a scripting
tool, and for building test harnesses for all your CORBA development projects.

The combination of Python and Fnorb provides the existing CORBA community with a much needed
tool for rapid prototyping and scripting, and gives those new to CORBA a great way to learn the
fundamental concepts without being swamped by the intricacies of a "heavyweight" language mapping.

Like ILU from Xerox PARC, Fnorb gives the Python programmer access to the wonderful world of
CORBA. It supports all CORBA 2.0 data types (including Any's) and provides a full implementation of
IIOP. Unlike ILU, Fnorb is Python and CORBA/IDL-specific, which makes it simple, lightweight, and
easy to install and use.

Using Fnorb, you no longer have to use other languages to write CORBA clients and servers—you can
use Python now. This makes Fnorb ideal for prototyping complex CORBA architectures, for use as a
scripting tool, and for building test harnesses for all your CORBA development projects.

The Python language mapping used by Fnorb is based on a specification document being prepared by
members of the DO-SIG (Distributed Objects - Special Interest Group). One goal of Fnorb is to enable
the Python community to experiment with the mapping before attempting to set it in stone via the
OMG standardization process.

http://www.omg.org/docs/ptc/96-03-04.ps
http://www.python.org/sigs/do-sig/

Fnorb is being developed at the CRC for Distributed Systems Technology based at the University of
Queensland in Brisbane, Australia. Fnorb is released under a free for non-commercial use license.
Another license must be acquired to use it commercially.

Official Fnorb home page

http://www.fnorb.org/

Jeff Rush's Fnorb Web page

http://starship.python.net/crew/jrush/Fnorb/

Provides Fnorb tips, techniques, and Linux RPMs for Fnorb.

DCOM

DCOM is Microsoft's way of distributing objects between different machines on the network. DCOM,
or Distributed Common Object Model, defines the specifications that an object must obey to
interoperate with other objects using Microsoft distributing architecture.

The core of DCOM is the Common Object Model, defined and refined from the earlier Object Link and
Embedding implementation. Started naively as a way to enable documents to be embedded or linked
into another document, OLE has completely reinvented itself.

The Common Object Model (COM) lays the foundation for objects to gain knowledge about, and to
make use of, each other; thus they can engage in so-called component-based computing. DCOM
extends the capability to include the constituent objects on other machines connected through the
network.

The Distributed Common Object Model (DCOM) is a protocol that enables software components to
communicate directly over a network in a reliable, secure, and efficient manner. Previously called
Network OLE, DCOM is designed for use across multiple network transports, including Internet
protocols such as HTTP. DCOM is based on the Open Software Foundation's DCE-RPC spec and will
work with both Java applets and ActiveX components through its use of the (COM).

DCOM enables objects to be remote from their caller, and it handles all marshalling across machines
and necessary security. Configuration tools enable an administrator to configure objects so that neither
the object nor the caller needs any changes.

The following Microsoft article takes you to the download page of the DCOM configuration tool
(dcomcnfg.exe), which was not included on the Windows 98 2nd Edition CD:

http://www.fnorb.org/
http://starship.python.net/crew/jrush/Fnorb/

http://support.microsoft.com/support/kb/articles/Q253/3/11.ASP

Sometimes, code changes can be used to explicitly control the source of objects.

OMF

Object Management Facility (OMF) is an object-oriented middleware environment for the process
automation area. It is used as the middleware foundation for several ABB [the ABB Industrial Systems
AB (Sweden)] control system applications. Although it doesn't contain any Python code, it is heavily
tested using Python scripts.

OMF includes the all-important features of an object request broker. A type definition language defines
the interface and provides mappings to multiple programming languages. Objects can be distributed
transparently on heterogeneous platforms. Furthermore, services for naming, type management,
messaging, and persistence are available. OMF contains features particularly for real-time distributed
control, such as high-speed communication, asynchronous messaging, message prioritization, and
support for different bus protocols.

OMF is a distributed object system specifically designed for the process control industry. The object
model is similar to other distributed object systems, such as OMG's CORBA and Xerox's ILU. What
makes OMF different from these is its interaction model. The OMF interaction model specifies that,
after finding a set of objects, OMF has to select what methods to call (for each object) and what
attributes to get or set. It also has to choose when to perform the operation (at request, at event,
periodically). After all this is done, OMF sends a single request for all objects.

OMF is implemented in C++, with APIs for other languages, including Python. Created for writing test
programs, Python API has since then been used to write various tools (testing tools, development tools,
and maintenance tools) to aid in application development and runtime management.

The OMF API for Python is implemented in two layers: The lower layer is written using a slightly
modified version of Jack Jensen's modulator tool, whereas the higher layer is completely written in
Python. On top of this API there are a few utility classes, such as the OMF agent, in which the agent
lets the user treat OMF objects as local Python objects with attributes and methods, as follows:

from OMFagent import Agent
Connect to an object in the network
ai = Agent('AI1.1')
Get the Analog Input's value
This will actually result in an RPC
value = ai.VALUE

http://support.microsoft.com/support/kb/articles/Q253/3/11.ASP

The Agent code is surprisingly small, but results in a drastically higher abstraction layer than the bare
OMF API. This is a rather simple class because of Python's dynamic typing.

Using Python in a Distributed Object System—by Daniel Larsson

http://www.python.org/workshops/1996-06/papers/d.larsson-dist-objs.html

Hector

Hector is a distributed object system written almost entirely in Python, taking advantage of the
language's many features.

This specification provides a communication transparency layer enabling negotiation of
communication protocol qualities, comprehensive support services for application objects, and novel
interaction architecture. Its framework sits above other distributed environments, providing open
negotiation and interoperability of communication protocols, high level description of component
services and their requirements, a rich set of support services for objects and an interaction framework
which enables the description of workflow-like interactions between autonomous objects.

Hector attempts to provide application objects with a consistent environment, regardless of their
physical location, through a series of transparencies. Designed with the goal of supporting a dynamic,
global system of distributed objects, it embraces diversity through extensibility. Specifically, it
supports the following features while maintaining transparent usage of object services:

● Multiple parties in high-level interaction bindings

● Multiple object implementation languages

● Multiple interaction models

● Multiple transport protocols

Hector is structured as four layered components representing decreasing levels of abstraction. These
layers are the Object, Language, Encapsulation (or Kernel), and Communication layers.

The initial language layer supports Python. Python Language Binding is available by default because
the visible kernel classes are actually written in Python, making the wrapper classes very simple.

Hector: Distributed Objects in Python—by David Arnold, Andy Bond, Martin Chilvers,
and Richard Taylor

http://www.python.org/workshops/1996-06/papers/d.larsson-dist-objs.html

http://www.python.org/workshops/1996-06/papers/d.arnold/paper.html

Elvin Has Left the Building: A Publish/Subscribe Notification Service with Quenching

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 Common Object Request Broker Architecture (COBRA) 2nd 3rd 4th
 Distributed Common Object Model (DCOM) 2nd 3rd 4th
 Fnorb 2nd 3rd
 Hector 2nd 3rd
 Inter-Language Unification (ILU) system 2nd 3rd 4th
 islscan
 Object Management Facility (OMF) 2nd
 Object Request Broker (ORB) 2nd 3rd 4th
 OmniORBpy 2nd
 ORBit-python project
 python-stubber
COBRAÓ
 Ò
Common Object Model (COM)
Common Object Request Broker Architecture (COBRA) 2nd 3rd 4th
DCOMÓ
 Ò
Distributed Common Object Model (DCOM) 2nd 3rd 4th
distributing
 objects 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Fnorb 2nd 3rd
Hector 2nd 3rd
ILU systemÓ
 Ò
Inter-Language Unification (ILU) system 2nd 3rd 4th
interfacing
 objects 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
islscan
models
 Common Object (COM)
Object Management Facility (OMF) 2nd
Object Request Broker (ORB) 2nd 3rd 4th
objects

http://www.python.org/workshops/1996-06/papers/d.arnold/paper.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=134

 interfacing and distributing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
OMFÓ
 Ò
OmniORBpy 2nd
ORBit-python project
ORBÓ
 Ò
programs
 Common Object Request Broker Architecture (COBRA) 2nd 3rd 4th
 Distributed Common Object Model (DCOM) 2nd 3rd 4th
 Fnorb 2nd 3rd
 Hector 2nd 3rd
 Inter-Language Unification (ILU) system 2nd 3rd 4th
 islscan
 Object Management Facility (OMF) 2nd
 Object Request Broker (ORB) 2nd 3rd 4th
 OmniORBpy 2nd
 ORBit-python project
 python-stubber
python-stubber
software
 Common Object Request Broker Architecture (COBRA) 2nd 3rd 4th
 Distributed Common Object Model (DCOM) 2nd 3rd 4th
 Fnorb 2nd 3rd
 Hector 2nd 3rd
 Inter-Language Unification (ILU) system 2nd 3rd 4th
 islscan
 Object Management Facility (OMF) 2nd
 Object Request Broker (ORB) 2nd 3rd 4th
 OmniORBpy 2nd
 ORBit-python project
 python-stubber

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 7. Objects Interfacing and
Distribution > Summary

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147044209059161205178171

Summary

This chapter explains how to use Python to interface objects from different applications on a single
machine, and across networks through distributed systems. Python has very comprehensive support for
object interfacing and distributing technologies.

COM is the most widely used component software model in the world when it comes to object
interfacing. COM provides a rich set of integrated services, a wide choice of easy-to-use tools, and a
large set of available applications.

The COM genealogy can be traced back to DDE (Dynamic Data Exchange). DDE was the first device
for transferring data between various applications in Windows. After some time, DDE was expanded to
Object Linking and Embedding (OLE). The creation of the Visual Basic Extensions (VBXs) enhanced
the OLE technology for visual components, originating a new standard called OLE2. Soon, the OLE2
technology became COM, which is a general-purpose mechanism.

Many technologies, currently in the market, are COM-based. For example, we have ActiveX, OLE,
OLEDB, ADO, and DirectX.

The entire set of information that belongs to a COM object is stored in the Windows Registry.

In order to implement COM interfaces with Python, you need to install the win32com Python
extensions developed by Mark Hammond. These extensions are part of the PythonWin installation.

The COM support for Python is made of the PythonCOM module, which supports the C++ code, and
other modules that implement helper code in Python. Known as win32com", this package provides
support for COM client and COM server interfaces. The access to objects'methods and properties can
be either by late or early binding.

PythonWin also comes with a COM browser (Python Object browser). This program helps you identify
the objects currently running on your system that offer COM interfaces.

Many kinds of software and languages, such as, Microsoft Word, Excel, Visual Basic, and Delphi
provide ways to interoperate with COM objects. Therefore, as you can see in the examples of this
chapter, it is very easy to "talk" to these objects.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=135
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A01+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=135&now=5%2F31%2F2002+4%3A38%3A01+PM

In order to implement COM object using Python, you must design a Python class that exposes the
functionality to be exported. This class must carry some special attributes that will uniquely identify the
COM interface in your system. After elaborating the class, you need to register it. The operation is
simple: It simply saves the class information in your Windows Registry. The option to unregister
classes is also available.

Python can handle its many different types of objects across COM interfacing transactions perfectly
well. Numbers, strings, core objects, lists, and tuples have implementations that handle their exposure
to the interfaces.

Python has many projects currently being developed for object distribution models.

The Inter-Language Unification system (ILU) is a free and stable multi-language object interface
system.

The Object Request Broker lets objects transparently make requests to—and receive from—other
objects located locally or remotely. The ORB component is also commonly referred to as CORBA
(Common Object Request Broker Architecture). omniORBpy is an almost complete implementation of
the current Python/CORBA mapping.

Fnorb is an Object Request Broker (ORB) compliant with the CORBA 2.0 specification from the
Object Management Group (OMG). Fnorb implements a single language mapping from OMG IDL to
Python. This implementation is excellent for those who want to learn CORBA.

DCOM is the COM technology that distributes objects between different machines on the network. It
defines a protocol that enables software components to communicate directly over a network in a
reliable, secure, and efficient manner.

The Object Management Facility (OMF) is an object-oriented middleware environment for the process
automation area. Even though it doesn't contain any Python code, it is heavily tested using Python
scripts. The object model used by OMF is similar to other distributed object systems, such as OMG's
CORBA and Xerox's ILU. OMF is implemented in C++, with APIs for other languages, including
Python. Python API was originally designed for writing test programs, but has since been used to write
various tools to aid in application development and runtime management.

Hector is a distributed object system developed at the University of Queensland, Australia. It is written
almost entirely in Python. Hector attempts to provide application objects with a consistent
environment, regardless of their physical location, through a series of transparencies.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

distributing
 objects 2nd 3rd
interfacing
 objects 2nd 3rd
objects
 interfacing and distributing 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=135

Web Development > Python Developer's Handbook > 7. Objects Interfacing and Distribution > Code
Examples

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147044209058147120159192

Code Examples

Parking Lot (File parkinglot.py)

This example generates a Python COM server that exposes a parking lot object. The example uses a Visual Basic
graphical interface to manipulate the vehicles of this parking lot. Each vehicle is a Python Object that is also
defined as a Python COM Server object.

The first thing to do is to generate two clsids: one for each object.

>>> import pythoncom
>>> print pythoncom.CreateGuid()
BD2CB7C0-3BB9-11D4-804E-0050041A5111
>>> print pythoncom.CreateGuid()
BD2CB7C1-3BB9-11D4-804E-0050041A5111

Now, we take these ids and use them to create a module.

Listing 7.1 parkinglot.py

 1: # File: parkinglot.py
 2:
 3: from win32com.server.exception import Exception
 4: import win32com.server.util
 5:
 6: class ParkingServer:
 7: _reg_clsid_ = '{ BD2CB7C0-3BB9-11D4-804E-0050041A5111} '
 8: _reg_progid_ = 'Python.ParkingServer'
 9: _public_methods_ = ['ParkVehicle', 'UnparkVehicle',
10: 'GetVehiclesCount', 'IdentifyVehicle',
11: 'GetLocationList']
12:
13: def __init__(self):
14: self.Vehicles = [Vehicle()]
15:
16: def ParkVehicle(self, floor=1, model="", license="", color=""):
17: VehicleToPark = Vehicle()
18: VehicleToPark.floor = floor

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=136
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=136&now=5%2F31%2F2002+4%3A38%3A10+PM

19: VehicleToPark.model = str(model)
20: VehicleToPark.license = str(license)
21: VehicleToPark.color = str(color)
22: self.Vehicles.append(VehicleToPark)
23:
24: def UnparkVehicle(self,index):
25: del self.Vehicles[index]
26:
27: def IdentifyVehicle(self, index):
28: return win32com.server.util.wrap(self.Vehicles[index])
29:
30: def GetLocationList(self):
31: return map(lambda x:x.GetLocation(), self.Vehicles)
32:
33: def GetVehiclesCount(self):
34: return len(self.Vehicles)
35:
36: class Vehicle:
37: _reg_clsid_ = '{ BD2CB7C1-3BB9-11D4-804E-0050041A5111} '
38: _reg_progid_ = 'Python.Vehicle'
39: _public_methods_ = ['GetLocation']
40: _public_attrs_ = ['floor','model','license','color']
41:
42: def __init__(self, floor=1, model = 'Dodge Neon',
 license = 'LKS-92020', color = 'Red'):
43: self.floor = floor
44: self.model = model
45: self.license = license
46: self.color = color
47:
48: def GetLocation(self):
49: return 'The %s %s license %s is on the %d floor'% }
50: (self.color, self.model, self.license, self.floor)
51:
52: def RegisterClasses():
53: print "Registering COM servers…"
54: import win32com.server.register
55:
56: win32com.server.register.UseCommandLine(ParkingServer)
57: print "ParkingServer Class registered."
58:
59: win32com.server.register.UseCommandLine(Vehicle)
60: print "Vehicle Class registered."
61:
62: def UnRegisterClasses():
63: print "Unregistering COM server…"
64: import win32com.server.register
65:

66: win32com.server.register.UnregisterClasses(ParkingServer)
67: print "ParkingServer Class unregistered."
68:
69: win32com.server.register.UnregisterClasses(Vehicle)
70: print "Vehicle Class unregistered."
71:
72: if __name__=='__main__':
73: import sys
74: if "-unregister" in sys.argv:
75: UnRegisterClasses()
76: else:
77: RegisterClasses()

Lines 9–11: List of methods to be exported to the COM interface.

Line 13: Initializes parking with one vehicle [object].

Lines 20–21: As COM interfaces use Unicode objects, it is necessary to convert the objects to string.

Line 28: Wraps the Python Object before sending it to the COM client.

Line 31: Calls the appropriate GetLocation() method f or each Vehicle object in the Python List. Then,
it returns a whole new list of strings.

Line 33: Counts the number of vehicles in the parking lot.

Line 52: Registers both COM servers.

Line 62: Unregisters both servers. (Unregistering them is necessary to clean up the Windows Registry.)

Line 72: Automatically registers the classes when the module is executed as a script.

Line 74: If the user calls the script at the command prompt passing the -unregister argument, the
UnRegisterClasses() methods are executed.

When you have the module stored in the file, you can double-click on the file to execute it, or you can go to a
DOS prompt and manually call it to register the server:

C:\ python parkinglot.py
Registering COM server…
ParkingServer Class registered.
Vehicle Class registered.

Listing 7.2 implements the Visual Basic 5 project that provides the client interface for our Python COM server. It

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/136#3.html

is the code for the main form.

Listing 7.2 frmMain.frm

 1: Option Explicit
 2: Public ParkingServer As Object
 3: Public newVehicle As Object
 4: Private Sub cmdPark_Click()
 5: Set newVehicle = CreateObject("Python.Vehicle")
 6: newVehicle.floor = 1
 7: newVehicle.model = ""
 8: newVehicle.license = ""
 9: newVehicle.Color = ""
10: If frmVehicle.ModifyInfo(newVehicle) Then
11: ParkingServer.ParkVehicle newVehicle.floor, newVehicle.model,
 newVehicle.license, newVehicle.Color
12: RefreshVehiclesList
13: End If
14: Set newVehicle = Nothing
15: End Sub
16:
17: Private Sub CmdUnpark_Click()
18: Dim CarSpot As Integer
19: Dim Vehicle As Object
20: If Vehicles.ListIndex = -1 Then
21: Exit Sub
22: Else
23: CarSpot = Vehicles.ListIndex
24: ParkingServer.UnparkVehicle CarSpot
25: RefreshVehiclesList
26: End If
27: End Sub
28:
29: Private Sub cmdUpdate_Click()
30: Dim CarSpot As Integer, Vehicle As Object
31: If Vehicles.ListIndex = -1 Then
32: Exit Sub
33: Else
34: CarSpot = Vehicles.ListIndex
35: Set Vehicle = ParkingServer.IdentifyVehicle(CarSpot)
36: If frmVehicle.ModifyInfo(Vehicle) Then RefreshVehiclesList
37: End If
38: End Sub
39:
40: Private Sub cmdInitializeServer_Click()
41: If ParkingServer Is Nothing Then
42: On Error GoTo cmdInitializeServer_Click_CreationError
43: Set ParkingServer = CreateObject("Python.ParkingServer")

44: On Error GoTo 0
45: lblStatus.Caption = "The ParkingServer is up and running…"
46: cmdInitializeServer.Caption = "&Stop Server"
47: Vehicles.Visible = True
48: cmdPark.Visible = True
49: CmdUpdate.Visible = True
50: CmdUnpark.Visible = True
51: Label2.Visible = True
52: lbvehicles_number.Visible = True
53: RefreshVehiclesList
54: Vehicles.ListIndex = 0
55: Vehicles.SetFocus
56: Exit Sub
57: Else
58: Vehicles.Visible = False
59: cmdPark.Visible = False
60: CmdUpdate.Visible = False
61: CmdUnpark.Visible = False
62: lbvehicles_number.Visible = False
63: Label2.Visible = False
64: Set ParkingServer = Nothing
65: cmdInitializeServer.Caption = "&Start Server"
66: lblStatus.Caption = "The ParkingServer is not running."
67: Exit Sub
68: End If
69: cmdInitializeServer_Click_CreationError:
70: MsgBox "An error has happened while initializing the ParkingServer."
71: End Sub
72:
73: Public Sub RefreshVehiclesList()
74: Dim VehiclesList As Variant, VehiclesInList As Variant,
 highlighted As Integer
75: lbvehicles_number.Caption = ParkingServer.GetVehiclesCount
76: highlighted = Vehicles.ListIndex
77: Vehicles.Clear
78: VehiclesList = ParkingServer.GetLocationList
79: For Each VehiclesInList In VehiclesList
80: Vehicles.AddItem VehiclesInList
81: Next VehiclesInList
82: If highlighted < Vehicles.ListCount Then Vehicles.ListIndex =
 highlighted
83: Vehicles.SetFocus
84: End Sub
85:
86: Private Sub Form_Load()
87: Vehicles.Visible = False
88: cmdPark.Visible = False
89: CmdUpdate.Visible = False

90: CmdUnpark.Visible = False
91: Label2.Visible = False
92: lblStatus.Caption = "The ParkingServer is not running."
93: End Sub

Lines 2–3: The Python COM Objects are declared as Objects at the Form level.

Line 14: Releases the Vehicle object from the memory.

Line 20: Check whether the list is empty.

Line 35: Calls the Python IdentifyVehicle() method, which returns a Vehicle Object according to the
indexing position (spot) provided as the function argument.

Line 76: Stores the index associated to the selected vehicle.

Line 78: Python sends a list of strings that becomes an array-type Variant.

Lines 82–83: Returns the focus to the last selected list item.

Listing 7.3 is used by the project's form, which enables you to type each vehicle's data.

Listing 7.3 frmVehicle.frm

 1: Public Function ModifyInfo(VehicleToModify As Object) As Boolean
 2: txt_floor.Text = Str(VehicleToModify.floor)
 3: txt_model.Text = VehicleToModify.model
 4: txt_license.Text = VehicleToModify.license
 5: txt_color.Text = VehicleToModify.Color
 6: Show 1
 7: VehicleToModify.floor = Val(txt_floor.Text)
 8: VehicleToModify.model = txt_model.Text
 9: VehicleToModify.license = txt_license.Text
10: VehicleToModify.Color = txt_color.Text
11: ModifyInfo = True
12: End Function
13:
14: Private Sub FormExit_Click()
15: Me.Visible = False
16: End Sub

Lines 2–5: The public attributes of the Vehicle Object, _public_attrs_, are transported to the form objects.

Lines 14–16: If you close the window, the values are not transported back to the form. You must click on the OK
button, which hides the form and brings the control back to the ModifyInfo() function.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/136#4.html

When you execute this project, you have an easy-to-use interface that connects to the COM servers and accesses
all the public methods that are implemented (see Figure 7.6).

Figure 7.6. Parking lot demonstration.

If you have problems trying to connect to the server, check whether you have registered the class from the Python
console.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/136#5.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=136

Index terms contained in this section

code
 parking lot object 2nd
objects
 parking lot
 source code 2nd
parking lot object
 source code 2nd
source code
 parking lot object 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147044209057140131254056

Chapter 8. Working with Databases
Nudge, nudge. Wink, wink. Say no more!

Sometimes, the machine's memory is not enough, and we need to store data somewhere else. That is
what this chapter talks about—it shows all the database options that Python has available. For those
who still don't know anything about databases, this chapter briefly explains how they work, and it also
lists and explains the basic SQL statements that you need to know.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=138
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A23+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=138&now=5%2F31%2F2002+4%3A38%3A23+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=138

Web Development > Python Developer's Handbook > 8. Working with Databases >
Working with Databases

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147044209056133069164150

Working with Databases

For simplicity, let's say that databases are summarized as the place where you store and update data.
Python is able to connect to a wide variety of databases.

The simplest solution to handle databases in Python is to use plain text files. A tiny variation of this
method is to store the information in binary format.

The next possible solution is to use the indexing mechanism provided by the dbm-like modules. This
mechanism provides better performance than our first option because it automatically organizes the
data. It works by implementing dictionary structures that are used to store information. This option
enables you to encode Python objects, and efficiently archive them in indexed files without having to
go through the details of parsing and unparsing the information.

For this reason, object serialization and persistence storing are also present in this chapter. Both
concepts are very helpful when it comes to storing information. Their roles are to translate Python
objects to strings before archiving them to the file system or before transferring them to another
process.

The last solution is to use "real" databases'systems by importing third-party database extension
modules, such as the native Python interfaces to MySQL, Oracle, and Sybase database systems.

If your database doesn't have a native interface to Python, don't worry. Python also offers ODBC
extensions that will enable you to connect to any database that supports ODBC, and as you know,
almost all database servers have ODBC drivers available nowadays.

In the worst-case scenario, many client/server database systems provide C libraries that connect to their
databases. If you are a dedicated hacker, you can create extension modules that talk to these C libraries
connecting to the database.

For more information about using databases versus Python, check Python's Web site at the following
URL:

http://www.python.org/topics/database/

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=139
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A32+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=139&now=5%2F31%2F2002+4%3A38%3A32+PM
http://www.python.org/topics/database/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

databases

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=139

Web Development > Python Developer's Handbook > 8. Working with Databases > Flat
Databases

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147044209056142149179093

Flat Databases

The simplest way to store any kind of information in Python is using flat files. You just need to use the
open function that we already studied in Chapter 2, "Language Review." Two options are available:
You can either store the information as simple text or as binary data.

Text Data

The next example is a straightforward case of using flat files to store and to retrieve information. First
we try to read from the file. If the file doesn't exist, it is created, and the information provided by the
user is saved on it.

filename = "myflatfile.txt"
try:
 file = open(filename, "r")
 data = file.read()
 file.close()
 print data
except IOError:
 data = raw_input("Enter data to save:")
 file = open(filename,"w")
 file.write(data)
 file.close()

Binary Data—The struct Module

The struct module is largely used to manipulate code of platform-independent binary files. It is a
good choice for handling small files. For large files, you should consider using the array module.

Binary data files are much less likely to be platform independent. Also, it is easier to extend a text file
format without breaking compatibility.

The struct module works by converting data between Python and binary data structures, which

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=140
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A39+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=140&now=5%2F31%2F2002+4%3A38%3A39+PM

normally interact using functions written in C.

This module implements only three functions: pack, unpack, and calcsize.

● pack— Takes the list of values and returns a binary object based on the formatstring
provided.

binobject = pack (formatstring, value1, value2, value3, …)

● unpack— Returns a Python tuple containing the original values. It uses the formatstring
to translate the string.

pythontuple = unpack (formatstring, string)

● calcsize— Provides the size in bytes of the structure matching the format string.

no_of_bytes = calcsize(formatstring)

The next example packs the values (1, 2, 3) into binary format based on the format string "ihb",
and later converts them back to the original values.

>>> import struct
>>> buffer = struct.pack("ihb", 1,2,3)
>>> print repr(buffer)
'\001\000\000\000\002\000\003'
>>> print struct.unpack('ihb', buffer)
(1,2,3)

Note that the binary data is represented as a Python string.

The next example is based on a binary file that stores three different objects. The first one is the
author's initial, the second one is the number of bytes used by an article written by the author, and the

last object is the article itself.

>>> import struct
>>> data = open('mybinaryfile.dat').read()
>>> start, stop = 0, struct.calcsize('cl')
>>> author, num_bytes = struct.unpack('cl', data[start:stop])
>>> start, stop = stop, start + struct.calcsize('B'*num_bytes)
>>> bytes = struct.unpack('B'*num_bytes, data[start:stop])

The next table shows the list of formatting units that can be used by this module.

Table 8.1. Formatting Units Used by the struct Module

Format C Type Python Type
b signed char Integer
B unsigned char Integer
c char String of length 1
d double Float
f float Float
h short Integer
H unsigned short Integer
i int Integer
I unsigned int Integer
l long Integer
L unsigned long Integer
p char[] String
P void * Integer
s char[] String
x pad byte No value

Are you looking for more information about handling binary data? Check out the file npstruct-
980726.zip at the following address:

http://www.nightmare.com/software.html

Sam Rushing has created an extension module useful for parsing and unparsing binary data structures.

http://www.nightmare.com/software.html

It is similar to the standard struct module, but with a few extra features (bit-fields, user-function-
fields, byte order specification, and so on), and a different API that is more convenient for streamed
and context-sensitive formats like network protocol packets, image, and sound files.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

array module
b format
B format
binary data 2nd
c format
d format
data
 binary 2nd
databases
 flat 2nd
f format
flat databases 2nd
formats
 data, struct module
h format
H format
i format
I format
l format
L format
modules
 array
 struct 2nd
p format
P format
Rushing, Sam
s format
struct module 2nd
x format

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=140

Web Development > Python Developer's Handbook > 8. Working with Databases > DBM
(Database Managers) Databases

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147044209063089000142000

DBM (Database Managers) Databases

Now, let's look at this other mechanism for storing data. The next modules store data in dbm-style format.
This format specifies a simple disk-based storage facility that handles data in a way equivalent to
dictionaries. The objects are manipulated by using unique key strings. Each of these modules is an
interface to a specific library.

dbm, gdbm, and dbhash are database modules that are part of the standard Python distribution.

Also included with the standard Python distribution is the anydbm module, which is a generic interface
to all the dbm-like modules. It uses the modules that are installed.

The dbhash module provides a function that offers a dbm-style interface to access the BSD database
library.

All these modules have some behavior in common. For example, to open the files, the following syntax is
used by all of them.

dbhandle = open(filename [, flag [,mode]])

Where, filename is the database filename; flag can have one of the following values: r (read-only access),
w (read/write access), c (create the database), n (force the creation of a new database); and mode specifies
the file access mode (specific for UNIX systems).

The following operations are supported:

dbhandle[key] = value # Set the value of a given key entry
value = dbhandle[key] # Get the value of a given key entry
dbhandle.has_key(key) # Test whether a key exists
dbhandle.keys() # Returns a list of the current keys available
del dbhandle[key] # Delete a key
dbhandle.close() # Close the file

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=141
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=141&now=5%2F31%2F2002+4%3A38%3A47+PM

For all these dbm-like modules, the keys and the values to be stored must be of type string. Later, you will
see a module called shelve with a behavior similar to these dbm-like modules. However, it stores
persistent objects.

Each module provides its own exception, which is called modulename. error.

>>> import anydbm
>>> try:
… dbhandle = anydbm.open("datafile","r")
… except anydbm.error:
… print "Error while opening file"
…
Error while opening file
>>>

This is a simplified database system based on key/value pairs. Depending on the module and the system,
it uses one or two files to store the data (for example, both gdbm and bsddb use a single file).

The disadvantage of this kind of implementation is that it is not portable. The storage format is specific to
a particular hardware platform and operating system. Also, it is not designed for large volumes of data.
The smaller the file, the better the performance. This is caused by the original specification, which wanted
information to be accessed in a single system call. After some interactions, the data file gets very
fragmented, full of data holes, which drives the performance to very low indexes. Of course, they are very
efficient when you do lots of reads and almost no writes.

If you have a data file but you don't know which database you used to create it, take a look at the
whichdb module.

The whichdb module provides a function that guesses which dbm module (dbm, gdbm, or dbhash)
should be used to open a specific database. However, using the anydbm module should take care of
guessing the format for you.

Another important fact you must know is concerning the storage size limitation of each key/value pair,
which is also known as bucket size. The dbm module accepts between 1K and 2K of data. However, both
gdbm and bsddb don't have any limitation at all.

dbm Module

The dbm module is a database interface that implements a simple UNIX dbm library access method. dbm
objects behave similar to dictionaries in which keys and values must contain string objects. This module
allows strings, which can encode any Python object, to be archived in indexed files. dbm is the original
implementation of the DBM toolkit. The main function of this module opens a dbm database and returns a
dbm object that behaves similar to a dictionary.

>>> import dbm
>>> dbhandle = dbm.open("datafile", "c")
>>> dbhandle["animal"] = "parrot"
>>> dbhandle["country"] = "Spain"
>>> dbhandle.close()
>>>
>>> dbhandle = dbm.open("datafile ", "r")
>>> for key in dbhandle.keys():
 print dbhandle[key]
parrot
Spain
>>> db.close()

gdbm Module

The gdbm module is similar to the dbm module. However, their files are incompatible. This module
provides a GNU/FSF reinterpretation of the GNU dbm library. This module supports multi-user
application, it is faster than the dbm module (the performance gets better when the number of records
increases), and it was already ported to a larger number of platforms.

Check out the GNU Web site for more details:

http://www.gnu.org/software/gdbm/gdbm.html

>>> import gdbm
>>> key = raw_input("key: ")
>>> data = raw_input("value: ")
>>> dbhandle = gdbm.open("DATABASE","w")
>>> while not(dbhandle.has_key(key)):
… dbhandle[key]=value
… key = raw_input("key: ")
… data = raw_input("value: ")
…
>>> dbhandle.close()

http://www.gnu.org/software/gdbm/gdbm.html

The gdbm module implements the following additional methods:

dbhandle.firstkey()

Returns the first key in the database.

dbhandle.nextkey(key)

Returns the next key located after the provided key.

dbhandle.reorganize()

Reorganizes the database by eliminating unused disk space that is created when deletions occur.

dbhandle.sync()

Synchronizes the database file by writing unsaved data to the disk.

If you append " f " to the flag clause in the open statement, Python opens the database in fast mode.
This means that data is not automatically saved to disk. You must call the sync method in order to save
all the unwritten information to disk. This is done to improve performance.

bsddb Module

The bsddb module is part of the standard Python distribution. In addition to the dictionary-like behavior,
this module also supports B-trees (which allows traversing the keys in sorted order), extended linear
hashing, and fixed- and variable-length records. Although this module has the more complex
implementation, this is the fastest dbm-like module.

The bsddb module provides an interface to access routines from the Berkeley db library, a C library of

database access methods copyrighted by Sleepycat Software. This library provides full transactional
support, database recovery, online backups, and separate access to locking, logging, and shared-memory
caching subsystems.

More information about the Berkeley DB package can be found at http://www.sleepycat.com.

The bsddb module implements the following open interfaces:

dbhandle = hashopen(filename [, flag [,mode]])

Handles hash format files.

dbhandle = btopen(filename [, flag [,mode]])

Handles btree format files.

dbhandle = rnopen(filename [, flag [,mode]])

Handles record-based files.

Along with the previous interfaces, this module also provides the following additional methods—these
methods are used to move a cursor across the database.

cursor = dbhandle.set_location(key)

Moves the cursor to the location indicated by the key and assigns the location's value to the cursor
variable.

cursor = dbhandle.first()

http://www.sleepycat.com/

Moves the cursor to the first element and assigns its value to the cursor variable.

cursor = dbhandle.next()

Moves the cursor to the next element and assigns its value to the cursor variable.

cursor = dbhandle.previous()

Sets the cursor to the previous element and assigns its value to the cursor variable.

cursor = dbhandle.last()

Moves the cursor to the last element and assigns its value to the cursor variable.

dbhandle.sync()

Synchronizes the database file by writing unsaved data to the disk.

These methods are not supported by the hash format databases.

Although the standard Python distribution installs the bsddb module on Windows machines, there is
another interesting Win32 port of the bsddb module, which was created by Sam Rushing. For more
information, check out http://www.nightmare.com/software.html .

dbhash Module

The dbhash module provides a "clean" open interface to the Berkeley DB hash database. Note that the
bsddb module must be installed before trying to call dbhash because the bsddb module is used to
open the databases.

The syntax to open the hash database is the same as the one used by the other dbm-like modules.

http://www.nightmare.com/software.html

dbhandle = open(filename [, flag [,mode]])

This module provides the following additional methods:

dbhandle.first()

Returns the first element.

dbhandle.last()

Returns the last element.

dbhandle.next(key)

Returns the next element after the key element.

dbhandle.previous(key)

Returns the previous element before the key element.

dbhandle.sync()

Synchronizes the database file by writing unsaved data to the disk.

Let's look at an example:

>>> import dbhash
>>> key = raw_input("key: ")

>>> data = raw_input("value: ")
>>> dbhandle = dbhash.open("DATABASE","w")
>>> while not(dbhandle.has_key(key)):
… dbhandle[key]=value
… key = raw_input("key: ")
… data = raw_input("value: ")
…
>>> dbhandle.close()

anydbm Module

The anydbm module opens (or creates) a database using the best implementation available. It searches
within the available databases using the following order: Berkeley bsddb, gdbm, and dbm. It only
loads the dumbdbm module when none of the others are available. Actually, the module doesn't know
what database packages are installed and available—it just tries to use them.

>>> import anydbm
>>> def opendatabase(filename, flag):
... try:
... dbhandle = anydbm.open(filename, flag)
... except:
... raise "Error opening file " + anydbm.error
... return dbhandle
...
>>> dbhandle = opendatabase("mydata","c")

dumbdbm Module

The dumbdbm module is a simple, portable, and slow dbm-style database implemented entirely in pure
Python. It shouldn't be used for development because it is slow, inefficient, and inconsistent. The only
case acceptable for using this module is when no other module is available.

whichdb Module

The whichdb module tries to identify which database was used to create a given file. This module
implements a function of the same name. The syntax is

dbtype = whichdb(filename)

This function returns the module name (for example, gdbm) when the format is identified.

The function returns an empty string if the format is not identified. Note that databases created using the
dumbdbm module were not supported by this module prior to Python 2.0.

The function returns None if the file doesn't exist or if it can't be opened.

import whichdb
dbtype = whichdb.whichdb("filename")

if dbtype:
 handler = __import__(result)
 dbhandle = handler.open("filename","r")
 print dbhandle.keys()
if dbtype = "":
 print "I cannot recognize this file "
if dbtype = None:
 print "An error happened while reading this file"

Note

You shouldn't need to use this module. anydbm uses whichdb to work out what module to use to
open a database.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=141

Index terms contained in this section

anydbm module 2nd
bsddb module 2nd 3rd 4th
bucket size
c value
data
 saving to disk
database managers (DBM) databases 2nd 3rd 4th 5th 6th 7th 8th
databases
 database managers (DBM) 2nd 3rd 4th 5th 6th 7th 8th
 hash
 opening
 identifying
databases:dumbdbm module
dbhash module 2nd 3rd
dbm module
disks
 saving data to
dumbdbm module
 databases
exceptions
 modules
finding
 databases
gdbm module 2nd 3rd 4th 5th
hash databases
 opening
interfaces
 open
key/value pairs
 bucket size
methods
 sync
mode value
modules
 anydbm 2nd
 bsddb 2nd 3rd 4th
 dbhash 2nd 3rd
 dbm
 dumbdbm
 databa
 exceptions
 gdbm 2nd 3rd 4th 5th
 shelve
 whichdb 2nd
n value

open interface
opening
 hash databases
r value
saving
 data to disk
searching
 databases
shelve module
sync method
syntax
 identifying databases
 opening hash databases
values
 c
 mode
 n
 r
 w
w value
whichdb module 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > Object Serialization
and Persistent Storage

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147044209062004077205006

Object Serialization and Persistent Storage

These other modules provide persistent storage of arbitrary Python objects. Whenever you need to save objects whose
value is not a simple string (such as None, integer, long integer, float, complex, tuple,
list, dictionary, code object, and so on), you need to serialize the object before sending it to a file.

Both pickle and shelve modules save serializable objects to a file.

By using these persistent storage modules, Python objects can be stored in relational database systems. These modules
abstract and hide the underlying database interfaces, such as the Sybase module and the Python Database API.

Included in the standard Python distribution, the pickle module can convert Python objects to and from a string
representation.

The cPickle module is a faster implementation of the pickle module.

The copy_reg module extends the capabilities of the pickle and cpickle modules by registering support
functions.

The marshal module is an alternate method to implement Python object serialization. It allows you to read/write
information in a platform independent binary format and convert data to/from character strings (the module only
supports the simple built-in types). Basically, it is just another way to do byte stream conversions by using
serialized Python objects. This module is used to serialize the compiled bytecode for Python modules.

This module should be used for simple objects only. Use the pickle module to implement persistent objects in
general.

Persistent Storage of Python Objects in Relational Databases is a paper by Joel Shprentz presented at the Sixth Python
Conference. For more information, check out http://www.python.org/workshops/1997-10/proceedings/shprentz.html.

pickle Module

The pickle module serializes the contents of an object into a stream of bytes. Optionally, it can save the serialized
object into a file object. It is slower than the marshal module.

>>> import pickle
>>> listobj = [1,2,3,4]
>>> filehandle = open(filename, 'w')
>>> pickle.dump(filehandle, listobj)
>>> filehandle = open(filename, 'r')

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=142
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A38%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=142&now=5%2F31%2F2002+4%3A38%3A56+PM
http://www.python.org/workshops/1997-10/proceedings/shprentz.html

>>> listobj = pickle.load(filehandle)

The next functions are the ones implemented by the pickle module.

pickle.dump(object, filename [,bin])

This function serializes and saves an object into a file. The bin argument specifies that the information must be saved
as binary data. This function is the same as the following:

p = pickle.Pickler(filename)
p.dump(object)

If an unsupported object type is serialized, a PicklingException is raised.

pickle.dumps(object [,bin])

This function has the same behavior of dump. The difference is that this one returns the serialized object.

pickle.load(file)

Restores a serialized object from a file. This function is the same as the following:

object = pickle.Unpickler(file).load()

The next example serializes the information and converts it back again.

>>> import pickle
>>> value = ("parrot", (1,2,3))
>>> data = pickle.dumps(value)
>>> print pickle.loads(data)
("parrot", (1,2,3))

cPickle Module

This module implements the same functions that the pickle module does. The difference is that cPickle is much
faster because it doesn't support subclassing of the Pickler and Unpickler objects. See the next example code. It
uses the fastest pickle module available on the system.

try:
 import cPickle
 pickle = cPickle
except ImportError:
 import pickle

copy_reg Module

This module registers new types to be used with the pickle module. It extends the capabilities of the pickle and
cPickle modules by supporting the serialization of new object types defined in C extension modules.

The next example corrects the fact that the standard pickle implementation cannot handle Python code objects. It
registers a code object handler by using two functions:

● dumpdata— Takes the code object and returns a tuple that can only contain simple data types.

● loaddata— Processes the tuple.

import copy_reg, pickle, marshal, types

def loaddata(data):
 return marshal.loads(data)

def dumpdata(code):
 return loaddata, (marshal.dumps(code),)

copy_reg.pickle(types.CodeType, dumpdata, loaddata)

script = """
x = 1
while x < 10:
 print x
 x = x - 1
"""

code = compile(script, "<string>", "exec")
codeobj = pickle.dumps(code)

exec pickle.loads(codeobj)

Note

Note that starting at Python 2.0, the copy-reg module can't be used to register pickle support for classes anymore.
It can only be used to register pickle support for extension types. You will get a TypeError exception from the
pickle() function whenever you try to pass a class to the function.

marshal Module

This module is only used to serialize simple data objects because class instances and recursive references in lists,
tuples, and dictionaries are not supported. It works similar to pickle and shelve.

This module implements the following functions:

marshal.dump(value, filename)

Writes the value in the opened filename.

marshal.load(filename)

Returns the next readable value from file.

marshal.dumps(value)

Only returns the string.

marshal.loads(string)

Returns the next readable value from string.

Errors in the value manipulation will raise a ValueError exception.

>>> import marshal
>>> value = ("spam", [1,2,3,4])

>>> data = marshal.dumps(value)
>>> print repr(data)
'(\002\000\000\000s\004\000\000\000spam[\004\000\000\000i\001\000\000\000i\002\0
00\000\000i\003\000\000\000i\004\000\000\000'
>>> print marshal.loads(data)
("spam", [1,2,3,4])

The next example handles code objects by storing precompiled Python code.

import marshal
script = """
x = 1
while x < 10:
 print x
 x = x - 1
"""

code = compile(script, "<script>", "exec")
codeobj = marshal.dumps(code)

exec marshal.loads(codeobj)

shelve Module

The shelve module is also part of the standard Python distribution. Built on top of the pickle and anydbm
modules, it behaves similar to a persistent dictionary whose values can be arbitrary Python objects.

The shelve module offers persistent object storage capability to Python by using dictionary objects. Both keys and
values can use any data type, as long as the pickle module can handle it.

import shelve
key = raw_input("key: ")
data = raw_input("value: ")
dbhandle = shelve.open("DATABASE","w")
while not(dbhandle.has_key(key)):
 dbhandle[key]=data
 key = raw_input("key: ")
 data = raw_input("value: ")
dbhandle.close()

The shelve module implements a shelf object which supports persistent objects that must be serializable using the
pickle module. In other words, a shelf is a dbm (or gdbm) file that stores pickled Python objects. It stores dictionary
structures (pickled objects) on disks. For that purpose, it uses dbm-like databases, such as dbm or gdbm. The file it

produces is, consequently, a BINARY file. Therefore, the file's format is specific to the database manager used in the
process.

To open a shelve file, the following function is available:

shelve.open(filename)

The file is created when the filename does not exist. The following methods and operations are also supported:

dbhandle[key] = value # Set the value of a given key entry
value = dbhandle[key] # Get the value of a given key entry
dbhandle.has_key(key) # Test whether a key exists
dbhandle.keys() # Returns a list of the current keys available
del dbhandle[key] # Delete a key
dbhandle.close() # Close the file

Next, I present a simple example of the shelve module using the following:

>>> import shelve
>>> dbhandle = shelve.open("datafile", "c")
>>> dbhandle["animal"] = "parrot"
>>> dbhandle["country"] = "Spain"
>>> dbhandle["weekdays"] = 5
>>> dbhandle.close()
>>>
>>> dbhandle = shelve.open("datafile ", "r")
>>> for key in dbhandle.keys():
 print dbhandle[key]
parrot
Spain
5
>>> db.close()

Locking

As a matter of fact, even though modules such as gdbm and bsddb perform locking, shelves don't implement locking
facilities. This means that many users can read the files at the same time. However, only one user can update the file at
a given moment. An easy way to handle the situation is by locking the file while writing to it. A routine like this must
be implemented because it is not part of the standard distribution.

More Sources of Information

PyVersant

PyVersant is a simple Python wrapper for the Versant commercial OODBMS. By using PyVersant in the Python
command prompt, you can interactively find objects, look at their values, change those values, and write the object
back to the database, among other things. More information is provided at the following site:

http://starship.python.net/crew/jmenzel/

Details about Versant OODBMS are shown at the following site:

http://www.versant.com/

ZODB

The Zope Object Database is a persistent-object system that provides transparent transactional object persistence to
Python applications. For more information, check out the following site:

http://www.zope.org/Members/michel/HowTos/ZODB-How-To

ZODB is a powerful object database system that can be used with or without Zope. As a database, it offers many
features. Note that ZODB uses other database libraries for the actual storage.

More information about Zope can be found in Chapter 11, "Web Development."

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

copy reg module
 pickle support
 registering
copy_reg module
cPickle module 2nd
databases
 object serialization 2nd
 Zope Object (ZODB)
files
 shelve
 opening
locking
 shelves
marshal module 2nd
modules
 copy reg
 pickle support
 copy_reg
 cPickle 2nd

http://starship.python.net/crew/jmenzel/
http://www.versant.com/
http://www.zope.org/Members/michel/HowTos/ZODB-How-To
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=142

 marshal 2nd
 pickle 2nd 3rd
 shelve 2nd 3rd
object serialization
 databases 2nd
objects
 serializable, saving 2nd 3rd
opening
 shelve files
persistent storage
 databases 2nd
Persistent Storage of Python Objects in Relational Databases
pickle module 2nd 3rd
pickle support
 copy reg module
saving
 serializable objects 2nd 3rd
serializable objects
 saving 2nd 3rd
serilization
 objects
 databases 2nd
shelve files
 opening
shelve module 2nd 3rd
Shprentz, Joel
storage
 persistent
 databases 2nd
Zope Object Database (ZODB)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > The
ODBC Module

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147045098084001118189099

The ODBC Module

ODBC (Open Database Connectivity) is a standard interface created by Microsoft; hence, it is fully
supported by the Windows platform. It provides access to almost every database. Currently, the ODBC
implements the ANSI standard SQL3.

To configure the ODBC settings for a database in your Windows system, you must use the ODBC Data
Source Administrator, which is located at the Windows Control Panel.

The two major advantages of choosing to code an application to the ODBC API are as follows:

● Portable Data Access Code— The ODBC API is available on all major databases.

● Dynamic Data Binding— This allows the user or the system administrator to easily configure
an application to use any ODBC compliant data source. This is perhaps the single biggest
advantage of coding an application to the ODBC API. Dynamic binding allows the end user to
pick a data source—that is, an SQL Server—and use it for all data applications without having
to worry about recompiling the application. The ODBC module implements the Python DB API,
so you can get this level of abstraction at the DB API level. Also, you don't explicitly recompile
Python code.

EShop kindly donated the ODBC module to the public domain. This module is included in the
PythonWin distribution. For more details, check out the site at
http://www.python.org/windows/win32/odbc.html.

The next example shows how you can open a ODBC connection using Python.

import dbi, odbc
try:
 connection = odbc.odbc('DSN=mydatabase;UID=mylogin;
 PASSWORD=mypassword')
 cursor = connection.cursor()
 cursor.execute('select name, email from USERS')
 while 1:
 record = cursor.fetchone()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=143
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=143&now=5%2F31%2F2002+4%3A39%3A05+PM
http://www.python.org/windows/win32/odbc.html

 if not record: break
 print record
 connection.close()
except NameError,e:
 print 'NameError: ', e

Three ways (at least) to access ODBC from Python on the Windows platform are as follows:

● DB API— Python Database API

● calldll— Sam Rushing's calldll module

● DAO— Microsoft Data Access Objects

ODBC Example for Windows Platforms

The first thing you need is to create a DSN for your database in the ODBC Data Source Administrator.

The PythonWin distribution comes with an odbc module, which by the way is very stable. However, it
is no longer going to be improved. This odbc module works along with the dbi module. Both files
conform to the Version 1.0 of the Python Database API, providing a minimum implementation.

The whole ODBC functionality is made up of two extension files:

● odbc.pyd— The odbc module itself

● dbi.pyd— The database independence utilities module

The dbi module must be imported before you import the odbc module.

import dbi, odbc, pprint
connection = odbc.odbc('DSN=mydatabase;UID=myuser;PWD=mypassword')
cursor = connection.cursor()
cursor.execute('SELECT name, email FROM USERS')
data = mycursor.fetchall()
cursor.close()
connection.close()
pprint.pprint(data)
[('andre','andre@bebemania.com.br'), ('renata', None)]

Let's see some of the functions and attributes exposed by the odbc connection and cursor objects.

fetchall() # fetches all the rows
fetchone() # fetches only one row
fetchmany(n) # fetches n number of rows
mycursor.arraysize# number of rows fetched.
mycursor.description# structure of the cursor

mycursor.execute() supports DML and DDL. However, it doesn't support prepared statements.

The dbi module handles both date and time formats. All date results are returned as dbi date objects.

>>> pprint.pprint(data)
 [('col1', <DbiDate object at 12e4b34>)]
>>> dateobj = data[0][1]
>>> dateobj
<DbiDate object at 12e4b34>
>>> int(dateobj)
984046200
>>> str(dateobj)
'Fri Jun 02 00:00:00 2000'

The next command shows the preferred way to pass date values back to the ODBC driver because this is
the standard ODBC syntax for embedding dates in SQL strings.

mycursor.execute("UPDATE tablename SET columnname={d '1999-04-15'}")

mxODBC

mxODBC is an extension package created by Marc-André Lemburg that exposes interfaces to ODBC
2.0 database drivers. This package implements the standard Database API. Among other things, it
supports more than one database per process and it has preconfigured scripts for MySQL, Oracle,

Informix, and more. This package exposes an odbc module for both Windows and UNIX. One of the
most important differences between this module and the one that comes in the PythonWin distribution
might be that this one supports prepared statements, hence, you can separate the SQL structure from the
actual values. The engine parses a statement once, creates a handle for it. After that, you just need to
pass the correct parameters that should be used for each interaction.

This package also possess an enhanced set of date and time types for moving data between both
Windows and UNIX systems. You can blame the mxDateTime package for that. The mxDateTime
package might become part of the mxODBC package in the near future. Check it out at

http://starship.python.net/crew/lemburg/mxODBC.html

calldll

You can also use the calldll package, developed by Sam Rushing, to call the functions that are part
of the Microsoft ODBC DLL. One problem with using this DLL is that it doesn't have any similarity to
the Python DB API. Another problem is that if you call the ODBC functions with the wrong
arguments, your program might fail. The function calls have a low-level interface that doesn't handle
exceptions as nicely as Python does. For more information, check out
http://www.nightmare.com/software.html.

Caution

This is one of the most dangerous ways to access databases. calldll removes almost all the
safety Python gives you.

unixODBC

unixODBC is a complete, free/open, ODBC solution for UNIX/Linux. The unixODBC Project goals
are to develop and promote unixODBC to be the definitive standard for ODBC on the Linux platform.
This is to include GUI support for KDE. For more information, check out http://www.unixODBC.org.

Other Interesting ODBC Web Pages

The next few links introduce some interesting material that you can use to understand and use ODBC
techniques.

ODBC Hints—by John Dell'Aquila

http://starship.python.net/crew/lemburg/mxODBC.html
http://www.nightmare.com/software.html
http://www.unixodbc.org/

http://www.python.org/windows/OdbcHints.html

Full ODBC manual

http://www.solidtech.com/developer/documentation.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

accessing
 databases
 calldll package
applications
 calldll 2nd
 mxDateTime
 mxODBC 2nd
calldll
calldll package
connections
 Open Database Connectivity (ODBC)
 opening
databases
 accessing
 calldll package
 Open Database Connectivity (ODBC) module 2nd 3rd
dbi module 2nd
EShop
 Open Database Connectivity (ODBC) module
Lemburg, Marc-Andr[as]e
modules
 dbi 2nd
 odbc
 Open Database Connectivity (ODBC) 2nd 3rd
mxDateTime package
mxODBC package 2nd
odbc module
Open Database Connectivity (ODBC) module 2nd 3rd
opening
 connections
 Open Database Connectivity (ODBC)

http://www.python.org/windows/OdbcHints.html
http://www.solidtech.com/developer/documentation.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=143

packagesÓ
 Ò
programs
 calldll 2nd
 mxDateTime
 mxODBC 2nd
Rushing, Sam
software
 calldll 2nd
 mxDateTime
 mxODBC 2nd
Windows
 odbc module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > ADO
(ActiveX Data Objects)

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147045098085067243103033

ADO (ActiveX Data Objects)

ActiveX Data Objects (ADO) is an Automation-based interface technology for accessing data. ADO uses
the OLE DB interface to access a broad range of data sources, including but not limited to data provided
via ODBC.

Although ODBC seems to be the standard in the market, ADO offers significant benefits. ADO is a rich
and fully featured object model (see Chapter 7, "Objects Interfacing and Distribution," for details). The
library name in which ADO lives is called ADODB. The ADO object model gives you fantastic
flexibility.

Users of RDO (Remote Data Objects) and DAO should have no problem moving to ADO because the
overall design of ADO comes from Microsoft's experience in developing those interfaces.

Microsoft's Remote Data Service (RDS) is a component of ADO that provides fast and efficient data
connectivity and the data-publishing framework for applications hosted in Microsoft Internet Explorer. It
is based on a client/server distributed technology that works over HTTP, HTTPS (HTTP over Secure
Sockets layer), and DCOM application protocols. Using data-aware ActiveX controls, RDS provides data
access programming in the style of Microsoft Visual Basic to Web developers who need to build
distributed, data-intensive applications for use over corporate intranets and the Internet. The use of ADO
ties your application to Win32, whereas using the Python DB API does not.

After you have created the Connection object, you need to open a database connection by assigning a
string value to the Open method. This string can be the name of a DSN (Data Source Name) or a
complete connection string.

>>> import win32com.client
>>> adoConn = win32com.client.Dispatch('ADODB.Connection')
>>> adoConn.Open('data source=mySQLServer;')
>>> adoRS = adoConn.Execute ('truncate table tmp_table')
>>> args = "34,25"
>>> del adoRS
>>> adoRS = adoConn.Execute ('insert into tmp_table values ('+args+')')
>>> args = "11,12"
>>> del adoRS
>>> adoRS = adoConn.Execute ('insert into tmp_table values ('+args+')')

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=144
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=144&now=5%2F31%2F2002+4%3A39%3A13+PM

>>> del adoRS
>>> (adoRS, success) = adoConn.Execute ('Select c1, c2 from tmp_table')
>>> while not adoRS.EOF:
… vl_a = adoRS.Fields('c1').Value
… vl_b = adoRS.Fields('c2').Value
… print vl_a, vl_b
… adoRS.MoveNext()
…
34 25
11 12
>>> adoRS.MoveFirst()
>>> (adoRS, success) = adoConn.Execute ('Select c1, c2 from tmp_table')
>>> print vl_a, vl_b
34 25

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

ActiveX Data Objects (ADOs)
connections
 databases
 opening
DAO
databases
 ActiveX Data Objects (ADOs)
 opening connections
objects
 ActiveX Data (ADO)
 Remote Data (RDO)
 Remote Data (RDS)
opening
 connections
 databases
RDOÓ
 Ò
RDSÓ
 Ò
Remote Data Objects (RDOs)
Remote Data Service (RDS)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=144

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > Using SQL See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147045098086162037036201

Using SQL

SQL stands for Structured Query Language. It was developed in the mid-1970s by IBM Research to serve
as an English interface query language to the System R relational database prototype.

SQL consists of a list of powerful and flexible commands that are used to manipulate information collected
in tables, by operating and controlling sets of records at a time.

● SQL is an interactive query language for ad hoc database queries.

● SQL is a database programming language.

● SQL is a data definition and data administration language.

● SQL is the language of networked database servers.

● SQL helps protect the data in a multi-user networked environment.

Nowadays, SQL servers are the dominant model for creating client/server applications. The most important
tendency among database servers of any size is the revelation of SQL as the choice for the manipulation,
definition, and control of data.

SQL has been an ISO standard for a long time. It is a powerful language for databases that adhered to the
relational model.

The relational model clearly separates the physical aspects of data from their logical implementation. It
frees you from being concerned with the details of how data is stored and makes the access to data purely
logical.

By using SQL statements, you just need to specify the tables, columns, and row qualifiers to get to any data
item.

SQL Mini-Tutorial

The idea behind this mini-tutorial is to teach you how to change and query the database. Of course, this
book does not cover everything. It should give you a brief understanding of the concepts and basic usage of
SQL statements. If it becomes necessary to delve deeper in this topic, the last heading of this section
contains a list of Web sites that have some beneficial and complete SQL tutorials.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=145
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=145&now=5%2F31%2F2002+4%3A39%3A21+PM

Selecting the Information

In a relational database, data is stored in tables. In our example, we have the USERS Table. ID, NAME,
EMAIL, and AGE are the columns of this table.

Table 8.2. USERS

ID NAME EMAIL AGE
1 Andre alessa@bebemania.com.br 25
2 Renata rtaveira@bebemania.com.br 30
3 Cleber clessa@bebemania.com.br 45
4 Beth beth@alugueaqui.com.br 40

Now, say that you want to know the EMAIL and the AGE of each user. You have to use the SELECT
statement as follows:

SELECT EMAIL, AGE
FROM USERS

The following list is the result of your query:

EMAIL AGE
alessa@bebemania.com.br 25
rtaveira@bebemania.com.br 30
clessa@bebemania.com.br 45
beth@alugueaqui.com.br 40

Let me explain to you what you have done: you asked to see all the rows from the USERS table, filtering
only the EMAIL and AGE columns. Note that column names and table names do not have spaces—they
must be entered as just one word. The general syntax for a SELECT statement (when selecting all the rows
from a table) is

SELECT Column1Name, Column2Name, …
FROM TableName

Note

This basic syntax doesn't filter which rows are selected or do anything else interesting.

You can use the asterisk symbol in order to retrieve all the columns from a table without typing every
column name:

SELECT * FROM TableName;

Relational Operators

Six important relational operators exist in SQL, and after introducing them, we'll see how they're used:

= Equal
<> Not Equal
< Less Than
> Greater Than
<= Less Than or Equal To
>= Greater Than or Equal To

The WHERE clause of a SELECT statement specifies which rows of a table must be selected. For example,
let's determine which users are 25 years old.

SELECT NAME
FROM USERS
WHERE AGE = 25;

The resultset is as follows:

NAME
Andre

Joins

Good database design suggests that each table in a database must contain data of only one single entity.
Detailed information can be acquired by joining tables according to their primary and foreign keys. For
example, we will create Table 8.3.

Table 8.3. NATIONALITY

ID ORIGIN
1 Greek
2 Spain
6 USA
8 Brazil

Let's discuss the concept of keys. A primary key is a column or set of columns that uniquely identifies the
rest of the data in any given row. For example, in the USERS table, the ID column uniquely identifies each
row.

A foreign key is a column in a table that is a primary key of another table. It means that any data in a
foreign key column must exist in the other table where that column is the primary key. For example, in the
NATIONALITY table, the column ID is a foreign key to the primary key of the USERS table, which is the
ID column.

The purpose of these keys is to associate data across tables, eliminating data redundancy in the tables—this
is the power of relational databases.

To find the names of the user whose name comes from Spain, use the following query:

SELECT USERS.NAME
FROM USERS, NATIONALITY
WHERE USERS.ID = NATIONALITY.ID
AND NATIONALITY.ORIGIN = "Spain"

The resultset is as follows:

NAME
Renata

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/145#6.html

Using Aggregate Functions

I will present five important aggregation functions: SUM, AVG, MAX, MIN, and COUNT. They are
called aggregation functions because they summarize the results of a query, rather than listing all the rows.

● SUM()— Returns the total value of a given column, based on the selected rows.

● AVG()— Returns the average value of the given column.

● MAX()— Returns the highest value in the given column.

● MIN()— Returns the lowest value in the given column.

● COUNT(*)— Returns the number of rows that satisfy the WHERE clause.

Let's look at some examples:

SELECT SUM(AGE), AVG(AGE)
FROM USERS

The resultset is as follows:

SUM AVG
135 33.75

SELECT COUNT(*)
FROM USERS
WHERE AGE > 30

The resultset is as follows:

COUNT(*)
2

Sometimes, when you are working with aggregation functions, the group by clause might be required.

For instance, let's say that you need to list the average age by username from your USERS table. The
following SELECT statement can be used to group the resultset of your query.

SELECT NAME, AVG(AGE)
FROM USERS
GROUP BY NAME

Adding Data

To insert rows in a table, use the following syntax:

INSERT INTO <TABLE NAME> [(<COLUMN1 NAME>, <COLUMN2 NAME>, …)]
 VALUES (<VALUE1>, <VALUE2>, …);

Note

In order to not use the column name part of your statement (because it's optional), in most cases, you
need to provide values for all the columns of your table.

For example

INSERT INTO USERS (ID, NAME, EMAIL, AGE) VALUES (5, "Bruno",
 "bruno@alugueaqui.com.br", 17)

Deleting Data

Let's delete a row from a table.

DELETE FROM USERS
WHERE NAME = "Cleber"

If more than one row exists in which NAME = "Cleber", the other row will be deleted too. Using the
primary key is a good way to uniquely identify a row for deletion.

To delete all the rows from the table, type the following:

DELETE FROM USERS

Updating Data

Let's update the age of one user.

UPDATE USERS
SET AGE = 18
WHERE NAME = "Bruno"

This statement sets Bruno's age to 18. If we had more than one Bruno in our database, we would have to
include more conditions in the WHERE clause. It is also possible to update multiple columns at the same
time—you just need to separate the attribution statements with commas.

UPDATE USERS
SET AGE = 18, EMAIL = "bruno@bebemania.com.br"
WHERE NAME = "Bruno" AND ID = 5

Cool SQL Language Web Pages

The Introduction to Structured Query Language site can be found at
http://w3.one.net/~jhoffman/sqltut.htm.

Several links to SQL material can be found at http://www.lessaworld.com/links_basics_sql.html.

PostgreSQL Databases

PostgreSQL is a free (open-source) SQL database. It is a sophisticated Object-Relational database
system derived from Postgres4.2. It conforms to (most of) ANSI SQL and offers many interesting
capabilities, including subselects, transactions, and user-defined types and functions. It is the most
advanced open-source database available anywhere.

http://w3.one.net/~jhoffman/sqltut.htm
http://www.lessaworld.com/links_basics_sql.html

Commercial Support is also available. For details, check out its Web site at http://www.postgresql.org.

pg Module

The pg module was written by D'Arcy J.M. Cain in order to provide an interface to the PostgreSQL
database system. It embeds the PostgreSQL query library allowing easy use of its powerful features from
a Python script. This module is available for download at http://www.druid.net/pygresql.

The pg module exposes its own DB API interface specification, as you can see next.

>>> import pg
>>> for rs in pg.DB('dbname').query('SELECT * FROM USERS').dictresult():
… print rs
…

Note

At the time of this chapter was written, it was announced that the latest version of pygresql began
supporting the Python DB API 2.0.

MySQL Modules

MySQL is a true multiuser, multithreaded SQL database server. It is a client/server implementation that
consists of a server daemon mysqld and many different client programs and libraries. MySQL is very fast
for performing queries, but can slow down if lots of updates are being performed. Also, it doesn't have
transaction support. For more information, check out http://www.mysql.com.

MySQLdb Module

You need to get and build the MySQLdb module before using it. Check out
http://dustman.net/andy/python/MySQLdb.

>>> import MySQLdb
>>> connection = MySQLdb.connect(host="spam", db="client", port=3316, \
… user="alessa", passwd="1020erw")
…

http://www.postgresql.org/
http://www.druid.net/pygresql
http://www.mysql.com/
http://dustman.net/andy/python/MySQLdb

>>> con = connection.cursor()
>>> sql_statement = "SELECT * FROM USERS WHERE AGE > 21"
>>> con.execute(sql_statement)
>>> result_set = con.fetchall()
>>> connection.close()

Python Interface for MySQL

This interface was designed by Joseph Skinner and modified by Joerg Senekowitsch. For more information,
check out http://www.mysql.com/Contrib/MySQLmodule-1.4.tar.gz.

The GadFly SQL Module

The GadFly SQL module is a SQL database engine written entirely in Python by Aaron Watters in
compliance with the Python Database API. It uses fewer system resources than PostgreSQL, and its
speed is comparable to Microsoft Access. However, it doesn't have the performance of commercial
software (such as Oracle). This module is easily used by client/server applications because it includes
TCP/IP support.

This module entirely fits in a small file, so it doesn't leave huge footprints.

Because it only supports a small subset of the SQL language, it offers excellent code for those who want to
learn more about SQL parsing engines and client/server communications. For more information, check out
http://www.chordate.com/gadfly.html.

MetaKit Database Engine

MetaKit is a C++ library for storage, transport, and manipulation of structured objects and collections.
The next examples show how the MetaKit database engine does on-the-fly restructuring:

Example 1

>>> import Mk4py
>>> dbhandle = Mk4py.Storage('datafile.mk',1)
>>> workspace = dbhandle.getas('users[name:S,email:S]')
>>> workspace.append(name='Andre',email='alessa@bebemania.com.br')
>>> workspace.append(name='Renata',email='rtaveira@bebemania.com.br')
>>> dbhandle.commit()

http://www.mysql.com/Contrib/MySQLmodule-1.4.tar.gz
http://www.chordate.com/gadfly.html

Example 2

>>> import Mk4py
>>> dbhandle = Mk4py.Storage('datafile.mk',1)
>>> workspace = dbhandle.getas('users[name:S,email:S,age:I]')
>>> for user in workspace:
…print user.name
…user.age = input('age: ')
…
>>> dbhandle.commit()
>>> for user in workspace.sort():
>>> print user.name, user.email, user.age

If you run these two examples in order, you'll have restructured on-the-fly. It will be instant, regardless of
the number of rows. If for any reason the transaction is not completed, neither will the restructure be. For
more information, check out their Web site at http://www.equi4.com/metakit/python.html.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

aggregate functions
 relational databases
Cain, DÕ
 Arcy J.M.
clauses
 group by
 WHERE
database engines
 MetaKit
databases
 PostgreSQL
 relationalÓ
 Ò
 Structured Query Language (SQLs) 2nd 3rd 4th 5th 6th 7th
engines
 database
 MetaKit
foreign key
functions
 aggregate

http://www.equi4.com/metakit/python.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=145

 relational databases
GadFly SQL module
group by clause
IBM Research
 Structured Query Language (SQL)
joins
 tables
 relational databases
keys
 foreign
 primary
MetaKit database engine
modules
 GadFly SQL
 MySQL
 pg 2nd
MySQL module
pg module 2nd
PostgreSQL databases
primary key
programming languages
 Structured Query (SQL) 2nd 3rd 4th 5th 6th 7th
redundancy
 tables
relational databasesÓ
 Ò
SELECT statement
 WHERE clause
statements
 SELECT
 WHERE clause
Structured Query Language (SQLs) 2nd 3rd 4th 5th 6th 7th
tables
 joins
 relational databases
 redundancy
WHERE clause

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases > Python DB API See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147045098087171051091243

Python DB API

The quest to provide a standard way to interface to database systems drove a group of people to develop Python
Database API. The Python DB API is maintained by the Database Special Interest Group (DB-SIG). For more
information, check out their Web site at http://www.python.org/sigs/db-sig/.

The following list shows all the database modules that currently implement the Python DB API specification
proposed by the DB-SIG. This means that after you understand the API, you will be able to handle, in a similar way,
all the databases that are manipulated by the following modules:

● GadFly— A simple relational database system implemented in Python based on the SQL Structured Query
Language, including a DB-API compliant interface. Maintained by Aaron Watters.

http://www.chordate.com/gadfly.html

● Informix— Currently maintained by Stephen J. Turner.

http://starship.python.net/crew/sturner/informixdb.html

● Informix (Kinfxdb)— A completely new Informix module, called Kinfxdb. Maintained by Alexander
Kuznetsov.

http://thor.prohosting.com/~alexan/

● Interbase (Kinterbasdb)— An interface for Interbase 4.0 and 5.0. Maintained by Alexander Kuznetsov.

http://thor.prohosting.com/~alexan/Kinterbasdb/

● MySQL— A MySQL module that is thread-safe and aims for compatibility with the 2.0 DB-API. It requires a
newer version of MySQL, version 3.22.19 or higher.

http://dustman.net/andy/python/MySQLdb/

● mxODBC— The mxODBC package provides a nearly 100% Python DB API compliant interface to databases
that are accessible via the ODBC API. Many databases include ODBC libraries, so this might be the only
module you need. Maintained by M. A. Lemburg.

http://starship.python.net/crew/lemburg/mxODBC.html

● ODBC— This module is currently available in the PythonWin distribution. It's public domain code, but
unfortunately has no designated support person(s). The best option for support is to ask questions on

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=146
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=146&now=5%2F31%2F2002+4%3A39%3A30+PM
http://www.python.org/sigs/db-sig/
http://www.chordate.com/gadfly.html
http://starship.python.net/crew/sturner/informixdb.html
http://thor.prohosting.com/~alexan/
http://thor.prohosting.com/~alexan/Kinterbasdb/
http://dustman.net/andy/python/MySQLdb/
http://starship.python.net/crew/lemburg/mxODBC.html

comp.lang.python newsgroups, where other PythonWin users can answer them.

http://www.python.org/windows/win32/odbc.html

● DCOracle— An open source interface to Oracle from Digital Creations.

http://www.zope.org/Products/DCOracle/

● Sybase— Maintained by Peter Godman.

http://starship.python.net/crew/pgodman/

This is the information available at the time this book was written. For an updated list of modules, check out
http://www.python.org/topics/database/modules.html.

DB-API Specification v2.0

The following specification is available online at http://www.python.org/topics/database/DatabaseAPI-2.0.html.

Comments and questions about this specification can be directed to the SIG for Database Interfacing with Python at
the email address db-sig@python.org.

For more information on database interfacing with Python and available packages, see the Database Topics Guide at
http://www.python.org.

This document describes the Python Database API Specification 2.0. The previous version 1.0 is still available online
at the Python Web site as a reference. Package writers are encouraged to use this version of the specification as the
basis for new interfaces.

This API has been defined to encourage similarity between the Python modules that are used to access databases. By
doing this, we hope to achieve a consistency leading to more easily understood modules, code that is generally more
portable across databases, and a broader reach of database connectivity from Python.

The interface specification consists of several sections:

● Module Interface

● Connection Objects

● Cursor Objects

● Type Objects and Constructors

● Implementation Hints

● Major Changes from 1.0 to 2.0

http://www.python.org/windows/win32/odbc.html
http://www.zope.org/Products/DCOracle/
http://starship.python.net/crew/pgodman/
http://www.python.org/topics/database/modules.html
http://www.python.org/topics/database/DatabaseAPI-2.0.html
mailto:db-sig@python.org
http://www.python.org/

Module Interface

Access to the database is made available through connection objects. The module must provide the following
constructor for these:

connect(parameters…)—This is a constructor for creating a connection to the database. Returns
a Connection Object. It takes a number of parameters that are database dependent.1

These module globals must be defined:

apilevel—This string constant states the supported DB API level. Currently only the strings '1.0'
and '2.0' are allowed.

If not given, a Database API 1.0 level interface should be assumed.

threadsafety—This integer constant states the level of thread safety that the interface supports.
Possible values are

0—Threads cannot share the module.

1—Threads can share the module, but not connections.

2—Threads can share the module and connections.

3—Threads can share the module, connections, and cursors.

Sharing in the previous context means that two threads can use a resource without wrapping it using a
mutex semaphore to implement resource locking. Note that you cannot always make external resources
thread safe by managing access using a mutex: The resource might rely on global variables or other
external sources that are beyond your control.

paramstyle—This string constant states the type of parameter marker formatting expected by the
interface. Possible values are as follows:2

'qmark' = Question mark style, e.g. '…WHERE name=?'
'numeric' = Numeric, positional style, e.g. '…WHERE name=:1'
'named' = Named style, e.g. '…WHERE name=:name'
'format' = ANSI C printf format codes, e.g. '…WHERE name=%s'
'pyformat'= Python extended format codes, e.g. '…WHERE name=%(name)s'

The module should make all error information available through these exceptions or subclasses thereof:

Warning— This exception is raised for important warnings such as data truncations while inserting,
and so on. It must be a subclass of the Python StandardError (defined in the module exceptions).

Error— This exception is the base class of all other error exceptions. You can use this to catch all
errors with one single 'except'statement. Warnings are not considered errors and thus should not use
this class as base. It must be a subclass of the Python StandardError (defined in the module
exceptions).

InterfaceError— This exception is raised for errors that are related to the database interface rather
than the database itself. It must be a subclass of Error.

DatabaseError— This exception is raised for errors that are related to the database. It must be a
subclass of Error.

DataError— This exception is raised for errors that are because of problems with the processed data
such as division by zero, numeric value out of range, and so on. It must be a subclass of DatabaseError.

OperationalError— This exception is raised for errors that are related to the database's operation and
not necessarily under the control of the programmer; for example, an unexpected disconnect occurs,
the data source name is not found, a transaction could not be processed, a memory allocation error
occurred during processing, and so on. It must be a subclass of DatabaseError.

IntegrityError— This exception is raised when the relational integrity of the database is affected; for
example, a foreign key check fails. It must be a subclass of DatabaseError.

InternalError— This exception is raised when the database encounters an internal error; for
example, the cursor is not valid anymore, the transaction is out of sync, and so on. It must be a subclass
of DatabaseError.

ProgrammingError— This exception is raised for programming errors; for example, table not found
or already exists, syntax error in the SQL statement, wrong number of parameters specified, and so on.
It must be a subclass of DatabaseError.

NotSupportedError— This exception is raised in case a method or database API was used that is not
supported by the database; for example, requesting a .rollback() on a connection that does not
support transaction or has transactions turned off. It must be a subclass of DatabaseError.

This is the exception inheritance layout:

StandardError
|__Warning
|__Error
 |__InterfaceError
 |__DatabaseError
 |__DataError
 |__OperationalError
 |__IntegrityError
 |__InternalError
 |__ProgrammingError
 |__NotSupportedError

Note

The values of these exceptions are not defined. They should give the user a good idea of what went wrong
though.

Connection Objects

Connections Objects should respond to the following methods:

close()— It closes the connection now (rather than whenever __del__ is called). The connection
will be unusable from this point forward; an Error (or subclass) exception will be raised if any
operation is attempted with the connection. The same applies to all cursor objects trying to use the
connection.

commit()— It commits any pending transaction to the database. If the database supports an
autocommit feature, this must be initially off. An interface method might be provided to turn it back
on.

Database modules that do not support transactions should implement this method with void
functionality.

rollback()— This method is optional because not all databases provide transaction support.3

In case a database does provide transactions, this method causes the database to roll back to the start of
any pending transaction. Closing a connection without committing the changes first will cause an
implicit rollback to be performed.

cursor()— It returns a new Cursor Object using the connection. If the database does not provide a
direct cursor concept, the module will have to emulate cursors using other means to the extent needed
by this specification.4

Cursor Objects

These objects represent a database cursor, which is used to manage the context of a fetch operation. They should
respond to the following methods and attributes:

description— This read-only attribute is a set of seven-item sequences. Each of these sequences
contains information describing one result column: (name, type_code, display_size, internal_size,
precision, scale, null_ok). This attribute will be None for operations that do not return rows or if the
cursor has not had an operation invoked via the executeXXX() method yet.

The type_code can be interpreted by comparing it to the Type Objects specified in the following

section.

rowcount— This read-only attribute specifies the number of rows that the last executeXXX()
produced (for DQL statements such as select) or affected (for DML statements such as update or
insert).

The attribute is -1 in case no executeXXX() has been performed on the cursor, or the rowcount of
the last operation is not determinable by the interface.7

callproc(procname[,parameters])— This method is optional because not all databases
provide stored procedures.

It calls a stored database procedure with the given name. The sequence of parameters must contain one
entry for each argument that the procedure expects. The result of the call is returned as modified copy
of the input sequence. Input parameters are left untouched, and output and input/output parameters are
replaced with possibly new values.

The procedure can also provide a resultset as output. This must then be made available through the standard
fetchXXX() methods.

close()— It closes the cursor now (rather than whenever __del__ is called). The cursor will be
unusable from this point forward; an Error (or subclass) exception will be raised if any operation is
attempted with the cursor.

execute(operation[,parameters])— It prepares and executes a database operation (query
or command). Parameters can be provided as sequence or mapping and will be bound to variables in
the operation. Variables are specified in a database-specific notation (see the module's paramstyle
attribute for details).5

A reference to the operation will be retained by the cursor. If the same operation object is passed in again, the cursor
can optimize its behavior. This is most effective for algorithms in which the same operation is used, but different
parameters are bound to it (many times).

For maximum efficiency when reusing an operation, it is best to use the setinputsizes() method to specify the
parameter types and sizes ahead of time. It is legal for a parameter to not match the predefined information; the
implementation should compensate, possibly with a loss of efficiency.

The parameters can also be specified as list of tuples to insert multiple rows in a single operation, but this kind of
usage is depreciated: executemany() should be used instead.

Return values are not defined.

executemany(operation,seq_of_parameters

It prepares a database operation (query or command) and then executes it against all parameter sequences or
mappings found in the sequence seq_of_parameters.

Modules are free to implement this method using multiple calls to the execute() method or by using array
operations to have the database process the sequence as a whole in one call.

The same comments for execute() also apply accordingly to this method.

Return values are not defined.

fetchone()

It fetches the next row of a query resultset, returning a single sequence, or None when no more data is available.6

An Error (or subclass) exception is raised if the previous call to executeXXX() did not produce any resultset or
no call was issued yet.

fetchmany([size=cursor.arraysize])

It fetches the next set of rows of a query result, returning a sequence of sequences (for example, a list of tuples). An
empty sequence is returned when no more rows are available.

The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize
determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size
parameter. If this is not possible because of the specified number of rows not being available, fewer rows can be
returned.

An Error (or subclass) exception is raised if the previous call to executeXXX() did not produce any resultset or
no call was issued yet.

Performance considerations are involved with the size parameter. For optimal performance, it is usually best to use
the arraysize attribute. If the size parameter is used, it is best for it to retain the same value from one
fetchmany() call to the next.

fetchall()

It fetches all (remaining) rows of a query result, returning them as a set of sequences (for example, a list of tuples).
Note that the cursor's arraysize attribute can affect the performance of this operation.

An Error (or subclass) exception is raised if the previous call to executeXXX() did not produce any resultset or
no call was issued yet.

nextset()

This method is optional because not all databases support multiple resultsets.3

This method will make the cursor skip to the next available set, discarding any remaining rows from the current set.

If there are no more sets, the method returns None. Otherwise, it returns a true value and subsequent calls to the

fetch methods will return rows from the next resultset.

An Error (or subclass) exception is raised if the previous call to executeXXX() did not produce any resultset or
no call was issued yet.

arraysize

This read/write attribute specifies the number of rows to fetch at a time with fetchmany(). It defaults to 1, which
means to fetch a single row at a time.

Implementations must observe this value with respect to the fetchmany() method, but are free to interact with the
database a single row at a time. It can also be used in the implementation of executemany().

setinputsizes(sizes)

This can be used before a call to executeXXX() to predefine memory areas for the operation's parameters.

sizes is specified as a sequence—one item for each input parameter. The item should be a Type Object that
corresponds to the input that will be used, or it should be an integer specifying the maximum length of a string
parameter. If the item is None, no predefined memory area will be reserved for that column. (This is useful to avoid
predefined areas for large inputs.)

This method would be used before the executeXXX() method is invoked. Implementations are free to have this
method do nothing, and users are free to not use it.

setoutputsize(size[,column])

It sets a column buffer size for fetches of large columns (for example, LONGs, BLOBs, and so on). The column is
specified as an index into the result sequence. Not specifying the column will set the default size for all large
columns in the cursor.

This method would be used before the executeXXX() method is invoked.

Implementations are free to have this method do nothing, and users are free to not use it.

Type Objects and Constructors

Many databases need to have the input in a particular format for binding to an operation's input parameters. For
example, if an input is destined for a DATE column, it must be bound to the database in a particular string format.
Similar problems exist for Row ID columns or large binary items (for example, BLOBs or RAW columns). This
presents problems for Python because the parameters to the executeXXX() method are not typed. When the
database module sees a Python string object, it doesn't know if it should be bound as a simple CHAR column, as a
raw BINARY item, or as a DATE.

To overcome this problem, a module must provide the constructors defined later to create objects that can hold
special values. When passed to the cursor methods, the module can then detect the proper type of the input parameter
and bind it accordingly.

A Cursor Object's description attribute returns information about each of the result columns of a query. The
type_code must be equal to one of Type Objects defined in the following. Type Objects can be equal to more than
one type code. (For example, DATETIME could be equal to the type codes for date, time, and timestamp columns;
see " Implementation Hints " for details.)

The module exports the following constructors and singletons:

Date(year, month, day)— This function constructs an object holding a date value.

Time(hour, minute, second)— This function constructs an object holding a time value.

Timestamp(year, month, day, hour, minute, second)— This function constructs an object holding a
timestamp value.

DateFromTicks(ticks)— This function constructs an object holding a date value from the given ticks
value (number of seconds since the epoch; see the documentation of the standard Python time module
for details).

TimeFromTicks(ticks)— This function constructs an object holding a time value from the given ticks
value (number of seconds since the epoch; see the documentation of the standard Python time module
for details).

TimestampFromTicks(ticks)— This function constructs an object holding a time stamp value from
the given ticks value (number of seconds since the epoch; see the documentation of the standard
Python time module for details).

Binary(string)— This function constructs an object capable of holding a binary (long) string value.

STRING— This type object is used to describe columns in a database that are string based (for
example, CHAR).

BINARY— This type object is used to describe (long) binary columns in a database (for example,
LONG, RAW, BLOBs).

NUMBER— This type object is used to describe numeric columns in a database.

DATETIME— This type object is used to describe date/time columns in a database.

ROWID— This type object is used to describe the Row ID column in a database.

SQL NULL values are represented by the Python None singleton on input and output.

Note

Usage of UNIX ticks for database interfacing can cause troubles because of the limited date range they cover.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/146#14.html

Implementation Hints

The next list provides some suggestions about using this API.

● The preferred object types for the date/time objects are those defined in the mxDateTime package
(http://starship.python.net/~lemburg/mxDateTime.html). It provides all necessary constructors and methods
both at Python and C level.

● The preferred object type for Binary objects are the buffer types available in standard Python starting with
version 1.5.2. See the Python documentation for details. For information about the C interface, take a look at
Include/bufferobject.h and Objects/bufferobject.c in the Python source distribution.

● Here is a sample implementation of the UNIX ticks based constructors for date/time delegating work to the
generic constructors:

import time
def DateFromTicks(ticks):
 return apply(Date,time.localtime(ticks)[:3])
def TimeFromTicks(ticks):
 return apply(Time,time.localtime(ticks)[3:6])
def TimestampFromTicks(ticks):
 return apply(Timestamp,time.localtime(ticks)[:6])

● This Python class allows implementing the previous type objects even though the description type code field
yields multiple values for one type object:

class DBAPITypeObject:
 def __init__(self,*values):
 self.values = values
 def __cmp__(self,other):
 if other in self.values:
 return 0
 if other < self.values:
 return 1
 else:
 return –1

Note

The resulting type object compares equal to all values passed to the constructor.

http://starship.python.net/~lemburg/mxDateTime.html

● Here is a snippet of Python code that implements the exception hierarchy defined previously:

import exceptions
class Error(exceptions.StandardError):
 pass
class Warning(exceptions.StandardError):
 pass
class InterfaceError(Error):
 pass
class DatabaseError(Error):
 pass
class InternalError(DatabaseError):
 pass
class OperationalError(DatabaseError):
 pass
class ProgrammingError(DatabaseError):
 pass
class IntegrityError(DatabaseError):
 pass
class DataError(DatabaseError):
 pass
class NotSupportedError(DatabaseError):
 pass

Note

In C you can use the PyErr_NewException(fullname, base, NULL) API to create the exception
objects.

Major Changes from Version 1.0 to Version 2.0

The Python Database API 2.0 introduces a few major changes compared to the 1.0 version. Because some of these
changes will cause existing DB API 1.0 based scripts to break, the major version number was adjusted to reflect this
change.

These are the most important changes from 1.0 to 2.0:

● The need for a separate dbi module was dropped and the functionality merged into the module interface
itself.

● New constructors and Type Objects were added for date/time values, the RAW Type Object was renamed to
BINARY. The resulting set should cover all basic data types commonly found in modern SQL databases.

● New constants (apilevel, threadlevel, paramstyle) and methods (executemany,
nextset) were added to provide better database bindings.

● The semantics of .callproc() needed to call stored procedures are now clearly defined.

● The definition of the .execute() return value changed. Previously, the return value was based on the SQL
statement type (which was difficult to implement correctly)—it is undefined now; use the more flexible
.rowcount attribute instead. Modules are free to return the old style return values, but these are no longer
mandated by the specification and should be considered database interface dependent.

● Class-based exceptions were incorporated into the specification. Module implementers are free to extend the
exception layout defined in this specification by subclassing the defined exception classes.

Open Issues

Although the version 2.0 specification clarifies a lot of questions that were left open in the 1.0 version, there are still
some remaining issues:

● Define a useful return value for .nextset() for the case in which a new resultset is available.

● Create a fixed point numeric type for use as loss-less monetary and decimal interchange format.

Footnotes

1. As a guideline, the connection constructor parameters should be implemented as keyword parameters for
more intuitive use and follow this order of parameters:

dsn = Data source name as string
user = User name as string (optional)
password = Password as string (optional)
host = Hostname (optional)
database = Database name (optional)

For example, a connect could look like this:

connect(dsn='myhost:MYDB',user='guido',password='234$')

2. Module implementers should prefer numeric, named, or pyformat over the other formats because these offer
more clarity and flexibility.

3. If the database does not support the functionality required by the method, the interface should throw an
exception in case the method is used.

The preferred approach is to not implement the method and thus have Python generate an
AttributeError in case the method is requested. This allows the programmer to check for database
capabilities using the standard hasattr() function.

For some dynamically configured interfaces, it might not be appropriate to require that the method be made
available dynamically. These interfaces should then raise a NotSupportedError to indicate the inability
to perform the rollback when the method is invoked.

4. A database interface can choose to support named cursors by allowing a string argument to the method. This
feature is not part of the specification because it complicates semantics of the .fetchXXX() methods.

5. The module will use the __getitem__ method of the parameters object to map either positions (integers) or
names (strings) to parameter values. This allows for both sequences and mappings to be used as input.

The term bound refers to the process of binding an input value to a database execution buffer. In practical
terms, this means that the input value is directly used as a value in the operation. The client should not be
required to "escape" the value so that it can be used—the value should be equal to the actual database value.

6. The interface can implement row fetching using arrays and other optimizations. It is not guaranteed that a call
to this method will only move the associated cursor forward by one row.

7. The rowcount attribute might be coded in a way that updates its value dynamically. This can be useful for
databases that return useable rowcount values only after the first call to a .fetchXXX() method.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

0 variable
1 variable
2 variable
3 variable
accessing
 databases
 connection objects 2nd
apilevel variable
Application Program Interfaces (APIs)
 Python DB 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
attributes
 description
connect(parametersÉ
) constructor

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=146

connection objects
 databases 2nd
constructors
 connect(parametersÉ
)
 databases
cursor objects
 databases 2nd 3rd 4th
databases
 Python DB API 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
description attribute
execute() method
executemany(operation,seq_of_parameters) method
executeXXX() method 2nd 3rd 4th
fetchmany([size=cursor.arraysize]) method
fetchone() method
interfaces
 application program (API)
 Python DB 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
methods
 execute
 executemany(operation,seq_of_parameters)
 executeXXX 2nd 3rd 4th
 fetchmany([size=cursor.arraysize])
 fetchone()
 nextset()
 setinputsizes(sizes) 2nd
 setoutputsize(size[,column])
nextset() method
NULL values
 Structured Query Language (SQL)
objects
 connection
 databases 2nd
 cursor
 databases 2nd 3rd 4th
 type
 databases
operations
 references
parameters
 executeXXX() method
paramstyle variable
Python DB API 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
references
 operations
setinputsizes(sizes) method 2nd
setoutputsize(size[,column]) method
threadsafety variable
type objects
 databases
values
 NULL

 Structured Query Language (SQL)
variables
 0
 1
 2
 3
 apilevel
 paramstyle
 threadsafety

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 8. Working with Databases >
Summary

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147045098080135126044008

Summary

This chapter shows all the database options that Python has available. The simplest solution to handle
databases in Python is to use plain text files. A tiny variation of this method is to store the information
in binary format.

The next solution is to use the indexing mechanism provided by the dbm-like modules (such as dbm,
gdbm, and dbhash). DBM stands for Database Manager, and it has its own storing implementation.
This format specifies a simple, disk-based storage facility that handles data in a way equivalent to
dictionaries. The objects are manipulated by using unique key strings.

These are database modules that are part of the standard Python distribution, and each one of them is an
interface to a specific library.

Also included in the standard Python distribution is the anydbm module, which is a generic interface
to all the dbm-like modules. It uses whichever modules are installed.

The dbhash module provides a function that offers a dbm-style interface to access the BSD database
library.

The whichdb module provides a function that guesses which dbm module (dbm, gdbm, or
dbhash) should be used to open a specific database.

The dumbdbm module is a simple, portable, and slow dbm-style database implemented entirely in pure
Python.

Also, a group of other modules provide persistent storage of arbitrary Python objects. Whenever you
need to save objects whose value is not a simple string (such as None, integer, long
integer, float, complex, tuple, list, dictionary, code object, and so
on), you need to serialize the object before sending it to a file.

Included in the standard Python distribution, the pickle module can convert Python objects to and
from a string representation.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=147
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=147&now=5%2F31%2F2002+4%3A39%3A43+PM

The cPickle module is a faster implementation of the pickle module.

The copy_reg module extends the capabilities of the pickle and cpickle modules by registering
support functions.

The marshal module is an alternate method to implement Python object serialization.

The shelve module offers persistent object storage capability to Python by using dictionary
objects. Both keys and values can use any data type, as long as the pickle module can handle it.

ODBC is a standard interface, created by Microsoft, that provides access to almost every database.
Python's official ODBC module is included in the PythonWin distribution, which is very stable, by
the way. However, it is no longer going to be improved. This odbc module works along with the dbi
module.

Besides this odbc module, we have other technologies (such as mxODBC, calldll, and
unixODBC) that make the task of opening ODBC connections easier. Although ODBC seems to be the
standard in the market, ADO offers significant benefits. ADO is a rich and fully featured object model.

In order to correctly manipulate data, the use of SQL is essential. SQL consists of a list of powerful and
flexible commands that are used to manipulate information collected in tables, by operating and
controlling sets of records at a time. The main SQL commands are: SELECT, INSERT, DELETE,
and UPDATE.

PostgreSQL, MySQL, GadFly, and Metakit are some of the SQL database mechanisms that
run on Python.

Many third-party database extension modules are available for Python, such as the native Python
interfaces to MySQL, Oracle, and Sybase database systems.

The quest to provide a standard way to interface to database systems drove a group of people to
develop a Python Database API. The Python DB API is maintained by the Database Special Interest
Group (DB-SIG). GadFly, mxODBC, MySQL, odbc, and many other modules have already
adopted this API. This API has been defined to encourage similarity between the Python Modules that
are used to access databases.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=147

Index terms contained in this section

databases

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 9. Other Advanced Topics See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162147045098081148227104045

Chapter 9. Other Advanced Topics
I'd like to have an argument please.

This chapter provides very useful information concerning the use and manipulation of images, sounds,
threads, and other specific Python Modules.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=149
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A39%3A50+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=149&now=5%2F31%2F2002+4%3A39%3A50+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=149

Web Development > Python Developer's Handbook > 9. Other Advanced Topics > Other
Advanced Topics

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148044238004013041091022

Other Advanced Topics

After spending some time learning the basics of Python, you will soon face the need for implementing
more advanced programs; programs that need to perform very specific tasks, such as converting image
file formats or handling regular expressions. This chapter provides a general overview of some
important advanced Python topics that you might need to use.

● Image manipulation

● Sounds

● Restricted environment

● Numeric Python

● Regular expressions

● Threads

Each one of these items is discussed, and a brief explanation is provided along with syntax formats and
examples.

As you already know, this book presents many links to resources that have proven to be of great help in
allowing users to use Python in their day-to-day work.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=150
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A40%3A00+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=150&now=5%2F31%2F2002+4%3A40%3A00+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=150

Web Development > Python Developer's Handbook > 9. Other Advanced Topics >
Manipulating Images

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148044238004005252068155

Manipulating Images

Python has comprehensive support for handling image files. The foundation of this structure is based
on the Python Imaging Library (commonly known as PIL).

PIL is a set of Python modules that compound an extensive framework written by Fredrik Lundh, from
Secret Labs AB. PIL is able to convert and manipulate image files of several different formats (such as
GIF, JPEG, and PNG), and provides powerful graphics capabilities. Its framework is cross-platform,
which allows it to perform image manipulation and processing in different systems using the same
code. PIL also supports some Windows-specific extensions that enable it to display images using the
Windows API.

Some of the main features of PIL are summarized in the following:

● PIL can load image objects from a variety of formats.

● It enables the Python interpreter to handle image objects.

● PIL enables a rich set of image operations to be applied to those objects.

● It saves images files to disk.

● It uses graphical interfaces, such as Tkinter and PythonWin in order to show the resulting
images.

● It allows you to create thumbnails automatically from a collection of images.

● You can create, read, and write different images formats, including JPEG, GIF, and TIFF.

● It provides supports to some animation formats, such as FLI and MPEG.

● It automatically identifies file formats.

● PIL can be used to make file conversions between graphic files of different formats.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=151
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A40%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=151&now=5%2F31%2F2002+4%3A40%3A08+PM

● PIL also handles changes in the image file's color table (for example, it can change the color
table of a file from RGB to grayscale).

These are just some of things you can do with PIL. You are invited to create an image object in the
interpreter using PIL, and play around for a while.

PIL's home page and download center is located at the following site:

http://www.pythonware.com/products/pil/index.htm

Similar to Python itself, PIL is copyrighted but can be used without fee.

Python Imaging Library

The Image class is the most important class of PIL. To use it, you need to import the Image module,
and launch the open method. This method is very fast because it doesn't decode the whole image. It
just reads the image header in order to start working with the file.

>>> import Image
>>> im = Image.open("c:\\logo.gif")

As you can see in the next example, you can also load an image (GIF or JPEG) straight from a URL
without saving it to a file first. Note that filelocation is any file handle like python object.

>>> filename = "http://www.lessaworld.com/images/brazil.gif "
>>> filelocation = urllib.urlopen(filename)
>>> im = Image.open(filelocation)

Every image object that is created by the open function exposes three attributes: format, size,
and mode.

im.format— Identifies the source format of the image.

im.size— It is a 2-tuple variable that contains the image's width and height.

im.mode—Provides the image mode, such as grayscale (L), CMYK, or RGB mode. The

http://www.pythonware.com/products/pil/index.htm

attribute called Image.MODES lists all the modes supported by the library.

>>> print im.format, im.size, im.mode
GIF (200, 130) L

If you want to generate a thumbnail image, you need to call the thumbnail method and provide the
size of the new image. Note that a new object isn't created because the change is applied to the old
object. Therefore, the image must be copied if you need both the original and thumbnail images.

>>> im.thumbnail((50, 32))

After you have done everything that you need, you can think about saving the new file. Notice that the
first argument in the save method is the name of the output file, and the second argument is the format
to be saved. If the format argument is omitted, the format is deduced from the file extension.

>>> outfile = "a:\\out.jpg"
>>> im.save(outfile, "JPEG")

Many other methods can be applied on the image. For cutting, pasting, and merging images, you can
use im.crop(), im.paste(), and im.transpose(). For resizing and rotating an image,
im.resize() and im.rotate() are available.

For a complete tutorial about using PIL, check out the Python Imaging Library Handbook at the
following site:

http://www.pythonware.com/library/pil/handbook/index.htm

Other Modules

Besides PIL, some other modules can help you manipulate graphic and image files.

http://www.pythonware.com/library/pil/handbook/index.htm

imghdr Module

This module recognizes image files based on their headers'first few bytes. The imghdr module is part
of the standard distribution. This module implements the what() function, which returns the file type.

>>> import imghdr
>>> imgfile = imghdr.what("d:\\logo.gif")
>>> print imgfile
gif

The file types currently supported are: SGI image library, GIF ('87 and '89 variants), PBM (portable
bitmap), PGM (portable graymap), PPM (portable pixmap), TIFF (can be in Motorola or Intel byte
order), Sun raster file, X bitmap (X10 or X11), JPEG data in JFIF format, BMP, and PNG.

GD Module

The GD module is an interface to the GD GIF library that allows your code to quickly draw images
complete with lines, arcs, text, multiple colors, cut and paste from other images, and flood fills, and to
write out the result as a .GIF file. This module is currently no longer maintained. Newer gd libraries
generate png images rather than gifs. Also, GD is not Free Software as it has commercial use
restrictions. For more information, check out the following site:

http://starship.beopen.com/crew/richard/gdmodule/

WBMP Module

WBMP is a wireless bitmap format, the graphic format used by WAP mobile phones. A WBMP module
for PIL is available for download at http://www.rcp.co.uk/ distributed/Downloads

The filename is wbmpconvsrc.zip. The download includes a script for converting between
WBMP and any other PIL supported bitmap format.

PyOpenGL Module

OpenGL, created by Silicon Graphics, is a portable library for rendering. It is a complex API with
superior performance that became an industry standard for 2D and 3D graphics.

http://starship.beopen.com/crew/richard/gdmodule/
http://www.rcp.co.uk/

The Open GL home page is located at http://www.opengl.org.

PyOpenGL is a wrapper class for the OpenGL library that is maintained by David Ascher. It can be
found at http://starship.python.net/crew/da/PyOpenGL.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Ascher, David
attributes
 im.mode
classes
 Image
files
 image
 saving
functions
 what()
generating
 thumbnail images
graphics
 manipulating 2nd 3rd
im.mode attribute
Image class
Image module
images
 manipulating 2nd 3rd
imghdr module
libraries
 Python Imaging
loading
 images
manipulating
 images 2nd 3rd
methods
 open
modules
 Image
 imghdr
 OpenGL

http://www.opengl.org/
http://starship.python.net/crew/da/pyopengl
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=151

open method
OpenGL module
PILÓ
 Ò
Python Imaging Library
saving
 images
Silicon Graphics
 OpenGL module
thumbnail images
 generating
what() function

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 9. Other Advanced Topics > Working with
Sounds

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148044238005059246049208

Working with Sounds

Python has many modules that can provide audio support for your programs by allowing you to listen to your
favorite audio CDs and read/write audio files (such as .wav, .aifc, and so on). Next, I present some of
the most important modules. However, keep in mind that other modules exist that are not mentioned here.

winsound Module

The winsound module implements an interface that grants access to the sound-playing environment
provided by Windows Platforms. This module is able to play wave sound files (.wav).

This module implements the function PlaySound, which has the following syntax:
PlaySound(sound, flags).

>>> import winsound
>>> winsound.PlaySound(r'C:\WINNT\Media\tada.wav', winsound.SND_FILENAME)

The following flag constants, which are also defined by this module, can be used as bitwise arguments to
the PlaySound function:

SND_FILENAME— The sound is a wave filename.

SND_ALIAS— The sound is a control panel sound association name.

SND_LOOP— This plays the sound repeatedly; must also specify SND_ASYNC.

SND_MEMORY— The sound is a memory image of a wave file.

SND_PURGE— This stops all instances of the specified sound.

SND_ASYNC— The PlaySound returns immediately.

SND_NODEFAULT— This does not play a default beep if the sound cannot be found.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=152
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A40%3A16+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=152&now=5%2F31%2F2002+4%3A40%3A16+PM

SND_NOSTOP— This does not interrupt any sounds currently playing.

SND_NOWAIT— This returns immediately if the sound driver is busy.

Tip

Before going further in this topic, let me present a small introduction about audio concepts that is
applicable for the understanding of the next couple of modules.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is
the number of times per second the sound is sampled. The number of channels indicate whether the audio
is mono, stereo, or quadro. Each frame consists of one sample per channel. The sample size is the size in
bytes of each sample. Thus a frame consists of nchannels*samplesize bytes, and a second's worth
of audio consists of nchannels*samplesize*framerate bytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo), and
has a frame rate of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second's worth
occupies 2*2*44100 bytes, that is, 176,400 bytes.

sndhdr Module

The sndhdr module is a collection of routines that help recognize sound files.

>>> import sndhdr
>>> audioinfo = sndhdr.what("c:\windows\media\start.wav")
('wav', 22050, 2, -1, 4)

The function sndhdr.whathdr() recognizes various types of sound file headers as it understands almost
all headers that SOX can decode. The function sndhdr.what() calls sndhdr.whathdr(), and the
return tuple contains the following items, in this order:

● file type (as SOX understands it)

● sampling rate (0 if unknown or hard to decode)

● number of channels (0 if unknown or hard to decode)

● number of frames in the file (-1 if unknown or hard to decode)

● number of bits/sample; 'U' for U-LAW, or 'A' for A-LAW

If the file doesn't have a recognizable type, it returns None; and if the file can't be opened, IOError is
raised.

To compute the total time, divide the number of frames by the sampling rate (a frame contains a sample for
each channel).

wave Module

This module enables you to read, parse, and create wave (.wav) files where file is either the name of a
file or an open file pointer. The open file pointer must have methods read(), seek(), and close().
When the setpos() and rewind() methods are not used, the seek() method is not necessary. This
function returns an instance of a class with the following public methods:

Table 9.1. Public Methods Exposed by the wave Module for an Instance of a Class That Can Read from a
File

Public Method Description
getnchannels() Returns the number of audio channels (1 for mono, 2 for stereo).
getsampwidth() Returns sample width in bytes.
getframerate() Returns sampling frequency.
getnframes() Returns number of audio frames.
getcomptype() Returns compression type ('NONE' for linear samples).
getcompname() Returns human-readable version of compression type ('not compressed' linear samples)
getparams() Returns a tuple consisting of all the previous in the order shown.
getmarkers() Returns None (for compatibility with the aifc module).
getmark(id) Raises an error because the mark does not exist (for compatibility with the aifc module).
readframes(n) Returns at most n frames of audio.
rewind() Rewinds to the beginning of the audio stream.
setpos(pos) Seeks to the specified position.
tell() Returns the current position.
close() Closes the instance (makes it unusable).

The position returned by tell() and the position given to setpos() are compatible and have nothing to
do with the actual position in the file. The close() method is called automatically when the class instance
is destroyed.

The syntax for writing wave files is f = wave.open(file, 'w')where file is either the name of a
file or an open file pointer. The open file pointer must have methods write(), tell(), seek(), and
close(). This function returns an instance of a class with the following public methods:

Table 9.2. Public Methods Exposed by the wave Module for an Instance of a Class That Can Write to a File

Public Method Description
setnchannels(n) Sets the number of channels.
setsampwidth(n) Sets the sample width.
setframerate(n) Sets the frame rate.
setnframes(n) Sets the number of frames.
setcomptype(type, name) Sets the compression type and the human-readable compression type.
setparams(tuple) Sets all parameters at once.
tell() Returns current position in output file.
writeframesraw(data) Writes audio frames without patching up the file header.
writeframes(data) Writes audio frames and patches up the file header.
close() Patches up the file header and closes the output file.

You should set the parameters before the first writeframesraw or writeframes. The total number of
frames does not need to be set, but when it is set to the correct value, the header does not have to be patched
up. It is best to first set all parameters, perhaps possibly the compression type, and then write audio frames
using writeframesraw. When all frames have been written, either call writeframes('') or
close() to patch up the sizes in the header. The close() method is called automatically when the class
instance is destroyed.

>>> import wave
>>> audio = wave.open('c:\\windows\\media\\tada.wav', 'r')
>>> audio.getnchannels()
2
>>> audio.getsampwidth()
2
>>> audio.getframerate()
22050
>>> audio.getnframes()
42752

aifc Module

The aifc module, which stands for Audio Interchange File Format, is devoted to audio file access

(reading/writing) in the AIFF and AIFC formats. This module has some functionality that only works on
IRIX systems, but it partially works fine on Windows systems, as well.

>>> dev = aifc.open("test.aifc", "w")
>>> dev.setframerate(22050)
>>> dev.setsampwidth(2)
>>> dev.setnchannels(2)
>>> dev.writeframes('123456787654321'*20000)
>>> dev.close()

Note that, the method aifc.writeframes() is equivalent to the
audiodev.Audiodev.writeframesraw. Both methods write data to the output file, and they can
only be called after the audio file parameters have been set.

You can hear the file that is generated by using the QuickTime Player on Macintosh systems, or the
MediaPlayer on Windows systems.

audiodev Module

The audiodev module provides a generic interface for audio output, which is used by Macintoshes, the
SGI UNIX(IRIX) and SunOS/Solaris platforms. Note that there is a module called linuxaudiodev
specific for Linux systems.

>>> import audiodev, aifc
>>> afile = aifc.open("test.aifc", "r")
>>> dev = audiodev.AudioDev()
>>> dev.setoutrate(afile.getframerate())
>>> dev.setsampwidth(afile.getsampwidth())
>>> dev.setnchannels(afile.getnchannels())
>>> data = afile.getsampwidth()*afile.getnchannels()*afile.getframerate()
>>> while 1:
… frames = afile.readframes(data)
… if not data:
… break
… dev.writeframes(frames)
…
>>>

The setoutrate() method defines the frequency rate of the sound wave; in this case, it is set to

22.05Khz.

The setsampwidth() method defines the sample width in number of bytes.

The setnchannels() method establishes the number of channels that we want to use. The previous
example defines that we want to hear the sound in stereo.

The previous modules are all part of the standard distribution. Now, I will talk about some third-party
modules.

The PythonWare Sound Toolkit (PST) reads sound files in different formats, and plays them on a variety of
hardware platforms. Similar to Python itself, the PythonWare Sound Toolkit is copyrighted but can be used
without a fee. This also applies to commercial applications. The current release reads AU, VOC, and WAV
files, and plays them on Windows and Sun boxes.

For more information and download, visit the Web page:

http://www.pythonware.com/products/pst/index.htm

The following link is an interesting resource that provides a Python package that plays audio CDs on your
Linux system:

ftp://starship.python.net/pub/crew/amk/unmaintained/linux-cd.tgz

If you are really interested in playing around with audio CDs, you'd better check the CDDB module.
CDDB.py provides an easy way for Python programs to fetch track and disc information on audio CDs. This
information is acquired from CDDB, a very large online database of track listings and other information on
audio CDs. Included is a C extension module to enable Python to read track listings from audio CDs under
Linux, FreeBSD, Solaris, and Win32. The interface to this extension module is portable and is intended to be
ported to other operational systems easily.

You can check it out at http://csl.cse.ucsc.edu/~ben/python/.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.pythonware.com/products/pst/index.htm
ftp://starship.python.net/pub/crew/amk/unmaintained/linux-cd.tgz
http://csl.cse.ucsc.edu/~ben/python/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=152

Index terms contained in this section

AIFC (Audio Interchange File Format)
aifc module 2nd
aifc.writeframes() method
arguments
 bitwise
 PlaySound function 2nd
audio 2nd 3rd 4th 5th 6th
Audio Interchange File Format (AIFC)
audiodev module 2nd
bitwise arguments
 PlaySound function 2nd
channels
 audio files
close() method 2nd
constants
 flag
 bitwise arguments, PlaySound function 2nd
creating
 wave files
files
 wave
 writing
flag constants
 bitwise arguments, PlaySound function 2nd
formats
 Audio Interchange File (AIFC)
frame rate
frames
 audio files
functions
 PlaySound
 bitwise arguments 2nd
 sndhdr.whathdr()
 sndhdrwhat()
getcompname() method
getcomptype() method
getframerate() method
getmark(id) method
getmarkers() method
getnchannels() method
getnframes() method
getparams() method
getsampwidth() method
methods
 aifc.writeframes()
 close() 2nd

 getcompname()
 getcomptype()
 getframerate()
 getmark(id)
 getmarkers()
 getnchannels()
 getnframes()
 getparams()
 getsampwidth()
 readframes(n)
 rewind()
 setcomptype(type, name)
 setframerate(n)
 setnchannels(n)
 setnframes(n)
 setparams(tuple)
 setpos(pos)
 setsampwidth(n)
 tell() 2nd
 wave module 2nd
 writeframes(data)
 writeframesraw(data)
modules
 aifc 2nd
 audiodev 2nd
 sndhdr
 wave 2nd
 winsound 2nd
PlaySound function
 bitwise arguments 2nd
readframes(n) method
rewind() method
sampling rate
setcomptype(type, name) method
setframerate(n) method
setnchannels(n) method
setnframes(n) method
setparams(tuple) method
setpos(pos) method
setsampwidth(n) method
sndhdr module
sndhdr.whathdr() function
sndhdrwhat() function
sounds 2nd 3rd 4th 5th 6th
syntax
 writing wave files
tell() method 2nd
wave files

 writing
wave module 2nd
winsound module 2nd
writeframes(data) method
writeframesraw(data) method
writing
 wave files

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 9. Other Advanced Topics > Restricted
Execution Mode

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148044238006085047159006

Restricted Execution Mode

Restricted Execution is the basic framework in Python that allows the segregation of trusted and untrusted
code. These modules prevent access to critical operations mostly because a program running in trusted mode
can create an execution environment in which untrusted code can be executed with limited privileges.

Two modules implement Python support to restricted execution: rexec and Bastion.

The rexec module implements a basic restricted execution framework by encapsulating, in a class (which
is called RExec), the attributes that specify the capabilities for the code to execute. Code executed in this
restricted environment will only have access to modules and functions that are believed to be safe.

The idea is to use a program that runs in trusted mode to create an execution environment in which you can
define limits to be applied on the execution of the untrusted code.

The rexec.RExec() creates an instance of the RExec class. By doing so, you implement a restricted
environment. You can also subclass the RExec class, and change any one of the class variables that define
the environment by modifying the __init__() method of the class.

RExec.ok_builtin_modules— Tuple of module names that can be imported.

RExec.nok_builtin_names— Tuple of built-in functions not available to the class.

RExec.ok_path— List of directories to be searched when importing modules.

RExec.ok_sys_names— Tuple of available function names from the sys module.

RExec.ok_posix_names— Tuple of available function names from the os module.

The following methods are called while inside a restricted environment:

r_import(modulename [,globals [,locals]])— Loads a module and is similar
to the built-in import function.

r_open(filename [, mode [, buffersize]])— Opens a file and is similar to
the built-in open function.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=153
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A40%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=153&now=5%2F31%2F2002+4%3A40%3A24+PM

r_unload(modulename)— Unloads a given module.

r_reload(modulename)— Reloads a module and is similar to the built-in reload
function.

The methods s_import(), s_unload(), and s_reload() have functionality similar to the
previous methods, except that they also allow the use of sys.stdin, sys.stdout, and
sys.stderr.

When you create an instance of the RExec class, the instance has the following methods available:

r_exec(code)— Same as the exec statement.

r_eval(code)— Same as the eval statement.

r_execfile(filename)— Same as the execfile statement.

The methods s_eval(), s_exec(), and s_execfile() have functionality similar to the previous
methods, except that they also allow the use of sys.stdin, sys.stdout, and sys.stderr.

Protecting the Application Environment

The next example shows how you can use the rexec module to protect your processing environment. We
subclass the rexec.RExec class, and we redefine the r_import method in order to block the access to
the import implementation.

import rexec
class ExecEnv(rexec.RExec):
 def r_import(*args):
 raise SystemError, "The import function is not enabled."
myEnv = ExecEnv()
myEnv.s_exec("import sys")

Bastion is the other module used to provide restricted access to objects. This module is able to deny
access to certain attributes of an object.

The basic syntax is Bastion.Bastion(object, filter).

import Bastion
>>> class parrot:
… def __init__(self):
… self.color = "blue"
… def setcolor(self, color):
… self.color = color
… def getcolor(self):
… return self.color
…
>>> myparrot = parrot()
>>> my = Bastion.Bastion(myparrot, lambda x:x in ['setcolor','getcolor'])
>>> my.getcolor()
'blue'
>>> my.setcolor("green")
>>> my.getcolor()
'green'
>>> my.color
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "C:\Program Files\Python\Lib\Bastion.py", line 78, in __getattr__
 attribute = self._get_(name)
 File "C:\Program Files\Python\Lib\Bastion.py", line 121, in get2
 return get1(name)
 File "C:\Program Files\Python\Lib\Bastion.py", line 117, in get1
 raise AttributeError, name
AttributeError: color
>>>

As you could see, we prohibited the user to access the color attribute directly. It is necessary to use either
the getcolor() method or the setcolor() method in order to manipulate it. The first argument of the
Bastion function is the original object that carries all the attributes, and the second argument is a function
that must return true for the attributes that can be accessed by the new object.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=153

Index terms contained in this section

applications
 protection environments
Bastion module 2nd 3rd
environments
 applications
 protecting
functions
 rexec.RExec()
modes
 Restricted Execution 2nd 3rd
modules
 Bastion 2nd 3rd
 rexec 2nd 3rd 4th
programs
 protection environments
protection application environments
Restricted Execution mode 2nd 3rd
rexec module 2nd 3rd 4th
rexec.RExec() function
software
 protection environments

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 9. Other Advanced Topics > Scientific Computing See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148044238007122032091154

Scientific Computing

Python is extensively used for scientific computing because it enables a rapid prototyping and execution of a number of
functions. Scientists and engineers often have needs for high-performance computation tools that are also easy to use and
modify. Many also want to be able to use a general-purpose language instead of a specialized tool, allowing them to integrate
networking, GUI's, and so on in their high-performance work. Several modules have been developed to address these needs
around the Python language.

In this section, I cover the Numeric Python extensions (NumPy), which provide efficient operations on large multidimensional
arrays, and it has proven to be the right choice when talking about scientific computing with Python.

Besides NumPy, many other scientific tools are available. The Python community has created several extensions for
manipulating data and functions, interfaces to data plotting libraries, storage solutions for scientific data, and much more. If
you want to deeply discuss scientific computing with Python, you can look for the plot-sig (the Plotting Special Interest
Group).

If you spend some time browsing around scientific Web pages, you will be surprised about the number of people who are
really using Python for their projects.

For more information, visit the following Web sites:

Scientific computing topic at Python's Web site:

http://www.python.org/topics/scicomp/

Simple Numerical Recipes in Python was written by William Park to describe few elementary numerical routines
in Python:

http://www.python.org/topics/scicomp/recipes_in_python.html

Python for Science—An Introduction to Python for Scientists:

http://starship.python.net/crew/hinsen/

Numerical Extensions

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=154
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A40%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=154&now=5%2F31%2F2002+4%3A40%3A31+PM
http://www.python.org/topics/scicomp/
http://www.python.org/topics/scicomp/recipes_in_python.html
http://starship.python.net/crew/hinsen/

The most powerful way to face scientific computing in Python systems is to use Python Numerical Extensions (commonly
known as NumPy). The Numerical Python extensions were originally written by Jim Hugunin (JPython's author), but the
responsibility to continue the project now belongs to a group of python users from the Lawrence Livermore National
Laboratory. The languages that were used to guide the development of NumPy include Basis, MATLAB, FORTRAN, S and
S+, and others.

The NumPy package adds a fast, compact multidimensional array language facility to Python. One-dimensional arrays are
similar to standard Python sequences and two-dimensional arrays are similar to matrices from linear algebra. This package
also includes tools for working with linear algebra, Fast Fourier Transforms (FFTs), random numbers, and so forth.

In addition, NumPy adds two new types to Python: A sequence type (to implement multidimensional arrays), and a new type
of function called a universal function (ufunc). Numeric Python consists of a set of modules:

Numeric.py (and Its Helper Modules multiarray, umath, and fast_umath)

This module defines two new object types and a set of functions that manipulate these objects, as well as converting them and
other Python types. The objects are the new array object (technically called multiarray objects), and universal functions
(technically ufunc objects). The array objects are generally homogeneous collections of potentially large numbers of
numbers. Universal functions (ufuncs) are functions that operate on arrays and other sequences.

The Numeric module provides, in addition to the functions needed to create the previous objects, a set of powerful functions to
manipulate arrays, select subsets of arrays based on the contents of other arrays, and other array-processing operations. Note
that only Numeric need be imported.

RandomArray.py (and Its Helper Module ranlib)

This module provides a high-level interface to a random-number generator (ranlib), which supplies a uniform distribution
generator of pseudo-random numbers, as well as some convenience functions:

For more information, check out Additions to RandomArray Module, by Lee A. Barford:

http://numpy.sourceforge.net/RandomArray-additions.html

FFT.py (and Its Helper Module fftpack)

This module provides a high-level interface to the fast Fourier transform routines implemented in the FFT-PACK library if it is
available, or to the compatible but less optimized fftpack library that ships with Numeric Python.

The FFT module provides a high-level interface to the fast Fourier transform routines, which are implemented in the
FFTPACK library. It performs one- and two-dimensional FFT's, forward and backwards (inverse FFTs), and includes efficient
routines for FFTs of real-valued arrays. It is most efficient for arrays whose size is a power of two.

LinearAlgebra.py (and Its Helper Module lapack_litemodule)

This module provides a high-level interface to the linear algebra routines implemented in the LAPACK library if it is available,
or to the compatible but less optimized lapack_lite library that ships with Numeric Python. It includes functions to solve
systems of linear equations and linear least squares problems, invert matrices, compute eigenvalues and eigenvectors,
generalized inverses, determinants, as well as perform singular value decomposition.

http://numpy.sourceforge.net/randomarray-additions.html

People such as scientists and engineers—who need to manipulate large arrays of numbers quickly, efficiently, and
stylishly—find in these extensions a great tool, whose power is compared against other numeric languages such as MATLAB
and IDL.

A good point is that everything you can do using Numerical Python is also possible to be written using core Python data
structures, such as lists and tuples. The problem is that the program will run much too slow. However, if you have a couple of
huge Numerical Python arrays, the speed of adding them up is close to the speed of doing it in C. Therefore, processing
sophisticated numeric operations using NumPy provides similar results as running the same process using a compiled
language, but without the compile time overhead or having to worry about bugs in the low-level array operations.

The following links are great sources of information about the Numeric Python extensions:

Numerical Python

http://numpy.sourceforge.net

Numerical Python—Documentation

You should consider taking a look at the official documentation for NumPy. The tutorial walks you through a set
of numeric manipulations.

http://numpy.sourceforge.net/numpy.pdf

Numerical Python Project

The Numerical Python Project Page has releases, links to the FTP site, a bug tracking system, and a browser for
the source repository plus instructions on how to use CVS anonymously.

http://numpy.sourceforge.net

and

http://sourceforge.net/project/?group_id=1369

Numerical Python arrays in C extension modules

http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numpy.pdf
http://numpy.sourceforge.net/
http://sourceforge.net/project/?group_id=1369

http://starship.python.net/crew/hinsen/NumPyExtensions.html

Writing C Extensions using Numerical Python

http://oliphant.netpedia.net/packages/Numerical_Extensions.pdf.gz

Installing NumPy

Note that before building Numerical Python, you need to obtain and install the Distutils package.

Tip

The Distutils package will be distributed with Python beginning with the 1.6 release. Its purpose is to define a
standard for installing Python modules. For details, check out http://www.python.org/sigs/distutils-sig/

Currently, NumPy has two distribution options available.

On Win32 platforms, such as Microsoft Windows 95, 98, and NT, a binary installer is available at

 ftp://ftp-

icf.llnl.gov/pub/python/NumPy.exe

This installer is simple to use (simply double-click on the NumPy.exe file and answer questions on each screen in turn).
Running this installer will perform all the needed modifications to your Python installation so that NumPy works.

For both UNIX and other platforms, NumPy must be compiled from the source. The source distribution for NumPy is part of
the LLNLPython distribution, which is available at

 ftp://ftp-

icf.llnl.gov/pub/python/Numeric-xx.y.tgz

There is also RPMs for Linux available from the numpy Web site at http://sourceforge.net/project/filelist.php?group_id=1369.

The file is a gzipped tarfile that should be uncompressed using the gunzip program and un-tarred with the tar program:

csh> gunzip Numeric-xx.y.tgz
csh> tar xf Numeric-xx.y.tar

http://starship.python.net/crew/hinsen/NumPyExtensions.html
http://oliphant.netpedia.net/packages/numerical_extensions.pdf.gz
http://www.python.org/sigs/distutils-sig/
ftp://ftp-icf.llnl.gov/pub/python/numpy.exe
ftp://ftp-icf.llnl.gov/pub/python/numpy.exe
ftp://ftp-icf.llnl.gov/pub/python/numeric-xx.y.tgz
ftp://ftp-icf.llnl.gov/pub/python/numeric-xx.y.tgz
http://sourceforge.net/project/filelist.php?group_id=1369

Follow the instructions found in the top-level directory for compilation and installation procedures.

The standard Python installer for the Macintosh (available at http://www.python.org/download/download_mac.html)
optionally installs the NumPy extensions, although these are typically not the most up-to-date files.

Other Scientific Extensions

Next, you have access to some extra Python extension modules that deal with scientific computation.

ScientificPython

ScientificPython is a collection of Python modules that are useful for scientific computing. In this collection, you will
find modules that cover basic geometry (vectors, tensors, transformations, vector, and tensor fields), quaternions, automatic
derivatives, (linear) interpolation, polynomials, elementary statistics, nonlinear least-squares fits, unit calculations, Fortran-
compatible text formatting, 3D visualization via VRML, and two Tk widgets for simple line plots and 3D wireframe models.
For more information, check out the following site:

http://starship.python.net/crew/hinsen/scientific.html

Pyfort (The Python/Fortran Connection Tool)

Pyfort allows you to wrap your own Fortran routines in Python. For more information, check out

 http://pyfortran.sourceforge.net

RNG

RNG is a random number package from LLNL. For more information, check out

ftp://numpy.sourceforge.net/pub/numpy/RNG-2.0.tgz

pyclimate

This package contains some tools used for climate variability analysis. It makes extensive use of Numerical Python. For more
information, check out

http://lcdx00.wm.lc.ehu.es/~jsaenz/pyclimate/index.html

http://www.python.org/download/download_mac.html
http://starship.python.net/crew/hinsen/scientific.html
http://pyfortran.sourceforge.net/
ftp://numpy.sourceforge.net/pub/numpy/rng-2.0.tgz
http://lcdx00.wm.lc.ehu.es/~jsaenz/pyclimate/index.html

GmatH

GmatH is a Gnome interface to the Numerical Python extensions. For more information, check out

http://gmath.sourceforge.net/index.html

Real

real.py is a library that introduces a new class, called Real, of arbitrarily precise numbers, allowing computations with
"infinite" precision. This package handles a floating point number with a large number of decimal places (more than double by
far). For more information, check out

ftp://ftp.python.org/pub/python/contrib-09-Dec-1999/DataStructures/
real-accurate.pyar

Computer Programming for Everybody

Some great efforts are being made in bringing Python to classrooms in order to prepare young people for our new computer
reality.

Bringing a computer language to the class is not a new idea. Many schools already teach some kind of programming language.
However, Python is a very high-level language, a human-readable language, not just computer-readable, it has a more up-to-
date design, and what you learn from Python can be adapted to other languages.

Everyone needs to know a little about computers these days, no matter what profession is chosen. It is said that some day in the
near future, everyone will have to know how to code a computer program. Python is a great language that possesses all the
features required for teaching computer logic to tomorrow's scientists.

For more information, see the following:

Computer Programming for Everybody, by Guido van Rossum

http://www.python.org/doc/essays/cp4e.html

EDU-SIG: Python in Education

http://www.python.org/sigs/edu-sig/

http://gmath.sourceforge.net/index.html
http://www.python.org/doc/essays/cp4e.html
http://www.python.org/sigs/edu-sig/

Check out the following four-part essay entitled Numeracy + Computer Literacy series by Kirby Urner, who uses Python to
teach various math concepts in the Oregon Curriculum Network. This material will give you a clear idea of how Python can be
approached for education.

 http://www.inetarena.com/~pdx4d/ocn/cp4e.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 Distutils
array objects
arrays
 one-dimensional
 two-dimensional
classes
 Real
classrooms
 bringing Python to
computing
 scientific
 use of Python in 2nd 3rd 4th 5th 6th
Distutils package
extensions
 Numerical Python (NumPy) 2nd 3rd 4th 5th
fast_umath module
FFT.py module
fftpack module
functions
 universal
GmatH module
Hugunin, Jim
installing
 NumPy 2nd
lapack_litemodule module
Lawrence Livermore National Library
LinearAlgebra.py module
modules
 fast_umath
 FFT.py
 fftpack
 GmatH
 lapack_litemodule
 LinearAlgebra.py
 multiarray
 Numeric.py
 pyclimate
 Pyfort

http://www.inetarena.com/~pdx4d/ocn/cp4e.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=154

 real.py
 umath
multiarray module
Numeracy + Computer Literacy
Numeric.py module
Numerical Python (NumPy) extensions 2nd 3rd 4th 5th
NumPy (Numerical Python) 2nd 3rd 4th 5th
objects
 array
one-dimensional arrays
Oregon Curriculum Network
Plotting Special Interest Group
programs
 Distutils
pyclimate module
Pyfort module
Real class
real.py module
scientific computing
 use of Python in 2nd 3rd 4th 5th 6th
software
 Distutils
two-dimensional arrays
umath module
universal functions
Urner, Kirby

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 9. Other Advanced Topics > Regular Expressions See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148044238000231176115064

Regular Expressions

We already know that the string module is used to apply basic manipulation operations on strings; meanwhile, at the time
of developing advanced routines, you might need to enhance Python's string-processing capabilities. That's when you should
consider using the re module (re stands for regular expression).

Regular expressions are strings, which contain a mix of text and special characters, that let you define complicated pattern
matching and replacement rules for other strings.

Some of the special characters that compound regular expressions must be preceded by backslashes in order to be matched.
Consequently, regular expressions are usually written as raw strings because they tend to use a lot of backslashes. That means
that instead of writing "\\b(usa)\\d", it is much easier to say r"\b(usa)\d".

Older versions of Python used to support the following regular expression obsolete modules are: regexp, regex, and
regsub.

Table 9.3. Special Characters Recognized by the re Module

Special Character What It Matches
. Any character (except newline by default).
^ The start of the string, or of a line (in case of multiline re's).
$ The end of the string, or of a line (in case of multiline re's).
* Any number of occurrences of the preceding expression.
+ 1 or n number of occurrences of the preceding expression.
| Either the preceding re or the following re, whichever is true.
? 1 or 0 number of occurrences of the preceding expression.
*? Similar to *, but it matches as few occurrences as possible.
+? Similar to +, but it matches as few occurrences as possible.
?? Similar to ?, but it matches as few occurrences as possible.

{ m, n } From m to n occurrences of the preceding expression. It matches as many occurrences as possible.

{ m, n }? From m to n occurrences of the preceding expression. It matches as few occurrences as possible.

[list] A set of characters, such as r"[A-Z]".

[^ list] Characters that are not in the list.

(re) Matches the regular expression as a group. It specifies logical groups of operations and saves the matched
substring.

Anystring The string anystring.
\w Any alphanumeric character.
\W Any non-alphanumeric character.
\d Any decimal digit.
\D Any non-decimal digit.
\b Empty strings at the starting or ending of words.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=155
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A40%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=155&now=5%2F31%2F2002+4%3A40%3A44+PM

\B Empty strings that are not at the starting or ending of words.
\s Matches a whitespace character.
\S Matches any non-whitespace character.

\ number Text already matched by the group number.

\A Only at the start of the string.
\Z Only at the end of the string.
\\ The literal backslash.

(?: str) Matches str, but the group can't be retrieved when matched.

(?! str) If not followed by str (for example, only matches r"Andre (?!Lessa)" if it doesn't find "Andre Lessa").

(?= str) If followed by str.

(?=.* str) If followed at some point by str (for example, only matches r"Andre (?=.*Lessa)" if it finds something
similar to "Andre S Lessa"). This syntax doesn't consume any of the string, so in this example, the re only
matches the "Andre " portion of the string.

(?# str) This is just to insert a comment in the middle of the regular expression string.

(?P< name >…) Matches the regular expression that follows the name and creates a group name.

(?P= name) Matches the same things that the group name has matched.

.* Any number of characters.

