

Python Phrasebook: Essential Code and Commands

Python Phrasebook: Essential Code and Commands

By Brad Dayley

...

Publisher: Sams

Pub Date: November 07, 2006

Print ISBN-10: 0-672-32910-7

Print ISBN-13: 978-0-672-32910-4

Pages: 288

Table of Contents | Index

Python Phrasebook

Brad Dayley

Essential Code and Commands

Python Phrasebook gives you the code phrases you need to quickly and effectively complete your programming

projects in Python.

Concise and Accessible

Easy to carry and easy to uselets you ditch all those bulky books for one portable guide

Flexible and Functional

Packed with more than 100 customizable code snippetsso you can readily code functional Python in just about

any situation

Brad Dayley is a software engineer at Novell, Inc. He has been a system administrator and software developer

on the Unix, Windows, Linux, and NetWare platforms for the past 14 years. Brad co-developed an advanced

debugging course used to train engineers and customers and is the co-author of several Novell Press books.

Programming / Python

$16.99 USA / $20.99 CAN / £11.99 Net UK

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/main.html [03.08.2007 09:08:50]

Table of Contents

Python Phrasebook: Essential Code and Commands

By Brad Dayley

...

Publisher: Sams

Pub Date: November 07, 2006

Print ISBN-10: 0-672-32910-7

Print ISBN-13: 978-0-672-32910-4

Pages: 288

Table of Contents | Index

 Copyright

 About the Author

 Acknowledgments

 Introduction

 Chapter 1. Understanding Python

 Why Use Python?

 Invoking the Interpreter

 Built-In Types

 Understanding Python Syntax

 Python Objects, Modules, Classes, and Functions

 Error Handling

 Using System Tools

 Chapter 2. Manipulating Strings

 Comparing Strings

 Joining Strings

 Splitting Strings

 Searching Strings for Substrings

 Search and Replace in Strings

 Searching Strings for Specific Endings/Beginnings

 Trimming Strings

 Aligning/Formatting Strings

 Executing Code Inside Strings

 Interpolating Variables Inside Strings

 Converting Unicode to Local Strings

 Chapter 3. Managing Data Types

 Defining a List

 Accessing a List

 Slicing a List

 Adding and Removing Items in a List

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/toc.html (1 von 3) [03.08.2007 09:08:58]

Table of Contents

 Sorting a List

 Using Tuples

 Constructing a Dictionary

 Adding a Value to a Dictionary

 Retrieving a Value from a Dictionary

 Slicing a Dictionary

 Swapping Keys for Values in a Dictionary

 Chapter 4. Managing Files

 Opening and Closing Files

 Reading an Entire File

 Reading a Single Line from a File

 Accessing Each Word in a File

 Writing a File

 Determining the Number of Lines in a File

 Walking the Directory Tree

 Renaming Files

 Recursively Deleting Files and Subdirectories

 Searching for Files Based on Extension

 Creating a TAR File

 Extracting a File from a TAR File

 Adding Files to a ZIP File

 Retrieving Files from a ZIP File

 Chapter 5. Managing Threads

 Starting a New Thread

 Creating and Exiting Threads

 Synchronizing Threads

 Implementing a Multithreaded Priority Queue

 Initiating a Timer-Interrupted Thread

 Chapter 6. Managing Databases

 Adding Entries to a DBM File

 Retrieving Entries from a DBM File

 Updating Entries in a DBM File

 Pickling Objects to a File

 Unpickling Objects from a File

 Storing Objects in a Shelve File

 Retrieving Objects from a Shelve File

 Changing Objects in a Shelve File

 Connecting to a MySQL Database Server

 Creating a MySQL Database

 Adding Entries to a MySQL Database

 Retrieving Entries from a MySQL Database

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/toc.html (2 von 3) [03.08.2007 09:08:58]

Table of Contents

 Chapter 7. Implementing Internet Communication

 Opening a Server-Side Socket for Receiving Data

 Opening a Client-Side Socket for Sending Data

 Receiving Streaming Data Using the ServerSocket Module

 Sending Streaming Data

 Sending Email Using SMTP

 Retrieving Email from a POP3 Server

 Using Python to Fetch Files from an FTP Server

 Chapter 8. Processing HTML

 Parsing URLs

 Opening HTML Documents

 Retrieving Links from HTML Documents

 Retrieving Images from HTML Documents

 Retrieving Text from HTML Documents

 Retrieving Cookies in HTML Documents

 Adding Quotes to Attribute Values in HTML Documents

 Chapter 9. Processing XML

 Loading an XML Document

 Checking for Well-Formed XML Documents

 Accessing Child Nodes

 Accessing Element Attributes

 Adding a Node to a DOM Tree

 Removing a Node from a DOM Tree

 Searching XML Documents

 Extracting Text from XML Documents

 Parsing XML Tags

 Chapter 10. Programming Web Services

 Adding HTML to Web Pages Using CGI Scripts

 Processing Parameters Passed to CGI Scripts

 Creating Self-Posting CGI Scripts

 Allowing Users to Upload Files via CGI Scripts

 Creating an HTTP Server to Handle GET Requests

 Creating an HTTP Server to Handle POST Requests

 Creating an HTTP Server to Process CGI Scripts

 Sending an HTTP GET Request from a Python Script

 Sending an HTTP POST Request from a Python Script

 Creating an XML-RPC Server

 Creating an XML-RPC Client

 Using SOAPpy to Access SOAP Web Services Through a WSDL File

 Index

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/toc.html (3 von 3) [03.08.2007 09:08:58]

Copyright

Copyright

Python Phrasebook

Copyright © 2007 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2006922308

Printed in the United States of America

First Printing: November 2006

09 08 07 06 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an "as is" basis. The author and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales. For more information, please contact

 U.S. Corporate and Government Sales
 1-800-382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact

 International Sales
 international@pearsoned.com

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/copyrightpg.html (1 von 3) [03.08.2007 09:08:58]

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com

Copyright

Acquisitions Editor

Jenny Watson

Mark Taber

Development Editor

Songlin Qiu

Managing Editor

Patrick Kanouse

Project Editor

Tonya Simpson

Copy Editor

Sarah Kearns

Indexer

Heather McNeil

Proofreader

Mike Henry

Technical Editor

Tim Boronczyk

Publishing Coordinator

Vanessa Evans

Book Designer

Gary Adair

Page Layout

TnT Design, Inc.

Dedication

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/copyrightpg.html (2 von 3) [03.08.2007 09:08:58]

Copyright

For D,

A & F!

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/copyrightpg.html (3 von 3) [03.08.2007 09:08:58]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Acknowledgments

Acknowledgments

My sincere gratitude goes out to the following persons, without whom this book could not have
happened:

To my wife, who provides all the inspiration and drive behind everything I do, words cannot say enough.

To my friends at Novell, especially Christine Williams, who force me to be more intelligent and creative
than I would necessarily like to be, thanks for your support and friendship.

To my editors, who made the book readable, checked on my technical accuracy, and kept me on track,
you all are great (and picky). It seems that nothing gets by you. To Jenny Watson, thanks for being
such a great editor over the years and getting this book rolling, I wish you the best of luck. Thanks to
Mark Taber for handling a tough transition and keeping the book on track; you've kept me going and
helped make this book fun to write. To Songlin Qiu, Damon Jordan, and especially Timothy Boronczyk,
thank you for helping me convert my thoughts and ramblings into a clean, coherent and technically
accurate manuscript.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

You can email or write me directly to let me know what you did or didn't like about this bookas well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due
to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone
or email address. I will carefully review your comments and share them with the author and editors who
worked on the book.

Email: opensource@samspublishing.com
Mail: Mark Taber
 Associate Publisher
 Sams Publishing
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.samspublishing.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/pre02.html [03.08.2007 09:08:59]

mailto:opensource@samspublishing.com
http://www.samspublishing.com/register
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

About the Author

About the Author

Brad Dayley is a senior software engineer in Novell's Nterprise Development Group. He has 14 years of
experience installing, troubleshooting, and developing Novell's products for NetWare and Linux. He is
the co-author of Novell's Guide to Resolving Critical Server Issues, as well as seven other Novell Press
titles on the ZENworks suite.

When he is not writing books or software, he can be found biking, hiking, and/or Jeeping somewhere in
the remote regions of the Pacific Northwest with his wife, DaNae, and four sons.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/pref01.html [03.08.2007 09:08:59]

Introduction

Introduction

I was excited when my editor asked me to write a phrasebook on the Python language. The phrasebook
is one of the smallest books I have ever written; however, it was one of the hardest.

The idea of a conventional phrasebook is to provide readers with quick phrases that actually mean
something in the language. The Python phrasebook is designed to provide you with meaningful Python
phrases that you can actually understand and use to quickly begin programming Python applications.

The content of this book are based on Python 2.4. You should keep in mind that the Python language is
constantly being added to. I would recommend visiting the Python website at http://www.python.org to
familiarize yourself with accessing the online documentation, available extensions, and any changes that
are occurring.

This book is not a reference manual or language guide that encompasses the entire languagethat's not
the purpose. The purpose is to provide you with a small, simple-to-use phrasebook that will get you
going and provide a quick, easy reference later as you delve into new areas of the language.

When designing the content for this book, I tried to come up with the most relevant and interesting
phrases that will actually help programs accomplish tasks that are pertinent to real-world needs. I
welcome your comments and any phrases that you feel really need to be added to this book.

Note

Almost all the sample code used in this book is taken from actual working files. For your
convenience, the Python scripts, CGI scripts, and HTML and XML documents that are shown
as examples in the phrases of this book are available for download from the publisher's
website. Register your book at www.samspublishing.com/register and download the code
examples from this book. Feel free to modify them for your own needs.

I hope that you enjoy the phrases in this book and that they will be useful to you.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch00.html [03.08.2007 09:08:59]

http://www.python.org/
http://www.samspublishing.com/register
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Chapter 1. Understanding Python

Chapter 1. Understanding Python

Python is an extremely powerful and dynamic object-oriented programming language. It has similarities
to scripting languages such as Perl, Scheme, and TCL, as well as other languages such as Java and C.

This chapter is designed to give you a quick glimpse into the Python language to help you understand
the phrases in the subsequent chapters. It is not meant to be comprehensive; however, it should give
you a feel for the language and help you understand the basics so that you can refer to the Python
documentation for more information.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01.html [03.08.2007 09:08:59]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Why Use Python?

Why Use Python?

There are several reasons to use Python. It is one of the easier languages to pick up and start using,
and yet it can be extremely powerful for larger applications. The following are just some of the good
points of Python:

● Portability Python runs on almost every operating system, including Linux/Unix, Windows, Mac,
OS 2, and others.

● Integration Python can integrate with COM, .NET, and CORBA objects. There is a Jython
implementation to allow the use of Python on any Java platform. IronPython is an
implementation that gives Python programmers access to the .NET libraries. Python can also
contain wrapped C or C++ code.

● Easy It is very easy to get up to speed and begin writing Python programs. The clear, readable
syntax makes applications simple to create and debug.

● Power There are new extensions being written to Python all the time for things such as database
access, audio/video editing, GUI, web development, and so on.

● Dynamic Python is one of the most flexible languages. It's easy to get creative with code to
solve design and development issues.

● Open Source Python is an open source language, which means it can be freely used and
distributed.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec1.html [03.08.2007 09:09:00]

Invoking the Interpreter

Invoking the Interpreter

Python scripts are executed by a Python interpreter. On most systems, you can start the Python
interpreter by executing the python command at a console prompt. However, this can vary based on the
system and development environment you have set up. This section discusses the standard methods to
invoke the interpreter to execute Python statements and script files.

Invoking the interpreter without passing a script file as a parameter brings up the following prompt:

bwd-linux:/book # python
Python 2.4.2 (#1, Apr 9 2006, 19:25:19)
[GCC 4.1.0 (SUSE Linux)] on linux2
Type "help", "copyright", "credits" or
 "license" for more information.
>>>

The Python prompt is indicated by >>>. If you execute a command that requires more input, a ...
prompt will be displayed. From the interpreter prompt, you can execute individual Python statements, as
follows:

>>> print "Printing a String"
Printing a String

Invoking the interpreter with a script parameter, as shown next, begins execution of the script and
continues until the script is finished. When the script is finished, the interpreter is no longer active.

bwd-linux:/book # python script.py
Executing a Script
bwd-linux:/book #

Scripts can also be executed from within the interpreter using the execfile(script) function built in to
Python. The following example shows a script being executed using the execfile() function:

>>> execfile("script.py")
Executing a Script
>>>

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec2.html [03.08.2007 09:09:00]

Built-In Types

Built-In Types

The built-in types that you will most frequently use in Python can be grouped into the categories listed
in Table 1.1 . The Type Name column shows the name that is associated with each built-in object type
and can be used to determine whether an object is of a specific type using the isinstance(object,
typename) function, as follows:

>>> s = "A Simple String"
>>> print isinstance(s, basestring)
True
>>> print isinstance(s, dict)
False
>>>

Table 1.1. Common Built-In Python Types

Type Category Type Name Description

None types.NoneType None object (null object)

Numbers bool Boolean True or False

 int Integer

 long Long integer

 float Floating point

 complex Complex number

Set set Mutable set

 frozenset Immutable set

Sequences str Character string

 unicode Unicode character string

 basestring Base type of all strings

 list List

 tuple Tuple

 xrange Immutable sequence

Mapping dict Dictionary

Files file File

Callable type Type for all built-ins

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec3.html (1 von 4) [03.08.2007 09:09:01]

Built-In Types

 object Parent of all types and classes

 types.BuiltinFunctionType Built-in function

 types.BuiltinMethodType Built-in method

 types.FunctionType User-defined function

 types.InstanceType Class instance

 types.MethodType Bound method

 types.UnboundedMethodType Unbound method

Modules types.ModuleType Module

Classes object Parent of all classes

Type type Type for all built-ins

Note

The type module must be imported to use any of the type objects such as type and types.
ModuleType.

None

The none type equates to a null object that has no value. The none type is the only object in Python that
can be a null object. The syntax to use the none type in programs is simply None.

Numbers

The numeric types in Python are very straightforward. The bool type has two possible values: true or
False. The int type internally stores whole numbers up to 32 bits. The long type can store numbers in a
range that is limited only by the available memory of the machine. The float type uses the native
double-precision to store floating-point numbers up to 64 bits. The complex type stores values as a pair
of floating-point numbers. The individual values are accessible using the z.real and z.imag attributes of
the complex object.

Set

The set type represents an unordered collection of unique items. There are two basic types of sets:
mutable and immutable. Mutable sets can be modified (items can be added or removed). Immutable
sets cannot be changed after they are created.

Note

All items that are placed in a set must be of immutable type. Therefore, sets cannot contain
items such as lists or dictionaries. However, they can include items such as strings and

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec3.html (2 von 4) [03.08.2007 09:09:01]

Built-In Types

tuples.

Sequences

There are several sequence types in Python. Sequences are ordered and can be indexed by non-
negative integers. Sequences are easily manipulated and can be made up of almost any Python object.

The two most common types of sequences by far are the string and list types. Chapter 2, "Manipulating
Strings," discusses creating and using the string type. Chapter 3, "Managing Data Types," discusses the
most common types of sequences and how to create and manipulate them.

Mapping

The mapping type represents two collections of objects. The first collection is a set of key objects that
index the second collection that contains a set of value objects. Each key object indexes a specific value
object in the correlating set. The key object must be of an immutable type. The value object can be
almost any Python object.

The dictionary is the only mapping type currently built in to Python. Chapter 3 discusses dictionaries and
how to create and manipulate them.

Files

The file type is a Python object that represents an open file. Objects of the file type can be used to read
and write data to and from the filesystem. Chapter 4, "Managing Files," discusses file type objects and
includes some of the most common Python phrases to utilize them.

Callable

Objects of the callable type support Python's function call operation, meaning that they can be called as
a function of the program. Several objects fall into the callable type. The most common are the
functions built in to the Python language, user-defined functions, classes, and method instances.

Note

Classes are considered callable because the class is called to create a new instance of the
class. Once a new instance of a class has been called, the method instances of the class
become callable also.

Modules

The module type represents Python modules that have been loaded by the import statement. The import
statement creates a module type object with the same name as the Python module; then, all objects
within the module are added to the __dict__ attribute of the newly created module type object.

Objects from the module can be accessed directly using the dot syntax because it is translated into a

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec3.html (3 von 4) [03.08.2007 09:09:01]

Built-In Types

dictionary lookup. This way, you can use module.object instead of accessing an attribute using module.
__dict__("object") to access objects from the module.

For example, the math module has the numeric object pi; the following code loads the math module
and accesses the pi object:

>>> import math
>>> print math.pi
3.14159265359

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec3.html (4 von 4) [03.08.2007 09:09:01]

Understanding Python Syntax

Understanding Python Syntax

The Python language has many similarities to Perl, C, and Java. However, there are some definite
differences between the languages. This section is designed to quickly get you up to speed on the
syntax that is expected in Python.

Using Code Indentation

One of the first caveats programmers encounter when learning Python is the fact that there are no
braces to indicate blocks of code for class and function definitions or flow control. Blocks of code are
denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block must be
indented the same amount. Both blocks in this example are fine:

if True:
 print "True"
else:
 print "False"

However, the second block in this example will generate an error:

if True:
 print "Answer"
 print "True"
else:
 print "Answer"
 print "False"

Creating MultiLine Statements

Statements in Python typically end with a new line. Python does, however, allow the use of the line
continuation character (\) to denote that the line should continue. For example:

total_sum = sum_item_one + \
 sum_item_two + \
 sum_item_three

Statements contained within the [], {}, or () brackets do not need to use the line continuation
character. For example:

week_list = ['Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday']

Quotation

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec4.html (1 von 5) [03.08.2007 09:09:01]

Understanding Python Syntax

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals, as long as
the same type of quote starts and ends the string. The triple quotes can be used to span the string
across multiple lines. For example, all the following are legal:

word = 'word'
sentence = "This is a sentence.
paragraph = """This is a paragraph. It is
made up of multiple lines and sentences."""

Formatting Strings

Python allows for strings to be formatted using a predefined format string with a list of variables. The
following is an example of using multiple format strings to display the same data:

>>>list = ["Brad", "Dayley", "Python Phrasebook",
2006]

>>>letter = """
>>>Dear Mr. %s,\n
>>>Thank you for your %s book submission.
>>>You should be hearing from us in %d."""

>>>display = """
>>>Title: %s
>>>Author: %s, %s
>>>Date: %d"""

>>>record = "%s|%s|%s|%08d"

>>>print letter % (list[1], list[2], list[3])
Dear Mr. Dayley,
Thank you for your Python Phrasebook book submission.
You should be hearing from us in 2006.

>>>print display % (list[2], list[1], list[0],
list[3])
Title: Python Phrasebook
Author: Dayley, Brad
Date: 2006

>>>print record % (list[0], list[1], list[2],
list[3])
Brad|Dayley|Python Phrasebook|00002006

Using Python Flow Control Statements

Python supports the if, else, and elif statements for conditional execution of code. The syntax is if
expression: block. If the expression evaluates to true execute the block of code. The following code
shows an example of a simple series of if blocks:

if x = True:
 print "x is True"
elif y = true:

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec4.html (2 von 5) [03.08.2007 09:09:01]

Understanding Python Syntax

 print "y is True"
else:
 print "Both are False"

Python supports the while statement for conditional looping. The syntax is while expression: block.
While the expression evaluates to true, execute the block in looping fashion. The following code shows
an example of a conditional while loop:

x = 1
while x < 10:
 x += 1

Python also supports the for statement for sequential looping. The syntax is for item in sequence:
block. Each loop item is set to the next item in the sequence, and the block of code is executed. The for
loop continues until there are no more items left in the sequence. The following code shows several
different examples of sequential for loops.

The first example uses a string as the sequence to create a list of characters in the string:

>>>word = "Python"
>>>list = []
>>>for ch in word:
>>> list.append(ch)
>>>print list
['P', 'y', 't', 'h', 'o', 'n']

This example uses the range() function to create a temporary sequence of integers the size of a list so
the items in the list can be added to a string in order:

>>>string = ""
>>>for i in range(len(list)):
>>> string += list[i]
>>>print string
Python

This example uses the enumerate(string) function to create a temporary sequence. The enumerate
function returns the enumeration in the form of (0, s[0]), (1, s[1]), and so on, until the end of the
sequence string, so the for loop can assign both the i and ch value for each iteration to create a
dictionary:

>>>dict = {}
>>>for i,ch in enumerate(string):
>>> dict[i] = ch
>>>print dict
{0: 'P', 1: 'y', 2: 't', 3: 'h', 4: 'o', 5: 'n'}

This example uses a dictionary as the sequence to display the dictionary contents:

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec4.html (3 von 5) [03.08.2007 09:09:01]

Understanding Python Syntax

>>>for key in dict:
>>> print key, '=', dict[key]
0 = P
1 = y
2 = t
3 = h
4 = o
5 = n

The Python language provides break to stop execution and break out of the current loop. Python also
includes continue to stop execution of the current iteration and start the next iteration of the current
loop. The following example shows the use of the break and continue statements:

>>>word = "Pithon Phrasebook"
>>>string = ""
>>>for ch in word:
>>> if ch == 'i':
>>> string +='y'
>>> continue
>>> if ch == ' ':
>>> break
>>> string += ch
>>>print string
Python

Note

An else statement can be added after a for or while loop just the same as an if statement.
The else is executed after the loop successfully completes all iterations. If a break is
encountered, then the else statement is not executed.

There is currently no switch statement in Python. Often this is not a problem and can be handled
through a series of if-elif-else statements. However, there are many other ways to handle the
deficiency. The following example shows how to create a simple switch statement in Python:

>>>def a(s):
>>> print s
>>>def switch(ch):
>>> try:
>>> {'1': lambda : a("one"),
>>> '2': lambda : a("two"),
>>> '3': lambda : a("three"),
>>> 'a': lambda : a("Letter a")
>>> }[ch]()
>>> except KeyError:
>>> a("Key not Found")
>>>switch('1')
one
>>>switch('a')
Letter a
>>>switch('b')

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec4.html (4 von 5) [03.08.2007 09:09:01]

Understanding Python Syntax

Key not Found

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec4.html (5 von 5) [03.08.2007 09:09:01]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Python Objects, Modules, Classes, and Functions

Python Objects, Modules, Classes, and Functions

This section is designed to help you understand the basic concepts of objects, modules, classes, and
functions in the Python language. This section assumes that you have a basic understanding of object-
oriented languages and is designed to provide the information to jump into Python and begin using and
creating complex modules and classes.

Using Objects

The Python language is tightly wrapped around the object concept. Every piece of data stored and used
in the Python language is an object. Lists, strings, dictionaries, numbers, classes, files, modules, and
functions are all objects.

Every object in Python has an identity, a type, and a value. The identity points to the object's location in
memory. The type describes the representation of the object to Python (see Table 1.1). The value of the
object is simply the data stored inside.

The following example shows how to access the identity, type, and value of an object programmatically
using the id(object), type(object), and variable name, respectively:

>>> l = [1,2,3]
>>> print id(l)
9267480
>>> print type(l)
<type 'list'>
>>> print l
[1, 2, 3]

After an object is created, the identity and type cannot be changed. If the value can be changed, it is
considered a mutable object; if the value cannot be changed, it is considered an immutable object.

Some objects may also have attributes and methods. Attributes are values associated with the object.
Methods are callable functions that perform an operation on the object. Attributes and methods of an
object can be accessed using the following dot '.' syntax:

>>> class test(object):
... def printNum(self):
... print self.num
...
>>> t = test()
>>> t.num = 4
>>> t.printNum()
4

Using Modules

The entire Python language is built up of modules. These modules are Python files that come from the
core modules delivered with the Python language, modules created by third parties that extend the
Python language modules that you write yourself. Large applications or libraries that incorporate several

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec5.html (1 von 8) [03.08.2007 09:09:02]

Python Objects, Modules, Classes, and Functions

modules are typically bundled into packages. Packages allow several modules to be bundled under a
single name.

Modules are loaded into a Python program using the import statement. When a module is imported, a
namespace for the module, including all objects in the source file, is created; the code in the source file
is executed; and a module object with the same name as the source file is created to provide access to
the namespace.

There are several different ways to import modules. The following examples illustrate some of the
different methods.

Modules can be imported directly using the package or module name. Items in submodules must be
accessed explicitly including the full package name.

>>> import os
>>> os.path.abspath(".")
'C:\\books\\python'

Modules can be imported directly using the module name, but the namespace should be named
something different. Items in submodules must be accessed explicitly including the full package name:

>>> import os as computer
>>> computer.path.abspath(".")
'C:\\books\\python'

Modules can be imported using the module name within the package name. Items in submodules must
be accessed explicitly including the full package name:

>>> import os.path
>>> os.path.abspath(".")
'C:\\books\\python'

Modules can be imported by importing the modules specifically from the package. Items in submodules
can be accessed implicitly without the package name:

>>> from os import path
>>> path.abspath(".")
'C:\\books\\python'

Note

Python includes a reload(module) function that reloads a module. This can be extremely
useful during development if you need to update a module and reload it without
terminating your program. However, objects created before the module is reloaded are not
updated, so you must be careful in handling those objects.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec5.html (2 von 8) [03.08.2007 09:09:02]

Python Objects, Modules, Classes, and Functions

Understanding Python Classes

Python classes are basically a collection of attributes and methods. Classes are typically used for one of
two purposes: to create a whole new user-defined data type or to extend the capabilities of an existing
one. This section assumes that you have a fair understanding of classes from C, Java, or other object-
oriented language.

In Python, classes are extremely easy to define and instantiate (create new class object). Use the class
name(object): statement to define a new class, where the name is your own user-defined object type and
the object specifies the Python object from which to inherit.

Note

Class inheritance in Python is similar to that in Java, C, and other object-oriented
languages. The methods and attributes of the parent class will be available from the child,
and any methods or attributes with the same name in the child will override the parents'.

All code contained in the block following the class statement will be executed each time the class is
instantiated. The code sample testClass.py illustrates how to create a basic class in Python. The class
statement sets the name of the class type and inherits from the base object class.

Note

The class statement only defines the class object type; it does not create a class object.
The class object will still need to be created by calling the class directly.

The __init__() function overrides the method inherited from the object class and will be called when the
class is instantiated. The class is instantiated by calling it directly: tc = testCLass("Five"). When the
class is called directly, an instance of the class object is returned.

Note

You can specify any necessary parameters to the __init__() function as long as you
provide the parameters when calling the class to create a class object.

class testClass(object):
 print "Creating New Class\n=================="
 number=5
 def __init__(self, string):
 self.string = string
 def printClass(self):
 print "Number = %d"% self.number
 print "String = %s"% self.string

tc = testClass("Five")
tc.printClass()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec5.html (3 von 8) [03.08.2007 09:09:02]

Python Objects, Modules, Classes, and Functions

tc.number = 10
tc.string = "Ten"
tc.printClass()

testClass.py

Creating New Class
==================
Number = 5
String = Five
Number = 10
String = Ten

Output from testClass.py code.

Note

You need to use the self. prefix inside the class when referencing the attributes and
methods of the class. Also, self is listed as the first argument in each of the class methods;
however, it does not actually need to be specified when calling the method.

Using Functions

Defining and calling functions in Python is typically pretty easy; however, it can become extremely
convoluted. The best thing to keep in mind is that functions are objects in the Python language and the
parameters that are passed are really "applied" to the function object.

To create a function, use the def functionname(parameters): statement, and then define the function in
the following code block. Once the function has been defined, you can call it by specifying the function
name and passing the appropriate parameters.

That being said, the following paragraphs show some of the different ways to accomplish that simple
task for the function shown here:

def fun(name, location, year=2006):
 print "%s/%s/%d" % (name, location, year)

● The first example shows the function being called by passing the parameter values in order.

Notice that the year parameter has a default value set in the function definition, which means
that this parameter can be omitted and the default value will be used.

>>>fun("Teag", "San Diego")
Teag/San Diego/2006

● The next example shows passing the parameters by name. The advantage of passing parameters
by name is that the order in which they appear in the parameter list does not matter.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec5.html (4 von 8) [03.08.2007 09:09:02]

Python Objects, Modules, Classes, and Functions

>>>fun(location="L.A.", year=2004, name="Caleb")
Caleb/L.A./2004

● This example illustrates the ability to mix different methods of passing the parameters. In the
example, the first parameter is passed as a value, and the second and third are passed as an
assignment.

>>>fun("Aedan", year=2005, location="London")
Aedan/London/2005

● Parameters can also be passed as a tuple using the * syntax, as shown in this example. The
items in the tuple must match the parameters that are expected by the function.

>>>tuple = ("DaNae", "Paris", 2003)
>>>fun(*tuple)
DaNae/Paris/2003

● Parameters can also be passed as a dictionary using the ** syntax, as shown in this example.
The entries in the dictionary must match the parameters that are expected by the function.

>>>dictionary = {'name':'Brendan',
'location':'Orlando', 'year':1999}
>>>fun(**dictionary)
Brendan/Orlando/1999

● Values can be returned from functions using the return statement. If a function has no return
statement, then a None object is returned. The following example shows a simple square function
that accepts a number and returns the square of the number:

>>> def square(x):
... return x*x
...
>>> print square(3)
9

Note

Functions can be treated as any other Python object. In addition to being called, they can
be assigned as a value to a list or dictionary, passed as an argument, returned as a value,
and so on.

● The lambda operator built in to the Python language provides a method to create anonymous

functions. This makes it easier to pass simple functions as parameters or assign them to variable
names. The lambda operator uses the following syntax to define the function:

lambda <args> : <expression>

The term args refers to a list of arguments that get passed to the function. The term expression
can be any legal Python expression. The following code shows an example of using the lambda
operator to assign an anonymous function to a variable:

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec5.html (5 von 8) [03.08.2007 09:09:02]

Python Objects, Modules, Classes, and Functions

>>>bigger = lambda a, b : a > b
>>>print bigger(1,2)
False
>>>print bigger(2,1)
True

Namespaces and Scoping

Scoping in Python revolves around the concept of namespaces. Namespaces are basically dictionaries
containing the names and values of the objects within a given scope. There are four basic types of
namespaces that you will be dealing with: the global, local, module, and class namespaces.

Global namespaces are created when a program begins execution. The global namespace initially
includes built-in information about the module being executed. As new objects are defined in the global
namespace scope, they are added to the namespace. The global namespace is accessible from all
scopes, as shown in the example where the global value of x is retrieved using globals()["x"].

Note

You can look at the global namespace using the globals() function, which returns a
dictionary object that includes all entries in the global namespace.

Local namespaces are created when a function is called. Local namespaces are nested with functions as
they are nested. Name lookups begin in the most nested namespace and move out to the global
namespaces.

The global statement forces names to be linked to the global namespace rather than to the local
namespace. In the sample code, we use the global statement to force the name x to point to the global
namespace. When x is changed, the global object will be modified.

Note

Although objects can be seen in outer nested namespaces, only the most local and global
namespaces can be modified. In the sample code, the variable b from fun can be
referenced for value in the sub function; however, modifying its value in sub would not
change the value in fun.

x = 1
def fun(a):
 b=3
 x=4
 def sub(c):
 d=b
 global x
 x = 7
 print ("Nested Function\n=================")
 print locals()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec5.html (6 von 8) [03.08.2007 09:09:02]

Python Objects, Modules, Classes, and Functions

 sub(5)
 print ("\nFunction\n=================")
 print locals()
 print locals()["x"]
 print globals()["x"]

print ("\nGlobals\n=================")
print globals()

fun(2)

scope.py

Globals
=================
{'x': 1,
 '__file__':
'C:\\books\\python\\CH1\\code\\scope.py',
 'fun': <function fun at 0x008D7570>,
 't': <class '__main__.t'>,
 'time': <module 'time' (built-in)>,. . .}

Nested Function
=================
{'c': 5, 'b': 3, 'd': 3}

Function
=================
{'a': 2, 'x': 4, 'b': 3, 'sub':
 <function sub at 0x008D75F0>}
4
7

Output from scope.py code.

The module namespace is created when a module is imported and the objects within the module are
read. The module namespace can be accessed using the .__dict__ attribute of the module object.
Objects in the module namespace can be accessed directly using the module name and dot "." syntax.
The example shows this by calling the localtime() function of the time module:

>>>import time
>>>print time.__dict__
{'ctime': <built-in function ctime>,
 'clock': <built-in function clock>,
 ... 'localtime': <built-in function localtime>}
>>> print time.localtime()
(2006, 8, 10, 14, 32, 39, 3, 222, 1)

The class namespace is similar to the module namespace; however, it is created in two parts. The first
part is created when the class is defined, and the second part is created when the class is instantiated.
The module namespace can also be accessed using the .__dict__ attribute of the class object.

Note

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec5.html (7 von 8) [03.08.2007 09:09:02]

Python Objects, Modules, Classes, and Functions

Notice in the sample code that x resides in t.__dict__ and double resides in tClass__dict__,
yet both are accessible using the dot syntax of the instantiated class object.

Objects in the class namespace can be accessed directly using the module name and dot "." syntax. The
example shows this in the print t.x and t.double() statements:

>>>class tClass(object):
>>> def__init__(self, x):
>>> self.x = x
>>> def double(self):
>>> self.x += self.x
>>>t = tClass (5)
>>>print t.__dict__
{'x': 5}
>>>print tClass.__dict__
{'__module__': '__main__',
 'double': <function double at 0x008D7570>, . . . }
>>>print t.x
5
>>>t.double()
>>>print t.x
5

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec5.html (8 von 8) [03.08.2007 09:09:02]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Error Handling

Error Handling

Error handling in Python is done through the use of exceptions that are caught in try blocks and handled
in except blocks. If an error is encountered, a TRy block code execution is stopped and transferred down
to the except block, as shown in the following syntax:

try:
 f = open("test.txt")
except IOError:
 print "Cannot open file."

