ESSENTIAL CODE
Brad Dayley AND COMMANDS

Python

PHRASEBOOK

NEXT B

Python Phrasebook: Essential Code and Commands
By Brad Dayley

Publisher: Sams

Pub Date: November 07, 2006

Print ISBN-10: 0-672-32910-7

Print ISBN-13: 978-0-672-32910-4
Pages: 288

Table of Contents | Index

Overview

Python Phrasebook
Brad Dayley
Essential Code and Commands

Python Phrasebook gives you the code phrases you need to quickly and effectively complete your programming

projects in Python.

Concise and Accessible

Easy to carry and easy to uselets you ditch all those bulky books for one portable guide
Flexible and Functional

Packed with more than 100 customizable code snippetsso you can readily code functional Python in just about

any situation

Brad Dayley is a software engineer at Novell, Inc. He has been a system administrator and software developer
on the Unix, Windows, Linux, and NetWare platforms for the past 14 years. Brad co-developed an advanced
debugging course used to train engineers and customers and is the co-author of several Novell Press books.

Programming / Python

$16.99 USA / $20.99 CAN / £11.99 Net UK

NEXT B

Python Phrasebook: Essential Code and Commands
By Brad Dayley

Publisher: Sams

Pub Date: November 07, 2006

Print ISBN-10: 0-672-32910-7

Print ISBN-13: 978-0-672-32910-4

Pages: 288

Table of Contents | Index

Copyright

About the Author

Acknowledgments

Introduction
Chapter 1. Understanding Python
Why Use Python?

Invoking the Interpreter

Built-In Types

Understanding Python Syntax

Python Objects, Modules, Classes, and Functions

Error Handling

Using System Tools

Chapter 2. Manipulating Strings

Comparing Strings

Joining Strings

Splitting Strings

Searching Strings for Substrings

Search and Replace in Strings

Searching Strings for Specific Endings/Beginnings

Trimming Strings

__Aligning/Formatting Strings

Executing Code Inside Strings

Interpolating Variables Inside Strings

Converting Unicode to Local Strings

Chapter 3. Managing Data Types

Defining a List

__Accessing a List

Slicing a List
___Adding and Removing ltems in a List

NEXT B

Sorting a List

Using Tuples

Constructing a Dictionary

___Adding a Value to a Dictionary

Retrieving a Value from a Dictionary

Slicing a Dictionary

Swapping Keys for Values in a Dictionary

Chapter 4. Managing Files

Opening and Closing Files

Reading an Entire File

Reading a Single Line from a File

Accessing Each Word in a File

Writing a File

Determining the Number of Lines in a File

Walking the Directory Tree

Renaming Files

Recursively Deleting Files and Subdirectories

Searching for Files Based on Extension

Creating a TAR File

Extracting a File from a TAR File
___Adding Files to a ZIP File

Retrieving Files from a ZIP File

Chapter 5. Managing Threads

Starting a New Thread

Creating and Exiting Threads

Synchronizing Threads

Implementing a Multithreaded Priority Queue

Initiating a Timer-Interrupted Thread

Chapter 6. Managing Databases

__Adding Entries to a DBM File

Retrieving Entries from a DBM File

Updating Entries in a DBM File

Pickling Objects to a File

Unpickling Objects from a File

Storing Objects in a Shelve File

Retrieving Objects from a Shelve File

Changing Objects in a Shelve File

Connecting to a MySQL Database Server

Creating a MySOL Database

Adding Entries to a MySOL Database

Retrieving Entries from a MySQL Database

Chapter 7. Implementing Internet Communication

Opening a Server-Side Socket for Receiving Data

Opening a Client-Side Socket for Sending Data

Receiving Streaming Data Using the ServerSocket Module

Sending Streaming Data

Sending Email Using SMTP

Retrieving Email from a POP3 Server

Using Python to Fetch Files from an FTP Server

Chapter 8. Processing HTML

Parsing URLs

Opening HTML Documents

Retrieving Links from HTML Documents

Retrieving Images from HTML Documents

Retrieving Text from HTML Documents

Retrieving Cookies in HTML Documents

__Adding Quotes to Attribute Values in HTML Documents

Chapter 9. Processing XML

Loading an XML Document
Checking for Well-Formed XML Documents

Accessing Child Nodes

Accessing Element Attributes
Adding a Node to a DOM Tree

Removing a Node from a DOM Tree

Searching XML Documents

Extracting Text from XML Documents

Parsing XML Tags

Chapter 10. Programming Web Services

__Adding HTML to Web Pages Using CGI Scripts

Processing Parameters Passed to CGI Scripts

Creating Self-Posting CGI Scripts

__Allowing Users to Upload Files via CGI Scripts

Creating an HTTP Server to Handle GET Requests

Creating an HTTP Server to Handle POST Requests

Creating an HTTP Server to Process CGI Scripts

Sending an HTTP GET Request from a Python Script

Sending an HTTP POST Request from a Python Script

Creating an XML-RPC Server

Creating an XML-RPC Client

Using SOAPpy to Access SOAP Web Services Through a WSDL File

Index

NEXT B

k=2
Copyright

Python Phrasebook

Copyright © 2007 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2006922308
Printed in the United States of America
First Printing: November 2006

090807064321
Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty
or fitness is implied. The information provided is on an "as is" basis. The author and the publisher shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearsoned.com

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com

Acquisitions Editor
Jenny Watson

Mark Taber
Development Editor
Songlin Qiu
Managing Editor
Patrick Kanouse
Project Editor
Tonya Simpson
Copy Editor

Sarah Kearns
Indexer

Heather McNeil
Proofreader

Mike Henry
Technical Editor
Tim Boronczyk
Publishing Coordinator
Vanessa Evans

Book Designer
Gary Adair

Page Layout

TnT Design, Inc.

Dedication

For D,

A& F!

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Acknowledgments

My sincere gratitude goes out to the following persons, without whom this book could not have
happened:

To my wife, who provides all the inspiration and drive behind everything | do, words cannot say enough.

To my friends at Novell, especially Christine Williams, who force me to be more intelligent and creative
than | would necessarily like to be, thanks for your support and friendship.

To my editors, who made the book readable, checked on my technical accuracy, and kept me on track,
you all are great (and picky). It seems that nothing gets by you. To Jenny Watson, thanks for being
such a great editor over the years and getting this book rolling, | wish you the best of luck. Thanks to
Mark Taber for handling a tough transition and keeping the book on track; you've kept me going and
helped make this book fun to write. To Songlin Qiu, Damon Jordan, and especially Timothy Boronczyk,
thank you for helping me convert my thoughts and ramblings into a clean, coherent and technically
accurate manuscript.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

You can email or write me directly to let me know what you did or didn't like about this bookas well as
what we can do to make our books stronger.

Please note that | cannot help you with technical problems related to the topic of this book, and that due
to the high volume of mail | receive, | might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone
or email address. | will carefully review your comments and share them with the author and editors who
worked on the book.

Email: opensource@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.samspublishing.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

e Py EXT

mailto:opensource@samspublishing.com
http://www.samspublishing.com/register
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

@ prev |
About the Author

Brad Dayley is a senior software engineer in Novell's Nterprise Development Group. He has 14 years of
experience installing, troubleshooting, and developing Novell's products for NetWare and Linux. He is
the co-author of Novell's Guide to Resolving Critical Server Issues, as well as seven other Novell Press
titles on the ZENworks suite.

When he is not writing books or software, he can be found biking, hiking, and/or Jeeping somewhere in
the remote regions of the Pacific Northwest with his wife, DaNae, and four sons.

e Py EXT

e Py EXT

Introduction

I was excited when my editor asked me to write a phrasebook on the Python language. The phrasebook
is one of the smallest books | have ever written; however, it was one of the hardest.

The idea of a conventional phrasebook is to provide readers with quick phrases that actually mean
something in the language. The Python phrasebook is designed to provide you with meaningful Python
phrases that you can actually understand and use to quickly begin programming Python applications.

The content of this book are based on Python 2.4. You should keep in mind that the Python language is

constantly being added to. | would recommend visiting the Python website at http://www.python.org to
familiarize yourself with accessing the online documentation, available extensions, and any changes that
are occurring.

This book is not a reference manual or language guide that encompasses the entire languagethat's not
the purpose. The purpose is to provide you with a small, simple-to-use phrasebook that will get you
going and provide a quick, easy reference later as you delve into new areas of the language.

When designing the content for this book, | tried to come up with the most relevant and interesting
phrases that will actually help programs accomplish tasks that are pertinent to real-world needs. |
welcome your comments and any phrases that you feel really need to be added to this book.

Note

Almost all the sample code used in this book is taken from actual working files. For your
convenience, the Python scripts, CGI scripts, and HTML and XML documents that are shown
as examples in the phrases of this book are available for download from the publisher's
website. Register your book at www.samspublishing.com/register and download the code

examples from this book. Feel free to modify them for your own needs.

I hope that you enjoy the phrases in this book and that they will be useful to you.

e Py EXT

http://www.python.org/
http://www.samspublishing.com/register
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

@ prev |
Chapter 1. Understanding Python

Python is an extremely powerful and dynamic object-oriented programming language. It has similarities
to scripting languages such as Perl, Scheme, and TCL, as well as other languages such as Java and C.

This chapter is designed to give you a quick glimpse into the Python language to help you understand
the phrases in the subsequent chapters. It is not meant to be comprehensive; however, it should give
you a feel for the language and help you understand the basics so that you can refer to the Python
documentation for more information.

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py NEXT

Why Use Python?

There are several reasons to use Python. It is one of the easier languages to pick up and start using,
and yet it can be extremely powerful for larger applications. The following are just some of the good
points of Python:

« Portability Python runs on almost every operating system, including Linux/Unix, Windows, Mac,
OS 2, and others.

. Integration Python can integrate with COM, .NET, and CORBA objects. There is a Jython
implementation to allow the use of Python on any Java platform. IronPython is an
implementation that gives Python programmers access to the .NET libraries. Python can also
contain wrapped C or C++ code.

« Easy It is very easy to get up to speed and begin writing Python programs. The clear, readable
syntax makes applications simple to create and debug.

« Power There are new extensions being written to Python all the time for things such as database
access, audio/video editing, GUI, web development, and so on.

« Dynamic Python is one of the most flexible languages. It's easy to get creative with code to
solve design and development issues.

« Open Source Python is an open source language, which means it can be freely used and
distributed.

K==a NEXT

e Py EXT

Invoking the Interpreter

Python scripts are executed by a Python interpreter. On most systems, you can start the Python
interpreter by executing the pyt hon command at a console prompt. However, this can vary based on the
system and development environment you have set up. This section discusses the standard methods to
invoke the interpreter to execute Python statements and script files.

Invoking the interpreter without passing a script file as a parameter brings up the following prompt:

bwd- | i nux:/book # python

Python 2.4.2 (#1, Apr 9 2006, 19:25:19)

[GCC 4.1.0 (SUSE Linux)] on Iinux2

Type "hel p*, "copyright", "credits" or
"l'icense"” for nore information.

>>>

The Python prompt is indicated by >>>. If you execute a command that requires more input, a . . .

prompt will be displayed. From the interpreter prompt, you can execute individual Python statements, as
follows:

>>> print "Printing a String"
Printing a String

Invoking the interpreter with a script parameter, as shown next, begins execution of the script and
continues until the script is finished. When the script is finished, the interpreter is no longer active.

bwd- | i nux:/book # python script. py
Executing a Script
bwd- | i nux:/ book #

Scripts can also be executed from within the interpreter using the execfil e(script) function built in to
Python. The following example shows a script being executed using the execfil e() function:

>>> execfile("script.py")
Executing a Scri pt
>>>

e Py EXT

Built-In Types

NEXT B

The built-in types that you will most frequently use in Python can be grouped into the categories listed
in Table 1.1 . The Type Name column shows the name that is associated with each built-in object type

and can be used to determine whether an object is of a specific type using the i si nst ance(obj ect,

t ypenane) function, as follows:

>>> s = "A Sinple String"

>>> print
True

>>> print
Fal se
>>>

Type Category Type Name

None

Numbers

Set

Sequences

Mapping
Files

Callable

i sinstance(s,

i si nstance(s,

types. NoneType

bool

i nt

| ong

fl oat
conpl ex

set

frozenset

str

uni code
basestring
list

tuple
Xrange

di ct

file

type

basestri ng)

di ct)

Table 1.1. Common Built-1n Python Types

Description

None object (null object)
Boolean True or False

Integer

Long integer
Floating point
Complex number

Mutable set

Immutable set

Character string

Unicode character string
Base type of all strings
List

Tuple

Immutable sequence

Dictionary
File

Type for all built-ins

obj ect Parent of all types and classes
types. Bui | ti nFunctionType Byilt-in function

types. Bui | ti nMet hodType Built-in method

types. FunctionType User-defined function
types. | nstanceType Class instance
types. Met hodType Bound method

types. UnboundedMet hodType yUnbound method

Modules types. Modul eType Module

Classes obj ect Parent of all classes

Type type Type for all built-ins
Note

The type module must be imported to use any of the type objects such as type and t ypes.
Modul eType.

None

The none type equates to a null object that has no value. The none type is the only object in Python that
can be a null object. The syntax to use the none type in programs is simply None.

Numbers

The numeric types in Python are very straightforward. The bool type has two possible values: true or
Fal se. The i nt type internally stores whole numbers up to 32 bits. The | ong type can store numbers in a
range that is limited only by the available memory of the machine. The fl oat type uses the native
double-precision to store floating-point numbers up to 64 bits. The conpl ex type stores values as a pair
of floating-point numbers. The individual values are accessible using the z.real and z. i mag attributes of
the complex object.

Set

The set type represents an unordered collection of unique items. There are two basic types of sets:
mutable and immutable. Mutable sets can be modified (items can be added or removed). Immutable
sets cannot be changed after they are created.

Note

All items that are placed in a set must be of immutable type. Therefore, sets cannot contain
items such as lists or dictionaries. However, they can include items such as strings and

tuples.

Sequences

There are several sequence types in Python. Sequences are ordered and can be indexed by non-
negative integers. Sequences are easily manipulated and can be made up of almost any Python object.

The two most common types of sequences by far are the string and list types. Chapter 2, "Manipulating
Strings,"” discusses creating and using the string type. Chapter 3, "Managing Data Types," discusses the
most common types of sequences and how to create and manipulate them.

Mapping

The mapping type represents two collections of objects. The first collection is a set of key objects that
index the second collection that contains a set of value objects. Each key object indexes a specific value
object in the correlating set. The key object must be of an immutable type. The value object can be
almost any Python object.

The dictionary is the only mapping type currently built in to Python. Chapter 3 discusses dictionaries and
how to create and manipulate them.

Files

The file type is a Python object that represents an open file. Objects of the file type can be used to read
and write data to and from the filesystem. Chapter 4, "Managing Files," discusses file type objects and

includes some of the most common Python phrases to utilize them.
Callable

Objects of the callable type support Python's function call operation, meaning that they can be called as
a function of the program. Several objects fall into the callable type. The most common are the
functions built in to the Python language, user-defined functions, classes, and method instances.

Note

Classes are considered callable because the class is called to create a new instance of the
class. Once a new instance of a class has been called, the method instances of the class
become callable also.

Modules

The module type represents Python modules that have been loaded by the i nport statement. The i nport

statement creates a module type object with the same name as the Python module; then, all objects
within the module are added to the __di ct __ attribute of the newly created module type object.

Objects from the module can be accessed directly using the dot syntax because it is translated into a

dictionary lookup. This way, you can use nodul e. obj ect instead of accessing an attribute using nodul e.
__dict__("object") to access objects from the module.

For example, the math module has the numeric object pi ; the following code loads the math module
and accesses the pi object:

>>> jnport math
>>> print math. pi
3.14159265359

e prey | NEXT

e Py EXT

Understanding Python Syntax

The Python language has many similarities to Perl, C, and Java. However, there are some definite
differences between the languages. This section is designed to quickly get you up to speed on the
syntax that is expected in Python.

Using Code Indentation

One of the first caveats programmers encounter when learning Python is the fact that there are no
braces to indicate blocks of code for class and function definitions or flow control. Blocks of code are
denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block must be
indented the same amount. Both blocks in this example are fine:

if True:
print "True"
el se:
print "False"

However, the second block in this example will generate an error:

if True:
print "Answer"
print "True"
el se:
print "Answer"
print "False"

Creating MultiLine Statements

Statements in Python typically end with a new line. Python does, however, allow the use of the line
continuation character (\) to denote that the line should continue. For example:

total _sum = sum.itemone + \
sumitemtwo + \
sumitemthree

Statements contained within the [], {}, or () brackets do not need to use the line continuation
character. For example:

week list = ['Mnday', 'Tuesday', 'Wdnesday',
" Thursday', 'Friday']

Quotation

Python accepts single ('), double (") and triple (" '' or """) quotes to denote string literals, as long as

the same type of quote starts and ends the string. The triple quotes can be used to span the string
across multiple lines. For example, all the following are legal:

word = "word'
sentence = "This is a sentence.
paragraph = """This is a paragraph. It is

made up of nultiple lines and sentences."""

Formatting Strings

Python allows for strings to be formatted using a predefined format string with a list of variables. The
following is an example of using multiple format strings to display the same data:

>>>|ist = ["Brad", "Dayley", "Python Phrasebook",
2006]

>>>| etter = """

>>>Dear M. %,\n

>>>Thank you for your % book subm ssion.
>>>You shoul d be hearing fromus in %l. """
>>>di splay = """
>>>Title: %
>>>Aut hor: %, %

>>>Date: %"""
>>>record = "%| %| %s| %©8d"
>>>print letter % (list[1], list[2], list[3])

Dear M. Dayl ey,
Thank you for your Python Phrasebook book submi ssi on.
You shoul d be hearing fromus in 2006.

>>>print display % (list[2], list[1], list[O],
[ist[3])

Title: Python Phrasebook

Aut hor: Dayl ey, Brad

Date: 2006

>>>print record % (list[0], list[1], list[2],
list[3])
Br ad| Dayl ey| Pyt hon Phrasebook| 00002006

Using Python Flow Control Statements

Python supports the i f, el se, and el i f statements for conditional execution of code. The syntax isi f
expression: bl ock. If the expression evaluates to true execute the block of code. The following code
shows an example of a simple series of i f blocks:

if x = True:
print "x is True"
elif y = true:

print "y is True"
el se:
print "Both are Fal se"

Python supports the whi | e statement for conditional looping. The syntax is whi | e expr essi on: bl ock.

While the expression evaluates to true, execute the block in looping fashion. The following code shows
an example of a conditional whi | e loop:

Xx =1
while x < 10:
X += 1

Python also supports the for statement for sequential looping. The syntax is for itemin sequence:
bl ock. Each loop item is set to the next item in the sequence, and the block of code is executed. The for

loop continues until there are no more items left in the sequence. The following code shows several
different examples of sequential f or loops.

The first example uses a string as the sequence to create a list of characters in the string:

>>>word = " Pyt hon"

>>>ist =[]

>>>for ch in word:

>>> list.append(ch)
>>>print |ist

[P, "y, "t', "h', "0, '"n"]

This example uses the range() function to create a temporary sequence of integers the size of a list so
the items in the list can be added to a string in order:

>>>string = ""

>>>for i in range(len(list)):
>>> string += list[i]
>>>print string

Pyt hon

This example uses the enuner at e(string) function to create a temporary sequence. The enuner at e
function returns the enumeration in the form of (O, s[0]), (1, s[1]), and so on, until the end of the
sequence string, so the for loop can assign both the i and ch value for each iteration to create a

dictionary:

>>>dict = {}

>>>for i,ch in enunmerate(string):

>>> dict[i] = ch

>>>print dict

{6: '"pP, 21: 'y, 2. "t', 3 'h', 4 "0, 5 'n'}

This example uses a dictionary as the sequence to display the dictionary contents:

>>>for key in dict:

>>> print key, '=", dict[key]
0=P
1=y
2 =t
3=h
4 = o0
5=n

The Python language provides br eak to stop execution and break out of the current loop. Python also
includes cont i nue to stop execution of the current iteration and start the next iteration of the current
loop. The following example shows the use of the break and conti nue statements:

>>>wrd = "Pithon Phrasebook"
>>>string = ""
>>>for ch in word:
>>> if ch =="i":
>>> string +="y'
>>> conti nue
>>> if ch ==" ":
>>> br eak
>>> string += ch
>>>print string
Pyt hon

Note

An el se statement can be added after a for or whi | e loop just the same as an i f statement.
The el se is executed after the loop successfully completes all iterations. If a break is
encountered, then the el se statement is not executed.

There is currently no switch statement in Python. Often this is not a problem and can be handled
through a series of i f -el i f -el se statements. However, there are many other ways to handle the

deficiency. The following example shows how to create a simple switch statement in Python:

>>>def a(s):

>>> print s

>>>def switch(ch):

>>> try:

>>> {*1': lambda : a("one"),
>>> '2': lanbda : a("two"),
>>> "3": lanbda : a("three"),
>>> 'a': lanbda : a("Letter a")
>>> ylehl ()

>>> except KeyError:

>>> a(" Key not Found")
>>>switch('1')

one

>>>switch('a')

Letter a

>>>switch('b')

Key not Found

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Python Objects, Modules, Classes, and Functions

This section is designed to help you understand the basic concepts of objects, modules, classes, and
functions in the Python language. This section assumes that you have a basic understanding of object-
oriented languages and is designed to provide the information to jump into Python and begin using and
creating complex modules and classes.

Using Objects

The Python language is tightly wrapped around the object concept. Every piece of data stored and used
in the Python language is an object. Lists, strings, dictionaries, numbers, classes, files, modules, and
functions are all objects.

Every object in Python has an identity, a type, and a value. The identity points to the object's location in
memory. The type describes the representation of the object to Python (see Table 1.1). The value of the

object is simply the data stored inside.

The following example shows how to access the identity, type, and value of an object programmatically
using the i d(obj ect), type(obj ect), and variable name, respectively:

>>> | =11,2,3]
>>> print id(l)
9267480

>>> print type(l)
<type 'list'>
>>> print |

[1, 2, 3]

After an object is created, the identity and type cannot be changed. If the value can be changed, it is
considered a mutable object; if the value cannot be changed, it is considered an immutable object.

Some objects may also have attributes and methods. Attributes are values associated with the object.
Methods are callable functions that perform an operation on the object. Attributes and methods of an
object can be accessed using the following dot "." syntax:

>>> cl ass test(object):
def printNunm(self):
print self.num

>>> 1t = test()
>>> t.num= 4
>>> t.printNum()
4

Using Modules

The entire Python language is built up of modules. These modules are Python files that come from the
core modules delivered with the Python language, modules created by third parties that extend the
Python language modules that you write yourself. Large applications or libraries that incorporate several

modules are typically bundled into packages. Packages allow several modules to be bundled under a
single name.

Modules are loaded into a Python program using the i nport statement. When a module is imported, a
namespace for the module, including all objects in the source file, is created; the code in the source file
is executed; and a module object with the same name as the source file is created to provide access to
the namespace.

There are several different ways to import modules. The following examples illustrate some of the
different methods.

Modules can be imported directly using the package or module name. Items in submodules must be
accessed explicitly including the full package name.

>>> jnport os
>>> 0s. pat h. abspath(".")
" C:\\ books\\ pyt hon'

Modules can be imported directly using the module name, but the namespace should be named
something different. Items in submodules must be accessed explicitly including the full package name:

>>> jnport 0S as conmputer
>>> conput er. pat h. abspath(".")
" C:\\ books\\ pyt hon'

Modules can be imported using the module name within the package name. Items in submodules must
be accessed explicitly including the full package name:

>>> jnport os.path
>>> 0s. pat h. abspath(".")
" C:\\ books\\ pyt hon'

Modules can be imported by importing the modules specifically from the package. Items in submodules
can be accessed implicitly without the package name:

>>> fromos inport path
>>> pat h. abspath(".")
" C:\\ books\\ pyt hon'

Note

Python includes a rel oad(nmodul) function that reloads a module. This can be extremely
useful during development if you need to update a module and reload it without
terminating your program. However, objects created before the module is reloaded are not
updated, so you must be careful in handling those objects.

Understanding Python Classes

Python classes are basically a collection of attributes and methods. Classes are typically used for one of
two purposes: to create a whole new user-defined data type or to extend the capabilities of an existing
one. This section assumes that you have a fair understanding of classes from C, Java, or other object-
oriented language.

In Python, classes are extremely easy to define and instantiate (create new class object). Use the cl ass
name(obj ect): statement to define a new class, where the nanme is your own user-defined object type and
the obj ect specifies the Python object from which to inherit.

Note

Class inheritance in Python is similar to that in Java, C, and other object-oriented
languages. The methods and attributes of the parent class will be available from the child,
and any methods or attributes with the same name in the child will override the parents'.

All code contained in the block following the class statement will be executed each time the class is
instantiated. The code sample t est d ass. py illustrates how to create a basic class in Python. The cl ass

statement sets the name of the class type and inherits from the base obj ect class.

Note

The cl ass statement only defines the class object type; it does not create a class object.
The cl ass object will still need to be created by calling the class directly.

The __init__ () function overrides the method inherited from the object class and will be called when the
class is instantiated. The class is instantiated by calling it directly: tc = test CLass("Fi ve"). When the
class is called directly, an instance of the class object is returned.

Note

You can specify any necessary parameters to the __init__() function as long as you
provide the parameters when calling the class to create a class object.

cl ass testCl ass(object):
print "Creating New C ass\ n==================
nunber =5
def __init_ (self, string):
self.string = string
def printdC ass(self):
print "Nunmber = %" % sel f. nunber
print "String = %"%self.string

tc = testC ass("Five")
tc.printdass()

t c. nunber 10
tc.string "Ten"
tc.printdass()

testClass.py

Number =5
String = Five
Number = 10
String = Ten

Output from testClass.py code.
Note

You need to use the sel f . prefix inside the class when referencing the attributes and
methods of the class. Also, sel f is listed as the first argument in each of the class methods;
however, it does not actually need to be specified when calling the method.

Using Functions

Defining and calling functions in Python is typically pretty easy; however, it can become extremely
convoluted. The best thing to keep in mind is that functions are objects in the Python language and the
parameters that are passed are really "applied" to the function object.

To create a function, use the def functionname(paraneters): statement, and then define the function in

the following code block. Once the function has been defined, you can call it by specifying the function
name and passing the appropriate parameters.

That being said, the following paragraphs show some of the different ways to accomplish that simple
task for the function shown here:

def fun(nane, |ocation, year=2006):
print "%/ %/ %" % (nanme, |ocation, year)

« The first example shows the function being called by passing the parameter values in order.
Notice that the year parameter has a default value set in the function definition, which means

that this parameter can be omitted and the default value will be used.

>>>f un(" Teag", "San Di ego")
Teag/ San Di ego/ 2006

« The next example shows passing the parameters by name. The advantage of passing parameters
by name is that the order in which they appear in the parameter list does not matter.

>>>fun(l ocati on="L. A ", year=2004, nanme="Cal eb")
Cal eb/ L. A. /12004

This example illustrates the ability to mix different methods of passing the parameters. In the
example, the first parameter is passed as a value, and the second and third are passed as an
assignment.

>>>f un(" Aedan", year=2005, | ocation="London")
Aedan/ London/ 2005

Parameters can also be passed as a tuple using the * syntax, as shown in this example. The
items in the tuple must match the parameters that are expected by the function.

>>>tuple = ("DaNae", "Paris", 2003)
>>>fun(*tupl e)
DaNae/ Pari s/ 2003

Parameters can also be passed as a dictionary using the ** syntax, as shown in this example.
The entries in the dictionary must match the parameters that are expected by the function.

>>>di ctionary = {'nane':'Brendan',
"location':'Orlando', 'year':1999}
>>>fun(**di ctionary)
Br endan/ Or | ando/ 1999

Values can be returned from functions using the ret urn statement. If a function has no return
statement, then a None object is returned. The following example shows a simple square function
that accepts a number and returns the square of the number:

>>> def square(x):
return x*x

>>> print square(3)
9

Note

Functions can be treated as any other Python object. In addition to being called, they can
be assigned as a value to a list or dictionary, passed as an argument, returned as a value,
and so on.