In case you need to know a full definition of the syntax, visit the following link:

 http://www.python.org/doc/current/lib/re-syntax.html

Next, you have the regular expression flags. These flags are used as bitwise-or operators in the re functions.

re.DOTALL (also used as re.S)— Allows the dot character to match all characters, including newlines.

re.IGNORE (also used as re.I)— Allows non case sensitive matching.

re.LOCALE (also used as re.L)— Enables locale settings for \w, \W, \b, and \B.

re.MULTILINE (also used as re.M)— Applies ^ and $ for each line, and not for each string.

re.VERBOSE (also used as re.X)— Ignores unescaped whitespace and comments.

Let's look at our first example of regular expressions. Suppose that you have the following conversation text:

oldtext = """
 That terrible dead PARROT sketch must end!
 Oh, Come on! It is a terrific parrot joke.
 I agree, but I don't like to see dead parrot.
 Ok. I will suggest a new terrific parrot sketch."""

Okay. Now our challenge is to create an expression that is able to identify all the words "parrot" that

http://www.python.org/doc/current/lib/re-syntax.html

1. Are preceded by either "terrible" or "terrific" (such as "terrible parrot", "terrific
parrot").

2. Are not immediately preceded by the word "dead".

3. Are separated from the previous word by a whitespace ("terribleparrot" does not work).

4. Are not followed by the word "joke", hence, "parrot joke" is an invalid string.

5. Are followed by a whitespace, and right after, by the word "sketch" (neither "parrotsketch" nor "parrot
old sketch" are valid).

6. The matching must not be case sensitive.

The word "parrot" that gets identified must be replaced with the word "spam".

The following code is a possible solution for this problem:

 1: import re
 2: restring = re.compile(
 3: r"""\b(terrible|terrific)
 4: (?!dead)
 5: (\s+
 6: parrot
 7: (?!joke)
 8: \s+sketch)""",
 9: re.DOTALL | re.IGNORECASE | re.VERBOSE)
10: newline = restring.sub(r'\1 spam', oldtext)

We are calling the compile function (line 2), which generates a compiled regular expression object called restring.
Then, we call the class method sub (line 10) to substitute the matches found in the text variable that we have already defined
(oldtext). The sub() method replaces the entire matched section of the string. Note that the r'\1 spam' argument
uses \1 to make sure that the result collected in the first group of parenthesis ("Terrible" and "Terrific") is placed
right before the word "spam".

Regular Expression Functions and Object Methods

The re module implements just one exception—the error exception, which is raised only when a regular expression string
is not valid.

Next, you have the list of available re functions.

re.compile()

Compiles a regular expression pattern string and generates a regular expression object.

RegExpObject = compile(string [, flags])

For details about the flags argument, check out the previous list of available flags.

Every regular expression object exposes the following attributes and methods:

RegExpObject.search()

Searches for the compiled pattern in the string.

MatchObject = RegExpObject.search(string [,startpos] [,endpos])

It uses the startpos and endpos arguments to delimit the range of the search.

All functions that are supposed to return a MatchObject when the function succeeds, return None when a fail occurs.

RegExpObject.match()

Checks whether the initial characters of string match the compiled pattern.

MatchObject = RegExpObject.match(string [,startpos] [,endpos])

It uses the startpos and endpos arguments to delimit the scope of the matching.

RegExpObject.findall()

Finds nonoverlapping matches of the compiled pattern in string.

MatchList = RegExpObject.findall(string)

RegExpObject.split()

Splits the string by the occurrences of the compiled pattern.

StringList = RegExpObject.split(string [, maxsplit])

RegExpObject.sub()

Substitutes the matches of pattern in string with newtext.

RegExpObject.sub(newtext,
 string [, count])

The replacements are done count number of times, starting from the left side of string. When you leave out the count
argument, you are not really saying don't perform the substitution at all, but apply it as many times as necessary.

RegExpObject.subn()

It is similar to sub. However, it returns a tuple that contains the new string and the number of substitutions executed.
When you leave out the count argument, you are not really saying don't perform the substitution at all, but apply it as many
times as necessary.

RegExpObject.subn(newtext, string [, count])

re.search()

Searches for the pattern in the string.

MatchObject = search(pattern, string [,flags])

re.match()

Sees whether the initial characters of string match the pattern.

MatchObject = match(pattern, string [,flags])

re.findall()

Finds nonoverlapping matches of pattern in string.

MatchList = findall(pattern, string)

re.split()

Splits the string by the occurrences of pattern.

StringList = split(pattern, string [, maxsplit])

re.sub()

Substitutes the matches of pattern in string with newtext.

sub(pattern, newtext, string [, count])

The replacements are done count number of times, starting from the left side of string.

re.subn()

It is similar to sub(). However, it returns a tuple that contains the new string and the number of substitutions executed.

subn(pattern, newtext, string [, count = 0])

re.escape()

Backslashes all the nonalphanumeric characters of string.

newstring = escape(string)

Each RegExpObject also implements the following methods and attributes:

RegExpObject.flags— Returns the flag arguments used at the compilation time of the regular
expression object.

RegExpObject.groupindex— Returns a dictionary that maps symbolic group names to group numbers.

RegExpObject.pattern— Returns the object's original pattern string.

Each MatchObject implements the following methods and attributes:

MatchObject.group([groupid,…])— Once you provide a list of group names or numbers, Python
returns a tuple containing the text matched by each of the groups.

MatchObject.groupdict()— Returns a dictionary that contains all the named subgroups of the match.

MatchObject.groups()— Returns a tuple that contains all the text matched by all groups.

MatchObject.start([group]) and MatchObject.end([group])— Returns the first and last
positions of the substring matched by the group.

MatchObject.span([group])— Returns a tuple that contains both the MatchObject.start and
the MatchObject.end values.

MatchObject.pos and MatchObject.endpos— Returns the pos and endpos values, which were
passed to the function when creating it.

MatchObject.string— Returns the string value, which was passed to the function when creating it.

MatchObject.re— Return the RegExpObject that was used to generate the MatchObject instance.

Special Note for Python 2.0 Users

All the internals of the re module were changed in Python 2.0. Now, the regular expression engine is located in a new
module called SRE written by Fredrik Lundh of Secret Labs AB. The reason for that was to allow Unicode strings to be
used in regular expressions along with 8-bit strings. Pay attention to the re module as it continues to be the front-end
module, which internally calls the SRE module.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

$ (dollar sign)
 re module
(?
 str)
 re module
(?!str)
 re module
(?#str)
 re module
(?=.str)
 re module
(?=str)
 re module
(?P<
 name
(?P=name)
 re module
(re)
 re module
* (asterisk)
 re module
*?
 re module

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=155

+ (plus sign)
 re module
+?
 re module
. (period)
 re module
.*
 re module
? (question mark)
 re module
??
 re module
[^list]
 re module
[list]
 re module
\\
 re module
\A
 re module
\b
 re module
\B
 re module
\d
 re module
\D
 re module
\number
 re module
\s
 re module
\S
 re module
\W
 re module
\Z
 re module
^ (carat)
 re module
{m, n}
 re module
{m, n}?
 re module
| (pipe)
 re module
Anystring
 re module
asterisk (*)
 re module
attributes
 MatchObject
 RegExpObject
carat (^)
 re module
characters
 recognized by re module 2nd
dollar sign ($)

 re module
dot(.)
 re module
expressions
 regular 2nd 3rd 4th 5th 6th 7th
functions
 re.compile()
MatchObject
 methods and attributes
methods
 MatchObject
 objects
 regular expressions 2nd 3rd 4th
 re.escape()
 re.findall()
 re.match()
 re.search()
 re.split()
 re.sub() 2nd
 RegExpObject
 RegExpObject.split()
 RegExpObject.sub()
modules
 re 2nd 3rd 4th 5th 6th 7th 8th
 internals
 SRE
objects
 methods
 regular expressions 2nd 3rd 4th
period (.)
 re module
pipe (|)
 re module
plus sign (+)
 re module
question mark (?)
 re module
re module 2nd 3rd 4th 5th 6th 7th 8th 9th
 internals
re.compile() function
re.escape() method
re.findall() method
re.match() method
re.search() method
re.split() method
re.sub() method 2nd
RegExpObject
 methods and attributes
RegExpObject.split() method
RegExpObject.sub() method
regular expressions 2nd 3rd 4th 5th 6th 7th
SRE module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 9. Other Advanced Topics > Threads See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148044238001160165056249

Threads

Let's start by quickly defining a thread. Many people still have some kind of confusion when it comes to clarifying the
difference between threads and processes.

When you run any program in your computer, the CPU creates a process for that program. This process is defined as a group
of elements that compound a single program. These elements are the memory area reserved for the program, a program
counter, a list of files opened by the program, and a call stack where all the variables are stored. A program with a single call
stack and program counter is a single threaded program.

Now, suppose you have different tasks inside your program that you need to execute several times simultaneously. What do
you do? Maybe you are thinking about calling the whole program several times. Wrong answer! Think about all the resources
that you are consuming without actually using them!

The solution to implement this multithreaded program is to create a function that implements the code which needs to be
executed several times concurrently, and then, create a thread that uses only this function.

A thread is a program unit that processes multiple time-consuming actions as parallel tasks in the background of your main
application process. Sometimes threads are difficult to debug because the circumstances in which they occur are hard to
simulate.

Python Threads

Python threads can be implemented on every operational system that supports the POSIX threads library. But actually, the
Python threading support doesn't always use POSIX threads. In the python-2.0 source tree, there are beos, cthread, lwp, nt, os2,
pth, pthread, sgi, solaris, and wince thread implementations. In certain environments that support multithreading, Python
allows the interpreter to run many threads at once.

Python has two threading interfaces: The thread module and the threading module. The use of these Python's native
threading built-in modules enables the code to be portable across all platforms that support Python.

The thread module supports lightweight process threads. It offers a low-level interface for working with multiple threads.

On the other hand, the threading module provides high-level threading interfaces on top of the thread module.

Besides these two modules, Python also implements the Queue module. This is a synchronized queue class used in thread
programming to move Python objects between multiple threads in a safe way.

Threads have limitations on some platforms. For instance, Linux thread switching is quite fast, sometimes faster than NT
thread switching.

Programs—such as Tkinter, CORBA, and ILU—that rely on a main loop to dispatch events can complicate the design of
threads. Definitively, they do not have a good relationship with threaded programs. Main loops are usually used by Graphical
User Interfaces not to allow the main thread to exit.

MacPython is currently not built with thread support. That is because no posix-compatible thread implementation was

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=156
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A40%3A55+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=156&now=5%2F31%2F2002+4%3A40%3A55+PM

available, making Python integration hard. However, this has changed with GUSI2 (a posix I/O emulation library), and the
upcoming MacPython 1.6a1 is planned to have threads.

The Windows Operation System adds many additional features to Python's implementation of threads. The win32 package
provides as additional features for Python's thread support:

● The win32process module—An interface to the win32 Process and Thread API's.

● The win32event module—A module that provides an interface to the win32 event/wait API.

The threading model provided by the COM technology allows objects not designed to work as threads to be used by other
objects that are thread-aware.

Python's interpreter cannot handle more than one thread at the same time. The global interpreter lock is the internal mechanism
which guarantees that the Python interpreter executes only one thread simultaneously. Although this is not a problem for single-
threaded programs, or programs on single-processor machines, it can become trouble on performance-critical applications that
run on multiprocessor computers. If your threads are doing IO work, other threads can execute during reads and writes.

Check out Appendix A, "Python/C API," for information about handling threads using the Python/C API. You can also see the
latest documentation about it at

http://www.python.org/doc/current/api/threads.html

You might also want to look at the thread and threading modules in the library reference, which are documented at

 http://www.python.org/doc/current/lib/module-

thread.html

and

 http://www.python.org/doc/current/lib/module-

threading.html

Anton Ertl has a Web page that exposes very interesting material about the differences between the various threading
techniques:

http://www.complang.tuwien.ac.at/forth/threaded-code.html

Python Thread Modules

http://www.python.org/doc/current/api/threads.html
http://www.python.org/doc/current/lib/module-thread.html
http://www.python.org/doc/current/lib/module-thread.html
http://www.python.org/doc/current/lib/module-threading.html
http://www.python.org/doc/current/lib/module-threading.html
http://www.complang.tuwien.ac.at/forth/threaded-code.html

Python includes two threading modules, assuming that your Python was configured for threads when it was built. One provides
the primitives, and the other provides higher-level access. In general, Python relies on operating system threads unless you
specifically compile it by activating the thread directive. This should offer adequate performance for all but the most
demanding applications.

Thread Module

The following four functions are available in this module:

● thread.allocate_lock()— Creates and returns a lock object. This object has the following three methods:

lckobj.acquire([flag])— It is used to acquire a lock. If the flag is omitted, the function returns
None when it acquires the lock. If flag is set to 0, the lock is only acquired when it can be immediately
acquired. Anything different from 0 blocks the methods until the lock is released. This process cannot be
interrupted. This function returns 1 if the lock is acquired, and 0 if not.

lckobj.release()— Releases the lock.

lckobj.locked()— Returns 1 if the object has a successful lock. Otherwise, it returns 0.

● thread.exit()— Raises a SystemExit exception that ends the thread. It is equivalent to sys.exit()
function.

● thread.get_ident()— Gets the identifier of the current thread.

● thread.start_new_thread(func, args [,kwargs])— Starts a new thread. Internally, it uses the apply
function to call func using the provided arguments. This method requires the second argument (args) to be a tuple.

As there isn't any main loop in the next program, the time.sleep function (line 30) doesn't allow the child threads be killed
because it doesn't allow the main thread exit. If this function weren't there, the other threads would be killed immediately when
the main thread exited. You can test this by commenting the last line.

 1: import thread, time
 2: class VCR:
 3: def __init__(self):
 4: self._channel = { }
 5: self._channel['1'] = self.channel_KDSF
 6: self._channel['2'] = self.channel_FOKS
 7: self._channel['3'] = self.channel_CBA
 8: self._channel['4'] = self.channel_ESTN
 9: def channel(self, selection, seconds):
10: self._channel[selection] (seconds)
11: def channel_KDSF(self, seconds_arg):
12: thread.start_new_thread(self.record, (seconds_arg,'1. KDSF'))
13: def channel_FOKS(self, seconds_arg):
14: thread.start_new_thread(self.record, (seconds_arg,'2. FOKS'))
15: def channel_CBA(self, seconds_arg):
16: thread.start_new_thread(self.record, (seconds_arg,'3. CBA'))
17: def channel_ESTN(self, seconds_arg):
18: thread.start_new_thread(self.record, (seconds_arg,'4. ESTN'))

19: def record(self, seconds, channel):
20: for i in range(seconds):
21: time.sleep(0.0001)
22: print "%s is recorded" % (channel)
23:
24: myVCR = VCR()
25:
26: myVCR.channel('1', 700)
27: myVCR.channel('2', 700)
28: myVCR.channel('3', 500)
29: myVCR.channel('4', 300)
30: time.sleep(5.0)

The time.sleep() function in line 21 is necessary to allow other threads to run. If you don't use this function, there will be
no timing gap between commands to be used by the other threads.

Threading Module

Besides exposing all the functions from the thread module, this module also provides the following additional functions:

Threading.activeCount()— This function returns the number of active thread objects.

Threading.currentThread()— This function returns the thread object in current control.

Threading.enumerate()— This function returns a list of all active thread objects.

Each Threading.Thread class object implements many methods, including

threadobj.start()— This method invokes the run method.

threadobj.run()— This method is called by the start method. You can redefine this one.

threadobj.join([timeout])— This one waits for the threads to complete. The optional timeout
argument must be provided in seconds.

threadobj.isAlive()— Returns 1 if the run method of the thread object has concluded. If not, it returns
0.

In the next example, you want to subclass the Thread class, and define a new run method for the subclass. In order to
activate the thread, you need to call the start() method, not the run() method. The start method creates the new thread
that executes the run method.

import Threading
import time, random
class NewThread(Threading.Thread):
 def run(self):
 init = 0
 max = random.randint(1,10)

 while init < max:
 init = init + 1
 time.sleep(0.0001)
 print max

threads = []
for i in range(20):
 threadobj = NewThread()
 threadobj.start()
 threads.append(threadobj)

for thread in threads:
 thread.join()

print "---- THE END ----"

Just as a suggestion, try commenting the for loop near the end of the program. The reason for using it is to guarantee that all
the threads are executed.

As final notes about this topic, I would like to highlight that

● The processing time of a thread in a multithreaded program is equal to the CPU time of the program, divided by the
number of threads that have been created. Well, that is an estimate because some threads might take a lot more CPU
time than others.

● Multithreaded programs have their data shared among all the threads, so it might cause race conditions (a state of
inconsistent in a program). You have to be very careful when updating data used by multiple threads. Usually, the
solution for this kind of problem is to lock the code before changing the data in order to keep all the threads
synchronized.

For more information about threading, check out Python and Indirect Threading, by Vladimir Marangozov:

http://starship.python.net/crew/vlad/archive/threaded_code/

Microthreads

If you are really thinking about diving into multitasking applications, another option that you should consider is called
microthreads. It implements threading by tweaking the execution order of Python's virtual machine, rather than by interrupting
the processor. The microthread approach is much newer and much less deeply tested, but it might be more straightforward for
your application.

Simulations and high-volume mission critical applications typically prefer large numbers of lightweight threads. There is a
Stackless Python implementation that implements lightweight microthreads (see http://www.stackless.com for more
information).

With microthreads, all your simulation threads run within a single operating system thread. They are useful when you want to
program many behaviors happening simultaneously. Simulations and games often want to model the simultaneous and
independent behavior of many people, many businesses, many monsters, many physical objects, many spaceships, and so

http://starship.python.net/crew/vlad/archive/threaded_code/
http://www.stackless.com/

forth. With microthreads, you can code these behaviors as Python functions. Additionally, the microthread library includes a
rich set of objects for interthread communication, synchronization, and execution control.

Tip

Keep in mind that you need to have the Stackless Python in order to use the microthread library.

Microthreads switch faster and use much less memory than OS threads. The restrictions on microthreads (not shared by OS
threads) are that they will only provide context-switching within Python code, not within C or Fortran extensions, and they
won't help you take advantage of multiple processors. Also, microthreads will not take advantage of multiple CPUs in a box.

You can run thousands of microthreads at the same time. However, microthreads can hang on some blocking I/O operations;
they are so new that there isn't yet a lot of practical experience with which operations (input or output) are troublesome.

For details, check out Python Microthreads, by Christian Tismer and Will Ware:

 http://world.std.com/~wware/uthread.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 MacPython
 thread support
classes
 queue
conditions
 race
functions
 time.sleep
handling
 threads
 interpreters
interpreters
 handling threads
MacPython
 thread support
microthreads
modules
 thread 2nd 3rd
programs
 MacPython
 thread support
queue class
race conditions

http://world.std.com/~wware/uthread.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=156

software
 MacPython
 thread support
Stackless Python
thread modules 2nd 3rd
threads 2nd 3rd 4th 5th 6th
time.sleep function
Windows
 thread support

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 9. Other Advanced Topics >
Summary

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148045048071115000250083

Summary

This chapter provides a general overview of some important advanced Python topics that you might
need to use on a regular basis. They are image manipulation, sounds, restricted environment, Numeric
Python, regular expressions, and threads.

Python has comprehensive support for handling image files. The foundation of this structure is based
on the Python Imaging Library (commonly known as PIL). Its framework is cross-platform, which
allows it to perform image manipulation and processing in different systems using the same code.
Besides PIL, some other modules (such as imghdr, GD, WBMP, and PyOpenGL)can help you
manipulate graphic and image files.

winsound, wave, sndhdr, aifc, and Audiodev are some of the Python modules that
provide audio support for your programs by allowing you to listen to your favorite audio CDs and
read/write audio files (such as .wav, .aifc, and so on). All these modules are part of the standard
distribution. However, there are some great third-party Python audio modules too. The PythonWare
Sound Toolkit (PST) reads sound files in different formats, and plays them on a variety of hardware
platforms. It is really cool!

Restricted execution is the basic framework in Python that allows the segregation of trusted and
untrusted code. Two modules implement Python support to restricted execution: rexec and
Bastion. These modules prevent access to critical operations mostly because a program running in
trusted mode can create an execution environment in which untrusted code can be executed with
limited privileges. The idea is to use a program that runs in trusted mode to create an execution
environment in which you can define limits to be applied on the execution of the untrusted code.

Python is also extensively used for scientific computing because it enables a rapid prototyping and
execution of a number of functions. The Python Numerical Extensions (commonly known as NumPy)
provides efficient operations on large multi dimensional arrays because it adds a fast and compact
multidimensional array language facility to Python. NumPy has also proven to be the correct powerful
choice when talking about scientific computing with Python. Other scientific extensions, such as
ScientificPython, Pyfort, RNG, pyclimate, GmatH, and Real are also part of the
constant work of many Python developers who want to turn Python into a more complete scientific
language.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=157
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A41%3A03+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=157&now=5%2F31%2F2002+4%3A41%3A03+PM

While I'm talking about scientific and school projects, there is a very important project that
recommends the idea of teaching Python to young people at schools. The project is titled "Computer
Programming for Everybody," and it was created by Guido van Rossum.

Regular expressions are strings—containing a mix of text and special characters—that let you define
complicated pattern matching and replacement rules for other strings. You can, for example, search for
a specific pattern of data in a whole text file, and substitute it for other text.

Python has two threading interfaces: the thread module and the threading module. The use of
these native threading built-in modules enables the code to be portable across all platforms that support
Python. The thread module supports lightweight process threads. It offers a low-level interface for
working with multiple threads. On the other hand, the threading module provides high-level
threading interfaces on top of the thread module. Besides these two modules, Python also
implements the Queue module, which is a synchronized queue class that is used in thread
programming to move Python objects between multiple threads in a safe way. Besides these two
implementations, Python developers can use microthreads too. This technology implements
threading by tweaking the execution order of Python's virtual machine, rather than by interrupting the
processor.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/154#14.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/154#14.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=157

Web Development > Python Developer's Handbook > 9. Other Advanced Topics > Code Examples See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148045048070068078146247

Code Examples

Next, you have some code examples that demonstrate the concepts illustrated by this chapter.

HTML Parsing Tool (File: parsing.py)

We are going to use the exchange.html as the source of information for this program. The idea is to read the
file, replace all the occurrences of the domain name "lessaworld" for "bebemania", and add hyperlinks
for all email and Web pages references that exist there.

Listing 9.1 File: exchange.html

<HTML>
<HEAD>
<TITLE>Exchange Rates Home Page</TITLE>
</HEAD>
<BODY>
<p align=justify>
List of current files that we have available at this site:</p>

http://www.lessaworld.com/exchange/real.txt

http://www.lessaworld.com/exchange/pound.txt

http://www.lessaworld.com/exchange/dollar.txt

Many people are currently working to keep these exchange rates updated.

Andre (andre@bebemania.com.br) handles all the Brazilian Real operations,
 meanwhile,Joao Pedro (jp@bebemania.com.br) takes care of pounds and
 dollars.

</BODY>
</HTML>

The following code implements the parsing program.

Listing 9.2 File: parsing.py

 1:
 2: import re, sys
 3:
 4: TextOriginal = open("exchange.html").read()
 5:
 6: TextIn = re.sub("lessaworld", "bebemania", TextOriginal)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=158
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A41%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=158&now=5%2F31%2F2002+4%3A41%3A11+PM

 7:
 8: operation_result = re.search(r'<title>(.*?)</title>', TextIn
 ,re.IGNORECASE)
 9: if operation_result:
10: HTML_TITLE = operation_result.group(1)
11:
12: link_pattern = re.compile(r'((ftp|http)://[\w-]+(?:\.[\w-]+)*(?:/[\w-]*)*
 (?:\.[\w-]*)*)')
13: links = re.findall(link_pattern, TextIn)
14: TextIn = re.sub(link_pattern, r"\1", TextIn)
15:
16: email_pattern = re.compile(r'([a-zA-Z][\w-]*@[\w-]+(?:\.[\w-]+)*)')
17: emails = re.findall(email_pattern, TextIn)
18: TextIn = re.sub(email_pattern, r"\1", TextIn)
19:
20: FileOut = open("newexchange.html", "w")
21: FileOut.write(TextIn)
22: FileOut.close()
23:
24: print '"%s" is done.'% (HTML_TITLE)

Line 4: Opens and reads the original file.

Line 6: Replaces occurrences of "lessaworld" with "bebemania".

Lines 8–10: Locates the Web page title.

Line 10: The first group is the element between parenthesis in the regular expression of line 8.

Line 12: Creates a regular expression that locates all the Web addresses in the text.

Line 13: Creates a list of all the elements (links) that were found by the matching.

Line 14: Adds the hyperlinks for all the Web links that were found.

Line 16: Creates a regular expression that locates all the email addresses in the text.

Line 17: Creates a list of all the elements (emails) that were found by the matching.

Line 18: Adds the hyperlinks for all the email addresses that were found.

Lines 20–22: Creates a new file with the new content.

In order to execute the routine, you just need to call it from the OS prompt, and then check the resulting file in your
browser.

S:\python> python parsing.py
"Exchange Rates Home Page" is done.
S:\python>

TV Network Audiences (File: audience.py)

The next example demonstrates the use of the Queue module. The idea is to have several threads running and
sharing information at the same time. The program starts several threads that execute some time-consuming
operations, while the main thread is generating numbers that are used by all the other threads.

Listing 9.3 File: audience.py

 1:
 2: import threading, time
 3: import Queue, random
 4:
 5: class VCR(threading.Thread):
 6: channels = ["KDSF", "FOKS", "CBA", "ESTN"]
 7:
 8: def __init__(self, queue, channel, seconds):
 9: self.__queue = queue
10: self.seconds = seconds
11: self.network = VCR.channels[channel-1]
12: threading.Thread.__init__(self)
13: def run(self):
14: for i in range(self.seconds):
15: time.sleep(0.0001)
16: self.public = self.__queue.get()
17: print "After %d seconds, %d people were watching %s" % }
18: (self.seconds, self.public, self.network)
19:
20: queue = Queue.Queue(0)
21:
22: VCR(queue, 1, 60).start()
23: VCR(queue, 2, 40).start()
24: VCR(queue, 3, 35).start()
25: VCR(queue, 4, 75).start()
26:
27: audience = 0
28: while audience < random.randint(200,300):
29: queue.put(audience)
30: audience = audience + 1
31: print "The audience now has %d people." % (audience)
32: time.sleep(0.001)
33:
34: time.sleep(10)

Line 5: Defines a subclass of the Thread class.

Line 6: Creates a class variable.

Line 13: Implements the functionality that is executed when the thread is started.

Line 15: Pauses the execution, in order to let other threads run simultaneously.

Line 16: Gets the current value in the Queue.

Line 20: Initializes the Queue object that is shared by all threads.

Lines 22–25: Starts all the threads.

Lines 28–32: Implements a routine that keeps generating numbers to be passed to the thread.

Line 29: Sends a value to the queue in order to be collected by the threads.

Line 34: Pauses the main thread so that the other threads can end normally.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

code
 HTML parsing tool
HTML parsing tool source code
source code
 HTML parsing tool
tools
 HTML parsing
 source code
utilities
 HTML parsing
 source code

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=158

Web Development > Python Developer's Handbook > III: Network Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148045048070077122145033

Part III: Network Programming
Part III Network Programming

Chapter 10 Basic Network Background

Chapter 11 Web Development

Chapter 12 Scripting Programming

Chapter 13 Data Manipulation

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=160
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A41%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=160&now=5%2F31%2F2002+4%3A41%3A18+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=160

Web Development > Python Developer's Handbook > 10. Basic Network Background See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148045048069206189150199

Chapter 10. Basic Network Background
Albatross! Albatross! Albatross!

This chapter exposes basic and advanced network concepts, and invites you to learn a little more about
them by using Python routines.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=162
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A41%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=162&now=5%2F31%2F2002+4%3A41%3A28+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=162

Web Development > Python Developer's Handbook > 10. Basic Network Background >
Networking

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148045048068018033017147

Networking

Networking…This is the word behind all new technology that arrives in the market these days.

It doesn't matter if you are transferring a file via FTP or browsing your favorite Web site, the network
infrastructure is right behind you. To support all these functionalities, Python has a number of complex
protocol implementations available over the top of a low-level access to the Internet. This low-level
access is totally based on the concept of sockets.

High-level implementations make light work of many types of network interaction that we want to
implement most often (for example, browse the Web, send an email, and so on). Of particular note are
the Web-based protocols and the support for manipulating the data that might be retrieved using them.

Now that the Internet seems to be not only part of our present, but also of our future, networking has
definitively become part of our lives. Therefore, it is good for you to know a little about it.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

networking

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=163
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A41%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=163&now=5%2F31%2F2002+4%3A41%3A37+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=163

Web Development > Python Developer's Handbook > 10. Basic Network Background >
Networking Concepts

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148045048067056107174087

Networking Concepts

Networking systems are well-defined by the OSI/ISO (Open Systems Interconnection/ International
Standards Organization) seven-layer model, which suggests the following levels of the networking
process: physical, data link, network, transport, session, presentation, and application. However, keep in
mind that, in practice, protocols span multiple layers, and you shouldn't worry if your application doesn't fit
in this model. Most of today's networking stacks (including TCP/IP) use less layers that are not quite as
well separated as in the OSI model. Consequently, if you try to map a TCP/IP session onto the OSI model,
you will get a bit confused because some layers are merged, and some others are removed.

Physical layer— Defines the information necessary to transport data over physical
components, such as cables.

Data link layer— Defines how data is passed to and from the physical components. Point-
to-point error correction is usually performed at this layer.

Network layer— Organizes the network by assigning distinct addresses for its elements, so
the information in traffic can be routed to the right computers. The IP protocol works at this
layer.

Transport layer— Packs the data and makes sure that the data transfer between the
machines is error-free. TCP and UDP are protocols that implement these responsibilities.

Session layer— Handles each individual connection (session) made by the machines.

Presentation layer— Used to overcome differences such as different formats for integers
on different platforms. TCP/IP makes this the application's responsibility, and Python has
some modules to help with this (for instance, the struct module).

Application layer— Implements your final product, your application. FTP clients,
SMTP/POP3 mail handlers, and HTTP browsers are examples of complete applications that
run over your network.

Network connections can be of two types: connection-oriented or connectionless (packet-oriented).

Let's talk about the pair TCP/IP, which is a packet-oriented implementation. Nowadays, I can't imagine a
unique machine that doesn't support it. TCP/IP is the most widely used networking protocol possibly

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=164
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A41%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=164&now=5%2F31%2F2002+4%3A41%3A44+PM

because it is robust and untied to any particular physical medium, and maybe also because the
specifications are freely available.

TCP/IP was originally created by the United States Department of Defense, and soon, this protocol
combination became the network of choice for the U.S. government, the Internet, and the universities. This
tuple runs on virtually every operating system platform, which makes it strong when internetworking
between different LAN environments is required. Today, a great number of commercial and public
networks are built on top of this implementation. Although the Internet grew out of the TCP/IP work done
at universities and the U.S. Department of Defense, it didn't adopt TCP/IP until part of the way through.

The network layer of the TCP/IP stack is provided by the Internet Protocol (commonly known as IP). This
protocol provides the basic mechanism for routing packets in the Internet because it sends packets of data
back and forth without building an end-to-end connection.

IP doesn't understand the relationships between packets, and doesn't perform retransmission. (It is not a
reliable communication protocol!) Therefore, it requires higher-level protocols such as TCP and UDP to
provide a reliable class of service. It does ensure that the IP header is not corrupted though.

TCP stands for Transmission Control Protocol, and it is the main form of communication over the Internet
because it provides a reliable, session-based service for the delivery of sequenced packets.

This connection-oriented protocol provides a reliable two-way connection service over a session. Each
packet of information exchanged over a session is given a sequence number through which it gets tracked
and individually acknowledged. Duplicate packages are detected and discarded by the session services.
Sequence numbers are not globally unique or even necessarily unique to the session. Although in a small
enough time window, they would be unique to the session.

The TCP/IP protocol doesn't provide an application interface layer—the application provides the
application layer. However, sockets have emerged as TCP/IP's premier peer-to-peer API, providing a way
of writing portable networking applications.

UDP, which stands for User Datagram Protocol, is another protocol that provides transport services. This
protocol provides an unreliable but fast datagram service. They are unreliable in the sense that they are not
acknowledged or tracked through a sequence number. After transmitting the diagram, you have to hope that
it gets received. We don't know if the recipient is there, or even if he is expecting a diagram. Some statistics
say that about 5% of the diagrams don't make it. That's depressing, isn't it?

Note

UDP is useful for streaming media, where a packet that is late is useless, so retransmission is not
desirable.

UDP is a connectionless transport protocol that doesn't guarantee delivery or packet sequence. As an
example, UDP is used by the ping command in order to check whether a host is reachable in the network.

No doubt the UDP protocol is faster than the TCP protocol. The reason is because the TCP protocol spends
more time switching information between the machines in order to guarantee that the information gets
transferred. That doesn't happen when using UDP, which makes it considerably faster than TCP. Another
fact is that while transferring data packets, the TCP protocol waits until all the packets arrive, and organizes
them in sequence for the client program. However, the UDP protocol doesn't do that. It allows the client
program to decide how the packets should be interpreted because packets aren't received in any specific
ordering format. The problem is that this kind of implementation is completely unreliable because there is
no way to confirm whether the information has reached its destiny. If you need a stream-oriented protocol,
TCP is about as fast as you will get it. If it was such a bad protocol, it would have been replaced by now.

Protocols

The most commonly used application protocols are built on top of TCP/IP infrastructures. Actually, they
don't have to know any details about TCP nor about IP because a thin layer called sockets exists
between TCP/IP and them.

Python has modules that handle and support the access to all the following protocols. These protocols use
the services provided by the sockets in order to transport packets on the network and to make connections
to other hosts.

● HTTP processes Web pages.

● FTP transfers files between different machines.

● Gopher browses Gopher servers.

● Telnet provides access to another machine.

● POP3 reads mail files on POP3 servers.

● IMAP reads mail files on IMAP servers.

● NNTP provides access to the Usenet news.

● SMTP sends mail to standard mail servers.

Addresses

A socket address, on the TCP/IP internet structure, consists of two parts: an Internet address (commonly
known as an IP address) and a port number.

The IP address defines the addressing and routing of information around the network, uniquely identifying
a network interface.

An IP address is a 32-bit number (a sequence of four bytes), usually represented by four decimal numbers
ranging from 0 to 255, separated by dots. A IP address looks something similar to 128.85.15.53.

Each IP number must be unique for each TCP/IP network interface card within an administered domain,
which in most cases means that each machine connected to the Internet has a unique IP address. Actually, a
networked machine can have more Internet addresses than network interfaces. This is quite common in
virtual hosting situations.

A port is an entry point to an application/service that resides on a server. It is a number represented by a 16-
bit integer. This number can range between 0 and 65535, but you can't freely use all of them inside your
programs. Always choose a port number greater than 1024 because the range 0–1023 is reserved by the
operation system for some network protocols. Specific ports are shown in Table 10.1.

Note

Ports 0-1023 are called privileged ports and on most systems only the super user can run applications
that use them. If you do not specify a port for one of the end points of your connection, one from the
1024-65535 range will be chosen.

Table 10.1. Many Server Programs Have Their Own Famous Ports

Port Protocol
20 FTP (data)
21 FTP (control)
23 Telnet
25 SMTP
80 HTTP
119 NNTP

A larger list of ports can be found in the /etc/services file on UNIX machines or
c:\windows\services on Win95/Win98 machines.

Most of the time, you don't need to worry about knowing the IP addresses offhand. DNS services provide a
translation between IP addresses and hostnames because it is much easier to remind a name than a sequence
of numbers. You should know that extra mappings between IP addresses and hostnames can be added in
the /etc/hosts or c:\windows\hosts file.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/164#3.html

The conclusion is that if you need to connect your client program to an application running on a server, you
just need to know the server's IP address or hostname, and the port number in which the application is
listening.

Together TCP and IP provide the basic network services for the Internet.

Sockets

Sockets are objects that provide the current portable standard for network application providers on certain
suites of network protocols (such as TCP/IP, ICMP/IP, UDP/IP, and so forth). They allow programs to
accept and make connections, such as to send and receive data. It is important that each end of a network
communication have a socket object in order to establish the communication channel.

Sockets were first introduced in 1981 as the UNIX BSD 4.2 generic interface that would provide UNIX-to-
UNIX communications over networks. Since that occasion, sockets have become part of the BSD UNIX
system kernel, and they have also been adopted on a lot of other UNIX-like Operating Systems, including
Linux.

Support for sockets is also provided, in the form of libraries, on a multiplicity of non-BSD UNIX systems,
including MS-DOS, Windows, OS/2, Mac OS, and most mainframe environments. The Windows socket
API, known colloquially as WinSock, is a multivendor specification that has standardized the use of TCP/IP
under Windows.

This library is based on the Berkeley sockets interface as well. Of course, WinSock is not as convenient as
a real sockets interface because the socket descriptors can't be passed to the select function as file
descriptors can.

The reason for all this multi-environment possibility is because sockets are implemented using a standard C-
level interface, which makes it easier to implement in other operating systems.

Each socket has a type that defines the protocol which implements the environment where the socket is
used. These types are specified at creation time. The three most popular socket types are: stream,
datagram, and raw. stream and datagram sockets can interface directly to the TCP protocol,
whereas the raw sockets interface to the IP protocol. Note, however, that sockets are not limited to TCP/IP.
Stream over a PF_INET connection will give TCP, and datagram over PF_INET will give UDP.

The socket Module

The socket module is a very simple object-based interface that provides access to a low-level BSD
socket-style network. Both client and server sockets can be implemented using this module.

This module provides an exception called error, which is raised every time a socket- or address-related

error happens.

Now we will look at the methods that are implemented by this module.

socket(family, type [, protocol])— This method creates and returns a new
socket object, which is an instance of the SocketType class.

The family value can be either AF_UNIX (for UNIX domain protocols) or AF_INET (for
IPv4 protocols such as TCP and UDP). Note that Python currently doesn't support IPv6, IPX,
and other protocols used also.

The socket type defines whether the socket is a stream socket (SOCK_STREAM, for the
TCP protocol), a datagram socket (SOCK_DGRAM, for the UDP protocol), a raw socket
(SOCK_RAW), or a Sequenced connection-mode (SOCK_SEQPACKET).

The third and optional argument (protocol) is only used along with raw sockets, which
are used only with AF_INET families. This argument is a constant value that identifies the
protocol to be used. The default value is 0 for all socket types, and the list of possible values
is: IPPROTO_TCP, IPPROTO_UDP, IPPROTO_RAW, IPPROTO_IP, and
IPPROTO_ICMP. Note that these constant values are returned by the
getprotobyname() function.

gethostname()— Returns the hostname of the local machine.

gethostbyname(hostname)— Converts a hostname to an IP address.

gethostbyname_ex(hostname)— Returns a tuple (hostname, hostname_alias_list,
host_ip_list).

gethostbyaddr(ipaddress)— Returns a tuple (hostname, hostname_alias_list,
host_ip_list).

getprotobyname(protocol)— Returns a constant value that is equivalent to the
protocol name.

getservbyname(service, protocol)— Returns the port number associate to the
pair service+protocol. The protocol argument must be either 'tcp' or 'udp'.

Each socket object has the following methods:

accept()— Accepts a new connection and returns two values: a new socket object to be

used while transferring data back and forth, and the address of the socket that this object is
talking to.

bind(hostname, port)— Binds the socket to a port address.

close()— Closes the socket.

connect(hostname, port)— Connects to another socket, which can be an external
socket or a local socket. The hostname for local sockets is localhost.

getpeername()— Returns the IP address and the port to which the socket is connected.

getsocketname()— Returns the IP address and the port of it's own socket.

listen(max_connections)— Starts listening to the port, waiting for other sockets to
connect. Before it starts refusing connections, the OS queues the maximum number of
connections that you inform.

makefile([mode [, buffersize]])— Creates a file object that you can use
read() and write() on, which is useful for stream-oriented protocols. The arguments
mode and buffersize have the same meaning as the built-in open() function.

The next two functions are normally used for receiving packets on a datagram oriented
protocol such as UDP.recv(buffersize)—Returns the data string received from the
socket. buffersize limits the maximum amount of data to be received.

recvfrom(buffersize)— Returns the data string received from the socket and the IP
address that has originated from the socket. buffersize limits the maximum amount of
data to be received.

The next two functions are usually used for sending packets on a datagram oriented protocol such as UDP.

send(string)— Sends the data string to the socket.

sendto(string, (hostname, port))— Sends the data string to the socket hosted
by hostname at the provided port.

setblocking(flag)— Blocks all read and write operations until they can proceed if the
flag is set to 1, the default value. If you change the value to 0, an error exception is raised
when those operations cannot proceed.

shutdown(flag)— Shuts down the client sockets if the flag is set to 0. If the flag is set
to 1, the server sockets are shut down. If the flag is set to 2, both types of sockets are shut
down.

For those that already have Python 2.0 installed, you should know that as a result of some changes in the
Python design, you are encouraged to use an extra pair of parenthesis when passing tuples as arguments to
some functions of the socket module. Note that some funtions still accept the old interface, but you are
encouraged to start using the new model right away, for example, socket.connect(
('hostname', 80)). Among the functions that still accept the old interface, we have:
socket.connect(), socket.connect_ex(), and socket.bind().

Starting with Python 2.0, it's available OpenSSL support for the socket module. That means that from
now on you can encrypt the data you send over a socket using this implementation of the Secure Socket
Layer. In order to have it properly installed you need to edit the Modules/Setup file to include SSL
support before compiling Python. Doing so will add the socket.ssl() function to your socket
module.

socket.ssl()

This function takes a socket object and returns an SSL socket.

basic syntax: socket.ssl(socket, keyfile, certfile)

Making Connections

Because we already know that sockets are mostly used for TCP and UDP connections, let's see how to
implement those interfaces using Python. Initially, we will check the necessary steps to start a TCP
connection.

The server application needs to

1. Create a socket.

2. Bind the socket to an available port.

3. Tell the system to start listening to that port.

4. Query the port for new connections.

After these steps are performed, the TCP client application just needs to

1. Create a socket.

2. Open a connection to the server.

When the server receives the client request to establish a connection, it processes the request and sends the
response back to the client.

 1: # TCP server example
 2: import socket
 3: svrsocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 4: svrsocket.bind("", 8888)
 5: svrsocket.listen(5)
 6: while 1:
 7: data_to_send = "This string could be anything"
 8: clisocket, address = svrsocket.accept()
 9: print "I got a connection from ", address
10: clisocket.send(data_to_send)
11: clisocket.close()

The first argument in line 3 is the family address protocol. Currently, Python supports only two values:
AF_UNIX (for UNIX domain sockets) and AF_INET (for Internet sockets). If you are using a non-UNIX
system, you must use the AF_INET protocol.

The second argument in line 3 defines the type of connection that must be open. The common choices are
SOCK_STREAM for stream-based connections (TCP) and SOCK_DGRAM for datagram-based
connection (UDP). Depending on your system, you might also have other options: SOCK_SEQPACKET,
SOCK_RAW, SOCK_RDM, SOCK_PACKET (Obsolete).

After creating a server socket, you need to bind the socket to a port on the local machine (line 4). The
socket will listen to this port and process all the requests that come to this port.

In this example, we are connecting to port 8888. Remember that you should not use port numbers up to
1024 because they are reserved for system services. The 20,000–30,000 range is also prohibited because it
is reserved for the Remote Procedure Call (RPC) services. Of course you should use these port numbers if
you are implementing one of those services.

Tip

On UNIX systems, you need to have root privileges to implement services on ports lower than 1024.
NT systems implement the same concept where ports lower than 1024 can only be used by system (or
root) processes or by programs executed by privileged users.

The listen() method (line 5) tells the server to start "listening" to the port, waiting for connections.

After a client connects to this server, the accept() method (line 8) is invoked, and a new socket is
created. Note that two sockets are involved in the whole process: one to establish the connection, and the
other one to manage all the transactions between the client and the server.

The following example implements the client version of our program:

1: # TCP client example
2: import socket
3: clisocket = socket.socket(socket.AD_INET, SOCK_STREAM)
4: clisocket.connect("lessaworld.com", 8888)
5: data = clisocket.recv(512)
6: clisocket.close()
7: print "The data received is ", data

The socket() method (line 3) creates a TCP socket that tries to connect to the server/port specified as
arguments of the connect() method (line 4).

After the connection is set up, the recv() method (line 5) is used to read the data. In this example, we are
limiting the maximum number of 512 bytes to be read.

The next task is to implement the same client/server architecture using the UPD protocol. The steps
necessary to start a UDP connection are as follows:

1. Create a socket.

2. Bind the socket to an available port.

3. Query the port for new connections.

After these steps are performed, the UDP client application just needs to

1. Create a socket.

2. Send a request to the server.

When the server receives the client request to establish a connection, it sends the response back to the
client. And that's it. As you know, there is no concept of connection here. The following code example
demonstrates an example of how to handle an UDP server.

1: # UDP server example
2: import socket
3: svrsocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
4: svrsocket.bind("", 8000)
5: while 1:
6: data, address = svrsocket.recvfrom(256)
7: print address[0], "said : ", data

The recvfrom() method (line 6) is used to read datagrams that are sent to the port, which is informed in
line 4. The recvfrom() method returns two arguments: the actual data and the address of the host that
has sent the data.

The following code example demonstrates an example of how to handle an UDP client.

 1: # UDP client example
 2: import socket
 3: clisocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 4: while 1:
 5: data = raw_input("Type something: ")
 6: if data:
 7: clisocket.sendto(data, ("lessaworld.com", 8000))
 8: else:
 9: break
10: s.close()

To send data to the server implementation, you need to use the sendto() method (line 7). The first
argument is the data you want to send, and the second one is a tuple containing both the hostname and the
port number waiting for your connection.

The UDP implementation doesn't try to set up a connection before starting to send diagrams. When you
transmit data using UDP, it's hard to know whether the other machine has received the datagram.

For more information about sockets, you should consider viewing Gordon McMillan's HOWTO on socket
programming at

http://www.python.org/doc/howto/sockets/

http://www.python.org/doc/howto/sockets/

Darrell Gallion's Web site also has some examples that might help you get started with sockets:

http://www.dorb.com/darrell/sockets

Asynchronous Sockets

The asyncore module provides the basic infrastructure for writing and handling asynchronous socket
service clients and servers that are the result of a series of events dispatched by an event loop. This module
is used to check what is happening with sockets in the system, and it implements routines to handle each
situation. The core of this module is the dispatcher class.

dispatcher ([socket])

This is supposed to be the constructor of the asyncore.dispatcher class. To use this class, you need
to subclass it, and override the method that you want to handle. This class is just a wrapper on top of a
socket object. If the socket argument is omitted, you need to call the create_socket() method as
shown in the following example:

import asyncore
import socket
class Dispatcher(asyncore.dispatcher):
 def handle_write(self):
 self.send("data")
 self.close()

class DataServer(asyncore.dispatcher):
 def __init__(self, port=8888):
 self.port = port
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.bind(("", port))
 self.listen(5)
 def handle_accept(self):
 link, address = self.accept()
 Dispatcher(link)
dataserverobj = DataServer(8888)
asyncore.loop

This example overrides two methods from the dispatcher class: handle_write() and
handle_accept(). The first one is called when the socket receives an attempt to be written, and the
other one is called when the listening socket receives a connection request.

http://www.dorb.com/darrell/sockets

The other methods available in this class are as follows:

handle_connect()— Called when a connection is set up with success.

handle_expt()— Called when a connection fails.

handle_read()— Called when the socket has data available to be read.

handle_close()— Called when the connection to the socket is closed or reset.

handle_error(error_type, error_value, traceback)— Called whenever
one of the other handlers causes a Python error.

readable()— Returns 1 if the object has data to be read, 0 if not.

writable()— Returns 1 if the object wants to write data, 0 if not.

The dispatcher class also provides methods that have a implementation similar to those available in the
socket module. Here is the list: create_socket (equivalent to socket), connect, bind,
listen, send, recv, accept, and close.

This module also reveals two functions:

asyncore.poll([timeout=0 [, exceptions=0]])— Pools for events, calling
the proper handler functions. If you set the exceptions flag to 1, every exception generated
in event handlers will be raised.

asyncore.loop([timeout=30])— Repeatedly calls asyncore.poll().

You can also check out the Asynchronous Sockets Library, by Sam Rushing, which is used for building
asynchronous socket clients and servers:

http://www.nightmare.com/software.html

This is a single program that can simultaneously communicate with many other clients and servers, using
and implementing multiple protocols running within a single address space on a single thread. Included in
the library are sample clients, servers, and demonstrations for several Internet protocols, including HTTP,
finger, DNS, POP3, and FTP.

http://www.nightmare.com/software.html

The select Module

The select module is used to implement polling and to multiplex processing across multiple I/O streams
without using threads or subprocesses. It provides access to the BSD select() function interface,
available in most operating systems. On Windows, this function only works for sockets. On UNIX, it is
used for pipes, sockets, files, or any other stream-compatible objects. Also note that the that
asyncore module is built on top of the select module.

The select function accepts socket lists as arguments. The following example implements a loop that
will keep checking the sockets in order to identify the exact moment when they become readable, writable,
or signal an error. (An error is assigned whenever a socket tries to open a connection, and the connection
fails. A few other conditions will trigger one of the sockets, not just connect errors.)

A socket becomes readable when it successfully gets a connection after calling the listener, or when it
receives data. On the other hand, if a connection is set up after a non-blocking call to the connect
method, the socket becomes writable.

import select
import socket
App_Socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
App_Socket.bind("", 8888)
App_Socket.listen(5)
while 1:
 readable_sockets = [App_Socket]
 writable_sockets = []
 r, w, err = select.select(readable_sockets, writable_sockets, [], 0)
 if r:
 client, address = service.accept()
 client.send("data")
 client.close()

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=164

Index terms contained in this section

() (parenthesis)
 tuples
accept() method
addresses
 IP 2nd
 networks 2nd
 socket
AF_INET value
AF_UNIX value
application program interfaces (APIs)
 Winsock
arguments
 protocol
asynchronous sockets 2nd 3rd
Asynchronous Sockets Library
asyncore module 2nd 3rd 4th
binding
 sockets 2nd 3rd
classes
 dispatcher 2nd
clients
 User Datagram Protocol (UDP)
 handling
connect() method
connecting
 sockets 2nd 3rd
create_socket method
creating
 sockets 2nd
datagram sockets
dispatcher class 2nd
family value
functions
 asyncore module
 interfaces
 select
 select()
 send(string)
 sending packets on datagram protocols 2nd
 socket.ssl()
 syntax
handle_accept() method
handle_write() method
handling
 clients
 User Datagram Protocol (UDP)

interfaces
 application program (API)
 Winsock
 functions
Internet Protocol (IP) 2nd
IP (Internet Protocol) 2nd
IP addresses 2nd
layers
 sockets
listen() method
methods
 accept()
 connect()
 create_socket
 handle_accept()
 handle_write()
 listen()
 recv()
 recvform()
 sendto()
 socket module 2nd 3rd
 socket objects 2nd 3rd
 socket()
models
 Open Systems Interconnection (OSI) 2nd
modules
 asyncore 2nd 3rd 4th
 socket 2nd 3rd
 OpenSSL support
networking
 addresses 2nd
 Open Systems Interconnection (OSI) model 2nd
 protocols 2nd 3rd
 sockets 2nd 3rd 4th 5th 6th 7th 8th
numbers
 IP addresses
objects
 socket 2nd 3rd
 sockets 2nd 3rd 4th 5th 6th 7th 8th
Open Systems Interconnection (OSI) model 2nd
Open Systems Interconnection/International Standards Organization (OSI/ISO)
OpenSSL support
 socket modules
OSI (Open Systems Interconnection) model 2nd
OSI/ISO (Open Systems Interconnection/International Standards Organization)
parenthesis ()
 tuples
port

ports
 binding sockets 2nd 3rd
privileged ports
privileges
 root, UNIX
protocol argument
protocols
 Internet Protocol (IP) 2nd
 Transmission Control (TCP)
 starting connections 2nd
 Transmission Control Protocol/Internet Protocol (TCP/IP) 2nd 3rd 4th
 User Datagram (UDP)
 starting connections
 User Datagram Protocol (UDP) 2nd
raw sockets
readable sockets
recv() method
recvform() method
Remote Procedure Call (RPC)
root privileges, UNIX
RPC (Remote Procedure Call)
Rushing, Sam
select function
select() function
send(string) function
sendto() method
SOCK_DGRAM connection
SOCK_STREAM connection
socket addresses
socket module 2nd 3rd
 OpenSSL support
socket objects 2nd 3rd
socket type value
socket() method
socket.ssl() function
 syntax
sockets
 datagram
 networks 2nd 3rd 4th 5th 6th 7th 8th
 raw
 stream
sockets layer
starting
 connections
 Transmission Control Protocol (TCP) 2nd
 User Datagram Protocol (UDP)
stream sockets
syntax

 functions
 socket.ssl()
TCP/IP (Transmission Control Protocol/Internet Protocol) 2nd 3rd 4th
Transmission Control Protocol (TCP)
 starting connections 2nd
Transmission Control Protocol/Internet Protocol (TCP/IP) 2nd 3rd 4th
tuples
 () (parenthesis)
U.S. Department of Defense
UDP (User Datagram Protocol) 2nd
UNIX
 root privileges
User Datagram Protocol (UDP) 2nd
 starting connections
values
 AF_INET
 AF_UNIX
 family
 socket type
Windows socket application program interface (Winsock)
Winsock (Windows socket application program interface)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 10. Basic Network Background >
HTTP

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148045048066095090075027

HTTP

HTTP (Hypertext Transfer Protocol) is a simple text-based protocol used for World Wide Web
Applications. Both Web servers and Web browsers implement this protocol.

The HTTP protocol works by having a client that opens a connection, and sends a request header to a
Web server. This request is a simple text-based form that contains the request method (GET, POST,
PUT, …), the name of the file that should be opened, and so forth.

The server interprets the request and returns a response to the client. This response contains the HTTP
protocol version number, as well as a lot of information—such as cookies, document type and size, and
so on—about the returned document.

For details about the HTTP specification, you'd better check:

http://www.w3.org/Protocols

Next, I list some Python projects that somehow use HTTP techniques.

M2Crypto, by Ng Pheng Siong's

M2Crypto makes the following features available to the Python programmer: RSA, DH, DSA,
HMACs, message digests, symmetric ciphers, SSL functionality to implement clients and servers, and
S/MIME v2.

http://mars.post1.com/home/ngps/m2/

Note

With Python-2.0, the socket module can be compiled with support for the OpenSSL library, so it
can handle SSL without trouble.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=165
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A41%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=165&now=5%2F31%2F2002+4%3A41%3A57+PM
http://www.w3.org/Protocols
http://mars.post1.com/home/ngps/m2/

CTC (Cut The Crap), by Constantinos Kotsokalis

This is a http proxy software written in Python, which cuts advertisement banners from your Web
browser display.

http://softlab.ntua.gr/~ckotso/CTC/

Alfajor, by Andrew Cooke

Alfajor is an HTTP cookie filter, written in Python with an optional GUI. It acts as an HTTP proxy (you
must configure your browser to use it) and can either contact sites directly or work with a second proxy
(for example, a cache). Note that Alfajor does not fully conform to any HTTP version. However, in
practice, it works with the vast majority of sites.

http://www.andrewcooke.free-online.co.uk/jara/alfajor/

Building Web Servers

In order to build Internet servers using Python, you can use the following modules:

SocketServer— It is a generic socket-based IP server.

BaseHTTPServer— It provides the infrastructed required by the next two modules.

SimpleHTTPServer— It allows you to have a simple Web server.

CGIHTTPServer— It enables the implementation of a CGI-compliant HTTP server.

The SocketServer Module

The SocketServer module exposes a framework that simplifies the task of writing network servers.
Rather than having to implement servers using the low-level socket module, this module provides
four basic server classes that implement interfaces to the protocols used most often: TCPServer,
UDPServer, StreamRequestHandler, and DatagramRequestHandler. All these

http://softlab.ntua.gr/~ckotso/CTC/
http://www.andrewcooke.free-online.co.uk/jara/alfajor/

classes process requests synchronously. Each request must be completed before the next request can be
started.

This kind of behavior is not appropriate if each request takes a long time to complete because it
requires a lot of computation and the client might be slow to process all data. In order to handle the
requests as separate threads, you can use the following classes: ThreadingTCPServer,
ThreadingUDPServer, ForkingUDPServer, and ForkingTCPServer.

Both the StreamRequestHandler and DatagramRequestHandler classes provide two file
attributes that can be used to read and write data from and to the client program. These attributes are
self.rfile and self.wfile.

The following code demonstrates the usage of the StreamRequestHandler class, which is
exposed by the SocketServer module.

import SocketServer
port = 8000
class myRequestHandler(SocketServer.StreamRequestHandler):
 def handle(self):
 print "connection from ", self.client_address
 self.wfile.write("data")

srvsocket = SocketServer.TCPServer(("", port), myRequestHandler)
print "The socket is listening to port", port
srvsocket.serve_forever()

Tip

Always remember that you need to use user-accessible ports numbers.

Next, you have the classes provided by this module:

TCPServer((hostname, port), request_handler)— Implements a
server that supports the TCP protocol.

UDPServer((hostname, port), request_handler)— Implements a
server that supports the UDP protocol.

UnixStreamServer((hostname, port), request_handler)—
Implements a server that supports a stream-oriented protocol using UNIX domain
sockets.

UnixDatagramServer((hostname, port), request_handler)—
Implements a server that supports a datagram-oriented protocol using UNIX domain
sockets.

In all four classes, the request_handler must be an instance of the BaseRequestHandler
class, and usually, hostname is left blank.

Each one of these classes has its own instances of class variables.

request_queue_size stores the size of the request queue that is passed to the socket's listen()
method.

socket_type returns the socket type used by the server. The possible values are
socket.SOCK_STREAM and socket.SOCK_DGRAM.

The class instances implement the following methods and attributes:

fileno()— Returns the server socket's integer file descriptor.

handle_request()— Processes a single request, by creating an instance of the
handler class and invoking its handle() method.

serve_forever()— Implements a loop to handle infinite requests.

address_family— Returns either socket.AF_INET or socket.AF_UNIX.

RequestHandlerClass— Holds the request handler class, which was provided by
the user.

server_address— Returns the IP address and the port number being used by the
server for listening.

socket— Returns the socket object used for approaching requests.

The BaseHTTPServer Module

The BaseHTTPServer module defines two base classes for implementing basic HTTP servers (also
known as Web servers). This module is built on top of the SocketServer module. Note that this
module is rarely used directly. Instead, you should consider using the modules CGIHTTPServer and
SimpleHTTPServer.

The following code demonstrates the usage of the BaseHTTPRequestHandler class, which is
exposed by the BaseHTTPServer module, to implement a simple HTTP Server.

import BaseHTTPServer
htmlpage = """
<html><head><title>Web Page</title></head>
<body>Hello Python World</body>
</html>"""
notfound = "File not found"
class WelcomeHandler(BaseHTTPServer.BaseHTTPRequestHandler):
 def do_GET(self):
 if self.path = "/":
 self.send_response(200)
 self.send_header("Content-type","text/html")
 self.end_headers()
 self.wfile.write(htmlpage)
 else:
 self.send_error(404, notfound)
httpserver = BaseHTTPServer.HTTPServer(("",80), WelcomeHandler)
httpserver.serve_forever()

The HTTPServer((hostname, port), request_handler_class) base class is derived
from the SocketServer.TCPServer, hence, it implements the same methods. This class creates
a HTTPServer object that listens to the hostname+port, and uses the
request_handler_class to handle requests.

The second base class is called BaseHTTPRequestHandler(request, client_address,
server). You need to create a subclass of this class in order to handle HTTP requests. If you need to
handle GET requests, you must redefine the do_GET() method. On the other hand, if you need to
handle POST requests, you must redefine the do_POST() method.

This class also implements some class variables:

● BaseHTTPRequestHandler.server_version

● BaseHTTPRequestHandler.sys_version

● BaseHTTPRequestHandler.protocol_version

● BaseHTTPRequestHandler.error_message_format

This string should contain the code for a complete Web page that must be sent to the client in case an
error message must be displayed. Within the string, you can reference some error attributes because
this string is dynamically linked to the contents of an error dictionary.

"""<head><title></title></head><body>
Error code = %(code)d

Error message = %(message)s

Error explanation = %(explain)s
</body>"""

Each instance of the BaseHTTPRequestHandler class implements some methods and attributes:

handle()— Implements a request dispatcher. It calls the methods that start with
"do_", such as do_GET() and do_POST().

send_error(error_code [, error_message])— Sends an error signal to
the client.

send_response(response_code [, response_message])— Sends a
response header according to the Table 10.2.

Table 10.2. List of Response Codes and Messages Returned by the Web Server

Code Code Description
200 OK
201 Created
202 Accepted
204 No content available
300 Multiple choices
301 Moved permanently

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/165#7.html

302 Moved temporarily
303 Not modified
400 Bad request
401 Unauthorized
403 Forbidden
500 Internal server error
501 Not implemented
502 Bad gateway
503 Service unavailable

send_header(keyword, value)— Writes a MIME header, which contains the
header keyword and its value, to the output stream.

end_header()— Identifies the end of the MIME headers.

The following object attributes are also exposed:

client_address— Returns a 2-tuple (hostname, port) that compounds the
client address.

command— Identifies the request type, which can be POST, GET, and so on.

path— Returns the request path.

request_version— Returns the HTTP version string from the request.

headers— Returns the HTTP headers.

rfile— Exposes the input stream.

wfile— Exposes the output stream.

The SimpleHTTPServer Module

The SimpleHTTPServer module provides a simple HTTP server request-handler class. It has an
interface compatible with the BaseHTTPServer module that enables it to serve files from a base
directory. This module implements both standard GET and HEAD request handlers, as shown in this
example:

import SimpleHTTPServer
import SocketServer
ServerHandler = SimpleHTTPServer.SimpleHTTPRequestHandler
httpserver = BaseHTTPServer.HTTPServer(("", 80), ServerHandler)
httpserver.serve_forever()

The current directory used to start up the server is used as the relative reference for all files requested
by the client. This module implements the SimpleHTTPRequestHandler(request,
(hostname, port), server) class. This class exposes the following two attributes:

● SimpleHTTPRequestHandler.server_version

● SimpleHTTPRequestHandler.extensions_map—A dictionary that maps file suffixes
and MIME types

The CGIHTTPServer Module

The CGIHTTPServer module defines another simple HTTP server request-handler class. This
module has an interface compatible with BaseHTTPServer, which enables it to server files from a
base directory (the current directory and its subdirectories), and also allow clients to run CGI (Common
Gateway Interface) scripts.

Requests are handled using the do_GET and do_POST methods. You can override them in order to
meet your needs. Note that the CGI scripts are executed as the user nobody. The next example
demonstrates the implementation of a simple HTTP Server that accepts CGI requests.

import CGIHTTPServer
import BaseHTTPServer
class ServerHandler(CGIHTTPServer.CGIHTTPRequestHandler):
 cgi_directories = ['/cgi-bin']
httpserver = BaseHTTPServer.HTTPServer(("", 80), Handler)
httpserver.serve_forever()

The CGIHTTPRequestHandler(request, (hostname, port), server) class is
provided by this module. This handler class supports both GET and POST requests. It also implements
the CGIHTTPRequestHandler.cgi_directories attribute, which contains a list of directories
that can store CGI scripts.

Setting Up the Client Side of the HTTP Protocol

The httplib module implements the client side of the HTTP (Hypertext Transfer Protocol) protocol,
and is illustrated as follows:

import httplib
url = "www.lessaworld.com"
urlpath = "/default.html"
host = httplib.HTTP(url)
host.putrequest("GET", urlpath)
host.putheader("Accept", "text/html")
host.endheaders()

errcode, errmsg, headers host.getreply()
if errcode != 200:
 raise RuntimeError
htmlfile = host.getfile()
htmlpage = htmlfile.read()
htmlfile.close()
return htmlpage

The previous example doesn't allow you to handle multiple requests in parallel because the
getreply() method blocks the application while waiting for the server to respond. You should
consider using the asyncore module for a more efficient and asynchronous solution.

This module exposes the HTTP class. The HTTP([hostname [,port]]) class creates and returns
a connection object. If no port is informed, port 80 is used; and if no arguments are informed at
all, you need to use the connect() method to make the connection yourself. This class exposes the
following methods:

connect(hostname [,port])— Establishes a connection.

send(data)— Sends data to the server after the endheaders() method is called.

putrequest(request, selector)— Writes the first line in the client request
header. The request option can be one of the following most common request
methods: GET, POST, PUT, or HEAD. selector is the name of the document to
be opened.

putheader(header, argument1 [, …])— Writes a header line in the client
request header. Each line consists of the header, a colon and a space, and the list of
arguments.

endheaders()— Indicates the end of the headers in the client request header by
writing a blank line to the server.

getreply()— Returns a tuple (requestcode, requestmsg, headers) that
is read after closing the client side of the connection. This tuple comes from the server's
reply to the client message. The pair requestcode and requestmsg is something
like (500, "Internal server error"). headers is an instance of the
mimetools.Message class, which contains the HTTP headers that were received
from the server.

getfile()— Wraps the data returned by the server as a file object in order to make
reading it easy.

Note

Note that the httplib module packed with Python 2.0 has been rewritten by Greg Stein, in order
to provide new interfaces and support for HTTP/1.1 features, such as pipelining. Backward
compatibility with the 1.5 version of httplib is provided, but you should consider taking a look at
the documentation strings of the module for details.

Also note that Python 2.0's version of the httplib module has support to " https:// " URLs
over SSL.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=165

Index terms contained in this section

applications
 M2Crypto
asyncore module
attributes
 BaseHTTPRequestHandler class 2nd 3rd
 CGIHTTPRequestHandler class
 DatagramRequestHandler class
 SimpleHTTPRequestHandler class
 SimpleHTTPRequestHandler.extensions_map
 SimpleHTTPRequestHandler.server_version
 SocketServer module 2nd
 StreamRequestHandler class
BaseHTTPRequestHandler class 2nd 3rd
BaseHTTPServer module 2nd
building
 Web servers
CGIHTTPRequestHandler class
CGIHTTPServer module
classes
 BaseHTTPRequestHandler 2nd 3rd
 CGIHTTPRequestHandler class
 DatagramRequestHandler
 HTTP 2nd
 HTTPServer
 SimpleHTTPRequestHandler
 SocketServer module 2nd
 StreamRequestHandler
clients
 setting up, Hypertext Transfer Protocol (HTTP) 2nd
codes
 response, returned by Web servers
connect() method
creating
 Web servers
DatagramRequestHandler class
do_GET() method 2nd
do_POST() method 2nd
GET request handler
GET requests
getfile() method
getreply() method
handlers
 request, GET and HEAD

handling
 requests, CGIHTTPServer module
 requests, GET and POST
HEAD request handler
HTTP (Hypertext Transfer Protocol) 2nd 3rd 4th 5th 6th 7th 8th
HTTP class 2nd
httplib module 2nd 3rd 4th
HTTPServer class
Hypertext Transfer Protocol (HTTP) 2nd 3rd 4th 5th 6th 7th 8th
listen() method
M2Crypto
methods
 BaseHTTPRequestHandler class 2nd 3rd
 connect()
 do_GET() 2nd
 do_POST() 2nd
 getfile()
 getreply()
 HTTP class 2nd
 listen()
 SocketServer module 2nd
modules
 asyncore
 BaseHTTPServer 2nd
 CGIHTTPServer
 httplib 2nd 3rd 4th
 SimpleHTTPServer
 socket
 SocketServer 2nd 3rd
networking
 protocols 2nd 3rd 4th 5th 6th 7th 8th
POST requests
programs
 M2Crypto
protocols
 Hypertext Transfer (HTTP) 2nd 3rd 4th 5th 6th 7th 8th
request handlers
 GET and HEAD
request_queue_size variable
requests
 handling, CGIHTTPServer module
 handling, GET and POST
response codes
 returned by Web servers
self.rfile attribute
self.wfile attribute

servers
 Web
 building
 WebÓ
 Ò
setting up
 clients, Hypertext Transfer Protocol (HTTP) 2nd
SimpleHTTPRequestHandler class
SimpleHTTPRequestHandler.extensions_map attribute
SimpleHTTPRequestHandler.server_version attribute
SimpleHTTPServer module
socket module
socket_type variable
SocketServer module 2nd 3rd
software
 M2Crypto
Stein, Greg
StreamRequestHandler class
variables
 request_queue_size
 socket type
Web servers
 building
Web serversÓ
 Ò

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 10. Basic Network Background > Accessing URLs See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148046198039088135025208

Accessing URLs

URL stands for uniform resource locator. URLs are those strings, such as http://www.lessaworld.com/, that you have to
type in your Web browser in order to jump to a Web page.

Python provides the urllib and urlparse modules as great tools to process URLs.

Tip

Many applications today that have to parse Web pages always suffer with changes in the page design. However, these
problems will go away when more structural formats (such as XML) start getting used to producing the pages.

The urllib Module

The urllib module is a high-level interface to retrieve data across the World Wide Web, supporting any HTTP, FTP,
and gopher connections by using sockets. This module defines functions for writing programs that must be active users of
the Web. It is normally used as an outer interface to other modules, such as httplib, ftplib, gopherlib, and so
on.

To retrieve a Web page, use the urllib.urlopen(url [,data]) function. This function returns a stream object
that can be manipulated as easily as any other regular file object, and is illustrated as follows:

>>> import urllib
>>> page = urllib.urlopen("http://www.bog.frb.fed.us")
>>> page.readline()

This stream object has two additional attributes: url and headers. The first one is the URL that you are opening, and
the other is a dictionary that contains the page headers, as illustrated in the next example.

>>> page.url
'http://www.bog.frb.fed.us'
>>> for key, value in page.headers.items():
… print key, " = ", value
…
server = Microsoft-IIS/4.0
content-type = text/html
content-length = 461
date = Thu, 15 Jun 2000 15:31:32 GMT

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=166
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A42%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=166&now=5%2F31%2F2002+4%3A42%3A13+PM
http://www.lessaworld.com/

Next, you have a couple of other functions that are made available by the urllib module.

urllib.urlretrieve(url [,filename] [,hook]— Copies a network object to a local file.

>>> urllib.urlretrieve('http://www.lessaworld.com', 'copy.html')

urllib.urlcleanup()— Cleans up the cache used by urllib.urlretrieve.

urllib.quote(string [,safe])— Replaces special characters in string using %xx escape codes.
The optional safe parameter specifies additional characters that should be quoted.

>>> urllib.quote('This & that @ home')
'this%20%26%20that%20%40%20home'

urllib.quote_plus(string [,safe])—Works just like quote(), but it replaces spaces by
using plus signs.

urllib.unquote(string)— Returns the original value that was passed to urllib.quote.

>>> urllib.unquote('this%20%26%20that%20%40%20home')
'This & that @ home'

urllib.urlencode(dict)—Converts a dictionary into a URL-encoded string.

>>> dict = { 'sex':'female', 'name':'renata lessa'}
>>> urllib.urlencode(dict)
'sex=female&name=renata+lessa'

Note

For those that have Python 2.0 installed, keep in mind that the new urllib module is able to scan environment
variables for proxy configuration.

Also note that Python 2.0's version of the urllib module has support to " https:// " URLs over SSL.

The urlparse Module

The urlparse module manipulates an URL string, parsing it into tuples. It is able to break an URL up into components,
combines them back, and converts relative addresses to absolute addresses. Basically, it rips URLs apart, being able to put
them together again.

Let's take a look at the functions that are provided by this module:

urlparse.urlparse()
syntax: urlparse.urlparse(urlstring [,default_scheme [,allow_fragments]])

Parses an URL into six elements—addressing scheme, network location, path, parameters, query, fragment
identifier—returning the following tuple:

>>> urlparse('http://www.python.org/FAQ.html')
('http', 'www.python.org','FAQ.html','','','')

urlparse.urlunparse(tuple)—Constructs a URL string from a tuple as returned by
urlparse().

urlparse.urljoin(base, url [,allow_fragments])—Combines an absolute URL with a
relative URL.

>>>urljoin('http://www.python.org', 'doc/lib')
'http://www.python.org/doc/lib'

The next example copies a Web page into a local file:

import urllib
pagehandler = urllib.urlopen("http://www.lessaworld.com")
outputfile = open("sitecopy.html", "wb")
while 1:
 data = pagehandler.read(512)
 if not data:
 break
 outputfile.write(data)
outputfile.close()
pagehandler.close()

If you are behind a firewall, here's a little trick you can do in order to use proxy servers to handle your connections:

1: import urllib
2: proxies = { 'http': 'http://proxy:80'}
3: urlopener = urllib.FancyURLopener(proxies)
4: htmlpage = urlopener.open('http://www.bog.frb.fed.us')
5: data = htmlpage.readlines()
6: print data

Line 2: Creates a dictionary that identifies the proxy location. Note that proxy:80 corresponds to the name of the proxy
server along with the port where it is listening to.

Line 3: Creates a new function that masks the proxy connection.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

accessing
 uniform resource locators (URLs) 2nd
applications
 parsing Web pages
attributes
 headers
 stream object
 url
connections
 proxy servers
 handling
copying
 Web pages into local files
duplicating
 Web pages into local files
environment variables
 scanning
files
 local
 copying Web pages into
firewells
 handling proxy server connections
functions
 urllib module
 urllib.quote_plus(string [,safe])()
 urllib.urlcleanup()
 urllib.urlencode(dict)()
 urlparse module
 urlparse.urljoin(base, url [,allow_fragments])()
 urlparse.urlunparse(tuple)()
handling
 proxy server connections

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=166

headers attribute
Internet
 copying pages into local files
 parsing Web pages
 retrieving Web pages
local files
 copying Web pages into
modules
 urllib
 environment variables, scanning
 urlparse 2nd
networking
 accessing uniform resource locators (URLs) 2nd
pages
 copying into local files
 parsing
 retrieving
parsing
 Web pages
programs
 parsing Web pages
proxy server connections
 handling
retrieving
 Web pages
scanning
 environment variables
servers
 proxy
 handling connections
software
 parsing Web pages
uniform resource locators (URLs)
 accessing 2nd
url attribute
urllib module
 environment variables
 scanning
urllib.quote_plus(string [,safe])() function
urllib.urlcleanup() function
urllib.urlencode(dict)() function
urlparse module 2nd
urlparse.urljoin(base, url [,allow_fragments])() function
urlparse.urlunparse(tuple)() function
URLs (uniform resource locators)
 accessing 2nd
variables
 environment
 scanning
Web pages
 copying into local files
 parsing
 retrieving

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 10. Basic Network Background >
FTP

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148046198036103125002030

FTP

FTP is a popular way to transfer files from machine to machine across a network. It is convenient
because there are FTP clients and FTP servers written for all the popular platforms.

FTP servers can work with both private users and anonymous users. The difference is that a private
FTP server allows only system users to be able to connect via FTP, whereas an anonymous FTP server
allows anyone on the network to connect to it and transfer files without having an account. Keep in
mind that configuring an anonymous FTP server always exposes the security of your system.

The ftplib module implements the client side of the FTP protocol. You can use it for mirroring FTP
sites. Usually the urllib module is used as an outer interface to ftplib. For uploads you probably
want to use ftplib.

The FTP implementation provides one control port and one data port, which means that the actual
transmission of data between client and server machines operates over a separate socket on a
completely separate port in order to avoid deadlock problems.

Check out the Python Documentation for more information:

http://www.python.org/doc/lib/module-ftplib.html

Transferring Data

The following example shows how to read data from a FTP site:

 1: #!/usr/local/bin/python
 2: import ftplib
 3: ftp = ftplib.FTP('ftp.lessaworld.com')
 4: ftp.login()
 5: ftp.cwd('downloads/programs')
 6: ftp.retrlines('LIST')
 7: file = open('filename.txt', 'w')

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=167
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A42%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=167&now=5%2F31%2F2002+4%3A42%3A25+PM
http://www.python.org/doc/lib/module-ftplib.html

 8: ftp.retrbinary('RETR filename.txt', file.write, 1024)
 9: ftp.quit()

Line 2: Imports the ftplib module.

Line 3: Creates the FTP object and connects to a host server.

Line 4: Establishes an anonymous login.

Line 5: Uses the cwd() method to change the directory.

Line 6: Retrieves the resulting lines of the provided command. In our case, it lists the content of the
directory.

Line 7: Creates a file on your local server.

Line 8: Retrieves the binary information passed to the FTP server, storing it into the mentioned file
object.

Tip

Note that the interface uses FTP commands—such as LIST, STOR, and RETR—that you need to
know. These commands are part of the FTP specification and have nothing to do with Python.

The next example uploads a file to the FTP server:

1: import ftplib
2: ftp = ftblib.FTP("ftp.lessaworld.com")
3: ftp.login("username", "password")
4: filename = "index.html"
5: ftp.storlines("STOR " + filename, open(filename))
6: filename = "app.exe "
7: ftp.storbinary("STOR " + filename, open(filename, "rb"), 1024)

Line 3: Provides a username and password to the FTP server in order to establish a connection.

Line 5: Uploads a TEXT file to the server.

Line 7: Uploads a binary file to the server.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

anonymous FTP servers
control ports
data
 transferring
 FTP sites
data ports
File Transfer Protocol (FTP)
files
 uploading to FTP servers
FTP (File Transfer Protocol)
FTP sites
 transferring data
ftplib module
modules
 ftplib
 urllib
networking
 protocols
ports
 control
 data
private FTP servers
protocols
 File Transfer (FTP)
servers
 anonymous FTP
 FTP
 uploading files
 private FTP
sites
 FTP
 transferring data
transferring
 data

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=167

 FTP sites
uploading
 files to FTP servers
urllib module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 10. Basic Network Background >
SMTP/POP3/IMAP

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148046198037136137134103

SMTP/POP3/IMAP

SMTP and POP3 are the protocols used most in the Internet because they provide the necessary
services to handle electronic mails (emails).

The Simple Mail Transfer Protocol (SMTP) is the official way to transfer mail over the Internet. This
protocol is an Internet standard, specified in RFC-821. It defines how programs exchange email on the
Internet.

The SMTP protocol is responsible for putting the email in mailboxes, and when it comes to removing
the messages from there, it is necessary to use the POP3 protocol. The Post Office Protocol (POP) is
used by mail readers that work on network clients and are connected to designated mail servers to send
and receive mail. The purpose of this protocol is to allow remote access to a mailbox that is hosted by
an external server. For your information, SMTP is also used to send the messages across the Internet.

Anyone who writes a POP client can communicate with a POP server because this protocol abstracts
the details of the email to a system-independent level. This protocol was designed so that users could
access their mail from machines that weren't configured for receiving mail. Also, all systems on the
Internet mail system agree to use SMTP to handle mail. Storage of mail can vary on different systems,
although this is not an OS issue, but an application issue.

IMAP (Internet Message Access Protocol) is another protocol that is being used for mail reading. It is a
method of accessing electronic mail or bulletin board messages that are kept on a (possibly shared)
mail server. In other words, it permits a client email program to access remote message stores as if they
were local.

Handling Email Services

The smtplib module provides a low-level client interface to the SMTP protocol that can be used to
send emails to any machine in the Internet that has an SMTP or ESMTP listener daemon. An
example of this is as follows:

import smtplib
import string
host = "localhost"

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=168
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A42%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=168&now=5%2F31%2F2002+4%3A42%3A36+PM

fromclause = "alessa@bebemania.com.br"
toclause = "rtaveira@bebemania.com.br, jp@alugueaqui.com.br"
toclause = string.splitfields(toclause, ",")
msgbody = """
This email brings good news for you!!
Best Regards
"""
SMTPServer = smtplib.SMTP(host)
SMTPServer.sendmail(fromclause, toclause, msgbody)
SMTPServer.quit()

The poplib module provides a low-level POP3 client-side interface for connecting to a POP3 server
using a client protocol, as defined in RFC 1725. This module is shown in the following:

import poplib, string
PopServerName = "mail.lessaworld.com"
PopServer = poplib.POP3(PopServerName)
print PopServer.getwelcome()
PopServer.user('AndreLessa')
PopServer.pass_('qwerty0987')
r, items, octets = PopServer.list()
msgid, size = string.split(items[-1])
r, msg, octets = PopServer.retr(msgid)
msg = string.join(msg, "\ n")
print msg

See Chapter 13, "Data Manipulation," for details about using the module rfc822 to parse the header
lines and the modules mimetools and mimify to process the data attached to the message.

The imaplib module provides a low-level IMAP client-side interface for connecting to an IMAP4
mail server using the IMAP4rev1 client protocol, as defined in RFC 2060. This module is shown in
the following:

 1: import imaplib, getpass, string
 2: host = "imap.lessaworld.com"
 3: user = "AndreLessa"
 4: pwd = getpass.getpass()

 5: msgserver = imaplib.IMAP4(host)
 6: msgserver.login(user, pwd)
 7: msgserver.select()
 8: msgtyp, msgitems = msgserver.search(None, "ALL")
 9: for idx in string.split(msgitems[0]):
10: msgtyp, msgitems = msgserver.fetch(idx, "(RFC822)")
11: print "Message %s\ n" % num
12: print "---------------\ n"
13: print "Content: %s" % msgitems[0][1]
14: msgserver.logout()

The search method (line 8) lists all the message items available at the IMAP server.

For more details about IMAP, check out the IMAP Connection Web site:

http://www.imap.org/

If you want to have more control over your emails, and you are willing to have it filtered, take a look at
SpamWall, by Sam Rushing.

This program is a simple, powerful framework for building custom SPAM filters. SpamWall is a
filtering proxy daemon that sits between your site's SMTP server and the outside world. It is modular
and extensible. Included are two sample filters—a regular-expression based filter (like procmail) and a
blacklist filter. For more information, check out

http://www.nightmare.com/software.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.imap.org/
http://www.nightmare.com/software.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=168

Index terms contained in this section

applications
 SpamWall
email services
 handling 2nd
handling
 email services 2nd
IMAP (Internet Message Access Protocol) 2nd 3rd 4th
imaplib module
Internet Message Access Protocol (IMAP) 2nd 3rd 4th
methods
 search
modules
 imaplib
 poplib
 smtplib
networking
 protocols 2nd 3rd
POP (Post Office Protocol) 2nd 3rd
poplib module
Post Office Protocol (POP) 2nd 3rd
programs
 SpamWall
protocols
 Internet Message Access (IMAP) 2nd 3rd 4th
 Post Office (POP) 2nd 3rd
 Simple Mail Transfer (SMTP) 2nd 3rd
Rushing, Sam
search method
services
 email
 handling 2nd
Simple Mail Transfer Protocol (SMTP) 2nd 3rd
SMTP (Simple Mail Transfer Protocol) 2nd 3rd
smtplib module
software
 SpamWall
SpamWall

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 10. Basic Network Background >
Newsgroups—Telnet and Gopher

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148046198034061128071234

Newsgroups—Telnet and Gopher

The nntplib module implements a low-level interface to the client side of the NNTP (Network News
Transfer Protocol) protocol—a service mostly known for providing newsgroups.

This protocol is text-based because all the communication between the client and the server uses ASCII text.
This protocol is also used to exchange Usenet news articles between servers.

Newsgroups are organized hierarchically, according to their levels, which are separated by dots. In
comp.lang.python for example, comp defines computer-related newsgroups and lang defines that it
refers to computer languages. It is shown as follows:

 1: import nntplib
 2: import string
 3: ServerAlias = "news.lessaworld.com"
 4: NewsGroup = "comp.lang.opensource"
 5: Keyword = raw_input("Enter keyword to search: ")
 6: NewsServer = nntplib.NNTP(ServerAlias)
 7: r, count, firstmsg, lastmsg, name = NewsServer.group(NewsGroup)
 8: r, messages = NewsServer.xover(first, last)
 9: for id, subject, author, date, msgid, refer, size, lines in messages:
10: if string.find(subject, Keyword) >= 0:
11: r, id, msgid, msgbody = NewsServer.article(id)
12: print "Author: %s - Subject: %s - Date: %s\ n" % }
13: (author, subject, date)
14: print "<-Begin Message->\ n"
15: print msgbody
16: print "<-End Message->\ n"

Line 6: Creates the NNTP object and connects to a NewsServer.

Line 7: Selects the newsgroup that you want to read.

Check out Python's documentation for more details about this module at the following URLs:

http://www.python.org/doc/lib/nntp-objects.html

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=169
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A42%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=169&now=5%2F31%2F2002+4%3A42%3A47+PM
http://www.python.org/doc/lib/nntp-objects.html

and

http://www.python.org/doc/lib/module-nntplib.html

The telnetlib module implements a client for the telnet protocol. This protocol is used to connect to
remote computers, usually via the port (23). After you have established your telnet connection, you can
execute commands remotely on that computer through your telnet interface. The commands you use are
UNIX commands, such as ls, cd, pine, elm, talk, rm provided that the telnet server is running
on a UNIX box. If you have a windows telnet server, you would probably have an MS-DOS style command
prompt.

The protocol is shown in the following:

import telnetlib
hostserver = "http://www.lessaworld.com"
newline = "\ n"
username = "user02" + newline
password = "qwerty0987" + newline
telnet = telnetlib.Telnet(hostserver)
telnet.read_until("login: ")
telnet.write(username)
telnet.read_until("Password: ")
telnet.write(password)
while 1:
 command = raw_input("[shell]: ")
 telnet.write(command)
 if command == "exit":
 break
 telnet.read_all()

For implementation details, you can check out the official documentation at

http://www.python.org/doc/lib/module-telnetlib.html

and

http://www.python.org/doc/lib/telnet-objects.html

Gopher provides a distributed information delivery system around which a world campus-wide information
system (CWIS) can readily be constructed. While providing a delivery vehicle for local information, Gopher
facilitates access to other Gopher and information servers throughout the world.

http://www.python.org/doc/lib/module-nntplib.html
http://www.python.org/doc/lib/module-telnetlib.html
http://www.python.org/doc/lib/telnet-objects.html

The gopherlib module is a minimal client side implementation of the Gopher protocol. Although
Gopher is an old protocol, it is still used by many universities. Gopher provides an hierarchical interface for
both texts and binaries. This module is used by the urllib module to handle URLs that use the Gopher
protocol. The gopherlib module is shown as follows:

import gopherlib
GopherServer = "gopher.lessaworld.com"
directory = gopherlib.send_selector("1/", GopherServer)
for topic in gopherlib.get_directory(directory):
 print topic

Check out the official documentation for more details:

http://www.python.org/doc/lib/module-gopherlib.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

. (dots)
campus-wide information system (CWIS)
CWIS (campus-wide information system)
dots (.)
Gopher
Gopher protocol
gopherlib module
modules
 gopherlib
 nntplib
 telnetlib
Network News Transfer Protocol (NNTP)
networking
 newsgroups
newsgroups
NNTP (Network News Transfer Protocol)
nntplib module
periods (.)
protocols
 Gopher

http://www.python.org/doc/lib/module-gopherlib.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=169

 Network News Transfer (NNTP)
Telnet
telnetlib module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 10. Basic Network Background >
Summary

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148046198035066238124116

Summary

Networking is the word behind all new technology that arrives in the market these days. Networking
systems are well defined by the OSI/ISO(Open Systems Interconnection/International Standards
Organization) seven-layer model, which suggests the following levels of networking process: Physical,
Data Link, Network, Transport, Session, Presentation, and Application.

Network connections can be of two types: connection-oriented (such as TCP) or packet-oriented (such
as UDP).

The network layer of the TCP/IP stack is provided by the Internet Protocol (commonly known as IP).
The IP address defines the addressing and routing of information around the network, uniquely
identifying a network interface.

The transport layer is provided by the TCP, which is the main form of communication over the Internet
because it provides a reliable, session-based service for the delivery of sequenced packets.

UDP is a connectionless transport protocol that does not guarantee delivery or packet sequence. This
protocol provides an unreliable but fast datagram service.

The most commonly used application protocols (such as HTTP, FTP, Gopher, Telnet, POP3, IMAP,
SMTP, and NNTP) are built on top of TCP/IP infrastructures. Actually, they don't have to know any
details about TCP nor about IP because there is a thin layer called " sockets " between TCP/IP and
them.

A port is an entry point to an application/service that resides on a server.

Sockets are objects that allow programs to accept and make connections, such as to send and receive
data. They are mostly used for TCP and UDP connections. The socket module is a very simple
object-based interface that provides access to a low-level BSD socket-style network.

The asyncore module provides the basic infrastructure for writing and handling asynchronous socket
service clients and servers that are result of a series of events dispatched by an event loop.

The select module is used to implement polling and to multiplex processing across multiple I/O

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=170
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A42%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=170&now=5%2F31%2F2002+4%3A42%3A57+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/164#4.html

streams without using threads or subprocesses.

In order to build Internet servers using Python, HTTP modules that you can use are as follows:

● SocketServer— It is a generic socket-based IP server.

● BaseHTTPServer— It provides the infrastructure required by the next two modules.

● SimpleHTTPServer— It allows you to have a simple Web server.

● CGIHTTPServer— It enables the implementation of a CGI-compliant HTTP server.

The httplib module implements the client side of the HTTP (Hypertext Transfer Protocol) protocol.

The urllib and urlparse modules are useful tools provided by Python to process URLs. The
urllib module is a high-level interface to fetch data across the World Wide Web. It is normally used
as an outer interface to other modules, such as httplib, ftplib, gopherlib, and so on. On
the other hand, the urlparse module manipulates a URL string, parsing it into tuples.

The ftplib module implements the client side of the FTP protocol.

The smtplib module provides a low-level client interface to the SMTP protocol that can be used to
send emails in the Internet.

The poplib module provides a low-level POP3 client-side interface for connecting to a POP3 server
using a client protocol.

The imaplib module provides a low-level IMAP client-side interface for connecting to an IMAP4
mail server using the IMAP4rev1 client protocol.

The nntplib module implements a low-level interface to the client side of the NNTP (Network News
Transfer Protocol) protocol—a service mostly known for providing newsgroups. This protocol is also
used to exchange Usenet news articles between servers.

The telnetlib module implements a client for the telnet protocol. This protocol is used to connect
to remote computers. After you have established your telnet connection, you can execute UNIX
commands remotely on that computer through your telnet interface.

The gopherlib module is a minimal client-side implementation of the Gopher protocol.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

networking 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=170

Web Development > Python Developer's Handbook > 11. Web Development See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148047091219112132213203

Chapter 11. Web Development
We are the knights who say…ni!

This chapter provides information concerning how to use Python for Internet development support. It
also introduces you to many Web applications and scripts developed using Python.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=172
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A43%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=172&now=5%2F31%2F2002+4%3A43%3A07+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=172

Web Development > Python Developer's Handbook > 11. Web Development > Web
Development

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148047091218246049222234

Web Development

This chapter exposes the reality between Python and the Internet by introducing some complete Web
applications that have emerged from the Python community.

No doubt the most popular application area at this time is the Internet. Consequently, Python is
acquiring a strong presence on the Web because its library of modules that interface to the main
Internet protocols reach full maturity.

Python is a dynamic language absolutely useful for the Internet, mostly because it easily allows the
establishment of interfaces with external systems.

Nowadays, some of the most important applications in the Internet are based on the HTTP protocol.
Python's support to HTTP, which is the basic communication protocol underlying the Web, allows it to
implement HTTP Servers (Web Servers) and clients (Web browsers). Python has been successfully
used to implement an HTTP client called Grail, which is a Web browser full of features. On the other
hand, Python has many options for HTTP Servers, also known as Web Servers. Python's standard
library of modules comes with some basic HTTP Server implementations, such as BaseHTTPServer
and SimpleHTTPServer. The advantage of using Python as a Web Server is that you have total
control about what is going on in your application.

Besides the HTTP Servers that are part of Python's distribution, a number of other third-party Internet
publishing tools are available for Python. Most of them are free for both commercial and
noncommercial use, such as Medusa and Zope.

This chapter also points you to the most used Python scripts and technologies used for Web
development. For more information, check out the Web Programming Topic Guide site:

http://www.python.org/topics/web/

This area in the Python's Web site covers Web-related programming with Python. It possesses links to
several distinct Web topics, such as HTML, HTTP, Zope, and so on.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=173
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A43%3A17+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=173&now=5%2F31%2F2002+4%3A43%3A17+PM
http://www.python.org/topics/web/

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 Grail
browsers
 Grail
development
 Web 2nd
Grail
HTTP (Hypertext Transfer Protocol
Hypertext Transfer Protocol (HTTP)
Internet
 development for 2nd
programs
 Grail
software
 Grail
World Wide Web
 development for 2nd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=173

Web Development > Python Developer's Handbook > 11. Web Development > Configuring Web
Servers for Python/CGI Scripts

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148047091217051046165216

Configuring Web Servers for Python/CGI Scripts

The next topics show you how to configure the most used Web servers in the market. Mostly you will see how to
handle Python CGI scripts within Apache and Microsoft IIS Web servers.

Python in Apache

First, let's see how Apache handles requests.

When a file is called, Apache executes an action, which internally is known as handler. These handlers are usually
implicitly related to the files, based on the file type. However, new Apache releases are able to assign handles to
filename extensions or file locations, instead of only work with the file type.

Python script files are handled in exactly the same way as other CGI scripts. Once a request is received, Apache
calls the Python interpreter asking it to run the specific script. Depending on the Apache configuration, there are
several actions to be performed when receiving a request (for instance, user authentication and file transfer).

Apache comes with a predefined set of handlers for basic routine tasks. However, there are several third-party
handler applications that can be very useful as well, such as the mod_python and mod_pyapache modules.
Using these modules is not strictly necessary, but it reduces the overhead of your server and increases the speed of
your application. Both of these reasons occur because the Python interpreter is not called for every single
connection anymore. You can create Apache Handlers by building them into the Web Server, adding them to the
Action directive, or implementing a module.

The Apache official Web site is as follows:

http://www.apache.org/

Configuring Apache for Python

The following guidelines will help you configure your Apache installation to run Python in both Windows and
UNIX systems. Steps 1–8 are specific for Win32 configurations.

Step 1.

Installing Python in the C:\ Python directory is a more convenient way to handle environment paths.

Step 2.

It is convenient if you have your CGI files in the same drive as the WINNT system files.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=174
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A43%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=174&now=5%2F31%2F2002+4%3A43%3A25+PM
http://www.apache.org/

Step 3.

Verify if you have a system variable called PATH that contains the Python interpreter's (python.exe)
directory (if necessary, create it).

Step 4.

Create a system variable called PYTHONPATH. It must contain the list of directories to be used when
searching for Python files.

Step 5.

Use ASSOC to setup a file extension for Python.

ASSOC .py=PythonScript

Step 6.

Use FTYPE to associate the previous setting to the Python executable.

FTYPE PythonScript=python.exe %1 %*

Step 7.

Add the extension .py to the system environment variable PATHEXT. This variable stores the list of
executable extensions (for example, PATHEXT=.EXE;.COM;.BAT;.CMD;.py).

Step 8.

Install Apache on your system's root drive, that is, "c:\ Apache". Installing Apache in this directory helps
you during the whole configuration process.

Step 9. Edit your C:\WINNT\system32\drivers\etc\hosts ile, adding the IP address of
your machine. This file is the NT equivalent to UNIX /etc/hosts table file.

The following steps tell you how to configure the Apache Web Server. Note that nowadays, the whole
Apache configuration can be set using one unique file: httpd.conf.

Step 10.

In the access.conf file, make the following changes:

<Directory /apache/htdocs>
Options Indexes ExecCGI for Python/CGI scripts>

Step 11.

In the httpd.conf file, make the following changes:

ServerRoot /apache

Step 12.

In the srm.conf file, make the following changes. You also have the option to set PYTHONPATH here
using the command SetEnv, instead of defining it as a system environment variable. Note that there are
two AddHandler settings. The former identifies the extension to be associated with CGI scripts, and the
latter allows you to use the .cgi extension in your files, in order to hide from crackers, the language used
to implement your site. Of utmost importance is to make certain that you're using Python in unbuffered
mode (SetEnv PYTHONUNBUFFERED 1) and to set (or pass) PYTHONPATH as a system environment
variable. Forgetting to set either of these parameters is the most common reason for "premature end of
header" errors.

DocumentRoot /apache/htdocs
ScriptAlias /cgi-bin/ /apache/cgi-bin/
PassEnv PYTHONPATH
SetEnv PYTHONUNBUFFERED 1
AddHandler cgi-script .py
AddHandler cgi-script .cgi

Step 13.

Place your scripts in your cgi-bin directory.

Step 14.

If you are using an UNIX system, make sure that the first line of your script contain a shebang to identify
the location of the Python interpreter.

Step 15. Optionally, you can configure the server to run scripts only from the cgi-bin directory

by replacing the following line in the access.conf file:

<Directory /path/to/your/httpd/cgi-bin> Options Indexes FollowSymLinks
 </Directory>

with

<Directory /path/to/your/httpd/cgi-bin> Options FollowSymLinks ExecCGI
 </Directory>

If you want to run your scripts from any directory, comment the previous setting and add the following one:

<Directory /path/to/your/httpd/htdocs> Options All </Directory>

Step 16.

Set the read and execute permissions of your script. If you are using an UNIX system, you should type
chmod 755 yourscript.py.

At this time, you should be ready to launch your Web browser and to access your CGI script by typing its URL.

For UNIX, if Apache and Python are set up correctly, all you need to do is place the Python scripts in the cgi-
bin directory and set their permissions correctly.

More information about this topic can be found at the newsgroup for discussions about running Apache under
Windows at comp.infosystems.www.servers.ms-windows.

mod_python

mod_python is a module created by Gregory Trubetskoy that embeds the Python language interpreter within the
Apache server, allowing Apache handlers to be written in Python. It provides nearly every possible handler to
Apache.

mod_python brings a considerable boost in performance over the traditional CGI approach, and adds flexibility
in designing Web-based applications. In order to run it, you must have at least Python 1.5.2 and Apache
1.3.

mod_python handlers by default do not perform any function, unless specifically told so by a configuration
directive. These directives begin with Python, end with Handler (for example, PythonAuthenHandler), and

associate a handler with a Python function. Therefore, the main function of mod_python is to act as a dispatcher
between Apache handlers and python functions written by developers.

The most commonly used one is PythonHandler. It is for a handler that has no specialized purpose, such as
authentication. The default Apache action for this handler would be to read the file and send it to the client. Most
applications you write will use this one handler. For more information, check out these sites:

mod_python Web site

http://www.modpython.org/

mod_python installation procedures

http://www.modpython.org/live/mod_python-2.4/doc/installation.html

mod_pyapache

This module will speed up the execution of your CGI scripts written in the Python Language. It handles CGI
scripts faster than other normal CGI scripts because the server embeds the Python Interpreter. Therefore, the
performance penalty of executing an external one is eliminated.

This module has the advantage of being CGI compatible—it works well when CGI scripts are simple and trusted
and it provides total CGI control to your Python application. However, this module currently has some limitations,
including the fact that it doesn't avoid database connections delay. Check out the following Web site for more
information:

http://www.msg.com.mx/pyapache/

You will find the latest version of the module in the ftp://www.bel-epa.com/pub/misc/ directory, where you will
see a gzipped tar file named something like PyApache-x.yy.tar.gz.

AOLserver Web Server

This is a Web Server created and used by AOL. Note that anyone using AOLserver would be better off learning
TCL. For details, see

http://www.aolserver.com

The project that embeds Python in the AOLServer Web Server, is now semi-stable for simple CGI-style
operations, and provides a 4-5x speedup over the straight CGI.

Check it out at http://pywx.sourceforge.net.

Microsoft IIS and PWS

http://www.modpython.org/
http://www.modpython.org/live/mod_python-2.4/doc/installation.html
http://www.msg.com.mx/pyapache/
ftp://www.bel-epa.com/pub/misc/
http://www.aolserver.com/
http://pywx.sourceforge.net/

You can set up both Microsoft IIS Server and Personal Web Server (PWS) to call the Python interpreter to handle
Python CGI scripts.

Tip

PWS is Microsoft's free basic Web server for the Windows 95 platform.

You need to pay close attention when using the PWS server because a version of PWS is part of the Front Page
Personal Web Server, which doesn't run files from executable directories. Instead, it returns an error message. If
you slide your mouse over the PWS icon in the taskbar, and it says Personal Web Server, you have the
proper version.

Now, let's demonstrate how to configure IIS and PWS for Python/CGI scripting. I assume that you have already
installed Python on your system.

On the Microsoft IIS server or on the Win95 MS Personal Web Server, you need to set up Python in the same way
that you would set up any other scripting engine:

1. Run REGEDIT.EXE

2. Find the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters\
ScriptMap

3. Once there, select the menu selection EDIT, New, String Value, and enter the following line (using the
correct path):

.py :REG_SZ: c:\ path\ to\ python.exe -u %s %s

Now, you are ready to call your scripts. Make sure that they are stored in an executable directory in the Web
server.

The -u flag specifies unbuffered and binary mode for stdin, which is needed when working with binary data.
This flag prevents cr-nl from being converted to newline combinations.

Most developers agree that exposing the language behind your script works similar to saying "Welcome" to
crackers around the world. Therefore, it is suggested to hide these details by using another extension, for example,
.cgi, for your CGI scripts. You don't need to change the extension of all your files, just the ones that will be

exposed by your site's Web interface. The other modules can continue to have the .py extension. The line in the
registry would resemble the following:

.cgi :REG_SZ: c:\ path\ to\ python.exe -u %s %s

Note

Of course, this is no substitute for actually making sure that your scripts are secure.

After restarting your computer, everything gets set up, and every script (with the proper extension) located at an
executable directory is sent to the Python interpreter.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

[nd]u flag
AOLserver Web server
 configuring Web servers for Python/CGI scripts
Apache
 configuring Web servers for Python/CGI scripts 2nd 3rd 4th 5th
applications
 AOLserver Web server
 configuring Web servers for Python/CGI scripts
 Apache
 configuring Web servers for Python/CGI scripts 2nd 3rd 4th 5th
 Front Page Personal Web Server
 Microsoft IIS Server
 configuring Web servers for Python/CGI scripts 2nd
 Personal Web Server (PWS)
 configuring Web servers for Python/CGI scripts 2nd
CGI scripts
 configuring servers for 2nd 3rd 4th 5th 6th 7th
configuring
 servers for Python/CGI scripts 2nd 3rd 4th 5th 6th 7th
development
 Web
 configuring servers for Python/CGI scripts 2nd 3rd 4th 5th 6th 7th
flags
 [nd]u
Front Page Personal Web Server
functions

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=174

 PythonHandler
handlers, Apache 2nd
Internet
 development for
 configuring servers for Python/CGI scripts 2nd 3rd 4th 5th 6th 7th
Microsoft IIS Server
 configuring Web servers for Python/CGI scripts 2nd
mod_pyapache module
mod_python module
modules
 mod_pyapache
 mod_python
Personal Web Server (PWS)
 configuring Web servers for Python/CGI scripts 2nd
programs
 AOLserver Web server
 configuring Web servers for Python/CGI scripts
 Apache
 configuring Web servers for Python/CGI scripts 2nd 3rd 4th 5th
 Front Page Personal Web Server
 Microsoft IIS Server
 configuring Web servers for Python/CGI scripts 2nd
 Personal Web Server (PWS)
 configuring Web servers for Python/CGI scripts 2nd
PWS (Personal Web Server) 2nd
PythonHandler function
scripts
 CGI
 configuring servers for 2nd 3rd 4th 5th 6th 7th
servers
 configuring for Python/CGI scripts 2nd 3rd 4th 5th 6th 7th
software
 AOLserver Web server
 configuring Web servers for Python/CGI scripts
 Apache
 configuring Web servers for Python/CGI scripts 2nd 3rd 4th 5th
 Front Page Personal Web Server
 Microsoft IIS Server
 configuring Web servers for Python/CGI scripts 2nd
 Personal Web Server (PWS)
 configuring Web servers for Python/CGI scripts 2nd
Trubetskoy, Gregory
World Wide Web
 development for
 configuring servers for Python/CGI scripts 2nd 3rd 4th 5th 6th 7th

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 11. Web Development > Third-Party
Internet Applications

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148047091216156219053001

Third-Party Internet Applications

Some completely developed Web applications, written in Python, are available for general use. You
don't need to do any programming to use them. You just have to install, configure, and use them.

Grail Web Browser

Grail is a free Web browser written entirely in Python, using the Tkinter GUI (Tk, which is a free UI
toolkit developed by John Ousterhout). Grail has the capability to manipulate SGML, HTML, URL's,
images, and sound. Besides, it is easily extended to offer new functionality.

Being written in Python helps Grail to have a high adhesion to the Python language. Something similar
happens to HotJava, which is a browser written entirely in Java.

For documentation and downloads, check out the following sites:

http://grail.python.org and http://grail.cnri.reston.va.us/grail/

Grail should run on any UNIX system to which Python and Tk have been ported—that is, almost all
UNIX systems supporting X11. In particular, Grail is one of the few Web browsers that supports
Solaris for Intel x86 processors. It now also runs on Windows and Macintosh because there are now
stable ports of Tk to those platforms (you need a lot of RAM though). Grail supports the protocols and
file formats commonly found on the World Wide Web, such as HTTP, FTP, and HTML. However, it is
easily extended to support new protocols or file formats. Grail is distributed by CNRI in source form,
free of charge (without warranties), and can be freely redistributed (within reason). Grail has not been
worked on for a while, and doesn't support any of the latest standards you might expect in a browser.

Grail's design tries to provide a plug-in architecture, which allows the browser to easily support applets
written in Python. Grail lets you download Python programs that execute inside Grail on your local
machine. These little applications, which are called applets can do things such as display animations,
interact with the user in new ways, even create additional menus that pop up dialogs if you like. Grail
applets run in a restricted execution environment, so broken or malicious applets (Trojan Horses) can't
erase your files or crash your computer.

Grail's Web site has an applet demo collection that you can explore.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=175
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A43%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=175&now=5%2F31%2F2002+4%3A43%3A36+PM
http://grail.python.org/
http://grail.cnri.reston.va.us/grail/

Grail has many positive qualities, such as support to full HTML 2.0, including images, forms and
image maps, as well as many HTML 3.2 features. It uses asynchronous document transfer and supports
printing and saving documents, searching, bookmarks, history, and more. It also supports frames, file
upload in forms, support for JPEG, TIFF, and XBM images, image printing, and tables (within the
limitations of the Tk toolkit). It has preference panels, an I/O status display, a remote control interface,
and many other nice features.

Apart from running applets, Grail is extensible in other areas, by writing so-called Grail plug-in
modules. Grail plug-ins can be written for a number of new implementations, such as protocols (for
example, CNRI's handle protocol), file formats (for example, for handling JPEG or sound directly),
HTML tags (for example, tables), and preference panels. Check out the following site for more
information:

Grail—The Browser For The Rest Of Us (DRAFT), by Guido van Rossum

http://grail.cnri.reston.va.us/grail/info/papers/restofus.html

Zope Web Application Server

The Z Object Publishing Environment, also known as Zope, is an open source object publishing system
for the Web, developed by a company called Digital Creations. Zope is a complete dynamic Web site
management Web platform used for building high-performance, dynamic Web sites. Essentially, it is a
very complete framework for building Web applications, written in Python.

Check out the following sites for details:

http://www.digicool.com and http://www.zope.org

Zope is the leading Open Source Web-application server. Zope enables teams to collaborate in the
creation and management of dynamic Web-based business applications such as intranets and portals. It
also makes it easy to build features such as site search, news, personalization, and e-commerce into
your Web applications.

Zope is a long running process, has a sophisticated authentication/authorization model, and has a useful
SQL related product called ZSQLMethod, which provides an easy way to access a database from the
Web application.

The following link is a technical introduction to object publishing with Zope. The document introduces
Zope's object publishing facilities and shows you how to write and publish your own objects in Python.
It has an excellent tutorial on integrating a Python module with the Zope ORB, Templates and Object
Database.

http://grail.cnri.reston.va.us/grail/info/papers/restofus.html
http://www.digicool.com/
http://www.zope.org/

http://www.zope.org/Members/Amos/WhatIsObjectPublishing

All requests made to the application server are mapped to Python objects. Therefore, whenever you
make a call to a URL, as demonstrated in the following line of code

http://host/path/to/object?name1=value1&name2=value2

The server internally calls an object passing the pairs (name, value) as arguments.

Zope is not monolithic. Instead, it is composed of parts which can be deployed standalone with your
own Python code support; for example, the Object Request Broker, HTML Templates (DTML) and the
Object Database (ZOBD, Z Object Database, which stores Python objects) can all be abstracted from
the mix.

Zope's templates are somehow similar to IIS ASP files. However, instead of being associated to Web
pages, they are associated to Python objects.

You don't need to use Apache (PyApache/Httpdapy) in conjunction with Zope. In fact, Zope comes
with a fast Web server of its own, which supports multiple protocols. On the other hand, it can also
work with other Web servers as well. Most users do put Apache in front of Zope for reasons of
flexibility. Because Zope is a long running process, they implement Persistent CGI, FastCGI, or
ProxyPass.

If you need to find Web Hosting companies that support Zope, this might help:
http://www.zope.org/Resources/ZSP.

Mailman—GNU Mailing List Manager

Mailman is a Web integrated mailing list manager that helps manage email discussion lists, much like
Majordomo and Smartmail. Unlike most similar products, Mailman gives each mailing list a Web page,
and allows users to subscribe, unsubscribe, and so on, over the Web. Even the list manager can
administer his list entirely from the Web. Both users and system administrator can do almost
everything through an Internet connection. Mailman also integrates most things people want to do with
mailing lists, including archiving, mail-to-news gateways, and so on.

Mailing lists are great for meeting people and sharing common interests. Within Mailman, each mailing
list has its own page that makes it much simpler to use. Each mailing list's Web page has an extensive
Web-based user interface that is customizable on a per-list basis. This allows users to manage their own
subscriptions, with support for temporarily disabling their accounts, selecting digest modes, hiding
their email addresses from other members, and so on.

All Mailman actions—including subscription requests, list administration, and management

http://www.zope.org/Members/Amos/WhatIsObjectPublishing
http://host/path/to/object?name1=value1&name2=value2
http://www.zope.org/Resources/ZSP

reports—can be performed either through a Web interface or more traditional textual commands.

In order to use Mailman, you will need the following:

● A Web server that supports CGI scripts, such as Apache

● An SMTP daemon (also known as mail transfer agents, MTAs, or mail servers), such as
Sendmail, Qmail, or Postfix

● Python 1.5 or newer

Mailman currently doesn't work on Windows. Instead, it runs on most UNIX-like systems. It is also
compatible with most Web servers, browsers, and most SMTP servers. Actually, the only thing
Mailman really requires of the mail server is the ability to setup aliases that execute commands.

Mailman is written primary in Python (in approximately 13,000 lines) with a few modules written in C
(600 lines) for improved security (the C parts are the wrappers that handle securely changing to the
correct permissions). Mailman exposes Python as an extension language that allows for customization
of Mailman's interfaces.

In case you need to build Mailman from the source, it is necessary to have in hand: the GNU-make
utility, an ANSI C Compiler, such as gcc, and Python 1.5 or higher.

Mailman is brought to you by the Mailman Cabal, which is currently composed of the following core
developers: Barry Warsaw, Harald Meland, Ken Manheimer, Scott Cotton, and John Viega. Mailman
was originally written by John Viega. Mailman is free software. It is distributed under the GNU
General Public License.

The following lists some of the main features implemented by Mailman:

● Automatic Web-based, hypermail-style archiving, including provisions for private archives.

● Integrated gatewaying to and from Usenet.

● Smart bounce handling by using the Delivery Status Notification (DSN), which is described in
RFC 1894. This feature enables automatic disposition (that is, configurable disabling,
unsubscribing).

● Flexible and direct SMTP delivery of messages, including integrated fast bulk mailing.

● Smart spam protection.

● Multiple list owners and moderators are possible.

● Supports RFC934 and MIME digest delivery.

● Support for virtual domains.

● Mail-based administrative commands.

● A Web-based list administration interface for all administrative-type tasks, including list
configuration, moderation (post approvals), selection of posting and subscribing rules,
management of user accounts via the Web, and so on.

Among other responsibilities, Mailman keeps track of the mailing lists of all python.org activities,
including the Python Special Interest Groups (Python SIGs).

As a practical matter, you'll need root access on your host to configure Mailman properly. Most open
source products can be generated and initially tested by ordinary UNIX users. Some organizations have
a policy that requires this. With Mailman, though, you'll at least need to create a new account and
group (the default for both is "mailman") for Mailman's use.

Mailman, of course, powers the Python-list, which is a general discussion list for the Python
programming language. You can see it working at

http://www.python.org/mailman/listinfo/python-list

Also check out the Mailman home page:

http://www.gnu.org/software/mailman/mailman.html

More information is also available at: http://www.list.org

Christopher Kolar has made Mailman documentation available, primarily for list owners who aren't
necessarily technical, but who own Mailman mailing lists. The GNU Mailman Documentation can be
found at the following site:

http://www.aurora.edu/~ckolar/mailman/

Medusa Internet Server

Medusa is a Web server application that can be embeddable into a Python program, offering high-
performance for HTTP, FTP, and other IP services. Medusa was written entirely in Python by Sam

http://www.python.org/mailman/listinfo/python-list
http://www.gnu.org/software/mailman/mailman.html
http://www.list.org/
http://www.aurora.edu/~ckolar/mailman/

Rushing.

Medusa provides an Internet server framework for implementing asynchronous socket-based
servers—TCP/IP, and on UNIX, UNIX domain sockets. The first release includes HTTP, FTP, and
monitor servers. Medusa can simultaneously support several instances of either the same or different
server types. For example, you could start up two HTTP servers, an FTP server, and a monitor server.
Then you could connect to the monitor server to control and manipulate Medusa while it is running,
entering and evaluating Python expressions (basically, a remote Python interpreter capability).

Out of the box, Medusa can run an unlimited number of HTTP and FTP servers within a single address
space, without the use of threads. Capable of impressive hit rates, this server can solve your
performance problems while handing you the most powerful server-side scripting language available.

Because Medusa is written entirely in Python, it is portable to any platform that implements the
socket and select modules correctly. It has been tested on several UNIX platforms, Windows NT,
and Windows 95.

Medusa is an elegant and efficient solution to a difficult programming problem. Medusa's core async-
socket library is very stable because it has been in use virtually unchanged since 1995.

Medusa is an architecture for building long-running, very high-performance TCP/IP network servers
(such as HTTP, FTP, and NNTP) in Python. Medusa is different from most other servers because it
runs as a single process, multiplexing I/O with its various client and server connections within a single
process/thread.

Medusa is in use now in several mission-critical applications, ranging from custom Web servers at
extremely high-traffic sites to distributed data processing systems.

As Medusa is written in Python, it can be extended and modified at runtime, even by the end user. User
scripts can be used to completely change the behavior of the server, and even add in completely new
server types.

Note

According to http://www.nightmare.com/medusa/license.html, Medusa is now Free Software under
the same license as Python, so you don't need a commercial use license.

For more details, check out the following site:

http://www.nightmare.com/medusa/license.html

http://www.nightmare.com/medusa/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applets
applications
 Grail 2nd
 Internet, third-party 2nd 3rd 4th 5th 6th 7th 8th
 Mailman 2nd 3rd 4th
 Medusa Internet Server 2nd
 Z Object Publishing Environment (Zope) 2nd
 ZSQLMethod
browsers
 Grail 2nd
Cotton, Scott
Delivery Status Notification (DSN)
development
 Web
 third-party applications 2nd 3rd 4th 5th 6th 7th 8th
Digital Creations
DSN (Delivery Status Notification)
GNU Mailing List Manager (Mailman) 2nd 3rd 4th
Grail 2nd
Internet
 development for
 third-party applications 2nd 3rd 4th 5th 6th 7th 8th
Kolar, Christopher
lists
 mailing
 Mailman
mailing lists
 Mailman
Mailman 2nd 3rd 4th
Mailman Cabal
Manheimer, Ken
Medusa Internet Server 2nd
Meland, Harald
modules
 select
 socket

http://www.nightmare.com/medusa/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=175

programs
 Grail 2nd
 Internet, third-party 2nd 3rd 4th 5th 6th 7th 8th
 Mailman 2nd 3rd 4th
 Medusa Internet Server 2nd
 Z Object Publishing Environment (Zope) 2nd
 ZSQLMethod
Rushing, Sam
select module
socket module
software
 Grail 2nd
 Internet, third-party 2nd 3rd 4th 5th 6th 7th 8th
 Mailman 2nd 3rd 4th
 Medusa Internet Server 2nd
 Z Object Publishing Environment (Zope) 2nd
 ZSQLMethod
third-party Internet applications 2nd 3rd 4th 5th 6th 7th 8th
Trojan Horses
Viega, John
Warsaw, Barry
World Wide Web
 development for
 third-party applications 2nd 3rd 4th 5th 6th 7th 8th
Z Object Publishing Environment (Zope) 2nd
Zope (Z Object Publishing Environment) 2nd
ZSQLMethod

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 11. Web Development > Other
Applications

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148047091223171024036021

Other Applications

These other applications and scripts are utilities that might help you along your future development
efforts.

BSCW

The BSCW group at GMD in Germany has implemented a shared workspace server for the Web as a
collection of Python CGI scripts.

BSCW (Basic Support for Cooperative Work) is a "shared workspace" system, which enables
collaboration over the Web and supports document upload, event notification, group management, and
much more. To access a workspace, you only need a standard Web browser.

This group maintains a public BSCW server with which everyone is invited to use for creating their
own shared workspaces. You only need an ordinary Web browser for registering with the public server
and for accessing the server once you have created your login. If you want to upload documents, you
might need an additional helper application. If you use their recommended Web browser (Netscape),
this is not required.

For details, check out http://bscw.gmd.de/ and http://orgwis.gmd.de/.

LDAP

The Lightweight Directory Access Protocol (LDAP) is a directory access protocol that runs directly
over TCP/IP. It is documented in RFCs 1777 and 1778, and is a draft Internet standard. LDAP can be
used to implement a native standalone LDAP directory service, or it can be used to access an X.500-
based directory service.

Directory services such as LDAP are suitable for holding a lot of organizational information in a
standardized database scheme. LDAP is a useful tool for providing centralized address books for the
users of an organization—common mail client software such as Netscape Messenger or Outlook
already uses directory services for retrieving personal data.

In some situations, there is a strong need for flexible LDAP client software that provides features such
as the following:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=176
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A43%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=176&now=5%2F31%2F2002+4%3A43%3A46+PM
http://bscw.gmd.de/
http://orgwis.gmd.de/

● Add/modify LDAP entries

● Access to the directory without having LDAP capable client software (for example, via WWW)

● A secure LDAP client with clean login behavior

● Hiding the LDAP service behind a firewall

● Encryption for LDAP access over unsecured networks

In order to handle these issues, Michael Ströder developed web2ldap.py (formerly known as ldap-client-
cgi.py), which is a full-featured, Web-based LDAP client written in Python. For more information,
check out

http://www.web2ldap.de

There isn't any standard LDAP support module in Python at this time, but there is Python-LDAP. This
project provides an LDAP client API for Python in the spirit of RFC1823. For more information, check
out the following:

http://python-ldap.sourceforge.net/

This LDAP module provides access to the University of Michigan's Lightweight Directory Access
Protocol library. It is more-or-less compliant with the interface described in RFC 1823, with the
notable differences being that lists are manipulated via Python list operations, and errors appear as
exceptions. It also works with OpenLDAP (http://www.openldap.org), which is a bit newer.

WebLog

WebLog is a group of Python modules containing several class definitions that are useful for parsing,
manipulating, and postprocessing of common Web and Web proxy logfile formats.

The modules can be broken up into two types: parsing and postprocessing. The classes inside these
modules are used by following the idea of first using a parsing class and then stacking postprocessing
classes on top of it. These modules are reasonably fast, considering that they are written in a scripting
language—especially the parsing modules, which are very well optimized.

Parsing Modules

The following modules contain class definitions that can help you to implement parsing routines.

http://www.web2ldap.de/
http://python-ldap.sourceforge.net/
http://www.openldap.org/

common—Common (NCSA) Web log parser.

combined—Combined/extended Web log parser (adds referrer and agent).

squid—Squid Web Proxy Cache log parsers. This module contains two classes:
AccessParser (for access.log), and StoreParser (for store.log). If you have
full_mime_hdrs set in squid.conf, make sure to set the corresponding attribute in
AccessParser. However, use of this will appreciably slow down analysis.

multiple—Combines log files of the same content from different servers.

Postprocessing Modules

The following modules contain class definitions that can help you to implement postprocessing
routines.

url—Parses url and referer (if available) for components.

query—Parses queries into dictionaries.[1]

[1] Requires use of url.Parse first.

clean—Normalizes attributes of Web Log for more accurate analysis.[1]

resolve—Resolves client address to host and/or IP.

referer—Determines type of hit: local, offsite, manual, or file.[1]

limit—Limit output to certain domains, files, directories or times.[1]

For more details about WebLog, check out its Web site:

http://www.mnot.net/scripting/python/WebLog/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.mnot.net/scripting/python/WebLog/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=176

Index terms contained in this section

applications
 BSCW (Basic Support for Cooperative Work)
 LDAP (Lightweight Directory Access Protocol) 2nd
 WebLog
Basic Support for Cooperative Work (BSCW)
BSCW (Basic Support for Cooperative Work)
clean module
combined module
common module
development
 Web
 BSCW (Basic Support for Cooperative Work)
 LDAP (Lightweight Directory Access Protocol) 2nd
 WebLog
GMD
Internet
 development for
 BSCW (Basic Support for Cooperative Work)
 LDAP (Lightweight Directory Access Protocol) 2nd
 WebLog
LDAP (Lightweight Directory Access Protocol) 2nd
libraries
 Lightweight Directory Access Protocol (LDAP)
Lightweight Directory Access Protocol (LDAP) 2nd
limit module
modules
 clean
 combined
 common
 limit
 multiple
 parsing
 query
 referer
 resolve
 squid
 url
 WebLog
multiple module
OpenLDAP protocol
parsing modules
programs
 BSCW (Basic Support for Cooperative Work

 LDAP (Lightweight Directory Access Protocol) 2nd
 WebLog
protocols
 Lightweight Directory Access (LDAP) 2nd
 OpenLDAP
query module
referer module
resolve module
software
 BSCW (Basic Support for Cooperative Work)
 LDAP (Lightweight Directory Access Protocol) 2nd
 WebLog
squid module
Str[um]oder, Michael
University of Michigan
 Lightweight Directory Access Protocol (LDAP) library
url module
WebLog 2nd
World Wide Web
 development for
 BSCW (Basic Support for Cooperative Work)
 LDAP (Lightweight Directory Access Protocol) 2nd
 WebLog

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 11. Web Development > Site
Management Tools

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148047091222021048126046

Site Management Tools

The following Python tools are used to manage Web sites. They implement several functions that
simplify the daily tasks performed by webmasters, such as dead link checking, and object publishing.

WebDAV/PyDAV

WebDAV (World Wide Web Distributed Authoring and Versioning) is a set of extensions to the
HTTP/1.1 protocol, which allows users to collaboratively edit, manage, and update files safely on
remote Web servers. It was developed by the WebDAV working group of the Internet Engineering
Task Force (IETF).

WebDAV provides a standard infrastructure for asynchronous collaborative authoring across the
Internet in order to turn the Web into a collaborative environment.

WebDAV has the following core features: Metadata management, Name space management,
Collections, Overwrite prevention, Version management, Access Control, and Locking (concurrency
control).

For more information about WebDAV, check out its Web site at

http://www.webdav.org

PyDAV is a WebDAV (also known as DAV) server implemented in Python. Check out its Web site at
the following address:

http://sandbox.xerox.com/webdav/

Zebra

Zebra is an XML-based preprocessing language that offers a compact syntax for expressing common
Web design patterns. Similar to Zope, Zebra is a templating system that is able to preprocess Python
code. Therefore, developers don't need to stick to the details of the language before starting a nice
design. For more information, check out the following site:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=177
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A43%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=177&now=5%2F31%2F2002+4%3A43%3A57+PM
http://www.webdav.org/
http://sandbox.xerox.com/webdav/

http://zebra.sourceforge.net/

httpd_log

The HTTPD logfile reporting tool (httpd_log) is a graphical Web statistics tool that analyzes HTTP
log files and generates a page of summary information, complete with statistical graphs. Richard Jones
developed this tool.

You'd better check out the new release 4.0b1 because it uses the more accurate PIL module, instead of
using the old GD graphic module. Although the release 3.0 is very stable, the graphing provided by the
new release is more accurate.

Keep in mind that you need to install the PIL module (PILGraph-0.1a7.tar.gz) in order to use
the release 4.0b1. For more information, check out

http://starship.python.net/crew/richard/httpd_log/

Linbot

Linbot is a site management tool that analyzes a site and allows the user to view a site map, check for
broken internal and external links, missing images, and list other problems that were found. It
downloads each page from the Web site, and parses its contents in order to collect all the site's
information. Linbot is extensible, so new tests can be added by writing some Python code.

Some of the things that Webmasters can do periodically and without user intervention when using
Linbot are listed as follows:

● View the structure of a Web site

● Track down broken links in Web pages

● Find potentially outdated Web pages

● List links pointing to external sites

● View portfolio of inline images

● Get a run down of problems sorted by author

● Locate pages that might be slow to download:

http://zebra.sourceforge.net/
http://starship.python.net/crew/richard/httpd_log/

http://starship.python.net/crew/marduk/linbot/

Python-Friendly Internet Solution Providers (ISPs)

The Web site "Python-friendly ISPs" lists Web site providers that support the execution of CGI scripts
written in Python. These lists are separated into some specific categories:

● Python Installed System-Wide

● User May Install Python in Own Directories

● Providers with No Python Installed

● Other Providers (Python Support Unknown)

The address is http://www.corrt.com/info/pyisp-list.html

mxCGIPython

Instead of looking for an ISP that supports Python, you might be interested in the mxCGIPython tool,
which helps you install Python on your ISP when your ISP either won't or can't. Marc-Andre Lemburg
has put together a small Zip file, which contains all necessary setup and config files. For more
information, check out the following:

http://starship.python.net/~lemburg/mxCGIPython.html

HTMLgen

If you need a module to help you generate HTML, you should check out HTMLgen, written by Robin
Friedrich. It's a class library of objects corresponding to all the HTML 3.2 markup tags. It's used when
you are writing in Python and want to synthesize HTML pages for generating a Web, for CGI forms,
and so on. The following lines are some examples of using HTMLgen:

>>> print H(1, "Welcome to Python World")
<H1>Welcome to Python World</H1>
>>> print A("http://www.python.org/", "Python Web site")
Python Web site

HTMLgen is available for download at:

http://starship.python.net/crew/marduk/linbot/
http://www.corrt.com/info/pyisp-list.html
http://starship.python.net/~lemburg/mxCGIPython.html

http://starship.python.net/crew/friedrich/HTMLgen/html/main.html

Document Template

When talking about generating HTML code, it might also be useful to consider
DocumentTemplate, which offers clear separation between Python code and HTML code.
DocumentTemplate is part of the Zope objects publishing system, but it can also be used
independently. For more information, check out the following:

http:/www.digicool.com/

Persistent CGI

Persistent CGI architecture provides a reasonably high-performance, transparent method of publishing
objects as long running processes via the World Wide Web (WWW). The current alternatives to CGI
that allow the publishing of long-running processes, such as FastCGI and ILU, have some level of Web
server and platform dependencies. Persistent CGI allows a long running process to be published via the
WWW on any server that supports CGI, and requires no specific support in the published application.

Note

The latest version of Persistent CGI is bundled with the Zope software:

http:/www.digicool.com/

Webchecker

Webchecker is not a CGI application but a Web client application. The webchecker.py script is
located under the tools/webchecker/ directory of your Python distribution. This tool enables you
to check the validity of a site. In other words, given a Web page, it searches for bad links in it, and
keeps a record of the links to other sites that exist in the page.

It requests all pages from the Web site via HTTP. After it loads a page, it parses the HTML code and
collects the links. Pages are never requested more than once. The links found outside the original tree
are treated as leaves, hence, they are checked, but their links won't be followed. Anyway, this script

http://starship.python.net/crew/friedrich/HTMLgen/html/main.html
file:///www.digicool.com/
file:///www.digicool.com/

generates a report that contains all bad links and says which page(s) the links are referenced.

The Linbot system, as you will see later in this chapter, has a similar functionality, but its checks are
more extensive than Web Checker's.

Check out thewebsucker module, which is also part of the tools/webchecker directory of the
source. It mirrors a remote url locally.

LinkChecker

Pylice, a link checker written in Python, was renamed to LinkChecker. With LinkChecker
you can check your HTML documents for broken links. The homepage for LinkChecker moved to
the following:

http://linkchecker.sourceforge.net

You can find more information at

http://fsinfo.cs.uni-sb.de/~calvin/software/

FastCGI

FastCGI is a fast, open, and secure Web server interface that solves the performance problems inherent
in CGI, without introducing the overhead and complexity of proprietary APIs (Application
Programming Interfaces).

The FastCGI application library that implements the FastCGI protocol (hiding the protocol details from
the developer) is based on code from Open Market, and is in the public domain while being fully
supported by Fast Engines. This library makes implementing FastCGI programs as easy as writing CGI
applications.

The FastCGI interface combines the best aspects of CGI and vendor APIs. Like CGI, FastCGI
applications run in separate, isolated processes. The main advantages of using FastCGI are

● Performance—FastCGI processes are persistent and do not create a new process for each
request.

● Simplicity—It is easily migrated from CGI.

● Language independence—Like CGI, FastCGI applications can be written in any language.

http://linkchecker.sourceforge.net/
http://fsinfo.cs.uni-sb.de/~calvin/software/

● Process isolation—A buggy FastCGI application cannot crash or corrupt the core server or other
applications.

● Non-proprietary—FastCGI was originally implemented in the Open Market Web server.

● Architecture independence—The FastCGI interface isn't tied to any particular server
architecture.

● Support for distributed computing—FastCGI provides the ability to run applications remotely.

For details about the library, check out FASTCGI's official Web site at http://www.fastcgi.org/.

The following link forwards you to a white paper that explains the minor details of FASTCGI:

http://www.fastcgi.org/whitepapers/fcgi-whitepaper.shtml

The best place to go for Python FastCGI support is at http://www.digicool.com/releases/fcgi/.