The exception type value refers to either one of the built-in Python exceptions or a custom-defined
exception object. The error value is a variable to capture the data returned by the exception.

Note

The TRy block also supports the use of an else block after the last except block. The else
block is executed if the TRy block finishes without receiving an exception.

In addition to using an except block after the try block, you can also use the finally block. The code in
the finally block will be executed regardless of whether an exception occurs. If no exception occurs,
the finally block will be executed after the try block. If an exception occurs, the execution immediately
is transferred to the finally block, and then the exception continues until it is handled. The following
code shows an example of using finally to force a file to be closed even if an exception occurs:

f = open("test.txt")
try:
 f.write(data)
 . . .
finally:
 f.close()

You can raise an exception in your own program by using the raise exception [, value] statement. The
value of exception is one of the built-in Python exceptions or a custom-defined exception object. The
value of value is a Python object that you create to give details about the exception. Raising an
exception breaks current code execution and returns the exception back until it is handled. The following
example shows how to raise a generic RuntimeError exception with a simple text message value:

raise RuntimeError, "Error running script"

Note

If the exception is not handled, the program terminate and a trace of the exception is sent
to sys.stderr.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec6.html (1 von 2) [03.08.2007 09:09:02]

Error Handling

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec6.html (2 von 2) [03.08.2007 09:09:02]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Using System Tools

Using System Tools

One of the most useful features of the Python language is the set of modules that provide access to the
local computer system. These modules provide access to such things as the file system, OS, and shell,
as well as various system functions.

This section discusses using the os, sys, platform, and time modules to access some of the more
commonly used system information.

os Module

The os module provides a portable platform-independent interface to access common operating services,
allowing you to add OS-level support to your programs. The following examples illustrate some of the
most common uses of the os module.

The os.path.abspath(path) function of the os module returns a string version of the absolute path of the
path specified. Because abspath takes into account the current working directory, the . and .. directory
options will work as shown next:

>>>print os.path.abspath(".")
>>>C:\books\python\ch1\
print os.path.abspath("..")
C:\books\python\

The os.path module provides the exists(path), isdir(path), and isfile(path) function to check for the
existence of files and directories, as shown here:

>>>print os.path.exists("/books/python/ch1")
True
>>>print os.path.isdir("/books/python/ch1")
True
>>>print os.path.isfile("/books/python/ch1/ch1.doc")
True

The os.chdir(path) function provides a simple way of changing the current working directory for the
program, as follows:

>>>os.chdir("/books/python/ch1/code")
>>>print os.path.abspath(".")
C:\books\python\CH1\code

The os.environ attribute contains a dictionary of environmental variables. You can use this dictionary as
shown next to access the environmental variables of the system:

>>>print os.environ['PATH']
C:\WINNT\system32;C:\WINNT;C:\Python24

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec7.html (1 von 4) [03.08.2007 09:09:03]

Using System Tools

The os.system(command) function will execute a system function as if it were in a subshell, as shown with
the following dir command:

>>>os.system("dir")
Volume Serial Number is 98F3-A875
 Directory of C:\books\python\ch1\code
08/11/2006 02:10p <DIR> .
08/11/2006 02:10p <DIR> ..
08/10/2006 04:00p 405 format.py
08/10/2006 10:27a 546 function.py
08/10/2006 03:07p 737 scope.py
08/11/2006 02:58p 791 sys_tools.py
 4 File(s) 3,717 bytes
 2 Dir(s) 7,880,230,400 bytes free

Python provides a number of exec type functions to execute applications on the native system. The
following example illustrates using the os.execvp(path, args) function to execute the application update.
exe with a command-line parameter of -verbose:

>>>os.execvp("update.exe", ["-verbose"])

sys Module

The sys module provides an interface to access the environment of the Python interpreter. The following
examples illustrate some of the most common uses of the sys module.

The argv attribute of the sys module is a list. The first item in the argv list is the path to the module; the
rest of the list is made up of arguments that were passed to the module at the beginning of execution.
The sample code shows how to use the argv list to access command-line parameters passed to a Python
module:

>>>print sys.argv
['C:\\books\\python\\CH1\\code\\print_it.py',
'text']
>>>print sys.argv[1]
text

The stdin attribute of the sys module is a file object that gets created at the start of code execution. In
the following sample code, text is read from stdin (in this case, the keyboard, which is the default)
using the readline() function:

>>>text = sys.stdin.readline()
>>>print text
Input Text

The sys module also has the stdout and stderr attributes that point to files used for standard output and
standard error output. These files default to writing to the screen. The following sample code shows how

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec7.html (2 von 4) [03.08.2007 09:09:03]

Using System Tools

to redirect the standard output and standard error messages to a file rather than to the screen:

>>>sOUT = sys.stdout
>>>sERR = sys.stderr
>>>sys.stdout = open("ouput.txt", "w")
>>>sys.stderr = sys.stdout
>>>sys.stdout = sOUT
>>>sys.stderr = sERR

platform Module

The platform module provides a portable interface to information about the platform on which the
program is being executed. The following examples illustrate some of the most common uses of the
platform module.

The platform.architecture() function returns the (bits, linkage) tuple that specifies the number of bits
for the system word size and linkage information about the Python executable:

>>>print platform.architecture()
('32bit', '')

The platform.python_version() function returns the version of the Python executable for compatibility
purposes:

>>>print platform.python_version()
2.4.2

The platform.uname() function returns a tuple in the form of (system, node, release, version, machine,
processor). System refers to which OS is currently running, node refers to the host name of the
machine, release refers to the major release of the OS, version refers to a string representing OS
release information, and machine and processor refer to the hardware platform information.

>>>print platform.uname()
('Linux', 'bwd-linux', '2.6.16-20-smp',
 '#1 SMP Mon Apr 10 04:51:13 UTC 2006',
 'i686', 'i686')

time Module

The time module provides a portable interface to time functions on the system on which the program is
executing. The following examples illustrate some of the most common uses of the time module.

The time.time() function returns the current system time in terms of the number of seconds since the
UTC (Coordinated Universal Time). This value is typically collected at various points in the program and
is used in delta operations to determine the amount of time since an event occurred.

>>>print time.time()
1155333864.11

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec7.html (3 von 4) [03.08.2007 09:09:03]

Using System Tools

The time.localtime(secs) function returns the time, specified by secs since the UTC, in the form of tuple
(year, month, day, hour, minute, second, day of week, day of year, daylight savings). If no time is
specified, the current time is used as follows:

>>>print time.localtime()
(2006, 8, 11, 16, 4, 24, 4, 223, 1)

The time.ctime(secs) function returns the time, specified by secs since the UTC, as a formatted,
printable string. If no time is specified, then the current time is used as shown here:

>>>print time.ctime()
Fri Aug 11 16:04:24 2006

The time.clock() function returns the current CPU time as a floating-point number that can be used for
various timing functions:

>>>print time.clock()
5.02857206712e-006

The time.sleep(sec) function forces the current process to sleep for the number of seconds specified by
the floating-point number secs:

>>>time.sleep(.5)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch01lev1sec7.html (4 von 4) [03.08.2007 09:09:03]

Chapter 2. Manipulating Strings

Chapter 2. Manipulating Strings

One of the most common and important functions of the Python language is to process and manipulate
large amounts of text when implementing scripts, parsing XML/HTML, and interfacing with databases.
For that reason, Python includes extremely dynamic and powerful string manipulation methods.

The phrases in this chapter are intended to give you a quick start into manipulating strings using the
Python language. Although this chapter is not comprehensive, it tries to cover both the most commonly
used functionality such as string comparisons, searching, and formatting, as well as some of the more
powerful and dynamic functionality such as using strings as executable code, interpolating variables in
strings, and evaluating strings as Python expressions.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02.html [03.08.2007 09:09:03]

Comparing Strings

Comparing Strings

if cmpStr.upper() == upperStr.upper():
 print upperStr + " Matches " + cmpStr

Comparing strings in Python is best accomplished using a simple logical operation. For example, to
determine whether a string matches another string exactly, you would use the is equal or == operation.
You can also use other logical operations such as >= or < to determine a sort order for several strings.

Python provides several methods for string objects that help when comparing. The most commonly used
are the upper() and lower() methods, which return a new string that is all upper- or lowercase,
respectively.

Another useful method is the capitalize() method, which returns a new string with the first letter
capitalized. There is also a swapcase() that will return a new string with exactly the opposite casing for
each character.

cmpStr = "abc"
upperStr = "ABC"
lowerStr = "abc"

print "Case Sensitive Compare"
if cmpStr == lowerStr:
 print lowerStr + " Matches " + cmpStr

if cmpStr == upperStr:
 print upperStr + " Matches " + cmpStr

print "\nCase In-Sensitive Compare"
if cmpStr.upper() == lowerStr.upper():
 print lowerStr + " Matches " + cmpStr

if cmpStr.upper() == upperStr.upper():
 print upperStr + " Matches " + cmpStr

comp_str.py

Case Sensitive Compare
abc Matches abc

Case In-Sensitive Compare
abc Matches abc
ABC Matches abc

Output from comp_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec1.html (1 von 2) [03.08.2007 09:09:04]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Comparing Strings

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec1.html (2 von 2) [03.08.2007 09:09:04]

Joining Strings

Joining Strings

print "Words:" + word1 + word2 + word3 + word4
print "List: " + ' '.join(wordList)

Strings can be joined together using a simple add operation, formatting the strings together or using the
join() method. Using either the + or += operation is the simplest method to implement and start off
with. The two strings are simply appended to each other.

Formatting strings together is accomplished by defining a new string with string format codes, %s, and
then adding additional strings as parameters to fill in each string format code. This can be extremely
useful, especially when the strings need to be joined in a complex format.

The fastest way to join a list of strings is to use the join(wordList) method to join all the strings in a
list. Each string, starting with the first, is added to the existing string in order. The join method can be
a little tricky at first because it essentially performs a string+=list[x] operation on each iteration
through the list of strings. This results in the string being appended as a prefix to each item in the list.
This actually becomes extremely useful if you want to add spaces between the words in the list because
you simply define a string as a single space and then implement the join method from that string:

word1 = "A"
word2 = "few"
word3 = "good"
word4 = "words"
wordList = ["A", "few", "more", "good", "words"]

#simple Join
print "Words:" + word1 + word2 + word3 + word4
print "List: " + ' '.join(wordList)

#Formatted String
sentence = ("First: %s %s %s %s." %
(word1,word2,word3,word4))
print sentence

#Joining a list of words
sentence = "Second:"
for word in wordList:
 sentence += " " + word
sentence += "."
print sentence

join_str.py

Words:Afewgoodwords
List: A few more good words
First: A few good words.
Second: A few more good words.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec2.html (1 von 2) [03.08.2007 09:09:04]

Joining Strings

Output from join_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec2.html (2 von 2) [03.08.2007 09:09:04]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Splitting Strings

Splitting Strings

print sentence.split()
print entry.split(':')
print paragraph.splitlines(1)

The split(separator) and splitlines(keeplineends) methods are provided by Python to split strings into
substrings. The split method searches a string, splits it on each occurrence of the separator character,
and subdivides it into a list of strings. If no separator character is specified, the split method will split
the string at each occurrence of a whitespace character (space, tab, newline, and so on).

The splitlines method splits the string at each newline character into a list of strings. This can be
extremely useful when you are parsing a large amount of text. The splitlines method accepts one
argument that is a Boolean true or false to determine whether the newline character should be kept.

sentence = "A Simple Sentence."

paragraph = "This is a simple paragraph.\n\
It is made up of of multiple\n\
lines of text."

entry =
 "Name:Brad Dayley:Occupation:Software Engineer"

print sentence.split()
print entry.split(':')
print paragraph.splitlines(1)

split_str.py

['A', 'Simple', 'Sentence.']
['Name', 'Brad Dayley', 'Occupation',
 'Software Engineer']
['This is a simple paragraph.\n',
 'It is made up of of multiple\n',
 'lines of text.']

Output from split_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec3.html [03.08.2007 09:09:04]

Searching Strings for Substrings

Searching Strings for Substrings

print searchStr.find("Red")
print searchStr.rfind("Blue")
print searchStr.index("Blue")
print searchStr.index("Blue",8)

The two most common ways to search for a substring contained inside another string are the find(sub,
[, start, [,end]])) and index(sub, [, start, [,end]]) methods.

The index method is faster than the find method; however, if the substring is not found in the string, an
exception is thrown. If the find method fails to find the substring, then a -1 is returned. The find and
index methods accept a search string as the first argument. The area of the string that is searched can
be limited by specifying the optional start and/or end index. Only characters within those indexes will be
searched.

Python also provides the rfind and rindex methods. These methods work in a similar manner as the
find and index methods; however, they look for the right-most occurrence of the substring.

searchStr =
 "Red Blue Violet Green Blue Yellow Black"

print searchStr.find("Red")
print searchStr.rfind("Blue")
print searchStr.find("Blue")
print searchStr.find("Teal")
print searchStr.index("Blue")
print searchStr.index("Blue",20)
print searchStr.rindex("Blue")
print searchStr.rindex("Blue",1,18)

search_str.py

0
22
4
-1
4
22
22
4

Output from search_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec4.html (1 von 2) [03.08.2007 09:09:04]

Searching Strings for Substrings

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec4.html (2 von 2) [03.08.2007 09:09:04]

Search and Replace in Strings

Search and Replace in Strings

question2 = question.replace("swallow", \
 "European swallow")
question3 = question.replace("swallow", \
 "African swallow")

The native string type in Python provides a replace(old, new, maxreplace) method to replace a specific
substring with new text. The replace method accepts a search string as the first argument and
replacement string as the second argument. Each occurrence of the search string will be replaced with
the new string. Optionally, you can specify a maximum number of times to perform the replace
operation as the third argument.

question = "What is the air speed velocity of \
 an unlaiden swallow?"
print question
question2 = question.replace("swallow", \
 "European swallow")
print question2
question3 = question.replace("swallow", \
 "African swallow")
print question3

replace_str.py

What is the air speed velocity of an unlaiden
swallow?
What is the air speed velocity of an unlaiden
European swallow?
What is the air speed velocity of an unlaiden
African swallow?

Output from replace_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec5.html [03.08.2007 09:09:05]

Searching Strings for Specific Endings/Beginnings

Searching Strings for Specific Endings/Beginnings

if f.endswith('.py'):
 print "Python file: " + f
elif f.endswith('.txt'):
 print "Text file: " + f

The endswith(suffix, [, start, [,end]]) and startswith(prefix, [, start, [,end]]) methods provide
a simple and safe way to determine whether a string begins or ends with a specific prefix or suffix,
respectively. The first argument is a string used to compare to the prefix or suffix of the string. The
endswith and startswith methods are dynamic enough for you to limit the search to within a specific
range of the string using the start and/or end arguments.

Note

The endswith and startswith methods are extremely useful when parsing file lists for
extensions or filenames.

import os

for f in os.listdir('C:\\txtfiles'):
 if f.endswith('.py'):
 print "Python file: " + f
 elif f.endswith('.txt'):
 print "Text file: " + f

end_str.py

Python file: comp_str.py
Python file: end_str.py
Python file: eval_str.py
Python file: join_str.py
Text file: output.txt
Python file: replace_str.py
Python file: search_str.py
Python file: split_str.py
Python file: trim_str.py
Python file: unicode_str.py
Python file: var_str.py

Output from end_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec6.html [03.08.2007 09:09:05]

Trimming Strings

Trimming Strings

str(len(badSentence.rstrip(' ')))
print badSentence.lstrip('\t')
print badParagraph.strip((' ?!\t'))

Common problems when parsing text are leftover characters at the beginning or end of the string.
Python provides several strip methods to remove those characters. The strip([chrs]), lstrip([chrs]),
and rstrip([chrs]) methods accept a list of characters as the only argument and return a new string
with those characters trimmed from either the start, end, or both ends of the string.

Note

The strip will remove the specified characters from both the beginning and end of the
string. The lstrip and rstrip methods remove the characters only from the beginning or
end of the string, respectively.

import string
badSentence = "\t\tThis sentence has problems. "

badParagraph = "\t\tThis paragraph \nhas even \
 more \nproblems.!? "

#Strip trailing spaces
print "Length = " + str(len(badSentence))
print "Without trailing spaces = " + \
 str(len(badSentence.rstrip(' ')))

#Strip tabs
print "\nBad:\n" + badSentence
print "\nFixed:\n" + badSentence.lstrip('\t')

#Strip leading and trailing characters
print "\nBad:\n" + badParagraph
print "\nFixed:\n" + badParagraph.strip((' ?!\t'))

trim_str.py

Length = 32
Without trailing spaces = 29

Bad:
 This sentence has problems.

Fixed:
This sentence has problems.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec7.html (1 von 2) [03.08.2007 09:09:05]

Trimming Strings

Bad:
 This paragraph
has even more
problems.!?

Fixed:
This paragraph
has even more
problems.

Output from trim_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec7.html (2 von 2) [03.08.2007 09:09:05]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Aligning/Formatting Strings

Aligning/Formatting Strings

print "Chapter " + str(x) + \
 str(chapters[x]).rjust(15,'.')
print "\nHex String: " + hexStr.upper().ljust(8,'0')
print "Chapter %d %15s" % (x,str(chapters[x]))

One of the biggest advantages of the Python language is its capability to process and manipulate strings
quickly and effectively. The native string type implements the rjust(width [, fill]) and ljust(width
[, fill]) methods to quickly justify the text in a string a specific width to the right or left, respectively.
The optional fill argument to the rjust and ljust methods will fill the space created by the justification
with the specified character.

Another extremely useful part of Python's string management is the capability to create complex string
formatting on the fly by creating a format string and passing arguments to that string using the %
operator. This results in a new formatted string that can be used in a string assignment, passed as an
argument, or used in a print statement.

chapters = {1:5, 2:46, 3:52, 4:87, 5:90}
hexStr = "3f8"

#Right justify
print "Hex String: " + hexStr.upper().rjust(8,'0')
print
for x in chapters:
 print "Chapter " + str(x) + \
 str(chapters[x]).rjust(15,'.')

#Left justify
print "\nHex String: " + hexStr.upper().ljust(8,'0')

#String format
print
for x in chapters:
 print "Chapter %d %15s" % (x,str(chapters[x]))

format_str.py

Hex String: 000003F8

Chapter 1..............5
Chapter 2.............46
Chapter 3.............52
Chapter 4.............87
Chapter 5.............90

Hex String: 3F800000

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec8.html (1 von 2) [03.08.2007 09:09:06]

Aligning/Formatting Strings

Chapter 1 5
Chapter 2 46
Chapter 3 52
Chapter 4 87
Chapter 5 90

Output from format_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec8.html (2 von 2) [03.08.2007 09:09:06]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Executing Code Inside Strings

Executing Code Inside Strings

codeStr = "for card in cards: \
 print \"Card = \" + card"
exec(codeStr)

One of the most dynamic features of Python is the capability to evaluate a string that contains code and
execute the code locally. The exec(str [,globals [,locals]]) function will execute Python code that is
contained in the str string and return the result. Local and global variables can be added to the
environment used to execute the code by specifying global and/or local dictionaries containing
corresponding variable name and values.

The eval(str [,globals [,locals]]) function works in a similar manner as the exec function except that
it only evaluates the string as a Python expression and returns the results.

cards = ['Ace', 'King', 'Queen', 'Jack']
codeStr = "for card in cards: \
 print \"Card = \" + card"
areaStr = "pi*(radius*radius)"

#Execute string
exec(codeStr)

#Evaluate string
print "\nArea = " + str(eval(areaStr, \
 {"pi":3.14}, {"radius":5}))

eval_str.py

Card = Ace
Card = King
Card = Queen
Card = Jack

Area = 78.5

Output from eval_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec9.html [03.08.2007 09:09:06]

Interpolating Variables Inside Strings

Interpolating Variables Inside Strings

s = string.Template("Variable v = $v")
for x in values:
 print s.substitute(v=x)

Python provides the capability to interpolate variables inside strings. This functionality provides the
ability to create string templates and then apply variable values to them based on the state of an
existing variable.

Interpolating variables is accomplished in two steps. The first step is to create a string template, using
the Template(string) method, which includes the formatted text and properly placed variable names
preceded by the $ character.

Note

To include a $ character in your template string use a double $$ set. The $$ will be replaced
with a single $ when the template is applied.

Once the template has been created, the second step is to apply a variable value to the template using
the substitute(m, [, kwargs]) method of the Template class. The argument m can be a specific
assignment, a dictionary of variable values, or a keyword list.

import string

values = [5, 3, 'blue', 'red']
s = string.Template("Variable v = $v")

for x in values:
 print s.substitute(v=x)

var_str.py

Variable v = 5
Variable v = 3
Variable v = blue
Variable v = red

Output from var_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec10.html [03.08.2007 09:09:06]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Converting Unicode to Local Strings

Converting Unicode to Local Strings

print uniStr.encode('utf-8')
print uniStr.encode('utf-16')
print uniStr.encode('iso-8859-1')
asciiStr =asciiStr.translate(\
 string.maketrans('\xF1','n'), '')
print asciiStr.encode('ascii')

The Python language provides a simple encode(encoding) method to convert unicode strings to a local
string for easier processing. The encoding method takes only encoding such as utf-8, utf-16, iso-8859-
1, and ascii as its single argument and returns a string encoded in that format.

Strings can be converted to unicode by several different methods. One is to define the string as unicode
by prefixing it with a u when assigning it to a variable. Another is to combine a unicode string with
another string. The resulting string will be unicode. You can also use the decode(encoding) method to
decode the string. The decode method returns a unicode form of the string.

Note

The ASCII encoding allows only for characters up to 128. If your string includes characters
that are above that range, you will need to translate those characters before encoding the
string to ASCII.

import string

locStr = "El "
uniStr = u"Ni\u00F1o"

print uniStr.encode('utf-8')
print uniStr.encode('utf-16')
print uniStr.encode('iso-8859-1')

#Combine local and unicode results
#in new unicode string
newStr = locStr+uniStr
print newStr.encode('iso-8859-1')

#ascii will error because character '\xF1'
#is out of range
asciiStr = newStr.encode('iso-8859-1')
asciiStr =asciiStr.translate(\
 string.maketrans('\xF1','n'), '')
print asciiStr.encode('ascii')
print newStr.encode('ascii')

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec11.html (1 von 2) [03.08.2007 09:09:06]

Converting Unicode to Local Strings

unicode_str.py

NiÃ±o

ÿ N|I|ñ|o
Niño
El Niño
El Nino
Traceback (most recent call last):
 File "C:\books\python\CH2\code\unicode_str.py",
line 19, in ?
 print newStr.encode('ascii')
UnicodeEncodeError: 'ascii' codec can't encode
 character u'\xf1' in position 5: ordinal not in
 range(128)

Output from unicode_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch02lev1sec11.html (2 von 2) [03.08.2007 09:09:06]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Chapter 3. Managing Data Types

Chapter 3. Managing Data Types

Python has about two dozen data types built in to the interpreter. The three data types that you will
need to understand the best and use the most to manage data are the list, tuple, and dictionary.

A list in Python is simply an ordered collection of objects. The objects can be named any legal Python
name and the list can grow dynamically to support the addition of new objects. The objects in a list can
be of different types and Python will keep track of the data type of objects in the background. Lists in
Python are ordered sequence types. Elements of a list are accessible using a zero-based non-negative
integer index.

A tuple in one sense is just a read-only version of a list. It is also an ordered sequence of objects.
However, a tuple is immutable, meaning that items cannot be added to or removed from it.

A dictionary is an unordered collection of object pairs. The pair consists of a key object and a value
object. The key object is used to look up the value of the value object. A dictionary acts similar to a
hash table in that the key is used to access the value objects within. There is no order to a dictionary;
therefore, items cannot be accessed by any indexing method.

This chapter discusses phrases that allow you to manage data using the list, tuple, and dictionary data
types.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03.html [03.08.2007 09:09:07]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Defining a List

Defining a List

numList = [2000, 2003, 2005, 2006]
stringList = ["Essential", "Python", "Code"]
mixedList = [1, 2, "three", 4]
subList = ["Python", "Phrasebook", \
 ["Copyright", 2006]]
listList = [numList, stringList, mixedList, subList]

Defining a list in Python is a simple matter of assigning a number of Python objects to a variable name
using the = operator. The list needs to be enclosed in square brackets and can include any makeup of
Python objects. A simple numeric list acts much like an array; however, lists are much more dynamic
and can include many different types within the same list.

The code example in def_list.py demonstrates the creation of both homogeneous and heterogeneous
lists. Notice in the example that the lists include numbers, strings, list definitions, and variable names.

numList = [2000, 2003, 2005, 2006]
stringList = ["Essential", "Python", "Code"]
mixedList = [1, 2, "three", 4]
subList = ["Python", "Phrasebook", \
 ["Copyright", 2006]]
listList = [numList, stringList, mixedList, subList]

for x in listList:
 for y in x:
 if isinstance(y, int):
 print y + 1
 if isinstance(y, basestring):
 print "String:" + y

def_list.py

2001
2004
2006
2007
String: Essential
String: Python
String: Code
2
3
String: three
5
String: Python
String: Phrasebook

Output from def_list.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec1.html (1 von 2) [03.08.2007 09:09:07]

Defining a List

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec1.html (2 von 2) [03.08.2007 09:09:07]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Accessing a List

Accessing a List

for x in numList:
 print x+1
print stringList[0] + ' ' + stringList[1] + ' ' + \
 stringList[2]
print stringList[-2]
if isinstance(subList, list):
 print subList[2][0]

Once a list is defined, the items in the list can be accessed using a zero-based index. The first item in
the list is at index zero, the second at index one, and so on.

The code example in acc_list.py demonstrates accessing all items of the list in order using the for
keyword, as well as accessing the items in the list individually.

If an item in the list is a list object, you can access items in that list by adding an indexing bracket onto
the end, similar to how you would access elements in a multidimensional array.

Note

Python enables you to use negative indices to access the list from the end rather than from
the beginning. For example, to access the final item in a list, you would use an index of -1,
an index of -2 to access the second to the last item in the list, and so on. This can be
extremely useful if you have dynamic lists that change frequently.

numList = [2000, 2003, 2005, 2006]
stringList = ["Essential", "Python", "Code"]
mixedList = [1, 2, "three", 4]
subList = ["Python", "Phrasebook", ["Copyright",
2006]]
listList = [numList, stringList, mixedList, subList]

#All items
for x in numList:
 print x+1

#Specific items
print stringList[0] + ' ' + stringList[1] + ' ' + \
 stringList[2]

#Negative indices
print stringList[-2]

#Accessing items in sublists
if isinstance(subList, list):
 print subList[2][0]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec2.html (1 von 2) [03.08.2007 09:09:07]

Accessing a List

acc_list.py

2001
2004
2006
2007
Essential Python Code
Python
Copyright

Output from acc_list.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec2.html (2 von 2) [03.08.2007 09:09:07]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Slicing a List

Slicing a List

firstHalf = monthList[: halfCount]
secondHalf = monthList[halfCount :]
wordCount = len(firstHalf)
middleStart = wordCount/2
middleHalf = monthList[middleStart : \
 middleStart+halfCount]

A slice is a subset of a list. Python provides syntax that enables you to quickly grab specific slices of a
list.

A slice can be obtained by referencing the list and specifying two indices (separated by a colon) to
reference between instead of a single index number. The first index number represents the item in the
list at which to start and the second represents the item in the list at which to end.

Slices are returned as a list type and can be accessed and assigned as you would any other list.

Note

Python enables you to use negative indices to index the end rather than the beginning
when grabbing slices. For example, to access the final three items in a list, you would use
the indices of -3 and -1.

monthList = ["January", "February", "March",\
 "April", "May", "June", "July", \
 "August", "September","October",\
 "November", "December"]

wordCount = len(monthList)
halfCount = wordCount/2

#Beginning slice
firstHalf = monthList[: halfCount]
print firstHalf

#End slice
secondHalf = monthList[halfCount :]
print secondHalf

#Middle slice
wordCount = len(firstHalf)
middleStart = wordCount/2
middleHalf = monthList[middleStart : \
 middleStart+halfCount]
print middleHalf

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec3.html (1 von 2) [03.08.2007 09:09:07]

Slicing a List

#Negative Indices
print monthList[-5 : -1]

slice_list.py

['January', 'February', 'March', 'April', 'May',
'June']
['July', 'August', 'September', 'October',
'November', 'December']
['April', 'May', 'June', 'July', 'August',
'September']
['August', 'September', 'October', 'November']

Output from slice_list.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec3.html (2 von 2) [03.08.2007 09:09:07]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Adding and Removing Items in a List

Adding and Removing Items in a List

list1.append("Four")
list1.insert(2, "Two 1/2")
list1.extend(list2)
print list1.pop(2)
list1.remove("Five")
list1.remove("Six")

Items can be added to an existing list in several different ways, depending on what items you want to
add to the list and where you want to add them.

The simplest way to add a single item to a list is to use the append(item) method. append takes a single
itemwhich can be any Python object, including other listsas the only parameter and adds it to the end of
the list. If you specify a list as the parameter to the append method, that list is added as a single item in
the current list.

Use the extend(list) method to add several items stored in another list all together at the same time.
extend will accept only a list as an argument. Unlike the append method, each item in the new list will be
appended as its own individual item to the old list.

The extend and append methods will add items only to the end of the list. Use the insert(index, item)
method to insert an item in the middle of the list. The insert method accepts a single object as the
second parameter and inserts it into the list at the index specified by the first argument.

Items can be removed from a list in one of two ways. The first way is to use the pop(index) method to
remove the item by its index. The pop method removes the object from the list and then returns it.

The second way to remove an item from a list is to use the remove(item) method. The remove method
will search the list and remove the first occurrence of the item.

Note

You can also add one or more lists to an existing list by using the += operator.

list1 = ["One", "Two", "Three"]
list2 = ["Five", "Six"]

print list1

#Append item
list1.append("Four")
print list1

#Insert item at index

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec4.html (1 von 2) [03.08.2007 09:09:08]

Adding and Removing Items in a List

list1.insert(2, "Two 1/2")
print list1

#Extend with list
list1.extend(list2)
print list1

#Pop item by index
print list1.pop(2)
print list1

#Remove item
list1.remove("Five")
list1.remove("Six")
print list1

#Operators
list1 += list2
print list1

add_list.py

['One', 'Two', 'Three']
['One', 'Two', 'Three', 'Four']
['One', 'Two', 'Two 1/2', 'Three', 'Four']
['One', 'Two', 'Two 1/2', 'Three', 'Four',
'Five', 'Six']
Two 1/2
['One', 'Two', 'Three', 'Four', 'Five', 'Six']
['One', 'Two', 'Three', 'Four']
['One', 'Two', 'Three', 'Four', 'Five', 'Six']

Output from add_list.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec4.html (2 von 2) [03.08.2007 09:09:08]

Sorting a List

Sorting a List

def keySort (x, y):
 xIndex = keyList.index(x)
 yIndex = keyList.index(y)
 return cmp(xIndex, yIndex)

letterList.sort()
letterList.sort(lambda x, y: keySort(x, y))
caseList.sort()
caseList.sort(key=str.lower)
letterList.reverse()
letterList.sort(reverse=1)

Items in a list can be sorted using the sort() method. The basic sort method takes no arguments and
sorts the items based on the total value of each object. The sort method actually modifies the order of
the objects in the list itself. This works as a simple and very effective way to sort simple lists.

The sort method can also accept a comparison function as an argument. The comparison function
accepts two arguments and must return a 1, 0, or -1 depending on whether the second argument is
smaller, the same size, or larger than the first argument.

The sort method can also accept a key function. The key function should accept one argument that will
be used to extract a key from each object in the list. That key will be used to sort the list rather than the
value of the object itself.

A list can be sorted in reverse order, by passing the keyterm reverse as an argument to the sort
method. reverse is a Boolean, and if it is set to true, the list is sorted in reverse order. The reverse
keyterm can be used in tandem with comparison and/or key functions.