The | anbda operator built in to the Python language provides a method to create anonymous

functions. This makes it easier to pass simple functions as parameters or assign them to variable
names. The | anbda operator uses the following syntax to define the function:

| anbda <args> : <expression>

The term ar gs refers to a list of arguments that get passed to the function. The term expressi on
can be any legal Python expression. The following code shows an example of using the | anbda

operator to assign an anonymous function to a variable:

>>>pigger = lanbda a, b : a > b
>>>print bigger(1,2)

Fal se

>>>print bigger(2,1)

True

Namespaces and Scoping

Scoping in Python revolves around the concept of namespaces. Namespaces are basically dictionaries
containing the names and values of the objects within a given scope. There are four basic types of
namespaces that you will be dealing with: the global, local, module, and class hamespaces.

Global namespaces are created when a program begins execution. The global namespace initially
includes built-in information about the module being executed. As new objects are defined in the global
namespace scope, they are added to the namespace. The global namespace is accessible from all
scopes, as shown in the example where the global value of x is retrieved using gl obal s()["x"].

Note

You can look at the global namespace using the gl obal s() function, which returns a
dictionary object that includes all entries in the global namespace.

Local namespaces are created when a function is called. Local namespaces are nested with functions as
they are nested. Name lookups begin in the most nested namespace and move out to the global
namespaces.

The gl obal statement forces names to be linked to the global namespace rather than to the local
namespace. In the sample code, we use the gl obal statement to force the name x to point to the global
namespace. When x is changed, the global object will be modified.

Note

Although objects can be seen in outer nested namespaces, only the most local and global
namespaces can be modified. In the sample code, the variable b from fun can be

referenced for value in the sub function; however, modifying its value in sub would not
change the value in fun.

x =1
def fun(a):
b=3
X=4
def sub(c):
d=b
gl obal x
X =7
print ("Nested Function\ n=================")
print |ocals()

sub(5)

print ("\nFunction\ n=================")
print locals()

print locals()["x"]

print globals()["x"]

pri nt ("\ nd obal s\ n:::::::::::::::::")
print gl obal s()

fun(2)

scope.py

d obal s

" C:\\ books\\ pyt hon\\ CH1\\ code\ \ scope. py',
"fun': <function fun at 0x008D7570>,
"t': <class ' _mmin__.t'>,
"time': <nodule "tinme' (built-in)> . . .}

Nest ed Functi on

{*a': 2, 'x': 4, "b': 3, '"sub':
<function sub at 0x008D75F0>}

Output from scope.py code.

The module namespace is created when a module is imported and the objects within the module are
read. The module namespace can be accessed using the . _ dict__ attribute of the module object.

Objects in the module namespace can be accessed directly using the module name and dot "." syntax.
The example shows this by calling the | ocal ti ne() function of the time module:

>>>jnport tinme
>>>print time.__dict_
{"ctime': <built-in function ctinme>,
"clock': <built-in function cl ock>,
"localtine': <built-in function |ocaltinme>}
>>> print tine.localtinme()
(2006, 8, 10, 14, 32, 39, 3, 222, 1)

The class namespace is similar to the module namespace; however, it is created in two parts. The first
part is created when the class is defined, and the second part is created when the class is instantiated.
The module namespace can also be accessed using the . __dict__ attribute of the class object.

Note

Notice in the sample code that x resides int.__dict__ and doubl e resides intC ass__dict__,

yet both are accessible using the dot syntax of the instantiated class object.

Objects in the class namespace can be accessed directly using the module name and dot "." syntax. The

example shows this in the print t.x andt. doubl e() statements:

>>>cl ass tC ass(object):

>>> def _init__ (self, x):
>>> self.x = x

>>> def doubl e(sel f):

>>> sel f.x += self.Xx

>>>t = td ass (5)
>>>print t. dict

{"x": b}
>>>print tClass. __dict_
{" __module__'": ' _ main__",
"doubl e': <function double at 0x008Dr570>, . . . }
>>>print t.Xx
5

>>>t . doubl e()
>>>print t.Xx
5

MNEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Error Handling

Error handling in Python is done through the use of exceptions that are caught in try blocks and handled
in except blocks. If an error is encountered, a TRy block code execution is stopped and transferred down
to the except block, as shown in the following syntax:

try:

f = open("test.txt")
except |1 OError:

print "Cannot open file."

The exception type value refers to either one of the built-in Python exceptions or a custom-defined
exception object. The error value is a variable to capture the data returned by the exception.

Note

The TRy block also supports the use of an el se block after the last except block. The el se
block is executed if the TRy block finishes without receiving an exception.

In addition to using an except block after the try block, you can also use the final | y block. The code in
the final | y block will be executed regardless of whether an exception occurs. If no exception occurs,
the final | y block will be executed after the try block. If an exception occurs, the execution immediately
is transferred to the final | y block, and then the exception continues until it is handled. The following
code shows an example of using final I y to force a file to be closed even if an exception occurs:

f = open("test.txt")

try:
f.wite(data)

finally:
f.close()

You can raise an exception in your own program by using the rai se exception [, val ue] statement. The

value of exception is one of the built-in Python exceptions or a custom-defined exception object. The
value of val ue is a Python object that you create to give details about the exception. Raising an
exception breaks current code execution and returns the exception back until it is handled. The following
example shows how to raise a generic Runti meError exception with a simple text message value:

rai se RuntinmeError, "Error running script"

Note

If the exception is not handled, the program terminate and a trace of the exception is sent
to sys. stderr.

MNEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Using System Tools

One of the most useful features of the Python language is the set of modules that provide access to the
local computer system. These modules provide access to such things as the file system, OS, and shell,
as well as various system functions.

This section discusses using the os, sys, pl atform and ti me modules to access some of the more
commonly used system information.

os Module

The os module provides a portable platform-independent interface to access common operating services,

allowing you to add OS-level support to your programs. The following examples illustrate some of the
most common uses of the os module.

The os. pat h. abspat h(pat h) function of the os module returns a string version of the absolute path of the
path specified. Because abspat h takes into account the current working directory, the . and .. directory
options will work as shown next:

>>>print os.path.abspath(".")
>>>C. \ books\ pyt hon\ ch1\

print os.path.abspath("..")
C: \ books\ pyt hon\

The os. pat h module provides the exi sts(path), isdir(path), andisfile(path) function to check for the
existence of files and directories, as shown here:

>>>print o0s. path. exists("/books/python/chl")

True

>>>print os.path.isdir("/books/python/chl")

True

>>>print os.path.isfile("/books/python/chl/chl.doc")
True

The os. chdi r (pat h) function provides a simple way of changing the current working directory for the
program, as follows:

>>>0s. chdi r ("/ books/ pyt hon/ chl/ code")
>>>print os.path.abspath(".")
C:. \ books\ pyt hon\ CH1\ code

The os. envi ron attribute contains a dictionary of environmental variables. You can use this dictionary as
shown next to access the environmental variables of the system:

>>>print os.environ[' PATH]
C.\W NNT\ syst enB2; C.: \ W NNT; C. \ Pyt hon24

The os. syst en(command) function will execute a system function as if it were in a subshell, as shown with
the following di r command:

>>>0s. system("dir")
Vol une Serial Nunber is 98F3-A875
Directory of C.\books\python\chl\code

08/ 11/ 2006 02:10p <Dl R>

08/ 11/ 2006 02:10p <Dl R> .

08/ 10/ 2006 04: 00p 405 format. py

08/ 10/ 2006 10:27a 546 function. py

08/ 10/ 2006 03:07p 737 scope. py

08/ 11/ 2006 02:58p 791 sys_tools. py
4 File(s) 3,717 bytes

2 Dir(s) 7,880, 230, 400 bytes free

Python provides a number of exec type functions to execute applications on the native system. The
following example illustrates using the os. execvp(path, args) function to execute the application updat e.
exe with a command-line parameter of - ver bose:

>>>0s. execvp("update. exe", ["-verbose"])

sys Module

The sys module provides an interface to access the environment of the Python interpreter. The following
examples illustrate some of the most common uses of the sys module.

The ar gv attribute of the sys module is a list. The first item in the ar gv list is the path to the module; the

rest of the list is made up of arguments that were passed to the module at the beginning of execution.
The sample code shows how to use the ar gv list to access command-line parameters passed to a Python

module:

>>>print sys.argv

[' C\\books\\ pyt hon\\ CHI\\ code\\print _it.py",
"text']

>>>print sys.argv[1]

t ext

The st di n attribute of the sys module is a file object that gets created at the start of code execution. In
the following sample code, text is read from st di n (in this case, the keyboard, which is the default)
using the readl i ne() function:

>>>t ext = sys.stdin.readline()
>>>print text
| nput Text

The sys module also has the st dout and stderr attributes that point to files used for standard output and
standard error output. These files default to writing to the screen. The following sample code shows how

to redirect the standard output and standard error messages to a file rather than to the screen:

>>>sQOUT = sys. st dout

>>>sERR = sys. stderr

>>>sys. st dout open("ouput.txt", "w')
>>>sys. stderr = sys. stdout

>>>sys. st dout sQUT

>>>sys. stderr SERR

platform Module

The pl at f or mmodule provides a portable interface to information about the platform on which the

program is being executed. The following examples illustrate some of the most common uses of the
pl at f or mmodule.

The pl atform architecture() function returns the (bits, |inkage) tuple that specifies the number of bits
for the system word size and linkage information about the Python executable:

>>>print platformarchitecture()
("32bit", "")

The pl at f orm pyt hon_versi on() function returns the version of the Python executable for compatibility
purposes:

>>>print platform python_version()
2.4.2

The pl at f orm uname() function returns a tuple in the form of (system node, rel ease, version, nachine,

processor). System refers to which OS is currently running, node refers to the host name of the
machine, release refers to the major release of the OS, version refers to a string representing OS
release information, and machine and processor refer to the hardware platform information.

>>>print platformunanme()

("Linux', "bwd-linux', '2.6.16-20-smp',
"#1 SMP Mon Apr 10 04:51:13 UTC 2006,
'i686', 'i686')

time Module

The ti me module provides a portable interface to time functions on the system on which the program is
executing. The following examples illustrate some of the most common uses of the ti nre module.

The tine.tinme() function returns the current system time in terms of the number of seconds since the

UTC (Coordinated Universal Time). This value is typically collected at various points in the program and
is used in delta operations to determine the amount of time since an event occurred.

>>>print tine.tinme()
1155333864. 11

The tine.local time(secs) function returns the time, specified by secs since the UTC, in the form of tuple

(year, month, day, hour, minute, second, day of week, day of year, daylight savings). If no time is
specified, the current time is used as follows:

>>>print tine.localtinme()
(2006, 8, 11, 16, 4, 24, 4, 223, 1)

The tinme. cti me(secs) function returns the time, specified by secs since the UTC, as a formatted,
printable string. If no time is specified, then the current time is used as shown here:

>>>print tinme.ctine()
Fri Aug 11 16:04:24 2006

The tine. cl ock() function returns the current CPU time as a floating-point number that can be used for
various timing functions:

>>>print tine.clock()
5.02857206712e- 006

The tine. sl eep(sec) function forces the current process to sleep for the number of seconds specified by
the floating-point number secs:

>>>t i me. sl eep(.5)

e Py EXT

@ prEV_
Chapter 2. Manipulating Strings

One of the most common and important functions of the Python language is to process and manipulate
large amounts of text when implementing scripts, parsing XML/HTML, and interfacing with databases.
For that reason, Python includes extremely dynamic and powerful string manipulation methods.

The phrases in this chapter are intended to give you a quick start into manipulating strings using the
Python language. Although this chapter is not comprehensive, it tries to cover both the most commonly
used functionality such as string comparisons, searching, and formatting, as well as some of the more
powerful and dynamic functionality such as using strings as executable code, interpolating variables in
strings, and evaluating strings as Python expressions.

e prcy ExT

e Py EXT

Comparing Strings

if cnpStr.upper() == upperStr.upper():
print upperStr + " Matches " + cnpStr

Comparing strings in Python is best accomplished using a simple logical operation. For example, to
determine whether a string matches another string exactly, you would use the i s equal or == operation.

You can also use other logical operations such as >= or < to determine a sort order for several strings.

Python provides several methods for string objects that help when comparing. The most commonly used
are the upper () and | ower () methods, which return a new string that is all upper- or lowercase,

respectively.

Another useful method is the capitalize() method, which returns a new string with the first letter
capitalized. There is also a swapcase() that will return a new string with exactly the opposite casing for
each character.

cnpStr = "abc"
upper Str " ABC'
| ower St r "abc"

print "Case Sensitive Conpare"
if cmpStr == lowerStr:
print lowerStr + " Matches " + cnpStr

if cnpStr == upperStr:
print upperStr + " Matches " + cnpStr

print "\nCase In-Sensitive Conpare"
if cnpStr.upper() == lowerStr. upper():
print lowerStr + " Matches " + cnpStr

if cnpStr.upper() == upperStr.upper():
print upperStr + " Matches " + cnpStr

comp_str.py

Case Sensitive Conpare
abc Mat ches abc

Case In-Sensitive Conpare

abc Matches abc
ABC Mat ches abc

Output from comp_str.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

NEXT B

e Py EXT

Joining Strings

print "Words:" + wordl + word2 + word3 + word4
print "List: " + ' '.join(wordList)

Strings can be joined together using a simple add operation, formatting the strings together or using the
j oi n() method. Using either the + or += operation is the simplest method to implement and start off

with. The two strings are simply appended to each other.

Formatting strings together is accomplished by defining a new string with string format codes, %, and

then adding additional strings as parameters to fill in each string format code. This can be extremely
useful, especially when the strings need to be joined in a complex format.

The fastest way to join a list of strings is to use the j oi n(wor dLi st) method to join all the strings in a
list. Each string, starting with the first, is added to the existing string in order. The j oi n method can be
a little tricky at first because it essentially performs a stri ng+=li st[x] operation on each iteration

through the list of strings. This results in the string being appended as a prefix to each item in the list.
This actually becomes extremely useful if you want to add spaces between the words in the list because
you simply define a string as a single space and then implement the j oi n method from that string:

wordl = "A"

word2 = "few

wor d3 = "good"

wor d4 = "words"

wordList = ["A", "few', "nore", "good", "words"]

#simpl e Join
print "Words:" + wordl + word2 + word3 + word4
print "List: " + ' '.join(wordList)

#Formatted String

sentence = ("First: % % % %." %
(wor dil, wor d2, wor d3, wor d4))

print sentence

#Joining a |ist of words

sentence = "Second:"

for word in wordLi st:
sentence += " " + word

sentence += ".,"

print sentence

join_str.py

Wor ds: Af ewgoodwor ds

List: A few nore good words
First: A few good words.
Second: A few nore good words.

Output from join_str.py code

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

. prev_
Splitting Strings

print sentence.split()
print entry.split(':")
print paragraph.splitlines(1)

The split(separator) and splitlines(keeplineends) methods are provided by Python to split strings into
substrings. The spl it method searches a string, splits it on each occurrence of the separator character,
and subdivides it into a list of strings. If no separator character is specified, the split method will split
the string at each occurrence of a whitespace character (space, tab, newline, and so on).

The splitlines method splits the string at each newline character into a list of strings. This can be
extremely useful when you are parsing a large amount of text. The splitlines method accepts one
argument that is a Boolean true or false to determine whether the newline character should be kept.

sentence = "A Sinple Sentence."

paragraph = "This is a sinple paragraph.\n\
It is made up of of rmultiple\n\
lines of text."

entry =
"Nane: Brad Dayl ey: Cccupati on: Sof t war e Engi neer"

print sentence.split()
print entry.split(':")
print paragraph.splitlines(l)

split_str.py

['"A, "Sinple, 'Sentence.']
['Nane', 'Brad Dayley', 'Cccupation',
' Sof twar e Engi neer']

['This is a sinple paragraph.\n',

"It is made up of of nultiple\n',
"lines of text.']

Output from split_str.py code

e Py EXT

e Py EXT

Searching Strings for Substrings

print searchStr.find("Red")
print searchStr.rfind("Blue")
print searchStr.index("Blue")
print searchStr.index("Blue", 8)

The two most common ways to search for a substring contained inside another string are the fi nd(sub,
[, start, [,end]])) andindex(sub, [, start, [,end]]) methods.

The i ndex method is faster than the fi nd method; however, if the substring is not found in the string, an
exception is thrown. If the fi nd method fails to find the substring, then a -1 is returned. The fi nd and
i ndex methods accept a search string as the first argument. The area of the string that is searched can

be limited by specifying the optional start and/or end index. Only characters within those indexes will be
searched.

Python also provides the rfind and ri ndex methods. These methods work in a similar manner as the
find and i ndex methods; however, they look for the right-most occurrence of the substring.

searchStr =
"Red Blue Violet Geen Blue Yell ow Bl ack"

print searchStr.find("Red")

print searchStr.rfind("Blue")

print searchStr.find("Blue")

print searchStr.find("Teal")

print searchStr.index("Blue")

print searchStr.index("Blue", 20)
print searchStr.rindex("Blue")
print searchStr.rindex("Blue", 1, 18)

search_str.py

Output from search_str.py code

NEXT B

Search and Replace in Strings

NEXT B

guestion2 = question.replace("swallow', \
"Eur opean swal | ow")

guestion3 = question.replace("swallow', \
"African swal |l ow")

The native string type in Python provides a repl ace(ol d,

new, nmaxrepl ace) method to replace a specific

substring with new text. The repl ace method accepts a search string as the first argument and

replacement string as the second argument. Each occurrence of the search string will be replaced with
the new string. Optionally, you can specify a maximum number of times to perform the replace

operation as the third argument.

guestion = "What is the air speed velocity of \

an unl ai den swal | ow?"

print question

guestion2 = question.replace("swallow', \
"Eur opean swal | ow")

print question2

guestion3 = question.replace("swallow', \
"African swal |l ow")

print question3

replace_str.py

What is the air speed velocity of an unl ai den
swal | ow?

VWhat is the air speed velocity of an unlaiden
Eur opean swal | ow?

What is the air speed velocity of an unl ai den
African swal | ow?

Output from replace_str.py code

MNEXT B

e Py EXT

Searching Strings for Specific Endings/Beginnings

if f.endswith('.py'):
print "Python file: " + f
elif f.endswith('.txt'):
print "Text file: " + f

The endswi th(suffix, [, start, [,end]]) and startswith(prefix, [, start, [,end]]) methods provide
a simple and safe way to determine whether a string begins or ends with a specific prefix or suffix,
respectively. The first argument is a string used to compare to the prefix or suffix of the string. The
endswi th and st artsw th methods are dynamic enough for you to limit the search to within a specific

range of the string using the start and/or end arguments.

Note

The endswi t h and st art swi t h methods are extremely useful when parsing file lists for
extensions or filenames.

i mport os

for f in os.listdir('C\\txtfiles'):
if f.endswith('.py'):
print "Python file: " + f
elif f.endswith('.txt'):
print "Text file: " + f

end_str.py

Pyt hon file: conp_str.py
Pyt hon file: end_str.py

Pyt hon file: eval _str.py
Python file: join_str.py
Text file: output.txt
Python file: replace_str.py
Python file: search_str.py
Pyt hon file: split_str.py
Python file: trimstr.py
Pyt hon file: unicode_str. py
Pyt hon file: var_str.py

Output from end_str.py code

e prcy ExT

Trimming Strings

NEXT B

str(l en(badSentence.rstrip(’

print badParagraph.strip(("

)))

print badSentence.lstrip('\t")

210t1))

Common problems when parsing text are leftover characters at the beginning or end of the string.
Python provides several strip methods to remove those characters. The strip([chrs]), I strip([chrs]),

and rstrip([chrs]) methods accept a list of characters as the only argument and return a new string

with those characters trimmed from either the start, end, or both ends of the string.

Note

The strip will remove the specified characters from both the beginning and end of the

string. The I strip and rstri p methods remove the characters only from the beginning or
end of the string, respectively.

i mport string

badSent ence = "\t\t This sentence has probl ens.

badParagraph = "\t\tThi s paragraph \nhas even \

nmore \nprobl ens.!?

#Strip trailing spaces

print "Length = + str (Il en(badSent ence))
print "Wthout trailing spaces = +\

pC" "))

str(l en(badSentence. rstri

#Strip tabs

print "\nBad:\n" + badSentence

print "\ nFixed:\n" + badSentence.lstrip('\t")

#Strip leading and trailing characters

print "\ nBad:\n" + badParagraph

print "\ nFixed:\n" + badParagraph.strip(('

trim_str.py

Length = 32
Wthout trailing spaces = 29

Bad:

Thi s sentence has probl ens.

Fi xed:
Thi s sentence has probl ens.

Bad:

Thi s paragraph
has even nore
probl ens.!?

Fi xed:
Thi s paragraph

has even nore
probl ens.

Output from trim_str.py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Aligning/Formatting Strings

NEXT B

print "Chapter " + str(x) +\
str(chapters[x]).rjust(15,"'.")

print "\'nHex String: " + hexStr.upper().ljust(8,'0")

print "Chapter %l %45s" % (x,str(chapters[x]))

One of the biggest advantages of the Python language is its capability to process and manipulate strings
quickly and effectively. The native string type implements the rjust(width [, fill]) andIjust(w dth

[, fill]) methods to quickly justify the text in a string a specific width to the right or left, respectively.
The optional fill argument to the rjust and | j ust methods will fill the space created by the justification

with the specified character.

Another extremely useful part of Python's string management is the capability to create complex string
formatting on the fly by creating a format string and passing arguments to that string using the %

operator. This results in a new formatted string that can be used in a string assignment, passed as an

argument, or used in a print statement.

chapters = {1:5, 2:46, 3:52, 4:87, 5:90}
hexStr = "3f8"

#Ri ght justify
print "Hex String: " + hexStr.upper().rjust(8,'0")
print
for x in chapters:
print "Chapter " + str(x) +\
str(chapters[x]).rjust(15,'.")

#lLeft justify

print "\nHex String: " + hexStr.upper().ljust(8,'0")
#String formt

print

for x in chapters:
print "Chapter %l %45s" % (x,str(chapters[x]))

format_str.py

Hex String: O000003F8

Chapter 1.............. 5
Chapter 2............. 46
Chapter 3............. 52
Chapter 4............. 87
Chapter 5............. 90

Hex String: 3F800000

Chapter 1 5
Chapter 2 46
Chapter 3 52
Chapter 4 87
Chapter 5 90

Output from format_str.py code

e prcy | NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Executing Code Inside Strings

codeStr = "for card in cards: \
print \"Card = \" + card"
exec(codeStr)

One of the most dynamic features of Python is the capability to evaluate a string that contains code and
execute the code locally. The exec(str [, globals [,locals]]) function will execute Python code that is

contained in the str string and return the result. Local and global variables can be added to the

environment used to execute the code by specifying global and/or local dictionaries containing
corresponding variable name and values.

The eval (str [,globals [,locals]]) function works in a similar manner as the exec function except that
it only evaluates the string as a Python expression and returns the results.

cards = ['Ace', 'King', 'Queen', 'Jack']

codeStr = "for card in cards: \
print \"Card = \" + card"
areaStr = "pi*(radius*radius)"”

#Execute string
exec(codeStr)

#Eval uate string
print "\nArea =" + str(eval (areaStr, \
{"pi":3.14}, {"radius":5}))

eval_str.py
Card = Ace
Card = King
Card = Queen
Card = Jack
Area = 78.5

Output from eval_str.py code

e Py EXT

e Py EXT

Interpolating Variables Inside Strings

s = string. Tenplate("Variable v = $v")
for x in val ues:
print s.substitute(v=x)

Python provides the capability to interpolate variables inside strings. This functionality provides the
ability to create string templates and then apply variable values to them based on the state of an
existing variable.

Interpolating variables is accomplished in two steps. The first step is to create a string template, using
the Tenpl at e(string) method, which includes the formatted text and properly placed variable names

preceded by the $ character.

Note

To include a $ character in your template string use a double $$ set. The $$ will be replaced
with a single $ when the template is applied.

Once the template has been created, the second step is to apply a variable value to the template using
the substitute(m [, kwargs]) method of the Tenpl at e class. The argument mcan be a specific

assignment, a dictionary of variable values, or a keyword list.

i mport string

values = [5, 3, '"blue', '"red']
s = string. Tenpl ate("Variable v = $v")

for x in val ues:
print s.substitute(v=x)

var_str.py
Variable v = 5
Variable v = 3
Variable v = bl ue
Variable v = red

Output from var_str.py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Converting Unicode to Local Strings

NEXT B

print uni Str.encode('utf-8")

print uni Str.encode('utf-16")

print uni Str.encode('iso-8859-1")

ascii Str =asciiStr.translate(\
string. maketrans('\xF1',"'n"), ')

print asciiStr.encode('ascii')

The Python language provides a simple encode(encodi ng) method to convert unicode strings to a local
string for easier processing. The encoding method takes only encoding such as utf-8, utf-16, i so- 8859-

1, and ascii as its single argument and returns a string encoded in that format.

Strings can be converted to unicode by several different methods. One is to define the string as unicode
by prefixing it with a u when assigning it to a variable. Another is to combine a unicode string with

another string. The resulting string will be unicode. You can also use the decode(encodi ng) method to

decode the string. The decode method returns a unicode form of the string.

Note

The ASCII encoding allows only for characters up to 128. If your string includes characters
that are above that range, you will need to translate those characters before encoding the

string to ASCII.

i mport string

n EI 11}
u" N \ uOOF1lo"

| ocStr
uni Str

print uni Str.encode('utf-8")
print uni Str.encode('utf-16")
print uni Str.encode('iso-8859-1")

#Conbi ne | ocal and unicode results
#i n new uni code string

newStr = locStr+uni Str

print newStr.encode('iso-8859-1")

#tascii will error because character '\xF1l'
#i s out of range
ascii Str = newStr.encode('iso-8859-1")
ascii Str =ascii Str.transl ate(\

string. maketrans('\xF1',"'n"), ')
print asciiStr.encode('ascii')
print newStr.encode('ascii')

unicode_str.py

Ni A+o
yPN Ao
Ni Ao
El N fio
El N no
Traceback (nost recent call |ast):
File "C:\books\pyt hon\ CH2\ code\ uni code_str. py",
l[ine 19, in ?
print newStr.encode('ascii')
Uni codeEncodeError: 'ascii' codec can't encode
character u'\xf1' in position 5: ordinal not in
range(128)

Output from unicode_str.py code

MEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

@ prev |
Chapter 3. Managing Data Types

Python has about two dozen data types built in to the interpreter. The three data types that you will
need to understand the best and use the most to manage data are the list, tuple, and dictionary.

A list in Python is simply an ordered collection of objects. The objects can be named any legal Python
name and the list can grow dynamically to support the addition of new objects. The objects in a list can
be of different types and Python will keep track of the data type of objects in the background. Lists in
Python are ordered sequence types. Elements of a list are accessible using a zero-based non-negative
integer index.

A tuple in one sense is just a read-only version of a list. It is also an ordered sequence of objects.
However, a tuple is immutable, meaning that items cannot be added to or removed from it.

A dictionary is an unordered collection of object pairs. The pair consists of a key object and a value
object. The key object is used to look up the value of the value object. A dictionary acts similar to a
hash table in that the key is used to access the value objects within. There is no order to a dictionary;
therefore, items cannot be accessed by any indexing method.

This chapter discusses phrases that allow you to manage data using the list, tuple, and dictionary data
types.

e prcy | NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Defining a List

NEXT B

nunlLi st = [2000, 2003, 2005, 2006]
stringList = ["Essential", "Python", "Code"]
m xedList = [1, 2, "three", 4]
subLi st = ["Python", "Phrasebook", \
["Copyright", 2006]]
[istList = [nunList, stringList, mxedList, subList]

Defining a list in Python is a simple matter of assigning a number of Python objects to a variable name
using the = operator. The list needs to be enclosed in square brackets and can include any makeup of

Python objects. A simple numeric list acts much like an array; however, lists are much more dynamic

and can include many different types within the same list.