There is also an all Python (no extension module required) implementation of the FastCGI application
interface located at http://starship.python.net/crew/robind/.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 DocumentTemplate
 FastCGI 2nd
 httpd_log
 Linbot 2nd
 PyDAV
 site management tools 2nd 3rd 4th 5th 6th 7th
 Webchecker
 WebDAV (World Wide Web Distributed Authoring and Versioning)
 Zebra
development
 Web
 site management tools 2nd 3rd 4th 5th 6th 7th
DocumentTemplate
FastCGI 2nd

http://www.fastcgi.org/
http://www.fastcgi.org/whitepapers/fcgi-whitepaper.shtml
http://www.digicool.com/releases/fcgi/
http://starship.python.net/crew/robind/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=177

GD module
httpd_log
IETF (Internet Engineering Task Force)
Internet
 development for
 site management tools 2nd 3rd 4th 5th 6th 7th
Internet Engineering Task Force (IETF)
Internet Solution Providers (ISPs)
 Python-friendly
ISPs (Internet Solution Providers)
 Python-friendly
Linbot 2nd
modules
 GD
 PIL
 websucker
PIL module
programs
 DocumentTemplate
 FastCGI 2nd
 httpd_log
 Linbot 2nd
 PyDAV
 site management tools 2nd 3rd 4th 5th 6th 7th
 Webchecker
 WebDAV (World Wide Web Distributed Authoring and Versioning)
 Zebra
PyDAV
site management tools 2nd 3rd 4th 5th 6th 7th
software
 DocumentTemplate
 FastCGI 2nd
 httpd_log
 Linbot 2nd
 PyDAV
 site management tools 2nd 3rd 4th 5th 6th 7th
 Webchecker
 WebDAV (World Wide Web Distributed Authoring and Versioning)
 Zebra
tools
 site management 2nd 3rd 4th 5th 6th 7th
utilities
 site management 2nd 3rd 4th 5th 6th 7th
Webchecker
WebDAV (World Wide Web Distributed Authoring and Versioning)
websucker module

World Wide Web
 development for
 site management tools 2nd 3rd 4th 5th 6th 7th
World Wide Web Distributed Authoring and Versioning (WebDAV)
Zebra

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 11. Web Development > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148040135185021104014041

Summary

This chapter exposes the reality between Python and the Internet by introducing some complete Web
applications that have emerged from the Python community.

Python's support to HTTP, which is the basic communication protocol underlying the Web, allows it to
implement HTTP servers (Web servers) and clients (Web browsers). This chapter shows simple details
about the configuration of Apache and Microsoft IIS Server/Personal Web Server (PWS). Another Web
server called AOLServer is also introduced to you.

If you have Apache and you decide not to go through any CGI implementation, you should consider
embedding Python in this Web server.

mod_python is a module that embeds the Python language interpreter within the Apache server,
allowing Apache handlers to be written in Python. It brings a considerable boost in performance over
the traditional CGI approach.

mod_pyapache is another module that embeds Python within the Apache server. This module also
handles CGI scripts faster than other normal CGI scripts.

Besides Web Servers and Web Clients, Python has some completely developed Web applications,
written in Python itself, which are available for general use.

Grail is a free Web browser written entirely in Python, using the Tkinter GUI. Grail has the capability
to manipulate SGML, HTML, URL's, images, and sound. Besides, it is easily extended to offer new
functionality. Grail's design tries to provide a plug-in architecture, which allows the browser to easily
support applets written in Python. Apart from running applets, Grail is extensible in other areas by
writing so-called Grail plug-in modules.

The Z Object Publishing Environment (Zope) is an open source object publishing system for the Web.
Zope is a complete dynamic Website management Web platform used for building high-performance,
dynamic Web sites. It is composed of parts that can be deployed standalone with your own Python code
support: The Object Request Broker, HTML Templates (DTML), and the Object Database (ZODB, or
Z Object Database, which stores Python objects) can all be abstracted from the mix.

Mailman is a Web integrated mailing list manager that helps managing email discussion lists. Unlike
most similar products, Mailman gives each mailing list a Web page, and allows users to subscribe,

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=178
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A44%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=178&now=5%2F31%2F2002+4%3A44%3A09+PM

unsubscribe, and so on, over the Web. All Mailman actions, including subscription requests, list
administration, and management reports, can be performed either through a Web interface or more
traditional textual commands.

Medusa is a Web server application that can be embedded into a Python program, offering high-
performance for HTTP, FTP, and other IP services. Medusa was entirely written in Python too.

The following applications and scripts are utilities that might help you with future development efforts
with Python.

BSCW is a shared Workspace Server for the Web, which is implemented as a collection of Python CGI
scripts.

The web2ldap.py script (formerly known as ldap-client-cgi.py) is a full-featured, Web-
based LDAP client written in Python.

WebLog is a group of Python modules containing several class definitions useful for parsing,
manipulating, and postprocessing of common Web and Web proxy logfile formats.

The following Python tools are used to manage Web sites. They implement several functions that
simplify the daily tasks performed by Webmasters, such as dead link checking, and object publishing.

WebDAV (World Wide Web Distributed Authoring and Versioning) is a set of extensions to the
HTTP/1.1 protocol, which allows users to collaboratively edit, manage, and update files safely on
remote Web servers.

Zebra is an XML-based preprocessing language that offers a compact syntax for expressing common
Web design patterns. As Zope, Zebra is a templating system that is able to preprocess Python code.

The HTTPD logfile reporting tool (httpd_log) is a graphical Web statistics tool that analyzes HTTP
log files and generates a page of summary information.

Linbot is a site management tool that analyzes a site and allows the user to view a site map, check for
broken internal and external links, missing images, and list other problems that were found.

The Web site "Python-friendly ISPs" lists Web site providers that support the execution of CGI scripts
written in Python. Another option that you have is to install Python on your ISP using the
mxCGIPython tool.

HTMLgen is a module that helps you generate HTML. It contains a class library of objects
corresponding to all the HTML 3.2 markup tags. When talking about generating HTML code, it might

also be useful to consider DocumentTemplate, which offers clear separation between Python code
and HTML code.

Webchecker is not a CGI application but a Web client application that enables you to check the
validity of a site. LinkChecker is another tool that also allows you to check your HTML documents
for broken links.

Persistent CGI architecture provides a reasonably high-performance, transparent method of
publishing objects as long running processes via the World Wide Web.

FastCGI is a fast, open, and secure Web Server interface that solves the performance problems
inherent in CGI, without introducing the overhead and complexity of proprietary APIs.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

development
 Web 2nd 3rd
Internet
 development for 2nd 3rd
World Wide Web
 development for 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=178

Web Development > Python Developer's Handbook > 12. Scripting Programming See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148040135184169017054218

Chapter 12. Scripting Programming
strewth!

This chapter provides information about how to use Python as a CGI scripting language. You will learn
how to put Python to work in your Web pages as a server-side component.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=180
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A44%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=180&now=5%2F31%2F2002+4%3A44%3A18+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=180

Web Development > Python Developer's Handbook > 12. Scripting Programming > Web
Programming

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148040135186111045046177

Web Programming

Python has a very extensive, well documented and portable module library that provides a large variety
of useful modules. The Internet-related collection is particularly impressive, with modules that deal
with everything from parsing and retrieving URLs to retrieving mail from POP servers, including CGI
scripting.

Python is suitable for CGI programming on Windows, Mac, and UNIX platforms, allowing the creation
of programs that provide services over the Internet. Its capability to create dynamic content makes the
task of generating Web pages on-the-fly a very easy thing to do.

However, before starting to implement your Web pages using CGI scripts, you need to think about
whether it is really necessary to build dynamic pages for your site. Keep in mind that if the information
is not modified very often, static pages are the best solution because dynamic pages always slow down
the server. You can decide whether to use it, but if you conclude that it would work for you, this
chapter might help you a lot.

Note

It's also good to mention that if you need a way to periodically build auto-generated pages, you can
implement solutions based on the use of cron on UNIX-like systems. For the Windows NT, you
have both the at command, and the scheduled tasks extensions found in the newer copies of the
Internet Explorer.

If your site becomes busy enough that the cost of starting a Python interpreter for each CGI request
becomes significant, you can use Web Server modules (such as mod_python) to embed the Python
interpreter in the server, hence, avoiding the startup time. Zope provides yet another way to have
Python scripts without the interpreter startup time to worry about. Python code can also be invoked on
top of Active Server Pages (ASP) under IIS.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=181
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A44%3A30+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=181&now=5%2F31%2F2002+4%3A44%3A30+PM

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 Z Object Publishing Environment (Zope)
autogenerated pages
CGI (Common Gateway Interface) scripts
Common Gateway Interface (CGI) scripts
embedding
 interpreters in servers
interpreters
 embedding in servers
pages
 autogenerated
programs
 Z Object Publishing Environment (Zope)
scripts
 Common Gateway Interface (CGI)
servers
 embedding interpreters
software
 Z Object Publishing Environment (Zope)
Z Object Publishing Environment (Zope)
Zope (Z Object Publishing Environment)

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=181

Web Development > Python Developer's Handbook > 12. Scripting Programming > An
Introduction to CGI

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148040135186102239182092

An Introduction to CGI

CGI (Common Gateway Interface) is a standardized way for the Web Server to invoke an external
program to handle the client request. It is possible for the external program to access databases,
documents, and other programs as part of the request, as well, and present customized data to viewers
via the Web. A CGI script can be written in any language, but here, of course, we are using only
Python.

CGI enables you to handle from the low end of mail-forms and counter programs to the most complex
database scripts that generate entire Web sites on-the-fly. CGI's job is to manage the communication
between browsers and server-side scripts. Programs that implement CGI routines are called CGI
programs or CGI scripts. These scripts are usually visualized, through the Web browser, in a directory
called /cgi-bin, but their actual location in the file system varies.

You have two ways to pass the information from the browser to the CGI script: You can use either the
POST or the GET method on your HTML Form. The POST method uses the standard input to transfer
the information, whereas the GET method places the information into an environment variable.

The GET method has the limitation of the size of the environment variable and the advantage of making
it possible to encapsulate an HTML Form within an URL. Another downside to the GET method is that
it might leak information. If there is an external image (for instance, a banner ad) or an off site link the
user clicks on the page generated by the CGI script, the form results will be passed to that third party
through the referer header. Therefore, don't use banner ads or off-site links for the CGI script handling
a GET form.

The POST method, in theory, has no limits to the amount of information that can be passed to the
server. The disadvantage is that you can't send the information as part of the URL. You must have a
form in your page.

Python uses the cgi module to implement CGI scripts and to process form handling in Web
applications that are invoked by an HTTP server. The cgi module also hides the differences between
GET and POST style forms.

Here is a very simple script to start you out with Python CGI processing:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=182
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A44%3A39+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=182&now=5%2F31%2F2002+4%3A44%3A39+PM

1: #!/usr/bin/python
2: print "Content-Type: text/plain\n\n"
3: print "Hello Python World!"

Line 1: Path to the Python interpreter (UNIX only).

Line 2: Pass the MIME type to the browser in order to let it know how to render the information.

Line 3: Prints a string in the browser window.

In order to execute it, place it on a executable directory on your Web server and call it from your Web
browser. If you are working on a UNIX-like OS, you need to run chmod a+x scriptname.

Sometimes, CGI implementations also cause slow response times in the system. Keep in mind that each
CGI invocation creates a new process, starts a new instance of the Python interpreter, and imports all
the necessary library modules. Okay, I suppose you got the picture.

The goal here is to let you know that sometimes the problem is not in the code, but in the infrastructure
that surrounds it. Within your CGI script, you should consider avoiding using fork() as much as you
can. But fork() is not the slow(est) part—it is the interpreter startup time and database connection
setup. To get help with that, try using mod_pyapache or mod_python.

The following links take you to sites that demonstrate and clarify the use of CGI routines:

Python's Web Programming Topic Guide

http://www.python.org/topics/web/

vex.net's directory of Python Web page samples

http://www.vex.net/py_examples/

Aaron Watters's simple CGI examples

http://starship.python.net/crew/aaron_watters/cgi/

Fancy CGI Programming

http://www.python.org/topics/web/
http://www.vex.net/py_examples/
http://starship.python.net/crew/aaron_watters/cgi/

http://www.python.org/topics/web/fancy-cgi.html

Python-CGI FAQ

http://starship.python.net/crew/davem/cgifaq/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

browsers
 passing data to CGI scripts from
CGI (Common Gateway Interface) scripts 2nd 3rd
cgi module
Common Gateway Interface (CGI) scripts 2nd 3rd
data
 passing from browsers to CGI scripts
executing
 CGI scripts
fork() method
GET method 2nd
methods
 fork()
 GET 2nd
 POST 2nd
mod_pyapache module
mod_python module
modules
 cgi
 mod_pyapache
 mod_python
passing
 data from browsers to CGI scripts
POST method 2nd
processing
 CGI scripts
scripts
 Common Gateway Interface (CGI) 2nd 3rd
transferring
 data from browsers to CGI scripts

© 2002, O'Reilly & Associates, Inc.

http://www.python.org/topics/web/fancy-cgi.html
http://starship.python.net/crew/davem/cgifaq/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=182

Web Development > Python Developer's Handbook > 12. Scripting Programming > The cgi
Module

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148040135189253149095235

The cgi Module

The cgi module accepts sys.stdin and environment variables set by the server as input sources.
The output is sent directly to sys.stdout, carrying an HTTP header and the data itself.

A very simple header example would be

print "Content-type: text/html"
print

Note that it is necessary to have a new line at the end of the header information. In most cases, the
previous line is all you will use in your scripts.

The FieldStorage class, which is implemented by this module, is able to read both the standard
input (for POST calls) and the query string (for GET calls). In order to parse the contents of an HTML
Form, you need to create an instance of this class.

This instance carries the following attributes:

● fs.name— This is the field's name.

● fs.value—This is the field's value.

● fs.filename—This client-side filename is used in uploads.

● fs.file—This is a file-like object from which data can be read.

● fs.type—This is the content type.

● fs.type_options—This dictionary of options is specified on the content-type line of the
HTTP request.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=183
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A44%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=183&now=5%2F31%2F2002+4%3A44%3A47+PM

● fs.disposition—This is the "content-disposition" field, None if not specified.

● fs.disposition_option—This is the dictionary of disposition options.

● fs.headers—This is a dictionary-like object containing all HTTP headers contents.

Each individual form field is defined as an instance of the MiniFieldStorage class, whereas on
the contrary, multipart data (such as uploaded files) is defined as an instance of the FieldStorage
class itself. Each instance is accessed as a dictionary whose keys are the Form's field names, and the
values are their contents. These dictionaries also implement methods such as .keys() and
.has_key(). If a specific form field has multiple values (for example, a selection list), a list of
multiple MiniFieldStorage instances is generated and assigned to the appropriate key value in the
dictionary. The use of MiniFieldStorage is pretty much transparent when using CGI, thus, you
don't have to worry about these implementation details.

Note that uploaded files are read directly to the memory by accessing the value attribute of the class
instance.

Also note that Python 2.0 provides a new method called getvalue() to the objects of the
FieldStorage class, that implements the same functionality of a dictionary's get() method by
returning the value attribute of the given object.

Functions

The following list shows some general functions exposed by the cgi module.

cgi.escape(string [,quote])— Translates "<", "&", ">" to "<",
"&", ">". If you want to convert the double-quote character, you must set
the quote flag to true.

cgi.parse_qs(string, keep_blank_values=0)—Parses a query string such
as "country=USA&state=PA" to a dictionary-like format, for example,
{"country": ["USA"], "state": ["PA"],…}

cgi.parse([file], …)—Parses query strings from default file locations (such as,
multiple file objects) from which data can be read, and generates a dictionary. The
default behavior is to map the input to stdin.

For CGI debugging, the following functions are available:

cgi.print_environ()—Formats the shell environment in HTML.

cgi.print_environ_usage()—Prints a list of environment variables, used by
CGI, in HTML.

cgi.print_form(form)—Formats a form in HTML.

cgi.print_directory()— Formats the current directory in HTML.

cgi.test()— Tests CGI script. It writes minimal HTTP headers and formats all
information provided to the script in HTML form.

The following functions are not part of the CGI module, but they are very useful for CGI processing
too.

urllib.quote(string), urllib.unquote(string)—These functions do
and undo convertions between literals (that are used in CGI applications) and their
special translation codes, which are required when transporting the literals to URL
format (for example, becomes " %20 ").

urllib.urlencode(dictionary)—Converts a dictionary {
"country":"USA", "state":"PA",…} to query string format (for example,
"country=USA&state=PA"). Note that this function has the opposite functionality
of the cgi.parse_qs() function.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=183

Index terms contained in this section

attributes
 fs.disposition
 fs.disposition_option
 fs.file
 fs.filename
 fs.headers
 fs.name
 fs.type
 fs.type_options
 fs.value
 value
CGI (Common Gateway Interface) scripts
 cgi module 2nd 3rd
cgi module 2nd 3rd
cgi.escape(string [,quote]) method
cgi.parse([file], …) method
cgi.parse_qs(string, keep blank values=0) method
cgi.print_directory() method
cgi.print_environ() method
cgi.print_environ_usage() method
cgi.print_form(form) method
cgi.test() method
classes
 FieldStorage
 MiniFieldStorage
classs
 FieldStorage
Common Gateway Interface (CGI) scripts
 cgi module 2nd 3rd
debugging
 CGI scripts, functions
FieldStorage class 2nd
fs.disposition attribute
fs.disposition_option attribute
fs.file attribute
fs.filename attribute
fs.headers attribute
fs.name attribute
fs.type attribute
fs.type_options attribute
fs.value attribute
get() method
getvalue() method

headers
 HTTP
HTTP headers
methods
 cgi.escape(string [,quote])
 cgi.parse([file], …)
 cgi.parse_qs(string, keep blank values=0)
 cgi.print_directory()
 cgi.print_environ()
 cgi.print_environ_usage()
 cgi.print_form(form)
 cgi.test()
 get()
 getvalue()
 urllib.quote(string)
 urllib.unquote(string)
 urllib.urlencode(dictionary)
MiniFieldStorage class
modules
 cgi 2nd 3rd
scripts
 Common Gateway Interface (CGI)
 cgi module 2nd 3rd
urllib.quote(string) method
urllib.unquote(string) method
urllib.urlencode(dictionary) method
value attribute

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 12. Scripting Programming > Creating,
Installing, and Running Your Script

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148040135188010160225247

Creating, Installing, and Running Your Script

You are free to edit your Python scripts using your favorite text editor (such as, Notepad, IDLE, Editpad, pico,
PythonWwin, vi, and so on). Of course, we can't forget about Emacs, which has one of the best Python editing
modes available.

Remember to upload your scripts as text files to your Web server. In order to execute them, you need to make sure
that they are in a "executable" directory, and that they have the right permissions.

As I said before, most often CGI scripts live in the server's special cgi-bin directory. You should consider
verifying whether the files, that your script needs to read or write, are actually readable or writable, respectively,
by other users. In UNIX, the command to set the permissions is chmod.

For example,

chmod 755 filename

The mode argument 755 defines that the file's owner can read, write, and execute the file, whereas the other users
can only read and execute it.

The common UNIX mode values and their respective symbolic arguments are

● chmod 755 for executable scripts, or chmod a+rx.

● chmod 666 for writable files, or chmod a+w.

● chmod 644 for readable files, or chmod a+r.

Tip

Keep in mind that commands and filenames are all case sensitive if the Web Server is on an OS with case-
sensitive filenames.

For security reasons, the HTTP server executes your script as user "nobody", without any special privileges.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=184
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A44%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=184&now=5%2F31%2F2002+4%3A44%3A56+PM

Therefore, it can only read (write, execute) files that everybody can read (write, execute).

The current directory at execution time is usually the server's /cgi-bin directory, and the set of environment
variables is different from what you get at login. In other words, don't count on the shell's search path variable for
executables ($PATH) or the Python module search path variable ($PYTHONPATH) to be set to anything useful.

If you need to load modules from a directory that is not listed as part of the Python's default module search path,
you can change the path variable in your script before trying to import them. In the following example, we add
three more directory entries in the search path. Note that the last directory inserted,
"/usr/python/testdict", is searched first.

import sys
sys.path.insert(0, "/usr/python/lib")
sys.path.insert(0, "/usr/tmp")
sys.path.insert(0, "/usr/python/testdict")

Instead of using "from cgi import *", you should use only "import cgi" because the cgi module
defines many other names for backward compatibility that can interfere with your code.

It also might be useful for you to redirect the standard error (sys.stderr) to the standard output
(sys.stdout). This will display all the error messages in the browser.

Sending Information to Python Scripts

Every time you use a URL to carry information to a CGI script, the data is transported as name/value pairs,
separated by ampersands (&), and each pair is separated by an equal sign (=). Whitespaces between words are
usually converted to the plus symbol (+).

For example,

http://www.lessaworld.com/cgi-script/app.py?animal=Parrot&type=Singer

Special characters are encoded to hexadecimal format (%HH) and preceded by the percent sign. Therefore, the
string "Parrot sketch" is passed to the script as "Parrot%20sketch".

As you can see, the previous example is implicitly using the GET method to pass the values to the CGI script. If
you decide that the POST method is more suitable for your needs, you will need to use the urllib module in
order to send the information. The following example demonstrates its use.

import urllib
request = urllib.urlencode({
 "animal": "Parrot", "type": "Singer"

http://www.lessaworld.com/cgi-script/app.py?animal=parrot&type=singer

})
page = urllib.urlopen("http://oemcomputer/cgi-script/app.py", request)
response = page.read()

Check the urllib documentation for details:

http://www.python.org/doc/current/lib/module-urllib.html

Table 12.1 contains a list of special characters and their encoded strings.

Table 12.1. Encoded Strings Used to Represent Special Characters When Dealing with URLs

Character Encoded String
/ %2F
~ %7E
: %3A
; %3B
@ %40
& %26
space %20
return %0A
tab %09

Working with Form Fields and Parsing the Information

The first thing that most beginners in the Web development area want to know is how to get information out of
HTML forms and do something with it.

The following HTML code results in a Web page (see Figure 12.1) that queries the user about his login
information. Note that we use the POST method in the form. Thus, the field values will not be displayed as part of
the URL.

Figure 12.1. Login Form that calls a CGI script.

http://www.python.org/doc/current/lib/module-urllib.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/184#2.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/184#4.html

<HTML>
<HEAD><TITLE>Login Page</TITLE></HEAD>
<BODY>

<HR>
<CENTER>
<FORM method="POST" action="http://oemcomputer/cgi-bin/login.py">
<p> Enter your login name: <input type="text" name="login">
<p> Enter your password: <input type=password name="password">
<p> <input type="submit" value="Connect">
</FORM>
</CENTER>
<HR>

</form>
</BODY>
</HTML>

Also, pay attention to the way data fields are referenced in HTML forms. Each input element carries a name
attribute that uniquely identifies the element within a form. For instance, the tag <input type="text"
name="login"> defines a data field called "login" that implements a text box.

Every CGI script must send a header (the Content-type tag) describing the contents of the document. The
common values for this tag are text/html, text/plain, image/gif, and image/jpeg. A blank line
is used to indicate the end of this header.

Tip

The Content-type tag is used by the client browser and does not appear in the generated page.

As you can see, a script is really executed, and not just displayed in the browser. Everything printed to
sys.stdout by the script is sent to the client browser, whereas error messages go to an error log
(/usr/local/etc/httpd/logs/error_log in Apache).

The following script is the CGI program called by the HTML form from the previous code.

 1: #!/usr/local/bin/python
 2: import cgi
 3:
 4: def header(title):
 5: print "Content-type: text/html\n"
 6: print "<HTML>\n<HEAD>\n<TITLE>%s</TITLE>\n</HEAD>\n<BODY>\n" \
 7: % (title)
 8:
 9: def footer():
10: print "</BODY></HTML>"
11:
12: form = cgi.FieldStorage()
13: password = "python"
14:
15: if not form:
16: header("Login Response")
17: elif form.has_key("login") and form["login"].value != "" and \
18: form.has_key("password") and form["password"].value == password:
19: header("Connected …")
20: print "<center><hr><H3>Welcome back," , form["login"].value, \
21: ".</H3><hr></center>"
22: print r"""<form><input type="hidden" name="session" value="%s">
23: </form>""" % (form["login"].value)
24: print "<H3>Click here to start \
25: browsing</H3>"
26: else:
27: header("No success!")
28: print "<H3>Please go back and enter a valid login.</H3>"
29:
30: footer()

This example first verifies if the form is a valid form (line 15). If it isn't, a blank screen is displayed. If the fields
have a valid format, the form performs an action and processes the results (lines 17–25). The last case is when the
validation rule is not followed, and an error message must be displayed. A full implementation should repeat the
form, and point out the error to the user.

Next, we have a simple check list to use while developing CGI scripts. It shows the basic structure of CGI script
creation.

1. Use cgi.FieldStorage() to parse the query.

2. Check the HTML form fields.

3. Take care of decoding, handling both GET and POST methods.

4. Perform the actions that are particular to your application.

5. Generate the proper HTTP/HTML data for output. The simplest way to write to the output is using print
statements. Note that template solutions are also available, and for high-volume sites, it's almost a necessary
implementation.

The following example is a small variation of the previous script. This one lists the values of all form fields.

#!/usr/local/bin/python
import cgi

def header(title):
 print "Content-type: text/html\n"
 print "<HTML>\n<HEAD>\n<TITLE>%s</TITLE>\n</HEAD>\n<BODY>\n" % (title)

def footer():
 print "</BODY></HTML>"

form = cgi.FieldStorage()
formkeys = form.keys()
formkeys.sort()
header("Show form fields")

print ''
for k in formkeys:
 print ''+ k + ':'+ form[k].value + ''
print ''

footer()

The next example demonstrates that if you try to access a field that doesn't exist (line 15), an exception is
generated. If you don't catch the exception with a try/except statement, this will stop your script, and the user
will see a message like "Internal Server Error". Also, note that the cgi dictionary of attribute/value
pairs does not support the values() method (line 14).

 1: #!/usr/local/bin/python
 2: import cgi
 3:
 4: def header(title):
 5: print "Content-type: text/html\n"
 6: print "<HTML>\n<HEAD>\n<TITLE>%s</TITLE>\n</HEAD>\n<BODY>\n" /
 7: % (title)
 8:
 9: def footer():
10: print "</BODY></HTML>"
11:
12: form = cgi.FieldStorage()
13: print form.keys() # ['password', 'login']
14: # print form.values() # Causes an error
15: # print form["hostname"].value # Causes an error
16:
17: footer()

Security

You have to watch out when passing fields to the shell. Never pass any string received from the client directly to a
shell command. Take a look at the following statement:

os.popen("dir %s" % form["filename"].value)

Now, imagine if the user types something like *.* | del *.exe.

In order to solve problems like this, you have a few different kinds of approaches. We will look some of them.
First, you can choose to quote the variable:

filename = pipes.quote(form["filename"].value)

A second solution is to get rid of every character that is not part of the acceptable domain of values.

filename = re.sub(r"\W", "", form["filename"].value)

Note

You should test for acceptable input, rather than for unacceptable input. You don't want to get caught by
surprise when someone thinks of some input string you didn't think of, or exploits a bug you don't know about.

The third, and most radical, solution is to test the form, and return an error message in case a valid condition is not
established. For example,

if not re.match(r"^\w+$", filename):
 raise "Invalid file name."

If you invoke an external program (for example, via the os.system() or os.popen() functions), make very
sure that you don't pass arbitrary strings received from the client to the shell. It is a bad idea to use form data
provided by random people on the Web without validating it; especially if you're going to use that data to execute a
system command or for acting on a database. Naively written CGI scripts, in any language, are favorite targets for
malicious system crackers. This is a well-known security hole whereby clever hackers anywhere on the Web can
exploit a naive CGI script to invoke arbitrary shell commands. Even parts of the URL or field names cannot be
trusted because the request doesn't have to come from your form.

To be on the safe side, if you must pass a string that you have gotten from a form to a shell command, you should
make sure that the string contains only alphanumeric characters, dashes, underscores, and periods.

Sessions

If you need to correlate requests from the same user, you must generate and assign a session key on the first
contact of the user, and incorporate this session key in the next forms, or in the URLs.

If you implement the first solution, you need to use a hidden input field.

<input type="hidden" name="session" value="74ght2o5">

If you decide that the second option will work better for you, you need to add the information after the script's
name (separating with a slash).

http://lessaworld.com/cgi-bin/dosomething.py/74ght2o5

http://lessaworld.com/cgi-bin/dosomething.py/74ght2o5

The information is passed to the CGI script through the environment variables, as you can see next.

os.environment["PATH_INFO"] = "74ght2o5"
os.environment["PATH_TRANSLATED"] = "<rootdir>/74ght2o5"

Data Storage

The information manipulated by CGI scripts can come from any kind of data storage structure. The important thing
to keep in mind is that your data must be capable of being managed and updated.

You have a number of options to use here. Plain files are the simplest way. Shelves can be used too—they are
used to store whole Python objects, which avoids the parsing/unparsing of values. If you decide to go through dbm
(or gdbm) files, you will find better performance as they use strings for key/value manipulations. If you really want
to think about scalability or speed, you should consider choosing a real database. You can use the information that
is provided in Chapter 8, "Working with Databases," to help you define which database would be the best solution
for your case.

If you don't have a real database in hands, don't worry. A number of sites only use plain file databases, and they
don't have anything to complain about.

Locking

Whenever you are not working with real solution database systems, locking problems can drive you nuts because
you have to worry about every single detail. For example, shelves and dbm (or gdbm) database files have no
protection against concurrent updates.

In order to implement a good and efficient locking solution in Python, the best approach is to write a routine that
locks only when writing to the file. Python handles multiple readers well, and when it comes to a single writer,
Python can support it too.

In order to study a complex implementation of a locking algorithm, you should consider seeing the Mailman
source-code (precisely, the LockFile.py file). Although this routine does not run on Windows systems, it
works well on UNIX machines, and besides, it supports NFS.

We all know how hard it is to implement a good locking solution. Occasionally your process dies, and you lose the
pointer to the locked file; other times you see your program hanging because the process took longer than
expected.

Cookies

A cookie is a piece of data that the Web Server asks the client to store on their system, which gets sent back to the
server on subsequent visits. One use of cookies is to store customized information that belongs to the user who
owns the browser.

Each time you visit a Web site that uses cookies, the server application is able to check for cookies in the client site
by inspecting the HTTP header. If cookies are available, the client sends back all appropriate cookies for every
request to the server.

The CGI script can update cookies at any time necessary, just before sending a Web page to the client browser.
The format used to move cookies back and forth is the same one used for GET and POST requests.

In order to correlate sessions from the same user, you can also put cookies in the user's browser. This is very
controversial, but useful. Keep in mind that many people turn off the use of cookies in their browsers. Thus, you
cannot count on them in your applications. You should always have a solution ready in case the user's browser
doesn't accept cookies.

Caution

If you have something to hide, it becomes very important to store the information in the cookies in a security
format. You cannot let the user go to the cookies.txt file, which stores all the cookies information in the
client machine, and change anything. In order to prevent that, you should consider storing the cookies using an
encryption algorithm. Another important warning is that you shouldn't blindly trust the value of the cookie, the
same as you shouldn't trust form variables.

In order to handle cookies in Python, Tim O'Malley has created a module called Cookie.py that is able to write
Set-Cookie headers and parse the HTTP_COOKIE environment variable.

The following example demonstrates the use of cookies using the Cookie module.

The Cookie.py Module

Python has this module called Cookie.py, which basically handles everything that you might need to worry
about for what concerns cookies.

Cookie.Cookie()

This class enables the creation of a cookie object.

>>> import Cookie
>>> mycookie = Cookie.Cookie() # Create a new cookie

A cookie object generated by the Cookie.py module has a dictionary-like behavior. It exposes the following
properties and methods, supporting all cookie attributes defined by RFC 2109.

mycookie['username'] = "Andre Lessa" # Assign a value to a cookie
mycookie["books"] = 2 # automatically pickles non-string
 # objects (using cPickle or pickle)
mycookie["username"].value # Returns the value associated with the
 # key.
"Andre Lessa"
print mycookie
Set-Cookie: books="I2\012.";
Set-Cookie: username="Andre Lessa";

Note that the print statement must be executed before the content-type header.

cookie.output()

This method outputs the contents of a cookie. You can also change the printable representation if you want.

mycookie.output()
'Set-Cookie: books="I2\\012.";\012Set-Cookie: username="Andre Lessa";'
mycookie.output("Cookie Attributes:")
'Cookie Attributes: books="I2\\012.";\012Cookie Attributes: username="Andre
 Lessa";'

cookie.load()

This method is used to extract cookies from a given string. You won't have a problem using escaped quotation
marks and nested semicolons in the string.

mycookie.load("userid=alessa;")
print mycookie
Set-Cookie: books="I2\012.";
Set-Cookie: username="Andre Lessa";
Set-Cookie: userid=alessa;
mycookie.load('username=\"JP Lessa\";books=4;cds=1')
print mycookie
Set-Cookie: cds=1;
Set-Cookie: userid=alessa;
Set-Cookie: books=4;
Set-Cookie: username="JP Lessa";
mycookie.load('dvds="I3\\012.";') # automatically unpickles pickled
 # objects.
mycookie["dvds"].value # returns the true value, instead of the
 # encoded representation.
3

print mycookies
Set-Cookie: cds=1;
Set-Cookie: userid=alessa;
Set-Cookie: books=4;
Set-Cookie: dvds="I3\012.";
Set-Cookie: username="JP Lessa";

Cookie.net_setfunc() and Cookie.user_setfunc()

These two functions are defined in the Cookie module to help you encode and decode the contents of your cookies.
Cookie.net_setfunc() takes in an encoded string and returns a value. On the other hand,
Cookie.user_setfunc() takes in a value and returns the original encoded string.

Note that you are not obliged to use their implementations. You can override them at anytime, just by subclassing
the Cookie() class, and redefining these methods. For more information, check out the following:

Cookie protocol—Netscape's documentation

http://devedge.netscape.com/li brary/documentation/communicator/jsguide4/cookies.htm

Cookie.py—Python Module created by Tim O'Malley

ftp://ftp.bbn.com/pub/timo/python/Cookie.py

Creating Output for a Browser

You already know that straightforward print statements do a good job of sending information to the user's browser.

Tip

Check out Chapter 10, "Basic Network Background," for details about some third-party modules that
automatically generate HTML code for you.

Now, what about redirecting people from one page to another? In the next example, as soon as a browser sees the
Location: header, it will stop and try to retrieve the new page.

new_location = 'http://www.python.org/'
print 'Status: 302 Redirected'
print 'Location: %s\n'% new_location

http://devedge.netscape.com/library/documentation/communicator/jsguide4/cookies.htm
ftp://ftp.bbn.com/pub/timo/python/cookie.py

Maybe you are tired of just sending text to the user. What about sending images?

The next example demonstrates how you can output graphics, such as GIF files, using CGI scripts. As you can see,
you just need to specify the correct MIME-type in order to tell the browser that you are sending an image.

import sys
gifimage = open('check.gif','rb').read()
print HTTP headers
sys.stdout.write('Content-type: image/gif\n')
print end-of-headers
sys.stdout.write('\n')
print image
sys.stdout.write(gifimage)

Caution

Note that you cannot use print image because it would append a newline or a blank to the data, in case you
use print image, (with the comma at the end), and the browser would not understand it.

The previous simple example takes an existing GIF image file and processes it. Keep in mind that it is also
possible to produce dynamic graphics images through Python code, using the Python Imaging Library.

See http://www.python.org/sigs/image-sig/Imaging.html for details.

Using Templates

CGI programs usually contain many blocks of HTML code embedded within the scripts. This is a problem for
many teams of HTML designers and developers. Imagine the case in which both kinds of professionals need to
make changes in the same file, at the same time. This kind of situation can generate many accidental errors in the
code.

The most common solution for this kind of trouble is to separate the Python code from the HTML code by using
template files. In a later stage, the HTML template can be mixed with Python code using either formatting
substitution or Python's regular-expression.

The basic idea is after you have finished reading the template file, replace all special placeholders, such as <!--
INSERT HERE # -->, with the correct values.

Listing 12.1 defines a simple template that is going to be used by our Python script. Of course, real-production
templates are more complex than this one.

http://www.python.org/sigs/image-sig/Imaging.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/184#17.html

Listing 12.1 file: template1.html

<html>
 <head>
 <title>My Application</title>
 </head>
 <body>
 <H1><center><!-- # INSERT HERE # --></center></H1>
 </body>
</html>

Note the customized tag tag>><!-- # INSERT HERE # -->. If you just open this template file, nothing will
show up. However, after you run the script, the program will search for this tag and replace it with our new content
before displaying to the users.

Next, you have the CGI script that makes everything possible. This script reads the entire template file, storing it in
memory. Then, after applying a regular expression substitution, it swaps our special tag with the new content.

 1: import re
 2: filename = "template1.html"
 3: TemplateException = "Error while parsing HTML template"
 4: newContent = "Hello Python World"
 5: filehandle = open(filename, "r")
 6: data = filehandle.read()
 7: filehandle.close()
 8: matching = re.subn("<!-- # INSERT HERE # -->", newContent, data)
 9: if matching[1] == 0:
10: raise TemplateException
11: print "Content-Type: text/html\n\n"
12: print matching[0]

Line 1: Makes the regular expression module available.

Line 2: Specifies the filename of the template file.

Line 3: Defines an exception that is raised when no replacements are made.

Line 4: Contains the string to replace.

Line 6: Reads the entire file as a string.

As I told you before, another possibility is to use formatting substitution. In this new scenario, we have to write the
template file as shown in Listing 12.2.

Listing 12.2 file: template2.html

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/184#18.html

<html>
<head>
<title>My Application</title>
</head>
<body>
Student: %(student)s

Class: %(class)s

<hr>
Sorry, your application was refused.

If you have any questions, please call:

<center>%(phone)s</center>
<hr>
</body>
</html>

The script necessary to handle this new format is correctly listed next. The main difference is that in this new
script, you have to declare a dictionary that will be used to map the placeholders in the template file.

filename = "template2.html"
dictemplate = { 'student': 'Andre', 'class': 'Math', 'phone': '555-5553'}
filehandle = open(filename, "r")
data = filehandle.read()
filehandle.close()
print "Content-Type: text/html\n\n"
print data % (dictemplate)

Uploading/Uploaded Files

Sometimes, it is necessary to receive files from users through the Web. This next example shows how to send a file
across an HTTP connection using an HTML page, and how to later interpret it.

import cgi
form = cgi.FieldStorage()
if not form:
 print "Content-Type: text/html"
 print
 print """
 <form action = "/cgi-bin/uploadfiles.py" method="POST"
 enctype="multipart/form-data">
 <input type="file" name="filename">
 <input type="submit">
 </form>
 """
elif form.has_key("filename"):

 item = form["filename"]
 if item.file:
 data = item.file.read()
 print "Content-Type: text/html"
 print
 print cgi.escape(data)

When a certain form field represents an uploaded file, the value attribute of that field reads the entire file in
memory as a string. Sometimes, this might not be what you really want. Another way to get the information is to
test for an uploaded file by checking either the filename attribute or the file attribute. You can then read the
data, at your convenience, from the file attribute.

Note

The enctype="multipart/form-data" part is very important because without it, only the filename is
transmitted.

The next example is a slight variation of the previous example. This one assumes that you have a form with a field
called filename that will transport a user file to the CGI script, and then it reads the uploaded file, line by line.

import cgi
form = cgi.FieldStorage()
if not form:
 print "Content-Type: text/html\n\n"
 print """
 <form action = "/cgi-bin/uploadingfile.py" method="POST"
 enctype="multipart/form-data">
 <input type="file" name="filename">
 <input type="submit">
 </form>
 """
elif form.has_key("filename"):
 uploadedfile = form["filename"]
 if uploadedfile.file:
 print "Content-Type: text/html\n\n"
 linecounter = 0
 while 1:
 line = uploadedfile.file.readline()
 print line
 if not line:
 break
 linecounter = linecounter + 1

cgiupload.py

The cgiupload module is a simple attempt to upload files via HTTP. Although the mechanism is not as efficient
as other protocols (for example, FTP), there are circumstances where using the http protocol has advantages such
as when a user login/password is not required, or when using firewalls because most firewalls allow the HTTP
protocol to pass through. Note that HTTP file upload is about as efficient as email attachments.

A short description with code about how to upload files via CGI is available at

http://starship.python.net/crew/jbauer/cgiupload/index.html

Note that Python's module "ftplib" provides better performance to transmit files over the network.

Zope also provides a mechanism to perform CGI file uploads. Check out the Web site at

http://www.zope.org

Environment Variables

Environment variables are one of the methods that Web servers use to pass information to a CGI script. They are
created and assigned appropriate values within the environment that the server produces for the CGI script.

The next code generates a list of all environment variables that you have available at the moment, in your browser.

import os
print "Content-type: text/html\n"
print "<HTML><HEAD><TITLE>List of Environment Variables</TITLE></HEAD>"
print "<BODY>"
for k,v in os.environ.items():
 print "%s => %s
" % (k,v)
print "</BODY></HTML>"

The following list is the output collected from my environment. Of course, yours might be different.

HTTP_ACCEPT_ENCODING => gzip, deflate
REMOTE_HOST => 10.15.108.33
SERVER_PORT_SECURE => 0
COMSPEC => C:\WINDOWS\COMMAND.COM
SERVER_PORT => 80
PATH_TRANSLATED => C:\Inetpub\wwwroot\cgi-bin\environment.py
REMOTE_ADDR => 10.15.108.33

http://starship.python.net/crew/jbauer/cgiupload/index.html
http://www.zope.org/

WINBOOTDIR => C:\WINDOWS
INSTANCE_ID => 1
HTTP_ACCEPT_LANGUAGE => en-us
BLASTER => A220 I7 D1 T2
GATEWAY_INTERFACE => CGI/1.1
TEMP => C:\windows\TEMP
SNDSCAPE => C:\WINDOWS
HTTP_CONNECTION => Keep-Alive
HTTP_USER_AGENT => Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)
WINDIR => C:\WINDOWS
CONTENT_LENGTH => 0
HTTP_HOST => www.lessaworld.com
PATH => C:\WINDOWS; C:\WINDOWS\COMMAND; M:\PVCS\WIN95; C:\MSSQL7\BINN;
SERVER_PROTOCOL => HTTP/1.1
HTTPS => off
PATH_INFO => /cgi-bin/environment.py
SERVER_NAME => www.lessaworld.com
REQUEST_METHOD => GET
LOCAL_ADDR => 10.15.108.33
SCRIPT_NAME => /cgi-bin/ environment.py
SERVER_SOFTWARE => Microsoft-IIS/4.0
CMDLINE => WIN
HTTP_ACCEPT => application/x-comet, application/vnd.ms-excel,
 application/msword, application/vnd.ms-powerpoint, */*
PROMPT => pg
TMP => c:\windows\TEMP

As an example, when checking the user environment variables, os.environ['HTTP_USER_AGENT'] gives
you the user's browser, and os.environ['REMOTE_ADDR'] gives you the remote IP address. Note that the
user might be running a browser that doesn't send a User-Agent HTTP header, so you might not be able to count
on os.environ['HTTP_USER_AGENT'].

The following is a list of environment variables used by Web Servers:

AUTH_TYPE— This is the protocol-specific authentication method used to validate the user if the
server supports user authentication, and the script is protected.

CONTENT_LENGTH— The length, in bytes, of the said content as given by the client through
standard input (sys.stdin). This is needed when a script is processing input with the POST method, in
order to read the correct number of bytes from the standard input. Some servers end the input string
with EOF, but this is not guaranteed behavior.

CONTENT_TYPE— For queries that have attached information, such as HTTP POST and PUT, this
is the content type of the query data.

DOCUMENT_ROOT— Sometimes it is useful to know the root directory over which all WWW
document paths are resolved by the server, in order to compose absolute file paths for the files that
your script handles. It is a good practice to have your script resolve paths in this way, both for
security reasons and for portability. Another common use is to be able to figure out what the URL of
a file will be if you only know the absolute path and the hostname.

GATEWAY_INTERFACE— The revision string of the CGI specification to which this server
complies. The format is CGI/revision.

HTTP_ACCEPT— MIME types accepted by the client.

HTTP_COOKIE— Netscape persistent cookie value.

HTTP_FROM— Email address of client (often disabled).

HTTP_REFERER— The URL that referred (via a link or redirection) the Web client to the script.
Typed URLs and bookmarks usually result in this variable being left blank. In many cases, a script
might need to behave differently depending on the referrer. For example, you might want to restrict
your counter script to operate only if it is called from one of your own pages. This will prevent
someone from using it from another Web page without your permission. Or, the referrer might be
the actual data that the script needs to process. By expanding on the previous example, you might
also want to install your counter to many pages, and have the script figure out from the referrer
which page generated the call and increment the appropriate count, keeping a separate count for each
individual URL. Some proxies or Web browsers might strip off the HTTP_Referer header for
privacy reasons.

HTTP_USER_AGENT— This is the name/version pair of the client browser issuing the request to
the script. As with referrers, one might need to implement behaviors that vary with the client
software used to call the script. A redirection script could make use of this information to point the
client to a page optimized for a specific browser. Or, you might want it to block requests from
specific clients, such as robots or clients that will not support appropriate features used by the
normal script output.

PATH_INFO— The extra path information following the script's path in the URL. This is appended
to the URL and marked by a leading slash. The server puts this information in the PATH_INFO
variable, which can be used as a method to pass arguments to the script. The extra path information
is given by the client. In other words, scripts can be accessed by their virtual pathname, followed by
extra information at the end of this path. The extra information is sent as PATH_INFO. This
information should be decoded by the server if it comes from a URL before it is passed to the CGI
script.

PATH_TRANSLATED— Translated version of PATH_INFO, which maps it onto
DOCUMENT_ROOT. Usually PATH_INFO is used to pass a path argument to the script. For
example, a counter might be passed the path to the file where counts should be stored. The server
also makes a mapping of the PATH_INFO variable onto the document root path and stores it in
PATH_TRANSLATED, which can be used directly as an absolute path/file. You should use

PATH_TRANSLATED rather than concatenating DOCUMENT_ROOT and PATH_INFO because the
documents on the Web Server might be spread over more than just one directory (for instance, user
directories under their home directories).

QUERY_STRING— QUERY_STRING is the equivalent of content passed through STDIN in
POST, but for scripts called with the GET method. Query arguments are written in this variable in
their URL-Encoded form, just as they appear on the calling URL. You can process this string to
extract useful parameters for the script. The information following the ? in the URL that references a
script is exactly what we call query information. It should not be decoded in any fashion. This
variable should always be set when there is query information, regardless of command line
decoding.

REMOTE_ADDR— This is the IP address from which the client is issuing the request. This can be
useful either for logging accesses to the script (for example a voting script might want to log voters
in a file by their IP in order to prevent them from voting more than once) or to block/behave
differently for particular IP addresses. This might be a requirement in a script that has to be
restricted to your local network, and maybe perform different tasks for each known host.

REMOTE_HOST— This variable contains the hostname from which the client is issuing the request
(if the information is available via reverse lookup).

REMOTE_IDENT— If the HTTP server supports RFC 931 identification, this variable will be set to
the remote username retrieved from the server. Otherwise, this variable should be left blank.

REMOTE_USER— If the server supports user authentication, and the script is protected, this is the
username they have authenticated as.

REQUEST_METHOD— This is the method with which the request was made (usually GET, POST,
or HEAD). It is wise to have your script check this variable before doing anything. You can
determine where the input will be (STDIN for POST, QUERY_STRING for GET) or choose to
permit operation only under one of the two methods. It is also useful to identify when the script is
called from the command-line because, in that case, this variable will remain undefined. When using
the cgi module, all this is taken care of for you.

SCRIPT_NAME— A virtual path to the script being executed, used for self-referencing URLs. This
is very useful if your script will output HTML code that contains calls to itself. Having the script
determine its virtual path, (and hence, along with DOCUMENT_ROOT, its full URL) is more portable
than hard coding it in a configuration variable. Also, if you prefer to keep a log of all script accesses
in some file and want to have each script report its name along with the calling parameters or time, it
is very portable to use SCRIPT_NAME to print the path of the script.

SERVER_NAME— The Web server's hostname, DNS alias, or IP address. This information can
provide the capability to have different behaviors depending on the server that's calling the script.

SERVER_PORT— The Web server's listening port number to which the request was sent. This

information complements SERVER_NAME, making your script portable. Keep in mind that not all
servers run on the default port and thus need an explicit port reference in the server address part of
the URL.

SERVER_PROTOCOL— The name and revision of the Server information protocol that the request
came in with. It comes in the format: protocol/revision.

SERVER_SOFTWARE— This variable contains the name and version of the information server
software answering the request. The format used by this variable is name/version.

Debugging and Testing Your Script

Before putting your CGI scripts online, you need to be sure that they are working fine. You have to test them
carefully, especially in near bounds and out of bounds conditions. A script that crashes in the middle of its job can
cause large problems, such as data inconsistency in a database application. This is why you would use a transaction
when updating a database from a cgi script (if it was deemed important enough).

You should eliminate most of the problems by running your script from the command line. Only after performing
this check should you test it from your http daemon.

You have to remember that Python is an interpreted language, which means that several syntax errors will only be
discovered at runtime. You must be sure that your script has been tested in every segment of the control flow.

Python is good for debugging processes because if things go wrong, you get a traceback message that is beneficial.
By default, tracebacks usually go to the server's error_log file.

Printing a traceback message to the standard output is complicated because the error could occur before the
Content-type header is printed, in the middle of a HTML markup tag, or even worse: the error message could
contain markup elements itself.

You also need to be sure that incorrect input does not lead to an incorrect behavior of your script. Don't expect that
all parameters received by your script will be meaningful. They can be corrupted during communication, or some
hacker could try to obtain more data than normally allowed.

The following code suggests a simple way to debug Python CGI scripts.

1: import cgi
2: print "Content-type: text/plain\n"
3: try:
4: your_applicationcode()
5: except:
6: print "<h1>You've got an error.</h1>
7: cgi.print_exception()

Line 4: Calls the function that implements your application.

Line 2: We are using a content type of text/plain so that you can see all the output of the script.

Line 7: Calls a CGI function that safely prints a traceback message.

Note that cookies handling affects this routine. Because cookies must be printed as part of HTTP headers, they
need to be handled before the first newline (line 2). Therefore, the easiest solution is to move the \n into your
application function, and into the exception handler clause.

import cgi
print "Content-type: text/html"
try:
 handle_cookies()
 print"\n"
 your_applicationcode()
except:
 print"\n"
 print "<h1>You've got an error.</h1>
 cgi.print_exception()

When creating a debugging framework, it is desirable that the user should never see a server error. Instead, you
must provide a fancy page that tells him what has happened, along with helper information.

As a suggestion, your framework could interpret every traceback message and email it to the support team. This is
a very useful solution for warning about problems in a live Web site, and besides, logging errors can help the
tracking of application problems.

If you are in the stage of doing quality-assurance testing procedures on your Web application, you should try to
test it outside the live site first. Let's see how you can do it.

Check the script for syntax errors by doing something similar to python script.py. If you execute your
script in this way, you are able to test the integrity and syntax of your code.

If you have your script written as a module, adding the following two lines to its end enables you to execute your
library module from the command prompt.

if __name__ == "__main__":
 main()

A CGI script usually does not work from the command line. However, you should at least call it from the
command line because if the Python interpreter finds a syntax error, a message will pop up on your screen. That's

cool! At least you know if the syntax is all right. Otherwise, if you wait until you call your code through the Web,
the HTTP server could send a very problematic error message to you.

Assuming that your script has no syntax errors, yet it does not work, you have no choice but to fake a form call to
it.

If you are using UNIX csh or tcsh shells, and your script uses the cgi.FieldStorage class for form input,
you can set the environment variables REQUEST_METHOD and QUERY_STRING.

setenv REQUEST_METHOD "GET"
setenv QUERY_STRING "animal=parrot"

For other shells, you use

REQUEST_METHOD="GET"
QUERY_STRING="animal=parrot"
export REQUEST_METHOD QUERY_STRING

Check if your script is located at an executable directory, and if so, try sending an URL request directly through
the browser to the script. In other words, open your browser and call your script, without forgetting to send the
attribute/value pairs. For instance,

http://yourhostname/cgi-bin/myapp.py?animal=parrot

If, for example, you receive an error number 404, it means that your server could not find the script in that
directory. As you can see, this might help you test and debug your script through the Web.

Next, I list some considerations that you need to have in mind while debugging a Python CGI application. They are
as follows:

● Import the traceback module as soon as possible. (It needs to be imported before the try/except statement.)

● Don't forget that you need to put a blank line \n just after the header's end.

● If you assign sys.stderr to sys.stdout, all error messages are sent to the standard output.

● Create a try/except statement, put all your application code inside it, and don't forget to call
traceback.print_exc() in the except clause.

The following example exposes all the previous considerations:

http://yourhostname/cgi-bin/myapp.py?animal=parrot

import sys
import cgi
import traceback
print "Content-type: text/html"
print
sys.stderr = sys.stdout
try:
 n = 10
 while n>0:
 print "<hr>"
 print 10/(n-1) # This will cause an error when n=1
 n = n - 1
except:
 print "\n\n<PRE>"
 traceback.print_exc()

Note that the assignment to sys.stdout is necessary because the traceback object prints to the standard error
output (stderr). The print "\n\n<PRE>" statement is being used to disable the word wrapping in HTML.

If your script calls external programs, make sure that Python's $PATH variable is set to the right directories
because when it is inside a CGI environment, this variable does not carry useful values.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

&
 (ampersands)
<
 !-- # INSERT HERE # --
($PATH) variable
($PYTHONPATH) variable
+ (plus symbols)
= (equal signs)
acceptable input
 testing for
ampersands (&
)
attributes
 file 2nd
 filename 2nd
 name
browsers

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=184

 creating output, CGI scripts 2nd 3rd
case sensitivity
 commands and file names
CGI (Common Gateway Interface) scripts
 creating, installing, and running 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
cgi-bin directory
cgiupload.py module 2nd
chmod command 2nd
clients
 passing strings to shells from
commands
 case sensitivity of
 chmod 2nd
 shell
Common Gateway Interface (CGI) scripts
 creating, installing, and running 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
configuring
 permissions 2nd
Content-type tag
Cookie.net_setfunc() method 2nd
Cookie.py module 2nd 3rd
Cookie.user_setfunc() method 2nd
cookies
 CGI scripts 2nd 3rd 4th
creating
 browser output, CGI scripts 2nd 3rd
 Common Gateway Interface (CGI) scripts 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
19th 20th
data
 parsing
 form fields 2nd 3rd
 sending to Python scripts 2nd
debugging
 CGI scripts 2nd
directories
 cgi-bin
 loading modules from
encoded strings
environment variables
 CGI scripts 2nd 3rd 4th
equal signs (=)
fields
 filename
 form
 parsing data 2nd 3rd
 login data
 passing to shells
file attribute 2nd
file names
 case sensitivity of
filename attribute 2nd
filename field

files
 storing data, CGI scripts
 templates
 creating browser output, CGI scripts 2nd
 uploading from Internet 2nd
form fields
 parsing data 2nd 3rd
forms
 testing
HTTP servers
 case sensitivity, commands and file names
input
 testing
installing
 Common Gateway Interface (CGI) scripts 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
19th 20th
Internet
 uploading files 2nd
loading
 modules
locking
 CGI scripts
login data field
messages
 traceback
methods
 Cookie.net_setfunc() 2nd
 Cookie.py module
 Cookie.user_setfunc() 2nd
 POST
 values()
modules
 cgiupload.py 2nd
 Cookie.py 2nd 3rd
 loading
name attribute
name/value pairs
names
 files
 case sensitivity of
nobody user
OÕ
 Malley, Tim
output
 browsers
 creating, CGI scripts 2nd 3rd
pairs, name/value
parsing
 data
 form fields 2nd 3rd
passing
 data to Python scripts 2nd
 fields to shells

 strings from clients to shells
permissions
 setting 2nd
plus symbols (+)
POST method
printing
 traceback messages
query information
running
 Common Gateway Interface (CGI) scripts 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
19th 20th
scripts
 Common Gateway Interface (CGI)
 creating, installing, and running 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
20th
 Python
 sending data to 2nd
security
 CGI scripts
sending
 data to Python scripts 2nd
servers
 HTTP
 case sensitivity, commands and file names
setting
 permissions 2nd
shell command
shells
 passing fields to
 passing strings from clients to
statements
 try/except
storing
 cookies
strings
 encoded
 passing from clients to shells
tags
 <
 !-- # INSERT HERE # --
 Content-type
templates
 creating browser output, CGI scripts 2nd
testing
 CGI scripts 2nd
 forms
 input
traceback message
try/except statement
unacceptable input, testing for
UNIX
 setting permissions 2nd
uploading

 files from Internet 2nd
users
 nobody
values() method
variables
 ($PATH)
 ($PYTHONPATH)
 environment
 CGI scripts 2nd 3rd 4th
writing
 Common Gateway Interface (CGI) scripts 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
19th 20th

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 12. Scripting Programming > Python
Active Scripting

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148041040021164115000057

Python Active Scripting

Active Scripting is a technology developed by Microsoft that allows scripting languages to be embedded
inside Web browsers. Currently, Microsoft Internet Explorer 4 and above supports client-side scripting,
whereas Internet Information Server (IIS) supports server-side scripting, using a component called Active
Server Pages (ASP). In both cases, the scripting code is embedded inside the HTML code. There is a
limitation to using Python as a client-side solution for your Web applications: Each client machine must have
Python installed. That's probably the greatest disadvantage that Python has among the other Active Scripting
languages because Internet Explorer provides core support for VBScript and JScript. Other problems
with using Python as a client-side scripting language include the fact that it is only supported in Internet
Explorer, it only works on Windows, and it requires that the Python Active Scripting component be installed.
It is probably okay in controlled environments, but on the Internet, hardly anyone meets this criteria, so you
can't rely on it.

In order to implement security procedures, not all Python commands are available. Commands that execute
some critical operations—such as open files, create sockets, and so on—are hidden behind a "sandbox", in a
concept similar to the one used by Java. For more information, check out

Python and Microsoft ActiveX Scripting

http://www.python.org/windows/win32com/ActiveXScri pting.html

Active Scripting

http://msdn.microsoft.com/scripting

The Python for Windows extensions come with more details about the use of Active Scripting along with
Internet Explorer. For now, let's take a look at the following code:

<script language=python>
msg = "Hello Python World! I am counting down!
"
document.write(msg)
counter = 10
while counter > 0:
 document.write(counter)
 document.write("
")
 counter = counter - 1

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=185
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A45%3A14+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=185&now=5%2F31%2F2002+4%3A45%3A14+PM
http://www.python.org/windows/win32com/ActiveXScripting.html
http://msdn.microsoft.com/scripting

document.write("Booooom!")
</script>

This code must be inserted in a HTML file in order to be executed. Next, you have a slightly modified code.
This one uses the alert() function to put a message box in the user's screen. As you already know, each
application exposes its own object model, and for example, the alert() function is part of the object
model exposed by the Internet Explorer, which is similar to the Dynamic HTML object model. Actually,
everything here happens as COM transactions.

<script language=python>
msg = "Hello Python World! I am counting down!
"
document.write(msg)
counter = 10
while counter > 0:
 document.write(counter)
 document.write("
")
 counter = counter - 1
alert("Booooom!")
</script>

A script tag can be executed in two places: in the client machine (default behavior) or in the server. The
next structure shows how to let the application know where it needs to execute the script.

<SCRIPT RunAt=Server Language=Python >
 #This code runs at the server
</SCRIPT>
<SCRIPT Language=Python >
 #This code runs at the client
</SCRIPT>

The next example demonstrates how you can cause your Python code to interact with standard HTML code.
Note that you cannot use leading whitespaces in the Python block. In order to handle events such as the ones
shown here, you need to have the notation object_event in mind. Also note that in Python, you have to
inform the complete namespace of the object, including the form name. This is something that VBScript
handles better by allowing you to use just the object name.

<FORM NAME = "myform">
 <INPUT TYPE="Text" NAME="txt1" SIZE=40>

 <INPUT TYPE="Text" NAME="txt2" SIZE=40>

 <INPUT NAME="B1" TYPE="BUTTON" VALUE="Click me">
 <SCRIPT LANGUAGE=Python>
def myform_onClick():
 myform.txt1.value = document.location
def txt1_onChange():
 myform.txt1.value = ""
 myform.txt2.value = ""
def txt2_onFocus():
 myform.txt2.value = myform.txt1.value
 </SCRIPT>
</FORM>

In order to have full exposition with the Active Scripting technology, you also need to take a look at
Windows Scripting Host (WSH). WSH is part of Windows 98 and 2000, but it can also be downloaded from
http://msdn.microsoft.com/scripting for the other Windows environments (95 and NT). WSH runs Python
files that have the extension .pys. These files are regular text files that can freely use the object model
exposed by WSH. Note that .pys files are not correctly registered—you need to explicitly specify either
cscript.exe or wscript.exe on the command line.

Now, that you are ready to write your programs, you might also need to debug your Active Scripts. You have
two tools for the job, both provided by Microsoft:

● The first one is a free product called The Windows Script Debugger. This version can be downloaded
from http://msdn.microsoft.com/scripting/.

● The other option is to use Microsoft Visual Interdev that comes as part of Microsoft Visual C++. This
option is not free because it's attached to the commercial product.

Using COM Objects

Active Scripting is a COM-based technology that works by providing a specific language's object model to
the user. In Chapter 7, "Objects Interfacing and Distribution," you learned that each application exposes a
progID in order to interface with other systems. Therefore, when you say Language = Python inside a
script tag, you are actually opening an interface to a progID called Python. As you might be wondering,
VBScript, JScript, and Python are COM progID s used to handle each one of these languages.

In our case, after you specify that the scripting language is Python, you acquire access to the interface
exposed by the Python object model. As you can see in the next ASP example, within the COM scripting
connection, you are still able to use other COM interfaces.

This example opens an ODBC connection to the database identified in the connection string. In order to test

http://msdn.microsoft.com/scripting
http://msdn.microsoft.com/scripting/

this example, make sure that your system has the informed DSN, and that the database has the necessary
table. This code must be saved in a file using the .asp extension in order to let it run under Microsoft IIS.

After you execute it, it reads the selected columns from a database table and displays the columns and
contents in a HTML table structure. Obviously you'll need this particular table in your database for it to
work, but you should be able to adapt it. Note that this code is a straight conversion from VBScript, except
for the fact that the Execute statement returns atuple.

<%@ LANGUAGE = Python %> <% import win32com.client

oconn=win32com.client.Dispatch("ADODB.connection")
oconn.Open ("DSN=db_sql_server")
objRecords, thing = oconn.Execute (
 "SELECT currency_desc, symbol FROM tb_currency")

Response.Write("<TABLE border=1><TR>")

for objField in objRecords.Fields:
 Response.Write("<TH>"+objField.Name+"</TH>")

Response.Write("</TR>")

while not objRecords.EOF :
 Response.Write("<TR>")
 for objField in objRecords.Fields:
 Response.Write("<TD>"+objField.Value+"</TD>")
 objRecords.MoveNext()
 Response.Write("</TR>")

Response.Write("</TABLE>")

oconn.close
oconn=None
%>

ASP and Microsoft ActiveX Scripting

Active Server Pages, commonly referred to as ASP, is Microsoft's solution to server-side scripting
applications. The difference between Active Server Pages and HTML pages is that with simple HTML
pages, the client browser requests a Web page from a Web server. The server sends the file to the client, and
the page is shown on the client's browser. On the other hand, with Active Server Pages, the server gets a
chance to alter the file before sending it to the user. So, for every request for a file with an .asp extension,
the server runs the file through a interpreter that parses the ASP commands. You can have your ASP code
connect to any ODBC-compliant database, and dynamically insert the data into your HTML pages.

To use Active Server Pages, you must be running a Microsoft Web Server, specifically Internet Information
Server (IIS) 3.0 or up—Microsoft's Internet Information Server is a Web Server that supports both CGI and
ASP. If your Web site runs on a UNIX system, you can still use Active Server Pages, but you need to use
third-party tools to translate the ASP before it is sent to the client. Of course, there are other (possibly better)
options when not using IIS. ASP is not necessarily the best choice.

Tip

Note that for everything you can do with ASP, you can also do using straight CGI scripting.

ASP is not language dependent, and though most of the things you will find in the market are written in
VBScript or JScript, you can actually configure ASP to use any other scripting language that supports the
Microsoft ActiveX Scripting interface. This includes VBScript, JScript, PERLScript, PScript, and of course,
Python.

The object model defined by ASP is different from the object model defined by Internet Explorer. The first
thing you will notice is that ASP code has some special tags:

● The <%@ language=Python %> tag defines that all scripting tags after that will, by default,
belong to Python.

● The <% %> tag is equivalent to <script> </script>.

● <%= %> allows you to replace part of the contents to be displayed with the value of a variable. For
instance,

<%
name = "Andre" %>
Whassup <%= name %> !

There is no restriction on the commands that you can execute on a ASP page because all the execution takes
place at the Server. Thus, in theory there would be no need for high security procedures. However, there is
just as much need for security in ASP files as in CGI script when you are making use of untrusted input. The
fact that there is no sandbox means you have to be especially careful not to compromise your system.

Note

ASP files are stored in files with the .asp extension.

One last detail about Python/ASP programs is that the print statement does not send the information to the
screen. You need to use ASP's object model Response.Write() function to do it, as you can check in
the following example.

<%@ language=Python %>
<%
text = "this text here does not use the print command" %>
A curious fact is that <%= text %>.

Note that we still need to pay attention to the indentation in this code.

The next code block lists all the server variables.

<%
for k in Request.ServerVariables:
 v = Request.ServerVariables(k)
 Response.Write("%s=" % (k))
 Response.Write("%s

" % (v))
%>

Of course, you could fix the print statement problem with the following code to make print work again.

class ASPStdout:
 def write(self, bytes):
 Request.Write(bytes)
 def writelines(self, lines):
 for line in lines: self.write(line)
sys.stdout = ASPStdout()

In case you want to try something different, Microsoft Visual Interdev, which is a very popular tool for ASP
development, can be integrated with Python for Windows. Although it doesn't have any specific knowledge
about .py files, it doesn't expose any problems when using them.

Using its working environment, you can test and debug Python's active scripts. Another possible option that
you have is to use a free debugger that can be found at http://msdn.microsoft.com/scripting.

See http://starship.python.net/crew/pirx/asp/py_asp.html for more details about using Python with ASP.

http://msdn.microsoft.com/scripting
http://starship.python.net/crew/pirx/asp/py_asp.html

Python Server Pages

Python Server Pages is a server-side scripting engine designed along the lines of Microsoft's Active Server
Pages and Sun's Java Server Pages specification. The major difference between ASP and PSP is that PSP is
written in 100% Java and portable to a wide variety of platforms, whereas Web applications written in ASP
can be run only on Microsoft platforms. Python Server Pages uses JPython as its scripting language, which
seems to be more appropriate for scripting Web sites than the Java language itself in Java Server Pages.

A major benefit to using PSP is the huge number of add-on modules available for both Python and JPython.
You can access any module that is compatible with JPython from within your PSP application's pages.
Because JPython is itself written in Java, you can access Java packages from your Python Server Pages
application as well. For more information, check out the following:

Python Server Pages

http://www.ciobriefings.com/psp

JRun

JRun is the Java Servlet engine recommended for use with PSP.

http://www.allaire.com/products/jrun/index.cfm

JPython

JPython is the scripting language used by PSP.

http://www.jpython.org

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.ciobriefings.com/psp
http://www.allaire.com/products/jrun/index.cfm
http://www.jpython.org/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=185

Index terms contained in this section

Active Scripting 2nd 3rd 4th 5th 6th 7th
Active Server Pages (ASP)
 ActiveX scripting 2nd 3rd
ActiveX
 scripting 2nd 3rd
alert() function
applications
 Visual Interdev
ASP (Active Server Pages)
 ActiveX scripting 2nd 3rd
data
 sending to screen
debugging
 Active Scripts
executing
 script tags
form name
functions
 alert()
 Response_Write()
HTML (Hypertext Markup Language)
 interacting with Python code
HTML pages
 vs. Active Server Pages (ASP)
Hypertext Markup Language (HTML)
 interacting with Python code
IIS (Internet Information Server) 2nd
Internet Information Server (IIS) 2nd
JPython
names
 form
object_event notation
pages
 HTML
 vs. Active Server Pages (ASPs)
print statements
 sending data to the screen
programming languages
 Hypertext Markup Language (HTML)
 interacting with Python code
 JPython
programs
 Visual Interdev
Response_Write() function
screens
 sending data to
script tag

script tags
scripting
 Active 2nd 3rd 4th 5th 6th 7th
security
 Active Scripting
sending
 data to screens
software
 Visual Interdev
statements
 print
 sending data to the screen
tags
 script 2nd
Visual Interdev
whitespaces
Windows Scripting Host (WSH)
WSH (Windows Scripting Host)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 12. Scripting Programming >
Summary

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148041040022213144158173

Summary

This chapter provides information about how to use Python as a CGI scripting language. Python is
suitable for CGI programming on Windows, Mac, and UNIX platforms, allowing the creation of
programs that provide services over the Internet.

Python uses the cgi module to implement CGI scripts and to process form handling in Web
applications that are invoked by an HTTP server. This module accepts sys.stdin and environment
variables set by the server as input sources. The output is sent directly to sys.stdout carrying an
HTTP header and the data itself.

Every CGI script must send a header (the Content-type tag) describing the contents of the
document. The common values for this tag are text/html, text/plain, image/gif, and
image/jpeg. A blank line is used to indicate the end of this header.

You have to watch out when passing Form fields to the OS shell. Never pass any string received from
the client direct to a shell command. Before putting your CGI scripts online, you need to be sure that
they are working fine.

If you need to correlate requests from the same user, you must generate and assign a session key on the
first contact of the user, and incorporate this session key in the next forms, or in the URLs.

In order to handle cookies in Python, you can use a module called Cookie.py, which is able to write
Set-Cookie headers and parse the HTTP_COOKIE environment variable.

Python CGI scripts allow you to output not only text, but also graphics.

In order to separate Python code from HTML code, many developers have adopted the concept of
template files. The HTML template can be mixed with Python code using either formatting substitution
or Python's regular expression.

Sometimes, it is necessary to receive files from users through the Web. The properties provided by the
cgi module offer means to send a file across an HTTP connection using an HTML page, and also to
read files sent from a Web page.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=186
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A45%3A29+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=186&now=5%2F31%2F2002+4%3A45%3A29+PM

Environmental variables are one of the methods that Web servers use to pass information to a CGI
script. They are created and assigned appropriate values within the environment that the server
produces for the CGI script.

Active Scripting is a COM-based technology developed by Microsoft that allows scripting languages to
be embedded inside the HTML code. It works by providing a specific language's object model to the
user. In our case, after you specify that the scripting language is Python, you acquire access to the
interface exposed by the Python object model.

Active Server Pages, commonly referred to as ASP, is Microsoft's solution to server-side scripting
applications.

Python Server Pages is a server-side scripting engine designed along the lines of Microsoft's Active
Server Pages and Sun's Java Server Pages specification.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=186

Web Development > Python Developer's Handbook > 13. Data Manipulation See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148041040023189036026075

Chapter 13. Data Manipulation
I'm a lumberjack, and I'm okay! I sleep all night and I work all day.

This chapter provides information concerning how to use Python for data parsing and manipulation.
You will learn how to interpret XML, SGML, and HTML documents and how to parse and manipulate
email messages, among other things.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=188
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A45%3A36+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=188&now=5%2F31%2F2002+4%3A45%3A36+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=188

Web Development > Python Developer's Handbook > 13. Data Manipulation > Parsing and
Manipulating Data

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148041040016232070255017

Parsing and Manipulating Data

As you might already know, Python can be used as an effective and productive tool to parse and
manipulate information from the Web.

This chapter covers modules that support encoding and decoding of data handling formats, which are
largely used in Internet applications. Here, I expose you to modules, such as xmllib,sgmllib, and
htmllib, which are standard library modules for processing the main markup languages used in the
Internet.

At the end of the chapter, you will be introduced to some other modules, such as mimetypes and
mimetools, which are used for mail message manipulation, and data conversion.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

data
 manipulating
manipulating
 data
parsing
 data

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=189
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A45%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=189&now=5%2F31%2F2002+4%3A45%3A47+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=189

Web Development > Python Developer's Handbook > 13. Data Manipulation > XML Processing See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148041040017229250144100

XML Processing

The first standard that you will learn how to manipulate in Python is XML.

The Web already has a standard for defining markup languages like HTML, which is called SGML. HTML is
actually defined in SGML. SGML could have been used as this new standard, and browsers could have been
extended with SGML parsers. However, SGML is quite complex to implement and contains a lot of features that
are very rarely used.

SGML is much more than a Web standard because it was around long before the Web. HTML is an application of
SGML, and XML is a subset.

SGML also lacks character sets support, and it is difficult to interpret an SGML document without having the
definition of the markup language (the DTD—Document Type Definition) available.

Consequently, it was decided to develop a simplified version of SGML, which was called XML. The main point of
XML is that you, by defining your own markup language, can encode the information of your documents more
precisely than is possible with HTML. This meas that programs processing these documents can "understand"
them much better and therefore process the information in ways that are impossible with HTML (or ordinary text
processor documents).

Introduction to XML

The Extensible Markup Language (XML) is a subset of SGML. Its goal is to enable generic SGML to be served,
received, and processed on the Web in the way that is now possible with HTML. XML has been designed for ease
of implementation and for interoperability with both SGML and HTML.

XML describes a class of data objects called XML documents and partially describes the behavior of computer
programs that process them. XML is an application profile or restricted form of SGML, the Standard Generalized
Markup Language (ISO 8879). By construction, XML documents are conforming SGML documents. An XML
parser can check if an XML document is formal without the aid of a DTD.

XML documents are made up of storage units called elements, which contain either parsed or unparsed data, and
are delimited by tags. Parsed data is made up of characters, some of which form character data, and some of which
form markup elements. Markup encodes a description of the document's storage layout and logical structure. XML
provides a mechanism to impose constraints on the storage layout and logical structure.

A software module called an XML parser is used to read XML documents and provide access to their content and
structure. It is assumed that an XML parser is doing its work on behalf of another module, called the application.
This specification describes the required behavior of an XML parser in terms of how it must read XML data and
the information it must provide to the application. For more information, check out

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=190
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A45%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=190&now=5%2F31%2F2002+4%3A45%3A56+PM

Extensible Markup Language (XML) Recommendation

W3C Recommendation—Extensible Markup Language (XML) 1.0

http://www.w3.org/TR/REC-xml.html

Writing an XML File

As you can see next, it is simple to define your own markup language with XML. The next block of code is the
content of a file called survey.xml. This code defines a specific markup language for a given survey.

<!DOCTYPE SURVEY SYSTEM "SURVEY.DTD">
<SURVEY>
 <CLIENT>
 <NAME> Lessaworld Corp. </NAME>
 <LOCATION> Pittsburgh, PA </LOCATION>
 <CONTACT> Andre Lessa </CONTACT>
 <EMAIL> webmaster@lessaworld.com </EMAIL>
 <TELEPHONE> (412)555-5555 </TELEPHONE>
 </CLIENT>
 <SECTION SECTION_ID="1">
 <QUESTION QUESTION_ID="1" QUESTION_LEVEL="1">
 <QUESTION_DESC>What is your favorite language?</QUESTION_DESC>
 <Op1>Python</Op1>
 <Op2>Perl</Op2>
 </QUESTION>
 <QUESTION QUESTION_ID="2" QUESTION_LEVEL="1">
 <QUESTION_DESC>Do you use this language at work?</QUESTION_DESC>
 <Op1>Yes</Op1>
 <Op2>No</Op2>
 </QUESTION> <QUESTION QUESTION_ID="3" QUESTION_LEVEL="1">
 <QUESTION_DESC>Did you expect the Spanish inquisition?</QUESTION_DESC>
 <Op1>No</Op1>
 <Op2>Of course not</Op2>
 </QUESTION>
 </SECTION>
</SURVEY>

In order to complement the XML markup language shown previously, we need a Document Type Definition
(DTD), just like the following one. The DTD can be part of the XML file, or it can be stored as an independent file,
as we are doing here. Note the first line of the XML file, where we are passing the name of the DTD file
(survey.dtd). Also, it seems that XML is standardizing the use of XML Schemas rather the DTDs.

<!ELEMENT SURVEY (CLIENT, SECTION+)>

http://www.w3.org/TR/REC-xml.html

<!ELEMENT CLIENT (NAME, LOCATION, CONTACT?, EMAIL?, TELEPHONE?)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT LOCATION (#PCDATA)>
<!ELEMENT CONTACT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT TELEPHONE (#PCDATA)>

<!ELEMENT SECTION (QUESTION+)>
<!ELEMENT QUESTION (QUESTION_DESC, Op1, Op2)>

<!ELEMENT QUESTION_DESC (#PCDATA)>
<!ELEMENT Op1 (#PCDATA)>
<!ELEMENT Op2 (#PCDATA)>

<!ATTLIST SECTION SECTION_ID CDATA #IMPLIED>
<!ATTLIST QUESTION QUESTION_ID CDATA #IMPLIED
 QUESTION_LEVEL CDATA #IMPLIED>

Now, let's understand how a DTD works. For a simple example, like this one, we need two special tags called
<!ELEMENT> and <!ATTLIST>.

The <!ELEMENT> definition tag is used to define the elements presented in the XML file. The general syntax is

lt;!ELEMENT NAME
 CONTENTS>

The first argument (NAME) gives the name of the element, and the second one (CONTENTS) lists the element
names that are allowed to be underneath the element that we are defining.

The ordering that we use to list the contents is important. When we say, for example,

lt;!ELEMENT SURVEY (CLIENT,
 SECTION+)>

it means that we must have a CLIENT first, followed by a SECTION. Note that we have a special character (the
plus sign) just after the second element in the content list. This character, as well as some others, has a special
meaning:

● A + sign after an element means that it can be included one or more times.

● A ? sign indicates that the element can be skipped.

● A * sign indicates an entity that can be skipped or included one or more times.

Note

These characters have similar meanings to what they do in regular expressions. (Of course, not everything you
use in an re can be used in a DTD.)

Note that #PCDATA is used to indicate an entity that carries the information.

<!ATTLIST>, the other definition tag in the example, defines the attributes of an element. In our DTD, we have
three attributes, one for SECTION, and two for QUESTION.

An important difference between XML and SMGL is that elements in XML that do not have any contents (like
 and
 of HTML) are written like this in XML:

lt;IMG
 SRC="stuff.gif"/>

or in an equivalent format, such as

 lt;img
 src="stuff.gif">

Note the slash before the final >. This means that a program can read the document without knowing the DTD
(which is where it says that IMG does not have any contents) and still know that IMG does not have an end tag as
well as what follows IMG is not inside the element.

For more information about XML and Python, check out the XML package. It comes with a Python XML-
HOWTO in the doc directory, and very good examples:

http://www.python.org/sigs/xml-sig/status.html

Python XML Package

For those who want to play around with XML in Python, there will be a Python/XML package to serve several
purposes at once. This package will contain everything required for basic XML applications, along with
documentation and sample code—basically, something easy to compile and install.

A release candidate of the latest release of this package is now available as PyXML-0.5.5.tar.gz (GPG signature),

http://www.python.org/sigs/xml-sig/status.html

dated June 5, 2000. This version contains SAX, the Pyexpat module, sgmlop, the prototype DOM code, and
xmlproc, an XML parser written in Python.

The individual components contained in the Python/XML package include

● A Python implementation of SAX (Simple API for XML)

A SAX implementation has been written by Lars Marius Garshol. Garshol has also written a draft
specification of the Python version of SAX 1.0.

● An XML-HOWTO containing an overview of Python and XML processing. (This is still being actively
revised.)

Andrew Kuchling is working on this. A first draft of the XML-HOWTO is available, and introduces the
SAX interface in tutorial form. A reference manual is available separately.

● A fairly stable Python interface to James Clark's Expat parser. A Pyexpat C extension has been written by
Jack Jansen.

● Both Python and C implementations of the DOM (Document Object Model).

Stefane Fermigier's DOM package has been modified to match the final DOM W3C Recommendation.

● A module to marshal simple Python data types into XML. A module called xml.marshal is available.
However, it might end up being superseded by Lotos, WDDX, or some other DTD.

The document called Python/XML Reference Guide is the reference manual for the Python/XML package,
containing descriptions for several XML modules. For more information, check out the following sites:

Python/XML Reference Guide

http://www.python.org/doc/howto/xml-ref/

"SAX Implementation". by Lars Marius Garshol

http://www.stud.ifi.uio.no/~lmariusg/download/python/xml/saxlib.html

Draft specification of the Python version of SAX 1.0

http://www.stud.ifi.uio.no/~lmariusg/download/python/xml/sax-spec.html

XML-HOWTO

http://www.python.org/doc/howto/xml/

http://www.python.org/doc/howto/xml-ref/
http://www.stud.ifi.uio.no/~lmariusg/download/python/xml/saxlib.html
http://www.stud.ifi.uio.no/~lmariusg/download/python/xml/sax-spec.html
http://www.python.org/doc/howto/xml/

Pyexpat C extension written by Jack Jansen

http://ftp://ftp.cwi.nl/pub/jack/python/pyexpat.tgz

DOM Recommendation

http://www.w3.org/TR/REC-DOM-Level-1/

Stefane Fermigier's DOM package

http://www.math.jussieu.fr/~fermigie/python/

Python 2.0 was released with a lot of enhancements concerning the XML support, including a SAX2 interface and
a re-designed DOM interface as part of the xml package. Note that the xml package that is shipped with Python
2.0 contains just a basic set of options for XML development. If you want (or need) to use the full XML package,
you are suggested to install PyXML.

The PyXML distribution also uses the xml package. That's the reason why PyXML versions 0.6.0 or greater can be
used to replace the xml package that is bundled with Python. By doing so, you will extend the set of XML
functionalities that you can have available. That includes

● 4DOM, a full DOM implementation from FourThought, Inc

● The xmlproc validating parser, written by Lars Marius Garshol

● The sgmlop parser accelerator module, written by Fredrik Lundh

xmllib

The xmllib module defines a class XMLParser, which serves as the basis for parsing text files formatted in
XML. Note that xmllib is not XML 1.0 compliant, and it doesn't provide any Unicode support. It provides
simple XML support for ASCII only element and attribute names. Of course, it probably handles UTF8 character
data without problems.

XMLParser()

The XMLParser class must be instantiated without a arguments. This class provides the following interface
methods and instance variables:

attributes— This is a mapping of element names to mappings. The latter mapping maps
attribute names that are valid for the element to the default value of the attribute, or to None if there
is no default. The default value is the empty dictionary. This variable is meant to be overridden and
not extended because the default is shared by all instances of XMLParser.

elements This is a mapping of element names to tuples. The tuples contain a function for

http://ftp//ftp.cwi.nl/pub/jack/python/pyexpat.tgz
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.math.jussieu.fr/~fermigie/python/

handling the start and end tag, respectively, of the element, or None if the method
unknown_starttag() or unknown_endtag() is to be called. The default value is the empty
dictionary. This variable is meant to be overridden and not extended because the default is shared by
all instances of XMLParser.

entitydefs— This is a mapping of entitynames to their values. The default value contains
definitions for lt,gt,amp,quot, and apos.

reset()— Resets the instance. Loses all unprocessed data. This is called implicitly at the
instantiation time.

setnomoretags()— Stops processing tags. Treats all following input as literal input (CDATA).

setliteral()— Enters literal mode (CDATA mode). This mode is automatically exited when
the close tag matching the last unclosed open tag is encountered.

feed (data)— Feeds some text to the parser. It is processed insofar as it consists of complete
tags; incomplete data is buffered until more data is fed or close() is called.

close()— Forces processing of all buffered data as if it were followed by an end-of-file mark.
This method can be redefined by a derived class to define additional processing at the end of the
input, but the redefined version should always call close().

translate_references(data)— Translates all entity and character references in data and
returns the translated string.

handle_xml(encoding, standalone)handle_xml(encoding, standalone)— This
method is called when the <?xml ...?> tag is processed. The arguments are the values of the
encoding and standalone attributes in the tag. Both encoding and standalone are optional. The values
passed to handle_xml() default to None and the string no, respectively.

handle_doctype(tag, data)— This method is called when the <!DOCTYPE...> tag is
processed. The arguments are the name of the root element and the uninterpreted contents of the tag,
starting following the whitespace after the name of the root element.

handle_starttag(tag, method, attributes)— This method is called to handle starttags for
which a start tag handler is defined in the instance variable elements. The tag argument is the name
of the tag, and the method argument is the function (method) that should be used to support semantic
interpretation of the start tag. The attributes argument is a dictionary of attributes; the key being the
name and the value being the value of the attribute found inside the tag's <> brackets. Character and
entity references in the value have been interpreted. For instance, for the start tag , this method would be called as handle_starttag ('A',
self.elements['A'][0], { 'HREF': 'http://www.python.org/'}). The base implementation simply calls a
method with attributes as the only argument.

handle_endtag(tag, method)— This method is called to handle endtags for which an end tag
handler is defined in the instance variable elements. The tag argument is the name of the tag, and the
method argument is the function (method) that should be used to support semantic interpretation of
the end tag. For instance, for the endtag , this method would be called as
handle_endtag('A', self.elements['A'][1]). The base implementation simply
calls method.

handle_charref(ref)— This method is called to process arbitrary data. It is intended to be
overridden by a derived class; the base class implementation does nothing.

handle_charref(ref)— This method is called to process a character reference of the form
&#ref;.ref can either be a decimal number, or a hexadecimal number when preceded by an x.
In the base implementation, ref must be a number in the range 0-255. It translates the character to
ASCII and calls the method handle_data() with the character as argument. If ref is invalid or
out of range, the method unknown_charref(ref) is called to handle the error. A subclass must
override this method to provide support for character references outside the ASCII range.

handle_entityref(ref)— This method is called to process a general entity reference of the
form &ref; where ref is an general entity reference. It looks for ref in the instance (or class)
variable entitydefs that should be mapping from entity names to corresponding translations. If a
translation is found, it calls the method handle_data() with the translation; otherwise, it calls
the method unknown_entityref(ref). The default entitydefs defines translations for
&,',>,<, and ".

handle_comment(comment)— This method is called when a comment is encountered. The
comment argument is a string containing the text between the <! and -> delimiters, but not the
delimiters themselves. For example, the comment <!-text-> will cause this method to be called
with the argument text. The default method does nothing.

handle_cdata(data)— This method is called when a CDATA element is encountered. The data
argument is a string containing the text between the <![CDATA[" and "> delimiters, but not the
delimiters themselves. For example, the entity <![CDATA[text> will cause this method to be
called with the argument text. The default method does nothing, and is intended to be overridden.

handle_proc(name, data)— This method is called when a processing instruction (PI) is
encountered. The name is the PI target, and the data argument is a string containing the text between
the PI target and the closing delimiter, but not the delimiter itself. For example, the instruction
<?XML text?> will cause this method to be called with the arguments XML and text. The
default method does nothing. Note that if a document starts with <?xml ..?>,handle_xml()
is called to handle it.

handle_special(data)— This method is called when a declaration is encountered. The data
argument is a string containing the text between the <! and > delimiters, but not the delimiters
themselves. For example, the entity <!ENTITY text> will cause this method to be called with the

argument ENTITY text. The default method does nothing. Note that <!DOCTYPE ...> is
handled separately if it is located at the start of the document.

syntax_error(message)— This method is called when a syntax error is encountered. The
message is a description of what was wrong. The default method raises a RuntimeError exception. If
this method is overridden, it is permissible for it to return. This method is only called when the error
can be recovered from. Unrecoverable errors raise a RuntimeError without first calling
syntax_error().

unknown_starttag(tag, attributes)— This method is called to process an unknown start tag. It
is intended to be overridden by a derived class; the base class implementation does nothing.

unknown_endtag(tag)— This method is called to process an unknown end tag. It is intended to
be overridden by a derived class; the base class implementation does nothing.

unknown_charref(ref)— This method is called to process unresolvable numeric character
references. It is intended to be overridden by a derived class; the base class implementation does
nothing.

unknown_entityref(ref)— This method is called to process an unknown entity reference. It is
intended to be overridden by a derived class; the base class implementation does nothing.

XML Namespaces

The xmllib module has support for XML namespaces as defined in the XML namespaces proposed
recommendation.

Tag and attribute names that are defined in an XML namespace are handled as if the name of the tag or element
consisted of the namespace (that is, the URL that defines the namespace) followed by a space and the name of the
tag or attribute. For instance, the tag <html xmlns:html= http://www.w3.org/TR/REC-html40 is treated as if
the tag name was http://www.w3.org/TR/REC-html40 html, and the tag <html:a href= http://frob.com inside
the previous element is treated as if the tag name were http://www.w3.org/TR/REC-html40 a and the attribute
name as if it were http://www.w3.org/TR/REC-html40 src.

An older draft of the XML namespaces proposal is also recognized, but triggers warn about it.

XML Examples

The next example uses xmllib to parse a XML file. The file being used is the same survey.xml that you saw
in the beginning of this chapter. Our proposal is to read the file, parse it, and convert it to a structure such as the
following:

Survey of section number 1
1- What is your favorite language? Python Perl 2- Do you use this language at
work? Yes No 3- Did you expect the Spanish inquisition? No Of course not

http://www.w3.org/TR/REC-html40
http://www.w3.org/TR/REC-html40 html
http://frob.com/
http://www.w3.org/TR/REC-html40 a
http://www.w3.org/TR/REC-html40 src

The following code implements a solution for our problem. Remember that XML tags are case sensitive, thus the
code must be properly balanced. In this code, note that attributes are passed to the tag handlers in a dictionary, not
in a tuple.

import xmllib, string
class myparser(xmllib.XMLParser):
 def __init__(self):
 xmllib.XMLParser.__init__(self)
 self.currentquestiondesc = ''
 self.currentOp1 = ''
 self.currentOp2 = ''
 self.currentquestion = ''
 self.currentdata = []

 def handle_data(self, data):
 self.currentdata.append(data)

 def start_SURVEY(self, attrs):
 print "Survey of section number ",

 def end_SURVEY(self):
 pass

 def start_SECTION(self, attrs):
 print attrs['SECTION_ID']

 def end_SECTION(self):
 pass

 def start_QUESTION(self, attrs):
 self.currentquestion = attrs['QUESTION_ID']

 def end_QUESTION(self):
 print """

%(currentquestion)s- %(currentquestiondesc)s
 %(currentOp1)s
 %(currentOp2)s
""" % self.__dict__

 def start_QUESTION_DESC(self, attrs):
 self.currentdata = []
 def end_QUESTION_DESC(self):
 self.currentquestiondesc = string.join(self.currentdata,'')

 def start_Op1(self, attrs):
 self.currentdata = []

 def end_Op1(self):
 self.currentOp1 = string.join(self.currentdata,'')

 def start_Op2(self, attrs): self.currentdata = []

 def end_Op2(self):
 self.currentOp2 = string.join(self.currentdata,'')

if __name__ == "__main__":
 filehandle = open("survey.xml")
 data = filehandle.read()
 filehandle.close()

 parser=myparser()
 parser.feed(data)
 parser.close()

Let's see another example. The next one opens our survey.xml file and lists all the questions available. It also
tries to find question #4, but as we don't have it, it raises a message to the user.

import xmllib

class QuestionNotFound:
 pass

class Parser(xmllib.XMLParser):

 def __init__(self, filename=None):
 self.found = 0
 xmllib.XMLParser.__init__(self)
 if filename:
 self.load(filename)

 def load(self, filename):
 while 1:
 xmldata=filename.read(1024)
 if not xmldata:
 break
 self.feed(xmldata)
 self.close()

 def start_QUESTION(self, attrs):
 question_id = attrs.get("QUESTION_ID")
 print "I found Question #" + question_id
 if question_id == "4":
 self.found = 1

 def end_SECTION(self):
 if not self.found:
 raise QuestionNotFound
try:
 MyParser = Parser()
 MyParser.load(open("survey.xml"))
except QuestionNotFound(Exception):
 print "I couldn't find Question #4 !!!"

The SAX API

SAX is a common event-based interface for object-oriented XML parsers. The Simple API for XML isn't a
standard in the formal sense, but an informal specification designed by David Megginson, with input from many
people on the XML-DEV mailing list. SAX defines an event-driven interface for parsing XML. To use SAX, you
must create Python class instances that implement a specified interface, and the parser will then call various
methods of those objects.

SAX is most suitable for purposes in which you want to read through an entire XML document from beginning to
end, and perform some computation, such as building a data structure representing a document, or summarizing
information in a document (computing an average value of a certain element, for example). It isn't very useful if
you want to modify the document structure in some complicated way that involves changing how elements are
nested, though it could be used if you simply want to change element contents or attributes. For example, you
would not want to re-order chapters in a book using SAX, but you might want to change the contents of any name
elements with the attribute lang equal to greek into Greek letters. Of course, if this is an XML file, we would
use the standard attribute xml:lang rather than just lang to store the language.

One advantage of SAX is speed and simplicity. There is no need to expend effort examining elements that are
irrelevant to your application. You can therefore write a class instance that ignores all elements that aren't what you
need. Another advantage is that you don't have the whole document resident in memory at any one time, which
matters if you are processing huge documents.

SAX defines four basic interfaces; a SAX-compliant XML parser can be passed any objects that support these
interfaces, and will call various methods as data is processed. Your task, therefore, is to implement those interfaces
relevant to your application.

The SAX interfaces are as follows:

DocumentHandler— Called for general document events. This interface is the heart of SAX; its
methods are called for the start of the document, the start and end of elements, and for the characters
of data contained inside elements.

DTDHandler— Called to handle DTD events required for basic parsing. This means notation
declarations (XML spec section 4.7

DTDHandler— Called to handle DTD events required for basic parsing. This means notation

declarations (XML spec) and unparsed entity declarations (XML spec section 4

DTDHandler— Called to handle DTD events required for basic parsing. This means notation
declarations (XML spec) and unparsed entity declarations (XML spec).

EntityResolver— Called to resolve references to external entities. If your documents will have
no external entity references, you won't need to implement this interface.

ErrorHandler— Called for error handling. The parser will call methods from this interface to
report all warnings and errors.

Because Python doesn't support the concept of interfaces, the previous interfaces are implemented as Python
classes. The default method implementations are defined to do nothing—the method body is just a Python pass
statement—so usually you can simply ignore methods that aren't relevant to your application. The one big
exception is the ErrorHandler interface; if you don't provide methods that print a message or otherwise take
some action, errors in the XML data will be silently ignored. This is almost certainly not what you want your
application to do, so always implement at least the error() and fatalError() methods.
xml.sax.saxutils provides an ErrorPrinter class that sends error messages to standard error, and an
ErrorRaiser class that raises an exception for any warnings or errors.

Pseudo-code for using SAX looks similar to the following:

Define your specialized handler classes
from xml.sax import saxlib
class docHandler(saxlib.DocumentHandler):
 …
Create an instance of the handler classes
dh = docHandler()
Create an XML parser
parser = …
Tell the parser to use your handler instance
parser.setDocumentHandler(dh)
Parse the file; your handler's method will get called
parser.parseFile(sys.stdin)
Close the parser
parser.close()

For more information, check out the following sites:

SAX: The Simple API for XML

http://www.python.org/doc/howto/xml/SAX.html

David Megginson's SAX page

http://www.python.org/doc/howto/xml/SAX.html

Megginson was the primary force behind SAX's development, and implemented the Java version of
SAX.

http://www.megginson.com/SAX/

What is an Event-Based Interface?

This page explains what an event-based interface is, and contrasts the event-based SAX with the tree-
based Document Object Model (DOM).

http://www.megginson.com/SAX/event.html

Writing an application for a SAX-compliant XML parser

Simon Pepping gives a short overview of the Simple API for XML (SAX). He describes how a SAX-
compliant parser and a SAX application interact, and how one should proceed to write a SAX
application. The description focuses on the Python implementation of SAX. The examples are
written in Python.

http://www.hobby.nl/~scaprea/XML/

DOM: The Document Object Model

The Document Object Model (DOM) is a standard interface for manipulating XML and HTML documents
developed by the World Wide Web Consortium (W3C).

4DOM is a Python library developed by FourThought LLC for XML and HTML processing and manipulation
using the W3C's Document Object Model for interface. 4DOM supports all of DOM level 1 (core and HTML), as
well as core, HTML and Document Traversal from level 2. 4DOM also adds some helper components for DOM
Tree creation and printing, python integration, whitespace manipulation, and so on.

4DOM is designed to allow developers to rapidly design applications that read, write, or manipulate HTML and
XML. Check out

http://www.fourthought.com/4Suite/4DOM/

XSL Transformations (XSLT)

This W3C specification defines the syntax and semantics of XSLT, which is a language for transforming XML
documents into other XML documents.

XSLT is designed for use as part of XSL, which is a stylesheet language for XML. In addition to XSLT, XSL
includes an XML vocabulary for specifying formatting. XSL specifies the styling of an XML document by using
XSLT to describe how the document is transformed into another XML document that uses the formatting
vocabulary.

http://www.megginson.com/SAX/
http://www.megginson.com/SAX/event.html
http://www.hobby.nl/~scaprea/XML/
http://www.fourthought.com/4Suite/4DOM/

XSLT is also designed to be used independently of XSL. However, XSLT is not intended as a completely general-
purpose XML transformation language. Rather, it is designed primarily for the kinds of transformations that are
needed when XSLT is used as part of XSL. XSLT is also good for transforming some custom XML format into
XHTML that can be displayed by a browser, for instance. For more information, check out

http://www.w3.org/TR/xslt

4XSLT is an XML transformation processor based on the W3C's specification, and written by FourThought LLC,
for the XSLT transform language. Currently, 4XSLT supports a subset of the final recommendation of XSLT. For
more information, check out the site:

http://www.fourthought.com/4Suite/4XSLT/

XBEL—XML Bookmark Exchange Language

The XML Bookmark Exchange Language, or XBEL, is an Internet bookmarks interchange format. It was designed
by the Python XML Special Interest Group on the group's mailing list. It grew out of an idea for a demonstration of
using Python for XML processing. Mark Hammond contributed the original idea, and other members of the SIG
chimed in to add support for their favorite browser features. After debate that deviated from the original idea,
compromises were reached that allow XBEL to be a useful language for describing bookmark data for a range of
browsers, including the major browsers and a number of less widely used browsers.

At this time, the formal DTD was finalized and documentation was written. The formal DTD and the
documentation are available online at the following sites:

http://www.python.org/topics/xml/xbel/

http://www.python.org/topics/xml/xbel/docs/html/xbel.html

Supporting software is provided as part of the Python XML package. This software is located in the demo/xbel/
directory of the distribution. This includes command-line processes for converting XBEL instances to other
common formats, including the Navigator and Internet Explorer formats. Note that the current release of the Grail
Internet browser from CNRI supports XBEL as a native bookmarks format.

The script, created by Jürgen Hermann, on the following site, checks the URLs in an XBEL document:

http://cscene.org/%7ejh/xml/bookmarks/checkurls.py

RPC—What Is It?

A Remote Procedure Call (RPC) uses the ordinary procedure call mechanism that is familiar to every user in order
to hide the intricacies of the network.

A client process calls a function on a remote server and suspends itself until it gets back the results. Parameters are
passed the same as in any ordinary procedure. The RPC, similar to an ordinary procedure, is synchronous; clients
and servers must run concurrently. Servers must keep up with clients. The process (or thread) that issues the call
waits until it gets the results. Behind the scenes, the RPC runtime software collects values for the parameters,

http://www.w3.org/TR/xslt
http://www.fourthought.com/4Suite/4XSLT/
http://www.python.org/topics/xml/xbel/
http://www.python.org/topics/xml/xbel/docs/html/xbel.html
http://cscene.org/%7ejh/xml/bookmarks/checkurls.py

forms a message, and sends it to the remote server. (Note that servers must first come up before clients can talk to
them.) The server receives the request, unpacks the parameters, calls the procedure, and sends the reply back to the
client.

Asynchronous processing is limited because it requires threads and tricky code for managing threads. A procedure
call is the name of a procedure, its parameters, and the result it returns.

Procedure calls are very important for the existence of computers. Every program is just a single procedure called
main; every operating system has a main procedure called a kernel. There's a top level to every program that sits in
a loop waiting for something to happen and then distributes control to a hierarchy of procedures that respond. This
is at the heart of interactivity and networking, it's at the heart of software.

RPC is a very simple extension to the procedure call idea; it says, "let's create connections between procedures that
are running in different applications or on different machines."

Conceptually, there's no difference between a local procedure call and a remote one, but they are implemented
differently, perform differently (RPC is much slower), and therefore are used for different things.

Remote calls are marshaled into a format that can be understood on the other side of the connection. As long as
two machines agree on a format, they can talk to each other. That's why Windows machines can be networked with
other Windows machines, Macs can talk to Macs, and so on. The value in a standardized cross-platform format for
RPC is that it allows UNIX machines to talk to Windows machines and vice versa.

A number of formats are possible. One possible format is XML. XML-RPC uses XML as the marshaling format. It
allows Macs to easily make procedure calls to software running on Windows machines and BeOS machines, as
well as all flavors of UNIX and Java, IBM mainframes, PDAs, and so on.

With XML it's easy to see what it's doing, and it's also relatively easy to marshal the internal procedure call format
into a remote format.

Simple Object Access Protocol (SOAP)

SOAP is an XML/HTTP-based protocol for accessing services, objects, and servers in a platform-independent
manner. For more information, check out

http://www.develop.com/soap

A minimal Python SOAP implementation is located at

http://casbah.org/Scarab/

This module is derived in part from Andrew Kuchling's xml.marshal code. It implements the SOAP ""
serialization using the same API as pickle.py (dump/load).

Scarab is an Open Source Communications library implementing protocols, formats, and interfaces for writing
distributed applications, with an emphasis on low-end and lightweight implementations. Users can combine Scarab
module implementations to build a messaging system to fit their needs, scaling from very simple messaging or data

http://www.develop.com/soap
http://casbah.org/Scarab/

transfer all the way up to where CORBA can take over. Scarab implementations include support for such areas as
distributed objects, remote procedure calls, XML messages, TCP transport, and HTTP transport.

PythonPoint

The ReportLab package contains a demo called PythonPoint, which has a simple XML for doing
presentation slides and can convert them to PDF documents, along with imaginative presentation effects. The
demo script that is provided in the Web site illustrates how easily complex XML can be translated into useful PDF.
The demo output, pythonpoint.pdf, demonstrates some of the more exotic PDF capabilities:

http://www.reportlab.com/demos/demos.html

Pyxie

Pyxie is an Open Source XML processing library for Python developed by Sean McGrath. He has also written a
book called XML Processing with Python for Prentice Hall. The book contains a description of the Pyxie library
and many sample programs.

Pyxie is heavily based on a line-oriented notation for parsed XML known as PYX. Pyxie includes utilities, known
as xmln and xmlv, that generate PYX.

PYX is independent of Python and a number of programs processing PYX have appeared in Java, Perl, and
JavaScript:

http://www.digitome.com/pyxie.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

#PCDATA
<
 !ATTLIST definition tag
 !ELEMENT definition tag
(CONTENTS) argument
(NAME) argument
* (asterisk)
+ (plus) sign
/ (slash)
? (question mark)
4DOM
4XSLT
argument
 (CONTENTS)
 (NAME)

http://www.reportlab.com/demos/demos.html
http://www.digitome.com/pyxie.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=190

asterisk (*)
attributes variable
calls
 Remote Procedure (RPC) 2nd
Clark, James
classes
 ErrorPrinter
 ErrorRaiser
close() method
creating
 Extensible Markup Language (XML) files 2nd
data
 manipulating
 Extensible Markup Language (XML) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
Document Type Definition (DTD) 2nd
DocumentHandler interface
DTD (Document Type Definition) 2nd
DTDHandler interface 2nd 3rd
elements
elements— variable
entitydefs variable
EntityResolver interface
ErrorHandler interface
ErrorPrinter class
ErrorRaiser class
Extensible Markup Language (XML)
 manipulating data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
feed(data) method
Fermigier, Stefane
files
 Extensible Markup Language (XML)
 writing 2nd
FourThought LLC 2nd
FourThought, Inc.
Garshol, Lars Marius
handle.cdata(data) method
handle.charref(ref) method
handle.comment(comment) method
handle.data(data) method
handle.doctype(tag, data) method
handle.endtag(tag, method) method
handle.entityref(ref) method
handle.proc(name, data) method
handle.special(data) method
handle.starttag(tag, method, attributes) method
handle.xml(encoding, standalone) method
interfaces
 DocumentHandler
 DTDHandler 2nd 3rd
 EntityResolver
 ErrorHandler

 Simple API for XML (SAX API) 2nd 3rd
Jansen, Jack
Kuchling, Andrew
libraries
 4DOM
 Pyxie
 Scarab
Lundh, Fredrik
manipulating
 data
 Extensible Markup Language (XML) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
McGrath, Sean
Megginson, David 2nd
methods
 close()
 feed(data)
 handle.cdata(data)
 handle.charref(ref)
 handle.comment(comment)
 handle.data(data)
 handle.doctype(tag, data)
 handle.endtag(tag, method)
 handle.entityref(ref)
 handle.proc(name, data)
 handle.special(data)
 handle.starttag(tag, method, attributes)
 handle.xml(encoding, standalone)
 reset()
 setliteral()
 setnomoretags()
 syntax.error(message)
 translate.references(data)
 unknown.charref(ref)
 unknown.endtag(tag)
 unknown.entityref(ref)
 unknown.starttag(tag, attributes)
modules
 xmllib 2nd 3rd 4th
 XMLParser
namespaces
 Extensible Markup Language (XML)
packages
 Python/XML 2nd
 PythonPoint
 ReportLab
 xml
 PyXML 2nd
Pepping, Simon
plus (+) sign
programming languages
 Extensible Markup (XML)

 manipulating data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 Standard Generalized Markup (SGML) 2nd
 XML Bookmark Exchange (XBEL) 2nd
protocols
 Simple Object Access (SOAP)
Python XML Special Interest Group
Python/XML package 2nd
Python/XML Reference Guide
PythonPoint package
Pyxie
PyXML 2nd
question mark (?)
Remote Procedure Call (RPC) 2nd
ReportLab package
reset() method
RPC (Remote Procedure Call) 2nd
SAX API (Simple API for XML) 2nd 3rd
Scarab library
setliteral() method
setnomoretags() method
SGML (Standard Generalized Markup Language) 2nd
Simple API for XML (SAX API) 2nd 3rd
Simple Object Access Protocol (SOAP)
slash (/)
SOAP (Simple Object Access Protocol)
Standard Generalized Markup Language (SGML) 2nd
syntax.error(message) method
tags
 <
 !ELEMENT definition
translate.references(data) method
unknown.charref(ref) method
unknown.endtag(tag) method
unknown.entityref(ref) method
unknown.starttag(tag, attributes) method
variables
 attributes
 elements
 entitydefs
W3C (World Wide Web Consortium)
World Wide Web Consortium (W3C)
writing
 Extensible Markup Language (XML) files 2nd
XBEL (XML Bookmark Exchange Language) 2nd
XML Bookmark Exchange Language (XBEL) 2nd
xml package
 PyXML 2nd
XML Processing with Python
xmllib module 2nd 3rd 4th
XMLParser module
XSL Transformations (XSLT)

XSLT (XSL Transformations)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 13. Data Manipulation > XML-RPC See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148042031164044117125222

XML-RPC

XML-RPC is a specification and a set of implementations that allow software running on different operating
systems and different environments to make procedure calls over the Internet. As a simple RPC protocol, it
converts simple data types into an XML-based format, and then ships them over the network using HTTP-
POST requests as the transport and XML as the encoding. The procedure executes on the server and the value
it returns is also formatted in XML. Procedure parameters can be scalars, numbers, strings, dates, and so on;
they can also be complex record and list structures.

XML-RPC is designed to be as simple as possible, while allowing complex data structures to be transmitted,
processed, and returned. This re-use of high-level ideas such as XML and HTTP makes it inefficient in
comparison to a binary format, but it also makes it easy to implement; implementations already exist for Java,
Python, Perl, and Tcl, and Zope 2.0.

The XML-RPC library is copyrighted, but can be used without fee. This also applies to commercial
applications. For more information, check out

XML-RPC

http://www.xmlrpc.com/

The XML-RPC specification documents the XML-RPC protocol implemented in Frontier 5.1.

http://www.xml-rpc.com/spec/

http://www.scripting.com/frontier5/xml/code/rpc.html

XML-RPC for Newbies, by Dave Winer

http://davenet.userland.com/1998/07/14/xmlRpcForNewbies

The Python Implementation

PythonWare's Fredrik Lundhs xmlrpc package provides everything you need to build clients and servers in
Python:

http://www.pythonware.com/products/xmlrpc/

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=191
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A46%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=191&now=5%2F31%2F2002+4%3A46%3A07+PM
http://www.xmlrpc.com/
http://www.xml-rpc.com/spec/
http://www.scripting.com/frontier5/xml/code/rpc.html
http://davenet.userland.com/1998/07/14/xmlRpcForNewbies
http://www.pythonware.com/products/xmlrpc/

Secret Labs' xmlrpclib module is a client-side implementation of the XML-RPC protocol. This
implementation is tightly integrated with Python, which makes it very easy to call remote methods. For
example, here's the Python code needed to call one of Userland's sample servers:

betty =
 Server("http://betty.userland.com") print betty.examples.getStateName(41)

This results in a remote call to the examples.getStateName method published by the betty
server, with the integer 41 as the single argument. The result from this call is a string with the value
"South Dakota".

The marshalling and parsing classes provided by this module can also be used in XML-RPC server
implementations. Sample code for Medusa and Python's SocketServer module is also included in the current
release.

Working with Zope

Amos Latteier at Digital Creations has written an XML-RPC How To for Zope Users. Among other things, it
contains code to handle authentication issues and access control.

The idea of using Zope to handle XML-RPC is based on the fact that every Zope object can respond to HTTP
requests.

The How To covers the use of Zope as an XML-RPC server, and as an XML-RPC client. The document also
shows how to extend Fredrik Lundh's XML-RPC Python module to support sending requests with basic
authentication. It can be found at

http://www.zope.org/Members/Amos/XML-RPC

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.zope.org/Members/Amos/XML-RPC
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=191

Index terms contained in this section

data
 manipulating
 XML-RPC library 2nd
databases
 Zope Object (ZODB)
Digital Creations
Latteier, Amos
libraries
 XML-RPC 2nd
Lundhs, Fredrik
manipulating
 data
 XML-RPC library 2nd
packages
 xmlrpc
Secret Labs
XML-RPC How To for Zope Users
XML-RPC library
 manipulating data 2nd
xmlrpc package
xmlrpclib module 2nd
Zope Object Database (ZODB)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 13. Data Manipulation > XDR Data
Exchange Format

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148042031165113061128045

XDR Data Exchange Format

XDR is best described as a standard for data description and encoding. It uses a implicit typing language to
describe intricate data formats in a concise manner—note that this language is not a programming language.
Protocols such as Sun RPC (Remote Procedure Call) and the NFS (Network File System, which was initially
built on top of RPC) use XDR to describe the format of their data because XDR is useful for transferring
data between different computer architectures. XDR has been used to communicate with data between such
diverse machines as the SUN WORKSTATION, VAX, IBM-PC, and Cray. It is a very portable
implementation. For more information, check out

Internet standards—RFC 1014, External Data Representation

http://info.internet.isi.edu/in-notes/rfc/files/rfc1014.txt

xdrlib

The xdrlib module almost entirely supports the External Data Representation Standard (XDR) as
described in RFC 1014, written by Sun Microsystems, Inc. on June 1987. Therefore, it is used extensively in
networked applications, mainly the ones that need to handle RPC.

This module defines two exceptions, and two classes—one for packing variables into XDR representation,
and another for unpacking from XDR representation:

Packer()— Packer is the class for packing data into XDR representation. The Packer
class is instantiated with no arguments.

Unpacker(data)— Unpacker is the complementary class, which unpacks XDR data
values from a string buffer. The input buffer is given as data.

Packer Objects

Packer instances have the following methods:

get_buffer()— Returns the current pack buffer as a string.

reset()— Resets the pack buffer to the empty string.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=192
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A46%3A15+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=192&now=5%2F31%2F2002+4%3A46%3A15+PM
http://info.internet.isi.edu/in-notes/rfc/files/rfc1014.txt

In general, you can pack any of the most common XDR data types by calling the appropriate
pack_type() method. Each method takes a single argument, the value to pack. The following simple data
type packing methods are supported:
pack_uint(),pack_int(),pack_enum(),pack_bool(),pack_uhyper(), and
pack_hyper(). The following methods support floating point number packing.

pack_float(value)— Packs the single-precision floating point number value.

pack_double(value)— Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

pack_fstring(n, s)— Packs a fixed length string, s.n is the length of the string, but it
is not packed into the data buffer. The string is padded with null bytes if necessary to
guarantee 4 byte alignment.

pack_fopaque(n, data)— Packs a fixed length opaque data stream, similar to
pack_fstring().

pack_string(s)— Packs a variable length string, s. The length of the string is first
packed as an unsigned integer, and then the string data is packed with pack_fstring().

pack_opaque(data)— Packs a variable length opaque data string, similar to
pack_string().

pack_bytes(bytes)— Packs a variable length byte stream, similar to
pack_string().

The following methods support packing arrays and lists:

pack_list(list, pack_item)— Packs a list of homogeneous items. This method is
useful for lists with an indeterminate size; that is, the size is not available until the entire list
has been walked. For each item in the list, an unsigned integer 1 is packed first, followed by
the data value from the list. pack_item is the function called to pack the individual item. At
the end of the list, an unsigned integer 0 is packed.

pack_farray(n, array, pack_item)— Packs a fixed length list (array) of
homogeneous items. n is the length of the list; it is not packed into the buffer, but a
ValueError exception is raised if len(array) is not equal to n. As stated previously,
pack_item is the function used to pack each element.

pack_array(list, pack_item)— Packs a variable length list of homogeneous items.

First, the length of the list is packed as an unsigned integer, and then each element is packed as
in pack_farray() stated previously.

Unpacker Objects

The Unpacker class offers the following methods:

reset(data)— Resets the string buffer with the given data.

get_position()— Returns the current unpack position in the data buffer.

set_position(position)— Sets the data buffer unpack position to position. You
should be careful about using get_position() and set_position().

get_buffer()— Returns the current unpack data buffer as a string.

done()— Indicates unpack completion. Raises an error exception if all the data has not been
unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an Unpacker. Unpacking
methods are of the form unpack_type(), and take no arguments. They return the unpacked object.

unpack_float()— Unpacks a single-precision floating point number.

unpack_double()— Unpacks a double-precision floating point number, similar to
unpack_float().

In addition, the following methods unpack strings, bytes, and opaque data:

unpack_fstring(n)— Unpacks and returns a fixed length string. n is the number of
characters expected. Padding with null bytes to guaranteed 4 byte alignment is assumed.

unpack_fopaque(n)— Unpacks and returns a fixed length opaque data stream, similar to
unpack_fstring().

unpack_string()— Unpacks and returns a variable length string. The length of the string
is first unpacked as an unsigned integer, and then the string data is unpacked with
unpack_fstring().

unpack_opaque()— Unpacks and returns a variable length opaque data string, similar to
unpack_string().

unpack_bytes()— Unpacks and returns a variable length byte stream, similar to
unpack_string().

The following methods support unpacking arrays and lists:

unpack_list(unpack_item)— Unpacks and returns a list of homogeneous items. The list is
unpacked one element at a time by first unpacking an unsigned integer flag. If the flag is 1,
the item is unpacked and appended to the list. A flag of 0 indicates the end of the list.
unpack_item is the function called to unpack the items.

unpack_farray(n, unpack_item)— Unpacks and returns (as a list) a fixed length array of
homogeneous items. n is the number of list elements to expect in the buffer. As stated
previously, unpack_item is the function used to unpack each element.

unpack_array(unpack_item)— Unpacks and returns a variable length list of homogeneous
items. First, the length of the list is unpacked as an unsigned integer, and then each element is
unpacked as in unpack_farray() previously.

In the following example, we pack a group of variables, unpacking them later.

import xdrlib

def f_packer(name, author, month, year):
 data = xdrlib.Packer()
 data.pack_string(name)
 data.pack_string(author)
 data.pack_uint(month)
 data.pack_uint(year)
 packed = data.get_buffer()
 return packed

def f_unpacker(packer):
 data = xdrlib.Unpacker(packer)
 return data

print "The original values are: 'Andre', 'Author', 10, 2000"
print

packed = f_packer('Andre', 'Author', 10, 2000)
print "The packed data is now defined by:", repr(packed)
print
print "And now, the original data again. (After unpacking it!)"
unpacked = f_unpacker(packed)
print repr(unpacked.unpack_string()), ", ", \

 repr(unpacked.unpack_string()), ", ", \
 unpacked.unpack_uint(), ", ", \
 unpacked.unpack_uint()
unpacked.done()

The original values are: 'Andre', 'Author', 10, 2000

The packed data is now defined by:
'\000\000\000\005Andre\000\000\000\000\000\000\006Author\000\000\000\000\
000\012\000\000\007\320'

And now, the original data again. (After unpacking it!)
'Andre', 'Author', 10 , 2000

Note

If you are only handling simple data types and only with Python, it is probably easier to just use the
marshal module.

Exceptions

Exceptions in this module are coded as class instances:

Error— This is the base exception class. Error has a single public data member msg
containing the description of the error.

ConversionError— This class is derived from Error. Contains no additional instance
variables.

Here is a simple example of how you would catch one of these exceptions:

>>> import xdrlib
>>> data = xdrlib.Packer()
>>> try:
… data.pack_double("8.01")
… except xdrlib.ConversionError, ErrorObj:
… print 'Error while packing the data:', ErrorObj.msg
…
Error while packing the data: required argument is not a float
>>>

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

arrays
 packing methods 2nd
bytes
 packing methods 2nd
classes
 Packer() 2nd 3rd 4th
 Unpacker(data) 2nd 3rd 4th
 xdrlib module 2nd 3rd 4th 5th 6th
ConversionError exception
data
 manipulating
 XDR Data Exchange Format 2nd 3rd 4th 5th
 opaque
 packing methods 2nd
done() method
Error exception
exceptions
 ConversionError
 Error
External Data Representation Standard (XDR)
floating points
 packing methods
formats
 XDR Data Exchange 2nd 3rd 4th 5th
get_buffer() method 2nd
get_position() method
lists
 packing methods 2nd
manipulating
 data
 XDR Data Exchange Format 2nd 3rd 4th 5th
methods
 done()
 get_buffer() 2nd
 get_position()
 pack_array(list, pack_item)
 pack_bytes(bytes)
 pack_double(value)
 pack_farray(n, array, pack_item)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=192

 pack_float(value)
 pack_fopaque(n, data)
 pack_fstring(n, s)
 pack_list(list, pack_item)
 pack_opaque(data)
 pack_string(s)
 Packer() class 2nd 3rd 4th
 packing
 arrays 2nd
 bytes 2nd
 floating point number
 lists 2nd
 opaque data 2nd
 strings 2nd
 reset()
 reset(data)
 set_position(position)
 unpack_array(unpack_item)
 unpack_bytes()
 unpack_double()
 unpack_farray(n, unpack item)
 unpack_float()
 unpack_fopaque(n)
 unpack_fstring(n)
 unpack_list(unpack_item)
 unpack_opaque()
 unpack_string()
 Unpacker(data) class 2nd 3rd
modules
 xdrlib 2nd 3rd 4th 5th 6th
numbers
 floating points
 packing methods
objects
 Packer() 2nd 3rd
 Unacker() 2nd 3rd
opaque data
 packing methods 2nd
pack_array(list, pack_item) method
pack_bytes(bytes) method
pack_double(value) method
pack_farray(n, array, pack_item) method
pack_float(value) method
pack_fopaque(n, data) method
pack_fstring(n, s) method
pack_list(list, pack_item) method
pack_opaque(data) method
pack_string(s) method

Packer() class 2nd 3rd 4th
packing
 variables
reset() method
reset(data) method
set_position(position) method
strings
 packing methods 2nd
unpack_array(unpack_item) method
unpack_bytes() method
unpack_double() method
unpack_farray(n, unpack item) method
unpack_float() method
unpack_fopaque(n) method
unpack_fstring(n) method
unpack_list(unpack_item) method
unpack_opaque() method
unpack_string() method
Unpacker(data) class 2nd 3rd 4th
unpacking
 variables
variables
 packing
XDR (External Data Representation Standard)
XDR Data Exchange Format
 manipulating data 2nd 3rd 4th 5th
xdrlib module 2nd 3rd 4th 5th 6th

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 13. Data Manipulation > Handling
Other Markup Languages

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148042031166102142021009

Handling Other Markup Languages

The initial part of this chapter covers XML, which is, undoubtedly, a future promise for the Internet.

The next pages of this section describe additional modules that support other data format standards
commonly used on the internet, SGML and HTML.

sgmllib

The sgmllib module is an SGML parser subset. Although it has a simple implementation, it is
powerful enough to build the HTML parser.

This module implements the SGMLParser() class.

SGMLParser()

The SGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the
following constructs:

a. Opening and closing tags of the form <tag attr="value …> and </tag>, respectively.

b. Numeric character references of the form &#name;.

c. Entity references of the form &name;.

d. SGML comments of the form <!--text-->. Note that spaces, tabs, and newlines are
allowed between the trailing > and the immediately preceding -.

SGMLParser instances have the following interface methods (note that the interface is similar to the
xmllib one):

reset()— Resets the instance. Loses all unprocessed data. This is called implicitly at
instantiation time.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=193
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A46%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=193&now=5%2F31%2F2002+4%3A46%3A24+PM

setnomoretags()— Stops processing tags. Treat all following input as literal input
(CDATA). (This is only provided so that the HTML tag <PLAINTEXT> can be
implemented.)

setliteral()— Enters literal mode (CDATA mode).

feed(data)— Feeds some text to the parser. It is processed insofar as it consists of
complete elements; incomplete data is buffered until more data is fed or close() is
called.

close()— Force processing of all buffered data as if it were followed by an end-of-
file mark. This method can be redefined by a derived class to define additional
processing at the end of the input, but the redefined version should always call
close().

handle_starttag(tag, method, attributes)— This method is called to handle start
tags for which either a start_tag() or do_tag() method has been defined. The tag
argument is the name of the tag converted to lowercase, and the method argument is the
bound method that should be used to support semantic interpretation of the start tag. The
attributes argument is a list of (name, value) pairs containing the attributes found inside
the tag's <> brackets. The name has been translated to lowercase, and double quotes and
backslashes in the value have been interpreted. For instance, for the tag <A HREF=
http://www.cwi.nl/, this method would be called as unknown_starttag('a',
[('href', http://www.cwi.nl/)]). The base implementation simply calls a
method with attributes as the only argument.

handle_endtag(tag, method)— This method is called to handle endtags for which an
end_tag() method has been defined. The tag argument is the name of the tag
converted to lowercase, and the method argument is the bound method that should be
used to support semantic interpretation of the end tag. If no end_tag() method is
defined for the closing element, this handler is not called. The base implementation
simply calls method.

handle_data(data)— This method is called to process arbitrary data. It is intended to
be overridden by a derived class; the base class implementation does nothing.

handle_charref(ref)— This method is called to process a character reference of the
form &#ref;. In the base implementation, ref must be a decimal number in the range
0–255. It translates the character to ASCII and calls the method handle_data() with
the character as argument. If ref is invalid or out of range, the method

http://www.cwi.nl/
http://www.cwi.nl/

unknown_charref(ref) is called to handle the error. A subclass must override this
method to provide support for named character entities.

handle_entityref(ref)— This method is called to process a general entity
reference of the form &ref;, where ref is an general entity reference. It looks for ref
in the instance (or class) variable entitydefs that should be a mapping from entity names
to corresponding translations. If a translation is found, it calls the method
handle_data() with the translation; otherwise, it calls the method
unknown_entityref(ref). The default entitydefs defines translations for
&,&apos,>,<, and ".

handle_comment(comment)— This method is called when a comment is
encountered. The comment argument is a string containing the text between the <!- and -
> delimiters, but not the delimiters themselves. For example, the comment <!-text->
will cause this method to be called with the argument text. The default method does
nothing.

report_unbalanced(tag)— This method is called when an end tag is found that
does not correspond to any open element.

Tip

In order to handle all tags in your code, you need to overload the following two methods:
unknown_starttag and unknown_endtag.

unknown_starttag(tag, attributes)— This method is called to process an unknown
start tag. It is intended to be overridden by a derived class; the base class implementation
does nothing.

unknown_endtag(tag)— This method is called to process an unknown end tag. It is
intended to be overridden by a derived class; the base class implementation does nothing.

unknown_charref(ref)— This method is called to process unresolvable numeric
character references. Refer to handle_charref() to determine what is handled by
default. It is intended to be overridden by a derived class; the base class implementation
does nothing.

unknown_entityref(ref)— This method is called to process an unknown entity

reference. It is intended to be overridden by a derived class; the base class
implementation does nothing.

Apart from overriding or extending the methods listed previously, derived classes can also define
methods of the following form to define processing of specific tags. Tag names in the input stream are
case independent; the tag occurring in method names must be in lowercase:

start_tag(attributes)— This method is called to process an opening tag. It has
precedence over do_tag(). The attributes argument has the same meaning as
described for handle_starttag() previously.

do_tag(attributes)— This method is called to process an opening tag that does
not come with a matching closing tag. The attributes argument has the same meaning as
described for handle_starttag() previously.

end_tag()— This method is called to process a closing tag.

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only
tags processed by start_tag() are pushed on this stack. Definition of an end_tag() method is
optional for these tags. For tags processed by do_tag() or by unknown_tag(), no end_tag()
method must be defined; if defined, it will not be used. If both start_tag() and do_tag()
methods exist for a tag, the start_tag() method takes precedence.

The following example opens an SGML file and collects the information regarding the page title.

import sgmllib
import string

filename = "index.html"
class CleanExit(Exception):
 pass

class Titlefinder(sgmllib.SGMLParser):
 def __init__(self, verbose=0):
 sgmllib.SGMLParser.__init__(self, verbose)
 self.title = self.data = None
 def start_title(self, attributes):
 self.data = []
 def end_title(self):
 self.title = string.join(self.data, "")

 raise CleanExit
 def handle_data(self, data):
 if self.data is not None:
 self.data.append(data)
 def get_title(filehandle):
 Parser = Titlefinder()
 try:
 while 1:
 sgmldata = filehandle.read(1024)
 if not sgmldata:
 break
 Parser.feed(sgmldata)
 Parser.close()
 except CleanExit:
 return Parser.title
 return None

filehandle = open(filename)
title = get_title(filehandle)

print "The page's title is: %s" % (title)

htmllib

This module defines a parser class that can serve as a base for parsing text files formatted in the
Hypertext Markup Language (HTML). The class is not directly concerned with I/O—it must be
provided with input in string form via a method, and makes calls to methods of a formatter object in
order to produce output. The HTMLParser class is designed to be used as a base class for other
classes in order to add functionality, and allows most of its methods to be extended or overridden. In
turn, this class is derived from and extends the SGMLParser class defined in module sgmllib. The
HTMLParser implementation supports the HTML 2.0 language as described in RFC 1866. Two
implementations of formatter objects are provided in the formatter module.

The following is a summary of the interface defined by sgmllib.SGMLParser:

a. a. The interface to feed data to an instance is through the feed() method, which takes a string
argument. This can be called with as little or as much text at a time as desired; "p.feed(a);
p.feed(b)" has the same effect as "p.feed(a+b)". When the data contains complete
HTML tags, these are processed immediately; incomplete elements are saved in a buffer. To
force processing of all unprocessed data, call the close() method.

b. For example, to parse the entire contents of a file, use

parser.feed(open('myfile.html').read())
 parser.close()

c. b. The interface to define semantics for HTML tags is very simple: derive a class and define
methods called start_tag(), end_tag(), or do_tag(). The parser will call these at
appropriate moments: start_tag or do_tag() is called when an opening tag of the form
<tag ...> is encountered; end_tag() is called when a closing tag of the form <tag> is
encountered. If an opening tag requires a corresponding closing tag, such as <H1>...
</H1>, the class should define the start_tag() method; if a tag requires no closing tag,
such as <P>, the class should define the do_tag() method.

This module defines a single class: HTMLParser(formatter). This is the basic HTML parser
class. It supports all entity names required by the HTML 2.0 specification (RFC 1866). It also defines
handlers for all HTML 2.0 and many HTML 3.0 and 3.2 elements. In addition to tag methods, the
HTMLParser class provides some additional methods and instance variables for use within tag
methods. They are as follows:

formatter— This is the formatter instance associated with the parser.

nofill— This Boolean flag should be true when whitespace should not be collapsed,
or false when it should be. In general, this should only be true when character data is to
be treated as "preformatted" text, as within a <PRE> element. The default value is false.
This affects the operation of handle_data() and save_end().

anchor_bgn(href, name, type)— This method is called at the start of an
anchor region. The arguments correspond to the attributes of the <A> tag with the same
names. The default implementation maintains a list of hyperlinks (defined by the href
attribute) within the document. The list of hyperlinks is available as the data attribute
anchorlist.

anchor_end()— This method is called at the end of an anchor region. The default
implementation adds a textual footnote marker using an index into the list of hyperlinks
created by anchor_bgn().

handle_image(source, alt[, ismap[, align[, width[,
height]]]])— This method is called to handle images. The default implementation

simply passes the alt value to the handle_data() method.

save_bgn()— Begins saving character data in a buffer instead of sending it to the
formatter object. Retrieve the stored data via save_end(). Use of the
save_bgn()/save_end() pair cannot be nested.

save_end()— Ends buffering character data and returns all data saved since the
preceding call to save_bgn(). If the nofill flag is false, whitespace is collapsed to
single spaces. A call to this method without a preceding call to save_bgn() will raise
a TypeError exception.