Note

If you simply need to reverse the order of a list without necessarily sorting it, use the
reverse() method. The reverse method accepts no arguments and simply reverses the
order of the items in the list.

keyList = ['a', 'c', 'b', 'y', 'z', 'x']
letterList = ['b', 'c', 'a', 'z', 'y', 'x']
caseList = ['d', 'B', 'F', 'A', 'E', 'c']

#Custom sort procedure
def keySort (x, y):
 xIndex = keyList.index(x)
 yIndex = keyList.index(y)
 return cmp(xIndex, yIndex)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec5.html (1 von 2) [03.08.2007 09:09:08]

Sorting a List

print letterList

#Sort the list
letterList.sort()
print letterList

#Custom sort
letterList.sort(lambda x, y: keySort(x, y))
print letterList

#Key sort
print caseList
caseList.sort()
print caseList
caseList.sort(key=str.lower)
print caseList

#Reverse list
letterList.reverse()
print letterList

#Reverse sort
letterList.sort(reverse=1)
print letterList

sort_list.py

['b', 'c', 'a', 'z', 'y', 'x']
['a', 'b', 'c', 'x', 'y', 'z']
['a', 'c', 'b', 'y', 'z', 'x']
['d', 'B', 'F', 'A', 'E', 'c']
['A', 'B', 'E', 'F', 'c', 'd']
['A', 'B', 'c', 'd', 'E', 'F']
['x', 'z', 'y', 'b', 'c', 'a']
['z', 'y', 'x', 'c', 'b', 'a']

Output from sort_list.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec5.html (2 von 2) [03.08.2007 09:09:08]

Using Tuples

Using Tuples

hexStringChars = ('A', 'B','C', 'D', 'E', 'F')
hexStringNums = ('1', '2', '3', '4', '5', '6',\
 '7', '8', '9','0')
hexStrings = ["1FC", "1FG", "222", "Ten"]

for hexString in hexStrings:
 for x in hexString:
 if ((not x in hexStringChars) and
 (not x in hexStringNums)):
 print hexString+ \
 " is not a hex string."
 break

tupleList = list(hexStringChars)
listTuple = tuple(hexStrings)

When working with lists in Python, it is a good idea to understand the place that tuples have. Tuples are
similar to lists in that they are index-based collections of objects. There is one major difference,
however. The contents of a tuple cannot be modified after the tuple is initially defined. Tuples are
defined similar to lists except that they are encased in parentheses instead of in brackets.

Tuples are very valuable because they are much faster to access and use than lists. For example, the in
operation works much faster on a tuple to determine whether an object exists in the tuple. Tuples are
also valuable because you know the data contained in them will always remain static. Tuples can also be
used as keys for dictionaries where lists cannot.

Note

The tuples must be made up of strings and/or integers and cannot contain lists to be
considered immutable and used as dictionary keys.

Tuples can be converted into lists by using the list() function. The list function returns a copy of the
tuple in an editable list form. In the same way, lists can be converted into tuples using the tuple()
function. The tuple function returns a copy of the list in tuple form, effectively giving you a frozen
snapshot of the list.

hexStringChars = ('A', 'B','C', 'D', 'E', 'F')
hexStringNums = ('1', '2', '3', '4', '5', '6',\
 '7', '8', '9', '0')

hexStrings = ["1FC", "1FG", "222", "Ten"]

for hexString in hexStrings:
 for x in hexString:
 if ((not x in hexStringChars) and

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec6.html (1 von 2) [03.08.2007 09:09:09]

Using Tuples

 (not x in hexStringNums)):
 print hexString +\
 " is not a hex string."
 break

#Tuple to list
tupleList = list(hexStringChars)
print tupleList

#List to tuple
listTuple = tuple(hexStrings)
print listTuple

tuple.py

1FG is not a hex string.
Ten is not a hex string.
['A', 'B', 'C', 'D', 'E', 'F']
('1FC', '1FG', '222', 'Ten')

Output from tuple.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec6.html (2 von 2) [03.08.2007 09:09:09]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Constructing a Dictionary

Constructing a Dictionary

numberDict = {1:'one', 2:'two', 3:'three', 4:'four'}
letterDict = {'vowel':['a','e','i','o','u'],\
 'consonant':['b','c','d','f']}
numbers = (1,2,3,4,5,6,7,8,9,0)
letters = ('a','b','c','d','e','f')
punct = ('.', '!', '?')
charSetDict = {numbers:[], letters:[], punct:[]}

Constructing a dictionary in Python is a simple matter of assigning a group of values with associated
keys to a variable. Although the values can be any Python object, the keys must either be a number,
string, or immutable tuple.

Simple dictionaries are made up of simple one-to-one, key-to-value relationships. However, you can
construct very complex dictionaries that can have one-to-many and even many-to-many value
relationships.

A one-to-many relationship can be accomplished by simply using list objects as the values in the
dictionary.

The many-to-many relationship will take more thought and effort; however, this relationship can be
accomplished by using tuples as the key objects and list objects as the value objects in the dictionary.

#Simple one to one dictionary
numberDict = {1:'one', 2:'two', 3:'three', 4:'four'}

#One to many dictionary
letterDict = {'vowel':['a','e','i','o','u'],\
 'consonant':['b','c','d','f']}

#Many to many dictionary
numbers = (1,2,3,4,5,6,7,8,9,0)
letters = ('a','b','c','d','e','f')
punct = ('.', '!', '?')
charSetDict = {numbers:[], letters:[], punct:[]}

def_dict.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec7.html [03.08.2007 09:09:09]

Adding a Value to a Dictionary

Adding a Value to a Dictionary

numbers = ('1','2','3','4','5','6','7','8','9','0')
letters = ('a','b','c','d','e','f')
punct = ('.', '!', '?')
charSetDict = {numbers:[], letters:[], punct:[]}
cSet = raw_input("Insert characters: ")
for c in cSet:
 for x in charSetDict.keys():
 if c in x:
 charSetDict[x].append(c)
 break;
charSetDict["Special"] = ['%', '$', '#']
charSetDict["Special"] = '><'

Adding values to a dictionary is really just setting up a key in the dictionary to correspond to a specific
value. When assigning a value to the dictionary, if the key you specify does not already exist in the
dictionary, the key is added to the dictionary and the value is assigned to it. If the key already exists in
the dictionary, the value object currently assigned to the key will be replaced by the new value object.

The object type of the value and key do not need to match, and at any time you can replace the value
object with a new object of any type.

Note

Be aware that the keys in the dictionary are case sensitive. For example, Name and name
would represent two completely distinct keys in the dictionary.

numbers = ('1','2','3','4','5','6','7','8','9','0')
letters = ('a','b','c','d','e','f')
punct = ('.', '!', '?')
charSetDict = {numbers:[], letters:[], punct:[]}

def display_cset (cset):
 print
 for x in cset.items():
 if x[0] == numbers:
 print "Numbers:"
 elif x[0] == letters:
 print "Letters:"
 elif x[0] == punct:
 print "Puctuation:"
 else:
 print "Unknown:"
 print x[1]

#Add new values to keys

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec8.html (1 von 2) [03.08.2007 09:09:09]

Adding a Value to a Dictionary

cSet = raw_input("Insert characters: ")
for c in cSet:
 for x in charSetDict.keys():
 if c in x:
 charSetDict[x].append(c)
 break;

display_cset(charSetDict)

#Add new key and value
charSetDict["Special"] = ['%', '$', '#']
display_cset(charSetDict)

#Change value for existing key
charSetDict["Special"] = '><'
display_cset(charSetDict)

add_dict.py

Insert characters: abc 123 .
Numbers:
['1', '2', '3']
Puctuation:
['.']
Letters:
['a', 'b', 'c']

Numbers:
['1', '2', '3']
Puctuation:
['.']
Letters:
['a', 'b', 'c']
Unknown:
['%', '$', '#']

Numbers:
['1', '2', '3']
Puctuation:
['.']
Letters:
['a', 'b', 'c']
Unknown:
><

Output of add_dict.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec8.html (2 von 2) [03.08.2007 09:09:09]

Retrieving a Value from a Dictionary

Retrieving a Value from a Dictionary

validkeys = (1,2,3)
keyGenDict={'keys':[1,2,3],1:'blue',2:'fast',
 3:'test','key':2}

print keyGenDict.keys()
print keyGenDict.values()
print keyGenDict.items()
val = keyGenDict["key"]
keyGenDict["key"] = 1
val = keyGenDict["key"]

A value can be retrieved from a dictionary using several different methods. The most common is to
access the value directly by specifying the associated key in square brackets following the dictionary
variable.

A list of values contained in a dictionary can be retrieved using the values() method. The values method
returns a list containing all objects that are values in the dictionary.

Similarly, you can obtain just a list of keys using the keys() method. The keys method returns a list of
objects that are currently being used as keys in the dictionary. The list of keys is useful in many ways,
such as creating a tuple of the keys for faster lookups in the dictionary.

You can also get a list of key and value pairs by using the items() method. The items method returns a
list that contains two-element tuples of each key and value pair in the dictionary.

validkeys = (1,2,3)
keyGenDict={'keys':[1,2,3],1:'blue',2:'fast',
 3:'test','key':2}

def show_key (key):
 if(key in validkeys):
 keyVal = (keyGenDict["keys"])[key-1]
 print "Key = " + keyGenDict[keyVal]
 else:
 print("Invalid key")

#Retrieving dictionary key list
print keyGenDict.keys()

#Retrieving dictionary value list
print keyGenDict.keys()

#Retrieving dictionary value list
print keyGenDict.items()

#Retrieve value from key
val = keyGenDict["key"]
show_key(val)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec9.html (1 von 2) [03.08.2007 09:09:09]

Retrieving a Value from a Dictionary

keyGenDict["key"] = 1
val = keyGenDict["key"]
show_key(val)

ret_dict.py

['keys', 1, 2, 3, 'key']
[[1, 2, 3], 'blue', 'fast', 'test', 2]
[('keys', [1, 2, 3]), (1, 'blue'), (2, 'fast'),
 (3, 'test'), ('key', 2)]
Key = fast
Key = blue

Output of ret_dict.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec9.html (2 von 2) [03.08.2007 09:09:09]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Slicing a Dictionary

Slicing a Dictionary

year = {1:'January', 2:'February', 3:'March',
4:'April',\
 5:'May', 6:'June', 7:'July', 8:'August',\
 9:'September', 10:'October', 11:'November',\
 12:'December'}

months = year.keys()
months.sort()
halfCount = len(months)/2
half = months[0:halfCount]
firstHalf = {}
for x in half:
 firstHalf[x] = year[x]

There is no specific method to get a slice of a dictionary; however, this will be a common task that
deserves some attention. The best way to slice out a subset of a dictionary is to first get the list of keys
using the keys method. From the full list of keys, create a subset of that list through slicing or whatever
means are necessary.

Once you have a specific subset of keys in the directory, you can pull out the values from the original
dictionary and add them to a new dictionary.

If you want to keep the original dictionary intact, use the get method to pull out the value. However, if
you want the value and keys removed from the original dictionary, use the pop method.

year = {1:'January', 2:'February', 3:'March',
4:'April',\
 5:'May', 6:'June', 7:'July', 8:'August',\
 9:'September', 10:'October', 11:'November',\
 12:'December'}

print year

#Get list of keys
months = year.keys()

#Create subset of keys
months.sort()
halfCount = len(months)/2
half = months[0:halfCount]

#Create new dictionary from subset of keys
firstHalf = {}
for x in half:
 firstHalf[x] = year[x]

print firstHalf

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec10.html (1 von 2) [03.08.2007 09:09:10]

Slicing a Dictionary

sub_dict.py

{1: 'January', 2: 'February', 3: 'March', 4:
'April', 5: 'May', 6: 'June', 7: 'July',
8: 'August', 9: 'September', 10: 'October',
11: 'November', 12: 'December'}

{1: 'January', 2: 'February', 3: 'March',
4: 'April', 5: 'May', 6: 'June'}

Output of sub_dict.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec10.html (2 von 2) [03.08.2007 09:09:10]

Swapping Keys for Values in a Dictionary

Swapping Keys for Values in a Dictionary

myDictionary = {'color':'blue', 'speed':'fast',
 'number':1, 5:'number'}
swapDictionary = {}
for key, val in myDictionary.iteritems():
 swapDictionary[val] = key

Currently, there is not a method in Python to swap around the keys and values. However, this can be
very useful if you are using a dictionary in which you may frequently need to look up items by value.
Rather than searching through the entire dictionary each time, you could create an alternative dictionary
that has the values swapped.

To swap the keys and values in a dictionary, simply iterate through the items in the dictionary using the
iteritems method and use the values as keys assigning the original key as the value.

Note

The values must be of legal key types for the keys and values to be swapped.

myDictionary = {'color':'blue', 'speed':'fast',
 'number':1, 5:'number'}

print myDictionary

#Swap keys for values
swapDictionary = {}
for key, val in myDictionary.iteritems():
 swapDictionary[val] = key

print swapDictionary

swap_dict.py

{'color': 'blue', 'speed': 'fast',
 'number': 1, 5: 'number'}
{'blue': 'color', 1: 'number',
 'number': 5, 'fast': 'speed'}

Output of swap_dict.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch03lev1sec11.html [03.08.2007 09:09:10]

Chapter 4. Managing Files

Chapter 4. Managing Files

As with any well-developed scripting language, Python is very prepared to handle the need to directly
manage and manipulate files. Python includes several built-in functions, as well as additional modules to
help manage files. These functions and modules provide the versatility and power to handle file parsing,
data storage and retrieval, and filesystem management, as well as archive management.

It's not possible to adequately address all the file management features of Python in this book; however,
this chapter will provide the most common phrases to create and use files, manage files on a file
system, and archive files for storage or distribution.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04.html [03.08.2007 09:09:10]

Opening and Closing Files

Opening and Closing Files

file = open(inPath, 'rU')
file = open(outPath, 'wb')
file.close()

To use most of the built-in file functions in Python, you will need to first open the file, perform whatever
file operations are necessary, and then close it. Python uses the simple open(path [,mode [,
buffersize]]) call to open files for both reading and writing. The path is a path string pointing to the file.
The mode determines what mode the file will be opened in, as shown in Table 4.1 .

Table 4.1. File Modes for Python's Built-In File Functions

Mode Description

r Opens an existing file for reading.

w Opens a file for writing. If the file already exists, the contents are deleted. If the file does not
already exist, a new one is created.

a Opens an existing file for updating, keeping the existing contents intact.

r+ Opens a file for both reading and writing. The existing contents are kept intact.

w+ Opens a file for both writing and reading. The existing contents are deleted.

a+ Opens a file for both reading and writing. The existing contents are kept intact.

b Is applied in addition to one of the read, write, or append modes. Opens the file in binary
mode.

U Is applied in addition to one of the read, write, or append modes. Applies the "universal"
newline translator to the file as it is opened.

The optional buffersize argument specifies which buffering mode should be used when accessing the
file. 0 indicates that the file should be unbuffered, 1 indicates line-buffering, and any other positive
number indicates a specific buffer size to be used when accessing the file. Buffering the file improves
performance because part of the file is cached in computer memory. Omitting this argument or
specifying a negative number results in the system default buffer size to be used.

After using the file, you should close it using the built-in close() function. This will free up the system
resources and keep the file from being held open any longer than necessary.

Note

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec1.html (1 von 2) [03.08.2007 09:09:11]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Opening and Closing Files

Using the universal newline mode U is extremely useful if you need to deal with files that
are created by applications that are not consistent in managing newline characters. The
universal newline mode converts all the different variations (\r, \n, \r\n) to the standard \n
character.

inPath = "input.txt"
outPath = "output.txt"

#Open a file for reading
file = open(inPath, 'rU')
if file:
 # read from file here (see Reading an Entire
File
 # later in this chapter for more info)
 file.close()
else:
 print "Error Opening File."

#Open a file for writing
file = open(outPath, 'wb')
if file:
 # write to file here (see Writing a File later
 # in this chapter for more info)
 file.close()
else:
 print "Error Opening File."

open_file.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec1.html (2 von 2) [03.08.2007 09:09:11]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Reading an Entire File

Reading an Entire File

buffer += open(filePath, 'rU').read()
inList = open(filePath, 'rU').readlines()
while(1):
 bytes = file.read(5)
 if bytes:
 buffer += bytes

Python provides several methods to read the entire contents of a file. The first is to open the file and call
the read() function. This will read the entire contents of the file until an EOF marker is encountered and
returns the contents of the file as a string.

Another method to read an entire file is to use the readlines() function. This reads the entire contents
of the file, separating each line into individual strings, until an EOF marker is encountered. Once the end
of the file is found, a list of strings representing each line is returned.

In case of very large files, you might want to read only a specific number of bytes at a time. Use the read
(bytes) function to read a specific number of bytes at a time, which can then be processed more easily.
This will read a specific number of bytes from the file if possible and return them as a string. If the first
character read is an EOF marker, null is returned.

The code in read_file.py demonstrates how to read the entire contents at once, one line at a time, as
well as a specific number of bytes from a file.

filePath = "input.txt"

#Read entire file into a buffer
buffer = "Read buffer:\n"
buffer += open(filePath, 'rU').read()
print buffer

#Read lines into a buffer
buffer = "Readline buffer:\n"
inList = open(filePath, 'rU').readlines()
print inList
for line in inList:
 buffer += line
print buffer

#Read bytes into a buffer
buffer = "Read buffer:\n"
file = open(filePath, 'rU')
while(1):
 bytes = file.read(5)
 if bytes:
 buffer += bytes
 else:
 break

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec2.html (1 von 2) [03.08.2007 09:09:11]

Reading an Entire File

print buffer

read_file.py

Read buffer:
Line 1
Line 2
Line 3
Line 4

['Line 1\n', 'Line 2\n', 'Line 3\n', 'Line 4\n']
Readline buffer:
Line 1
Line 2
Line 3
Line 4

Read buffer:
Line 1
Line 2
Line 3
Line 4

Output from read_file py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec2.html (2 von 2) [03.08.2007 09:09:11]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Reading a Single Line from a File

Reading a Single Line from a File

print linecache.getline(filePath, 1)
print linecache.getline(filePath, 3)
linecache.clearcache()

The linecache module in Python is an extremely useful tool if you need to access specific lines in certain
files multiple times. The linecache module caches the lines in a file in memory the first time they are
read. Although this does not provide any advantage the first time the file is accessed, it does speed up
consecutive accesses immensely.

The getline(filename, lineno) function of the linecache module accepts a filename and line number as
its arguments. It then reads the line from the file, caches it in memory for later use, and then returns a
string representation of the line. The clearcache() function of the linecache module frees up the cache
memory by removing all lines that have been previously read.

import linecache
filePath = "input.txt"

print linecache.getline(filePath, 1)
print linecache.getline(filePath, 3)
linecache.clearcache()

line_cache.py

Line 1

Line 3

Output from line_cache.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec3.html [03.08.2007 09:09:11]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Accessing Each Word in a File

Accessing Each Word in a File

file = open(filePath, 'rU')
for line in file:
 for word in line.split():
 wordList.append(word)

A useful tool when processing files is to separate each word in the file and process them one at a time.
The words can be individually processed by opening the file, reading each line into a string, and then
splitting the strings into words using the split() function.

The program read_words.py shows a simple example of reading a file and processing the words one at
time. The lines in the file are processed one at a time using a for loop. The split() function splits the
line into a list of words based on spaces because no other character was passed as the separator
argument. Once the words are separated, they can be individually processed into lists, dictionaries, and
so on.

filePath = "input.txt"
wordList = []
wordCount = 0

#Read lines into a list
file = open(filePath, 'rU')
for line in file:
 for word in line.split():
 wordList.append(word)
 wordCount += 1
print wordList
print "Total words = %d" % wordCount

read_words.py

['Line', '1', 'Line', '2', 'Line', '3', 'Line', '4']
Total words = 8

Output from read_words.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec4.html [03.08.2007 09:09:11]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Writing a File

Writing a File

file.writelines(wordList)
file.write("\n\nFormatted text:\n")
print >>file,"\t%s Color Adjust" % word

Just as with reading the contents of a file, there are several ways to write data out to a file. The easiest,
yet the most dynamic and powerful, is the write(string) function. The write function writes the string
argument to the file at the current file pointer. Although the write function itself is relatively simple, the
power of Python with regard to string manipulation makes the capabilities of the write function virtually
limitless.

Python provides the writelines(sequence) function to save time writing a list of data out to the file. The
writelines function typically accepts a list of strings and writes those strings to the file.

Another option available in Python is to redirect the print statement out to a file using the >> redirection
operation. This allows you to use the versatility of the Python print function to format and write data
out to a file.

wordList = ["Red", "Blue", "Green"]
filePath = "output.txt"

#Write a list to a file
file = open(filePath, 'wU')
file.writelines(wordList)

#Write a string to a file
file.write("\n\nFormatted text:\n")

#Print directly to a file
for word in wordList:
 print >>file,"\t%s Color Adjust" % word

file.close()

write_file.py

RedBlueGreen

Formatted text:
 Red Color Adjust
 Blue Color Adjust
 Green Color Adjust

Contents of output.txt file

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec5.html (1 von 2) [03.08.2007 09:09:12]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Writing a File

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec5.html (2 von 2) [03.08.2007 09:09:12]

Determining the Number of Lines in a File

Determining the Number of Lines in a File

lineCount = len(open(filePath, 'rU').readlines())
print "File %s has %d lines." % (filePath,
lineCount)

When parsing files using Python, it's useful to know exactly how many lines are contained in the file. The
example in file_lines.py shows a simple method to determine the number of lines contained in a file by
first opening it, and then using readlines() to generate a list of lines and using the len() function to
determine the number of lines in the list.

Note

For large files, using readlines() to generate a list lines in a file might be impractical
because of the amount of memory and processing time necessary.

filePath = "input.txt"

lineCount = len(open(filePath, 'rU').readlines())
print "File %s has %d lines." % (filePath,
lineCount)

file_lines.py

File input.txt has 4 lines.

Output from file_lines.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec6.html [03.08.2007 09:09:12]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Walking the Directory Tree

Walking the Directory Tree

tree = os.walk(path)
for directory in tree:
 printDirectory(directory)

Python provides a powerful directory tree-walking function in the os module. The walk(path) function will
walk the directory tree, and for each directory in the tree create a three-tuple containing (1) the dirpath,
(2) a list of dirnames, and (3) a list of filenames.

Once the tuples have been created, they can be processed one at a time as elements of a list. For each
tuple, you can access the path to the directory represented directly by using the 0 index into the tuple.
Lists of the subdirectories and files contained in the directory can likewise be accessed using the 1 and 2
indexes, respectively.

The example in dir_tree.py shows how to use the os.walk(path) function to walk a directory tree and
print out a formatted listing of the tree.

import os
path = "/books/python"

def printFiles(dirList, spaceCount):
 for file in dirList:
 print "/".rjust(spaceCount+1) + file

def printDirectory(dirEntry):
 print dirEntry[0] + "/"
 printFiles(dirEntry[2], len(dirEntry[0]))

tree = os.walk(path)
for directory in tree:
 printDirectory(directory)

dir_tree.py

/books/python/
 /Python Proposal.doc
 /Python_Phrasebook_TOC.doc
 /python_schedule.xls
 /template.doc
 /TOC_Notes.doc
/books/python\CH2/
 /ch2.doc
/books/python\CH2\code/
 /comp_str.py
 /end_str.py
 /eval_str.py
 /format_str.py
 /join_str.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec7.html (1 von 2) [03.08.2007 09:09:12]

Walking the Directory Tree

 /output.txt
 /replace_str.py
 /search_str.py
 /split_str.py
 /trim_str.py
 /unicode_str.py
 /var_str.py
/books/python\CH3/
 /ch3.doc

Output from dir_tree.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec7.html (2 von 2) [03.08.2007 09:09:12]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Renaming Files

Renaming Files

os.remove(newFileName)
os.rename(oldFileName, newFileName)

A common task when parsing files using Python is to either delete the file or at least rename it once the
data has been processed. The easiest way to accomplish this is to use the os.remove(newFile) and os.
rename(oldFile, newFile) function in the os module.

The example in ren_file shows how to rename a file by first detecting whether the new filename already
exists and then removing the existing file. Once the existing file has been removed, the rename function
can be used to rename the file.

import os

oldFileName = "/books/python/CH4/code/output.txt"
newFileName = "/books/python/CH4/code/output.old"

#Old Listing
for file in os.listdir("/books/python/CH4/code/"):
 if file.startswith("output"):
 print file

#Remove file if the new name already exists
if os.access(newFileName, os.X_OK):
 print "Removing " + newFileName
 os.remove(newFileName)

#Rename the file
os.rename(oldFileName, newFileName)

#New Listing
for file in os.listdir("/books/python/CH4/code/"):
 if file.startswith("output"):
 print file

ren_file.py

output.old
output.txt
Removing /books/python/CH4/code/output.old
output.old

Output from ren_file.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec8.html (1 von 2) [03.08.2007 09:09:12]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Renaming Files

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec8.html (2 von 2) [03.08.2007 09:09:12]

Recursively Deleting Files and Subdirectories

Recursively Deleting Files and Subdirectories

for file in dirList:
 os.remove(dirPath + "/" + file)
for dir in emptyDirs:
 os.rmdir(dir)

To recursively delete files and subdirectories in Python, use the walk(path) function in the os module.
For a more detailed description of the walk function, refer to the "Walking the Directory Tree" section
earlier in this chapter.

The walk function will automatically create a list of tuples representing the directories that need to be
deleted. To recursively delete a tree, walk through the list of directories and delete each file contained in
the files list (third item in the tuple).

The trick is removing the directories. Because a directory cannot be removed until it is completely
empty, the files must first be deleted and then the directories must be removed in reverse order,
starting with the deepest subdirectory.

The example in del_tree.py shows how to use the os.walk(path) function to walk a directory tree and
delete the files, and then recursively remove the subdirectories.

import os

emptyDirs = []
path = "/trash/deleted_files"

def deleteFiles(dirList, dirPath):
 for file in dirList:
 print "Deleting " + file
 os.remove(dirPath + "/" + file)

def removeDirectory(dirEntry):
 print "Deleting files in " + dirEntry[0]
 deleteFiles(dirEntry[2], dirEntry[0])
 emptyDirs.insert(0, dirEntry[0])

#Enumerate the entries in the tree
tree = os.walk(path)
for directory in tree:
 removeDirectory(directory)

#Remove the empty directories
for dir in emptyDirs:
 print "Removing " + dir
 os.rmdir(dir)

del_tree.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec9.html (1 von 2) [03.08.2007 09:09:13]

Recursively Deleting Files and Subdirectories

Deleting files in /trash/deleted_files
Deleting 102.ini
Deleting 103.ini
Deleting 104.ini
Deleting 105.ini
Deleting 106.ini
Deleting 107.ini
Deleting 108.ini
Deleting 109.ini
Deleting files in/trash/deleted_files\Test
Deleting 111.ini
Deleting 114.ini
Deleting 115.ini
Deleting files in/trash/deleted_files\Test\Test2
Deleting 112.ini
Deleting 113.ini
Removing /trash/deleted_files\Test\Test2
Removing /trash/deleted_files\Test
Removing /trash/deleted_files

Output from del_tree.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec9.html (2 von 2) [03.08.2007 09:09:13]

Searching for Files Based on Extension

Searching for Files Based on Extension

for ext in pattern.split(";"):
 extList.append(ext.lstrip("*"))
....
if file.endswith(ext):
 print "/".rjust(spaceCount+1) + file

One of the most common file functions is to search for files based on extension. The example in find_file.
py shows one way to search for files based on a string of extensions. The search is handled by first
creating a list of the file extensions by splitting the pattern string using the split() function.

Once the list of extensions is created, walk the directory tree and check to see whether the file's
extension matches one in the list by using the endswith(string) function on the file.

import os
path = "/books/python"
pattern = "*.py;*.doc"

#Print files that match to file extensions
def printFiles(dirList, spaceCount, typeList):
 for file in dirList:
 for ext in typeList:
 if file.endswith(ext):
 print "/".rjust(spaceCount+1) + file
 break

#Print each sub-directory
def printDirectory(dirEntry, typeList):
 print dirEntry[0] + "/"
 printFiles(dirEntry[2], len(dirEntry[0]),
typeList)

#Convert pattern string to list of file extensions
extList = []
for ext in pattern.split(";"):
 extList.append(ext.lstrip("*"))

#Walk the tree to print files
for directory in os.walk(path):
 printDirectory(directory, extList)

find_file.py

/books/python/
 /Python Proposal.doc
 /Python_Phrasebook_TOC.doc
 /template.doc
 /TOC_Notes.doc

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec10.html (1 von 2) [03.08.2007 09:09:13]

Searching for Files Based on Extension

/books/python\CH2/
 /ch2.doc
/books/python\CH2\code/
 /comp_str.py
 /end_str.py
 /eval_str.py
 /format_str.py
 /join_str.py
 /replace_str.py
 /search_str.py
 /split_str.py
 /trim_str.py
 /unicode_str.py
 /var_str.py
/books/python\CH3/
 /ch3.doc

Output from find_file.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec10.html (2 von 2) [03.08.2007 09:09:13]

Creating a TAR File

Creating a TAR File

tFile = tarfile.open("files.tar", 'w')
files = os.listdir(".")
for f in files:
 tFile.add(f)

The tarfile module, included with Python, provides a set of easy-to-use methods to create and
manipulate TAR files. The open(filename [, mode [, fileobj [, bufsize]]]) method must be called with
the write mode set to create a new TAR. Table 4.2 shows the different modes available when opening a
TAR file.

Table 4.2. File Modes for Python's tarfile Module

Mode Description

r (Default) Opens a TAR file for reading. If the file is compressed, it will be decompressed.

r: Opens a TAR file for reading with no compression.

w or w: Opens a TAR file for writing with no compression.

a or a: Opens a TAR file for appending with no compression.

r:gz Opens a TAR file for reading with gzip compression.

w:gz Opens a TAR file for writing with gzip compression.

r:bz2 Opens a TAR file for reading with bzip2 compression.

w:bz2 Opens a TAR file for writing with bzip2 compression.

Once the TAR file has been opened in write mode, files can be added to it using the add(name [,arcname
[, recursive]]) method. The add method adds the file or directory specified in name to the archive. The
optional arcname argument enables you to specify what name the file should have inside the archive. The
recursive argument accepts a Boolean true or false to determine whether or not to recursively add the
contents of directories to the archive.

Note

To open a TAR file for sequential access only, replace the : character in the mode with a |
character. The append mode is not available for the sequential access option.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec11.html (1 von 2) [03.08.2007 09:09:13]

Creating a TAR File

import os
import tarfile

#Create Tar file
tFile = tarfile.open("files.tar", 'w')

#Add directory contents to tar file
files = os.listdir(".")
for f in files:
 tFile.add(f)

#List files in tar
for f in tFile.getnames():
 print "Added %s" % f

tFile.close()

tar_file.py

Added add_zip.py
Added del_tree.py
Added dir_tree.py
Added extract.txt
Added extract_tar.py
Added file_lines.py
Added find_file.py
Added get_zip.py
Added input.txt
Added open_file.py
Added output.old
Added read_file.py
Added read_line.py
Added read_words.py
Added ren_file.py
Added tar_file.py
Added write_file.py

Output from tar_file.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec11.html (2 von 2) [03.08.2007 09:09:13]

Extracting a File from a TAR File

Extracting a File from a TAR File

tFile = tarfile.open("files.tar", 'r')
tFile.extract(f, extractPath)

The tarfile module includes the exTRact(file [, path]) method to extract files specified by the file
argument and place them in the location specified by the path argument. If no path is specified, the
current working directory becomes the destination.

The example in extract_tar.py opens the TAR file created in the previous phrase and extracts only the
Python files to a directory called /bin/py.

import os
import tarfile

extractPath = "/bin/py"

#Open Tar file
tFile = tarfile.open("files.tar", 'r')

#Extract py files in tar
for f in tFile.getnames():
 if f.endswith("py"):
 print "Extracting %s" % f
 tFile.extract(f, extractPath)
 else:
 print "%s is not a Python file." % f

tFile.close()

extract_tar.py

Extracting add_zip.py
Extracting del_tree.py
Extracting dir_tree.py
extract.txt is not a Python file.
Extracting extract_tar.py
Extracting file_lines.py
Extracting find_file.py
Extracting get_zip.py
input.txt is not a Python file.
Extracting open_file.py
output.old is not a Python file.
Extracting read_file.py
Extracting read_line.py
Extracting read_words.py
Extracting ren_file.py
Extracting tar_file.py
Extracting write_file.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec12.html (1 von 2) [03.08.2007 09:09:14]

Extracting a File from a TAR File

Output from extract_tar.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec12.html (2 von 2) [03.08.2007 09:09:14]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Adding Files to a ZIP File

Adding Files to a ZIP File

tFile = zipfile.ZipFile("files.zip", 'w')
files = os.listdir(".")
for f in files:
 tFile.write(f)

The zipfile module, included with Python, provides a set of easy-to-use methods to create and
manipulate ZIP files. The ZipFile(filename [, mode [, compression]]) method creates or opens a ZIP
file depending on the mode specified. The available modes for ZIP files are r, w, and a to read, write, or
append, respectively. Using the w mode will create a new ZIP file or truncate the existing file to zero if it
already exists.

The optional compression argument will accept either the ZIP_STORED(not compressed) or ZIP_DEFLATED
(compressed) compression options to set the default compression when writing files to the archive.

Once the ZIP file has been opened in write mode, files can be added to it using the write(filename [,
arcname [, compression]]) method. The write method adds the file specified in filename to the archive.
The optional arcname argument enables you to specify what name the file should have inside the archive.

import os
import zipfile

#Create the zip file
tFile = zipfile.ZipFile("files.zip", 'w')

#Write directory contents to the zip file
files = os.listdir(".")
for f in files:
 tFile.write(f)

#List archived files
for f in tFile.namelist():
 print "Added %s" % f

tFile.close()

add_zip.py

Added add_zip.py
Added del_tree.py
Added dir_tree.py
Added extract.txt
Added extract_tar.py
Added files.zip
Added file_lines.py
Added find_file.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec13.html (1 von 2) [03.08.2007 09:09:14]

Adding Files to a ZIP File

Added get_zip.py
Added input.txt
Added open_file.py
Added output.old
Added read_file.py
Added read_line.py
Added read_words.py
Added ren_file.py
Added tar_file.py
Added write_file.py

Output from add_zip.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec13.html (2 von 2) [03.08.2007 09:09:14]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Retrieving Files from a ZIP File

Retrieving Files from a ZIP File

tFile = zipfile.ZipFile("files.zip", 'r')
buffer = tFile.read("ren_file.py")

Retrieving file contents from a ZIP file is easily done using the read(filename) method included in the
zipfile module. Once the ZIP file is opened in read mode, the read method is called and the contents of
the specified file are returned as a string. Once the contents are returned, they can be added to a list or
dictionary, printed to the screen, written to a file, or any number of other possibilities.