The code example in def _| i st. py demonstrates the creation of both homogeneous and heterogeneous
lists. Notice in the example that the lists include numbers, strings, list definitions, and variable names.

nunmli st = [2000, 2003, 2005, 2006]
stringList = ["Essential", "Python", "Code"]
m xedList = [1, 2, "three", 4]
subLi st = ["Python", "Phrasebook", \
["Copyright", 2006]]
[istList = [nunList, stringList, mxedList, subList]

for x in |istList:
for y in x:
if isinstance(y, int):
print y + 1
if isinstance(y, basestring):
print "String:" +vy

def list.py

2001

2004

2006

2007

String: Essential
String: Python

String: Code
2
3
String: three
5

String: Python
String: Phrasebook

Output from def_list.py code

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Accessing a List

for x in nunList:
print x+1

print stringList[0O] + " ' + stringList[1] + " ' +\
stringList[2]

print stringList][-2]

if isinstance(subList, list):
print subList[2]][0]

Once a list is defined, the items in the list can be accessed using a zero-based index. The first item in
the list is at index zero, the second at index one, and so on.

The code example in acc_l i st. py demonstrates accessing all items of the list in order using the for
keyword, as well as accessing the items in the list individually.

If an item in the list is a list object, you can access items in that list by adding an indexing bracket onto
the end, similar to how you would access elements in a multidimensional array.

Note

Python enables you to use negative indices to access the list from the end rather than from
the beginning. For example, to access the final item in a list, you would use an index of -1,
an index of -2 to access the second to the last item in the list, and so on. This can be
extremely useful if you have dynamic lists that change frequently.

numkLi st = [2000, 2003, 2005, 2006]

stringList = ["Essential", "Python", "Code"]

m xedList = [1, 2, "three", 4]

subLi st = ["Python", "Phrasebook", ["Copyright",
2006]]

[istList = [nunList, stringList, mxedList, subList]

#All itens
for x in nunlist:
print x+1

#Specific itens
print stringlList[0] + ' ' + stringList[1] + ' ' + \
stringList[2]

#Negat i ve indi ces
print stringList[-2]

#Accessing itens in sublists
if isinstance(subList, list):
print subList[2]][0]

acc_list.py

2001

2004

2006

2007

Essential Python Code
Pyt hon

Copyri ght

Output from acc_list.py code

MNEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Slicing a List

firstHalf = nonthList[: hal fCount]

secondHal f = nont hLi st[hal f Count :]

wor dCount = len(firstHalf)

m ddl eStart = wordCount/ 2

m ddl eHal f = nonthList[mddl eStart : \
m ddl eSt ar t +hal f Count]

A slice is a subset of a list. Python provides syntax that enables you to quickly grab specific slices of a
list.

A slice can be obtained by referencing the list and specifying two indices (separated by a colon) to
reference between instead of a single index number. The first index number represents the item in the
list at which to start and the second represents the item in the list at which to end.

Slices are returned as a list type and can be accessed and assigned as you would any other list.
Note

Python enables you to use negative indices to index the end rather than the beginning
when grabbing slices. For example, to access the final three items in a list, you would use
the indices of -3 and -1.

nont hLi st = ["January", "February", "March",\
"April", "May", "June", "July", \
"August", "Septenber","Cctober",\
"Novenber", "Decenber"]

wor dCount = | en(nmont hLi st)

hal f Count = wordCount/ 2

#Begi nning slice
firstHalf = nonthList[: hal f Count]
print firstHalf

#End slice
secondHal f = nont hLi st hal f Count :]
print secondHal f

#M ddl e slice

wor dCount = len(firstHalf)

m ddl eStart = wordCount/ 2

m ddl eHal f = nmonthLi st[mddleStart : \
m ddl eSt art +hal f Count]

print m ddl eHal f

#Negati ve | ndices
print nonthList[-5 : -1]

slice_list.py

['January', 'February', 'March', "April', 'Muy',
"June']

["July', "August', 'Septenber', 'CQCctober',

' Novenber', 'Decenber']

["April", "May', "June', 'July', "August',
' Sept enber ']
[August', 'Septenber', 'Cctober', 'Novenber']

Output from slice_list.py code

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Adding and Removing Items in a List

listl. append("Four")
listl.insert(2, "Two 1/2")
listl. extend(list2)

print listl. pop(2)
[istl.remove("Five")
listl.remove("Six")

Items can be added to an existing list in several different ways, depending on what items you want to
add to the list and where you want to add them.

The simplest way to add a single item to a list is to use the append(iten) method. append takes a single

itemwhich can be any Python object, including other listsas the only parameter and adds it to the end of
the list. If you specify a list as the parameter to the append method, that list is added as a single item in

the current list.
Use the extend(list) method to add several items stored in another list all together at the same time.
ext end will accept only a list as an argument. Unlike the append method, each item in the new list will be

appended as its own individual item to the old list.

The ext end and append methods will add items only to the end of the list. Use the i nsert (i ndex, item
method to insert an item in the middle of the list. The i nsert method accepts a single object as the
second parameter and inserts it into the list at the index specified by the first argument.

Items can be removed from a list in one of two ways. The first way is to use the pop(i ndex) method to
remove the item by its index. The pop method removes the object from the list and then returns it.

The second way to remove an item from a list is to use the renove(iten) method. The renmove method
will search the list and remove the first occurrence of the item.

Note

You can also add one or more lists to an existing list by using the += operator.

l[istl = ["One", "Two", "Three"]
list2 = ["Five", "Six"]
print [istl

#Append item
listl. append("Four")
print listl

#lnsert item at index

l[istl.insert(2,

print listl

"Two 1/2")

#Extend with |i st
[istl. extend(list2)

print listl

#Pop item by index
print listl. pop(2)

print [istl

#Renove item

[istl.renove("Five")
[istl.renove("Six")

print listl
#Operators
l[istl += list2
print listl
add_list.py
['One', ' Two'
['One', ' Two'
['One', ' Two'
['One', ' Two'
"Five', 'Six'
Two 1/2
['One', ' Two'
['One', ' Two'
['One', ' Two'

[a—

"Three']

"Three', '
"Two 1/2',
"Two 1/2',

"Three', '
"Three', '
'"Three',

Output from add_list.py code

Four']
"Three', 'Four']
"Three', 'Four',
Four', '"Five', "Six']
Four']
Four', "Five', '"Six']

NEXT B

e Py EXT

Sorting a List

def keySort (x, y):
xl ndex = keylLi st.index(x)
yl ndex = keylList.index(y)
return cnp(xIndex, ylndex)

letterList.sort()

letterList.sort(lanbda x, y: keySort(x, y))
caselList.sort ()

caseli st.sort (key=str.| ower)
letterList.reverse()
letterList.sort(reverse=1)

Items in a list can be sorted using the sort () method. The basic sort method takes no arguments and
sorts the items based on the total value of each object. The sort method actually modifies the order of
the objects in the list itself. This works as a simple and very effective way to sort simple lists.

The sort method can also accept a comparison function as an argument. The comparison function

accepts two arguments and must return a 1, O, or -1 depending on whether the second argument is
smaller, the same size, or larger than the first argument.

The sort method can also accept a key function. The key function should accept one argument that will

be used to extract a key from each object in the list. That key will be used to sort the list rather than the
value of the object itself.

A list can be sorted in reverse order, by passing the keyterm reverse as an argument to the sort
method. reverse is a Boolean, and if it is set to true, the list is sorted in reverse order. The reverse
keyterm can be used in tandem with comparison and/or key functions.

Note

If you simply need to reverse the order of a list without necessarily sorting it, use the
reverse() method. The rever se method accepts no arguments and simply reverses the

order of the items in the list.

keyList = ['a", '"¢c', 'b'", "y, "z', "X']
letterList =['"b", 'c', "a, "z', 'y, "x']
caseList =['d", 'B, "F, "A, 'E, 'c¢']

#Cust om sort procedure

def keySort (x, y):
xl ndex = keylLi st.index(x)
yl ndex = keylList.index(y)
return cnp(xlndex, ylndex)

print |etterlList

#Sort the |ist
letterList.sort()
print |etterlList

#Cust om sort
letterList.sort(lanbda x, y: keySort(x, Yy))
print |etterlList

#Key sort

print caseli st

caselList.sort ()

print caseli st

caselLi st.sort (key=str.| ower)
print caseli st

#Reverse | i st
| etterList.reverse()
print |etterlList

#Reverse sort
letterList.sort(reverse=1)
print |etterlList

sort_list.py

["b", "c', "a, "z', '"y', "x']
['a, "b', "¢, "X, 'y, "'z']
["a", 'c', '"b'", "y, "z', "X']
["d", 'B, "F, "A, "E, 'c']
["A, 'B, "E, "F, 'c', "d]
["A, "B, 'c', 'd, "E, "F]
["x", "z', "y', "b'", "¢, "a']
["z', '"y', '"x', "¢, "b, "a]

Output from sort_list.py code

e prcy ExT

e Py EXT

Using Tuples

hexStringChars = (A, 'B,'C, 'D, '"E, '"F)

hexStringNuns = (*1', "2', '3, "4, '5", "6"',\
l7l, I8|, Iglllol)

hexStrings = ["1FC', "1FG', "222", "Ten"]

for hexString in hexStrings:
for x in hexString:
if ((not x in hexStringChars) and
(not x in hexStringNuns)):
print hexString+ \
" is not a hex string."
br eak

tupl eList = list(hexStringChars)
listTuple tupl e(hexStrings)

When working with lists in Python, it is a good idea to understand the place that tuples have. Tuples are
similar to lists in that they are index-based collections of objects. There is one major difference,
however. The contents of a tuple cannot be modified after the tuple is initially defined. Tuples are
defined similar to lists except that they are encased in parentheses instead of in brackets.

Tuples are very valuable because they are much faster to access and use than lists. For example, the in

operation works much faster on a tuple to determine whether an object exists in the tuple. Tuples are
also valuable because you know the data contained in them will always remain static. Tuples can also be
used as keys for dictionaries where lists cannot.

Note

The tuples must be made up of strings and/or integers and cannot contain lists to be
considered immutable and used as dictionary keys.

Tuples can be converted into lists by using the |i st () function. The Ii st function returns a copy of the
tuple in an editable list form. In the same way, lists can be converted into tuples using the t upl e()
function. The t upl e function returns a copy of the list in tuple form, effectively giving you a frozen
snapshot of the list.

hexStringChars = (A, 'B,'C, 'D, 'E, "F)

hexStringhums = ('21', '2', '3, "4, '5, '6",\
‘7, "8, "9, '0")

hexStrings = ["1FC', "1FG', "222", "Ten"]
for hexString in hexStrings:

for x in hexString:
if ((not x in hexStringChars) and

(not x in hexStringNuns)):

print hexString +\

is not a hex string."

br eak

#Tuple to |ist

tupl eList = list(hexStringChars)

print tupleli st
#List to tuple

[istTuple = tuple(hexStrings)
print |istTuple

tuple.py

1FG is not a hex string.

Ten is not a hex string.

[IAI, IBI, IC’ lDl, IEI, IFI]
("1FC, '"1FG, '222', 'Ten")

Output from tuple.py code

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Constructing a Dictionary

NEXT B

nunberDict = {1:'one', 2:'two', 3:'three', 4:'four'}
letterDict = {"vowel':['a","e ,"i","0","'u],\

‘consonant':['b","'c','d ,"'f']}
nunmber s

(1,2,3,4,5,6,7,8,9,0)
letters (ta","b",'c',"d e)

punct = ('.", "!', "?")

charSetDict = {nunbers:[], letters:[], punct:[]}

Constructing a dictionary in Python is a simple matter of assigning a group of values with associated
keys to a variable. Although the values can be any Python object, the keys must either be a number,

string, or immutable tuple.

Simple dictionaries are made up of simple one-to-one, key-to-value relationships. However, you can
construct very complex dictionaries that can have one-to-many and even many-to-many value

relationships.

A one-to-many relationship can be accomplished by simply using list objects as the values in the

dictionary.

The many-to-many relationship will take more thought and effort; however, this relationship can be
accomplished by using tuples as the key objects and list objects as the value objects in the dictionary.

#Si npl e one to one dictionary
nunberDict = {1:'one', 2:'two', 3:'three', 4:'four'}

#0One to many dictionary
letterDict = {"vowel':['a","'e ,"i','0
‘consonant':['b',"'c',"'d",

#Many to nmany dictionary

nunbers = (1,2,3,4,5,6,7,8,9,0)

letters = ("a','b',"'c','d, e, ")

punct = ('.', "1"', '"?")

charSetDict = {nunbers:[], letters:[], punct:[]}

def dict.py

NEXT B

Adding a Value to a Dictionary

NEXT B

nunbers =
letters =

C
(

for ¢c in cSet:

punct = ('.', "!",
charSet Dict = {nunbers:[], letters:[], punct:[]}
cSet = raw_input("Insert characters: ")

1,'2",'3,"4,'5 ,'6",'7",'8,'9",'0")
a','b,'c,d, e, ")

2)

for x in charSetDict. keys():
if cin x:
char Set Di ct [Xx] . append(c)
br eak;
char Set Di ct [" Speci al "]
char Set Di ct [" Speci al "]

["%, '$, "#]
D e

Adding values to a dictionary is really just setting up a key in the dictionary to correspond to a specific
value. When assigning a value to the dictionary, if the key you specify does not already exist in the
dictionary, the key is added to the dictionary and the value is assigned to it. If the key already exists in
the dictionary, the value object currently assigned to the key will be replaced by the new value object.

The object type of the value and key do not need to match, and at any time you can replace the value
object with a new object of any type.

Note

Be aware that the keys in the dictionary are case sensitive. For example, Nare and nane
would represent two completely distinct keys in the dictionary.

nunbers = ('1','2','3",'4",'5 ,'6",'7","8 ,"9",'0")
letters = ("a','b',"'c',"'d," e, ")
punct = (".", "I', '?")

!
charSetDict = {nunbers:[], letters:[], punct:[]}

def display cset (cset):

pri nt
for x in cset.
if x[0] ==
print
elif x[0]
print
elif x[O0]
print
el se:
print
print x[1]

itens():
nunbers:

"Nunbers: "

== |etters:

"Letters:"

== punct:

"Puctuation:"

"Unknown: "

#Add new val ues to keys

cSet = raw_input("Insert characters: ")
for c in cSet:
for x in charSetDict. keys():
if cinx:
char Set Di ct [x] . append(c)
br eak;

di spl ay_cset (char Set Di ct)

#Add new key and val ue
charSetDict["Special"] =["%, '$, '#]
di spl ay_cset (char Set Di ct)

#Change val ue for existing key
charSetDict["Special "] = '><
di spl ay_cset (char Set Di ct)

add_dict.py

I nsert characters: abc 123 .
Nunber s:

["2, "2', "3"]

Puct uati on:

["]

Letters:

["a, "b'", "c"]

Nunber s:

["1, "2', "3"]
Puct uati on:
["."]

Letters:

["a", "b'", "c"]
Unknown:

%, '8, #]

Nunber s:

["1, "2', "3"]
Puct uati on:
["."]

Letters:

["a'", '"b'", '"c']
Unknown:

><

Output of add_dict.py

e Py EXT

Retrieving a Value from a Dictionary

NEXT B

val i dkeys = (1, 2,3)
3:"test', "' key': 2}

print keyGenbDict. keys()
print keyGenbDict. val ues()
print keyGenDict.itens()
val = keyGenDict["key"]
keyGenDi ct["key"] =1

val = keyGenDict["key"]

keyGenDi ct={"'keys':[1,2,3],1:" blue',2:"'fast",

A value can be retrieved from a dictionary using several different methods. The most common is to
access the value directly by specifying the associated key in square brackets following the dictionary

variable.

A list of values contained in a dictionary can be retrieved using the val ues() method. The val ues method

returns a list containing all objects that are values in the dictionary.

Similarly, you can obtain just a list of keys using the keys() method. The keys method returns a list of
objects that are currently being used as keys in the dictionary. The list of keys is useful in many ways,

such as creating a tuple of the keys for faster lookups in the dictionary.

You can also get a list of key and value pairs by using the i tens() method. The it ens method returns a

list that contains two-element tuples of each key and value pair in the dictionary.

val i dkeys = (1, 2, 3)

keyGenDi ct={"' keys':[1,2,3],1: " blue',2:"'fast",

3:'test', ' key': 2}

def show _key (key):
i f(key in validkeys):

keyVal = (keyGenDict["keys"])[key-1]
print "Key = " + keyCGenDi ct[keyVal]

el se:
print("lnvalid key")

#Retrieving dictionary key |ist
print keyGenDict. keys()

#Retrieving dictionary value |ist
print keyGenbDict. keys()

#Retrieving dictionary value |ist
print keyGenDict.itens()

#Retrieve val ue from key
val = keyGenDict["key"]
show_key(val)

keyGenDi ct["key"] =1
val = keyGenDict["key"]
show _key(val)

ret_dict.py

['keys', 1, 2, 3, 'key']

[12, 2, 3], 'blue', '"fast', "test', 2]
[("keys', [1, 2, 3]), (1, '"blue'), (2, 'fast'),
(3, "test'), ('key', 2)]

Key f ast

Key bl ue

Output of ret_dict.py

=1 NexT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Slicing a Dictionary

NEXT B

year = {1:'January', 2:'February',

4:" April',\

12:' Decenber'}

nont hs = year. keys()
nont hs. sort ()
hal f Count = len(nonths)/2
hal f = nont hs[0: hal f Count]
firstHalf = {}
for x in half:

firstHal f[x] = year[Xx]

5:"May', 6:'June', 7:'July',
9:' Septenber', 10:' COct ober',

3: " March',

8: ' August ' ,\
11:' Novenber' ,\

There is no specific method to get a slice of a dictionary; however, this will be a common task that
deserves some attention. The best way to slice out a subset of a dictionary is to first get the list of keys
using the keys method. From the full list of keys, create a subset of that list through slicing or whatever

means are necessary.

Once you have a specific subset of keys in the directory, you can pull out the values from the original

dictionary and add them to a new dictionary.

If you want to keep the original dictionary intact, use the get method to pull out the value. However, if

you want the value and keys removed from the original dictionary, use the pop method.

year = {1:'January', 2:'February',

4:" April '\

5:"May', 6:'June', 7:"July',
9:' Septenber', 10:' Cct ober',

12: "' Decenber'}
print year

#Get |ist of keys
nont hs = year. keys()

#Creat e subset of keys
nont hs. sort ()

hal f Count = |l en(nmonths)/2
hal f = nont hs[0: hal f Count]

3: " March',

8: ' August ', \
11: ' Novenber',\

#Create new dictionary from subset of keys

firstHal f = {}
for x in half:
firstHal f[x] = year[Xx]

print firstHalf

sub_dict.py

{1: "January', 2: 'February', 3: 'March', 4:
"April', 5: '"May', 6: '"June', 7: 'July',

8: 'August', 9: 'Septenber', 10: 'Cctober',
11: ' Novenber', 12: 'Decenber'}

{1: 'January', 2: 'February', 3: 'March',
4. "April', 5 "May', 6: 'June'}

Output of sub_dict.py

e Py EXT

Swapping Keys for Values in a Dictionary

NEXT B

nyDi ctionary = {'color':"'blue', 'speed :'fast',

"nunber' :1, 5:'nunber'}

swapDi ctionary = {}

for key, val in nyDictionary.iteritens():
swapDi cti onary[val] = key

Currently, there is not a method in Python to swap around the keys and values. However, this can be
very useful if you are using a dictionary in which you may frequently need to look up items by value.
Rather than searching through the entire dictionary each time, you could create an alternative dictionary

that has the values swapped.

To swap the keys and values in a dictionary, simply iterate through the items in the dictionary using the

iteritems method and use the values as keys assigning the original key as the value.

Note

The values must be of legal key types for the keys and values to be swapped.

nyDi ctionary = {'color':'blue', 'speed :'fast',
"nunmber' : 1, 5:'nunber'}

print nyDictionary

#Swap keys for val ues

swapDi ctionary = {}

for key, val in nmyDictionary.iteritens():
swapDi ctionary[val] = key

print swapDictionary

swap_dict.py

{"color': "blue', 'speed': 'fast',
"nunmber': 1, 5: 'nunber'}
{"blue': "color', 1. 'nunber',
"nunmber': 5, 'fast': 'speed'}

Output of swap_dict.py

NEXT B

. prev_
Chapter 4. Managing Files

As with any well-developed scripting language, Python is very prepared to handle the need to directly
manage and manipulate files. Python includes several built-in functions, as well as additional modules to
help manage files. These functions and modules provide the versatility and power to handle file parsing,
data storage and retrieval, and filesystem management, as well as archive management.

It's not possible to adequately address all the file management features of Python in this book; however,
this chapter will provide the most common phrases to create and use files, manage files on a file
system, and archive files for storage or distribution.

e Py EXT

e Py NEXT

Opening and Closing Files

file = open(inPath, '"rU)
file = open(outPath, 'wb')
file.close()

To use most of the built-in file functions in Python, you will need to first open the file, perform whatever
file operations are necessary, and then close it. Python uses the simple open(path [, node [,

buf f ersi ze]]) call to open files for both reading and writing. The pat h is a path string pointing to the file.
The node determines what mode the file will be opened in, as shown in Table 4.1 .

Table 4.1. File Modes for Python's Built-In File Functions

Mode Description

r Opens an existing file for reading.

w Opens a file for writing. If the file already exists, the contents are deleted. If the file does not
already exist, a new one is created.

a Opens an existing file for updating, keeping the existing contents intact.

r+ Opens a file for both reading and writing. The existing contents are kept intact.

w+ Opens a file for both writing and reading. The existing contents are deleted.

a+ Opens a file for both reading and writing. The existing contents are kept intact.

b Is applied in addition to one of the read, write, or append modes. Opens the file in binary
mode.

U Is applied in addition to one of the read, write, or append modes. Applies the "universal"

newline translator to the file as it is opened.

The optional buf f er si ze argument specifies which buffering mode should be used when accessing the
file. O indicates that the file should be unbuffered, 1 indicates line-buffering, and any other positive
number indicates a specific buffer size to be used when accessing the file. Buffering the file improves
performance because part of the file is cached in computer memory. Omitting this argument or
specifying a negative number results in the system default buffer size to be used.

After using the file, you should close it using the built-in cl ose() function. This will free up the system
resources and keep the file from being held open any longer than necessary.

Note

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Using the universal newline mode U is extremely useful if you need to deal with files that

are created by applications that are not consistent in managing newline characters. The

universal newline mode converts all the different variations (\r, \ n, \r\n) to the standard \ n

character.

inPath = "input.txt"
out Path = "out put.txt"

#Open a file for reading
file = open(inPath, '"ruU)
if file:
read fromfile here (see Reading an Entire
File
later in this chapter for nore info)
file.close()
el se:
print "Error Opening File."

#Qpen a file for witing
file = open(outPath, 'wb')
if file:

wite to file here (see Witing a File later

in this chapter for nore info)
file.close()

el se:
print "Error Qpening File."

open_file.py

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Reading an Entire File

buffer += open(filePath, 'rU).read()
inList = open(filePath, '"rU).readlines()
whi l e(1):
bytes = file.read(5)
if bytes:
buffer += bytes

Python provides several methods to read the entire contents of a file. The first is to open the file and call
the read() function. This will read the entire contents of the file until an EOF marker is encountered and

returns the contents of the file as a string.

Another method to read an entire file is to use the readl i nes() function. This reads the entire contents

of the file, separating each line into individual strings, until an EOF marker is encountered. Once the end
of the file is found, a list of strings representing each line is returned.

In case of very large files, you might want to read only a specific number of bytes at a time. Use the read
(bytes) function to read a specific number of bytes at a time, which can then be processed more easily.

This will read a specific number of bytes from the file if possible and return them as a string. If the first
character read is an EOF marker, null is returned.

The code in read_fil e. py demonstrates how to read the entire contents at once, one line at a time, as
well as a specific number of bytes from a file.

filePath = "input.txt"

#Read entire file into a buffer
buffer = "Read buffer:\n"

buffer += open(filePath, 'rU).read()
print buffer

#Read lines into a buffer
buffer = "Readline buffer:\n"
inList = open(filePath, "rU).readlines()
print inList
for line in inList:
buffer += line
print buffer

#Read bytes into a buffer
buffer = "Read buffer:\n"
file = open(filePath, 'ruU)

whil e(1):
bytes = file.read(5)
i f bytes:
buffer += bytes
el se:

br eak

print buffer

read_file.py

Read buffer:
Line 1
Line 2
Line 3
Line 4

['Line 1\n', 'Line 2\n', 'Line 3\n', 'Line 4\n']
Readl i ne buffer:

Li ne
Li ne
Li ne
Li ne

A OWN P

Read buffer:
Li ne
Li ne
Li ne
Li ne

[EEN

AN

Output from read_file py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Reading a Single Line from a File

print linecache.getline(filePath, 1)
print linecache.getline(filePath, 3)
I i necache. cl earcache()

The linecache module in Python is an extremely useful tool if you need to access specific lines in certain
files multiple times. The linecache module caches the lines in a file in memory the first time they are
read. Although this does not provide any advantage the first time the file is accessed, it does speed up
consecutive accesses immensely.

The getline(filenanme, |ineno) function of the linecache module accepts a filename and line number as

its arguments. It then reads the line from the file, caches it in memory for later use, and then returns a
string representation of the line. The cl ear cache() function of the linecache module frees up the cache

memory by removing all lines that have been previously read.

i mport |inecache
filePath = "input.txt"

print |inecache.getline(filePath, 1)
print |inecache.getline(filePath, 3)
I i necache. cl earcache()

line_cache.py

Line 1

Line 3

Output from line_cache.py code

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Accessing Each Word in a File

file = open(filePath, 'ruU)
for line in file:
for word in line.split():
wor dLi st . append(wor d)

A useful tool when processing files is to separate each word in the file and process them one at a time.
The words can be individually processed by opening the file, reading each line into a string, and then
splitting the strings into words using the split () function.

The program read_wor ds. py shows a simple example of reading a file and processing the words one at
time. The lines in the file are processed one at a time using a for loop. The split () function splits the
line into a list of words based on spaces because no other character was passed as the separator
argument. Once the words are separated, they can be individually processed into lists, dictionaries, and
so on.

filePath = "input.txt"
wor dLi st = []
wor dCount = 0

#Read lines into a list
file = open(filePath, 'ruU)
for line in file:
for word in line.split():
wor dLi st . append(wor d)
wor dCount += 1
print wordLi st
print "Total words = %" % wor dCount

read_words.py
['Line', "1', '"Line', "2', 'Line', '3, '"Line', "'4']

Total words = 8

Output from read_words.py code

e prcy | NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Writing a File

NEXT B

file.witelines(wordList)
file.wite("\n\nFormatted text:\n")

print >>file,"\t% Col or Adjust" % word

Just as with reading the contents of a file, there are several ways to write data out to a file. The easiest,
yet the most dynamic and powerful, is the write(string) function. The write function writes the stri ng

argument to the file at the current file pointer. Although the wri t e function itself is relatively simple, the
power of Python with regard to string manipulation makes the capabilities of the writ e function virtually

limitless.

Python provides the writel i nes(sequence) function to save time writing a list of data out to the file. The
writelines function typically accepts a list of strings and writes those strings to the file.