The following example is a CGI script that outputs to a Web page the Web links found in a given
HTML file.

import htmllib
import formatter, string, cgi

form = cgi.FieldStorage()

try:
 myfile = form["filename"].value
except:
 myfile = "index.html"

class ParserClass(htmllib.HTMLParser):
 def __init__(self, verbose=0):
 self.anchors = {}
 fmt = formatter.NullFormatter()
 htmllib.HTMLParser.__init__(self, fmt, verbose)
 def anchor_bgn(self, href, name, type):
 self.save_bgn()
 self.anchor = href
 def anchor_end(self):
 tagtext = string.strip(self.save_end())
 if self.anchor and tagtext:
 self.anchors[tagtext] = self.anchors.get(tagtext, []) + \
 [self.anchor]
filename = open(myfile)
htmldata = filename.read()
filename.close()
parserobj = ParserClass()
parserobj.feed(htmldata)

parserobj.close()

print "Content-type: text/html\n"

for key in p.anchors.keys():
 print key, p.anchors[key]

htmlentitydefs

The htmlentitydefs module contains a dictionary called entitydefs that contains all the
definitions for the general entities defined by HTML 2.0, as demonstrated next:

import htmlentitydefs
htmlentitydef = htmlentitydefs.entitydefs.keys()
for key in htmlentitydef:
 print key, " = ", htmlentitydef[key]

formatter

The formatter module is used for generic output formatting by the HTMLParser class of the
htmllib module. This module supports two interface definitions, each with multiple
implementations: Formatter and Writer.

Formatter objects transform an abstract flow of formatting events into specific output events on writer
objects. Formatters manage several stack structures to allow various properties of a writer object to be
changed and restored; writers need not be able to handle relative changes nor any sort of "change back"
operation. Specific writer properties which can be controlled via formatter objects are horizontal
alignment, font, and left margin indentations. A mechanism is provided that supports providing
arbitrary, non-exclusive style settings to a writer as well. Additional interfaces facilitate formatting
events that are not reversible, such as paragraph separation. The writer interface is required by the
formatter interface.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as
well as physical devices. The provided implementations all work with abstract devices. The interface
makes available mechanisms for setting the properties that formatter objects manage and inserting data
into the output.

The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The
interfaces described as follows are the required interfaces, which all formatters must support once
initialized.

One data element is defined at the module level: AS_IS. This value can be used in the font
specification passed to the push_font() method described in the following, or as the new value to
any other push_property() method. Pushing the AS_IS value allows the corresponding
pop_property() method to be called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

writer— Interacts with the formatter.

end_paragraph(blanklines)— Closes any open paragraphs and inserts at least
blanklines before the next paragraph.

add_line_break()— Adds a hard line break if one does not already exist. This
does not break the logical paragraph.

add_hor_rule(*args, **kw)— Inserts a horizontal rule in the output. A hard
break is inserted if data is in the current paragraph, but the logical paragraph is not
broken. The arguments and keywords are passed on to the writer's
send_line_break() method.

add_flowing_data(data)— Provides data that should be formatted with
collapsed whitespaces. Whitespace from preceeding and successive calls to
add_flowing_data() is considered as well when the whitespace collapse is
performed. The data that is passed to this method is expected to be word wrapped by the
output device. Note that any word wrapping still must be performed by the writer object
because of the need to rely on device and font information.

add_literal_data(data)— Provides data that should be passed to the writer
unchanged. Whitespace, including newline and tab characters, is considered legal in the
value of data.

add_label_data(format, counter)— Inserts a label that should be placed to
the left of the current left margin. This should be used for constructing bulleted or
numbered lists. If the format value is a string, it is interpreted as a format specification
for counter, which should be an integer. The result of this formatting becomes the value
of the label; if format is not a string, it is used as the label value directly. The label value
is passed as the only argument to the writer's send_label_data() method.

Interpretation of nonstring label values is dependent on the associated writer.

Format specifications are strings that, in combination with a counter value, are used to compute label
values. Each character in the format string is copied to the label value, with some characters recognized
to indicate a transformation on the counter value. Specifically, the character 1 represents the counter
value formatter as an Arabic number, the characters A and a represent alphabetic representations of the
counter value in upper- and lowercase, respectively, and I and i represent the counter value in Roman
numerals, in upper- and lowercase. Note that the alphabetic and roman transformations require that the
counter value be greater than zero.

flush_softspace()— Sends any pending whitespace buffered from a previous
call to add_flowing_data() to the associated writer object. This should be called
before any direct manipulation of the writer object.

push_alignment(align)— Pushes a new alignment setting onto the alignment
stack. This might be AS_IS if no change is desired. If the alignment value is changed
from the previous setting, the writer's new_alignment() method is called with the
align value.

pop_alignment()— Restores the previous alignment.

push_font((size, italic, bold, teletype))— Changes some or all
font properties of the writer object. Properties that are not set to AS_IS are set to the
values passed in, whereas others are maintained at their current settings. The writer's
new_font() method is called with the fully resolved font specification.

pop_font()— Restores the previous font.

push_margin(margin)— Increases the number of left margin indentations by one,
associating the logical tag margin with the new indentation. The initial margin level is
0. Changed values of the logical tag must be true values; false values other than AS_IS
are not sufficient to change the margin.

pop_margin()— Restores the previous margin.

push_style(*styles)— Pushes any number of arbitrary style specifications. All
styles are pushed onto the styles stack in order. A tuple representing the entire stack,
including AS_IS values, is passed to the writer's new_styles() method.

pop_style([n = 1])— Pops the last n style specifications passed to

push_style(). A tuple representing the revised stack, including AS_IS values, is
passed to the writer's new_styles() method.

set_spacing(spacing)— Sets the spacing style for the writer.

assert_line_data([flag = 1])— Informs the formatter that data has been
added to the current paragraph out-of-band. This should be used when the writer has
been manipulated directly. The optional flag argument can be set to false if the writer
manipulations produced a hard line break at the end of the output.

Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications can use one
of these classes without modification or subclassing.

NullFormatter([writer])— A formatter that does nothing. If writer is omitted,
a NullWriter instance is created. No methods of the writer are called by NullFormatter
instances. Implementations should inherit from this class if implementing a writer
interface but don't need to inherit any implementation.

AbstractFormatter(writer)— The standard formatter. This implementation
has demonstrated wide applicability to many writers, and can be used directly in most
circumstances. It has been used to implement a full-featured WWW browser.

The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces
described as follows are the required interfaces that all writers must support once initialized. Although
most applications can use the AbstractFormatter class as a formatter, the writer must typically
be provided by the application.

flush()— Flushes any buffered output or device control events.

new_alignment(align)— Sets the alignment style. The align value can be any
object, but by convention is a string or None, where None indicates that the writer's
preferred alignment should be used. Conventional align values are
left,center,right, and justify.

new_font(font)— Sets the font style. The value of font will be None, indicating
that the device's default font should be used, or a tuple of the form (size, italic, bold,
teletype). Size will be a string indicating the size of font that should be used; specific

strings and their interpretation must be defined by the application. The italic, bold, and
teletype values are Boolean indicators specifying which of those font attributes should be
used.

new_margin (margin, level) — Sets the margin level to the integer level and the
logical tag to margin. Interpretation of the logical tag is at the writer's discretion; the only
restriction on the value of the logical tag is that it not be a false value for non-zero values
of level.

new_spacing (spacing)— Sets the spacing style to spacing.

new_styles (styles)— Sets additional styles. The styles value is a tuple of arbitrary
values; the value AS_IS should be ignored. The styles tuple can be interpreted either as
a set or as a stack depending on the requirements of the application and writer
implementation.

send_line_break()— Breaks the current line.

send_paragraph (number)— Produces a paragraph separation of at least the given
number of blank lines, or the equivalent. The blankline value will be an integer. Note that
the implementation will receive a call to send_line_break() before this call if a
line break is needed; this method should not include ending the last line of the paragraph.
It is only responsible for vertical spacing between paragraphs.

send_hor_rule(*args, **kw)— Displays a horizontal rule on the output
device. The arguments to this method are entirely application- and writer-specific, and
should be interpreted with care. The method implementation can assume that a line break
has already been issued via send_line_break().

send_flowing_data(data)— Outputs character data that might be word wrapped
and re-flowed as needed. Within any sequence of calls to this method, the writer can
assume that spans of multiple whitespace characters have been collapsed to single space
characters.

send_literal_data(data)— Outputs character data that has already been
formatted for display. Generally, this should be interpreted to mean that line breaks
indicated by newline characters should be preserved and no new line breaks should be
introduced. The data can contain embedded newline and tab characters, unlike data
provided to the send_formatted_data() interface.

send_label_data(data)— Sets data to the left of the current left margin, if

possible. The value of data is not restricted; treatment of non-string values is entirely
application- and writer-dependent. This method will only be called at the beginning of a
line.

Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most
applications will need to derive new writer classes from the NullWriter class.

NullWriter()— A writer that only provides the interface definition; no actions are
taken on any methods. This should be the base class for all writers that do not need to
inherit any implementation methods.

AbstractWriter()— A writer that can be used in debugging formatters, but not
much else. Each method simply announces itself by printing its name and arguments on
standard output.

DumbWriter([file[, maxcol = 72]])— A simple writer class that writes
output on the file object passed in as file or, if file is omitted, on standard output. The
output is simply word wrapped to the number of columns specified by maxcol. This class
is suitable for reflowing a sequence of paragraphs.

Using the Formatter Module

The following example removes all tags from an HTML file, leaving only the plain text left.

1: from htmllib import HTMLParser
2: from formatter import AbstractFormatter, DumbWriter
3: htmlfile = open("stuff.html")
4: parser = HTMLParser(AbstractFormatter(DumbWriter()))
5: parser.feed(htmlfile.read())
6: parser.close()
7: htmlfile.close()

The DumbWriter function is used here to dump all the non-tag contents of htmlfile to the
standard output.

Note that the file opened by line 3 can also be a URL. You just need to import and use the
urllib.urlopen function, like this:

from urllib import urlopen
htmlfile = urlopen('http://www.lessaworld.com/')

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

1
A
a
AbstractFormatter(writer) class
AbstractWriter() class
add_flowing_data(data) attribute
add_hor_rule(*args, **kw) attribute
add_label_data(format, counter) attribute
add_line_break() attribute
add_literal_data(data) attribute
anchor_bgn(href, name, type) method
anchor_end() method
assert_line_data([flag = 1]) method
attributes
 add_flowing_data(data)
 add_hor_rule(*args, **kw)
 add_label_data(format, counter)
 add_line_break()
 add_literal_data(data)
 end_paragraph(blanklines)
 formatter objects 2nd
 writer
CGI scripts
 outputting links from HTML files to Web pages
classes
 AbstractFormatter(writer)
 AbstractWriter()
 DumbWriter([file[, maxcol = 72]])
 formatter objects 2nd
 HTMLParser 2nd
 NullFormatter([writer])

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=193

 NullWriter()
 sgmllib module 2nd 3rd 4th
 SGMLParser 2nd 3rd 4th 5th
 writer objects 2nd
close() method 2nd
collecting
 page title information
counter values
data
 manipulating
 formatter module 2nd 3rd 4th 5th 6th 7th
 hemlentitydefs module
 htmllib module 2nd 3rd
 sgmllib module 2nd 3rd
dictionaries
 entitydefs
do_tag() method
do_tag(attributes) method
DumbWriter([file[, maxcol = 72]]) class
end_paragraph(blanklines) attribute
end_tag() method 2nd
entitydefs dictionary
feed() method
feed(data) method
files
 HTML
 outputting links from to Web pages, CGI scripts
 SGML
 opening
flag
 nofill
flush() method
flush_softspace() method
formatter module 2nd 3rd 4th 5th 6th 7th
formatter objects 2nd 3rd 4th 5th
formatter variable
handle_charref(ref) method
handle_comment(comment) method
handle_data(data) method
handle_endtag(tag, method) method
handle_entityref(ref) method
handle_image(source, alt[, is map[, align[, width[, height]]]]) method
handle_starttag(tag, method, attributes) method
handling
 tags
hemlentitydefs module

HTML files
 outputting links from to Web pages, CGI scripts
htmllib module 2nd 3rd 4th
HTMLParser class 2nd
I
i
interfaces
 formatter 2nd 3rd 4th
 sgmllib.SGMLParser 2nd
 writer 2nd
links
 outputting from HTML files to Web pages, CGI scripts
manipulating
 data
 formatter module 2nd 3rd 4th 5th 6th 7th
 hemlentitydefs module
 htmllib module 2nd 3rd
 sgmllib module 2nd 3rd
methods
 anchor_bgn(href, name, type)
 anchor_end()
 assert_line_data([flag = 1])
 close() 2nd
 do_tag()
 do_tag(attributes)
 end_tag() 2nd
 feed()
 feed(data)
 flush()
 flush_softspace()
 formatter objects 2nd 3rd
 handle_charref(ref)
 handle_comment(comment)
 handle_data(data)
 handle_endtag(tag, method)
 handle_entityref(ref)
 handle_image(source, alt[, is map[, align[, width[, height]]]])
 handle_starttag(tag, method, attributes)
 new alignment(align)
 new_font(font)
 new_margin(margin, level)
 new_spacing(spacing)
 new_styles(styles)
 pop_alignment()
 pop_font()
 pop_margin()

 pop_style([n = 1])
 push_alignment(align)
 push_font((size, italic, bold, teletype))
 push_margin(margin)
 push_style(*styles)
 report_unbalanced(tag)
 reset()
 save_bgn()
 save_end()
 send_flowing_data(data)
 send_hor_rule(*args, **kw)
 send_label_data(data)
 send_line_break()
 send_literal_data(data)
 send_paragraph(number)
 set_spacing(spacing)
 setliteral()
 setnomoretags()
 SGMLParser class 2nd 3rd 4th 5th
 start_tag()
 start_tag(attributes)
 unknown_charref(ref)
 unknown_endtag(tag)
 unknown_entity(ref)
 unknown_starttag(tag, attributes)
 writer objects 2nd 3rd
modules
 formatter 2nd 3rd 4th 5th 6th 7th
 hemlentitydefs
 htmllib 2nd 3rd
 Htmllib
 sgmllib 2nd 3rd
new alignment(align) method
new_font(font) method
new_margin(margin, level) method
new_spacing(spacing) method
new_styles(styles) method
nofill flag
NullFormatter([writer]) class
NullWriter() class
objects
 formatter 2nd 3rd 4th 5th
 writer 2nd 3rd
opening
 SGML files

outputting
 links from HTML files to Web pages, CGI scripts
page titles
 collecting information on
pages
 outputting links from HTML files to, CGI scripts
pop_alignment() method
pop_font() method
pop_margin() method
pop_style([n = 1]) method
push_alignment(align) method
push_font((size, italic, bold, teletype)) method
push_margin(margin) method
push_style(*styles) method
report_unbalanced(tag)method
reset() method
save_bgn() method
save_end() method
scripts
 CGI
 outputting links from HTML files to Web pages
send_flowing_data(data) method
send_hor_rule(*args, **kw) method
send_label_data(data) method
send_line_break() method
send_literal_data(data) method
send_paragraph(number) method
set_spacing(spacing) method
setliteral() method
setnomoretags() method
SGML files
 opening
sgmllib module 2nd 3rd
sgmllib.SGMLParser interface 2nd
SGMLParser class 2nd 3rd 4th 5th
start_tag() method
start_tag(attributes) method
tags
 handling
titles
 page
 collecting information for
unknown_charref(ref) method
unknown_endtag(tag) method
unknown_entity(ref) method
unknown_starttag(tag, attributes) method

values
 counter
variables
 formatter
Web pages
 outputting links from HTML files to, CGI scripts
writer attribute
writer objects 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 13. Data Manipulation > MIME Parsing and
Manipulation

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148042031160006072026019

MIME Parsing and Manipulation

MIME (Multipurpose Internet Mail Extensions) is a standard for sending multipart multimedia data through
Internet mail. This standard exposes mechanisms for specifying and describing the format of Internet message
bodies.

A MIME-encoded message looks similar to the following:

Content-Type: multipart/mixed; boundary="====_238659232=="
Date: Mon, 03 Apr 2000 18:30:23 -0400
From: Andre Lessa <alessa@lessaworld.com>
To: Renata Lessa <rlessa@lessaworld.com>
Subject: Python Book

—====_238659232==
Content-Type: text/plain; charset="us-ascii"

Sorry Honey, I am late for dinner. I am still writing Chapter 13. Meanwhile,
take a look at the following Cooking material that you've asked me to find in
the Internet.

—====_238659232==
Content-Type: application/msword; name="cookmasters.doc"
Content-Transfer-Encoding: base64
Content-Disposition: attachment, filename=" cookmasters.doc"

GgjEPgkwIr4G29m1Lawr7GgjEPgkwIr4G29m14tifkAb3qPgGgjEPgkwIr4G29m1La29m14tifkAb
3qPgGgjEPgkwIr4G29m1Law29m14tifkAb3qPgGgjEPgkwIr4G29m1Lawr629m14tifkAb3qPgIr4
G29m1Lawr2GgjEPgkwIr4G29m1Lawr29m14tifkAb3qPg29m14tifkAb3qPgGgjEPgkwIr4G29m1L
awr8Ab3qPgGgjEPgkwIr4G29m1GgjEPgkwIr4G29m1Lawr7GgjEPgkwIr4G29m1Hawr0==
—====_238659232==—

Note that the message is broken into parts, and each part is delimited by a boundary. The boundary itself works
like a separator, and its value is defined in the first line of the message, right next to the first content-type.

Every part starts with a boundary mark, and then it is followed by a set of RFC822 headers telling you what is the
content-type and the encoding format of the data for that part, and next, separated by a blank line, we have the data
itself.

Check out the last line of the message. Do you see the trailing — after the boundary? That's how the message

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=194
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A46%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=194&now=5%2F31%2F2002+4%3A46%3A43+PM

identifies the final boundary.

The next couple of modules are tools for mail and news message processing that use MIME messages. For more
information, check out

RFC 1521

http://info.internet.isi.edu/in-notes/rfc/files/rfc1521.txt

rfc822

The rfc822 module parses mail headers that are defined by the Internet standard RFC 822. This standard
specifies the syntax for text messages that are sent among computer users, within the framework of electronic mail.
These headers are used in a number of contexts including mail handling and in the HTTP protocol. For more
information, check out

Internet standards—Standard for ARPA Internet Text Messages

http://info.internet.isi.edu/in-notes/rfc/files/rfc822.txt

This module defines a class, Message, which represents a collection of email headers. It is used in various
contexts, usually to read such headers from a file. This module also defines a helper class AddressList for
parsing RFC822 addresses. A dictionary-like object represents the Message object, where the message headers
are the dictionary keys.

mimetools

The mimetools module provides utility tools for parsing and manipulation of MIME multipart and encoded
messages. This module contains a special dictionary-like object called Message that collects some information
about MIME encoded messages. mime-version,content-type,charset,to,date,from, and
subject are some examples of dictionary keys that the object possesses. This module also implements some
utility functions. The choose_boundary() function creates a unique boundary string.

The next two functions encode and decode file objects based on the encoding format, which can be "quoted-
printable", "base64", or "uuencode".

● decode(inputfileobject, outputfileobject, encoding)

● encode(inputfileobject, outputfileobject, encoding)

The functions copyliteral(input, output) and copybinary(input, output) read the input file
(until EOF) and write them to the output file object. Note that the objects must be opened.

Take a look at the message = mimetools.Message(fileobject) function. This function returns a
Message object derived from the rfc822.Message class. Therefore, it supports all the methods supported by

http://info.internet.isi.edu/in-notes/rfc/files/rfc1521.txt
http://info.internet.isi.edu/in-notes/rfc/files/rfc822.txt

rfc822.Message, plus the following ones:

message.gettype()— Returns the type/subtype from the content-type header. The default
value is text/plain.

message.getencoding()— Returns the message encoding method. The default value is
7bit.

message.getplist()— Returns the list of parameters from the content-type header.

message.getmaintype()— Returns the main type of the content-type header. The default
value is text.

message.getsubtype()— Returns the subtype of the content-type header. The default value
is plain.

message.getparam(name)— Returns the value of the first name parameter found in the
content-type header.

MimeWriter

The MimeWriter module implements a generic file-writing class, also called MimeWriter, that is used to
create MIME encoded multipart files (messages).

message =
 MimeWriter.MimeWriter(fileobject_forwriting)

The following function adds a header line ("key: value") to the MIME message.

message.addheader(key, value
 [,prefix = 0])

If prefix = 0, the header line is appended to the end; if it is 1, the line is inserted at the start.

Next, you have some methods that are exposed by the message object.

message.flushheaders()— Writes all headers to the file.

message.startbody(ctype [,plist [,prefix = 1]])— Specifies the content-type,
and a list of additional parameters to be included in the message body. It returns a file-like object
that must be used to write to the message body.

message.startmultipartbody(subtype [,boundary [,plist [,prefix =
1]]])— Specifies the multipart subtype, a possible user-defined boundary, and a list of additional
parameters to be included in the multipart message subtype. It returns a file-like object that must be
used to write to the message body.

message.nextpart()— Creates a new part in a multipart message. The startbody method
must be called before calling this one.

message.lastpart()— Indicates the last part of a multipart message.

The next code introduces the basic usage of the MimeWriter module, along with other supporting modules.

import MimeWriter
import quopri, base64

msgtext = "This message has 3 images as attachments."
files = ["sun.jpg", "rain.jpg", "beach.jpg"]
mimefile = "mymessage.msg"

mimemsg = MimeWriter.MimeWriter(sys.stdout)
mimemsg.addheader("Mime-Version","1.0")
mimemsg.startmultipartbody("mixed")

msgpart = mimemsg.nextpart()
msgpart.addheader("Content-Transfer-Encoding", "quoted-printable")
msgpart.startbody("text/plain")
quopri.encode(StringIO.StringIO(msgtext), mimefile, 0)

for file in files:
 msgpart = mimemsg.nextpart()
 msgpart.addheader("Content-Transfer-Encoding", "base64")
 msgpart.startbody("text/jpeg")
 base64.encode(open(file, "rb"), mimefile)

mimemsg.lastpart()

multifile

The multifile module enables you to treat distinct parts of a text file as file-like input objects. Usually, it uses
text files that are found in MIME encoded messages. This module works by splitting a file into logical blocks that
are delimited by a unique boundary string. Next, you will be exposed to the class implemented by this module:
MultiFile.

MultiFile (fp[, seekable])

Create a multifile. You must instantiate this class with an input object argument for the MultiFile instance to
get lines from, such as a file object returned by open().MultiFile only looks at the input object's
readline(), seek(), and tell() methods, and the latter two are only needed if you want random access
to the individual MIME parts. To use MultiFile on a non-seekable stream object, set the optional seekable
argument to false; this will prevent using the input object's seek() and tell() methods.

It will be useful to know that in MultiFile's view of the world, text is composed of three kinds of lines: data,
section-dividers, and end-markers. MultiFile is designed to support parsing of messages that might have
multiple nested message parts, each with its own pattern for section-divider and end-marker lines.

A MultiFile instance has the following methods:

push(str)— Pushes a boundary string. When an appropriately decorated version of this
boundary is found as an input line, it will be interpreted as a section-divider or end-marker. All
subsequent reads will return the empty string to indicate end-of-file, until a call to pop() removes
the boundary or a next() call re-enables it.

It is possible to push more than one boundary. Encountering the most-recently-pushed boundary will
return EOF; encountering any other boundary will raise an error.

readline(str)— Reads a line. If the line is data (not a section-divider, end-marker, or real
EOF), return it. If the line matches the most-recently-stacked boundary, return '' and set
self.last to 1 or 0 according to if the match is or is not an end-marker. If the line matches any
other stacked boundary, raise an error. On encountering end-of-file on the underlying stream object,
the method raises Error unless all boundaries have been popped.

readlines(str)— Returns all lines remaining in this part as a list of strings.

read()— Reads all lines, up to the next section. Returns them as a single (multiline) string. Note
that this doesn't take a size argument.

next()— Skips lines to the next section (that is, reads lines until a section-divider or end-marker
has been consumed). Returns true if there is such a section, false if an end-marker is seen. Re-
enables the most-recently-pushed boundary.

pop()— Pops a section boundary. This boundary will no longer be interpreted as EOF.

seek(pos[, whence])— Seeks. Seek indices are relative to the start of the current section.
The pos and whence arguments are interpreted as if for a file seek.

tell()— Returns the file position relative to the start of the current section.

is_data(str)— Returns true if str is data and false if it might be a section boundary. As
written, it tests for a prefix other than - at the start of a line (which all MIME boundaries have), but

it is declared so that it can be overridden in derived classes.

Note

Note that this test is intended as a fast guard for the real boundary tests; if it always returns false, it will merely
slow processing, not cause it to fail.

section_divider(str)— Turns a boundary into a section-divider line. By default, this method
prepends - (which MIME section boundaries have), but it is declared so that it can be overridden in
derived classes. This method needs not append LF or CR-LF because a comparison with the result
ignores trailing whitespace.

end_marker(str)— Turns a boundary string into an end-marker line. By default, this method
prepends - and appends - (similar to a MIME-multipart end-of-message marker), but it is declared
so that it can be overridden in derived classes. This method need not append LF or CR-LF, because a
comparison with the result ignores trailing whitespace.

Finally, MultiFile instances have two public instance variables:

level— This is the nesting depth of the current part.

last— True if the last end-of-file was for an end-of-message marker.

The following code exemplifies the multifile module.

1: import multifile
2: import rfc822, cgi
3:
4: multipart = "multipart/"
5: filename=open("mymail.msg")
6: msg = rfc822.Message(filename)
7:
8: msgtype, args = cgi.parse_header(msg["content-type"])
9:
10: if msgtype[:10] == multipart:
11: multifilehandle = multifile.MultiFile(filename)
12: multifilehandle.push(args["boundary"])
13: while multifilehandle.next():
14: msg = rfc822.Message(multifilehandle)
15: print msg.read()
16: multifilehandle.pop()
17: else:
18: print "This is not a multi-part message!"

19: print "---------------------------------"
20: print filename.read()

Line 6: msg is a dictionary-like object. You can apply dictionary methods to this object, such as
msg.keys(),msg.values(), and msg.items().

Line 8: Parses the content-type header.

Lines 11-16: Handles the multipart message.

Line 15: Prints the multipart message.

Line 20: Prints the plain message, when necessary.

mailcap

The mailcap module is used to read mailcap files and to configure how MIME-aware applications react to
files with different MIME types.

Note

Mailcap files are used to inform applications, including mail readers and Web browsers, how to process files
with different MIME types. A small section of a mailcap file looks like this:

image/jpeg; imageviewer %s

application/zip; gzip %s

The next code demonstrates the usage of the mailcap module.

>>> import mailcap
>>> capsdict = mailcap.getcaps()
>>> command, rawentry = mailcap.findmatch(capsdict, "image/jpeg", \
 filename="/usr/local/uid213")
 >>> print command
imageviewer /usr/local/uid213
>>> print rawentry
image/jpeg; imageviewer %s

The getcaps() function reads the mailcap file and returns a dictionary mapping MIME types to mailcap entries;
and the findmatch() function searches the dictionary for a specific MIME entry, returning a command line
ready to be executed along with the raw mailcap entry.

mimetypes

The mimetypes module supports conversions between a filename or URL and the MIME type associated with the
filename extension. Essentially, it is used to guess the MIME type associated with a file, based on its extension.

For example,

Filename extension MIME type associated(Main type/Sub type)
.html text/html
.gif image/gif
.xml application/xml

A complete list of extensions and their associated MIME types can be found by typing

import mimetypes
for EXTENSION in mimetypes.types_map.keys():
 print EXTENSION, " = ", mimetypes.types_map[EXTENSION]

Next, you have a list of functions exposed by the mimetypes module.

mimetypes.guess_type(url_or_filename)— Returns a tuple (type, encoding), such as
('image/jpeg', None) and ('application/zip', None).

mimetypes.guess_extension(type)— Tries to guess the file extension based on a MIME
type.

mimetypes.init([files])— Initializes the module after reading a file stored in the
following format:

type/subtype: extension1, extension2, …
…

mimetypes.read_mime_types(filename)— Reads a file and returns a dictionary
mapping MIME types and the filename extensions associated to that type.

The following dictionaries are also exposed by the mimetypes module.

mimetypes.suffix_map— Dictionary that maps suffixes to suffixes.

mimetypes.encodings_map— Dictionary that maps encoding types to filename extensions.

mimetypes.types_map— Dictionary that maps MIME types to filename extensions.

base64

The base64 module performs base64 encoding and decoding of arbitrary binary strings into text string that can
be safely emailed or posted. This module is commonly used to encode binary data in mail attachments.

The arguments of the next functions can be either filenames or file objects. The first argument is open for reading:

base64.encode(messagefilehandle, outputfilehandle)

The second argument is open for writing:

base64.decode(encodedfilehandle, outputfilehandle)

This module also implements the functions encodestring(stringtoencode) and
decodestring(encodedstring), which are built on top of the encode and decode function. Both
internally use the StringIO module in order to enable the use of the base64 module to encode and decode
strings. Note that the decodestring() function returns a string that contains the decoded binary data.

quopri

The quopri module performs quoted-printable transport encoding and decoding of MIME quoted-printable data,
as defined in RFC 1521: "MIME (Multipurpose Internet Mail Extensions) Part One". The quoted-printable
encoding is designed for data in which there are relatively few nonprintable characters; the base64 encoding
scheme available via the base64 module is more compact if there are many such characters, as when sending a
graphics file. This format is primarily used to encode text files.

decode(input, output) decodes the contents of the input file and writes the resulting decoded binary data
to the output file. input and output must either be file objects or objects that mimic the file object interface.
input will be read until input.read() returns an empty string.

encode(input, output, quotetabs) encodes the contents of the input file and writes the resulting
quoted-printable data to the output file. input and output must either be file objects or objects that mimic the

file object interface. input will be read until input.read() returns an empty string.

This module only supports file-to-file conversions. If you need to handle string objects, you need to convert them
using the StringIO module.

import quopri
quopri.encode(infile, outfile, tabs=0)
quopri.decode(infile, outfile)

This module is purely based on plain U.S. ASCII text. Non-U.S. characters are mapped to an = followed by two
hexadecimal digits. The = character resembles =3D, and whitespaces at the end of lines are represented by =20.

mailbox

The mailbox module implements classes that allow easy and uniform access to read various mailbox formats in a
UNIX system.

import mailbox

mailboxname = "/tmp/mymailbox"
mbox = mailbox.UnixMailbox(open(mailboxname))

msgcounter = 0
while 1:
 mailmsg = mbox.next()
 if not mailmsg:
 break
 msgcounter = msgcounter + 1
 messagebody = mailmsg.fp.read()
 print messagebody
print
print "The message counter is %d" % (msgcounter)

mimify

The mimify module has functions to convert and process simple and multi-part mail messages to/from MIME
format—messages are converted to plain text. This module can be used either as a command line tool, or as a
regular Python module.

To encode, you need to type:

$mimify.py -e raw_message mime_message

or

import mimify, StringIO, sys
msgfilename = "msgfilename.msg"
filename = StringIO.StringIO()
mimify.unmimify(msgfilename, filename, 1)
file.seek(0)
mimify.mimify(filename, sys.stdout)

To decode, type

$mimify.py -f mime_message raw_message

or

import mimify, sys
mimify.unmimify(messagefilename, sys.stdout, 1)

Message(file[, seekable])

A Message instance is instantiated with an input object as parameter. Message relies only on the input object
having a readline() method; in particular, ordinary file objects qualify. Instantiation reads headers from the
input object up to a delimiter line (normally a blank line) and stores them in the instance.

This class can work with any input object that supports a readline() method. If the input object has seek and
tell capability, the rewindbody() method will work; also, illegal lines will be pushed back onto the input
stream. If the input object lacks seek and tell capability but has an unread() method that can push back a line of
input, Message will use that to push back illegal lines. Thus, this class can be used to parse messages coming
from a buffered stream.

The optional seekable argument is provided as a workaround for certain studio libraries in which tell() discards
buffered data before discovering that the lseek() system call doesn't work. For maximum portability, you
should set the seekable argument to zero to prevent that initial tell() when passing in an unseekable object such
as a file object created from a socket object.

Input lines as read from the file might either be terminated by CR-LF or by a single linefeed; a terminating CR-LF
is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper- or lowercase; for example, m['From'],m['from'], and
m['FROM'] all yield the same result.

AddressList(field)— You can instantiate the AddressList helper class using a single
string parameter, a comma-separated list of RFC 822 addresses to be parsed. (The parameter None
yields an empty list.)

parsedate(date)— attempts to parse a date according to the rules in RFC 822. However, some
mailers don't follow that format as specified, so parsedate() tries to guess correctly in such
cases. date is a string containing an RFC 822 date, such as 'Mon, 20 Nov 1995 19:12:08
-0500'. If it succeeds in parsing the date, parsedate() returns a 9-tuple that can be passed
directly to time.mktime(); otherwise None will be returned.

parsedate_tz(date)— performs the same function as parsedate(), but returns either
None or a 10-tuple; the first nine elements make up a tuple that can be passed directly to
time.mktime(), and the tenth is the offset of the date's timezone from UTC (which is the
official term for Greenwich Mean Time). (Note that the sign of the timezone offset is the opposite of
the sign of the time.timezone variable for the same timezone; the latter variable follows the
POSIX standard, whereas this module follows RFC 822.) If the input string has no timezone, the last
element of the tuple returned is None.

mktime_tz(tuple)— Turn a 10-tuple as returned by parsedate_tz() into a UTC
timestamp. It the timezone item in the tuple is None, assume local time. Minor deficiency: this first
interprets the first eight elements as a local time and then compensates for the timezone difference;
this might yield a slight error around daylight savings time switch dates. It is not enough to worry
about for common use.

Message Objects

A message object behavior is very similar to a dictionary. A Message instance has also the following methods:

rewindbody()— Seeks to the start of the message body. This only works if the file object is
seekable.

isheader(line)— Returns a line's canonicalized fieldname (the dictionary key that will be
used to index it) if the line is a legal RFC822 header; otherwise returns None (implying that parsing
should stop here and the line be pushed back on the input stream). It is sometimes useful to override
this method in a subclass.

islast(line)— Returns true if the given line is a delimiter on which Message should stop. The
delimiter line is consumed, and the file object's read location is positioned immediately after it. By
default, this method just checks that the line is blank, but you can override it in a subclass.

iscomment(line)— Returns true if the given line should be ignored entirely, just skipped. By
default, this is a stub that always returns false, but you can override it in a subclass.

getallmatchingheaders(name)— Returns a list of lines consisting of all headers matching
name, if any. Each physical line, whether it is a continuation line or not, is a separate list item.
Returns the empty list if no header matches name.

getfirstmatchingheader(name)— Returns a list of lines comprising the first header
matching name, and its continuation line(s), if any. Returns None if no header matches name.

getrawheader(name)— Returns a single string consisting of the text after the colon in the first
header matching name. This includes leading whitespace, the trailing linefeed, and internal
linefeeds and whitespace if any continuation line(s) were present. Returns None if no header
matches name.

getheader(name[, default])— Similar to getrawheader(name), but strips leading
and trailing whitespace. Internal whitespace is not stripped. The optional default argument can be
used to specify a different default to be returned when there is no header matching name.

get(name[, default])— An alias for getheader(), to make the interface more
compatible with regular dictionaries.

getaddr(name)— Returns a pair (full name, email address) parsed from the string returned by
getheader(name). If no header matching name exists, returns (None, None); otherwise
both the full name and the address are (possibly empty) strings.

Example: If m's first From header contains the string 'alessa@lessaworld.com (Andre
Lessa)', m.getaddr('From') will yield the pair ('Andre Lessa',
'alessa@lessaworld.com'). If the header contained 'Andre Lessa
<alessa@lessaworld.com>' instead, it would yield the exact same result.

getaddrlist(name)— Similar to getaddr(list), but parses a header containing a list of
email addresses (for example, a To header) and returns a list of (full name, email address) pairs
(even if there was only one address in the header). If no header matches name, returns an empty
list.

If multiple headers exist that match the named header (for example, if there are several CC headers),
all are parsed for addresses. Any continuation lines that the named headers contain are also parsed.

Note that the current version of this function is not really correct. It yields bogus results if a full
name contains a comma.

getdate(name)— Retrieves a header using getheader() and parses it into a 9-tuple
compatible with time.mktime(). If no header matches name, or it is unparsable, returns None.

Date parsing appears to be a black art, and not all mailers adhere to the standard. Although it has
been tested and found correct on a large collection of email from many sources, it is still possible
that this function might occasionally yield an incorrect result.

getdate_tzname)— Retrieves a header using getheader() and parses it into a 10-tuple; the
first nine elements will make a tuple compatible with time.mktime(), and the 10th is a number
giving the offset of the date's timezone from UTC. Similar to getdate(), if no header matches
name, or it is unparsable, it returns None.

Message instances also support a read-only mapping interface. In particular: m[name] is similar to
m.getheader(name), but raises KeyError if there is no matching header; and
len(m),m.has_key(name),m.keys(),m.values(), and m.items() act as expected (and
consistently).

Finally, Message instances have two public instance variables:

● headers—A list containing the entire set of header lines, in the order in which they were read (except that
setitem calls can disturb this order). Each line contains a trailing newline. The blank line terminating the
headers is not contained in the list.

● fp—The file object passed at instantiation time.

AddressListObjects

An AddressList instance has the following methods:

__len__(name)— Returns the number of addresses in the address list.

__str__(name)— Returns a string representation of the address list. Addresses are rendered in
"name"<host@domain> form, comma separated.

__add__(name)— Returns an AddressList instance that contains all addresses in both
AddressList operands, with duplicates removed (set union).

__sub__(name)— Returns an AddressList instance that contains every address in the left-
hand AddressList operand that is not present in the right-hand address operand (set difference).

Finally, AddressList instances have one public instance variable: addresslist, which is a list of tuple
string pairs, one per address. In each member, the first is the canonicalized name part of the address, the second is
the route-address (@-separated host-domain pair).

The following example demonstrates the use of the rfc822 module:

import rfc822
mailbox_filename = "mymailbox.msg"

file_handle = open("mailbox_filename")
messagedic = rfc822.Message(file_handle)

content_type = messagedic["content-type"]
from_field = messagedic["From"]
to_field = messagedic.getaddr("To")
subject_field = messagedic["Subject"]

file_handle.close()
print content_type, from_field, to_field, subject_field

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

2nd 3rd __add__(name) method
__len__(name) method
__str__(name) method
__sub__(name) method
AddressList class
addresslist variable
AddressList(field) method
classes
 AddressList
 Message
 Message(file[, 2nd 3rd
 MultiFile (fp[, 2nd
 multifile module 2nd
data
 manipulating
 Multipurpose Internet Mail Extension (MIME) parsing and 2nd 3rd 4th 5th 6th 7th
decode(input, output) function
decode(inputfileobject, outputfileobject, encoding) function
dictionaries
 mimetypes module
encode(input, output, quotetabs) function
encode(inputfileobject, outputfileobject, encoding) function
encoded messages
 Multipurpose Internet Mail Extension (MIME) 2nd
end_marker(str) method
extensions
 Multipurpose Internet Mail (MIME) 2nd 3rd 4th 5th 6th 7th

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=194

findmatch() function
fp instance
functions
 decode(input, output)
 decode(inputfileobject, outputfileobject, encoding)
 encode(input, output, quotetabs)
 encode(inputfileobject, outputfileobject, encoding)
 findmatch()
 getcaps()
 mimetools module
 mimetypes module
 mimetypes.guess_extension(type)
 mimetypes.guess_type(url_or_filename)
 mimetypes.init([files])
 mimetypes.read_mime_types(filename)
 quopri module 2nd
get(name[, default]) method
getaddr(name) method
getaddrlist(name) method
getallmatchingheaders(name) method
getcaps() function
getdate tz(name) method
getdate(name) method
getfirstmatchingheader(name) method
getheader(name[, default]) method
getrawheader(name) method
headers instance
instances
 fp
 headers
 Message objects
is_data(str) method
iscomment(line) method
isheader(line) method
islast(line) method
l
last variable
level variable
mailcap module
manipulating
 data
 Multipurpose Internet Mail Extension (MIME) 2nd 3rd 4th 5th 6th 7th
Message class
Message object
message object
 methods exposed by 2nd
message objects 2nd 3rd
Message(file[, 2nd 3rd
message.flushheaders() method
message.getencoding() method
message.getmaintype() method

message.getparam(name) method
message.getplist() method
message.getsubtype() method
message.gettype() method
message.lastpart() method
message.nextpart() method
message.startbody(ctype, [,plist [,prefix = 1]]) method
message.startmultipartbody(subtype [,boundary [,plist [,prefix = 1]]]) method
messages
 MIME-encoded 2nd
methods 2nd
 __add__(name)
 __len__(name)
 __str__(name)
 __sub__(name)
 AddressList objects
 AddressList(field)
 end_marker(str)
 exposed by message object 2nd
 get(name[, default])
 getaddr(name)
 getaddrlist(name)
 getallmatchingheaders(name)
 getdate tz(name)
 getdate(name)
 getfirstmatchingheader(name)
 getheader(name[, default])
 getrawheader(name)
 is_data(str)
 iscomment(line)
 isheader(line)
 islast(line)
 l
 message objects 2nd 3rd 4th
 message.flushheaders()
 message.getencoding()
 message.getmaintype()
 message.getparam(name)
 message.getplist()
 message.getsubtype()
 message.gettype()
 message.lastpart()
 message.nextpart()
 message.startbody(ctype, [,plist [,prefix = 1]])
 message.startmultipartbody(subtype [,boundary [,plist [,prefix = 1]]])
 mimetools module
 mktime tz(tuple)
 MultiFile (fp[, 2nd
 next
 open()

 parsedate tz(date)
 parsedate(date)
 pop
 push(str)
 read
 readline() 2nd 3rd
 readline(str)
 readlines(str)
 rewindbody() 2nd
 section_divider(str)
 tell() 2nd 3rd
 unread()
MIME (Multipurpose Internet Mail Extension) 2nd 3rd 4th 5th 6th 7th
mimetypes module
mimetypes.guess_extension(type) function
mimetypes.guess_type(url_or_filename) function
mimetypes.init([files]) function
mimetypes.read_mime_types(filename) function
MimeWriter module
mimify module 2nd 3rd 4th
mktime tz(tuple) method
modules
 mailcap
 mimetypes
 MimeWriter
 mimify 2nd 3rd 4th
 multifile 2nd 3rd
 quopri 2nd
 rfc822 2nd 3rd
MultiFile (fp[, 2nd
multifile module 2nd 3rd
Multipurpose Internet Mail Extension (MIME) 2nd 3rd 4th 5th 6th 7th
Multipurpose Internet Mail Extension (MIME) parsing and 2nd 3rd 4th 5th 6th 7th
next method
objects
 Message
 message 2nd 3rd
 methods exposed by 2nd
open() method
parsedate tz(date) method
parsedate(date) method
parsing
 data
 Multipurpose Internet Mail Extension (MIME) 2nd 3rd 4th 5th 6th 7th
pop method
push(str) method
quopri module 2nd
read method
readline() method 2nd 3rd
readline(str) method
readlines(str) method

rewindbody() method 2nd
rfc822 module 2nd 3rd
section_divider(str) method
tell() method 2nd 3rd
unread() method
variables
 addresslist
 AddressList objects
 last
 level
 MultiFile (fp[,

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 13. Data Manipulation > Generic
Conversion Functions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148042031161037244079029

Generic Conversion Functions

The next couple of modules are used for general data conversions.

netrc

The netrc module parses, processes, and encapsulates the .netrc configuration file format used by
UNIX FTP program and other FTP clients.

import netrc
netrc_filename = "/usr/local/myconfig.netrc"
netrccfg = netrc.netrc(netrc_filename)
l, a, p = netrccfg.authenticators("connection.msg")
print "My Login = %s" % (l)
print "My Password = %s" % (p)
print "My Account= %s" % (a)

mhlib

The mhlib module provides a Python interface to access MH folders/mailboxes and their contents.
This module contains three basic classes:

MH ([path[, profile]])— Represents a particular collection of MH folders.

Folder (mh, name)— Represents a single folder and its messages.

Message (folder, number[, name])— Represents individual messages in a
folder. The Message class is derived from mimetools.Message.

MHObjects

MH instances have the following methods:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=195
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A46%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=195&now=5%2F31%2F2002+4%3A46%3A54+PM

error(format[, ...])— Prints an error message: can be overridden.

getprofile(key)— Returns a profile entry (None if not set).

getpath()— Returns the mailbox pathname.

getcontext()— Return the current folder name.

setcontext(name)— Sets the current folder name.

listfolders()— Returns a list of top-level folders.

listallfolders()— Returns a list of all folders.

listsubfolders(name)— Returns a list of direct subfolders of the given folder.

listallsubfolders(name)— Returns a list of all subfolders of the given folder.

makefoldername)— Creates a new folder.

deletefolder(name)— Deletes a folder: must have no subfolders.

openfolder(name)— Returns a new open folder object.

Folder Objects

Folder instances represent open folders and have the following methods:

error(format[, ...])— Prints an error message; can be overridden.

getfullname()— Returns the folder's full pathname.

getsequencesfilename()— Returns the full pathname of the folder's sequences
file.

getmessagefilename(n)— Returns the full pathname of message n of the folder.

listmessages()— Returns a list of messages in the folder (as numbers).

getcurrent()— Returns the current message number.

setcurrent(n)— Sets the current message number to n.

parsesequence(seq)— Parses msgs syntax into a list of messages.

getlast()— Gets last message, or 0 if no messages are in the folder.

setlast(n)— Sets last message (internal use only).

getsequences()— Returns dictionary of sequences in folder. The sequence names
are used as keys, and the values are the lists of message numbers in the sequences.

putsequences(dict)— Returns dictionary of sequences in folder name: list.

removemessages(list)— Removes messages in list from folder.

refilemessages(list, tofolder)— Moves messages in list to other folder.

movemessage(n, tofolder, ton)— Moves one message to a given destination
in another folder.

copymessage(n, tofolder, ton)— Copies one message to a given destination
in another folder.

Message Objects

openmessage(n) returns a new open message object (costs a file descriptor).

binhex

The binhex module encodes and decodes files in binhex4 format. This format is commonly used to
represent files on Macintosh systems.

import binhex, sys
infile = "filename.jpg"
binhex.binhex(infile, sys.stdout)

binhex(inputfile, outputfile) converts a binary file (inputfile) to a binhex
file(outputfile).

hexbin(inputfile [, outputfile]) converts a binhex file (inputfile) back to a regular
binary file (outputfile). When the output name is omitted, the interpreter uses the same one
provided in the first argument.

uu

The uu module encodes and decodes files in uuencode format. This module does its job by transferring
binary data over an ASCII-only connection. Wherever a file argument is expected, the methods accept
a file-like object. For backwards compatibility, a string containing a pathname is also accepted, and the
corresponding file will be opened for reading and writing; the pathname - is understood to mean the
standard input or output. However, this interface is deprecated; it's better for the caller to open the file
itself, and be sure that, when required, the mode is rb or wb on Windows or DOS.

The code of this module was contributed by Lance Ellinghouse and modified by Jack Jansen.

The uu module defines the following functions:

encode (in_file, out_file[, name[, mode]])— This function
uuencodes file in_file into file out_file. The uuencoded file will have the header
specifying name and mode as the defaults for the results of decoding the file. The default
defaults are taken from in_file, or - and 0666, respectively.

decode (in_file[, out_file[, mode]])— This call decodes uuencoded
file in_file placing the result on file out_file. If out_file is a pathname, the mode is also
set. Defaults for out_file and mode are taken from the uuencode header.

Note that in the previous functions, both arguments can be either filenames or file objects.

This format used to be popular on the Usenet, but nowadays, it is being superceded by base64
encoding.

Each encoded data stream starts with a begin line, which also includes the file privileges, the
filename, and ends with an end line, as you can see in the following example:

begin 755 executeprog.py
KF_EF_#JFJ! …
end

binascii

The binascii module implements methods to convert data between binary and various ASCII-
encoded binary representations, including binhex,uu, and base64. Note that normally, you
would just use the binhex,uu, or base64 modules rather than binascii.

This module implements two exceptions: Error (raised on errors), and Incomplete (raised on
incomplete data). The following methods are implemented by this module:

binascii.b2a_base64(binarydata)— Converts a string of binary data to a
string of base64-encoded characters.

binascii.a2b_base64(string)— Converts a string of base64-encoded data to
binary.

binascii.b2a_uu(binarydata)— Converts a string of binary data to a string of
uuencoded characters.

binascii.a2b_uu(string)— Converts a string of uuencoded data to binary.

binascii.b2a_hqx(binarydata)— Converts a string of binary data to a string
of binhex4-encoded characters.

binascii.a2b_hqx(string)— Converts a string of binhex4-encoded data to
binary.

binascii.rledecode_hqx(binarydata)— Decompresses the binary data
using the RLE (Run-Length Encoding) method. If the binary data is incomplete, an
Incomplete exception is raised.

binascii.rleecode_hqx(binarydata)— Compresses the binary data
according to the RLE method.

binascii.crc_hqx(binarydata, crc)— Returns the checksum of a given
binhex4-binary data. The argument crc indicates the checksum's starting value.

Note that starting with Python 2.0, there are two more functions to include in the list provided by the
binascii module. They are called b2a_hex and a2b_hex. They are used to convert between

binary data and its hexadecimal representation.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

- pathname
a2b_hex function
b2a_hex function
binascii module
 functions
binascii.a2b_base64(string) method
binascii.a2b_hqx(string) method
binascii.a2b_uu(string) method
binascii.b2a_base64(binarydata) method
binascii.b2a_hqx(binarydata) method
binascii.b2a_uu(binarydata) method
binascii.crc_hqz(binarydata, crc) method
binascii.rledecode_hqx(binarydata) method
binascii.rleecode_hqx(binarydata) method
binhex module
binhex(inputfile, outputfile) function
copymessage method
data
 manipulating
 generic conversion functions 2nd 3rd 4th 5th
decode (in_file[, out_file[, mode]])function
deletefolder(name) method
Ellinghouse, Lance
encode (in_file, out_file[, name[, mode]])function
error(format[, ...]) method 2nd
Folder (mh, name) method
folder objects
functions
 a2b_hex
 b2a_hex
 binascii module
 binhex module
 binhex(inputfile, outputfile)
 decode (in_file[, out_file[, mode]])
 encode (in_file, out_file[, name[, mode]])

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=195

 generic conversion 2nd 3rd 4th 5th
 hexbin(inputfile [, outputfile])
 uu module
generic conversion functions 2nd 3rd 4th 5th
generic conversion functions parsing and 2nd 3rd 4th 5th
getcontext() method
getcurrent() method
getfullname() method
getlast() method
getmessagefilename(n) method
getpath() method
getprofile(key) method
getsequences() method
getsequencesfilename() method
hexbin(inputfile [, outputfile]) function
Jansen, Jack
listallfolders() method
listallsubfolders(name) method
listfolders() method
listmessages() method
listsubfolders(name) method
makefolder(name) method
manipulating
 data
 generic conversion functions 2nd 3rd 4th 5th
Message (folder, number[, name]) method
methods
 binascii module 2nd
 binascii.a2b_base64(string)
 binascii.a2b_hqx(string)
 binascii.a2b_uu(string)
 binascii.b2a_base64(binarydata)
 binascii.b2a_hqx(binarydata)
 binascii.b2a_uu(binarydata)
 binascii.crc_hqz(binarydata, crc)
 binascii.rledecode_hqx(binarydata)
 binascii.rleecode_hqx(binarydata)
 copymessage(n, tofolder, ton)
 deletefolder(name)
 error(format[, ...]) 2nd
 Folder (mh, name)
 folder objects
 getcontext()
 getcurrent()
 getfullname()

 getlast()
 getmessagefilename(n)
 getpath()
 getprofile(key)
 getsequences()
 getsequencesfilename()
 listallfolders()
 listallsubfolders(name)
 listfolders()
 listmessages()
 listsubfolders(name)
 makefolder(name)
 Message (folder, number[, name])
 MH ([path[, profile]])
 MH objects
 mhlib module
 movemessage(n, tofolder, ton)
 openfolder(name)
 openmessage(n)
 parsesequence(seq)
 putsequences(dict)
 refilemessages(list, tofolder)
 removemessages(list)
 setcontext(name)
 setcurrent(n)
 setlast(n)
MH ([path[, profile]]) method
MH objects
mhlib module 2nd 3rd 4th
modes
 rb
 wb
modules
 binascii
 functions
 binhex
 mhlib 2nd 3rd 4th
movemessage(n, tofolder, ton) method
objects
 folder
 MH
openfolder(name) method
openmessage(n) method
parsesequence(seq) method
parsing
 data

 generic conversion functions 2nd 3rd 4th 5th
pathnames
 -
putsequences(dict) method
rb mode
refilemessages(list, tofolder) method
removemessages(list) method
setcontext(name) method
setcurrent(n) method
setlast(n) method
wb mode

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 13. Data Manipulation > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148043124058173185002141

Summary

This chapter provides information concerning how to use Python for data parsing and manipulation.
You learned how to interpret XML, SGML, and HTML documents and how to parse and manipulate
email messages, among other things. As you might already know, Python can be used as a very
effective and productive tool to parse and manipulate information from the Web.

Extensible Markup Language describes a class of data objects called XML documents and partially
describes the behavior of computer programs that process them. For those who want to play around
with XML in Python, there is a Python/XML package to serve several purposes at once. This package
contains everything required for basic XML applications, along with documentation and sample code.

Besides that, the xmllib module serves as the basis for parsing text files formatted in XML. Note that
xmllib is not XML 1.0 compliant, and it doesn't provide any Unicode support. It provides just simple
XML support for ASCII only element and attribute names.

Many XML-based technologies are available for Python/XML development, such as

SAX— This is a common event-based interface for object-oriented XML parsers.

The Document Object Model (DOM)—This is a standard interface for manipulating
XML and HTML documents developed by the World Wide Web Consortium. 4DOM is
a Python library for XML and HTML processing and manipulation using the W3C's
Document Object Model for interface.

XSLT— This is an XML transformation processor based on the W3C's specification.

XML Bookmark Exchange Language (XBEL)— This is an Internet "bookmarks"
interchange format.

SOAP— This is an XML/HTTP-based protocol for accessing services, objects, and
servers in a platform-independent manner. Scarab is a minimal Python SOAP
implementation.

PythonPoint— This has a simple XML markup language for doing presentation slides
and converting them to PDF documents.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=196
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A47%3A03+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=196&now=5%2F31%2F2002+4%3A47%3A03+PM

Pyxie— This is an Open Source XML processing library for Python.

XML-RPC— This is a specification and a set of implementations that allow software
running on different operating systems and different environments to make procedure
calls over the Internet. It is important to say that Python has its own implementation of
XML-RPC.

XDR— This is a standard for data description and encoding. Protocols such as RPC and
NFS use XDR to describe the format of their data.

But Python is not just XML. It also provides support for other markup languages.

The sgmllib module is an SGML (Standard Generalized Markup Language) parser subset. Although
it has a simple implementation, it is powerful enough to build the HTML parser.

The htmllib module defines a parser class that can serve as a base for parsing text files formatted in
HTML. Two helper modules are used by htmllib:

● The htmlentitydefs module is a dictionary that contains all the definitions for the general
entities defined by HTML 2.0.

● The formatter module is used for generic output formatting by the HTMLPARSER class of the
htmllib module.

Apart from markup languages, this chapter also covers mail messages manipulation.

MIME (Multipurpose Internet Mail Extensions) is a standard for sending multi-part multimedia data
through Internet mail. This standard exposes mechanisms for specifying and describing the format of
Internet message bodies. Python provides many modules to support MIME messages, including the
following:

mimetools— Provides utility tools for parsing and manipulation of MIME multi-part
and encoded messages.

MimeWriter— Implements a generic file-writing class that is used to create MIME
encoded multi-part files (messages).

multifile— Enables you to treat distinct parts of a text file as file-like input objects.

mailcap— Reads mailcap files and configures how MIME-aware applications react to

files with different MIME types.

mimetypes— Supports conversions between a filename or URL and the MIME type
associated with the filename extension.

quopri— Performs quoted-printable transport encoding and decoding of MIME
quoted-printable data.

mailbox— Implements classes that allow easy and uniform access to read various
mailbox formats in a UNIX system.

mimify— Contains functions to convert and process simple and multi-part mail
messages to/from MIME format.

rfc822— Parses mail headers that are defined by the Internet standard RFC 822.

Python uses the following modules for general data conversions:

netrc— Parses, processes, and encapsulates the .netrc configuration file format
used by UNIX FTP program and other FTP clients.

mhlib— Provides a Python interface to access MH folders, mailboxes, and their
contents.

base64— Performs base64 encoding and decoding of arbitrary binary strings into
text string that can be safely emailed or posted.

binhex— Encodes and decodes files in binhex4 format. This format is commonly
used to represent files on Macintosh systems.

uu— Encodes and decodes files in uuencode format.

binascii— Implements methods to convert data between binary and various ASCII-
encoded binary representations, including binhex,uu, and base64.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=196

Index terms contained in this section

data
 manipulating
manipulating
 data

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > IV: Graphical Interfaces See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148043124059152216089178

Part IV: Graphical Interfaces
Part IV Graphical Interfaces

Chapter 14 Python and GUIs

Chapter 15 Tkinter

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=198
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A47%3A11+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=198&now=5%2F31%2F2002+4%3A47%3A11+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=198

Web Development > Python Developer's Handbook > 14. Python and GUIs See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148043124056135254107080

Chapter 14. Python and GUIs
My brain hurts

Those who are tired of text-based applications will find this chapter very helpful because it shows what
the available GUI options are for designing Python graphic interfaces. After selecting your GUI toolkit
of choice, you can come back to this chapter and check out the topic that shows how to design a good
graphical interface.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=200
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A47%3A22+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=200&now=5%2F31%2F2002+4%3A47%3A22+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=200

Web Development > Python Developer's Handbook > 14. Python and GUIs > Python GUI
Toolkits

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148043124057186250079251

Python GUI Toolkits

Choosing a toolkit for your graphical user interface (GUI) projects is not a simple thing. You need to
research and compare what the features are that each option has to offer. When you decide to stick to
one toolkit, you'd better be prepared to use it for some time. Toolkit implementations are so different
that it becomes hard to change your code and your way of thinking from one toolkit to another
whenever it comes time to move to a different implementation. Most of all, if you always jump from
one OS to another, make sure that your GUI of choice is cross-platform, even though it is known how
hard it is to implement a cross platform GUI these days (not just in Python). On the other hand, if you
know that you will stay in a certain platform, such as Windows or Linux, for some time be sure
that—depending on what platform you choose—there are a lot of options for you. Of course, by
choosing a cross platform toolkit, you leave your options open (which is a good thing because you
might change your mind in a few years).

Although you might decide to choose something different, the Python community has already chosen
the standard choice for GUI development with Python—it is called Tkinter, and it's part of the standard
Python distribution. For more information, see Chapter 15, "Tkinter."

Besides Tkinter, many other GUI solutions are supported by Python. This chapter exposes many of
them.

STDWIN, which used to be the first word in GUI for Python, is now just an unsupported and obsolete
platform-independent, low-level windowing interface.

Support for the wxWindows portable GUI class library is also available through the wxPython
interface, which runs on multiple systems, such as GTK, Motif, MS Windows, and Mac. wxPython is a
Python extension module that is quickly becoming acclaimed among Python developers by wrapping
many of the wxWindows C++ classes.

Pythonwin is a Python GUI for Windows that includes an interface to the Microsoft Foundation
Classes and a Python programming environment that uses this interface. By the way, this programming
environment is also written in Python.

Other not-so-famous GUI options are also available:

● An object-oriented, cross-platform GUI based on the Microsoft Foundation Classes model

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=201
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A47%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=201&now=5%2F31%2F2002+4%3A47%3A31+PM

called Wpy.

● Interfaces to WAFE, FOX, Motif, PLTK, and so forth.

● Bindings to Gnome, KDE, OPENGL, QT, and so on.

● For Mac systems, you can use its large set of modules that support the native Mac toolbox calls.
Check out the documentation that comes with the Mac Python port for more information.

● As well as many others, as shown in this chapter.

As you can see, the number of options is large. The conclusion is that you need to think about today's
reality and tomorrow's possibilities. Even though we know that Tkinter is doing a great job today, and
it seems that it will for a long time, you should open your mind to other possibilities as well. Be sure
that other nice tools out there exist. Tk is slower than most other toolkits (the one reason people find it
acceptable is that it double buffers its widgets).

At this time, a couple of other bindings are becoming quite capable, such as the bindings for
Gnome/GTK, QT, and KDE. These bindings fit nicer into their respective desktop environments.

The question that I left for you is, "What toolkit will be part of the next generation of standard GUIs for
Python?" I see many alternatives: What about you? Most people will stick to Tkinter. That is for sure.
And that's also the reason why the next chapter covers this fantastic toolkit implementation.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

graphical user interfaces (GUIs)
 toolkits 2nd
 Pythonwin
interfaces
 graphical user (GUI)
 toolkits 2nd
 toolkits;Pythonwin
modules
 Pythonwin
Pythonwin module
toolkits
 graphical user interfaces (GUIs) 2nd

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=201

 Pythonwin

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 14. Python and GUIs > The Tkinter
Module

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148043124057188182108097

The Tkinter Module

Tkinter is Python's de facto standard GUI toolkit. It's the most cross-platform GUI. Many applications
are written using Tkinter because it is a very powerful and flexible tool. Maybe the most notable
features are its geometry management, which is much better than standard windows, and its efficient
Text and Canvas widgets. Many toolkits support as good as or better geometry management (some of
them are listed in this chapter).

Tkinter, which stands for Tk interface, is the standard Python interface to the Tk GUI toolkit from
Ajuba (formerly Scriptics). Tkinter is a binding to Tcl/Tk that in former days was developed by Sun
Labs. Actually it works on top of Tcl/Tk. To use Tkinter, you don't need to write Tcl code.
Occasionally, you will need to consult the Tk documentation and the Tcl documentation because Tk's
low-level event handling mechanism is considered part of Tcl.

Both Tk and Tkinter are available on most UNIX platforms, as well as on Windows and Macintosh
systems. Some platforms come with Tcl/Tk as an optional part of the OS distribution or, in the case of
Win32, as part of the Python install. Quite a lot of Linux distributions (and other free UNIX-like
Operation Systems) install Tcl/Tk by default. Starting with the 8.0 release, Tk offers a native look and
feel on all platforms.

If you ask yourself why you should use Tkinter, I would say that it is a mature and reliable solution for
graphic applications, running on every platform where it is possible to run Tcl/Tk, which is basically
every platform, but Macintosh. Tkinter and Macs are still negotiating a healthy version.

One of the most important reasons why Tkinter was chosen to be the official GUI option is because it
seems to have a long life ahead of it. Many people are against this, but the fact is that Tkinter is
available for Windows, UNIX, and Macintosh platforms, and being part of the Official Python
distribution puts it in a position of constant upgrading.

Tkinter is probably the most documented Python GUI that you will find. As you can see in Chapter 15,
there is a respectable knowledge base available for you, given its de facto standard status.

See the Tkinter documentation page on http://www.python.org/ for more up-to-date information about
this toolkit.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=202
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A47%3A37+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=202&now=5%2F31%2F2002+4%3A47%3A37+PM
http://www.python.org/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Ajuba
graphical user interfaces (GUIs)
 toolkits
 Tkinter
interfaces
 graphical user (GUI)
 toolkits;Tkinter
modules
 Tkinter
Scriptics
Tkinter module
toolkits
 graphical user interfaces (GUIs)
 Tkinter

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=202

Web Development > Python Developer's Handbook > 14. Python and GUIs > Overview of Other
GUI Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148043124062198187105063

Overview of Other GUI Modules

Python's powerful object implementation and portability has encouraged the development of many other GUI
toolkits. Consequently, you have a number of options to try before deciding which one is the best solution for
your project.

Pythonwin/MFC

Pythonwin is a wrapper, written by Mark Hammond, to the Microsoft Foundation Class Library (MFC). It is
included within the Windows Python distribution.

Actually, Pythonwin is distributed as two key components—Pythonwin.exe and win32ui.pyd. The
latter contains all the bindings to the MFC (tens of MFC objects are exposed, including Common Controls,
Property Pages/Sheets, Toolbars, and so on), and the former is a simple wrapper that hosts win32ui.pyd,
being just a sample program for the MFC user interface environment.

Pythonwin runs only on Windows, hence, if you need to have your program running on both Win32 and UNIX
platforms, you can use the Tk libraries instead.

Using Pythonwin, you can design applications that are bound very tightly to Windows, using MFC in an
interactive and interpreted environment to provide the features of the Windows user interface. The user
interface environment provided by Pythonwin can be embedded in almost any other application—such as OLE
clients/servers, Netscape plugins, and so on.

Inside the Pythonwin distribution, you will find a Help File (Pythonwin.hlp), which is a reference manual
for all the objects exposed in Pythonwin. That is a great start for you.

Pythonwin's homepage provides resources documenting the Pythonwin GUI environment. There is also some
general documentation on the MFC Architecture. After you install Pythonwin, you can find more details in the
documentation that comes bundled in it. For more information, check out the Pythonwin home page at

http://www.python.org/windows/pythonwin/

This next document describes how to imbed the win32ui extension module in your own application:

http://www.python.org/windows/pythonwin/EmbeddingWin32ui.html

wxPython

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=203
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A47%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=203&now=5%2F31%2F2002+4%3A47%3A46+PM
http://www.python.org/windows/pythonwin/
http://www.python.org/windows/pythonwin/EmbeddingWin32ui.html

wxPython is a GUI toolkit for the Python programming language that works like a wrapper to the wxWindows
C++ library. It is written in Python and uses the LPGL license.

wxPython is a relatively fast cross-platform toolkit, and maybe it hasn't become the standard Python GUI yet
because Tkinter is more portable. As a matter of fact, wxPython is the second most common GUI, coming just
after Tkinter.

Currently only Win32 and UNIX-like systems with GTK are supported. There are plans to support wxPython
on any platform running wxWindows.

wxWindows is a free, well-established, and well-documented set of libraries that allows C++ applications to
compile and run on several different types of computers, with minimal source code changes.

The wx in the name wxWindows means w for Windows, and x for X system. It is supposed to be a way to say
that it is a Windows system that supports both platforms.

Each supported GUI (such as GTK+, Windows, Motif, and Mac) has its own library provided by the
wxWindows, which exposes natural API for all of them. The API is much simpler to use than other native GUI
APIs. Note that you cannot use wxWindows as a GUI translator.

wxWindows provides a lot of extra built-in functionality for you as well, and you can decide whether you want
to use it. Such extra features have the main goal of providing ways for you to develop user-friendly GUI
applications. Included in this functionality are many useful dialogs, built-in HTML display and printing,
support to virtual filesystems, OLE automation controller class, and Open GL support. It also offers access to
common operating system operations, such as file copying and deletion, and network support for threads and
sockets. wxWindows also supports basic data structures such as arrays, strings, linked lists, and hash tables. If
you are coming from an MFC architecture, you can consider yourself lucky because both frameworks are very
similar, which makes it easier to port applications from one to another. Python and wxWindows have a great
thing in common, both had a object-oriented conception. That was one thing that made it possible to develop
wxPython, a fully compatible interface to the libraries. Remember that it is very easy to translate C++ calls to
Python calls.

wxPython is a very active Open Source project that makes its source code freely available for anyone who
wants to use or modify it. If you want, you can also participate by contributing with new ideas and bug
solutions for the project.

Using wxPython, it is easier to run the same program on multiple platforms without modification. Currently,
wxPython supports Microsoft Windows and most UNIX-like systems.

This extension module allows programmers to use a strong, highly functional graphical user interface to easily
write Python programs that can create instances of wxWindows 2.0 C++ classes, and invoke their methods.

wxPython classes are mirrored as closely as possible to the wxWindows class hierarchy. But, we need to
consider the difference between Python and C++, and understand that we don't have a 100% match. However,
these distinctions can be easily handled by Python. For example, some methods in the wxWindows library

return multiple values by returning argument pointers; the equivalent Python method returns a tuple of values
instead.

If you go to wxPython's Web site, you can get the latest version of wxPython, and optionally download a self-
installer for Win32 systems. The distribution includes a pre-built extension module, documentation in HTML
help format and a set of demos. You also have available, among other things, a Linux RPM, wxPython
sources, and documentation in raw HTML.

If you will build wxPython from sources yourself, you will also need the wxWindows sources, available from
http://www.wxwindows.org/.

wxPython has its own mailing list. It is not that difficult to find WxPython's creator, Robin Dunn, answering
messages on the list. But as in any other list, always check the archives before posting a question.

A number of documentation resources are available for both wxPython and wxWindows. The wxPython
interface is very close to the wxWindows implementation in C++, which makes most of the wxPython
documentation be just simple notes attached to the C++ documents that describe the places where wxPython is
different.

The Web site has a series of sample programs and documentation pages that can assist you in getting started
with wxPython.

By downloading wxPython, you get two other documentation resources, on Ogl (for graphics) and an
introduction to wxWindows, which has received additional wxPython material from Robin. This addendum
demonstrates how all wxWindows classes are implemented in wxPython. Not all binaries contain this
document, hence, you might need to get it directly from the Web site.

wxPython home page

http://wxpython.org/

wxPython Tutorial

http://wxpython.org/tutorial.html

STDWIN

STDWIN stands for Standard Window Interface. It is a platform-independent interface to C-based window
systems. Currently, STDWIN is obsolete and unsupported, without any further development effort being
made. The stdwin module has been removed for Python 2.0. The Python people say that if you want to use
stdwin, you should grab an older Python release. There is not really any reason you would want to use this
toolkit.

Python's stdwin module defines several new object types and functions that provide access to the
functionality of the Standard Window Interface, STDWIN.

http://www.wxwindows.org/
http://wxpython.org/
http://wxpython.org/tutorial.html

Tip

For a complete description of STDWIN, take a look at the documentation of STDWIN for C programmers
(CWI report CR-R8817).

This module is available on systems to which STDWIN has been ported, including UNIX, Mac, and Windows.
Initially, many Python developers had adopted this module, but later, most of them migrated to Tkinter mostly
because of the limited functionality imposed by stdwin's design. However, if you install the latest available
version available of this module, you can still use it as a solution for many types of applications. Of course,
you probably wouldn't want to use stdwin ever.

The next example demonstrates a simple implementation of the stdwin module.

 1: import stdwin, stdwinevents
 2:
 3: def mainloop():
 4: appwin = stdwin.open('Hello')
 5: while 1:
 6: (type, win, detail) = stdwin.getevent()
 7: if type == stdwinevents.WE_DRAW:
 8: draw = win.begindrawing()
 9: draw.text((0, 0), 'Hello Python world')
 10: del draw
 11: elif type == stdwinevents.WE_CLOSE:
 12: break
 13:
 14: mainloop()

This small program works by creating a main loop, and checking the events that occur in the windowing
environment. When the program starts, it creates and draws a window. Every time the window needs to be
redrawn, a WE_DRAW event is caught by this program (line 7), triggering the line of code that draws a message
in the window (line 9). This program only ends when the user closes the window, sending the WE_CLOSE
event notification to the main loop (line 11).

The latest STDWIN distribution can be downloaded at

ftp://ftp.cwi.nl/pub/stdwin/index.html

PyQt

ftp://ftp.cwi.nl/pub/stdwin/index.html

PyQt is a set of straightforward Python bindings for the Qt toolkit, which is written in C++. The bindings are
implemented as a single Python module called qt, and this module exposes a very comprehensive collection of
useful classes. The current version supports Qt versions 1.42 to 2.1.x. The main new feature is support for the
new Qt v2.0.x widgets. PyQt will also compile with Qt v2.1.0-beta3, but the new Qt v2.1.x widgets are not yet
supported.

Tip

QT is a cross-platform product between UNIX and Windows. The main difference is that you have to pay
for using it on Windows platforms, whereas on UNIX, you just need to pay for proprietary usage. It is
completely legal to use Qt commercially if you meet its license conditions.

PyQT's Web site is a good source of documentation about PyQT and QT itself. You can even learn how to
migrate your QT calls from C++ to Python. But if you need more information about PyQT, you can use the
PyQT mailing list.

PyQT: Development Tools for Qt Libraries

http://www.thekompany.com/projects/pykde

Check the following article, written by Boudewijn Rempt and Cameron Laird, about implementing QT
bindings on the next release of Python:

http://www.sunworld.com/sunworldonline/swol-05-2000/swol-05-qt.html

PyKDE

PyKDE is a set of Python bindings, developed by Phil Thompson, for the KDE toolkit—the KDE classes. It is
important to know that the Python bindings for the Qt toolkit (PyQt) must also be installed because it comes in
a different package, and that KDE 2 is not yet supported. Just as KDE uses QT, PyKDE uses PyQT.

The bindings are implemented as a number of Python modules corresponding to the names of the separate
KDE libraries; that is, kdecore, kdeui, kfm, kfile, khtmlw, and kspell. They support all KDE
version 1 releases. Keep in mind that KDE is licensed under the LPGL.

You can find help and more information about PyKDE in the project mailing list, which is the same mailing
list as for PyQT. Also, note that because PyKDE requires the KDE libraries, it runs only on the UNIX
platform.

PyKDE: Development Tools for KDE Libraries

http://www.thekompany.com/projects/pykde
http://www.sunworld.com/sunworldonline/swol-05-2000/swol-05-qt.html

http://www.thekompany.com/projects/pykde

Python + KDE Tutorial and Examples, by Boudewijn Rempt

http://www.xs4all.nl/~bsarempt/python/tutorial.htmlhttp://www.valdyas.org/python/tutorial.html

Wpy

Wpy is a class library system, based on the Microsoft Foundation Classes, that is used for writing GUI code
easily in Python. Wpy is designd for simplicity and portability.

The Wpy Web site provides instructions about how to install the library and use it to run Python programs
with windowing GUI capability on UNIX using Tk, Windows 3.1 (16-bit native), and Windows 95, 98, and
NT (32-bit native). The source code and the main standard binary ports are available for download.

A Python/Wpy Netscape plug-in DLL is also provided. This plug-in enables you to write Wpy programs that
access the Netscape plug-in API and run in the browser window.

Wpy Index

http://www.cwi.nl/ftp/python/wpy/

PyGTK

GTK+ is a Free Software GUI Toolkit that has a large number of widgets, primarily developed for use with the
X Window System. Everything about GTK+ from the object-oriented design to the Free Software LGPL
licensing allows you to code your project with the most freedom possible. GTK is similar to Qt, but the
difference is that you can develop open software, free software, or even commercial non-free software without
having to pay anything for licenses. GTK's license allows linking to proprietary applications although the
library itself must remain free (in the sense of freedom). The upcoming GTK+ 2.0 includes multi-language
support, and framebuffer, Mac, Windows, and BeOS ports are being worked on.

http://www.gtk.org/

PyGTK is a set of bindings developed by James Henstridge, for the GTK widget set and GNOME libraries that
runs on any platform that supports GTK. It provides an object-oriented interface that is a slightly higher level
than the C one. It automatically does all the type casting and reference counting that you would have to do
normally with the C API. Talking about C, all the underlying C classes are documented on the GTK
homepage.

Many simple examples come with PyGTK. They are a good start for your projects. Look in the
pygtk/examples or pygnome/examples directory for details. The pygnome/examples directory is
only part of the gnome-python package that is covered in the next section.

The following code, extracted from James Henstridge PyGTK's Web site, shows how simple it is to use the

http://www.thekompany.com/projects/pykde
http://www.xs4all.nl/~bsarempt/python/tutorial.html
http://www.cwi.nl/ftp/python/wpy/
http://www.gtk.org/

PyGTK module:

from gtk import *

def hello_cb(button):
 print "Hello World"
 window.destroy()

window = GtkWindow(WINDOW_TOPLEVEL) # create a top level window
window.connect("destroy", mainquit) # quit the event loop on destruction
window.set_border_width(10) # set padding round child widget

button =GtkButton("Hello World")
button.connect("clicked", hello_cb) # call hello_cb when clicked
window.add(button) # add button to window
button.show() # show button

window.show()
mainloop() # enter the main event loop

PyGTK is available for download at the following FTP sites:

http://ftp://ftp.gtk.org/pub/gtk/python/

http://ftp://ftp.python.org/bub/contrib/Grahics/

http://ftp://ftp.daa.com.au/pub/james/python/

More information about PyGTK can be found at James Henstridge's PyGTK home page:

http://www.daa.com.au/~james/pygtk/

pygtools, a Web site maintained by J.W. Bizzaro, is an excellent resource for PyGTK information. It contains
the latest news about GNU development for Python, including GTK projects.

http://theopenlab.uml.edu/pygtools

If you need to implement GTK application on Windows, there are a couple of Python wrappers over GTK+
that you can use, such as

PyGTK on Win32, by Kevin J. Butler

http://theopenlab.uml.edu/pygtkwin/

http://ftp//ftp.gtk.org/pub/gtk/python/
http://ftp//ftp.python.org/bub/contrib/Grahics/
http://ftp//ftp.daa.com.au/pub/james/python/
http://www.daa.com.au/~james/pygtk/
http://theopenlab.uml.edu/pygtools
http://theopenlab.uml.edu/pygtkwin/

PyGTK on Win32, by Hans Breuer

http://hans.breuer.org/ports/

Gnome-Python

The Gnome project has built a complete free and easy-to-use desktop environment for the user, as well as a
powerful application framework for the software developer. For more information, check out

http://www.gnome.org/

The next Web address points you to a set of bindings for the Gnome libraries for use with python. Although
gnome-python uses PyGTK, you don't need to have the PyGTK package compiled or individually installed
before compiling gnome-python. This library runs on UNIX only, and it is licensed under the LGPL.

ftp://ftp.gnome.org/pub/GNOME/stable/sources/gnome-thon/

Developing Gnome Applications with Gnome-Python is a very comprehensive article written by Daniel Solin
that covers the main aspects of writing a program using Gnome-Python. It is located at

http://www.linuxdev.net/features/articles/05.24.2000/

PyOpenGL

OpenGL is the premier environment for developing portable, interactive 2D and 3D graphics applications from
modeling to scientific to games. Since its introduction in 1992, OpenGL has become the industry's most
widely used and supported 2D and 3D graphics application programming interface (API), bringing thousands
of applications to a wide variety of computer platforms. OpenGL fosters innovation and speeds application
development by incorporating a broad set of rendering, texture mapping, special effects, and other powerful
visualization functions. Developers can leverage the power of OpenGL across all popular desktop and
workstation platforms, ensuring wide application deployment.

PyOpenGL (Python Tk-OpenGL Module) is the OpenGL-Widget for Python/Tk. Initially based on the Togl
widget, this module was written by David Ascher, Mike Hartshorn, Jim Hugunin, and Tom Schwaller.
PyOpenGL contains both a wrapper for the Togl Tk widget and bindings for OpenGL. The non-Tk portions of
PyOpenGL can be used with other toolkits, such as PyGTK and others. For more information, see the
following sites:

History, installation, and tutorial for the Python Tk-OpenGL Module (with sample code).

http://www.python.de/

wafepython

http://hans.breuer.org/ports/
http://www.gnome.org/
ftp://ftp.gnome.org/pub/GNOME/stable/sources/gnome-thon/
http://www.linuxdev.net/features/articles/05.24.2000/
http://www.python.de/

Wafe, which stands for Widget Athena front end, is a package that implements a symbolic, string-based
interface based on Tcl to the X Toolkit, the Athena Widget Set, the OSF/Motif Widget Set (versions 1.1 to
2.0), and various complementary widget classes and extension packages. Using Wafe, one can develop
applications with high-level graphical user interfaces in the scripting language Tcl, or one can use Wafe
mostly as a graphical front end that provides an easy access to GUI programming for various programming
languages.

Because Wafe can be easily linked with C programs, it can also be used to provide GUI functionality for other
interpretative languages by extending these languages by a few commands. In the Wafe distribution are
sample implementations for embedding Wafe in interpretative languages, including Python. These
implementations provide a bidirectional interface from and to Wafe (for example, Wafe calls Python and
Python calls Wafe).

wafepython (a version of Python enhanced with Wafe commands)

http://www.wu-wien.ac.at/wafe/wafe.html

pyFLTK

FLTK (Fast Light Tool Kit, pronounced "fulltick") is a C++ graphical user interface toolkit for X (UNIX),
OpenGL, and WIN32 (Microsoft Windows NT 4.0, 95, or 98). It is also largely compatible with the XForms
library. FLTK is currently maintained by a small group of developers across the world with a central
repository in the United States, and it is distributed under the GNU Library GPL (LGPL).

FLTK was originally created to build in-house applications at Digital Domain for image processing and 3D
graphics. The original author, Bill Spitzak, received permission from Digital Domain to release it to the public
domain in the hopes that it could be used to make better, faster, and nicer-looking UNIX programs. Digital
Domain has since withdrawn support for FLTK, but Bill is still able to work on it from time to time.

pyFLTK is the Python wrapper for the Fast Light Tool Kit graphical user interface library. The development
team is using SWIG to create the wrapper.

Kevin Dalhausen and Bjorn Petterson, among others, are working on these bindings for Python. They conduct
their work through a mailing list. The main goals of the Project are to develop usable Python and Perl
wrappers for the FLTK library; to demonstrate the wrapper's functionality by converting the test programs
supplied with FLTK to Python and Perl; and to allow the use of Fluid (FLTK User Interface Designer) to
generate Python and Perl graphical user interfaces.

http://netpedia.net/hosting/fltk/

FXPy

FOX is a C++ based toolkit for developing GUIs easily and effectively. FOX runs on UNIX and Windows,
and supports the LGPL kind of license. It offers a wide, and growing, collection of Controls and provides state
of the art facilities such as drag and drop, selection, as well as OpenGL widgets for 3D graphical manipulation.

http://www.wu-wien.ac.at/wafe/wafe.html
http://netpedia.net/hosting/fltk/

FOX also implements icons, images, and user-convenience features such as status line help, and tooltips.
Tooltips can even be used for 3D objects!

Considerable importance has been placed on making FOX one of the fastest toolkits around. To minimize
memory use, FOX uses a number of techniques to speed up drawing and spatial layout of the GUI. Memory is
conserved by allowing programmers to create and destroy GUI elements one-fly.

Even though FOX offers a large collection of Controls already, FOX leverages C++ to allow programmers to
easily build additional Controls and GUI elements by taking existing controls and creating a derived class that
simply adds or redefines the desired behavior.

One of the prime design goals of FOX is the ease of programming; thus, most controls can be created using a
single line of C++ code; most parameters have sensible default values so that they may be omitted, and layout
managers ensure that designers of GUIs do not have to worry about precise alignments.

Another nice feature of FOX that significantly reduces the number of lines of code which have to be written is
FOX's ability to have widgets connect to each other, and pass certain commands between them. For example, a
menu entry Hide Toolbar can be directly connected to the Toolbar, and cause it to hide.

Finally, FOX makes it easy to maintain the state of the GUI in an application by having the GUI elements
automatically updating themselves by interrogating the application's state. This feature eliminates the large
amount of effort that might go into sensitizing, graying out, checking/unchecking, and so on depending on the
application state. For more information, check out

FOX

http://www.cfdrc.com/FOX/fox.html

FXPy is a Python extension module, written by Lyle Johnson, which provides an interface to the FOX GUI
library. FXPy is a good Python extension, and up to this date, has a quite complete documentation.

FXPy

http://home.hiwaay.net/~johnson2/FXPy/

Motif

Fearing the success of Sun in creating a GUI standard, other UNIX vendors created a committee called the
Open Software Foundation (OSF). Motif is a widely-accepted set of user interface guidelines developed by
this committee around 1989, to specify how an X Window System application should look and feel.

Motif is the market leader among UNIX GUI toolkits—the single most widely used toolkit in the UNIX world,
and almost 10 years after its creation, it enjoys both the advantages and disadvantages of maturity. It has the
most advanced support for text from languages other than English, a wealth of third-party tools support it, and
hundreds of books and online documents explain it. The disadvantages are that it has regular performance, it is

http://www.cfdrc.com/FOX/fox.html
http://home.hiwaay.net/~johnson2/FXPy/

in decline, it is a lot more difficult to program than many other toolkits, and it is not suitable for the current
object-oriented programming styles.

Motif is so ubiquitous that many UNIX users confuse it with GUI operations, window managers, or other
pieces of technology, and some speak as if Motif is the only GUI foundation or toolkit.

Sjoerd Mullender bound Motif to Python in a package he calls the Python X Extension. Currently, this is a
work in progress. For more information, check out

Source of the Python X Extension

http://www.cwi.nl/ftp/sjoerd/index.html

The following files are currently found in this site:

X-extension.tar.gz—The complete source (including source of documentation).

X-extension.ps.gz—The complete documentation in Postscript.

X-extension.html.tar.gz—The complete documentation as a set of HTML files.

vpApp.tar.gz—A GUI application framework for (X)Python.

PyAmulet

PyAmulet is another Python GUI. It wraps an underlying C library, called OpenAmulet. This GUI has been
successfully tested on Windows platforms. For more information, check out

PyAmulet home page

http://www.openip.org/html/pyamulet/

PyAmulet Documentation

http://www.openip.org/html/PyAmulet/

DynWin

DynWin is a dynamic GUI class library for Windows (Win32) and Python. It looks similar to Java's Swing
library. For more information, check out

http://www.nightmare.com/~rushing/dynwin/index.html

JPI

http://www.cwi.nl/ftp/sjoerd/index.html
http://www.openip.org/html/pyamulet/
http://www.openip.org/html/PyAmulet/
http://www.nightmare.com/~rushing/dynwin/index.html

The Java Python Interface (JPI) is an interface that allows Java and Python (the C Implementation, not
JPython) to primitively work together. Therefore, you can use Python as a scripting language for the Java
language. Prototyping routines in Python, and later migrating them to Java is a simple and straightforward
process because the similarity between both syntaxes is huge. This interface is a work in progress because it
currently doesn't provide a total match between both languages.

This interface enables one to dynamically manipulate Java objects using a Python application, including GUI
widget managers such as AWT, for example.

http://www.ndim.edrc.cmu.edu/dougc/jpi/Home.html

AWT

The Abstract Windowing Toolkit (AWT) is a user interface toolkit provided by the Java programming language
class library.

AWT is very simple to use. Although the documentation that is currently provided in the Java distribution
seems to scare AWT programmers away, the language is very strong and flexible. After you find the right
direction, you will see yourself creating GUIs with your eyes closed.

As AWT is written in Java, you might want to use JPython in order to manipulate it because JPython gives
convenient access to Java classes and packages. However, you can also try to use Python, also known as
CPython, and JPI. Together, they can be used to prototype AWT objects and create bindings calling Python
routines.

For more information about JPython and AWT, see Chapter 18, "JPython."

FORMS

FORMS is a module for the SGI IRIX platform that provides an interface to the FORMS Library developed by
Mark Overmars.

Among other things that might interest you, you better pay attention to the terminology used by FORMS: The
word object is used for buttons, sliders, and anything else that you can place in a form.

The Python interface to FORMS introduces two new Python object types: form objects (representing an entire
form) and FORMS objects (representing one button, slider, and so on).

There are no "free objects" in the Python interface to FORMS, nor is there an easy way to add object classes
written in Python. The FORMS interface to GL event handling is available, though, so you can mix FORMS
with pure GL windows.

FORMS library interface for GUI applications

http://www.ndim.edrc.cmu.edu/dougc/jpi/Home.html

http://www.python.org/doc/current/lib/module-fl.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Abstract Windowing Toolkit (AWT) module
AWT (Abstract Windowing Toolkit) module
Bizzaro, J.W.
Developing Gnome Applications with Gnome-Python
Dunn, Robin
extensions
 Python X
Fast Light Tool Kit (pyFLTK) module
FORMS module
FOX (FXPy) module
FXPy module
Gnome-Python module
graphical user interfaces (GUIs)
 toolkits
 Abstract Windowing Toolkit (AWT)
 FORMS
 FXPy
 Java Python Interface (JPI)
 Motif
 pyFLTK
 PyGTK 2nd
 PyKDE 2nd
 PyOpenGL
 PyQt
 Pythonwin
 stdwin
 wafepython
 wxPython 2nd 3rd
GTK+ module
Hammond, Mark
Henstridge, James 2nd
interfaces
 graphical user (GUI)
 toolkits;Abstract Windowing Toolkit (AWT)
 toolkits;FORMS
 toolkits;FXPy
 toolkits;Java Python Interface (JPI)
 toolkits;Motif
 toolkits;pyFLTK

http://www.python.org/doc/current/lib/module-fl.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=203

 toolkits;PyGTK 2nd
 toolkits;PyKDE 2nd
 toolkits;PyOpenGL
 toolkits;PyQt
 toolkits;Pythonwin
 toolkits;stdwin
 toolkits;wafepython
 toolkits;wxPython 2nd 3rd
Java Python Interface (JPI) module
Johnson, Lyle
JPI (Java Python Interface) module
MFC (Microsoft Foundation Class Library)
Microsoft Foundation Class Library (MFC)
modules
 Abstract Windowing Toolkit (AWT)
 FORMS
 FXPy
 Gnome-Python
 GTK+
 Java Python Interface (JPI)
 Motif
 pyFLTK
 PyGTK 2nd
 PyKDE 2nd
 PyOpenGL
 PyQt
 Pythonwin
 stdwin
 wafepython
 wxPython 2nd 3rd
Motif module
Mullender, Sjoerd
Og1
Open Software Foundation (OSF)
OSF (Open Software Foundation)
Overmars, Mark
pyFLTK module
PyGTK module 2nd
pygtools
PyKDE module 2nd
PyOpenGL module
PyQt module
Python Tk-OpenGL (PyOpenGL) Module
Python X Extension
Pythonwin module
Solin, Daniel
Standard Window Interface (stdwin module)
stdwin module

Thompson, Phil
toolkits
 graphical user interfaces (GUIs)
 Abstract Windowing Toolkit (AWT)
 FORMS
 FXPy
 Java Python Interface (JPI)
 Motif
 pyFLTK
 PyGTK 2nd
 PyKDE 2nd
 PyOpenGL
 PyQt
 Pythonwin
 stdwin
 wafepython
 wxPython 2nd 3rd
wafepython module
Widget Athena front end (Wafe) module
wxPython module 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 14. Python and GUIs > Designing a
Good Interface

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148043124063194095163194

Designing a Good Interface

The user interface is part of a program that interacts with the user of the program. User interfaces take
many forms. These forms range in complexity from simple command-line interfaces to the point-and-
click graphical user interfaces provided by many modern GUI applications.

A GUI is built of graphical elements generally called widgets. Typical widgets include such items as
buttons, scrollbars, and text fields. Widgets allow the user to interact with the program and provide the
user with visual feedback about the state of the program.

Widgets do not stand alone, but rather are found within windows. Windows contain and control the
layout of widgets. Windows are themselves widgets, however, they are called toplevel widgets as they
can't be placed inside other widgets.

A good interface makes it easy for users to tell the computer what they want to do, for the computer to
request information from the users, and for the computer to present understandable information. Clear
communication between the user and the computer is the working premise of a good user interface
design. Some of the qualities that a good user interface must have are clear, consistent, simple, user-
controlled, direct, forgiving, feedback provider, and aesthetic.

Following the next GUI design principles should help you create more effective, user-friendly
interfaces while avoiding many design errors. Unfortunately, just following design principles cannot
alone guarantee success because it is entirely possible to create completely unworkable interfaces while
strictly adhering to the rules.

● Don't try to reinvent the wheel. The user must be able to anticipate the behavior of your program
using knowledge gained from other programs.

● Provide adequate user feedback. Keep the user informed about his actions.

● Create a safe environment for exploration.

● Struggle to make your application self-evident, by making the actions easily recognizable for
the components of your application.

● The user must be able to anticipate a widget's behavior from its visual properties.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=204
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A47%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=204&now=5%2F31%2F2002+4%3A47%3A57+PM

● View every user warning and error dialog that your program generates as an opportunity to
improve your interface.

● Do not abuse sound, color, animation, and multimedia clips. They are appropriate for education
or entertainment, but effective use in other applications is difficult.

● You better try to avoid modal behaviors. Programs using modal behavior force the user to
perform tasks in a specific order or otherwise modify the user's expected responses.

● Design your interface so that your users can accomplish their tasks while being minimally aware
of the interface itself.

● And finally, help users customize and preserve their preferred work environment.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

designing
 interfaces 2nd
graphical user interfaces (GUIs)
 toolkits
 designing good interfaces 2nd
interfaces
 graphical user (GUI)
 toolkits;designing good interfaces 2nd
toolkits
 graphical user interfaces (GUIs)
 designing good interfaces 2nd
toplevel widgets
widgets 2nd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=204

Web Development > Python Developer's Handbook > 14. Python and GUIs > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148036103059230235001245

Summary

This chapter shows what the available GUI options are for designing Python graphic interfaces.
Choosing a toolkit for your GUI projects is not a simple thing. Although you might decide to choose
something different, the Python community has already chosen the standard choice for GUI
development with Python—it is called Tkinter, and it's part of the standard Python distribution.

Besides Tkinter, many other GUI solutions are supported by Python. This chapter exposes many of
them.

Pythonwin is a wrapper to the MFC. It is included within the Python distribution for Windows.

wxPython is a GUI toolkit for the Python programming language that works like a wrapper to the
wxWindows C++ library.

STDWIN stands for Standard Window Interface. It is a platform-independent interface to C-based
window systems. Currently, STDWIN is obsolete and unsupported, without any further development
effort being made.

PyKDE is a set of Python bindings for the KDE toolkit—the KDE classes, which uses PyQt —a set of
straightforward Python bindings for the Qt toolkit.

Wpy is a class library system, based on the Microsoft Foundation Classes, that is used for writing GUI
code easily in Python.

PyGTK is a set of bindings for the GTK widget set and Gnome libraries that runs on any platform that
supports GTK.

PyOpenGL (Python Tk-OpenGL Module) is the OpenGL-Widget for Python/Tk. OpenGL is the
premier environment for developing portable, interactive 2D and 3D graphics applications.

Wafe, which stands for Widget Athena front end, is a package that implements a symbolic, string-based
interface based on Tcl to the X Toolkit, the Athena Widget Set.

pyFLTK is the Python wrapper for the Fast Light Tool Kit graphical user interface library. FLTK is a
C++ graphical user interface toolkit for X (UNIX), OpenGL, and WIN32 platforms—it is also largely

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=205
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A48%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=205&now=5%2F31%2F2002+4%3A48%3A04+PM

compatible with the XForms library.

FXPy is a Python extension module, which provides an interface to the FOX GUI library. FOX is a
C++ based toolkit for developing Graphical User Interfaces easily and effectively that runs on UNIX
and Windows. It offers a wide collection of Controls, including support to drag and drop, selection, as
well as OpenGL widgets for 3D graphical manipulation.

Motif is the market leader among UNIX GUI toolkits, and Python X Extension bounds it to Python.

PyAmulet is another Python GUI. It wraps an underlying C library, called OpenAmulet.

DynWin is a dynamic GUI class library for Win32 and Python.

The Java Python Interface (JPI) is an interface that allows Java and Python (the C Implementation, not
JPython) to primitively work together.

The Abstract Windowing Toolkit (AWT) is a user interface toolkit provided by the Java programming
language class library.

FORMS is a module for the SGI IRIX platform that provides an interface to the FORMS Library.

As you could see, the number of options is large. It is your choice to decide which one best fits your
needs.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

graphical user interfaces (GUIs)
 toolkits
interfaces
 graphical user (GUI)
 toolkits
toolkits
 graphical user interfaces (GUIs)

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=205

Web Development > Python Developer's Handbook > 15. Tkinter See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148036103058185148254207

Chapter 15. Tkinter
Goodday, Bruce!

The focus here is to provide information about Tkinter, which has become the standard Python GUI.
You will learn how it works and how you can create your first GUI-oriented applications.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=207
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A48%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=207&now=5%2F31%2F2002+4%3A48%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=207

Web Development > Python Developer's Handbook > 15. Tkinter > Introduction to Tcl/Tk See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148036103057122164235164

Introduction to Tcl/Tk

Tk is a popular and endorsed toolkit developed by John Ousterhout that can handle windows, GUI
events, and user interactions. This toolkit is provided as an extension for Tcl. That is why part of
Tkinter is an interface to Tcl. Without these routines, the management of a GUI environment would
require an application with many lines of code.

The toolkit was originally developed at the University of California, Berkeley, to be a supplement to
Tcl (a language also developed by Ousterhout). After his transition to Sun Microsystems, he started a
firm called Scriptics (currently known as Ajuba) just to take care of the Tk and Tcl development
projects.

Nowadays, many languages use Tk, including Scheme, Perl, and Python. Tkinter is Python's interface
to the Tk GUI toolkit. By the way, Tcl is the behind the scenes language that Tkinter uses to
communicate with the Tk toolkit. Those who already know Tcl/Tk will have a nice time learning and
using Python/Tkinter because both pairs have a bit of familiarity.

Both Tcl and Tk are open source products and their ongoing development is part of a collaboration
effort between engineers at Scriptics and other users in the Tcl user community. Scriptics hosts the CVS
(Concurrent Versions System)repository for the source code, and everyone else is welcome to submit
source code changes and patches.

At this time, the latest stable version of Tcl/Tk is version 8.3. Among other things, this version is
shipped with a Tcl/Tk Web browser plug-in that provides an alternative to Java programming for client-
side Web applications. The plug-in provides a secure environment to run downloaded Tcl programs, in
a way similar to Java applets.

If you are using a supported platform, the chances of easily finding a precompiled binary for your
machine are extremely high. Tcl and Tk are highly portable, which allows them to run on many
platforms, including Win32, Linux, IRIX, AIX, Solaris, BSD, Macintosh, and others. Therefore, it
turns out to be very easy to implement Tkinter on all these platforms. For more information, check out

Tcl/Tk Documentation

http://dev.scriptics.com/doc/

Ajuba

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=208
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A48%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=208&now=5%2F31%2F2002+4%3A48%3A21+PM
http://dev.scriptics.com/doc/

http://www.ajubasolutions.com/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Concurrent Versions System (CVS)
CVS (Concurrent Versions System)
graphical user interfaces (GUIs)
 Tkinter 2nd
interfaces
 graphical user (GUI)
 Tkinter 2nd
modules
 Tkinter 2nd
Ousterhout, John
Scriptics
Tkinter module 2nd

© 2002, O'Reilly & Associates, Inc.

http://www.ajubasolutions.com/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=208

Web Development > Python Developer's Handbook > 15. Tkinter > Tkinter See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148036103057115031227152

Tkinter

As you saw in the previous chapter, other options exist for GUI projects using Python. However, at this
moment, Python has chosen to support Tkinter as its official GUI implementation.

Tkinter is a standard object-oriented interface to the Tk GUI API, which was originally written by
Steen Lumholdt when he was in need for improving his GUI work with Python. In this chapter, you
will see how easy it is to subclass Tk widgets using Python's facilities. Some say that it is even easier
than when using Tcl's capabilities.

Don't worry. You don't need to know a thing about Tcl before start learning Tkinter—the only possible
case is if you need to go through the Tcl/Tk documentation.

Tkinter is a mature cross-platform interface that provides a small set of basic widgets for your GUI
applications. But this doesn't mean that you need to get stuck on that set. Tkinter is extensible, which
means that you can use third-party widget packages as well. A Widget is a user interface element, such
as a list box or a radio button.

The only possible disadvantage of using Tkinter is the fact that it uses Tcl to make the calls to Tk. This
middle step can slow down some programs.

The Tkinter toolkit is a powerful GUI framework that allows Python programs to work on Windows,
UNIX, and Macintosh platforms. The main difference between Tkinter and other toolkits is the
portability issue. Almost all other toolkits are good in some specific systems only. For example, KDE
bindings (Linux), Pythonwin/MFC (Windows), and Mac toolbox bindings (Macs) are GUI
implementations that provide support only for a specific platform. On the other hand, Tkinter allows
you to write code that can run in many platforms without a single change.

Tkinter proves that the interface design of an application can be created separate from the application's
business routines. When you choose Tkinter to be your GUI environment, you basically have to worry
about where to put the right widgets and how to perfectly design your application. Another feature that
it provides is a set of geometry management functions available to help you arrange the widgets all
around the interface. After you finish with the visual design, you just need to bind the widget actions to
the specific functions that you need to call, and voil´a! Your graphical interface is ready.

Tkinter enables you to handle buttons and windows and define their properties in a glance. After
designing and implementing your interface, it is possible to change the business functions of your

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=209
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A48%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=209&now=5%2F31%2F2002+4%3A48%3A28+PM

application without changing one line of your GUI code. Isn't it great?

Some time ago, there wasn't almost any documentation available for Tkinter. However, since it became
the standard Python GUI, a lot of material has been released about this toolkit. See the resources
section at the end of this chapter for details.

Checking the Installation

Beginning with version 1.5.2, Tkinter has become part of the Windows binary distribution. Tkinter has
been included with most UNIX distribution for a long time. The Tkinter package contains all necessary
classes, constants, and functions that are required to wrap and use the Tk toolkit.

If you are running Microsoft Windows, the Python installer for Windows (version 1.5.2) comes with
the version 8.0.5 of the Tcl/Tk installer. The same thing goes to Mac users.

If you are running any UNIX system, you must download, build, and install both Tcl and Tk from the
source. You can download the files from http://dev.scriptics.com/software/tcltk/8.0.html. Follow the
instructions contained in the README files, and the process should be very simple; that is, if you don't
already have it installed (which most free UNIX-like systems do these days).

If for some reason, your need to download the latest version of Tcl/Tk, the files are available at
http://dev.scriptics.com/. As I said before, depending on your platform, you can get binaries instead of
downloading and compiling the source code.

Once you have Tkinter running in your system, you will find a low-level interface module called
_tkinter that can be a DLL, a shared library, or statically linked to your interpreter; it all depends on
your system. Note that _tkinter is mainly just a Python interface to the Tcl interpreter. On top of
this low-level module, you have the Tkinter module, which is more readable, and is written in 100%
pure Python. This module is the main module of the Tkinter package, and it imports a lot of other
helper modules when it is imported, including Tkconstants.

Sometime ago, Windows users who had problems involving multiple copies of the Tcl/Tk DLLs
floating around the system needed to have special attention when installing Tcl/Tk. Now, they can rest
on fixtk, which is a utility that tries to locate the Tcl/Tk 8.0 DLLs on Windows systems.

Hello Python World

Now that you have your Tkinter installation ready to go, you just need to import the Tkinter module to
start playing around with your system.

If you are using Windows, I suggest that you save files with the .pyw extension in order to have it

http://dev.scriptics.com/software/tcltk/8.0.html
http://dev.scriptics.com/

executed by pythonw.exe, which doesn't open the interpreter console. On the other hand, if you
decide to keep the .py extension, your GUI scripts will be executed by the command line interpreter
(python.exe), which opens a DOS console.

The next program implements a simple Hello Python World example.

import Tkinter
import sys
win = Tkinter.Tk()
b = Tkinter.Button(win, text="Hello Python World!",command=sys.exit)
b.pack()
win.mainloop()

Note that we only use the Tk() method to create the main window for the application. To run this
program, just call the script as you usually do with any other script. To quit the program, you just need
to close the window. Figure 15.1 shows how this program looks in a Window system. Remember that
other windows can be created as Toplevels.

Figure 15.1. This figure shows a Tkinter implementation of the standard Hello World example.

The next example uses a convenient way to load the Tkinter module (from Tkinter import *).
Because this module only exposes names that are associated to GUI objects (such as button and
Frame), you don't need to worry that much about namespace conflicts with your applications, and it
becomes easier to read the code. Another feature shown in this example is that we can use a
Toplevel instance instead of a Tk instance to store other widgets.

from Tkinter import *
root = Tk()
win = Toplevel(root)
win.pack()
Label(win, text= "Hello Python World").pack(side=TOP)
Button(win, text="Close", command=win.quit).pack(side=RIGHT)
win.mainloop()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/209#3.html

You could have used win = Frame() instead of win.Toplevel(root). However, given that a
frame acts differently depending on whether it has a parent or not (either a toplevel or just a widget to
help with packing), this wouldn't be such a good idea.

Figure 15.2 shows how this code looks when it is executed.

Figure 15.2. This figure shows a small variation of the previous Hello World example.

OK, now let's see what is really happening in both examples. First, we have to import the Tkinter
module. Then, we have to create a widget to hold the other objects. (In the first example we used a top-
level window by calling the Tk() method and in the second one we used an instance of the
Toplevel widget). Creating another Tk() instance is really starting up another instance of Tk—it is
less expensive to create a Toplevel.

When we have a background, we can start adding widgets to it. In the first example, we added a single
button, and in the second one, we added two widgets: a label and a button.

You don't necessarily associate a widget with its toplevel—you associate it with its parent widget (if
you are adding a Button to a Frame that is a child of a Toplevel, you would pass the frame as the first
argument). It is also necessary to pack the widgets in order to display them in the window. This last
process is part of a concept called geometry management, which is used to manage the position and
layout of widgets.

Both examples demonstrate how you can bind actions to the events that can occur in your widget. Here,
we are using a specific attribute called command for this purpose. You can use keyword arguments to
transport several attributes and their values to a widget, which is a simple way to handle multiple
attributes.

The last thing that we need to do is to start an event loop. Note that the application only appears when
you start the loop engine. Regular Python scripts are executed top to bottom, and when the last line of
code is executed, the program quits. We don't want this kind of behavior in a GUI application.
Therefore, we need to call the mainloop() method of the top-level window of our application. This
method keeps the GUI indefinitely running until the window is closed. This loop is responsible for
redrawing the window widgets whenever it becomes necessary, for handling events (such as key
presses and mouse clicks), and for managing Tkinter operations, such as all the geometry management
functions.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/209#4.html

Note that the version of Tkinter shipped along with Python 2.0 also provides support for Unicode
characters because Tkinter is now able to display Unicode string in Tk widgets. Talking about Python
2.0, Tkinter had some optimizations done in order to make some operations much faster. It is also good
to mention that the support for Tcl/Tk 7.X versions has been dropped in this latest release.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

(from Tkinter import *) module
 loading
.pyw extension
_tkinter module
applications
 Hello World
 Tkinter 2nd
associating
 widgets with toplevels
attributes
 command
characters
 Unicode
 Tkinter module
command attribute
event loops
 starting
extensions
 .pyw
files
 saving
 Tkinter
fixtk utility
geometry management
graphical user interfaces (GUIs)
 Tkinter 2nd 3rd 4th 5th
Hello World program
 Tkinter 2nd
installing
 Tkinter
interfaces
 graphical user (GUI)
 Tkinter 2nd 3rd 4th 5th
loading

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=209

 (from Tkinter import *) module
loops
 event
 starting
Lumholdt, Steen
mainloop() method
methods
 mainloop()
 Tk() 2nd
modules
 (from Tkinter import *)
 loading
 _tkinter
 Tkinter 2nd 3rd 4th 5th
 Unicode characters
packing
 widgets
programs
 Hello World
 Tkinter 2nd
saving files
 Tkinter
software
 Hello World
 Tkinter 2nd
starting
 event loops
Tk() method 2nd
Tkinter module 2nd 3rd 4th 5th
 Unicode characters
tools
 fixtk
toplevels
 associating widgets with
Unicode characters
 Tkinter module
UNIX
 installing Tkinter
utilities
 fixtk
widgets
 associating with toplevels
 packing
Windows
 installing Tkinter
 saving files, Tkinter

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 15. Tkinter > Geometry Management See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148036103063008216041062

Geometry Management

All Tkinter widgets have access to specific geometry management methods, which have the purpose of
organizing widgets throughout the parent widget area. These methods are grouped in three distinct
classes that provide a nice way to lay out child widgets in their parent widget. Tkinter exposes the
following geometry manager classes: pack, grid, and place.

● pack— This geometry manager organizes widgets in blocks before placing them in the parent
widget.

● grid— This geometry manager organizes widgets in a table-like structure in the parent
widget.

● place— This geometry manager organizes widgets by placing them in a specific position in
the parent widget.

Each one of these geometry managers has a specific purpose. The pack manager, for example, is
convenient for application windows'design. On the other hand, the grid manager is perfect for
designing dialogs because you can easily arrange the position of several widgets using an easy-to-
figure-out table structure, behind the scenes. And last, but not least, we have the place manager. This
manager is perfect for placing a widget in a specific position in a frame or window. However, it is not
that useful to design complex structures because it requires a lot of specific information about the
coordinates of the widget.

The usage of these methods is very simple. When you create a widget, such as

b = Button(root, text="Quit", padx=5, justify=CENTER)

You can apply the geometry method directly on the created object.

b.pack(side=RIGHT)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=210
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A48%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=210&now=5%2F31%2F2002+4%3A48%3A45+PM

Or, if you do not want to create one more object instance, you can simply call the geometry method
directly from the creation line:

Button(root, text="Quit", padx=5, justify=CENTER).pack(side=RIGHT)

pack()

The pack manager adds the widgets to the frame or the window based in the order that the widgets are
packed. After creating a Frame widget, you can start adding widgets to it (the area where the Frame
stores a widget is called a parcel). If you want to place a group of widgets next to each other, you can
use the same anchor option for all of them. Therefore, they will be stored in the same parcel of the
parent frame. If you don't specify any option, the widgets are added from top to bottom in the available
spaces. Additionally, you can specify the frame side where you want to place the widget. The final
widget position is based on the size of the parent frame as well as on the position of the other widgets
already placed. Note that if you use Frames, you will spend much less time designing your interface.

The pack method provides the following options, which can be informed as direct assignments or as a
dictionary variable:

expand— This option expands the widget to use all the remaining space after the other
widgets have been informed. This is an important attribute to set so that the correct
widgets use the extra space when the window is resized.

fill— This option defines how the widget should fill up the space provided by its
parcel. Possible values: x, y, both, and none.

ipadx, ipady— These options are used along with the fill option to define the
space, in pixels, around the widget.

padx, pady— These options define the space, in pixels, between widgets.

side— This option defines the side where we want to place the widget. Possible
values: top, bottom, left, and right.

The following lines demonstrate how you can use these options when packing a widget:

topframe = Frame(root, relief=RAISED, borderwidth=2)

topframe.pack(side=TOP, fill=BOTH)
rightframe = Frame(root, relief=RAISED, borderwidth=2)
rightframe.pack(side=RIGHT, fill=BOTH, expand=1, padx=2, pady=2)

The default behavior is to measure the sizes in pixels, but if you prefer to use other measurement units,
you just need to add a special suffix to each specific measured value. The possible values are c (for
onscreen centimeters), m (for onscreen millimeters), i (for onscreen inches), and p (for printer's
points—note that 1 printer point is equivalent to 1/72 inches). Check out the next line of code to
understand how to use this feature. Note that the measurements are in centimeters.

rightframe.pack(side=RIGHT, fill=BOTH, expand=1, padx=4c, pady=3c)

grid()

The grid geometry manager is very flexible, which makes the task of designing dialogs very simple. It
creates a grid pattern in the frame and allocates a space in each cell to hold a widget. To use it, you just
need to inform the row and the column where you want to insert the widget. In order to use the pack
method to collect results similar to the ones provided by this grid functionality, you would have to use
a lot of frame widgets. Actually, it is quite often impossible to get the same configuration with
pack() as you do with grid(). You won't necessarily get all the column/row boundaries to match
with pack().

As an example of the grid method, consider the dialog at Figure 15.3.

Figure 15.3. Window organized with the grid method.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/210#3.html

Now, check out the code that works behind the scenes to organize the widgets:

from Tkinter import *
root = Tk()

Label(root, text="Last Name:").grid(row=0, sticky=W)
Label(root, text="First Name:").grid(row=1, sticky=W)
Label(root, text="Phone #:").grid(row=2, sticky=W)
Label(root, text="email:").grid(row=3, sticky=W)
entry_ln = Entry(root)
entry_fn = Entry(root)
entry_ph = Entry(root)
entry_em = Entry(root)

entry_ln.grid(row=0, column=1)
entry_fn.grid(row=1, column=1)
entry_ph.grid(row=2, column=1)
entry_em.grid(row=3, column=1)
Label(root).grid(row=4, sticky=W)
Label(root, text="Skill set summary:").grid(row=5, sticky=W)
cb_gender = Checkbutton(root, text="Python")
cb_gender.grid(row=6, sticky=W)
cb_gender = Checkbutton(root, text="Perl")
cb_gender.grid(row=7, sticky=W)
b_apply = Button(root, text="Apply")
b_apply.grid(row=7, column = 1)
root.mainloop()

Note that we have to call the grid method for every single widget, always mentioning the row and the
column where we want to place it. If for some reason, we don't use the grid method for a widget,
which is placed just after a group of gridded widgets, this new widget is placed in the next available
position beneath the gridded widgets.

For your information, the coordinate numbered (0,0) is given to the intersection of the first row on the
top with the first column on the left side.

This method implements the following options:

row— The number of the row where we want to place the widget.

column— The number of the column where we want to place the widget.

columnspan— This option defines the number of columns that must be occupied by
the widget.

rowspan— This option defines the number of rows that must be occupied by the
widget.

place()

Similar to all the other managers, this one is available for all Tkinter standard widgets as well. The
place geometry manager enables you to explicitly set the position and size of each widget, which can
be either in terms of absolute or relative coordinates. You should only consider using this manager
when you are in need of placing a widget in a specific position that is not possible to set automatically.
The next code exemplifies the use of place:

lbl = Label(root, text="Name:")
lbl.place(relx=0.5, rely=2, anchor=LEFT)

The place geometry manager implements two methods: place and place_configure. Both of
them can use the following as arguments:

anchor— Defines the part of widget that must be placed on the given coordinates.
Possible values are N, NE, E, SE, SW, W, NW, and CENTER. The default value is
NW, which is the top-left corner.

bordermode— Defines whether the given coordinates must consider the border size
or not. The possible values are respectively OUTSIDE and INSIDE, which is the
default value.

height, width— Define the widget's size in pixels.

in (in_)— Places the widget in a position relative to the given widget Note that to
use this option as a keyword option, you need to append an underscore to the option
name.

relheight, relwidth— Define the relative size of the widget to the reference
widget defined by the in_ option.

relx, rely— Define the relative position of the widget to the reference widget
defined by the in_ option, or to the parent widget when the in_ option is not defined.

x, y— Define the absolute position of the widget, and the default value is 0 for each
one of them.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

anchor argument
anchor option
arguments
 anchor
 bordermode
 height
 in (in)
 place() and place_configure() methods 2nd
 relheight
 relwidth
 relx
 rely
 width
 x
 y
bordermode argument
classes
 grid
 pack
 place
column option
columnspan option
expand option
fill option
geometry management
 methods, Tkinter module 2nd 3rd
graphical user interfaces (GUIs)
 Tkinter
 geometry management methods 2nd 3rd
grid class

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=210

grid() method 2nd
height argument
in (in) argument
interfaces
 graphical user (GUI)
 Tkinter 2nd 3rd
ipadx option
methods
 geometry management
 Tkinter module 2nd 3rd
 grid() 2nd
 pack() 2nd
 place configure()
 arguments 2nd
 place()
modules
 Tkinter
 geometry management methods 2nd 3rd
options
 anchor
 column
 columnspan
 expand
 fill
 grid() method
 ipadx
 pack() method 2nd
 padx
 row
 rowspan
 side
pack class
pack() method 2nd
packing
 widgets 2nd 3rd
padx option
parcels
place class
place configure method()
 arguments 2nd
place() method
relheight argument
relwidth argument
relx argument
rely argument
row option

rowspan option
side option
Tkinter module
 geometry management methods 2nd 3rd
widgets
 packing 2nd 3rd
width argument
x argument
y argument

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 15. Tkinter > Handling Tkinter
Events

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148036103062149000105224

Handling Tkinter Events

Usually, when you create a graphical interface for your application, you want to handle all the possible
events that happen there, such as reading in each key in the keyboard (including the F1–F12 set, Ctrl,
Alt, and Shift keys), tracking the actions upon the mouse button, or even controlling the window
redraw events fired by the window manager. Tkinter handles that by allowing you to create bindings
for every specific object. Actually, you can bind events to the widget instance itself, to the widget's
Toplevel window, to the widget's class, and to your entire application (such as a global HELP
functionality for the F1 function key).

After binding an event to a widget, you need to specify which function should be called at the time the
event occurs. This function (or method) is called a callback. You can define callbacks for all kinds of
windowing events, as you will see later. The following code demonstrates a simple callback
functionality, which is associated to the command property from a specific widget.

from Tkinter import *
import sys
def close():
 sys.exit(0)

root = Tk()
button = Button(root)
button['text'] = "Close"
button['command'] = close
button.pack()
root.mainloop()

The next example binds the mouse-click event ("<Button-1>") to a specific function in our
program. Note that the event description is just a simple string. The mainloop keeps checking for this
event, and when it catches the event, the function (event handler) is called. Note that an object is passed
to the callback function carrying some information provided by the event.

from Tkinter import *

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=211
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A48%3A59+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=211&now=5%2F31%2F2002+4%3A48%3A59+PM

def ShowPosition(event):
 Top = Toplevel(root)
 xlabel = Label(Top)
 xlabel.pack()
 xlabel.config(text = "X = " + str(event.x))
 ylabel = Label(Top)
 ylabel.pack()
 ylabel.config(text = "Y = " + str(event.y))
 Top.mainloop()

root = Tk()
frame = Frame(root, width=200, height=200)
frame.bind("<Button-1>", ShowPosition)
frame.pack()
root.mainloop()

The next sections provided more events that you can use in your programs.

Mouse Events

When handling mouse event, use 1 for the left button, 2 for the middle button, and 3 for the right
button. The following events are based on the left button, and you need to make the necessary changes
in order to adapt them for usage with the other buttons. Before starting, you should know that the
current position of the mouse pointer, the position relative to the widget, is provided in the x and y
options of the event object passed to the callback.

If you bind to both a single click event and to a double click event, both bindings will be called
whenever one of them is activated.

<Enter>— The mouse pointer entered the widget.

<Leave>— The mouse pointer left the widget.

<Button-1>, <ButtonPress-1>, or <1>— A mouse button is pressed over the
widget.

<B1-Motion>— The mouse is moved, with mouse button 1 being held down.

<ButtonRelease-1>— Button 1 was released.

<Double-Button-1>— Button 1 was double-clicked.

Keyboard Events

The following events are exposed by the keyboard interface:

<Key>— The user has pressed any key. The instance object originated by the callback
function carries an attribute called char that can be used to identify which key was
pressed.

a— The user typed the letter a.

b— The user typed the letter b.

The same concept can be applied for all the other printable characters.

<Control-Up>— The user pressed the Control key, while pressing the Up arrow.
This type of structure also allows you to use the keyword suffixes Up, Down, Left, and
Right, and the keyword prefixes Control, Alt, and Shift.

<Return>— The user pressed the Enter key.

<Escape>— The user pressed the Esc key.

The same concept can also be applied for all the other special keys found in the keyboard, including:
F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, Num_Lock, Scroll_Lock, Caps_Lock, Print, Insert,
Delete, Pause, Prior (Page Up), Next (Page Down), BackSpace, Tab, Cancel (Break), Control_L (any
Control key), Alt_L (any Alt key), Shift_L (any Shift key), End, Home, Up, Down, Left, and Right.

Event Attributes

Next, I list all the attributes that are exposed by the instance objects originated by the callback
functions:

char— Character code associated with a pressed key.

keycode— Key code associated with a pressed key.

keysym— Key symbol associated with a pressed key.

height, width— New size, in pixels, of a widget.

num— This attribute contains the mouse's button number associated with an event.

widget— Widget instance of the widget that has generated the event.

x, y— Current position, in pixels, of the mouse.

x_root, y_root— These attributes identify the current position of the mouse, in
pixels, relative to the upper left corner of the screen.

type— Shows the event type.

Event Callbacks

The following methods are used to handle event callbacks by binding a Python function or method to
an action that can be applied to a widget. You will also find some callback methods that handle alarm
callbacks as well.

after(milliseconds [, callback [, arguments]])— Registers an
alarm callback that accepts optional arguments. This callback is called after the given
number of milliseconds. The returned value of this method is an identifier that can be
used along with the after_cancel method in order to cancel the callback. If you call
the after method using just the first argument, the application will block the event loop
and wait for the given number of milliseconds.

after_cancel(identifier)— Cancels the alarm callback that possesses the
given identifier.

after_idle(callback, arguments)— Registers a callback that is called
whenever the system is idle, without anything going on in the mainloop.

bindtags()— Returns the binding search order used by the widget. The returned
value is in a tuple format, and it lists the namespaces used to search for the bindings. You
can modify this order by calling this method with the altered order as an argument.

bind(event, callback)— Defines the function or method (callback) that
must be associated to the given event. Use the form bind(event, callback,
"+") to handle multiple callbacks within the same binding.

bind_all(event, callback)— Defines the function or method (callback)
that must be associated to the given event at the application level. Use the form
bind_all(event, callback, "+") to handle multiple callbacks within the
same binding. As an example, this can be used to set global accelerator/shortcut keys.

bind_class(widgetclass, event, callback)— Defines the function or
method (callback) that must be associated to the given event at the given widget
class. Use the form bind_class(widgetclass, event, callback, "+")
to handle multiple callbacks within the same binding.

<Configure>— Indicates that the widget was resized or moved to a new location.
The instance object originated by the callback function carries two attributes that can be
used to identify the new size of the widget: height and width. Note that the name
comes from the fact that the configure event is emitted in X11 when a window is
mapped or resized.

unbind(event)— Removes the bindings for the given event.

unbind_all(event)— Removes the bindings for the given event at the application
level.

unbind_class(class, event)— Removes the bindings for the given event at
the given widget class.

Protocols

The mechanism called protocol handler is responsible for the communication between the window
manager and your application. Handling these protocols, you can intercept the messages provided by
the system, and define exactly what you want to happen.

Usually, the protocols WM_DELETE_WINDOW, WM_TAKE_FOCUS, and WM_SAVE_YOURSELF are
the ones mostly used. For details about the other supported protocols, see the Inter-Client
Communication Conventions Manual (ICCCM) at

http://tronche.com/gui/x/icccm/

Although this convention was established for the X systems, the Tk library handles it on all platforms.
These protocols are X specific. If you are running an X server on Windows or MacOS and have Tk
compiled for X, it will do the same as on UNIX. That's because Tk ports map these calls to the
equivalent actions on the other systems.

http://tronche.com/gui/x/icccm/

The necessary syntax to bind a handler to a protocol is

widget.protocol(protocol, function_handler)

Note that the widget must be a Toplevel widget. The following example demonstrates the use of the
WM_DELETE_WINDOW protocol. The window manager generates this protocol when the user tries to
close a window. Here, we are intercepting this protocol.

from Tkinter import *
import tkMessageBox
def protocolhandler():
 if tkMessageBox.askokcancel("Exit", "Wanna leave?"):
 if tkMessageBox.askokcancel("Exit", "Are you sure?"):
 if tkMessageBox.askokcancel("Exit", "Really?"):
 root.destroy()

root = Tk()
root.protocol("WM_DELETE_WINDOW", protocolhandler)
root.mainloop()

Just to let you know, the WM_SAVE_YOURSELF protocol is called by X window managers when the
application should save a snapshot of its working set, and the WM_TAKE_FOCUS protocol is called by
X window managers when the application gets the focus.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=211

Index terms contained in this section

<
 B1-Motion event
 Button-1 event
 ButtonRelease-1 event
 Configure method
 Control-Up event
 Double-Button-1 event
 Enter event
 Key event
 Leave event
 Return event
(<
 Ó
 Button-1Ó) event
a event
after(milliseconds [, callback [, arguments]]) method
after_cancel(identifier) method
after_idle(callback, arguments) method
attributes
 char
 events
 height
 keysym
 num
 widget
 x
 x_root
b event
bind(event, callback) method
bind_all(event, callback) method
bind_class(widgetclass, event, callback) method
binding
 events
 widgets 2nd 3rd 4th 5th 6th
 handlers, protocols
bindtags() method
callback function
callbacks
 events
 methods 2nd
char attribute
command property
events

 <
 B1-Motion
 Button-1
 ButtonRelease-1
 Control-Up
 Double-Button-1
 Enter
 Key
 Leave
 Return
 (<
 ÓButton-1Ó)
 a
 b
 binding
 widgets 2nd 3rd 4th 5th
 handling
 Tkinter module 2nd 3rd 4th 5th
functions
 callback
graphical user interfaces (GUIs)
 Tkinter
 handling events 2nd 3rd 4th 5th
handlers
 binding, protocols
handling
 events
 Tkinter module 2nd 3rd 4th 5th
height attribute
ICCCM (Inter-Client Communication Conventions Manual)
Inter-Client Communication Conventions Manual (ICCCM)
interfaces
 graphical user (GUI)
 Tkinter 2nd 3rd 4th 5th
keyboard events
 handling
keysym attribute
methods
 <
 Configure
 after(milliseconds [, callback [, arguments]])
 after_cancel(identifier)
 after_idle(callback, arguments)
 bind(event, callback)
 bind_all(event, callback)
 bind_class(widgetclass, event, callback)
 bindtags()

 event callbacks 2nd
 unbind(event)
 unbind_all(event)
 unbind_class(class, event)
modules
 Tkinter
 handling events 2nd 3rd 4th 5th
mouse events
 handling
num attribute
properties
 command
protocols
 handling
 Tkinter
 WM_SAVE_YOURSELF
 WM_TAKE_FOCUS
Tkinter module
 handling events 2nd 3rd 4th 5th
unbind(event) method
unbind_all(event) method
unbind_class(class, event) method
widget attribute
widgets
 binding events 2nd 3rd 4th 5th 6th
WM_SAVE_YOURSELF protocol
WM_TAKE_FOCUS protocol
x attribute
x_root attribute

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 15. Tkinter > Tkinter Widgets See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162148037071157167172241241

Tkinter Widgets

The typical Tkinter distribution contains a basic set of 15 widgets, and some extra classes.

The Tkinter reference that I present in this chapter only shows a small set of methods and attributes for each one of the
available widgets. This list is provided just to give you some idea of what you can do with each one of the widgets, and it is
doesn't have the intention to be a complete guide. If you need to go further in this topic, I suggest you look at the Tkinter
resources pages that I list at the end of this chapter.

Widget Standard Options

Almost all widgets have access to a set of standard attributes that define special characteristics for each one of them,
including color definitions and font types. The value for each one of these attributes can be determined at the creation time
as

mylabel = Label(win, width=40)

Or, if you prefer, you can also define (or change) the values at the execution time using the configure method.

mylabel.configure(width=40)

The previous examples use key/value pairs to define the attribute values, but you can also use dictionaries to easily inform
multiple attributes at once.

mysize = { "height"=2, "width"=40}
mylabel.configure(mysize)

Support for using dictionaries here is really for backward compatibility for programs written before Python 1.4 (which
didn't support keyword arguments). It is not a good idea to use it with the latest versions of Python. The third way of
changing properties is with

mylabel['height'] = 2

Next, I list common properties that are defined for all Tkinter widgets.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=212
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A49%3A09+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=212&now=5%2F31%2F2002+4%3A49%3A09+PM

height

In buttons, labels, and text widgets, this attribute defines the height in number of characters. In all other widgets, it defines
the height in pixels.

width

In buttons, labels, and text widgets, this attribute defines the width in number of characters. In all other widgets, it defines
the width in pixels.

background(bg) and foreground(fg)

These attributes define the background and foreground (text) colors for a specific widget. It can be either a color name or a
explicit hexadecimal notation RGB starting with #. It is usually used in one of the following formats: "#RRGGBB",
"#RGB", and "#RRRRGGGGBBBB", depending on the number of colors allowed by your system.

If you are using either a Windows or a Macintosh system, the table that contains the available color names is already built
into your system.

The following constants define the system colors that you can use within your Windows system.

SystemActiveBorder, SystemActiveCaption, SystemAppWorkspace,
SystemBackground, SystemButtonFace, SystemButtonHighlight,
SystemButtonShadow, SystemButtonText, SystemCaptionText, SystemDisabledText,
SystemHighlight, SystemHighlightText, SystemInactiveBorder,
SystemInactiveCaption, SystemInactiveCaptionText, SystemMenu, SystemMenuText,
SystemScrollbar, SystemWindow, SystemWindowFrame, SystemWindowText.

Note that you can change the colors at any time by editing the control panel settings.

The same concept goes for Mac systems. The available list of color names for the Macintosh platform is as follows:

SystemButtonFace SystemMenuActive
SystemButtonFrame SystemMenuActiveText
SystemButtonText SystemMenuDisabled
SystemHighlight SystemMenuText
SystemHighlightText SystemWindowBody
SystemMenu

On the other hand, if you are using a UNIX X windowing system, the table of color names is located in a file called
xrgb.txt, which contains a list of color names and their corresponding RGB values, defined by the X Server.

relief

This attribute defines the style of a widget's border. All Tkinter widgets have a border, which might not be visible by
default for some widgets. This attribute accepts the following values: SUNKEN, RIDGE, RAISED, or GROOVE for 3D
appearance; and FLAT or SOLID for 2D appearance.

Tip

The border of a widget consists of a 3D relief and a focus highlight region (in most cases, this is a border outside the
relief).

Highlight Settings

These attributes control the process of indicating whether a widget has the keyboard focus.

highlightcolor defines the color used to draw the highlight region when the widget has the keyboard focus.

highlightbackground defines the color used to draw the highlight region when the widget doesn't have the keyboard
focus.

highlightthickness defines the width of the highlight region, in pixels.

borderwidth (bd)

This attribute defines the width of a widget relief border in number of pixels.

text

This attribute contains the widget caption text, using the foreground and font values to format it.

justify

This attribute defines how multiple lines of a text caption must line up. It can assume one of the following values: LEFT,
CENTER, or RIGHT.

font

In certain widgets that support caption text, you can specify the font that you want to format the text with. The font
specification must be in a valid tuple format that must contain the font family name, the font size, and a string listing the
font styles that you want to apply (bold, italic, underline, and overstrike), as you can see in the following code example:

w1 = Tkinter.Label(root, text="Hello Python World", font=("Symbol", 8,
 "italic"))
w2 = Tkinter.Label(root, text="Hello Python World", font=("Times", 14,
 "bold italic"))
w3 = Tkinter.Label(root, text="Hello Python World", font=("Symbol", 8))

The next example shows how you can use the Font class provided by the tkFont module in order to create font
instances. The great advantage of this style of programming is that in case you need to make changes to a given font
format, the changes are replicated to every widget in which the font is mentioned.

import Tkinter, tkFont
root = Tkinter.Tk()
myfont = tkFont.Font(family="times", size=18, weight=tkFont.BOLD)
widget = Tkinter.Label(root, text="Hello Python World", font=myfont)
widget.pack()
Tkinter.mainloop()

We basically have three elements that we need to provide: The font family (name), the font size, and a list of the required
style options. The font name follows the format used in Windows and X Systems, and we have at least the Times, Courier,
and Helvetica families predefined. The font style options follow the specification detailed in Table 15.1.