The example in get_zip.py opens the ZIP file created in the previous phrase, reads Python file ren_file.
py, prints the contents to the screen, and then writes the contents to a new file called extract.txt.

import os
import zipfile

tFile = zipfile.ZipFile("files.zip", 'r')

#List info for archived file
print tFile.getinfo("input.txt")

#Read zipped file into a buffer
buffer = tFile.read("ren_file.py")
print buffer

#Write zipped file contents to new file
f = open("extract.txt", "w")
f.write(buffer)
f.close()

tFile.close()

get_zip.py

<zipfile.ZipInfo instance at 0x008DCB70>
import os

oldFileName = "/books/python/CH4/code/output.txt"
newFileName = "/books/python/CH4/code/output.old"

#Old Listing
for file in os.listdir("/books/python/CH4/code/"):
 if file.startswith("output"):
 print file

#Remove file if the new name already exists
if os.access(newFileName, os.X_OK):
 print "Removing " + newFileName

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec14.html (1 von 2) [03.08.2007 09:09:14]

Retrieving Files from a ZIP File

 os.remove(newFileName)

#Rename the file
os.rename(oldFileName, newFileName)

#New Listing
for file in os.listdir("/books/python/CH4/code/"):
 if file.startswith("output"):
 print file

Output from get_zip.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch04lev1sec14.html (2 von 2) [03.08.2007 09:09:14]

Chapter 5. Managing Threads

Chapter 5. Managing Threads

The Python language provides several functions and modules that will allow you to create, start, and
control multiple threads. This chapter is designed to help you understand how to quickly implement
threads into your programs to provide faster and easier processing of data.

Working with multiple threads that share the same data at the same time can be problematic. For
example, two or more threads could try to access the same data at the same time, causing race
conditions that can lead to deadlocks. For that reason, this chapter includes using thread locks and
queues to manage data so that access to the CPU and data can be synchronized across multiple threads.

Timer-interrupted threads can be extremely valuable to provide notification status, as well as to clean
up operations at specific intervals. The final phrase of this chapter discusses how to create and start a
timer-interrupted thread.

Caution

You should be careful when using multiple threads that invoke methods in some of the
extension modules. Not all the extension modules are particularly friendly. For example,
they might block execution of all other threads for extended amounts of time until they are
completed. However, most functions included in the Python standard library are written to
work well in a multithreaded environment.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05.html [03.08.2007 09:09:15]

Starting a New Thread

Starting a New Thread

thread.start_new_thread(print_time, ("Thread01",
2,))
thread.start_new_thread(print_time, ("Thread02",
4,))

The start_new_thread(function, args [, kwargs]) method in the Python thread module enables a fast
and efficient way to create new threads in both Linux and Windows. It accepts a function name as the
first parameter and a set of arguments as the second. The optional third parameter allows you to pass a
dictionary containing keyword arguments.

The start_new_thread method creates a new thread and then starts code execution of the function.
Control is immediately returned to the calling thread, and the new thread executes the specified function
and returns silently.

Note

If the code being executed by a new thread encounters an exception, a stack trace will be
printed and the thread will exit. However, other threads will continue to run.

Although it is very effective for low-level threading, the thread module is very limited compared to the
newer threading module.

import thread
import time

def print_time(threadName, delay):
 while 1:
 time.sleep(delay)
 print "%s: %s" % (threadName, \
 time.ctime(time.time()))

#Start threads to print time at different intervals
thread.start_new_thread(print_time, ("Thread01",
2,))
thread.start_new_thread(print_time, ("Thread02",
4,))

while 1:
 pass

create_thread.py

Thread01: Wed Jun 14 12:46:21 2006

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec1.html (1 von 2) [03.08.2007 09:09:15]

Starting a New Thread

Thread01: Wed Jun 14 12:46:23 2006
Thread02: Wed Jun 14 12:46:23 2006
Thread01: Wed Jun 14 12:46:25 2006
Thread01: Wed Jun 14 12:46:27 2006
Thread02: Wed Jun 14 12:46:27 2006
Thread01: Wed Jun 14 12:46:29 2006
Thread01: Wed Jun 14 12:46:31 2006
.

Output from create_thread.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec1.html (2 von 2) [03.08.2007 09:09:15]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Creating and Exiting Threads

Creating and Exiting Threads

class newThread (threading.Thread):
 def __init__(self, threadID, name, counter):
 self.threadID = threadID
 self.name = name
 self.counter = counter
 threading.Thread.__init__(self)
.
if doExit:
 thread.exit()

The newer threading module included with Python 2.4 provides much more powerful, high-level support
for threads than the thread module discussed in the previous phrase. It is a little more complicated to
implement; however, it provides the ability to better control and synchronize threads.

The threading module introduces a Thread class that represents a separate thread of execution. To
implement a new thread using the threading module, first define a new subclass of the Thread class.
Override the __init__(self [,args]) method to add additional arguments. Then override the run(self [,
args]) method to implement what the thread should do when started.

Once you have created the new Thread subclass, you can create an instance of it and then start a new
thread by invoking the start() or run() methods.

import threading
import thread
import time

doExit = 0

class newThread (threading.Thread):
 def __init__(self, threadID, name, counter):
 self.threadID = threadID
 self.name = name
 self.counter = counter
 threading.Thread.__init__(self)
 def run(self):
 print "Starting " + self.name
 print_time(self.name, self.counter, 5)
 print "Exiting " + self.name

def print_time(threadName, delay, counter):
 while counter:
 if doExit:
 thread.exit()
 time.sleep(delay)
 print "%s: %s" % (threadName, \
 time.ctime(time.time()))
 counter -= 1

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec2.html (1 von 2) [03.08.2007 09:09:15]

Creating and Exiting Threads

#Create new threads
thread1 = newThread(1, "Thread01", 1)
thread2 = newThread(2, "Thread02", 2)

#Start new Threads
thread1.start()
thread2.run()

while thread2.isAlive():
 if not thread1.isAlive():
 doExit = 1

 pass

print "Exiting Main Thread"

exit_thread.py

Starting Thread01
Starting Thread02
Thread01: Wed Jun 14 13:06:10 2006
Thread01: Wed Jun 14 13:06:11 2006
Thread02: Wed Jun 14 13:06:11 2006
Thread01: Wed Jun 14 13:06:12 2006
Thread01: Wed Jun 14 13:06:13 2006
Thread02: Wed Jun 14 13:06:13 2006
Thread01: Wed Jun 14 13:06:14 2006
Exiting Thread01
Thread02: Wed Jun 14 13:06:15 2006
Exiting Main Thread

Output from exit_thread.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec2.html (2 von 2) [03.08.2007 09:09:15]

Synchronizing Threads

Synchronizing Threads

threadLock = threading.Lock()
. . .
threadLock.acquire()
print_time(self.name, self.counter, 3)
threadLock.release()

The threading module provided with Python includes a simple-to-implement locking mechanism that will
allow you to synchronize threads. A new lock is created by calling the Lock() method, which returns the
new lock.

Once the new lock object has been created, you can force threads to run synchronously by calling the
acquire(blocking) method. The optional blocking parameter enables you to control whether the thread
will wait to acquire the lock. If blocking is set to 0, the thread will return immediately with a 0 value if
the lock cannot be acquired and with a 1 if the lock was acquired. If blocking is set to 1, the thread will
block and wait for the lock to be released.

When you are finished with the lock, the lock is released by calling the release() method of the new lock
object.

import threading
import time

class newThread (threading.Thread):
 def __init__(self, threadID, name, counter):
 self.threadID = threadID
 self.name = name
 self.counter = counter
 threading.Thread.__init__(self)
 def run(self):
 print "Starting " + self.name
#Get lock to synchronize threads
 threadLock.acquire()
 print_time(self.name, self.counter, 3)
#Free lock to release next thread
 threadLock.release()

def print_time(threadName, delay, counter):
 while counter:
 time.sleep(delay)
 print "%s: %s" % (threadName, \
 time.ctime(time.time()))
 counter -= 1

threadLock = threading.Lock()
threads = []

#Create new threads
thread1 = newThread(1, "Thread01", 1)
thread2 = newThread(2, "Thread02", 2)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec3.html (1 von 2) [03.08.2007 09:09:16]

Synchronizing Threads

#Start new Threads
thread1.start()
thread2.start()

#Add threads to thread list
threads.append(thread1)
threads.append(thread2)

#Wait for all threads to complete
for t in threads:
 t.join()

print "Exiting Main Thread"

sync_thread.py

Starting Thread01
Starting Thread02
Thread01: Tue Jun 20 10:06:24 2006
Thread01: Tue Jun 20 10:06:25 2006
Thread01: Tue Jun 20 10:06:26 2006
Thread02: Tue Jun 20 10:06:28 2006
Thread02: Tue Jun 20 10:06:30 2006
Thread02: Tue Jun 20 10:06:32 2006
Exiting Main Thread

Output from sync_thread.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec3.html (2 von 2) [03.08.2007 09:09:16]

Implementing a Multithreaded Priority Queue

Implementing a Multithreaded Priority Queue

queueLock = threading.Lock()
workQueue = Queue.Queue(10)
queueLock.acquire()
for word in wordList:
 workQueue.put(word)
queueLock.release()
while not workQueue.empty():
 pass
. . .
queueLock.acquire()
if not workQueue.empty():
 data = q.get()
 queueLock.release()

The Queue module provides an invaluable way to manage processing large amounts of data on multiple
threads. The Queue module allows you to create a new queue object that can hold a specific number of
items. Items can be added and removed from the queue using the get() and put() methods of the
queue object.

The queue object also includes the empty(), full(), and qsize() methods to determine whether the
queue is empty, full, or the approximate size, respectively. The qsize method is not always reliable
because of multiple threads removing items from the queue.

If necessary, you can implement the thread locking discussed in the previous phrase to control access to
the queue. This will make queue management much safer and provide you with more control of the data
processing.

import Queue
import threading
import time
import thread

doExit = 0

class newThread (threading.Thread):
 def __init__(self, threadID, name, q):
 self.threadID = threadID
 self.name = name
 self.q = q
 threading.Thread.__init__(self)
 def run(self):
 print "Starting " + self.name
 process_data(self.name, self.q)
 print "Exiting " + self.name

def process_data(tName, q):
 while not doExit:
 queueLock.acquire()
 if not workQueue.empty():

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec4.html (1 von 3) [03.08.2007 09:09:16]

Implementing a Multithreaded Priority Queue

 data = q.get()
 queueLock.release()
 print "%s processing %s" % (tName, data)
 else:
 queueLock.release()
 time.sleep(1)

threadList = ["Thread1", "Thread2", "Thread3"]
wordList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
tID = 1

#Create new threads
for tName in threadList:
 thread = newThread(tID, tName, workQueue)
 thread.start()
 threads.append(thread)
 tID += 1

#Fill the queue
queueLock.acquire()
for word in wordList:
 workQueue.put(word)
queueLock.release()

#Wait for queue to empty
while not workQueue.empty():
 pass

#Notify threads it's time to exit
doExit = 1

#Wait for all threads to complete
for t in threads:
 t.join()

print "Exiting Main Thread"

queue_thread.py

Starting Thread1
Starting Thread2
Starting Thread3
Thread1 processing One
Thread2 processing Two
Thread3 processing Three
Thread1 processing Four
Thread2 processing Five
Exiting Thread1
Exiting Thread2
Exiting Thread3
Exiting Main Thread

Output from queue_thread.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec4.html (2 von 3) [03.08.2007 09:09:16]

Implementing a Multithreaded Priority Queue

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec4.html (3 von 3) [03.08.2007 09:09:16]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Initiating a Timer-Interrupted Thread

Initiating a Timer-Interrupted Thread

wakeCall = threading.Timer(waitTime, \
 clean_queue, (qPath ,))
wakeCall.start()

Common threads invoked on Linux servers are the timer threads to clean up resources, provide
notification, and check status, as well as many other functions. The threading module included with
Python provides an easy way of creating a simple timer-interrupted thread.

The Timer(interval, func [,args [, kwargs]]) method of the threading module creates a new timer-
interrupted thread object. The interval specifies the number of seconds to wait before executing the
function specified in the func argument.

Once the new timer-interrupted thread object is created, it can be started at any time using the start
method of the object. Once the start method is invoked, the thread will wait the specified timer interval
and then begin execution.

Note

A timer thread can be cancelled after it is started, using the cancel() method of the object,
provided that the function has not yet been executed.

import threading
import os

def clean_queue (qPath):
 jobList = os.listdir(qPath)
 for j in jobList:
 delPath = "%s/%s" % (qPath, j)
 os.remove(delPath)
 print "Removing " + delPath

qPath = "/print/queue01"
waitTime = 600 #10 minutes

#Create timer thread
wakeCall = threading.Timer(waitTime, \
 clean_queue, (qPath ,))

#Start timer thread
wakeCall.start()

timer_thread.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec5.html (1 von 2) [03.08.2007 09:09:16]

Initiating a Timer-Interrupted Thread

Removing /print/queue01/102.txt
Removing /print/queue01/103.txt
Removing /print/queue01/104.txt
Removing /print/queue01/105.txt
Removing /print/queue01/106.txt
Removing /print/queue01/107.txt

Output from timer_thread.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch05lev1sec5.html (2 von 2) [03.08.2007 09:09:16]

Chapter 6. Managing Databases

Chapter 6. Managing Databases

The ability to store data in a manageable database dramatically increases the options regarding the
types of applications that can be created by Python. The Python language has built-in modules, as well
as add-on modules, that provide an extensive platform for the persistent storage of data in various
database formats.

This chapter familiarizes you with phrases used to create generic DBM files for simple persistent storage
of data, as well as some advanced concepts such as pickling data to files and shelves. Most basic
database needs can be handled by the DBM, pickle, and shelve modules. The advantage of those
modules is that they do not require a backend database server.

This chapter also covers connecting to and using a MySQL server as the backend database engine for
persistent storage. MySQLdb, available at http://www.mysql.org/, is an add-on Python package that
conforms to the Python DB-API 2.0 specification. Python provides the DB-API specification to
accommodate the numerous forms of SQL servers available. The specification provides the necessary
framework to access most of the available SQL databases via add-on modules such as MySQLdb.

There are other SQL modules available for other SQL servers such as Oracle, JDBC, Sybase, and DB2, as
well as others. Thanks to the Python DB-API spec, the phrases listed for MySQL can be used to access
those SQL databases as well. You simply need to install the appropriate module and use that module's
connect function to connect to the database.

Note

There might be some subtle differences among different database query strings, such as
escape sequences.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06.html [03.08.2007 09:09:17]

http://www.mysql.org/
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Adding Entries to a DBM File

Adding Entries to a DBM File

import anydbm
cityDB = anydbm.open("city.dbm", 'n')
for flight in flights:
 cityDB[flight] = cities[i]
cityDB.close()

The anydbm module provides a generic interface, allowing you to open databases based on several
different lower-level packages that can be installed on the system. When imported, the anydbm module
searches for the dbm, gdbm, and bsddb packages that provide access to the UNIX dbm, GNU DBM, and
Berkely DB libraries, respectively. If none of those packages are available, then the dumbdbm module is
loaded to provide access to a simple DBM-style database library.

The adybdm module provides the open(filename [,flag [, mode]]) function that allows you to open and
create databases (see the "Opening and Closing Files" phrase of Chapter 4, "Managing Files," for more
details).

Note

When creating a new database, anydbm will try to use the database module that was first
installed on the system.

The open function returns a database object that behaves much the same as a dictionary. Entries can be
added to the database by assigning a value to a key using the d[key] = value syntax. The key must be a
standard string, and the value must also be a standard string, except in the shelve module discussed in
later phrases.

import anydbm

cities = ["Dallas", "Los Angeles", "New York"]
flights = ["1144", "1045", "1520"]
times = ["230pm", "320pm", "420pm"]

#Create DBM file
cityDB = anydbm.open("city.dbm", 'n')
timeDB = anydbm.open("time.dbm", 'n')

#Add entries
i = 0
for flight in flights:
 cityDB[flight] = cities[i]
 i += 1
i = 0
for flight in flights:
 timeDB[flight] = times[i]
 i += 1

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec1.html (1 von 2) [03.08.2007 09:09:17]

Adding Entries to a DBM File

print cityDB.items()
print timeDB.items()

#Close DBM file
cityDB.close()
timeDB.close()

add_dbm.py

[('1144', 'Dallas'), ('1045', 'Los Angeles'),
 ('1520', 'New York')]
[('1144', '230pm'), ('1045', '320pm'),
 ('1520', '420pm')]]

Output from add_dbm.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec1.html (2 von 2) [03.08.2007 09:09:17]

Retrieving Entries from a DBM File

Retrieving Entries from a DBM File

import anydbm
cityDB = anydbm.open("city.dbm", 'r')
flights = cityDB.keys()
for flight in flights:
 print ("Flight %s arrives from %s at %s" %
(flight, cityDB[flight], timeDB[flight]))
 cityDB.close()

The anydbm module provides a generic interface allowing you to open databases based on several
different lower-level packages that can be installed on the system. When imported, the anydbm module
searches for the dbm, gdbm, or bsddb package. If none of those packages are available, the dumbdbm
module is loaded and used for database I/O.

The anydbm module provides the open(filename [,flag [, mode]]) function that allows you to open and
create databases (see the "Opening and Closing Files" phrase of Chapter 4 for more details).

Note

When opening an existing database, anydbm uses the whichdb module to determine which
database module to use when opening the database.

Once the database has been opened, you can use the database object similarly to a dictionary. You can
use the keys() and values() functions to retrieve a list of keys or values, respectively. You can also
access a specific value by referencing using the corresponding key.

import anydbm

#Open DBM file for reading
cityDB = anydbm.open("city.dbm", 'r')
timeDB = anydbm.open("time.dbm", 'r')

#Get keys
flights = cityDB.keys()

#Use keys to get values
print "Arrivals"
print
"==="
for flight in flights:
 print ("Flight %s arrives from %s at %s" %
(flight, cityDB[flight], timeDB[flight]))

#Close DBM file
cityDB.close()
timeDB.close()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec2.html (1 von 2) [03.08.2007 09:09:17]

Retrieving Entries from a DBM File

get_dbm.py

Arrivals
===
Flight 1144 arrives from Dallas at 230pm
Flight 1045 arrives from Los Angeles at 320pm
Flight 1520 arrives from New York at 420pm

Output from get_dbm.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec2.html (2 von 2) [03.08.2007 09:09:17]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Updating Entries in a DBM File

Updating Entries in a DBM File

import anydbm
cityDB = anydbm.open("city.dbm", 'w')
flights = timeDB.keys()
for flight in flights:
 if c == flight:
 timeDB[flight] = "CANCELLLED"
 if d == flight:
 del timeDB[flight]

After the database has been opened, you can use the database object similarly to a dictionary. To
change a value of an object in the database, assign a new value to the corresponding key using d[key] =
value. To remove an object from the database, use del d[key] to reference the object by its specific key.

Note

The d.has_key(key) function can be extremely useful if you are not certain whether a
specific key exists in the database.

import anydbm

flights = []
cancelled = ["1520", "1544"]
deleted = ["1144"]

def displayArrivals(header):
 print header
 print "=="
 for flight in flights:
 print ("Flight %s from %s arrives at %s" %
 (flight, cityDB[flight],
timeDB[flight]))

#Open DBM file for reading
cityDB = anydbm.open("city.dbm", 'w')
timeDB = anydbm.open("time.dbm", 'w')

#Get keys
flights = timeDB.keys()

#Display arrivals
displayArrivals("Arrivals")

#Update DBM
for flight in flights:
 for c in cancelled:
 if c == flight:

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec3.html (1 von 2) [03.08.2007 09:09:17]

Updating Entries in a DBM File

 timeDB[flight] = "CANCELLED"
 break
 for d in deleted:
 if d == flight:
 del timeDB[flight]
 del cityDB[flight]
 break

#Display updataed arrivals
flights = timeDB.keys()
displayArrivals("Updated Arrivals")

#Close DMB file
cityDB.close()
timeDB.close()

update_dbm.py

Arrivals
===
Flight 1144 from Dallas arrives at 230pm
Flight 1045 from Los Angeles arrives at 320pm
Flight 1520 from New York arrives at 420pm

Updated Arrivals
===
Flight 1045 from Los Angeles arrives at 320pm
Flight 1520 from New York arrives at CANCELLED

Output from update_dbm.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec3.html (2 von 2) [03.08.2007 09:09:17]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Pickling Objects to a File

Pickling Objects to a File

import cPickle
f = open("pickled.dat", "w")
p = cPickle.Pickler(f)
p.dump(flights)
p.dump(times)
f.close()

Pickling data to files is one of the simplest ways to get around the limitation that DBM files have of only
allowing simple text string storage. The pickle and cPickle modules included with Python provide a
simple-to-use interface to pickle entire objects to a file for persistent storage.

Note

The cPickler object is much faster than the pickler object; however, it will not allow you to
subclass the pickler and unpickler objects for advanced handling of data.

The idea of pickling is to take an existing Python object and structure the data in such a way that it can
be easily written out to an existing file and read back again.

The first step in pickleing Python objects is to open a file with the write permission. Once the file has
been opened, use the Pickler(file) method to create a pickler object. The Pickler method accepts a
standard file object as its only parameter and returns the pickler object that is used to write objects to
the file.

Once the pickler object has been created, you can use the dump(object) method to write almost any
Python object to the file. The dump method pickles the object and writes it to the file. As the output of
the sample code illustrates, the pickled object is not a standard Python object.

Note

If the same object is dumped to a pickler object twice, only the first object is saved, even if
the object has been modified.

import cPickle

flights = {"1144":"Dallas", "1045":"Los Angeles",\
 "1520":"New York"}
times = ["230pm", "320pm", "420pm"]

#Create the pickle file
f = open("pickled.dat", "w")

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec4.html (1 von 2) [03.08.2007 09:09:18]

Pickling Objects to a File

#Create the pickler object
p = cPickle.Pickler(f)

#Pickle data to the file
p.dump(flights)
p.dump(times)
f.close()

#Display the file contents
f = open("pickled.dat", "r")
data = f.read()
print data
f.close()

pickle_data.py

(dp1
S'1520'
p2
S'New York'
p3
sS'1045'
p4
S'Los Angeles'
p5
sS'1144'
p6
S'Dallas'
p7
s.(lp8
S'230pm'
p9
aS'320pm'
p10
aS'420pm'
p11
a.

Output from pickle_data.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec4.html (2 von 2) [03.08.2007 09:09:18]

Unpickling Objects from a File

Unpickling Objects from a File

import cPickle
f = open("pickled.dat", "r")
p = cPickle.Unpickler(f)
data = p.load()

Pickling data to files is one of the simplest ways to get around the limitation that DBM files have of only
allowing simple text string storage. The pickle and cPickle modules included with Python provide a
simple-to-use interface to pickle entire objects to a file for persistent storage.

Note

The cPickler object is much faster than the pickler object; however, it will not allow you to
subclass the pickler and unpickler objects for advanced handling of data.

The idea of unpickling is to read pickled objects from an existing pickle file and convert those pickled
objects back to standard Python objects.

The first step to unpickle Python objects is to open the pickle file with the read permission. Once the file
has been opened, use the UnPickler(file) method to create an unpickler object. The UnPickler method
accepts a standard file object as its only parameter and returns the unpickler object that is used to read
pickled objects from the file.

Once the unpickler object has been created, you can use the load() method to read a pickled object
from the file. The object will be restructured and returned as a standard Python object.

import cPickle

#Open the pickle file
f = open("pickled.dat", "r")

#Create the unpickler object
p = cPickle.Unpickler(f)

#Unpickle an object from the file
data = p.load()
print "Flight Dictionary:"
print data

#Unpickle an object from the file
data = p.load()
print "\nTime List:"
print data

f.close()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec5.html (1 von 2) [03.08.2007 09:09:18]

Unpickling Objects from a File

unpickle_data.py

Flight Dictionary:
{'1520': 'New York', '1144': 'Dallas',
 '1045': 'Los Angeles'}

Time List:
['230pm', '320pm', '420pm']

Output from unpickle_data.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec5.html (2 von 2) [03.08.2007 09:09:18]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Storing Objects in a Shelve File

Storing Objects in a Shelve File

import shelve
db = shelve.open("shelved.dat", "n")
db['flights'] = flights
db['times'] = times
print db.keys()

Although pickling is great to store complex Python objects that DBMs cannot, it does not provide the
direct entry access that is available with DBMs. Python provides the shelve module to bridge the gap
and provide direct access to stored entries, as well as the ability to store complex Python objects. The
shelve module accomplishes this by pickling the objects behind the scenes as they are added to the
shelve file.

The shelve module provides its own open(filename [, flags [, protocol [, writeback]]]) method to
create and open shelve files. The optional flags parameter accepts an r, w, c, or n character to
determine whether the shelve will be read, write, created if it doesn't already exist, or truncated to zero
length if it does exist. The optional protocol parameter accepts 0, 1, or 2 to determine whether the
objects will be pickled as text based, binary, or a newer, faster method, respectively. The writeback
parameter, which defaults to false, is a Boolean that, when set to true, causes changes to be cached
until the database is closed.

The open method of the shelve module returns a shelve object that behaves much the same as a
dictionary. Entries can be added to the shelve by assigning a value to a key using d[key] = value. The
key must be a standard string; however, the value can be almost any Python object.

The output from the sample code shows what the contents of the shelve file looks like. You can see the
objects in pickled form because the file was created using the default text-based protocol for pickling.

import shelve

flights = {"1144":"Dallas", "1045":"Los Angeles", \
 "1520":"New York"}
times = ["230pm", "320pm", "420pm"]

#Create shelve
db = shelve.open("shelved.dat", "n")

#Store objects in shelve
db['flights'] = flights
db['times'] = times

#Display added keys
print db.keys()

db.close()

#Display the file contents
f = open("shelved.dat", "r")
data = f.read()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec6.html (1 von 2) [03.08.2007 09:09:18]

Storing Objects in a Shelve File

print data
f.close()

shelve_store.py

['times', 'flights']

|(lp1
S'230pm'
p2
aS'320pm'
p3
aS'420pm'
p4
a.|times|(dp1
S'1520'
p2
S'New York'
p3
sS'1045'
p4
S'Los Angeles'
p5
sS'1144'
p6
S'Dallas'
p7
s.|flights

Output from shelve_store.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec6.html (2 von 2) [03.08.2007 09:09:18]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Retrieving Objects from a Shelve File

Retrieving Objects from a Shelve File

import shelve
db = shelve.open("shelved.dat", "r")
for k in db.keys():
 obj = db[k]
flightDB = db['flights']
flights = flightDB.keys()
cities = flightDB.values()
times = db['times']

The shelve module provides its own open(filename [, flags [, protocol [, writeback]]]) method to
create and open shelve files. The optional flags parameter accepts an r, w, c, or n character to
determine whether the shelve will be read, write, created if it doesn't already exist, or truncated to zero
length if it does exist. The optional protocol parameter accepts 0, 1, or 2 to determine whether the
objects will be pickled as text based, binary, or a newer, faster method, respectively. The writeback,
which defaults to false, is a Boolean that, when set to true, causes changes to be cached until the
database is closed.

Note

The optional protocol parameter accepts 0, 1, or 2 to determine whether the objects will be
pickled as text based, binary, or a newer, faster method, respectively. When you open the
shelve file to read objects, you must specify the correct protocol to properly unpickle the
objects.

The open method of the shelve module opens a shelve file and returns a shelve object that behaves
much the same as a dictionary. Once the shelve object has been created, you can use the shelve object
similarly to a dictionary.

The keys() and values() functions retrieve a list of keys or values, respectively. You can also access a
specific value by referencing using the corresponding key.

Note

When working with shelve files, the values that are returned can be almost any object type.
You will need to keep this in mind when managing shelves that have multiple object types
stored in them.

import shelve

#Open shelve file
db = shelve.open("shelved.dat", "r")

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec7.html (1 von 2) [03.08.2007 09:09:19]

Retrieving Objects from a Shelve File

#Get the keys from the shelve
for k in db.keys():
 obj = db[k]
 print "%s: %s" % (k, obj)

#Use keys to get values
flightDB = db['flights']
flights = flightDB.keys()
cities = flightDB.values()
times = db['times']

print "\nDepartures"
print "==="
x = 0
for flight in flights:
 print ("Flight %s leaves for %s at %s" % \
 (flight, cities[x], times[x]))
 x+=1

db.close()

shelve_get.py

times: ['230pm', '320pm', '420pm']
flights: {'1520': 'New York', '1144': 'Dallas',
 '1045': 'Los Angeles'}

Departures
===
Flight 1520 leaves for New York at 230pm
Flight 1144 leaves for Dallas at 320pm
Flight 1045 leaves for Los Angeles at 420pm

Output from shelve_get.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec7.html (2 von 2) [03.08.2007 09:09:19]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Changing Objects in a Shelve File

Changing Objects in a Shelve File

import shelve
db = shelve.open("shelved.dat", "w", writeback=1)
flights = db['flights']
del flights['1144']
flights['1145'] = "Dallas"
db['times'] = newtimes
db.sync()

Once the shelve file has been opened, you can use the shelve object similarly to a dictionary. If you
want to replace an existing object in the shelve with a new one, assign the new value to the
corresponding key using d[key] = value. To remove an object from the database, use del d[key] to
reference the object by its specific key.

Changing the value of specific parts of an object is where the power of using shelves rather than DBMs
becomes very apparent. First, retrieve the object from the shelve by referencing its key using obj = d
[key]. Once the object has been retrieved, values of the object can be modified using standard Python.
The changes to the object are written back to the shelve file automatically.

Note

In the example, we open the shelve with writeback set to true, so we use the sync()
method of the shelve module to force the changes to be flushed to disk.

import shelve

newtimes = ["110pm", "220pm", "300pm", "445pm"]

#Open shelve file
db = shelve.open("shelved.dat", "w", writeback=1)

#Get the keys
for k in db.keys():
 obj = db[k]
 print "%s: %s" % (k, obj)
print "\n\n"

#Use keys to get values
flights = db['flights']
times = db['times']

#Update contents of old object
del flights['1144']
flights['1145'] = "Dallas"
flights['1709'] = "Orlando"

#Replace old object with a new object

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec8.html (1 von 2) [03.08.2007 09:09:19]

Changing Objects in a Shelve File

db['times'] = newtimes

#Add a new object
db['oldtimes'] = times

#Flush data to disk
db.sync()

for k in db.keys():
 obj = db[k]
 print "%s: %s" % (k, obj)

db.close()

shelve_edit.py

times: ['230pm', '320pm', '420pm']
flights: {'1520': 'New York', '1144': 'Dallas',
 '1045': 'Los Angeles'}

times: ['110pm', '220pm', '300pm', '445pm']
flights: {'1709': 'Orlando', '1520': 'New York',
 '1045': 'Los Angeles', '1145': 'Dallas'}
oldtimes: ['230pm', '320pm', '420pm']

Output from shelve_edit.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec8.html (2 von 2) [03.08.2007 09:09:19]

Connecting to a MySQL Database Server

Connecting to a MySQL Database Server

import MySQLdb
myDB = MySQLdb.connect(host="127.0.0.1", /
 port=3306)
cHandler = myDB.cursor()

The MySQLdb module provides the standard Python DB-API 2.0 specification connect([host= [, port=
[, user= [, passwd= [, db= [, ...]]]]]]) function to connect to MySQL database servers. All the
parameters to the connect function are optional. The most common parameters used are the host, port,
user, passwd, and db.

Once you have successfully connected to the MySQL server, you need to get a cursor handle to send
SQL requests to the server. The cursor() function returns a cursor object that can be used to execute
SQL commands on the server and obtain the results.

To execute a SQL command on the server, use the execute(operation [, parameters]) function of the
cursor object, where operation is basically any properly formatted SQL command string.

To retrieve the results from executing the command, use the fetchall() function of the cursor object.
The fetchall function returns the results of the SQL request in a series of one or more lists depending
on the data being returned.

Once you have the cursor object and are able to execute SQL commands, you can use the SHOW
DATABASES SQL command to get a list of databases available on the server. To switch to a specific
database, use the USE <database> SQL command.

Note

To find out which database is currently active, use the SELECT DATABASE() command to
return the current database name.

import MySQLdb

#Connect to MySQL Server
myDB = MySQLdb.connect(host="127.0.0.1", \
 port=3306)
cHandler = myDB.cursor()

#Display available databases
cHandler.execute("SHOW DATABASES")
results = cHandler.fetchall()
print"Databases\n====================="
for item in results:
 print item[0]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec9.html (1 von 2) [03.08.2007 09:09:19]

Connecting to a MySQL Database Server

#Display current database
cHandler.execute("SELECT DATABASE()")
results = cHandler.fetchall()
print "\nCurrent Database\n======================="
for item in results:
 print item[0]

#Select database
cHandler.execute("USE schedule")

#Display current database
cHandler.execute("SELECT DATABASE()")
results = cHandler.fetchall()
print "\nCurrent Database\n======================="
for item in results:
 print item[0]

myDB.close()

MySQL_conn.py

Databases
=====================
information_schema
airport
mysql
schedule
test
testy

Current Database
=======================
None

Current Database
=======================
schedule

Output from MySQL_conn.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec9.html (2 von 2) [03.08.2007 09:09:19]

Creating a MySQL Database

Creating a MySQL Database

import MySQLdb
myDB = MySQLdb.connect(host="127.0.0.1", port=3306)
cHandler = myDB.cursor()
cHandler.execute("CREATE DATABASE schedule")
cHandler.execute("CREATE TABLE Arrivals (city TEXT,\
 flight TEXT, time TEXT)")

Once you have connected to a MySQL database and got a SQL command cursor object, creating
databases and tables is just a matter of sending the appropriately formatted SQL commands to the
server.