Another option available in Python is to redirect the pri nt statement out to a file using the >> redirection
operation. This allows you to use the versatility of the Python pri nt function to format and write data

out to a file.
wordLi st = ["Red", "Blue", "G een"]
filePath = "output.txt”

#Wite alist to a file
file = open(filePath, 'wJ)
file.witelines(wordList)

#Wite a string to a file
fileewite("\n\nFormatted text:\n")

#Print directly to a file
for word in wordLi st:
print >file,"\t% Col or Adjust"

file.close()

write_file.py

RedBl ueG een

Formatted text:
Red Col or Adj ust
Bl ue Col or Adj ust
Green Col or Adj ust

Contents of output.txt file

% wor d

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

NEXT B

e Py EXT

Determining the Number of Lines in a File

| ineCount = len(open(filePath, '"rU).readlines())
print "File % has % lines." % (fil ePath,
I i neCount)

When parsing files using Python, it's useful to know exactly how many lines are contained in the file. The
example in file_lines.py shows a simple method to determine the number of lines contained in a file by
first opening it, and then using readl i nes() to generate a list of lines and using the | en() function to
determine the number of lines in the list.

Note

For large files, using readl i nes() to generate a list lines in a file might be impractical
because of the amount of memory and processing time necessary.

filePath = "input.txt"

lineCount = len(open(filePath, 'rU).readlines())
print "File % has % lines." % (filePath,

I i neCount)

file_lines.py

File input.txt has 4 |ines.

Output from file_lines.py code

e prcy | NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Walking the Directory Tree

tree = os.wal k(path)
for directory in tree:
printDirectory(directory)

Python provides a powerful directory tree-walking function in the os module. The wal k(pat h) function will

walk the directory tree, and for each directory in the tree create a three-tuple containing (1) the dirpath,
(2) a list of dirnames, and (3) a list of filenames.

Once the tuples have been created, they can be processed one at a time as elements of a list. For each
tuple, you can access the path to the directory represented directly by using the O index into the tuple.
Lists of the subdirectories and files contained in the directory can likewise be accessed using the 1 and 2
indexes, respectively.

The example in dir_tree. py shows how to use the os. wal k(pat h) function to walk a directory tree and
print out a formatted listing of the tree.

i mport os
path = "/ books/ pyt hon"

def printFiles(dirList, spaceCount):
for file in dirList:
print "/".rjust(spaceCount+1l) + file

def printDirectory(dirEntry):
print dirEntry[0] + "/"
printFiles(dirEntry[2], len(dirEntry[0]))

tree = os.wal k(path)
for directory in tree:
printDirectory(directory)

dir_tree.py

/ books/ pyt hon/
/ Pyt hon Proposal . doc
/ Pyt hon_Phr asebook_TQOC. doc
/ pyt hon_schedul e. xI s
[tenpl at e. doc
/ TOC_Not es. doc
/ books/ pyt hon\ CH2/

/ ch2. doc
/ books/ pyt hon\ CH2\ code/
/[conmp_str. py
/[end_str. py

[eval _str.py
[format _str. py
/join_str.py

[out put . t xt
/replace_str. py
/search_str. py
/split_str.py
[trimstr.py
/uni code_str. py
[var _str. py

/ books/ pyt hon\ CH3/

/ ch3. doc

Output from dir_tree.py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Renaming Files

0s. renmove(newri | eNane)
os. renane(ol dFi | eNanme, newri | eNane)

A common task when parsing files using Python is to either delete the file or at least rename it once the
data has been processed. The easiest way to accomplish this is to use the os. renove(newFi |l e) and os.

rename(ol dFi | e, newFil e) function in the os module.

The example in ren_file shows how to rename a file by first detecting whether the new filename already
exists and then removing the existing file. Once the existing file has been removed, the renane function

can be used to rename the file.

i mport os

ol dFi | eNane = "/books/ pyt hon/ CH4/ code/ out put . t xt"
newri | eNane = "/ books/ pyt hon/ CH4/ code/ out put . ol d"
#O d Listing

for file in os.listdir("/books/python/ CH4/ code/"):
if file.startswith("output"):
print file

#Renove file if the new nanme already exists
i f os.access(newFil eNane, o0s. X K):

print "Renoving " + newFil eNane

os. renove(newFi | eNane)

#Rename the file
os. renane(ol dFi | eNane, newri | eNane)

#New Li sting
for file in os.listdir("/books/python/CH4/ code/"):
if file.startswi th("output"):

print file
ren_file.py
out put.old
out put . t xt
Renovi ng / books/ pyt hon/ CH4/ code/ out put . ol d
out put.old

Output from ren_file.py code

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

NEXT B

Recursively Deleting Files and Subdirectories

NEXT B

for file in dirlList:
os.renove(dirPath + "/" + file)
for dir in enptyDrs:
os.rmdir(dir)

To recursively delete files and subdirectories in Python, use the wal k(pat h) function in the os module.
For a more detailed description of the walk function, refer to the "Walking the Directory Tree" section

earlier in this chapter.

The wal k function will automatically create a list of tuples representing the directories that need to be
deleted. To recursively delete a tree, walk through the list of directories and delete each file contained in

the files list (third item in the tuple).

The trick is removing the directories. Because a directory cannot be removed until it is completely
empty, the files must first be deleted and then the directories must be removed in reverse order,

starting with the deepest subdirectory.

The example in del_tree.py shows how to use the os. wal k(pat h) function to walk a directory tree and

delete the files, and then recursively remove the subdirectories.

i mport os

enptyDirs = []
path = "/trash/del eted files"

def deleteFiles(dirList, dirPath):
for file in dirlList:
print "Deleting " + file
os.renove(dirPath + "/" + file)

def renoveDirectory(dirEntry):
print "Deleting files in" + dirEntry[O0]
deleteFiles(dirEntry[2], dirEntry[0])
enptyDirs.insert(0, dirEntry[0])

#Enunerate the entries in the tree
tree = os.wal k(pat h)
for directory in tree:

renoveDi rectory(directory)

#Renove the enpty directories
for dir in enptyDirs:
print "Rermoving " + dir
os.rndir(dir)

del_tree.py

Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Del et i
Renovi
Renovi
Renovi

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

files in /trash/deleted files

102. i ni
103. i ni
104. i ni
105. i ni
106. i ni
107. i ni
108. i ni
109. i ni
files i
111.ini
114.ini
115.ini
files i
112.ini
113.ini

n/trash/ del eted fil es\ Test

n/trash/del eted fil es\Test\ Test 2

/trash/del eted files\Test\Test?2
/trash/del eted fil es\Test
/[trash/deleted files

Output from del_tree.py code

MNEXT B

Searching for Files Based on Extension

NEXT B

for ext in pattern.split(";"):
extLi st.append(ext.lstrip("*"))

if file.endswith(ext):
print "/".rjust(spaceCount+l) + file

One of the most common file functions is to search for files based on extension. The example in find_file.
py shows one way to search for files based on a string of extensions. The search is handled by first

creating a list of the file extensions by splitting the pattern string using the split() function.

Once the list of extensions is created, walk the directory tree and check to see whether the file's

extension matches one in the list by using the endswi t h(string) function on the file.

i mport os
path = "/ books/ pyt hon"
pattern = "*.py;*.doc"

#Print files that match to fil e extensions
def printFiles(dirList, spaceCount, typeList):
for file in dirlList:
for ext in typelist:
if file.endsw th(ext):
print "/".rjust(spaceCount+1l) + file
br eak

#Print each sub-directory

def printDirectory(dirEntry, typelList):
print dirEntry[0] + "/"
printFiles(dirEntry[2], len(dirEntry[0]),

typelLi st)

#Convert pattern string to list of file extensions
extList =[]
for ext in pattern.split(";"):

ext Li st. append(ext.Istrip("*"))

#Wal k the tree to print files
for directory in os.wal k(path):
printDirectory(directory, extList)

find_file.py

/ books/ pyt hon/
/ Pyt hon Proposal . doc
/ Pyt hon_Phr asebook_ TQOC. doc
/tenpl at e. doc
/ TOC Not es. doc

/ books/ pyt hon\ CH2/

/ ch2. doc
/ books/ pyt hon\ CH2\ code/

/ books/ pyt hon\ CH3/

/[conp_str. py
/end_str. py

[eval _str.py
[format _str. py
/join_str.py
/replace_str. py
/search_str. py
[split_str.py
[trimstr.py
/uni code_str. py
[var _str. py

/ ch3. doc

Output from find_file.py code

NEXT B

e Py EXT

Creating a TAR File

tFile tarfile.open("files.tar", 'wW)
files os.listdir(".")
for f in files:

tFile.add(f)

The tarfile module, included with Python, provides a set of easy-to-use methods to create and
manipulate TAR files. The open(filenane [, node [, fileobj [, bufsize]]]) method must be called with

the write mode set to create a new TAR. Table 4.2 shows the different modes available when opening a
TAR file.

Table 4.2. File Modes for Python's tarfile Module

Mode Description

r (Default) Opens a TAR file for reading. If the file is compressed, it will be decompressed.
r: Opens a TAR file for reading with no compression.

w or w: Opens a TAR file for writing with no compression.

aora: Opensa TAR file for appending with no compression.

r:gz Opens a TAR file for reading with gzip compression.

w:gz Opens a TAR file for writing with gzip compression.

r:bz2 Opens a TAR file for reading with bzip2 compression.

w:bz2 Opens a TAR file for writing with bzip2 compression.

Once the TAR file has been opened in write mode, files can be added to it using the add(name [, arcname
[, recursive]]) method. The add method adds the file or directory specified in nane to the archive. The

optional ar cnane argument enables you to specify what name the file should have inside the archive. The
recursi ve argument accepts a Boolean true or false to determine whether or not to recursively add the

contents of directories to the archive.

Note

To open a TAR file for sequential access only, replace the : character in the mode with a |
character. The append mode is not available for the sequential access option.

i mport os
import tarfile

#Create Tar file
tFile = tarfile.open("files.tar", "w)

#Add directory contents to tar file
files = os.listdir(".")
for f in files:

tFile. add(f)

#List files in tar
for f in tFile.getnanes():
print "Added %" % f

tFile.close()

tar_file.py

Added add_zi p. py
Added del _tree. py
Added dir_tree. py
Added extract.txt
Added extract_tar.py
Added file_lines.py
Added find file.py
Added get _zi p. py
Added i nput.txt
Added open_file. py
Added out put. ol d
Added read_file. py
Added read | ine. py
Added read words. py
Added ren_file.py
Added tar_file.py
Added wite_file.py

Output from tar_file.py code

e prcy | NEXT B

e Py EXT

Extracting a File from a TAR File

tFile = tarfile.open("files.tar", 'r')
tFile.extract(f, extractPath)

The tarfile module includes the exTRact (file [, path]) method to extract files specified by the file
argument and place them in the location specified by the pat h argument. If no path is specified, the
current working directory becomes the destination.

The example in extract _tar. py opens the TAR file created in the previous phrase and extracts only the
Python files to a directory called / bi n/ py.

i mport os
import tarfile

extractPath = "/bin/py"

#Open Tar file
tFile = tarfile.open("files.tar", 'r")

#Extract py files in tar
for f in tFile.getnanes():
if f.endswith("py"):
print "Extracting %" %f
tFile.extract(f, extractPath)
el se:
print "% is not a Python file." %f

tFile.close()

extract_tar.py

Extracting add_zip. py
Extracting del tree.py
Extracting dir_tree.py
extract.txt is not a Python file.
Extracting extract_tar.py
Extracting file_lines.py
Extracting find file.py
Extracting get_zip. py

input.txt is not a Python file.
Extracting open_file.py
output.old is not a Python file.
Extracting read_file.py
Extracting read_line. py
Extracti ng read_words. py
Extracting ren_file.py
Extracting tar_file.py
Extracting wite_file.py

Output from extract_tar.py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py NEXT

Adding Files to a ZIP File

tFile zipfile. ZipFile("files.zip", 'W)
files os.listdir(".")
for f in files:

tFile.wite(f)

The zipfile module, included with Python, provides a set of easy-to-use methods to create and
manipulate ZIP files. The Zi pFile(filename [, node [, conpression]]) method creates or opens a ZIP
file depending on the mode specified. The available modes for ZIP files are r, w, and a to read, write, or
append, respectively. Using the w mode will create a new ZIP file or truncate the existing file to zero if it
already exists.

The optional conpr essi on argument will accept either the zI P_STORED(not conpressed) or ZI P_DEFLATED
(conmpressed) compression options to set the default compression when writing files to the archive.

Once the ZIP file has been opened in write mode, files can be added to it using the wite(fil enane [,
arcnane [, conpression]]) method. The wite method adds the file specified in fil ename to the archive.
The optional ar cnane argument enables you to specify what name the file should have inside the archive.

i mport os
i mport zipfile

#Create the zip file
tFile = zipfile.ZipFile("files.zip", 'W)

#Wite directory contents to the zip file
files = os.listdir(".")
for f in files:

tFile.wite(f)

#Li st archived files
for f intFile. nanmelist():
print "Added %" % f

tFile.close()

add_zip.py

Added add_zi p. py
Added del _tree. py
Added dir_tree. py
Added extract.txt
Added extract_tar.py
Added files.zip
Added file_lines.py
Added find file.py

Added get _zi p. py
Added i nput.txt
Added open_file. py
Added output.old
Added read file.py
Added read | ine. py
Added read words. py
Added ren_file.py
Added tar_file.py
Added wite_file.py

Output from add_zip.py code

MNEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Retrieving Files from a ZIP File

tFile = zipfile.ZipFile("files.zip", 'r")
buffer = tFile.read("ren_file.py")

Retrieving file contents from a ZIP file is easily done using the read(fil enane) method included in the
zipfile module. Once the ZIP file is opened in read mode, the read method is called and the contents of

the specified file are returned as a string. Once the contents are returned, they can be added to a list or
dictionary, printed to the screen, written to a file, or any number of other possibilities.

The example in get_zip.py opens the ZIP file created in the previous phrase, reads Python file ren_file.
py, prints the contents to the screen, and then writes the contents to a new file called extract.txt.

i mport os
i mport zipfile
tFile = zipfile.ZipFile("files.zip", "r")

#List info for archived file
print tFile.getinfo("input.txt")

#Read zi pped file into a buffer

buffer = tFile.read("ren_file.py")
print buffer

#Wite zipped file contents to newfile
f = open("extract.txt", "w')
f.wite(buffer)

f.close()

tFile.close()

get_zip.py

<zipfile.Z plnfo instance at 0x008DCB70>

i mport os

ol dFi | eNane = "/books/ pyt hon/ CH4/ code/ out put . t xt"
newri | eNanme = "/ books/ pyt hon/ CH4/ code/ out put . ol d"
#A d Listing

for file in os.listdir("/books/python/ CH4/ code/"):
if file.startswi th("output"):
print file

#Renove file if the new nane already exists
i f os.access(newFil eNane, o0s. X K):
print "Renoving " + newFil eNane

0s. renove(newri | eNane)

#Renane the file
os. renane(ol dFi | eNarme, newFi | eNane)

#New Li sting

for file in os.listdir("/books/python/CH4/ code/"):

if file.startswith("output"):
print file

Output from get_zip.py code

MNEXT B

KI==3
Chapter 5. Managing Threads

The Python language provides several functions and modules that will allow you to create, start, and
control multiple threads. This chapter is designed to help you understand how to quickly implement
threads into your programs to provide faster and easier processing of data.

Working with multiple threads that share the same data at the same time can be problematic. For
example, two or more threads could try to access the same data at the same time, causing race
conditions that can lead to deadlocks. For that reason, this chapter includes using thread locks and
queues to manage data so that access to the CPU and data can be synchronized across multiple threads.

Timer-interrupted threads can be extremely valuable to provide notification status, as well as to clean
up operations at specific intervals. The final phrase of this chapter discusses how to create and start a
timer-interrupted thread.

Caution

You should be careful when using multiple threads that invoke methods in some of the
extension modules. Not all the extension modules are particularly friendly. For example,
they might block execution of all other threads for extended amounts of time until they are
completed. However, most functions included in the Python standard library are written to
work well in a multithreaded environment.

e Py EXT

e Py EXT

Starting a New Thread

thread. start_new thread(print_time, ("Thread01l",
2,))
thread. start_new thread(print_tinme, ("Thread02",
4,))
The start_new_thread(function, args [, kwargs]) method in the Python thread module enables a fast

and efficient way to create new threads in both Linux and Windows. It accepts a function name as the
first parameter and a set of arguments as the second. The optional third parameter allows you to pass a
dictionary containing keyword arguments.

The start_new t hread method creates a new thread and then starts code execution of the function.

Control is immediately returned to the calling thread, and the new thread executes the specified function
and returns silently.

Note

If the code being executed by a new thread encounters an exception, a stack trace will be
printed and the thread will exit. However, other threads will continue to run.

Although it is very effective for low-level threading, the thread module is very limited compared to the
newer threading module.

i mport thread
i mport tinme

def print_tine(threadNane, del ay):
while 1:
time. sl eep(del ay)
print "%: %" % (threadNane, \
time.ctinme(tine.tine()))

#Start threads to print tine at different intervals
thread. start _new thread(print_tinme, ("Thread0l1",
2,))

thread. start_new thread(print_tinme, ("Thread02",

4,))

while 1:
pass

create_thread.py

Thread0l: Wed Jun 14 12:46:21 2006

Thread0l: Wed Jun 14 12:46: 23 2006
Thread02: Wed Jun 14 12:46: 23 2006
Thread0l: Wed Jun 14 12:46:25 2006
Thread01l: Wed Jun 14 12:46: 27 2006
Thread02: Wed Jun 14 12:46:27 2006
Thread0l: Wed Jun 14 12:46: 29 2006
Thread0l: Wed Jun 14 12:46: 31 2006

Output from create_thread.py code

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Creating and Exiting Threads

cl ass newThread (threading. Thread):
def __init_ (self, threadl D, nane, counter):
self.threadl D = threadl D
sel f.nane = nane
sel f.counter = counter
threadi ng. Thread. __init__(self)
if doExit:
thread. exit()

The newer threading module included with Python 2.4 provides much more powerful, high-level support
for threads than the thread module discussed in the previous phrase. It is a little more complicated to
implement; however, it provides the ability to better control and synchronize threads.

The threading module introduces a Thr ead class that represents a separate thread of execution. To
implement a new thread using the threading module, first define a new subclass of the Thread class.
Override the __init__(self [,args]) method to add additional arguments. Then override the run(sel f [,
args]) method to implement what the thread should do when started.

Once you have created the new Thr ead subclass, you can create an instance of it and then start a new
thread by invoking the start () or run() methods.

i mport threading
i mport thread
i mport tinme

doExit = 0

cl ass newThread (threading. Thread):

def __init_ (self, threadl D, nane, counter):
self.threadl D = threadl D
sel f. nane = nane
sel f.counter = counter
threadi ng. Thread. __init__ (self)

def run(self):
print "Starting " + self.nane
print_tine(self.nanme, self.counter, 5)
print "Exiting " + self.name

def print_tinme(threadNane, delay, counter):
whil e counter:

i f doExit:
thread. exit()

time. sl eep(del ay)

print "%: %" % (threadNane, \
time.ctinme(tine.tinme()))

counter -=

#Create new t hreads
threadl = newThread(1l, "ThreadOl", 1)
thread2 = newrThread(2, "Thread02", 2)
#Start new Threads

threadl. start()

t hread2. run()

while thread2.isAlive():
if not threadl.isAlive():
doExit =1

pass

print "Exiting Main Thread"

exit_thread.py

Starting Thread0Ol

Starting Thread02

Thread0l: Wed Jun 14 13:06:10 2006
Thread0l: Wed Jun 14 13:06:11 2006
Thread02: Wed Jun 14 13:06:11 2006
Thread0l: Wed Jun 14 13:06:12 2006
Thread0l: Wed Jun 14 13:06: 13 2006
Thread02: Wed Jun 14 13:06:13 2006
Thread0l: Wed Jun 14 13:06: 14 2006
Exiti ng ThreadOl

Thread02: Wed Jun 14 13:06: 15 2006
Exiting Main Thread

Output from exit_thread.py code

e Py EXT

Synchronizing Threads

NEXT B

t hreadLock = threadi ng. Lock()

t hr eadLock. acqui re()
print_tine(self.name, self.counter, 3)
t hreadLock. r el ease()

The threading module provided with Python includes a simple-to-implement locking mechanism that will
allow you to synchronize threads. A new lock is created by calling the Lock() method, which returns the

new lock.

Once the new lock object has been created, you can force threads to run synchronously by calling the
acqui re(bl ocki ng) method. The optional bl ocki ng parameter enables you to control whether the thread

will wait to acquire the lock. If blocking is set to 0, the thread will return immediately with a O value if
the lock cannot be acquired and with a 1 if the lock was acquired. If blocking is set to 1, the thread will

block and wait for the lock to be released.

When you are finished with the lock, the lock is released by calling the rel ease() method of the new lock

object.

i mport threading
i mport time

cl ass newThread (threading. Thread):

def __init_ (self, threadl D, nane, counter):

self.threadl D = threadl D

sel f. nane = nane

sel f.counter = counter

t hreadi ng. Thread. __init__(self)

def run(self):

print "Starting + sel f. nane
#Get lock to synchronize threads

t hreadLock. acqui re()

print_tinme(self.nane, self.counter,
#Free lock to rel ease next thread

t hr eadLock. r el ease()

def print_tine(threadNane, delay, counter):
whil e counter:
time. sl eep(del ay)
print "%: %" % (threadNane, \
time.ctime(tine.tinme()))
counter -=1

t hreadLock = threadi ng. Lock()
threads = []

#Create new t hreads
t hreadl newThread(1, "Thread0l", 1)
t hr ead?2 newThr ead(2, "Thread02", 2)

3)

#Start new Threads
threadl. start()
thread2. start()

#Add threads to thread |ist
t hr eads. append(t hreadl)
t hr eads. append(t hread?2)

#Wait for all threads to conplete
for t in threads:
t.join()

print "Exiting Main Thread"

sync_thread.py

Starting ThreadOl

Starting Thread02

Thread0l: Tue Jun 20 10: 06: 24 2006
Thread0l: Tue Jun 20 10: 06: 25 2006
Thread0l: Tue Jun 20 10:06: 26 2006
Thread02: Tue Jun 20 10:06: 28 2006
Thread02: Tue Jun 20 10:06: 30 2006
Thread02: Tue Jun 20 10: 06: 32 2006
Exiting Main Thread

Output from sync_thread.py code

e Py EXT

Implementing a Multithreaded Priority Queue

NEXT B

gueuelLock t hr eadi ng. Lock()
wor kQueue Queue. Queue(10)
gueuelLock. acqui re()
for word in wordList:
wor kQueue. put (wor d)
gueuelLock. rel ease()
whi |l e not wor kQueue. enpty():
pass

gueuelLock. acqui re()

i f not workQueue. empty():
data = q.get()
queuelLock. rel ease()

The Queue module provides an invaluable way to manage processing large amounts of data on multiple
threads. The Queue module allows you to create a new queue object that can hold a specific number of
items. Items can be added and removed from the queue using the get () and put () methods of the

queue object.

The queue object also includes the enpty(), full (), and gsi ze() methods to determine whether the
queue is empty, full, or the approximate size, respectively. The gsi ze method is not always reliable

because of multiple threads removing items from the queue.

If necessary, you can implement the thread locking discussed in the previous phrase to control access to
the queue. This will make queue management much safer and provide you with more control of the data

processing.

i mport Queue

i mport threading
i mport tine

i mport thread

doExit = 0

cl ass newThread (threading. Thread):

def __init_ (self, threadl D, nane, q):
self.threadl D = threadl D
sel f.nane = nane
self.q = q
t hreadi ng. Thread. __init__(self)

def run(self):
print "Starting " + self.nane
process_data(sel f.nanme, self.q)
print "Exiting " + self.name

def process_data(tNane, Q):
whi | e not doExit:
gueuelLock. acquire()
i f not workQueue.enmpty():

data = qg.get()

gueuelLock. rel ease()

print "% processing %" % (tName, data)
el se:

gqueuelLock. rel ease()
time.sleep(l)

threadLi st = ["Threadl", "Thread2", "Thread3"]
wordList = ["One", "Two", "Three", "Four", "Five"]
gueuelLock = threadi ng. Lock()

wor kQueue = Queue. Queue(10)

threads = []

tID=1

#Create new t hreads
for tNane in threadList:
thread = newThread(tl D, tName, workQueue)
thread.start ()
t hr eads. append(t hr ead)
tID+=1

#Fi Il the queue

gueuelLock. acqui re()

for word in wordLi st:
wor kQueue. put (wor d)

gueuelLock. rel ease()

#Wait for queue to enpty
whi | e not workQueue. enpty():
pass

#Notify threads it's tine to exit
doExit =1

#Wait for all threads to conplete
for t in threads:
t.join()

print "Exiting Main Thread"

queue_thread.py

Starting Threadl
Starting Thread2
Starting Thread3
Threadl processi ng One
Thread2 processi ng Two
Thr ead3 processing Three
Threadl processi ng Four
Thread2 processing Five
Exiting Threadl

Exiting Thread2

Exiting Thread3

Exiting Main Thread

Output from queue_thread.py code

MEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Initiating a Timer-Interrupted Thread

NEXT B

wakeCal | = threading. Timer(waitTinme, \

wakeCal | . start ()

cl ean_queue, (gPath ,))

Common threads invoked on Linux servers are the timer threads to clean up resources, provide
notification, and check status, as well as many other functions. The threading module included with

Python provides an easy way of creating a simple timer-interrupted thread.

The Tiner (interval, func [,args [, kwargs]]) method of the threading module creates a new timer-
interrupted thread object. The interval specifies the number of seconds to wait before executing the

function specified in the f unc argument.

Once the new timer-interrupted thread object is created, it can be started at any time using the start
method of the object. Once the start method is invoked, the thread will wait the specified timer interval

and then begin execution.

Note

A timer thread can be cancelled after it is started, using the cancel () method of the object,

provided that the function has not yet been executed.

i mport threading
i mport os

def cl ean_queue (gPath):
jobList = os.listdir(gPath)
for j in jobList:
del Path = "%/ %" % (qgPath, j)
os. renove(del Pat h)
print "Removing " + del Path

gPath = "/print/queue0l”
wait Time = 600 #10 m nutes

#Create tiner thread
wakeCal | = threading. Tinmer(waitTinme, \
cl ean_queue, (gPath ,))

#Start tiner thread
wakeCal | . start ()

timer_thread.py

Renovi ng /print/queue0l/ 102. t xt
Rermovi ng / print/queue0l1/103.t xt
Renovi ng /print/queue0l/ 104. t xt
Removi ng / print/queue0l/ 105. t xt
Removi ng / print/queue0l/ 106. t xt
Renovi ng /print/queue0l/ 107. t xt

Output from timer_thread.py code

e Py EXT

KI==3
Chapter 6. Managing Databases

The ability to store data in a manageable database dramatically increases the options regarding the
types of applications that can be created by Python. The Python language has built-in modules, as well
as add-on modules, that provide an extensive platform for the persistent storage of data in various
database formats.

This chapter familiarizes you with phrases used to create generic DBM files for simple persistent storage
of data, as well as some advanced concepts such as pickling data to files and shelves. Most basic
database needs can be handled by the DBM, pickle, and shelve modules. The advantage of those
modules is that they do not require a backend database server.

This chapter also covers connecting to and using a MySQL server as the backend database engine for
persistent storage. MySQLdb, available at http://www.mysqgl.org/, is an add-on Python package that
conforms to the Python DB-API 2.0 specification. Python provides the DB-API specification to
accommodate the numerous forms of SQL servers available. The specification provides the necessary
framework to access most of the available SQL databases via add-on modules such as MySQLdb.

There are other SQL modules available for other SQL servers such as Oracle, JDBC, Sybase, and DB2, as
well as others. Thanks to the Python DB-API spec, the phrases listed for MySQL can be used to access
those SQL databases as well. You simply need to install the appropriate module and use that module's
connect function to connect to the database.

Note

There might be some subtle differences among different database query strings, such as
escape sequences.

e prcy | NEXT B

http://www.mysql.org/
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Adding Entries to a DBM File

i mport anydbm
cityDB = anydbm open("city.dbni, 'n")
for flight in flights:

cityDB[flight] = cities[i]
cityDB. cl ose()

The anydbm module provides a generic interface, allowing you to open databases based on several
different lower-level packages that can be installed on the system. When imported, the anydbm module
searches for the dbm, gdbm, and bsddb packages that provide access to the UNIX dbm, GNU DBM, and
Berkely DB libraries, respectively. If none of those packages are available, then the dumbdbm module is
loaded to provide access to a simple DBM-style database library.