Table 15.1. Available Options for Font Styles

Font Style Option Description
family Font family
size Font size in points
weight Font thickness (NORMAL or BOLD)
slant Font slant (NORMAL or ITALIC)
underline Font underlining: (0) False, (1) True
overstrike Font strikeout: (0) False, (1) True

The tkFont module also exposes the functions and methods listed in Tables 15.2 and 15.3, respectively.

Table 15.2. Functions Provided by the tkFont Module

Function Description
families() List available font families
names() List names of user-defined fonts

Table 15.3. Available Methods for a Font Class Instance

Font Method Description
actual(options) Returns actual font attributes.
cget(option) Gets configured font attribute.
config(), configure() Gets a full set of configured fonts.
config(options) Modifies one or more font attributes. configure(options...)
copy(font object) Returns a copy of the font object.
measure(text) Returns the width in integer format.
metrics(options) Returns the font metrics.

You can customize your application to use platform dependent fonts, which are available on your system. For example, if
you are running MS Windows, you can use Arial, Courier New, Fixedsys, MS Sans Serif, MS Serif, Symbol, System,

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#11.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#12.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#13.html

Times New Roman, and others.

Some system fonts are also available for your usage (see Table 15.4), however, they don't allow you to change their style
and size specifications. Be careful when porting applications that use system fonts because those fonts are tied to specific
systems.

Table 15.4. Examples of System Fonts

Platform System Font Examples
Windows ansi, ansifixed, device, system, and systemfixed
Macintosh application and system
UNIX 6x10 and fixed

command

This attribute associates a widget's activation with a Python function. Therefore, the function defined by this attribute is
called when a specific action happens at the widget (like the click of a button).

variable

This attribute maps the widget value to a variable in such a way that all changes made to the widget are reflected to this
variable, and vice versa. This variable is an instance of one of the following classes: StringVar, IntVar,
DoubleVar, or BooleanVar. These classes wrap a Tcl variable, which is required to use some of the Tk interfaces.
All these instances implement at least two methods: get() and set(), which can be used to obtain and define a
variable's value, respectively.

image bitmap

These attributes define the image file or the bitmap file to be displayed within the widget.

anchor

This attribute defines either the location of a widget within a window, or the location of a text message within a widget.
The possible values for this attribute are N, NE, E, SE, S, SW, W, NW, and CENTER.

padx pady

Defines the padding between the widget's text or the widget's image and the widget border.

cursor

This attribute defines which mouse pointer (cursor) must be used when the mouse is moved over the widget. Some widgets
(such as the Text widget) define this value by default. If you don't set this option, the parent widget's cursor is used by
default. Some possible cursor values are crosshair, watch, xterm, fleur, and arrow. There are plenty of
them for you to choose:

root.config(cursor="wait") # Changes to the wait cursor
root.config(cursor="") # Changes back to the normal cursor

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#14.html

Widgets Reference

Tkinter offers the following basic set of widgets. Note that these widgets are not defined or organized in any hierarchical
way. Along with the set of methods that is defined by each widget, all widgets also support many general specific methods,
such as the geometry management methods. This creates a wide coverage interface for each one of them.

Button—This widget defines a clickable button that can execute a specific operation when clicked.

Canvas—This widget is used to draw graphs, lines, polygons, and all other types of graphic elements. The
main reason people use the canvas is because it takes care of all the items you add to it, and can take events
on individual items in the canvas.

Checkbutton—This widget exposes a button that controls a variable that can have two distinct values. After
clicking the button, the variable value toggles between the two possible values.

Entry—This widget implements a simple text entry field.

Frame—This widget works like a container for other widgets when creating a complex layout within a
window. It helps you to organize the layout of the other widgets.

Label—This widget handles the exhibition of a text or an image.

Listbox—This widget displays a list of possible selections.

Menu—This widget is used to implement pull-down and pop-up menus.

Menubutton—This widget is used to implement pull-down menus and the toplevel menu bar.

Message—This widget displays a text message in a way similar to the label widget, but using powerful
formatting capabilities.

Radiobutton—This widget is associated to a variable, and when clicked, the variable assumes its value.
Usually many radiobuttons (each one carrying a different value) are associated to the same variable, and
when one is clicked, it sets its value to the variable.

Scale—This widget provides a slider that helps you set the value of a numerical variable.

Scrollbar—This widget implements standard scrollbars that you can use along with other widgets, such as
listbox, canvas, entry, and text.

Text—This widget display text that you can edit and format.

Toplevel—This widget is another container widget, just like the frame widget. However, it has its own
toplevel window, which provides a window manager interface.

Button

The Button widget can implement a number of button types, which can display either text messages or images. See the
previous Hello World code for an example of how to use the Button widget.

Some special methods implemented by the button widget are as follows:

flash()— Reverses and resets the foreground and background colors in order to cause a flashing effect.

invoke()— Executes the function defined in the command property.

The next properties are available for button widgets:

activebackground— The background color to use when the button is activated.

activeforeground— The foreground color to use when the button is activated.

bitmap— The bitmap to display in the button. This option is only used when the image option is omitted.
The general available values for this option are gray12, gray25, gray50, gray75, hourglass, error, questhead,
info, warning, and question. If you prefer, you can load the bitmap directly from an XBM (X Bitmap) file,
just by prefixing the filename with an @ sign; for example, bitmap=@hello.xbm.

default— If set, identifies the default button.

disabledforeground— The foreground color that must be used when the button is disabled.

image— An image to display in the widget. If indicated, this option precedes both the text and bitmap
options. Usually, before using this attribute, you need to create an image instance first, using the image
subclasses, and then assign the instance to this attribute.

state— Defines the button state, which can be either NORMAL, ACTIVE, or DISABLED.

takefocus— Indicates whether the user can use the TAB key to change the focus to this button.

text— The text to display in the button. If the bitmap or image options are used, the text isn't displayed.

underline— Integer offset applied on the text value to identify which character must be underlined.

wraplength— Distance, in screen units, that determines when a button's text must be wrapped into
multiple lines. The default configuration is to not accept wrapping.

Canvas

This widget is responsible for creating and displaying graphical items, such as arcs, bitmaps, images, lines, ovals,
polygons, and rectangles, in a customized way. It works by providing a canvas into which you add the graphical items. The
default behavior of this widget is to draw the graphic items on top of the other items added to the canvas first. When you
have your canvas widget filled with the graphical items, you can manipulate them using a lot of methods provided by
Tkinter. Note that you can create customized widgets this way by adding several layers of objects, and binding event
callbacks to each one of these layers.

The Canvas widget supports the following standard items:

arc— Creates an arc item, which can be a chord, a pieslice, or a simple arc.

coord = 10, 50, 240, 210
widgetitem = canvas.create_arc(coord, start=0, extent=150, fill="blue")

bitmap— Creates a bitmap item, which can be a built-in bitmap, such as "question", "info",
"hourglass", "warning", or one read from an XBM file.

widgetitem = canvas.create_bitmap(60, 30, bitmap="warning")

image— Creates an image item, which can be an instance of either the BitmapImage or the
PhotoImage classes.

filename = PhotoImage(file="sunshine.gif")
widget = canvas.create_image(50, 50, anchor=NE, image=filename)

line— Creates a line item.

widgetitem = create_line(x0, y0, x1, y1, ..., xn, yn, options)

Some options are

width— Line's width. The default value is 1 pixel.

fill— Line's color. The default value is black.

oval— Creates a circle or an ellipse at the given coordinates. It takes two pairs of coordinates—the top left
and bottom right corners of the bounding rectangle for the oval.

widgetitem = create_oval(x0, y0, x1, y1, options)

Some options are

fill— The color to use for the interior. If an empty string is given, the interior is not drawn. Default is empty
(transparent).

outline— The color to use for the outline.

polygon— Creates a polygon item that must have at least three vertices.

widgetitem = create_polygon(x0, y0, x1, y1, x2, y2, ..., xn, yn, options)

Some options are

outline— Polygon outline's color. The default value is black.

splinesteps— Integer that defines the smoothness of the curves.

rectangle— Creates a rectangle item using the given coordinates.

widgetitem = create_rectangle(x0, y0, x1, y1, options)

Some options are

fill— The color to use for the rectangle interior. If an empty string is given, the interior is not drawn. The
default is empty (transparent).

outline— The color to use for the outline. If an empty string is given, the outline is not drawn. The default
is black.

text— Creates a text item at the given position, using the given options. Note that the text string itself is
given by the text option.

widgetitem = create_text(x0, y0, options)

Some options are

anchor— Specifies the text position. The default value is CENTER.

fill— The color to use for the text. If an empty string is given, the text is not drawn. Default is empty
(transparent).

window— Embeds a window at the given position based on the provided options.

widgetitem = create_window(x0, y0, options)

Some options are

window— The window widget to embed in the canvas.

anchor— Specifies the window position. The default value is CENTER.

Checkbutton

This widget implements a check box with two states: checked and unchecked; in other words, on and off or true and false.

The following attributes are available:

onvalue, offvalue— These attributes specify the values to store within the variable indicated by the
variable property. If the button is not selected, the variable receives the offvaluevalue, receiving the
onvalue value when the button is checked.

indicatoron— By setting this attribute to zero, you can make the whole widget to be the check box.

This widget exposes the following methods:

select()— Selects the check button and sets the value of the variable to onvalue.

flash()— Reverses and resets the foreground and background colors in order to cause a flashing effect.

invoke()— Executes the function defined in the command property.

toggle()— Reverses the state of the button. If it is on, it becomes off, and vice versa.

The following code demonstrates a call to the Checkbutton widget:

from Tkinter import *
win = Frame()
win.pack()
Checkbutton(win, text="Click here").pack(side=LEFT)
win.mainloop()

Figure 15.4 shows the output of this code.

Figure 15.4. The Checkbutton widget as it is displayed.

In case you are wondering how to use the variables listed previously, take a look at the following line, and check out how
we would have to write the code to use them. var is the name of a variable of your program. When you say

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#25.html

variable=<your variable>, you are asking the widget to assign to your variables the values of onvalue and
offvalue whenever your button is checked or unchecked, respectively.

Checkbutton(master, variable=var, indicatoron=0).pack()

Entry

The Entry widget is implemented by users to enter a single line of text in a frame or in a window widget.

The following code exemplifies the use of this widget by creating a single line interface in which you can type expressions:

from Tkinter import *
from math import *
def calc():
 result = "= " + str(eval(expression.get()))
 label.config(text = result)

root = Tk()
frame = Frame(root)
label = Label(frame)
entry = Entry(frame)
expression = StringVar()
entry["textvariable"] = expression
button = Button(frame, text = "=", command = calc)
frame.pack()
entry.pack()
label.pack(side=LEFT)
button.pack(side=RIGHT)
frame.mainloop()

Figure 15.5 shows how the output of this code looks.

Figure 15.5. The Entry widget being used to implement an expression evaluator.

This widget provides the textvariable attribute, which contains the value either entered by the user or to be displayed.
The get() method can be used to access this value, as well.

Frame

The Frame widget is very important for the process of grouping and organizing other widgets in a somehow friendly way.
It works like a container, which is responsible for arranging the position of other widgets. It uses rectangular areas in the

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#27.html

screen to organize the layout and to provide padding of these widgets. A frame can also be used as a foundation class to
implement complex widgets.

In the next example, we create two frames responsible for aligning the colored buttons in two distinct rows:

from Tkinter import *
root = Tk()
frame = Frame(root)
frame.pack()
bottomframe = Frame(root)
bottomframe.pack(side=BOTTOM)

redbutton = Button(frame, text="Red", fg="red")
redbutton.pack(side=LEFT)
greenbutton = Button(frame, text="Brown", fg="brown")
greenbutton.pack(side=LEFT)
bluebutton = Button(frame, text="Blue", fg="blue")
bluebutton.pack(side=LEFT)
blackbutton = Button(bottomframe, text="Black", fg="black")
blackbutton.pack(side=BOTTOM)
root.mainloop()

You can check the output of this function by looking at Figure 15.6.

Figure 15.6. This window uses two frames to organize the buttons.

Label

This widget implements a display box where you can place text or images. The text displayed by this widget can be
updated at any time you want. It is also possible to underline part of the text (like to identify a keyboard shortcut), and span
the text across multiple lines.

label = Label(root, bg="white", relief =RAISED, borderwidth=3)
label.config(text="Whassup!")

If you want to easily manipulate the contents of a label widget when changing a single variable, use the textvariable
option as demonstrated in the next example:

var = StringVar()
Label(root, textvariable=var).pack()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#29.html

var.set("Hey!? How are you doing?")

Listbox

Using this widget, you create a list of text items that can be selected by the user. This list might contain several lines of
information, and all lines must have the same properties. Depending on how the widget is configured (see the
selectmode property in following list), the user is allowed to select multiple lines at the same time, which is very useful
in many cases.

The Listbox widget implements the following properties:

height— Number of rows in the list. A value of 0 automatically resizes the widget to fit the largest option
found. Setting the height to zero makes the listbox long enough to show all options at once.

selectmode— This option defines the type of list that you are creating. It can be either SINGLE,
EXTENDED, MULTIPLE, or BROWSE.

width— Number of characters in each row. A value of 0 automatically resizes the widget to fit the largest
option found.

The following methods are also provided:

delete(row [,lastrow])— Deletes the given row, or the rows between the given row and
lastrow.

get(row)— Gets the string that starts at the given row.

insert(row, string)— Inserts the given string at the given row.

see(row)— Makes the given row visible for the user.

select_clear()— Clears the selection.

select_set(startrow, endrow)— Selects the rows starting at the startrow position and
ending at the endrow position.

The following example demonstrates the use of a list box:

from Tkinter import *
root = Tk()
mylistbox = Listbox(root)
mylistbox.pack()
mylistbox.delete(0, END)
mylistbox.insert(END, "This is the row number 1")
for number in range(2,41):
 mylistbox.insert(END, "This is the row number " + str(number))

root.mainloop()

In order to see all the lines from the previous list, you are required to hold down the mouse button while dragging down the
selection. This process can be largely simplified by using a Scrollbox widget along with the Listbox widget. Also check out
the example found at the Scrollbox widget section.

Menu

The goal of this widget is to allow us to create all kinds of menus that can be used by our applications. The core
functionality provides ways to create three menu types: pop-up, toplevel, and pull-down. It is also possible to use other
extended widgets to implement new types of menus, such as the OptionMenu widget, which implements a special type that
generates a pop-up list of items within a selection. You can't put arbitrary widgets in a menu. However, there are special
menu item types such as radio menu items and check menu items that provide similar behavior to the widgets by the same
name.

The menu widget exposes the following methods:

add_command (options)— Adds a menu item to the menu.

add_radiobutton(options)— Creates a radio button menu item.

add_checkbutton(options)— Creates a check button menu item.

add_cascade(options)— Creates a new hierarchical menu by associating a given menu to a parent
menu.

add_separator()— Adds a separator line to the menu.

add(type, options)— Adds a specific type of menu item to the menu.

delete(startindex [, endindex])— Deletes the menu items ranging from startindex to
endindex.

entryconfig(index, options)— Allows you to modify a menu item, which is identified by the
index, and change its options.

index(item)— Returns the index number of the given menu item label.

The menu widget methods expose the following options:

accelerator— This is a keyboard alternative to the menu option that must be displayed as right justified
next to the menu option. It's important to say here that this option doesn't automatically bind the given key to
the option. You have to do it by yourself.

command— Name of the callback function that is called when the menu item is selected.

indicatorOn— Setting this option to true adds a switch next to the menu options. This small button

allows an option to be toggled on and off.

label— This option defines the text of a menu item.

menu— This option is used by the add_cascade method to add a submenu (another Menu instance) to a
menu.

selectColor— Switch's color. See the indicatorOn property.

state— Defines the menu item status. The possible values are normal, active, and disabled.

onvalue, offvalue— Values to be stored in the variable property. When the menu item is
selected, the onvalue's value is copied to that property.

tearOff— By setting this option to true, a clickable separator is created in the top of the menu.
Clicking on this separator, the menu item separates from the main menu, becoming part of a new window.

underline— Defines the index position of the character to be underlined.

value— The value of the attached radio button.

variable— The variable used to store a value.

Now, let's get back to practice and learn how to design menus. The basic rules are simple. First, you need to instantiate the
menu class and anchor it to its parent widget. Then, you just need to use one of the add methods to include items to it.

The next example shows how to create a pop-up menu. Note that we have to bind a mouse action to a callback function that
launches the menu (see Figure 15.7).

Figure 15.7. This pop-up menu is activated by right-clicking.

from Tkinter import *
def donothing():
 filewin = Toplevel(root)
 button = Button(filewin, text="Do nothing button")
 button.pack()

root = Tk()
menu = Menu(root, tearoff=0)
menu.add_command(label="Cut", command=donothing)
menu.add_command(label="Copy", command=donothing)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#33.html

menu.add_command(label="Paste", command=donothing)
menu.add_command(label="Delete", command=donothing)
frame = Frame(root, width=100, height=100)
frame.pack()
def popupmenu(event):
 menu.post(event.x_root, event.y_root)
frame.bind("<Button-3>", popupmenu)
root.mainloop()

The next example demonstrates the creation and usage of a menu bar. This type of menu is placed on the top of toplevel
windows (see Figure 15.8).

Figure 15.8. The menu bar is placed on top of a toplevel window.

from Tkinter import *
def filemenu():
 filewin = Toplevel(root)
 fileclose = Button(filewin, text="Close Application")
 fileclose.config(command=root.quit)
 fileclose.pack()

root = Tk()
menubar = Menu(root)
menubar.add_command(label="File", command=filemenu)
menubar.add_command(label="Help")
root.config(menu=menubar)
root.mainloop()

This last example demonstrates how to create pull-down menus, which is a type of menu that is bound to a parent menu
(see Figure 15.9).

Figure 15.9. This pull-down menu is bound to a parent menu.

from Tkinter import *

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#34.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#35.html

def donothing():
 filewin = Toplevel(root)
 button = Button(filewin, text="Do nothing button")
 button.pack()

root = Tk()
menubar = Menu(root)
filemenu = Menu(menubar, tearoff=0)
filemenu.add_command(label="New", command=donothing)
filemenu.add_command(label="Open", command=donothing)
filemenu.add_command(label="Save", command=donothing)
filemenu.add_command(label="Save as...", command=donothing)
filemenu.add_command(label="Close", command=donothing)
filemenu.add_separator()
filemenu.add_command(label="Exit", command=root.quit)
menubar.add_cascade(label="File", menu=filemenu)
editmenu = Menu(menubar, tearoff=0)
editmenu.add_command(label="Undo", command=donothing)
editmenu.add_separator()
editmenu.add_command(label="Cut", command=donothing)
editmenu.add_command(label="Copy", command=donothing)
editmenu.add_command(label="Paste", command=donothing)
editmenu.add_command(label="Delete", command=donothing)
editmenu.add_command(label="Select All", command=donothing)
menubar.add_cascade(label="Edit", menu=editmenu)
helpmenu = Menu(menubar, tearoff=0)
helpmenu.add_command(label="Help Index", command=donothing)
helpmenu.add_command(label="About...", command=donothing)
menubar.add_cascade(label="Help", menu=helpmenu)
root.config(menu=menubar)
root.mainloop()

Menubutton

This widget was primarily used to display toplevel, pop-up, and pull-down menus. However, you can now use the menu
widget to obtain the same functionality.

Message

This widget provides a multiline and noneditable object that displays texts, automatically breaking lines and justifying their
contents. Its functionality is very similar to the one provided by the Label widget, except that it can also automatically wrap
the text, maintaining a given width or aspect ratio. The following example creates a simple Message widget instance:

from Tkinter import *
txt = "This message demonstrates the usage of the Message Widget"

root = Tk()
msg = Message(root, text = txt)
msg.pack()
root.mainloop()

Figure 15.10 shows the output of this code.

Figure 15.10. A message displayed by the Message widget.

Radiobutton

This widget implements a multiple-choice button, which is a way to offer many possible selections to the user, and let her
choose only one of them.

In order to implement this functionality, each group of radiobuttons must be associated to the same variable, and each one
of the buttons must symbolize a single value. You can use the Tab key to switch from one radionbutton to another.

The following properties are made available by this widget:

command— Function to be called when the button is clicked.

variable— Variable to be updated when the button is clicked.

value— This attribute defines the value that must be stored in the variable when the button is clicked.

The following methods are also provided by this widget:

flash()— Reverses and resets the foreground and background colors in order to cause a flashing effect.

invoke()— Executes the function defined in the command property.

select()— Selects the radio button, setting the variable to value.

The following example creates three radiobuttons and displays the selected option on the label widget (see Figure 15.11):

Figure 15.11. This window exemplifies the use of radiobuttons.

from Tkinter import *

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#38.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#40.html

def sel():
 selection = "You selected the option " + str(var.get())
 label.config(text = selection)

root = Tk()
var = IntVar()
Radiobutton(root, text="Option 1", variable=var, value=1,
 command=sel).pack(anchor=W)
Radiobutton(root, text="Option 2", variable=var, value=2,
 command=sel).pack(anchor=W)
Radiobutton(root, text="Option 3", variable=var, value=3,
command=sel).pack(anchor=W)
label = Label(root)
label.pack()
root.mainloop()

Check out the next example. Just by setting the indicatoron attribute to 0, we can change the visual design of our
radio buttons (see Figure 15.12):

Figure 15.12. An alternative way to use radiobuttons.

from Tkinter import *
def sel():
 selection = "You selected the option " + str(var.get())
 label.config(text = selection)

root = Tk()
var = IntVar()
r1 = Radiobutton(root, text="Option 1", variable=var, value=1, command=sel)
r2 = Radiobutton(root, text="Option 2", variable=var, value=2, command=sel)
r3 = Radiobutton(root, text="Option 3", variable=var, value=3, command=sel)

r1.config(indicatoron=0)
r2.config(indicatoron=0)
r3.config(indicatoron=0)

r1.pack(anchor=W)
r2.pack(anchor=W)
r3.pack(anchor=W)
label = Label(root)
label.pack()
root.mainloop()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#41.html

Scale

The Scale widget provides a graphical slider object that allows you to select values from a specific scale. In order to get
and set values to or from the object, you need to use the following methods:

get()— This method gets the current scale value.

set(value)— This method sets the scale to a specific value.

The following example demonstrates the use of this widget (see Figure 15.13).

Figure 15.13. Using a Scale widget to select values from a specific scale.

from Tkinter import *
def sel():
 selection = "Value = " + str(var.get())
 label.config(text = selection)

root = Tk()
var = DoubleVar()
scale = Scale(root, variable=var)
button = Button(root, text="Get Scale Value", command=sel)
label = Label(root)

scale.pack(anchor=CENTER)
button.pack(anchor=CENTER)
label.pack()
root.mainloop()

You could also implement the previous example using the Scale.get(), as demonstrated next.

from Tkinter import *
def sel():
 label.config(text = scale.get())
root = Tk()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#43.html

var = DoubleVar()
scale = Scale(root)
button = Button(root, text="Get Scale Value", command=sel)
label = Label(root)

scale.pack(anchor=CENTER)
button.pack(anchor=CENTER)
label.pack()
root.mainloop()

Scrollbar

This widget provides a slide controller that is used to implement vertical scrolled widgets, such as Listbox, Text, and
Canvas. Note that you can also create horizontal scrollbars on Entry widgets.

This widget uses the command property to define the callback function that must be used to change the view in the widget.

Also, it implements the following two methods:

set(first, last)— Defines the fractions between 0 and 1 (representing the range 0%-100%) that
delimits the current view.

get()— Returns the current scrollbar configuration settings.

The next example demonstrates how to link a vertical scrollbar to a Listbox widget. The steps are very simple. You first
need to set the Listbox widget's yscrollcommand callback method to the set method of the scrollbar widget. Second,
you need to set the scrollbar's command to the yview method of the Listbox widget. Every time the Listbox view is
modified, the scrollbar's set method is called, and every time the scrollbar is changed, the Listbox's yview method is
called, as well(see Figure 15.14).

Figure 15.14. Here, the Scrollbar widget implements a vertical scrollbar for a Listbox widget.

from Tkinter import *
root = Tk()

scrollbar = Scrollbar(root)
scrollbar.pack(side=RIGHT, fill=Y)
mylist = Listbox(root, yscrollcommand=scrollbar.set)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#45.html

for line in range(100):
 mylist.insert(END, "This is line number " + str(line))
mylist.pack(side=LEFT, fill=BOTH)

scrollbar.config(command=mylist.yview)
mainloop()

If you need to use a horizontal scrollbar instead of a vertical scrollbar, the process is very simple. All you have to do is
change the orient option in the Scrollbar initialization call, and replace the yscrollcommand and yview with
xscrollcommand and xview. The following example implements these changes, as you can see in Figure 15.15.

Figure 15.15. Here, the Scrollbar widget is used to implement a horizontal scrollbar for another Listbox widget.

from Tkinter import *
root = Tk()

scrollbar = Scrollbar(root, orient=HORIZONTAL)
scrollbar.pack(side=BOTTOM, fill=X)

mylist = Listbox(root, xscrollcommand=scrollbar.set)
for line in range(100):
 msg = "This is a very big line whose number is " + str(line)
 mylist.insert(END, msg)
mylist.pack(side=LEFT, fill=BOTH)
scrollbar.config(command=mylist.xview)
mainloop()

Text

Text widgets provide advanced capabilities that allow you to edit a multiline text and format the way it has to be displayed,
such as changing its color and font. You can also use elegant structures like tabs and marks to locate specific sections of
the text, and apply changes to those areas. Moreover, you can embed windows and images in the text because this widget
was designed to handle both plain and formatted text. if you need to split your text across multiple lines, you just have to
insert (newline characters) at the position where you want to break the line.

Note

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#46.html

The main display area of the Grail Web browser used the Tk text widget.

The following attributes are exposed by Text widgets:

state— This attribute has two possible values: normal and disabled. The former is used to define
standard editable text boxes that accept inserts and deletes, and the latter is used for noneditable text boxes.

tabs— This attribute provides a list of strings that identifies all the tab stops on the Text widget. Each list
item is a concatenation of the index position of the tab stop and a justification sign (l, r, or c) that defines the
justification of the tab (left, right, or center, respectively).

The following methods are exposed as well:

delete(startindex [,endindex])— This method deletes a specific character or a range of text.

get(startindex [,endindex])— This method returns a specific character or a range of text.

index(index)— Returns the absolute value of an index based on the given index.

insert(index [,string]...)— This method inserts strings at the specified index location. If you
need to insert elements other than strings, such as windows or images, use the window_create and
image_create methods, respectively.

see(index)— This method returns true if the text located at the index position is visible.

Text widgets support three distinct helper structures: Marks, Tabs, and Indexes.

Marks are used to bookmark positions between two characters within a given text. Note that you cannot recognize the
marked positions visually: You need to use the variables. The fact of being able to store positions without compromising
the visual design allows you to use as many marks as you need without causing problems to the users. Tkinter offers two
preconfigured marks for you: INSERT and CURRENT. The first one defines the cursor's insertion position, and the other
one defines the closest position to the mouse pointer. We have the following methods available when handling marks:

index(mark)— Returns the line and column location of a specific mark.

mark_gravity(mark [,gravity])— Returns the gravity of the given mark. If the second
argument is provided, the gravity is set for the given mark. This defines where new text must be
inserted if someone tries to insert the text exactly on the mark position.

mark_names()— Returns all marks from the Text widget.

mark_set(mark, index)— Informs a new position to the given mark.

mark_unset(mark)— Removes the given mark from the Text widget.

Tags are used to associate names to regions of text, which makes easy the task of modifying the display settings of specific
text areas. Tags are also used to bind event callbacks to specific ranges of text. Tkinter provides a preconfigured tag called
SEL that matches the current selection. Next, are the available methods for handling tabs:

tag_add(tagname, startindex[,endindex] ...)— This method tags either the position
defined by startindex, or a range delimited by the positions startindex and endindex.

tag_config— You can use this method to configure the tag properties, which include, justify(center,
left, or right), tabs(this property has the same functionality of the Text widget tabs's property), and
underline(used to underline the tagged text).

tag_delete(tagname)— This method is used to delete and remove a given tag.

tag_remove(tagname [,startindex[.endindex]] ...)— After applying this method, the
given tag is removed from the provided area without deleting the actual tag definition.

The following example uses tags to format specific regions on the Text widget. Note that we use row/column pairs to
define the ranges that we want to manipulate.

from Tkinter import *
def onclick():
 pass

root = Tk()
text = Text(root)
text.insert(INSERT, "Here, I start the text ...")
text.insert(END, "... and here, I finish it.")
text.pack()
text.tag_add("here", "1.0", "1.4")
text.tag_add("start", "1.8", "1.13")
text.tag_config("here", background="yellow", foreground="blue")
text.tag_config("start", background="black", foreground="green")
root.mainloop()

Indexes are used to point out the actual positions of characters, delimiting areas within a text.

The following index types are available: INSERT, CURRENT, END, line/column ("line.column"), line end
("line.end"), user-defined marks, user-defined tags ("tag.first", "tag.last"), selection (SEL_FIRST,
SEL_LAST), window coordinate ("@x,y"), embedded object name (window, images), and expressions.

In order to demonstrate more uses of this widget, the next example inserts a Button widget right inside the text.

from Tkinter import *
def onclick():
 pass

root = Tk()

text = Text(root)
text.insert(INSERT, "Here, I start the text ...")
button = Button(text, text="I am a button", command=onclick)
text.window_create(INSERT, window=button)
text.insert(END, "... and here, I finish it.")
text.pack()
root.mainloop()

Toplevel

Toplevel widgets work as windows that are directly managed by the window manager. They do not necessarily have a
parent widget on top of them. Toplevels do support geometry management, as you can control where children of a toplevel
are placed, but you don't need to pack the toplevel itself. Their behavior is similar to Frame's. The difference is that
Toplevel widgets are displayed in a top-level, separated window.

This widget supports all the methods mentioned next. Also note that these methods are also supported by the root window,
which is originated by the Tk() call. Not necessarily all functions will work on your window manager because each one
of the available window managers in the market has its own type of support definitions.

deiconify()— Displays the window, after using either the iconify or the withdraw methods.

frame()— Returns a system-specific window identifier.

group(window)— Adds the window to the window group administered by the given window.

iconify()— Turns the window into an icon, without destroying it.

protocol(name, function)— Registers a function as a callback which will be called for the given
protocol. See the Protocols topic, which is located some pages ahead.

state()— Returns the current state of the window. Possible values are normal, iconic,
withdrawn, and icon.

transient([master])— Turns the window into a temporary(transient) window for the given master,
or to the window's parent, when no argument is given. These windows are automatically hidden when the
master window is iconified or withdrawn.

withdraw()— Removes the window from the screen, without destroying it.

The following methods can be used either to set or to retrieve a specific information to or from the method call. If you call
them without passing any arguments, they simply return their current value or state. On the other hand, if you inform the
arguments, the expected action is executed.

aspect(minNumer, minDenom, maxNumer, maxDenom)— Controls the relation between
window's width and height (aspect ratio). The aspect ratio is limited to lay between minNumer/minDenom
and maxNumer/maxDenom. If you omit the arguments, this method returns the current constraints as a 4-
tuple.

client(name)— Used under the X window system to define the WM_CLIENT_MACHINE property. It is
the application that sets the WM_* properties. The window manager can make use of these properties when
managing the windows.

colormapwindows(wlist...)— Used under the X window system to define the
WM_COLORMAP_WINDOWS property.

command(value)— Used under the X window system to define the WM_COMMAND property.

focusmodel(model)— Sets the focus model.

geometry(geometry)— Changes the windows geometry by using the following argument format:
"widthxheight+xoffset+yoffset", showing the widget coordinates in pixels.

iconbitmap(bitmap)— Defines a monochrome icon bitmap to be used when the window gets
iconified.

iconmask(bitmap)— Defines the icon bitmap mask to use when this window gets iconified.

iconname(newName=None)— Defines the icon name to be used when this window gets iconified.

iconposition(x, y)— Defines a suggestion for the icon position to be used when this window gets
iconified.

iconwindow(window)— Defines the icon window that should be used as an icon when this window
gets iconified.

maxsize(width, height)— Defines the maximum size for this window.

minsize(width, height)— Defines the minimum size for this window.

overrideredirect(flag)— Defines a flag different from 0 and tells the window manager to not add
a title or borders to the window.

positionfrom(who)— Defines the position controller.

resizable(width, height)— Defines the resize flags, which control whether the window can be
resized.

sizefrom(who)— Defines the size controller.

title(string)— Defines the window title.

Image

This class is used as a foundation to display graphic objects, including bitmaps and GIF images. Two subclasses are
inherited from this class: BitmapImage and PhotoImage.

In order to using the following syntax:

image = BitmapImage(options) or image = PhotoImage(options)

The following functions can be used for image handling:

image_names()— Returns a list containing the names of all existing images.

image_types()— Returns a list containing all the existing types that were created.

After a image object is created, it provides the following methods: image.type(), image.width(), and
image.height(), which return the type, actual width, and actual height of the image, respectively.

BitmapImage

This subclass is used to display bitmap images on widgets, including buttons, canvas, labels, and text. They really mean
bitmap for BitmapImage (not a multicolor image, which most Windows users think of because of the .BMP format). A
bitmap image represents a two color image (or 2 colors + transparency if a mask is used).

The following methods are exposed by this subclass. Table 15.5 shows the available options for these methods.

cget(option)— Returns the value of the given option.

config(options), configure(options)— Changes the image options.

height(), width()— Returns the image dimension, in pixels.

type()— Returns the "bitmap" string.

Table 15.5. Available Options for the BitmapImage Subclass

BitmapImage Options Description
background Background color to be used.
data String to be used instead of a file.
file File to be read.
foreground Foreground color to be used.
format Specifies the file handler to be used.
maskdata String that defines the contents of the mask in order to produce a 'shaped' bitmap.
maskfile File that specifies the mask. If you specify both maskdata and maskfile, the former becomes used.
height, width Requested dimensions for the image.

PhotoImage

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/212#51.html

This subclass is used to display full-color images on widgets, including buttons, canvas, labels, and text.

The following attributes are exposed by this subclass:

data— String to be used instead of a file.

file— File to be read.

height, width— Requested dimensions for the image.

This subclass offers native support to GIF and PPM files. In order to add an image to a widget, just implement the principle
established by the following code:

from Tkinter import *
root = Tk()
frame = Frame(root)
myimage = PhotoImage(file="new.gif")
b = Button(root)
b.config(image= myimage) # or b.image = myimage
frame.pack()
b.pack()
root.mainloop()

General Widget Methods

Next, I list some of the methods inherited from the base Tk classes that are provided for all Tkinter widgets, which also
includes the toplevel object that is generated by the Tk() method.

The following methods always apply to the widget object that makes the method call. To demonstrate it, the next code lines
create a label widget, and use the config method to set the value of the text attribute for the label widget that we have
just created.

lb = Label(root)
lb.config(text= "Hello Python World")

Now, let's see the available methods:

cget(option)— Returns a string that contains the current configuration value for the given option.

config(options), configure(options)— Sets the values for one or more options. When used
without arguments, it returns a dictionary containing the current settings for all widget options.

destroy()— Destroys the widget, removing it from its namespace.

focus(), focus_set()— Sets the keyboard focus to the widget.

focus_displayof()— Returns the name of the window that contains the widget and has the focus.

focus_force()— Enforces the keyboard focus to the widget.

focus_get()— Returns the identity of the window with focus.

focus_lastfor()— Returns the identity of the most recent window to receive the input focus.

getvar(variable)— Returns the value of the provided Tkinter variable name.

grab_set()— Grabs all events for the current application to the widget.

grab_current()— Returns the identity of the widget that has set the grab functionality in the current
application.

grab_release()— Releases the grab on the widget.

grab_set_global()— Grabs all events for the entire screen to the widget.

grab_status()— Returns None, local, or global, depending whether there is no grab set on
window, a local grab is set, or a global grab is set, respectively.

keys()— Returns all the options available for this widget in a tuple format. In order to obtain the value of
each one of these options, you can use the cget method.

lift([object]), tkraise([object])— Moves the widget to the top of the window stack, or if
an object (a widget or a window) is provided, the widget is placed right above the informed object.

lower([object])— Moves the widget to the bottom of the window stack, or if an object (a widget or a
window) is provided, the widget is placed right below the informed object.

mainloop()— Activates the main event loop.

quit()— Quits the main event loop.

setvar(variablename, value)— Sets a value to the given Tkinter variable name.

update()— Processes all pending tasks, such as geometry management and widgets redrawing. Be
careful when using this method.

update_idletasks()— Processes all pending idle tasks.

tk_focusNext()— Returns the next widget that should have the keyboard focus.

tk_focusPrev()— Returns the previous widget that should have the keyboard focus.

wait_variable(variable)— Creates a local event that waits for the given Tkinter variable to
change. This loop doesn't affect the application's mainloop.

wait_visibility(widget)— Creates a local event that waits for the given widget to become visible.
This loop doesn't affect the application's mainloop.

wait_window(widget)— Creates a local event that waits for the given widget to be destroyed. This
loop doesn't affect the application's mainloop.

winfo (Widget Information) Methods

This set of methods provides specific functionality for the windowing widgets.

winfo_cells()— Returns the number of cells in the widget's color map.

winfo_children()— Returns a list of widget instances for all the widget's children.

winfo_class()— Returns the Tkinter widget class name for the widget.

winfo_colormapfull()— Returns true if the widget's color map is full.

winfo_containing(xcoord, ycoord)— Returns the identity of the widget located at the given
coordinate (relative to the upper left corner of the root window).

winfo_depth()— Returns the bit depth (8, 16, 24, or 32 bits per pixel) used to display the widget.

winfo_exists()— Returns true if a Tk window corresponds to the given widget.

winfo_fpixels(number)— Returns a floating point value, which is the result of the conversion of the
given distance to the corresponding number of pixels.

winfo_geometry()— Returns a string in the format "widthxheight+xoffset+yoffset",
showing the widget coordinates in pixels.

winfo_height(), winfo_width()— Return the widget's height and width, in pixels.

winfo_id()— Returns an integer that contains a platform-specific window identity corresponding to the
given widget. On UNIX systems, this is the X window identifier; on Windows systems, this is the Window
HWND; and on Macs, it is a non-useful value.

winfo_ismapped()— Returns true if the widget is currently mapped by the underlying window
system.

winfo_manager()— Returns the name of the geometry manager that has been used to organize the
widget.

winfo_name()— Returns the widget's name.

winfo_parent()— Returns the name of the widget's parent, or an empty string in case the widget
doesn't have a parent widget/window.

winfo_pathname(widget_id)— Returns the pathname of the widget whose identity is given as the
argument.

winfo_pixels(number)— Returns an integer value, which is the result of the conversion of the given
distance to the corresponding number of pixels.

winfo_pointerx()— Returns the x coordinate of the mouse pointer (in pixels) when it is on the same
screen of the widget.

winfo_pointerxy()— Returns a tuple of the x and y coordinates of the mouse pointer (in pixels) when
it is on the same screen of the widget.

winfo_pointery()— Returns the y coordinate of the mouse pointer (in pixels) when it is on the same
screen of the widget.

winfo_reqheight(), winfo_reqwidth()— Return the minimal height and width required by the
widget in order to be entirely displayed.

winfo_rootx(), winfo_rooty()— Return the pixel coordinates (integer values) corresponding to
the widget's upper left corner, relative to the upper left corner of root's window border.

winfo_screen()— Returns the screen name for the current window in the format
display.screen. Note that it doesn't provide any useful information on non-X versions of Tk.

winfo_screencells()— Returns the number of cells in the default color map for widget's screen.

winfo_screendepth()— Returns the bit depth of the window widget.

winfo_screenheight(), winfo_screenwidth()— Returns the height and the width of the
widget's screen, in pixels.

winfo_screenmmheight(), winfo_screenmmwidth()— Returns the height and the width of the
widget's screen, in millimeters.

winfo_screenvisual()— Returns the default visual class used for widget's screen. Possible values
include pseudocolor, directcolor, staticcolor, truecolor, grayscale, and
staticgray.

winfo_toplevel()— Returns a widget instance of the top-level window containing the widget.

winfo_visual()— Returns the visual class used for the widget. Possible values include
pseudocolor, directcolor, staticcolor, truecolor, grayscale, and staticgray.

winfo_x(), winfo_y()— Return the pixel coordinates (integer values) corresponding to the widget's

upper left corner, relative to the upper left corner of its parent's window border.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

2nd 3rd accelerator option
activebackground property
activeforeground property
actual(options) method
add(type, options) method
add_cascade(options) method
add_checkbutton(options) method
add_command(options) method
add_radiobutton(options) method
add_separator(options) method
adding
 Button widgets inside text
aligning
 colored buttons, frames
anchor option 2nd
arc() method
aspect(minNumer, minDenom, maxNumer, maxDenom) method
attributes
 Checkbutton widget
 data
 file
 height
 indicatoron
 offvalue
 onvalue
 PhotoImage subclass
 state
 tabs
 Text widget
 textvariable
 width
background option
background(bg) property 2nd 3rd
bars
 menu
 creating
bitmap property
bitmap() method
BitmapImage subclass 2nd
Button widget 2nd 3rd
buttons
 colored, creating frames to align
calls
 Checkbutton widget
Canvas widget 2nd 3rd

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=212

cget(option) method 2nd 3rd
changing
 values at execution time
Checkbutton widget 2nd
classes
 Image
client(name) method
color names
 Macintosh 2nd
colored buttons
 creating frames to align
colormapwindows(wlist...) method
command option
command(value) method
config() method
config(options) method 2nd 3rd
configure() method
configure(options) method 2nd
copy(font object) method
creating
 frames to align colored buttons
 image objects
 menu bars
 messages
 pop-up menus
 pull-down menus
 radiobuttons
 single line interfaces
data attribute
data option
default property
defining
 values at execution time
deiconify() method
delete(row [,lastrow]) method
delete(startindex [,endindex]) method 2nd
destroy() method
dictionaries
 defining =values
disabledforeground property
displaying
 lines, lists
editing
 values at execution time
Entry widget 2nd
entryconfig(index, options) method
expressions
 creating single line interfaces for entering
families() function
family option
file attribute
file option
fill option 2nd 3rd 4th
flash() method 2nd 3rd
focus() method

focus_displayof() method
focus_force() method
focus_get() method
focus_lastfor() method
focus_set() method
focusmodel(model) method
font class instances
 methods
font property 2nd
foreground option
foreground(fg) property
format option
Frame widget 2nd
frame() method
frames
 creating to align colored buttons
functions
 families()
 Image class
 image_names()
 image_types()
 names()
geometry(geometry) method
get() method 2nd 3rd
get(row) method
get(startindex [,endindex]) method
getvar(variable) method
grab_current() method
grab_release() method
grab_set() method
grab_set_global() method
grab_status() method
graphical user interfaces (GUIs)
 Tkinter
 widgets 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th
26th
group(window) method
height attribute
height option
height property 2nd
height() method
highlightthickness property
iconbitmap(bitmap) method
iconify() method
iconmame(newName=None) method
iconmask(bitmap) method
iconposition(x, y) method
iconwindow(window) method
Image class
image objects
 creating
image property
image() method
image_names() function
image_types() function

index(index) method
index(item) method
index(mark) method
indexes
indicator option
indicatoron attribute
insert(index [,string]...) method
insert(row, string) method
inserting
 Button widgets inside text
interfaces
 graphical user (GUI)
 Tkinter 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th
26th
 single line
 creating
invoke() method 2nd 3rd
keys() method
label option
Label widget
lift([object]) method
line() method
lines
 lists, viewing
Listbox widget 2nd 3rd
lower([object]) method
Macintosh
 color names 2nd
 fonts
mainloop() method
mark_gravity(mark [,gravity]) method
mark_names() method
mark_set(mark, index) method
mark_unset(mark) method
marks
maskdata option
maskfile option
maxsize(width, height) method
measure(text) method
menu bars
 creating
menu option
Menu widget 2nd 3rd 4th
Menubutton widget
menus
 pop-up
 creating
 pull-down
 creating
Message widget 2nd
messages
 creating
methods 2nd
 actual(options)
 add(type, options)

 add_cascade(options)
 add_checkbutton(options)
 add_command(options)
 add_radiobutton(options)
 add_separator(options)
 arc()
 aspect(minNumer, minDenom, maxNumer, maxDenom)
 bitmap()
 BitmapImage subclass
 Button widget 2nd 3rd
 Canvas widget 2nd 3rd
 cget(option) 2nd 3rd
 Checkbutton widget
 client(name)
 colormapwindows(wlist...)
 command(value)
 config()
 config(options) 2nd 3rd
 configure()
 configure(options) 2nd
 copy(font object)
 deiconify()
 delete(row [,lastrow])
 delete(startindex [,endindex])
 delete(startindex[,endindex])
 destroy()
 entryconfig(index, options)
 flash() 2nd 3rd
 focus()
 focus_displayof()
 focus_force()
 focus_get()
 focus_lastfor()
 focus_set()
 focusmodel(model)
 font class instances
 frame()
 geometry(geometry)
 get() 2nd 3rd
 get(row)
 get(startindex [,endindex])
 getvar(variable)
 grab_current()
 grab_release()
 grab_set()
 grab_set_global()
 grab_status()
 group(window)
 height()
 iconbitmap(bitmap)
 iconify()
 iconmame(newName=None)
 iconmask(bitmap)
 iconposition(x, y)

 iconwindow(window)
 image()
 index(index)
 index(item)
 index(mark)
 insert(index [,string]...)
 insert(row, string)
 invoke() 2nd 3rd
 keys()
 lift([object])
 line()
 Listbox widget 2nd
 lower([object])
 mainloop()
 mark handling
 mark_gravity(mark [,gravity])
 mark_names()
 mark_set(mark, index)
 mark_unset(mark)
 maxsize(width, height)
 measure(text)
 Menu widget 2nd
 metrics(options)
 minsize(width, height)
 oval()
 overrideredirect(flag)
 polygon()
 positionfrom(who)
 protocol(name, function)
 quit()
 Radiobutton widget 2nd
 rectangle()
 resizable(width, height)
 Scale widget
 Scrollbar widget
 select() 2nd
 select_clear()
 select_set(startrow, endrow)
 set(first, last)
 set(value)
 setvar(variablename, value)
 sizefrom(who)
 state()
 tab handling
 tag_add(tagname,startindex[,endindex] ...)
 tag_config
 tag_delete(tagname)
 tag_remove(tagname [,startindex[.endindex]] ...)
 Text widget
 text()
 title(string)
 tk_focusNext()
 tk_focusPrev()
 tkraise([object])

 toggle()
 Toplevel widget
 transient([master])
 type()
 update()
 update_idletasks()
 wait_variable(variable)
 wait_visibility(widget)
 wait_window(widget)
 widget 2nd 3rd 4th 5th
 width()
 window()
 wininfo 2nd
 withdraw()
metrics(options) method
minsize(width, height) method
modifying
 values at execution time
modules
 Tkinter
 widgets 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th
26th
names
 color
 Macintosh 2nd
names() function
objects
 image
 creating
offvalue attribute
offvalue option
onvalue attribute
onvalue option
options
 accelerator
 anchor 2nd
 background
 command
 data
 family
 file
 fill 2nd 3rd 4th
 foreground
 format
 height
 indicator
 label
 maskdata
 maskfile
 menu
 Menu widget 2nd
 offvalue
 onvalue
 outline 2nd 3rd
 overstrike

 selectColor
 size
 slant
 splinesteps
 state
 tearOff
 textvariable
 underline 2nd
 value
 variable
 weight
 width 2nd
 window
outline option 2nd 3rd
oval() method
overrideredirect(flag) method
overstrike option
polygon() method
pop-up menus
 creating
positionfrom(who) method
properties
 activebackground
 activeforeground
 background(bg) 2nd 3rd
 bitmap
 Button widget
 default
 disabledforeground
 font 2nd
 foreground(fg)
 height 2nd
 highlightthickness
 image
 Listbox widget 2nd
 Radiobutton widget 2nd
 selectmode
 state
 takefocus
 text
 underline
 value
 variable
 widgets, Tkinter module 2nd 3rd
 width
 wraplength
protocol(name, function) method
pull-down menus
 creating
quit() method
Radiobutton widget 2nd 3rd
rectangle() method
resizable(width, height) method
Scale widget

Scrollbar widget 2nd
select() method 2nd
select_clear() method
select_set(startrow, endrow) method
selectColor option
selectmode property
set(first, last) method
set(value) method
setvar(variablename, value) method
single line interfaces
 creating
size option
sizefrom(who) method
slant option
splinesteps option
state attribute
state option
state property
state() method
subclasses
 BitmapImage 2nd
tabs attribute
tag_add(tagname,startindex[,endindex] ...) method
tag_config method
tag_delete(tagname) method
tag_remove(tagname [,startindex[.endindex]] ...) method
tags
takefocus property
tearOff option
text
 inserting Button widgets inside
text property
Text widget 2nd 3rd
text() method
textvariable attribute
textvariable option
title(string) method
tk_focusNext() method
tk_focusPrev() method
tkFont instances
 font class
 methods
Tkinter module
 widgets 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th
tkraise([object]) method
toggle() method
Toplevel widget 2nd 3rd
transient([master]) method
type() method
underline option 2nd
underline property
UNIX
 fonts
update() method
update_idletasks() method

value option
value property
values
 changing at execution time
variable option
variable property
viewing
 lines, lists
wait_variable(variable) method
wait_visibility(widget) method
wait_window(widget) method
weight option
widgets
 Button 2nd 3rd
 Canvas 2nd 3rd
 Checkbutton 2nd
 Entry 2nd
 Frame 2nd
 Label
 Listbox 2nd 3rd
 Menu 2nd 3rd 4th
 Menubutton
 Message 2nd
 Radiobutton 2nd 3rd
 Scale
 Scrollbar 2nd
 Text 2nd 3rd
 Tkinter module 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th
25th 26th
 Toplevel 2nd 3rd
width attribute
width option 2nd
width property
width() method
window option
window() method
Windows
 fonts
wininfo methods 2nd
withdraw() method
wraplength property
writing
 frames to align colored buttons
 image objects
 menu bars
 messages
 pop-up menus
 pull-down menus
 radiobuttons
 single line interfaces

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 15. Tkinter > Designing Applications See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162149150217133007126133082

Designing Applications

Up to this point, we've seen how to handle the properties and methods of Tkinter's widgets. Now, we
will learn the basic steps to write real-world applications.

Tkinter is really powerful, and if you are not satisfied with the widgets that it offers, you can create
your own set of widgets. A very interesting and customized widget that you should consider checking
before learning how to create your own, is the TreeWidget, which is part of the latest idle distribution.
This widget uses a Tk Canvas widget and some images to nicely simulate the TreeView Windows
control.

The simplest windowing application that you can create consists of just one window, which is called
the root window. The root window is created using the Tk() call.

from Tkinter import *
root = Tk()
root.mainloop()

If your application needs more than just one single window, you can use the Toplevel widget to create
additional windows for you. This widget has a behavior very similar to the window generated by
Tk(). This widget also dispenses the use of geometry management functions because the window
manager displays this widget, immediately after you call it.

from Tkinter import *
def mywindow():
 top = Toplevel(root)

root = Tk()
b1 = Button(root, text="Create new window", command=mywindow)
b1.pack()
root.mainloop()

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=213
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A50%3A08+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=213&now=5%2F31%2F2002+4%3A50%3A08+PM

After adding a lot of windows to your application, maybe now you are wondering whether it would be
OK to add a menu to your program. The following code does that for you.

from Tkinter import *
import sys
def newwindow():
 top = Toplevel(root)
def aboutwindow():
 who = Toplevel(root)
 Label(who, text="This is the about window").pack()

root = Tk()
menu = Menu(root)
root.config(menu=menu)

filemenu = Menu(menu)
menu.add_cascade(label="File", menu=filemenu)
filemenu.add_command(label="New", command=newwindow)

filemenu.add_separator()
filemenu.add_command(label="Exit", command=sys.exit)

helpmenu = Menu(menu)
menu.add_cascade(label="Help", menu=helpmenu)
helpmenu.add_command(label="About...", command=aboutwindow)

root.mainloop()

What's next? What about adding a toolbar to our little application? The simplest way to implement a
toolbar is by taking a Frame widget and storing all the required buttons on it.

from Tkinter import *
import sys
def newwindow():
 top = Toplevel(root)
def aboutwindow():
 who = Toplevel(root)
 Label(who, text="This is the about window").pack()

root = Tk()

menu = Menu(root)
root.config(menu=menu)

filemenu = Menu(menu)
menu.add_cascade(label="File", menu=filemenu)
filemenu.add_command(label="New", command=newwindow)
filemenu.add_separator()
filemenu.add_command(label="Exit", command=sys.exit)

helpmenu = Menu(menu)
menu.add_cascade(label="Help", menu=helpmenu)
helpmenu.add_command(label="About...", command=aboutwindow)

toolbar = Frame(root)
newimage = PhotoImage(file="new.gif")
b1 = Button(toolbar, image=newimage, width=16, command=newwindow)
b1.pack(side=LEFT, padx=1, pady=1)
helpimage = PhotoImage(file="help.gif")
b2 = Button(toolbar, image=helpimage, width=16, command=aboutwindow)
b2.pack(side=LEFT, padx=1, pady=1)
toolbar.pack(side=TOP, fill=X)
root.mainloop()

As we want our toolbar to be on the highest area of our screen, we have to pack it on the top side of the
Frame widget. The fill option being set to X in the toolbar widget enables the toolbar to extend itself,
covering the entire extension of the parent frame size.

Note the usage of the PhotoImage class. This class is used to load the GIF files from disk and store
them into variables. Then, these variables are passed to the Button options that handle images.

Let's move forward now. The next step is to create a status bar for our small application. We want this
bar to be on the bottom side of the window.

from Tkinter import *
import sys
def newwindow():
 top = Toplevel(root)
 statusbar.config(text="This is a testing application.")

def aboutwindow():
 who = Toplevel(root)

 Label(who, text="This is the about window").pack()
 statusbar.config(text="Hi There!")

root = Tk()
menu = Menu(root)
root.config(menu=menu)

filemenu = Menu(menu)
menu.add_cascade(label="File", menu=filemenu)
filemenu.add_command(label="New", command=newwindow)
filemenu.add_separator()
filemenu.add_command(label="Exit", command=sys.exit)

helpmenu = Menu(menu)
menu.add_cascade(label="Help", menu=helpmenu)
helpmenu.add_command(label="About...", command=aboutwindow)

toolbar = Frame(root)
newimage = PhotoImage(file="new.gif")
b1 = Button(toolbar, image=newimage, width=16, command=newwindow)
b1.pack(side=LEFT, padx=1, pady=1)
helpimage = PhotoImage(file="help.gif")
b2 = Button(toolbar, image=helpimage, width=16, command=aboutwindow)

b2.pack(side=LEFT, padx=1, pady=1)
toolbar.pack(side=TOP, fill=X)

statusbar = Label(root, text="This is a testing application.", bd=1,
 relief=SUNKEN, anchor=W)
statusbar.pack(side=BOTTOM, fill=X)

As you could see, we used the Label widget to implement the statusbar in order to be able to
change the text value later. Pretty nice, isn't it?

Now, have a look at the final shape of our interface (Figure 15.16).

Figure 15.16. This figure shows the complete example of designing the structure of an application
using Tkinter.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/213#1.html

In my opinion, one of the greatest things about designing GUI applications using Tkinter is the number
of things that are already done and ready to be used by your applications. Some examples are the
following modules, which are part of the Tkinter distribution, and implement common dialog boxes.

tkMessageBox— This module implements the classic Yes/No and
Abort/Retry/Ignore dialog styles.

tkSimpleDialog— This module implements a base class that can be used to
implement other modules.

tkFileDialog— This module implements a file dialog, which is very close to the
file dialogs found in the Windows system.

tkColorChooser— This module implements a dialog that allows you to choose and
pick a color.

The usage of these modules is very simple. The next example opens a file dialog box, which allows you
to browse the files through your local directory, and returns the filename selected (see Figure 15.17).

Figure 15.17. Note that the FileDialog returns the name of the selected file, and our application shows
that name on the status bar.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/213#2.html

from Tkinter import *
import tkFileDialog
def openwindows():
 statusbar.config(text = open.show())

root = Tk()
myfiletypes = [('Python files', '*.py'), ('All files', '*')]
open = tkFileDialog.Open(root, filetypes = myfiletypes)
Button(root, text="Open File Dialog", command=openwindows).pack()

statusbar = Label(root, text="", bd=1, relief=SUNKEN, anchor=W)
statusbar.pack(side=BOTTOM, fill=X)
root.mainloop()

As you could notice, this is a very simple example of the power of Tkinter, but the concept of creating
a dialog is as simple as the concept of creating a window.

After creating a Toplevel widget and making the call to open the dialog, the standard dialog only
returns to the Toplevel widget when it is closed. When you start facing problems like this, you have
several solution options, such as opening several dialogs and making them run in parallel. Or you can
create the dialog and only return the control back to the Toplevel widget when the dialogs are closed by
the user, creating a modal behavior. This solution is implemented using the wait_window method,
which creates a local event loop, and only returns when the window informed as an argument is closed.

Although application modal dialogs are easier to program, most users find them much more annoying.
If possible, only use modal dialogs where some action has to be performed before the application can
continue.

That's it. Our overview about Tkinter ends here. Next you will see a toolkit that extends the set of
available widgets you can use, and next you will find a list of useful resources for a more advanced
approach on this topic.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 designing
 Tkinter module 2nd 3rd 4th
creating
 file dialog boxes
 menus
 status bars
 toolbars
 windows
designing
 applications
 Tkinter module 2nd 3rd 4th
dialog boxes
 file
 creating
file dialog boxes
 creating
graphical user interfaces (GUIs)
 Tkinter
 designing applications 2nd 3rd 4th
interfaces
 graphical user (GUI)
 Tkinter 2nd 3rd 4th
menus
 creating
modules
 tkColorChooser
 tkFileDialog
 Tkinter
 designing applications 2nd 3rd 4th

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=213

 tkMessageBox
 tkSimpleDialog
programs
 designing
 Tkinter module 2nd 3rd 4th
root windows
 creating
software
 designing
 Tkinter module 2nd 3rd 4th
status bars
 creating
tkColorChooser module
tkFileDialog module
Tkinter module
 designing applications 2nd 3rd 4th
tkMessageBox module
tkSimpleDialog module
toolbars
 creating
windows
 creating
writing
 file dialog boxes
 menus
 status bars
 toolbars
 windows

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 15. Tkinter > PMW—Python Mega
Widgets

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162149150217135154248214187

PMW—Python Mega Widgets

PMW (Python Mega Widgets) is a toolkit for building high-level widgets in Python using the Tkinter
module. This toolkit provides a framework that contains a variety of widgets richer than the one
provided by Tkinter.

This package is 100% written in Python, which turns out to be a cross-platform widget library. Being
highly configurable allows it to create additional widget collections by extending the basic Tkinter
widget core set.

PMW provides many interesting and complex widgets, including: AboutDialog, Balloon, ButtonBox,
ComboBox, ComboBoxDialog, Counter, CounterDialog, Dialog, EntryField, Group, LabeledWidget,
MenuBar, MessageBar, MessageDialog, NoteBookR, NoteBookS, NoteBook, OptionMenu,
PanedWidget, PromptDialog, RadioSelect, ScrolledCanvas, ScrolledField, ScrolledFrame,
ScrolledListbox, ScrolledText, SelectionDialog, TextDialog, and TimeCounter.

This package is energetically maintained by its author, Greg McFarlane, and it has an extensive
documentation. For more information about it, check out its Web site at

http://www.dscpl.com.au/pmw

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=214
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A50%3A25+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=214&now=5%2F31%2F2002+4%3A50%3A25+PM
http://www.dscpl.com.au/pmw
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=214

Index terms contained in this section

graphical user interfaces (GUIs)
 Tkinter
 PMW (Python Mega Widgets)
interfaces
 graphical user (GUI)
 Tkinter
McFarlane, Greg
modules
 Tkinter
 PMW (Python Mega Widgets)
PMW (Python Mega Widgets)
 Tkinter module
Python Mega Widgets (PMW)
 Tkinter module
Tkinter module
 PMW (Python Mega Widgets)
toolkits
 PMW (Python Mega Widgets)
 Tkinter module
utilities
 PMW (Python Mega Widgets)
 Tkinter module
widgets
 Tkinter module

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 15. Tkinter > Tkinter Resources See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162149150217134048153103153

Tkinter Resources

The following resources provide an excellent complement to the documentation offered by this chapter.
They link to several Tk/Tkinter related sites.

Tkinter

http://www.python.org/topics/tkinter/

Matt Conway's Tkinter Life Preserver

http://www.python.org/doc/life-preserver/index.html

Tkinter Standard Dialogues

http://starship.python.net/crew/fredrik/py14/tkdialogs.htm

Tkinter: GUI programming with Python

http://www.nmt.edu/tcc/help/lang/python/tkinter.html

Python and Tkinter Programming, by John E. Grayson

http://www.manning.com/Grayson/Contents.html

An Introduction to Tkinter, by Fredrik Lundh

http://www.pythonware.com/library/tkinter/introduction/index.htm

Tkinter Class Reference Pages

http://www.pythonware.com/library/tkinter/tkclass/index.htm

Online Tcl/Tk Manual Pages—the official man pages at Scriptics

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=215
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A50%3A32+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=215&now=5%2F31%2F2002+4%3A50%3A32+PM
http://www.python.org/topics/tkinter/
http://www.python.org/doc/life-preserver/index.html
http://starship.python.net/crew/fredrik/py14/tkdialogs.htm
http://www.nmt.edu/tcc/help/lang/python/tkinter.html
http://www.manning.com/Grayson/Contents.html
http://www.pythonware.com/library/tkinter/introduction/index.htm
http://www.pythonware.com/library/tkinter/tkclass/index.htm

http://dev.scriptics.com/man/

Tk 8.0 man pages

http://dev.scriptics.com/man/tcl8.0/TkCmd/contents.htm

Ajuba (formerly Scriptics)—the company founded by Tcl/Tk's inventor, John Ousterhout

http://www.ajubasolutions.com/

Vaults of Parnassus—User Interfaces and Widgets Section

http://www.vex.net/parnassus/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

graphical user interfaces (GUIs)
 Tkinter
 informational resources 2nd
interfaces
 graphical user (GUI)
 Tkinter 2nd
modules
 Tkinter
 informational resources 2nd
Tkinter module
 informational resources 2nd

© 2002, O'Reilly & Associates, Inc.

http://dev.scriptics.com/man/
http://dev.scriptics.com/man/tcl8.0/TkCmd/contents.htm
http://www.ajubasolutions.com/
http://www.vex.net/parnassus/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=215

Web Development > Python Developer's Handbook > 15. Tkinter > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162149150217129135121220044

Summary

Tk is a popular and endorsed toolkit that can handle windows, GUI events, and user interactions.
Tkinter is Python's cross-platform interface to the Tk GUI toolkit that enables you to handle buttons
and windows, and define their properties at a glance. The typical Tkinter distribution contains a basic
set of 15 widgets, and some extra classes that can be used by your GUI applications.

Button—This widget defines a clickable button that can execute a specific operation
when clicked.

Canvas—This widget is used to draw graphs, lines, polygons, and all other types of
graphic elements.

Checkbutton—This widget exposes a button that controls a variable that can have two
distinct values.

Entry—This widget implements a simple text entry field.

Frame—This widget works like a container for other widgets when creating a complex
layout within a window.

Label—This widget handles the exhibition of a text or an image.

Listbox—This widget displays a list of possible selections.

Menu—This widget is used to implement pull-down and pop-up menus.

Menubutton—This widget is used to implement pull-down menus.

Message—This widget displays a text message in a way similar to the label widget, but
using powerful formatting capabilities.

Radiobutton—This widget is associated with a variable, and when clicked, the variable
assumes its value.

Scale—This widget provides a slider that helps you set the value of a numerical variable.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=216
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A50%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=216&now=5%2F31%2F2002+4%3A50%3A40+PM

Scrollbar—This widget implements standard scrollbars that you can use along with other
widgets, such as listbox, canvas, entry, and text.

Text—This widget display text that you can edit and format.

Toplevel—This widget is another container widget, just like the frame widget.

Tkinter also provides the Image class. This class is used as a foundation to display graphic objects,
including bitmaps and GIF images. Two subclasses are inherited from this class: BitmapImage and
PhotoImage.

All these Tkinter widgets have access to specific geometry management methods, which have the
purpose of organizing them throughout the parent widget area. These methods are grouped in three
distinct classes that provide a nice way to lay out child widgets in their parent widget. Tkinter exposes
the following geometry manager classes: pack, grid, and place.

Tkinter also allows you to create event bindings for every specific object, and after binding an event to
a widget, you can specify which function should be called at the time the event occurs. This function
(or method) is called callback.

To complement Tkinter, you can also use the Python Mega Widgets. PMW is a toolkit for building
high-level widgets in Python using the Tkinter module that provides many interesting and complex
widgets.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=216

Web Development > Python Developer's Handbook > V: Developing with Python >
Chapter

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162149150217128122042076059
Part V Developing with Python

16 Development Environment

17 Development Tools

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=218
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A50%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=218&now=5%2F31%2F2002+4%3A50%3A57+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=218

Web Development > Python Developer's Handbook > V: Developing with Python See All Titles

< BACK Make Note | Bookmark CONTINUE >

Part V: Developing with Python

Chapter

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&cnode=217
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&cnode=217

Web Development > Python Developer's Handbook > 16. Development Environment See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162149151120087096082185082

Chapter 16. Development Environment
Always look on the bright side of life.

This chapter shows some performance and style suggestions for your code, now that you are probably
writing your own programs. It also introduces you to the main GUI development environments that you
can use to write Python applications.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

development environments
environments
 development

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=220
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A51%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=220&now=5%2F31%2F2002+4%3A51%3A05+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=220

Web Development > Python Developer's Handbook > 16. Development Environment >
Building Python Applications

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039199167010047123209178152124239215162149151120086037152191093

Building Python Applications

Whenever you have to sit down in front of a computer to write a Python program, you should stick to a
good coding style especially if you are working as part of a team. The clearer your code gets, the better
it is to maintain it. The development process of writing Python application can be highly improved if
you follow some basic guidelines.

I am sure that in most cases, after you have defined your project goal and gone through the
development strategy stage, you will understand that Python might be a solution for your application
problems.

Python is fairly easy to use, which requires less time to instruct developers. If, as part of the training,
the style considerations are defined and taught, you can have a whole team of developers coding within
the same pattern in a very short time. The maintenance time is also improved because Python is able to
generate an extremely readable kind of code that allows developers to share their ideas without many
problems.

Consequently, your development effort is reduced. As a matter of fact, the development time might be
reduced as well. When comparing Python to other languages such as C or Java, an application written
in one of these languages requires more lines of code—most of the time—than the same functionality
written in Python.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=221
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/5%2F31%2F2002+4%3A51%3A15+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=221&now=5%2F31%2F2002+4%3A51%3A15+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=221

Web Development > Python Developer's Handbook > 16. Development Environment >
Development Strategy

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222217074025151062064201046

Development Strategy

Writing a program is something very easy, but writing a good and optimized program requires some level
of experience. A good way to start is to learn all the nuances of the language, which in our case involves
learning Python. You should know a little bit of everything, and this book helps you learn most of them,
including classes, modules, functions, exception handling, dynamic typing, GUI, operator overloading,
indentation, and so forth.

Of course, you must know many other important items too.

Nowadays, the most important development efforts are focusing on the Internet. Python offers the basic
necessary tools that you might need for your Web projects. Python can be used either for Web-based
interface projects or to generate entire back-end frameworks, using tools such as Zope.

Note that by extending Grail, the Web browser written in Python, you can embed your Python application
directly on it and distribute a browser to your clients that carries specific and customized interfaces.

Even if you don't use Grail, you can use any browser to provide GUI interfaces for your applications.
Have you ever considered delivering information and products through the Web? If so, you can do it
using Python.

Python is a perfect language for project prototyping. Python's design allows you to make changes very
quickly. Later you can decide whether you will re-implement the code using a compiled language, or stick
to Python and continue the development effort using the prototype as a startup. Remember that after
spending some time creating a prototype, you probably have a huge amount of code that you do not want
to throw away.

Prototyping with Python is very easy. You can, for example, wrap your code in a function inside a module
and use a development environment, such as Pythonwin or IDLE, to run the script. To test this
application, you just need to save it and execute it—very simple. No intermediate stages are necessary.

Python testing mechanisms also allow you to forge command-line arguments. You can test your
command-line scripts by first setting their expected arguments to predefined values using the built-in
variable sys.argv.

Along the development stage, you will soon see that Python can be easily used to code entire applications,
without discarding the prototyped code.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=222
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A16%3A27+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=222&now=6%2F1%2F2002+6%3A16%3A27+PM

If speed is a requirement, you can use a compiled language in the back-end side of your application to
support the high-demand operations. Python, in this case, can be used as the front end of the application,
leaving the hard work to the other language. This kind of implementation allows you to create black
boxes of code, which get called by Python, and Python doesn't necessarily need to know what is
happening behind the scenes because only the external interface of the compiled language needs to be
exposed.

But whenever possible, select just Python. It is good to remember that supporting a scripting language is
much easier than supporting a compiled language. The usage of a scripting language makes tasks such as
debug the application, fix bugs, and add enhancements look very simple. Because we are not using a
compiled language, we don't need to spend time compiling and linking the files. Updating client sites with
the latest version of the application is also very easy because we just need to send the file that carries the
changed Python module.

As you can see, a lot of thinking is involved in the process of preparing yourself to handle a Python
development. Next, we will see some ideas about how to optimize your code, and how to write a program
with style. Both are very important things that you must have in mind, not only when using Python, but
also when writing in any other language.

Optimizing the Code

To prevent your program from running very slowly, you might consider following some basic Python
optimization rules. By designing your application from the start with these guidelines in mind, you will
certainly be satisfied with the final overall performance that you will get.

My goal in this section is to provide ways to generate acceptable performance in your Python routines.
Note that I don't cover everything, but a good set of basic concepts is covered.

Many things can be done to reduce the processing time of your application. Remember that you have an
interpreter being called every time you execute a Python script. Consequently, you need to work on your
code in order to compensate that somehow. The fact that it is an interpreted language is a big concern, but
by reducing the number of statements that get parsed, you can also reduce the interpreter overhead.

By the way, the Python interpreter has a command-line option (-O, which stands for optimize) that
enables you to execute your code in such a way that some of the bytecode operations are not executed.
Basically, it is used to remove the comments in the bytecode that give the line number where exceptions
occur, and does not compile in the doc strings and a few other things. This flag does not give that much
speed increase, and it makes things harder to debug.

Some useful optimization hints are as follows:

● Variables—Depending on how your variables are defined, the interpreter spends more or less time
trying to figure out their values. Python deals with dynamic scope rules when trying to resolve

variable names. After it finds a variable in the code, it first tries to discover if the variable is a local
variable by looking at the local namespace dictionary. If it finds the variable, it grabs the variable's
value. Otherwise, it searches in the global namespace dictionary, and if necessary, in the built-in
namespace dictionary. As you can see, local variable lookups are pretty much faster than other
types. Consequently, the access to their values is faster too. Also, local variable lookups are much
faster because they correspond to indexing into an array, whereas global variable lookups
correspond to hash table lookups. A good optimization hint might be that if you are using a global
variable a lot in a function, assigning its value to a local variable can help a lot.

● Modules—Within a single script, you just need to import an external module once. Therefore, it is
not necessary to have multiple import statements inside your code. Actually, you should avoid
trying to re-import modules on your program. As a rule of thumb, put all the import statements
in the very first part of your program header. However, calling import on a module multiple
times is not really a problem because it is just a dictionary lookup.

In cases where you have to do a lot of referencing to particular attributes of an external module,
you should consider copying those elements to a single variable (when that's possible, of course)
before starting to code—especially, if the references are made inside a loop.

Whenever you import a module, the interpreter looks for a byte-compiled version of the module.
In case it doesn't find any, it automatically bytecompiles the module and generates a .pyc file. So,
the next time you try to import the module, the byte-compiled file will be there. As you can feel,
.pyc files are executed much faster than regular .py files because they have already being
interpreted by the interpreter prior to the execution. The suggestion here is to use byte-compiled
modules the more you can. The Python code executes at the same speed no matter if there is a
.pyc file or not. The only difference is that if there is a byte-compiled file, startup will be a bit
quicker. The actual running speed of the code is no different.

● Strings—Use format strings whenever you need to concatenate strings with other variables. Check
out the next concatenation forms.

name = "Andre"
print "Hello " + name
print "Hello %s" % (name)

Be sure that the second print statement is more optimized than the first one. The parentheses on
the third line are not necessary. Another option would be

print "Hello", name

● Tkinter—Avoid creating unnecessary instances of widgets. If you are not planning to manipulate
the attributes of a widget after it has been created, stick to direct calls to the class. In a GUI app,
this won't affect the running speed that much—just the startup time.

There is no reason to say

mybutton = Button(root, text="Close")
mybutton.pack(side=right)

when you can simply use

mybutton = Button(root, text="Close").pack(side=right)

Now, the interpreter has one less variable to handle.

I open a parenthesis here to let you know that if you are testing a Tkinter application using IDLE,
you need to comment your mainloop() command. That's because IDLE is already running
inside a Tkinter mainloop, and calling another one might freeze your entire environment.

● Loops—You can optimize a lot of things in your loops in order to make them run smoothly. In a
short list, I can tell you the following:

❍ You should use built-in functions in your inner loop instead of using functions written in
Python. By using built-in functions that support list manipulation (such as map(),
reduce(), and filter()) instead of straight loops, you can move some of the loop
overhead to the C code. Passing built-in functions to map, reduce, or filter gives
even better performance.

❍ Whenever you have multiple levels of loop, it is worth it to optimize only the innermost
one. When optimizing multiple-level loops, the idea is to reduce the number of memory
allocations. Making the innermost loop to be the one with the fewer number of interactions
should help your performance design.

❍ Working with local variables is a great thing that improves the processing time inside a
loop. Whenever possible, copy all your global variables and attribute look-ups to local
variables before entering a loop.

❍ If you use construction methods such as range(n) inside a nested loop, it is much faster
to allocate the value range to a local variable outside the outmost loop, and use this variable
in the loop definitions.

yRange = range(500)
for xItem in range(100000):
 for yItem in yRange:

 print xItem, yItem

❍ Another optimization here would be using xrange for the x for loop because a 100000
item list is a quite large list.

yRange = range(500)
for xItem in xrange(100000):
 for yItem in yRange:
 print xItem, yItem

● Functions—Python built-in functions are faster to execute than functions written in clean Python
because the built-in functions are already written in C. map(), filter(), and reduce() are
examples of built-in functions that can be used to beat the performance of functions written in
Python. It is also good to know that Python handles function names as global constants. Having
said that, the whole conception of namespace look-up that we saw previously also applies to
functions as well. If you have the option to choose, use the map() function's implied loop than a
for loop—it is much faster. The runtime of the loop functions that I mention here is highly
dependent on what function you pass in. Passing a Python function will not be as fast as passing in
a built-in function (such as the ones in the operator module).

In case you want to test the performance of your routines, you can use a simple concept, which is
explained next. The idea is to measure the time spent between calling the routine and finishing its
execution.

After you add these lines to your program, you can benchmark it and test new kinds of approach. Note
that we have a little time overhead because we have to call the time() function.

First, you need to import the time module:

import time

Second, you just need to set a timer after executing and before starting your routine. This is done using
the time.clock() function:

start_timer = time.clock()
call_your_routine()
end_timer = time.clock()
print end_timer-start_timer

Code optimization is a very complex science that is not restricted just to Python programs. Sometimes
when you booster the performance in one place, it breaks something somewhere else. What I mean by that
is that if the processing time of your application seems OK for you, don't touch it. I suggest that you to
just try to optimize your code when a real performance problem is creating an unsupportable bottleneck in
your application.

Chapter 17, "Development Tools," introduces the Python Profiler module to you. This tool can help you
to identify the bottlenecks in your code.

The following links have some more additional thoughts about code optimization for Python applications:

Python Patterns—An Optimization Anecdote, essay by Guido Van Rossum

http://www.python.org/doc/essays/list2str.html

Python Performance Tips, by Skip Montanaro

http://www.musi-cal.com/~skip/python/fastpython.html

Style Guide

The following guidelines are directly based from some of the ideas of Guido van Rossum about how to
write a Python program within style. The main quality that we need to acquire is the ability to decide
exactly when we can apply these guidelines, and when it is better to be a little inconsistent and step out of
these rules in order to have a more reliable implementation.

These are just suggestions. Feel free to write your code any way you want it. Nothing or no one will force
you to follow these rules, but you will see by yourself how practical it is to have these guidelines in mind
when coding a program.

http://www.python.org/doc/essays/list2str.html
http://www.musi-cal.com/~skip/python/fastpython.html

Code Layout

Python's core definition says that we must delimit structures using indented blocks. A standard
indentation consists of four spaces for each indentation level. Most of the time, you can alternatively use
one tab instead of four spaces.

Try to write your code with lines containing less than 80 characters each. If it turns out to be necessary to
break a line, use parentheses, brackets, and braces to continue the code on the next line, using a backslash
only if that is not possible.

Blank lines are used to separate chunks of related code, such as top-level function and class definitions
(two blank lines), class definition and the first method definition (one line), and methods definitions
inside a class (one blank line). You can omit the blank lines in case your definitions have just one line
each.

Handling whitespaces is another issue that you need to be aware of. The following are bad examples of
whitespace usage:

lst = [3,4,5] # After open parentheses, brackets or braces.
if var < 10 : # Preceding a comma, semicolon, or colon.
xrange (7) # Preceding the parenthesis of a function call.
car ["plate"] # Preceding indexing or slicing brackets.
var = 3 # Multiple whitespaces preceding an operator.

The next group of operators should always be preceded and followed by just one space on each side.

=, ==, <, >, !=, <>, <=, >=, in, not in, is, is not, and, or, not.

However, there is a special remark here for the = (equal) sign. Whenever it is used to indicate a keyword
argument or a default parameter value, you should suppress the spaces that surround it.

def printvar(input=10):
 print input
printvar(input=20)
20
printvar()
10

Sometimes, arithmetic operators shouldn't be surrounded by spaces either. By avoiding whitespaces, you
can make some expressions more readable, as you will see next.

var = (x+y * (w/z))

The previous expression resembles ((x+y) * (w/z)) when in fact it is (x+(y * (w/z))). A
good way to write that would be

var = (x + y*(w/z))

Comments

If you decide to add comments to your code, you need to remember to keep them up-to-date all the time.
Otherwise, it can become more of a problem than being a helper thing. Some of the basic rules for writing
comments are listed next:

● Write your comments in plain English. For large projects with members of different nationalities,
English is often the common language. Of course, if no developers know English, this rule is not a
good idea.

● Capitalize the first word of sentences and phrases.

● Omit the period at the end of short comments.

● Never alter the case of identifiers. Remember that Python is case sensitive; thus, you should write
your helper comments using the same notation used by the definition of the object that you are
describing.

There are two kinds of comments: block comments and inline comments. The former applies to the code
that follows it, and the latter is put on the code's own line. Both types require at least a single #, followed
by a single space at the beginning of each commented line. When writing block comments, insert a blank
line above them, and another one below each paragraph.

Be careful when using inline comments because it can cause over-pollution of text in your
code—comments are no substitute for readable code. Inline comments are best used when preceded by at
least two whitespace characters from the inline statement.

A documentation string is a special kind of comment that goes beyond the remarking concept that we get
when using the # literal. All objects that accept the usage of documentation strings incorporate those
strings to their structure, allowing you to later query, read, and use their documentation strings (see
Chapter 2, "Language Review," for details).

Documentation strings are, by convention, surrounded by a triple quote structure on each side. Do not use
the documentation string to store a description. Instead, try to be functional, showing the command's
action. Things that you should try to register in documentation strings include: the environment variables,
files, routine objective, and the syntax design of scripts, modules, functions, classes, and public methods
exported by classes.

There are two types of documentation strings: the one-liners and the multi-line ones. The former must
entirely fit in a single line, including the closing quotes, and you are not instructed to insert blank lines
surrounding it. On the other hand, multi-line documentation strings are formed by a single line of
documentation followed by a block that contains a complete description of the object. Note that we are
instructed to insert a blank line between these two structures. Also, note that additional lines in a
documentation string do not need to be indented following the pattern established by the first line (it does
look nicer if they are though). Before typing the closing quotes, it is also advised that you enter a new
paragraph in order to let the quotes stand in a line of their own.

Next, you will have some suggestions about what to include in the documentation string of modules,
functions, methods, and classes.

Modules should document the objects they export, such as the classes, exceptions, and functions, with a
one-line summary for each one of them.

Functions and methods should document their behavior, arguments (including optional arguments and
keywords), return value(s), side effects, exceptions raised, and so forth. When documenting arguments,
put each one of them in a single line and separate each name from its description using two dashes. Single
blank lines separate lists of methods and functions from each other.

Classes should document their public methods and instance variable properties. If the class subclasses
another class, you have to mention the superclasses as well, along with the differences between both
implementations. As a suggestion, use the verbs override and extend to respectively indicate that a
specific method entirely replaces, or acts in addition to the superclass's own method definition. It is also
recommended that when creating the documentation string for a class, you should surround it using single
blank lines.

Naming Styles and Conventions

When it comes time to name your objects and variables, you have a list of options to choose from. You
just can't mix all styles throughout your code because it might cause a big mess. You need to be
consistent, and I suggest that you stick to a pattern and use it in every part of your code. As I said before,

many styles are available. You might already be a big fan of one of them without even knowing it. It is
quite common to have different naming conventions for classes, functions, and variables (for instance,
CapWords for classes, lower_case_with_underscores for functions). In order to give you an idea of what
kind of different styles we have, the following case conventions are introduced to you:

x (single lowercase letter)

X (single uppercase letter)

lowercase

lower_case_with_underscores

UPPERCASE

UPPER_CASE_WITH_UNDERSCORES

CapitalizedWords (or CapWords)

mixedCase

Capitalized_Words_With_Underscores

The following leading/trailing underscore structures can be combined with any one of the previously
listed naming styles. You can substitute the variable VAR for any other object name that you want
(considering Python's rules for object naming seen in Chapter 2).

_VAR — Objects that have a single leading underscore indicate that the object can be used
only on the local module namespace. The from module import * statement doesn't
import objects that start with a single leading underscore. The main concern about writing
global variables is that if you want to have the variable only visible by the module that
defines it, you need to have an underscore preceding it.

VAR_ — You need to append a trailing underscore to the end of the name in order to avoid
naming conflicts whenever you want to use a Python keyword (such as print_) as your
own variable. This is one just possible way of getting rid of a conflict with a Python
keyword.

__VAR — The double leading underscore identifies class-private names.

__VAR__— When you have an object that has both leading and trailing underscores, you
can consider yourself in front of an object that, in most cases, is defined by the Python

interpreter. This definition applies to both objects and attributes that work under the user
namespace, which includes the __init__ method. Try to avoid using this type of
structure when naming your own objects because it might cause name conflicts in your
application as future releases of Python arrive.

Although there is no current naming standard among the files that are part of the Python's Standard
Library, I can list some guidelines that can make the task of naming new modules easier for you.

When creating modules, give them MixedCase or lowercase names. Use the first option whenever the
module exports a single class or a bunch of related classes, and the second option when the module
exports a group of functions. Also, note that module names are mapped to filenames in Python. Therefore,
it is a good idea to pay special attention when giving a name to a module in order to avoid long names
(module names can become truncated on some systems), and keep in mind that Python is case sensitive,
which makes a module called MyModule.py different from a module called mymodule.py. If you
have two modules where one is a low-level interface written in C/C++, and the other one is a high-level
object-oriented interface written in Python, the almost common standard nowadays is to give the Python's
module a CapWords name (it isn't quite as widely used). On the other hand, the C/C++ module should be
written entirely using lowercase letters, and preceded by a leading underscore (this is pretty much
standardized). A known example of this concept is the pair of modules Tkinter and _tkinter.

When writing class names, you can stick to the CapWords pattern. Although this is a convention used
most of the time, you are encouraged to modify this rule when handling internal classes of modules that
are not supposed to be exported. You have to precede these classes with leading underscores.

When working with exceptions, you have two options. Their names are usually written in lowercase
letters when part of built-in modules, whereas the ones that are part of Python modules are usually written
using CapitalizedWords. The main deciding factor for creating exception names is whether you expect
people to normally use from ... import * or import ... in the module.

When naming functions, you are encouraged to use one from the next two style options: CapWords for
functions that provide a large functionality (less used), and lowercase for functions that expose less useful
classes.

When naming methods, you should stick to the CapWords style for methods that are published by an ILU
interface. For all other cases, you should consider switching to lowercase. If you don't want a method to
be visible by external methods or instances, you must put an underscore in front of it. As you can see in
Chapter 5, "Object-Oriented Programming," the use of this same concept can be applied to certain
attributes in order to make them available only to their classes. Note that this last feature can be easily
manipulated using the __dict__ attribute.

More details about these concepts can be found at

Python Style Guide, by Guido Van Rossum

http://www.python.org/doc/essays/styleguide.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

(pound sign)
= (equal sign)
[nd]O command-line option
adding
 comments to code 2nd
applications
 optimizing performance 2nd 3rd
 Python
 building 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
blocks
 indented
building
 Python applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
classes
 documentation strings
 naming styles and conventions
code
 optimizing 2nd 3rd
 style guides 2nd 3rd 4th 5th 6th
command-line options
 [nd]O
command-line scripts
 testing
comments
 adding to code 2nd
 inline
construction methods
 nested loops
creating
 code
 optimizing 2nd 3rd
 style guides 2nd 3rd 4th 5th 6th
 comments for code 2nd
 Python applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
development environments
 building Python applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
documentation strings 2nd 3rd

http://www.python.org/doc/essays/styleguide.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=222

environments
 development
 building Python applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
equal (=) sign
exceptions
 naming styles and conventions
filter() function
functions
 documentation strings
 filter()
 mainloop()
 map()
 naming styles and conventions
 optimizing 2nd
 reduce()
 time()
 time.clock()
importing
 modules
 time module
indented blocks
inline comments
loops
 nested
 construction methods
 optimizing
mainloop() function
map() function
methods
 construction
 nested loops
 documentation strings
 naming styles and conventions
modules
 documentation strings
 naming styles and conventions
 optimizing 2nd 3rd
 time
 importing
nested loops
 construction methods
objects
 naming styles and conventions 2nd
optimizing
 code 2nd 3rd
options
 command-line
 [nd]O

performance
 applications, optimizing 2nd 3rd
pound (#) sign
programs
 optimizing performance 2nd 3rd
 Python
 building 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
protyping
quotes
 triple
 documentation strings
reduce() function
Rossum, Guido van
scripts
 command-line
 testing
software
 optimizing performance 2nd 3rd
 Python
 building 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
strings
 documentation 2nd 3rd
 optimizing
style guides
 writing code 2nd 3rd 4th 5th 6th
superclasses
 documentation strings
testing
 command-line scripts
time module
 importing
time() function
time.clock() function
Tkinter
 optimizing
triple quotes
 documentation strings
variables
 optimizing 2nd
whitespace
writing
 code
 optimizing 2nd 3rd
 style guides 2nd 3rd 4th 5th 6th
 Python applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 16. Development Environment >
Integrated Development Environments

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222217075242197193067210105

Integrated Development Environments

For years, many people have been writing and editing their Python programs using simple text editors,
but now the scenario has changed because Python currently provides two efficient development
environments for your usage. The first one is IDLE, a cross platform Integrated Development
Environment for Python, and the other one is Pythonwin, a development environment specifically for
the Windows platform.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=223
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A17%3A38+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=223&now=6%2F1%2F2002+6%3A17%3A38+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=223

Web Development > Python Developer's Handbook > 16. Development Environment >
IDLE

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222217075242194030120015090

IDLE

IDLE is written in Python and it uses Tkinter for the GUI interface. IDLE is portable and available for
all Python platforms that support Tkinter, which includes UNIX, Windows, and Macintosh. Because it
is written in Python, you can extend it in Python as well. Guido van Rossum, along with many others
including Jeremy Hylton, Tim Peters, Moshe Zadka, and Mark Hammond are some of the people
behind the development effort of the IDLE project. IDLE can be considered to be a fresh product
because it was first released with version 1.5.2 of Python.

Tip

Some say that the name IDLE really comes from the surname of one of the actors who was part of
the British troupe. Well, I don't know whether it is true or not.

The IDLE environment consists of several distinct modules, and each one of them is responsible for a
very specific functionality within the whole environment. There are modules to handle the undo engine,
the colorizer, the automatic indentation, the class browser, the debugger, and many other features.

The undo engine dynamically intercepts all buffer-changing operations, stacking the inverse of the
commands. This engine also supports grouping options, which is used by some high-level commands in
order to undo/redo multiple operations simultaneously. It also tracks changes made in open files in
order to ask you to save them before effectively letting you close them.

The colorizer highlights Python syntax, and it works while IDLE is unoccupied. When you resume
working, the colorizer stops.

IDLE implements a powerful editor window, which gets subclassed when an instance of the interactive
shell window is created to provide you access to the Python interactive mode. This subclass is able to
handle the execution of commands, including the command history management.

The editor window provides a set of functionality that allows you to create new files or browse through
and edit existing Python scripts. Two other important browsing engines are also part of the IDLE
environment: the Path Browser and the Class Browser. The former is used for searching modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=224
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A17%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=224&now=6%2F1%2F2002+6%3A17%3A46+PM

through the directories listed in the sys.path variable, whereas the latter implements a simple Class
Browser for finding the methods of classes.

IDLE also has a flexible search capability through its Find in Files dialog that lets you search through
your files or the system files to find occurrences of identifiers or any other text fragments.

A debugging implementation, which can be configured using the Debug Control Panel, is also offered
by IDLE. Keep in mind that this Debug is still in the process of development and tuning.

Among the features included in the latest release (version 0.5) of IDLE, I highlight the following ones:

● New functionality in the Shell window that displays call tips for functions that know the
documentation string.

● New implementation for both the Path Browser and the Class Browser that is based on the tree
widget navigation model. The Class and Path browsers now use a new version of the
pyclbr.py module, which is used to parse a Python file to recognize class and method
definitions and to find out the superclasses of a class.

● Better auto-indent capabilities. It is now possible to set the indent width and toggle between the
use of tabs in the indentation. Now, the auto-indent functionality knows how to indent the
blocks inside multiline statements.

● You can now import files as modules and run them as scripts from the File Editor.

● You can call IDLE with command-line arguments just as you normally do with the Python
interpreter.

● A status bar was created to display the current line and column.

● The Comment out region feature now inserts two hashes (##) in order to be more
distinguishing.

For more information, check out the following:

IDLE

http://www.python.org/idle/

IDLE-dev Mailing List

http://www.python.org/idle/

http://www.python.org/mailman/listinfo/idle-dev

Installing and Configuring IDLE

Previously, IDLE version 0.4 used to be automatically installed when you installed Python 1.5.2. The
version 0.5, which is now available, can be downloaded from the IDLE page in the Python Web site.
To install it, you just need to save the files in the idle subdirectory of your current Python
installation. Note that you can still keep your prior version by renaming it to something like idle 4.

In order to start IDLE on a Windows machine, you need to either access the IDLE icon on the Python
Program's folder or double-click the file idle.pyw, which is located in the idle subdirectory of your
installation. Note that you need to have Tkinter perfectly installed on your system in order to use IDLE,
which means that in order to use IDLE you need to have one installation of Tcl/Tk running on your
system. (Multiple Tcl/Tk installations might confuse Python.)

In order to run IDLE on a UNIX machine, first you need to obtain the source code, which usually is
available along with the latest Python source code in the CVS tree—a tarball can also be downloaded
from the IDLE homepage without any need to use CVS. Note that IDLE is part of most Python
Distributions. Second, you just need to type idle to open IDLE's Python Shell Window. For more
information, check out

Python CVS Page

http://www.python.org/download/cvs.html

Command Line Usage

The IDLE environment offers the following useful command-line arguments for your usage:

idle.py [-c command] [-d] [-e] [-s] [-t title] [args ...]
 -c command run this command (see text below)
 -d enable the debugger
 -e edit mode (see text below)
 -s run $IDLESTARTUP or $PYTHONSTARTUP first

 -t title defines the title of the shell window
 args arguments to be used

If -e is used, the arguments should be the files to be opened for editing. sys.argv receives the

http://www.python.org/mailman/listinfo/idle-dev
http://www.python.org/download/cvs.html

arguments passed to IDLE itself.

If -c is used, all arguments are placed in sys.argv[1:...], with sys.argv[0] set to '-c'.

if neither -e nor -c is used, the first argument is a script that is executed with the remaining arguments
in sys.argv[1:...] and sys.argv[0] set to the script name. If the script name is '-', no
script is executed, but an interactive Python session is started; the arguments are still available in
sys.argv.

Python Shell

After calling the IDLE environment, the Python Shell Window pops up on the screen showing Python's
interactive mode interface. As you can see, although you have the primary prompt >>>, no secondary
prompt (...) is displayed. Sometimes, you might feel like, "Where is the prompt?" Or, the interpreter
might appear to have stopped working in such a way that you cannot get a new prompt. The primary
solution for these problems is to press CTRL+C in order to interrupt any running command, establish a
keyboard interruption, and get back to the prompt. If you need to quickly get out of the interpreter
environment and close the Pythonwin window, press CTRL+D at the primary prompt.

IDLE colorizes the shell elements according to their logical meanings and syntax definitions. Note that
while you are typing the code, definitions become blue, strings become green, keywords become
orange, comments become red, the interpreter's standard output becomes blue, and the standard input
becomes black. When you execute the code, the console outputs are displayed in brown and the
standard error messages are in dark green (see Figure 16.1. Observe that this figure, as all other figures
shown in this book are not in color). This process happens in a background thread, and you can change
the color scheme anytime you want just by editing the ColorPrefs class in IdlePrefs.py file.

Figure 16.1. Note how IDLE uses colors to easily identify the various elements of the interface, such
as the traceback messages.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/224#4.html

IDLE provides automatic support for indentation, which is fired when you press the ENTER key after a
block-opening statement. Pressing the BACKSPACE key moves you back to one level of the
indentation structure. Note that this automatically happens when you insert a return, continue, break,
pass, or raise statement.

Indentation options, including the indent level, can be fully configured, depending on your own choice.
The default value of the indent level sets the tabulation to be equivalent to four spaces. An interesting
feature is that it is possible to select a specific region and indent or dedent it (these options are available
on the edit menu).

Tip boxes are a new sensation in this latest version of IDLE. They are displayed when you type the
opening parenthesis of functions (regular or built-in) and method calls (including class constructors)
from the Python Standard Library. Their contents usually show a tip that lists the expected arguments.
This feature is not limited to the functions defined by the Python environment. You can also use it
while coding your own functions to automatically display their list of expected arguments. In addition
to the list of arguments, you can also include an additional string to your tip box by adding a
documentation string to your function/method definition. To close the tip window, you need to press
ESC or click somewhere else in the window.

Another new feature introduced in this version is the word completion mechanism. Based on the list of
the latest words introduced to the program, you can successively press ALT+/ to toggle between them
in order to expand and complete the word that you have just started typing.

Something very interesting, but actually not new because it came from the previous version, is the
command history mechanism. It works when you move the cursor to the end of a specific line, or
block, and press ENTER. This action copies the whole line (or block) to the primary prompt.
Alternatively, you can use the keys ALT+p and ALT+n to toggle between the latest commands
matching what you have typed. When you find the one you want to use, press ENTER and the
command is retrieved.

Note that you can freely edit the commands before really executing them (see Figure 16.2).

Figure 16.2. This example demonstrates how IDLE handles indentation, the word completion
mechanism, and the call tips functionality.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/224#5.html

In case you want to change the current font used on windows, you just need to open the
EditorWindow.py file and define a new tuple value for the font entry in the text dictionary,
such as

text['font'] = ("times", 12)

Keyboard Commands

Moving around in the IDLE buffer is fairly easy. For basic editing and navigation controls, you can use
the following key bindings:

● Backspace deletes to the left of the cursor.

● DEL deletes to the right of the cursor.

● Arrow keys and Page Up/Down are used to move around the buffer.

● Home goes to the beginning of the line.

● End goes to the end of the line.

● CTRL+Home goes to the beginning of the file.

● CTRL+End goes to the end of the file.

IDLE offers you the chance to modify some of the keyboard binding settings. Check out the

Bindings.py file for details.

File Menu

IDLE's File Editor allows you to create new scripts or browse and edit existing Python source files. The
File Editor might also be brought up from the Path Browser or when you are using the Debugger. In all
cases, a new File Editor window will be opened with the name of the file and the path to it as its title
(or called Untitled if it is a new unsaved file).

Tip

A nice feature is almost hidden in the shell environment. If you click on the dotted line at the top of
a menu, a new window is created containing the menu itself.

The following options are menu items located in the File menu:

New window—Creates and opens a new editing window for when you want to create a
new Python source file.

Open...—Opens a dialog box that allows you to locate and open any Python source file
on your local system.

Open module...—Asks you to enter the name of a module, and then it searches through
all the directories listed in the sys.path. The module is opened after it has been
found.

Class browser—Opens a small utility that shows the classes and methods stored in the
current open file.

Path browser—Uses the sys.path variable as a startup helper for letting you browse
directories, modules, classes, and methods.

Save—Saves the current window. If the title of the window is delimited by * literals, it
indicates that the window has changed since the last time you saved it.

Save As...—Saves the current window using the given filename.

Save Copy As...—Saves the current window using the given filename. The difference
when comparing this to the previous option, is that this one doesn't rename the current

window as the name of the new file.

Close—Closes the current window.

Exit—Used to leave IDLE. It closes all windows and quits.

The following table lists some Emacs and Windows bindings for the previous set of Menu Options.

Table 16.1. Keyboard Bindings for the File Menu

Menu Option Emacs Style Binding Windows Binding
New CTRL+x CTRL+n CTRL+n
Open CTRL+x CTRL+f CTRL+o
Open Module CTRL+x CTRL+m CTRL+m
Save CTRL+x CTRL+s CTRL+s
Save As CTRL+x CTRL+w ALT+s
Save Copy As CTRL+x w ALT+SHIFT+s

The Class and the Path Browsers

The Class Browser function is implemented in the ClassBrowser.py file. You can launch this
browser by pressing ALT+C or by selecting the Class browser option of the File menu. Note that you
need to have already opened a file in order to use this function (see Figure 16.3).

Figure 16.3. Class Browser.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/224#10.html

The Path Browser is implemented in the PathBrowser.py file. This option creates a tree object that
provides the following hierarchy structure:

Directory
 Python source file
 Class
 Class method

This structure is used to allow you to navigate through the directories listed in the Python sys.path
variable. You just need to double-click on the upper level in order to expand all the sublevels. If you
double-click on any of the sublevels of this tree, IDLE opens the associated object in a File Editor
window for you. You can avoid that if you are just interested in browsing through the directories.
Using the + and - marks on the left side of the tree allows you to expand and shrink the tree without
opening the File Editor.

Because of some internal problems, this version of IDLE has a cosmetic error that lists some directories
more than once in the tree (see Figure 16.4).

Figure 16.4. Path Browser.

Edit Menu

The following menu options are found in the Edit menu:

Undo—Used to undo the last change made to the current window. Note that IDLE
supports up to 1000 changes to be undone.

Redo—Redoes last change.

Cut—Copies and deletes the current selection.

Copy—Copies selection.

Paste—Inserts the buffer value into the desired location.

Select All—Selects all contents of the edit buffer.

Find...—Allows you to search specific text patterns. You can even use regular

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/224#11.html

expressions.

Find again—Finds previous search again.

Find selection—Searches for a given string within the selected area.

Find in Files—Allows you to search for a specific string inside files stored in your
system.

Replace—Allows you to search and replace specific entries.

Go to line—Opens a dialog box where you have to type a line number. Then, it moves
you to that line.

Indent region—Moves selected lines one tab (4 spaces) to the right.

Dedent region—Moves selected lines one tab (4 spaces) to the left.

Comment out region—Comments a block of lines by inserting ## in front of them.

Uncomment region—Gets rid of the leading # and ## from the selected region.

Tabify region—Converts leading spaces in a selection to tabs.

Untabify region—Converts all tabs in a selection to the correct number of spaces.

Toggle Tabs—Sets the type of the automatic indents. If you turn Tabs On, the
indentation uses tabs and spaces. On the other hand, if you turn Tabs Off (default), the
indentation uses only spaces.

New Indent width—Changes the width of the automatic indents.

Expand word—Expands the word you have entered to match another word that you have
previously typed in the same buffer.

Format Paragraph—Formats the current selection as a paragraph.

Import module—Imports or reloads the module you are working on, adds the module
name to the __main__ namespace, and opens the Shell window, if necessary.

Run script—Runs the script stored in the __main__ namespace, and adds the script

name to the sys.argvp[] variable.

The following table lists some Emacs and Windows bindings for the previous set of Menu Options.

Table 16.2. Keyboard Bindings for the Edit Menu

Menu Options Emacs Style Bindings Windows Bindings
Cut CTRL+w CTRL+x
Paste CTRL+y CTRL+v
Copy ALT+w, ESC+w CTRL+c
Select All ALT+a, ESC+a ALT+a
Replace CTRL+r CTRL+h
Undo CTRL+z CTRL+z
Redo ALT+z, ESC+z CTRL+y
Find CTRL+u CTRL+s CTRL+f
Find again CTRL+u CTRL+s CTRL+g, F3
Find selection CTRL+s CTRL+F3
Go to line ALT+g, ESC+g ALT+g
Indent Region CTRL+] CTRL+]
Dedent region CTRL+[CTRL+[
Comment out region ALT+3 ALT+3
Uncomment region ALT+4 ALT+4
Tabify region ALT+5 ALT+5
Untabify region ALT+6 ALT+6
Format Paragraph ALT+q ALT+q
Expand word ALT+/ ALT+/
Toggle Tabs ALT+t ALT+t
New indent width ALT+u ALT+u
Import module F5 F5
Run script CTRL+F5 CTRL+F5

Windows Menu

This menu only provides the Zoom Height option, which is used to toggle the window between
normal size (24x80) and the maximum allowed height.

The Windows menu is also used to list the name of all open windows. After you select a window from
the list, the window pops up in the front of your screen (unless it is minimized and you have to click on
the icon to maximize it).

Debug Menu

The debugging mechanism offers the following menu options.

Go to file/line

This option looks around the insert point for a filename and line number, opens the file, and shows the
line. It is useful when you get a traceback message, and you want to go to the line that has caused the
error. You just need to put the cursor somewhere in the line that displays the filename and the line
number, and select the Go to File/Line option on the menu.

Stack Viewer

This option opens a tree widget that shows the stack traceback of the last exception. Note that it can be
used separately from the debug mechanism.

Debugger

Opens the Debug Control Panel, which allows you to run commands in the shell under the debugger
mechanism. In order to close the Panel, you can toggle the option off in the menu.

Auto-open Stack Viewer

Once set, this option automatically opens the stack viewer when a traceback message occurs.

The Debug mechanism that IDLE exposes allows you to

● Set breakpoints in a source code window.

● Execute a program and step through its statements.

● View the call stack. If necessary, you can right-click in the stack trace, and the debugger will
move you to the corresponding section of the source code.

● Check the value of the local and global variables.

● Analyze the source code in the editor window as you step through the program.

The debugging process starts when you open a File Editor Window, and creates or imports a module.
After you have the code available, you can double-click the lines that you want, and select the Set
Breakpoint Here option, which highlights the line. Now, you need to select the Debug Control Panel
option on the menu. Notice that although the Panel pops up on the screen, the message [DEBUG ON] is

printed on the Shell Window. After clicking the Go button on the Debug Control Panel, the execution
will stop at every breakpoint that it finds.

You can also debug code that is typed directly into the Shell Window (see Figure 16.5).

Figure 16.5. Debugging a user function typed in the Shell Window.

The Debug Control Panel is made up of five regular control buttons and four checkbuttons (see Figure
16.6).

Figure 16.6. Using the Debug Control Panel to debug the function that we typed in Figure 16.5.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/224#20.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/224#21.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/224#21.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/224#20.html

Go button—Continues the execution of the program starting from the current point until
it reaches the end of the program, or finds a break point.

Step button—Steps into the execution of the next statement.

Over button—Fully executes the current statement without requiring you to step through
its inner lines.

Out button—Resumes the execution of the program in order to leave (get out of) the
current function.

Quit button—Quits the execution of the current program without leaving the debug
mode. In order to leave the Debug Control Panel, you either need to toggle the menu
option to OFF, or close the window Panel. Notice that when the Panel Window closes,
the message [DEBUG OFF] is printed on the Shell Window.

Between the buttons and the stack area, you have the status area. This line lets you know where you are
in the script. As you can see in Figure 16.6, we are in the line number 3 in a function called
ShowAxis().

Next to the buttons are some checkbuttons responsible for setting the configuration of the Debug
Control Panel area. They define what you want to see and trace.

Stack—Displays the call stack.

Source—Opens a File Editor Window for every file that is mentioned in the debugging
process, highlighting the current line, which is being processed.

Locals—Displays the set of local variables (and their values) defined by the program for
the current namespace.

Globals—Displays all the global variables (and their values), including the internal
variables, defined by the program.

Writing an IDLE Extension

The way that IDLE has been set up allows you to write your own extensions and define new key
bindings and menu entries for IDLE edit windows. There is a simple mechanism to load extensions
when IDLE starts up and to attach them to each edit window.

For Guido's instructions on writing these extensions, take a look at the file extend.txt, which is
located on your idle directory, or grab it online at

http://www.python.org/idle/idle-0.5/extend.txt

Python 2.0 and IDLE

Python 2.0 was released with IDLE 0.6, which includes some additional features and enhancements.

The main new features are

● You can install IDLE as a package now.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/224#21.html
http://www.python.org/idle/idle-0.5/extend.txt

● Three new keystroke commands were added: Check module (Alt+F5), Import module (F5),
and Run script (Ctrl+F5).

● A bar showing the line and column of the cursor was included at the bottom of the editor
window.

● A command line was added to IDLE. This command line is very similar to the Python
interpreter shell.

● You can now use IDLE to call several brands of browsers and triggering documents to open
inside the browsers.

As for the enhancements, we can list improvements and optimizations to the following main areas:

● User interface.

● Syntax highlighting and auto-indentation.

● Class browser, which is now showing more information.

● Ability to set the Tab width as part of the user configuration set of option, which means that
IDLE is now able to display the tabulation of a given file according to the user configuration
settings.

● Call tips—they are now available in many locations.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=224

Index terms contained in this section

[nd]c argument
[nd]e argument
arguments
 [nd]c
 [nd]e
 command-line
 IDLE
Auto-open Stack Viewer option, File Editor 2nd 3rd
bindings
 keyboard
 Edit menu, Edit Editor 2nd
 File menu, File Editor
blocks
 indented
boxes
 tip
browsing engines
buttons
 Debug Control Panel 2nd
changing
 fonts, windows
checkbuttons
 Debug Control Panel
Class Browser
Class browser option, File Editor
Close option, File Editor
closing
 interpreters
colorizers
colors
 shell elements
command history mechanism
command-line arguments
 IDLE
commands
 keyboard
 IDLE
 running, interrupting
Comment out region option, File Editor
configuring
 IDLE
Copy option, File Editor
creating
 IDLE extensions

Cut option, File Editor
Debug Control Panel 2nd 3rd
Debug menu
 File Editor 2nd 3rd
 options, File Editor 2nd 3rd 4th
Dedent region option, File Editor
development environments
 IDLE 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
documentation strings
Edit menu
 File Editor 2nd 3rd
 keyboard bindings, Edit Editor 2nd
 options, Edit Editor 2nd 3rd
editing
 fonts, windows
editor window
Emacs bindings, File Editor 2nd
engines
 browsing
 undo
environments
 development
 IDLE 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
Exit option, File Editor
Expand word option, File Editor
extensions
 IDLE
 writing
File Editor 2nd
File menu
 keyboard bindings, File Editor
 options, File Editor 2nd
Find again option, File Editor
Find in Files option, File Editor
Find selection option, File Editor
FindÉ
 option, File Editor
fonts
 changing, windows
Format Paragraph option, File Editor
Globals checkbutton, Debug Control Panel
Go button, Debug Control Panel
Go to line option, File Editor
Hammond, Mark
Hylton, Jeremy
IDLE 0.6 2nd

IDLE development environment 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
IDLE extensions
 writing
Import module option, File Editor
Indent region option, File Editor
indented blocks
installing
 IDLE
interrupting running commands
keyboard bindings
 File menu, File Editor
keywboard commands
 IDLE
Locals checkbutton, Debug Control Panel
menus
 Debug
 File Editor 2nd 3rd
 options, File Editor 2nd 3rd 4th
 Edit
 File Editor 2nd 3rd
 keyboard bindings, Edit Editor 2nd
 options, Edit Editor 2nd 3rd
 File
 keyboard bindings, File Editor
 options, File Editor 2nd
modifying
 fonts, windows
New Indent width option, File Editor
New window option, File Editor
Open moduleÉ
 option, File Editor
OpenÉ
 option, File Editor
options
 Debug menu, File Editor 2nd 3rd 4th
 Edit menu, Edit Editor 2nd 3rd
 File menu, File Editor 2nd
Out button, Debug Control Panel
Over button, Debug Control Panel
Paste option, File Editor
Path Browser
Path browser option, File Editor
Peters, Tim
prompts
 Python Shell Window
Python 2.0
 IDLE 0.6 2nd

Python Shell Window 2nd 3rd
Quit button, Debug Control Panel
redo option, File Editor
Replace option, File Editor
Rossum, Guido van
Run script option, File Editor
running
 commands, interrupting
Save AsÉ
 option, File Editor
Save Copy AsÉ
 option, File Editor
Save option, File Editor
Select All option, File Editor
shell elements
 colors
Source checkbutton, Debug Control Panel
Stack checkbutton, Debug Control Panel
Step button, Debug Control Panel
strings
 documentation
Tablify region option, File Editor
tarballs
tip boxes
Toggle Tabs option, File Editor
Uncomment region option, File Editor
undo engines
Undo option, File Editor
Untablify region option, File Editor
Windows
 bindings, File Editor 2nd
windows
 changing fonts
 editor
 Python Shell 2nd 3rd
word completion mechanism
writing
 IDLE extensions
Zadka, Moshe
Zoom Height option, File Editor

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 16. Development Environment >
Pythonwin

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222217068205077109211252109

Pythonwin

Pythonwin is implemented as a wrapper for the Microsoft Foundation Class library. The interactive and
interpreted environment is in fact just a fully functional program created by Mark Hammond to
demonstrate the full power of the interface between MFC and Python. Besides the development
environment, you can use Pythonwin to write your own application, based on a given set of MFC
objects. As of now, Pythonwin supports more than 30 MFC objects that are exposed by the Windows
environment, which includes Common Controls, Property Pages/Sheets, Toolbars, and so forth.

Pythonwin's latest version (at this moment) is the beta 3 of version 2. This beta comes as part of the
most recent 1.5.2 build for Windows (win32all-132.exe). Note that this version might be
different at the time of your reading.

This version provides a stabilization of many features, including the debugger and the general IDE
interface, which had a great advance compared to the prior Pythonwin version. This version also
includes a number of other enhancements and bug fixes, such as a number of changes/enhancements to
Scintilla, COM fixes (mainly in obscure situations), and the new full support for COM User Defined
Types (Records/Structs). Preliminary ADSI support has been added, as well.

Note

Scintilla is a free source code editing component, whose development started as an effort to
improve Pythonwin.

In order to install Pythonwin, you can download the file from the following address:

http://starship.python.net/crew/mhammond/win32/Downloads.html

If you also want to have access to the top-level functions in both the PythonPath and Module browsers,
you need to download the latest version of the module pyclbr.py. This module is a standard Python
module that has been updated since Python 1.5.2. To download the module and for more information,
check out the following:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=225
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A18%3A58+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=225&now=6%2F1%2F2002+6%3A18%3A58+PM
http://starship.python.net/crew/mhammond/win32/Downloads.html

http://starship.python.net/crew/mhammond/downloads/pyclbr.py

Mark Hammond's Python Extensions

http://starship.python.net/crew/mhammond/

Pythonwin Documentation Index

http://www.python.org/windows/pythonwin/

Python for Windows Repository

http://www.python.org/windows/

The Pythonwin Environment

Pythonwin simulates the built-in Python interpreter by using the Microsoft Foundation Classes to
implement an Interactive Development Framework.

Tip

You can study Pythonwin's code by examining the files located in the directory
\Pythonwin\pywin\framework of your local Pythonwin installation.

The shell provided by the Interactive Window implements many known features inherited from IDLE,
such as the history mechanism. Depending on where you place the cursor when pressing ENTER, you
can either execute a command located at the end of your screen buffer, or copy a block of code from
somewhere else to the end of your buffer. Note that the end of the screen buffer is the place where you
have an active primary prompt.

When the line that you are typing has to be continued in another line, the code doesn't get executed. At
this time, Python starts a new line using the secondary prompt After you enter a complete Python
statement, Pythonwin tries to execute it. If your execution generates an exception in a file, the file is
displayed to you in a separate window, pointing to the line that has caused the exception. If a COM
object generates the exception, and the exception contains a reference to a WinHelp file, the help topic
is opened to you.

Pythonwin has available all the standard file operations that follow the MFC framework. If necessary,
you can create Python programs to implement plug-in support for other file types that are not currently

http://starship.python.net/crew/mhammond/downloads/pyclbr.py
http://starship.python.net/crew/mhammond/
http://www.python.org/windows/pythonwin/
http://www.python.org/windows/

supported by Pythowin.

The Locate option defined in the menu is used to quickly locate a specific Python script. It searches for
the file throughout all the directories listed in the sys.path variable. If you need to locate a module
in a package, replace the dot between the package name and the module name with a backslash.

The Import option tries to import or reload a given script. Pythonwin is the one that decides if the script
needs to be imported or reloaded. Pythonwin also handles modules that use the old and historic ni
module. If you have a .py file opened, you can use this option to save and import the file. If a file
cannot be located, a File dialog pops up asking you to locate the file.

The Run option runs a script, as if the file was passed on the command line. A dialog is opened, asking
the script name and arguments. If you already have a script file open and just want to execute it, press
CTRL+SHIFT+R.

This version of Pythfonwin is heavily similar to the latest version of IDLE (in new functionality). As
Mark says, "Many of the new Pythonwin features below have come about simply by stealing code from
IDLE." Pythonwin demonstrates its high integration with IDLE extensions by incorporating the
ExpandWord extension module and IDLE's history capability.

Among other new features, the latest version of Pythonwin brings the following main changes:

● Support for simple toggling and definition of fixed and propertional fonts.

● Improved call tips and attribute expansion.

● Key binding for toggling between the interactive window and the most recently used editor
window.

● Far improved find facility, including the ability to search across all open files.

Pythonwin provides an easily configurable color scheme because you can see the standard "Hello
World" example shown in Figure 16.7. Note that example was written directly in the Interactive
Window.

Figure 16.7. Interactive Window displaying Hello World.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#2.html

The View/Options item in the Menu is useful to configure a lot of small details, such as the color
scheme, and Tabs and Whitespace configuration (see Figure 16.8).

Figure 16.8. The Tabs and Whitespace configuration tab on the Pythonwin Option dialog box.

Under the Tools menu, you have several routines that provide some special functionality. The first one
called Browser, displays information about an object whose name you have to type in a dialog box.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#3.html

The Browse PythonPath option splits the screen into two parts: the Python Path browser and the
Interactive Window file editor. When you click on a program or program item (class, function, and so
on) in the Path Browser, the right panel opens the given file and places you on the part of the code that
defines the object you have just clicked (see Figure 16.9). Note that the interface looks much nicer
when you use the latest version of the pyclbr.py module.

Figure 16.9. Python Projects: tree widget that displays Python directories and files.

Another option provided is the ability to make changes on the Pythonwin Registry settings, as you can
see in Figure 16.10. In order to open this window, you need to call the menu item named Edit
PythonPath.

Figure 16.10. The Registry Editor allows you to make changes on the registry settings of Pythonwin.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#4.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#5.html

The next two options are used when you have to write COM interfaces using Python. The first option
COM Makepy utility is mentioned in Chapter 7, "Objects Interfacing and Distribution." It lists all
the available COM objects registered in the system and allows you to create a Python interface for
them (see Figure 16.11). In this example, we are highlighting the Excel 8.0 Object Library in order to
create a Python interface that will allow us to use Excel COM interface.

Figure 16.11. A list of available COM libraries.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#6.html

This next option COM Browser allows you to visualize all the properties of registered COM objects
(see Figure 16.12).

Figure 16.12. The Python Object Browser.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#7.html

Pythonwin supports source code folding, which means that it has the capability to collapse sections of
source code into single lines, and later expand them back to the original structure (see Figure 16.13).
This folding featured was added to Pythonwin thanks to Scintilla. You can fold and unfold any Python
statement that introduces a new block either by clicking on the indicator in the folding margin, by
selecting one of the folding keystrokes, or by using View, Folding menu. Note that the folding feature
must be enabled via the menu option View/Options/Editor dialog. You can also change the
configuration so that all files have only their top-levels folded when opened. All editing functions work
properly when code is folded. If necessary, functions like find, replace, and goto are able to
unfold the code before they start performing their tasks. For more information, check out

Figure 16.13. Opening a file and toggling the breakpoint.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#8.html

Scintilla

http://www.scintilla.org

Pythonwin's debugger had a great improvement since the last version. To use the Debug mechanism,
you need to open a program and set the breakpoints on the code. You can toggle the breakpoints by
clicking on a specific line and using the F9 key binding, as shown in Figure 16.13. You don't need to
run the debugger just to set the breakpoints; you can do that while the debugger is not running. While
the debugger is inactive, the breakpoints are shown without any coloring.

You just can't let the breakpoints remain there and pray for something to happen. You need to activate
the debugger by either using the Step in (F11) option, the Go (F5) option, or one of the shortcuts in
the toolbar and in the menu. When you start the debugging process, all breakpoints become red (see
Figure 16.14—note that as the figure isn't in color, it might feel that some colors are not easily
identified in the book).

Figure 16.14. The Debug Framework.

http://www.scintilla.org/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#8.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#9.html

In order to add watch variables and break-point conditions, you need to click on a specific part of the
Debugging window. To add variables, you need to click on the Expression/Value text box and click on
the <New item> text. The prompt will let you type the name of the variables that you want to watch. In
case you want to delete something from there, you just need to press the Delete key.

If you close the Debugging toolbar, you can open it using the menu option View, Toolbars, Debugging.
Note that this toolbar follows the standard found in other languages, as we can see in the Figure 16.14
(from left to right):

● Watch Window toggle option

● Stack Viewer Window toggle option

● Breakpoint List Window toggle option

● Option to toggle a breakpoint

● Option to clear all breakpoints

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#9.html

● Step into a statement

● Step over a function

● Step out of a structure

● Go

● Close the debugger

As you can see in Figure 16.14, when you select all debug windows to be open, you get a Debug
Framework containing five windows. Let's go clockwise, starting from the top-left corner: We have the
variable watch window, the stack viewer, the Python path browser, the interactive window that displays
the source code, and a list of breakpoint conditions (on the bottom).

Keyboard Bindings

Pythonwin has a customizable keyboard binding mechanism that allows you to define your own custom
events and keyboard bindings. All this information gets stored in a file called default.cfg, which
is located in the pywin directory. You can freely edit this file if you want. All the documentation
necessary to create the new bindings is kept in this file, including how to create your own configuration
based on the default file. This last feature is a handful to incorporate into your system default file
from new versions of Pythonwin without changing your code. This directory also contains a
configuration file called IDLE.cfg that simulates the keyboard bindings of IDLE, providing a good
customization example.

The bindings in Table 16.3 are part of Pythonwin's default configuration.

Table 16.3. Pythonwin's Default Set of Bindings

Keyboard Binding Description
Alt+Q Format the current paragraph
Alt+/ Apply the functionality that expands the word under the cursor
Alt+I Show/hide the interactive window
Ctrl+W >View/hide whitespace
Built-in Binding Description
Ctrl+Z Undo
Ctrl+Y Redo
Ctrl+X Cut
Ctrl+C Copy

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#9.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/225#11.html

Ctrl+V Paste
Ctrl+A Select All
Ctrl+L Cut the current line
Ctrl+Shift+L Delete the current line
Ctrl+T Swap the current line with the line above
Ctrl+U Convert the selection to lowercase
Ctrl+Shift+U Convert the selection to uppercase
Ctrl+Backspace Delete the word to the left side of the cursor
BackSpace Remove one indent to the left
Enter Insert a newline and indent
Tab Insert an indent, or perform a block indent in a given selection
Shift+Tab Dedent the selected block
F2 Go to the next bookmark
Ctrl+F2 Add or remove a bookmark on the current line
Ctrl+G Go to a specific line number
Alt+B Add a simple comment banner at the current location
Alt+3 Block comment the selected region
Shift+Alt+3 Uncomment the selected region
Alt+4 Uncomment the selected region (IDLE's default binding)
Alt+5 Tabify the selected region
Alt+6 Untabify the selected region
Ctrl+T Toggle the use of tabs for the current file
Alt+U Change the indent width for the current file
Keypad Plus Expand a folded line, if it is located under the cursor
Alt+ Keypad Plus Expand all folds in the current file
Keypad Minus Collapse a folded line, if it is located under the cursor
Alt+Keypad Minus Collapse all folds in the current file
Keypad Multiply Toggle between expanding and collapsing all top-level folds in the current file
Ctrl+ Keypad Plus Zoom-in for the current window
Ctrl+ Keypad Minus Zoom-out for the current window
Debugger Bindings Description
F9 Toggle breakpoint on and off
F5 Activate the debugging process
Shift+F5 Stop the debugging process
F11 Single step into functions
F10 Step over functions
Shift+F11 Step out of the current function
Interactive Bindings Description
Ctrl+Up Show the previous command in the history list
Ctrl+Down Show the next command in the history list

Command Line Arguments

Pythonwin accepts the following command line arguments. In case you need to make changes in any
one of these commands, you just need to modify the intpyapp.py file.

/run scriptname arguments

This command runs the given script in the GUI environment and sends the output directly to
Pythonwin's interactive window.

/runargs scriptname arguments

This command also runs the given script in the GUI enviroment. The difference between this and the
previous command is that this one shows Pythonwin's "Run Script" dialog.

/edit filename

This command allows you to edit the given file. Currently, you can omit the /edit command because
it is not strictly enforced.

/app scriptname arguments

This command runs an application script that is able to change the appearance of a Pythonwin program.
For details, check the examples located in the Pythonwin application folder
(/Pythonwin/pywin/Demos/app) of your Python installation.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=225

Index terms contained in this section

activating
 debuggers, Pythonwin
adding
 break-point connections, Pythonwin
 watch variables, Pythonwin
arguments
 command-line
 Pythonwin
bindings
 keyboard
 Pythonwin 2nd 3rd
break-point connections
 adding, Pythonwin
Browse PythonPath option, Pythonwin
code
 source
 folding, Pythonwin 2nd
COM_Browser option, Pythonwin
COM_Makepy_utility option, Pythonwin
command-line arguments
 Pythonwin
components
 source code editing, Scintilla
connections
 break-point
 adding, Pythonwin
creating
 break-point connections, Pythonwin
 watch variables, Pythonwin
debuggers
 Pythonwin
Debugging toolbar
 opening, Pythonwin
development environments
 Pythonwin 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Edit_PythonPath option, Pythonwin
editing components
 source code, Scintilla
environments
 development
 Pythonwin 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
folding
 source code, Pythonwin 2nd
Hammond, Mark
Import option, Pythonwin

installing
 Pythonwin
keyboard bindings
 Pythonwin 2nd 3rd
libraries
 Microsoft Foundation Class library
Locate option, Pythonwin
menus
 options
 Pythonwin
 Tools
 options, Pythonwin 2nd 3rd
Microsoft Foundation Class library
 Pythonwin
opening
 Debugging toolbar, Pythonwin
options
 menu
 Pythonwin
 Tools menu, Pythonwin 2nd 3rd
Pythonwin 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Run option, Pythonwin
Scintilla
source code editing components, Scintilla
source code folding, Pythonwin 2nd
statements
 folding and unfolding
toolbars
 Debugging
 opening, Pythonwin
Tools menu
 options, Pythonwin 2nd 3rd
unfolding
 statements
variables
 watch
 adding, Pythonwin
View/Options option, Pythonwin
watch variables
 adding, Pythonwin
wrappers
 Pythonwin 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 16. Development Environment >
Summary

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218064044142216177213183

Summary

This chapter shows some performance and style suggestions for your code now that you are probably
writing your own programs. It also introduces you to the main GUI development environments that you
can use to write Python applications.

Writing a program is very easy, but writing a good and optimized program requires some level of
experience. A good way to start is to learn all the nuances of the language, which in our case involves
learning Python.

Python is a perfect language for project prototyping. Python's design allows you to make changes very
quickly. Along the development stage, you will soon see that Python can be easily used to code entire
applications, without discarding the prototyped code.

Performing code optimization and writing a program with style are very important things that you must
have in mind, not only when using Python, but also when writing in any other language.

For years, many people have been writing and editing their Python programs using simple text editors,
but now the scenario has changed. Python currently provides two efficient development environments
for your usage: IDLE, a cross platform Integrated Development Environment for Python, and
Pythonwin, a development environment specifically for the Windows platform.

The next chapter introduces you to the Python-mode package for Emacs, which provides almost all the
features in the IDLE and Pythonwin edit windows (and a few features they don't). This includes auto
indentation, syntax highlighting, and so on. You can use Emacs on just about any UNIX-like system,
and there is a Windows port as well.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=226
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A20%3A35+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=226&now=6%2F1%2F2002+6%3A20%3A35+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=226

Web Development > Python Developer's Handbook > 17. Development Tools See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218064044137234145208042

Chapter 17. Development Tools
Wenn ist das Nunnstueck git und Slotermeyer?

Ja! Beierhund das oder die flipperwaldt gersput.

A handful of programming tools are introduced here. This chapter demonstrates how to go through all
the development stages of creating a Python application. You will learn how to compile the Python
interpreter, and how to debug, profile, and distribute Python programs.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=228
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A20%3A46+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=228&now=6%2F1%2F2002+6%3A20%3A46+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=228

Web Development > Python Developer's Handbook > 17. Development Tools > The
Development Process of Python Programs

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218065012141030161162250

The Development Process of Python Programs

At this point, it's presumed that you have already written many Python programs, and that you want
more details and material covering development tools that can optimize the development stage of your
applications. The next list of topics shows what is introduced in the chapter that can help you along the
development process of your programs.

● How to compile the Python interpreter on Windows and UNIX platforms

● Available tools for code editing

● List of example scripts that come as part of the Python distribution

● How to generate executable Python bytecode files

● How to start the Python interpreter using different command line options

● How to debug and profile a Python program

● How to pack and distribute your Python application

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=229
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A21%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=229&now=6%2F1%2F2002+6%3A21%3A04+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=229

Web Development > Python Developer's Handbook > 17. Development Tools > Compiling Python See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218065012140210174141027

Compiling Python

The Python source code distribution comes with complete instructions about how to compile the code for both
Windows and UNIX platforms. The instructions about compiling for Windows are stored in the subdirectories
/PCbuild and /PC—the UNIX instructions are separate. The /PC subdirectory contains complete project files to
make several PC ports of Python.

If you want to compile Python on Windows, you need to start the Integrated Development Environment of your
compiler and read in the native project file (or makefile) provided. This enables you to change any source files or
build settings so you can make custom builds.

The following are important files that can help you configure the port of the source code to your favorite platform
(in case it hasn't been ported yet).

config.h— An important configuration file specific to PCs. This is generated by the configure
script on UNIX systems.

config.c— The list of C modules to include in the Python PC version. Manually edit this file to
add or remove Python modules. This is auto-generated by the makesetup script on UNIX systems.

testpy.py— A Python test program. Run this to test your Python port. It should produce copious
output, ending in a report on how many tests were OK, how many failed, and how many were
skipped. Don't worry about skipped tests (these test unavailable optional features).

Windows

The Python distribution comes with instructions to compile the source code using many different tools, such as
Microsoft Visual C++ Version 1.5 (16-bit Windows), Watcom C++ compiler, and IBM VisualAge C/C++ for OS/2.
See the /PC/readme.txt file in the distribution tree for detailed instructions.

The instructions here cover the Microsoft Visual C++ Versions 5.0 and 6.0.

In order to build Python using this tool, the first thing you need to do is open the workspace pcbuild.dsw that is
located under the /PCbuild directory. This directory also contains a readme.txt file with more instructions.
Note that all files in this directory are used to build Python for Win32 platforms, which includes Windows 95, 98,
and NT platforms.

Then, you just need to select the Debug or Release setting (using Set Active Configuration in the Build menu) and
build the projects in the proper order, which is

1. python15 (this builds python15.dll and python15.lib)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=230
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A21%3A13+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=230&now=6%2F1%2F2002+6%3A21%3A13+PM

2. python (this builds python.exe)

3. The other subprojects

If you select the Debug option, the files will be generated carrying a _d at the end of their name, such as
python15_d.dll, python_d.exe, and parser_d.pyd.

We call subprojects—the other applications that don't come as part of the Python application—that include for
example: Tcl/Tk, bsddb, and zlib. In order to build these projects, you might have to change some of the settings on
your compiler, such as the include and library paths.