To create a new database, use the execute(operation [, parameters]) function of the cursor object to
initiate the CREATE DATABASE <database> SQL command. To create a new table, use the execute() function
of the cursor object to initiate the CREATE Table <tablename> (<column name> <column type>, ...) SQL
command.

To verify that the table has been created, use the SHOW TABLES SQL command to return a list of table
entries available in the database.

Note

The table entries that are returned are in the form of a list. The first entry in the list is the
table name.

To verify structure of a specific table, use the DESCRIBE <tablename> SQL command to return a list of field
entries included in the table.

Note

The field entries that are returned are in the form of a list. The first entry in the list is the
field name and the second is field type.

Caution

You must have appropriate permissions on the mySQL server to be able to create a
database.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec10.html (1 von 2) [03.08.2007 09:09:20]

Creating a MySQL Database

import MySQLdb

#Connect to MySQL Server
myDB = MySQLdb.connect(host="127.0.0.1", port=3306)

#Get the cursor object
cHandler = myDB.cursor()

#Create database
cHandler.execute("CREATE DATABASE schedule")

#Select database
cHandler.execute("USE schedule")

#Create table
cHandler.execute("CREATE TABLE Arrivals (city TEXT,\
 flight TEXT, time TEXT)")

#Show created table
cHandler.execute("SHOW TABLES")
results = cHandler.fetchall()
print results

#Describe the table
cHandler.execute("DESCRIBE Arrivals")
results = cHandler.fetchall()
print results

myDB.close()

MySQL_create.py

(('arrivals',),)

(('city', 'text', 'YES', '', None, ''),
('flight', 'text', 'YES', '', None, ''),
('time', 'text', 'YES', '', None, ''))

Output from MySQL_create.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec10.html (2 von 2) [03.08.2007 09:09:20]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Adding Entries to a MySQL Database

Adding Entries to a MySQL Database

import MySQLdb
myDB = MySQLdb.connect(host="127.0.0.1", port=3306, db="schedule")
cHandler = myDB.cursor()
sqlCommand = "INSERT INTO Arrivals \
 VALUES('%s', '%s', '%s')" % \
 (city, flights[x], times[x])
cHandler.execute(sqlCommand)
myDB.commit()

Once you have connected to a MySQL database and got a SQL command cursor object, adding entries to
the database is just a matter of sending the appropriately formatted SQL commands to the server.

First, connect to the server using the MySQLdb modules connect function, and then use the MySQL
database object to get a cursor object. In the sample code, entries are added one at a time by executing
the INSERT INTO <tablename> VALUES (<data value>) SQL command using the execute function of the
cursor object.

Note

Remember to use the commit() function of the cursor object to flush pending requests to
the SQL database so that the changes will be written to disk.

import MySQLdb

cities = ["Dallas", "Los Angeles", "New York"]
flights = ["1144", "1045", "1520"]
times = ["230pm", "320pm", "420pm"]

#Connect to database
myDB = MySQLdb.connect(host="127.0.0.1", port=3306, db="schedule")

#Get cursor object
cHandler = myDB.cursor()

#Add entries to database
x = 0
for city in cities:
 sqlCommand = "INSERT INTO Arrivals \
 VALUES('%s', '%s', '%s')" % \
 (city, flights[x], times[x])
 cHandler.execute(sqlCommand)
 x += 1

#View added entries
sqlCommand = "SELECT cities, flights, times FROM Arrivals"
cHandler.execute(sqlCommand)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec11.html (1 von 2) [03.08.2007 09:09:20]

Adding Entries to a MySQL Database

results = cHandler.fetchall()
print results

#Commit changes to database
myDB.commit()

myDB.close()

MySQL_add.py

(('Dallas', '1144', '230pm'),
('Los Angeles', '1045', '320pm'),
('New York', '1520', '420pm'))

Output from MySQL_add.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec11.html (2 von 2) [03.08.2007 09:09:20]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Retrieving Entries from a MySQL Database

Retrieving Entries from a MySQL Database

import MySQLdb
myDB = MySQLdb.connect(host="127.0.0.1", port=3306, db="schedule")
cHandler = myDB.cursor()
sqlCommand = "SELECT * FROM Arrivals"
cHandler.execute(sqlCommand)
results = cHandler.fetchall()
for row in results:
 cityList.append(row[0])

Once you have connected to a MySQL database and got a SQL command cursor object, retrieving
entries from the database is just a matter of sending the appropriately formatted SQL commands to the
server.

First, connect to the server using the MySQLdb modules connect function, and then use the MySQL
database object to get a cursor object. In the sample code, all entries are retrieved together by
executing the SELECT * FROM <tablename> SQL command using the execute function of the cursor object.

Note

The SELECT SQL command returns entries as a list of lists. Because we know that the field
structure of the table is "city, flight, time," each field can be accessed directly using index
0, 1, and 2, respectively.

import MySQLdb

#Connect to database
myDB = MySQLdb.connect(host="127.0.0.1", \
 port=3306, db="schedule")

#Get cursor object
cHandler = myDB.cursor()

#Send select request for specific entries
sqlCommand = "SELECT * FROM Arrivals \
 WHERE city = 'Dallas'"
cHandler.execute(sqlCommand)

#View results
results = cHandler.fetchall()
print results

#Send select request for all entries
sqlCommand = "SELECT * FROM Arrivals"
cHandler.execute(sqlCommand)

#View results

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec12.html (1 von 2) [03.08.2007 09:09:21]

Retrieving Entries from a MySQL Database

results = cHandler.fetchall()
print results

#Process rows into lists
cityList = []
flightList = []
timeList = []
for row in results:
 cityList.append(row[0])
 flightList.append(row[1])
 timeList.append(row[2])

print "\nArrivals"
print "==="
x = 0
for flight in flightList:
 print ("Flight %s arrives from %s at %s" % \
 (flight, cityList[x], timeList[x]))
 x+=1

myDB.close()

MySQL_get.py

(('Dallas', '1144', '230pm'),)

(('Dallas', '1144', '230pm'),
('Los Angeles', '1045', '320pm'),
('New York', '1520', '420pm'))

Arrivals
===
Flight 1144 arrives from Dallas at 230pm
Flight 1045 arrives from Los Angeles at 320pm
Flight 1520 arrives from New York at 420pm

Output from MySQL_get.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch06lev1sec12.html (2 von 2) [03.08.2007 09:09:21]

Chapter 7. Implementing Internet Communication

Chapter 7. Implementing Internet Communication

Python includes several built-in modules as well as addon modules to implement different types of
Internet communication. These modules simplify many of the tasks necessary to facilitate socket
communication, email, file transfers, data streaming, HTTP requests, and more.

Because the communication possibilities with Python are so vast, this chapter focuses on phrases that
implement simple socket servers, socket clients, and FTP clients, as well as POP3 and SMTP mail clients
that can be easily incorporated into Python scripts.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07.html [03.08.2007 09:09:21]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Opening a Server-Side Socket for Receiving Data

Opening a Server-Side Socket for Receiving Data

sSock = socket(AF_INET, SOCK_STREAM)
sSock.bind((serverHost, serverPort))
sSock.listen(3)
conn, addr = sSock.accept()
data = conn.recv(1024)

The socket module included with Python provides a generic interface to a variety of low-level socket
programming. This phrase discusses how to implement a low-level socket server using the socket
module.

The first step in implementing a server-side socket interface is to create the server socket by calling -
socket(family, type [, proto]), which creates and returns a new socket. family refers to the address
family listed in Table 7.1, type refers to the socket types listed in Table 7.2, and proto refers to the
protocol number, which is typically omitted except when working with raw sockets.

Table 7.1. Protocol Families
for Python Sockets

Family Description

AF_INET Ipv4 protocols (TCP, UDP)

AF_INET6 Ipv6 protocols (TCP, UDP)

AF_UNIX Unix domain protocols

Table 7.2. Socket Types for Python Sockets

Type Description

SOCK_STREAM Opens an existing file for reading.

SOCK_DGRAM Opens a file for writing. If the file already exists, the contents are deleted. If the
file does not already exist, a new one is created.

SOCK_RAW Opens an existing file for updating, keeping the existing contents intact.

SOCK_RDM Opens a file for both reading and writing. The existing contents are kept intact.

SOCK_SEQPACKET Opens a file for both writing and reading. The existing contents are deleted.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec1.html (1 von 3) [03.08.2007 09:09:21]

Opening a Server-Side Socket for Receiving Data

Once the socket has been created, it must be bound to an address and port using the bind(address)
method, where address refers to a tuple in the form of (hostname, port). If the hostname is an empty
string, the server will allow connections on any available Internet interface on the system.

Note

You can specify <broadcast> as the hostname to use the socket to send broadcast messages.

After the socket has been bound to an interface, it can be activated by invoking the listen(backlog)
method, where backlog is an integer that indicates how many pending connections the system should
queue before rejecting new ones.

Once the socket is active, implement a while loop to wait for client connections using the accept()
method. Once a client connection has been accepted, data can be read from the connection using the
recv(buffsize [,flags]) method. The send(string [,flags]) method is used to write a response back to
the client.

from socket import *

serverHost = '' # listen on all interfaces
serverPort = 50007

#Open socket to listen on
sSock = socket(AF_INET, SOCK_STREAM)
sSock.bind((serverHost, serverPort))
sSock.listen(3)

#Handle connections
while 1:

#Accept a connection
 conn, addr = sSock.accept()
 print 'Client Connection: ', addr
 while 1:

#Receive data
 data = conn.recv(1024)
 if not data: break
 print 'Server Received: ', data
 newData = data.replace('Client', 'Processed')

#Send response
 conn.send(newData)

#Close Connection
 conn.close()

server_socket.py

Client Connection: ('137.65.77.24', 1678)
Server Received: Client Message1

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec1.html (2 von 3) [03.08.2007 09:09:21]

Opening a Server-Side Socket for Receiving Data

Server Received: Client Message2

Output from server_socket.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec1.html (3 von 3) [03.08.2007 09:09:21]

Opening a Client-Side Socket for Sending Data

Opening a Client-Side Socket for Sending Data

sSock = socket(AF_INET, SOCK_STREAM)
sSock.connect((serverHost, serverPort))
sSock.send(item)
data = sSock.recv(1024)

The socket module is also used to create a client-side socket that talks to the server-side socket
discussed in the previous phrase.

The first step in implementing a client-side socket interface is to create the client socket by calling socket
(family, type [, proto]), which creates and returns a new socket. family refers to the address family
listed previously in Table 7.1, type refers to the socket types listed previously in Table 7.2, and proto
refers to the protocol number, which is typically omitted except when working with raw sockets.

Once the client-side socket has been created, it can connect to the server socket using the connect
(address) method, where address refers to a tuple in the form of (hostname, port).

Note

To connect to a server-socket on the local computer, use localhost as the hostname in the
server address tuple.

After the client-side socket has connected to the server-side socket, data can be sent to the server using
the send(string [,flags]) method. The response from the server is received from the connection using
the recv(buffsize [,flags]) method.

import sys
from socket import *

serverHost = 'localhost'
serverPort = 50008

message = ['Client Message1', 'Client Message2']

if len(sys.argv) > 1:
 serverHost = sys.argv[1]

#Create a socket
sSock = socket(AF_INET, SOCK_STREAM)

#Connect to server
sSock.connect((serverHost, serverPort))

#Send messages
for item in message:

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec2.html (1 von 2) [03.08.2007 09:09:21]

Opening a Client-Side Socket for Sending Data

 sSock.send(item)
 data = sSock.recv(1024)
 print 'Client received: ', 'data'

sSock.close()

client_socket.py

Client received: 'Processed Message1'
Client received: 'Processed Message2'

Output from client_socket.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec2.html (2 von 2) [03.08.2007 09:09:21]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Receiving Streaming Data Using the ServerSocket Module

Receiving Streaming Data Using the ServerSocket Module

serv= SocketServer.TCPServer(("",50008),myTCPServer)
serv.serve_forever()
. . .
line = self.rfile.readline()
self.wfile.write("%s: %d bytes successfully \
received." % (sck, len(line)))

In addition to the socket module, Python includes the SocketServer module to provide you with TCP,
UDP, and UNIX classes that implement servers. These classes have methods that provide you with a
much higher level of socket control.

To implement a SocketServer to handle streaming requests, first define the class to inherit from the
SocketServer.StreamRequestHandler class.

To handle the streaming requests, override the handle method to read and process the streaming data.
The rfile.readline() function reads the streaming data until a newline character is encountered, and
then returns the data as a string.

To send data back to the client from the streaming server, use the wfile.write(string) command to
write the string back to the client.

Once you have defined the server class and overridden the handle method, create the server object by
invoking SocketServer.TCPServer(address, handler), where address refers to a tuple in the form of
(hostname, port) and handler refers to your defined server class.

After the server object has been created, you can start handling connections by invoking the server
object's handle_request() or serve_forever() method.

Note

In addition to the TCPServer method, you can also use the UDPServer, UnixStreamServer, and
UnixDatagramServer methods to create other types of servers.

import socket
import string

class
myTCPServer(SocketServer.StreamRequestHandler):
 def handle (self):
 while 1:
 peer = self.connection.getpeername()[0]
 line = self.rfile.readline()
 print "%s wrote: %s" % (peer, line)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec3.html (1 von 2) [03.08.2007 09:09:22]

Receiving Streaming Data Using the ServerSocket Module

 sck = self.connection.getsockname()[0]
 self.wfile.write("%s: %d bytes \
 successfuly received." % \
 (sck, len(line)))

#Create SocketServer object
serv =
SocketServer.TCPServer(("",50008),myTCPServer)

#Activate the server to handle clients
serv.serve_forever()

stream_server.py

137.65.76.8 wrote: Hello
137.65.76.8 wrote: Here is today's weather.
137.65.76.8 wrote: Sunny
137.65.76.8 wrote: High: 75
137.65.76.8 wrote: Low: 58
137.65.76.8 wrote: bye

Output from stream_server.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec3.html (2 von 2) [03.08.2007 09:09:22]

Sending Streaming Data

Sending Streaming Data

sSock = socket(AF_INET, SOCK_STREAM)
sSock.connect((serverHost, serverPort))
line = raw_input("Send to %s: " % (serverHost))
sSock.send(line+'\n')
data = sSock.recv(1024)

To send streaming data to the streaming server described in the previous task, first create the client
socket by calling socket(family, type [, proto]), which creates and returns a new socket.

Once the streaming client-side socket has been created, it can connect to the streaming server using the
connect(address) method, where address refers to a tuple in the form of (hostname, port).

After the streaming client-side socket has connected to the server-side socket, data can be streamed to
the server by formatting a stream of data that ends with the newline character and sending it to the
server using the send(string [,flags]) method.

A response from the server is received from the socket using the recv(buffsize [,flags]) method.

import sys
from socket import *

serverHost = 'localhost'
serverPort = 50008

if len(sys.argv) > 1:
 serverHost = sys.argv[1]

#Create socket
sSock = socket(AF_INET, SOCK_STREAM)

#Connect to server
sSock.connect((serverHost, serverPort))

#Stream data to server.
line = ""
while line != 'bye':
 line = raw_input("Send to %s: " % (serverHost))
 sSock.send(line+'\n')
 data = sSock.recv(1024)
 print 'data'

sSock.shutdown(0)
sSock.close()

stream_client.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec4.html (1 von 2) [03.08.2007 09:09:22]

Sending Streaming Data

Send to 137.65.76.28: Hello
'137.65.77.28: 6 bytes received.'
Send to 137.65.76.28: Here is today's weather.
'137.65.77.28: 25 bytes received.'
Send to 137.65.76.28: Sunny
'137.65.77.28: 6 bytes received.'
Send to 137.65.76.28: High: 75
'137.65.77.28: 9 bytes received.'
Send to 137.65.76.28: Low: 58
'137.65.77.28: 8 bytes received.'
Send to 137.65.76.28: bye
'137.65.77.28: 4 bytes received.'

Output from stream_client.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec4.html (2 von 2) [03.08.2007 09:09:22]

Sending Email Using SMTP

Sending Email Using SMTP

mMessage = ('From: %s\nTo: %s\nDate: %s\nSubject:\
 %s\n%s\n' % \
 (From, To, Date, Subject, Text))
s = smtplib.SMTP('mail.sfcn.org')
rCode = s.sendmail(From, To, mMessage)
s.quit()

The smtplib module included with Python provides simple access to SMTP servers that allow you to
connect and quickly send mail messages from your Python scripts.

Mail messages must be formatted properly for the To, From, Date, Subject, and text fields to be
processed properly by the SMTP mail server. The code in send_smtp.py shows the proper formatting for
the mail message, including the item headers and newline characters.

Once the mail message is properly formatted, connect to the SMTP server using the smtplib.SMTP(host
[,port]) method. If it is necessary to log in to the SMTP server, use the login(user, password) method
to complete an authentication.

Once connected to the SMTP server, the formatted message can be sent using sendmail(from, to,
message), where from is the sending email address string, to specifies a list of destination email address
strings, and message is the formatted message string.

After you are finished sending messages, use the quit() method to close the connection to the SMTP
server.

import smtplib
import time

From = "bwdayley@sfcn.org"
To = ["bwdayley@novell.com"]
Date = time.ctime(time.time())
Subject = "New message from Brad Dayley."
Text = "Message Text"
#Format mail message
mMessage = ('From: %s\nTo: %s\nDate: \
 %s\nSubject: %s\n%s\n' %
 (From, To, Date, Subject, Text))

print 'Connecting to Server'
s = smtplib.SMTP('mail.sfcn.org')

#Send mail
rCode = s.sendmail(From, To, mMessage)
s.quit()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec5.html (1 von 2) [03.08.2007 09:09:22]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Sending Email Using SMTP

if rCode:
 print 'Error Sending Message'
else:
 print 'Message Sent Successfully'

send_smtp.py

Connecting to Server
Message Sent Successfully

Output from send_smtp.py code

Also, see Figure 7.1.

Figure 7.1. Email message sent by send_smtp.py code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec5.html (2 von 2) [03.08.2007 09:09:22]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/07fig01_alt.jpg
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Retrieving Email from a POP3 Server

Retrieving Email from a POP3 Server

mServer = poplib.POP3('mail.sfcn.org')
mServer.user(getpass.getuser())
mServer.pass_(getpass.getpass())
numMessages = len(mServer.list()[1])
for msg in mServer.retr(mList+1)[1]:

The poplib module included with Python provides simple access to POP3 mail servers that allow you to
connect and quickly retrieve messages using your Python scripts.

Connect to the POP3 mail server using the poplib.POP3(host [,port [,keyfile [,certfile]]]) method,
where host is the address of the POP3 mail server. The optional port argument defaults to 995. The
other optional arguments, keyfile and certfile, refer to the PEM-formatted private key and certificate
authentication files, respectively.

To log in to the POP3 server, the code in pop3_mail.py calls the user(username) and pass_(password)
methods of the POP3 server object to complete the authentication.

Note

The example uses getuser() and getpass() from the getpass module to retrieve the
username and password. The username and password can also be passed in as clear text
strings.

After it's authenticated to the POP3 server, the poplib module provides several methods to manage the
mail messages. The example uses the list() method to retrieve a list of messages in the tuple format
(response, msglist, size), where response is the server's response code, msglist is a list of messages
in string format, and size is the size of the response in bytes.

To retrieve only a single message, use retr(msgid). The retr method returns the message numbered
msgid in the form of a tuple (response, lines, size), where response is the server response, lines is a list
of strings that compose the mail message, and size is the total size in bytes of the message.

Note

The lines list returned by the retr method includes all lines of the messages, including the
header. To retrieve specific information, such as the recipient list, the lines list must be
parsed.

When you are finished managing the mail messages, use the quit() method to close the connection to
the POP3 server.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec6.html (1 von 2) [03.08.2007 09:09:23]

Retrieving Email from a POP3 Server

import poplib
import getpass

mServer = poplib.POP3('mail.sfcn.org')

#Login to mail server
mServer.user(getpass.getuser())
mServer.pass_(getpass.getpass())

#Get the number of mail messages
numMessages = len(mServer.list()[1])

print "You have %d messages." % (numMessages)
print "Message List:"

#List the subject line of each message
for mList in range(numMessages) :
 for msg in mServer.retr(mList+1)[1]:
 if msg.startswith('Subject'):
 print '\t' + msg
 break

mServer.quit()

pop3_mail.py

password:
You have 10 messages.
Message List:
 Subject: Static IP Info
 Subject: IP Address Change
 Subject: Verizon Wireless Online Statement
 Subject: New Static IP Address
 Subject: Your server account has been created
 Subject: Looking For New Home Projects?
 Subject: PDF Online - cl_scr_sheet.xls
 Subject: Professional 11 Upgrade Offer
 Subject: #1 Ball Played at the U.S. Open
 Subject: Chapter 3 submission

Output from pop3_mail.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec6.html (2 von 2) [03.08.2007 09:09:23]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Using Python to Fetch Files from an FTP Server

Using Python to Fetch Files from an FTP Server

ftp = ftplib.FTP('ftp.novell.com', 'anonymous', \
 'bwdayley@novell.com')
gFile = open("readme.txt", "wb")
ftp.retrbinary('RETR Readme', gFile.write)
gFile.close()
ftp.quit()

A common and extremely useful function of Python scripts is to retrieve files to be processed using the
FTP protocol. The ftplib module included in Python allows you to use Python scripts to quickly attach to
an FTP server, locate files, and then download them to be processed locally.

To open a connection to the FTP server, create an FTP server object using the ftplib.FTP([host [, user
[, passwd]]]) method.

Once the connection to the server is opened, the methods in the ftplib module provide most of the FTP
functionality to navigate the directory structure, manage files and directories, and, of course, download
files.

The example shows connecting to an FTP server, listing the files and directories in the FTP server root
directory using the dir() method, and then changing the directory using the cwd(path) method. In the
example, the contents of the file Readme are downloaded from the FTP server and written to the local
file readme.txt using the retrbinary(command, callback [, blocksize [, reset]]) method.

After you are finished downloading/managing the files on the FTP server, use the quit() method to close
the connection.

import ftplib

#Open ftp connection
ftp = ftplib.FTP('ftp.novell.com', 'anonymous',
'bwdayley@novell.com')

#List the files in the current directory
print "File List:"
files = ftp.dir()
print files

#Get the readme file
ftp.cwd("/pub")
gFile = open("readme.txt", "wb")
ftp.retrbinary('RETR Readme', gFile.write)
gFile.close()
ftp.quit()

#Print the readme file contents
print "\nReadme File Output:"

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec7.html (1 von 2) [03.08.2007 09:09:23]

Using Python to Fetch Files from an FTP Server

gFile = open("readme.txt", "r")
buff = gFile.read()
print buff
gFile.close()

ftp_client.py

File List:
-rw-r-r- 1 root root 720 Dec 15 2005 README.html
-rw-r-r- 1 root root 1406 Dec 15 2005 Readme
drwxrwxrwx 2 root root 53248 Jun 26 18:10 incoming
drwxrwxrwx 2 root root 16384 Jun 26 17:53 outgoing
drwxr-xr-x 3 root root 4096 May 12 16:12 partners
drwxr-xr-x 2 root root 4096 Apr 4 18:24 priv
drwxr-xr-x 4 root root 4096 May 25 22:20 pub
None

Readme File Output:
**

 Before you download any software product you must
 read and agree to the following:
. . .

Output from ftp_client.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch07lev1sec7.html (2 von 2) [03.08.2007 09:09:23]

Chapter 8. Processing HTML

Chapter 8. Processing HTML

Several modules included with Python provide virtually all the necessary tools necessary to parse and
process HTML documents without needing to use a web server or web browser. Parsing HTML files is
becoming much more commonplace in such applications as search engines, document indexing,
document conversion, data retrieval, site backup or migration, as well as several others.

Because there is no way to cover the extent of options Python provides in HTML processing, the first two
phrases in this chapter focus on specific Python modules to simplify opening HTML documents locally
and on the Web. The rest of the phrases discuss how to use the Python modules to quickly parse the
data in the HTML files to process specific items, such as links, images, and cookies. The final phrase in
this chapter uses the example of fixing HTML files that do not have properly formatted tag data to
demonstrate how to easily process the entire contents of the HTML file.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08.html [03.08.2007 09:09:23]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Parsing URLs

Parsing URLs

import urlparse
parsedTuple = urlparse.urlparse(
"http://www.google.com/search?
hl=en&q=urlparse&btnG=Google+Search")
unparsedURL = urlparse.urlunparse((URLscheme, \
 URLlocation, URLpath, '', '', ''))
newURL = urlparse.urljoin(unparsedURL,
"/module-urllib2/request-objects.html")

The urlparse module included with Python makes it easy to break down URLs into specific components
and reassemble them. This is very useful for a number of purposes when processing HTML documents.

The urlparse(urlstring [, default_scheme [, allow_fragments]]) function takes the URL provided in
urlstring and returns the tuple (scheme, netloc, path, parameters, query, fragment). The tuple can
then be used to determine things such as location scheme (HTTP, FTP, and so on), server address, file
path, and so on.

The urlunparse(tuple) function accepts the tuple (scheme, netloc, path, parameters, query, fragment)
and reassembles it into a properly formatted URL that can be used by the other HTML parsing modules
included with Python.

The urljoin(base, url [, allow_fragments]) function accepts a base URL as the first argument and
then joins whatever relative URL is specified in the second argument. The urljoin function is extremely
useful in processing several files in the same location by joining new filenames to the existing base URL
location.

Note

If the relative path does not start using the root (/) character, the rightmost location in the
base URL path will be replaced with the relative path. For example, a base URL of http://
www.testpage.com/pub and a relative URL of test.html would join to form the URL http://
www.testpage.com/test.html, not http://www.testpage.com/test.html. If you want to keep
the end directory in the path, make sure to end the base URL string with a / character.

import urlparse

URLscheme = "http"
URLlocation = "www.python.org"
URLpath = "lib/module-urlparse.html"

modList = ("urllib", "urllib2", \
 "httplib", "cgilib")

#Parse address into tuple

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec1.html (1 von 2) [03.08.2007 09:09:24]

http://www.testpage.com/pub
http://www.testpage.com/pub
http://www.testpage.com/test.html
http://www.testpage.com/test.html
http://www.testpage.com/test.html

Parsing URLs

print "Parsed Google search for urlparse"
parsedTuple = urlparse.urlparse(
"http://www.google.com/search?
hl=en&q=urlparse&btnG=Google+Search")
print parsedTuple

#Unparse list into URL
print "\nUnarsed python document page"
unparsedURL = urlparse.urlunparse(\
(URLscheme, URLlocation, URLpath, '', '', ''))
print "\t" + unparsedURL

#Join path to new file to create new URL
print "\nAdditional python document pages using
join"
for mod in modList:
 newURL = urlparse.urljoin(unparsedURL, \
 "module-%s.html" % (mod))
 print "\t" + newURL

#Join path to subpath to create new URL
print "\nPython document pages using join of sub-path"
newURL = urlparse.urljoin(unparsedURL,
 "module-urllib2/request-objects.html")
print "\t" + newURL

URL_parse.py

Parsed Google search for urlparse
('http', 'www.google.com', '/search', '',
'hl=en&q=urlparse&btnG=Google+Search', '')

Unparsed python document page
 http://www.python.org/lib/module-urlparse.html

Additional python document pages using join
 http://www.python.org/lib/module-urllib.html
 http://www.python.org/lib/module-urllib2.html
 http://www.python.org/lib/module-httplib.html
 http://www.python.org/lib/module-cgilib.html

Python document pages using join of sub-path
 http://www.python.org/lib/module-urllib2/
request-objects.html

Output from URL_parse.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec1.html (2 von 2) [03.08.2007 09:09:24]

Opening HTML Documents

Opening HTML Documents

import urllib
u = urllib.urlopen(webURL)
u = urllib.urlopen(localURL)
buffer = u.read()
print u.info()
print "Read %d bytes from %s.\n" % \
(len(buffer), u.geturl())

The urllib and urllib2 modules included with Python provide the functionality to open and fetch data from
URLs, including HTML documents.

To use the urllib module to open an HTML document, specify the URL location of the document, including
the filename in the urlopen(url [,data]) function. The urlopen function will open a local file and return a
file-like object that can be used to read data from the HTML document.

Once you have opened the HTML document, you can read the file using the read([nbytes]), readline(),
and readlines() functions similar to normal files. To read the entire contents of the HTML document, use
the read() function to return the file contents as a string.

After you open a location, you can retrieve the location of the file using the geturl() function. The
geturl function returns the URL in string format, taking into account any redirection that might have
taken place when accessing the HTML file.

Note

Another helpful function included in the file-like object returned from urlopen is the info()
function. The info() function returns the available metadata about the URL location,
including content length, content type, and so on.

import urllib

webURL = "http://www.python.org"
localURL = "/books/python/CH8/code/test.html"

#Open web-based URL
u = urllib.urlopen(webURL)
buffer = u.read()
print u.info()
print "Read %d bytes from %s.\n" % \
(len(buffer), u.geturl())

#Open local-based URL
u = urllib.urlopen(localURL)
buffer = u.read()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec2.html (1 von 2) [03.08.2007 09:09:24]

Opening HTML Documents

print u.info()
print "Read %d bytes from %s." % \
(len(buffer), u.geturl())

html_open.py

Date: Tue, 18 Jul 2006 18:28:19 GMT
Server: Apache/2.0.54 (Debian GNU/Linux)
DAV/2 SVN/1.1.4 mod_python/3.1.3 Python/2.3.5
mod_ssl/2.0.54 OpenSSL/0.9.7e
Last-Modified: Mon, 17 Jul 2006 23:06:04 GMT
ETag: "601f6-351c-1310af00"
Accept-Ranges: bytes
Content-Length: 13596
Connection: close
Content-Type: text/html

Web-Based URL
Read 13596 bytes from http://www.python.org.
Content-Type: text/html
Content-Length: 433
Last-modified: Thu, 13 Jul 2006 22:07:53 GMT

Local-Based URL
Read 433 bytes from
file:///books/python/CH8/code/test.html.

Output from html_open.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec2.html (2 von 2) [03.08.2007 09:09:24]

Retrieving Links from HTML Documents

Retrieving Links from HTML Documents

import HTMLParser
import urllib
class parseLinks(HTMLParser.HTMLParser):
 def handle_starttag(self, tag, attrs):
 if tag == 'a':
 for name,value in attrs:
 if name == 'href':
 print value
 print self.get_starttag_text()

lParser = parseLinks()
lParser.feed(urllib.urlopen(\
 "http://www.python.org/index.html").read())

The Python language comes with a very useful HTMLParser module that enables simple, efficient parsing
of HTML documents based on the tags inside the HTML document. The HTMLParser module is one of the
most important when processing HTML documents.

A common task when processing HTML documents is to pull all the links out of the document. Using the
HTMLParser module, this task is fairly simple. The first step is to define a new HTMLParser class that
overrides the handle_starttag() method to print the HRef attribute value of all a tags.

Once the new HTMLParser class has been defined, create an instance of the class to return an
HTMLParser object. Then open the HTML document using urllib.urlopen(url) and read the contents of
the HTML file.

To parse the HTML file contents and print the links contained inside, feed the data to the HTMLParser
object using the feed(data) function. The feed function of the HTMLParser object will accept the data
and parse it based on the defined HTMLParser object.

Note

If the data passed to the feed() function of the HTMLParser is not complete, the incomplete
tag is kept and then parsed the next time the feed() function is called. This can be useful
when working with large HTML files that need to be fed to the parser in chunks.

import HTMLParser
import urllib
import sys

#Define HTML Parser
class parseLinks(HTMLParser.HTMLParser):
 def handle_starttag(self, tag, attrs):
 if tag == 'a':

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec3.html (1 von 2) [03.08.2007 09:09:24]

Retrieving Links from HTML Documents

 for name,value in attrs:
 if name == 'href':
 print value
 print self.get_starttag_text()

#Create instance of HTML parser
lParser = parseLinks()

#Open the HTML file
lParser.feed(urllib.urlopen(\
 "http://www.python.org/index.html").read())

lParser.close()

html_links.py

<a href="psf" class=""
title="Python Software Foundation">
links

dev
<a href="dev" class=""
title="Python Core Language Development">
download/releases/2.4.3

http://docs.python.org

ftp/python/2.4.3/python-2.4.3.msi

ftp/python/2.4.3/Python-2.4.3.tar.bz2

pypi

Output from html_links.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec3.html (2 von 2) [03.08.2007 09:09:24]

Retrieving Images from HTML Documents

Retrieving Images from HTML Documents

import HTMLParser
import urllib

def getImage(addr):
 u = urllib.urlopen(addr)
 data = u.read()

class parseImages(HTMLParser.HTMLParser):
 def handle_starttag(self, tag, attrs):
 if tag == 'img':
 for name,value in attrs:
 if name == 'src':
 getImage(urlString + "/" + value)

u = urllib.urlopen(urlString)
lParser.feed(u.read())

A common task when processing HTML documents is to pull all the images out of the document. Using
the HTMLParser module, this task is fairly simple. The first step is to define a new HTMLParser class that
overrides the handle_starttag() method to find the img tags and saves the file pointed to by the src
attribute value.