The adybdm module provides the open(filename [,flag [, node]]) function that allows you to open and
create databases (see the "Opening and Closing Files" phrase of Chapter 4, "Managing Files," for more
details).

Note

When creating a new database, anydbm will try to use the database module that was first
installed on the system.

The open function returns a database object that behaves much the same as a dictionary. Entries can be
added to the database by assigning a value to a key using the d[key] = val ue syntax. The key must be a
standard string, and the val ue must also be a standard string, except in the shelve module discussed in
later phrases.

i mport anydbm

cities = ["Dallas", "Los Angel es", "New York"]
flights = ["1144", "1045", "1520"]
tinmes = ["230pnt, "320pnt, "420pnt']

#Create DBMfile
cityDB = anydbm open("city. dbni,
ti meDB = anydbm open("ti ne. dbni',

n")
‘n)

#Add entries

i =0

for flight in flights:
cityDB[flight] = cities[i]

i +=1

i =0

for flight in flights:
tinmeDB[flight] = tinmes[i]

i +=1

print cityDB.itens()
print tineDB.itens()

#Cl ose DBM fil e

cityDB. cl ose()
ti meDB. cl ose()

add_dbm.py

[(*1144', 'Dallas'), ('1045, 'Los Angeles'),
(" 1520', 'New York')]

[("1144", '230pm), ('1045', '320pm),
(" 1520', '420pm)]]

Output from add_dbm.py code

e prcy ExT

e Py EXT

Retrieving Entries from a DBM File

i mport anydbm
cityDB = anydbm open("city.dbni, 'r')
flights = cityDB. keys()
for flight in flights:
print ("Flight % arrives from% at %" %
(flight, cityDB[flight], tineDB[flight]))
cityDB. cl ose()

The anydbm module provides a generic interface allowing you to open databases based on several
different lower-level packages that can be installed on the system. When imported, the anydbm module
searches for the dbm, gdbm, or bsddb package. If none of those packages are available, the dumbdbm
module is loaded and used for database 1/0.

The anydbm module provides the open(filenane [,flag [, node]]) function that allows you to open and
create databases (see the "Opening and Closing Files" phrase of Chapter 4 for more details).

Note

When opening an existing database, anydbm uses the whichdb module to determine which
database module to use when opening the database.

Once the database has been opened, you can use the database object similarly to a dictionary. You can
use the keys() and val ues() functions to retrieve a list of keys or values, respectively. You can also

access a specific value by referencing using the corresponding key.

i mport anydbm

#Open DBM file for reading

citybB = anydbm open("city.dbni, "'r")
ti meDB = anydbm open("tine.dbn, 'r')
#Get keys

flights = cityDB. keys()

#Use keys to get val ues

for flight in flights:
print ("Flight % arrives from% at %" %
(flight, cityDB[flight], timeDB[flight]))

#Cl ose DBMfile
cityDB. cl ose()
ti meDB. cl ose()

get_dbm.py

Arrivals

Flight 1144 arrives fromDallas at 230pm
Flight 1045 arrives from Los Angel es at 320pm
Flight 1520 arrives from New York at 420pm

Output from get_dbm.py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Updating Entries in a DBM File

NEXT B

i mport anydbm

cityDB = anydbm open("city.dbni, 'w)
flights = tineDB. keys()
for flight in flights:
if c¢c ==flight:
timeDB[flight] = "CANCELLLED"
if d=="fIlight:
del tinmeDB[flight]

After the database has been opened, you can use the database object similarly to a dictionary. To
change a value of an object in the database, assign a new value to the corresponding key using d[key] =

val ue. To remove an object from the database, use del

Note

d[key] to reference the object by its specific key.

The d. has_key(key) function can be extremely useful if you are not certain whether a

specific key exists in the database.

i mport anydbm

flights =[]
cancel l ed = ["1520", "1544"]
del eted = ["1144"]

def displayArrival s(header):
print header

pr | nt oo ———————————=—
for flight in flights:
print ("Flight % from% arrives at %
(flight, cityDB[flight],
timeDB[flight]))
#Qpen DBM file for reading
cityDB = anydbm open("city.dbni', 'w)
ti meDB = anydbm open("ti ne.dbnt', 'w)
#Get keys
flights = tinmeDB. keys()

#Di splay arrivals
di spl ayArrival s("Arrival s")

#Updat e DBM
for flight in flights:
for ¢ in cancelled:

if ¢ == flight:

timeDB[flight] = " CANCELLED"
br eak
for d in del eted:
if d==fIlight:
del tinmeDB[flight]
del cityDB[flight]
br eak

#Di spl ay updataed arrivals
flights = tinmeDB. keys()
di spl ayArrival s("Updated Arrival s")

#Cl ose DMB file
cityDB. cl ose()
ti meDB. cl ose()

update_dbm.py

Arrivals

Flight 1144 fromDallas arrives at 230pm
Fl i ght 1045 from Los Angeles arrives at 320pm
Flight 1520 from New York arrives at 420pm

Updated Arrivals

Flight 1045 from Los Angeles arrives at 320pm
Flight 1520 from New York arrives at CANCELLED

Output from update_dbm.py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Pickling Objects to a File

[
f open("pickled.dat", "w')
p cPi ckl e. Pi ckl er (f)
p. dunp(flights)
p. dunp(times)
f.c

nport cPickle
d

Pickling data to files is one of the simplest ways to get around the limitation that DBM files have of only
allowing simple text string storage. The pickle and cPickle modules included with Python provide a
simple-to-use interface to pickle entire objects to a file for persistent storage.

Note

The cPickler object is much faster than the pickler object; however, it will not allow you to
subclass the pickler and unpickler objects for advanced handling of data.

The idea of pickling is to take an existing Python object and structure the data in such a way that it can
be easily written out to an existing file and read back again.

The first step in pickleing Python objects is to open a file with the write permission. Once the file has
been opened, use the Pickl er(file) method to create a pickler object. The Pi ckl er method accepts a

standard file object as its only parameter and returns the pickler object that is used to write objects to
the file.

Once the pickler object has been created, you can use the dunp(obj ect) method to write almost any
Python object to the file. The dunp method pickles the object and writes it to the file. As the output of
the sample code illustrates, the pickled object is not a standard Python object.

Note

If the same object is dumped to a pickler object twice, only the first object is saved, even if
the object has been modified.

i mport cPickle

flights = {"1144":"Dal | as", "1045":"Los Angel es",\
"1520": " New Yor k"}
tinmes = ["230pnt, "320pnt, "420pn']

#Create the pickle file
f = open("pickled.dat", "w')

#Create the pickler object
p = cPickle.Pickler(f)

#Pickle data to the file
p. dunp(flights)

p. dunp(tines)

f.close()

#Di splay the file contents
f = open("pickled.dat", "r")
data = f.read()

print data

f.close()

pickle_data.py

(dpl

S 1520

p2

S' New Yor k'

p3

sS 1045

p4

S Los Angel es’

aS 420pm
pll
a.

Output from pickle_data.py code

e Py EXT

e Py EXT

Unpickling Objects from a File

open("pickled.dat", "r")
cPi ckl e. Unpi ckl er (f)

nport cPickle
ata = p.load()

[
f
p
d

Pickling data to files is one of the simplest ways to get around the limitation that DBM files have of only
allowing simple text string storage. The pickle and cPickle modules included with Python provide a
simple-to-use interface to pickle entire objects to a file for persistent storage.

Note

The cPickler object is much faster than the pickler object; however, it will not allow you to
subclass the pickler and unpickler objects for advanced handling of data.

The idea of unpickling is to read pickled objects from an existing pickle file and convert those pickled
objects back to standard Python objects.

The first step to unpickle Python objects is to open the pickle file with the read permission. Once the file
has been opened, use the UnPi ckl er (fil e) method to create an unpickler object. The UnPi ckl er method
accepts a standard file object as its only parameter and returns the unpickler object that is used to read
pickled objects from the file.

Once the unpickler object has been created, you can use the | oad() method to read a pickled object
from the file. The object will be restructured and returned as a standard Python object.

i mport cPickle

#Qpen the pickle file
f = open("pickled.dat", "r")

#Creat e the unpi ckl er object
p = cPickl e. Unpickl er(f)

#Unpi ckl e an object fromthe file
data = p.load()

print "Flight Dictionary:"

print data

#Unpi ckl e an object fromthe file
data = p.load()

print "\nTinme List:"

print data

f.close()

unpickle_data.py
Flight Dictionary:

{"1520': 'New York', '1144': 'Dallas',
'1045': 'Los Angeles'}

Ti me List:
['230pm, '320pm, '420pn]

Output from unpickle_data.py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Storing Objects in a Shelve File

i mport shel ve

db = shel ve. open("shel ved.dat", "n")
db['flights'] = flights

db['tinmes'] = tines

print db. keys()

Although pickling is great to store complex Python objects that DBMs cannot, it does not provide the
direct entry access that is available with DBMs. Python provides the shelve module to bridge the gap
and provide direct access to stored entries, as well as the ability to store complex Python objects. The
shelve module accomplishes this by pickling the objects behind the scenes as they are added to the
shelve file.

The shelve module provides its own open(filenane [, flags [, protocol [, witeback]]]) method to
create and open shelve files. The optional f| ags parameter accepts anr, w, c, or n character to

determine whether the shelve will be read, write, created if it doesn't already exist, or truncated to zero
length if it does exist. The optional prot ocol parameter accepts O, 1, or 2 to determine whether the

objects will be pickled as text based, binary, or a newer, faster method, respectively. The w it eback
parameter, which defaults to false, is a Boolean that, when set to true, causes changes to be cached
until the database is closed.

The open method of the shelve module returns a shelve object that behaves much the same as a
dictionary. Entries can be added to the shelve by assigning a value to a key using d[key] = val ue. The
key must be a standard string; however, the value can be almost any Python object.

The output from the sample code shows what the contents of the shelve file looks like. You can see the
objects in pickled form because the file was created using the default text-based protocol for pickling.

i mport shel ve

flights = {"1144":"Dal | as", "1045":"Los Angel es", \
"1520": " New York"}
times = ["230pnt, "320pnt, "420pni']

#Creat e shel ve
db = shel ve. open("shel ved.dat", "n")

#Store objects in shelve
db['flights'] = flights
db["tinmes'] = tines

#Di spl ay added keys
print db. keys()

db. cl ose()
#Di splay the file contents

f = open("shel ved.dat", "r")
data = f.read()

print data
f.close()

shelve_store.py
["times', '"flights']

| (1pl

S 230pm

p2

aS' 320pm

p3

aS' 420pm

p4

a.|tinmes| (dpl
S 1520

p2

S' New Yor k'
p3

sS' 1045’

p4

S Los Angel es'
p5

sS' 1144

s.|flights

Output from shelve_store.py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Retrieving Objects from a Shelve File

i mport shel ve

db = shel ve. open("shel ved.dat", "r")
for k in db. keys():
obj = db[K]

flightDB = db['flights']
flights = flightDB. keys()
cities = flightDB.val ues()
times = db['tines']

The shelve module provides its own open(filenane [, flags [, protocol [, witeback]]]) method to
create and open shelve files. The optional f| ags parameter accepts an r, w, ¢, or n character to

determine whether the shelve will be read, write, created if it doesn't already exist, or truncated to zero
length if it does exist. The optional prot ocol parameter accepts O, 1, or 2 to determine whether the
objects will be pickled as text based, binary, or a newer, faster method, respectively. The wr it eback,
which defaults to false, is a Boolean that, when set to true, causes changes to be cached until the
database is closed.

Note

The optional prot ocol parameter accepts 0, 1, or 2 to determine whether the objects will be

pickled as text based, binary, or a newer, faster method, respectively. When you open the
shelve file to read objects, you must specify the correct protocol to properly unpickle the
objects.

The open method of the shelve module opens a shelve file and returns a shelve object that behaves
much the same as a dictionary. Once the shelve object has been created, you can use the shelve object
similarly to a dictionary.

The keys() and val ues() functions retrieve a list of keys or values, respectively. You can also access a
specific value by referencing using the corresponding key.

Note

When working with shelve files, the values that are returned can be almost any object type.
You will need to keep this in mind when managing shelves that have multiple object types
stored in them.

i mport shel ve

#Qpen shelve file
db = shel ve. open("shel ved.dat", "r")

#Get the keys fromthe shel ve
for k in db.keys():

obj = db[K]

print "%: %" % (k, obj)

#Use keys to get val ues
flightDB = db['flights']
flights = flightDB. keys()
cities = flightDB.val ues()
times = db['tines']

print "\ nDepartures"
pri nt " =s========-=--—--——--—--——————————————————————=
Xx =0
for flight in flights:
print ("Flight % |eaves for % at %" %\
(flight, cities[x], tines[x]))
x+=1

db. cl ose()

shelve_get.py

times: ['230pm, '320pm, '420pm]
flights: {'1520': 'New York', '1144': 'Dallas',
'1045': 'Los Angeles'}

Departures

Flight 1520 | eaves for New York at 230pm
Flight 1144 |eaves for Dallas at 320pm
Flight 1045 | eaves for Los Angel es at 420pm

Output from shelve_get.py code

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Changing Objects in a Shelve File

i mport shel ve

db = shel ve. open("shel ved.dat", "w', witeback=1)
flights = db['flights']

del flights['1144"]

flights['1145'] = "Dall as"
db['"times'] = newtines
db. sync()

Once the shelve file has been opened, you can use the shelve object similarly to a dictionary. If you
want to replace an existing object in the shelve with a new one, assign the new value to the
corresponding key using d[key] = val ue. To remove an object from the database, use del d[key] to

reference the object by its specific key.

Changing the value of specific parts of an object is where the power of using shelves rather than DBMs
becomes very apparent. First, retrieve the object from the shelve by referencing its key using obj = d

[key] . Once the object has been retrieved, values of the object can be modified using standard Python.
The changes to the object are written back to the shelve file automatically.

Note

In the example, we open the shelve with writeback set to true, so we use the sync()
method of the shelve module to force the changes to be flushed to disk.

i mport shel ve
newines = ["110pnt, "220pni, "300pnt, "445pn']

#Qpen shelve file
db = shel ve. open("shel ved.dat", "w', witeback=1)

#CGet the keys
for k in db. keys():

obj = db[K]

print "%: 9%" % (k, obj)
print "\n\n"

#Use keys to get val ues
flights = db['flights']
times = db['tines']

#Updat e contents of old object
del flights['1144"]
flights['1145"] "Dal | as"
flights['1709"] "Orl ando”

#Repl ace ol d object with a new object

db['tinmes'] = newtines

#Add a new obj ect
db['oldtines'] = tines

#Fl ush data to disk
db. sync()

for k in db. keys():
obj = db[K]
print "%: 9%" % (k, obj)

db. cl ose()

shelve_edit.py

times: ['230pm, '320pm, '420pm]
flights: {'1520"': 'New York', '1144': 'Dallas',
'1045': 'Los Angeles'}

times: ['2110pm, '220pnm, '300pm, '445pm]
flights: {'"1709': 'Olando', '1520': 'New York',

'1045': 'Los Angeles', '1145': 'Dallas'}
ol dtinmes: ['230pm, '320pm, '420pm]

Output from shelve_edit.py code

e prcy ExT

e Py EXT

Connecting to a MySQL Database Server

i mport MySQLdb

nmyDB = MySQLdb. connect (host ="127.0.0. 1", /
port=3306)

cHandl er = nyDB. cursor ()

The MySQLdb module provides the standard Python DB-API 2.0 specification connect ([host= [, port=
[, user= [, passwd= [, db=1[, ...]]11111) function to connect to MySQL database servers. All the
parameters to the connect function are optional. The most common parameters used are the host, port,
user, passwd, and db.

Once you have successfully connected to the MySQL server, you need to get a cursor handle to send
SQL requests to the server. The cursor () function returns a cursor object that can be used to execute

SQL commands on the server and obtain the results.

To execute a SQL command on the server, use the execute(operation [, paraneters]) function of the
cursor object, where oper ati on is basically any properly formatted SQL command string.

To retrieve the results from executing the command, use the fetchal | () function of the cursor object.
The fetchal | function returns the results of the SQL request in a series of one or more lists depending
on the data being returned.

Once you have the cursor object and are able to execute SQL commands, you can use the SHOW
DATABASES SQL command to get a list of databases available on the server. To switch to a specific
database, use the USE <dat abase> SQL command.

Note

To find out which database is currently active, use the SELECT DATABASE() command to
return the current database name.

i mport MySQLdb

#Connect to MySQL Server

nyDB = MySQLdb. connect (host ="127.0.0. 1", \
port =3306)

cHandl er = nyDB. cursor ()

#Di spl ay avail abl e dat abases
cHandl er . execut e(" SHOW DATABASES")
results = cHandl er.fetchall ()
print " Dat abases\ n=====================
for itemin results:

print itenfO]

#Di spl ay current database
cHandl er . execut e(" SELECT DATABASE()")
results = cHandler.fetchall ()
print "\ nCurrent Database\n=======================
for itemin results:
print itenfO]

#Sel ect dat abase
cHandl er. execut e(" USE schedul e")

#Di spl ay current database
cHandl er . execut e(" SELECT DATABASE()")
results = cHandl er.fetchall ()
print "\ nCurrent Database\ n=================————=="
for itemin results:
print iteniO]

nyDB. cl ose()

MySQL_conn.py

Dat abases

i nformati on_schemn
ai rport

nmysql

schedul e

t est

testy

Current Dat abase

Current Database

schedul e

Output from MySQL_conn.py code

NEXT B

e Py EXT

Creating a MySQL Database

i mport MySQLdb

nmyDB = MySQLdb. connect (host ="127.0.0. 1", port=3306)

cHandl er = nyDB. cursor ()

cHandl er . execut e(" CREATE DATABASE schedul e")

cHandl er . execut e(" CREATE TABLE Arrivals (city TEXT,\
flight TEXT, time TEXT)")

Once you have connected to a MySQL database and got a SQL command cursor object, creating
databases and tables is just a matter of sending the appropriately formatted SQL commands to the
server.

To create a new database, use the execute(operation [, paraneters]) function of the cursor object to
initiate the CREATE DATABASE <dat abase> SQL command. To create a new table, use the execut e() function
of the cursor object to initiate the CREATE Tabl e <t abl enanme> (<col utm name> <col um type>, ...) SQL

command.

To verify that the table has been created, use the SHOW TABLES SQL command to return a list of table
entries available in the database.

Note

The table entries that are returned are in the form of a list. The first entry in the list is the
table name.

To verify structure of a specific table, use the DESCRI BE <t abl ename> SQL command to return a list of field
entries included in the table.

Note

The field entries that are returned are in the form of a list. The first entry in the list is the
field name and the second is field type.

Caution

You must have appropriate permissions on the mySQL server to be able to create a
database.

i mport MySQLdb

#Connect to MySQL Server
nyDB = MySQLdb. connect (host="127.0.0.1", port=3306)

#Get the cursor object
cHandl er = nmyDB. cursor ()

#Cr eat e dat abase
cHandl er . execut e(" CREATE DATABASE schedul e")

#Sel ect dat abase
cHandl er. execut e(" USE schedul e")

#Create table
cHandl er . execut e(" CREATE TABLE Arrivals (city TEXT,\
flight TEXT, time TEXT)")

#Show created table

cHandl er . execut e(" SHOW TABLES")
results = cHandl er.fetchall ()
print results

#Descri be the table

cHandl er . execut e("DESCRI BE Arrival s")
results = cHandl er.fetchall ()

print results

nmyDB. cl ose()

MySQL_create.py

(("arrivals',),)

(("city', 'text', 'YES, '', None, ''),
(‘flight', "text', 'YES, '', None, ''),
(‘time', ‘text', 'YES, '', None, ''))

Output from MySQL_create.py code

e prcy | NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Adding Entries to a MySQL Database

i mport MySQLdb
nmyDB = MySQLdb. connect (host ="127. 0. 0. 1", port=3306, db="schedul e")
cHandl er = nyDB. cursor ()
sql Command = "I NSERT I NTO Arrivals \
VALUES(' %', '%', '9%')" %\
(city, flights[x], tinmes[x])
cHandl er . execut e(sgl Cormmand)
myDB. commi t ()

Once you have connected to a MySQL database and got a SQL command cursor object, adding entries to
the database is just a matter of sending the appropriately formatted SQL commands to the server.

First, connect to the server using the MySQLdb modules connect function, and then use the MySQL

database object to get a cursor object. In the sample code, entries are added one at a time by executing
the I NSERT | NTO <t abl enanme> VALUES (<dat a val ue>) SQL command using the execut e function of the

cursor object.

Note

Remember to use the comi t () function of the cursor object to flush pending requests to
the SQL database so that the changes will be written to disk.

i mport MySQLdb

cities = ["Dallas", "Los Angel es", "New York"]
flights = ["1144", "1045", "1520"]

times = ["230pnt, "320pnt, "420pni']

#Connect to dat abase
nyDB = MySQLdb. connect (host ="127. 0. 0. 1", port=3306, db="schedul e")

#Get cursor object
cHandl er = nyDB. cursor ()

#Add entries to database

x =20
for city in cities:
sql Command = "I NSERT I NTO Arrivals \

VALUES(' %', '9%', '9%')" %\
(city, flights[x], tinmes[x])
cHandl er . execut e(sql Cormand)
X +=1

#Vi ew added entries
sql Command = "SELECT cities, flights, tines FROM Arrival s"
cHandl er . execut e(sql Command)

results = cHandl er.fetchall ()
print results

#Comrit changes to dat abase
nmyDB. commi t ()

nmyDB. cl ose()

MySQL_add.py

(("Dallas', '1144', '230pm),
(' Los Angeles', '1045', '320pm),
(' New York', '1520', '420pm))

Output from MySQL_add.py code.

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Retrieving Entries from a MySQL Database

i mport MySQLdb
nmyDB = MySQLdb. connect (host ="127. 0. 0. 1", port=3306, db="schedul e")
cHandl er = nyDB. cursor ()
sql Command = "SELECT * FROM Arrival s"
cHandl er . execut e(sql Command)
results = cHandler.fetchall ()
for rowin results:
cityList.append(row 0])

Once you have connected to a MySQL database and got a SQL command cursor object, retrieving
entries from the database is just a matter of sending the appropriately formatted SQL commands to the
server.

First, connect to the server using the MySQLdb modules connect function, and then use the MySQL

database object to get a cursor object. In the sample code, all entries are retrieved together by
executing the SELECT * FROM<t abl enanme> SQL command using the execut e function of the cursor object.

Note

The SELECT SQL command returns entries as a list of lists. Because we know that the field

structure of the table is "city, flight, time," each field can be accessed directly using index
0, 1, and 2, respectively.

i mport MySQLdb

#Connect to dat abase
nyDB = MySQLdb. connect (host="127.0.0.1", \
port=3306, db="schedul e")

#Get cursor object
cHandl er = nyDB. cursor ()

#Send sel ect request for specific entries
sql Comrand = "SELECT * FROM Arrivals \
WHERE city = 'Dallas""

cHandl er . execut e(sql Conmand)

#View results
results = cHandl er.fetchall ()
print results

#Send sel ect request for all entries
sql Command = "SELECT * FROM Arrival s"
cHandl er . execut e(sql Conmand)

#View results

results = cHandl er.fetchall ()
print results

#Process rows into lists

cityList =[]

flightList =[]

timeList =[]

for rowin results:
cityList.append(row 0])
flightList.append(row 1])
timeLi st. append(row 2])

print "\ nArrival s"
x =0
for flight in flightList:
print ("Flight % arrives from% at %" %\
(flight, cityList[x], tinmeList[x]))
X+=1

nmyDB. cl ose()

MySQL_get.py
(("Dallas', '1144', '230pm),)

(('Dallas', '1144', '230pm),
('Los Angeles', '1045', '320pm),
(' New York', '1520', '420pnm))

Arrivals

Flight 1144 arrives fromDallas at 230pm
Flight 1045 arrives from Los Angel es at 320pm
Flight 1520 arrives from New York at 420pm

Output from MySQL_get.py code

MNEXT B

e Py EXT

Chapter 7. Implementing Internet Communication

Python includes several built-in modules as well as addon modules to implement different types of
Internet communication. These modules simplify many of the tasks necessary to facilitate socket
communication, email, file transfers, data streaming, HTTP requests, and more.

Because the communication possibilities with Python are so vast, this chapter focuses on phrases that
implement simple socket servers, socket clients, and FTP clients, as well as POP3 and SMTP mail clients
that can be easily incorporated into Python scripts.

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Opening a Server-Side Socket for Receiving Data

sSock = socket (AF_I NET, SOCK STREAM
sSock. bi nd((serverHost, serverPort))
sSock. listen(3)

conn, addr = sSock. accept ()

data = conn.recv(1024)

The socket module included with Python provides a generic interface to a variety of low-level socket
programming. This phrase discusses how to implement a low-level socket server using the socket
module.

The first step in implementing a server-side socket interface is to create the server socket by calling -
socket (family, type [, proto]), which creates and returns a new socket. fanily refers to the address
family listed in Table 7.1, type refers to the socket types listed in Table 7.2, and prot o refers to the
protocol number, which is typically omitted except when working with raw sockets.

Table 7.1. Protocol Families
for Python Sockets

Family Description

AF_INET Ipv4 protocols (TCP, UDP)
AF_INET6 Ipv6 protocols (TCP, UDP)

AF_UNIX Unix domain protocols

Table 7.2. Socket Types for Python Sockets

Type Description

SOCK_STREAM Opens an existing file for reading.

SOCK_DGRAM Opens a file for writing. If the file already exists, the contents are deleted. If the
file does not already exist, a new one is created.

SOCK_RAW Opens an existing file for updating, keeping the existing contents intact.

SOCK_RDM Opens a file for both reading and writing. The existing contents are kept intact.

SOCK_SEQPACKET Opens a file for both writing and reading. The existing contents are deleted.

Once the socket has been created, it must be bound to an address and port using the bi nd(addr ess)

method, where address refers to a tuple in the form of (hostname, port). If the hostname is an empty
string, the server will allow connections on any available Internet interface on the system.

Note

You can specify <broadcast > as the hostname to use the socket to send broadcast messages.

After the socket has been bound to an interface, it can be activated by invoking the | i st en(back! og)

method, where backl og is an integer that indicates how many pending connections the system should
queue before rejecting new ones.

Once the socket is active, implement a whi | e loop to wait for client connections using the accept ()

method. Once a client connection has been accepted, data can be read from the connection using the
recv(buffsize [,flags]) method. The send(string [,flags]) method is used to write a response back to

the client.

from socket inport *

serverHost ='' # listen on all interfaces
server Port 50007

#Open socket to |isten on

sSock = socket (AF_I NET, SOCK STREAM
sSock. bi nd((serverHost, serverPort))
sSock. listen(3)

#Handl e connecti ons
while 1:

#Accept a connection
conn, addr = sSock. accept ()
print 'dient Connection: ', addr
while 1:

#Recei ve data
data = conn.recv(1024)
if not data: break
print 'Server Received: ', data
newbData = data.replace('Cient', 'Processed')

#Send response
conn. send(newDat a)

#Cl ose Connecti on
conn. cl ose()

server_socket.py

Client Connection: ('137.65.77.24', 1678)
Server Received: dient Messagel

Server Received: dient Message2

Output from server_socket.py code

e prcy ExT

e Py EXT

Opening a Client-Side Socket for Sending Data

sSock = socket (AF_I NET, SOCK STREAM
sSock. connect ((server Host, serverPort))
sSock. send(item

data = sSock.recv(1024)

The socket module is also used to create a client-side socket that talks to the server-side socket
discussed in the previous phrase.

The first step in implementing a client-side socket interface is to create the client socket by calling socket

(famly, type [, proto]), which creates and returns a new socket. fani |y refers to the address family
listed previously in Table 7.1, type refers to the socket types listed previously in Table 7.2, and proto

refers to the protocol number, which is typically omitted except when working with raw sockets.