The following files and subdirectories of the distribution are useful and helpful when building Win32 versions of
Python:

python_nt.rc— Resource compiler input for python15.dll.

dl_nt.c, import_nt.c— Additional sources used for 32-bit Windows features.

getpathp.c— Default sys.path calculations (for all PC platforms).

dllbase_nt.txt— A (manually maintained) list of base addresses for various DLLs, to avoid
runtime relocation.

example_nt— This is a subdirectory that shows how to build an extension as a DLL.

UNIX

Binary distributions for the UNIX platforms are not made available by the Python Web site because the compilation
process depends much on your system. In order to compile Python on a UNIX system, you first need to obtain the
source code distribution. Note that the next guidelines are just a summary of the operations that you need to perform.
This installation process, by default, installs Python under the /usr/local directory and presumes that you want
to provide access to the Tkinter module too. If that's not the case, you can just skip the whole
Tcl/Tk/Tkinter steps and install just the core Python environment. You can skip building Tcl and Tk if they
are already installed on your system.

1. Create a root directory with three subdirectories underneath: Python, Tcl, and Tk.

2. Download the latest versions of these three programs, and save them on the respective subdirectories.

3. In each directory, you need to extract the files out of the package using a command such as this:

gunzip -c filename | tar xf -

4. Now, we need to configure and install Tcl and Tk. The actions below (steps 5, 6, and 7) need to be performed
in both subdirectories, first for Tcl and later for Tk.

5. Go to the specific subdirectory.

6. Define the compiler and system options for the building process. You need to type the following command:

./configure

7. Run the utility commands that create and install the binary and library files.

make
make install

8. Now, we are ready to install Python. Go to the Python subdirectory.

9. Define the compiler and system options for the building process. You need to type the following command.
Note that optionally, you can enable the threading option by passing the argument --with-thread to the
configure command. Also, you might want to enable floating point exception support by passing the
argument --enable-fpectl.

./configure

10. Copy the Modules/Setup.in file to the subdirectory Modules/Setup.

11. In order to enable the Tkinter module (because it is not enabled by default), you need to modify this file. This
file is responsible for deciding the built-in modules that must be built along with Python. Modifying this file
is not difficult, as you can see next. The following piece of file code shows where you need to change in
order to enable Tkinter. This example shows what you might want to uncomment because it can vary for
different UNIX systems (what you see here should be fine for most systems though).

The _tkinter module.
#
The TKPATH variable is always enabled, to save you the effort.
TKPATH=:lib-tk

The command for _tkinter is long and site specific. Please
uncomment and/or edit those parts as indicated. If you don't have a
specific extension (e.g. Tix or BLT), leave the corresponding line

commented out. (Leave the trailing backslashes in! If you
experience strange errors, you may want to join all uncommented
lines and remove the backslashes -- the backslash interpretation is
done by the shell's "read" command and it may not be implemented on
every system.
#***Always uncomment this (leave the leading underscore in!):
_tkinter _tkinter.c tkappinit.c -DWITH_APPINIT \
#***Uncomment and edit to reflect where your Tcl/Tk headers are:
-I/usr/local/include \
#***Uncomment and edit to reflect where your X11 header files are:
-I/usr/X11R6/include \
#***Or uncomment this for Solaris:
-I/usr/openwin/include \
#***Uncomment and edit for Tix extension only:
-DWITH_TIX -ltix4.1.8.0 \
#***Uncomment and edit for BLT extension only:
-DWITH_BLT -I/usr/local/blt/blt8.0-unoff/include -lBLT8.0 \
#***Uncomment and edit for PIL (TkImaging) extension only:
-DWITH_PIL -I../Extensions/Imaging/libImaging tkImaging.c \
#***Uncomment and edit for TOGL extension only:
-DWITH_TOGL togl.c \
#***Uncomment and edit to reflect where your Tcl/Tk libraries are:
-L/usr/local/lib \
#***Uncomment and edit to reflect your Tcl/Tk versions:
-ltk8.0 -ltcl8.0 \
#***Uncomment and edit to reflect where your X11 libraries are:
-L/usr/X11R6/lib \
#***Or uncomment this for Solaris:
-L/usr/openwin/lib \
#***Uncomment these for TOGL extension only:
-lGL -lGLU -lXext -lXmu \
#***Uncomment for AIX:
-lld \
#***Always uncomment this; X11 libraries to link with:
-lX11

12. Optionally, you can choose for building the modules as shared libraries. It is a good idea to build shared
libraries because it will decrease the size of the Python binary, reduce the number of libraries it is linked to,
and probably reduce its memory consumption. You need to look for the following lines in the Setup.in
file, and make the small change that is indicated there.

Uncommenting the following line tells makesetup that all following
modules are to be built as shared libraries (see above for more
detail; also note that *static* reverses this effect):
#*shared*

Note

Note that you can uncomment lines for other modules you want to build, as well.

13. Now, you just have to run the utility commands that creates and installs the Python executable and library
files.

make
make install

14. Finally, sometimes you need to set up the environment variables: PATH, PYTHONPATH, TCL_LIBRARY,
and TK_LIBRARY to the correct values. In most cases, this shouldn't be necessary because the programs are
installed where they expect to be installed. Possibly having to add /usr/local/bin to PATH is probably
all that is needed.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

/PCbuild directory
/usr/local directory
applications
 source code
 compiling 2nd 3rd
Build menu
 Debug option
building
 modules as shared libraries
code
 source
 compiling 2nd 3rd
compiling
 source code 2nd 3rd
config.c file
config.h file
creating
 modules as shared libraries
Debug option
 Build menu
directories
 /PCbuild

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=230

 /usr/local
dl_nt.c file
dllbase_nt.txt file
enabling
 Tkinter module
example_nt subdirectory
files
 config.c
 config.h
 dl_nt.c
 dllbase_nt.txt
 getpathp.c
 import_nt.c
 project
 python_nt.rc
 testpy.py
getpathp.c file
import_nt.c file
libraries
 shared
 building modules as
menus
 Build
 Debug option
modules
 building as shared libraries
 Tkinter 2nd
ports
 testing
programs
 source code
 compiling 2nd 3rd
project file
python_nt.rc file
shared libraries
 building modules as
software
 source code
 compiling 2nd 3rd
source code
 compiling 2nd 3rd
subdirectories
 example_nt
subprojects
testing
 ports
testpy.py file
Tkinter module 2nd
turning on
 Tkinter module
UNIX
 compiling
 source code

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 17. Development Tools > Editing
Code

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218065012143150139177233

Editing Code

As you already know, Python provides two development environments that offer a lot of useful features
which can help you while coding: Pythonwin and IDLE. However, for simple programs, or in case you
don't have a graphical environment available, you can stick to simple text editors that can be used to
handle the job very nicely.

On Windows systems, you can use editors such as Editpad and Notepad to write Python scripts; on
DOS systems, EDIT, and on UNIX systems you have choices such as Pico, Vi, Emacs, and others.

Pico is a full screen editor that is reasonably intuitive. Pico's commands can be learned in just some
minutes and Pico itself is good for editing small texts with just a few changes. However, you need
commands that are more powerful when a text becomes bigger because Pico only has a limited number
of commands. These commands are shown at the bottom of the editing screen. Also note that Pico
makes limited use of mice. Pico is not 100% recommended for Python programming because it wasn't
designed as a programmer's editor. It does things such as automatic word wrap, which might not be
what you want.

Vi (visual editor) is another full screen editor that was seen as a big improvement over line editing. Vi
is highly customizable, allows filtering, has number prefixes for commands, has an invocation of a
shell, has better jump commands, can read in the result of external commands, save parts of text,
substitute literal strings and regular expressions, and many other options. The vi clone vim (vi
improved) can be scripted in Python among other languages.

JED is a freely available text editor for UNIX, VMS, MSDOS, OS/2, and MS Windows. This editor
has many features, including drop-down menus, folding support, color syntax highlighting on color
terminals, and emulation of Emacs, EDT, Wordstar, and Borland editors. It's said that the latest version
of the JED editor has a Python mode, with many of the same features as the Emacs/XEmacs Python
mode.

See its Web page for more information:

http://space.mit.edu/~davis/jed.html

Vi, Pico, and JED are certainly powerful editors. However, Emacs is quite a jump in feature variety.
Emacs is a very extensible and customizable editor. The richness of Emacs makes it more difficult to

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=231
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A21%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=231&now=6%2F1%2F2002+6%3A21%3A24+PM
http://space.mit.edu/~davis/jed.html

learn, but it is worth the try. A version of Emacs called XEmacs (which is a very famous
implementation) can also be used for writing Python programs.

Emacs

Emacs originally was an acronym for Editor MACroS. The heart of Emacs is an interpreter for elisp
(Emacs Lisp), which is a dialect of the Lisp programming language with extensions to support text
editing. Currently, Emacs is much more than a text editor. Besides allowing you to edit several styles of
source codes and other general-purpose files, it contains many extensions that provide support for
features such as Web browsing and mail reading. Emacs is a GNU project, and it is maintained by the
Free Software Foundation.

Some of the features of Emacs include

● Content sensitive major modes for a wide variety of file types, from plain text to source code to
HTML files.

● Complete online documentation, including a tutorial for new users.

● Emacs is highly extensible through the Emacs Lisp language.

● Support for many human languages and their scripts.

● A large number of extensions which add other functionality (the GNU Emacs distribution
includes many extensions).

Check out the GNU Emacs Web site for details:

http://www.gnu.org/software/emacs/

Note

XEmacs is a highly customizable open source text editor and application development system,
which is based on GNU Emacs, and shares a lot of code with it. XEmacs is protected under the
GNU Public License, and its emphasis is on modern graphical user interface support and an open
software development model. XEmacs has an active development community and runs on Win32
and UNIX platforms. See http://www.xemacs.org/ for details.

Emacs has its own section on the Python Web site, precisely at the following address:

http://www.gnu.org/software/emacs/
http://www.xemacs.org/

http://www.python.org/emacs/

At that page, you can find a collection of links to several Emacs codes that might help with your
Python programming. Most of the code works fine on top of the latest versions of both Emacs and
XEmacs.

From that page, you can also get access to some Emacs modes that enable the coding of Python source
code when using Emacs, such as the Python Mode, located at

http://www.python.org/emacs/python-mode/

You might want to byte-compile that python-mode file when installing it on your system, primarily
for better performance. To do so, you need to open Emacs (or XEmacs) and execute the following
commands. Note that you can safely ignore any byte compiler warnings.

C-x C-f /path/to/python-mode.el RET
M-x byte-compile-file RET

On the Web site, besides getting access to the latest release of the python-mode (the current version is
3.105), you can also obtain other useful stuff, which includes: a detailed list of changes since the last
released version, installation notes, a FAQ, and a Emacs/XEmacs compatibility details list, which
brings special notes about Emacs/XEmacs versions and package interactions.

To install the python-mode package so that it can be used in Python, you would put it in the site-
lisp directory, and edit your site-start.el to autoload python-mode.el and bind it to .py
files.

The following links provide additional information related to the usage of Emacs/XEmacs along with
Python.

The OO-Browser—This is a multi-windowed, interactive, object-oriented class browser
that supports Python, and was designed for professional use under the Emacs editor. See
the following Web site for details:

http://www.beopen.com/manuals/alt-oobr-cover.html

Introduction to Using OO-Browser with Python—This is a paper by Harri Pasanen,
presented at the International Python Conference IV, June 1996.

http://www.python.org/emacs/
http://www.python.org/emacs/python-mode/
http://www.beopen.com/manuals/alt-oobr-cover.html

http://www.python.org/workshops/1996-06/papers/h.pasanen/oobr_contents.html

Python Library Reference Hot-Key Help System for XEmacs—This is Harri Pasanen's
work. This program shows the Python Library Reference for the word under cursor every
time you press the F1 key when in Python mode under the XEmacs.

http://bigbear.pc.helsinki.fi/harri/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 Emacs
 editing source code 2nd 3rd
 JED
 Pico
 source code
 editing 2nd 3rd 4th
 Vi (visual editor)
 XEmacs
 editing source code 2nd 3rd
browsers
 OO
changing
 source code 2nd 3rd 4th
code
 source
 editing 2nd 3rd 4th
editing
 source code 2nd 3rd 4th
elisp (Emacs Lisp) programming language
Emacs
 editing
 source code 2nd 3rd
Emacs Lisp (elisp) programming language
Free Software Foundation
installing
 python-mode package
Introduction to using OO-Browser with Python
JED
modifying

http://www.python.org/workshops/1996-06/papers/h.pasanen/oobr_contents.html
http://bigbear.pc.helsinki.fi/harri/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=231

 source code 2nd 3rd 4th
OO-Browser
packages
 python-mode
 installing
Pasanen, Harry 2nd
Pico
programming languages
 elisp (Emacs Lisp)
programs
 Emacs
 editing source code 2nd 3rd
 JED
 Pico
 source code
 editing 2nd 3rd 4th
 Vi (visual editor)
 XEmacs
 editing source code 2nd 3rd
Python Library Hot-Key Help System for XEmacs
python-mode package
 installing
software
 Emacs
 editing source code 2nd 3rd
 JED
 Pico
 source code
 editing 2nd 3rd 4th
 Vi (visual editor)
 XEmacs
 editing source code 2nd 3rd
source code
 editing 2nd 3rd 4th
Vi (visual editor)
visual editor (Vi)
XEmacs
 editing
 source code 2nd 3rd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 17. Development Tools > Python
Scripts

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218065012137085045216133

Python Scripts

The Python distribution comes with lots of scripts that you can study and use. Those scripts are stored
in two directories: \Tools and \Demos.

Table 17.1 lists programs that are stored in the \ Tools directory.

Table 17.1. Programs Stored in the Tools Directory

Program Description
bgen Generates complete extension modules from a description (under development).
faqwiz FAQ Wizard.
freeze Creates a standalone executable from a Python program.
modulator Interactively generates a boiler plate for an extension module. Works easiest if you have Tk.
Pynche The PYthonically Natural Color and Hue Editor.
versioncheck Checks whether you have the latest version of a specific package.
webchecker Checks Web sites for bad links.

The \Tools\Scripts subdirectory contains a number of useful single-file programs. They are
shown in Table 17.2.

Table 17.2. Programs Stored in the Tools\ Scripts Directory

Program Description
byteyears Prints the product of a file's size and age
checkpyc Checks presence and validity of .pyc files
classfix Converts old class syntax to new
copytime Copies one file's atime and mtime to another
crlf Changes CRLF line endings to LF (Windows to UNIX)
cvsfiles Prints a list of files that are under CVS
dutree Formats du output as a tree sorted by size
eptags Creates Emacs TAGS file for Python modules

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=232
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A21%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=232&now=6%2F1%2F2002+6%3A21%3A42+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/232#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/232#2.html

findlinksto Recursively finds symbolic links to a given path prefix
fixcid Massive identifier substitution on C source files
fixheader Adds some cpp magic to a C include file
fixnotice Fixes the copyright notice in source files
fixps Fixes Python scripts'first line (if #!)
ftpmirror FTP mirror script
h2py Translates #defines into Python assignments
ifdef Removes #if(n)def groups from C sources
lfcr Changes LF line endings to CRLF (UNIX to Windows)
linktree Makes a copy of a tree with links to original files
lll Finds and lists symbolic links in current directory
logmerge Consolidates CVS/RCS logs read from stdin
mailerdaemon Parses error messages from mailer daemons
methfix Fixes old method syntax def f(self, (a1, ..., aN)):
mkreal Turns a symbolic link into a real file or directory
ndiff Intelligent diff between text files
nm2def Creates a template for PC/python_nt.def
objgraph Prints object graph from nm output on a library
pathfix Changes #!/usr/local/bin/python into something else
pdeps Prints dependencies between Python modules
pindent Indents Python code, giving block-closing comments
ptags Creates vi tags file for Python modules
rgrep Reverses grep through a file
suff Sorts a list of files by suffix
sum5 Prints md5 checksums of files
tabnanny Checks inconsistent mixing of tabs and spaces
tabpolice Checks for ambiguous indentation
texi2html Converts GNU texinfo files into HTML
treesync Synchronizes source trees
untabify Replaces tabs with spaces in argument files
which Finds a program in $PATH
xxci Wrapper for rcsdiff and ci

The \ Demo directory contains good examples of how to write Python code. The programs are
described in Table 17.3.

Table 17.3. Programs Stored in the Demo Directory

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/232#3.html

Program Description
classes Some examples of how to use classes.
dns Module that implements a DNS client.
embed Example of embedding Python in another application (see also pysvr).

extend Example of using the generic Makefile.pre.in from the Misc directory to build a statically linked
or shared extension module.

ibrowse Emacs info file browser (uses stdwin).
md5test Test program for the optional md5 module.
metaclasses Metaclasses examples.

pdist Filesystem, RCS, and CVS client and server classes. This directory contains various modules
and classes that support remote file system operations.

pysvr Example of embedding Python in a threaded application.
rp Set of classes for building clients and servers for Sun RPC.
sockets Examples for the new built-in module socket.
sgi Demos that only run on Silicon Graphics machines.
stdwin Demos that use the STDWIN library.
threads Demos that use the thread module (for SGIs).
tkinter Demos using the Tk interface.
zlib zlib demo.

The directory /Demos/scripts contains a collection of useful executable Python scripts. They are
presented in Table 17.4.

Table 17.4. Programs Stored in the Demos/Scripts Directory

Script Description
fact Factorizes numbers
from Summarizes mailbox
ftpstats Summarizes ftp daemon log file
lpwatch Watches BSD line printer queues
markov Markov chain simulation of words or characters
mboxconvvert Converts MH or MMDF mailboxes to UNIX mailbox format
morse Produces Morse code (audible or on AIFF file)
mpzpi test mpz—prints digits of pi (compare pi.py)
pi Prints all digits of pi—given enough time and memory
pp Emulates some Perl command line options
primes Prints prime numbers
script Equivalent to BSD script
unbirthday Prints unbirthday count

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/232#4.html

update Updates a bunch of files according to a script

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

\Demos directory
 scripts stored in 2nd 3rd 4th
\Tools directory
 scripts stored in 2nd 3rd 4th
applications
 stored in \Tools and \Demos directories 2nd 3rd 4th
bgen program
byteyears program
checkpyc program
classes program
classfix program
copytime program
crlf program
cvsfiles program
directories
 \Tools and \Demos
 scripts stored in 2nd 3rd 4th
dns program
dutree program
embed program
eptags program
extend program
fact script
faqwiz program
findlinksto program
fixcid program
fixheader program
fixnotice program
fixps program
freeze program
from script
ftpmirror program
ftpstats script
h2py program
ibrowse program
ifdef program

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=232

lfcr program
linktree program
lll program
logmerge program
lpwatch script
mailerdaemon program
markov script
mboxconvvert script
md5test program
metaclasses program
methfix program
mkreal program
modulator program
morse script
mpzpi script
ndiff program
nm2def program
objgraph program
pathfix program
pdeps program
pdist program
pi script
pindent program
pp script
primes script
programs
 stored in \Tools and \Demos directories 2nd 3rd 4th
ptags program
Pynche program
pysvr program
rerep program
rpc proogram
script script
scripts
 \Tools and \Demos directories 2nd 3rd 4th
sgi program
sockets program
software
 stored in \Tools and \Demos directories 2nd 3rd 4th
stdwin program
suff program
sum5 program
tabnanny program
tabpolice program
texi2html program

threads program
tkinter program
treesync program
unbirthday script
untabify program
update script
versioncheck program
webchecker program
which program
xxci program
zlib program

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 17. Development Tools > Generating
an Executable Python Bytecode

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218066183100094184026121

Generating an Executable Python Bytecode

When loading a module, the Python interpreter first tries to load a byte-compiled version of the module
(a .pyc or .pyo bytecode file) from the system. If it doesn't find one, it automatically byte-compiles
the module, and in case the permissions given to the user who is executing the command allow, a byte-
compiled version of the module is saved in the disk for a later user. Note that it is a good idea to
bytecompile all files before giving Python access to users who cannot save in that source directory.
Otherwise, the interpreter has to byte-compile the module every time the module is loaded, which can
slow down program startup considerably.

Even though a Python bytecode file can automatically be created when importing a module, you can
manually create them whenever you need, as well. In order to explicitly byte-compile a source file
(.py) to a .pyc (or .pyo) bytecode file, you just need to execute the following code:

import py_compile
pycompile.compile("anyfilename.py")

As you can see, the py_compile module provides a function called compile() that does all the
jobs. The general syntax for this function is

compile(file [, cfile] [, dfile])

where,

file source filename
cfile target filename; defaults to source with c or o appended (c normally and o in optimizing mode, giving

.pyc or .pyo)
dfile filename to store error messages (defaults to source)

The compileall module can be used either as a script or as a module. It uses the py_compile

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=233
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A22%3A03+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=233&now=6%2F1%2F2002+6%3A22%3A03+PM

module to byte-compile all installed files (or all files in selected directories).

The following example compiles all files from the current directory:

import compileall.py
compileall.compile_dir(".", force=1)

You can also use this module as a script, passing arguments to it. The syntax for usage as a script is as
follows:

python compileall [-l] [-f] [-d destdir] [directory ...]

where,

-l avoids recursing into directories
-f forces rebuild even if timestamps are up-to-date
-d destdir directory to store the error messages

The script reads the directories that are informed as arguments and compiles all the files that it finds
there. If no directory arguments are given, the routine uses the sys.path variable.

Note that the current version doesn't recur down into subdirectories of a package. Another
implementation detail is that it only recurs into the maximum number of 10 levels. (This number is
hard coded in the module's code.) Also note that to generate both .pyc and .pyo files, you will need
to run Python twice—once without the -O flag and once with it.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=233

Index terms contained in this section

byetcode
 executable
 generating
compile() function 2nd
compileall module
executable bytecode
 generating
functions
 compile() 2nd
generating
 executable bytecode
modules
 compileall
 py_compile 2nd
 scripts as
py_compile module 2nd
scripts
 modules as
syntax
 compile() function 2nd
 modules as scripts
sys.path variable
variables
 sys.path

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 17. Development Tools > Interpreter See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218066183101016112088125

Interpreter

After installing Python, some special environment variables can be configured in order to guarantee the
maximum usage of the Python environment. The following list shows some important environment
variables recognized by the Python interpreter.

PYTHONPATH— This variable contains a list of directories used by the interpreter, as
search path, when importing modules. The best installation strategy is to put extra Python
modules in the /lib/python$(ver)/site-packages subdirectory under the root
Python installation, so you can tell between standard Python packages and add-ons. Then
you just need to set PYTHONPATH to your Python search path.

PYTHONSTARTUP— This variable contains the name of the directory that must have all
its files automatically loaded at the time of starting the Python interpreter.

PATH(or path)— This is a system environment variable that contains the directory
where the Python interpreter is located.

TCL_LIBRARY, TK_LIBRARY— These variables set the names of the directories
where we can find the libraries for both the Tcl and Tk systems. You don't need to set
these variables unless you move your Tcl or Tk files after building and installing them
(the same as for Python).

Each system has a different way to set up these variables. For example, UNIX users running all bourne
shell compatible shells, could type

PYTHONPATH=".:/usr/local/python/lib"
export PYTHONPATH

On the other hand, Windows and DOS users are familiar with the following syntax:

set PYTHONPATH=.;c:\ python\ lib

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=234
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A22%3A16+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=234&now=6%2F1%2F2002+6%3A22%3A16+PM

The Macintosh people must use the EditPythonPrefs program that comes along with their version
of the Python distribution. Note that this application is also used to set up the values for the command
line options that are passed to the interpreter.

When your system is able to locate the Python installation, you can call the interpreter by typing the
command

python

invoking the interpreter without arguments, connecting the standard input to a tty device, executing
commands interactively.

python filename

If you inform a filename, the interpreter tries to read and execute the contents of the file.

The next line shows the general syntax to start up the Python interpreter.

python [options] [-c cmd | filename | -] [file_arguments]

The command line options in Table 17.5 are available on Windows and UNIX systems.

Table 17.5. Python Interpreter Command Line Options

Option Description
-d Generates parser debugging information.
-i Enters interactive mode after program execution.
-O Sets optimized mode that optimizes bytecompiled files.
-OO Acts like -O, but also strips docstrings.
-S Prevents inclusion of the site initialization module.
-t Reports warnings about inconsistent tab usage.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/234#1.html

-u Sets unbuffered binary stdout and stdin.
-v Sets the verbose mode.
-x Skips the first line of the source program.

-X

Disables class-based exceptions. Note that release 2.0 doesn't contain this option anymore—it has
been removed. Standard exceptions cannot be strings anymore. They always have to be classes.
Also note that since release 2.0 the exceptions module was converted from Python to a built-in C
module.

-c cmd Executes the provided Python command cmd. It's important to use double quotes here because the
Python command can contain spaces.

- using - as a filename makes the interpreter read from the standard input.

Note

Note that Python 2.0 brings the new -U command line option to you. This option tells the Python
compiler to interpret all 8-bit string literals as Unicode string literals. You should hang on to this one
as the support for 8-bit strings might be abandoned in future releases.

Whenever you inform the script's filename and additional arguments to the interpreter, that information
gets stored in the sys.argv variable, which is a list of strings. To be part of this list, the arguments
must appear after the filename or after the -.

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode, it
prompts for the next command with the primary prompt, which is by default three greater than signs
(>>>); for continuation lines, it prompts with the secondary prompt, which is by default three dots
(...). Note that these prompts can be modified by changing the values of sys.ps1 and sys.ps2,
respectively. Users might want to modify the default values of these variables by putting these
definitions in a file that can be found in a directory in the $PYTHONSTARTUP directory.

When you start the interpreter, a welcome message is printed stating its version number and a copyright
notice before printing the first prompt as follows:

Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

If you are using Python on a UNIX system, you can extend its line-editing features by using the GNU
readline library. To check whether you have this library installed on your system, just press

CONTROL+P on the primary prompt. If the letter P is echoed back to you, it means that you don't have
access to the library. Otherwise, you can check the documentation and use all the editing and history
features that are provided by the library.

To exit the interpreter, you can type an EOF character (Control+D on UNIX, Control+Z on DOS or
Windows) at the primary prompt, import the sys module and call the sys.exit() function, or just
raise the SystemExit exception.

In order to launch the Python applications, you have a different kind of approach, depending on your
system. The UNIX people need to adjust the shebang in the first line of the Python program to point to
the Python interpreter. On Windows, you can either click on the program icon or use batch files to
transport arguments to the script (or to the interpreter). Note that you can also open your files without
opening the interpreter; you just need to rename them to .pyw. This extension is associated with the
pythonw.exe application, which is responsible for executing the script without opening a command
window for the interpreter. If you are using a Macintosh system, you need to use some special programs
that come as part of the Python distribution for Macintoshes. The first one is called BuildApplet.
This program takes your program and generates a file that automatically starts up the interpreter and
executes the code, when opened. The other program is called BuildApplication. This one takes
your program and generates a standalone application that doesn't need a Python installation running
behind the scenes. This application is useful for cases in which you want to distribute your Python
application to other Macs that don't have Python installed.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

$PYTHONSTARTUP directory
-U command line option
[nd] option
[nd]c cmd option
[nd]d option
[nd]i option
[nd]O option
[nd]OO option
[nd]S option
[nd]t option
[nd]u option
[nd]v option
[nd]x option
[nd]X option

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=234

applications
 BuildApplet
 BuildApplication
 EditPythonPrefs
 launching 2nd
BuildApplet
BuildApplication
calling
 interpreters
changing
 prompts
closing
 interpreters
command line options
 -U
command-line options
 interpreters, Windows and UNIX 2nd
directories
 $PYTHONSTARTUP
editing
 prompts
EditPythonPrefs
environment variables
 recognized by interpreters 2nd
exiting
 interpreters
interactive mode
interpreters
 calling
 closing
 environment variables recognized by 2nd
 starting 2nd
launching
 applications 2nd
Macintosh
 launching Python applications
 setting up environment variables
modes
 interactive
modifying
 prompts
opening
 applications 2nd
options
 command-line
 interpreters, Windows and UNIX 2nd
PATH variable
programs

 BuildApplet
 BuildApplication
 EditPythonPrefs
 launching 2nd
prompts
 changing
PYTHONPATH variable
PYTHONSTARTUP variable
quitting
 interpreters
software
 BuildApplet
 BuildApplication
 EditPythonPrefs
 launching 2nd
starting
 applications 2nd
 interpreters 2nd
sys.argv variable
TCL_LIBRARY variable
TK_LIBRARY variable
UNIX
 command-line options, interpreters 2nd
 launching Python applications
variables
 environment
 recognized by interpreters 2nd
 PATH
 PYTHONPATH
 PYTHONSTARTUP
 sys.argv
 TCL_LIBRARY
 TK_LIBRARY
Windows
 command-line options, interpreters 2nd
 launching Python applications

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 17. Development Tools > Debugging the
Application

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218066183102005081107212

Debugging the Application

Debugging a Python program is something that doesn't require too much work. The Standard Python Library comes
with a debugger module called bdb that can be used by you to subclass your own debuggers. If you don't want to
spend time writing your own debug, you can use the Python debugger (the pdb module), which is also part of the
Python distribution. For those who need high-specialized debugging information, Python provides a disassembler
module. And for those who only want to debug the value of variables, nothing works better than spreading a couple of
print statements throughout your program.

If you decide to use the Python debugger, you will not regret it. This debugger allows you to set breakpoints, trace the
values of local and global variables, step through the code, and many other attractive features.

Because it is written in Python, the debugger exemplifies a powerful feature of the Python language: the ability to
create introspective applications, which means that we are able to write programs in Python that can handle and
manipulate the execution of other programs.

The Base Debugger Module (bdb)

The bdb module exposes a framework for creating debuggers. This module provides a base class called bdb that
allows you to create your own debuggers by subclassing the base class.

The following methods are available in this class. Note that derived classes should override the following four
methods to gain control of the application.

user_call(frame, argument_list)— This method is called when there is the remote
possibility that we ever need to stop in this function pass.

user_line(frame)— This method is called when we stop or break at this line pass.

user_return(frame, return_value)— This method is called when a return trap is set here.

user_exception(frame, (exc_type, exc_value, exc_traceback))— This method
is called if an exception occurs, but only if we are to stop at or just below this level pass.

The following methods can be called by the derived classes and by the clients in order to affect the stepping state:

set_step()— Stops after one line of code

set_next(frame)— Stops on the next line in or below the given frame

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=235
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A22%3A26+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=235&now=6%2F1%2F2002+6%3A22%3A26+PM

set_return(frame)— Stops when returning from the given frame

set_trace()— Starts debugging from here

set_continue()— Doesn't stop except at breakpoints or when finished

set_quit()— Quits the debugging process

Derived classes and clients can call the following methods in order to manipulate breakpoints. These methods return
an error message if something went wrong, and None if everything goes well.

set_break(filename, lineno, temporary=0, cond = None)— This method prints
out the breakpoint line and filename:lineno.

clear_break(filename, lineno)— This method removes the breakpoint entry.

clear_bpbynumber(arg)— This method removes the breakpoint identified by the given number.

clear_all_file_breaks(filename)— This method removes all the breakpoints found in the
given file.

clear_all_breaks()— This method removes all the active breakpoints from the current program.

get_break(filename, lineno)— This method returns true if the given file has a breakpoint in
the given line number.

get_breaks(filename, lineno)— This method returns true if the given file has a breakpoint
in the given line number.

get_file_breaks(filename)— This method returns a list of all breakpoints found in the given
file.

get_all_breaks()— This method returns a list of all active breakpoints from the current program.

The following methods can be called by clients to use a debugger to debug a statement given as a string:

run(command, globals=None, locals=None)— Executes the string command, under the
debugger control.

runeval(expr, globals=None, locals=None)— Evaluates the expression expr under
the debugger control.

runcall(func, *args)— This method calls the single function func under the debugger
control.

set_trace()— This method starts the debugger at the point at which this function is called. It is

used to hard-code a debugger breakpoint into a specific code location.

The following example demonstrates how we can subclass the bdb class in order to design our own debug. This
example is based on the testing routine included in the bdb module file.

import bdb
class Tdb(bdb.Bdb):
 def user_call(self, frame, args):
 name = frame.f_code.co_name
 if not name:
 name = '???'
 print '+++ call', name, args
 def user_line(self, frame):
 import linecache, string
 name = frame.f_code.co_name
 if not name:
 name = '???'
 fn = self.canonic(frame.f_code.co_filename)
 line = linecache.getline(fn, frame.f_lineno)
 print '+++', fn, frame.f_lineno, name, ':', string.strip(line)
 def user_return(self, frame, retval):
 print '+++ return', retval
 def user_exception(self, frame, exc_stuff):
 print '+++ exception', exc_stuff
 self.set_continue()

def factorials(n):
 for f in xrange(n, 0, -1):
 factorial = calc(f)
 print 'The factorial of %d is %d'% (f, factorial)

def calc(f):
 factorial = 1
 for n in xrange(f, 1, -1):
 factorial = factorial * n
 return factorial

def main():
 debug = Tdb()
 debug.run('factorials(3)')

main()

The Python Debugger (pdb)

The Python debugger is directly based on the bdb class, as you can see when examining its source code. To start the
Python debugger, you need to import the pdb module, and type one of the following commands: run(),

runeval(), runcall(), or set_trace().

import pdb
def myprog(n):
 for l in xrange(n):
 print l
debub=pdb.Pdb()
debub.runcall(myprog,10)

The debugger will then pop up a prompt. The debugger's prompt is '(Pdb) '.

To use the debugger in its simplest form, type

import pdb
pdb.run('<a statement>')

This will stop in the first function call in <a statement>.

Alternatively, if a statement terminated with an unhandled exception, you can use pdb's post-mortem facility to inspect
the contents of the traceback:

>>> <a statement>
<exception traceback>
>>> import pdb
>>> pdb.pm()

The commands recognized by the debugger are listed in the next section. Note that some commands have a short and a
long form. The commands not recognized by the debugger are assumed to be Python commands, and are executed in
the context of the program being debugged. Python statements can also be prefixed with an exclamation point (!).
This is a powerful way to inspect the program being debugged; it is even possible to change variables. When an
exception occurs in such a statement, the exception name is printed, but the debugger's state is not changed.

The debugger supports aliases, which can save typing. And aliases can have parameters (see the alias help entry) that
allow one a certain level of adaptability to the context under examination.

Multiple commands can be entered on a single line, separated by the pair ;;. No intelligence is applied to separating
the commands; the input is split at the first ;;, even if it is in the middle of a quoted string.

If a file .pdbrc exists in the user's home directory or in the current directory, it is read in and executed as if it had
been typed at the debugger prompt. This is particularly useful for aliases. If both files exist, the one in the home
directory is read first and aliases defined there can be overriden by the local file. Aside from aliases, the debugger is

not directly programmable; but it is implemented as a class from which you can derive your own debugger class,
which you can make as fancy as you like.

You can also invoke the Python debugger as a main program, on a script. Just use the following structure to start up
the debugger.

import pdb
def main():
 # Add your code here
if __name__=='__main__':
 pdb.run('main()')

Debugger Commands

When you are at the debugger prompt, you can type any one of the following commands. Note that some of them have
an abbreviated version. Next to each command, enclosed in brackets, you will find the command's optional arguments.
Except for the list command, all commands can be repeated by entering a blank line at the prompt.

h(elp)— Prints the list of available commands.

w(here)— Prints a stack trace, with the most recent frame at the bottom. An arrow indicates the
current frame, which determines the context of most commands.

d(own)— Moves the current frame one level down in the stack trace (to an older frame).

u(p)— Moves the current frame one level up in the stack trace (to a newer frame).

b(reak) [([filename:]lineno | function) [, condition]]— With a
filename:line number argument, set a break there. If filename is omitted, use the current file. With
a function name, set a break at the first executable line of that function. Without an argument, list all
breaks. Each breakpoint is assigned a number to which all the other breakpoint commands refer. The
condition argument, if present, is a string that must evaluate to true in order for the breakpoint to be
honored.

tbreak [([filename:]lineno | function) [, condition]]— Temporary
breakpoint, which is removed automatically when it is first hit. The arguments are the same as break.

cl(ear) [bpnumber [bpnumber ...]]— With a space separated list of breakpoint
numbers, clear those breakpoints. Without an argument, clear all breaks (but first ask confirmation).

disable bpnumber [bpnumber ...]— Disables the breakpoints given as a space separated
list of breakpoint numbers. Disabling a breakpoint means that it cannot cause the program to stop
execution. But unlike clearing a breakpoint, it remains in the list of breakpoints and can be (re-)enabled.

enable bpnumber [bpnumber ...]— Enables the breakpoints specified.

ignore bpnumber count— Sets the ignore count for the given breakpoint number. If the count is
omitted, the ignore count is set to 0. A breakpoint becomes active when the ignore count is zero. When
non-zero, the count is decremented each time the breakpoint is reached and the breakpoint is not
disabled and any associated condition evaluates to true.

condition bpnumber condition— Condition is an expression that must evaluate to true
before the breakpoint is honored. If condition is absent, any existing condition is removed; that is, the
breakpoint is made unconditional.

s(tep)— Executes the current line and stops at the first possible occasion (either in a called function
or in the current function).

n(ext)— Continues execution until the next line in the current function is reached or it returns.

r(eturn)— Continues execution until the current function returns.

c(ont(inue))— Continues execution, only stops when a breakpoint is encountered.

l(ist) [first [,last]]— Lists source code for the current file. Without arguments, lists 11
lines around the current line or continues the previous listing. With one argument, lists 11 lines starting
at that line. With two arguments, lists the given range; if the second argument is less than the first, it is a
count.

a(rgs)— Prints the argument list of the current function.

p expression— Prints the value of the expression.

(!) statement— Executes the (one-line) statement in the context of the current stack frame. The
exclamation point can be omitted unless the first word of the statement resembles a debugger command.
To assign to a global variable, you must always prefix the command with a global command, for
example

 (Pdb) global list_options; list_options = ['-l']
 (Pdb)

whatis arg— Prints the type of the argument.

alias [name [command]]— Creates an alias called name that executes command. The
command must not be enclosed in quotes. Replaceable parameters can be indicated by %1, %2, and so
on, whereas %* is replaced by all the parameters. If no command is given, the current alias for name is
shown. If no name is given, all aliases are listed. Aliases might be nested and can contain anything that
can be legally typed at the pdb prompt. Note that you can override internal pdb commands with aliases.
Those internal commands are then hidden until the alias is removed. Aliasing is recursively applied to

the first word of the command line; all other words in the line are left alone. As an example, here are
two useful aliases (especially when placed in the .pdbrc file):

#Print instance variables (usage "pi classInst")
alias pi for k in %1.__dict__.keys(): print "%1.",k,"=",%1.__dict__[k]
#Print instance variables in self

alias ps pi self

unalias name— Deletes the specified alias.

q(uit)— Quit from the debugger. The program being executed is aborted.

Note

Some Python IDE's, such as Pythonwin, implement derived debuggers, and Emacs'Grand Unified Debugger can
use pdb.

Disassembling Python Bytecodes

Python has a module called dis, which is used to disassemble Python bytecodes into mnemonics. This module
exposes a function, which is also called dis() that is able to disassemble classes, methods, functions, or code. If you
don't provide any argument to the function, it disassembles the last traceback.

>>> import dis
>>> def routine():
... i = 5
... for loop in xrange(i):
... print 'Ni!'
>>>
>>> dis.dis(routine)
 0 SET_LINENO 1
 3 SET_LINENO 2
 6 LOAD_CONST 1 (5)
 9 STORE_FAST 0 (i)

 12 SET_LINENO 3
 15 SETUP_LOOP 33 (to 51)
 18 LOAD_GLOBAL 1 (xrange)
 21 LOAD_FAST 0 (i)
 24 CALL_FUNCTION 1
 27 LOAD_CONST 2 (0)

 >> 30 SET_LINENO 3
 33 FOR_LOOP 14 (to 50)
 36 STORE_FAST 1 (loop)

 39 SET_LINENO 4
 42 LOAD_CONST 3 ('Ni!')
 45 PRINT_ITEM
 46 PRINT_NEWLINE
 47 JUMP_ABSOLUTE 30
 >> 50 POP_BLOCK
 >> 51 LOAD_CONST 0 (None)
 54 RETURN_VALUE

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

! (exclamation points)
.pdbrc file
;;
a(rgs) command
alias [name [command]] command
aliasas
 .pdbrc file
aliases
applications
 debugging 2nd 3rd 4th
arguments
 whatis
b(reak) [([filename
]lineno | function) [, condition]] command
Base Debugger (bdb) module 2nd
bdb (Base Debugger) module 2nd
c(ont(inue)) command
cl(ear) [bpnumber [bpnumber ...]] command
clear_all_breaks() method
clear_all_file_breaks(filename) method
clear_bpbynumber(arg) method
clear_break(filename, lineno) method
commands
 a(rgs)
 alias [name [command]]
 b(reak) [([filename
]lineno | function) [, condition]]
 c(ont(inue))
 cl(ear) [bpnumber [bpnumber ...]]
 condition bpnumber condition

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=235

 d(own)
 disable bpnumber [bpnumber ...]
 enable bpnumber [bpnumber ...]
 h(elp)
 ignore bpnumber count
 l(ist) [first [,last]]
 n(ext)
 Python Debugger (bdb) module 2nd
 Python Debugger (pdb) module
 q(uit)
 r(eturn)
 s(tep)
 tbreak [([filename
]lineno | function) [, condition]]
 u(p)
 unalias name
 w(here)
condition bpnumber condition command
d(own) command
debugging
 applications 2nd 3rd 4th
dis module
dis() function
disable bpnumber [bpnumber ...] command
enable bpnumber [bpnumber ...] command
exclamation points (!)
expressions
 p
files
 .pdbrc
functions
 dis()
get_all_breaks() method
get_break(filename, lineno) method
get_breaks(filename, lineno) method
get_file_breaks(filename) method
h(elp) command
ignore bpnumber count command
l(ist) [first [,last]] command
methods
 Base Debugger (bdb) module 2nd 3rd 4th
 clear_all_breaks()
 clear_all_file_breaks(filename)
 clear_bpbynumber(arg)
 clear_break(filename, lineno)
 get_all_breaks()
 get_break(filename, lineno)
 get_breaks(filename, lineno)
 get_file_breaks(filename)
 run(command, globals=None, locals=None)
 runcall (func, *args)
 runeval(expr, globals=None, locals=None)
 set_break(filename, lineno, temporary=0, cond = None)

 set_continue()
 set_next(frame)
 set_quit()
 set_return(frame)
 set_step()
 set_trace() 2nd
 user_call(frame, argument_list)
 user_exception(frame, (exc_type, exc_value, exc_traceback))
 user_line(frame)
 user_return(frame, return_value)
modules
 bdb (Base Debugger) 2nd
 dis
 pdb (Python Debugger) 2nd
n(ext) command
p expression
pdb (Python Debugger) module 2nd
programs
 debugging 2nd 3rd 4th
Python Debugger (pdb) module 2nd
q(uit) command
r(eturn) command
run(command, globals=None, locals=None) method
runcall (func, *args) method
runeval(expr, globals=None, locals=None) method
s(tep) command
set_break(filename, lineno, temporary=0, cond = None) method
set_continue() method
set_next(frame) method
set_quit() method
set_return(frame) method
set_step() method
set_trace() method 2nd
software
 debugging 2nd 3rd 4th
statements
 Python Debugger (pdb) module
tbreak [([filename
]lineno | function) [, condition]] command
u(p) command
unalias name command
user_call(frame, argument_list) method
user_exception(frame, (exc_type, exc_value, exc_traceback)) method
user_line(frame) method
user_return(frame, return_value) method
w(here) command
whatis arg

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 17. Development Tools > Profiling
Python

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218066183096102193043092

Profiling Python

Profiling an application means to be able to sketch an image about what is going on behind the scenes
when you execute a program.

The sys module is able to perform a very simple profiling task by telling you a little bit about what is
going on after each function, method, or specific line gets executed.

sys.setprofiler(profiler_function)— This function implements a source
code profiler, which identifies a function that must be executed whenever a function or
method is called.

sys.settrace(tracer_function)— The functionality of this function is
basically the same one of the setprofiler() function. However, this one is called
whenever a new line is executed.

>>> import sys
>>> def profiler(frame, event, arguments):
... print frame.f_code.co_name, frame.f_lineno, event, arguments
...
>>> sys.setprofile(profiler)
? 1 return None
>>> lst = ["Spam","Parrot","Knights"]
? 1 call None
? 1 return None
>>> def showlist(_lst):
... for l in _lst:
... print l
... return _lst
...
? 1 call None
? 1 return None
>>> showlist(lst)
? 1 call None
showlist 1 call None
Spam

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=236
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A22%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=236&now=6%2F1%2F2002+6%3A22%3A43+PM

Parrot
Knights
showlist 4 return ['Spam', 'Parrot', 'Knights']
['Spam', 'Parrot', 'Knights']
? 1 return None
>>> sys.setprofile(None)

If you really want to perform a more complete and accurate study, you need to use the profiler
module.

Python Profiler

The information provided here offers a brief overview about how to use the profile module to perform
the analysis of the run time performance of a Python program. The original profile module was
written by Sjoerd Mullender, and later Guido van Rossum applied some changes to it. All the original
documentation is copyrighted by James Roskind (see copyright note in Appendix C, "Python Copyright
Notices)" , and reproduced here with slight modifications.

Note

Check out the module's original documentation for more information about its "deterministic
profiling" implementation.

You have two possible ways to use the profile module. The first option is to import it, and make it call
a function on your program that you want to analyze, such as

import profile
def main():
 for n in xrange(100):
 print n,
profile.run("main()")

The run() function generates a profiling report that can be manipulated using the pstats module (the
report generating functions are in the pstats module).

The second option is to invoke the profiler as a main program and pass the script that needs to be profiled

as an argument.

python profile.py scriptfile [arg...]

Next, you have the static member functions that are available for the profiler class. Note that an instance
of Profile() is not needed to call them.

To profile an application with a main entry point of foo(), you would add the following to your
module:

import profile
profile.run("foo()")

The previous action would cause foo() to be run, and a series of informative lines (the profile) to be
printed. This approach is most useful when working with the interpreter. If you would like to save the
results of a profile into a file for later examination, you can supply a filename as the second argument to
the run() function:

import profile
profile.run("foo()", 'fooprof')

The primary entry point for the profiler is the global function profile.run(). It is typically used to
create any profile information. The reports are formatted and printed using methods for the class
pstats.Stats. The following is a description of all these standard entry points and functions. For a
more in-depth view of some of the code, consider reading the later section on "Extensions: Deriving
Better Profilers," which includes a discussion of how to derive better profilers from the classes presented,
or reading the source code for these modules.

FUNCTION profile.run(string, filename_opt)

This function takes a single argument that can be passed to the exec statement, and an optional filename.
In all cases, this routine attempts to exec its first argument, and gathers profiling statistics from the
execution. If no filename is present, this function automatically prints a simple profiling report, sorted by
the standard name string (file/line/function-name) that is presented in each line. The following is a typical
output from such a call:

main()
2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)
 43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)
...

The first line indicates that this profile was generated by the call: profile.run('main()'), and
hence the executed string is 'main()'. The second line indicates that 2706 calls were monitored. Of
those calls, 2004 were primitive. We define primitive to mean that the call was not induced via recursion.
The next line, Ordered by: standard name, indicates that the text string in the far right column
was used to sort the output. The column headings include

ncalls stands for the number of calls.

tottime stands for the total time spent in the given function (and excluding time made in
calls to sub-functions).

percall is the quotient of tottime divided by ncalls.

cumtime is the total time spent in this and all subfunctions (that is, from invocation till
exit). This figure is accurate even for recursive functions.

percall is the quotient of cumtime divided by primitive calls.

filename:lineno(function) provides the respective data of each function.

When two numbers are in the first column (for instance, 43/3), the latter is the number of primitive calls,
and the former is the actual number of calls. Note that when the function does not recurse, these two
values are the same, and only the single figure is printed.

Analyzing Profiles with the pstats Module

The pstats module analyzes the data collected by the Python profile module. The following
example demonstrates how we can use this module to manipulate the information generated by the
profile module:

>>> import profile, pstats
>>> def main():
... for n in xrange(3):
... print n
...
>>> p = profile.Profile()
>>> p.run("main()")
0
1
2
<profile.Profile instance at 7c2c20>
>>> s = pstats.Stats(p)
>>> s.sort_stats("time", "name").print_stats()
3 function calls in 58.727 CPU seconds
 Ordered by: internal time, function name
 ncalls tottime percall cumtime percall filename:lineno(function)
 1 58.727 58.727 58.727 58.727 profile:0(main())
 1 0.000 0.000 0.000 0.000 <stdin>:1(main)
 1 0.000 0.000 0.000 0.000 <string>:1(?)
 0 0.000 0.000 profile:0(profiler)
<pstats.Stats instance at 7c2280>
>>>

This module exposes the Stats(filename, ...) class. This class is used for creating reports from
data generated by the Profile class. It imports data either by direct access to members of Profile class, or
by reading in a dictionary that was emitted (viamarshal) from the Profile class. When you want to review
the profile, you should use the methods in the pstats module. Typically you would load the statistics
data as follows:

import pstats
p = pstats.Stats('fooprof')

The class Stats (the previous code just created an instance of this class) has a variety of methods for
manipulating and printing the data that was just read into "p". When you ran profile.run(), the
result of three method calls was printed:

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all
the entries according to the standard module/line/name string that is printed (this is to comply with the
semantics of the old profiler). The third method printed out all the statistics. You might try the following
sort calls:

p.sort_stats('name')
p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics.
The following are some interesting calls to experiment with:

p.sort_stats('cumulative').print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines.
If you want to understand what algorithms are taking time, the previous line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do

p.sort_stats('time').print_stats(10)

This sorts according to time spent within each function, and then prints the statistics for the top ten
functions.

You might also try

p.sort_stats('file').print_stats('__init__')

This will sort all the statistics by filename, and then print out statistics for only the class init methods
(because they are spelled with __init__ in them). The sort_stats() method takes an arbitrary
number of quoted strings to select the sort order. For example, sort_stats('time', 'name')
sorts on the major key of "internal function time", and on the minor key of 'the name of

the function'. As one final example, you could try:

p.sort_stats('time', 'cum').print_stats(.5, 'init')

This line sorts stats with a primary key of time and a secondary key of cumulative time, and then prints
out some of the statistics. To be specific, the list is first culled down to 50% (.5) of its original size, and
then only lines containing "init" are maintained, and that sub-sub-list is printed.

Note

All the print methods take an argument that indicates how many lines to print. If the arg is a floating
point number between 0 and 1.0, it is taken as a decimal percentage of the available lines to be printed
(for example, .1 means print 10% of all available lines). If it is an integer, it is taken to mean the
number of lines of data that you want to have printed.

If you wondered what functions called the previous functions, you could now (p is still sorted according
to the last criteria) do

p.print_callers(.5, 'init')

You would get a list of callers for each of the listed functions.

All methods from the Stats class return self, so you can string together commands such as

Stats('foo', 'goo').strip_dirs().sort_stats('calls').}
print_stats(5).print_callers(5)

This class constructor creates an instance of a statistics object from a filename (or set of filenames). Stats
objects are manipulated by methods in order to print useful reports.

The file selected by the previous constructor must have been created by the corresponding version of
profile. To be specific, there is no file compatibility guaranteed with future versions of this profiler, and
there is no compatibility with files produced by other profilers (for example, the standard system profiler).

If several files are provided, all the statistics for identical functions will be coalesced so that an overall
view of several processes can be considered in a single report. If additional files need to be combined with
data in an existing Stats object, the add() method can be used. This can be used to average out the
statistics for a short running program to increase the accuracy.

The following methods are exposed by the Stats class.

strip_dirs()— This method for the Stats class removes all leading path
information from filenames. It is very useful in reducing the size of the printout to fit within
(close to) 80 columns. This method modifies the object, and the striped information is lost.
After performing a strip operation, the object is considered to have its entries in a random
order, as it was just after object initialization and loading. If strip_dirs() causes two
function names to be indistinguishable (that is, they are on the same line of the same
filename, and have the same function name), the statistics for these two entries are
accumulated into a single entry.

add(filename, ...)— This method of the Stats class accumulates additional
profiling information into the current profiling object. Its arguments should refer to
filenames created by the corresponding version of profile.run(). Statistics for
identically named (file, line, name) functions are automatically accumulated into single
function statistics.

sort_stats(key, ...)— This method modifies the Stats object by sorting it
according to the supplied criteria. The argument is typically a string identifying the basis of
a sort (for example: "time" or "name".)

When more than one key is provided, additional keys are used as secondary criteria when equality exists
in all keys previously selected. For example, sort_stats('name', 'file') will sort all the
entries according to their function name and resolve all ties (identical function names) by sorting by
filename.

Abbreviations can be used for any key names as long as the abbreviation is unambiguous. The keys
currently defined are shown in Table 17.6.

Table 17.6. Abbreviations to Use as Sorting Keys

Valid Argument Meaning
"calls" call count
"cumulative" cumulative time
"file" filename

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/236#3.html

"module" filename
"pcalls" primitive call count
"line" line number
"name" function name
"nfl" name/file/line
"stdname" standard name
"time" internal time

Note that all sorts on statistics are in descending order (placing most time-consuming items first), whereas
name, file, and line number searches are in ascending order (that is, alphabetical). The subtle distinction
between "nfl" and "stdname" is that the standard name is a sort of the name as printed, which means
that the embedded line numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if
the filenames were the same) appear in the string order "20", "3", and "40". In contrast, "nfl" does
a numeric compare of the line numbers. In fact, sort_stats("nfl") is the same as
sort_stats("name", "file", "line").

reverse_order()— This method for the Stats class reverses the ordering of the
basic list within the object. This method is provided primarily for compatibility with the
standard profiler. Its utility is questionable now that ascending versus descending order is
properly selected based on the sort key of choice.

print_stats(restriction, ...)— This method for the Stats class prints out
a report as described in the profile.run() definition. The order of the printing is based
on the last sort_stats() operation done on the object (subject to caveats in add() and
strip_dirs()).

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the
list is taken to be the complete set of profiled functions. Each restriction is either an integer (to select a
count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a
regular expression (to pattern match the standard name that is printed). If several restrictions are provided,
they are applied sequentially. For example

print_stats(.1, "foo:")

would first limit the printing to the first 10% of list, and then only print functions that were part of
filename ".*foo:". In contrast, the following command:

print_stats(".*foo:", .1)

would limit the list to all functions having filenames ".*foo:", and then proceed to only print the first
10% of them.

print_callers(restrictions, ...)— This method for the Stats class prints
a list of all functions that called each function in the profiled database. The ordering is
identical to that provided by print_stats(), and the definition of the restricting
argument is also identical. For convenience, a number is shown in parentheses after each
caller to show how many times this specific call was made. A second non-parenthesized
number is the cumulative time spent in the function at the right.

print_callees(restrictions, ...)— This method for the Stats class prints
a list of all functions that were called by the indicated function. Aside from this reversal of
direction of calls (called versus was called by), the arguments and ordering are identical to
the print_callers() method.

ignore()— This method of the Stats class is used to dispose of the value returned by
earlier methods. All standard methods in this class return the instance that is being
processed so that the commands can be strung together. For example

pstats.Stats('foofile').strip_dirs().sort_stats('cum').
print_stats().ignore()

would perform all the indicated functions, but it would not return the final reference to the
Stats instance.

Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter to
dispatch "call", "return", and "exception" events. Compiled C code does not get interpreted,
and hence is invisible to the profiler. All time spent in C code (including built-in functions) will be
charged to the Python function that has invoked the C code. If the C code calls out to some native Python
code, those calls will be profiled properly.

The second limitation has to do with accuracy of timing information. There is a fundamental problem
with deterministic profilers involving accuracy. The most obvious restriction is that the underlying clock
is only ticking at a rate (typically) of about .001 seconds. Hence no measurements will be more accurate
than that underlying clock. If enough measurements are taken, the error will tend to average out.
Unfortunately, removing this first error induces a second source of error.

The second problem is that it "takes a while" from when an event is dispatched until the profiler's call to
get the time actually gets the state of the clock. Similarly, there is a certain amount of lag when exiting the
profiler event handler from the time that the clock's value was obtained (and then squirreled away), until
the user's code is once again executing. As a result, functions that are called many times, or call many
functions, will typically accumulate this error.

The error that accumulates in this fashion is typically less than the accuracy of the clock (that is, less than
one clock tick), but it can accumulate and become very significant. This profiler provides a means of
calibrating itself for a given platform so that this error can be probabilistically (that is, on the average)
removed. After the profiler is calibrated, it will be more accurate (in at least a square sense), but it will
sometimes produce negative numbers (when call counts are exceptionally low, and the gods of probability
work against you). Do not be alarmed by negative numbers in the profile.

They should only appear if you have calibrated your profiler, and the results are actually better than
without calibration.

Calibration

The profiler class has a hard-coded constant added to each event handling time to compensate for the
overhead of calling the time function, and storing away the results. The following procedure can be used
to obtain this constant for a given platform.

import profile
pr = profile.Profile()
pr.calibrate(100)
pr.calibrate(100)
pr.calibrate(100)

The argument to calibrate() is the number of times to try to do the sample calls to get the CPU
times. If your computer is very fast, you might have to do:

pr.calibrate(1000)

or even

pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a consistent answer, you are
ready to use that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the magical
number is about .00053. If you have a choice, you are better off with a smaller constant, and your results
will less often show up as negative in profile statistics.

The following shows how the trace_dispatch() method in the Profile class should be modified
to install the calibration constant on a Sun Sparcstation 1000:

def trace_dispatch(self, frame, event, arg):
 t = self.timer()
 t = t[0] + t[1] - self.t - .00053 # Calibration constant
 if self.dispatch[event](frame,t):
 t = self.timer()
 self.t = t[0] + t[1]
 else:
 r = self.timer()
 self.t = r[0] + r[1] - t # put back unrecorded delta
 return

Note that if there is no calibration constant, the line containing the calibration constant should simply say

t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally
fast), but the previous method is the simplest to use. If the profiler was made self calibrating, it would
have made the initialization of the profiler class slower, and would have required some very fancy coding,
or else the use of a variable where the constant .00053 was placed in the code shown. This is a very
critical performance section, and there is no reason to use a variable lookup at this point when a constant
can be used.

Extensions: Deriving Better Profilers

The Profile class of profile was written so that derived classes could be developed to extend the
profiler. The following two examples of derived classes can be used to do profiling. If the reader is an
avid Python programmer, it should be possible to use these as a model and create similar (and perchance
better) profile classes.

If all you want to do is change how the timer is called, or which timer function is used, the basic class has
an option for that in the constructor for the class. Consider passing the name of a function to call into the
constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will call your time function instead of os.times(). The function should return
either a single number, or a list of numbers (similar to what os.times() returns). If the function
returns a single time number or the list of returned numbers has length 2, you will get an especially fast
version of the dispatch routine.

Be warned that you should calibrate the profiler class for the timer function that you choose. For most
machines, a timer that returns a lone integer value will provide the best results in terms of low overhead
during profiling. (os.times is pretty bad because it returns a tuple of floating point values, so all
arithmetic is floating point in the profiler.) If you want to substitute a better timer in the cleanest fashion,
you should derive a class, and simply put in the replacement dispatch method that better handles your
timer call, along with the appropriate calibration constant.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

abbreviations
 sorting keys
add(filename, ...) method
alibration
 profiler class 2nd
analyzing
 profiles, pstats module 2nd 3rd 4th 5th 6th 7th 8th
applications
 profiling 2nd 3rd 4th 5th 6th 7th
arguments
 Ó
 callsÓ
 cumulativeÓ
 fileÓ
 lineÓ
 moduleÓ
 nameÓ

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=236

 nflÓ
 pcallsÓ
 stdnameÓ
 timeÓ
classes
 profiler
 calibration 2nd
 extensions
 timing
 pstats.Stats
classs
 Stats(filename, ...)
column headings
 profiles 2nd
cumtime column heading
ethods
 add(filename, ...)
 ignore()
 print_callees(restrictions, ...)
 print_callers(restrictions, ...)
 print_stats(restriction, ...)
 reverse_order()
 sort_stats(key, ...)
 Stats class 2nd
 strip_dirs()
 trace_dispatch()
exec statement
extensions
 profiler class
filename
 lineno(function) column heading
foo() function 2nd
functions
 foo() 2nd
 os.times()
 profile module
 profile.run()
 run() 2nd
 setprofiler()
 sys.setprofiler(profiler_function)
 sys.settrace(tracer_function)
headings
 column, profiles 2nd
ignore() method
iming
 profiler class
keys
 sorting

 abbreviations
methods
 Stats class 2nd
modules
 profile 2nd
 pstats 2nd 3rd 4th 5th 6th 7th 8th
Mullender, Sjoerd
ncalls column heading
Ó
 callsÓ
 argument
 cumulativeÓ
 argument
 fileÓ
 argument
 lineÓ
 argument
 moduleÓ
 argument
 nameÓ
 argument
 nflÓ
 argument
 pcallsÓ
 argument
 stdnameÓ
 argument
 timeÓ
 argument
os.times() function
percall column heading 2nd
print_callees(restrictions, ...) method
print_callers(restrictions, ...) method
print_stats(restriction, ...) method
profile module 2nd
profile.run() function
profiler class
 extensions
profiles
 analyzing, pstats module 2nd 3rd 4th 5th 6th 7th 8th
profiling
 applications 2nd 3rd 4th 5th 6th 7th
programs
 profiling 2nd 3rd 4th 5th 6th 7th
pstats module 2nd 3rd 4th 5th 6th 7th 8th
pstats.Stats class
race_dispatch() method
reverse_order() method

rofiler class
 calibration 2nd
 timing
Roskind, James
Rossum, Guido van
run() function 2nd
setprofiler() function
software
 profiling 2nd 3rd 4th 5th 6th 7th
sort_stats(key, ...) method
sorting keys
 abbreviations
statements
 exec
Stats class
 methods 2nd
Stats(filename, ...) class
strip_dirs() method
sys module 2nd
sys.setprofiler(profiler_function) function
sys.settrace(tracer_function) function
tottime column heading

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 17. Development Tools >
Distributing Python Applications

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218067026199146066159195

Distributing Python Applications

You have more than one way to pack your Python files and distribute your application. It depends only
on the kind of goal that you are trying to reach. Probably your greatest concern is about how to hide the
source code of your application. Well… Some suggest the use of encryption algorithms, others the
distribution of Python bytecode files. All these sound like good solutions, but they have their individual
problems. If you are really worried about opening your code to the public, I suggest that you convert
your Python application to C, and distribute a compiled executable. Ask yourself if it is really a benefit
to hide the source to your program. It is just as bad to illegally distribute a program that comes with
source, and could potentially increase the value to the client.

When creating your distribution package, it is important to keep in mind the directory location where
you are saving your files. Python must know where to look. Python requires module files to be
available in one or more directories listed in the sys.path. To see the current Python modules search
path, start Python and type:

import sys
print sys.path

You can also allow your program to find a specific module placed somewhere else on the disk. For
that, you just need to add one more entry in the sys.path list. In the next example, we intend to have
a module called mymodule stored in a directory called /usr/users/andre, which is not part of
the sys.path yet.

#!usr/local/bin/python
import sys
sys.path.insert(0,"/usr/users/andre")
import mymodule
mymodule.main()

If you are using Python on a Windows platform, you can try the following approach to pack all files on

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=237
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A23%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=237&now=6%2F1%2F2002+6%3A23%3A02+PM

a single structure:

1. Create a root directory.

2. Put the following files on this directory: python.exe, pythonw.exe, _tkinter.pyd,
python15.dll, tcl80.dll, tk80.dll, and any other specific libraries that your
application might need.

3. Create three directories under the root: \ LIB, \ TCL, and \ TK, and copy all the necessary files
to these subdirectories.

4. Now, create a batch file where you set the value of the following variables: PYTHONPATH,
TCL_LIBRARY, and TK_LIBRARY and create a call to your application in the file. Note that
if you want to avoid opening the interpreter, you need to open your application using the
pythonw application.

You can zip this entire structure and freely distribute it. The person who receives the package just has
to execute the batch file to execute your application. If you want, you can change your program to use
that previous technique of dynamically informing the path where your modules are located. Therefore,
you don't need to configure the PYTHONPATH environment variable.

The Python distribution contains a tool that saves much time when you are dealing with distribution
issues. This tool is called Freeze.

This tool is able to freeze a Python script into an executable in order to let you ship arbitrary Python
programs to people who don't have Python. Note that in order to freeze programs that use Tkinter,
Tcl/Tk must be installed on the target system.

Freeze works by converting all the Python code of your application to a stream of Python bytecodes
that can be later executed by the Python interpreter. For each module that is opened, Freeze looks for
other necessary modules too. After all modules are converted to bytecode format, Freeze glues them
all, and creates a Makefile file that can be used by calling the make command. Note that the resulting
executable contains all your code plus the Python interpreter and the necessary library modules.
Therefore, you should expect a big file.

Freeze is a great option for the cases in which you don't want your users to see and copy your source
code. Remember that the resulting file is an executable just like the ones created by regular compiled
applications.

In order to use Freeze, you just need to perform a simple call, such as

python freeze.py hello.py

Freeze creates a number of files: frozen.c, config.c, and Makefile, plus one file for each
Python module that gets included named M_<module>.c. To produce the frozen version of your
program, you can simply type "make". This should produce a binary file. If the filename argument to
Freeze was hello.py, the binary will be called hello.

Details for usage under Win32 systems can be found on your own script at your local installation.

If you built Python with some required modules as shared libraries (DLLs), the frozen program will
still require these extra files. If this is a problem (and it probably is if you are considering the freeze
tool), you should recompile Python (using the previous instructions) with the required modules linked
into the Python executable.

Note that you are not tied to the Freeze utility. There are a couple of other options available too.
Check them out.

SqueezeTool

This is a program, written by Fredrik Lundh, that is able to squeeze a Python Application and all its
support modules into a single, compressed package of bytecode files. Whenever it becomes necessary,
a special script is used to open the package and run the bytecode files.

http://starship.python.net/crew/fredrik/ipa/squeeze.htm

Python2C—The Python to C Translator

Python2C is a Python to C translator, written by Bill Tutt and Greg Stein, that attempts to speed up
Python code by removing a significant fraction of the Python interpreter overhead.

http://lima.mudlib.org/~rassilon/p2c/

Small Python

This tool was written by Greg Stein in order to create minimal Python distributions. Note that although
it is built for Windows, the concept and source code can be useful for other Python platforms, as well.

http://www.lyra.org/greg/small/

http://starship.python.net/crew/fredrik/ipa/squeeze.htm
http://lima.mudlib.org/~rassilon/p2c/
http://www.lyra.org/greg/small/

Gordon McMillan's Installer

Gordon McMillan wrote this tool by taking Fredrik's Squeeze idea and Greg Stein's Small distribution,
and combining them. The result is cross-platform, small (the python Standard Library fits in a 500K
archive) and fast (much less I/O for an import) distribution installer for Python.

http://www.mcmillan-inc.com/install1.html

Distutils

Python 2.0 contains a brand-new distribution package as part of its Standard Library. This package is
called distutils, and is totally documented in a new set of manuals that also join the official
Python documentation. This package is able to create source and binary distributions.

The logic used by this package, automatically detects the platform, recognizes the compiler, compiles
the C extension modules, and installs the distribution into the proper directory.

In order to install a script using this package, you need to run a setup.py script with the install
command.

python setup.py install

Note that you need to write the setup.py script in order to execute the package. This file can be very
simple when you are using only .py files, such as in the next example.

from distutils.core import setup
setup (name = "myapp", version = "1.0", py_modules = ["bikes",
 "cars"])

It is important to know that you are not tied to use only .py files; you can also use packages and C
extensions. Check the official documentation for more details.

The sdist command, which can be passed to python setup.py sdist, builds a source
distribution such as myapp-1.0.tar.gz.

You can also add you own commands—that isn't difficult at all. Bundled with the package, there are

http://www.mcmillan-inc.com/install1.html

some contributed commands already written for you, such as bdist_rpm and bdist_wininst,
which create an RPM distribution and a Windows installer, respectively.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 distributing 2nd
creating
 application distribution packages 2nd
distributing
 applications 2nd
distutils package 2nd
files
 packing 2nd
Freeze tool 2nd
Lundh, Fredrik
McMillan, Gordon
modules
 mymodule
mymodule
packages
 application distribution
 creating 2nd
 distutils 2nd
packing
 files 2nd
programs
 distributing 2nd
software
 distributing 2nd
Standard Library
 distutils package 2nd
Stein, Greg 2nd
sys.path
tools
 Freeze 2nd
Tutt, Bill
utilities
 Freeze 2nd

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=237

Web Development > Python Developer's Handbook > 17. Development Tools > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218067026198136194182048

Summary

This chapter demonstrates how to go through all the development stages of creating a Python
application. You will learn how to compile the Python interpreter, and how to debug, profile, and
distribute Python programs.

The Python source code distribution comes with complete instructions about how to compile the code
for both Windows and UNIX platforms. These same instructions are given here in a general format
overview.

Although there is a binary distribution for Windows systems, binary distributions for the UNIX
platforms are not made available by the Python Web site because the compilation process depends
much on your system.

As you already know, Python provides two development environments that offer a lot of useful features
which can help you while coding: Pythonwin and IDLE. However, for simple programs, or in case you
don't have a graphical environment available, you can stick to simple text editors that can be used to
handle the job very nicely. On Windows systems, you can use editors such as Editpad and Notepad to
write Python scripts; on DOS systems, EDIT, and on UNIX systems, you have choices like Pico, Vi,
Emacs, and others. Note that Emacs lets you use a special Emacs mode, which is called Python Mode,
to write Python programs.

The Python distribution comes with lots of scripts that you can study and use. Those scripts are stored
in two directories: \ Tools and \ Demos.

Even though a Python bytecode file can automatically be created when importing a module, you can
manually create them whenever you need. It is a good idea to bytecompile all files before giving
Python access to users that cannot save in that source directory. Otherwise, the interpreter has to byte-
compile the module every time the module is loaded, which can slow down program start-up
considerably.

After installing Python, some special environment variables can be configured in order to guarantee the
maximum usage of the Python environment.

Debugging a Python program is something that doesn't require too much work. The Standard Python
Library comes with a debugger module called bdb that can be used by you to subclass your own
debuggers. If you don't want to spend time writing your own debug, you can use the Python debugger

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=238
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A23%3A15+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=238&now=6%2F1%2F2002+6%3A23%3A15+PM

(the pdb module), which is also part of the Python distribution. For those who need highly-specialized
debugging information, Python provides a disassembler module called dis.

The information provided in this chapter also offers a brief overview about how to use the profile
module to perform the analysis of the runtime performance of a Python program. Profiling an
application means to be able to sketch an image about what is going on behind the scenes when you
execute a program. In addition to that, it is also shown how to use the pstats module, which analyzes
the data collected by the Python profile module.

When it comes time to distribute your application, you have more than one way to pack your Python
files. It depends only on the kind of goal you are trying to reach. The Python distribution contains a
tool that saves much time when you are dealing with distribution issues. This tool is called Freeze.
You have other options too, such as SqueezeTool and Gordon McMillan's installer.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=238

Web Development > Python Developer's Handbook > VI: Python and Java > Chapter See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218067026195055134134175
Part VI Python and Java

18 JPython

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=240
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A23%3A40+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=240&now=6%2F1%2F2002+6%3A23%3A40+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=240

Web Development > Python Developer's Handbook > VI: Python and Java See All Titles

< BACK Make Note | Bookmark CONTINUE >

Part VI: Python and Java

Chapter

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&cnode=239
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&cnode=239

Web Development > Python Developer's Handbook > 18. JPython See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218067026194253219205022

Chapter 18. JPython
What a senseless waste of human life

This chapter shows you how easy it is to use all the power of Python within the elasticity of Java.
JPython is the keyword for the secret of your success in the Java world.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=242
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A23%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=242&now=6%2F1%2F2002+6%3A23%3A54+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=242

Web Development > Python Developer's Handbook > 18. JPython > Welcome to JPython See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218068074148024146197222

Welcome to JPython

JPython is a Java implementation of the object-oriented scripting language called Python that has been
certified as 100% pure Java. In other words, JPython does not use any of the C code of the original
Python implementation. It is a version of Python that runs on top of the Java Virtual Machine. Thus, it
allows you to run Python on any Java platform and enables your JPython applications to have access to
any Java library that you might need.

JPython offers the same language as Python, but it has a different implementation. Python is a scripting
language whose interpreter is written in C, which means that this implementation is called CPython. On
the other hand, JPython re-implements the Python parser and interpreter in Java. Actually, the
interpreter is available as a Java application, which allows Python programs to be created and
seamlessly integrated with the Java platform. Note however that both types of implementation (Python
and JPython) have their own pace. Efforts are made to keep them in sync, but it is not guaranteed that
this will always happen.

JPython carries a license that complies with the Open Source definition. It is freely available for both
commercial and non-commercial use and is distributed with source code.

JPython was designed by Jim Hugunin, who is also the main author of the Numeric Python extensions.
He has joined Guido at CNRI in 1998, leaving in mid-1999 to join the Xerox PARC team in California.
When he left, Barry Warsaw took care of the JPython project, and he is the main person responsible for
the project since then. Currently, JPython is maintained by Warsaw at BeOpen Python Labs.

At the Web site, you can always obtain the latest information about this implementation and download
info. In case you are interested in downloading the source code, it is available via CVS. The latest
version of JPython was released in January of 2000. Check out the JPython Official Web site at

http://www.jpython.org/

If you want to be in touch with other users, JPythoners have their own mailing list that you can use to
discuss JPython, ask questions, and help other users as well. Check out the jpython-interest mailing list
at

http://www.python.org/mailman/listinfo/jpython-interest

JPython Features

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=243
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A24%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=243&now=6%2F1%2F2002+6%3A24%3A10+PM
http://www.jpython.org/
http://www.python.org/mailman/listinfo/jpython-interest

JPython's core is an interpreter engine, similar to CPython's, that provides support to the greater part of
the Standard Python Library. JPython has a set of features that includes

● High-level built-in data types

● Dynamic typing

● Optional static compilation (which allows the creation of beans, applets, servlets, and so forth)

● Java classes and packages support

● A set of support libraries

● Interactive compilation direct to Java bytecodes (which enables JPython programs to run
directly on a JVM, including running as applets in Web browser windows).

JPython uses the Java's introspection mechanism to understand the contents of the package, which
means that when you want to import a Java library, say something such as

import java.awt

JPython first tries to find a Python package named java. And in case it doesn't find one, it uses the
Java mechanism to search in the CLASSPATH system variable for a .class or .jar file that meets
the requirement.

Another important aspect of JPython is that you can create JPython classes that subclass Java classes,
extending JPython functionality without the need for using wrapper generators (such as
SWIG—Simplified Wrapper and Interface Generator), provided the functionality is already
implemented in Java code. Otherwise, you probably need to use the JNI interface to make the code
available to JPython. This allows you to easily use the same set of classes that a regular Java
application has access to. The opposite is also true. Java has total integration with JPython, and because
JPython is 100% pure Java certified, you might embed JPython in your Java applications without any
worries of compromising the portability of your application. If necessary, you can even pass JPython
object instances back to Java (executing callbacks), and manipulate these instances in the Java
application because any Java code that processes Java objects is also able to process JPython objects.

Sometimes, you might find JPython useful for testing your Java components. As JPython has total
integration to the Java implementation, you can use it to call, test, and debug the functionality of Java
functions through the interpreter. JPython is the perfect choice for controlling Java through an

interactive language.

JPython also handles memory management with care in order to remove from you the responsibility of
being worried about object circular references. To do so, it uses the power of the Java memory
management mechanism, a mechanism that implements a garbage collector, which is executed at
runtime.

JPython's performance is still not as good as the performance of CPython, but there is a lot of effort
going on in order to make JVMs run faster.

CPython Versus Jpython

Both CPython and JPython are implementations of the same language: Python. Even though the
development team tries to make both codes as compatible as possible, differences are inevitable. Each
one of these languages is written using a different programming language: C and Java, respectively.
This primary difference is more than enough to cause both codes to have many distinctive
characteristics that are unlikely to disappear soon. The following is a short list of differences between
both implementations:

● JPython uses a slightly modified interface to handle scientific notation. For example, if you type
at the CPython interpreter the command print 9E+54, CPython will echo the number
9e+054, whereas JPython will pop up 9.0E54.

● JPython has everything implemented to be an instance of a class, which is opposite of CPython.

● JPython doesn't provide access to the co_code attribute of code objects because JPython code
objects don't have access to any Python bytecodes as CPython code objects do. That's because
the JVM hides their existence.

● JPython doesn't allow the use of Python extension modules written in C. If you want to use
them, you need to rewrite them in Java, or use JNI to make the C code available to Java.

● JPython offers a Standard Python Library of modules slightly different than CPython does
because the built-in modules, which are written in C, need to be ported to Java in order to be
used by JPython. Some modules, such as cPickle, cStringIO, and binascii, have
already been ported. Another possible option to access the built-in modules is by implementing
a JNI bridge.

By typing import <modulename>, and later dir(<modulename>), you can check
whether a module is available, and if so, what its interface looks like.

● JPython is able to catch the CTRL+C command when you want to leave the interpreter.

However, CPython doesn't accept this shortcut to perform that same functionality.

● JPython implements the garbage collection mechanism native to Java, instead of the reference
counting mechanism implemented by CPython.

● JPython doesn't provide any guarantees of telling you exactly when an object is about to be
destroyed, as CPython does. Opposite to CPython, the __del__() method of the object is
never called.

● JPython's interpreter has a set of command line options completely different from the ones
recognized by the CPython interpreter.

The following Web page shows all known differences between the two implementations of the Python
language, including the ones listed in this topic:

http://www.jpython.org/docs/differences.html

JPython Resource Links

A collection of Web links that provide useful information about JPython are as follows:

"Python and Java: The Best of Both Worlds," by Jim Hugunin

http://www.python.org/workshops/1997-10/proceedings/hugunin.html

"Python Programming in the JVM"

This is a very good and complete article about JPython, written by Rick Hightower.

http://www.sys-con.com/java/archives/0503/hightower/index.html

See also his other article in the Java Developer's Journal at

http://www.sys-con.com/java/archives/0502/hightower/index.html

Kirby Angell's article in Dr. Dobb's Journal

http://www.ddj.com/articles/1999/9904/9904toc.htm

Luke Andrew Cassady-Dorian's article in JavaPro magazine

http://www.jpython.org/docs/differences.html
http://www.python.org/workshops/1997-10/proceedings/hugunin.html
http://www.sys-con.com/java/archives/0503/hightower/index.html
http://www.sys-con.com/java/archives/0502/hightower/index.html
http://www.ddj.com/articles/1999/9904/9904toc.htm

http://www.devx.com/upload/free/features/javapro/1998/12dec98/ld1298/ld1298.asp

"Java and Python: a Perfect Couple." This is an article at Developer.com by Guido van
Rossum.

http://www.earthweb.com/dlink.resource-jhtml.72.1396.|repository||common|
content|article|19980817|gm_jpython|jpython~xml.0.jhtml?cda=true

Python Server Pages

PSP is a freely available server-side scripting engine. It is 100% written in Java, thus, it
is portable to several platforms. PSP is mentioned here because it uses JPython as its
scripting language. In order to use PSP, you need to have a Web Server that supports
Java Servlets, or uses JRun from Live Software, which is a Java Servlet engine
recommended for use with PSP.

http://www.ciobriefings.com/psp

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

BeOpen Python Labs
CPython
 vs. JPython 2nd
Hugunin, Jim
introspection mechanism
Java mechanism
JPython 2nd 3rd 4th
 CPython vs. 2nd
 Web resources
programming languages
 CPython
 vs. JPython 2nd
 JPython 2nd 3rd 4th
 CPython vs. 2nd
 Web resources
Warsaw, Barry

© 2002, O'Reilly & Associates, Inc.

http://www.devx.com/upload/free/features/javapro/1998/12dec98/ld1298/ld1298.asp
http://www.earthweb.com/dlink.resource-jhtml.72.1396.|repository||common| content|article|19980817|gm_jpython|jpython~xml.0.jhtml?cda=true
http://www.earthweb.com/dlink.resource-jhtml.72.1396.|repository||common| content|article|19980817|gm_jpython|jpython~xml.0.jhtml?cda=true
http://www.ciobriefings.com/psp
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=243

Web Development > Python Developer's Handbook > 18. JPython > Java Integration See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218068074151075047228074

Java Integration

If you want to use the Python language and Java integration, you can find in JPython a compatible and
complementary couple for Java. Because JPython's interpreter is written in Java itself, you might think
why you shouldn't go directly to the point, and use pure Java instead of using JPython. My advice is to
go for JPython first because soon you will see how simple it is to do a lot of tasks using JPython's
facilities (such as running a piece of Java code without the need for defining a single class). JPython
has all the teaching principles on its background, which makes it a language of easy learning.

The full object-oriented programming model provided by the Python language (since its inception)
brings power and clearness to the programmer world. This transparency when handling objects makes
Python a natural choice for interoperating with Java's object-oriented design, and to be Java's scripting
language. Other languages try, even though they were not created to be OO. Object-oriented
programming became part of Perl programmer's life in version 5, and Tcl developers can only use OO
through an extension called (itcl). It could be argued that Python evolved from the non-object oriented
ABC the same way that Perl 5 evolved from Perl 4 and incr tcl from tcl, but Python had its evolutionary
process carefully driven—almost a totally new development effort.

Of course, other scripting languages can be used along with Java and its JVM, but none of them beat
JPython in portability and performance, mainly for two reasons: JPython's 100% Java certification, and
JPython's capability to translate Python source code directly into optimized Java bytecodes,
respectively.

Both Perl and Tcl offer scripting solutions, but none of the solutions offer a more significant value than
the JPython solution.

● Jacl is a 100% Java re-design of the Tcl interpreter, which is considered to be much slower
than JPython.

● Tcl Blend and JPL (for Perl) are other scripting solutions (not 100% Java) that expose some
portability problems.

Of course, in both of these cases, it is probably easier to port the Tcl or Perl runtimes than to port the
java virtual machine.

For more details about the Java language, you can check out http://www.javasoft.com/.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=244
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A24%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=244&now=6%2F1%2F2002+6%3A24%3A21+PM
http://www.javasoft.com/

Java Certification

On July 13, 1998, it was announced that KeyLabs had completed testing JPython to certify that it is
100% pure Java.

The 100% Pure Java Certification Program is part of Sun Microsystems initiative to
promote the development of portable applications, applets, beans, class libraries, and
servlets written using the Java Programming language. Certification consists of code
analysis and testing by an independent test facility (in this case, KeyLabs) to identify
compiled code that meets the 100% Pure Java Requirements. The 100% Pure Java
certification standards and branding program is intended to give customers confidence in
products that display the brand.

Even though JPython has got this certification, you cannot use the 100% Java brand for your own
JPython programs. You need to make sure that your product passes the 100% Pure Java certification
tests in order to have the rights to use the exclusive 100% Pure Java logo on your packing. For details
about this process, read the Certification Guide located at

http://www.javasoft.com/100percent/

Java Links

If you want to use JPython, but you don't know Java yet, or need a quick review, check out the
following Java Web sites:

The Java Community

At this Web site, you can join ongoing forums on a variety of Java topics, chat with Java
experts, and access community resources, among other things.

http://developer.java.sun.com/developer/community

The Java Tutorial—a practical guide for programmers

http://java.sun.com/docs/books/tutorial

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.javasoft.com/100percent/
http://developer.java.sun.com/developer/community
http://java.sun.com/docs/books/tutorial
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=244

Index terms contained in this section

integrating
 Java
 JPython 2nd
Java
 integrating
 JPython 2nd
JPython
 integrating Java 2nd
KeyLabs
programming languages
 JPython
 integrating Java 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 18. JPython > Downloading and
Installing JPython

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218068074150171193064206

Downloading and Installing JPython

Next, you find the required steps that you need to perform in order to download and install JPython.
Visit the following address, and download the latest version.

http://www.jpython.org/download.html

You have two choices for downloading JPython. You can either download the JPython version that
contains the OROMatcher regular expression library, or the other version that doesn't contain it. Note
that it's required that you decide between the two versions. Only if you decide to use the version that
comes with the OROMatcher, will you have access to the re module. However, you will have to agree
with a different kind of licensing.

Before spending time downloading the file, verify whether you have a working Java 1.1 or 1.2
compatible JVM installed. In case you don't have one, you will need to locate one on the Internet and
install the right JVM for your system.

JPython is distributed as a self-extracting .class file created by InstallShield - Java
Edition. To install JPython, you need to open the command line to the directory in which you have
placed the JPython11.class file. Note that if you have downloaded the
JPythonONLY11.class file, you must first rename it to JPython11.class.

ren JPythonONLY11.class JPython11.class

Then, type the following command to start the installation process.

<java interpreter> JPython11

Depending on your system, you have to type one of the following options. Note that you don't have to
include the .class on the end of the filename.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=245
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A24%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=245&now=6%2F1%2F2002+6%3A24%3A33+PM
http://www.jpython.org/download.html

java JPython11
jre JPython11
jview JPython11

In case you don't have a GUI, you need to add the following argument to the previous command: -o
dir_to_install_to. JPython will install to the specified directory without activating the
graphical installer.

After initiating the installation process, you will be prompted to accept the terms of the license (see
Figure 18.1). Read it and say yes to continue with the process.

Figure 18.1. When you accept the terms of the license, JPython is installed on your system.

Remember to check the Installation Notes after completing the installation.

Now, you should be able to run JPython by typing the following command:

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/245#1.html

jpython

If you are using a Windows system, you can have access to JPython by double-clicking on its icon.

Downloading the CPython Library

As of now, JPython comes with support for only a small set of the standard Python modules. For those
who will concentrate on development using Java packages, the modules provided by JPython should be
fine, but note that CPython has a wide variety of useful modules.

If you already have CPython 1.5.1, 1.5.2, or a later version installed on your computer, you can use its
library. If you don't have CPython installed, you can get its libraries from the JPython Web site. For
example, the libraries for version 1.5.2 are stored in the following file:

http://www.jpython.org/pylib152e.jar

To install the standard Python libraries, use the following command:

jpython -jar pylib152e.jar

Besides the regular distribution download page, the latest snapshots of the JPython source code are
always available via CVS too.

Licensing

Starting with version 1.1 beta 1, JPython has two separate distributions. This is because JPython uses a
third-party library for handling regular expressions—the standard re module is implemented using
OROMatcher, which is a regular expression library by ORO, Inc.

Because OROMatcher has a different kind of license, the JPython distribution that uses it requires a
specific license as well because OROMatcher is not completely free software. (It doesn't allow you to
have access to its source code.)

Currently, at the ORO Web site, you can find a note saying that the company plans to open source their
software, releasing it under the Apache license, so the restrictions on using OROMatcher might be
lifted. You should keep an eye on that.

http://www.jpython.org/pylib152e.jar

However, JPython provides another distribution that comes without the library, which makes the
regular expression capability not available. This distribution is a completely open source version of
JPython. Note that if later you decide to use OROMatcher, you can accept its licensing agreement,
and integrate it with the free distribution of JPython that you already have. Check out the OROMatcher
site at

http://www.savarese.org/oro/

JVMs That Support JPython

As of now, JPython should run successfully on any bug-free fully 1.1 or 1.2 compliant Java Virtual
Machine (JVM). Next, you have a list of Operating System specific JVMs. Even if your platform is not
listed here, it doesn't mean that it doesn't have a JVM.

Linux

JDK 1.1.x and 1.2.x from blackdown.org—It is suggested that you use either the 1.1.7 JVM or 1.2
JVM.

http://www.blackdown.org/java-linux.html

IBM Developer Kit and Runtime Environment for Linux—This is IBM's new JVM for Linux.

http://www.ibm.com/java/jdk/118/linux/index.html

Sun's J2SE (1.2.2 JVM) for Linux—This is Sun's JVM ported to Linux. You need a free login to access
the Sun Developer Connection.

http://developer.java.sun.com/

Win32 (Windows NT, 95, and 98)

JView from Microsoft—This JVM is installed when you install Microsoft Internet Explorer 4.0 or 5.0.
Currently, this is the fastest JVM on which to run JPython.

http://www.microsoft.com/java/

Sun's JVM for Windows—Sun provides 1.2 (Java 2) and 1.1 Virtual Machines for the Windows
platform. This is certainly the most compatible VM with the official Java specification.

http://www.savarese.org/oro/
http://www.blackdown.org/java-linux.html
http://www.ibm.com/java/jdk/118/linux/index.html
http://developer.java.sun.com/
http://www.microsoft.com/java/

http://www.javasoft.com/products/

Solaris

Although Solaris 2.6 comes with JDK 1.1.3, Solaris users will probably want to upgrade to either the
JRE 1.1.7 or JRE 1.2.1 at least.

JRE 1.1.7 from Sun

http://www.javasoft.com/products/jdk/1.1/jre/index.html

JRE 1.2.1 from Sun

http://www.javasoft.com/products/jdk/1.2/

Irix

Here, you can get version 3.1 of the Java Development Environment from SGI, which is based on the
1.1.3 JVM.

http://www.sgi.com/developers/devtools/languages/java.html

Macintosh

Mizutori Tetsuya has made available an application called JPython Runner to make it easier to use
JPython on Macintoshes.

http://www.bekkoame.ne.jp/~mizutori/java/index.html#jpythonrunner

See also the document "How to Run JPython on Macintosh."

http://www.bekkoame.ne.jp/~mizutori/java/index.html#howtojpython

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.javasoft.com/products/
http://www.javasoft.com/products/jdk/1.1/jre/index.html
http://www.javasoft.com/products/jdk/1.2/
http://www.sgi.com/developers/devtools/languages/java.html
http://www.bekkoame.ne.jp/~mizutori/java/index.html#jpythonrunner
http://www.bekkoame.ne.jp/~mizutori/java/index.html#howtojpython
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=245

Index terms contained in this section

applications
 JPython Runner
CPython library
 downloading 2nd
downloading
 CPython library 2nd
 JPython 2nd 3rd 4th
installing
 JPython 2nd 3rd 4th
Java Virtual Machine (JVM)
 support, JPython 2nd
JPython
 downloading and installing 2nd 3rd 4th
JPython Runner
JVM (Java Virtual Machine)
 support, JPython 2nd
libraries
 CPython
 downloading 2nd
 OROMatcher regular expression 2nd
licensing
 JPython
OROMatcher regular expression library 2nd
programming languages
 JPython
 downloading and installing 2nd 3rd 4th
programs
 JPython Runner
software
 JPython Runner
support
 Java Virtual Machine (JVM), JPython 2nd
Tetsuya, Mizutori
Windows
 Java Virtual Machine (JVM) support, JPython

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 18. JPython > The Interpreter See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218069155135243164165048

The Interpreter

The JPython installation places several files on your system, including a set of modules, some sample
programs, an application called jpythonc (which we will see later), and the JPython interpreter.

The JPython interpreter looks very similar to the CPython interpreter (see Figure 18.2). However,
jpython is not a binary file, but a short script (or batch file, depending on your system) that invokes
your local JVM, sets the Java property install.path to an appropriate value, and then runs the
Java class file org.python.util.jpython.

Figure 18.2. If you glance at this screen, you might be confused whether JPython or CPython is
running because both interpreters do look alike.

The following syntax shows the possible options that you can pass to JPython when invoking it from
the shell. A list of options is shown in Table 18.1.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=246
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A25%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=246&now=6%2F1%2F2002+6%3A25%3A05+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/246#1.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/246#2.html

jpython [options] [-jar jar | -c cmd | file | -] [args]

Table 18.1. List of the Interpreter Options and Arguments

Option Description
-i Inspects interactively after running script and forces prompts, even if stdin does not

appear to be a terminal.
-S Doesn't imply import site on initialization.
-X Disables class based standard exceptions.
-Dprop=value Sets the Java property prop to value.
-jar jar Runs the program that is read from the __run__.py file in the specified jar file.
-c cmd Runs the program passed in as the cmd string. This option terminates the options list.
file Runs file as the program script.
- Reads the program from standard input. This flag allows you to pipe a file into Jpython and

have it treated correctly.
--help Prints a usage message and exits.
--version Prints JPython version number and exits.
args Passes a list of arguments to the program in the sys.argv[1:] variable.

Because jpython is not a binary executable, but a simple script, you have to add the following line to
the top of your JPython programs (only if you have a UNIX system), in order to make them executable.

#! /usr/bin/env jpython

Using something like #!/usr/bin/jpython/jpython will not work because this syntax requires
jpython to be a binary executable (which is not the case).

You also need to make sure that jpython's directory is registered on your PATH variable.

Now let's take a look at the following code:

class jhello:
 def main(argv):
 print "Hello Python world!"

myapp=jhello()
myapp.main()

After saving this code in a file, called jhello.py, you can execute it by typing at your OS prompt:

jpython jhello.py

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

[nd] option
[nd]c cmd option
[nd]Dprop=value option
[nd]file option
[nd]I option
[nd]jar jar option
[nd]S option
[nd]X option
args option
arguments
 JPython interpreter
options
 JPython interpreter

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=246

Web Development > Python Developer's Handbook > 18. JPython > The JPython Registry See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218069155132053157062167

The JPython Registry

JPython, as Java, uses its own environment variable namespace. The reason for that is because there
isn't a standard cross-platform way to handle environment variables, doing what the Windows Registry
does for the Win32 platform, for example.

The required namespace can be obtained from the following sources:

1. The Java system properties, which are usually informed through the -D option on the command
line prompt of the interpreter.

2. The JPython registry file, which contains prop=value pairs. The location of this file is
identified according to the algorithm listed in the next subtopic.

3. The user's personal registry file, which contains correspondingly prop=value pairs of
properties. This file is located at user.home"+"/.jpython.

The previous sources are listed in the same order in which they are invoked when trying to build the
namespace. Note that if you have values provided for later options, they override the values defined by
default for the prior options.

Registry Properties

Next is a list of the properties that are recognized by the JPython interpreter. You can easily study these
and others, with more accuracy, by examining the JPython's registry file.

python.cachedir— Stores the name of the directory to use for caches. If no
absolute path is informed, it is assumed that its location is relative to the sys.prefix
variable.

python.jpythonc.classpath — Stores a list of extensions to the standard
java.class.path property for use with jpythonc.

python.jpythonc.compiler— Contains the absolute (or relative) path of the
Java compiler to use with jpythonc. If just the compiler name is provided, it is

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=247
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A25%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=247&now=6%2F1%2F2002+6%3A25%3A33+PM

assumed that the executable can be located by looking at your system PATH variable.

python.jpythonc.compileropts— Keeps the list of options to pass to the Java
compiler when using jpythonc.

python.path— Corresponds to CPython's PYTHONPATH environment variable.

python.security.respectJavaAccessibility— Setting this property to
false (in case you have a Java 1.2 installation) provides you access to non-public
members of classes, such as methods and constructors.

python.verbose— Setting this property to one of the following values:

"error", "warning", "message", "comment", "debug"

sets the verbosity level for varying degrees of informative messages. Note that these
values are listed in order of increasing verbosity.

Finding the Registry File

The following steps are required to correctly identify the JPython registry file to use.

Step 1.

You need to create a root directory, which can be based either on the value of the property
python.home, or the value of the property install.root, whichever is found first.

Step 2.

If none of them is found, JPython tries to locate a file called jpython.jar by looking at the
system property java.class.path. Note that one of the paths listed in this property must
explicitly include the jpython.jar file.

Step 3.

Now, that JPython has identified our root directory, it populates the values of both
sys.prefix and sys.exec_prefix variables based on the root information.

Step 4.

The variable sys.path has an entry added to its list, <rootdir>/Lib, where
<rootdir> is the root dir that we've found previously.

Step 5.

Our initial goal can be finally reached now because the registry file is stored at the <rootdir>
directory, and to have permission to it, you just need to access the location
<rootdir>/registry.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

files
 JPython Registry
 finding
finding
 JPython Registry file
JPython Registry 2nd
namespaces
 JPython
programming languages
 JPython Registry 2nd
properties
 JPython Registry
 python.cachedir
 python.jpythonc.classpath
 python.jpythonc.compiler
 python.jpythonc.compileropts
 python.path
 python.security.respectJavaAccessibility
 python.verbose
python.cachedir property
python.jpythonc.classpath property
python.jpythonc.compiler property
python.jpythonc.compileropts property
python.path property
python.security.respectJavaAccessibility property
python.verbose property

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=247

registries
 JPython 2nd
searching
 JPython Registry file

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 18. JPython > Creating Graphical
Interfaces

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218069155130211067010101

Creating Graphical Interfaces

Windowing applications are written in JPython using the same set of options that you have available
for Java applications. Currently, the two names that you will hear most for this kind of implementation
are awt and swing.

AWT stands for Abstract Windowing Toolkit, which is the official name for the Java GUI. Note that the
syntax is very similar to Tkinter, thus it will not be a problem for you to understand and use it.

import java
frame = java.awt.Frame("Ni!", visible = 1)
labeltop = java.awt.Label("Hello Python World!")
frame.add(labeltop)
frame.pack()

JPython also contains a package called pawt (stands for Python AWT), which wrappes the access to
awt, providing some additional functionality.

The successor of Java's windowing toolkit is provided as part of the Java Foundation Classes. This set
of classes extends the original AWT by adding a comprehensive set of graphical user interface class
libraries, commonly known as JFC/Swing GUI Components, or simply Swing. These components are
simple to read and understand, and they are written in the Java programming language, without
window-system–specific code. This causes less problems when distributing JPython applications
because you do not rely on the code of a specific windowing system.

For details, see http://java.sun.com/products/jfc/.

At this page, you can download the latest version of the Java Foundation Classes (JFC)/Swing, which
at this moment is in release 1.1.1. After downloading it, make sure that you have the following
environment variables correctly defined: JAVA_HOME, SWING_HOME, CLASSPATH, and PATH.

Next, you have the section of the autoexec.bat of my Win98 machine that handles these
definitions, for your information.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=248
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A25%3A52+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=248&now=6%2F1%2F2002+6%3A25%3A52+PM
http://java.sun.com/products/jfc/

set JAVA_HOME=C:\ JDK1.1.8
set SWING_HOME=C:\ JDK1.1.8\ swing-1.1.1
set PATH=%PATH%;%JAVA_HOME%\ bin
set CLASSPATH=.;%JAVA_HOME%\ lib\ classes.zip
set CLASSPATH=%CLASSPATH%;%SWING_HOME%;%SWING_HOME%\ swing.jar;
set CLASSPATH=%CLASSPATH%;%SWING_HOME%\ windows.jar

The next code shows an example that uses the Python package pawt to access the swing components.

import java
import pawt
def exit(h):
 java.lang.System.exit(0)
frame = pawt.swing.JFrame('Ni! again!', visible=1)
display = pawt.swing.JTextField()
display.text = "Click on the button below to exit!"
frame.contentPane.add(display)
button = pawt.swing.JButton('Exit', actionPerformed=exit)
frame.contentPane.add(button)
frame.pack()

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=248

Index terms contained in this section

Abstract Windowing Toolkit (AWT) 2nd
accessing
 swing components
AWT (Abstract Windowing Toolkit)
AWT Abstract Windowing Toolkit
classes
 Java Foundation (JFC)
components
 swing
 accessing
graphical user interfaces (GUIs)
 Abstract Windowing Toolkit (AWT) 2nd
interfaces
 graphical user (GUI)
 Abstract Windowing Toolkit (AWT) 2nd
Java Foundation Classes (JFC)
JFC (Java Foundation Classes)
JFC/Swing GUI Components (Swing) library
libraries
 JFC/Swing GUI Components (Swing)
packages
 pawt
 accessing swing components
pawt package
 accessing swing components
Swing (JFC/Swing GUI Components) library
swing components
 accessing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 18. JPython > Embedding See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218070220042023220130103

Embedding

As JPython and Java are extremely close to each other, it is not difficult to believe that you can embed
JPython code inside a Java application, as well as embed Java code directly into your JPython
applications. Both types of implementation are easily supported and coded. By extension, you could
create new independent Python interpreters from jpython very easily, as well.

JPython in a Java Application

If you really need to embed JPython in a Java application, you have two main choices to choose from.
The first option is to use the utility jpythonc to pick a JPython class and generate a Java .class
file that can be called directly from inside your Java code, in a very straightforward away. See the next
section of this chapter to learn how to use this utility.

The second option that you have is to import the PythonInterpreter object class into your Java
code. This class allows you to have control of the Python interpreter from Java. The following example
demonstrates how the code would be:

import org.python.util.PythonInterpreter;
import org.python.core.*;

public class GenNextYear {
 public static void main(String []args)
 throws PyException
 {
 PythonInterpreter interp = new PythonInterpreter();
 System.out.println("Hello Python World");
 interp.set("year", new PyInteger(2000));
 interp.exec("print 'This is year %d'% (age)");
 interp.exec("nextyear = year + 1");
 PyObject nyear = interp.get("nextyear");
 System.out.println("Next year is gonna be "+nyear);
 }
}

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=249
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A26%3A20+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=249&now=6%2F1%2F2002+6%3A26%3A20+PM

Note that we are able to set/access values to/from the interpreter besides executing commands at the
interpreter prompt line.

Check the JavaDoc documentation located at the following address. It is all about
org.python.util.PythonInterpreter.

http://www.jpython.org/docs/api/org.python.util.PythonInterpreter.html

Java in a JPython Application

Accessing Java from JPython is no big deal. You can normally work with Java libraries as if you were
working with JPython libraries. The process is fully transparent to you. Remember that one of
JPython's primary goals is to provide easy support to Java libraries.

JPython offers you access to all Java functionality available, which includes

● Support to JavaBean Properties. The use of JavaBeans is seen by JPython as a solution to
simplify the task of talking to most other Java classes.

● If you need to handle Java Arrays in JPython, you need to use the Jarray object. Remember
that some Java methods demand argument objects to be in Java array format.

Also good to remember is you can create Python classes that subclass Java classes. This is a helpful
option when you need to pass information back and forth between both implementations (Python and
Java). Note that you need to create a Python class with the same name of the module that carries class.

The following example shows how a user can instantiate a Java random number class and then interact
with that instance:

C:\ jpython>jpython
>>> from java.util import Random
>>> number = Random()
>>> number.nextInt()
-857296727
>>> print number.nextDouble()
0.5334538483666526
>>> number.nextInt()
-356857265

http://www.jpython.org/docs/api/org.python.util.PythonInterpreter.html

Note that we are establishing direct access to the Java library without using any kind of wrappers.

The following site is part of the original documentation showing how to use JPython along with Java:

http://www.jpython.com/docs/usejava.html

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 Java
 embedding JPython in
embedding
 JPython
Java
 embedding JPython in
JPython
 embedding
programming languages
 JPython
 embedding
programs
 Java
 embedding JPython in
software
 Java
 embedding JPython in

© 2002, O'Reilly & Associates, Inc.

http://www.jpython.com/docs/usejava.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=249

Web Development > Python Developer's Handbook > 18. JPython > jpythonc See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218070220043007025254056

jpythonc

The JPython distribution provides a tool called jpythonc that works like a Python compiler for Java.
This tool, which is actually just a JPython script, operates by taking a JPython source code (extension
.py), and compiling it to real Java class bytecodes, which are executed by the Java Runtime
Environment (JRE). Therefore you can write your code in JPython, and later use jpythonc to
generate a simple class, a JavaBean, a servlet, or an applet. Note that you need full access to a Java
compiler in order to use jpythonc. Internally, the jpythonc tool creates a Java source file file, but
it needs an external compiler to generate the compiled Java .class file.

Check the installation directory where you installed the JPython package. That's where the tool is
located.

The jpythonc tool is very useful for embedding your JPython application in a Java application. After
you generate the .class file, you are able to subclass Python classes in Java, and also to create
JavaBeans, Servlets, and Applets from a Python class file.

The jpythonc script accepts several command line options, as listed next. The general format of the
command's syntax is as follows:

jpythonc [options] [module]*

The available options are listed as follows. Note that the information provided between parenthesis
shows a short way to say the same thing that the long name's option says.

--package package (-p package)— Puts all compiled code into the named
Java package.

--jar jarfile (-j jarfile)— Specifies a .jar file to create and put the
results of the freeze into. This option implies the --deep option.

--deep (-d)— Compiles all Python dependencies of the module. This is used for
creating applets.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=250
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A26%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=250&now=6%2F1%2F2002+6%3A26%3A33+PM

--core (-c)— Includes the core JPython libraries (about 130K). Needed for applets
because Netscape doesn't yet support multiple archives. This option implies the --deep
option.

--all (-a)— Includes all the JPython libraries (everything in core + compiler and
parser). This option implies the --deep option.

--bean jarfile (-b jarfile)— Compiles into jarfile, including the
correct manifest for the bean.

--addpackages pkgs (-A pkgs)— Includes Java dependencies from this list of
packages. Default is org.python.modules and com.oroinc.text.regex.

--workdir directory (-w directory)— Specifies the working directory
where the generated Java source code is placed. The default value is ./jpywork.

--skip modules (-s modules)— Doesn't include any of these modules in
compilation. This is a comma-separated list of modules.

--compiler path (-C path)— Uses a compiler different from javac. If this
is set to NONE, compiles end with the generation of the Java source file. Alternatively,
you can set the property python.jpythonc.compiler in the registry file.

--compileropts options-- (-J options)— Passes options directly to the
Java compiler. Alternatively, you can set the property
python.jpythonc.compileropts in the registry file.

--falsenames names (-f names)— A comma-separated list of names that are
always false. Can be used to short-circuit if clauses.

--help (-h)— Prints a usage message and exits.

[module]*— A list of Python modules to freeze. Can be either module names that are
located on the python.path or .py files.

In order to create an applet, the following syntax is suggested. Note that you need to use the -core
option in order to include the JPython libraries as part of the applet.

jpythonc -core -deep -jar <appletapp.jar> *.py

In order to create a simple class, the following syntax is suggested:

jpythonc <yourapp.py>

Now, if you just need to create a bean, the following syntax should be used:

jpythonc -deep -bean <filename.jar> <beenname>

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applets
 creating
beans
 creating
classes
 creating
creating
 applets
 beans
 classes
JPython
 jpythonc tool
jpythonc tool
options
 jpythonc tool 2nd 3rd
programming languages
 JPython
 jpythonc tool
tools
 jpythonc

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=250

utilities
 jpythonc
writing
 applets
 beans
 classes

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 18. JPython > Running JPython
Applets

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218070220044253084066134

Running JPython Applets

Many people like Java because it makes easy the task of distributing interactive and dynamic pieces of
code through the Web by using applets. An applet is a program written using the Java programming
language, which can be included in an HTML page with the <APPLET> tag. This tag needs to
reference a class file that is not part of the HTML page on which it is embedded. Applets do this with
the CODE parameter, which tells the browser where to look for the compiled .class file. When your
browser receives a request to load an applet from a site, it downloads the applet and uses your Java
Virtual Machine to execute it.

Before you start testing your applets, make sure that you are using a browser that supports Java jdk1.1.
The list of browsers that are currently jdk1.1-compliant include Microsoft's Internet Explorer 4.0 or
later, and Netscape's Navigator 4.06 or later.

Okay. Now you also need to make sure that you don't have your class path variable pointing to any
directories with JPython .class files. If you are running JVM on UNIX, you need to check out your
CLASSPATH environment variable. If you are running a Win32 virtual machine, you need to check out
the registry entry Classpath under LOCAL_MACHINE/Software/Microsoft/JavaVM/.

The next JPython applet has the goal of displaying the message "Hello Python World".

from java.applet import Applet
class HelloPythonWorld(Applet):
 def paint(self, gc):
 gc.drawString("Hello Python World", 12, 14)

If you want to test the applet to run it as a script too, add a few more lines to the end of the applet file.
These lines will allow you to interactively test the applet functionality.

if __name__ == '__main__':
 import pawt
 pawt.test(HelloPythonWorld())

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=251
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A26%3A47+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=251&now=6%2F1%2F2002+6%3A26%3A47+PM

If you want to embed this applet in your Web page, you just need to inform the right values for the
applet tag, such as

<applet code="HelloPythonWorld" archive="HelloPythonWorld.jar"
 width = 50 height = 100>

JPython applets need to carry the whole set of JPython libraries, which adds about 150KB to the final
size of your applet. Another important consideration is that you can only use eval and exec
commands in signed applets, which complies with the Java security definition.

The following Web link takes you to the official home of JPython, specifically to the applets page:

http://www.jpython.org/applets/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

<
 APPLET tag
applets
 JPython, running
CODE parameter
commands
 eval
 exec
embedding
 applets
eval command
exec command
JPython
 running applets
parameters
 CODE
programming languages
 JPython

http://www.jpython.org/applets/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=251

 running applets
running
 JPython applets
tags
 <
 APPLET
testing
 applets

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > 18. JPython > Summary See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218070220045136101070101

Summary

JPython is a Java implementation of the object-oriented scripting language Python that has been
certified as 100% pure Java. Both CPython and JPython are implementations of the same language:
Python. Even though the development team tries to make both codes as compatible as possible,
differences are inevitable. Each one of these languages is written using a different programming
language: C and Java, respectively. Note that JPython re-implements the CPython parser and
interpreter in Java.

JPython has a set of features that include high-level built-in data types, dynamic typing, optional static
compilation, Java classes and packages support, a set of support libraries, and interactive compilation
direct to Java bytecodes.

JPython, as Java, uses its own environment variable namespace. The reason for that is because there
isn't a standard cross-platform way to handle environment variables.

Windowing applications are written in JPython using the same set of options that you have available
for Java applications. Currently, the two names that you will hear most for this kind of implementation
are awt and swing.

As JPython and Java are extremely close to each other, it is not that difficult to believe that you can
embed JPython code inside a Java application, as well as embed Java code directly into your JPython
applications. Both types of implementation are easily supported and coded.

The JPython distribution provides a tool called jpythonc that works like a Python compiler for Java.
Therefore you can write your code in JPython, and later use jpythonc to generate a simple class, a
JavaBean, a servlet, or an applet.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=252
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A26%3A57+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=252&now=6%2F1%2F2002+6%3A26%3A57+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=252

Web Development > Python Developer's Handbook > VII: Appendixes See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218071088190122043186199

Part VII: Appendixes
Part VII Appendixes

A Python/C API

B Running Python on Specific Platforms

C Python Copyright Notices

D Migrating to Python 2.0

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=254
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A27%3A10+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=254&now=6%2F1%2F2002+6%3A27%3A10+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=254

Web Development > Python Developer's Handbook > A. Python/C API See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218071088189141015041230

Appendix A. Python/C API
The intention of this appendix is to expose the C API that you need to use in order to create extension
modules for your Python programs or to embed Python in your C/C++ applications. The information
provided in this appendix is entirely extracted from the C/API reference manual, written by Guido van
Rossum, which is part of the Python distribution (see copyright note in Appendix C, "Python Copyright
Notices"). Note, however, that as you're reading, this document might be incomplete because new
Python versions will be arriving soon. Check out the following address for the most up-to-date version
of this work:

http://www.python.org/doc/api

For more information about how to use the API, check out Chapter 6, "Extending and Embedding
Python," and the document "Extending and Embedding the Python Interpreter," which also comes as
part of the Python installation.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Rossum, Guido van

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=256
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A27%3A28+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=256&now=6%2F1%2F2002+6%3A27%3A28+PM
http://www.python.org/doc/api
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=256

Web Development > Python Developer's Handbook > A. Python/C API > Python/C API See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218071088187087116113144

Python/C API

The Application Programmer's Interface to Python gives C and C++ programmers access to the Python
interpreter at a variety of levels. The API is equally usable from C++, but for brevity it is generally
referred to as the Python/C API. There are two fundamentally different reasons for using the Python/C
API. The first reason is to write extension modules for specific purposes; these are C modules that extend
the Python interpreter. This is probably the most common use. The second reason is to use Python as a
component in a larger application; this technique is generally referred to as embedding Python in an
application.

Writing an extension module is a relatively well-understood process in which a "cookbook" approach
works well. Several tools automate the process to some extent. Although people have embedded Python
in other applications since its early existence, the process of embedding Python is less straightforward
than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover,
most applications that embed Python will need to provide a custom extension as well, so it's probably a
good idea to become familiar with writing an extension before attempting to embed Python in a real
application.

Python 1.5 introduces a number of new API functions as well as some changes to the build process that
make embedding much simpler. This book describes the 1.5.2 state of affairs.

Include Files

All function, type, and macro definitions needed to use the Python/C API are included in your code by the
following line:

#include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,
and <stdlib.h> (if available).

All user visible names defined by Python.h (except those defined by the included standard headers) have
one of the prefixes Py or _Py. Names beginning with _Py are for internal use by the Python

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=257
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A27%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=257&now=6%2F1%2F2002+6%3A27%3A44+PM

implementation and should not be used by extension writers. Structure member names do not have a
reserved prefix.

Important: User code should never define names that begin with Py or _Py. This confuses the reader and
jeopardizes the portability of the user code to future Python versions, which might define additional
names beginning with one of these prefixes.

The header files are typically installed with Python. On UNIX, these are located in the directories
$prefix/include/pythonversion/ and $exec_prefix/include/ pythonversion/,
where $prefix and $exec_prefix are defined by the corresponding parameters to Python's
configure script and the version is sys.version[:3]. On Windows, the headers are installed in
$prefix/include, where $prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler's search path for includes.
Do not place the parent directories on the search path and then use #include
<python1.5/Python.h>; this will break on multi-platform builds because the platform independent
headers under $prefix include the platform specific headers from $exec_prefix.

Objects, Types, and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type
PyObject*. This type is a pointer to an opaque data type representing an arbitrary Python object.
Because all Python object types are treated the same way by the Python language in most situations (for
example, assignments, scope rules, and argument passing), it is only fitting that they should be
represented by a single C type. Almost all Python objects live on the heap: You never declare an
automatic or static variable of type PyObject; only pointer variables of type PyObject* can be declared.
The sole exceptions are the type objects; because these must never be deallocated, they are typically static
PyTypeObject objects.

All Python objects (even Python integers) have a type and a reference count. An object's type determines
what kind of object it is (for example, an integer, a list, or a user-defined function; there are many more as
explained in the Python Reference Manual). For each of the well-known types, there is a macro to check
whether an object is of that type; for instance, PyList_Check(a) is true if (and only if) the object it
points to is a Python list.

Reference Counts

The reference count is important because today's computers have a finite (and often severely limited)
memory size; it counts how many different places there are that have a reference to an object. Such a
place could be another object, a global (or static) C variable, or a local variable in some C function. When
an object's reference count becomes zero, the object is deallocated. If it contains references to other
objects, their reference count is decremented. Those other objects might be deallocated in turn, if this

decrement makes their reference count become zero, and so on. (There's an obvious problem with objects
that reference each other here; for now, the solution is don't do that.)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_INCREF()
to increment an object's reference count by one, and Py_DECREF() to decrement it by one. The decref
macro is considerably more complex than the incref one because it must check whether the reference
count becomes zero, and then causes the object's deallocation by calling a function contained in the
object's type structure. The type-specific deallocator takes care of decrementing the reference counts for
other objects contained in the object, and so on, if this is a compound object type such as a list. There's no
chance that the reference count can overflow; at least as many bits are used to hold the reference count as
there are distinct memory locations in virtual memory (assuming sizeof(long) >= sizeof(char
*)). Thus, the reference count increment is a simple operation. You should only pass a variable to
Py_DECREF or Py_XDECREF. If you pass an expression, it will be evaluated multiple times (so don't
use Py_XDECREF(func(...)) to ignore the return value of a function).

It is not necessary to increment an object's reference count for every local variable that contains a pointer
to an object. In theory, the object's reference count goes up by one when the variable is made to point to
it, and it goes down by one when the variable goes out of scope. However, these two cancel each other
out, so at the end, the reference count hasn't changed. The only real reason to use the reference count is to
prevent the object from being deallocated as long as our variable is pointing to it. If we know that there is
at least one other reference to the object that lives at least as long as our variable, there is no need to
increment the reference count temporarily. An important situation in which this arises is in objects that are
passed as arguments to C functions in an extension module that are called from Python; the call
mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without
incrementing its reference count. Some other operation might conceivably remove the object from the list,
decrementing its reference count, and possibly deallocating it. The real danger is that innocent-looking
operations might invoke arbitrary Python code that could do this; there is a code path that allows control
to flow back to the user from a Py_DECREF(), so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with
PyObject_, PyNumber_, PySequence_, or PyMapping_). These operations always increment
the reference count of the object they return. This leaves the caller with the responsibility to call
Py_DECREF() when they are done with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of
references. Note that we talk of owning references, never of owning objects; objects are always shared.
When a function owns a reference, it has to dispose of it properly—either by passing ownership on
(usually to its caller) or by calling Py_DECREF() or Py_XDECREF(). When a function passes
ownership of a reference on to its caller, the caller is said to receive a new reference. When no ownership

is transferred, the caller is said to borrow the reference. Nothing needs to be done for a borrowed
reference.

Conversely, when calling a function passes it a reference to an object, there are two possibilities: The
function steals a reference to the object, or it does not. Few functions steal references; the two notable
exceptions are PyList_SetItem() and PyTuple_SetItem(), which steal a reference to the item
(but not to the tuple or list into which the item is put). These functions were designed to steal a reference
because of a common idiom for populating a tuple or list with newly created objects; for example, the
code to create the tuple (1, 2, "three") could look similar to this (forget about error handling for the
moment):

PyObject *t;
t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
PyTuple_SetItem(t, 2, PyString_FromString("three"));

Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem()
and PyObject_SetItem() refuse to do this because tuples are an immutable data type. You should
only use PyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New() and PyList_SetItem().
Such code can also use PySequence_SetItem(); this illustrates the difference between the two (the
extra Py_DECREF() calls):

PyObject *l, *x;
l = PyList_New(3);
x = PyInt_FromLong(1L);
PySequence_SetItem(l, 0, x); Py_DECREF(x);
x = PyInt_FromLong(2L);
PySequence_SetItem(l, 1, x); Py_DECREF(x);
x = PyString_FromString("three");
PySequence_SetItem(l, 2, x); Py_DECREF(x);

You might find it strange that the recommended approach takes more code. However, in practice, you will
rarely use these ways of creating and populating a tuple or list. There's a generic function,
Py_BuildValue(), that can create most common objects from C values, directed by a format string.
For example, the previous two blocks of code could be replaced by the following (which also takes care

of the error checking):

PyObject *t, *l;
t = Py_BuildValue("(iis)", 1, 2, "three");
l = Py_BuildValue("[iis]", 1, 2, "three");

It is more common to use PyObject_SetItem() and become friends with items whose references
you are only borrowing, like arguments that were passed in to the function you are writing. In that case,
their behavior regarding reference counts is much saner because you don't have to increment a reference
count so you can give a reference away (have it be stolen). For example, this function sets all items of a
list (actually, any mutable sequence) to a given item:

int set_all(PyObject *target, PyObject *item)
{
 int i, n;
 n = PyObject_Length(target);
 if (n < 0)
 return -1;
 for (i = 0; i < n; i++) {
 if (PyObject_SetItem(target, i, item) < 0)
 return -1;
 }
 return 0;
}

The situation is slightly different for function return values. Although passing a reference to most
functions does not change your ownership responsibilities for that reference, many functions that return a
reference to an object give you ownership of the reference. The reason is simple: In many cases, the
returned object is created on-the-fly, and the reference you get is the only reference to the object.
Therefore, the generic functions that return object references, such as PyObject_GetItem() and
PySequence_GetItem(), always return a new reference (that is, the caller becomes the owner of the
reference).

It is important to realize that whether you own a reference returned by a function only depends on which
function you call—the plumage (that is, the type of the object passed as an argument to the function)
doesn't enter into it. Thus, if you extract an item from a list using PyList_GetItem(), you don't own
the reference—but if you obtain the same item from the same list using PySequence_GetItem()
(which happens to take exactly the same arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of
integers; once using PyList_GetItem(), once using PySequence_GetItem():

long sum_list(PyObject *list)
{
 int i, n;
 long total = 0;

 PyObject *item;

 n = PyList_Size(list);
 if (n < 0)
 return -1; /* Not a list */
 for (i = 0; i < n; i++) {
 item = PyList_GetItem(list, i); /* Can't fail */
 if (!PyInt_Check(item)) continue; /* Skip non-integers */
 total += PyInt_AsLong(item);
 }
 return total;

}
long sum_sequence(PyObject *sequence)
{
 int i, n;
 long total = 0;
 PyObject *item;
 n = PyObject_Size(list);
 if (n < 0)
 return -1; /* Has no length */
 for (i = 0; i < n; i++) {
 item = PySequence_GetItem(list, i);
 if (item == NULL)
 return -1; /* Not a sequence, or other failure */
 if (PyInt_Check(item))
 total += PyInt_AsLong(item);
 Py_DECREF(item); /* Discard reference ownership */
 }
 return total;
}

Types

Few other data types play a significant role in the Python/C API; most are simple C types such as int,
long, double, and char *. A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type. These will be discussed together with the
functions that use them.

Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required;
unhandled exceptions are automatically propagated to the caller, and then to the caller's caller, and so on,
until they reach the top-level interpreter, where they are reported to the user accompanied by a stack
traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API
can raise exceptions, unless an explicit claim is made otherwise in a function's documentation. In general,
when a function encounters an error, it sets an exception, discards any object references that it owns, and
returns an error indicator—usually NULL or -1. A few functions return a Boolean true/false result,
with false indicating an error. Very few functions return no explicit error indicator or have an
ambiguous return value and require explicit testing for errors with PyErr_Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an
unthreaded application). A thread can be in one of two states: An exception has occurred, or it hasn't. The
function PyErr_Occurred() can be used to check for this: It returns a borrowed reference to the
exception type object when an exception has occurred, and NULL otherwise. There are a number of
functions to set the exception state: PyErr_SetString() is the most common (though not the most
general) function to set the exception state, and PyErr_Clear() clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the
corresponding exception value, and the traceback. These have the same meanings as the Python object
sys.exc_type, sys.exc_value, sys.exc_traceback; however, they are not the same: The
Python objects represent the last exception being handled by a Python try ... except statement,
whereas the C level exception state only exists while an exception is being passed on between C functions
until it reaches the Python interpreter, which takes care of transferring it to sys.exc_type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from
Python code is to call the function sys.exc_info(), which returns the per-thread exception state for
Python code. Also, the semantics of both ways to access the exception state have changed so that a
function which catches an exception will save and restore its thread exception state to preserve the
exception state of its caller. This prevents common bugs in exception handling code caused by an
innocent- looking function overwriting the exception being handled; it also reduces the often unwanted
lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether

the called function raised an exception, and if so, pass the exception state on to its caller. It should discard
any object references that it owns, and returns an error indicator, but it should not set another
exception—that would overwrite the exception just raised and lose important information about the exact
cause of the error.

A simple example of detecting exceptions and passing them on is shown in the previous
sum_sequence() example. It so happens that the example doesn't need to clean up any owned
references when it detects an error. The following example function shows some error cleanup. First, to
remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key):
 try:
 item = dict[key]
 except KeyError:
 item = 0
 return item + 1

Here is the corresponding C code, in all its glory:

int incr_item(PyObject *dict, PyObject *key)
{
 /* Objects all initialized to NULL for Py_XDECREF */
 PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
 int rv = -1; /* Return value initialized to -1 (failure) */
 item = PyObject_GetItem(dict, key);
 if (item == NULL) {
 /* Handle KeyError only: */
 if (!PyErr_ExceptionMatches(PyExc_KeyError)) goto error;
 /* Clear the error and use zero: */
 PyErr_Clear();
 item = PyInt_FromLong(0L);
 if (item == NULL) goto error;
 }
 const_one = PyInt_FromLong(1L);
 if (const_one == NULL) goto error;
 incremented_item = PyNumber_Add(item, const_one);
 if (incremented_item == NULL) goto error;

 if (PyObject_SetItem(dict, key, incremented_item) < 0) goto error;
 rv = 0; /* Success */
 /* Continue with cleanup code */

 error:
 /* Cleanup code, shared by success and failure path */
 /* Use Py_XDECREF() to ignore NULL references */
 Py_XDECREF(item);
 Py_XDECREF(const_one);
 Py_XDECREF(incremented_item);
 return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of the goto statement in C. It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that might be NULL (note the X in the name;
Py_DECREF() would crash when confronted with a NULL reference). It is important that the variables
used to hold owned references are initialized to NULL for this to work; likewise, the proposed return value
is initialized to -1 (failure) and only set to success after the final call made is successful.

Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter
have to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most
functionality of the interpreter can only be used after the interpreter has been initialized.

The basic initialization function is Py_Initialize(). This initializes the table of loaded modules
and creates the fundamental modules __builtin__, __main__, and sys. It also initializes the
module search path (sys.path).

Py_Initialize() does not set the script argument list (sys.argv). If this variable is needed by
Python code that will be executed later, it must be set explicitly with a call to PySys_SetArgv(argc,
argv) subsequent to the call to Py_Initialize().

On most systems (in particular, on UNIX and Windows, although the details are slightly different),
Py_Initialize() calculates the module search path based on its best guess for the location of the
standard Python interpreter executable, assuming that the Python library is found in a fixed location
relative to the Python interpreter executable. In particular, it looks for a directory named lib/python1.5
(replacing 1.5 with the current interpreter version) relative to the parent directory where the executable
named "python" is found on the shell command search path (the environment variable $PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the
libraries are in /usr/local/lib/python1.5. (In fact, this particular path is also the fallback
location, used when no executable file named "python" is found along $PATH, unless some other

prefix is set when configure is called.) The user can override this behavior by setting the environment
variable $PYTHONHOME, or insert additional directories in front of the standard path by setting
$PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName(file) before
calling Py_Initialize(). Note that $PYTHONHOME still overrides this and $PYTHONPATH is still
inserted in front of the standard path. An application that requires total control has to provide its own
implementation of Py_GetPath(), Py_GetPrefix(),Py_GetExecPrefix(), and
Py_GetProgramFullPath() (all defined in Modules/ getpath.c).

Sometimes, it is desirable to uninitialize Python. For instance, the application might want to start over
(make another call to Py_Initialize()) or the application is simply done with its use of Python and
wants to free all memory allocated by Python. This can be accomplished by calling Py_Finalize().
The function Py_IsInitialized() returns true if Python is currently in the initialized state. More
information about these functions is given in a later section.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

__builtin__ module
__main__ module
accessing
 exception states
Application Programmers Interface (API)
 Python/C 2nd 3rd 4th 5th 6th 7th 8th 9th
borrowed references
checking
 error 2nd
configuring
 items in lists
 tuples
counts
 reference
 Python/C Application Programmers (API) interface 2nd 3rd 4th 5th
decrementing
 reference counts
embedding
 Python
 Python/C Application Programmers Interface (API)
error checking 2nd
exceptions

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=257

 finding 2nd
 Python/C Application Programmers Interface (API) 2nd 3rd
fallback location
files
 header
finding
 exceptions 2nd
functions
 embedding Python
 handling exceptions 2nd 3rd
 passing references to
 Py_BuildValue()
 Py_Finalize()
 Py_GetExecPrefix()
 Py_GetPath()
 Py_GetPrefix()
 Py_GetProgramFullPath()
 Py_Initialize() 2nd
 Py_IsInitialized()
 Py_SetProgramName(file)
 PyErr_Clear()
 PyErr_SetString()
 PyList_GetItem()
 PyList_New()
 PyList_SetItem()
 PyObject_GetItem()
 PyObject_SetItem()
 PySequence_GetItem() 2nd
 PySequence_SetItem()
 PyTuple_SetItem()
 reference counts 2nd 3rd
 sum_sequence() 2nd
 sys.exec_info()
header files
incrementing
 reference counts 2nd
interfaces
 Python/C Application Programmers (API) 2nd 3rd 4th 5th 6th 7th 8th 9th
lists
 populating
 setting items in
macros
 Py_DECREF() 2nd 3rd
 Py_INCREF()
 Py_XDECREF() 2nd
 reference counts 2nd 3rd
modules

 __builtin__
 __main__
 sys
object types
 Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th
ownership, references
passing
 exceptions 2nd
 references to functions
populating
 lists
Py_BuildValue() function
Py_DECREF() macro 2nd 3rd
Py_Finalize() function
Py_GetExecPrefix() function
Py_GetPath() function
Py_GetPrefix() function
Py_GetProgramFullPath() function
Py_INCREF() macro
Py_Initialize() function 2nd
Py_IsInitialized() function
Py_SetProgramName(file) function
Py_XDECREF() macro 2nd
PyErr_Clear() function
PyErr_Occurred() function
PyErr_SetString() function
PyList_GetItem() function
PyList_New() function
PyList_SetItem() function
PyObject_GetItem() function
PyObject_SetItem() function
PySequence_GetItem() function 2nd
PySequence_SetItem() function
Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th 6th 7th 8th 9th
PyTuple_SetItem() function
reference counts
 Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th
searching
 exceptions 2nd
setting
 items in lists
 typles
state
 exceptions
states
 thread
stealing references

sum_sequence() function 2nd
sys module
sys.exec_info() function
threads
 states
tuples
 setting

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > A. Python/C API > The Very High
Level Layer

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218072221085031055118075

The Very High Level Layer

The functions in this section will let you execute Python source code given in a file or a buffer, but they
will not let you interact in a more detailed way with the interpreter. Several of these functions accept a
start symbol from the grammar as a parameter. The available start symbols are Py_eval_input,
Py_file_input, and Py_single_input. These are described following the functions that
accept them as parameters.

int PyRun_AnyFile(FILE *fp, char *filename)

If fp refers to a file associated with an interactive device (console or terminal input or UNIX pseudo-
terminal), returns the value of PyRun_InteractiveLoop(), otherwise returns the result of
PyRun_SimpleFile(). If filename is NULL, use "???" as the filename.

int PyRun_SimpleString(char *command)

Executes the Python source code from command in the __main__ module. If __main__ does not
already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there was an error,
it is not possible to get the exception information.

int PyRun_SimpleFile(FILE *fp, char *filename)

Similar to PyRun_SimpleString(), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file.

int PyRun_InteractiveOne(FILE *fp, char *filename)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=258
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A28%3A07+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read1.asp?bookname=0672319942&snode=258&now=6%2F1%2F2002+6%3A28%3A07+PM

int PyRun_InteractiveLoop(FILE *fp, char *filename)

struct _node* PyParser_SimpleParseString(char *str, int start)

Parses Python source code from str using the start token start. The result can be used to create a code
object that can be evaluated efficiently. This is useful if a code fragment must be evaluated many times.

struct _node* PyParser_SimpleParseFile(FILE *fp, char *filename,
int start)

Similar to PyParser_SimpleParseString(), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file.