Once the new HTMLParser class has been defined, create an instance of the class to return an
HTMLParser object. Then open the HTML document using urllib.urlopen(url) and read the contents of
the HTML file.

To parse the HTML file contents and save the images displayed inside, feed the data to the HTMLParser
object using the feed(data) function. The feed function of the HTMLParser object will accept the data
and parse it based on the defined HTMLParser object.

import HTMLParser
import urllib
import sys

urlString = "http://www.python.org"

#Save image file to disk
def getImage(addr):
 u = urllib.urlopen(addr)
 data = u.read()

 splitPath = addr.split('/')
 fName = splitPath.pop()
 print "Saving %s" % fName

 f = open(fName, 'wb')
 f.write(data)
 f.close()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec4.html (1 von 2) [03.08.2007 09:09:25]

Retrieving Images from HTML Documents

#Define HTML parser
class parseImages(HTMLParser.HTMLParser):
 def handle_starttag(self, tag, attrs):
 if tag == 'img':
 for name,value in attrs:
 if name == 'src':
 getImage(urlString + "/" + value)

#Create instance of HTML parser
lParser = parseImages()

#Open the HTML file
u = urllib.urlopen(urlString)
print "Opening URL\n===================="
print u.info()

#Feed HTML file into parser
lParser.feed(u.read())

lParser.close()

html_images.py

Opening URL
====================
Date: Wed, 19 Jul 2006 18:47:27 GMT
Server: Apache/2.0.54 (Debian GNU/Linux)
DAV/2 SVN/1.1.4 mod_python/3.1.3 Python/2.3.5
mod_ssl/2.0.54 OpenSSL/0.9.7e
Last-Modified: Wed, 19 Jul 2006 16:08:34 GMT
ETag: "601f6-351c-79a6c480"
Accept-Ranges: bytes
Content-Length: 13596
Connection: close
Content-Type: text/html

Saving python-logo.gif
Saving trans.gif
Saving trans.gif
Saving nasa.jpg

Output from html_images.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec4.html (2 von 2) [03.08.2007 09:09:25]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Retrieving Text from HTML Documents

Retrieving Text from HTML Documents

import HTMLParser
import urllib

class parseText(HTMLParser.HTMLParser):
 def handle_data(self, data):
 if data != '\n':
 urlText.append(data)

lParser = parseText()
lParser.feed(urllib.urlopen(\
http://docs.python.org/lib/module-HTMLParser.html \
).read())

A common task when processing HTML documents is to pull all the text out of the document. Using the
HTMLParser module, this task is fairly simple. The first step is to define a new HTMLParser class that
overrides the handle_data() method to parse and print the text data.

Once the new HTMLParser class has been defined, create an instance of the class to return an
HTMLParser object. Then open the HTML document using urllib.urlopen(url) and read the contents of
the HTML file.

To parse the HTML file contents and print the text contained inside, feed the HTML file contents to the
HTMLParser object using the feed(data) function. The feed function of the HTMLParser object will accept
the data and parse it based on the defined HTMLParser object.

Note

If the data passed to the feed() function of the HTMLParser is not complete, the incomplete
tag is kept and then parsed the next time the feed() function is called. This can be useful
when working with large HTML files that need to be fed to the parser in chunks.

import HTMLParser
import urllib

urlText = []

#Define HTML Parser
class parseText(HTMLParser.HTMLParser):
 def handle_data(self, data):
 if data != '\n':
 urlText.append(data)

#Create instance of HTML parser
lParser = parseText()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec5.html (1 von 2) [03.08.2007 09:09:25]

Retrieving Text from HTML Documents

#Feed HTML file into parser
lParser.feed(urllib.urlopen(\
http://docs.python.org/lib/module-HTMLParser.html \
).read())
lParser.close()
for item in urlText:
 print item

html_text.py

13.1 HTMLParser - Simple HTML and XHTML parser
Python Library Reference
Previous:
13. Structured Markup Processing
Up:
13. Structured Markup Processing
Next:
13.1.1 Example HTML Parser

13.1
HTMLParser
 -
 Simple HTML and XHTML parser
. . .

Output from html_text.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec5.html (2 von 2) [03.08.2007 09:09:25]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Retrieving Cookies in HTML Documents

Retrieving Cookies in HTML Documents

import urllib2
import cookielib
from urllib2 import urlopen, Request

cJar = cookielib.LWPCookieJar()
opener=urllib2.build_opener(\
 urllib2.HTTPCookieProcessor(cJar))
urllib2.install_opener(opener)
r = Request(testURL)
h = urlopen(r)
for ind, cookie in enumerate(cJar):
 print "%d - %s" % (ind, cookie)
 cJar.save(cookieFile)

The Python language includes a cookielib module that provides classes for automatic handling of HTTP
cookies in HTML documents. This can be absolutely necessary when dealing with HTML documents that
require cookies to be set on the client.

To retrieve the cookies from an HTML document, first create an instance of a cookie jar using the
LWPCookieJar() function of the cookielib module. The LWPCookieJar() function returns an object that can
load from and save cookies to disk.

Next, create an opener, using the build_opener([handler, . . .]) function of the urllib2 module, which
will handle the cookies when the HTML file is opened. The build_opener function accepts zero or more
handlers that will be chained together in the order in which they are specified and returns an opener
object.

Note

If you want urlopen() to use the opener object to open HTML files, call the install_opener
(opener) function and pass in the opener object. Otherwise, use the open(url) function of
the opener object to open the HTML files.

Once the opener has been created and installed, create a Request object using the Request(url) function
of the urllib2 module, and then open the HTML file using the urlopen(request) function.

Once the HTML page has been opened, any cookies in the page will now be stored in the LWPCookieJar
object. You can then use the save(filename) function of the LWPCookieJar object.

import os
import urllib2
import cookielib
from urllib2 import urlopen, Request

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec6.html (1 von 2) [03.08.2007 09:09:26]

Retrieving Cookies in HTML Documents

cookieFile = "cookies.dat"
testURL = 'http://maps.google.com/'

#Create instance of cookie jar
cJar = cookielib.LWPCookieJar()

#Create HTTPCookieProcessor opener object
opener = urllib2.build_opener(\
 urllib2.HTTPCookieProcessor(cJar))

#Install the HTTPCookieProcessor opener
urllib2.install_opener(opener)

#Create a Request object
r = Request(testURL)

#Open the HTML file
h = urlopen(r)
print "Page Header\n======================"
print h.info()

print "Page Cookies\n======================"
for ind, cookie in enumerate(cJar):
 print "%d - %s" % (ind, cookie)

#Save the cookies
cJar.save(cookieFile)

html_cookie.py

Page Header
======================
Cache-Control: private
Set-Cookie: PREF=ID=fac1f1fcb33dae16:TM=1153336398:
LM=1153336398:S=CpIvoPKTNq6KhCx1; expires=Sun,
17-Jan-2038 19:14:07 GMT; path=/; domain=.google.com
Content-Type: text/html; charset=ISO-8859-1
Server: mfe
Content-Length: 28271
Date: Wed, 19 Jul 2006 19:13:18 GMT

Page Cookies
======================
0 - <Cookie PREF=ID=fac1f1fcb33dae16:TM=1153336398:
LM=1153336398:S=CpIvoPKTNq6KhCx1 for .google.com/>

Output from html_cookie.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec6.html (2 von 2) [03.08.2007 09:09:26]

Adding Quotes to Attribute Values in HTML Documents

Adding Quotes to Attribute Values in HTML Documents

import HTMLParser
import urllib

class parseAttrs(HTMLParser.HTMLParser):
 def handle_starttag(self, tag, attrs):
 . . .

attrParser = parseAttrs()
attrParser.init_parser()
attrParser.feed(urllib.urlopen("test2.html").read())

Earlier in this chapter, we discussed parsing HTML files based on specific handlers in the HTML parser.
There are times when you need to use all the handlers to process an HTML document. Using the
HTMLParser module to parse all entities in the HTML file is not much more complex than handling the
links or images.

This phrase discusses how to use the HTMLParser module to parse an HTML file to fix the fact that the
attribute values do not have quotes around them. The first step is to define a new HTMLParser class that
overrides all the following handlers so that the quotes can be added to the attribute values.

handle_starttag(tag, attrs)
handle_charref(name)
handle_endtag(tag)
handle_entityref(ref)
handle_data(text)
handle_comment(text)
handle_pi(text)
handle_decl(text)
handle_startendtag(tag, attrs)

You will also need to define a function inside the parser class to initialize the variables used to store the
parsed data and another function to return the parsed data.

Once the new HTMLParser class has been defined, create an instance of the class to return an
HTMLParser object. Use the init function you created to initialize the parser; then open the HTML
document using urllib.urlopen(url) and read the contents of the HTML file.

To parse the HTML file contents and add the quotes to the attribute values, feed the data to the
HTMLParser object using the feed(data) function. The feed function of the HTMLParser object will accept
the data and parse it based on the defined HTMLParser object.

import HTMLParser
import urllib
import sys

#Define the HTML parser

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec7.html (1 von 3) [03.08.2007 09:09:26]

Adding Quotes to Attribute Values in HTML Documents

class parseAttrs(HTMLParser.HTMLParser):
 def init_parser (self):
 self.pieces = []

 def handle_starttag(self, tag, attrs):
 fixedAttrs = ""
 #for name,value in attrs:
 for name, value in attrs:
 fixedAttrs += "%s=\"%s\" " % (name, value)
 self.pieces.append("<%s %s>" % (tag, fixedAttrs))

 def handle_charref(self, name):
 self.pieces.append("&#%s;" % (name))

 def handle_endtag(self, tag):
 self.pieces.append("</%s>" % (tag))

 def handle_entityref(self, ref):
 self.pieces.append("&%s" % (ref))

 def handle_data(self, text):
 self.pieces.append(text)

 def handle_comment(self, text):
 self.pieces.append("<!--%s-->" % (text))

 def handle_pi(self, text):
 self.pieces.append("<?%s>" % (text))

 def handle_decl(self, text):
 self.pieces.append("<!%s>" % (text))

 def parsed (self):
 return "".join(self.pieces)

#Create instance of HTML parser
attrParser = parseAttrs()

#Initialize the parser data
attrParser.init_parser()

#Feed HTML file into parser
attrParser.feed(urllib.urlopen("test2.html").read())

#Display original file contents
print "Original File\n========================"
print open("test2.html").read()

#Display the parsed file
print "Parsed File\n========================"
print attrParser.parsed()

attrParser.close()

html_quotes.py

Original File
========================

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec7.html (2 von 3) [03.08.2007 09:09:26]

Adding Quotes to Attribute Values in HTML Documents

<html lang="en" xml:lang="en">
<head>
<meta content="text/html; charset=utf-8"
 http-equiv="content-type"/>
<title>Web Page</title>
</head>
<body>
<H1>Web Listings</H1>
Python Web Site
local page

</body>
</html>

Parsed File
========================
<html lang="en" xml:lang="en" >
<head >
<meta content="text/html; charset=utf-8"
 http-equiv="content-type" ></meta>
<title >Web Page</title>
</head>
<body >
<h1 >Web Listings</h1>
Python Web Site
local page

</body>
</html>

Output from html_quotes.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch08lev1sec7.html (3 von 3) [03.08.2007 09:09:26]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Chapter 9. Processing XML

Chapter 9. Processing XML

Python includes several modules that provide most of the tools necessary to parse and process XML
documents. Parsing XML files is becoming much more critical as applications adopt the XML standard as
the best way to transfer data between applications and systems.

Because there is no way to cover the extent of options Python provides in XML processing, I've chosen
to present phrases that demonstrate some common tasks. To provide as broad of coverage as possible,
these phrases will use the xml.dom, xml.sax, and xml.parsers.expat modules.

The phrases in this chapter cover concepts of basic XML processing such as loading, navigating, and
checking for well-formed documents. They also cover more advanced XML processing such as searches,
tag processing, and extracting text.

Note

Many XML processing tasks could be accomplished differently by using different modules.
Don't get locked into a specific module for processing the XML data; another module may
perform the same task better.

Note

All the phrases in this chapter process the same XML file. The output of that XML file is
listed in the output section of the "Loading an XML Document" phrase.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09.html [03.08.2007 09:09:26]

Loading an XML Document

Loading an XML Document

from xml.dom import minidom
DOMTree = minidom.parse('emails.xml')
print xmldoc.toxml()

The easiest way to quickly load an XML document is to create a minidom object using the xml.dom
module. The minidom object provides a simple parser method that will quickly create a DOM tree from
the XML file.

The sample phrase calls the parse(file [,parser]) function of the minidom object to parse the XML file
designated by file into a DOM tree object. The optional parser argument allows you to specify a custom
parser object to use when parsing the XML file.

Note

The DOM tree object can be converted back into XML by calling the toxml() function of the
object, which returns a string containing the full contents of the XML file.

from xml.dom import minidom

#Open XML document using minidom parser
DOMTree = minidom.parse('emails.xml')

#Print XML contents
print DOMTree.toxml()

xml_open.py

<?xml version="1.0" ?><!DOCTYPE emails [
 <!ELEMENT email (to, from, subject,
 date, body)>
 <!ELEMENT to (addr+)>
 <!ELEMENT from (addr)>
 <!ELEMENT subject (#PCDATA)>
 <!ELEMENT date (#PCDATA)>
 <!ELEMENT body (#PCDATA)>
 <!ELEMENT addr (#PCDATA)>
 <!ATTLIST addr type (FROM | TO |
 CC | BC) "none">
]><emails>
 <email>
 <to>
 <addr
type="TO">bwdayley@novell.com</addr>
 <addr type="CC">bwdayley@sfcn.org</addr>

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec1.html (1 von 2) [03.08.2007 09:09:27]

Loading an XML Document

 </to>
 <from>
 <addr
type="FROM">ddayley@sfcn.org</addr>
 </from>
 <subject>
 Update List
 </subject>
 <body>
 Please add me to the list.
 </body>
 </email>
 <email>
 <to>
 <addr
type="TO">bwdayley@novell.com</addr>
 <addr type="BC">bwdayley@sfcn.org</addr>
 </to>
 <from>
 <addr
type="FROM">cdayley@sfcn.org</addr>
 </from>
 <subject>
 More Updated List
 </subject>
 <body>
 Please add me to the list also.
 </body>
 </email>
</emails>

Output from xml_open.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec1.html (2 von 2) [03.08.2007 09:09:27]

Checking for Well-Formed XML Documents

Checking for Well-Formed XML Documents

from xml.sax.handler import ContentHandler
import xml.sax
xmlparser = xml.sax.make_parser()
xmlparser.setContentHandler(ContentHandler())
xmlparser.parse(fName)

One of the most common tasks when processing XML documents is checking to see whether a document
is well formed. The best way to determine whether a document is well formed is to use the xml.sax
module to parse inside a try statement that will handle an exception if the document is not well formed.

First, create an xml.sax parser object using the make_parser() function. The make_parser function will
return a parser object that can be used to parse the XML file.

After you have created the parser object, add a content handler to the object using its setContentHandler
(handler) function. In this phrase, a generic content handler is passed to the object by calling the xml.
sax.handler.ContentHandler() function.

Once the content handler has been added to the parser object, the XML files can be parsed inside a try
block. If the parser encounters an error in the XML document, an exception will be thrown; otherwise,
the document is well formed.

import sys
from xml.sax.handler import ContentHandler
import xml.sax

fileList = ["emails.xml", "bad.xml"]

#Create a parser object
xmlparser = xml.sax.make_parser()

#Attach a generic content handler to parser
xmlparser.setContentHandler(ContentHandler())

#Parse the files and handle exceptions
#on bad-formed XML files
for fName in fileList:
 try:
 xmlparser.parse(fName)
 print "%s is a well-formed file." % fName
 except Exception, err:
print "ERROR %s:\n\t %s is not a well-formed file."
%
 (err, fName)

xml_wellformed.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec2.html (1 von 2) [03.08.2007 09:09:27]

Checking for Well-Formed XML Documents

emails.xml is a well-formed file.
ERROR bad.xml:5:12: not well-formed (invalid token):
 bad.xml is not a well-formed file.

Output from xml_wellformed.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec2.html (2 von 2) [03.08.2007 09:09:27]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Accessing Child Nodes

Accessing Child Nodes

from xml.dom import minidom
xmldoc = minidom.parse('emails.xml')
cNodes = xmldoc.childNodes
#Direct Node Access
print cNodes[0].toxml()
#Find node by name
nList = cNodes[1].getElementsByTagName("to")
#Walk node tree
for node in nList:
 eList = node.getElementsByTagName("addr")
. . .
def printNodes (nList, level):
 for node in nList:
 print (" ")*level, node.nodeName, \
 node.nodeValue
 printNodes(node.childNodes, level+1)

printNodes(xmldoc.childNodes, 0)

Accessing child nodes in a parsed DOM tree can be managed in several different ways. This phrase
discusses how to access them using a direct reference, looking up the object by tag name and simply
walking the DOM tree.

The first step is to parse the XML document using the minidom.parse(file) function to create a DOM tree
object. The child nodes of the DOM tree can be accessed directly using the childNodes attribute, which is
a list of the child nodes at the root of the tree.

Because the childNodes attribute is a list, nodes can be accessed directly using the following syntax:
childNodes[index].

Note

The first node in the childNodes list of the DOM tree object will be the DTD node.

To search for nodes by their tag name, use the getElementsByTagName(tag) of the node object. The
getElementsByTagName function accepts a string representation of the tag name for child nodes and
returns a list of all child nodes with that tag.

You can also walk the DOM tree recursively by defining a recursive function that will accept a node list;
then, call that function and pass the childNodes attribute of the DOM tree object. Finally, recursively call
the function again with the childNodes attribute of each child node in the node list, as shown in the
sample phrase.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec3.html (1 von 3) [03.08.2007 09:09:27]

Accessing Child Nodes

from xml.dom import minidom

#Parse XML file to DOM tree
xmldoc = minidom.parse('emails.xml')

#Get nodes at root of tree
cNodes = xmldoc.childNodes

#Direct Node Access
print "DTD Node\n================="
print cNodes[0].toxml()

#Find node by name
print "\nTo Addresses\n==================="
nList = cNodes[1].getElementsByTagName("to")
for node in nList:
 eList = node.getElementsByTagName("addr")
 for e in eList:
 print e.toxml()

print "\nFrom Addresses\n==================="
nList = cNodes[1].getElementsByTagName("from")
for node in nList:
 eList = node.getElementsByTagName("addr")
 for e in eList:
 print e.toxml()

#Walk node tree
def printNodes (nList, level):
 for node in nList:
 print (" ")*level, node.nodeName, \
 node.nodeValue
 printNodes(node.childNodes, level+1)

print "\nNodes\n==================="
printNodes(xmldoc.childNodes, 0)

xml_child.py

DTD Node
=================
<!DOCTYPE emails [
 <!ELEMENT email (to, from, subject, date,
body)>
 <!ELEMENT to (addr+)>
 <!ELEMENT from (addr)>
 <!ELEMENT subject (#PCDATA)>
 <!ELEMENT date (#PCDATA)>
 <!ELEMENT body (#PCDATA)>
 <!ELEMENT addr (#PCDATA)>
 <!ATTLIST addr type (FROM | TO | CC | BC)
"none">
]>

To Addresses
===================
<addr type="TO">bwdayley@novell.com</addr>
<addr type="CC">bwdayley@sfcn.org</addr>

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec3.html (2 von 3) [03.08.2007 09:09:27]

Accessing Child Nodes

<addr type="TO">bwdayley@novell.com</addr>
<addr type="BC">bwdayley@sfcn.org</addr>

From Addresses
===================
<addr type="FROM">ddayley@sfcn.org</addr>
<addr type="FROM">cdayley@sfcn.org</addr>

Nodes
===================
 emails None
 emails None
 #text
 email None
 #text
 to None
 #text
 addr None
 #text bwdayley@novell.com
 #text
 addr None
 #text bwdayley@sfcn.org
 #text
 #text
 from None
 #text
 addr None
 #text ddayley@sfcn.org
 #text
 #text
 subject None
 #text
 Update List
 #text
 body None
 #text
 Please add me to the list.
 #text
 #text
. . .

Output from xml_child.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec3.html (3 von 3) [03.08.2007 09:09:27]

Accessing Element Attributes

Accessing Element Attributes

from xml.dom import minidom
xmldoc = minidom.parse('emails.xml')
cNodes = xmldoc.childNodes
print "\nTo Addresses\n==================="
nList = cNodes[1].getElementsByTagName("to")
for node in nList:
 eList = node.getElementsByTagName("addr")
 for e in eList:
 if e.hasAttribute("type"):
 if e.getAttribute("type") == "TO":
 print e.toxml()

The first step to accessing element attributes in a XML file is to parse the XML document using the
minidom.parse(file) function to create a DOM tree object. The child nodes of the DOM tree can be
accessed directly using the childNodes attribute, which is a list of the child nodes at the root of the tree.

Use the childNodes attribute to navigate the DOM tree, or search for the elements by their tag name, as
described in the previous task, to find the nodes you are looking for.

Once you have found the node, determine whether the node does have the attribute by calling the
hasAttribute(name) function of the node object, which returns true if the node does contain the attribute
specified by name. If the node does have the attribute, then you can use the getAttribute(name)
function to retrieve a string representation of the attribute value.

from xml.dom import minidom

#Parse XML file to DOM tree
xmldoc = minidom.parse('emails.xml')

#Get nodes at root of tree
cNodes = xmldoc.childNodes

#Find attributes by name
print "\nTo Addresses\n==================="
nList = cNodes[1].getElementsByTagName("to")
for node in nList:
 eList = node.getElementsByTagName("addr")
 for e in eList:
 if e.hasAttribute("type"):
 if e.getAttribute("type") == "TO":
 print e.toxml()

print "\nCC Addresses\n==================="
nList = cNodes[1].getElementsByTagName("to")
for node in nList:
 eList = node.getElementsByTagName("addr")
 for e in eList:
 if e.hasAttribute("type"):

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec4.html (1 von 2) [03.08.2007 09:09:28]

Accessing Element Attributes

 if e.getAttribute("type") == "CC":
 print e.toxml()

print "\nBC Addresses\n==================="
nList = cNodes[1].getElementsByTagName("to")
for node in nList:
 eList = node.getElementsByTagName("addr")
 for e in eList:
 if e.hasAttribute("type"):
 if e.getAttribute("type") == "BC":
 print e.toxml()

xml_attribute.py

To Addresses
===================
<addr type="TO">bwdayley@novell.com</addr>
<addr type="TO">bwdayley@novell.com</addr>

CC Addresses
===================
<addr type="CC">bwdayley@sfcn.org</addr>

BC Addresses
===================
<addr type="BC">bwdayley@sfcn.org</addr>

Output from xml_attribute.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec4.html (2 von 2) [03.08.2007 09:09:28]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Adding a Node to a DOM Tree

Adding a Node to a DOM Tree

from xml.dom import minidom
DOMimpl = minidom.getDOMImplementation()
xmldoc = DOMimpl.createDocument(None,
"Workstations", None)
doc_root = xmldoc.documentElement
node = xmldoc.createElement("Computer")
doc_root.appendChild(node)

Adding child nodes to a DOM tree can be managed in several different ways. This phrase discusses using
the xml.dom.minidom module provided with Python to create a DOM tree and add nodes to it.

The first step is to create a DOM object by calling the minidom.getDOMImplementation() function, which
returns a DOMImplementation object. Then call the createDocument(qualifiedName, publicId, systemId)
function of the DOMImplementation object to create the XML document. The createDocument function
returns a Document object.

Once you have created the Document object, create nodes using the createElement(tagName) function of
the Document object. The createElement function of the Docmuent object returns a node object.

After you have created child nodes, the DOM tree can be constructed using the appendChild(node)
function to add node objects as child nodes of other node objects. Once the tree has been constructed,
add the tree to the Document object using the appendChild(node) function of the Document object to
attach the topmost level of the tree.

from xml.dom import minidom

Station1 = ['Pentium M', '512MB']
Station2 = ['Pentium Core 2', '1024MB']
Station3 = ['Pentium Core Duo', '1024MB']
StationList = [Station1, Station2, Station3]

#Create DOM object
DOMimpl = minidom.getDOMImplementation()

#Create Document
xmldoc = DOMimpl.createDocument(None,
"Workstations", None)
doc_root = xmldoc.documentElement

#Add Nodes
for station in StationList:
 #Create Node
 node = xmldoc.createElement("Computer")

 element = xmldoc.createElement('Processor')
 element.appendChild(xmldoc.createTextNode
(station[0]))
 node.appendChild(element)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec5.html (1 von 2) [03.08.2007 09:09:28]

Adding a Node to a DOM Tree

 element = xmldoc.createElement('Memory')
 element.appendChild(xmldoc.createTextNode
(station[1]))
 node.appendChild(element)

 #Add Node
 doc_root.appendChild(node)

print "\nNodes\n==================="
nodeList = doc_root.childNodes
for node in nodeList:
 print node.toprettyxml()

#Write the document
file = open("stations.xml", 'w')
file.write(xmldoc.toxml())

xml_addnode.py

Nodes
===================
<Computer>
 <Processor>
 Pentium M
 </Processor>
 <Memory>
 512MB
 </Memory>
</Computer>

<Computer>
 <Processor>
 Pentium Core 2
 </Processor>
 <Memory>
 1024MB
 </Memory>
</Computer>

<Computer>
 <Processor>
 Pentium Core Duo
 </Processor>
 <Memory>
 1024MB
 </Memory>
</Computer>

Output from xml_addnode.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec5.html (2 von 2) [03.08.2007 09:09:28]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Removing a Node from a DOM Tree

Removing a Node from a DOM Tree

from xml.dom import minidom
xmldoc = minidom.parse('stations.xml')
doc_root = xmldoc.documentElement

doc_root.removeChild(doc_root.childNodes[0])

The simplest way to remove a node from a DOM tree is to delete it using a direct reference. The first
step is to parse the XML document using the minidom.parse(file) function to create a DOM tree
document object.

After you have created the document objects, you retrieve the root of the document elements by
accessing the documentElement attribute of the document object. To remove an object from the root of
the document, use the removeChild(node). The removeChild function removes the nodes and any child
nodes from the document.

The child nodes can be referenced directly by using the childNodes attribute of the root or node object.
The childNodes attribute is a list, so individual elements can be accessed by their index number as
shown in xml_removenode.py.

from xml.dom import minidom

#Parse XML file to DOM tree
xmldoc = minidom.parse('stations.xml')
doc_root = xmldoc.documentElement

print "\nNodes\n==================="
nodeList = xmldoc.childNodes
for node in nodeList:
 print node.toprettyxml()

#Delete first node
doc_root.removeChild(doc_root.childNodes[0])

print "\nNodes\n==================="
nodeList = xmldoc.childNodes
for node in nodeList:
 print node.toprettyxml()

xml_removenode.py

Nodes
===================
<Workstations>
 <Computer>
 <Processor>
 Pentium M

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec6.html (1 von 2) [03.08.2007 09:09:28]

Removing a Node from a DOM Tree

 </Processor>
 <Memory>
 512MB
 </Memory>
 </Computer>
 <Computer>
 <Processor>
 Pentium Core 2
 </Processor>
 <Memory>
 1024MB
 </Memory>
 </Computer>
 <Computer>
 <Processor>
 Pentium Core Duo
 </Processor>
 <Memory>
 1024MB
 </Memory>
 </Computer>
</Workstations>
Nodes
===================
<Workstations>
 <Computer>
 <Processor>
 Pentium Core 2
 </Processor>
 <Memory>
 1024MB
 </Memory>
 </Computer>
 <Computer>
 <Processor>
 Pentium Core Duo
 </Processor>
 <Memory>
 1024MB
 </Memory>
 </Computer>
</Workstations>

Output from xml_removenode.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec6.html (2 von 2) [03.08.2007 09:09:28]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Searching XML Documents

Searching XML Documents

from xml.parsers import expat
class xmlSearch(object):
 def __init__ (self, cStr, nodeName):
 self.nodeName = nodeName
 self.curNode = 0
 self.nodeActive = 0
 self.hits = []
 self.cStr = cStr
 def StartElement(self, name, attributes):
 def EndElement(self, name):
 def CharacterData(self, data):
 def Parse(self, fName):
 xmlParser = expat.ParserCreate()
 xmlParser.StartElementHandler = \
 self.StartElement
 xmlParser.EndElementHandler =
self.EndElement
 xmlParser.CharacterDataHandler =\
 self.CharacterData
 xmlParser.Parse(open(fName).read(), 1)

search = xmlSearch(searchString, searchElement)
search.Parse(xmlFile)
print search.hits

Another extremely useful Python module for XML processing is the xml.parsers.expat module. The expat
module provides an interface to the expat nonvalidating XML parser. The expat XML parser is a fast
parser that quickly parses XML files and uses handlers to process character data and markup.

To use the expat parser to quickly search through an XML document and find specific data, define a
search class that derived from the basic object class.

When the search class is defined, add a startElement, endElement, and CharacterData method that can
be used to override the handlers in the expat parser later.

After you have defined the handler methods of the search object, define a parse routine that creates the
expat parser by calling the ParserCreate() function of the expat module. The ParserCreate() function
returns an expat parser object.

After the expat parser object is created in the search object's parse routine, override the
StartElementHandler, EndElementHandler, and CharacterDataHandler attributes of the parser object by
assigning them to the corresponding methods in your search object.

After you have overridden the handler functions of the expat parser object, the parse routine will need
to invoke the Parse(buffer [, isFinal]) function of the expat parser object. The Parse function accepts
a string buffer and parses it using the overridden handler methods.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec7.html (1 von 3) [03.08.2007 09:09:29]

Searching XML Documents

Note

The isFinal argument is set to 1 if this is the last data to be parsed or 0 if there is more
data to be parsed.

After you have defined the search class, create an instance of the class and use the parse function you
defined to parse the XML file and search for data.

from xml.parsers import expat

searchStringList = ["dayley@sfcn.org", "also"]
searchElement = "email"
xmlFile = "emails.xml"

#Define a search class that will handle
#elements and search character data
class xmlSearch(object):
 def __init__ (self, cStr, nodeName):
 self.nodeName = nodeName
 self.curNode = 0
 self.nodeActive = 0
 self.hits = []
 self.cStr = cStr
 def StartElement(self, name, attributes):
 if name == self.nodeName:
 self.nodeActive = 1
 self.curNode += 1
 def EndElement(self, name):
 if name == self.nodeName:
 self.nodeActive = 0
 def CharacterData(self, data):
 if data.strip():
 data = data.encode('ascii')
 if self.nodeActive:
 if data.find(self.cStr) != -1:
 if not
self.hits.count(self.curNode):
 self.hits.append(self.curNode)
 print "\tFound %s..." % self.cStr
 def Parse(self, fName):
#Create the expat parser object
 xmlParser = expat.ParserCreate()
#Override the handler methods
 xmlParser.StartElementHandler = \
 self.StartElement
 xmlParser.EndElementHandler =
self.EndElement
 xmlParser.CharacterDataHandler =\
 self.CharacterData
#Parse the XML file
 xmlParser.Parse(open(fName).read(), 1)

for searchString in searchStringList:
#Create search class
 search = xmlSearch(searchString, searchElement)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec7.html (2 von 3) [03.08.2007 09:09:29]

Searching XML Documents

#Invoke the search objects Parse method

 print "\nSearching <%s> nodes . . ." % \
 searchElement
 search.Parse(xmlFile)

#Display parsed results
 print "Found '%s' in the following nodes:" % \
 searchString
 print search.hits

xml_search.py

Searching <email> nodes . . .
 Found dayley@sfcn.org...
 Found dayley@sfcn.org...
Found 'dayley@sfcn.org' in the following nodes:
[1, 2]

Searching <email> nodes . . .
 Found also...
Found 'also' in the following nodes:
[2]

Output from xml_search.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec7.html (3 von 3) [03.08.2007 09:09:29]

Extracting Text from XML Documents

Extracting Text from XML Documents

from xml.parsers import expat
#Define a class that will store the character data
class xmlText(object):
 def __init__ (self):
 self.textBuff = ""
 def CharacterData(self, data):
 data = data.strip()
 if data:
 data = data.encode('ascii')
 self.textBuff += data + "\n"
 def Parse(self, fName):
 xmlParser = expat.ParserCreate()
 xmlParser.CharacterDataHandler =
self.CharacterData
 xmlParser.Parse(open(fName).read(), 1)

xText = xmlText()
xText.Parse(xmlFile)
print xText.textBuff

A common task when parsing XML documents is to quickly retrieve the text from them without the
markup tags and attribute data. The expat parser provided with Python provides a simple interface to
manage just that. To use the expat parser to quickly parse through an XML document and store only the
text, define a simple text parser class that derived from the basic object class.

When the text parser class is defined, add a CharacterData() method that can be used to override the
CharacterDataHandlers() method of the expat parser. This method will store the text data passed to the
handler when the document is parsed.

After you have defined the handler method of the text parser object, define a parse routine that creates
the expat parser by calling the ParserCreate() function of the expat module. The ParserCreate()
function returns an expat parser object.