Once the client-side socket has been created, it can connect to the server socket using the connect
(address) method, where addr ess refers to a tuple in the form of (hostname, port).

Note

To connect to a server-socket on the local computer, use | ocal host as the hostname in the
server address tuple.

After the client-side socket has connected to the server-side socket, data can be sent to the server using
the send(string [,flags]) method. The response from the server is received from the connection using

the recv(buffsize [,flags]) method.

i mport sys

from socket inport *
serverHost = 'l ocal host'
serverPort = 50008

nessage = ['Cient Messagel', 'Cient Message2']

if len(sys.argv) > 1:
server Host = sys.argv[1]

#Create a socket
sSock = socket (AF_I NET, SOCK_STREAM

#Connect to server
sSock. connect ((server Host, serverPort))

#Send nessages
for itemin nmessage:

sSock. send(iten)
data = sSock.recv(1024)
print "Cient received: ', 'data'

sSock. cl ose()

client_socket.py

Client received: 'Processed Messagel'
Client received: 'Processed Message?2'

Output from client_socket.py code

MNEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Receiving Streaming Data Using the ServerSocket Module

serv= Socket Server. TCPServer (("", 50008), nyTCPSer ver)
serv.serve_forever()

line = self.rfile.readline()
self.wfile.wite("%: % bytes successfully \
received." % (sck, len(line)))

In addition to the socket module, Python includes the SocketServer module to provide you with TCP,
UDP, and UNIX classes that implement servers. These classes have methods that provide you with a
much higher level of socket control.

To implement a SocketServer to handle streaming requests, first define the class to inherit from the
Socket Server. St reanRequest Handl er class.

To handle the streaming requests, override the handle method to read and process the streaming data.
The rfile.readline() function reads the streaming data until a newline character is encountered, and

then returns the data as a string.

To send data back to the client from the streaming server, use the wfile.wite(string) command to
write the string back to the client.

Once you have defined the server class and overridden the handl e method, create the server object by
invoking Socket Server. TCPSer ver (addr ess, handl er), where addr ess refers to a tuple in the form of
(host name, port) and handl er refers to your defined server class.

After the server object has been created, you can start handling connections by invoking the server
object's handl e_r equest () or serve_forever () method.

Note

In addition to the TCPServer method, you can also use the UDPServer, Uni xSt reanBer ver, and
Uni xDat agr anSer ver methods to create other types of servers.

i mport socket
i mport string

cl ass
nmy TCPSer ver (Socket Server . St r eanRequest Handl er) :
def handle (self):

while 1:
peer = sel f.connection. get peernane()[0]
line = self.rfile.readline()

print "% wote: %" % (peer, |ine)

sck =

sel f. connecti on. get socknane() [0]

self.wfile.wite("%: % bytes \
successfuly received." %\
(sck, len(line)))

#Creat e Socket Server obj ect

Serv

Socket Server. TCPServer (("", 50008), nyTCPSer ver)

#Activate the server to handle clients
serv. serve_forever ()

stream_server.py

137.
137.
137.
137.
137.
137.

65.
65.
65.
65.
65.
65.

76.
76.
76.
76.
76.
76.

0O 00 00O 0O 0O

wr ot e:
wr ot e:
wr ot e:
wr ot e:
wr ot e:
wr ot e:

Hell o

Here is today's weat her.
Sunny

H gh: 75

Low. 58

bye

Output from stream_server.py code

MNEXT B

Sending Streaming Data

NEXT B

sSock = socket (AF_I NET, SOCK STREAM

sSock. connect ((server Host, serverPort))

line = raw_input("Send to %: " % (serverHost))
sSock. send(line+ \n")

data = sSock.recv(1024)

To send streaming data to the streaming server described in the previous task, first create the client

socket by calling socket (fanily, type [, proto]), which creates and returns a new socket.

Once the streaming client-side socket has been created, it can connect to the streaming server using the

connect (addr ess) method, where addr ess refers to a tuple in the form of (hostname, port).

After the streaming client-side socket has connected to the server-side socket, data can be streamed to
the server by formatting a stream of data that ends with the newline character and sending it to the

server using the send(string [,fl ags]) method.

A response from the server is received from the socket using the recv(buffsize [,fl ags]) method.

i mport sys

from socket inport *
server Host = 'l ocal host'
serverPort = 50008

if len(sys.argv) > 1:
server Host = sys.argv[1]

#Create socket
sSock = socket (AF_I NET, SOCK STREAM

#Connect to server
sSock. connect ((server Host, serverPort))

#Stream data to server.
line = ""
while line I'= '"bye':
line = raw_input("Send to %: " % (serverHost))
sSock. send(line+'\n")
data = sSock.recv(1024)
print 'data'

sSock. shut down(0)
sSock. cl ose()

stream_client.py

Send to 137.65.76.28: Hello
'137.65.77.28: 6 bytes received.'
Send to 137.65.76.28: Here is today's weather.
'137.65.77.28: 25 bytes received.'
Send to 137.65.76.28: Sunny
'137.65.77.28: 6 bytes received.'
Send to 137.65.76.28: H gh: 75
'137.65.77.28: 9 bytes received.'
Send to 137.65.76.28: Low 58
'137.65.77.28: 8 bytes received.'
Send to 137.65.76.28: bye
'137.65.77.28: 4 bytes received.'

Output from stream_client.py code

e Py EXT

Sending Email Using SMTP

NEXT B

%8\ n%s\n' %\

s = sntplib. SMIP(' mail.sfcn.org")
rCode = s.sendnuil (From To, m\vessage)
s. quit()

mvessage = (' From %\nTo: %\nDate: %\ nSubject:\

(From To, Date, Subject, Text))

The smtplib module included with Python provides simple access to SMTP servers that allow you to

connect and quickly send mail messages from your Python scripts.

Mail messages must be formatted properly for the To, From, Date, Subject, and text fields to be
processed properly by the SMTP mail server. The code in send_smtp.py shows the proper formatting for

the mail message, including the item headers and newline characters.

Once the mail message is properly formatted, connect to the SMTP server using the snt pl i b. SMIP(host

[,port]) method. If it is necessary to log in to the SMTP server, use the | ogi n(user,

to complete an authentication.

passwor d) method

Once connected to the SMTP server, the formatted message can be sent using sendmai | (from to,
nessage) , where fromis the sending email address string, t o specifies a list of destination email address

strings, and nmessage is the formatted message string.

After you are finished sending messages, use the quit () method to close the connection to the SMTP

server.

i mport sntplib
i mport tinme

From = "bwdayl ey@fcn. org"
To = ["bwdayl ey@ovel | . conl']
Date = tinme.ctine(tine.tinme())
Subj ect = "New nessage from Brad Dayl ey."
Text = "Message Text"
#Format nai|l nessage
nmvessage = (' From %\ nTo: %\nDate: \
%\ nSubj ect: %\n¥%\n' %
(From To, Date, Subject, Text))

print 'Connecting to Server'
s = sntplib. SMIP(' mai | .sfcn.org')

#Send mmai |
r Code = s.sendnuil (From To, m\vkessage)

s. quit()

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

i f rCode:
print 'Error Sending Message'
el se:
print 'Message Sent Successfully'

send_smtp.py

Connecting to Server
Message Sent Successfully

Output from send_smtp.py code
Also, see Figure 7.1.

Figure 7.1. Email message sent by send_smtp.py code.

[View full size image]

‘S Mail From: <bwadayleyEsion.ong>

Eile Edit Wiew Actions Tools Accounts Window Help

[num oo Repl » pFowad + @ |) (O [| == B, I'|I
Mail |Properties| Persanalize | Message Sourcs |
From: <bwidaylen@sfcn.ong> B2E006 11:33 Al
To: [twdayleyiZnovell com

BC: Brad Daylay
Subject: Mew massage from Brad Dayley.

Message Tex]

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/07fig01_alt.jpg
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Retrieving Email from a POP3 Server

nServer = poplib. POP3('mail.sfcn.org')
nSer ver. user (get pass. getuser())

nSer ver. pass_(get pass. get pass())
nunmvessages = len(nServer.list()[1])
for meg in nBerver.retr(nList+1)[1]:

The poplib module included with Python provides simple access to POP3 mail servers that allow you to
connect and quickly retrieve messages using your Python scripts.

Connect to the POP3 mail server using the poplib. POP3(host [, port [,keyfile [,certfile]]]) method,

where host is the address of the POP3 mail server. The optional port argument defaults to 995. The
other optional arguments, keyfile and certfil e, refer to the PEM-formatted private key and certificate
authentication files, respectively.

To log in to the POP3 server, the code in pop3_mail.py calls the user (user nane) and pass_(passwor d)
methods of the POP3 server object to complete the authentication.

Note

The example uses get user () and get pass() from the getpass module to retrieve the

username and password. The username and password can also be passed in as clear text
strings.

After it's authenticated to the POP3 server, the poplib module provides several methods to manage the
mail messages. The example uses the |i st () method to retrieve a list of messages in the tuple f or mat

(response, nsglist, size), where response is the server's response code, nsgli st is a list of messages
in string format, and si ze is the size of the response in bytes.

To retrieve only a single message, use retr(nsgi d). The retr method returns the message numbered

msgid in the form of a tuple (response, lines, size), where response is the server response, lines is a list
of strings that compose the mail message, and size is the total size in bytes of the message.

Note

The lines | i st returned by the retr method includes all lines of the messages, including the
header. To retrieve specific information, such as the recipient list, the lines | i st must be
parsed.

When you are finished managing the mail messages, use the quit () method to close the connection to
the POP3 server.

i mport poplib
i mport getpass

nServer = poplib. POP3(' mail.sfcn.org")

#Login to mail server
nSer ver. user (get pass. getuser())
nSer ver. pass_(get pass. get pass())

#Get the nunber of nmail nessages
numvessages = len(nServer.list()[1])

print "You have %l nessages." % (num\essages)
print "Message List:"

#Li st the subject |ine of each nessage
for mList in range(numvessages)
for nsg in nBerver.retr(nList+1)[1]:
if nmsg.startsw th(' Subject'):
print "\t' + nsg
br eak

nServer. quit()

pop3_mail.py

passwor d:

You have 10 nessages.

Message Li st:
Subject: Static IP Info
Subj ect: | P Address Change
Subj ect: Verizon Wreless Online Statenent
Subj ect: New Static |P Address
Subj ect: Your server account has been created
Subj ect: Looki ng For New Horme Projects?
Subj ect: PDF Online - cl_scr_sheet.xls
Subj ect: Professional 11 Upgrade O fer
Subject: #1 Ball Played at the U S. Open
Subj ect: Chapter 3 submni ssion

Output from pop3_mail.py code

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Using Python to Fetch Files from an FTP Server

ftp = ftplib. FTP(' ftp.novell.com, 'anonynous', \
" bwdayl ey@ovel | . com)

gFile = open("readne. txt", "wbh")

ftp.retrbinary(' RETR Readne', gFile.wite)

gFil e.cl ose()

ftp.quit()

A common and extremely useful function of Python scripts is to retrieve files to be processed using the
FTP protocol. The ftplib module included in Python allows you to use Python scripts to quickly attach to
an FTP server, locate files, and then download them to be processed locally.

To open a connection to the FTP server, create an FTP server object using the ftplib. FTP([host [, user
[, passwd]]]) method.

Once the connection to the server is opened, the methods in the ftplib module provide most of the FTP
functionality to navigate the directory structure, manage files and directories, and, of course, download
files.

The example shows connecting to an FTP server, listing the files and directories in the FTP server root
directory using the dir () method, and then changing the directory using the cwd(pat h) method. In the
example, the contents of the file Readme are downloaded from the FTP server and written to the local
file readme.txt using the retrbi nary(command, callback [, blocksize [, reset]]) method.

After you are finished downloading/managing the files on the FTP server, use the quit() method to close
the connection.

import ftplib

#Qpen ftp connection
ftp = ftplib. FTP(' ftp. novel |l .com, 'anonynous',
" bwdayl ey@ovel | . com)

#List the files in the current directory
print "File List:"

files = ftp.dir()

print files

#Get the readne file

ftp.cwd("/ pub")

gFile = open("readne. txt", "wbh")
ftp.retrbinary(' RETR Readne', gFile.wite)
gFil e.cl ose()

ftp.quit()

#Print the readne file contents
print "\ nReadne File Qutput:"

gFile = open("readne. txt", "r")
buff = gFile.read()

print buff

gFil e.cl ose()

ftp_client.py

File List:

-rwr-r- 1 root root 720 Dec 15 2005 README. htmi
-rwr-r- 1 root root 1406 Dec 15 2005 Readne
drwxrwxrwx 2 root root 53248 Jun 26 18:10 incom ng
dr wWxr wxr wx root root 16384 Jun 26 17:53 outgoing
dr wxr - Xr - X root root 4096 May 12 16:12 partners
dr wxr - Xr - X root root 4096 Apr 4 18:24 priv

dr wxr - Xr - X root root 4096 May 25 22:20 pub

None

ADNWODN

Readme File Qutput:

Rk I b Sk S R AR R R Rk ek Rk I e I

Bef ore you downl oad any software product you mnust
read and agree to the follow ng:

Output from ftp_client.py code

NEXT B

@ prev |
Chapter 8. Processing HTML

Several modules included with Python provide virtually all the necessary tools necessary to parse and
process HTML documents without needing to use a web server or web browser. Parsing HTML files is
becoming much more commonplace in such applications as search engines, document indexing,
document conversion, data retrieval, site backup or migration, as well as several others.

Because there is no way to cover the extent of options Python provides in HTML processing, the first two
phrases in this chapter focus on specific Python modules to simplify opening HTML documents locally
and on the Web. The rest of the phrases discuss how to use the Python modules to quickly parse the
data in the HTML files to process specific items, such as links, images, and cookies. The final phrase in
this chapter uses the example of fixing HTML files that do not have properly formatted tag data to
demonstrate how to easily process the entire contents of the HTML file.

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Parsing URLs

i mport url parse

parsedTupl e = url parse. url parse(

“http://ww. googl e. coni sear ch?

hl =en&q=ur | par se&bt nG=Googl e+Search")

unparsedURL = url parse. url unparse((URLschene, \
URLI ocation, URLpath, "', "', '"))

newURL = url parse. urljoin(unparsedURL,

"/ modul e-urllib2/request-objects.htm")

The urlparse module included with Python makes it easy to break down URLs into specific components
and reassemble them. This is very useful for a number of purposes when processing HTML documents.

The url parse(urlstring [, default_scheme [, allow fragments]]) function takes the URL provided in
url string and returns the tuple (schene, netloc, path, paraneters, query, fragment). The tuple can

then be used to determine things such as location scheme (HTTP, FTP, and so on), server address, file
path, and so on.

The url unparse(tupl e) function accepts the tuple (schene, netloc, path, paraneters, query, fragnent)

and reassembles it into a properly formatted URL that can be used by the other HTML parsing modules
included with Python.

The urljoin(base, url [, allow fragnents]) function accepts a base URL as the first argument and
then joins whatever relative URL is specified in the second argument. The urlj oi n function is extremely

useful in processing several files in the same location by joining new filenames to the existing base URL
location.

Note

If the relative path does not start using the root (/) character, the rightmost location in the
base URL path will be replaced with the relative path. For example, a base URL of http://
www.testpage.com/pub and a relative URL of test.html would join to form the URL http://
www.testpage.com/test.html, not http://www.testpage.com/test.html. If you want to keep
the end directory in the path, make sure to end the base URL string with a/ character.

i mport url parse

URLscheme = "http"

URLI ocation = "ww. pyt hon. org"
URLpath = "Ii b/ nodul e-url parse. htm "

modList = ("urllib", "urllib2", \
“httplib", "cgilib")

#Par se address into tuple

http://www.testpage.com/pub
http://www.testpage.com/pub
http://www.testpage.com/test.html
http://www.testpage.com/test.html
http://www.testpage.com/test.html

print "Parsed Google search for url parse"
parsedTupl e = url parse. url parse(
"http://ww. googl e. conl sear ch?

hl =en&q=ur | par se&bt nG=Googl e+Sear ch")
print parsedTupl e

#Unparse list into URL

print "\ nUnarsed python docunent page"
unparsedURL = url parse. urlunparse(\
(URLschene, URLI ocation, URLpath, "', "', '""))
print "\t" + unparsedURL

#Join path to new file to create new URL
print "\ nAdditional python document pages using
j oi n"
for nod in nodList:
newUJRL = url parse. urljoin(unparsedURL, \
"nmodul e-%. htm " % (nod))
print "\t" + newURL

#Join path to subpath to create new URL
print "\ nPython docunment pages using join of sub-path"
newURL = url parse. urljoin(unparsedURL,
"nmodul e-urllib2/request-objects. htnl™)
print "\t" + newURL

URL_parse.py

Par sed Googl e search for url parse
("http', 'ww.google.com, '/search', "',
" hl =en&qg=ur | par se&bt nG=CGoogl e+Search', '')

Unpar sed pyt hon docunent page
http://ww. pyt hon. org/li b/ nodul e-url parse. htm

Addi tional python docunent pages using join
http://ww. pyt hon.org/lib/nodul e-urllib.htm
http://ww. pyt hon.org/lib/nmodul e-urllib2. htmn
http://ww. pyt hon.org/lib/nmodul e-httplib.htmn
http://ww. pyt hon.org/lib/nodul e-cgilib.htmn

Pyt hon docunent pages using join of sub-path
http://ww. python.org/lib/nmodul e-urllib2/
request - obj ects. htm

Output from URL_parse.py code

e prcy | NEXT B

e Py EXT

Opening HTML Documents

import urllib
u=wurllib.urlopen(webURL)

u = wurllib.urlopen(local URL)

buffer = u.read()

print u.info()

print "Read % bytes from%s.\n" %\
(len(buffer), u.geturl())

The urllib and urllib2 modules included with Python provide the functionality to open and fetch data from
URLs, including HTML documents.

To use the urllib module to open an HTML document, specify the URL location of the document, including
the filename in the url open(url [, data]) function. The url open function will open a local file and return a

file-like object that can be used to read data from the HTML document.

Once you have opened the HTML document, you can read the file using the read([nbytes]), readline(),
and readl i nes() functions similar to normal files. To read the entire contents of the HTML document, use
the read() function to return the file contents as a string.

After you open a location, you can retrieve the location of the file using the geturl () function. The
getur!| function returns the URL in string format, taking into account any redirection that might have
taken place when accessing the HTML file.

Note

Another helpful function included in the file-like object returned from url open is the i nf o()
function. The i nfo() function returns the available metadata about the URL location,
including content length, content type, and so on.

import urllib

webURL = "http://ww. pyt hon. org"
| ocal URL = "/ books/ pyt hon/ CH8/ code/test. htm "

#Qpen web-based URL

u =urllib.urlopen(webURL)

buf fer = u.read()

print u.info()

print "Read %l bytes from%s.\n" %)\
(len(buffer), u.geturl())

#Qpen | ocal - based URL
u = urllib.urlopen(local URL)
buffer = u.read()

print u.info()
print "Read % bytes from%s." %\
(len(buffer), u.geturl())

html_open.py

Dat e: Tue, 18 Jul 2006 18:28:19 GMVI

Server: Apache/ 2.0.54 (Debi an GNU Li nux)
DAV/2 SVN'1.1.4 nod_python/3.1.3 Python/2.3.5
nod_ssl/2.0.54 OpenSSL/ 0. 9. 7e

Last-Modi fied: Mn, 17 Jul 2006 23:06: 04 GV
ETag: "601f6-351c-1310af 00"

Accept - Ranges: bytes

Cont ent - Lengt h: 13596

Connection: close

Content - Type: text/htmn

Web- Based URL

Read 13596 bytes from http://ww. pyt hon. org.
Content - Type: text/htmn

Cont ent - Lengt h: 433

Last-nodi fied: Thu, 13 Jul 2006 22:07:53 GMI

Local - Based URL
Read 433 bytes from
file:///books/python/ CH8/ code/test. htnl.

Output from html_open.py code

e Py EXT

e Py EXT

Retrieving Links from HTML Documents

i mport HTM_Par ser
import urllib
cl ass parseli nks(HTM_Par ser. HTM_Par ser) :
def handle_starttag(self, tag, attrs):
if tag == "a':
for name,value in attrs:
if name == '"href':
print val ue
print self.get_starttag_text()

| Parser = parseLinks()
| Parser.feed(urllib.urlopen(\
"http://ww. pyt hon.org/index.htm ").read())

The Python language comes with a very useful HTMLParser module that enables simple, efficient parsing
of HTML documents based on the tags inside the HTML document. The HTMLParser module is one of the
most important when processing HTML documents.

A common task when processing HTML documents is to pull all the links out of the document. Using the
HTMLParser module, this task is fairly simple. The first step is to define a new HTMLParser class that
overrides the handl e_starttag() method to print the HRef attribute value of all a tags.

Once the new HTMLParser class has been defined, create an instance of the class to return an
HTMLParser object. Then open the HTML document using urllib. url open(url) and read the contents of

the HTML file.

To parse the HTML file contents and print the links contained inside, feed the data to the HTMLParser
object using the feed(dat a) function. The feed function of the HTMLParser object will accept the data

and parse it based on the defined HTMLParser object.

Note

If the data passed to the feed() function of the HTMLParser is not complete, the incomplete
tag is kept and then parsed the next time the feed() function is called. This can be useful
when working with large HTML files that need to be fed to the parser in chunks.

i mport HTM_Par ser
inmport urllib
i mport sys

#Defi ne HTM. Par ser
cl ass parseli nks(HTM_Par ser. HTM_Par ser) :
def handle_starttag(self, tag, attrs):

if tag == "a':

for nane,value in attrs:
if nane == 'href':
print val ue
print self.get_starttag_text()

#Create i nstance of HIM. parser
| Parser = parseLinks()

#Qpen the HTM. file
| Parser.feed(urllib.urlopen(\
"http://ww. pyt hon. org/index. htm").read())

| Parser. cl ose()

html_links.py

<a href="psf" class=
titl e="Python Software Foundation">

[inks

dev

<a href="dev" class=""

title="Python Core Language Devel opnent">

downl ocad/ rel eases/ 2.4.3

http://docs. python. org

ftp/ python/ 2. 4.3/ python-2.4. 3. nsi

ftp/ python/2.4.3/Python-2.4.3.tar.bz2

pypi

Output from html_links.py code

NEXT B

Retrieving Images from HTML Documents

NEXT B

i mport HTM_Par ser
import urllib

def getl nage(addr):
u = urllib.urlopen(addr)
data = u.read()

cl ass parsel nages(HTM.Par ser. HTM_Par ser) :
def handl e_starttag(self, tag, attrs):

if tag == 'ing':
for nane,value in attrs:
if name == 'src':

getl mage(url String + "/" + val ue)

u=wurllib.urlopen(url String)
| Parser.feed(u.read())

A common task when processing HTML documents is to pull all the images out of the document. Using
the HTMLParser module, this task is fairly simple. The first step is to define a new HTMLParser class that
overrides the handl e_starttag() method to find the i ng tags and saves the file pointed to by the src

attribute value.

Once the new HTMLParser class has been defined, create an instance of the class to return an

HTMLParser object. Then open the HTML document using urllib. url open(url) and read the contents of

the HTML file.

To parse the HTML file contents and save the images displayed inside, feed the data to the HTMLParser
object using the f eed(dat a) function. The f eed function of the HTMLParser object will accept the data

and parse it based on the defined HTMLParser object.

i mport HTM_Par ser
import urllib

i mport sys
url String = "http://ww. pyt hon. org"

#Save inmage file to disk

def getl nage(addr):
u = urllib.url open(addr)
data = u.read()

splitPath = addr.split('/")
f Nanme = splitPath. pop()
print "Saving %" % f Nane

f = open(fNane, 'wb')
f.wite(data)
f.close()

#Def i ne HTM. par ser
cl ass parsel nages(HTM.Par ser . HTM_Par ser) :
def handle_starttag(self, tag, attrs):

if tag == "ing :
for nane,value in attrs:
if nane == 'src'

getl mage(url String + "/" + val ue)

#Create instance of HIM. parser
| Parser = parsel mages()

#Open the HTIM. file
u=wurllib.urlopen(url String)

pri nt " q:)eni ng URL\ N===================="
print u.info()

#Feed HTM. file into parser
| Parser.feed(u.read())

| Parser.cl ose()

html_images.py

Openi ng URL

Dat e: Wed, 19 Jul 2006 18:47:27 GMI

Server: Apache/ 2.0.54 (Debi an GNU Li nux)
DAV/2 SVN'1.1.4 nod_python/3.1.3 Python/2.3.5
nod_ssl/2.0.54 OpenSSL/ 0. 9. 7e

Last-Modi fied: Wed, 19 Jul 2006 16:08:34 GV
ETag: "601f6-351c- 79a6¢480"

Accept - Ranges: bytes

Cont ent - Lengt h: 13596

Connection: close

Cont ent - Type: text/htn

Savi ng python-1ogo. gif
Saving trans.gif

Saving trans.gif
Savi ng nasa.j pg

Output from html_images.py code

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Retrieving Text from HTML Documents

i mport HTM_Par ser
import urllib

cl ass parseText (HTM.Par ser. HTM.Par ser) :
def handl e_data(self, data):
if data !'="\n":
url Text . append(dat a)

| Parser = parseText ()

| Parser.feed(urllib.urlopen(\

http://docs. python. org/li b/ nmodul e- HTM_Par ser. htm \
). read())

A common task when processing HTML documents is to pull all the text out of the document. Using the
HTMLParser module, this task is fairly simple. The first step is to define a new HTMLParser class that
overrides the handl e_dat a() method to parse and print the text data.

Once the new HTMLParser class has been defined, create an instance of the class to return an
HTMLParser object. Then open the HTML document using urllib. url open(url) and read the contents of

the HTML file.

To parse the HTML file contents and print the text contained inside, feed the HTML file contents to the
HTMLParser object using the f eed(dat a) function. The f eed function of the HTMLParser object will accept

the data and parse it based on the defined HTMLParser object.

Note

If the data passed to the feed() function of the HTMLParser is not complete, the incomplete
tag is kept and then parsed the next time the feed() function is called. This can be useful
when working with large HTML files that need to be fed to the parser in chunks.

i mport HTM_Par ser
import urllib

url Text =[]

#Def i ne HTML Par ser
cl ass parseText (HTM.Par ser. HTM_Par ser) :
def handl e_data(sel f, data):
if data I'="\n":
url Text . append(dat a)

#Create instance of HIM. parser
| Parser = parseText ()

#Feed HTML file into parser
| Parser.feed(urllib.urlopen(\
http://docs. pyt hon. org/|i b/ nodul e- HTM_Par ser. htnl \
).read())
| Parser. cl ose()
for itemin url Text:
print item

html_text.py

13.1 HTM.Parser - Sinple HTM. and XHTM. parser
Pyt hon Li brary Reference

Previ ous:

13. Structured Markup Processing

Up:

13. Structured Markup Processing

Next :

13. 1.1 Exanpl e HTM. Par ser

13.1
HTM_Par ser

Si npl e HTML and XHTM. par ser

Output from html_text.py code

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Retrieving Cookies in HTML Documents

i mport wurllib2
i mport cookielib
fromurllib2 inmport urlopen, Request

cJar = cooki el ib. LWPCooki eJar ()

opener=urllib2. buil d_opener(\
url i b2. HTTPCooki eProcessor (cJar))

urllib2.install _opener(opener)

r = Request (test URL)

h = url open(r)

for ind, cookie in enunerate(cJar):
print "%l - %" % (ind, cookie)
cJar. save(cooki eFi |l e)

The Python language includes a cookielib module that provides classes for automatic handling of HTTP
cookies in HTML documents. This can be absolutely necessary when dealing with HTML documents that
require cookies to be set on the client.

To retrieve the cookies from an HTML document, first create an instance of a cookie jar using the
LWPCooki eJar () function of the cookielib module. The LWPCooki eJar() function returns an object that can

load from and save cookies to disk.