PyObject* PyRun_String(char *str, int start, PyObject *globals,
PyObject *locals)

Executes Python source code from str in the context specified by the globals and locals dictionaries.
The parameter start specifies the start token that should be used to parse the source code. Returns the
result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File(FILE *fp, char *filename, int start, PyObject
*globals, PyObject *locals)

Similar to PyRun_String(), but the Python source code is read from fp instead of an in-memory
string. filename should be the name of the file.

PyObject* Py_CompileString(char *str, char *filename, int start)

Returns value: New reference. Parses and compiles the Python source code in str, returning the
resulting code object. The start token is given by start; this can be used to constrain the code that can be

compiled and should be Py_eval_input, Py_file_input, or Py_single_input. The
filename specified by filename is used to construct the code object and can appear in tracebacks or
SyntaxError exception messages. This returns NULL if the code cannot be parsed or compiled.

int Py_eval_input

The start symbol from the Python grammar for isolated expressions; for use with
Py_CompileString().

int Py_file_input

The start symbol from the Python grammar for sequences of statements as read from a file or other
source; for use with Py_CompileString(). This is the symbol to use when compiling arbitrarily
long Python source code.

int Py_single_input

The start symbol from the Python grammar for a single statement; for use with
Py_CompileString(). This is the symbol used for the interactive interpreter loop.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=258

Index terms contained in this section

Application Programmers Interface (API)
 Python/C
 executing source code, files and buffers
buffers
 executing source code, Python/C Application Programmers Interface (API)
code
 source
 executing, Python/C Application Programmers Interface (API)
files
 executing source code, Application Programmers Interface (API)
 Python/C
functions
 executing source code, Application Programmers Interface (API)
 Python/C
interfaces
 Python/C Application Programmers (API)
 executing source code, files and buffers
Python/C Application Programmers Interface (API)
 executing source code, files and buffers
source code
 executing, Python/C Application Programmers (API)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > A. Python/C API > Reference
Counting

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218072221087111231141199

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py_INCREF(PyObject *o)

Increments the reference count for object o. The object must not be NULL; if you aren't sure that it
isn't NULL, use Py_XINCREF().

void Py_XINCREF(PyObject *o)

Increments the reference count for object o. The object might be NULL, in which case the macro has
no effect.

void Py_DECREF(PyObject *o)

Decrements the reference count for object o. The object must not be NULL; if you aren't sure that it
isn't NULL, use Py_XDECREF(). If the reference count reaches zero, the object's type's deallocation
function (which must not be NULL) is invoked.

Caution

The deallocation function can cause arbitrary Python code to be invoked (for example, when a class
instance with a __del__() method is deallocated). Although exceptions in such code are not
propagated, the executed code has free access to all Python global variables. This means that any
object reachable from a global variable should be in a consistent state before Py_DECREF() is
invoked. For example, code to delete an object from a list should copy a reference to the deleted

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=259
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A28%3A24+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=259&now=6%2F1%2F2002+6%3A28%3A24+PM

object in a temporary variable, update the list data structure, and then call Py_DECREF() for the
temporary variable.

void Py_XDECREF(PyObject *o)

Decrements the reference count for object o. The object might be NULL, in which case the macro has
no effect; otherwise the effect is the same as for Py_DECREF(), and the same caution applies.

The following functions or macros are only for use within the interpreter core: _Py_Dealloc(),
_Py_ForgetReference(), _Py_NewReference(), as well as the global variable
_Py_RefTotal.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Application Programmers Interface (API)
 Python/C
 managing reference counts, Python objects
counts
 reference
 managing, Python objects
deallocation function
functions
 deallocation
 managing reference counts, Python objects
interfaces
 Python/C Application Programmers (API)
 managing reference counts, Python objects
macros
 Py_DECREF()
managing
 reference counts, Python objects
objects
 Python
 managing reference counts

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=259

Py_DECREF() macro
Python/C Application Programmers Interface (API)
 managing reference counts, Python objects
reference counts
 managing, Python objects

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > A. Python/C API > Exception Handling See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218072221081002154098091

Exception Handling

The functions described in this section will let you handle and raise Python exceptions. It is important to
understand some of the basics of Python exception handling. It works somewhat like the UNIX errno
variable: There is a global indicator (per thread) of the last error that occurred. Most functions don't clear this
on success, but will set it to indicate the cause of the error on failure. Most functions also return an error
indicator, usually NULL if they are supposed to return a pointer, or -1 if they return an integer (exception:
the PyArg_Parse*() functions returns 1 for success and 0 for failure). When a function must fail
because some function it called failed, it generally doesn't set the error indicator; the function it called
already set it.

The error indicator consists of three Python objects corresponding to the Python variables:
sys.exc_type, sys.exc_value, and sys.exc_traceback. API functions exist to interact with
the error indicator in various ways. There is a separate error indicator for each thread.

void PyErr_Print()

Prints a standard traceback to sys.stderr and clears the error indicator. Call this function only when the
error indicator is set. (Otherwise it will cause a fatal error.)

PyObject* PyErr_Occurred()

Return value: Borrowed reference. Tests whether the error indicator is set. If set, returns the exception type
(the first argument to the last call to one of the PyErr_Set*() functions or to PyErr_Restore()). If
not set, returns NULL. You do not own a reference to the return value, so you do not need to
Py_DECREF() it.

Note

Do not compare the return value to a specific exception; use PyErr_ExceptionMatches() instead,
shown as follows. (The comparison could easily fail because the exception might be an instance instead
of a class, in the case of a class exception, or it might the subclass of the expected exception.)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=260
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A28%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=260&now=6%2F1%2F2002+6%3A28%3A42+PM

int PyErr_ExceptionMatches(PyObject *exc)

Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(), exc). This should only
be called when an exception is actually set; a memory access violation will occur if no exception has been
raised.

int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)

Return true if the given exception matches the exception in exc. If exc is a class object, this also returns
true when given as an instance of a subclass. If exc is a tuple, all exceptions in the tuple (and recursively
in subtuples) are searched for a match. If given is NULL, a memory access violation will occur.

void PyErr_NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)

Under certain circumstances, the values returned by PyErr_Fetch() as follows can be unnormalized,
meaning that *exc is a class object but *val is not an instance of the same class. This function can be used
to instantiate the class in that case. If the values are already normalized, nothing happens. The delayed
normalization is implemented to improve performance.

void PyErr_Clear()

Clears the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject
**ptraceback)

Retrieves the error indicator into three variables whose addresses are passed. If the error indicator is not set,
sets all three variables to NULL. If it is set, it will be cleared and you own a reference to each object
retrieved. The value and traceback object might be NULL even when the type object is not.

Note

This function is normally only used by code that needs to handle exceptions or by code that needs to save
and restore the error indicator temporarily.

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)

Sets the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the
objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback.
The exception type should be a string or class; if it is a class, the value should be an instance of that class. Do
not pass an invalid exception type or value. (Violating these rules will cause subtle problems later.) This call
takes away a reference to each object; that is, you must own a reference to each object before the call and
after the call you no longer own these references. (Warning: If you don't understand this, don't use this
function.)

Note

This function is normally only used by code that needs to save and restore the error indicator temporarily.

void PyErr_SetString(PyObject *type, char *message)

This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, for example, PyExc_RuntimeError. You need not increment
its reference count. The second argument is an error message; it is converted to a string object.

void PyErr_SetObject(PyObject *type, PyObject *value)

This function is similar to PyErr_SetString() but lets you specify an arbitrary Python object for the
value of the exception. You need not increment its reference count.

void PyErr_SetNone(PyObject *type)

This is a shorthand for PyErr_SetObject(type, Py_None).

int PyErr_BadArgument()

This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where message
indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory()

Return value: Borrowed reference. This is a shorthand for PyErr_SetNone(PyExc_MemoryError); it
returns NULL so that an object allocation function can write return PyErr_NoMemory(); when it runs
out of memory.

PyObject* PyErr_SetFromErrno(PyObject *type)

This is a convenience function to raise an exception when a C library function has returned an error and set
the C variable errno. It constructs a tuple object whose first item is the integer errno value and whose
second item is the corresponding error message (gotten from strerror()), and then calls
PyErr_SetObject(type, object). On UNIX, when the errno value is EINTR, indicating an
interrupted system call, this calls PyErr_CheckSignals(), and if that sets the error indicator, it is left
set to that. The function always returns NULL, so a wrapper function around a system call can write
return PyErr_SetFromErrno(); when the system call returns an error.

void PyErr_BadInternalCall()

This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where a message
indicates that an internal operation (for example, a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

int PyErr_CheckSignals()

This function interacts with Python's signal handling. It checks whether a signal has been sent to the
processes and if so, invokes the corresponding signal handler. If the signal module is supported, this can
invoke a signal handler written in Python. In all cases, the default effect for SIGINT is to raise the
KeyboardInterrupt exception. If an exception is raised, the error indicator is set and the function returns 1;
otherwise the function returns 0. The error indicator might or might not be cleared if it was previously set.

void PyErr_SetInterrupt()

This function is obsolete. It simulates the effect of a SIGINT signal arriving—the next time
PyErr_CheckSignals() is called, KeyboardInterrupt will be raised. It can be called without holding the
interpreter lock.

PyObject* PyErr_NewException(char *name, PyObject *base, PyObject *dict)

Return value: New reference. This utility function creates and returns a new exception object. The name
argument must be the name of the new exception, a C string of the form module.class. The base and
dict arguments are normally NULL. Normally, this creates a class object derived from the root for all
exceptions, the built-in name Exception (accessible in C as PyExc_Exception). In this case the
__module__ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). When the user has specified the -X command line
option to use string exceptions, for backward compatibility, or when the base argument is not a class object
(and not NULL), a string object created from the entire name argument is returned. The base argument can be
used to specify an alternate base class. The dict argument can be used to specify a dictionary of class
variables and methods.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=260

Index terms contained in this section

Application Programmers Interface (API)
 Python/C
 handling and raising exceptions 2nd 3rd
error indicator
exceptions
 handling and raising, Python/C Applications Programmers Interface (API) 2nd 3rd
functions
 handling and raising exceptions 2nd 3rd
 PyErr_ExceptionMatches()
handling
 exceptions, Python/C Application Programmers Interface (API) 2nd 3rd
indicators
 error
interfaces
 Python/C Application Programmers (API)
 handling and raising exceptions 2nd 3rd
PyErr_ExceptionMatches() function
Python/C Application Programmers Interface (API)
 handling and raising exceptions 2nd 3rd
raising
 exceptions, Python/C Application Programmers Interface (API) 2nd 3rd
unnormalized values
values
 unnormalized

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > A. Python/C API > Standard
Exceptions

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218072221080086060241090

Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by
the Python exception name. These have the type PyObject*; they are all either class objects or string
objects, depending on the use of the -X option to the interpreter. For completeness, all the variables are
in Table A.1.

Table A.1. C Variables for the Standard Python Exceptions

C Name Python Name See Note below
PyExc_Exception Exception *
PyExc_StandardError StandardError *
PyExc_ArithmeticError ArithmeticError *
PyExc_LookupError LookupError *
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_EOFError EOFError
PyExc_EnvironmentError EnvironmentError *
PyExc_FloatingPointError FloatingPointError
PyExc_IOError IOError
PyExc_ImportError ImportError
PyExc_IndexError IndexError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_MemoryError MemoryError
PyExc_NameError NameError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError
PyExc_OverflowError OverflowError
PyExc_RuntimeError RuntimeError
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=261
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A28%3A56+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=261&now=6%2F1%2F2002+6%3A28%3A56+PM

PyExc_TypeError TypeError
PyExc_ValueError ValueError
PyExc_ZeroDivisionError ZeroDivisionError
* This is a base class for other standard exceptions. If the -X interpreter command option is used, these will
be tuples containing the string exceptions that would have otherwise been subclasses.

Deprecation of String Exceptions

The -X command-line option will be removed in Python 1.6/2.0. All exceptions built into Python or
provided in the standard library will be classes derived from Exception.

String exceptions will still be supported in the interpreter to allow existing code to run unmodified, but
this will also change in a future release.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Application Programmers Interface (API)
 Python/C
 variables, exceptions
exceptions
 variables, Python/C Applications Programmers Interface (API)
global variables, Python/C Application Programmers Interface (API)
interfaces
 Python/C Application Programmers (API)
 variables, exceptions
Python/C Application Programmers Interface (API)
 variables, exceptions
variables
 exceptions, Python/C Application Programmers Interface (API)

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=261

Web Development > Python Developer's Handbook > A. Python/C API > Utilities See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218073235211117046157090

Utilities

The functions in this section perform various utility tasks, such as parsing function arguments and
constructing Python values from C values.

OS Utilities

int Py_FdIsInteractive(FILE *fp, char *filename)

Returns true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the
case for files for which isatty(fileno(fp)) is true. If the global flag
Py_InteractiveFlag is true, this function also returns true if the name pointer is NULL or if
the name is equal to one of the strings "<stdin>" or "???".

long PyOS_GetLastModificationTime(char *filename)

Returns the time of last modification of the file filename. The result is encoded in the same way as
the timestamp returned by the standard C library function time().

Process Control

void Py_FatalError(char *message)

Prints a fatal error message and kills the process. No cleanup is performed. This function should only
be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; for instance, when the object administration appears to be corrupted. On UNIX, the
standard C library function abort() is called, which will attempt to produce a core file.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=262
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A29%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=262&now=6%2F1%2F2002+6%3A29%3A06+PM

void Py_Exit(int status)

Exits the current process. This calls Py_Finalize() and then calls the standard C library function
exit(status).

int Py_AtExit(void (*func) ())

Registers a cleanup function to be called by Py_Finalize(). The cleanup function will be called
with no arguments and should return no value. At most, 32 cleanup functions can be registered. When
the registration is successful, Py_AtExit() returns 0; on failure, it returns -1. The cleanup function
registered last is called first. Each cleanup function will be called at most once. Because Python's
internal finalization will have completed before the cleanup function, no Python APIs should be called
by func.

Importing Modules

PyObject* PyImport_ImportModule(char *name)

Return value: New reference. This is a simplified interface to PyImport_ImportModuleEx() that
follows, leaving the globals and locals arguments set to NULL. When the name argument contains a
dot (in other words, when it specifies a submodule of a package), the fromlist argument is set to the list
['*'] so that the return value is the named module rather than the top-level package containing it as
would otherwise be the case. (Unfortunately, this has an additional side effect when name in fact
specifies a subpackage instead of a submodule: the submodules specified in the package's __all__
variable are loaded.) Returns a new reference to the imported module, or NULL with an exception set
on failure (the module can still be created in this case—examine sys.modules to find out).

Note

This interface bypasses any import hooks installed with the ihooks module.

PyObject* PyImport_ImportModuleEx(char *name, PyObject *globals,
PyObject *locals, PyObject *fromlist)

Return value: New reference. Imports a module. This is best described by referring to the built-in
Python function __import__() because the standard __import__() function calls this function
directly.

The return value is a new reference to the imported module or top-level package, or NULL with an
exception set on failure (the module might still be created in this case). As for __import__(), the
return value when a submodule of a package was requested is normally the top-level package, unless a
non-empty fromlist was given.

PyObject* PyImport_Import(PyObject *name)

Return value: New reference. This is a higher-level interface that calls the current "import hook
function". It invokes the __import__() function from the __builtins__ of the current globals.
This means that the import is done using whatever import hooks are installed in the current
environment, for instance, by rexec or ihooks.

PyObject* PyImport_ReloadModule(PyObject *m)

Return value: New reference. Reloads a module. This is best described by referring to the built-in
Python function reload() because the standard reload() function calls this function directly.
Returns a new reference to the reloaded module, or NULL with an exception set on failure (the module
still exists in this case).

PyObject* PyImport_AddModule(char *name)

Return value: Borrowed reference. Returns the module object corresponding to a module name. The
name argument might be of the form package.module). First checks the modules dictionary if
there's one there, and if not, creates a new one and inserts in in the modules dictionary. Warning: This
function does not load or import the module; if the module wasn't already loaded, you will get an

empty module object. Use PyImport_ImportModule() or one of its variants to import a module.
Returns NULL with an exception set on failure.

PyObject* PyImport_ExecCodeModule(char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile(), loads the
module. Returns a new reference to the module object, or NULL with an exception set if an error
occurred (the module can still be created in this case). This function would reload the module if it was
already imported.

long PyImport_GetMagicNumber()

Returns the magic number for Python bytecode files (also known as .pyc and .pyo files). The magic
number should be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport_GetModuleDict()

Return value: Borrowed reference. Returns the dictionary used for the module administration (also
known as sys.modules). Note that this is a per-interpreter variable.

void _PyImport_Init()

Initializes the import mechanism. For internal use only.

void PyImport_Cleanup()

Empties the module table. For internal use only.

void _PyImport_Fini()

Finalizes the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension(char *, char *)

Return value: Borrowed reference. For internal use only.

PyObject* _PyImport_FixupExtension(char *, char *)

For internal use only.

int PyImport_ImportFrozenModule(char *)

Loads a frozen module. Returns 1 for success, 0 if the module is not found, and -1 with an exception
set if the initialization failed. To access the imported module on a successful load, uses
PyImport_ImportModule(). (Note the misnomer—this function would reload the module if it
was already imported.)

struct _frozen

This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition is

struct _frozen {
 char *name;
 unsigned char *code;
 int size;
} ;

struct _frozen* PyImport_FrozenModules

This pointer is initialized to point to an array of struct _frozen records, terminated by one whose
members are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-
party code could play tricks with this to provide a dynamically created collection of frozen modules.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Application Programmers Interface (API)
 Python/C
 utility tasks 2nd 3rd 4th
functions
 importing
 modules 2nd 3rd
 utilities
 OS
 process control
importing
 modules 2nd 3rd
interfaces
 Python/C Application Programmers (API)
 utility tasks 2nd 3rd 4th
modules
 importing 2nd 3rd
OS utilities
process control utilities
Python/C Application Programmers Interface (API)
 utility tasks 2nd 3rd 4th
tools
 OS
 process control
utilities
 OS
 process control

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=262

Web Development > Python Developer's Handbook > A. Python/C API > Abstract Objects
Layer

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218073235210198230006105

Abstract Objects Layer

The functions in this section interact with Python objects regardless of their type, or with wide classes of
object types (for example, all numerical types, or all sequence types). When used on object types for which
they do not apply, they will raise a Python exception.

Object Protocol

int PyObject_Print(PyObject *o, FILE *fp, int flags)

Prints an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing
options. The only option currently supported is Py_PRINT_RAW; if given, the str() of the object is
written instead of the repr().

int PyObject_HasAttrString(PyObject *o, char *attr_name)

Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
"hasattr(o, attr_name)". This function always succeeds.

PyObject* PyObject_GetAttrString(PyObject *o, char *attr_name)

Return value: New reference. Retrieves an attribute named attr_name from object o. Returns the
attribute value on success, or NULL on failure. This is the equivalent of the Python expression
"o.attr_name".

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=263
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A29%3A19+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=263&now=6%2F1%2F2002+6%3A29%3A19+PM

Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
"hasattr(o, attr_name)". This function always succeeds.

PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)

Return value: New reference. Retrieves an attribute named attr_name from object o. Returns the
attribute value on success, or NULL on failure. This is the equivalent of the Python expression
"o.attr_name".

int PyObject_SetAttrString(PyObject *o, char *attr_name, PyObject *v)

Sets the value of the attribute named attr_name, for object o, to the value v. Returns -1 on failure.
This is the equivalent of the Python statement "o.attr_name = v".

int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)

Sets the value of the attribute named attr_name, for object o, to the value v. Returns -1 on failure.
This is the equivalent of the Python statement "o.attr_name = v".

int PyObject_DelAttrString(PyObject *o, char *attr_name)

Deletes attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of the
Python statement "del o.attr_name".

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)

Deletes attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of the
Python statement "del o.attr_name".

int PyObject_Cmp(PyObject *o1, PyObject *o2, int *result)

Compares the values of o1 and o2 using a routine provided by o1, if one exists, otherwise with a routine
provided by o2. The result of the comparison is returned in result. Returns -1 on failure. This is the
equivalent of the Python statement "result = cmp(o1, o2)".

int PyObject_Compare(PyObject *o1, PyObject *o2)

Compares the values of o1 and o2 using a routine provided by o1, if one exists, otherwise with a routine
provided by o2. Returns the result of the comparison on success. On error, the value returned is
undefined; uses PyErr_Occurred() to detect an error. This is equivalent to the Python expression
"cmp(o1, o2)".

PyObject* PyObject_Repr(PyObject *o)

Return value: New reference. Computes a string representation of object o. Returns the string
representation on success, or NULL on failure. This is the equivalent of the Python expression
"repr(o)". Called by the repr() built-in function and by reverse quotes.

PyObject* PyObject_Str(PyObject *o)

Return value: New reference. Computes a string representation of object o. Returns the string
representation on success, or NULL on failure. This is the equivalent of the Python expression "str(o)".
Called by the str() built-in function and by the print statement.

int PyCallable_Check(PyObject *o)

Determines if the object o is callable. Returns 1 if the object is callable and 0 otherwise. This function
always succeeds.

PyObject* PyObject_CallObject(PyObject *callable_object, PyObject *args)

Return value: New reference. Calls a callable Python object callable_object, with arguments given
by the tuple args. If no arguments are needed, args might be NULL. Returns the result of the call on
success, or NULL on failure. This is the equivalent of the Python expression "apply(o, args)".

PyObject* PyObject_CallFunction(PyObject *callable_object, char
*format,...)

Return value: New reference. Calls a callable Python object callable_object, with a variable
number of C arguments. The C arguments are described using a Py_BuildValue() style format string.
The format might be NULL, indicating that no arguments are provided. Returns the result of the call on
success, or NULL on failure. This is the equivalent of the Python expression "apply(o, args)".

PyObject* PyObject_CallMethod(PyObject *o, char *m, char *format, ...)

Return value: New reference. Calls the method named m of object o with a variable number of C
arguments. The C arguments are described by a Py_BuildValue() format string. The format might be
NULL, indicating that no arguments are provided. Returns the result of the call on success, or NULL on
failure. This is the equivalent of the Python expression "o.method(args)". Note that special method
names, such as __add__(), __getitem__(), and so on are not supported. The specific abstract-
object routines for these must be used.

int PyObject_Hash(PyObject *o)

Computes and returns the hash value of an object o. On failure, it returns -1. This is the equivalent of the
Python expression "hash(o)".

int PyObject_IsTrue(PyObject *o)

Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python

expression "not not o". This function always succeeds.

PyObject* PyObject_Type(PyObject *o)

Return value: New reference. On success, returns a type object corresponding to the object type of object
o. On failure, it returns NULL. This is equivalent to the Python expression "type(o)".

int PyObject_Length(PyObject *o)

Returns the length of object o. If the object o provides both sequence and mapping protocols, the sequence
length is returned. On error, -1 is returned. This is the equivalent to the Python expression "len(o)".

PyObject* PyObject_GetItem(PyObject *o, PyObject *key)

Return value: New reference. Returns the element of o corresponding to the object key or NULL on failure.
This is the equivalent of the Python expression "o[key]".

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)

Maps the object key to the value v. Returns -1 on failure. This is the equivalent of the Python statement
"o[key] = v".

int PyObject_DelItem(PyObject *o, PyObject *key)

Deletes the mapping for key from o. Returns -1 on failure. This is the equivalent of the Python statement
"del o[key]".

Number Protocol

int PyNumber_Check(PyObject *o)

Returns 1 if the object o provides numeric protocols, and false otherwise. This function always
succeeds.

PyObject* PyNumber_Add(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of adding o1 and o2, or NULL on failure. This is the
equivalent of the Python expression "o1 + o2".

PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of subtracting o2 from o1, or NULL on failure. This is the
equivalent of the Python expression "o1 - o2".

PyObject* PyNumber_Multiply(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of multiplying o1 and o2, or NULL on failure. This is the
equivalent of the Python expression "o1 * o2".

PyObject* PyNumber_Divide(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of dividing o1 by o2, or NULL on failure. This is the
equivalent of the Python expression "o1 / o2".

PyObject* PyNumber_Remainder(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the remainder of dividing o1 by o2, or NULL on failure. This is the
equivalent of the Python expression "o1 % o2".

PyObject* PyNumber_Divmod(PyObject *o1, PyObject *o2)

Return value: New reference. See the built-in function divmod(). Returns NULL on failure. This is the
equivalent of the Python expression "divmod(o1, o2)".

PyObject* PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)

Return value: New reference. See the built-in function pow(). Returns NULL on failure. This is the
equivalent of the Python expression "pow(o1, o2, o3)", where o3 is optional. If o3 is to be
ignored, pass Py_None in its place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_Negative(PyObject *o)

Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the
equivalent of the Python expression "-o"

PyObject* PyNumber_Positive(PyObject *o)

Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the
Python expression "+o".

PyObject* PyNumber_Absolute(PyObject *o)

Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of
the Python expression "abs(o)".

PyObject* PyNumber_Invert(PyObject *o)

Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the
equivalent of the Python expression "~o".

PyObject* PyNumber_Lshift(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of left shifting o1 by o2 on success, or NULL on failure.
This is the equivalent of the Python expression "o1 << o2".

PyObject* PyNumber_Rshift(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of right shifting o1 by o2 on success, or NULL on failure.
This is the equivalent of the Python expression "o1 >> o2".

PyObject* PyNumber_And(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of "anding" o1 and o2 on success and NULL on failure.
This is the equivalent of the Python expression "o1 and o2".

PyObject* PyNumber_Xor(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the bitwise exclusive or of o1 by o2 on success, or NULL on
failure. This is the equivalent of the Python expression "o1 ^ o2".

PyObject* PyNumber_Or(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of o1 and o2 on success, or NULL on failure. This is the
equivalent of the Python expression "o1 or o2".

PyObject* PyNumber_Coerce(PyObject **p1, PyObject **p2)

This function takes the addresses of two variables of type PyObject*. If the objects pointed to by *p1
and *p2 have the same type, increment their reference count and return 0 (success). If the objects can be
converted to a common numeric type, replace *p1 and *p2 by their converted value (with new reference
counts), and return 0. If no conversion is possible, or if some other error occurs, return -1 (failure) and
don't increment the reference counts. The call PyNumber_Coerce(&o1, &o2) is equivalent to the
Python statement "o1, o2 = coerce(o1, o2)".

PyObject* PyNumber_Int(PyObject *o)

Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure.
This is the equivalent of the Python expression "int(o)".

PyObject* PyNumber_Long(PyObject *o)

Return value: New reference. Returns the o converted to a long integer object on success, or NULL on
failure. This is the equivalent of the Python expression "long(o)".

PyObject* PyNumber_Float(PyObject *o)

Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This
is the equivalent of the Python expression "float(o)".

Sequence Protocol

int PySequence_Check(PyObject *o)

Returns 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

int PySequence_Length(PyObject *o)

Returns the number of objects in sequence; o on success, and -1 on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expression "len(o)".

PyObject* PySequence_Concat(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the concatenation of o1 and o2 on success, and NULL on failure.
This is the equivalent of the Python expression "o1 + o2".

PyObject* PySequence_Repeat(PyObject *o, int count)

Return value: New reference. Returns the result of repeating sequence object o count times, or NULL on
failure. This is the equivalent of the Python expression "o * count".

PyObject* PySequence_GetItem(PyObject *o, int i)

Return value: New reference. Returns the ith element of o, or NULL on failure. This is the equivalent of
the Python expression "o[i]".

PyObject* PySequence_GetSlice(PyObject *o, int i1, int i2)

Return value: New reference. Returns the slice of sequence object o between i1 and i2, or NULL on
failure. This is the equivalent of the Python expression "o[i1:i2]".

int PySequence_SetItem(PyObject *o, int i, PyObject *v)

Assigns object v to the ith element of o. Returns -1 on failure. This is the equivalent of the Python
statement "o[i] = v".

int PySequence_DelItem(PyObject *o, int i)

Deletes the ith element of object v. Returns -1 on failure. This is the equivalent of the Python statement
"del o[i]".

int PySequence_SetSlice(PyObject *o, int i1, int i2, PyObject *v)

Assigns the sequence object v to the slice in sequence object o from i1 to i2. This is the equivalent of
the Python statement "o[i1:i2] = v".

int PySequence_DelSlice(PyObject *o, int i1, int i2)

Deletes the slice in sequence object o from i1 to i2. Returns -1 on failure. This is the equivalent of the
Python statement "del o[i1:i2]".

PyObject* PySequence_Tuple(PyObject *o)

Return value: New reference. Returns the o as a tuple on success, and NULL on failure. This is equivalent
to the Python expression "tuple(o)".

int PySequence_Count(PyObject *o, PyObject *value)

Returns the number of occurrences of value in o; that is, returns the number of keys for which o[key]
== value. On failure, returns -1. This is equivalent to the Python expression "o.count(value)".

int PySequence_Contains(PyObject *o, PyObject *value)

Determines if o contains value. If an item in o is equal to value, returns 1, otherwise returns 0. On error,

returns -1. This is equivalent to the Python expression "value in o".

int PySequence_Index(PyObject *o, PyObject *value)

Returns the first index i for which o[i] == value. On error, returns -1. This is equivalent to the
Python expression "o.index(value)".

Mapping Protocol

int PyMapping_Check(PyObject *o)

Returns 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

int PyMapping_Length(PyObject *o)

Returns the number of keys in object o on success, and -1 on failure. For objects that do not provide
mapping protocol, this is equivalent to the Python expression "len(o)".

int PyMapping_DelItemString(PyObject *o, char *key)

Removes the mapping for object key from the object o. Returns -1 on failure. This is equivalent to the
Python statement "del o[key]".

int PyMapping_DelItem(PyObject *o, PyObject *key)

Removes the mapping for object key from the object o. Returns -1 on failure. This is equivalent to the
Python statement "del o[key]".

int PyMapping_HasKeyString(PyObject *o, char *key)

On success, returns 1 if the mapping object has the key identified by the key pointer, and 0
otherwise. This is equivalent to the Python expression "o.has_key(key)". This function always
succeeds.

int PyMapping_HasKey(PyObject *o, PyObject *key)

Returns 1 if the mapping object has the key identified by the key pointer and 0 otherwise. This is
equivalent to the Python expression "o.has_key(key)". This function always succeeds.

PyObject* PyMapping_Keys(PyObject *o)

Return value: New reference. On success, returns a list of the keys in object o. On failure, returns NULL.
This is equivalent to the Python expression "o.keys()".

PyObject* PyMapping_Values(PyObject *o)

Return value: New reference. On success, returns a list of the values in object o. On failure, returns
NULL. This is equivalent to the Python expression "o.values()".

PyObject* PyMapping_Items(PyObject *o)

Return value: New reference. On success, returns a list of the items in object o, where each item is a tuple
containing a key-value pair. On failure, returns NULL. This is equivalent to the Python expression
"o.items()".

PyObject* PyMapping_GetItemString(PyObject *o, char *key)

Return value: New reference. Returns element of o corresponding to the object key or NULL on failure.

This is the equivalent of the Python expression "o[key]".

int PyMapping_SetItemString(PyObject *o, char *key, PyObject *v)

Maps the object key to the value v in object o. Returns -1 on failure. This is the equivalent of the Python
statement "o[key] = v".

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Abstract Objects Layer, Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th
Application Programmers Interface (API)
 Python/C
 Abstract Objects Layer 2nd 3rd 4th 5th
functions
 object interactions 2nd 3rd 4th 5th 6th 7th 8th
 protocols
 mapping
 number 2nd 3rd 4th
 object
 sequence 2nd
interactions
 objects, Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th
interfaces
 Python/C Application Programmers (API)
 Abstract Objects Layer 2nd 3rd 4th 5th
layers
 Abstract Objects, Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th
mapping protocol
number protocol 2nd 3rd 4th
object protocol
objects
 interactions with, Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th
protocols
 mapping
 number 2nd 3rd 4th
 object
 sequence 2nd
Python/C Application Programmers Interface (API)
 Abstract Objects Layer 2nd 3rd 4th 5th

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=263

sequence protocol 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > A. Python/C API > Concrete Objects
Layer

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222218073235215104098039061

Concrete Objects Layer

The functions in this section are specific to certain Python object types. Passing them an object of the
wrong type is not a good idea; if you receive an object from a Python program and you are not sure that
it has the right type, you must perform a type check first; for example: to check that an object is a
dictionary, use PyDict_Check(). This section is structured similar to the "family tree" of Python
object types.

Fundamental Objects

This section describes Python type objects and the singleton object None.

Type Objects

PyTypeObject

The C structure of the objects used to describe built-in types.

PyObject* PyType_Type

This is the type object for type objects; it is the same object as types.TypeType in the Python layer.

int PyType_Check(PyObject *o)

Returns true if the object o is a type object.

int PyType_HasFeature(PyObject *o, int feature)

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=264
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A29%3A44+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read7.asp?bookname=0672319942&snode=264&now=6%2F1%2F2002+6%3A29%3A44+PM

Returns true if the type object o sets the feature identified by the feature argument. Type
features are denoted by single bit flags. The only defined feature flag is
Py_TPFLAGS_HAVE_GETCHARBUFFER, which is described in a later section.

The None Object

Note that the PyTypeObject for None is not directly exposed in the Python/C API. Because None is a
singleton, testing for object identity (using == in C) is sufficient. There is no PyNone_Check()
function for the same reason.

PyObject* Py_None

The Python None object denotes lack of value. This object has no methods.

Sequence Objects

Generic operations on sequence objects were discussed in the previous subsection; this subsection deals
with the specific kinds of sequence objects that are intrinsic to the Python language.

String Objects

PyStringObject

This subtype of PyObject represents a Python string object.

PyTypeObject PyString_Type

This instance of PyTypeObject represents the Python string type; it is the same object as
types.TypeType in the Python layer.

int PyString_Check(PyObject *o)

Returns true if the object o is a string object.

PyObject* PyString_FromString(const char *v)

Return value: New reference. Returns a new string object with the value v on success, and NULL on
failure.

PyObject* PyString_FromStringAndSize(const char *v, int len)

Return value: New reference. Returns a new string object with the value v and length len on success,
and NULL on failure. If v is NULL, the contents of the string are uninitialized.

int PyString_Size(PyObject *string)

Returns the length of the string object identified by the given pointer.

int PyString_GET_SIZE(PyObject *string)

Macro form of PyString_GetSize() but without error checking.

char* PyString_AsString(PyObject *string)

Returns a null-terminated representation of the contents of string. The pointer refers to the internal
buffer of string, not a copy. The data must not be modified in any way. It must not be de-allocated.

char* PyString_AS_STRING(PyObject *string)

Macro form of PyString_AsString() but without error checking.

void PyString_Concat(PyObject **string, PyObject *newpart)

Creates a new string object in *string containing the contents of newpart appended to string. The
old value of string has its reference count decremented. If the new string cannot be created, the old
reference to string will still be discarded and the value of *string will be set to NULL; the appropriate
exception will be set.

void PyString_ConcatAndDel(PyObject **string, PyObject *newpart)

Creates a new string object in *string containing the contents of newpart appended to string. This
version decrements the reference count of newpart.

int _PyString_Resize(PyObject **string, int newsize)

A way to resize a string object even though it is "immutable". Only use this to build up a brand new
string object; don't use this if the string might already be known in other parts of the code.

PyObject* PyString_Format(PyObject *format, PyObject *args)

Return value: New reference. Returns a new string object from format and args. Analogous to format %
args. The args argument must be a tuple.

void PyString_InternInPlace(PyObject **string)

Interns the argument *string in place. The argument must be the address of a pointer variable

pointing to a Python string object. If there is an existing interned string that is the same as *string, it
sets *string to it (decrementing the reference count of the old string object and incrementing the
reference count of the interned string object), otherwise it leaves *string alone and interns it
(incrementing its reference count). (Clarification: even though there is a lot of talk about reference
counts, think of this function as reference-count–neutral; you own the object after the call if and only if
you owned it before the call.)

PyObject* PyString_InternFromString(const char *v)

Return value: New reference. A combination of PyString_FromString() and
PyString_InternInPlace(), returning either a new string object that has been interned, or a
new ("owned") reference to an earlier interned string object with the same value.

Buffer Objects

Python objects implemented in C can export a group of functions called the buffer interface. These
functions can be used by an object to expose its data in a raw, byte- oriented format. Clients of the object
can use the buffer interface to access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object
exposes the character contents in the buffer interface's byte-oriented form. An array can also expose its
contents, but it should be noted that array elements can be multi-byte values.

An example user of the buffer interface is the file object's write() method. Any object that can export
a series of bytes through the buffer interface can be written to a file. There are a number of format codes
to PyArgs_ParseTuple() that operate against an object's buffer interface, returning data from the
target object.

More information on the buffer interface is provided in the section "Buffer Object Structures," under the
description for PyBufferProcs.

A buffer object is defined in the bufferobject.h header (included by Python.h). These objects look very
similar to string objects at the Python programming level: They support slicing, indexing, concatenation,
and some other standard string operations. However, their data can come from one of two sources: from
a block of memory, or from another object that exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object's buffer interface to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a
block of memory, it is possible to expose any data to the Python programmer quite easily. The memory
could be a large, constant array in a C extension, it could be a raw block of memory for manipulation

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/267#5.html

before passing to an operating system library, or it could be used to pass around structured data in its
native, in-memory format.

PyBufferObject

This subtype of PyObject represents a buffer object.

PyTypeObject PyBuffer_Type

The instance of PyTypeObject that represents the Python buffer type; it is the same object as
types.BufferType in the Python layer.

int Py_END_OF_BUFFER

This constant can be passed as the size parameter to PyBuffer_FromObject() or
PyBuffer_FromReadWriteObject(). It indicates that the new PyBufferObject should refer to
the base object from the specified offset to the end of its exported buffer. Using this enables the caller to
avoid querying the base object for its length.

int PyBuffer_Check(PyObject *p)

Returns true if the argument has type PyBuffer_Type.

PyObject* PyBuffer_FromObject(PyObject *base, int offset, int size)

Return value: New reference. Returns a new read-only buffer object. This raises TypeError if base
doesn't support the read-only buffer protocol or doesn't provide exactly one buffer segment. It raises
ValueError if offset is less than zero. The buffer will hold a reference to the base object, and the
buffer's contents will refer to the base object's buffer interface, starting as position offset and

extending for size bytes. If size is Py_END_OF_BUFFER, the new buffer's contents extend to the
length of the base object's exported buffer data.

PyObject* PyBuffer_FromReadWriteObject(PyObject *base, int offset,
int size)

Return value: New reference. Returns a new writable buffer object. Parameters and exceptions are
similar to those for PyBuffer_FromObject(). If the base object does not export the writable
buffer protocol, TypeError is raised.

PyObject* PyBuffer_FromMemory(void *ptr, int size)

Return value: New reference. Returns a new read-only buffer object that reads from a specified location
in memory, with a specified size. The caller is responsible for ensuring that the memory buffer, passed
in as ptr, is not deallocated while the returned buffer object exists. Raises ValueError if size is less
than zero. Note that Py_END_OF_BUFFER might not be passed for the size parameter; ValueError will
be raised in that case.

PyObject* PyBuffer_FromReadWriteMemory(void *ptr, int size)

Return value: New reference. Similar to PyBuffer_FromMemory(), but the returned buffer is
writable.

PyObject* PyBuffer_New(int size)

Return value: New reference. Returns a new writable buffer object that maintains its own memory buffer
of size bytes. ValueError is returned if size is not zero or positive.

Tuple Objects

PyTupleObject

This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type

This instance of PyTypeObject represents the Python tuple type; it is the same object as
types.TupleType in the Python layer.

int PyTuple_Check(PyObject *p)

Return true if the argument is a tuple object.

PyObject* PyTuple_New(int len)

Return value: New reference. Returns a new tuple object of size len, or NULL on failure.

int PyTuple_Size(PyTupleObject *p)

Takes a pointer to a tuple object, and returns the size of that tuple.

PyObject* PyTuple_GetItem(PyTupleObject *p, int pos)

Return value: Borrowed reference. Returns the object at position pos in the tuple pointed to by p. If
pos is out of bounds, it returns NULL and sets an IndexError exception.

PyObject* PyTuple_GET_ITEM(PyTupleObject *p, int pos)

Return value: Borrowed reference. Does the same, but does no checking of its arguments.

PyObject* PyTuple_GetSlice(PyTupleObject *p, int low, int high)

Return value: New reference. Takes a slice of the tuple pointed to by p from low to high and returns it
as a new tuple.

int PyTuple_SetItem(PyObject *p, int pos, PyObject *o)

Inserts a reference to object o at position pos of the tuple pointed to by p. It returns 0 on success.

Note

This function "steals" a reference to o.

void PyTuple_SET_ITEM(PyObject *p, int pos, PyObject *o)

Does the same, but does no error checking, and should only be used to fill in brand new tuples.

Note

This function "steals" a reference to o.

int _PyTuple_Resize(PyTupleObject *p, int newsize, int last_is_sticky)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed

to be immutable, this should only be used if there is only one reference to the object. Do not use this if
the tuple might already be known to some other part of the code. last_is_sticky is a flag—if
true, the tuple will grow or shrink at the front, otherwise it will grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success and -
1 on failure (in which case, a MemoryError or SystemError will be raised).

List Objects

PyListObject

This subtype of PyObject represents a Python list object.

PyTypeObject PyList_Type

This instance of PyTypeObject represents the Python list type. This is the same object as
types.ListType.

int PyList_Check(PyObject *p)

Returns true if its argument is a PyListObject.

PyObject* PyList_New(int len)

Return value: New reference. Returns a new list of length len on success, or NULL on failure.

int PyList_Size(PyObject *list)

Returns the length of the list object in list; this is equivalent to "len(list)" on a list object.

int PyList_GET_SIZE(PyObject *list)

Macro form of PyList_GetSize() without error checking.

PyObject* PyList_GetItem(PyObject *list, int index)

Return value: Borrowed reference. Returns the object at position pos in the list pointed to by p. If pos
is out of bounds, it returns NULL and sets an IndexError exception.

PyObject* PyList_GET_ITEM(PyObject *list, int i)

Return value: Borrowed reference. Macro form of PyList_GetItem() without error checking.

int PyList_SetItem(PyObject *list, int index, PyObject *item)

Sets the item at the position identified by the integer index in the given list to the value of the object
identified by the pointer called item.

Note

This function "steals" a reference to item.

PyObject* PyList_SET_ITEM(PyObject *list, int i, PyObject *o)

Return value: Borrowed reference. Macro form of PyList_SetItem() without error checking.

Note

This function "steals" a reference to item.

int PyList_Insert(PyObject *list, int index, PyObject *item)

Inserts the item called item into the list called list in front of the index called index. Returns 0 if
successful; returns -1 and raises an exception if unsuccessful. Analogous to list.insert(index,
item).

int PyList_Append(PyObject *list, PyObject *item)

Appends the object item at the end of the list called list. Returns 0 if successful; returns -1 and sets
an exception if unsuccessful. Analogous to list.append(item).

PyObject* PyList_GetSlice(PyObject *list, int low, int high)

Return value: New reference. Returns a list of the objects in list containing the objects between low and
high. Returns NULL and sets an exception if unsuccessful. Analogous to list[low:high].

int PyList_SetSlice(PyObject *list, int low, int high, PyObject
*itemlist)

Sets the slice of list between low and high to the contents of itemlist. Analogous to
list[low:high] = itemlist. Returns 0 on success, -1 on failure.

int PyList_Sort(PyObject *list)

Sorts the items of list in place. Returns 0 on success, -1 on failure. This is equivalent to
"list.sort()".

int PyList_Reverse(PyObject *list)

Reverses the items of list in place. Returns 0 on success, -1 on failure. This is the equivalent of
"list.reverse()".

PyObject* PyList_AsTuple(PyObject *list)

Return value: New reference. Returns a new tuple object containing the contents of list; equivalent to
"tuple(list)".

Mapping/Dictionary Objects

PyDictObject

This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict_Type

This instance of PyTypeObject represents the Python dictionary type. This is exposed to Python
programs as types.DictType and types.DictionaryType.

int PyDict_Check(PyObject *p)

Returns true if its argument is a PyDictObject.

PyObject* PyDict_New()

Return value: New reference. Returns a new empty dictionary, or NULL on failure.

void PyDict_Clear(PyObject *p)

Empties an existing dictionary of all key/value pairs.

int PyDict_SetItem(PyObject *p, PyObject *key, PyObject *val)

Inserts value into the dictionary with a key of key. key must be hashable; if it isn't, TypeError will be
raised.

int PyDict_SetItemString(PyObject *p, char *key, PyObject *val)

Inserts value into the dictionary using key as a key. key should be a char*. The key object is created
using PyString_FromString(key).

int PyDict_DelItem(PyObject *p, PyObject *key)

Removes the entry in dictionary p with key called key. key must be hashable; if it isn't, TypeError is
raised.

int PyDict_DelItemString(PyObject *p, char *key)

Removes the entry in dictionary p which has a key specified by the string key.

PyObject* PyDict_GetItem(PyObject *p, PyObject *key)

Return value: Borrowed reference. Returns the object from dictionary p, which has a key called key.
Returns NULL if the key called key is not present, but without setting an exception.

PyObject* PyDict_GetItemString(PyObject *p, char *key)

Return value: Borrowed reference. This is the same as PyDict_GetItem(), but key is specified as
a char*, rather than a PyObject*.

PyObject* PyDict_Items(PyObject *p)

Return value: New reference. Returns a PyListObject containing all the items from the dictionary, as in
the dictionary method items() (see Chapter 2, "Language Review").

PyObject* PyDict_Keys(PyObject *p)

Return value: New reference. Returns a PyListObject containing all the keys from the dictionary, as in
the dictionary method keys() (see Chapter 2).

PyObject* PyDict_Values(PyObject *p)

Return value: New reference. Returns a PyListObject containing all the values from the dictionary p, as
in the dictionary method values() (see Chapter 2).

int PyDict_Size(PyObject *p)

Returns the number of items in the dictionary. This is equivalent to "len(p)" on a dictionary.

Numeric Objects

Next, you have the API function for numerical objects, which are classified in: plain integer, long
integer, floating point, and complex number objects.

Plain Integer Objects

PyIntObject

This subtype of PyObject represents a Python integer object.

PyTypeObject PyInt_Type

This instance of PyTypeObject represents the Python plain integer type. This is the same object as
types.IntType.

int PyInt_Check(PyObject* o)

Return value: Borrowed reference. Returns true if o is of type PyInt_Type.

PyObject* PyInt_FromLong(long ival)

Return value: New reference. Creates a new integer object with a value of ival.

Tip

The current implementation keeps an array of integer objects for all integers between -1 and 100.
When you create an int in that range, you actually just get back a reference to the existing object. So
it should be possible to change the value of 1. It is suspected that the behavior of Python in this case
is undefined.

long PyInt_AsLong(PyObject *io)

Will first attempt to cast the object to a PyIntObject, if it is not already one, and then return its value.

long PyInt_AS_LONG(PyObject *io)

Returns the value of the object io. No error checking is performed.

long PyInt_GetMax()

Returns the system's idea of the largest integer it can handle (LONG_MAX, as defined in the system
header files).

Long Integer Objects

PyLongObject

This subtype of PyObject represents a Python long integer object.

PyTypeObject PyLong_Type

This instance of PyTypeObject represents the Python long integer type. This is the same object as
types.LongType.

int PyLong_Check(PyObject *p)

Returns true if its argument is a PyLongObject.

PyObject* PyLong_FromLong(long v)

Return value: New reference. Returns a new PyLongObject object from v, or NULL on failure.

PyObject* PyLong_FromUnsignedLong(unsigned long v)

Return value: New reference. Returns a new PyLongObject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromDouble(double v)

Return value: New reference. Returns a new PyLongObject object from the integer part of v, or NULL
on failure.

long PyLong_AsLong(PyObject *pylong)

Returns a C long representation of the contents of pylong. If pylong is greater than LONG_MAX, an
OverflowError is raised.OverflowError.

unsigned long PyLong_AsUnsignedLong(PyObject *pylong)

Returns a C unsigned long representation of the contents of pylong. If pylong is greater than
ULONG_MAX, an OverflowError is raised.OverflowError.

double PyLong_AsDouble(PyObject *pylong)

Returns a C double representation of the contents of pylong.

PyObject* PyLong_FromString(char *str, char **pend, int base)

Return value: New reference. Returns a new PyLongObject based on the string value in str, which is
interpreted according to the radix in base. If pend is non-NULL, *pend will point to the first character
in str which follows the representation of the number. If base is 0, the radix will be determined based
on the leading characters of str: if str starts with 0x or 0X, radix 16 will be used; if str starts with
0, radix 8 will be used; otherwise, radix 10 will be used. If base is not 0, it must be between 2 and 36,
inclusive. Leading spaces are ignored. If there are no digits, ValueError will be raised.

Floating Point Objects

PyFloatObject

This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat_Type

This instance of PyTypeObject represents the Python floating point type. This is the same object as
types.FloatType.

int PyFloat_Check(PyObject *p)

Returns true if its argument is a PyFloatObject.

PyObject* PyFloat_FromDouble(double v)

Return value: New reference. Creates a PyFloatObject object from v, or NULL on failure.

double PyFloat_AsDouble(PyObject *pyfloat)

Returns a C double representation of the contents of pyfloat.

double PyFloat_AS_DOUBLE(PyObject *pyfloat)

Returns a C double representation of the contents of pyfloat, but without error checking.

Complex Number Objects

Python's complex number objects are implemented as two distinct types when viewed from the C API:
one is the Python object exposed to Python programs, and the other is a C structure that represents the
actual complex number value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by
value rather than dereferencing them through pointers. This is consistent throughout the API.

Py_complex

This is the C structure that corresponds to the value portion of a Python complex number object. Most of
the functions for dealing with complex number objects use structures of this type as input or output
values, as appropriate. It is defined as

typedef struct {
 double real;
 double imag;
} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Py_complex right)

Returns the sum of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_diff(Py_complex left, Py_complex right)

Returns the difference between two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_neg(Py_complex complex)

Returns the negation of the complex number complex, using the C Py_complex representation.

Py_complex _Py_c_prod(Py_complex left, Py_complex right)

Returns the product of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)

Returns the quotient of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_pow(Py_complex num, Py_complex exp)

Returns the exponentiation of num by exp, using the C Py_complex representation.

Complex Numbers as Python Objects

PyComplexObject

This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type

This instance of PyTypeObject represents the Python complex number type.

int PyComplex_Check(PyObject *p)

Returns true if its argument is a PyComplexObject.

PyObject* PyComplex_FromCComplex(Py_complex v)

Return value: New reference. Creates a new Python complex number object from a C Py_complex
value.

PyObject* PyComplex_FromDoubles(double real, double imag)

Return value: New reference. Returns a new PyComplexObject object from real and imag.

double PyComplex_RealAsDouble(PyObject *op)

Returns the real part of op as a C double.

double PyComplex_ImagAsDouble(PyObject *op)

Returns the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex(PyObject *op)

Returns the Py_complex value of the complex number op.

Other Objects

Next, you have the list of API function for all the other objects, including File, Module, and C Objects.

File Objects

Python's built-in file objects are implemented entirely on the FILE* support from the C standard library.
This is an implementation detail and might change in future releases of Python.

PyFileObject

This subtype of PyObject represents a Python file object.

PyTypeObject PyFile_Type

This instance of PyTypeObject represents the Python file type. This is exposed to Python programs as
types.FileType.

int PyFile_Check(PyObject *p)

Returns true if its argument is a PyFileObject.

PyObject* PyFile_FromString(char *filename, char *mode)

Return value: New reference. On success, returns a new file object that is opened on the file given by
filename, with a file mode given by mode, where mode has the same semantics as the standard C routine
fopen(). On failure, returns NULL.

PyObject* PyFile_FromFile(FILE *fp, char *name, char *mode, int
(*close)(FILE*))

Return value: New reference. Creates a new PyFileObject from the already-open standard C file
pointer, fp. The function close will be called when the file should be closed. Returns NULL on failure.

FILE* PyFile_AsFile(PyFileObject *p)

Returns the file object associated with p as a FILE*.

PyObject* PyFile_GetLine(PyObject *p, int n)

Return value: New reference. Equivalent to p.readline([n]), this function reads one line from the
object p. p can be a file object or any object with a readline() method. If n is 0, exactly one line
is read, regardless of the length of the line. If n is greater than 0, no more than n bytes will be read
from the file; a partial line can be returned. In both cases, an empty string is returned if the end of the
file is reached immediately. If n is less than 0, however, one line is read regardless of length, but
EOFError is raised if the end of the file is reached immediately.

PyObject* PyFile_Name(PyObject *p)

Return value: Borrowed reference. Returns the name of the file specified by p as a string object.

void PyFile_SetBufSize(PyFileObject *p, int n)

Available on systems with setvbuf() only. This should only be called immediately after file object
creation.

int PyFile_SoftSpace(PyObject *p, int newflag)

This function exists for internal use by the interpreter. Sets the softspace attribute of p to newflag and
returns the previous value. p does not have to be a file object for this function to work properly; any
object is supported (though it's only interesting if the softspace attribute can be set). This function clears
any errors, and will return 0 as the previous value if the attribute either does not exist or if there were
errors in retrieving it. There is no way to detect errors from this function, but doing so should not be
needed.

int PyFile_WriteObject(PyObject *obj, PyFileObject *p, int flags)

Writes object obj to file object p. The only supported flag for flags is Py_PRINT_RAW; if given, the
str() of the object is written instead of the repr(). Returns 0 on success or -1 on failure; the
appropriate exception will be set.

int PyFile_WriteString(char *s, PyFileObject *p, int flags)

Writes string s to file object p. Returns 0 on success or -1 on failure; the appropriate exception will be
set.

Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule_Type

This instance of PyTypeObject represents the Python module type. This is exposed to Python programs
as types.ModuleType.

int PyModule_Check(PyObject *p)

Returns true if its argument is a module object.

PyObject* PyModule_New(char *name)

Return value: New reference. Returns a new module object with the __name__ attribute set to
name. Only the module's __doc__ and __name__ attributes are filled in; the caller is responsible for
providing a __file__ attribute.

PyObject* PyModule_GetDict(PyObject *module)

Return value: Borrowed reference. Returns the dictionary object that implements module's namespace;
this object is the same as the __dict__ attribute of the module object. This function never fails.

char* PyModule_GetName(PyObject *module)

Returns module's __name__ value. If the module does not provide one, or if it is not a string,
SystemError is raised and NULL is returned.

char* PyModule_GetFilename(PyObject *module)

Returns the name of the file from which module was loaded using module's __file__ attribute. If this
is not defined, or if it is not a string, raises SystemError and returns NULL.

C Objects

Refer to the document "Extending and Embedding the Python Interpreter," ("Providing a C API for an
Extension Module"), for more information on using these objects. This document is part of the Python
distribution. Note that it is also available on-line at the python.org.

PyCObject

This subtype of PyObject represents an opaque value, useful for C extension modules that need to pass
an opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C
function pointer defined in one module available to other modules, so the regular import mechanism can
be used to access C APIs defined in dynamically loaded modules.

int PyCObject_Check(PyObject *p)

Returns true if its argument is a PyCObject.

PyObject* PyCObject_FromVoidPtr(void* cobj, void (*destr)(void *))

Return value: New reference. Creates a PyCObject from the void * cobj. The destr function
will be called when the object is reclaimed, unless it is NULL.

PyObject* PyCObject_FromVoidPtrAndDesc(void* cobj, void* desc,
void (*destr)(void *, void *))

Return value: New reference. Creates a PyCObject from the void *cobj. The destr function will
be called when the object is reclaimed. The desc argument can be used to pass extra callback data for
the destructor function.

void* PyCObject_AsVoidPtr(PyObject* self)

Returns the object void * that the PyCObject self was created with.

void* PyCObject_GetDesc(PyObject* self)

Returns the description void * that the PyCObject self was created with.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Application Programmers Interface (API)
 Python/C
 Concrete Objects Layer 2nd 3rd 4th 5th 6th 7th 8th 9th
arrays
 buffer interface support
buffer interface
buffer objects
bufferobject.h header file
C objects
C structures
 complex numbers as
complex number objects 2nd
Concrete Objects Layer, Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th 6th 7th 8th 9th
dictionary objects
file objects
files
 header
 bufferobject.h
floating point objects
functions
 object types 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 objects
 buffer
 C
 complex number 2nd
 dictionary
 file
 floating point
 list 2nd
 long integer
 mapping
 module
 none
 numeric 2nd 3rd 4th
 plain integer
 sequence 2nd 3rd 4th
 string
 tuple

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=264

 type
 PyArgs_ParseTuple
header files
 bufferobject.h
interfaces
 buffer
 Python/C Application Programmers (API)
 Concrete Objects Layer 2nd 3rd 4th 5th 6th 7th 8th 9th
layers
 Concrete Objects, Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th 6th 7th 8th 9th
list objects 2nd
long integer objects
mapping objects
methods
 write()
module objects
none objects
numeric objects 2nd 3rd 4th
objects
 buffer
 C
 complex number 2nd
 dictionary
 file
 floating point
 list 2nd
 long integer
 mapping
 module
 none
 numeric 2nd 3rd 4th
 passing to object types, Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th 6th 7th 8th 9th
 plain integer
 Python
 complex numbers as
 sequence 2nd 3rd 4th
 string
 tuple
 type
passing
 objects to object types, Python/C Application Programmers Interface (API) 2nd 3rd 4th 5th 6th 7th 8th 9th
plain integer objects
PyArgs_ParseTuple function
Python objects
 complex numbers as
Python/C Application Programmers Interface (API)
 Concrete Objects Layer 2nd 3rd 4th 5th 6th 7th 8th 9th

sequence objects 2nd 3rd 4th
string objects
strings
 buffer interface support
structures
 C
 complex numbers as
support
 buffer interface, strings and arrays
tuple objects
type objects
write() method

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > A. Python/C API > Initialization,
Finalization, and Threads

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219255189226192197177127

Initialization, Finalization, and Threads

void Py_Initialize()

Initialize the Python interpreter. In an application embedding Python, this should be called before using
any other Python/C API functions; with the exception of Py_SetProgramName(),
PyEval_InitThreads(), PyEval_ReleaseLock(), and PyEval_AcquireLock().
This initializes the table of loaded modules (sys.modules), and creates the fundamental modules
__builtin__, __main__, and sys. It also initializes the module search path (sys.path). It
does not set sys.argv; it uses PySys_SetArgv() for that. This is a no-operation when called for
a second time (without calling Py_Finalize() first). There is no return value; it is a fatal error if
the initialization fails.

int Py_IsInitialized()

Returns true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py_Finalize() is called, this returns false until Py_Initialize() is called again.

void Py_Finalize()

Undoes all initializations made by Py_Initialize() and subsequent uses of Python/C API
functions, and destroys all sub-interpreters (see Py_NewInterpreter() in the following) that were
created and not yet destroyed since the last call to Py_Initialize(). Ideally, this frees all
memory allocated by the Python interpreter. This is a no-op when called for a second time (without
calling Py_Initialize() again first). There is no return value; errors during finalization are
ignored.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=265
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A30%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read9.asp?bookname=0672319942&snode=265&now=6%2F1%2F2002+6%3A30%3A18+PM

This function is provided for a number of reasons. An embedding application might want to restart
Python without having to restart the application itself. An application that has loaded the Python
interpreter from a dynamic link library (or DLL) might want to free all memory allocated by Python
before unloading the DLL. During a hunt for memory leaks in an application, a developer might want
to free all memory allocated by Python before exiting from the application.

Bugs and caveats include: The destruction of modules and objects in modules is done in random order;
this can cause destructors (__del__() methods) to fail when they depend on other objects (even
functions) or modules. Dynamically loaded extension modules loaded by Python are not unloaded.
Small amounts of memory allocated by the Python interpreter might not be freed (if you find a leak,
please report it to the development team). Memory tied up in circular references between objects is not
freed. Some memory allocated by extension modules might not be freed. Some extension might not
work properly if their initialization routine is called more than once; this can happen if an application
calls Py_Initialize() and Py_Finalize() more than once.

PyThreadState* Py_NewInterpreter()

Creates a new sub-interpreter. This is an (almost) totally separate environment for the execution of
Python code. In particular, the new interpreter has separate, independent versions of all imported
modules, including the fundamental modules __builtin__, __main__, and sys. The table of
loaded modules (sys.modules) and the module search path (sys.path) are also separate. The new
environment has no sys.argv variable. It has new standard I/O stream file objects sys.stdin,
sys.stdout, and sys.stderr (however, these refer to the same underlying FILE structures in
the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is
made the current thread state. Note that no actual thread is created; see the discussion of thread states
later. If the creation of the new interpreter is unsuccessful, NULL is returned; no exception is set
because the exception state is stored in the current thread state and there might not be a current thread
state. (Like all other Python/C API functions, the global interpreter lock must be held before calling
this function and is still held when it returns; however, unlike most other Python/C API functions, there
needn't be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module's dictionary is
squirreled away. When the same extension is imported by another (sub-)interpreter, a new module is
initialized and filled with the contents of this copy; the extension's init function is not called. Note
that this is different from what happens when an extension is imported after the interpreter has been
completely re-initialized by calling Py_Finalize() and Py_Initialize(); in that case, the

extension's initmodule function is called again.

Bugs and caveats include: Because sub-interpreters (and the main interpreter) are part of the same
process, the insulation between them isn't perfect—for example, using low-level file operations like
os.close(), they can (accidentally or maliciously) affect each other's open files. Because of the
way extensions are shared between (sub-)interpreters, some extensions might not work properly; this is
especially likely when the extension makes use of (static) global variables, or when the extension
manipulates its module's dictionary after its initialization. It is possible to insert objects created in one
sub-interpreter into a namespace of another sub-interpreter; this should be done with great care to avoid
sharing user-defined functions, methods, instances or classes between sub-interpreters because import
operations executed by such objects might affect the wrong (sub-)interpreter's dictionary of loaded
modules.

Note

This is a hard-to-fix bug that will be addressed in a future release.

void Py_EndInterpreter(PyThreadState *tstate)

Destroys the (sub-)interpreter represented by the given thread state. The given thread state must be the
current thread state. See the discussion of thread states later. When the call returns, the current thread
state is NULL. All thread states associated with this interpreter are destroyed. (The global interpreter
lock must be held before calling this function and is still held when it returns.) Py_Finalize() will
destroy all sub- interpreters that haven't been explicitly destroyed at that point.

void Py_SetProgramName(char *name)

This function should be called before Py_Initialize() is called for the first time, if it is called at
all. It tells the interpreter the value of the argv[0] argument to the main() function of the program.
This is used by Py_GetPath() and some other following functions to find the Python runtime
libraries relative to the interpreter executable. The default value is python. The argument should
point to a zero-terminated character string in static storage whose contents will not change for the
duration of the program's execution. No code in the Python interpreter will change the contents of this
storage.

char* Py_GetProgramName()

Returns the program name set with Py_SetProgramName(), or the default. The returned string
points into static storage; the caller should not modify its value.

char* Py_GetPrefix()

Returns the prefix for installed platform-independent files. This is derived through a number of
complicated rules from the program name set with Py_SetProgramName() and some environment
variables; for example, if the program name is "/usr/local/bin/python", the prefix is
"/usr/local". The returned string points into static storage; the caller should not modify its value.
This corresponds to the prefix variable in the top-level Makefile and the --prefix argument to the
configure script at build time. The value is available to Python code as sys.prefix. It is only useful
on UNIX. See also the next function.

char* Py_GetExecPrefix()

Returns the exec-prefix for installed platform-dependent files. This is derived through a number of
complicated rules from the program name set with Py_SetProgramName() and some environment
variables; for example, if the program name is "/usr/local/bin/python", the exec-prefix is
"/usr/local". The returned string points into static storage; the caller should not modify its value.
This corresponds to the exec_prefix variable in the top-level Makefile and the --exec_prefix
argument to the configure script at build time. The value is available to Python code as
sys.exec_prefix. It is only useful on UNIX.

The background is the exec-prefix differs from the prefix when platform dependent files (such as
executables and shared libraries) are installed in a different directory tree. In a typical installation,
platform dependent files can be installed in the "/usr/local/plat" subtree whereas platform
independent files can be installed in "/usr/local".

Generally speaking, a platform is a combination of hardware and software families, for example, Sparc
machines running the Solaris 2.x operating system are considered the same platform, but Intel
machines running Solaris 2.x are another platform, and Intel machines running Linux are yet another

platform. Different major revisions of the same operating system generally also form different
platforms. Non-UNIX operating systems are a different story; the installation strategies on those
systems are so different that the prefix and exec-prefix are meaningless, and set to the empty string.
Note that compiled Python bytecode files are platform independent (but not independent from the
Python version by which they were compiled).

System administrators will know how to configure the mount or automount programs to share
"/usr/local" between platforms while having "/usr/local/plat" be a different filesystem
for each platform.

char* Py_GetProgramFullPath()

Returns the full program name of the Python executable; this is computed as a side-effect of deriving
the default module search path from the program name (set by Py_SetProgramName() earlier).
The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as sys.executable.

char* Py_GetPath()

Returns the default module search path; this is computed from the program name (set by
Py_SetProgramName() earlier) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter
character is : on UNIX, ; on DOS/Windows, and \ n (the ASCII newline character) on Macintosh.
The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as the list sys.path, which can be modified to change the future search
path for loaded modules.

const char* Py_GetVersion()

Returns the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three characters
are the major and minor version separated by a period. The returned string points into static storage; the
caller should not modify its value. The value is available to Python code as the list sys.version.

const char* Py_GetPlatform()

Returns the platform identifier for the current platform. On UNIX, this is formed from the official name
of the operating system, converted to lowercase, followed by the major revision number; for example,
for Solaris 2.x, which is also known as SunOS 5.x, the value is sunos5. On Macintosh, it is mac.
On Windows, it is win. The returned string points into static storage; the caller should not modify its
value. The value is available to Python code as sys.platform.

const char* Py_GetCopyright()

Returns the official copyright string for the current Python version; for example

"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam"

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as the list sys.copyright.

const char* Py_GetCompiler()

Returns an indication of the compiler used to build the current Python version, in square brackets; for
example

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is

available to Python code as part of the variable sys.version.

const char* Py_GetBuildInfo()

Return information about the sequence number and build date and time of the current Python
interpreter instance; for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as part of the variable sys.version.

int PySys_SetArgv(int argc, char **argv)

Sets sys.argv based on argc and argv. These parameters are similar to those passed to the
program's main() function with the difference that the first entry should refer to the script file to be
executed rather than the executable hosting the Python interpreter. If there isn't a script that will be run,
the first entry in argv can be an empty string. If this function fails to initialize sys.argv, a fatal
condition is signaled using Py_FatalError().

Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multithreaded Python programs, a
global lock must be held by the current thread before it can safely access Python objects. Without the
lock, even the simplest operations could cause problems in a multithreaded program: for example,
when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter lock can operate
on Python objects or call Python/C API functions. In order to support multithreaded Python programs,
the interpreter regularly releases and reacquires the lock—by default, every ten bytecode instructions
(this can be changed with sys.setcheckinterval()). The lock is also released and reacquired
around potentially blocking I/O operations such as reading or writing a file, so other threads can run
while the thread that requests the I/O is waiting for the I/O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per thread—for this it
uses a data structure called PyThreadState. This is new in Python 1.5; in earlier versions, such a state
was stored in global variables, and switching threads could cause problems. In particular, exception
handling is now thread safe when the application uses sys.exc_info() to access the exception last
raised in the current thread.

There's one global variable left, however: the pointer to the current PyThreadState structure. Although
most thread packages have a way to store per-thread global data, Python's internal platform
independent thread abstraction doesn't support this yet. Therefore, the current thread state must be
manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following
simple structure:

Save the thread state in a local variable.
Release the interpreter lock.
...Do some blocking I/O operation...
Reacquire the interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
...Do some blocking I/O operation...
Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable;
the Py_END_ALLOW_THREADS macro closes the block. Another advantage of using these two
macros is that when Python is compiled without thread support, they are defined empty, thus saving the
thread state and lock manipulations.

When thread support is enabled, the previous block expands to the following code:

PyThreadState *_save;
_save = PyEval_SaveThread();
...Do some blocking I/O operation...

 PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;
_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();
...Do some blocking I/O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particular, PyEval_RestoreThread() saves and restores the
value of the global variable errno because the lock manipulation does not guarantee that errno is
left alone. Also, when thread support is disabled, PyEval_SaveThread() and
PyEval_RestoreThread() don't manipulate the lock; in this case, PyEval_ReleaseLock()
and PyEval_AcquireLock() are not available. This is done so that dynamically loaded extensions
compiled with thread support enabled can be loaded by an interpreter that was compiled with disabled
thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the
lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released because another thread could immediately acquire the lock and store its own thread state in the
global variable. Conversely, when acquiring the lock and restoring the thread state, the lock must be
acquired before storing the thread state pointer.

Why so much detail about this? Because when threads are created from C, they don't have the global
interpreter lock, nor is there a thread state data structure for them. Such threads must bootstrap
themselves into existence, by first creating a thread state data structure, acquiring the lock, and finally
storing their thread state pointer, before they can start using the Python/C API. When they are done,
they should reset the thread state pointer, release the lock, and finally free their thread state data
structure.

When creating a thread data structure, you need to provide an interpreter state data structure. The
interpreter state data structure holds global data that is shared by all threads in an interpreter, for
example the module administration (sys.modules). Depending on your needs, you can either create
a new interpreter state data structure, or share the interpreter state data structure used by the Python
main thread (to access the latter, you must obtain the thread state and access its interp member; this
must be done by a thread that is created by Python or by the main thread after Python is initialized).

PyInterpreterState

This data structure represents the state shared by a number of cooperating threads. Threads belonging
to the same interpreter share their module administration and a few other internal items. There are no
public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available
memory, open file descriptors and such. The global interpreter lock is also shared by all threads,
regardless of to which interpreter they belong.

PyThreadState

This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread's interpreter state.

void PyEval_InitThreads()

Initialize and acquire the global interpreter lock. It should be called in the main thread before creating a
second thread or engaging in any other thread operations such as PyEval_ReleaseLock() or
PyEval_ReleaseThread(tstate). It is not needed before calling PyEval_SaveThread()
or PyEval_RestoreThread().

This is a no-op when called for a second time. It is safe to call this function before calling
Py_Initialize().

When only the main thread exists, no lock operations are needed. This is a common situation (most
Python programs do not use threads), and the lock operations slow the interpreter down a bit.
Therefore, the lock is not created initially. This situation is equivalent to having acquired the lock:
When there is only a single thread, all object accesses are safe. Therefore, when this function initializes
the lock, it also acquires it. Before the Python thread module creates a new thread, knowing that either
it has the lock or the lock hasn't been created yet, it calls PyEval_InitThreads(). When this call
returns, it is guaranteed that the lock has been created and that it has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global

interpreter lock.

This function is not available when thread support is disabled at compile time.

void PyEval_AcquireLock()

Acquires the global interpreter lock. The lock must have been created earlier. If this thread already has
the lock, a deadlock ensues. This function is not available when thread support is disabled at compile
time.

void PyEval_ReleaseLock()

Releases the global interpreter lock. The lock must have been created earlier. This function is not
available when thread support is disabled at compile time.

void PyEval_AcquireThread(PyThreadState *tstate)

Acquires the global interpreter lock and then sets the current thread state to tstate, which should
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock
ensues. This function is not available when thread support is disabled at compile time.

void PyEval_ReleaseThread(PyThreadState *tstate)

Resets the current thread state to NULL and releases the global interpreter lock. The lock must have
been created earlier and must be held by the current thread. The tstate argument, which must not be
NULL, is only used to check that it represents the current thread state—if it isn't, a fatal error is
reported. This function is not available when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread()

Releases the interpreter lock (if it has been created and thread support is enabled) and resets the thread
state to NULL, returning the previous thread state (which is not NULL). If the lock has been created,
the current thread must have acquired it. (This function is available even when thread support is
disabled at compile time.)

void PyEval_RestoreThread(PyThreadState *tstate)

Acquires the interpreter lock (if it has been created and thread support is enabled) and sets the thread
state to tstate, which must not be NULL. If the lock has been created, the current thread must not
have acquired it, otherwise deadlock ensues. (This function is available even when thread support is
disabled at compile time.)

The following macros are normally used without a trailing semicolon; look for example usage in the
Python source distribution.

Py_BEGIN_ALLOW_THREADS

This macro expands to "{ PyThreadState *_save; _save =
PyEval_SaveThread();". Note that it contains an opening brace; it must be matched with the
following Py_END_ALLOW_THREADS macro. It is a no-op when thread support is disabled at compile
time.

Py_END_ALLOW_THREADS

This macro expands to "PyEval_RestoreThread(_save); } ". Note that it contains a
closing brace; it must be matched with an earlier Py_BEGIN_ALLOW_THREADS macro. See earlier
section for further discussion of this macro. It is a no-op when thread support is disabled at compile
time.

Py_BEGIN_BLOCK_THREADS

This macro expands to "PyEval_RestoreThread(_save);" that is, it is equivalent to
Py_END_ALLOW_THREADS without the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_BEGIN_UNBLOCK_THREADS

This macro expands to "_save = PyEval_SaveThread();" that is, it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

All the following functions are only available when thread support is enabled at compile time, and must
be called only when the interpreter lock has been created.

PyInterpreterState* PyInterpreterState_New()

Creates a new interpreter state object. The interpreter lock need not be held, but can be held if it is
necessary to serialize calls to this function.

void PyInterpreterState_Clear(PyInterpreterState *interp)—
Resets all information in an interpreter state object. The interpreter lock must be held.

void PyInterpreterState_Delete(PyInterpreterState
*interp)— Destroys an interpreter state object. The interpreter lock need not be held.
The interpreter state must have been reset with a previous call to
PyInterpreterState_Clear().

PyThreadState* PyThreadState_New(PyInterpreterState
*interp)— Creates a new thread state object belonging to the given interpreter
object. The interpreter lock need not be held, but might be held if it is necessary to
serialize calls to this function.

void PyThreadState_Clear(PyThreadState *tstate)— Resets all
information in a thread state object. The interpreter lock must be held.

void PyThreadState_Delete(PyThreadState *tstate)— Destroys a
thread state object. The interpreter lock need not be held. The thread state must have

been reset with a previous call to PyThreadState_Clear().

PyThreadState* PyThreadState_Get()— Returns the current thread state.
The interpreter lock must be held. When the current thread state is NULL, this issues a
fatal error (so that the caller needn't check for NULL).

PyThreadState* PyThreadState_Swap(PyThreadState *tstate)—
Swaps the current thread state with the thread state given by the argument tstate,
which might be NULL. The interpreter lock must be held.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Application Programmers Interface (API)
 Python/C
 initialization, finalization, and threads 2nd 3rd 4th
applications
 multithreaded
 support 2nd
char* Py_GetExecPrefix() function
const char* Py_GetVersion() function
creating
 thread data structures
finalization, Python/C Application Programmers Interface (API) 2nd 3rd 4th
functions
 char* Py_GetExecPrefix()
 const char* Py_GetVersion()
 initialization, finalization, and threads 2nd 3rd 4th
 PyThreadState* Py_NewInterpreter()
 sys.exec_info()
 void Py_Finalize()
global locks, thread state
initialization, Python/C Application Programmers Interface (API) 2nd 3rd 4th
interfaces
 Python/C Application Programmers (API)
 initialization, finalization, and threads 2nd 3rd 4th
interpreters
 global locks, thread state
locks
 global interpreter, thread state

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=265

multithreaded programs
 support 2nd
programs
 multithreaded
 support 2nd
Python/C Application Programmers Interface (API)
 initialization, finalization, and threads 2nd 3rd 4th
PyThreadState* Py_NewInterpreter() function
software
 multithreaded
 support 2nd
state
 threads, global locks
structures
 thread data, creating
support
 multithreaded programs 2nd
sys.exec_info() function
thread data structures, creating
threads
 Python/C Application Programmers Interface (API) 2nd 3rd 4th
void Py_Finalize() function
writing
 thread data structures

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > A. Python/C API > Memory
Management

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219255189231254016085058

Memory Management

Memory management in Python involves a private heap containing all Python objects and data
structures. The management of this private heap is ensured internally by the Python memory manager.
The Python memory manager has different components that deal with various dynamic storage
management aspects, such as sharing, segmentation, preallocation, or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for
storing all Python-related data by interacting with the memory manager of the operating system. On top
of the raw memory allocator, several object- specific allocators operate on the same heap and
implement distinct memory management policies adapted to the peculiarities of every object type. For
example, integer objects are managed within the heap different from strings, tuples, or dictionaries
because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter
operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter
itself and that the user has no control over it, even if she regularly manipulates object pointers to
memory blocks inside that heap. The allocation of heap space for Python objects and other internal
buffers is performed on demand by the Python memory manager through the Python/C API functions
listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the
functions exported by the C library: malloc(), calloc(), realloc(), and free(). This
will result in mixed calls between the C allocator and the Python memory manager with fatal
consequences because they implement different algorithms and operate on different heaps. However,
one can safely allocate and release memory blocks with the C library allocator for individual purposes,
as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */
if (buf == NULL)
 return PyErr_NoMemory();
...Do some I/O operation involving buf...
res = PyString_FromString(buf);
free(buf); /* malloc'ed */

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=266
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A30%3A42+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=266&now=6%2F1%2F2002+6%3A30%3A42+PM

return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python
memory manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically
because the latter is under control of the Python memory manager. For example, this is required when
the interpreter is extended with new object types written in C. Another reason for using the Python
heap is the desire to inform the Python memory manager about the memory needs of the extension
module. Even when the requested memory is used exclusively for internal, highly-specific purposes,
delegating all memory requests to the Python memory manager causes the interpreter to have a more
accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the
Python memory manager might or might not trigger appropriate actions, such as garbage collection,
memory compaction, or other preventive procedures. Note that by using the C library allocator as
shown in the previous example, the allocated memory for the I/O buffer escapes completely the Python
memory manager.

Memory Interface

The following function sets, modeled after the ANSI C standard, are available for allocating and
releasing memory from the Python heap:

ANY*— Used to represent arbitrary blocks of memory. Values of this type should be
cast to the specific type that is needed.

ANY* PyMem_Malloc(size_t n)— Allocates n bytes and returns a pointer of
type ANY* to the allocated memory, or NULL if the request fails. Requesting zero bytes
returns a non-NULL pointer.

ANY* PyMem_Realloc(ANY *p, size_t n)— Resizes the memory block
pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes. If p is NULL, the call is equivalent to PyMem_Malloc(n); if n is
equal to zero, the memory block is resized but is not freed, and the returned pointer is
non-NULL. Unless p is NULL, it must have been returned by a previous call to
PyMem_Malloc() or PyMem_Realloc().

void PyMem_Free(ANY *p)— Frees the memory block pointed to by p, which
must have been returned by a previous call to PyMem_Malloc() or
PyMem_Realloc(). Otherwise, or if PyMem_Free(p) has been called before,

undefined behavior occurs. If p is NULL, no operation is performed.

ANY* Py_Malloc(size_t n)— Same as PyMem_Malloc(), but calls
PyErr_NoMemory() on failure.

ANY* Py_Realloc(ANY *p, size_t n)— Same as PyMem_Realloc(),
but calls PyErr_NoMemory() on failure.

void Py_Free(ANY *p)— Same as PyMem_Free().

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C
type.

TYPE* PyMem_NEW(TYPE, size_t n)— Same as PyMem_Malloc(), but
allocates (n * sizeof(TYPE)) bytes of memory. Returns a pointer cast to TYPE*.

TYPE* PyMem_RESIZE(ANY *p, TYPE, size_t n)— Same as
PyMem_Realloc(), but the memory block is resized to (n * sizeof(TYPE))
bytes. Returns a pointer cast to TYPE*.

void PyMem_DEL(ANY *p)— Same as PyMem_Free().

Examples

Here is one example from the previous section, rewritten so that the I/O buffer is allocated from the
Python heap by using the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */
if (buf == NULL)
 return PyErr_NoMemory();
/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

With the second function set, the need to call PyErr_NoMemory() is obviated:

PyObject *res;
char *buf = (char *) Py_Malloc(BUFSIZ); /* for I/O */
if (buf == NULL)
 return NULL;
/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
Py_Free(buf); /* allocated with Py_Malloc */
return res;

Here's the same code using the macro set:

PyObject *res;
char *buf = PyMem_NEW(char, BUFSIZ); /* for I/O */
if (buf == NULL)
 return PyErr_NoMemory();
/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_DEL(buf); /* allocated with PyMem_NEW */
return res;

Note that in the three previous examples, the buffer is always manipulated via functions/macros
belonging to the same set. Indeed, it is required to use the same memory API family for a given
memory block so that the risk of mixing different allocators is reduced to a minimum. The following
code sequence contains two errors, one of which is labeled as fatal because it mixes two different
allocators operating on different heaps.

char *buf1 = PyMem_NEW(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_DEL(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_DEL() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in
Python are allocated and released with _PyObject_New() and _PyObject_NewVar(), or with

their corresponding macros PyObject_NEW() and PyObject_NEW_VAR().

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

allocators
 raw memory
Application Programmers Interface (API)
 Python/C
 managing memory 2nd 3rd
C library
 memory corruption
corruption
 memory
interfaces
 Python/C Application Programmers (API)
 managing memory 2nd 3rd
library
 C
 memory corruption
managing
 memory, Python/C Application Programmers Interface (API) 2nd 3rd
memory
 managing, Python/C Application Programmers Interface (API) 2nd 3rd
Python/C Application Programmers Interface (API)
 managing memory 2nd 3rd
raw memory allocators

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=266

Web Development > Python Developer's Handbook > A. Python/C API > Defining New
Object Types

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219255189230213165015209

Defining New Object Types

PyObject* _PyObject_New(PyTypeObject *type)

Return value: New reference.

PyObject* _PyObject_NewVar(PyTypeObject *type, int size)

Return value: New reference.

Common Object Structures

Next, you have a list of object structures commonly used in type and method definitions.

PyObject PyVarObject
PyObject_HEAD PyObject_HEAD_INIT PyObject_VAR_HEAD
unaryfunc binaryfunc ternaryfunc
inquiry coercion intargfunc
intintargfunc intobjargproc intintobjargproc
objobjargproc destructor printfunc
getattrfunc getattrofunc setattrfunc
setattrofunc cmpfunc reprfunc
hashfunc

The document How to Write a Python Extension, by Michael Reilly lists and explains the prototypes of
these structures. It also demonstrates how to create new Python types.

http://starship.python.net/crew/arcege/extwriting/pyext.html

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=267
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A30%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=267&now=6%2F1%2F2002+6%3A30%3A53+PM
http://starship.python.net/crew/arcege/extwriting/pyext.html

Mapping Object Structures

PyMappingMethods

Structure used to hold pointers to the functions used to implement the mapping protocol for an extension
type.

Number Object Structures

PyNumberMethods

Structure used to hold pointers to the functions, which an extension type uses to implement the number
protocol.

Sequence Object Structures

PySequenceMethods

Structure used to hold pointers to the functions which an object uses to implement the sequence
protocol.

Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of
data, where each chunk is specified as a pointer/length pair. These chunks are called segments and are
presumed to be non-contiguous in memory.

If an object does not export the buffer interface, its tp_as_buffer member in the PyTypeObject
structure should be NULL. Otherwise, the tp_as_buffer will point to a PyBufferProcs structure.

Note

It is very important that your PyTypeObject structure uses Py_TPFLAGS_DEFAULT for the value
of the tp_flags member rather than 0. This tells the Python runtime that your PyBufferProcs
structure contains the bf_getcharbuffer slot. Older versions of Python did not have this

member, so a new Python interpreter using an old extension needs to be able to test for its presence
before using it.

PyBufferProcs

Structure used to hold the function pointers that define an implementation of the buffer protocol.

The first slot is bf_getreadbuffer, of type getreadbufferproc. If this slot is NULL, the
object does not support reading from the internal data. This is nonsensical, so implementers should fill
this in, but callers should test that the slot contains a non-NULL value.

The next slot is bf_getwritebuffer having type getwritebufferproc. This slot can be
NULL if the object does not allow writing into its returned buffers.

The third slot is bf_getsegcount, with type getsegcountproc. This slot must not be NULL
and is used to inform the caller of how many segments the object contains. Simple objects such as
PyString_Type and PyBuffer_Type contain a single segment.

The last slot is bf_getcharbuffer, of type getcharbufferproc. This slot will only be
present if the Py_TPFLAGS_HAVE_GETCHARBUFFER flag is present in the tp_flags field of the
object's PyTypeObject. Before using this slot, the caller should test whether it is present by using
the PyType_HasFeature() function. If present, it might be NULL, indicating that the object's
contents cannot be used as 8-bit characters. The slot function can also raise an error if the object's
contents cannot be interpreted as 8-bit characters. For example, if the object is an array that is
configured to hold floating point values, an exception might be raised if a caller attempts to use
bf_getcharbuffer to fetch a sequence of 8-bit characters. This notion of exporting the internal
buffers as text is used to distinguish between objects that are binary in nature, and those which have
character-based content.

Note

The current policy seems to state that these characters might be multibyte characters. This implies
that a buffer size of N does not mean that there are N characters present.

Py_TPFLAGS_HAVE_GETCHARBUFFER

Flag bit set in the type structure to indicate that the bf_getcharbuffer slot is known. This being set
does not indicate that the object supports the buffer interface or that the bf_getcharbuffer slot is
non-NULL.

int (*getreadbufferproc) (PyObject *self, int segment, void **ptrptr)

Returns a pointer to a readable segment of the buffer. This function is allowed to raise an exception, in
which case it must return -1. The segment that is passed must be zero or positive, and strictly less than
the number of segments returned by the bf_getsegcount slot function. On success, returns 0 and
sets *ptrptr to a pointer to the buffer memory.

int (*getwritebufferproc) (PyObject *self, int segment, void **ptrptr)

Returns a pointer to a writable memory buffer in *ptrptr; the memory buffer must correspond to
buffer segment called segment. Must return -1 and set an exception on error. TypeError should be
raised if the object only supports read-only buffers, and SystemError should be raised when segment
specifies a segment that doesn't exist.

int (*getsegcountproc) (PyObject *self, int *lenp)

Returns the number of memory segments that comprise the buffer. If lenp is not NULL, the
implementation must report the sum of the sizes (in bytes) of all segments in *lenp. The function
cannot fail.int (*getsegcountproc) (PyObject *self, int *lenp)

Returns the number of memory segments that comprise the buffer. If lenp is not NULL, the
implementation must report the sum of the sizes (in bytes) of all segments in *lenp. The function
cannot fail.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

Application Programmers Interface (API)
 Python/C
 defining object types 2nd 3rd
buffer object structures 2nd
creating
 object type definitions, Python/C Application Programmers Interface (API) 2nd 3rd
definitions
 object types, Python/C Application Programmers Interface (API) 2nd 3rd
functions
 defining object types
How to Write a Python Extension
interfaces
 Python/C Application Programmers (API)
 defining object types 2nd 3rd
mapping object structures
object types
 defining, Python/C Application Programmers Interface (API) 2nd 3rd
Python/C Application Programmers Interface (API)
 defining object types 2nd 3rd
Reilly, Michael
structures
 buffer objects 2nd
 mapping objects

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=267

Web Development > Python Developer's Handbook > B. Running Python on Specific
Platforms

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219254161022169030249127

Appendix B. Running Python on Specific
Platforms
This appendix exposes particular details about using Python on specific platforms.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=269
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A31%3A05+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read2.asp?bookname=0672319942&snode=269&now=6%2F1%2F2002+6%3A31%3A05+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=269

Web Development > Python Developer's Handbook > B. Running Python on Specific
Platforms > Python on Win32 Systems

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219254161020084105141030

Python on Win32 Systems

As you might know at this point, Python has an official distribution for Win32 systems (Windows 95,
Windows 98, Windows 2000, and Windows NT), called Pythonwin. In order to extend this distribution
to its full power, you must get an installation package that contains Python Win32 Extensions. This set
of extensions for Python exposes a good part of the Win32 API, along with other Win32 extensions.
These extensions are part of the win32all installation package, which is available for download
(including the source code) at

http://www.python.org/windows/win32/

You can obtain more detailed and up-to-date information at Mark Hammond starship's page. He is the
creator and maintainer of these extensions.

http://starship.python.net/crew/mhammond/

After you download the latest win32all package, you will have access to the Microsoft Foundation
Classes, the ODBC interface, the Microsoft Common Object Model (COM), and to several Windows
NT services.

For details about the COM interface, see Chapters 7, "Objects Interfacing and Distribution," and 8,
"Working with Databases" , of this book. More information about using COM in a Python environment
can be obtained at a COM Tutorial presented by Greg Stein and Mark Hammond, on a presentation
given at IPC-6.

http://www.python.org/windows/win32com/COMTutorial/ppframe.htm

The following list shows the most important modules that are provided as part of the win32all package.

pythoncom— This module exposes a low-level mechanism that is used by Python to
access the COM interface. See Chapter 7 for details.

win32api— This module offers a variety of functions that access the Win32 API. Those
functions are capable of performing general tasks such as rebooting the machine and
returning the computer and domain name of the local machine.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=270
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A31%3A21+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=270&now=6%2F1%2F2002+6%3A31%3A21+PM
http://www.python.org/windows/win32/
http://starship.python.net/crew/mhammond/
http://www.python.org/windows/win32com/COMTutorial/ppframe.htm

win32event— This module provides access to the synchronization functions available in
the Win32 SDK.

win32evtlog— This module exposes functions that provide access to the Windows NT
Event Log.

win32evtlogutil— This module provides additional control for the win32evtlog module.

win32file— This module provides natural file manipulation for reading and writing
operations by using native Win32 API I/O functions.

win32net— This module is responsible for automating the administration of a Windows
NT Network. Among other things, it controls users, user groups, the resources that are
shared by multiple users, and the access to the security database.

win32pdh— This module exposes functions that provide access to the Windows NT
Performance Monitor.

win32pdhutil— This module provides additional control for the win32pdh module.

win32pipe— This module works like a pipe between processes, allowing them to
communicate with each other. The information that is sent to the pipe by one process can
be read by another.

win32process— This module provides access to Win32 API functions that are related to
thread and process management.

win32service— This module is responsible for managing services dependency, defining
how services should start, and for actually initializing and stopping the services.
Everything is done by accessing the Windows NT Service Control Manager.

win32serviceutil— This module provides additional control for the win32service
module.

The next couple of paragraphs expose you to third-party programs created to handle specific Windows
tasks. Note that many of these tasks can be replicated by writing programs that access the Win32 API.

The first thing I will discuss is about how to load and use DLL files from Python running under MS
Windows. My suggestion for you is to use Sam Rushing's calldll extension, which allows you to
call functions in any DLL. This extension is part of the dynawin package, a completely developed
Win32 GUI development environment.

Also provided, there is a callback generator that lets external functions call back into Python as if it
were C, and an ODBC module implemented using calldll (additional code for managing data
sources, installing ODBC itself, and creating and maintaining Jet (Microsoft Access) databases is
supplied, as well). For more information, check out

http://www.nightmare.com/~rushing/dynwin/

By looking at http://www.nightmare.com/software.html, you can download a good number of Win32-
specific software that was also created by Rushing.

At Ken Seehof's Python Page, you can find several programs for the Windows platform, such as the
Neural Integrator—a visual programming environment for prototyping neural networks and other
directed graph-based programming models that can bring AI capabilities to your program. Once there,
you can also obtain Wizard applications for the Pythonwin IDE, which can simplify many of your
tasks, including the creation of extension modules. Be sure to have Visual C++ and Pythonwin, before
trying to use the Wizards. Check out the following site:

http://starship.python.net/crew/seehof/

Windows programmers sometimes have the requirement to make changes on the Windows Registry.
The win32all package contains a very interesting script, which is installed at the subdirectory
win32/scripts/regsetup.py that enables you to edit the Windows Registry.

Another thing that we are always in need of is printing. It is your choice whether you use the Win32
API to handle that, or use a third-party module. The one that I mention here is a class developed by Bill
Mailloux to print text to Windows printers. You can download the class at the following address:

http://musingattheruins.homepage.com/printer.html

The next example gives you a quick demonstration of how simple it is to use this module.

import printer
driver = printer.Printer()
driver.open()
driver.write("This sentence is going to be printed.")
driver.close()
del driver

If you want to install Python 2.0 on a Windows NT or Windows 2000 machine, you don't necessarily

http://www.nightmare.com/~rushing/dynwin/
http://www.nightmare.com/software.html
http://starship.python.net/crew/seehof/
http://musingattheruins.homepage.com/printer.html

need to have administrator priviledges. If you have them, great! Python will write its registry info under
the key HKEY_LOCAL_MACHINE. However, if you don't have admin rights, Python will write its
registry info under the key HKEY_CURRENT_USER. The only difference between both kinds of
installations is that the latter option blocks some specific functionalities, such as running Python scripts
as NT services. Note that all the core functionality remains available for you in both installations.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

admin rights
 installations
administrator privileges
 installations
callback generator
calldll extension
extensions
 calldll
generators
 callback
Hammond, Mark
installations
 administrator privileges
Ken
Mailloux, Bill
modules
 win32all package
packages
 win32all 2nd
printing
 text, Windows printers
privileges
 administrator
 installations
registries
 writing
rights
 admin
 installations
running
 Python
 Win32 2nd 3rd
Rushing, Sam

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=270

text
 printing, Windows printers
Win32
 running Python 2nd 3rd
win32all package 2nd
writing
 registries

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > B. Running Python on Specific
Platforms > Python on MacOS Systems

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219254161021189179187196

Python on MacOS Systems

It is no big surprise that Python has a standard port for Macintoshes because Python itself was created
on a Macintosh. This port is called MacPython and is maintained by Jack Jansen. MacPython applies to
MacOS up to version 9. Installing Python on MacOS X (10) systems will be much more like a standard
UNIX installation.

Python runs great on Apple Macintoshes, iMacs, iBooks, and so forth. Note that you can decide
whether you want to install Python under the MacOS (using the MacPython distribution), under a
Linux installation (in case you are using a distribution such as the Yellow Dog), or even under Java
(using JPython, the Python interpreter written in Java). If you have Linux installed on your Mac, it is
best for you to look at the UNIX section.

At this moment, the current stable distribution is 1.5.2. For this release, the installer is available in two
forms: MacBinary format and BinHex format. It is suggested that the latter option should be used in
case your browser mistreats MacBinary files. The installer can also install some optional extensions
for you, including Tkinter, the Numerical, and Imaging modules.

Also included in the distribution (and optionally installed by the installer) is an integrated development
environment written by Just van Rossum (Guido's brother), which includes an editor, debugger, and
class browser.

The MacPython distribution contains the same set of extension modules that is available for almost
every platform (sys, string, time, and so on). Besides that, it contains a set of modules that
provide interfaces to specific MacOS services, including access to QuickTime and QuickDraw.

In order to download Python for Macintosh, the source code, and all the available documentation,
check out Jack Jansen's MacPython Web page at

http://www.cwi.nl/~jack/macpython.html

The most noticeable differences between MacPython and the UNIX/Windows distributions are the
following:

● It doesn't provide access to the standard POSIX features (pipes, forking, access to command-line

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=271
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A31%3A33+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=271&now=6%2F1%2F2002+6%3A31%3A33+PM
http://www.cwi.nl/~jack/macpython.html

interfaces, and so on). In particular, looking at the Mac module, you'll see what functions you
can expect in the os module. If you compare this to the posix or winnt module, you'll see what
is missing: Options like posix.fork are not available on the Mac.

● The threading mechanism is just starting to show up now (with Python 2.0), as the most recent
versions of the GUSI development environment for MacOS support POSIX threads. Note that
threading support using the user-space GNU pth library was also added to the language in the
release 2.0. Consequently, now you have the option to run programs on Macintosh that are able
to use Python's POSIX threading support.

● Tkinter works, but not as smoothly as it could. It is expected that when 1.6 binaries come out,
things should be much better.

● Support for C extension modules is based on patches because most of them are written for
UNIX or Windows.

● Porting a Python application from other systems to MacPython works fine, assuming it has been
written in a cross-platform way.

Precise details on the differences in the standard distribution can be found in the Python
Documentation—if a module or feature is not compatible with the Mac distribution, it will say so there.
For more technical details, you might want to join the PythonMac SIG, which has discussions on
Macintosh-specific aspects of Python. Check out

http://www.python.org/sigs/pythonmac-sig/

The official documentation for the Macintosh specific modules available in the MacPython distribution
is located at

http://www.python.org/doc/current/mac/mac.html

Next, I list the description of those modules.

mac— This module implements the operating system dependent functionality provided
by the standard module os. Note that it is best used when accessed through the os
module.

macpath— This module is the Macintosh implementation of the os.path module.

Caution

http://www.python.org/sigs/pythonmac-sig/
http://www.python.org/doc/current/mac/mac.html

You shouldn't try to use the previous two modules directly. Instead, use the os module.

ctb— This module provides a partial interface to the Macintosh Communications
Toolbox. Currently, only Connection Manager tools are supported. It might not be
available in all MacPython versions.

macconsole— This module is available on the Macintosh, provided Python has been
built using the Think C compiler. It provides an interface to the Think console package,
with which basic text windows can be created.

macdnr— This module provides an interface to the Macintosh Domain Name
Resolver. It is usually used in conjunction with the mactcp module, to map hostnames
to IP addresses. It might not be available in all MacPython versions.

macfs— This module provides support for Macintosh FSSpec handling, the Alias
Manager, finder aliases, and the Standard File package.

ic— This module provides access to Macintosh Internet Config package, which stores
preferences for Internet programs such as mail address, default homepage, and so on.
Also, Internet Config contains an elaborate set of mappings from Macintosh creator/type
codes to foreign filename extensions plus information on how to transfer files (binary,
ascii, and so on).

MacOS— This module provides access to MacOS specific interpreter features, such as
how the interpreter eventloop functions and the like. It is suggested that you use this
module with care.

macostools— This module contains some convenience routines for file manipulation
on the Macintosh.

findertools— This module provides wrapper routines around the finder's Apple
Events interface.

mactcp— This module provides an interface to the Macintosh TCP/IP driver
(MacTCP). There is an accompanying module, macdnr, which provides an interface to
the name server (allowing you to translate hostnames to IP addresses), and a module
MACTCPconst that has symbolic names for constants used by MacTCP. Note that
because the built-in module socket is also available on the Macintosh, it is usually

easier to use sockets instead of the Macintosh-specific MacTCP API.

macspeech— This module provides an interface to the Macintosh Speech Manager,
allowing you to let the Macintosh utter phrases. You need a version of the Speech
Manager extension (version 1 and 2 have been tested) in your Extensions folder for this
to work. The module does not provide full access to all features of the Speech Manager
yet. It might not be available in all MacPython versions.

EasyDialogs— The EasyDialogs module contains some basic dialogs for the
Macintosh, modeled after the stdwin dialogs with similar names.

FrameWork— The FrameWork module contains classes that together provide a
framework for an interactive Macintosh application. The programmer builds an
application by creating subclasses that override various methods of the bases classes,
thereby implementing the functionality wanted. Overriding functionality can often be
done on various different levels. For instance, to handle clicks in a single dialog window
in a non-standard way, it is not necessary to override the complete event handling.

MiniAEFrame— The module MiniAEFrame provides a framework for an
application that can function as an Open Scripting Architecture (OSA) server, that is
receive and process AppleEvents. It can be used in conjunction with FrameWork or
standalone. This module is temporary; it will eventually be replaced by a module that
handles argument names better and possibly automates making your application
scriptable.

This Open Directory page provides many links for materials about MacPython available on the Web:

http://dmoz.org/Computers/Systems/Macintosh/Development/Languages/Python/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://dmoz.org/Computers/Systems/Macintosh/Development/Languages/Python/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=271

Index terms contained in this section

Macintosh
 running Python 2nd 3rd 4th
running
 Python
 Macintosh 2nd 3rd 4th
threading mechanisms
threads
 threading mechanisms

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > B. Running Python on Specific
Platforms > Python on UNIX Systems

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219254161018166212011006

Python on UNIX Systems

Probably, UNIX users are the largest slice of the Python community pie graph, which consequently
turns this system into the one that has the most tested distribution. The only thing that can be
considered a negative aspect is the fact that you have to compile and build the distribution yourself. But
that's understandable because there are several different types of UNIX out there. However, to make
things simple, nowadays most Linux distributions already come with Python installed for you. You just
need to check whether it is the latest version available.

Sometimes, people build Python with some modules disabled (for instance, optional modules and
modules that belong to specific Operating Systems). If that's your case, and you feel that you are
missing something such as the Tkinter module, you can rebuild Python yourself.

Note

The Tk toolkit is portable to many UNIX platforms, which makes Tkinter a portable GUI option
across different UNIX systems.

In order to enable the modules that are disabled on your system, you need to copy the file
/Modules/Setup.in (located at the source distribution) to Setup, and edit that file. Note that
each line in the file lists the module name, the source file, compiler options, and linked libraries. Take a
look in the following line:

#readline readline.c -lreadline -ltermcap

In order to add the GNU readline program to your Python executable, you need to uncomment the line,
and rebuild the interpreter by typing the following commands in the top-level directory of the source
tree. See Chapter 17, "Development Tools," for more details.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=272
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A31%3A43+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=272&now=6%2F1%2F2002+6%3A31%3A43+PM

make
make install

The standard Python distribution contains some extensions that are specifically for UNIX systems, such
as crypt, dbm, gdbm, grp, pwd, stat, and termios. These modules aren't available for
Windows or for Mac platforms.

SGI systems, on the other hand, also have their specific modules, which are

● al and AL for handling the audio library

● cd for operating the CD library

● fl, flp, and FL for accessing the FORMS library

● fm, the font manager

SunOS/Solaris systems have their specific module as well: sunaudiodev, which is used to access
the audio device.

There are also some Linux specific modules, such as linuxaudiodev, included with Python.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

al module
AL module
cd module
enabling
 modules
 UNIX operating systems
fl module
FL module
flp module
fm module
FORMS library

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=272

libraries
 FORMS
modules
 al
 AL
 cd
 enabling
 UNIX operating systems
 fl
 FL
 flp
 fm
 sunaudiodev
running
 Python
 UNIX
sunaudiodev module
Tk toolkit
toolkits
 Tk
turning on
 modules
 UNIX operating systems
UNIX
 running Python

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > B. Running Python on Specific
Platforms > Other Platforms

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219254161019183080145066

Other Platforms

Besides Win32 systems, Macintoshes, and UNIX systems, Python is also available for a couple of other
platforms. Next is a list of some of these other distributions. If you are reluctant about building Python
from the start on your system, maybe it is a good idea to look around and see if someone else has
already done that. Maybe the binaries are already out there, just waiting for you.

Python for OS/2

Jeff Rush provides a Web page where he offers the download of Python binaries for OS/2:

http://warped.cswnet.com/~jrush/python_os2/index.html

Python for Windows 3.1

In order to run Python on 16-bit versions of the Windows OS (Windows 3.1, Windows 3.11, and
Windows for Workgroups), you can use either the DOS binary distribution or the WPY package, which
is based on the MFC classes. The main page for all Windows ports is located at
http://www.python.org/windows. There you can find more information and download info.

Python for DOS

Hans Nowak's Python-DX is a no-longer maintained version of Python for 32-bit DOS, equivalent to
Python 1.5.2:

http://www.hvision.nl/~ivnowa/newsite/Python/Python-DX/python-dx.html

Python for BeOS

Chris Herborth maintains ports of Python 1.5.2 for BeOS systems, which can be found at
http://www.bebits.com/app/606/

Python for VMS

Uwe Zessin has a port of Python 1.5.x to OpenVMS that includes interfaces to many OpenVMS RTL

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=273
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A31%3A53+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read3.asp?bookname=0672319942&snode=273&now=6%2F1%2F2002+6%3A31%3A53+PM
http://warped.cswnet.com/~jrush/python_os2/index.html
http://www.python.org/windows
http://www.hvision.nl/~ivnowa/newsite/python/python-dX/python-dx.html
http://www.bebits.com/app/606/

and system service routines:

http://decus.decus.de/~zessin/python/index.html

Python for Psion

Duncan Booth is porting Python 1.5 to the Psion Series 5. Check out his Web site for more details:

http://dales.rmplc.co.uk/Duncan/PyPsion.htm

Python for Windows CE

Once again, Mark Hammond brings a great contribution to the Python community with his port of
Python to the Windows CE platform. The current release can be installed on any Windows CE 2.0 or
later HPC, or PPC devices running MIPS or SH3 processors. Note that you can install and run it
directly from a flash memory card. This distribution comes with the Python interpreter, a subset of the
standard python library modules, and many extension modules that provide access to the Win32 API.
For more information, check out

http://starship.python.net/crew/mhammond/ce/

In case you are really into using Python in this type of system, there is an earlier port written by Brian
Lloyd, that can be accessed at

http://www.digicool.com/~brian/PythonCE/index.html

Python for Anything Else

If your Operating System is not listed here, don't worry because if your system has a C compiler,
chances are huge that it can run Python. The first thing you need to do is get your hands on the Python
Source distribution at

http://www.python.org/download/download_source.html

The source code that you can download from the Python Web site comes ready to be built on UNIX
and Win32 systems. But note that this source code is the starting point for porting Python to all other
platforms. Good luck!

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://decus.decus.de/~zessin/python/index.html
http://dales.rmplc.co.uk/Duncan/PyPsion.htm
http://starship.python.net/crew/mhammond/ce/
http://www.digicool.com/~brian/pythonce/index.html
http://www.python.org/download/download_source.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=273

Index terms contained in this section

Booth, Duncan
Hammond, Mark
Herborth, Chris
Nowak, Hans
running
 Python
 Windows CE
Rush, Jeff
Windows CE
 running Python
Zessin, Uwe

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > C. Python Copyright Notices See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219253043150028114174038

Appendix C. Python Copyright Notices
The following copyright notices provide the necessary credits to some of the material contained in this
book.

Python's Copyright Notices supports Python itself, and most of the modules that are part of the standard
distribution. Exceptions exist, such as the profile and the pstats modules, which have their own
copyright notice. In Chapter 17, "Development Tools," we have part of the documentation and user
manual of those modules covered by their copyright notice, which is presented in this appendix.

The last two copyrights listed in this section cover the JPython distribution. Depending on your choice
of using or not the OROMatcher library (see Chapter 18, "JPython"), you have a specific copyright
notice to obey.

Next, you have all the current type of licenses that are available for Python. Note that the definitive
license for each component is the one distributed with the software.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 Python
 copyright notices (licenses)
copyright notices, Python software
licenses, Python software
programs
 Python
 copyright notices (licenses)
software
 Python
 copyright notices (licenses)

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=275
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A32%3A04+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=275&now=6%2F1%2F2002+6%3A32%3A04+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=275

Web Development > Python Developer's Handbook > C. Python Copyright Notices >
Python 2.0 License Information

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219253043151076208255175

Python 2.0 License Information

HISTORY OF THE SOFTWARE

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum
(CWI) in the Netherlands as a successor to a language called ABC. Guido is Python's principal author,
although it includes many contributions from others. The last version released from CWI was Python
1.2. In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives
(CNRI) in Reston, Virginia, where he released several versions of the software. Python 1.6 was the last
of the versions released by CNRI. In 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team (http://www.pythonlabs.com). Python 2.0 is the
first release from PythonLabs. Thanks to the many outside volunteers who have worked under Guido's
direction to make this release possible.

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0

BeOpen Python Open Source License Agreement Version 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at 160
Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization ("Licensee")
accessing and otherwise using this software in source or binary form and its associated
documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby
grants Licensee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test,
perform and/or display publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the BeOpen Python
License is retained in the Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis. BEOPEN MAKES
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=276
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A32%3A16+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=276&now=6%2F1%2F2002+6%3A32%3A16+PM
http://www.pythonlabs.com/

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE
SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR
LOSS AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR
ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the
State of California, excluding conflict of law provisions. Nothing in this License Agreement
shall be deemed to create any relationship of agency, partnership, or joint venture between
BeOpen and Licensee. This License Agreement does not grant permission to use BeOpen
trademarks or trade names in a trademark sense to endorse or promote products or services of
Licensee, or any third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on
that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

applications
 Python
 copyright notices (licenses)
copyright notices, Python software
licenses, Python software
programs
 Python
 copyright notices (licenses)
software
 Python
 copyright notices (licenses)

© 2002, O'Reilly & Associates, Inc.

http://www.pythonlabs.com/logos.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=276

Web Development > Python Developer's Handbook > C. Python Copyright Notices >
Python's Copyright Notice (version 1.6)

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219253043148251188251173

Python's Copyright Notice (version 1.6)

CNRI OPEN SOURCE LICENSE AGREEMENT

Python 1.6 is made available subject to the terms and conditions in CNRI's License Agreement. This
Agreement together with Python 1.6 may be located on the Internet using the following unique,
persistent identifier (known as a handle): 1895.22/1012. This Agreement may also be obtained from a
proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1012.

Python 1.6

CNRI OPEN SOURCE LICENSE AGREEMENT

IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY. BY
CLICKING ON "ACCEPT" WHERE INDICATED BELOW, OR BY COPYING,
INSTALLING OR OTHERWISE USING PYTHON 1.6 SOFTWARE, YOU ARE
DEEMED TO HAVE AGREED TO THE TERMS AND CONDITIONS OF THIS
LICENSE AGREEMENT.

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives,
having an office at 1895 Preston White Drive, Reston, VA 20191 ("CNRI"), and the Individual
or Organization ("Licensee") accessing and otherwise using Python 1.6 software in source or
binary form and its associated documentation, as released at the http://www.python.org Internet
site on September 5, 2000 ("Python 1.6").

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or
display publicly, prepare derivative works, distribute, and otherwise use Python 1.6 alone or in
any derivative version, provided, however, that CNRI's License Agreement and CNRI's notice
of copyright, i.e., "Copyright 1995-2000 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6 alone or in any derivative version prepared by
Licensee. Alternately, in lieu of CNRI's License Agreement, Licensee may substitute the
following text (omitting the quotes): "Python 1.6 is made available subject to the terms and
conditions in CNRI's License Agreement. This Agreement together with Python 1.6 may be
located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1012. This Agreement may also be obtained from a proxy server on the Internet using

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=277
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A32%3A26+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=277&now=6%2F1%2F2002+6%3A32%3A26+PM
http://hdl.handle.net/1895.22/1012
http://www.python.org/

the following URL: http://hdl.handle.net/1895.22/1012".

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6 or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agrees to include in any such work a brief summary of the changes made
to Python 1.6.

4. CNRI is making Python 1.6 available to Licensee on an "AS IS" basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6 WILL NOT INFRINGE
ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A
RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6, OR
ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7. This License Agreement shall be governed by and interpreted in all respects by the law of the
State of Virginia, excluding conflict of law provisions. Nothing in this License Agreement shall
be deemed to create any relationship of agency, partnership, or joint venture between CNRI and
Licensee. This License Agreement does not grant permission to use CNRI trademarks or trade
name in a trademark sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing or otherwise
using Python 1.6, Licensee agrees to be bound by the terms and conditions of this License
Agreement.

ACCEPT

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://hdl.handle.net/1895.22/1012
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=277

Index terms contained in this section

agreements
 CNRI License Agreement
 downloading
applications
 Python
 copyright notices (licenses) 2nd
CNRI License Agreement
 downloading
copyright notices, Python software 2nd
copyrights:CNRI License Agreement
 downloading
downloading
 CNRI License Agreement
licenses, Python software 2nd
programs
 Python
 copyright notices (licenses) 2nd
software
 Python
 copyright notices (licenses) 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > C. Python Copyright Notices >
Python's Copyright Notice (until version 1.5.2)

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219253043146242231041190

Python's Copyright Notice (until version 1.5.2)

©Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.

All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the
names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or
CNRI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

While CWI is the initial source for this software, a modified version is made available by the
Corporation for National Research Initiatives (CNRI) at the Internet address http://ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=278
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A32%3A41+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read6.asp?bookname=0672319942&snode=278&now=6%2F1%2F2002+6%3A32%3A41+PM
http://ftp//ftp.python.org
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=278

Index terms contained in this section

applications
 Python
 copyright notices (licenses)
copyright notices, Python software
licenses, Python software
programs
 Python
 copyright notices (licenses)
software
 Python
 copyright notices (licenses)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > C. Python Copyright Notices >
Copyright Notice of the profile and pstats Modules

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219253043147021019013052

Copyright Notice of the profile and pstats Modules

©Copyright 1994, by InfoSeek Corporation, all rights reserved. Written by James Roskind

Permission to use, copy, modify, and distribute this Python software and its associated documentation
for any purpose (subject to the restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of InfoSeek not be used
in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. This permission is explicitly restricted to the copying and modification of the software to
remain in Python, compiled Python, or other languages (such as C) wherein the modified or derived
code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=279
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A32%3A52+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=279&now=6%2F1%2F2002+6%3A32%3A52+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=279

Index terms contained in this section

applications
 Python
 copyright notices (licenses)
copyright notices, Python software
licenses, Python software
modules
 profile
 copyright notice (license) 2nd
 pstats
 copyright notice (license) 2nd
profile module
 copyright notice (license) 2nd
programs
 Python
 copyright notices (licenses)
pstats module
 copyright notice (license) 2nd
software
 Python
 copyright notices (licenses)

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > C. Python Copyright Notices >
Copyright Notice of JPython with OROMatcher

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219252094017119029066102

Copyright Notice of JPython with OROMatcher

IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY.

BY CLICKING ON THE "ACCEPT" BUTTON WHERE INDICATED, OR BY
INSTALLING, COPYING OR OTHERWISE USING THE SOFTWARE, YOU ARE
DEEMED TO HAVE AGREED TO THE TERMS AND CONDITIONS OF THIS
AGREEMENT.

JPython version 1.1.x

This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 ("CNRI"), and the Individual or Organization
("Licensee") accessing and using JPython version 1.1.x in source or binary form and its associated
documentation as provided herein ("Software").

Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a non-
exclusive, non-transferable, royalty-free, world-wide license to reproduce, analyze, test, perform and/or
display publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any
derivative version, provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright ©1996-1999 Corporation for National Research Initiatives; All Rights Reserved" are
both retained in the Software, alone or in any derivative version prepared by Licensee.

Alternatively, in lieu of CNRI's License Agreement, Licensee may substitute the following text
(omitting the quotes), provided, however, that such text is displayed prominently in the Software alone
or in any derivative version prepared by Licensee: "JPython (Version 1.1.x) is made available subject
to the terms and conditions in CNRI's License Agreement. This Agreement may be located on the
Internet using the following unique, persistent identifier (known as a handle): 1895.22/1006. The
License may also be obtained from a proxy server on the Web using the following URL:
http://hdl.handle.net/1895.22/1006."

In the event Licensee prepares a derivative work that is based on or incorporates the Software or any
part thereof, and wants to make the derivative work available to the public as provided herein, then
Licensee hereby agrees to indicate in any such work, in a prominently visible way, the nature of the
modifications made to CNRI's Software.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=280
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A33%3A02+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=280&now=6%2F1%2F2002+6%3A33%3A02+PM
http://hdl.handle.net/1895.22/1006

Licensee may not use CNRI trademarks or trade name, including JPython or CNRI, in a trademark
sense to endorse or promote products or services of Licensee, or any third party. Licensee may use the
mark JPython in connection with Licensee's derivative versions that are based on or incorporate the
Software, but only in the form "JPython-based ___________________," or equivalent.

The Software contains OROMatcher regular expression software from ORO, Inc. Copyright 1997 by
ORO, Inc. ("ORO software"). OROMatcher (TM) is a trademark of Original Reusable Objects, Inc.
Except as permitted by applicable law and this Agreement, Licensee may not decompile, reverse
engineer, disassemble, or modify the ORO software provided herein. Licensee acknowledges that
redistribution of the ORO software separate from JPython or direct use of the ORO software interfaces
requires a separate license from ORO, Inc. http://www.oroinc.com/

CNRI is making the Software available to Licensee on an "AS IS" basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. SOME STATES DO NOT
ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY SO THE ABOVE DISCLAIMER
MAY NOT APPLY TO LICENSEE.

This License Agreement may be terminated by CNRI (i) immediately upon written notice from CNRI
of any material breach by the Licensee, if the nature of the breach is such that it cannot be promptly
remedied; or (ii) sixty (60) days following notice from CNRI to Licensee of a material remediable
breach, if Licensee has not remedied such breach within that sixty-day period.

This License Agreement shall be governed by and interpreted in all respects by the law of the State of
Virginia, excluding conflict of law provisions. Nothing in this Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between CNRI and Licensee.

By clicking on the "ACCEPT" button where indicated, or by installing, copying or otherwise using the
Software, Licensee agrees to be bound by the terms and conditions of this License Agreement.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

http://www.oroinc.com/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=280

Index terms contained in this section

applications
 JPython
 copyright notices (licenses) 2nd
 OROMatcher
 copyright notice (license) 2nd
 Python
 copyright notices (licenses) 2nd
copyright notices, Python software 2nd
JPython
 copyright notices (licenses) 2nd
licenses, Python software 2nd
OROMatcher
 copyright notice (license) 2nd
programs
 JPython
 copyright notices (licenses) 2nd
 OROMatcher
 copyright notice (license) 2nd
 Python
 copyright notices (licenses) 2nd
software
 JPython
 copyright notices (licenses) 2nd
 OROMatcher
 copyright notice (license) 2nd
 Python
 copyright notices (licenses) 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > C. Python Copyright Notices >
Copyright Notice of JPython without OROMatcher

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219252094016113147204236

Copyright Notice of JPython without OROMatcher

IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY.

BY CLICKING ON THE "ACCEPT" BUTTON WHERE INDICATED, OR BY
INSTALLING, COPYING OR OTHERWISE USING THE SOFTWARE, YOU ARE
DEEMED TO HAVE AGREED TO THE TERMS AND CONDITIONS OF THIS
AGREEMENT.

JPython version 1.1.x

This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 ("CNRI"), and the Individual or Organization
("Licensee") accessing and using JPython version 1.1.x in source or binary form and its associated
documentation as provided herein ("Software")

Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a non-
exclusive, non-transferable, royalty-free, world-wide license to reproduce, analyze, test, perform and/or
display publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any
derivative version, provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright ©1996-1999 Corporation for National Research Initiatives; All Rights Reserved" are
both retained in the Software, alone or in any derivative version prepared by Licensee.

Alternatively, in lieu of CNRI's License Agreement, Licensee may substitute the following text
(omitting the quotes), provided, however, that such text is displayed prominently in the Software alone
or in any derivative version prepared by Licensee: "JPython (Version 1.1.x) is made available subject
to the terms and conditions in CNRI's License Agreement. This Agreement may be located on the
Internet using the following unique, persistent identifier (known as a handle): 1895.22/1005. The
License may also be obtained from a proxy server on the Web using the following URL:
http://hdl.handle.net/1895.22/1005."

In the event Licensee prepares a derivative work that is based on or incorporates the Software or any
part thereof, and wants to make the derivative work available to the public as provided herein, then
Licensee hereby agrees to indicate in any such work, in a prominently visible way, the nature of the
modifications made to CNRI's Software.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=281
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A33%3A14+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=281&now=6%2F1%2F2002+6%3A33%3A14+PM
http://hdl.handle.net/1895.22/1005

Licensee may not use CNRI trademarks or trade name, including JPython or CNRI, in a trademark
sense to endorse or promote products or services of Licensee, or any third party. Licensee may use the
mark JPython in connection with Licensee's derivative versions that are based on or incorporate the
Software, but only in the form "JPython-based ___________________," or equivalent.

CNRI is making the Software available to Licensee on an "AS IS" basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. SOME STATES DO NOT
ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY SO THE ABOVE DISCLAIMER
MAY NOT APPLY TO LICENSEE.

This License Agreement may be terminated by CNRI (i) immediately upon written notice from CNRI
of any material breach by the Licensee, if the nature of the breach is such that it cannot be promptly
remedied; or (ii) sixty (60) days following notice from CNRI to Licensee of a material remediable
breach, if Licensee has not remedied such breach within that sixty-day period.

This License Agreement shall be governed by and interpreted in all respects by the law of the State of
Virginia, excluding conflict of law provisions. Nothing in this Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between CNRI and Licensee.

By clicking on the "ACCEPT" button where indicated, or by installing, copying or otherwise using the
Software, Licensee agrees to be bound by the terms and conditions of this License Agreement.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=281

Index terms contained in this section

applications
 JPython
 copyright notices (licenses) 2nd
 Python
 copyright notices (licenses) 2nd
copyright notices, Python software 2nd
JPython
 copyright notices (licenses) 2nd
licenses, Python software 2nd
programs
 JPython
 copyright notices (licenses) 2nd
 Python
 copyright notices (licenses) 2nd
software
 JPython
 copyright notices (licenses) 2nd
 Python
 copyright notices (licenses) 2nd

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > D. Migrating to Python 2.0 See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219252094018125102101244

Appendix D. Migrating to Python 2.0
This book was originally planned to cover Python 1.5.2 and its transition to version 1.6. However, as
release 2.0 was about to be released when the book was ready to go to the printer, we decided to make
the necessary changes throughout the book in order to cover the new features that are part of the 2.0
release.

This appendix gives you a general overview about what has changed. More detailed information can be
found inside each chapter of this book.

The release 2.0, launched by BeOpen/PythonLabs, starts a new life for Python as important features
were incorporated to the product; many bugs were fixed; the code has become better documented; and
a couple of optimizations were made.

Kuchling and Moshe Zadka wrote a document titled "What's New in Python 2.0" that lists in detail
every single aspect of this new release:

http://starship.python.net/crew/amk/python/writing/new-python/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

migrating to Python 2.0
Python 2.0
 migrating to
 new features of

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=283
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A33%3A31+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read4.asp?bookname=0672319942&snode=283&now=6%2F1%2F2002+6%3A33%3A31+PM
http://starship.python.net/crew/amk/python/writing/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=283

Web Development > Python Developer's Handbook > D. Migrating to Python 2.0 > Python
1.6 or Python 2.0. Which One to Choose?

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219252094021000016030213

Python 1.6 or Python 2.0. Which One to Choose?

For those of you who wonder what was the reason to launch version 1.6 when the 2.0 was about to be
released, I can explain:

When Guido and his team decided to leave CNRI, that institution asked for a 1.6 release to be created.
That release would have to contain all the Python code that was designed while the team was still
working at CNRI.

Although a lot of changes were incorporated to version 2.0, version 1.6 is forward-compatible with
Python 2.0. Note that both releases, 1.6final and 2.0beta1, were released on the same day (September 5,
2000).

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=284
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A33%3A45+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=284&now=6%2F1%2F2002+6%3A33%3A45+PM
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=284

Web Development > Python Developer's Handbook > D. Migrating to Python 2.0 > New
Development Process

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219252094020085215085111

New Development Process

Some business processes have changed after the main development team has left CNRI. Currently,
SourceForge is hosting the Python project page at

http://sourceforge.net/projects/python/.

At that page, you can report bugs, visualize the Python CVS tree, submit patches, and use the patch
manager and the bug tracking tools.

From now on, a new kind of document must be used in order to discuss new possible features and
expose the Python community to information about features that have been implemented. This new
document records all the discussion about the possibility to include a new idea in a future Python
release. These documents are called Python Enhancement Proposals (PEPs), modeled on the Internet
RFC process. It is said that they must provide a concise technical specification of the feature and a
reason for the feature. They have to be used to collect input from the community and to document the
design decisions that were approved. Each proposal has its own author as the sole responsible for
managing it. Any kind of enhancement to the language must be documented by a PEP before it can be
accepted as valid. For more information, check out

http://python.sourceforge.net/peps/

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=285
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A33%3A54+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read8.asp?bookname=0672319942&snode=285&now=6%2F1%2F2002+6%3A33%3A54+PM
http://sourceforge.net/projects/python/
http://python.sourceforge.net/peps/
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=285

Index terms contained in this section

migrating to Python 2.0
PEPs (Python Enhancement Proposals)
Python 2.0
 migrating to
 PEPs (Python Enhancement Proposals)
Python Enhancement Proposals (PEPs)
SourceForge
Web sites
 SourceForge

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > D. Migrating to Python 2.0 >
Enhancements

See All Titles

< BACK Make Note | Bookmark CONTINUE >
152015024128143245168232148039196038240039088173205162105045222219251169049227218189132

Enhancements

Python 2.0 comes bundled with many new features, bug fixes, and optimizations. The next list provides
an appetizer for the main changes that were made, and that are about to be shown.

● Python 2.0's source code was converted to ANSI C. That means that you need an ANSI C
compiler in order to compile Python. Compilers that only support K&R C will not be able to
compile version 2.0. Note that this isn't a big problem, as just about every C compiler these days
is ANSI C compliant.

● For those of you who had problems with the size of your source code, Python 2.0 has increased
the limit of expressions and files in Python source code. That limit is now 2**32. If compared to
the 2**16 that we previously had, it can be considered a good limit.

● This new release also starts the porting of Python to 64-bit platforms. Currently, both Linux and
Win64 are able to take care of that. Some extra effort was made especially for Intel's Itanium
processor.

● The support to XML was fully extended. The xml package includes a renewed DOM interface
and a SAX2 interface.

● All the internals of the re module were changed. Now, the regular expression engine is located
in a new module called SRE written by Fredrik Lundh of Secret Labs AB. This was to allow
Unicode strings to be used in regular expressions too. Pay attention to the re module as it
continues to be the front-end module, which internally calls the SRE module.

● Many new modules were added. (Check them out throughout the book!)

● Many enhancements were made to IDLE. Python 2.0 is distributed with IDLE 0.6, which also
contains a number of new features.

● Some methods had their syntax changed for enhancement purposes, including
listobj.insert(), listobj.append(), and the methods from the socket module.

● Python 2.0 introduces the possibility to rename a module when importing it, for example,

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=286
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A34%3A06+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read5.asp?bookname=0672319942&snode=286&now=6%2F1%2F2002+6%3A34%3A06+PM

import Module as OtherName. Note that this syntax can also be used when importing
symbols from a module, for instance:

from module import sym1 as sym2

● Now, you can also redirect your print statements to a file-like object, for example, print >>
fileobj, "Hello Python World".

The following are considered to be the most important changes in this new release.

Unicode Support

This is a long awaited feature that was finally added to the language. Unicode strings are a new sort of
data type, which can handle up to 65,536 distinct characters, instead of being limited to the 256 used by
the ASCII format. Python now comes with a library of codecs for converting between Unicode and the
various character encodings in use. This library can be extended very easily.

List Comprehension

Whenever you need to compute a list (or lists) of elements in order to generate a new list, you can use
this new and more efficient mechanism. It is offered for lists in order to replace the not-that-efficient
method of using a for loop with an if statement and a list.append() call, for example,
newlist = [y+3 for y in range(15)]

Strings Manipulation

Prior to version 2.0, you had to rely on the string module to manipulate your string objects. With
this new release, the methods were pushed to the string type. Besides the methods that were inherited
from the string module, two new methods were also added. Note that old string module was not
removed from the distribution because it is still necessary for backward compatibility.

Augmented Assignment

Python 2.0 implements a full set of augmented assignment operators. This includes: +=, -=, *=, /=,
%=, **=, &=, |=, ^=, »=, and «=

For example, instead of saying x = x+1, you can choose to say x += 1

Note that you can also specify methods for classes (such as __iadd__) in order to handle these new
operators.

Garbage Collection

The Python interpreter is now using a new mechanism to collect unused objects. From time to time,
this mechanism performs a cycle detection algorithm that searches for inaccessible cycles and deletes
the participating objects. This process has been named Garbage Collection of Cycles.

There are a couple of parameters of the garbage collection that you can manipulate. The module gc
provides functions that help you out with that. Of course, you always have the option to disable this
feature. To do so, simply specify the argument "--without-cycle-gc" when running the Python
configure script.

Maximum Recursion

Prior to version 2.0, Python's maximum recursion depth used to be decided when you compiled Python.
Now, the maximum number of recursive calls that can be made by Python code is easily interpreted
and modified by Python programs just by using the functions sys.getrecursionlimit and
sys.setrecursionlimit, respectively. Note that the default number of recursive calls is set to
1000, and you can use the script Misc/find_recursionlimit.py that comes as part of the 2.0
distribution to help you figure out what is the best number to use on your system. After running this
program, you can add a setrecursionlimit() call to the end of site.py so that this limit is
used by all Python programs on the system.

Taking good care of this limit can help you trap infinite recursions of filling the C stack and causing a
core dump or GPF on your system.

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark CONTINUE >

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=286

Index terms contained in this section

assignment operators
 Python 2.0
Garbage Collection of Cycles (Python 2.0)
IDLE
 Python 2.0
lists
 Python 2.0
methods
 Python 2.0
modules
 re
 Python 2.0
objects
 unused objects
 Python 2.0
operators
 assignment operators
 Python 2.0
Python 2.0
 new features 2nd 3rd 4th
re module
 Python 2.0
recursion
 Python 2.0
source code
 Python 2.0
strings
 Python 2.0
Unicode support
 Python 2.0
XML
 support in Python 2.0

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook > D. Migrating to Python 2.0 >
Expected Code Breaking

See All Titles

< BACK Make Note | Bookmark
152015024128143245168232148039196038240039088173205162105045222219251169048213060106065

Expected Code Breaking

There are a couple of changes in Python 2.0 that you should be aware of because they could cause your
current Python code to break.

● It's not possible to have string exceptions anymore. All standard exceptions can only be classes
from now on. The -X command line option has been removed.

● The \x escape that you normally use for string literals now accepts only 2 hexadecimal digits,
instead of reading everything that you inform and taking only the lowest 8-bit of the given
value. Note that not many people knew about or used this fact, so it should not cause any
significant breakage.