After the expat parser object is created in the text parser objects' parse routine, override the
CharacterDataHandler attribute of the parser object by assigning it to the CharacterData() method in
your search object.

After you have overridden the handler function of the expat parser object, the parse routine will need to
invoke the Parse(buffer [, isFinal]) function of the expat parser object. The Parse function accepts a
string buffer and parses it using the overridden handler methods.

After you have defined the text parser class, create an instance of the class and use the Parse(file)
function you defined to parse the XML file and retrieve the text.

from xml.parsers import expat

xmlFile = "emails.xml"

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec8.html (1 von 2) [03.08.2007 09:09:29]

Extracting Text from XML Documents

#Define a class that will store the character data
class xmlText(object):
 def __init__ (self):
 self.textBuff = ""
 def CharacterData(self, data):
 data = data.strip()
 if data:
 data = data.encode('ascii')
 self.textBuff += data + "\n"

 def Parse(self, fName):
#Create the expat parser object
 xmlParser = expat.ParserCreate()
#Override the handler methods
 xmlParser.CharacterDataHandler = \
 self.CharacterData
#Parse the XML file
 xmlParser.Parse(open(fName).read(), 1)

#Create the text parser object
xText = xmlText()

#Invoke the text parser objects Parse method
xText.Parse(xmlFile)

#Display parsed results
print "Text from %s\n====================" % xmlFile
print xText.textBuff

xml_text.py

Text from emails.xml
==========================
bwdayley@novell.com
bwdayley@sfcn.org
ddayley@sfcn.org
Update List
Please add me to the list.
bwdayley@novell.com
bwdayley@sfcn.org
cdayley@sfcn.org
More Updated List
Please add me to the list also.

Output from xml_text.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec8.html (2 von 2) [03.08.2007 09:09:29]

Parsing XML Tags

Parsing XML Tags

import xml.sax
class tagHandler(xml.sax.handler.ContentHandler):
 def __init__(self):
 self.tags = {}
 def startElement(self,name, attr):
 name = name.encode('ascii')
 self.tags[name] = self.tags.get(name, 0) + 1
 print "Tag %s = %d" % \
 (name, self.tags.get(name))

xmlparser = xml.sax.make_parser()
tHandler = tagHandler()
xmlparser.setContentHandler(tHandler)
xmlparser.parse(xmlFile)

Another fairly common task when processing XML files is to process the XML tags themselves. The xml.
sax module provides a quick, clean interface to the XML tags by defining a custom content handler to
deal with the tags.

This phrase demonstrates how to override the content handler of a sax XML parser to determine how
many instances of a specific tag there are in the XML document.

First, define a tag handler class that inherits from the xml.sax.handler.ContentHandler class. Then
override the startElement() method of the class to keep track of each encounter with specific tags.

After you have defined the tag handler class, create an xml.sax parser object using the make_parser()
function. The make_parser() function will return a parser object that can be used to parse the XML file.
Next, create an instance of the tag handler object.

After you have created the parser and tag handler objects, add the custom tag handler object to the
parser object using the setContentHandler(handler) function.

After the content handler has been added to the parser object, parse the XML file using the parse(file)
command of the parser object.

import xml.sax

xmlFile = "emails.xml"
xmlTag = "email"

#Define handler to scan XML file and parse tags
class tagHandler(xml.sax.handler.ContentHandler):
 def __init__(self):
 self.tags = {}
 def startElement(self,name, attr):
 name = name.encode('ascii')
 self.tags[name] = self.tags.get(name, 0) + 1

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec9.html (1 von 2) [03.08.2007 09:09:30]

Parsing XML Tags

 print "Tag %s = %d" % \
 (name, self.tags.get(name))

#Create a parser object
xmlparser = xml.sax.make_parser()

#Create a content handler object
tHandler = tagHandler()

#Attach the content handler to the parser
xmlparser.setContentHandler(tHandler)

#Parse the XML file
xmlparser.parse(xmlFile)
tags = tHandler.tags
if tags.has_key(xmlTag):
 print "%s has %d <%s> nodes." % \
 (xmlFile, tags[xmlTag], xmlTag)

xml_tags.py

Tag emails = 1
Tag email = 1
Tag to = 1
Tag addr = 1
Tag addr = 2
Tag from = 1
Tag addr = 3
Tag subject = 1
Tag body = 1
Tag email = 2
Tag to = 2
Tag addr = 4
Tag addr = 5
Tag from = 2
Tag addr = 6
Tag subject = 2
Tag body = 2
emails.xml has 2 <email> nodes.

Output from xml_tags.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch09lev1sec9.html (2 von 2) [03.08.2007 09:09:30]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Chapter 10. Programming Web Services

Chapter 10. Programming Web Services

The Python language has an excellent set of modules to handle various web service needs. The phrases
in this chapter are designed to give you a quick insight into some of the more useful and common ways
in which Python can be used to program web services.

The first set of phrases show how to write CGI scripts using the Python language to send HTML to web
browsers, handle form requests, and send posts to themselves, as well as allow users to upload files to
the server via the web browser.

The next set of phrases provide examples of using Python to create web servers to handle GET and
POST requests, as well as creating a simple CGI script server.

The final two phrases show how to use Python to create HTTP client connections to web servers to send
POST and GET requests and then handle the response back from the web server.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10.html [03.08.2007 09:09:30]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Adding HTML to Web Pages Using CGI Scripts

Adding HTML to Web Pages Using CGI Scripts

#!/usr/bin/python
print "Content-type: text/html\n"
print "<title>CGI Text</title>\n"
webText = """
<H1>Useful Python Links</H1>
. . .
"""
print webText

Adding HTML content to web pages using Python CGI scripts is a very straightforward and simple
process. The first line of the CGI script should be nonexecutable and point to the location of the Python
interpreter using the #!<path> syntax.

When the CGI script is called by the web server, all output to stdout is directed back to the web
browser. All you need to do to send the HTML code to the browser is print it to stdout.

Note

The permission on the CGI scripts must be executable. You will need to set the file
permission to 755 on Linux servers for the scripts to be able to execute.

Note

Scripts that are created with the DOS EOL character set \r\n will not run properly on Linux
web servers. Depending on the web server you are using, you might need to make
configuration changes to understand how to serve CGI files.

#!/usr/bin/python

#Send header to browser
print "Content-type: text/html\n"
print "<title>CGI Text</title>\n"

webText = """
<H1>Useful Python Links</H1>

Python Web Site

Python Documentation

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec1.html (1 von 2) [03.08.2007 09:09:30]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Adding HTML to Web Pages Using CGI Scripts

Cheeseshop (Python Packages Library)
"""

#Send page content to browser
print webText

cgi_text.cgi

<!DOCTYPE html>
<html lang="en" xml:lang="en">
<head>
<meta content="text/html; charset=utf-8"
 http-equiv="content-type" />
<title>Form Page</title>
</head>
<body>
<H1>Test Link to CGI Script</H1>
cgi_text.cgi</body>
</html>

cgi_link.html

Figure 10.1 shows how cgi_text.cgi appears in a web browser.

Figure 10.1. Output HTML page created by cgi_text.cgi code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec1.html (2 von 2) [03.08.2007 09:09:30]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig01_alt.jpg
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Processing Parameters Passed to CGI Scripts

Processing Parameters Passed to CGI Scripts

#!/usr/bin/pythonimport cgi, sys
sys.stderr = sys.stdout
data = cgi.FieldStorage()
print "Content-type: text/html\n"
print "<title>CGI Form Response</title>\n"
if data.has_key('name') and data.has_key('quote'):
 print "%s: %s" % (data['name'].value, \
 data['quote'].value)

The cgi module included with Python provides basic access to the metadata that gets passed to the CGI
script when it is executed. When writing a CGI script that needs to accept parameters, use the cgi.
FieldStorage() function to parse the fields sent in the POST or GET request to the web server.
FieldStorage returns a dictionary of fields that were included with the request.

Parameters can be accessed from the dictionary returned by FieldStorage by using the standard Python
syntax to access the keys and values of the dictionary. In the example, has_key(key) is used to
determine whether a key exists, and then the value is directly accessed using the d[key].value syntax.

Note

Parameters can be passed to CGI scripts through either a POST or a GET request. The
example illustrates how to use a HTML form to send a POST request and a direct link to
send a GET request.

#!/usr/bin/pythonimport cgi, sys

#Send errors to browser
sys.stderr = sys.stdout

#Parse data from form
data = cgi.FieldStorage()

#Send response to browser
print "Content-type: text/html\n"
print "<title>CGI Form Response</title>\n"
print "<h2>Current Quote</h2><P>"

if data.has_key('name') and data.has_key('quote'):
 print "%s: %s" % (data['name'].value, \
 data['quote'].value)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec2.html (1 von 4) [03.08.2007 09:09:31]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Processing Parameters Passed to CGI Scripts

cgi_form.py

<!DOCTYPE html>
<html lang="en">
<head>
<meta content="text/html; charset=utf-8"
 http-equiv="content-type" />
<title>Form Page</title>
</head>
<body>
<h2>Form Post</h2><p>
<form method="POST" action="/cgi_form.cgi">
 Name <input type="TEXT" name="name">
 <P>
 Quote <input type="TEXT" name="quote" size="80">
 <P>
 <input type="SUBMIT" value="send">
</form><p>
<h2>Direct Links</h2><p>
<a href="cgi_form.cgi?
name=Brad"e=G'Day!">G'Day!
<a href="cgi_form.cgi?
name=Brad"e=Bad Show!">Bad Show!
</body>
</html>

form.html

Figure 10.2 shows form.html loaded in a web browser.

Figure 10.2. Web browser view of form.html code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec2.html (2 von 4) [03.08.2007 09:09:31]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig02_alt.jpg

Processing Parameters Passed to CGI Scripts

Figure 10.3 shows the web page created when form.html executes cgi_form.cgi.

Figure 10.3. Output HTML page created by cgi_form.cgi code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec2.html (3 von 4) [03.08.2007 09:09:31]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig03_alt.jpg

Processing Parameters Passed to CGI Scripts

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec2.html (4 von 4) [03.08.2007 09:09:31]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Creating Self-Posting CGI Scripts

Creating Self-Posting CGI Scripts

#!/usr/bin/pythonimport cgi, os, sys
data = cgi.FieldStorage()
formText = """Content-type: text/html\n
<form method="POST" action="cgi_selfpost.cgi">
 Name <input type="TEXT" name="name">
 Quote <input type="TEXT" name="quote" size="80">
 <input type="SUBMIT" value="send">
</FORM>
"""
print formText
if data.has_key('name') and data.has_key('quote'):
 f = open("quotes.dat", 'a')
 f.write("%s: %s\n" % \
 (data['name'].value, data['quote'].value))
 f=open("quotes.dat", 'r')
if f:
 print f.read()

A self-posting CGI script is one that posts to itself. Self-posting scripts enable you to keep all your code
in a single file rather than spread it out through multiple HTML and CGI files.

In addition to the first line, you will need to add code to parse the data from the CGI posts, handle the
parameters from the CGI post, and write forms to the web browser that posts the CGI script.

Note

In the example, the self-posting form is added to the script even if no parameters are
passed when the CGI script is loaded. However, the initial posting to the script can be from
another script or web page, as well as a self-post from the same script.

Typically, you will want to parse the data and handle arguments first because most self-posting CGI
scripts will write different views back to the web browser depending on what parameters were posted.

The CGI post data can be parsed using the cgi.FieldStorage() function. FieldStorage returns a
dictionary of fields that were included with the request.

Parameters can be accessed from the dictionary returned by FieldStorage by using the standard Python
syntax to access the keys and values of the dictionary. In the example, has_key(key) is used to
determine whether a key exists, and then the value is directly accessed using the d[key].value syntax.

After you have accessed the parameters, you can use their values to determine what HTML view needs
to be sent back to the web browser through stdout, which writes back to the web browser.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec3.html (1 von 3) [03.08.2007 09:09:31]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Creating Self-Posting CGI Scripts

Note

Each time a post is received, the CGI script is reloaded. No local or global data is retained.
If you need to have data survive between multiple posts, you will need to store it locally on
the server. In the following example, the quotes are captured and stored in a local data file
on the server so that they can be displayed each time a new post is received.

import cgi, os, sys

#Send errors to browser
sys.stderr = sys.stdout

#Parse data from form
data = cgi.FieldStorage()

#Send form to browser
formText = """Content-type: text/html\n
<title>CGI Self-Post Form</title>\n
<h2>Enter Quote</h2><P>
<form method="POST" action="cgi_selfpost.cgi">
 Name <input type="TEXT" name="name">
 <p>
 Quote <input type="TEXT" name="quote" size="80">
 <p>
 <input type="SUBMIT" value="send">
</form>
<hr>
<h2>Received Quotes</h2><p>"""
print formText

#Retrieve field from form and store data
if data.has_key('name') and data.has_key('quote'):
 f = open("quotes.dat", 'a')
 f.write("%s: %s\n" % \
 (data['name'].value,
data['quote'].value))
 f.close()
#Send stored data to browser
f=open("quotes.dat", 'r')
if f:
 print f.read()
 f.close()

cgi_selfpost.cgi

King Arthur: I am your king!
Peasant: I didn't vote for you.
King Arthur:
 You don't vote for a king!
Black Knight: None shall pass!
Bridge Keeper:
 What is the air speed velocity of
 an unlaiden swallow?

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec3.html (2 von 3) [03.08.2007 09:09:31]

Creating Self-Posting CGI Scripts

Contents of quotes.dat data file.

Figure 10.4 displays the web page that cgi_selfpost.cgi generates as items are posted to it.

Figure 10.4. Web browser view of cgi_selfpost.cgi.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec3.html (3 von 3) [03.08.2007 09:09:31]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig04_alt.jpg
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Allowing Users to Upload Files via CGI Scripts

Allowing Users to Upload Files via CGI Scripts

#!/usr/bin/pythonimport cgi, os, sys, string
import posixpath, macpath
data = cgi.FieldStorage()
if data.has_key('uFile'):
 saveFile(data['uFile'])
 print "%s uploaded (%d bytes)." \
 % (data['uFile'].filename, bytes)

A common task when programming web services is allowing users to upload files to the server using the
web browser. This is fairly easy to accomplish with Python CGI scripts. First, create an HTML page that
includes a form with a type=file INPUT tag. The name attribute of the INPUT tag will be used by the CGI
script to retrieve the file information. The form should specify your Python CGI script as the action. The
enctype attribute of the form element must be set to multipart/form-data.

Once you have built the HTML file, create a Python script that will parse the parameters from the POST
request using the cgi.FieldStorage() function. FieldStorage() returns a dictionary of fields passed to
the CGI script.

Using the dictionary returned by FieldStorage() should include the key you specified as the name of the
INPUT tag in the HTML document. Use that key to obtain the file information object. The filename can be
accessed by using the filename attribute of the object, and the actual data can be accessed using the
file attribute. The file attribute acts similar to a read-only file that you can read using read(), readline
(), or readlines().

Read the file contents from the file object and write it to a file on the server.

Note

In the example, the entire file was read at once. For larger files, you might want to break
up the read into segments to reduce the load on the system.

Note

It might be a good idea in practical terms to filter the pathname to remove restricted
characters and characters that might alter the path.

#!/usr/bin/pythonimport cgi, os, sys, string
import posixpath, macpath

saveDir = "/upload"

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec4.html (1 von 3) [03.08.2007 09:09:31]

Allowing Users to Upload Files via CGI Scripts

#Send errors to browser
sys.stderr = sys.stdout

#Parse data from form
data = cgi.FieldStorage()

#Save the file to server directory
def saveFile(uFile):
 fPath = "%s/%s" % (saveDir, uFile.filename)
 buf = uFile.file.read()
 bytes = len(buf)
 sFile = open(fPath, 'wb')
 sFile.write(buf)
 sFile.close()

#Send response to browser
webText = """Content-type: text/html\n"
<title>CGI Upload Form</title>\n
<h2>Upload File</h2><p>"""
print webText

if data.has_key('uFile'):
 saveFile(data['uFile'])
 print "%s uploaded (%d bytes)." % \
 (data['uFile'].filename, bytes)

cgi_upload.cgi

<!DOCTYPE html>
<html lang="en">
<head>
<meta content="text/html; charset=utf-8"
 http-equiv="content-type" />
<title>Upload Form Page</title>
</head>
<body>
<h2>Upload File</h2><P>
<form enctype="multipart/form-data" method="POST"
 action="cgi_upload.cgi">
 <input type="file" size="70" name="uFile">
 <p><input type="SUBMIT" value="upload">
</form>
</body>
</html>

upload.html

Figure 10.5 shows upload.html loaded in a web browser.

Figure 10.5. Web browser view of upload.html code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec4.html (2 von 3) [03.08.2007 09:09:31]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig05_alt.jpg

Allowing Users to Upload Files via CGI Scripts

Figure 10.6 shows the web page generated by cgi_upload.cgi when the upload action is performed by
form.html.

Figure 10.6. Output HTML page created by cgi_upload.cgi code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec4.html (3 von 3) [03.08.2007 09:09:31]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig06_alt.jpg

Creating an HTTP Server to Handle GET Requests

Creating an HTTP Server to Handle GET Requests

import BaseHTTPServer, cgi
class httpServHandler \
 (BaseHTTPServer.BaseHTTPRequestHandler):
 def do_GET(self):
 if self.path.find('?') != -1:
 self.path, self.query_string = \
 self.path.split('?', 1)
 else:
 self.query_string = ''
 self.send_response(200)
 self.send_header('Content-type',
'text/html')
 self.end_headers()
 self.globals = \
 dict(cgi.parse_qsl(self.query_string))
 sys.stdout = self.wfile
 self.wfile.write("<H2>Handle Get</H2><P>")
 self.wfile.write(\
 "Executing %s" % (self.path))
 self.wfile.write(\
 "With Globals%s<HR>" % \
 (self.globals))
 execfile(self.path, self.globals)

os.chdir('/myTest')
serv = BaseHTTPServer.HTTPServer(\
 servAddr, httpServHandler)
serv.serve_forever()

A very common task when programming web services is to create web servers to handle special
processing of GET requests from web browsers. The BaseHTTPServer module included with Python
provides a set of classes and functions that allow you to create custom web servers to handle these
requests. The first step is to define a handler class derived from the BaseHTTPServer.
BaseHTTPRequestHandler class that overrides the do_GET() method.

Inside the do_GET method, you can use the path attribute to get the file path the GET request was
directed toward. The path attribute includes the entire string of the GET request, including the path and
parameters in the format path?param=value¶m=value.... If there were parameters passed in the GET
request, they can be parsed out by using the split('?') function on the path string to split it into a path
and query string, as illustrated by the sample code http_get_serv.py.

When you have the query string of the POST request in a buffer, use cgi.parse_qsl(string) to parse the
query string into a dictionary, as shown in the example http_get_serv.py. The arguments will be added
to the dictionary and can be accessed by using standard Python syntax.

Note

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec5.html (1 von 3) [03.08.2007 09:09:32]

Creating an HTTP Server to Handle GET Requests

In the sample code, we are using the web server to remotely execute a Python script. We
redirect the sys.stdout to the wfile attribute of the handler class so that normal output
from the script executing will be displayed in the web browser.

Once you have defined the handler class and overridden the do_GET method, create an instance of the
web server using BaseHTTPServer.HTTPServer(address, handler). The address argument is a list including
the server address and port, respectively. The handler argument is the custom handler class you defined
earlier.

After you have created an instance of the web server, start the web server by calling its serve_forever()
function.

import os, sys
import BaseHTTPServer, cgi

servAddr = ('',8080)

#Define the HTTP handler that overrides do_GET
class httpServHandler(\
 BaseHTTPServer.BaseHTTPRequestHandler):
 def do_GET(self):
 if self.path.find('?') != -1:
 self.path, self.query_string = \
 self.path.split('?', 1)
 else:
 self.query_string = ''
 self.send_response(200)
 self.send_header('Content-type',
'text/html')
 self.end_headers()

#Setup Global Environment
 self.globals = \
 dict(cgi.parse_qsl(self.query_string))
#Redirect output to browser
 sys.stdout = self.wfile

#Execute the script remotely
 self.wfile.write("<h2>Handle Get</h2><P>")
 self.wfile.write(
 "Executing %s" % (self.path))
 self.wfile.write(\
 "With Globals%s<hr>" % \
 (self.globals))
 execfile(self.path, self.globals)

#Set the root directory
os.chdir('/myTest')

#Create server object
serv = BaseHTTPServer.HTTPServer(\
 servAddr, httpServHandler)

#Start Server
serv.serve_forever()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec5.html (2 von 3) [03.08.2007 09:09:32]

Creating an HTTP Server to Handle GET Requests

http_get_serv.py

if name and quote:
 print "%s says <I>%s</I>"% (name, quote)
else:
 print "There were errors in the parameters."

http_text.py

Figure 10.7 shows the web page generated by http_get_serv.py when it receives a GET request.

Figure 10.7. Output HTML page created by http_get_serv.py code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec5.html (3 von 3) [03.08.2007 09:09:32]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig07_alt.jpg

Creating an HTTP Server to Handle POST Requests

Creating an HTTP Server to Handle POST Requests

import BaseHTTPServer, cgi
class httpServHandler(\
 BaseHTTPServer.BaseHTTPRequestHandler):
 def do_POST(self):
 self.query_string = self.rfile.read
(int(self.headers['Content-Length']))
 self.args = dict(cgi.parse_\
 qsl(self.query_string))
 self.send_response(200)
 self.send_header('Content-type', \
 'text/html')
 self.end_headers()
 sys.stdout = self.wfile
 self.wfile.write(\
 "<h2>Handling Post</h2><P>")
 self.wfile.write(\
 "Location: %s"%(self.path))
 self.wfile.write(\
 "Arguments:%s<hr>"%
 (self.args))
 execfile(self.path, self.args)

serv = BaseHTTPServer.HTTPServer(\
 servAddr, httpServHandler)
serv.serve_forever()

A very common task when programming web services is to create web servers to handle special
processing of POST requests from web browsers. The BaseHTTPServer module included with Python
provides a set of classes and functions that allow you to create custom web servers to handle these
requests.

The first step is to define a handler class derived from the BaseHTTPServer.BaseHTTPRequestHandler class
that overrides the do_POST() method.

The first order of business inside the do_POST method is to get the arguments passed with the POST
request. First, get the length of the content by accessing the value of the Content-Length key in the
headers attribute of the handler object. When you know the size of the contents, read the query string
from the rfile attribute into a buffer.

After you have the query string of the POST request in a buffer, use cgi.parse_qsl(string) to parse the
query string into a dictionary, as shown in the example http_post_serv.py. The arguments will be added
to the dictionary and can be accessed by using standard Python syntax.

Note

In the sample code, we are using the web server to remotely execute a Python script. We
redirect the sys.stdout to the wfile attribute of the handler class so that normal output

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec6.html (1 von 4) [03.08.2007 09:09:32]

Creating an HTTP Server to Handle POST Requests

from the script executing will be displayed in the web browser.

After you have defined the handler class and overridden the do_POST method, create an instance of the
web server using BaseHTTPServer.HTTPServer(address, handler). The address argument is a list including
the server address and port, respectively. The handler argument is the custom handler class you defined
earlier.

Once you have created an instance of the web server, start the web server by calling its serve_forever()
function.

import os, sys
import BaseHTTPServer, cgi

servAddr = ('',80)

#Define the HTTP handler that overrides do_POST
class httpServHandler(\
 BaseHTTPServer.BaseHTTPRequestHandler):
 def do_POST(self):
#Get arguments from query string
 self.query_string = self.rfile.read(\
 int(self.headers['Content-Length']))
 self.args = dict(cgi.parse_ \
 qsl(self.query_string))

 self.send_response(200)
 self.send_header('Content-type', \
 'text/html')
 self.end_headers()

#Redirect output to browser
 sys.stdout = self.wfile

#Handle the post
 self.wfile.write("<h2>Handling \
 Post</h2><P>")
 self.wfile.write("Location: \
 %s"%(self.path))
 self.wfile.write("Arguments: \
 %s<hr>"%(self.args))

#Execute the script remotely
 execfile(self.path, self.args)

#Set the root directory
os.chdir('/myTest')

#Create server object
serv = BaseHTTPServer.HTTPServer(\
 servAddr, httpServHandler)

#Start Server
serv.serve_forever()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec6.html (2 von 4) [03.08.2007 09:09:32]

Creating an HTTP Server to Handle POST Requests

http_post_serv.py

<!DOCTYPE html>
<html lang="en">
<head>
<meta content="text/html; charset=utf-8"
http-equiv="content-type"/>
<title>Form Page</title>
</head>
<body>
<form method="POST" action=
 "http://testserver.net/myTest/http_text.py">
 Name <input type="TEXT" name="name">
 <p>
 Quote <input type="TEXT" NAME="quote" size="80">
 <p>
 <input type="SUBMIT" value="send">
</form>
</body>
</html>

post_form.html

if name and quote:
 print "%s says <i>%s</i>"% (name, quote)
else:
 print "There were errors in the parameters."

http_text.py

Figure 10.8 shows post_form.html displayed in a web browser.

Figure 10.8. Web browser view of post_form.html code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec6.html (3 von 4) [03.08.2007 09:09:32]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig08_alt.jpg

Creating an HTTP Server to Handle POST Requests

Figure 10.9 shows the web page generated by http_post_serv.py when it receives a POST request.

Figure 10.9. Output HTML page created by http_post_serv.py code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec6.html (4 von 4) [03.08.2007 09:09:32]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig09_alt.jpg

Creating an HTTP Server to Process CGI Scripts

Creating an HTTP Server to Process CGI Scripts

import os
import BaseHTTPServer, CGIHTTPServer
serverAddr = ("", 80)
os.chdir("/myTest")
serv = BaseHTTPServer.HTTPServer(\
 serverAddr, CGIHTTPServer.CGIHTTPRequestHandler)
serv.serve_forever()

Python includes the CGIHTTPServer module that provides a quick and easy way to create your own CGI
script server, eliminating the need to set up and configure a web server. This can be extremely time-
saving.

To set up a simple CGI script server, first set the root directory for the server to act in, and then create
an instance of the CGI script server using BaseHTTPServer.HTTPServer(address, handler). The address
argument is a list including the server address and port, respectively. A simple server handler should
specify the default handler of CGIHTTPServer.CGIHTTPRequestHandler. The CGIHTTPRequestHandler is
similar to a normal HTTPRequestHandler; however, the do_GET and do_HEAD functions have been modified
to handle CGI scripts, and the do_POST method will only allow posting to CGI scripts.

Note

You can override the do_GET, do_HEAD, and do_POST methods to create a customized CGI
script parser.

After you have created an instance of the CGI script server, start the server by calling its serve_forever
() function.

Note

The default location for CGI scripts is /cgi-bin or /htbin, relative to the root directory of
the script server. The CGI scripts will need to reside in one of these two locations, and the
Linux permissions must be set so that the scripts are executable (typically 0755).

import os
import BaseHTTPServer, CGIHTTPServer

serverAddr = ("", 80)

#Set root directory
os.chdir("/myTest")

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec7.html (1 von 2) [03.08.2007 09:09:33]

Creating an HTTP Server to Process CGI Scripts

#Create server object
serv = BaseHTTPServer.HTTPServer(\
 serverAddr, CGIHTTPServer.CGIHTTPRequestHandler)

#Start server
serv.serve_forever()

cgi_serv.py

Figure 10.10 shows the web page generated by cgi_form.cgi as it is executed by the cgi_serv.py script.

Figure 10.10. Output HTML page created by cgi_form.cgi code executed by
cgi_serv.py.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec7.html (2 von 2) [03.08.2007 09:09:33]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig10_alt.jpg

Sending an HTTP GET Request from a Python Script

Sending an HTTP GET Request from a Python Script

import httplib
httpServ = \
 httplib.HTTPConnection("testserver.net", 80)
httpServ.connect()

httpServ.request('GET', "/test.html")
response = httpServ.getresponse()
if response.status == httplib.OK:
 printText (response.read())

httpServ.request('GET',
 '/cgi_form.cgi?name=Brad"e=Testing.')
response = httpServ.getresponse()
if response.status == httplib.OK:
 printText (response.read())

Another important task when programming web services is to send GET requests directly to a web
server from a Python script rather to than a web browser. This effectively allows you to write client-side
applications without having to deal with the web browser.

The httplib module included with Python provides the classes and functions to connect to a web server,
send a GET request, and handle the response.

First, create a server connection object by executing the httplib.HTTPConnection(address, port)
function, which returns an HTTPServer object. Then, connect to the server by calling the connect()
function of the HTTPServer object.

To send the GET request, call request(method [, url [, body [, headers). Specify GET as the method of
the request, and then specify the location of the file as the url.

Note

In the sample code, we send a CGI script with parameters. Because the web server
executed the CGI script, the response from the server will be the output of the CGI script,
not the script itself.

After you have sent the request, get the servers' response using the getresponse() function of the
HTTPServer object. The getresponse() function returns a response object that acts like a file object,
allowing you to read the response using the read() request.

Note

You can check the status of the response by accessing the status attribute of the response

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec8.html (1 von 3) [03.08.2007 09:09:33]

Sending an HTTP GET Request from a Python Script

object.

import httplib

def printText(txt):
 lines = txt.split('\n')
 for line in lines:
 print line.strip()

#Connect to server
httpServ = \
 httplib.HTTPConnection("137.65.77.28", 80)
httpServ.connect()

#Send Get html request
httpServ.request('GET', "/test.html")

#Wait for response
response = httpServ.getresponse()
if response.status == httplib.OK:
 print "Output from HTML request"
 print "==========================="
 printText (response.read())

#Send Get cgi request
httpServ.request('GET', \
 '/cgi_form.cgi?name=Brad"e=Testing.')

#Wait for response
response = httpServ.getresponse()
if response.status == httplib.OK:
 print "Output from CGI request"
 print "========================="
 printText (response.read())

httpServ.close()

http_get.py

Output from HTML request
===========================
<!DOCTYPE html>
<html lang="en" xml:lang="en">
<head>
<meta content="text/html; charset=utf-8"
 http-equiv="content-type" />
<title>HTML Page</title>
</head>
<body>
<h1>Test Link to CGI Script</h1>
cgi_text.cgi</body>
</html>

Output from CGI request
=========================

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec8.html (2 von 3) [03.08.2007 09:09:33]

Sending an HTTP GET Request from a Python Script

<title>CGI Form Response</title>

<h2>Current Quote</h2><p>
Brad: Testing.

Output from http_get.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec8.html (3 von 3) [03.08.2007 09:09:33]

Sending an HTTP POST Request from a Python Script

Sending an HTTP POST Request from a Python Script

import httplib
httpServ = httplib.HTTPConnection("testserver.net", 80)
httpServ.connect()
quote = "Use a Python script to post to the CGI Script."
httpServ.request('POST', '/cgi_form.cgi',
'name=Brad"e=%s' \
 % quote)
 response = httpServ.getresponse()
 if response.status == httplib.OK:
 printText (response.read())
httpServ.close()

You also might need to send POST requests directly to a web server from a Python script rather than a
web browser. This effectively enables you to write client-side applications without having to deal with
the web browser.

The httplib module included with Python provides the classes and functions to connect to a web server,
send a POST request, and handle the response without the use of a web browser.

First, create a server connection object by executing the httplib.HTTPConnection(address, port)
function, which returns an HTTPServer object. Then connect to the server by calling the connect()
function of the HTTPServer object.

To send the POST request, call request(method [, url [, body [, headers). Specify POST as the method
of the request. Specify the location of the script to handle the post as the url. Specify the query string
that needs to be passed with the POST as the body.

Note

In the sample code, we send a CGI script with parameters. Because the web server
executed the CGI script, the response from the server will be the output of the CGI script,
not the script itself.

After you have sent the request, get the server's response using the getresponse() function of the
HTTPServer object. The getresponse() function returns a response object that acts like a file object,
allowing you to read the response using the read() request.

Note

You can check the status of the response by accessing the status attribute of the response
object.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec9.html (1 von 2) [03.08.2007 09:09:33]

Sending an HTTP POST Request from a Python Script

import httplib

def printText(txt):
 lines = txt.split('\n')
 for line in lines:
 print line.strip()

#Connect to server
httpServ = httplib.HTTPConnection("testserver.net", 80)
httpServ.connect()

#Send Get cgi request
quote = \
"Use a Python script to post to the CGI Script."
httpServ.request('POST', \
'/cgi_form.cgi', 'name=Brad"e=%s' % quote)

#Wait for response
response = httpServ.getresponse()
if response.status == httplib.OK:
 print "Output from CGI request"
 print "========================="
 printText (response.read())

httpServ.close()

http_post.py

Output from CGI request
=========================
<title>CGI Form Response</title>

<h2>Current Quote</h2><P>
Brad:
Use a Python script to post to the CGI Script.

Output from http_post.py code.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec9.html (2 von 2) [03.08.2007 09:09:33]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Creating an XML-RPC Server

Creating an XML-RPC Server

import SimpleXMLRPCServer

serv =
SimpleXMLRPCServer.SimpleXMLRPCServer(servAddr)
serv.register_function(areaSquare)
serv.register_introspection_functions()
serv.serve_forever()

The SimpleXMLRPCServer module provided with Python allows you to implement web services that support
the XML-RPC protocol for remote procedure calls or RPCs. The XML-RPC protocol uses XML data
encoding to transmit remote procedure calls across the HTTP protocol. This section discusses how to use
the SimpleXMLRPCServer module to create a simple XML-RPC server.