Next, create an opener, using the bui | d_opener ([handler, . . .]) function of the urllib2 module, which
will handle the cookies when the HTML file is opened. The bui | d_opener function accepts zero or more

handlers that will be chained together in the order in which they are specified and returns an opener
object.

Note

If you want url open() to use the opener object to open HTML files, call the i nstal | _opener
(opener) function and pass in the opener object. Otherwise, use the open(url) function of
the opener object to open the HTML files.

Once the opener has been created and installed, create a Request object using the Request (url) function
of the urllib2 module, and then open the HTML file using the url open(request) function.

Once the HTML page has been opened, any cookies in the page will now be stored in the LWPCookieJar
object. You can then use the save(fil enane) function of the LWPCookieJar object.

i mport os

i mport urllib2

i mport cookielib

fromurllib2 inmport url open, Request

cooki eFil e = "cooki es. dat"
testURL = 'http://maps. googl e. com’

#Create instance of cookie jar
cJar = cookielib. LWPCooki eJar ()

#Cr eat e HTTPCooki eProcessor opener object
opener = urllib2.build opener(\
url i b2. HTTPCooki eProcessor (cJar))

#l nstall the HTTPCooki eProcessor opener
urllib2.install _opener (opener)

#Create a Request object
r = Request (test URL)

#QOpen the HTM. file

h = url open(r)

print "Page Header \ N======================
print h.info()

print "Page Cooki es\ N======================
for ind, cookie in enunerate(cJar):
print "% - %" % (ind, cookie)

#Save the cookies
cJar. save(cooki eFil e)

html_cookie.py

Page Header

Cache-Control : private

Set - Cooki e: PREF=I D=f aclf 1f ch33dael6: TM~1153336398:
LM=1153336398: S=Cpl voPKTNg6KhCx1; expires=Sun,
17-Jan- 2038 19: 14: 07 GMI; pat h=/; domai n=. googl e. com
Content - Type: text/htm; charset=I SO 8859-1

Server: nfe

Cont ent - Lengt h: 28271

Date: Wed, 19 Jul 2006 19:13:18 GMI

Page Cooki es

0 - <Cooki e PREF=I D=f aclf 1f ch33dael6: TM=1153336398:
LM=1153336398: S=Cpl voPKTNg6KhCx1 for . google. coni >

Output from html_cookie.py code

e Py EXT

e Py EXT

Adding Quotes to Attribute Values in HTML Documents

i mport HTM_Par ser
import urllib

cl ass parseAttrs(HTM.Parser. HTM_Par ser) :
def handle_starttag(self, tag, attrs):

attrParser = parseAttrs()
attrParser.init_parser()
attrParser.feed(urllib.urlopen("test2. html").read())

Earlier in this chapter, we discussed parsing HTML files based on specific handlers in the HTML parser.
There are times when you need to use all the handlers to process an HTML document. Using the
HTMLParser module to parse all entities in the HTML file is not much more complex than handling the
links or images.

This phrase discusses how to use the HTMLParser module to parse an HTML file to fix the fact that the
attribute values do not have quotes around them. The first step is to define a new HTMLParser class that
overrides all the following handlers so that the quotes can be added to the attribute values.

handl e_starttag(tag, attrs)
handl e_charr ef (nane)

handl e_endt ag(t ag)

handl e_entityref(ref)
handl e_dat a(t ext)

handl e_conment (t ext)
handl e_pi (text)

handl e_decl (text)

handl e_startendtag(tag, attrs)

You will also need to define a function inside the parser class to initialize the variables used to store the
parsed data and another function to return the parsed data.

Once the new HTMLParser class has been defined, create an instance of the class to return an
HTMLParser object. Use the i nit function you created to initialize the parser; then open the HTML

document using url lib. urlopen(url) and read the contents of the HTML file.

To parse the HTML file contents and add the quotes to the attribute values, feed the data to the
HTMLParser object using the f eed(dat a) function. The f eed function of the HTMLParser object will accept

the data and parse it based on the defined HTMLParser object.

i mport HTM_Par ser
import urllib
i mport sys

#Define the HTM. parser

cl ass parseAttrs(HTM.Parser. HTM_Par ser) :
def init_parser (self):
sel f.pieces =[]

def handle_starttag(self, tag, attrs):
fixedAttrs = ""
#for nanme,value in attrs:
for nanme, value in attrs:
fixedAttrs += "%=\"%\" " % (nane, val ue)
sel f. pi eces. append("<% %>" % (tag, fixedAttrs))

def handl e _charref(self, nane):
sel f. pi eces. append(" &#%s;" % (nane))

def handl e_endtag(sel f, tag):
sel f. pi eces. append("</%>" % (tag))

def handle_entityref(self, ref):
sel f. pi eces. append(" &6" % (ref))

def handl e_data(sel f, text):
sel f. pi eces. append(text)

def handl e_coment (sel f, text):
sel f. pi eces. append("<!--%-->" % (text))

def handl e_pi (self, text):
sel f. pi eces. append("<?%>" % (text))

def handl e_decl (self, text):
sel f. pi eces. append(" <! %>" % (text))

def parsed (self):
return "".join(self.pieces)

#Create instance of HIM. parser
attrParser = parseAttrs()

#lnitialize the parser data
attrParser.init_parser()

#Feed HTM. file into parser
attrParser.feed(urllib.urlopen("test2. htm").read())

#Di splay original file contents
print "C}igina| Fil e\ nN========================"
print open("test2.htm").read()

#Di spl ay the parsed file
print "Parsed Fil e\ Nn================m========"
print attrParser. parsed()

attrParser.cl ose()

html_quotes.py

Oiginal File

<htm [ang="en" xnl:lang="en">

<head>

<nmeta content="text/htm ; charset=utf-8"
htt p- equi v="content -type"/>

<title>Web Page</title>

</ head>

<body>

<H1>Web Listings</Hl>

Pyt hon Wb Site

l ocal page

<inmg SRC=test.]pg>

</ body>

</htm >

Parsed Fil e

<htm | ang="en" xm :lang="en" >

<head >

<nmeta content="text/htnml; charset=utf-8"
htt p- equi v="content -type" ></neta>

<title >Wb Page</title>

</ head>

<body >

<hl >Web Listings</hl>

Python Wb Site

l ocal page

<inmg src="test.jpg" >

</ body>

</htm >

Output from html_quotes.py code

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

@ prev |
Chapter 9. Processing XML

Python includes several modules that provide most of the tools necessary to parse and process XML
documents. Parsing XML files is becoming much more critical as applications adopt the XML standard as
the best way to transfer data between applications and systems.

Because there is no way to cover the extent of options Python provides in XML processing, I've chosen
to present phrases that demonstrate some common tasks. To provide as broad of coverage as possible,
these phrases will use the xml.dom, xml.sax, and xml.parsers.expat modules.

The phrases in this chapter cover concepts of basic XML processing such as loading, navigating, and
checking for well-formed documents. They also cover more advanced XML processing such as searches,
tag processing, and extracting text.

Note

Many XML processing tasks could be accomplished differently by using different modules.
Don't get locked into a specific module for processing the XML data; another module may
perform the same task better.

Note

All the phrases in this chapter process the same XML file. The output of that XML file is
listed in the output section of the "Loading an XML Document” phrase.

e Py EXT

Loading an XML Document

NEXT B

fromxm .dominport ninidom
DOMITee = mi ni dom parse('enails.xm")
print xm doc.toxm ()

The easiest way to quickly load an XML document is to create a minidom object using the xml.dom
module. The minidom object provides a simple parser method that will quickly create a DOM tree from

the XML file.

The sample phrase calls the parse(file [, parser]) function of the minidom object to parse the XML file

designated by fil e into a DOM tree object. The optional parser argument allows you to specify a custom
parser object to use when parsing the XML file.

Note

The DOM tree object can be converted back into XML by calling the t oxml () function of the

object, which returns a string containing the full contents of the XML file.

fromxm .dominport mninidom

#Qpen XM. docunent using m ni dom parser
DOMITee = mi ni dom parse('enmils.xm")

#Print XM. contents
print DOMIree.toxn ()

xml_open.py

<?xm version="1.0" ?><!DOCTYPE emuils |

<! ELEMENT
date, body)>
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ATTLI ST
CC | BO "none">
] ><emuai | s>
<emai | >
<t o>
<addr

email (to, from subject,

to (addr+)>

from (addr) >

subj ect (#PCDATA) >
dat e (#PCDATA) >

body (#PCDATA) >

addr (#PCDATA) >

addr type (FROM | TO |

type="TO' >bwdayl ey@ovel | . conx/ addr >

<addr type="CC'>bwdayl ey@f cn. or g</ addr >

</to>
<fronp
<addr
t ype="FROM >ddayl ey @f cn. or g</ addr >
</fromr
<subj ect >
Updat e Li st
</ subj ect >
<body>
Pl ease add ne to the list.
</ body>
</emil >
<emai | >
<t o>
<addr
type="TO' >bwdayl ey@ovel | . conx/ addr >
<addr type="BC'>bwdayl ey@f cn. or g</ addr >
</to>
<fronp
<addr
type="FROM' >cdayl ey @f cn. or g</ addr >
</fronp
<subj ect >
Mor e Updat ed Li st
</ subj ect >

<body>
Pl ease add ne to the list al so.
</ body>
</ emil >
</ email s>

Output from xml_open.py code.

e prcy | NEXT B

Checking for Well-Formed XML Documents

NEXT B

from xm . sax. handl er inport ContentHandl er

i mport xm . sax

xm parser = xm . sax. nmake_parser ()

xm par ser. set Cont ent Handl er (Cont ent Handl er ())
xm par ser. par se(f Nane)

One of the most common tasks when processing XML documents is checking to see whether a document
is well formed. The best way to determine whether a document is well formed is to use the xml.sax
module to parse inside a try statement that will handle an exception if the document is not well formed.

First, create an xnl . sax parser object using the make_parser () function. The make_par ser function will

return a parser object that can be used to parse the XML file.

After you have created the parser object, add a content handler to the object using its set Cont ent Handl er
(handl er) function. In this phrase, a generic content handler is passed to the object by calling the xni .

sax. handl er. Cont ent Handl er () function.

Once the content handler has been added to the parser object, the XML files can be parsed inside a try
block. If the parser encounters an error in the XML document, an exception will be thrown; otherwise,

the document is well formed.

i mport sys
from xm . sax. handl er inport ContentHandl er
i mport xm . sax

fileList = ["emails.xm", "bad.xm"]

#Create a parser object
xm parser = xm . sax. nake_parser()

#Attach a generic content handl er to parser
xm par ser. set Cont ent Handl er (Cont ent Handl er ())

#Parse the files and handl e exceptions
#on bad-formed XM files
for fNane in fileList:
try:
xm par ser. par se(f Name)
print "% is a well-forned file." % f Nanme
except Exception, err:

print "ERROR %:\n\t % is not a well-forned file."

%
(err, fName)

xml_wellformed.py

emails.xm is awll-fornmed file.
ERROR bad. xm : 5:12: not well-formed (invalid token):
bad. xml is not a well-forned file.

Output from xml_wellformed.py code.

e prcy | NEXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Accessing Child Nodes

fromxm .dominport ninidom
xm doc = minidom parse('enails.xm")
cNodes = xm doc. chi | dNodes
#Di rect Node Access
print cNodes[O].toxm ()
#Fi nd node by nane
nLi st = cNodes[1] . get El enent sByTagNane("to")
#Wal K node tree
for node in nList:
eLi st = node. get El enment sByTagNane(" addr")

def printNodes (nList, level):
for node in nList:
print (" ")*level, node.nodeNane, \
node. nodeVal ue
pri nt Nodes(node. chi | dNodes, | evel +1)

pri nt Nodes(xm doc. chi | dNodes, 0)

Accessing child nodes in a parsed DOM tree can be managed in several different ways. This phrase
discusses how to access them using a direct reference, looking up the object by tag name and simply
walking the DOM tree.

The first step is to parse the XML document using the ni ni dom parse(file) function to create a DOM tree
object. The child nodes of the DOM tree can be accessed directly using the chi | dNodes attribute, which is
a list of the child nodes at the root of the tree.

Because the chi | dNodes attribute is a list, nodes can be accessed directly using the following syntax:
chi | dNodes[i ndex] .

Note

The first node in the chi | dNodes list of the DOM tree object will be the DTD node.

To search for nodes by their tag name, use the get El enment sByTagNane(t ag) of the node object. The
get El enent sByTagNanme function accepts a string representation of the tag name for child nodes and
returns a list of all child nodes with that tag.

You can also walk the DOM tree recursively by defining a recursive function that will accept a node list;
then, call that function and pass the chi | dNodes attribute of the DOM tree object. Finally, recursively call

the function again with the chi | dNodes attribute of each child node in the node list, as shown in the
sample phrase.

fromxm .dominport nmnidom

#Parse XML file to DOM tree
xm doc = minidom parse('emails.xm")

#Get nodes at root of tree
cNodes = xnl doc. chi | dNodes

#Di rect Node Access
pri nt "DTD Node\ nz================"
print cNodes[O0].toxm ()

#Fi nd node by nane
pri nt "\nTo Addresses\ Nn==================="
nLi st = cNodes[1] . get El enent sByTagNanme("to")
for node in nList:
eLi st = node. get El ement sByTagNane("addr")
for e in elList:
print e.toxm ()

print "\ nFrom Addr esses\ n==================="

nLi st = cNodes[1]. get El enent sByTagNanme("froni)

for node in nList:
eLi st = node. get El enment sByTagNane("addr")
for e in elList:
print e.toxm ()

#Wal k node tree
def printNodes (nList, level):
for node in nList:
print (" ")*level, node.nodeNane, \
node. nodeVal ue
pri nt Nodes(node. chi | dNodes, | evel +1)

print "\nNodes\ n==================="
pri nt Nodes(xm doc. chi | dNodes, 0)

xml_child.py

DTD Node

<! DOCTYPE emails [

<I ELEMENT ermil (to, from subject, date,

body) >
<l ELEMENT to (addr+)>
<! ELEMENT from (addr) >
<! ELEMENT subj ect (#PCDATA) >
<! ELEMENT dat e (#PCDATA) >
<! ELEMENT body (#PCDATA) >
<! ELEMENT addr (#PCDATA) >
<! ATTLI ST addr type (FROM| TO | CC |
"none" >
1>

To Addresses

<addr type="TO' >bwdayl ey@ovel | . conx/addr>
<addr type="CC'>bwdayl ey@f cn. or g</ addr >

BC)

<addr type="TO' >bwdayl ey@ovel | . conx/addr>
<addr type="BC'>bwdayl ey@f cn. or g</ addr >

From Addr esses

<addr type="FROM >ddayl ey@f cn. or g</ addr >
<addr type="FROM >cdayl ey@f cn. or g</ addr >

emai | s None
emai | s None
#1 ext
emai | None
#t ext
to None
#t ext
addr None
#t ext bwdayl ey@ovel | . com
#t ext
addr None
#t ext bwdayl ey@fcn. org
#t ext
#t ext
from None
#t ext
addr None
#t ext ddayl ey@fcn.org
#t ext
#t ext
subj ect None
#t ext
Updat e Li st
#t ext
body None
#t ext
Pl ease add ne to the list.
#t ext
#1 ext

Output from xml_child.py code.

MEXT B

Accessing Element Attributes

NEXT B

fromxm .dominport ninidom
xm doc m ni dom parse(' ermail s. xm ")
cNodes xm doc. chi | dNodes
print "\ nTo Addresses\ n==================="
nLi st = cNodes[1] . get El enment sByTagNane("to")
for node in nList:

eLi st = node. get El enent sByTagNane("addr")

for e in eList:

if e.hasAttribute("type"):
if e.getAttribute("type") == "TO":
print e.toxn ()

The first step to accessing element attributes in a XML file is to parse the XML document using the
m ni dom parse(file) function to create a DOM tree object. The child nodes of the DOM tree can be

accessed directly using the chi | dNodes attribute, which is a list of the child nodes at the root of the tree.

Use the chi | dNodes attribute to navigate the DOM tree, or search for the elements by their tag name, as

described in the previous task, to find the nodes you are looking for.

Once you have found the node, determine whether the node does have the attribute by calling the
hasAttri but e(nane) function of the node object, which returns true if the node does contain the attribute

specified by name. If the node does have the attribute, then you can use the get Attri but e(name)

function to retrieve a string representation of the attribute value.

fromxm .dominport mnidom

#Parse XML file to DOM tree
xm doc = nminidom parse(' enmails.xm")

#Get nodes at root of tree
cNodes = xnl doc. chi | dNodes

#Find attributes by nane
print "\ nTo Addresses\ n===================
nLi st = cNodes[1] . get El enent sByTagNane("to")
for node in nList:

eLi st = node. get El enent sByTagNanme("addr")

for e in eList:

if e.hasAttribute("type"):
if e.getAttribute("type") == "TO":
print e.toxmn ()

pri nt "\ nCC Addresses\ Nn==================="
nLi st = cNodes[1]. get El enent sByTagNanme("to")
for node in nList:
eLi st = node. get El ement sByTagNane("addr")
for e in eList:
if e.hasAttribute("type"):

if e.getAttribute("type") == "CC":

print e.toxmn ()

print "\nBC Addresses\ n==================="
nLi st = cNodes[1] . get El enent sByTagNane("to")
for node in nList:
eLi st = node. get El enent sByTagNane("addr")
for e in eList:
if e.hasAttribute("type"):

if e.getAttribute("type") == "BC":

print e.toxm ()

xml_attribute.py

To Addresses

<addr type="TO >bwdayl ey@ovel | . conx/ addr>
<addr type="TO' >bwdayl ey@ovel | . conx/ addr>

CC Addresses

<addr type="CC'>bwdayl ey@f cn. or g</ addr >

BC Addresses

<addr type="BC'>bwdayl ey@fcn. or g</ addr >

Output from xml_attribute.py code.

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Adding a Node to a DOM Tree

fromxm .dominport ninidom

DOM npl = mi ni dom get DOM npl enent at i on()
xm doc = DOM npl . cr eat eDocunent (None,
"Wor kst ati ons", None)

doc_root = xm doc. docunent El enent

node = xm doc. creat eEl enent (" Conmputer™)
doc_r oot . appendChi | d(node)

Adding child nodes to a DOM tree can be managed in several different ways. This phrase discusses using
the xml.dom.minidom module provided with Python to create a DOM tree and add nodes to it.

The first step is to create a DOM object by calling the ni ni dom get DOM npl enent ati on() function, which
returns a DOMImplementation object. Then call the creat eDocunent (qual i fi edNane, publicld, systemnd)
function of the DOMImplementation object to create the XML document. The creat eDocunent function
returns a Document object.

Once you have created the Document object, create nodes using the creat eEl ement (t agNane) function of
the Document object. The creat eEl ement function of the Docmuent object returns a node object.

After you have created child nodes, the DOM tree can be constructed using the appendChi | d(node)

function to add node objects as child nodes of other node objects. Once the tree has been constructed,
add the tree to the Document object using the appendChi | d(node) function of the Document object to

attach the topmost level of the tree.

fromxm .dominport mnidom

Stationl = ['Pentium M, '512MB']
Station2 = ['Pentium Core 2', '1024MB']
Station3 = ['Pentium Core Duo', '1024MB']

StationList = [Stationl, Station2, Station3]

#Creat e DOM obj ect
DOM npl = m ni dom get DOM npl enment at i on()

#Creat e Docunment

xm doc = DOM npl . cr eat eDocunent (None,
"Wor kst ati ons", None)

doc_root = xm doc. docunent El enent

#Add Nodes
for station in StationList:
#Creat e Node

node = xnl doc. creat eEl enent (" Conput er")

el enent = xm doc. creat eEl emrent (' Processor')

el enent . appendChi | d(xnl doc. cr eat eText Node
(station[0]))

node. appendChi | d(el enent)

el enent = xm doc. creat eEl erent (' Menory')

el enent . appendChi | d(xnl doc. cr eat eText Node
(station[1]))

node. appendChi | d(el enent)

#Add Node
doc_r oot . appendChi | d(node)

pr int "\ nNodes\ nN===================
nodelLi st = doc_root. chil dNodes
for node in nodeli st:

print node.toprettyxm ()

#Wite the docunent
file = open("stations.xm", "w)
file.wite(xm doc.toxm ())

xml_addnode.py

<Conput er >
<Pr ocessor >
Pentium M
</ Processor >
<Menory>
512MB
</ Menor y>
</ Conput er >

<Conput er >
<Pr ocessor >
Pentium Core 2
</ Processor >
<Menory>
1024MB
</ Menor y>
</ Conput er >

<Conput er >
<Pr ocessor >
Penti um Core Duo
</ Processor >
<Menory>
1024MB
</ Menor y>
</ Conput er >

Output from xml_addnode.py code.

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Removing a Node from a DOM Tree

fromxm .dominport ninidom
xm doc = mi ni dom parse('stations.xm")
doc_root = xnl doc. docurnent El enent

doc_r oot . renoveChil d(doc_root. chil dNodes[0])

The simplest way to remove a node from a DOM tree is to delete it using a direct reference. The first
step is to parse the XML document using the ni ni dom parse(file) function to create a DOM tree

document object.

After you have created the document objects, you retrieve the root of the document elements by
accessing the docunent El ement attribute of the document object. To remove an object from the root of

the document, use the renoveChi | d(node) . The renoveChi | d function removes the nodes and any child
nodes from the document.

The child nodes can be referenced directly by using the chi | dNodes attribute of the root or node object.
The chi | dNodes attribute is a list, so individual elements can be accessed by their index number as
shown in xml_removenode.py.

fromxm .dom i nport mninidom

#Parse XML file to DOM tree
xm doc = mi ni dom parse('stations.xm")
doc_root = xm doc. docunent El enent

pri nt "\ nNodes\ Nn===================
nodeLi st = xnl doc. chi | dNodes
for node in nodeli st:

print node.toprettyxm ()

#Del ete first node
doc_root. renmoveChil d(doc_root. chil dNodes[0])

pri nt "\ nNodes\ h===================
nodeLi st = xnl doc. chi | dNodes
for node in nodeli st:

print node.toprettyxm ()

xml_removenode.py

<Wor kst ati ons>
<Conput er >
<Pr ocessor >
Pentium M

</ Processor >
<Menory>
512MB
</ Menor y>
</ Conput er >
<Conput er >
<Pr ocessor >
Pentium Core 2
</ Processor >
<Menory>
1024MB
</ Menory>
</ Conput er >
<Conput er >
<Pr ocessor >
Penti um Core Duo
</ Processor >
<Menory>
1024MB
</ Menor y>
</ Conput er >
</ Wbr kst ati ons>
Nodes

<Wor kst ati ons>
<Conput er >
<Pr ocessor >
Pentium Core 2
</ Processor >
<Menory>
1024MB
</ Menor y>
</ Conput er >
<Conput er >
<Pr ocessor >
Penti um Core Duo
</ Processor >
<Menory>
1024NvB
</ Menor y>
</ Conput er >
</ Wbr kst ati ons>

Output from xml_removenode.py code.

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Searching XML Documents

fromxm . parsers inport expat
cl ass xm Search(object):
def __init__ (self, cStr, nodeNane):
sel f. nodeName = nodeNane
self.curNode = 0
sel f. nodeActive = 0
self.hits =[]
self.cStr = cStr
def StartEl enent(self, nane, attributes):
def EndEl enent (sel f, nane):
def CharacterData(self, data):
def Parse(self, fNane):
xm Parser = expat. ParserCreate()
xm Parser. Start El enent Handl er =\
sel f. Start El enent
xm Par ser. EndEl enent Handl er =
sel f. EndEl ement
xm Par ser. Char act er Dat aHandl er =\
sel f. Charact erDat a
xm Par ser. Par se(open(f Nane).read(), 1)

search = xml Search(searchString, searchEl enent)
search. Parse(xnl Fi | e)
print search.hits

Another extremely useful Python module for XML processing is the xml.parsers.expat module. The expat
module provides an interface to the expat nonvalidating XML parser. The expat XML parser is a fast

parser that quickly parses XML files and uses handlers to process character data and markup.

To use the expat parser to quickly search through an XML document and find specific data, define a
search class that derived from the basic object class.

When the search class is defined, add a st art El enent, endEl enent, and Char act er Dat a method that can
be used to override the handlers in the expat parser later.

After you have defined the handler methods of the search object, define a parse routine that creates the
expat parser by calling the Parser Creat e() function of the expat module. The Parser Creat e() function

returns an expat parser object.

After the expat parser object is created in the search object's parse routine, override the
St art El enment Handl er , EndEl enent Handl er , and Char act er Dat aHandl er attributes of the parser object by

assigning them to the corresponding methods in your search object.

After you have overridden the handler functions of the expat parser object, the parse routine will need
to invoke the Parse(buffer [, isFinal]) function of the expat parser object. The Parse function accepts

a string buf fer and parses it using the overridden handler methods.

Note

The i sFinal argument is set to 1 if this is the last data to be parsed or O if there is more
data to be parsed.

After you have defined the search class, create an instance of the class and use the par se function you
defined to parse the XML file and search for data.

fromxm . parsers inport expat

searchStringList = ["dayley@fcn.org", "also"]
searchEl ement = "email"
xmFile = "emails. xm"

#Define a search class that will handl e
#el enment s and search character data
cl ass xml Search(object):
def __init__ (self, cStr, nodeNane):
sel f. nodeNane = nodeNane
self.curNode = 0
sel f. nodeActive = 0
self.hits =[]
self.cStr = cStr
def StartEl enent(self, nane, attributes):
i f nane == sel f.nodeNane:
sel f. nodeActive = 1
sel f.curNode += 1
def EndEl enent (sel f, nane):
i f nane == sel f.nodeNane:
sel f. nodeActive = 0
def CharacterData(self, data):
if data.strip():
data = data. encode('ascii')
i f self.nodeActive:
if data.find(self.cStr) I'= -1:
i f not
sel f. hits. count(sel f.curNode):
sel f. hits. append(sel f.curNode)
print "\tFound %..." %self.cStr
def Parse(self, fNane):
#Create the expat parser object
xm Parser = expat. ParserCreate()
#Overri de the handl er nethods
xm Parser. Start El enent Handl er =\
sel f. Start El enent
xm Par ser. EndEl ement Handl er =
sel f. EndEl enent
xm Par ser. Char act er Dat aHandl er =\
sel f. Charact er Dat a
#Parse the XM file
xm Par ser. Par se(open(fNane).read(), 1)

for searchString in searchStringList:
#Create search cl ass
search = xm Search(searchString, searchEl enent)

#l nvoke the search objects Parse nethod

print "\ nSearching <%> nodes . . ." %\
sear chEl enent
search. Parse(xm Fil e)

#Di spl ay parsed results
print "Found '%' in the follow ng nodes:" %)\
searchString
print search.hits

xml_search.py

Searchi ng <enai |l > nodes . .

Found dayl ey@fcn.org. ..

Found dayl ey@fcn.org. ..
Found 'dayl ey@fcn.org" in the foll owi ng nodes:
[1, 2]

Sear chi ng <enai | > nodes .

Found al so. ..
Found "al so' in the follow ng nodes:

[2]

Output from xml_search.py code.

e prcy | NEXT B

e Py EXT

Extracting Text from XML Documents

fromxm . parsers inport expat
#Define a class that will store the character data
cl ass xm Text (obj ect):
def __init__ (self):
self.textBuff = ""
def CharacterData(self, data):
data = data.strip()
i f data:
data = data.encode('ascii')
self.textBuff += data + "\n"
def Parse(self, fNane):
xm Parser = expat. ParserCreate()
xm Par ser . Char act er Dat aHandl er =
sel f. Char act er Dat a
xm Par ser. Par se(open(fNane).read(), 1)

xText = xm Text ()
xText . Parse(xm Fil e)
print xText.textBuff

A common task when parsing XML documents is to quickly retrieve the text from them without the
markup tags and attribute data. The expat parser provided with Python provides a simple interface to
manage just that. To use the expat parser to quickly parse through an XML document and store only the
text, define a simple text parser class that derived from the basic object class.