● Prior to 2.0, there were some methods that accepted multiple arguments, and internally
converted them to a tuple, such as the .append() method of a list object. Consequently, you
could type lstobj.append(3,4,5). After release 2.0, you need to inform an additional
pair of parenthesis in order to avoid raising a TypeError exception. Thus, the right syntax has
become lstobj.append((3,4,5)). Note that there are a couple of methods that still work
in both ways, such as the socket.connect(). Also note that the script
Tools/scripts/checkappend.py can be used to catch most occurrences of this mistake.

● When dealing with long integers, the str() function doesn't include the 'L'character anymore
at the end of the string. Although, the repr() function still does. Therefore, if you cut the last
position of our string in order to get rid of the 'L', you will now get rid of the last digit. So, be
careful!

● Talking about str() and repr(), they now use different formatting precision string. The
former uses %.12g, and the latter uses %.17g. Consequently, repr() might sometimes
return more decimal places.

And always remember that you can depend on the support of the Python community to help you out
with problems that you can't easily solve. If you think your problem is a common or simple problem,
try reading the list archives or asking questions in the mailing lists. If it seems to be a bug, look at the
CVS tree to see whether it has been fixed. If not, you can report it.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=287
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/6%2F1%2F2002+6%3A34%3A18+PM.html
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/read0.asp?bookname=0672319942&snode=287&now=6%2F1%2F2002+6%3A34%3A18+PM

Good luck in your Python Adventure!

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

< BACK Make Note | Bookmark

Index terms contained in this section

functions
 repr()
 Python 2.0
 str()
 Python 2.0
Python 2.0
 preventing code breaks 2nd
repr() function
 Python 2.0
str() function
 Python 2.0

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/popanote.asp?pubui=oreilly&bookname=0672319942&snode=287

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

Copyright © 2001 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

Library of Congress Catalog Card Number: 00-105615

Printed in the United States of America

First Printing: November 2000

02 01 00 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an "as is" basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book.

Credits

Acquisitions Editor

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

Shelley Johnston

Development Editor

Scott D. Meyers

Managing Editor

Charlotte Clapp

Project Editor

Dawn Pearson

Copy Editor

Rhonda Tinch-Mize

Indexer

Cheryl Landes

Proofreaders

Katherin Bidwell

Bob LaRoche

Technical Editor

James Henstridge

Team Coordinator

Amy Patton

Media Developer

Dan Scherf

Interior Designer

Gary Adair

Cover Designer

Alan Clements

Dedication

I dedicate this book to my son, a little boy named João Pedro. Even though we haven't met
yet, he already has acquired a special place in my heart. We love you JP!

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][2nd
 , 3rd

 ! (exclamation points)

 # (pound sign)

 #PCDATA

$ (dollar sign)
 identifier names
 re module

 $PYTHONSTARTUP directory

 % (modulo) operator

% (percent sign)
 identifier names

 %% formatting operator

 %c formatting operator

 %d formatting operator

 %e formatting operator

 %E formatting operator

 %f formatting operator

 %g formatting operator

 %G formatting operator

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 %i formatting operator

 %o formatting operator

%r format string
 comparing with %s format string

%s format string
 comparing with %r format string

 %s formatting operator

 %u formatting operator

 %x formatting operator

 %X formatting operator

&
 (ampersands)

<
 !-- # INSERT HERE # --
 !ATTLIST definition tag
 !ELEMENT definition tag
<
 operator
 APPLET tag
 B1-Motion event
 Button-1 event
 ButtonRelease-1 event
 Configure method
 Control-Up event
 Double-Button-1 event
 Enter event
 Key event
 Leave event
 Python.h header file
 Return event

 ($PATH) variable

 ($PYTHONPATH) variable

(<
Ó
 Button-1Ó) event

() (parenthesis)
 tuples

()_(parenthesis)
 1st append

(?
str)
 re module

(?!str)
 re module

(?#str)
 re module

(?=.str)
 re module

(?=str)
 re module

(?P<
 name

(?P=name)
 re module

 (CONTENTS) argument

(from Tkinter import *) module
 loading

 (NAME) argument

(re)

 re module

 identifying number of arguments, functions

 re module

 replacing numbers with

**
 identifying number of arguments, functions

*?
 re module

 shared flag

 static flag

 + (addition) sign

+ (plus sign)
 re module

 + (plus symbols)

 + (plus) sign

+?
 re module

 - pathname

 -U command line option

 . (dot) operator

 . (dots)

. (period)
 re module

.*
 re module

 .pdbrc file

 .py extension

 .pyw extension

/ (slash literal)
 creating strings

 / (slash)

 /PCbuild directory

 /usr/local directory

; (semicolon)
 separating statements on same line

 ;;

 = (equal sign)

 = (equal signs)

 = (equal) sign

 2nd

 re module

??
 re module

@ (at sign)
 identifier names

 [] element

[^list]
 re module

[É
] entries

[list]
 re module

 2nd

 [nd]c argument

 [nd]c cmd option

 [nd]d option

 [nd]Dprop=value option

 [nd]e argument

 [nd]file option

 [nd]i argument

 [nd]i option

 [nd]I option

 [nd]jar jar option

 [nd]O command-line option

 2nd

 [nd]OO option

 2nd

 [nd]t option

 [nd]u flag

 [nd]u option

 [nd]v option

 [nd]X option

 [nd]x option

 [nd]X option

\ (backslash)
 adding line breaks
 escaping

\\
 re module

 \\ escape code

\A
 re module

\b
 re module

\B
 re module

\d
 re module

\D
 re module

\Demos directory
 scripts stored in

\number
 re module

\Ó
 escape code

\Õ
 escape code

\s
 re module

\S
 re module

\Tools directory
 scripts stored in

\W
 re module

\Z
 re module

^ (carat)
 re module

 __add__(name) method

 __builtin__ module

 __call__(self) method

 __cmp__(self,other) method

 __del__(self) method

 __delattr__(self, name) method

 __getattr__(self, name) method

 2nd

 __hash__(self) method

 __init__(self) method

 __len__(name) method

 __len__(self) method

 __main__ module

 __nonzero__(self) method

 __repr__(self) method

 __setattr__(self, name, value) method

 __str__(name) method

 __str__(self) method

 __sub__(name) method

 _public_attrs() attribute

 _public_methods() attribute

 _readonly_attrs() attribute

 _tkinter module

 _winreg module

` (back quotes)
 strings

`` (backticks)
 strings

{m, n}
 re module

{m, n}?
 re module

| (pipe)
 re module

 0 variable

 1

 1 variable

1.5.2 release (Python)
 tutorials

1st.append
 () (parenthesis)

 2 variable

2.0 release (Python)
 manuals

 3 variable

 4DOM

 4XSLT

A

 A

 a

 a (append) mode

 a event

 a(rgs) command

 a2b_hex function

abbreviations
 def, functions
 sorting keys

 ABC scripting language

 2nd

 2nd

 Abstract Windowing Toolkit (AWT) module

 AbstractFormatter(writer) class

abstraction
 procedural

 AbstractWriter() class

 accelerator option

 accept() method

acceptable input
 testing for

accessing
 command line interpreter
databases
 connection objects , 2nd
 exception states
methods and properties
 objects
 module attributes
 modules
 private attributes
 swing components
 unbounded method
 uniform resource locators (URLs)
variables
 instances

activating
 debuggers, Pythonwin

 2nd

 ActiveX scripting

 activebackground property

 activeforeground property

ActiveX
 scripting

 ActiveX control

 2nd , 3rd

 actual(options) method

 add(filename, ...) method

 add(type, options) method

 add_cascade(options) method

 add_checkbutton(options) method

 add_command(options) method

 add_flowing_data(data) attribute

 add_hor_rule(*args, **kw) attribute

 add_label_data(format, counter) attribute

 add_line_break() attribute

 add_literal_data(data) attribute

 add_radiobutton(options) method

 add_separator(options) method

adding
 break-point connections, Pythonwin
 Button widgets inside text
 comments to code
 line breaks
 Python/C Application Programmers Interface (API)
 watch variables, Pythonwin

 addition (+) sign

 AddRef() method

addresses
 IP
 networks
 socket

 AddressList class

 addresslist variable

 AddressList(field) method

admin rights
 installations

administrator privileges
 installations

 AF_INET value

 AF_UNIX value

 after(milliseconds [, callback [, arguments]]) method

 after_cancel(identifier) method

 after_idle(callback, arguments) method

aggregate functions
 relational databases

agreements
CNRI License Agreement
 downloading

 AIFC (Audio Interchange File Format)

 2nd

 aifc.writeframes() method

 Ajuba

 al module

 AL module

 alert() function

 alias [name [command]] command

aliasas
 .pdbrc file

 aliases

alibration
 profiler class

aligning
 colored buttons, frames

allocators
 raw memory

 Amoeba Project

ampersands (&
)

analyzing
 profiles, pstats module

 anchor argument

 2nd

 anchor_bgn(href, name, type) method

 anchor_end() method

 AND operator

 anonymous FTP servers

 ANSI C language, portable

 2nd

Anystring
 re module

AOLserver Web server
 configuring Web servers for Python/CGI scripts

Apache
 configuring Web servers for Python/CGI scripts

 apilevel variable

 append (a) mode

 creating

 JPython, running

application program interfaces (APIs)
 Common Object Model (COM)

Application Program Interfaces (APIs)
 Python DB

application program interfaces (APIs)
 Winsock

Application Programmers Interface (API)
Python/C
 variables, exceptions

applications
AOLserver Web server
 configuring Web servers for Python/CGI scripts
Apache
 configuring Web servers for Python/CGI scripts , 2nd , 3rd , 4th , 5th
 BSCW (Basic Support for Cooperative Work)
 BuildApplet
 BuildApplication
 calldll
 Common Object Request Broker Architecture (COBRA)
 debugging
designing
 Tkinter module , 2nd , 3rd , 4th
 Distributed Common Object Model (DCOM)
 distributing
 Distutils
 DocumentTemplate
 EditPythonPrefs
Emacs
 editing source code , 2nd , 3rd
Excel
 opening and manipulating from Python , 2nd , 3rd , 4th , 5th , 6th
 FastCGI
 Fnorb
 Front Page Personal Web Server
 2nd
 Hector
 hello world
Hello World
 Tkinter , 2nd
 httpd_log
 improving performance
 Inter-Language Unification (ILU) system
 Internet, third-party

 islscan
Java
 embedding JPython in
 JED
JPython
 copyright notices (licenses) , 2nd , 3rd , 4th
 JPython Runner
 launching
 LDAP (Lightweight Directory Access Protocol)
 Linbot
 M2Crypto
MacPython
 thread support
 Mailman
 Medusa Internet Server
Microsoft IIS Server
 configuring Web servers for Python/CGI scripts , 2nd
multithreaded
 support , 2nd
 mxDateTime
 mxODBC
non-Python
 embedding Python objects in;wrappers
 Object Management Facility (OMF)
 Object Request Broker (ORB)
 OmniORBpy
 opening interpreters after executing
 optimizing performance
 ORBit-python project
OROMatcher
 copyright notice (license) , 2nd
 parsing Web pages
Personal Web Server (PWS)
 configuring Web servers for Python/CGI scripts , 2nd
 Pico
 profiling
 protection environments
 PyDAV
Python
 copyright notices (licenses) , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th
 python-stubber
 site management tools

source code
 editing , 2nd , 3rd , 4th
 SpamWall
 stored in \Tools and \Demos directories
 transferring data between
 Vi (visual editor)
 Visual Interdev
 Webchecker
 WebDAV (World Wide Web Distributed Authoring and Versioning)
 WebLog
 win32all
 win32com
Word
 opening and manipulating from Python , 2nd , 3rd , 4th , 5th , 6th
XEmacs
 editing source code , 2nd , 3rd
 2nd
 Zebra
 ZSQLMethod

applying
 operations to dictionaries

 arc() method

 args argument

 args attribute

 args option

argument
 (CONTENTS)
 (NAME)

arguments
 [nd]c
 [nd]e
 [nd]i
 anchor
 args
base

 functions
bitwise
 PlaySound function , 2nd
 bordermode
 calling functions without
command-line
 Pythonwin
 functions
 height
 in (in)
 JPython interpreter
Ó
 timeÓ
 place() and place_configure() methods
 protocol
 range() function
 relheight
 relwidth
 relx
 rely
 return code
 2nd
 whatis
 width
 x
 y

 methods

 array objects

arrays
 buffer interface support
 one-dimensional
 packing methods
 two-dimensional

 ArrayType object

 2nd

 ActiveX scripting

 aspect(minNumer, minDenom, maxNumer, maxDenom) method

 2nd

 assert_line_data([flag = 1]) method

assigning
 functions to variables
 null values to variables
 objects to variables
 values to substrings
 values to variables, modules

assignment operators
 Python 2.0

associating
 widgets with toplevels

 identifying number of arguments, functions

 re module

asterisks (*)
 replacing numbers with

 2nd

 Asynchronous Sockets Library

 2nd

at sign (@)
 identifier names

 atexit module

attributes
 _public_attrs()
 _public_methods()

 _readonly_attrs()
 add_flowing_data(data)
 add_hor_rule(*args, **kw)
 add_label_data(format, counter)
 add_line_break()
 add_literal_data(data)
 args
 BaseHTTPRequestHandler class
 CGIHTTPRequestHandler class
 char
 Checkbutton widget
 classes
 classname.__bases
 classname.__dict
 classname.__doc
 classname.__module
 classname.__name
 command
 data
 DatagramRequestHandler class
 description
 end_paragraph(blanklines)
 events
 2nd
 filename
 formatter objects
 fs.disposition
 fs.disposition_option
 fs.file
 fs.filename
 fs.headers
 fs.name
 fs.type
 fs.type_options
 fs.value
 headers
 2nd
 im.mode
 indicatoron
 instance
 keysym

 MatchObject
modules
 accessing
 name
 num
 obj.__class__
 obj.__dict__
 obj.__methods__
objects
 changing
 offvalue
 onvalue
 PhotoImage subclass
private
 accessing , 2nd
 RegExpObject
 SimpleHTTPRequestHandler class
 SimpleHTTPRequestHandler.extensions_map
 SimpleHTTPRequestHandler.server_version
 SocketServer module
 state
 stream object
 StreamRequestHandler class
 tabs
 Text widget
 textvariable
 url
 value
 widget
 width
 writer
 x
 x_root

 attributes property

 attributes variable

 2nd

 Audio Interchange File Format (AIFC)

 audiodev module

 overriding

 2nd

 AutoFit() function

 autogenerated pages

 automation objects

 AWT (Abstract Windowing Toolkit)

 AWT (Abstract Windowing Toolkit) module

 AWT Abstract Windowing Toolkit

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][b
(binary) mode

 2nd

 b event

 b format

 B format

b(reak) [([filename
]lineno | function) [, condition]] command

 b2a_hex function

back quotes (`)
 strings

 background option

 2nd

backslash (\)
 adding line breaks
 escaping

backticks (``)
 strings

 backward stepping

bars
menu
 creating

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

base arguments
 functions

 base class

 base classes

 2nd

 2nd

 BaseHTTPServer module

 Basic Support for Cooperative Work (BSCW)

 2nd

 BBC (British Broadcasting Corporation)

 2nd

beans
 creating

 Beazley, David

 benchmark tool source code

 BeOpen Network

 BeOpen Python Labs

 BeOpen.com

 bgen program

 binary (b) mode

 2nd

binary operations
 numbers in

 functions

 binascii.a2b_base64(string) method

 binascii.a2b_hqx(string) method

 binascii.a2b_uu(string) method

 binascii.b2a_base64(binarydata) method

 binascii.b2a_hqx(binarydata) method

 binascii.b2a_uu(binarydata) method

 binascii.crc_hqz(binarydata, crc) method

 binascii.rledecode_hqx(binarydata) method

 binascii.rleecode_hqx(binarydata) method

 bind(event, callback) method

 bind_all(event, callback) method

 bind_class(widgetclass, event, callback) method

binding
events
 widgets , 2nd , 3rd , 4th , 5th , 6th
 handlers, protocols
 runtime
 sockets

bindings
early
 Type Libraries , 2nd
keyboard

 Pythonwin , 2nd , 3rd
late
 IDispatch interface

 bindtags() method

 binhex module

 binhex(inputfile, outputfile) function

 2nd

 bitmap property

 bitmap() method

 2nd

bitwise arguments
 PlaySound function

 2nd

 Bizzaro, J.W.

 blank lines in scripts

blocks
extern Ò
 CÓ {É }
 2nd

 Booth, Duncan

 bordermode argument

 2nd

boxes
 tip

break-point connections
 adding, Pythonwin

breaking
 circular references

breaks
 lines

 British Broadcasting Corporation (BBC)

 Browse PythonPath option, Pythonwin

browsers
 creating output, CGI scripts
 2nd
 Internet Explorer
 OO
 passing data to CGI scripts from

browsing
 classes

 browsing engines

 BSCW (Basic Support for Cooperative Work)

 2nd

 bucket size

 Budelsky, Dietmar

 buffer interface

 2nd

 buffer objects

 bufferobject.h header file

buffers
 executing source code, Python/C Application Programmers Interface (API)

 buffersize statement

bug list
 Python

Build menu
 Debug option

 BuildApplet

 BuildApplication

building
 extensions, C++
 modules as shared libraries
 Python applications
 Web servers

 2nd

 BuiltinFunctionType object type

 BuiltinMethodType object type

 2nd

buttons
 colored, creating frames to align
 Debug Control Panel

byetcode
executable
 generating

bytes
 packing methods

 byteyears program

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][2nd

 c format

C library
 memory corruption

 C objects

C programming language
 2nd , 3rd , 4th , 5th , 6th , 7th , 8th
 vs. Python

C structures
 complex numbers as

 c value

 c(ont(inue)) command

C++ programming language
 building extensions
 2nd , 3rd , 4th , 5th , 6th , 7th , 8th
 vs. Python

Cain, DÕ
 Arcy J.M.

 calcsize() function

calculator object
 source code

 2nd

 call stack

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 callback function

callback functions
 implementing

 callback generator

callbacks
events
 methods , 2nd

 calldll

 calldll extension

 2nd

 calldll package

calling
 functions without arguments
 interpreters
methods
 from string objects

calls
 Checkbutton widget
 Remote Procedure (RPC)

 campus-wide information system (CWIS)

 2nd

carat (^)
 re module

case sensitivity
 commands and file names
 identifiers

catching

 class instances
 exceptions

 cd module

 Cells() function

 2nd

 2nd
 cgi module
 creating, installing, and running

 2nd

CGI scripts
 configuring servers for
 outputting links from HTML files to Web pages

 cgi-bin directory

 cgi.escape(string [,quote]) method

 cgi.parse([file], …) method

 cgi.parse_qs(string, keep blank values=0) method

 cgi.print_directory() method

 cgi.print_environ() method

 cgi.print_environ_usage() method

 cgi.print_form(form) method

 cgi.test() method

 CGIHTTPRequestHandler class

 CGIHTTPServer module

 2nd

changing
 fonts, windows
 global variables inside functions
 object attributes
 prompts
 source code
 values at execution time
 Visible property

channels
 audio files

 char attribute

 char* Py_GetExecPrefix() function

characters
 identifier names
 recognized by re module
Unicode
 Tkinter module

charactersÓ
 Ò

 2nd

checkbuttons
 Debug Control Panel

checking
 error
errors
 extension modules , 2nd
 UNIX passwords

 checkpyc program

 2nd

 circular references

 cl(ear) [bpnumber [bpnumber ...]] command

 Clark, James

 class attributes

 Class Browser

 Class browser option, File Editor

 2nd
 catching
 creating

 class keyword

 class members

 2nd

 class statements

 2nd
 AbstractFormatter(writer)
 AbstractWriter()
 AddressList
 2nd
 BaseHTTPRequestHandler
 CGIHTTPRequestHandler class
 creating
 DatagramRequestHandler
 dispatcher
 documentation strings
 DumbWriter([file[, maxcol = 72]])
 ErrorPrinter
 ErrorRaiser
exception
 instancing , 2nd
 FieldStorage

 formatter objects
 grid
 HTMLParser
 HTTP
 HTTPServer
 2nd
 Java Foundation (JFC)
 Message
 Message(file[,
 MiniFieldStorage
 MultiFile (fp[,
 multifile module
 NameError
 naming styles and conventions
 NullFormatter([writer])
 NullWriter()
 pack
 Packer()
 place
profiler
 timing
 pstats.Stats
 queue
 Real
 sgmllib module
 SGMLParser
 SimpleHTTPRequestHandler
 SocketServer module
 StreamRequestHandler
 Unpacker(data)
 writer objects
 xdrlib module

 classes program

classesÓ
 Ò

 classfix program

 classname.__bases attribute

 classname.__dict attribute

 classname.__doc attribute

 classname.__module attribute

 classname.__name attribute

classrooms
 bringing Python to

classs
 FieldStorage
 Stats(filename, ...)

 ClassType object type

clauses
 except
 finally
 group by
 try
 WHERE

 See : statementsclausesÓ
 Ò

 clean module

 clear_all_breaks() method

 clear_all_file_breaks(filename) method

 clear_bpbynumber(arg) method

 clear_break(filename, lineno) method

 client(name) method

clients
Common Object Model (COM)

 importing
 passing strings to shells from
 setting up, Hypertext Transfer Protocol (HTTP)
User Datagram Protocol (UDP)
 handling

 Close option, File Editor

 2nd , 3rd , 4th

closing
 Excel and Word
 2nd

 cmath module

 cmp module

 CNRI

CNRI License Agreement
 downloading

 See : Corporation for National Research InitiativesCNRIÓ
 ?

 See : Common Object Request Broker ArchitectureCOBRAÓ
 Ò

code
 benchmark tool
 calculator object
 company employees
debugging
 exceptions
glueÓ
 Ò
 HTML parsing tool
 optimizing
 parking lot object

 2nd
source
 Python;downloading , 2nd , 3rd , 4th
 style guides

 2nd

 CODE parameter

code:Python 2.0
 standard exceptions

 2nd

 codeop module

codes
 escape
 response, returned by Web servers

 CodeType object type

collecting
 garbage
 page title information
 unused objects

color names
 Macintosh

colored buttons
 creating frames to align

 colorizers

 colormapwindows(wlist...) method

colors
 shell elements

column headings
 profiles

 column option

 columnspan option

 COM_Browser option, Pythonwin

 COM_Makepy_utility option, Pythonwin

 combined module

 command attribute

 command history mechanism

 2nd

command line options
 -U

 command option

 command property

 command() function

 command(value) method

command-line arguments
 IDLE
 Pythonwin

command-line options
 [nd]O
 interpreters, Windows and UNIX

command-line scripts
 testing

commands
 a(rgs)

 alias [name [command]]
 assert
b(reak) [([filename
]lineno | function) [, condition]]
 c(ont(inue))
 case sensitivity of
 chmod
 cl(ear) [bpnumber [bpnumber ...]]
 condition bpnumber condition
 d(own)
 del
 disable bpnumber [bpnumber ...]
 enable bpnumber [bpnumber ...]
 eval
 exec
 h(elp)
 ignore bpnumber count
 implementing extensions
keyboard
 IDLE
 l(ist) [first [,last]]
 n(ext)
 Py_BuildValue(format, Cvar1 [, Cvar2 [,]])
 PyArg_ParseTuple
 PyArg_ParseTuple(args, format, arg1 [, arg2 [,]])
 Python Debugger (bdb) module
 Python Debugger (pdb) module
 q(uit)
 r(eturn)
 reload module
 return
 running, interrupting
 s(tep)
 shell
 start scriptname.py
tbreak [([filename
]lineno | function) [, condition]]
 u(p)
 unalias name
 w(here)
 whereis python

 Comment out region option, File Editor

comments
 adding to code
 inline

 2nd
 cgi module
 creating, installing, and running

 common module

 2nd , 3rd , 4th

 Common Object Request Broker Architecture (COBRA)

company employees
 source code

comparing
 %r and %s format strings

comparisons
 numbers

 2nd

 2nd

 2nd

compiling
 2nd
 Python
 source code

 completion function

 2nd

complex numbers

 handling

 ComplexType object type

components
 source code editing, Scintilla
swing
 accessing

computing
scientific
 use of Python in , 2nd , 3rd , 4th , 5th , 6th

 2nd

 Concurrent Version System (CVS)

 Concurrent Versions System (CVS)

 condition bpnumber condition command

conditions
 race

 config() method

 2nd

 config.c file

 config.h file

ConfigParser module
 files

 configure() method

 configure(options) method

configuring
 IDLE

 items in lists
 permissions
 Python
 servers for Python/CGI scripts
 tuples

 2nd

connect(parametersÉ
) constructor

connecting
 sockets

connection objects
 databases

connections
break-point
 adding, Pythonwin
databases
 opening
Open Database Connectivity (ODBC)
 opening
proxy servers
 handling

 const char* Py_GetVersion() function

constants
 classes
flag
 bitwise arguments, PlaySound function , 2nd

construction methods
 nested loops

constructors
connect(parametersÉ
)
 databases

 Content-type tag

control
 ActiveX

 control ports

 2nd

 ConversionError exception

converting
 references into lists

 2nd

 Cookie.py module

 Cookie.user_setfunc() method

cookies
 CGI scripts

 Copy option, File Editor

copy reg module
pickle support
 registering

 copy(font object) method

 copy_reg module

copying
 2nd
 Web pages into local files

 copymessage method

 2nd , 3rd , 4th , 5th , 6th , 7th

copyrights:CNRI License Agreement
 downloading

 copytime program

 Corporation for National Research Initiatives (CNRI)

corruption
 memory

 Cotton, Scott

 counter values

counters
 incrementing and decrementing

counting
 reference
references
 extension modules , 2nd

counts
reference
 Python/C Application Programmers (API) interface , 2nd , 3rd , 4th , 5th

 2nd

CPython
 vs. JPython

CPython library
 downloading

 create_socket method

creating
 applets
 application distribution packages
 beans
 break-point connections, Pythonwin
 browser output, CGI scripts

 class instances
 classes
code
 style guides , 2nd , 3rd , 4th , 5th , 6th
 comments for code
 Common Gateway Interface (CGI) scripts
Common Object Model (COM) clients
 Excel , 2nd , 3rd
 dictionaries
 Extensible Markup Language (XML) files
 extensions
 extensions, C++
 file dialog boxes
 frames to align colored buttons
 global namespaces, modules
 IDLE extensions
 image objects
instances
 metainstances
 line breaks
 menu bars
 menus
 messages
 modules as shared libraries
 object type definitions, Python/C Application Programmers Interface (API)
 pop-up menus
 pull-down menus
 Python applications
Python extension modules
 wrappers
 Python interfaces to expose objects
 radiobuttons
 scripts
 single line interfaces
 sockets
 status bars
 strings, slash literal (/)
 subclasses
 thread data structures
 toolbars
 user-defined exceptions
 watch variables, Pythonwin

 wave files
 Web servers
 windows

 crlf program

 cStringIO module

 cumtime column heading

 curses module

cursor objects
 databases

 Cut option, File Editor

 CVS (Concurrent Versions System)

 cvsfiles program

 See : Concurrent Version SystemCVSÓ
 ?

 CWI

 CWIS (campus-wide information system)

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][d
element

 D element

 d element

 d format

 d(own) command

 DAO

data
 binary
handling
 Internet Data Handling library , 2nd , 3rd , 4th
manipulating
 XML-RPC library , 2nd
opaque
 packing methods , 2nd
parsing
 form fields , 2nd , 3rd
 passing from browsers to CGI scripts
 saving to disk
 sending to Python scripts
 sending to screen
transferring
 FTP sites
 transferring between applications

 data attribute

 data option

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 data ports

 2nd

 2nd

data types
 immutable
 None
 Python

database engines
 MetaKit

 2nd

 2nd
accessing
 calldll package
 ActiveX Data Objects (ADOs)
 database managers (DBM)
 flat
hash
 opening
 identifying
 object serialization
 Open Database Connectivity (ODBC) module
 opening connections
 PostgreSQL
 Python DB API
relationalÓ
 Ò
 Structured Query Language (SQLs)
 2nd

 databases:dumbdbm module

 datagram sockets

 DatagramRequestHandler class

Date/Time format
 setting

 2nd

 2nd

 dbm module

 See : Distributed Common Object MOdelDCOMÓ
 Ò

deallocating
 objects
 variables

 deallocation function

 2nd

Debug menu
 File Editor
 options, File Editor

Debug option
 Build menu

debuggers
 Pythonwin

debugging
 Active Scripts
 applications
 CGI scripts
 CGI scripts, functions
code
 exceptions

Debugging toolbar
 opening, Pythonwin

 decimals in numbers

declaring
variables
 PyObject

 decode (in_file[, out_file[, mode]])function

 decode(input, output) function

 decode(inputfileobject, outputfileobject, encoding) function

decrementing
 counters
 reference counts

 Dedent region option, File Editor

 def abbreviation, functions

 def keyword

 default arguments

 default property

defining
 values at execution time

definitions
 classes
 object types, Python/C Application Programmers Interface (API)

 deiconify() method

 del command

 delete(row [,lastrow]) method

 2nd

 deletefolder(name) method

 Delivery Status Notification (DSN)

Delphi programming language
 implementing Common Object Model (COM) objects

 description attribute

designing
applications
 Tkinter module , 2nd , 3rd , 4th
 interfaces

 destroy() method

 Developing Gnome Applications with Gnome-Python

development
Web
 WebLog

 building Python applications

 IDLE

 Pythonwin

devices
 Enigma

dialog boxes
file
 creating

 defining =values

 entitydefs

 methods

 mimetypes module

 dictionary objects

 DictType object type

 2nd
 ExtensionClass extension

directories
 $PYTHONSTARTUP
 /PCbuild
 /usr/local
\Tools and \Demos
 scripts stored in , 2nd , 3rd , 4th
 cgi-bin
 loading modules from
 packages

 2nd

 dis() function

 disable bpnumber [bpnumber ...] command

 disabledforeground property

disabling
registration
 Common Object Model (COM) objects

disks
 saving data to

 Dispatch method

 2nd

dispatches
 static

displaying
 error symbols
 input and output
 lines, lists

 2nd

distributing
 applications
objects
 Common Object Model (COM) , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th
 , 12th , 13th , 14th , 15th , 16th , 17th , 18th , 19th , 20th

distribution
objects
 Python
 Python

 Distutils package

 2nd

 disutils module

 dl_nt.c file

 dllbase_nt.txt file

 dlmodule module

 dns program

 2nd

 do_POST() method

 do_tag() method

 do_tag(attributes) method

 2nd

documentation
 Python, downloading

 2nd , 3rd

 DocumentHandler interface

 DocumentTemplate

dollar sign ($)
 identifier names
 re module

 done() method

 2nd

 dot (.) operator

dot(.)
 re module

 dots (.)

double quotes (Ò
)
 strings

 double variable

downloading
 CNRI License Agreement
 CPython library
documentation
 Python , 2nd
 GNU gzip

 JPython
source code
 Python , 2nd , 3rd , 4th
 Windows installer
 WinZip

 downloading:Python 2.0

 DSN (Delivery Status Notification)

 2nd

 DTDHandler interface

 databases

 DumbWriter([file[, maxcol = 72]]) class

 Dunn, Robin

duplicating
 2nd
 Web pages into local files

 dutree program

 dynamic dispatch object

dynamic extensions
 linking to interpreters

dynamic modules
 installing and running

 dynamic namespaces

 dynamic typing

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][File
Editor

 keyboard bindings, Edit Editor

 options, Edit Editor

 Edit_PythonPath option, Pythonwin

editing
 fonts, windows
 global variables inside functions
 object attributes
 prompts
 source code
 values at execution time
 Visible property

editing components
 source code, Scintilla

 editor window

 EditPythonPrefs

 []

 b

 c

 d

 D

 d

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 f

 h

 i

 l

 N

 O

 O!

 O&

 s

 S

 s

 S

 s#

 z

 z#

 elements— variable

 elisp (Emacs Lisp) programming language

 Ellinghouse, Lance

 EllipsisType object type

 2nd

Emacs
editing
 source code , 2nd , 3rd

 2nd

 Emacs Lisp (elisp) programming language

email services
 handling

 embed program

embedding
 applets
 interpreters
 interpreters in servers
 JPython
Python
 Python/C Application Programmers Interface (API)
Python objects
 wrappers

employees
 source code

 enable bpnumber [bpnumber ...] command

enabling
modules
 UNIX operating systems
 Tkinter module

 encapsulation

 encode (in_file, out_file[, name[, mode]])function

 encode(input, output, quotetabs) function

 encode(inputfileobject, outputfileobject, encoding) function

encoded messages

 Multipurpose Internet Mail Extension (MIME)

 encoded strings

 encodings module

encrypting
 UNIX passwords

 end_marker(str) method

 end_paragraph(blanklines) attribute

 2nd

 endswith() method

engines
 browsing
database
 MetaKit
 undo

 Enigma device

 entitydefs dictionary

 entitydefs variable

 EntityResolver interface

entries
[É
]

 2nd

 entryconfig(index, options) method

environment variables
 CGI scripts

 recognized by interpreters
 scanning

 EnvironmentError exception

environments
applications
 protecting
development
 Pythonwin , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th

 eptags program

 2nd

 equal signs (=)

equations
 numbers in

 errno module

 2nd
 extension modules

 Error exception

 error indicator

error messages
 assigning values to substrings
 handling long integers
 non-Python extension dynamic link libraries (DLLs)

error symbols
 viewing

 2nd

 ErrorHandler interface

 ErrorPrinter class

 ErrorRaiser class

 2nd

 escape codes

escaping
 backslashes (\)

EShop
 Open Database Connectivity (ODBC) module

ethods
 add(filename, ...)
 ignore()
 print_callees(restrictions, ...)
 print_callers(restrictions, ...)
 print_stats(restriction, ...)
 reverse_order()
 sort_stats(key, ...)
 Stats class
 strip_dirs()
 trace_dispatch()

 eval command

event loops
 starting

 Return

(<
 ÓButton-1Ó)

 a

 b

binding

 widgets , 2nd , 3rd , 4th , 5th

handling
 Tkinter module , 2nd , 3rd , 4th , 5th

 example_nt subdirectory

Excel
 opening and manipulating from Python

 except clause

exception classes
 instancing

exceptions
 catching
 ConversionError
 EnvironmentError
 Error
 finding
handling
 extension modules , 2nd
 handling and raising, Python/C Applications Programmers Interface (API)
 IndexError
 modules
 naming styles and conventions
 Python/C Application Programmers Interface (API)
raising
 returning NULL values
standard
 Pyton 2.0 code
string
 raising
 subclassing
 SyntaxError
 SystemExit
 try/finally statement
 uncaught
 user-defined, creating
 variables, Python/C Applications Programmers Interface (API)

 exclamation points (!)

 exclusive OR (XOR) operator

 exec command

 exec statement

executable bytecode
 generating

 execute() method

 executemany(operation,seq_of_parameters) method

 2nd

executing
 CGI scripts
 script tags
 scripts from Windows

execution
 Restricted Execution library

 Exit option, File Editor

exiting
 Excel and Word
 interpreters

 expand option

 Expand word option, File Editor

exposing
 objects, creating Python interfaces

 2nd
 creating single line interfaces for entering
 p

 regular

 extend program

Extensible Markup Language (XML)
 manipulating data

extension modules
 compiling
 compiling and linking
 2nd , 3rd , 4th
 importing

 ExtensionClass extension

extensions
 .py
 .pyw
 building, C++
 calldll
 creating
dynamic
 linking to interpreters , 2nd , 3rd , 4th
 ExtensionClass
IDLE
 writing
 implementing
 Mess
 Multipurpose Internet Mail (MIME)
 Numerical Python (NumPy)
 profiler class
 Python X
static
 linking to interpreters , 2nd , 3rd

extern Ò
CÓ
 {É }block

 External Data Representation Standard (XDR)

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][2nd

 f format

 fact script

 fallback location

 families() function

 family option

 family value

 faqwiz program

 Fast Light Tool Kit (pyFLTK) module

 fast_umath module

 2nd

 feed() method

 2nd

 Fermigier, Stefane

 fetchmany([size=cursor.arraysize]) method

 fetchone() method

 FFT.py module

 fftpack module

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

fields
 filename
form
 parsing data , 2nd , 3rd
 login data
 passing to shells

 2nd

 2nd , 3rd

file dialog boxes
 creating

 2nd

 2nd

File menu
 keyboard bindings, File Editor
 options, File Editor

file names
 case sensitivity of

 sys module

 file option

 File Transfer Protocol (FTP)

 filecmp module

filename
 lineno(function) column heading

 2nd

 filename field

files

 .pdbrc
 config.c
 config.h
 ConfigParser module
 dl_nt.c
 dllbase_nt.txt
executing source code, Application Programmers Interface (API)
 Python/C
Extensible Markup Language (XML)
 writing , 2nd
 getpathp.c
header
 bufferobject.h
HTML
 outputting links from to Web pages, CGI scripts
image
 saving
 import_nt.c
JPython Registry
 finding
local
 copying Web pages into
 Makefile
 packing
 project
 python_nt.rc
saving
 Tkinter
SGML
 opening
shelve
 opening
 storing data, CGI scripts
templates
 creating browser output, CGI scripts , 2nd
 testpy.py
 uploading from Internet
 uploading to FTP servers
wave
 writing
wrapper
 generating , 2nd

 FileType object type

 2nd

 filter() function

 2nd

 2nd

 Find again option, File Editor

 Find in Files option, File Editor

 Find selection option, File Editor

FindÉ
 option, File Editor

finding
 bugs
 contents of modules
 databases
 exceptions
 generated modules
 JPython Registry file
 Python in UNIX
 variables

 findlinksto program

 findmatch() function

firewells
 handling proxy server connections

 fixcid program

fixes
 bugs

 fixheader program

 fixnotice program

 fixps program

 fixtk utility

 fl module

 FL module

flag
 nofill

flag constants
 bitwise arguments, PlaySound function

flags
 shared
 static
 [nd]u

 2nd

 2nd

 float variable

 floating point objects

floating points
 packing methods

 floating-point numbers

 FloatType object type

 flp module

 flush() method

 flush_softspace() method

 fm module

 fnmatch module

 2nd

 focus() method

 focus_displayof() method

 focus_force() method

 focus_get() method

 focus_lastfor() method

 focus_set() method

 focusmodel(model) method

 Folder (mh, name) method

 folder objects

 See : directoriesfoldersÓ
 Ò

folding
 source code, Pythonwin

font class instances
 methods

 2nd

fonts
 changing, windows

 2nd

 foreground option

 foreground(fg) property

 foreign key

 fork() method

form fields
 parsing data

 form name

format
 functions

 format option

 Format Paragraph option, File Editor

format strings
%r and %s
 comparing

formats
 Audio Interchange File (AIFC)
 data, struct module
Date/Time
 setting , 2nd
 XDR Data Exchange

 2nd

 formatter objects

 formatter variable

formatting
 strings

 2nd

forms
 testing

 FORMS library

 FORMS module

 2nd

 FourThought, Inc.

 FOX (FXPy) module

 fp instance

 frame rate

 2nd

 frame() method

frames
 audio files
 creating to align colored buttons

 FrameType object type

 Free Software Foundation

 freeze program

 2nd

 from script

 2nd

 Front Page Personal Web Server

 fs.disposition attribute

 fs.disposition_option attribute

 fs.file attribute

 fs.filename attribute

 fs.headers attribute

 fs.name attribute

 fs.type attribute

 fs.type_options attribute

 fs.value attribute

 FTP (File Transfer Protocol)

FTP sites
 transferring data

 ftplib module

 ftpmirror program

 ftpstats script

 2nd , 3rd
 a2b_hex
aggregate
 relational databases
 alert()
 assigning to variables
 asyncore module
 AutoFit()
 b2a_hex
 binascii module
 binhex module
 binhex(inputfile, outputfile)

 built-in
 calcsize()
callback
 implementing
 calling without arguments
 Cells()
 changing global variables inside
 char* Py_GetExecPrefix()
 code
 command()
 compile()
 completion
 const char* Py_GetVersion()
 data type conversion
 deallocation
 decode (in_file[, out_file[, mode]])
 decode(input, output)
 decode(inputfileobject, outputfileobject, encoding)
 defining object types
 dis()
 documentation strings
 dosomething()
 embedding Python
 encode (in_file, out_file[, name[, mode]])
 encode(input, output, quotetabs)
 encode(inputfileobject, outputfileobject, encoding)
executing source code, Application Programmers Interface (API)
 Python/C
 families()
 filter()
 findmatch()
 foo()
 formats of
 generic conversion
 getcaps()
 GetIDsOfNames()
 getopt.getopt()
 getpass.getpass()
 getpass.getuser()
 2nd
 handling and raising exceptions
 handling exceptions

 handling files
 handling objects
 hexbin(inputfile [, outputfile])
 Image class
 image_names()
 image_types()
importing
 modules , 2nd , 3rd
 init()
 initialization, finalization, and threads
int()
 base argument
 interfaces
 Invoke()
 isinstance()
 issubclass()
 join()
long()
 base argument
 mainloop()
 managing reference counts, Python objects
 2nd
 mathematical/logical
 mimetools module
 mimetypes module
 mimetypes.guess_extension(type)
 mimetypes.guess_type(url_or_filename)
 mimetypes.init([files])
 mimetypes.read_mime_types(filename)
 names()
 namespace
 naming styles and conventions
 numbers in
 object interactions
 object types
objects
 type
 operator.add()
 optimizing
 os.statvfs()
 os.sterror()
 os.times()

 pack()
 passing references to
PlaySound
 bitwise arguments , 2nd
 popen2
 popen3
 popen4
 profile module
 profile.run()
protocols
 sequence , 2nd
Py_BuildValue()
 string elements
 Py_DECREF()
 Py_Finalize()
 Py_GetExecPrefix()
 Py_GetPath()
 Py_GetPrefix()
 Py_GetProgramFullPath()
 Py_INCREF()
 Py_Initialize()
 Py_IsInitialized()
 Py_SetProgramName(file)
PyArg_ParseTuple()
 string elements , 2nd
 PyArgs_ParseTuple
 PyErr_Clear()
 PyErr_ExceptionMatches()
 PyErr_SetString()
 PyList_GetItem()
 PyList_New()
 PyList_SetItem()
 PyObject_GetItem()
 PyObject_SetItem()
 PyRun_String()
 PySequence_GetItem()
 PySequence_SetItem()
 Pythoncom.CreateGuid()
 PythonHandler
 PyThreadState* Py_NewInterpreter()
 PyTuple_SetItem()
 quopri module

 raise class()
 re.compile()
 reduce()
 reference counts
repr()
 Python 2.0
 Response_Write()
 returning values from, tuples
 rexec.RExec()
 round()
 run()
 select
 select()
 send(string)
 sending packets on datagram protocols
 sequence
 setprofiler()
 sndhdr.whathdr()
 sndhdrwhat()
socket.ssl()
 syntax
str()
 Python 2.0
 string.rjust()
 string.rstrip()
 string.uppercase()
 sum_sequence()
syntax
 zip()
 sys getrefcount()
 sys.exec.traceback()
 sys.exec.value()
 2nd
 sys.exit()
 sys.getrecursionlimit()
 sys.last.value()
 sys.recursionlimit()
 sys.setprofiler(profiler_function)
 sys.settrace(tracer_function)
 sys.version_info()
 time()
 time.clock()

 time.sleep
 traceback.print_exc()
unicode()
 syntax
 universal
 unpack()
 urllib module
 urllib.quote_plus(string [,safe])()
 urllib.urlcleanup()
 urllib.urlencode(dict)()
 urlparse module
 urlparse.urljoin(base, url [,allow_fragments])()
 urlparse.urlunparse(tuple)()
 user-defined
utilities
 process control
 uu module
 void Py_Finalize()
 what()
 win32.com.client.Dispatch()
 xrange()
 zip()

functionsÓ
 2nd

 FunctionType object type

 FXPy module

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][GadFly
SQL module

 garbage collection

 Garbage Collection of Cycles

 Garbage Collection of Cycles (Python 2.0)

 Garshol, Lars Marius

 GD module

 2nd

generating
 executable bytecode
modules
 identifying
 thumbnail images
 wrapper files

generators
 callback

 2nd

 generic conversion functions parsing and

 2nd

 methods, Tkinter module

 geometry(geometry) method

 2nd

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 GET request handler

 GET requests

 2nd

 get(name[, default]) method

 get(row) method

 get(startindex [,endindex]) method

 get_all_breaks() method

 get_break(filename, lineno) method

 get_breaks(filename, lineno) method

 2nd

 get_file_breaks(filename) method

 get_position() method

 getaddr(name) method

 getaddrlist(name) method

 getallmatchingheaders(name) method

 getcaps() function

 getcompname() method

 getcomptype() method

 getcontext() method

 getcurrent() method

 getdate tz(name) method

 getdate(name) method

 getfile() method

 getfirstmatchingheader(name) method

 getframerate() method

 getfullname() method

 getheader(name[, default]) method

 2nd

 getlast() method

 getmark(id) method

 getmarkers() method

 getmessagefilename(n) method

 getnchannels() method

 getnframes() method

 getopt.getopt() function

 getparams() method

 getpass.getpass() function

 getpass.getuser() function

 getpath() method

 getpathp.c file

 getprofile(key) method

 getrawheader(name) method

 getreply() method

 getsampwidth() method

 getsequences() method

 getsequencesfilename() method

 gettext module

 getvalue() method

 getvar(variable) method

 gl module

 2nd

 global keyword

 global locks, thread state

global namespaces
 importing and creating, modules

global variables
 changing inside functions

 global variables, Python/C Application Programmers Interface (API)

 Globals checkbutton, Debug Control Panel

 See : wrappersglue codeÓ
 Ò

 GmatH module

 GMD

 Gnome-Python module

GNU gzip

 downloading

 2nd

 Go button, Debug Control Panel

 Go to line option, File Editor

 Gopher

 Gopher protocol

 gopherlib module

 grab_current() method

 grab_release() method

 grab_set() method

 grab_set_global() method

 grab_status() method

 Grail

graphical user interfaces (GUIs)
 Abstract Windowing Toolkit (AWT)
Tkinter
 widgets , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th , 12th , 13th , 14th , 15th
 , 16th , 17th , 18th , 19th , 20th , 21st , 22nd , 23rd , 24th , 25th , 26th
toolkits
 wxPython , 2nd , 3rd

graphics
 manipulating

 grid class

 2nd

 group by clause

 group(window) method

 grp module

 GTK+ module

gzip
 downloading

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][2nd

 h format

 H format

 h(elp) command

 h2py program

 2nd , 3rd , 4th , 5th , 6th

 handle.cdata(data) method

 handle.charref(ref) method

 handle.comment(comment) method

 handle.data(data) method

 handle.doctype(tag, data) method

 handle.endtag(tag, method) method

 handle.entityref(ref) method

 handle.proc(name, data) method

 handle.special(data) method

 handle.starttag(tag, method, attributes) method

 handle.xml(encoding, standalone) method

 handle_accept() method

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 handle_charref(ref) method

 handle_comment(comment) method

 handle_data(data) method

 handle_endtag(tag, method) method

 handle_entityref(ref) method

 handle_image(source, alt[, is map[, align[, width[, height]]]]) method

 handle_starttag(tag, method, attributes) method

 handle_write() method

handlers
 binding, protocols
 request, GET and HEAD

 2nd

handling
clients
 User Datagram Protocol (UDP)
 complex numbers
data
 Internet Data Handling library , 2nd , 3rd , 4th
 email services
events
 Tkinter module , 2nd , 3rd , 4th , 5th
exceptions
 extension modules , 2nd
 exceptions, Python/C Application Programmers Interface (API)
 files
 long integers
 2nd
 namespaces
 numbers
objects
 functions , 2nd

 proxy server connections
 requests, CGIHTTPServer module
 requests, GET and POST
 strings
 tags
threads
 interpreters

hash databases
 opening

 HEAD request handler

 Python.h

 bufferobject.h

headers
 HTTP

 headers attribute

 headers instance

headings
 column, profiles

 2nd

 height argument

 2nd

 height option

 height property

 height() method

 hello world program

Hello World program
 Tkinter

 hemlentitydefs module

 2nd

 Herborth, Chris

 hexadecimal numbers

 hexbin(inputfile [, outputfile]) function

hierarchies
 standard exceptions

 highlightthickness property

 How to Write a Python Extension

HTML (Hypertext Markup Language)
 interacting with Python code

HTML files
 outputting links from to Web pages, CGI scripts

HTML pages
 vs. Active Server Pages (ASP)

 HTML parsing tool source code

 2nd

 HTMLParser class

 HTTP (Hypertext Transfer Protocol

 2nd

 HTTP class

 HTTP headers

HTTP servers
 case sensitivity, commands and file names

 httpd_log

 httplib module

 HTTPServer class

 2nd

 Hylton, Jeremy

Hypertext Markup Language (HTML)
 interacting with Python code

 2nd , 3rd

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][I

 i

 2nd

 i format

 I format

IBM Research
 Structured Query Language (SQL)

 ibrowse program

 ICCCM (Inter-Client Communication Conventions Manual)

 iconbitmap(bitmap) method

 iconify() method

 iconmame(newName=None) method

 iconmask(bitmap) method

 iconposition(x, y) method

 iconwindow(window) method

identifiers
 Interface (IID)
 Universally Unique (UUID)

identifiersÓ

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 Ò

identifying
 generated modules
 number of arguments, functions

 identity property

 2nd

IDLE
 Python 2.0

 2nd

 IDLE development environment

IDLE extensions
 writing

 See : Integrated Development EnvironmentIDLEÓ
 \t ?

 IETF (Internet Engineering Task Force)

 if statements

 if/elif/else statement

 ifdef program

 ignore bpnumber count command

 ignore() method

 See : Interface IdentifiersIIDÓ
 Ò

 2nd

 See : Inter-Language Unification systemILU systemÓ
 Ò

 im.mode attribute

 2nd

 Image module

image objects
 creating

 image property

 image() method

 image_names() function

 image_types() function

images
 manipulating

 2nd

 imaplib module

 imghdr module

iming
 profiler class

 immutable data types

 2nd

implementing
 callback functions
 extensions

objects
 Common Object Model (COM) , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th
 , 12th , 13th , 14th
 polymorphism
 Python Common Object Model (COM) server
wrappers
 Word , 2nd

 Import module option, File Editor

 Import option, Pythonwin

 2nd , 3rd

 import_nt.c file

importing
 Common Object Model (COM) client
 extension modules
 global namespaces, modules
modules
 syntax to rename
 modules from packages
 packages
 time module

improving
 performance, programs

 imputil module

 in (in) argument

 in operator

incrementing
 counters
 reference counts

 Indent region option, File Editor

 indentation

 2nd

 index(index) method

 index(item) method

 index(mark) method

indexer values
 strings

 IndexError exception

 indexes

indexing
 support, tuples

 indicator option

 indicatoron attribute

indicators
 error

 Industrial Light and Magic

 2nd

 init() function

 2nd

initializing
 variables

 inline comments

 InProc object

input
 testing
 users

 insert(index [,string]...) method

 insert(row, string) method

inserting
 Button widgets inside text
 Python/C Application Programmers Interface (API)

installations
 administrator privileges

installers
 Tcl/Tk
 Windows:downloading and running

installing
 Common Gateway Interface (CGI) scripts
 dynamic modules
 IDLE
 JPython
 NumPy
 Python
 python-mode package
 Pythonwin
 Tkinter

 instance attributes

 instance variable

 2nd
 accessing variables
class
 catching

classes
 creating
 fp
 headers
 Message objects
metainstances
 creating

 InstanceType object type

instancing
 exception classes

int() function
 base argument

 division of, truncations

long
 handling

 Integrated Development Environment (IDLE)

integrating
Java
 JPython , 2nd

 Inter-Client Communication Conventions Manual (ICCCM)

 2nd

interactions
 objects, Python/C Application Programmers Interface (API)

 interactive mode

 Interface Identifiers (IIDs)

interfaces
application program (API)
 Winsock

 buffer
 Common Object Model (COM)
 DocumentHandler
 DTDHandler
 EntityResolver
 ErrorHandler
 formatter
 functions
graphical user (GUI)
 toolkits;wxPython , 2nd , 3rd
 IDispatch
 IPropertyPage
 IStorage
 IStream
 IUnknown
 open
Python/C Application Programmers (API)
 variables, exceptions
 sgmllib.SGMLParser
 Simple API for XML (SAX API)
single line
 creating
 writer

interfacing
objects
 Common Object Model (COM) , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th
 , 12th , 13th , 14th , 15th , 16th , 17th , 18th , 19th , 20th

Internet
browsers
 Internet Explorer
 Concurrent Version System (CVS) Web site
 copying pages into local files
development for
 WebLog
 GNU Web site
libraries
 Internet Protocol and Support , 2nd , 3rd
 parsing Web pages
 Python documentation Web site

 Python news Web site
 2nd
 retrieving Web pages
 uploading files
 WinZip Web site

 2nd

 Internet Engineering Task Force (IETF)

 Internet Explorer

 2nd

 2nd

 2nd

Internet Solution Providers (ISPs)
 Python-friendly

interpreters
 calling
 closing
 command line
 embedding
 embedding in servers
 environment variables recognized by
 global locks, thread state
 handling threads
 linking dynamic extensions
 linking static extensions
 opening after executing programs
 raising exceptions to leave
 starting

 interrupting running commands

 Introduction to using OO-Browser with Python

 introspection mechanism

 IntType object type

 Invoke() function

 2nd

 2nd

 IP addresses

 ipadx option

 IPropertyPage interface

IRIX Operating System
 SGI IRIX Specific library

 is not operator

 is operator

 is_data(str) method

 iscomment(line) method

 isheader(line) method

 isinstance() function

 islast(line) method

 islscan

ISPs (Internet Solution Providers)
 Python-friendly

 issubclass() function

 IStorage interface

 IStream interface

 2nd

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][2nd
 , 3rd

Java
 embedding JPython in
integrating
 JPython , 2nd

 Java Foundation Classes (JFC)

 Java mechanism

Java programming language
 vs. Python

 Java Python Interface (JPI) module

Java Virtual Machine (JVM)
 support, JPython

 JED

 JFC (Java Foundation Classes)

 JFC/Swing GUI Components (Swing) library

 Johnson, Lyle

 join() function

joins
tables
 relational databases

 JPI (Java Python Interface) module

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 2nd , 3rd
 2nd
 CPython vs.
 downloading and installing
 embedding
 integrating Java
 jpythonc tool
 running applets
 Web resources

 2nd

 JPython Runner

 jpythonc tool

JVM (Java Virtual Machine)
 support, JPython

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][Ken

key/value pairs
 bucket size

keyboard bindings
 File menu, File Editor
 Pythonwin

keyboard events
 handling

 KeyLabs

keys
 foreign
 primary
sorting
 abbreviations

 keys() method

 keysym attribute

keywboard commands
 IDLE

keywords
 class
 def
 global
 lambda

 Kolar, Christopher

 Kuchling, Andrew

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][l

 2nd

 l format

 L format

 l(ist) [first [,last]] command

 label option

 Label widget

 lambda keyword

languages
C and C++
 vs. Python
Java
 vs. Python
Perl
 vs. Python
 portable ANSI C
scripting
 ABC
Smalltalk
 vs. Python

 lapack_litemodule module

 last variable

 IDispatch interface

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 Latteier, Amos

launching
 applications
 command line interpreter
 interpreters after executing programs
 scripts from Windows

 Lawrence Livermore National Library

layers
 Abstract Objects, Python/C Application Programmers Interface (API)
 Concrete Objects, Python/C Application Programmers Interface (API)
 sockets

 2nd

 left shifting

 Lemburg, Marc-Andr[as]e

 level variable

lexical elements
 Python

 lfcr program

 4DOM

CPython
 downloading , 2nd

 FORMS

 Generic Operational System

 Internet Data Handling

 Internet Protocol and Support

 JFC/Swing GUI Components (Swing)

 Lightweight Directory Access Protocol (LDAP)

 Microsoft Foundation Class library

 Miscellaneous

 Multimedia

operating systems
 UNIX Specific , 2nd

 Optional Operational System

 OROMatcher regular expression

 Python Imaging

 Python Imaging (PIL)

 Python Library Reference

 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th

 Pyxie

 Restricted Execution

 Scarab

shared
 building modules as

 Standard Library of Modules

 2nd

 String Group

 Type

 Undocumented Modules

 XML-RPC

librariesÓ
 Ò

library
C
 memory corruption

 2nd , 3rd , 4th , 5th , 6th , 7th

licensing
 JPython

 lift([object]) method

 2nd

 limit module

 2nd

line breaks
 adding

 line() method

 LinearAlgebra.py module

lines
 blank, in scripts
 lists, viewing
 separating statements on
 shebang

linking

 dynamic extensions to interpreters
 extension modules
 static extensions to interpreters

links
 outputting from HTML files to Web pages, CGI scripts
Python 2.0
 downloading

 linktree program

Linux
 installing Python

 linuxaudiodev module

 2nd

 2nd

 listallfolders() method

 listallsubfolders(name) method

 2nd

 2nd

 listfolders() method

listing
 variables

 listmessages() method

 2nd
company employees
 source code
 converting references into
mailing

 Mailman
 packing methods
 populating
 Python 2.0
 setting items in
 vs. tuples

 listsubfolders(name) method

 2nd

 lll program

loading
 (from Tkinter import *) module
 images
 modules

local files
 copying Web pages into

 Locals checkbutton, Debug Control Panel

 LocalServer object

 Locate option, Pythonwin

locking
 CGI scripts
 shelves

locks
 global interpreter, thread state

 logical functions

 login data field

 logmerge program

 long integer objects

long integers
 handling

 LongType object type

loops
event
 starting
nested
 construction methods
 optimizing

 lower([object]) method

 lpwatch script

 Lumholdt, Steen

 2nd

 Lundhs, Fredrik

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][M2Crypto

Macintosh
 color names
 fonts
 launching Python applications
 running Python
 setting up environment variables

 Macintosh Specific library

 thread support

macros
 2nd
 Py_INCREF()
 Py_XDECREF()
 reference counts

 2nd

 mailerdaemon program

mailing lists
 Mailman

 Mailloux, Bill

 2nd

 Mailman Cabal

 mainloop() function

 2nd

 Makefile file

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 makefolder(name) method

 makepy.py module

managing
 memory, Python/C Application Programmers Interface (API)
 reference counts, Python objects

mangling
 name

 Manheimer, Ken

manipulating
data
 XML-RPC library , 2nd
 images
 object attributes

 2nd

 2nd

 mapping object structures

 mapping objects

 mapping protocol

 mark_gravity(mark [,gravity]) method

 mark_names() method

 mark_set(mark, index) method

 mark_unset(mark) method

 markov script

 marks

 2nd

 Martinet, Morgan

 maskdata option

 maskfile option

masking
 numbers in

MatchObject
 methods and attributes

 mathematical functions

 maxsize(width, height) method

 mboxconvvert script

 McFarlane, Greg

 McGrath, Sean

 McMillan, Gordon

 md5test program

 measure(text) method

medhots
 tolist()

 2nd

 2nd

 Meland, Harald

members
 class

memory
 managing, Python/C Application Programmers Interface (API)

menu bars
 creating

 menu option

 2nd

 Menubutton widget

menus
Build
 Debug option
 creating
Debug
 options, File Editor , 2nd , 3rd , 4th
Edit
 options, Edit Editor , 2nd , 3rd
File
 options, File Editor , 2nd
options
 Pythonwin
pop-up
 creating
pull-down
 creating
Tools
 options, Pythonwin , 2nd , 3rd

 Mess

 Message (folder, number[, name]) method

 Message class

 Message object

message object
 methods exposed by

 2nd

 2nd

 See : kable]) class 2nd

 message.flushheaders() method

 message.getencoding() method

 message.getmaintype() method

 message.getparam(name) method

 message.getplist() method

 message.getsubtype() method

 message.gettype() method

 message.lastpart() method

 message.nextpart() method

 message.startbody(ctype, [,plist [,prefix = 1]]) method

 message.startmultipartbody(subtype [,boundary [,plist [,prefix = 1]]]) method

messages
 creating
error
 non-Python extension dynamic link libraries (DLLs)
 MIME-encoded
system
 retrieving
 2nd

 2nd

 metaclasses program

 creating instances of

 MetaKit database engine

 methfix program

 2nd

 See : k() 2nd , 3rd
<

 Configure
 __add__(name)
 __call__(self)
 __cmp__(self,other)
 __del__(self)
 __delattr__(self, name)
 __getattr__(self, name)
 __getitem__(self, index)
 __hash__(self)
 __init__(self)
 __len__(name)
 __len__(self)
 __nonzero__(self)
 __repr__(self)
 __setattr__(self, name, value)
 __str__(name)
 __str__(self)
 __sub__(name)
 accept()
accessing
 objects
 actual(options)
 add(type, options)
 add_cascade(options)
 add_checkbutton(options)
 add_command(options)
 add_radiobutton(options)
 add_separator(options)
 AddRef()
 AddressList objects
 AddressList(field)
 after(milliseconds [, callback [, arguments]])
 after_cancel(identifier)
 after_idle(callback, arguments)
 aifc.writeframes()
 anchor_bgn(href, name, type)
 anchor_end()
 arc()
 array module
 aspect(minNumer, minDenom, maxNumer, maxDenom)
 assert_line_data([flag = 1])
 Base Debugger (bdb) module
 BaseHTTPRequestHandler class
 binascii module

 binascii.a2b_base64(string)
 binascii.a2b_hqx(string)
 binascii.a2b_uu(string)
 binascii.b2a_base64(binarydata)
 binascii.b2a_hqx(binarydata)
 binascii.b2a_uu(binarydata)
 binascii.crc_hqz(binarydata, crc)
 binascii.rledecode_hqx(binarydata)
 binascii.rleecode_hqx(binarydata)
 bind(event, callback)
 bind_all(event, callback)
 bind_class(widgetclass, event, callback)
 bindtags()
 bitmap()
 BitmapImage subclass
 Button widget
 calling from string objects
 Canvas widget
 cget(option)
 cgi.escape(string [,quote])
 cgi.parse([file], …)
 cgi.parse_qs(string, keep blank values=0)
 cgi.print_directory()
 cgi.print_environ()
 cgi.print_environ_usage()
 cgi.print_form(form)
 cgi.test()
 Checkbutton widget
classes
 calling
 clear_all_breaks()
 clear_all_file_breaks(filename)
 clear_bpbynumber(arg)
 clear_break(filename, lineno)
 client(name)
 2nd , 3rd
 colormapwindows(wlist...)
 command(value)
 config()
 config(options)
 configure()
 configure(options)
 2nd
construction

 nested loops
 Cookie.net_setfunc()
 Cookie.py module
 Cookie.user_setfunc()
 copy(font object)
 copymessage(n, tofolder, ton)
 create_socket
 deiconify()
 delete(row [,lastrow])
 delete(startindex [,endindex])
 delete(startindex[,endindex])
 deletefolder(name)
 destroy()
 Dispatch
 do_GET()
 do_POST()
 do_tag()
 do_tag(attributes)
 documentation strings
 done()
 end_marker(str)
 end_tag()
 endswith()
 entryconfig(index, options)
 error(format[, ...])
 event callbacks
 execute
 executemany(operation,seq_of_parameters)
 executeXXX
 exposed by message object
 feed()
 2nd
 fetchmany([size=cursor.arraysize])
 fetchone()
 flash()
 flush()
 flush_softspace()
 focus()
 focus_displayof()
 focus_force()
 focus_get()
 focus_lastfor()
 focus_set()
 focusmodel(model)

 Folder (mh, name)
 folder objects
 font class instances
 for dictionaries
 fork()
 formatter objects
 frame()
geometry management
 Tkinter module , 2nd , 3rd
 geometry(geometry)
 GET
 2nd
 get(name[, default])
 get(row)
 get(startindex [,endindex])
 get_all_breaks()
 get_break(filename, lineno)
 get_breaks(filename, lineno)
 get_buffer()
 get_file_breaks(filename)
 get_position()
 getaddr(name)
 getaddrlist(name)
 getallmatchingheaders(name)
 getcompname()
 getcomptype()
 getcontext()
 getcurrent()
 getdate tz(name)
 getdate(name)
 getfile()
 getfirstmatchingheader(name)
 getframerate()
 getfullname()
 getheader(name[, default])
 getlast()
 getmark(id)
 getmarkers()
 getmessagefilename(n)
 getnchannels()
 getnframes()
 getparams()
 getpath()
 getprofile(key)

 getrawheader(name)
 getreply()
 getsampwidth()
 getsequences()
 getsequencesfilename()
 getvalue()
 getvar(variable)
 grab_current()
 grab_release()
 grab_set()
 grab_set_global()
 grab_status()
 grid()
 group(window)
 handle.cdata(data)
 handle.charref(ref)
 handle.comment(comment)
 handle.data(data)
 handle.doctype(tag, data)
 handle.endtag(tag, method)
 handle.entityref(ref)
 handle.proc(name, data)
 handle.special(data)
 handle.starttag(tag, method, attributes)
 handle.xml(encoding, standalone)
 handle_accept()
 handle_charref(ref)
 handle_comment(comment)
 handle_data(data)
 handle_endtag(tag, method)
 handle_entityref(ref)
 handle_image(source, alt[, is map[, align[, width[, height]]]])
 handle_starttag(tag, method, attributes)
 handle_write()
 2nd
 height()
 HTTP class
 iconbitmap(bitmap)
 iconify()
 iconmame(newName=None)
 iconmask(bitmap)
 iconposition(x, y)
 iconwindow(window)
 image()

 index(index)
 index(item)
 index(mark)
 insert(index [,string]...)
 insert(row, string)
 invoke()
 is_data(str)
 iscomment(line)
 isheader(line)
 islast(line)
 IUnknown interface
 keys()
 l
 lift([object])
 line()
 listallfolders()
 listallsubfolders(name)
 Listbox widget
 2nd
 listfolders()
 listmessages()
 listsubfolders(name)
 lower([object])
 2nd
 makefolder(name)
 mark handling
 mark_gravity(mark [,gravity])
 mark_names()
 mark_set(mark, index)
 mark_unset(mark)
 MatchObject
 maxsize(width, height)
 measure(text)
 Menu widget
 Message (folder, number[, name])
 message objects
 message.flushheaders()
 message.getencoding()
 message.getmaintype()
 message.getparam(name)
 message.getplist()
 message.getsubtype()
 message.gettype()
 message.lastpart()

 message.nextpart()
 message.startbody(ctype, [,plist [,prefix = 1]])
 message.startmultipartbody(subtype [,boundary [,plist [,prefix = 1]]])
 metrics(options)
 MH ([path[, profile]])
 MH objects
 mhlib module
 mimetools module
 minsize(width, height)
 mktime tz(tuple)
 movemessage(n, tofolder, ton)
 MultiFile (fp[,
 naming styles and conventions
 new alignment(align)
 new_font(font)
 new_margin(margin, level)
 new_spacing(spacing)
 new_styles(styles)
 next
 nextset()
objects
 regular expressions , 2nd , 3rd , 4th
 open
 open()
 openfolder(name)
 openmessage(n)
 oval()
 overrideredirect(flag)
 pack()
 pack_array(list, pack_item)
 pack_bytes(bytes)
 pack_double(value)
 pack_farray(n, array, pack_item)
 pack_float(value)
 pack_fopaque(n, data)
 pack_fstring(n, s)
 pack_list(list, pack_item)
 pack_opaque(data)
 pack_string(s)
 Packer() class
packing
 strings , 2nd
 parsedate tz(date)
 parsedate(date)

 parsesequence(seq)
place configure()
 arguments , 2nd
 place()
 polygon()
 pop
 pop_alignment()
 pop_font()
 pop_margin()
 pop_style([n = 1])
 positionfrom(who)
 2nd
 print
 PrintOut()
 protocol(name, function)
 push(str)
 push_alignment(align)
 push_font((size, italic, bold, teletype))
 push_margin(margin)
 push_style(*styles)
 putsequences(dict)
 Python 2.0
 QueryInterface()
 quit()
 Radiobutton widget
 re.escape()
 re.findall()
 re.match()
 re.search()
 re.split()
 re.sub()
 read
 readframes(n)
 readline()
 readline(str)
 readlines(str)
 rectangle()
 recv()
 recvform()
 refilemessages(list, tofolder)
 RegExpObject
 RegExpObject.split()
 RegExpObject.sub()
 Release()

 removemessages(list)
 report_unbalanced(tag)
 2nd , 3rd
 reset(data)
 resizable(width, height)
 rewind()
 rewindbody()
 run(command, globals=None, locals=None)
 runcall (func, *args)
 runeval(expr, globals=None, locals=None)
 save_bgn()
 save_end()
 Scale widget
 Scrollbar widget
 search
 section_divider(str)
 select()
 select_clear()
 select_set(startrow, endrow)
 send_flowing_data(data)
 send_hor_rule(*args, **kw)
 send_label_data(data)
 send_line_break()
 send_literal_data(data)
 send_paragraph(number)
 sendto()
 set(first, last)
 set(value)
 set_break(filename, lineno, temporary=0, cond = None)
 set_continue()
 set_next(frame)
 set_position(position)
 set_quit()
 set_return(frame)
 set_spacing(spacing)
 set_step()
 set_trace()
 setcomptype(type, name)
 setcontext(name)
 setcurrent(n)
 setdefault
 setframerate(n)
 setinputsizes(sizes)
 setlast(n)

 2nd
 setnchannels(n)
 setnframes(n)
 2nd
 setoutputsize(size[,column])
 setparams(tuple)
 setpos(pos)
 setsampwidth(n)
 setvar(variablename, value)
 SGMLParser class
 sizefrom(who)
 socket module
 socket objects
 socket()
 SocketServer module
 special
 start_tag()
 start_tag(attributes)
 startswith()
 state()
 Stats class
 StringIO.getvalue()
 sync
 syntax.error(message)
 tab handling
 tag_add(tagname,startindex[,endindex] ...)
 tag_config
 tag_delete(tagname)
 tag_remove(tagname [,startindex[.endindex]] ...)
 2nd
 Text widget
 text()
 title(string)
 Tk()
 tk_focusNext()
 tk_focusPrev()
 tkraise([object])
 toggle()
 Toplevel widget
 transient([master])
 translate.references(data)
 type()
 unbind(event)
 unbind_all(event)

 unbind_class(class, event)
unbounded
 accessing
 unknown.charref(ref)
 unknown.endtag(tag)
 unknown.entityref(ref)
 unknown.starttag(tag, attributes)
 unknown_charref(ref)
 unknown_endtag(tag)
 unknown_entity(ref)
 unknown_starttag(tag, attributes)
 unpack_array(unpack_item)
 unpack_bytes()
 unpack_double()
 unpack_farray(n, unpack item)
 unpack_float()
 unpack_fopaque(n)
 unpack_fstring(n)
 unpack_list(unpack_item)
 unpack_opaque()
 unpack_string()
 Unpacker(data) class
 unread()
 update()
 update_idletasks()
 urllib.quote(string)
 urllib.unquote(string)
 urllib.urlencode(dictionary)
 user_call(frame, argument_list)
 user_exception(frame, (exc_type, exc_value, exc_traceback))
 user_line(frame)
 user_return(frame, return_value)
 values()
 wait_variable(variable)
 wait_visibility(widget)
 wait_window(widget)
 wave module
 widget
 width()
 window()
 wininfo
 withdraw()
 write()
 writeframes(data)

 writeframesraw(data)
 writer objects

 methods property

 See : functionsmethodsÓ
 2nd , 3rd

 MethodType object type

 metrics(options) method

 MFC (Microsoft Foundation Class Library)

 MH ([path[, profile]]) method

 MH objects

 2nd

Microsoft Foundation Class library
 Pythonwin

 Microsoft Foundation Class Library (MFC)

Microsoft IIS Server
 configuring Web servers for Python/CGI scripts

 Microsoft Remote Data Service (RDS)

 microthreads

 2nd

 2nd

 mimetypes module

 mimetypes.guess_extension(type) function

 mimetypes.guess_type(url_or_filename) function

 mimetypes.init([files]) function

 mimetypes.read_mime_types(filename) function

 MimeWriter module

 mimify module

 MiniFieldStorage class

 minsize(width, height) method

 2nd

 mkreal program

 mktime tz(tuple) method

 mmap module

 2nd

 mod_python module

 mode value

models
 2nd , 3rd
 Open Systems Interconnection (OSI)

modes
 append (a)
 binary (b)
 interactive
 optimized
 rb
 read (r)
 Restricted Execution
text translationÓ
 Ò
 wb
 write (w)

modifying
 fonts, windows

 global variables inside functions
 object attributes
 prompts
 source code
 values at execution time
 Visible property

 modulator program

module attributes
 accessing

 module objects

module protocols
 NSAPI/NSAPY

 2nd
(from Tkinter import *)
 loading
 __builtin__
 __main__
 _tkinter
 _winreg
 Abstract Windowing Toolkit (AWT)
 accessing
 aifc
 al
 AL
 anydbm
array
 methods
 2nd
 atexit
 audiodev
 BaseHTTPServer
 Bastion
 bdb (Base Debugger)
binascii
 functions
 binhex
 bisect
 bsddb
 building as shared libraries

 calendar
 calldll
 cd
 2nd
 CGIHTTPServer
 cgiupload.py
 clean
 cmath
 cmp
 codecs
 codeop
 combined
 common
 2nd
ConfigParser
 files
 Cookie.py
copy reg
 pickle support
 copy_reg
 cPickle
 cStringIO
 curses
 dbhash
 dbi
 dbm
 2nd
 disutils
 dlmodule
 documentation strings
dumbdbm
 databa
dynamic
 installing and running
enabling
 UNIX operating systems
 encodings
 errno
 exceptions
extension
 importing
 fast_umath
 FFT.py
 fftpack
 filecmp

 fl
 FL
 flp
 fm
 fnmatch
 formatter
 FORMS
 ftplib
 FXPy
 GadFly SQL
 GD
 2nd
generated
 identifying
 gettext
 gl
 GmatH
 Gnome-Python
 gopherlib
 grp
 GTK+
 hemlentitydefs
 htmllib
 Htmllib
 2nd
 Image
 imaplib
 imghdr
 imp
 importing
 imputil
 Java Python Interface (JPI)
 lapack_litemodule
 limit
 LinearAlgebra.py
 linuxaudiodev
 loading
 2nd
 makepy.py
 2nd
 mhlib
 mimetypes
 MimeWriter
 mimify

 mmap
 2nd
 2nd
 Motif
 multiarray
 multifile
 multiple
 mutex
 mymodule
 MySQL
 naming styles and conventions
 nntplib
 Numeric.py
 obsolete
 odbc
 odbc.py
 Open Database Connectivity (ODBC)
 OpenGL
 operator
 optimizing
 os
 os.path
 2nd
 pdb
 pdb (Python Debugger)
 pg
 2nd
 PIL
 poplib
profile
 copyright notice (license) , 2nd
pstats
 copyright notice (license) , 2nd
 pwd
 2nd
pyclbr
 browsing classes
 pyclimate
 pyexpat
 pyFLTK
 Pyfort
 PyGTK
 PyKDE
 PyOpenGL

 PyQt
 Python15.dll
 2nd
 query
 quopri
 random
re
 Python 2.0
 real.py
 referer
 regex
renaming
 syntax
 repr
 resolve
 rexec
 rfc822
 rlcompleter
 robotparser
 sched
 scripts as
 select
 sgmllib
 2nd
 shutil
 signal
 SimpleHTTPServer
 2nd
 sndhdr
socket
 OpenSSL support
 SocketServer
 squid
 sre
 SRE
 stat
 stdwin
 2nd , 3rd
 struct
 sunaudiodev
 2nd , 3rd , 4th
 tabnanny
 telnetlib
 tempfile

 thread
time
 importing
 tkColorChooser
 tkFileDialog
Tkinter
 widgets , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th , 12th , 13th , 14th , 15th , 16th
 , 17th , 18th , 19th , 20th , 21st , 22nd , 23rd , 24th , 25th , 26th
 tkMessageBox
 tkSimpleDialog
 tokenize
 tradeback
types
 built-in object types
 umath
 Undocumented
 unicodedata
 url
urllib
 environment variables, scanning
 urllib2
 urlparse
 UserString
 wafepython
 wave
 webbrowser
 WebLog
 websucker
 whichdb
 win32.com.client.gencache
 win32all package
 winsound
 wxPython
 2nd
 xml
 xmllib
 XMLParser
 zipfile

modulesÓ
 Ò

 ModuleType object type

 modulo (%) operator

monitoring
 reference counting, objects

 2nd

Monty PythonÕ
 s Flying Circus

 morse script

 Motif module

mouse events
 handling

 movemessage(n, tofolder, ton) method

 mpzpi script

 MS Windows Specific library

 2nd

 multiarray module

 See : kable]) class 2nd

 multifile module

 2nd

 multiple inheritance

 multiple module

multiple values
 returning, functions

 2nd

 Multipurpose Internet Mail Extension (MIME) parsing and

multithreaded programs
 support

 mutex module

 mxDateTime package

 2nd

 mymodule

 MySQL module

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][N
element

 n value

 n(ext) command

 name attribute

 name mangling

 name resolution

 name/value pairs

 named arguments

 NameError class

names
color
 Macintosh , 2nd
files
 case sensitivity of
 form

 names() function

 2nd

namespaces
 class
 dynamic
 Extensible Markup Language (XML)
global

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 importing and creating, modules
 JPython
 string

naming
 identifiers

 NASA

 ncalls column heading

 ndiff program

nested loops
 construction methods

 Network News Transfer Protocol (NNTP)

 2nd
 accessing uniform resource locators (URLs)
 addresses
 newsgroups
 Open Systems Interconnection (OSI) model
 2nd , 3rd , 4th
 sockets

 new alignment(align) method

 New Indent width option, File Editor

 New window option, File Editor

 new_font(font) method

 new_margin(margin, level) method

 new_spacing(spacing) method

 new_styles(styles) method

 news site, Python

 newsgroups

 next method

 nextset() method

 nm2def program

 NNTP (Network News Transfer Protocol)

 nntplib module

 nobody user

 nofill flag

 None data types

 none objects

 NoneType object type

 not in operator

 Nowak, Hans

 2nd

null value
 assigning to variables

NULL value
 checking errors, extension modules
 returning without raising exceptions

NULL values
 Structured Query Language (SQL)

 NullFormatter([writer]) class

 NullWriter() class

 num attribute

 2nd

numbers
floating points
 packing methods
 handling
 IP addresses
 replacing with asterisks (*)
 starting identifiers with

 Numeracy + Computer Literacy

 2nd

 Numeric.py module

 Numerical Extensions to Python (NumPy)

 2nd

 NumPy (Numerical Python)

 See : Numerical Extensions to PythonNumPyÓ
 ?

Ó
(double quotes)
 strings
callsÓ
 argument
cumulativeÓ
 argument

fileÓ
 argument
lineÓ
 argument
moduleÓ
 argument
nameÓ
 argument
nflÓ
 argument
Ó
 Ó (triple quotes);strings
pcallsÓ
 argument
stdnameÓ
 argument
timeÓ
 argument

Õ
(single quote)
 strings

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][2nd

 O! element

O&
 element

 obj.__class__ attribute

 obj.__dict__ attribute

 obj.__methods__ attribute

object distribution
 Python

 2nd

 object protocol

 Object Request Broker (ORB)

object serialization
 databases

 2nd

object types
 defining, Python/C Application Programmers Interface (API)
 Python/C Application Programmers Interface (API)
 types module

 encapsulation

 2nd

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 inheritance

 metaclasses

 polymorphism

 Python classes and instances

 object_event notation

objects
 accessing methods and properties
 2nd
 array
 ArrayType
 assigning to variables
 automation
 buffer
 C
calculator
 source code , 2nd , 3rd , 4th , 5th , 6th
 changing attributes
 complex number
connection
 databases , 2nd
 2nd
cursor
 databases , 2nd , 3rd , 4th
 deallocating
 dictionary
 dynamic dispatch
 2nd , 3rd , 4th
 exposing, creating Python interfaces
file
 sys module
 floating point
 folder
 formatter
handling
 functions , 2nd
image
 creating

 InProc
 interactions with, Python/C Application Programmers Interface (API)
interfacing and distributing
 Common Object Model (COM) , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th , 12th
 , 13th , 14th , 15th , 16th , 17th , 18th , 19th , 20th
 list
 LocalServer
 long integer
 mapping
 Message
message
 methods exposed by , 2nd
methods
 regular expressions , 2nd , 3rd , 4th
 MH
 module
 monitoring reference counting
 naming styles and conventions
 none
 numeric
 Packer()
parking lot
 source code , 2nd
 passing to object types, Python/C Application Programmers Interface (API)
 plain integer
Python
 managing reference counts
 Remote Data (RDO)
 Remote Data (RDS)
 sequence
 serializable, saving
 socket
 sockets
string
 calling methods
sys module
 values , 2nd
 sys.last_traceback
 sys.last_type
 sys.last_value
 tuple
type

 databases
 Unacker()
unused
 collecting
unused objects
 Python 2.0
 writer

objectsÓ
 Ò

 objgraph program

 obsolete modules

 octal numbers

 odbc module

 odbc.py module

 offvalue attribute

 offvalue option

 Og1

 See : Object Management FacilityOMFÓ
 Ò

 2nd

 one-dimensional arrays

 onvalue attribute

 onvalue option

OÕ
 Malley, Tim

 OO-Browser

opaque data
 packing methods

 2nd

 open interface

 open method

Open moduleÉ
 option, File Editor

 Open Software Foundation (OSF)

 2nd

 Open Systems Interconnection/International Standards Organization (OSI/ISO)

 open() method

OpenÉ
 option, File Editor

 openfolder(name) method

 OpenGL module

opening
 applications
 command line interpreter
connections
 Open Database Connectivity (ODBC)
 Debugging toolbar, Pythonwin
 hash databases
 interpreters after executing programs
 scripts from Windows
 SGML files
 shelve files

 OpenLDAP protocol

 openmessage(n) method

OpenSSL support
 socket modules

operations
 applying to dictionaries
binary
 numbers in
 formatting
 out-of-range
 Python
 references

 operator

 operator module

 operator overloading

 operator.add() function

 Python 2.0

augmented assignment
 overriding

 lists

 overloading

 optimized mode

optimizing
 code

 2nd

options

 [nd]O
 [nd]X
 accelerator
 2nd
 background
 column
 columnspan
 command
command-line
 interpreters, Windows and UNIX , 2nd
 data
 Debug menu, File Editor
 Edit menu, Edit Editor
 expand
 family
 file
 File menu, File Editor
 2nd
 foreground
 format
 grid() method
 height
 indicator
 ipadx
 JPython interpreter
 jpythonc tool
 label
 maskdata
 maskfile
menu
 Pythonwin
 Menu widget
 offvalue
 onvalue
 outline
 overstrike
 pack() method
 padx
 row
 rowspan
 selectColor
 side

 size
 slant
 splinesteps
 state
 tearOff
 textvariable
 Tools menu, Pythonwin
 underline
 value
 variable
 weight
 width
 window

 OR operator

 ORBit-python project

 See : Object Request BrokerORBÓ
 Ò

 Oregon Curriculum Network

OROMatcher
 copyright notice (license)

 2nd

 2nd

 OS utilities

 os.path module

 os.statvfs() function

 os.sterror() function

 os.times() function

 OSF (Open Software Foundation)

 2nd

 OSI/ISO (Open Systems Interconnection/International Standards Organization)

 Ousterhout, John

 Out button, Debug Control Panel

 out-of-range operations

 2nd

output
browsers
 creating, CGI scripts , 2nd , 3rd
 print statements
 users

outputting
 links from HTML files to Web pages, CGI scripts

 oval() method

 Over button, Debug Control Panel

overloading
 method
 operators

 overloading, operator

 Overmars, Mark

 overrideredirect(flag) method

overriding
 augmented assignment operators

 overstrike option

 owned references

 ownership, references

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][p
expression

 p format

 P format

 pack class

 pack() function

 2nd

 pack_array(list, pack_item) method

 pack_bytes(bytes) method

 pack_double(value) method

 pack_farray(n, array, pack_item) method

 pack_float(value) method

 pack_fopaque(n, data) method

 pack_fstring(n, s) method

 pack_list(list, pack_item) method

 pack_opaque(data) method

 pack_string(s) method

 2nd

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

application distribution
 creating , 2nd
 distutils
 importing
pawt
 accessing swing components
python-mode
 installing
 Python/XML
 PythonPoint
 ReportLab
 win32all
xml
 PyXML , 2nd
 xmlrpc

 See : applicationspackagesÓ
 Ò

 2nd

packing
 files
 variables
 2nd

 padx option

page titles
 collecting information on

pages
 autogenerated
 copying into local files
HTML
 vs. Active Server Pages (ASPs)
 outputting links from HTML files to, CGI scripts
 parsing
 retrieving

 pairs, name/value

parameters
 CODE
 executeXXX() method

 paramstyle variable

 parcels

parenthesis ()
 tuples

parenthesis (_)
 1st append

parking lot object
 source code

 parsedate tz(date) method

 parsedate(date) method

 parsesequence(seq) method

parsing
data
 Multipurpose Internet Mail Extension (MIME) , 2nd , 3rd , 4th , 5th , 6th , 7th
 modules
 Web pages

 parsing modules

 2nd

 2nd

passing
 data from browsers to CGI scripts
 data to Python scripts

 exceptions
 fields to shells
 objects to object types, Python/C Application Programmers Interface (API)
 references to functions
 strings from clients to shells

passwords
 UNIX, encrypting
 UNIX, verifying

 Paste option, File Editor

 Patch Submission Guidelines

patches
 Python

 Path Browser

 Path browser option, File Editor

 PATH variable

 pathfix program

pathnames
 -

pawt package
 accessing swing components

 2nd

 pdb module

 pdeps program

 pdist program

 Pepping, Simon

 PEPs (Python Enhancement Proposals)

 2nd

percent sign (%)
 identifier names

performance
applications
 improving
 applications, optimizing

period (.)
 re module

 periods (.)

Perl programming language
 vs. Python

permissions
 setting
 setting on scripts

persistent storage
 databases

 Persistent Storage of Python Objects in Relational Databases

Personal Web Server (PWS)
 configuring Web servers for Python/CGI scripts

 Peters, Tim

 2nd

 pi script

 2nd

pickle support
 copy reg module

 Pico

 PIL module

 See : Python Imaging LibraryPILÓ
 ?
 Ò

 pindent program

pipe (|)
 re module

 place class

place configure method()
 arguments

 place() method

 plain integer objects

PlaySound function
 bitwise arguments

 Plotting Special Interest Group

 2nd

plus sign (+)
 re module

 plus symbols (+)

PMW (Python Mega Widgets)
 Tkinter module

 polygon() method

 polymorphism

 2nd

 pop method

pop-up menus
 creating

 pop_alignment() method

 pop_font() method

 pop_margin() method

 pop_style([n = 1]) method

 popen2 function

 popen3 function

 popen4 function

 poplib module

populating
 lists

 port

 portable ANSI C language

 binding sockets

 control

 data

 testing

 positional arguments

 positionfrom(who) method

 2nd , 3rd

 2nd

 POST requests

 PostgreSQL databases

 pound (#) sign

 pp script

 primary key

 primes script

 print method

 print statement

print statements
 output
 sending data to the screen

 print_callees(restrictions, ...) method

 print_callers(restrictions, ...) method

 print_stats(restriction, ...) method

printing
 text, Windows printers
 traceback messages

 PrintOut() method

private attributes
 accessing

 private FTP servers

 privileged ports

privileges
administrator
 installations
 root, UNIX

 2nd

 procedures

 process control utilities

processing
 CGI scripts

 2nd
 copyright notice (license)

 profile.run() function

profiler class
 extensions

profiles
 analyzing, pstats module

profiling
 applications

programming
object-oriented (OOP)
 Python classes and instances , 2nd , 3rd , 4th , 5th , 6th

programming languages
C
 extending and embedding Python , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th
 , 12th , 13th , 14th , 15th , 16th , 17th , 18th , 19th , 20th , 21st , 22nd , 23rd , 24th
 , 25th , 26th , 27th , 28th , 29th , 30th , 31st , 32nd , 33rd , 34th , 35th
C++
 extending and embedding Python , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th
 , 12th , 13th , 14th , 15th , 16th , 17th , 18th , 19th , 20th , 21st , 22nd , 23rd , 24th
 , 25th , 26th , 27th , 28th , 29th , 30th , 31st , 32nd , 33rd , 34th , 35th
CPython
 vs. JPython , 2nd
Delphi
 implementing Common Object Model (COM) objects , 2nd
 elisp (Emacs Lisp)
Extensible Markup (XML)
 manipulating data , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th , 12th , 13th
 , 14th , 15th , 16th
Hypertext Markup Language (HTML)
 interacting with Python code
JPython
 Web resources
 JPython Registry
 Standard Generalized Markup (SGML)
 Structured Query (SQL)
Visual Basic (VB)
 implementing Common Object Model (COM) objects , 2nd , 3rd , 4th , 5th
 XML Bookmark Exchange (XBEL)

programs
AOLserver Web server
 configuring Web servers for Python/CGI scripts
Apache
 configuring Web servers for Python/CGI scripts , 2nd , 3rd , 4th , 5th
 BSCW (Basic Support for Cooperative Work
 BuildApplet
 BuildApplication
 calldll
 Common Object Request Broker Architecture (COBRA)
 debugging
designing
 Tkinter module , 2nd , 3rd , 4th

 Distributed Common Object Model (DCOM)
 distributing
 Distutils
 DocumentTemplate
 EditPythonPrefs
Emacs
 editing source code , 2nd , 3rd
Excel
 opening and manipulating from Python , 2nd , 3rd , 4th , 5th , 6th
 FastCGI
 Fnorb
 Front Page Personal Web Server
 2nd
 Hector
 hello world
Hello World
 Tkinter , 2nd
 httpd_log
 improving performance
 Inter-Language Unification (ILU) system
 Internet, third-party
 islscan
Java
 embedding JPython in
 JED
JPython
 copyright notices (licenses) , 2nd , 3rd , 4th
 JPython Runner
 launching
 LDAP (Lightweight Directory Access Protocol)
 Linbot
 M2Crypto
MacPython
 thread support
 Mailman
 Medusa Internet Server
Microsoft IIS Server
 configuring Web servers for Python/CGI scripts , 2nd
multithreaded
 support , 2nd
 mxDateTime

 mxODBC
non-Python
 embedding Python objects in;wrappers
 Object Management Facility (OMF)
 Object Request Broker (ORB)
 OmniORBpy
 opening interpreters after executing
 optimizing performance
 ORBit-python project
OROMatcher
 copyright notice (license) , 2nd
 parsing Web pages
Personal Web Server (PWS)
 configuring Web servers for Python/CGI scripts , 2nd
 Pico
 profiling
 protection environments
 PyDAV
Python
 copyright notices (licenses) , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th
 python-stubber
 site management tools
source code
 editing , 2nd , 3rd , 4th
 SpamWall
 stored in \Tools and \Demos directories
 transferring data between
 Vi (visual editor)
 Visual Interdev
 Webchecker
 WebDAV (World Wide Web Distributed Authoring and Versioning)
 WebLog
 win32all
 win32com
Word
 opening and manipulating from Python , 2nd , 3rd , 4th , 5th , 6th
XEmacs
 editing source code , 2nd , 3rd
 2nd
 Zebra
 ZSQLMethod

 project file

prompts
 changing
 Python Shell Window
 secondary

properties
accessing
 objects
 activebackground
 activeforeground
 attributes
 background(bg)
 bitmap
 Button widget
 command
 default
 disabledforeground
 font
 foreground(fg)
 height
 highlightthickness
 identity
 image
 JPython Registry
 Listbox widget
 methods
 object type
 python.cachedir
 python.jpythonc.classpath
 python.jpythonc.compiler
 python.jpythonc.compileropts
 python.path
 python.security.respectJavaAccessibility
 python.verbose
 Radiobutton widget
 selectmode
 state
 takefocus

 text
 underline
 2nd
 variable
Visible
 changing
 widgets, Tkinter module
 width
 wraplength

 protection application environments

 protocol argument

 protocol(name, function) method

protocols
 File Transfer (FTP)
 Gopher
handling
 Tkinter
 Hypertext Transfer (HTTP)
 Internet Message Access (IMAP)
 Internet Protocol (IP)
 Internet Protocol and Support library
 Lightweight Directory Access (LDAP)
 mapping
module
 NSAPI/NSAPY , 2nd
 Network News Transfer (NNTP)
 number
 object
 OpenLDAP
 Post Office (POP)
 sequence
 Simple Mail Transfer (SMTP)
 Simple Object Access (SOAP)
Transmission Control (TCP)
 starting connections , 2nd
 Transmission Control Protocol/Internet Protocol (TCP/IP)
User Datagram (UDP)

 starting connections
 User Datagram Protocol (UDP)
 WM_SAVE_YOURSELF
 WM_TAKE_FOCUS

 protyping

proxy server connections
 handling

 2nd

 2nd
 copyright notice (license)

 pstats.Stats class

 ptags program

pull-down menus
 creating

 push(str) method

 push_alignment(align) method

 push_font((size, italic, bold, teletype)) method

 push_margin(margin) method

 push_style(*styles) method

 putsequences(dict) method

 pwd module

 2nd

 2nd
 string elements

 Py_BuildValue(format, Cvar1 [, Cvar2 [,]]) command

 2nd

 2nd

 2nd , 3rd

 Py_Finalize() function

 Py_GetExecPrefix() function

 Py_GetPath() function

 Py_GetPrefix() function

 Py_GetProgramFullPath() function

 2nd

 Py_INCREF() macro

 2nd

 Py_IsInitialized() function

 Py_SetProgramName(file) function

 Py_XDECREF() macro

 PyArg_ParseTuple command

 string elements

 PyArg_ParseTuple(args, format, arg1 [, arg2 [,]]) command

 PyArgs_ParseTuple function

pyclbr module

 browsing classes

 pyclimate module

 PyDAV

 PyErr_Clear() function

 PyErr_ExceptionMatches() function

 PyErr_Occurred() function

 PyErr_SetString() function

 pyexpat module

 pyFLTK module

 Pyfort module

 2nd

 pygtools

 PyKDE module

 PyList_GetItem() function

 PyList_New() function

 PyList_SetItem() function

 Pynche program

PyObject
 declaring variables

 PyObject_GetItem() function

 PyObject_SetItem() function

 PyOpenGL module

 PyQt module

 PyRun_String() function

 2nd

 PySequence_SetItem() function

 pysvr program

Python
1.5.2 release
 tutorials
2.0 release
 manuals , 2nd
 distribution of
 installing and configuring
 introduction to
 patches and bug list
 reasons for using
 recompiling
 technical features of
 versions of
 vs. C and C++
 vs. Java
 vs. Perl
 vs. Smalltalk

Python 2.0
code
 standard exceptions
 downloading
 IDLE 0.6
 links
 2nd
 new features
 new features of
 PEPs (Python Enhancement Proposals)

 preventing code breaks

 Python Consortium

 2nd

 2nd

 Python Enhancement Proposals (PEPs)

 Python Imaging Library

 Python Imaging Library (PIL)

 Python Library Hot-Key Help System for XEmacs

 Python Library Reference

Python Mega Widgets (PMW)
 Tkinter module

Python objects
 complex numbers as

 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th

 2nd

 2nd

 Python Tk-OpenGL (PyOpenGL) Module

 Python X Extension

 Python XML Special Interest Group

python-mode package
 installing

 python-stubber

 python.cachedir property

 python.jpythonc.classpath property

 python.jpythonc.compiler property

 python.jpythonc.compileropts property

 python.path property

 python.security.respectJavaAccessibility property

 python.verbose property

 2nd
 Abstract Objects Layer
 Concrete Objects Layer
 defining object types
 executing source code, files and buffers
 extending and embedding
 handling and raising exceptions
 initialization, finalization, and threads
 managing memory
 managing reference counts, Python objects
 utility tasks
 variables, exceptions

 2nd

 Python/XML Reference Guide

 python_nt.rc file

 Python15.dll module

 Pythoncom.CreateGuid() function

 PythonHandler function

 2nd

 PythonLabs Web site

 PYTHONPATH variable

 PythonPoint package

 PYTHONSTARTUP variable

 2nd

 PythonWin Installation Wizard

 2nd

 PyThreadState* Py_NewInterpreter() function

 PyTuple_SetItem() function

 Pyxie

 2nd

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][q(uit)
command

 query information

 query module

 QueryInterface() method

 re module

 queue class

 Quit button, Debug Control Panel

 quit() method

quitting
 Excel and Word
 interpreters

 2nd

quotes
 strings
triple
 documentation strings

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][r
(read) mode

 r value

 r(eturn) command

 race conditions

 race_dispatch() method

 2nd

 raise class() function

 2nd

raising
exceptions
 returning NULL values
 exceptions, Python/C Application Programmers Interface (API)

 random module

 raw memory allocators

 raw sockets

 raw string syntax

raw strings
 creating strings with slash literal (/)

 rb mode

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 See : Remote Data ObjectsRDOÓ
 Ò

 See : Microsoft Remote Data ServiceRDSÓ
 2nd

 2nd
 internals
 Python 2.0

 re.compile() function

 re.escape() method

 re.findall() method

 re.match() method

 re.search() method

 re.split() method

 2nd

 read (r) mode

 read method

 readable sockets

 readframes(n) method

 2nd

 readline(str) method

 readlines(str) method

 Real class

 real.py module

recompiling
 Python

 rectangle() method

recursion
 [] element
 Python 2.0

 recv() method

 recvform() method

 Red Hat

 redo option, File Editor

 reduce() function

redundancy
 tables

 extension

 extension modules

reference counts
 managing, Python objects
 Python/C Application Programmers Interface (API)

references
 borrowed
 circular
 converting into lists
 operations
 owned

 referer module

 refilemessages(list, tofolder) method

 regex module

RegExpObject
 methods and attributes

 RegExpObject.split() method

 RegExpObject.sub() method

registries
 JPython
 writing

Registry
 Common Object Model (COM) object storage

 2nd

 Reilly, Michael

 See : Structured Query Languagerelational databasesÓ
 Ò

 Release() method

 relheight argument

 reload module command

 relwidth argument

 relx argument

 rely argument

 Remote Data Objects (RDOs)

 2nd

 2nd

 removemessages(list) method

renaming
modules
 syntax

 Replace option, File Editor

replacing
 numbers with asterisks (*)

 report_unbalanced(tag)method

 ReportLab package

 repr module

repr() function
 Python 2.0

request handlers
 GET and HEAD

 request_queue_size variable

requests
 handling, CGIHTTPServer module
 handling, GET and POST

 rerep program

 2nd , 3rd

 reset(data) method

 resizable(width, height) method

 resolution, name

 resolve module

response codes
 returned by Web servers

 Response_Write() function

 Restricted Execution library

 2nd

retrieving
 system messages
 Web pages

 return code argument

 return command

returning
 NULL value without raising exceptions
 values
 values from functions, tuples

reusability
 Python

 reverse_order() method

 rewind() method

 2nd

 2nd

 rexec.RExec() function

 2nd

 right shifting

rights
admin
 installations

 rlcompleter module

 robotparser module

rofiler class
 calibration
 timing

 root privileges, UNIX

root windows
 creating

 Roskind, James

 2nd , 3rd , 4th , 5th , 6th , 7th , 8th

 round() function

 row option

 rowspan option

 2nd

 rpc proogram

RPM package
installing
 Linux

 Run option, Pythonwin

 Run script option, File Editor

 2nd

 run(command, globals=None, locals=None) method

 runcall (func, *args) method

 runeval(expr, globals=None, locals=None) method

running
 command line interpreter
 commands, interrupting
 Common Gateway Interface (CGI) scripts
 dynamic modules
 interpreters after executing programs
 JPython applets
Python
 Windows CE
 scripts from Windows
 Windows insttaller

 runtime binding

 Rush, Jeff

 2nd , 3rd , 4th , 5th , 6th , 7th

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][s
element

 S element

 s element

 S element

 s format

 2nd

 s(tep) command

 sampling rate

Save AsÉ
 option, File Editor

Save Copy AsÉ
 option, File Editor

 Save option, File Editor

 save_bgn() method

 save_end() method

saving
 data to disk
 images
 serializable objects

saving files

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 Tkinter

 2nd

 Scale widget

scanning
 environment variables

 Scarab library

 sched module

scientific computing
 use of Python in

 Scintilla

screens
 sending data to

 script script

 script tag

 script tags

 2nd

scripting
 Active

scripting languages
 ABC

scripts
 \Tools and \Demos directories
CGI
 outputting links from HTML files to Web pages
command-line

 testing
Common Gateway Interface (CGI)
 creating, installing, and running , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th , 11th
 , 12th , 13th , 14th , 15th , 16th , 17th , 18th , 19th , 20th
 executing from Windows
 lines in
 modules as
Python
 sending data to , 2nd
 setting permissions
 tabs in
 writing

 2nd

 search method

searching
 bugs
 contents of modules
 databases
 exceptions
 generated modules
 JPython Registry file
 Python in UNIX
 variables

 secondary prompts

 Secret Labs

 section_divider(str) method

security
 Active Scripting
 CGI scripts

 Select All option, File Editor

 select function

 select module

SELECT statement
 WHERE clause

 select() function

 2nd

 select_clear() method

 select_set(startrow, endrow) method

 selectColor option

 selectmode property

 2nd

 self.rfile attribute

 self.wfile attribute

semicolons (
)
 separating statements on same line

 send(string) function

 send_flowing_data(data) method

 send_hor_rule(*args, **kw) method

 send_label_data(data) method

 send_line_break() method

 send_literal_data(data) method

 send_paragraph(number) method

sending
 data to Python scripts
 data to screens

 sendto() method

sensitivity
case
 identifiers

separating
 lines
 statements on same line

 sequence functions

 2nd

 2nd

serializable objects
 saving

serilization
objects
 databases , 2nd

servers
 anonymous FTP
 configuring for Python/CGI scripts
 embedding interpreters
FTP
 uploading files
HTTP
 case sensitivity, commands and file names
 private FTP
proxy
 handling connections
Python Common Object Model (COM)

 implementing , 2nd
Web
 building
WebÓ
 Ò

services
email
 handling , 2nd
 Microsoft Remote Data (RDS)

 set(first, last) method

 set(value) method

 set_break(filename, lineno, temporary=0, cond = None) method

 set_continue() method

 set_next(frame) method

 set_position(position) method

 set_quit() method

 set_return(frame) method

 set_spacing(spacing) method

 set_step() method

 2nd

 setcomptype(type, name) method

 setcontext(name) method

 setcurrent(n) method

 setdefault() method

 setframerate(n) method

 2nd

 setlast(n) method

 2nd

 setnchannels(n) method

 setnframes(n) method

 setnomoretags() method

 setoutputsize(size[,column]) method

 setparams(tuple) method

 setpos(pos) method

 setprofiler() function

 setsampwidth(n) method

setting
 Data/Time format
 items in lists
 permissions
 permissions on scripts
 typles

setting up
 clients, Hypertext Transfer Protocol (HTTP)

 setvar(variablename, value) method

 2nd

 sgi program

 2nd

SGML files
 opening

 2nd

 sgmllib.SGMLParser interface

 SGMLParser class

shared libraries
 building modules as

 shebang line

 shell command

shell elements
 colors

 2nd

shells
 passing fields to
 passing strings from clients to

shelve files
 opening

 2nd

 numbers in

 Shprentz, Joel

 2nd

 side option

 2nd

 See : Special Interest GroupsSIGÓ
 ?

Silicon Graphics
 OpenGL module

 2nd

 2nd

 Simple Object Access Protocol (SOAP)

 SimpleHTTPRequestHandler class

 SimpleHTTPRequestHandler.extensions_map attribute

 SimpleHTTPRequestHandler.server_version attribute

 SimpleHTTPServer module

 2nd

single line interfaces
 creating

single quotes (Ô
)
 strings

 2nd

sites
FTP
 transferring data

 size option

 sizefrom(who) method

 slant option

 slash (/)

slash literal (/)
 creating strings

 SliceType object type

slicing
 strings

Smalltalk programming language
 vs. Python

 2nd

 smtplib module

 sndhdr module

 sndhdr.whathdr() function

 sndhdrwhat() function

 SOAP (Simple Object Access Protocol)

 SOCK_DGRAM connection

 SOCK_STREAM connection

 socket addresses

 2nd , 3rd , 4th
 OpenSSL support

 socket objects

 socket type value

 socket() method

socket.ssl() function
 syntax

 socket_type variable

sockets
 datagram
 networks
 raw
 stream

 sockets layer

 sockets program

 2nd

software
AOLserver Web server
 configuring Web servers for Python/CGI scripts
Apache
 configuring Web servers for Python/CGI scripts , 2nd , 3rd , 4th , 5th
 BSCW (Basic Support for Cooperative Work)
 BuildApplet
 BuildApplication
 calldll
 Common Object Request Broker Architecture (COBRA)
 debugging
designing
 Tkinter module , 2nd , 3rd , 4th
 Distributed Common Object Model (DCOM)
 distributing
 Distutils
 DocumentTemplate
 EditPythonPrefs
Emacs
 editing source code , 2nd , 3rd
Excel

 opening and manipulating from Python , 2nd , 3rd , 4th , 5th , 6th
 FastCGI
 Fnorb
 Front Page Personal Web Server
 2nd
 Hector
 hello world
Hello World
 Tkinter , 2nd
 httpd_log
 improving performance
 Inter-Language Unification (ILU) system
 Internet, third-party
 islscan
Java
 embedding JPython in
 JED
JPython
 copyright notices (licenses) , 2nd , 3rd , 4th
 JPython Runner
 launching
 LDAP (Lightweight Directory Access Protocol)
 Linbot
 M2Crypto
MacPython
 thread support
 Mailman
 Medusa Internet Server
Microsoft IIS Server
 configuring Web servers for Python/CGI scripts , 2nd
multithreaded
 support , 2nd
 mxDateTime
 mxODBC
non-Python
 embedding Python objects in;wrappers
 Object Management Facility (OMF)
 Object Request Broker (ORB)
 OmniORBpy
 opening interpreters after executing
 optimizing performance

 ORBit-python project
OROMatcher
 copyright notice (license) , 2nd
 parsing Web pages
Personal Web Server (PWS)
 configuring Web servers for Python/CGI scripts , 2nd
 Pico
 profiling
 protection environments
 PyDAV
Python
 copyright notices (licenses) , 2nd , 3rd , 4th , 5th , 6th , 7th , 8th , 9th , 10th
 python-stubber
 site management tools
source code
 editing , 2nd , 3rd , 4th
 SpamWall
 stored in \Tools and \Demos directories
 transferring data between
 Vi (visual editor)
 Visual Interdev
 Webchecker
 WebDAV (World Wide Web Distributed Authoring and Versioning)
 WebLog
 win32all
 win32com
Word
 opening and manipulating from Python , 2nd , 3rd , 4th , 5th , 6th
XEmacs
 editing source code , 2nd , 3rd
 2nd
 Zebra
 ZSQLMethod

 Solin, Daniel

 sort_stats(key, ...) method

sorting keys
 abbreviations

 2nd

 Source checkbutton, Debug Control Panel

source code
 benchmark tool
 calculator object
 company employees
 compiling
Concurrent Version System (CVS)
 downloading
debugging
 exceptions
 editing
 executing, Python/C Application Programmers (API)
 HTML parsing tool
 parking lot object
Python
 downloading , 2nd , 3rd , 4th
 Python 2.0

 source code editing components, Scintilla

 2nd

 source tarball

 2nd

 SpamWall

 Special Interest Groups (SIGs)

 2nd

speed
applications
 improving

 splinesteps option

 squid module

 sre module

 SRE module

 Stack checkbutton, Debug Control Panel

 Stackless Python

stacks
 call
 traceback

 2nd

 2nd

Standard Library
 distutils package

 Standard Library of Modules

 2nd

 Standard Window Interface (stdwin module)

 start scriptname.py command

 start_tag() method

 start_tag(attributes) method

starting
 applications
connections
 User Datagram Protocol (UDP)
 event loops
 interpreters

 startswith() method

 stat module

state
 exceptions
 threads, global locks

 state attribute

 state option

 state property

 state() method

statement
 buffersize

statements
 class
 control
 else
 exec
 folding and unfolding
 from
 if
 if/elif/else
 2nd
 2nd
print
 sending data to the screen
 Python Debugger (pdb) module
 2nd
 requirements for subblock
SELECT
 WHERE clause
 separating on same line
 2nd , 3rd
 2nd

 while

states
 thread

 static dispatches

static extensions
 linking to interpreters

Stats class
 methods

 Stats(filename, ...) class

status bars
 creating

 stdwin module

 stdwin program

 stealing references

 2nd , 3rd

 Step button, Debug Control Panel

 stepping backward

storage
 Common Object Model (COM) objects, Windows Registry
persistent
 databases , 2nd

storing
 cookies

str() function
 Python 2.0

 Str[um]oder, Michael

 stream sockets

 StreamRequestHandler class

string exceptions
 raising

 2nd

 string module

 string modules

 string namespace

 calling

 string.rjust() function

 string.rstrip() function

 string.uppercase() function

 StringIO.getvalue() method

 buffer interface support

 2nd

 encoded

format
 %r and %s, comparing

 formatting

 handling

 optimizing

 packing methods

 passing from clients to shells

 Python 2.0

stringsÓ
 Ò

 StringType object type

 strip_dirs() method

 2nd

 2nd

structures
 buffer objects
C
 complex numbers as
 data
 mapping objects
 thread data, creating

style guides
 writing code

subblocks
 requirements in statements

 subclass

subclasses
 BitmapImage

subclassing
 exceptions

subdirectories
 example_nt

submitting
 bug fixes

 subprojects

substrings
 assigning values

 suff program

 2nd

 sum5 program

 sunaudiodev module

superclasses
 documentation strings

 superclassing

 See : base classsuperclassÓ
 Ò

support
 buffer interface, strings and arrays
 indexing, tuples
 Internet Protocol and Support library
 Java Virtual Machine (JVM), JPython
 multithreaded programs
 Python
 Unicode

 Swing (JFC/Swing GUI Components) library

swing components

 accessing

 sync method

 See : k() function close() function

commands
 assert command

 compile() function

 Fileno() function

 flush() function

functions
 zip()

 handling multiple exceptions

 identifying databases

 importing and creating global namespaces, modules

 modules as scripts

modulles
 renaming

 opening files

 opening hash databases

 2nd

 raw string

 read() function

 readline() function

 readlines() function

statements
 if/elif/else

 statements requiring subblocks

 StringIO.getvalue() method

 sys.exit() function

 tell() function

 truncate() function

 tuples

 write() function

 writelines() function

 writing wave files

 syntax.error(message) method

 SyntaxError exception

 sys getrefcount() function

 2nd , 3rd , 4th , 5th

 sys.argv variable

 2nd

 sys.exe_type value

 sys.exe_value value

 sys.exec.traceback() function

 sys.exec.value() function

 2nd

 sys.exit() function

 sys.getrecursionlimit() function

 sys.last.value() function

 sys.last_traceback object

 sys.last_type object

 sys.last_value object

 sys.path

 sys.path variable

 sys.recursionlimit() function

 sys.setprofiler(profiler_function) function

 sys.settrace(tracer_function) function

 sys.version_info() function

system messages
 retrieving

system requirements
 Python

 2nd

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][relational
databases

 redundancy

 Tablify region option, File Editor

 tabnanny module

 tabnanny program

 tabpolice program

 tabs attribute

 tabs in scripts

 tag_add(tagname,startindex[,endindex] ...) method

 tag_config method

 tag_delete(tagname) method

 tag_remove(tagname [,startindex[.endindex]] ...) method

 2nd
<
 APPLET
 Content-type
 handling
 script

 takefocus property

 tarball (source)

 tarballs

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

tbreak [([filename
]lineno | function) [, condition]] command

 Tcl/Tk installer

 TCL_LIBRARY variable

 2nd

 tearOff option

 2nd , 3rd

 Telnet

 telnetlib module

 tempfile module

templates
 creating browser output, CGI scripts

testing
 applets
 CGI scripts
 command-line scripts
 forms
 input
 ports
 Python interfaces
wrappers
 Word

 testpy.py file

 Tetsuya, Mizutori

 texi2html program

text
 inserting Button widgets inside
 printing, Windows printers

 text property

 See : binary modetext translation modeÓ
 Ò

 2nd

 text() method

 textvariable attribute

 textvariable option

 2nd

 Thompson, Phil

 thread data structures, creating

 2nd

 threading mechanisms

 Python/C Application Programmers Interface (API)

 states

 threading mechanisms

 threads program

 threadsafety variable

thumbnail images
 generating

time module
 importing

 time() function

 time.clock() function

 time.sleep function

 tip boxes

 title(string) method

titles
page
 collecting information for

 Tk toolkit

 2nd

 tk_focusNext() method

 tk_focusPrev() method

 TK_LIBRARY variable

 tkColorChooser module

 tkFileDialog module

tkFont instances
font class
 methods

Tkinter
 optimizing

 2nd , 3rd , 4th
 designing applications
 geometry management methods
 handling events
 informational resources
 PMW (Python Mega Widgets)
 Unicode characters
 widgets

 tkinter program

 tkMessageBox module

 tkraise([object]) method

 tkSimpleDialog module

 Toggle Tabs option, File Editor

 toggle() method

 tokenize module

 tolist() method

toolbars
 creating
Debugging
 opening, Pythonwin

toolkits
graphical user interfaces (GUIs)
 wxPython , 2nd , 3rd
PMW (Python Mega Widgets)
 Tkinter module
 Tk

tools
benchmark
 source code
 compile.py
 fixtk
 Freeze
GNU gzip
 downloading
HTML parsing
 source code
 jpythonc
 OS
 process control
 Simplified Wrapper and Interface Generator (SWIG)
 site management
WinZip
 downloading

Tools menu
 options, Pythonwin

 2nd

 toplevel widgets

toplevels
 associating widgets with

 tottime column heading

 2nd

 traceback stack

 traceback.print_exc() function

 TracebackType object type

 2nd

transferring
data
 FTP sites
 data between applications
 data from browsers to CGI scripts

 transient([master]) method

 translate.references(data) method

Transmission Control Protocol (TCP)
 starting connections

 2nd

transporting
values
 tuples

 treesync program

triple quotes
 documentation strings

triple quotes (Ò

Ó
 Ó)strings

 Trojan Horses

 Trubetskoy, Gregory

truncations
 division of integers

 try clause

 2nd , 3rd , 4th

 2nd

 tuple objects

 () (parenthesis)

 replacing numbers with asterisks (*)

 returning multiple values, functions

 setting

 transporting values

zip() function
 syntax

 TupleType object type

turning off
registration
 Common Object Model (COM) objects

turning on
modules
 UNIX operating systems
 Tkinter module

 tutorials:Python 1.5.2 release

 Tutt, Bill

 two-dimensional arrays

 2nd

 Type Libraries

 databases

 type() method

 typed variables

 built-in object types

 typing, dynamic

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][u(p)
command

 U.S. Department of Defense

 2nd

 umath module

 unacceptable input, testing for

 unalias name command

 unbind(event) method

 unbind_all(event) method

 unbind_class(class, event) method

 unbirthday script

unbounded methods
 accessing

 UnboundMethodType object type

 uncaught exceptions

 Uncomment region option, File Editor

 2nd

 underline property

 undo engines

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 Undo option, File Editor

 Undocumented Modules

unfolding
 statements

unichr() function
 syntax

Unicode characters
 Tkinter module

 2nd
 Python 2.0

 syntax

 unicodedata module

uniform resource locators (URLs)
 accessing

 universal functions

 Universally Unique Identifiers (UUIDs)

University of Michigan
 Lightweight Directory Access Protocol (LDAP) library

UNIX
 command-line options, interpreters
compiling
 source code
 embedding interpreters
 finding Python
 fonts
 installing Tkinter
 launching Python applications
 linking static extensions to interpreters
 root privileges
 running Python

 setting permissions
 shebang line

 2nd

 unknown.charref(ref) method

 unknown.endtag(tag) method

 unknown.entityref(ref) method

 unknown.starttag(tag, attributes) method

 unknown_charref(ref) method

 unknown_endtag(tag) method

 unknown_entity(ref) method

 unknown_starttag(tag, attributes) method

 unnormalized values

 unpack() function

 unpack_array(unpack_item) method

 unpack_bytes() method

 unpack_double() method

 unpack_farray(n, unpack item) method

 unpack_float() method

 unpack_fopaque(n) method

 unpack_fstring(n) method

 unpack_list(unpack_item) method

 unpack_opaque() method

 unpack_string() method

 2nd

unpacking
 variables

 unread() method

unregistering
 Common Object Model (COM) objects

 untabify program

 Untablify region option, File Editor

unused objects
 collecting

 update script

 update() method

 update_idletasks() method

uploading
 files from Internet
 files to FTP servers

 url attribute

 url module

 scanning

 urllib.quote(string) method

 urllib.quote_plus(string [,safe])() function

 urllib.unquote(string) method

 urllib.urlcleanup() function

 urllib.urlencode(dict)() function

 urllib.urlencode(dictionary) method

 urllib2 module

 urlparse module

 urlparse.urljoin(base, url [,allow_fragments])() function

 urlparse.urlunparse(tuple)() function

URLs (uniform resource locators)
 accessing

 Urner, Kirby

 2nd
 starting connections

user-defined exceptions
 creating

 user-defined functions

 user_call(frame, argument_list) method

 user_exception(frame, (exc_type, exc_value, exc_traceback)) method

 user_line(frame) method

 user_return(frame, return_value) method

users
 input and output
 nobody

 UserSTring module

utilities
benchmark
 source code
 compile.py
 fixtk
 Freeze
GNU gzip
 downloading
HTML parsing
 source code
 jpythonc
 OS
PMW (Python Mega Widgets)
 Tkinter module
 process control
 Simplified Wrapper and Interface Generator (SWIG)
 site management
WinZip
 downloading

 See : Universally Unique IdentifiersUUIDÓ
 Ò

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][value
attribute

 value option

 2nd

values
 AF_INET
 AF_UNIX
 assigning to substrings
 assigning to variables, modules
 c
 changing at execution time
 counter
 family
indexer
 strings
 mode
 n
null
 assigning to variables
NULL
 Structured Query Language (SQL)
 r
 returning
 returning from functions, tuples
 socket type
 sys module objects
 sys.exe_traceback
 sys.exe_type
 sys.exe_value
transporting
 tuples
 unnormalized
 w

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

 values() method

 variable option

 variable property

variables
 ($PATH)
 ($PYTHONPATH)
 0
 1
 2
 3
accessing
 instances
 addresslist
 AddressList objects
 apilevel
 assigning functions to
 assigning objects to
 attributes
 classes
 deallocating
declaring
 PyObject
 double
 elements
 entitydefs
environment
 scanning
 exceptions, Python/C Application Programmers Interface (API)
 finding
 float
 formatter
global
 changing inside functions
 initializing
 instance
 last
 level
 listing
modules
 assigning values to

 MultiFile (fp[,
 optimizing
 packing
 paramstyle
 PATH
 PYTHONPATH
 PYTHONSTARTUP
 request_queue_size
 socket type
 sys.argv
 sys.path
 TCL_LIBRARY
 threadsafety
 TK_LIBRARY
 typed
watch
 adding, Pythonwin

variablesÓ
 Ò

verifying
errors
 extension modules , 2nd
 UNIX passwords

 versioncheck program

 versions of Python

 Vi (visual editor)

 Viega, John

 View/Options option, Pythonwin

viewing
 error symbols
 input and output
 lines, lists

Visible property

 changing

Visual Basic (VB) programming language
 implementing Common Object Model (COM) objects

 visual editor (Vi)

 Visual Interdev

 void Py_Finalize() function

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][w
(write) mode

 w value

 w(here) command

 W3C (World Wide Web Consortium)

 wafepython module

 wait_variable(variable) method

 wait_visibility(widget) method

 wait_window(widget) method

 2nd

watch variables
 adding, Pythonwin

wave files
 writing

 2nd

 wb mode

Web pages
 copying into local files
 outputting links from HTML files to, CGI scripts
 parsing
 retrieving

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

Web servers
 building

 See : HTTP serversWeb serversÓ
 Ò

Web sites
 Concurrent Version System (CVS)
 GNU Web site
 Python documentation
 Python news
 2nd
 PythonLabs
 SourceForge
 WinZip Web site

 webbrowser module

 Webchecker

 webchecker program

 WebDAV (World Wide Web Distributed Authoring and Versioning)

 2nd

 websucker module

 weight option

 what() function

 whatis arg

 WHERE clause

 whereis python command

 which program

 2nd

 while statement

 whitespace

 whitespaces

 Widget Athena front end (Wafe) module

 widget attribute

 2nd
 associating with toplevels
 binding events
 Button
 Canvas
 Checkbutton
 Entry
 Frame
 Label
 Listbox
 Menu
 Menubutton
 Message
 2nd
 Radiobutton
 Scale
 Scrollbar
 Text
 2nd
 Toplevel

 width argument

 width attribute

 width option

 width property

 width() method

Win32
 running Python

 win32.com.client.Dispatch() function

 win32.com.client.gencache module

 2nd

 2nd

 window option

 window() method

Windows
 bindings, File Editor

windows
 changing fonts

Windows
 command-line options, interpreters

windows
 creating
 editor

Windows
 executing scripts from
 fonts
 installing Python
 installing Tkinter
 Java Virtual Machine (JVM) support, JPython
 launching Python applications
 linking dynamic extensions to interpreters
 linking static extensions to interpreters
 Macintosh Specific library

 MS Windows Specific library
 odbc module

windows
 Python Shell

Windows
Registry
 Common Object Model (COM) object storage
 saving files, Tkinter
 thread support
 transferring data between applications

Windows CE
 running Python

Windows installer
 downloading and running

 Windows Scripting Host (WSH)

 Windows socket application program interface (Winsock)

 2nd

 Winsock (Windows socket application program interface)

 2nd

 withdraw() method

wizards
 PythonWin

 WM_SAVE_YOURSELF protocol

 WM_TAKE_FOCUS protocol

Word
 opening and manipulating from Python

 word completion mechanism

World Wide Web
development for
 WebLog

 World Wide Web Consortium (W3C)

 World Wide Web Distributed Authoring and Versioning (WebDAV)

 wraplength property

wrapper files
 generating

wrappers
 creating extension modules and embedding Python objects
 Pythonwin
Word
 implementing , 2nd

 write (w) mode

 write() method

 writeframes(data) method

 writeframesraw(data) method

 writer attribute

 2nd

writing
 applets
 beans
 classes
code
 style guides , 2nd , 3rd , 4th , 5th , 6th
 Common Gateway Interface (CGI) scripts

 Extensible Markup Language (XML) files
 file dialog boxes
 frames to align colored buttons
 IDLE extensions
 image objects
 menu bars
 menus
 messages
 pop-up menus
 pull-down menus
 Python applications
 radiobuttons
 registries
 scripts
 single line interfaces
 status bars
 subclasses
 thread data structures
 toolbars
 wave files
 windows

 WSH (Windows Scripting Host)

 2nd

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][x
argument

 x attribute

 x format

 x_root attribute

 2nd

 XDR (External Data Representation Standard)

XDR Data Exchange Format
 manipulating data

 2nd

XEmacs
editing
 source code , 2nd , 3rd

XML
 support in Python 2.0

 2nd

 xml module

xml package
 PyXML

 XML Processing with Python

 XML-RPC How To for Zope Users

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

XML-RPC library
 manipulating data

 xmllib module

 XMLParser module

 xmlrpc package

 2nd

 XOR (exclusive OR) operator

 xrange() function

 XrangeType object type

 XSL Transformations (XSLT)

 XSLT (XSL Transformations)

 xxci program

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

Web Development > Python Developer's Handbook See All Titles

Python Developer's Handbook

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][P][Q][R][S][T][U][V][W][X][Y][y
argument

 Yahoo!

Last updated on 1/30/2002
Python Developer's Handbook, © 2002 Sams Publishing

© 2002, O'Reilly & Associates, Inc.

file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?cat=8
file:///D|/New/(ebook%20-%20HTML%20-%20Python)%20O'Reilly%20-%20Python%20Developer's%20Handbook/main.asp?list

	Python Developer's Handbook - Sams Dec 2000
	Python Developer's Handbook
	About the Author
	Acknowledgments
	Tell Us What You Think!
	Introduction

	Table of Contents
	Part I: Basic Programming
	1. Introduction
	Introduction to Python
	Why Use Python?
	Main Technical Features
	Python Distribution
	Installing and Configuring Python
	Python and Other Languages
	Patches and Bugs List
	PSA and the Python Consortium
	Summary

	2. Language Review
	Language Review
	The Shell Environment
	Programs
	Built-In Data Types
	Operators
	Expressions
	Control Statements
	Data Structures
	Functions and Procedures
	Modules and Packages
	Input and Output
	File Handling
	Summary
	Code Example

	3. Python Libraries
	Python Libraries
	Python Services
	types
	UserDict
	UserList
	operator
	traceback
	linecache
	pickle
	cPickle
	copy_reg
	shelve
	copy
	marshal
	imp
	parser
	symbol
	token
	keyword
	tokenize
	pyclbr
	code
	codeop
	pprint
	repr
	py_compile
	compileall
	dis
	new
	site
	user
	__builtin__
	__main__
	The String Group
	Miscellaneous
	Generic Operational System
	Optional Operational System
	Debugger
	Profiler
	Internet Protocol and Support
	Internet Data Handling
	Restricted Execution
	Multimedia
	Cryptographic
	UNIX Specific
	SGI IRIX Specific
	Sun OS Specific
	MS Windows Specific
	Macintosh Specific
	Undocumented Modules
	Summary

	4. Exception Handling
	Exception Handling
	Standard Exceptions (Getting Help from Other Modules)
	Raising Exceptions
	Catching Exceptions
	try/finally
	Creating User-defined Exceptions
	The Standard Exception Hierarchy
	Summary
	Code Examples

	5. Object-Oriented Programming
	Object-Oriented Programming
	An Introduction to Python OOP
	Python Classes and Instances
	Methods Handling
	Special Methods
	Inheritance
	Polymorphism
	Encapsulation
	Metaclasses
	Summary
	Code Examples

	Part II: Advanced Programming
	6. Extending and Embedding Python
	Extending and Embedding Python
	The Python/C API
	Extending
	Compiling and Linking Extension Modules
	SWIG—The Simple Wrapper Interface Generator
	Other Wrappers
	Embedding
	Summary
	Code Examples

	7. Objects Interfacing and Distribution
	Object Interfacing and Distribution
	Interfacing Objects
	Introduction to COM Objects
	Implementing COM Objects in Python
	Distributing Objects with Python
	Summary
	Code Examples

	8. Working with Databases
	Working with Databases
	Flat Databases
	DBM (Database Managers) Databases
	Object Serialization and Persistent Storage
	The ODBC Module
	ADO (ActiveX Data Objects)
	Using SQL
	Python DB API
	Summary

	9. Other Advanced Topics
	Other Advanced Topics
	Manipulating Images
	Working with Sounds
	Restricted Execution Mode
	Scientific Computing
	Regular Expressions
	Threads
	Summary
	Code Examples

	Part III: Network Programming
	10. Basic Network Background
	Networking
	Networking Concepts
	HTTP
	Accessing URLs
	FTP
	SMTP/POP3/IMAP
	Newsgroups—Telnet and Gopher
	Summary

	11. Web Development
	Web Development
	Configuring Web Servers for Python/CGI Scripts
	Third-Party Internet Applications
	Other Applications
	Site Management Tools
	Summary

	12. Scripting Programming
	Web Programming
	An Introduction to CGI
	The cgi Module
	Creating, Installing, and Running Your Script
	Python Active Scripting
	Summary

	13. Data Manipulation
	Parsing and Manipulating Data
	XML Processing
	XML-RPC
	XDR Data Exchange Format
	Handling Other Markup Languages
	MIME Parsing and Manipulation
	Generic Conversion Functions
	Summary

	Part IV: Graphical Interfaces
	14. Python and GUIs
	Python GUI Toolkits
	The Tkinter Module
	Overview of Other GUI Modules
	Designing a Good Interface
	Summary

	15. Tkinter
	Introduction to Tcl/Tk
	Tkinter
	Geometry Management
	Handling Tkinter Events
	Tkinter Widgets
	Designing Applications
	PMW—Python Mega Widgets
	Tkinter Resources
	Summary

	Part V: Developing with Python
	Part V
	16. Development Environment
	Building Python Applications
	Development Strategy
	Integrated Development Environments
	IDLE
	Pythonwin
	Summary

	17. Development Tools
	The Development Process of Python Programs
	Compiling Python
	Editing Code
	Python Scripts
	Generating an Executable Python Bytecode
	Interpreter
	Debugging the Application
	Profiling Python
	Distributing Python Applications
	Summary

	Part VI: Python and Java
	Chapter 18
	18. JPython
	Welcome to JPython
	Java Integration
	Downloading and Installing JPython
	The Interpreter
	The JPython Registry
	Creating Graphical Interfaces
	Embedding
	jpythonc
	Running JPython Applets
	Summary

	Part VII: Appendixes
	Appendix A. Python/C API
	Python/C API
	The Very High Level Layer
	Reference Counting
	Exception Handling
	Standard Exceptions
	Utilities
	Abstract Objects Layer
	Concrete Objects Layer
	Initialization, Finalization, and Threads
	Memory Management
	Defining New Object Types

	Appendix B. Running Python on Specific Platforms
	Python on Win32 Systems
	Python on MacOS Systems
	Python on UNIX Systems
	Other Platforms

	Appendix C. Python Copyright Notices
	Python 2.0 License Information
	Python's Copyright Notice (version 1.6)
	Copyright Notice (until version 1.5.2)
	Copyright notice of the profile and pstate Modules
	Copyright Notice of JPython with OROMatcher
	Copyright Notice of JPython without OROMatcher

	Appendix D. Migrating to Python 2.0
	Python 1.6 or Python 2.0. Which One to Choose?
	New Development Process
	Enhancements
	Expected Code Breaking

	Front Matter
	Index - Symbols
	Index - B
	Index - C
	Index - D
	Index - E
	Index - F
	Index - G
	Index - H
	Index - I
	Index - J
	Index - K
	Index - L
	Index - M
	Index - N
	Index - O
	Index - P
	Index - Q
	Index - R
	Index - S
	Index - T
	Index - U
	Index - V
	Index - W
	Index - X
	Index - Y