The first step is to create an XML-RPC server object by calling the SimpleXMLRPCServer(addr [,
requestHandler [, logRequests]]) function of the SimpleXMLRPCServer module. The SimpleXMLRPCServer
function accepts a list containing the address and port to use for the server and returns an XML-RPC
server object. The requstHandler argument specifies a request handler object if needed, and the
logRequests is a Boolean flag that specifies whether or not to log incoming requests.

After you have created the XML-RPC server object, register locally defined functions that will be provided
remotely by calling the register_function(function) function of the XML-RPC server object.

After you have registered the local functions that will be provided remotely, register the introspection
functions using the register_introspection_functions(function) function of the XML-RPC server object.
The XML-RPC server supports the XML introspection API, which provides the system.listMethods(),
system.methodHelp(), and system.MethodSignature() introspection functions. The
register_introspection_functions() function registers those introspection functions so that they can be
accessed by a remote client.

After you have registered the introspection functions, start the server using the serve_forever() function
of the XML-RPC server object. The server will begin accepting remote procedure call requests from
remote clients.

import SimpleXMLRPCServer

servAddr = ("localhost", 8080)

def areaSquare(length):
 return length*length

def areaRectangle(length, width):
 return length*width

def areaCircle(radius):
 return 3.14*(radius*radius)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec10.html (1 von 2) [03.08.2007 09:09:34]

Creating an XML-RPC Server

serv =
SimpleXMLRPCServer.SimpleXMLRPCServer(servAddr)

#Register RPC functions
serv.register_function(areaSquare)
serv.register_function(areaRectangle)
serv.register_function(areaCircle)

#Register Introspective functions
serv.register_introspection_functions()

#Handle Requests
serv.serve_forever()

xml-rpc_serv.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec10.html (2 von 2) [03.08.2007 09:09:34]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Creating an XML-RPC Client

Creating an XML-RPC Client

import xmlrpclib
servAddr = "http://localhost:8080"
s = xmlrpclib.ServerProxy(servAddr)
methods = s.system.listMethods()
s.areaSquare(5)
s.areaRectangle(4,5)
s.areaCircle(5)

The xmlrpclib module provided with Python allows you to create clients that can access web services
that support the XML-RPC protocol. The XML-RPC protocol uses XML data encoding to transmit remote
procedure calls across the HTTP protocol. This section discusses how to use the xmlrpclib module to
create a client to access an XML-RPC server.

The first step is to authenticate to the XML-RPC proxy server by calling the ServerProxy(uri [,
transport [, encoding [, verbose [, allow_none]]]]) function. The ServerProxy function connects to
the remote location specified by uri and returns an instance of the ServerProxy object.

After you have connected to the XML-RPC server, you can invoke methods on the remote server by
calling them as a function of the ServerProject object. For example, you can call the introspection
system.listMethods() using the "." syntax shown in the sample code xml-rpc_client.py. The system.
listMethods() function returns a list of functions that are available on the XML-RPC server. Other remote
functions that are registered on the XML-RPC server are invoked the same way.

import xmlrpclib

servAddr = "http://localhost:8080"

#Attach to XML-RPC server
s = xmlrpclib.ServerProxy(servAddr)

#List Methods
print "Methods\n==============="
methods = s.system.listMethods()
for m in methods:
 print m

#Call Methods
print "\nArea\n================"
print "5 in. Square =", s.areaSquare(5)
print "4x5 in. Rectangle =", s.areaRectangle(4,5)
print "10 in. Circle =", s.areaCircle(5)

xml-rpc_client.py

Methods
===============

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec11.html (1 von 2) [03.08.2007 09:09:34]

Creating an XML-RPC Client

areaCircle
areaRectangle
areaSquare
system.listMethods
system.methodHelp
system.methodSignature

Area
================
5 in. Square = 25
4x5 in. Rectangle = 20
10 in. Circle = 78.5

Output of xml-rpc_client.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec11.html (2 von 2) [03.08.2007 09:09:34]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Using SOAPpy to Access SOAP Web Services Through a WSDL File

Using SOAPpy to Access SOAP Web Services Through a WSDL File

from SOAPpy import WSDL

wServer = WSDL.Proxy(\
 'http://api.google.com/GoogleSearch.wsdl')
print wServer.methods.keys()

methodData = wServer.methods['doGoogleSearch']
for p in methodData.inparams:
 print " %s %s" % (p.name.ljust(12), p.type[1])
hits = wServer.doGoogleSearch(key, searchStr, 0, \
 10, False, "", False, "", "utf-8", "utf-8")
print len(hits.resultElements), "Hits . . ."
for hit in hits.resultElements:
 print "\nURL:", hit.URL
 print "Title:", hit.title
 print "Desc:", hit.snippet

The dynamics of the Python language make it a perfect fit for SOAP web services. The SOAPpy module,
available at http://pywebsvcs.sourceforge.net/, includes functions that enable you to create Python
scripts that allow you to access SOAP web services.

This phrase is designed to familiarize you with using the SOAPpy module to access SOAP web services
through a Web Service Definition Language (WSDL) file. A WSDL file is an XML file that describes the
URL, namespace, type of web service, functions, arguments, argument data types, and function return
values of the SOAP web service. In this case, the sample code accesses the Google search SOAP web
service through the GoogleSearch.wsdl file.

The first step is to create an instance of the WSDL proxy server using the WSDL.Proxy(wsdlfile) function
of the SOAPpy module. The WSDL.Proxy function accepts a WSDL filename as its only argument and
returns a WSDL proxy server object.

After you have created the WSDL proxy server object, you can view the available methods using the
methods attribute of the WSDL proxy server object, as shown in the sample code wServer.methods.keys
(). The methods attribute is a dictionary containing the available methods of the web service.

To view the arguments associated with a specific method, look up the method in the dictionary to get a
method data object, as shown in the sample code Server.methods['doGoogleSearch']. Once you have the
method data object, the arguments can be accessed using the inparams attribute, which is a list of
parameter objects. The name and type of the parameter are available using the name and type
attributes of the parameter object, as shown in the sample code p.name.ljust(12), p.type[1]).

The methods on the SOAP server can be called as methods of the WSDL proxy server object using the
"." syntax as shown in the example soap_wsdl.py.

Note

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec12.html (1 von 3) [03.08.2007 09:09:35]

http://pywebsvcs.sourceforge.net/

Using SOAPpy to Access SOAP Web Services Through a WSDL File

This phrase focuses on using Google's SOAP web service; however, there are numerous
services out there that can be accessed in much the same way. A good place to start is to
look at the services provided at http://www.xmethods.net/.

Note

In the sample code, key is set to INSERT_YOUR_KEY_HERE. You will need to go to http://api.
google.com and create an account to get your own key. Once you have your own key,
insert it into the sample code.

from SOAPpy import WSDL

searchStr = 'python'
key = 'INSERT_YOUR_KEY_HERE'

#Create WSDL server object
wServer = WSDL.Proxy(\
 'http://api.google.com/GoogleSearch.wsdl')

#Display methods
print "\nAvailable Methods\n======================"
print wServer.methods.keys()

#Display method arguments
print "\ndoGoogleSearch Args\n===================="
methodData = wServer.methods['doGoogleSearch']
for p in methodData.inparams:
 print " %s %s" % (p.name.ljust(12), p.type[1])

#Call method
hits = wServer.doGoogleSearch(key, searchStr, 0, \
 10, False, "", False, "", "utf-8", "utf-8")

#Print results
print "\nResults\n==============================="
print len(hits.resultElements), "Hits . . ."
for hit in hits.resultElements:
 print "\nURL:", hit.URL
 print "Title:", hit.title
 print "Desc:", hit.snippet

soap_wsdl.py

Available Methods
======================
[u'doGoogleSearch', u'doGetCachedPage',
 u'doSpellingSuggestion']

doGoogleSearch Args
====================
 key string

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec12.html (2 von 3) [03.08.2007 09:09:35]

http://www.xmethods.net/
http://api.google.com/
http://api.google.com/

Using SOAPpy to Access SOAP Web Services Through a WSDL File

 q string
 start int
 maxResults int
 filter boolean
 restrict string
 safeSearch boolean
 lr string
 ie string
 oe string

Results
===============================
10 Hits . . .

URL: http://www.python.org/
Title: Python Language Website
Desc: Home page for Python, an interpreted,
interactive, object-oriented, extensible

programming language. It provides an extraordinary
combination of clarity and ...

URL: http://www.python.org/download/
Title: Download Python Software
Desc: The original implementation of Python,
written in C.

URL: http://www.python.org/doc/
Title: Python Documentation Index
Desc: Official tutorial and references, including
library/module usage, Macintosh
 libraries,
language syntax, extending/embedding, and the
Python/C API.
. . .

Output of soap_wsdl.py

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/ch10lev1sec12.html (3 von 3) [03.08.2007 09:09:35]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Index

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/index.html [03.08.2007 09:09:35]

SYMBOL

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

"" (double quotes)
""" (triple quotes)
'' (single quotes)
... prompt
<INPUT> tag (HTML)
>>> prompt

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/SYMBOL.html [03.08.2007 09:09:35]

A

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

acc_list.py code example

accessing

 child nodes

 element attributes

 lists

 SOAP web services

 words in files
acquire() method

activating sockets

active databases

add() method

add_dbm.py code example

add_dict.py code example

add_list.py code example

add_zip.py code example

adding

 child nodes to DOM trees

 database entries 2nd

 files to ZIP files

 HTML to web pages

 list items

 quotes to HTML document attribute values

 values to dictionaries
anonymous methods

anydbm module

append() method

appendChild() method

architecture() method

ASCII encoding

attributes

 childNodes

 element

 HTML documents

 objects
authenticating servers

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/A.html (1 von 2) [03.08.2007 09:09:35]

A

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/A.html (2 von 2) [03.08.2007 09:09:35]

B

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

BaseHTTPRequestHandler class

BaseHTTPServer module

BaseHTTPServer module,

 GET requests

 POST requests
beginnings of strings

 finding

 trimming
bind() method

break statements

build_opener() method

built-in methods

built-in types

built-in types,

 callable

 classes

 files

 mapping

 modules 2nd

 none

 numbers

 sequences

 set

 type

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/B.html [03.08.2007 09:09:36]

C

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

callable type

calling methods

capitalize() method

cgi module

CGI scripts

 files, uploading

 HTML web pages, creating

 parameters, processing

 processing

 self-posting

 servers, configuring
cgi_form.cgi code example

cgi_selfpost.cgi code example

cgi_serv.py code example

cgi_text.cgi code example

cgi_upload.cgi code example

CGIHTTPServer module

CharacterData() method

CharacterDataHandlers() method

child nodes

 accessing

 adding

 deleting
childNodes attribute

class namespace

class statement
classes

classes type

classes,

 BaseHTTPRequestHan dler

 inheritance

 tag handler

 text parser

 Thread
clearcache() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/C.html (1 von 3) [03.08.2007 09:09:36]

C

client-side sockets, implementing

client_socket.py code example

clock() method

close() method

closing

 files

 POP3 connections

 SMTP connections
code

 indenting

 strings
commands (SQL)
 CREATE DATABASE

 CREATE Table

 executing

 INSERT INTO

 SELECT

 SHOW TABLES
communication (Internet)
 data

 receiving

 sending

 email

 retrieving

 sending

 FTP files, retrieving

 streaming data

 receiving

 sending
comp_str.py code example

comparing strings

conditional looping

configuring CGI script servers

connections

 MySQL database servers

 POP3

 SMTP
constructing dictionaries

converting tuples to lists

cookielib module

cookies

CREATE DATABASE SQL command

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/C.html (2 von 3) [03.08.2007 09:09:36]

C

CREATE Table SQL command

create_thread.py code example

createDocument() method

createElement() method

ctime() method

cwd() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/C.html (3 von 3) [03.08.2007 09:09:36]

D

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

d.has_key() method

data types

 dictionaries

 adding values

 constructing

 defined

 retrieving values

 slicing

 swapping with keys

 lists

 accessing

 adding items

 defining

 deleting items

 reversing order

 slicing

 sorting

 tuples conversions

 tuples

 defined

 lists

 values

 dictionaries

 functions

 objects

 shelve files
databases

 active

 entries

 adding

 retrieving

 updating

 MySQL

 adding entries

 connecting

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/D.html (1 von 3) [03.08.2007 09:09:36]

D

 creating

 pending requests, flushing

 retrieving entries

 objects

 pickling to files

 unpickling to files
decode() method

def_dict.py code example

def_list.py code examples

defining

 lists

 tag handler classes

 text parser class
del_tree.py code example

deleting

 child nodes

 files, recursively

 list items

 subdirectories, recursively
dictionaries

 constructing

 defined

 slicing

 values

 adding

 retrieving

 swapping with keys
dir() method

dir_tree.py code example

directory trees, walking

do_GET() method

do_POST() method

Document objects

documents

 HTML

 attribute value quotes, adding

 cookies

 images

 links

 opening

 text

 XML

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/D.html (2 von 3) [03.08.2007 09:09:36]

D

 accessing child nodes

 adding child nodes

 deleting child nodes

 element attributes, accessing

 loading

 searching

 text, extracting

 well formed
DOM objects

DOM trees, child nodes

 accessing

 adding

 deleting
double (") quotes

dump() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/D.html (3 von 3) [03.08.2007 09:09:36]

E

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

element attributes (XML documents)
elif statements

email
 retrieving

 sending
empty() method

encode() method

encoding (ASCII)
end_str.py code example

endings of strings

 finding

 trimming
endswith() method

 files, finding

 strings
entries (databases)
 adding 2nd

 retrieving 2nd

 updating
enumerate() method

error handling

eval() method

eval_str.py code example

exec() method

execute() method

 databases, creating

 SQL commands
executing

 code inside strings

 SQL commands
exit_thread.py code example

expat parser objects

extend() method

extensions (files)
extract() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/E.html (1 von 2) [03.08.2007 09:09:37]

E

extract_py.py code example

extracting

 files

 text

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/E.html (2 von 2) [03.08.2007 09:09:37]

F

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

feed() method

fetchall() method

FieldStorage() method

files

 adding to ZIP files

 closing

 deleting, recursively

 finding by extensions

 FTP, retrieving

 individually processing words

 modes

 built-in functions

 tarfile module

 number of lines

 opening

 pickling

 reading

 entire contents

 single lines

 renaming

 retrieving from ZIP files

 shelve

 changing objects

 retrieving objects

 storing objects

 values

 TAR

 creating

 files, extracting

 opening

 type

 unpickling

 uploading to web servers

 writing

 WSDL

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/F.html (1 von 2) [03.08.2007 09:09:37]

F

 ZIP

 adding

 retrieving
find() method

find_file.py code example

finding

 files by extensions

 strings

 substrings

 XML documents
flow control statements

flushing pending requests

for statements

format_str.py code example

formatting strings 2nd
FTP servers

ftp_client.py code example

ftplib module

ftplib.FTP() method

full() method

functions [See methods.]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/F.html (2 von 2) [03.08.2007 09:09:37]

G

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

GET requests

 handling

 sending to web servers
get_dbm.py code example

get_zip.py code example

getDOMImplemenation() method

getElementsByTagName() method

getline() method

getresponse() method

geturl() method

global namespaces

global statement

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/G.html [03.08.2007 09:09:37]

H

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

handle_data() method

handle_starttag() method

handling

 errors

 GET requests

 POST requests
hasAttribute() method

HTML

 <INPUT> tag

 adding to web pages

 documents

 attribute values

 cookies

 images

 links

 opening

 text
html_cookie.py code example

html_images.py code example

html_links.py code example

html_open.py code example

html_quotes.py code example

html_text.py code example

HTMLParser module (HTML documents)
 attribute value quotes, adding

 images

 links

 text
HTTP servers

 CGI scripts, processing

 GET requests

 POST requests 2nd
http_get.py code example

http_get_serv.py code example

http_post.py code example

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/H.html (1 von 2) [03.08.2007 09:09:38]

H

http_post_serv.py code example

HTTPConnection() method

httplib module

 GET requests

 POST requests
HTTPServer() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/H.html (2 von 2) [03.08.2007 09:09:38]

I

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

identity objects

if statements

images, retrieving

importing modules

indenting code

index() method

inheritance (classes)
INSERT INTO SQL command

insert() method

integration

Internet communication

 data

 receiving

 sending

 email

 retrieving

 sending

 FTP files, retrieving

 streaming data

 receiving

 sending
interpolating variables

interpreter
items (lists)
items() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/I.html [03.08.2007 09:09:38]

J

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

join() method

join_str.py code example

joining strings

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/J.html [03.08.2007 09:09:38]

K

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

keys() method

keyterms, reverse

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/K.html [03.08.2007 09:09:38]

L

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Language (WSDL)
len() method

line_cache.py code example

lines (files)
links (HTML documents)
list() method

 converting tuples to lists

 email messages
listen() method

listMethods() method

lists

 accessing

 defining

 items

 adding

 deleting

 order, reversing

 slicing

 sorting

 tuples conversions
ljust() method

load() method

loading XML documents

local namespaces

local strings

localtime() method

Lock() method

looping

lower() method

lstrip() method

LWPCookieJar() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/L.html [03.08.2007 09:09:38]

M

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

make_parser() method 2nd
mapping type

methods

 acquire()

 add()

 anonymous

 append()

 appendChild()

 architecture()

 bind()

 build_opener()

 built-in

 calling

 capitalize()

 CharacterData()

 CharacterDataHandlers()

 clearcache()

 clock()

 close()

 createDocument()

 createElement()

 creating

 ctime()

 cwd()

 d.has_key()

 dir()

 do_GET()

 do_POST()

 dump()

 empty()

 encode()

 endswith()

 files, finding

 strings

 enumerate()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/M.html (1 von 6) [03.08.2007 09:09:39]

M

 eval()

 exec()

 execute() databases, creating

 SQL commands

 extend()

 extract()

 feed()

 fetchall()

 FieldStorage()

 find()

 ftplib.FTP()

 full()

 getDOMImplementation()

 getElementsByTagName()

 getline()

 getresponse()

 geturl()

 handle_data()

 handle_starttag()

 hasAttribute()

 HTTPConnection()

 HTTPServer()

 index()

 insert()

 items()

 join()

 keys()

 len()

 list()

 converting tuples to

 email messages

 listen()

 listMethods()

 ljust()

 load()

 localtime()

 Lock()

 lower()

 lstrip()

 LWPCookieJar()

 make_parser() 2nd

 open()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/M.html (2 von 6) [03.08.2007 09:09:39]

M

 database entries

 files

 shelve module

 TAR files

 parameters, passing

 parse()

 expat parser objects

 XML documents

 parse_qsl()

 ParserCreate() 2nd

 Pickler()

 pop()

 poplib.POP3()

 Proxy()

 python version()

 qsize()

 quit()

 POP3 connections

 SMTP connections

 range()

 read()

 files

 HTML documents

 ZIP files

 readline()

 readlines()

 files

 HTML documents

 register_function()

 register_introspection_functions()

 registering

 remove()

 removeChild()

 rename()

 replace()

 Request() 2nd

 retr()

 retrbinary()

 reverse()

 rfile.readline()

 rfind()

 rindex()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/M.html (3 von 6) [03.08.2007 09:09:39]

M

 rjust()

 rstrip()

 sendmail()

 serv_forever()

 ServerProxy()

 setContentHandler() 2nd

 SimpleXMLRPCServer()

 sleep()

 smtplib.SMTP()

 socket()

 sort()

 split()

 files, finding

 strings

 words in files

 splitlines()

 start_new_thread

 startElement()

 startswith()

 strip()

 substitutive()

 swapcase

 Template()

 time()

 Timer()

 toxml()

 uname()

 UnPickler()

 upper()

 urljoin()

 urllib.urlopen()

 urlparse

 urlunparse()

 values

 values()

 walk()

 directory trees

 files, deleting

 write()

 writelines()

 ZipFile()
minidom objects

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/M.html (4 von 6) [03.08.2007 09:09:39]

M

modules

modules,

 anydbm

 BaseHTTPServer

 GET requests

 POST requests

 cgi

 CGIHTTPServer

 cookielib

 ftplib

 HTMLParser (HTML documents)

 images

 links

 quotes, adding

 text

 httplib

 GET requests

 POST requests

 importing

 MySQLdb

 namespace

 os 2nd

 platform

 poplib

 shelve

 SimpleXMLRPCServer

 smtplib

 SOAPpy

 socket

 client-side sockets

 server-side sockets

 SocketServer

 receiving streaming data

 sending streaming data

 sys

 tarfile

 time

 type 2nd

 urllib

 urlparse

 xml.dom

 xml.parsers.expat

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/M.html (5 von 6) [03.08.2007 09:09:39]

M

 xml.sax

 well formed XML documents

 XML tags, parsing

 xmlrpdib
multi-line statements

multiple threads

MySQL databases

 connecting

 creating

 entries

 adding

 retrieving

 pending requests, flushing
MySQL website

MySQL_add.py code example

MySQL_conn.py code example

MySQL_create.py code example

MySQL_get.py code example

MySQLdb module

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/M.html (6 von 6) [03.08.2007 09:09:39]

N

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

namespaces

namespaces,

 class

 global

 local

 module
naming files

negative indices (strings)
 lists, accessing

 slices, grabbing
nodes

 child

 accessing

 adding

 deleting

 creating
none type

number of lines (files)
numbers type

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/N.html [03.08.2007 09:09:39]

O

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

objects

objects,

 attributes

 Document

 DOM

 expat parser

 identity

 minidom

 parser

 pickling to files

 Request

 shelve files

 changing

 retrieving

 storing

 types

 unpickling to files

 values
open() method

 database entries

 files

 shelve module

 TAR files
open_file.py code example

opening

 files

 HTML documents

 TAR files

os module 2nd

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/O.html [03.08.2007 09:09:40]

P

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

parameters

 CGI scripts

 methods, passing
parse() method

 expat parser objects

 XML documents
parse_qsl() method

parser objects, creating

ParserCreate() method 2nd
parsing

 query strings

 URLs

 XML tags
pending requests, flushing

pickle_data.py code example

Pickler() method

pickling objects to files

platform module

pop() method

POP3 servers

 connections, closing

 email, retrieving
pop3_mail.py code example

poplib module

poplib.POP3() method

portability

POST requests

 handling

 sending to web servers
post_form.html code example

prompts

protocol families (sockets)
Proxy() method

Python

python_version() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/P.html (1 von 2) [03.08.2007 09:09:40]

P

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/P.html (2 von 2) [03.08.2007 09:09:40]

Q

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

qsize() method

query strings

queue_thread.py code example

queues (priority)
quit() method

 POP3 connections

 SMTP connections

quotes 2nd

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/Q.html [03.08.2007 09:09:40]

R

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

range() method

read() method

 files

 HTML documents

 ZIP files
read_file.py code

read_words.py code example

reading files

 entire contents

 individually processing words

 single lines
readline() method

readlines() method

readlines() method,

 files

 HTML documents
receiving streaming data

recursively deleting files/subdirectories

register_function() method

register_introspection_functions() method

registering methods

remove() method

removeChild() method

ren_file.py code example

rename() method

renaming files

replace() method

replace_str.py code example

replacing substrings

Request objects

Request() method 2nd
requests

 GET

 handling

 sending to web servers

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/R.html (1 von 2) [03.08.2007 09:09:40]

R

 POST

 handling

 sending to web servers
ret_dict.py code example

retr() method

retrbinary() method

retrieving

 cookies

 database entries 2nd

 email

 files 2nd

 HTML document links

 images

 objects

 text

 values
reverse keyterm

reverse() method

reversing list order
rfile.readline() method

rfind() method

rindex() method

rjust() method

rstrip() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/R.html (2 von 2) [03.08.2007 09:09:40]

S

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

scoping

scripts (CGI)
 files, uploading

 HTML web pages, creating

 HTTP servers, processing

 parameters, processing

 self-posting

 servers, configuring
search_str.py code example

searching [See finding.]
SELECT SQL command

self-posting CGI scripts

send_smtp.py code example

sending

 email

 GET requests to web servers

 POST requests to web servers

 streaming data
sendmail() method

sequences

sequential looping

serv_forever() method

server-side sockets

server_socket.py code example

ServerProxy() method

servers

 authenticating

 CGI script

 FTP

 HTTP

 CGI scripts, processing

 handling GET requests

 POST requests

 sending GET requests to web servers

 sending POST requests to web servers

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/S.html (1 von 5) [03.08.2007 09:09:41]

S

 POP3

 SMTP

 starting

 XML-RPC

set type 2nd

setContentHandler() method 2nd
shelve files

 objects

 changing

 retrieving

 storing

 values
shelve module

shelve_edit.py code example

shelve_get.py code example

shelve_store.py code example

SHOW TABLES SQL command

SimpleXMLRPCServer module

SimpleXMLRPCServer() method

single (') quotes

sleep() method

slice_list.py code example

slicing

 dictionaries

 lists
SMTP servers

smtplib module

smtplib.SMTP() method

SOAP web services

soap_wsdl.py code example

SOAPpy module

socket module

 client-side sockets

 server-side sockets
socket() method

sockets

 activating

 binding to addresses/ports

 client-side

 creating

 protocol families

 server-side

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/S.html (2 von 5) [03.08.2007 09:09:41]

S

 types
SocketServer module (streaming data)
 receiving

 sending
sort() method

sort_list.py code example

sorting lists

split() method

 files, finding

 strings

 words in files
split_str.py code example

splitlines() method

splitting strings

SQL commands

 CREATE DATABASE

 CREATE Table

 executing

 INSERT INTO

 SELECT

 SHOW TABLES
start_new_thread() method

startElement() method

starting

 servers

 threads
startswith() method

statements

 break

 class

 elif

 flow control

 for

 global

 if

 multi-line

 while
storing objects

stream_client.py code example

stream_server.py code example

streaming data

 receiving

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/S.html (3 von 5) [03.08.2007 09:09:41]

S

 sending
strings

 code inside, executing

 comparing

 decode() method

 endings

 finding

 trimming

 finding

 formatting

 joining

 local

 splitting

 substrings

 templates

 text

 formatting

 replacing

 trimming 2nd

 unicode

 variables
strip() method

sub_dict.py code example

subdirectories

substitutive() method

substrings

 finding

 replacing
swap_dict.py code example

swapcase() method

sync_thread.py code example

synchronizing threads

syntax

 code indentation

 quotes

 statements

 flow control

 multi-line

 strings, formatting
sys module

system tools (modules)
system tools (modules),

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/S.html (4 von 5) [03.08.2007 09:09:41]

S

 os

 platform

 sys

 time

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/S.html (5 von 5) [03.08.2007 09:09:41]

T

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tag handler classes

tags

 HTML, <INPUT>

 XML
TAR files

 creating

 files, extracting

 opening
tar_file.py code example

tarfile module

Template() method

templates

text
 HTML documents

 strings

 formatting

 replacing

 XML documents
text parser class

Thread class

threads

 creating

 multiple

 starting

 synchronizing

 timer-interrupted
time module

time() method

Timer() method

timer-interrupted threads

timer_thread.py code example

tools (system modules)
tools (system modules),
 os

 platform

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/T.html (1 von 2) [03.08.2007 09:09:41]

T

 sys

 time
toxml() method

trees (DOM), child nodes

 accessing

 adding

 deleting
trim_str.py code example

trimming strings

triple (''', """) quotes

tuple.py code example

tuples

tuples,

 converting to lists

 defined
type type

types

 built-in

 callable

 classes

 files

 mapping

 modules 2nd

 none

 numbers

 sequences 2nd

 set

 data [See data types, values, objects.]

 objects

 sockets

 type

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/T.html (2 von 2) [03.08.2007 09:09:41]

U

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

uname() method

unicode strings

unicode_str.py code example

unpickle_data.py code example

UnPickler() method

unpickling objects to files

update_dbm.py code example

updating database entries

uploading files to web servers

upper() method

URL_parse.py code example

urljoin() method

urllib module

urllib.urlopen() method

urlparse module

urlparse() method

URLs, parsing

urlunparse() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/U.html [03.08.2007 09:09:42]

V

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

values

 dictionaries

 adding

 retrieving

 swapping with keys

 functions

 objects

 shelve files
values() method

var_str.py code example

variables (strings)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/V.html [03.08.2007 09:09:42]

W

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

walk() method

 directory trees

 files, deleting
walking directory trees

web services

 CGI scripts

 files, uploading

 parameters, processing

 self-posting, creating

 GET requests

 HTML web pages, creating

 HTTP servers

 CGI scripts, processing

 GET requests, handling

 POST requests

 POST requests

 SOAP

 XML-RPC

 clients

 servers
websites

 MySQL

 SOAP web services
while statements

write() method

writelines() method

writing files

WSDL (Web Service Definition Language)
WSDL files

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/W.html [03.08.2007 09:09:42]

X

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XML documents

 child nodes

 accessing

 adding

 deleting

 element attributes

 loading

 searching

 text, extracting

 well formed
XML tags

XML-RPC

 clients

 servers
xml-rpc_client.py code example

xml-rpc_serv.py code example

xml.dom module

xml.parsers.expat module

xml.sax module

 well formed XML documents

 XML tags, parsing
xml_addnode.py code example

xml_attribute.py code example

xml_child.py code example

xml_open.py code example

xml_removenode.py code example

xml_search.py code example

xml_tags.py code example

xml_text.py code example

xml_wellformed.py code example

xmlrpdib module

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/X.html [03.08.2007 09:09:42]

Z

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ZIP files

 adding

 retrieving
ZipFile() method

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/Z.html [03.08.2007 09:09:43]

	Cover
	Python Phrasebook: Essential Code and Commands
	Table of Contents
	Copyright
	Acknowledgments
	About the Author
	Introduction
	Chapter 1. Understanding Python
	Why Use Python?
	Invoking the Interpreter
	Built-In Types
	Understanding Python Syntax
	Python Objects, Modules, Classes, and Functions
	Error Handling
	Using System Tools

	Chapter 2. Manipulating Strings
	Comparing Strings
	Joining Strings
	Splitting Strings
	Searching Strings for Substrings
	Search and Replace in Strings
	Searching Strings for Specific Endings/Beginnings
	Trimming Strings
	Aligning/Formatting Strings
	Executing Code Inside Strings
	Interpolating Variables Inside Strings
	Converting Unicode to Local Strings

	Chapter 3. Managing Data Types
	Defining a List
	Accessing a List
	Slicing a List
	Adding and Removing Items in a List
	Sorting a List
	Using Tuples
	Constructing a Dictionary
	Adding a Value to a Dictionary
	Retrieving a Value from a Dictionary
	Slicing a Dictionary
	Swapping Keys for Values in a Dictionary

	Chapter 4. Managing Files
	Opening and Closing Files
	Reading an Entire File
	Reading a Single Line from a File
	Accessing Each Word in a File
	Writing a File
	Determining the Number of Lines in a File
	Walking the Directory Tree
	Renaming Files
	Recursively Deleting Files and Subdirectories
	Searching for Files Based on Extension
	Creating a TAR File
	Extracting a File from a TAR File
	Adding Files to a ZIP File
	Retrieving Files from a ZIP File

	Chapter 5. Managing Threads
	Starting a New Thread
	Creating and Exiting Threads
	Synchronizing Threads
	Implementing a Multithreaded Priority Queue
	Initiating a Timer-Interrupted Thread

	Chapter 6. Managing Databases
	Adding Entries to a DBM File
	Retrieving Entries from a DBM File
	Updating Entries in a DBM File
	Pickling Objects to a File
	Unpickling Objects from a File
	Storing Objects in a Shelve File
	Retrieving Objects from a Shelve File
	Changing Objects in a Shelve File
	Connecting to a MySQL Database Server
	Creating a MySQL Database
	Adding Entries to a MySQL Database
	Retrieving Entries from a MySQL Database

	Chapter 7. Implementing Internet Communication
	Opening a Server-Side Socket for Receiving Data
	Opening a Client-Side Socket for Sending Data
	Receiving Streaming Data Using the ServerSocket Module
	Sending Streaming Data
	Sending Email Using SMTP
	Retrieving Email from a POP3 Server
	Using Python to Fetch Files from an FTP Server

	Chapter 8. Processing HTML
	Parsing URLs
	Opening HTML Documents
	Retrieving Links from HTML Documents
	Retrieving Images from HTML Documents
	Retrieving Text from HTML Documents
	Retrieving Cookies in HTML Documents
	Adding Quotes to Attribute Values in HTML Documents

	Chapter 9. Processing XML
	Loading an XML Document
	Checking for Well-Formed XML Documents
	Accessing Child Nodes
	Accessing Element Attributes
	Adding a Node to a DOM Tree
	Removing a Node from a DOM Tree
	Searching XML Documents
	Extracting Text from XML Documents
	Parsing XML Tags

	Chapter 10. Programming Web Services
	Adding HTML to Web Pages Using CGI Scripts
	Processing Parameters Passed to CGI Scripts
	Creating Self-Posting CGI Scripts
	Allowing Users to Upload Files via CGI Scripts
	Creating an HTTP Server to Handle GET Requests
	Creating an HTTP Server to Handle POST Requests
	Creating an HTTP Server to Process CGI Scripts
	Sending an HTTP GET Request from a Python Script
	Sending an HTTP POST Request from a Python Script
	Creating an XML-RPC Server
	Creating an XML-RPC Client
	Using SOAPpy to Access SOAP Web Services Through a WSDL File

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