When the text parser class is defined, add a Charact er Dat a() method that can be used to override the
Char act er Dat aHandl er s() method of the expat parser. This method will store the text data passed to the
handler when the document is parsed.

After you have defined the handler method of the text parser object, define a parse routine that creates
the expat parser by calling the Par ser Creat e() function of the expat module. The Par ser Cr eat e()

function returns an expat parser object.

After the expat parser object is created in the text parser objects' parse routine, override the
Char act er Dat aHandl er attribute of the parser object by assigning it to the Charact er Dat a() method in
your search object.

After you have overridden the handler function of the expat parser object, the parse routine will need to
invoke the Parse(buffer [, isFinal]) function of the expat parser object. The Par se function accepts a

string buf f er and parses it using the overridden handler methods.

After you have defined the text parser class, create an instance of the class and use the Parse(file)
function you defined to parse the XML file and retrieve the text.

fromxm . parsers inport expat

xmMFile = "emils. xm"

#Define a class that will store the character data
cl ass xml Text (obj ect):
def __init__ (self):
self.textBuff = ""
def CharacterData(self, data):
data = data.strip()
i f data:
data = data.encode('ascii')
self.textBuff += data + "\n"

def Parse(self, fNane):

#Create the expat parser object

xm Parser = expat. Parser Create()
#Override the handl er nethods

xm Par ser. Char act er Dat aHandl er =\

sel f. Char act er Dat a

#Parse the XML file

xm Par ser. Par se(open(fNane).read(), 1)

#Create the text parser object
xText = xm Text ()

#l nvoke the text parser objects Parse nethod
XxText . Parse(xm Fil e)

#Di spl ay parsed results
print "Text from %\ n====================" % xm File
print xText.textBuff

xml_text.py

Text fromemils.xm

bwdayl ey@ovel | . com

bwdayl ey@fcn. org

ddayl ey@fcn. org

Updat e Li st

Pl ease add ne to the |ist.
bwdayl ey@ovel | . com

bwdayl ey @f cn. org

cdayl ey@fcn.org

Mor e Updat ed Li st

Pl ease add ne to the list also.

Output from xml_text.py code.

e Py EXT

e Py EXT

Parsing XML Tags

i mport xm.sax
cl ass tagHandl er (xm . sax. handl er. Cont ent Handl er):
def __init__ (self):
self.tags = {}
def startEl ement(sel f,nanme, attr):
nanme = name. encode(' ascii')
sel f.tags[nane] = self.tags.get(nanme, 0) + 1
print "Tag % = %" %\
(nare, self.tags. get(nane))

xm parser = xml . sax. nmake_parser ()

t Handl er = tagHandl er ()

xm par ser. set Cont ent Handl er (t Handl er)
xm parser. parse(xm Fil e)

Another fairly common task when processing XML files is to process the XML tags themselves. The xml.
sax module provides a quick, clean interface to the XML tags by defining a custom content handler to
deal with the tags.

This phrase demonstrates how to override the content handler of a sax XML parser to determine how
many instances of a specific tag there are in the XML document.

First, define a tag handler class that inherits from the xnl . sax. handl er. Cont ent Handl er class. Then
override the start El enent () method of the class to keep track of each encounter with specific tags.

After you have defined the tag handler class, create an xnl . sax parser object using the make_par ser ()
function. The make_parser () function will return a parser object that can be used to parse the XML file.
Next, create an instance of the tag handler object.

After you have created the parser and tag handler objects, add the custom tag handler object to the
parser object using the set Cont ent Handl er (handl er) function.

After the content handler has been added to the parser object, parse the XML file using the parse(file)
command of the parser object.

i mport xml . sax

xmMFile = "emails.xm"
xm Tag = "emai | "

#Define handler to scan XML file and parse tags
cl ass tagHandl er (xm . sax. handl er. Cont ent Handl er) :
def __init_ (self):
self.tags = {}
def startEl enent(self,nanme, attr):
nane = name. encode(' ascii')
sel f.tags[nane] = self.tags.get(name, 0) + 1

print "Tag % = %" %\
(nane, self.tags.get(nane))

#Create a parser object
xm parser = xm . sax. make_parser ()

#Create a content handl er object
t Handl er = tagHandl er ()

#Attach the content handler to the parser
xm par ser. set Cont ent Handl er (t Handl er)

#Parse the XM file
xm parser. parse(xm Fil e)
tags = tHandl er.tags
if tags. has_key(xm Tag):
print "% has % <%> nodes." %\
(xm File, tags[xm Tag], xm Tag)

xml_tags.py

Tag emails =1
Tag email =1
Tag to =
Tag addr
Tag addr
Tag from
Tag addr
Tag subject =1
Tag body =1
Tag email = 2
Tag to =
Tag addr
Tag addr
Tag from
Tag addr
Tag subject = 2

Tag body = 2

emai | s. xnl has 2 <enmil > nodes.

(1 T O

WEFE NP

[| N | B | B\

oON O b~

Output from xml_tags.py code

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

@ prev |
Chapter 10. Programming Web Services

The Python language has an excellent set of modules to handle various web service needs. The phrases
in this chapter are designed to give you a quick insight into some of the more useful and common ways
in which Python can be used to program web services.

The first set of phrases show how to write CGI scripts using the Python language to send HTML to web
browsers, handle form requests, and send posts to themselves, as well as allow users to upload files to
the server via the web browser.

The next set of phrases provide examples of using Python to create web servers to handle GET and
POST requests, as well as creating a simple CGI script server.

The final two phrases show how to use Python to create HTTP client connections to web servers to send
POST and GET requests and then handle the response back from the web server.

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Adding HTML to Web Pages Using CGI Scripts

NEXT B

#! [usr/ bi n/ pyt hon

print "Content-type: text/htm\n"
print "<title>CE Text</title>\n"
webText = """

<H1>Usef ul Python Links</H1l>

print webText

Adding HTML content to web pages using Python CGI scripts is a very straightforward and simple
process. The first line of the CGI script should be nonexecutable and point to the location of the Python

interpreter using the #! <pat h> syntax.

When the CGI script is called by the web server, all output to stdout is directed back to the web

browser. All you need to do to send the HTML code to the browser is print it to stdout.

Note

The permission on the CGI scripts must be executable. You will need to set the file
permission to 755 on Linux servers for the scripts to be able to execute.

Note

Scripts that are created with the DOS EOL character set \ r\ n will not run properly on Linux

web servers. Depending on the web server you are using, you might need to make
configuration changes to understand how to serve CGlI files.

#1/ usr/ bi n/ pyt hon

#Send header to browser
print "Content-type: text/htn\n"
print "<title>CA Text</title>\n"

webText = """

<H1>Useful Python Links</Hl>

Pyt hon Wb Site

Pyt hon Docunent ati on</Ili>

<a href="http://cheeseshop. pyt hon

.org">

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Cheeseshop (Python Packages Library)</l1i>

#Send page content to browser
print webText

cgi_text.cgi

<! DOCTYPE htm >

<htm |ang="en" xm :lang="en">

<head>

<nmeta content="text/htnl; charset=utf-8"
htt p- equi v="content-type" />

<title>Form Page</title>

</ head>

<body>

<H1>Test Link to CE Script</Hl>

cgi _text.cgi </ A></body>

</ htm >

cgi_link.html
Figure 10.1 shows how cgi_text.cgi appears in a web browser.

Figure 10.1. Output HTML page created by cgi_text.cgi code.

[View full size image]

E}CGI Text - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

A= - & B B[O hopsi37 6577 280cqi_texteni ¥] © Go [[GL

Useful Python Links

#* Puthon Web Site

+ Python Documentabon
Cheeseshop (Python Packapes Library)

&4 Find: IfEIIE'I.l'El) Find Next) Find Previous | Highlight [Match case
| Done >

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig01_alt.jpg
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Processing Parameters Passed to CGI Scripts

NEXT B

#! [usr/ bi n/ pyt honi nport cgi, sys

sys.stderr = sys. stdout

data = cgi. Fi el dSt orage()

print "Content-type: text/htm\n"

print "<title>Cd@ Form Response</title>\n"

i f data.has_key(' nane') and data. has_key(' quote'):
print "%s. %" % (data[' nane'].value, \

data[' quote'].val ue)

The cgi module included with Python provides basic access to the metadata that gets passed to the CGI
script when it is executed. When writing a CGI script that needs to accept parameters, use the cgi .

Fi el dSt orage() function to parse the fields sent in the POST or GET request to the web server.
Fi el dSt or age returns a dictionary of fields that were included with the request.

Parameters can be accessed from the dictionary returned by Fi el dSt or age by using the standard Python
syntax to access the keys and values of the dictionary. In the example, has_key(key) is used to
determine whether a key exists, and then the value is directly accessed using the d[key] . val ue syntax.

Note

Parameters can be passed to CGI scripts through either a POST or a GET request. The
example illustrates how to use a HTML form to send a POST request and a direct link to

send a GET request.

#!/ usr/ bi n/ pyt honi nport cgi, sys

#Send errors to browser
sys.stderr = sys. stdout

#Parse data fromform
data = cgi. Fi el dStorage()

#Send response to browser

print "Content-type: text/htm\n"

print "<title>Cd@ Form Response</title>\n"
print "<h2>Current Quote</h2><p>"

i f data.has_key(' nane') and data. has_key(' quote'):
print "%s. %" % (data[' nane'].value, \
data[' quote']. val ue)

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

cgi_form.py

<! DOCTYPE htmi >

<htm | ang="en">

<head>

<meta content="text/htm; charset=utf-8"

htt p- equi v="content -type" />

<title>Form Page</title>

</ head>

<body>

<h2>For m Post </ h2><p>

<f orm net hod="POST" action="/cgi _formcgi ">
Nanme <input type="TEXT" nanme="nane">
<p>
Quot e <input type="TEXT" nane="quote" size="80">
<pP>
<i nput type="SUBM T" val ue="send" >

</ f or np<p>

<h2>Di rect Links</h2><p>

<a href="cgi _formcgi?

nane=Br ad" e=G Day! " >G Day! </ a>

<a href="cgi _formecgi?

nane=Br ad" e=Bad Show! ">Bad Show </ a>

</ body>

</htm >

form.html

Figure 10.2 shows form.html loaded in a web browser.

Figure 10.2. Web browser view of form.html code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig02_alt.jpg

2 Form Page - Mozilla Firefox

& L0) [htp:/137.65.77 260orm i

Form Post

Hame |Black Knight |

Quote [None shall pass|

_send |
Direct Links

GDayl
Bad Showl

Figure 10.3 shows the web page created when form.html executes cgi_form.cgi.

Figure 10.3. Output HTML page created by cgi_form.cgi code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig03_alt.jpg

20 CGI Form Response - Mozilla Firefox

~ File Edit View Go Hookmarks Took

& R0) [37,6577 28/cai form.cai

Current Quote

Black Enight Mone shall pass!

| 4 PREV NEXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Creating Self-Posting CGI Scripts

#! [usr/ bi n/ pyt honi nport cgi, 0s, sys
data = cgi. Fi el dSt orage()
fornmlfext = """Content-type: text/htm\n
<f or m net hod="PCST" action="cgi _sel fpost.cgi">
Nanme <input type="TEXT" nane="nane">
Quot e <input type="TEXT" nanme="quote" size="80">
<i nput type="SUBM T" val ue="send" >
</ FORM>
print fornilext
i f data.has_key(' nane') and data. has_key(' quote'):
f = open("quotes.dat", 'a')
fowite("%: %\n" %\
(data[' name'].val ue, data['quote'].value))
f=open("quotes.dat", 'r')
if f:
print f.read()

A self-posting CGI script is one that posts to itself. Self-posting scripts enable you to keep all your code
in a single file rather than spread it out through multiple HTML and CGl files.

In addition to the first line, you will need to add code to parse the data from the CGI posts, handle the
parameters from the CGI post, and write forms to the web browser that posts the CGI script.

Note

In the example, the self-posting form is added to the script even if no parameters are
passed when the CGI script is loaded. However, the initial posting to the script can be from
another script or web page, as well as a self-post from the same script.

Typically, you will want to parse the data and handle arguments first because most self-posting CGI
scripts will write different views back to the web browser depending on what parameters were posted.

The CGI post data can be parsed using the cgi . Fi el dSt orage() function. Fi el dSt or age returns a
dictionary of fields that were included with the request.

Parameters can be accessed from the dictionary returned by Fi el dSt or age by using the standard Python
syntax to access the keys and values of the dictionary. In the example, has_key(key) is used to
determine whether a key exists, and then the value is directly accessed using the d[key] . val ue syntax.

After you have accessed the parameters, you can use their values to determine what HTML view needs
to be sent back to the web browser through stdout, which writes back to the web browser.

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

Note

Each time a post is received, the CGI script is reloaded. No local or global data is retained.

If you need to have data survive between multiple posts, you will need to store it locally on
the server. In the following example, the quotes are captured and stored in a local data file
on the server so that they can be displayed each time a new post is received.

i mport cgi, 0S, sSys

#Send errors to browser
sys.stderr = sys. stdout

#Parse data fromform
data = cgi. Fi el dSt orage()

#Send formto browser

fornlfext = """Content-type: text/htm\n

<title>CE Self-Post Fornx/title>\n

<h2>Ent er Quot e</ h2><P>

<f orm net hod="PCST" action="cgi _sel fpost.cgi">
Nanme <input type="TEXT" nane="nane">

<p>
Quot e <input type="TEXT" nane="quote" size="80">
<p>
<i nput type="SUBM T" val ue="send" >
</fornp
<hr >

print fornText

#Retrieve field fromformand store data
i f data.has_key(' nane') and data. has_key(' quote'):
f = open("quotes.dat”, "a')
f.wite("%s: %\n" %\
(data[' nane']. val ue,
dat a[' quote'].val ue))

f.close()
#Send stored data to browser
f=open("quotes.dat", 'r')
if f:

print f.read()

f.close()

cgi_selfpost.cqi

<Ll >Ki ng Arthur: 1 amyour king!
<Ll >Peasant: | didn't vote for you.
<Ll >Ki ng Arthur:
</ B> You don't vote for a king!
<Ll >Bl ack Kni ght: </ B> None shal |l pass!
<Ll >Bri dge Keeper:
 What is the air speed velocity of

an unl ai den swal | ow?</ LI >

Contents of quotes.dat data file.

Figure 10.4 displays the web page that cgi_selfpost.cgi generates as items are posted to it.

Figure 10.4. Web browser view of cgi_selfpost.cqi.

[View full size image]

* n R hitp:/137.55.77 28cal_solfpost.cai

Enter Quote

HName |

Quote | |

Received Quotes

King Arthur: I am your kingl

+ Poasant: [didn't wote for vou,

+ King Arthur: You dea't wote for a king|

Black Enight: Hone shall pass!

+ Bridge Keeper: What 15 the a= speed velocty of an unlaiden swallow?

MNEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig04_alt.jpg
file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Allowing Users to Upload Files via CGI Scripts

#! [/ usr/ bi n/ pyt honi nport cgi, os, sys, string
i mport posi xpath, macpath
data = cgi. Fi el dStorage()
if data.has_key('uFile'):
saveFil e(data[' uFile'])
print "%s upl oaded (% bytes)." \
% (data['uFile'].fil ename, bytes)

A common task when programming web services is allowing users to upload files to the server using the
web browser. This is fairly easy to accomplish with Python CGI scripts. First, create an HTML page that
includes a form with a type=fil e INPUT tag. The name attribute of the INPUT tag will be used by the CGI

script to retrieve the file information. The form should specify your Python CGI script as the action. The
enct ype attribute of the form element must be set to nul ti part/form dat a.

Once you have built the HTML file, create a Python script that will parse the parameters from the POST
request using the cgi . Fi el dSt or age() function. Fi el dSt orage() returns a dictionary of fields passed to
the CGI script.

Using the dictionary returned by Fi el dSt or age() should include the key you specified as the name of the

INPUT tag in the HTML document. Use that key to obtain the file information object. The filename can be
accessed by using the fil enane attribute of the object, and the actual data can be accessed using the

file attribute. The fil e attribute acts similar to a read-only file that you can read using read(), readl i ne
(), orreadlines().

Read the file contents from the file object and write it to a file on the server.
Note

In the example, the entire file was read at once. For larger files, you might want to break
up the read into segments to reduce the load on the system.

Note

It might be a good idea in practical terms to filter the pathname to remove restricted
characters and characters that might alter the path.

#! [usr/ bi n/ pyt honi nport cgi, os, sys, string
i mport posi xpath, macpath

saveDir = "/upl oad"

#Send errors to browser
sys.stderr = sys. stdout

#Parse data from form
data = cgi. Fi el dSt orage()

#Save the file to server directory
def saveFile(uFile):
fPath = "%/ 9%" % (saveDir, uFile.filenane)
buf = uFile.file.read()
bytes = | en(buf)
sFile = open(fPath, 'wh')
sFile.wite(buf)
sFile.close()

#Send response to browser

webText = """Content-type: text/htm\n"
<title>CE Upload Fornk/title>\n
<h2>Upl oad Fi |l e</ h2><p>"""

print webText

if data.has_key('uFile'):
saveFil e(data[' uFile'])
print "% upl oaded (% bytes)." %\
(data['uFile'].filenane, bytes)

cgi_upload.cgi

<! DOCTYPE htm >

<htm [ang="en">

<head>

<nmeta content="text/htm; charset=utf-8"

htt p- equi v="content-type" />

<title>Upl oad Form Page</title>

</ head>

<body>

<h2>Upl oad Fi | e</ h2><pP>

<form enctype="mul tipart/formdata" nethod="POST"

action="cgi _upload. cgi">
<input type="file" size="70" name="uFile">
<p><i nput type="SUBM T" val ue="upl oad" >

</fornp

</ body>

</htm >

upload.html

Figure 10.5 shows upload.html loaded in a web browser.

Figure 10.5. Web browser view of upload.html code.

[View full size image]

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig05_alt.jpg

Upload File

[Cibooks\pythoniCHI Meh10.doc

Figure 10.6 shows the web page generated by cgi_upload.cgi when the upload action is performed by
form.html.

Figure 10.6. Output HTML page created by cgi_upload.cgi code.

[View full size image]

Yoz

Upload File

chl0.doc uploaded

=1 NExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig06_alt.jpg

e Py EXT

Creating an HTTP Server to Handle GET Requests

i mport BaseHTTPServer, cg
cl ass httpServHandl er \
(BaseHTTPSer ver . BaseHTTPRequest Handl er) :
def do_CET(self):
if self.path.find("'?") != -1:
self.path, self.query_string =\
self.path.split('?", 1)
el se:
sel f.query_string =
sel f.send_response(200)
sel f.send_header (' Content-type',
"text/htm ")
sel f. end _headers()
self.globals =\
dict(cgi.parse_gsl (self.query string))
sys.stdout = self.wfile
self.wfile.wite("<H2>Handl e Get </ H2><P>")
self.wfile.wite(\
"<Ll >Executing %s" % (sel f.path))
self.wiile.wite(\
"Wth d obal s%s</ B><HR>" %\
(sel f.globals))
execfil e(sel f.path, self.globals)

os.chdir('/nmyTest")

serv = BaseHTTPServer. HTTPServer (\
servAddr, httpServHandl er)

serv.serve_forever()

A very common task when programming web services is to create web servers to handle special
processing of GET requests from web browsers. The BaseHTTPServer module included with Python
provides a set of classes and functions that allow you to create custom web servers to handle these
requests. The first step is to define a handler class derived from the BaseHTTPSer ver.

BaseHTTPRequest Handl er class that overrides the do_GET() method.

Inside the do_GET method, you can use the pat h attribute to get the file path the GET request was
directed toward. The pat h attribute includes the entire string of the GET request, including the path and
parameters in the format pat h?par ameval ue&par ameval ue. . .. If there were parameters passed in the GET
request, they can be parsed out by using the split (' ?') function on the path string to split it into a path
and query string, as illustrated by the sample code http_get _serv. py.

When you have the query string of the POST request in a buffer, use cgi . parse_gsl (string) to parse the
query string into a dictionary, as shown in the example http_get _serv. py. The arguments will be added
to the dictionary and can be accessed by using standard Python syntax.

Note

In the sample code, we are using the web server to remotely execute a Python script. We
redirect the sys. stdout to the wfil e attribute of the handler class so that normal output

from the script executing will be displayed in the web browser.

Once you have defined the handler class and overridden the do_GET method, create an instance of the
web server using BaseHTTPSer ver. HTTPSer ver (addr ess, handl er). The address argument is a list including
the server address and port, respectively. The handl er argument is the custom handler class you defined
earlier.

After you have created an instance of the web server, start the web server by calling its serve_forever ()
function.

i mport o0s, sys
i mport BaseHTTPServer, cgi

servAddr = ("', 8080)

#Define the HTITP handl er that overrides do GET
class httpServHandl er(\
BaseHTTPSer ver . BaseHTTPRequest Handl er) :
def do_CET(self):
if self.path.find("'?") !'= -1:
sel f.path, self.query_string =\
self.path.split('?, 1)
el se:
self.query_string =
sel f.send_response(200)
sel f.send_header (' Content-type',
"text/htm ")
sel f. end_headers()

#Setup d obal Environnent
self.globals =\
dict(cgi.parse_gsl (self.query string))
#Redi rect output to browser
sys.stdout = self.wfile

#Execute the script renotely
self.wfile.wite("<h2>Handl e Get </ h2><P>")
self.wiile.wite(

"Executi ng %s" % (sel f.path))
self.wfile.wite(\
"Wth d obal s%s</ b><hr>" %\
(sel f.globals))
execfil e(self.path, self.globals)

#Set the root directory
os.chdir('/myTest")

#Creat e server object
serv = BaseHTTPServer. HTTPServer (\
servAddr, httpServHandl er)

#Start Server
serv.serve_forever()

http_get_serv.py

i f name and quot e:

print "%s says <I>%s</|>"% (nanme, quote)
el se:

print "There were errors in the paraneters.”

http_text.py

Figure 10.7 shows the web page generated by http_get_serv.py when it receives a GET request.

Figure 10.7. Output HTML page created by http _get_serv.py code.

[View full size image]

) Moziila Firefox

File Edit View Go Heokmarks Toole Help
Ch- i - s B [et 2 Ry sttt py7 namo-Braddquate-Hella =] 0 Go (L

Handle Get

Exeruting feayTestihitp teot, oy
= Wk Glabals['quete’; "Hella', "name'; "Hrad']

Brad says Helio

| Dome ‘,ﬁ'

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig07_alt.jpg

e Py EXT

Creating an HTTP Server to Handle POST Requests

i mport BaseHTTPServer, cg
class httpServHandl er (\
BaseHTTPSer ver . BaseHTTPRequest Handl er) :
def do_POST(self):
self.query_string = self.rfile.read
(int(self.headers[' Content-Length']))
self.args = dict(cgi.parse_\
gsl (sel f.query_string))
sel f.send_response(200)
sel f.send_header (' Content-type', \
"text/htm ")
sel f. end_headers()
sys.stdout = self.wfile
self.wiile.wite(\
"<h2>Handl i ng Post </ h2><P>")
self.wiile.wite(\
"Location: %s"%self.path))
self.wiile.wite(\
"Argunent s: %s</ b><hr >" %
(self.args))
execfil e(self.path, self.args)

serv = BaseHTTPServer. HTTPServer (\
servAddr, httpServHandl er)
serv. serve_forever()

A very common task when programming web services is to create web servers to handle special
processing of POST requests from web browsers. The BaseHTTPServer module included with Python
provides a set of classes and functions that allow you to create custom web servers to handle these
requests.

The first step is to define a handler class derived from the BaseHTTPSer ver . BaseHTTPRequest Handl er class
that overrides the do_POST() method.

The first order of business inside the do_POST method is to get the arguments passed with the POST
request. First, get the length of the content by accessing the value of the Cont ent - Lengt h key in the
header s attribute of the handler object. When you know the size of the contents, read the query string
from the rfil e attribute into a buffer.

After you have the query string of the POST request in a buffer, use cgi . parse_qgsl (string) to parse the
query string into a dictionary, as shown in the example http_post _serv. py. The arguments will be added
to the dictionary and can be accessed by using standard Python syntax.

Note

In the sample code, we are using the web server to remotely execute a Python script. We
redirect the sys. stdout to the wfil e attribute of the handler class so that normal output

from the script executing will be displayed in the web browser.

After you have defined the handler class and overridden the do_PCST method, create an instance of the
web server using BaseHTTPSer ver . HTTPSer ver (addr ess, handl er). The address argument is a list including
the server address and port, respectively. The handl er argument is the custom handler class you defined
earlier.

Once you have created an instance of the web server, start the web server by calling its serve_f orever ()
function.

i mport os, sys
i nport BaseHTTPServer, cgi

servAddr = ('', 80)

#Define the HTTP handl er that overrides do_POST
class httpServHandl er(\
BaseHTTPSer ver . BaseHTTPRequest Handl er) :
def do_POST(self):
#Get argunents from query string
sel f.query string = self.rfile.read(\
i nt (sel f.headers[' Content-Length']))
self.args = dict(cgi.parse_ \
gsl (sel f.query_string))

sel f.send_response(200)

sel f. send_header (' Content-type', \
"text/htnml")

sel f.end_headers()

#Redi rect output to browser
sys.stdout = self.wfile

#Handl e t he post
self.wfile.wite("<h2>Handling \
Post </ h2><P>")
self.wfile.wite("Location: \
%s</ b>" 9% sel f. path))
self.wfile.wite("Argunents: \
%s</ b><hr>"%{sel f.args))

#Execute the script renotely
execfil e(self.path, self.args)

#Set the root directory
os.chdir('/myTest")

#Create server object
serv = BaseHTTPServer. HTTPServer (\
servAddr, httpServHandl er)

#Start Server
serv.serve_forever()

http_post_serv.py

<! DOCTYPE htmi >

<htm | ang="en">

<head>

<meta content="text/htm; charset=utf-8"

htt p- equi v="content-type"/>

<title>Form Page</title>

</ head>

<body>

<f or m met hod="POST" acti on=

"http://testserver.net/nyTest/http_text.py">
Nanme <input type="TEXT" nanme="nane">
<p>
Quot e <input type="TEXT" NAME="quote" size="80">
<p>
<i nput type="SUBM T" val ue="send" >

</fornp

</ body>

</htm >

post_form.html

i f name and quot e:

print "% says <i>%s</i>"% (name, quote)
el se:

print "There were errors in the paraneters."

http_text.py

Figure 10.8 shows post_form.html displayed in a web browser.

Figure 10.8. Web browser view of post_form.html code.

[View full size image]

) Form Page - Mozilla Firefox
File Edit View Go Bookmarks Tooks Help

c::;; 5 :;;). = @ @ @ | [hitp=/137 65,77 28/post_form.himl =] @ 6o [ICL

Warne [Brad

Craote |Gnnd-Du1_,-1

_send |

| Done i

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig08_alt.jpg

Figure 10.9 shows the web page generated by http_post_serv.py when it receives a POST request.

Figure 10.9. Output HTML page created by http_ post_serv.py code.

[View full size image]

) Mozilla Firefos
File Edit Wiew Go Bookmarks Tools Help

3 - @ @ @J [[) hip=i137.65.76 BimyTesthp_textpy =) @ Go [[GL

Handling Post

+ Location /myTesthitp_text.py
+ Arguments: {"guote”; "Good-Day!’, 'name"; "Brad}

Brad zay: Uowd-Oiayl

| Bone

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig09_alt.jpg

Creating an HTTP Server to Process CGlI Scripts

NEXT B

i mport os
i mport BaseHTTPServer, Cd HTTPServer
serverAddr = ("", 80)
os.chdir("/myTest")
serv = BaseHTTPServer. HTTPServer (\
server Addr, Cd HTTPServer. CG HTTPRequest Handl er)
serv.serve_forever()

Python includes the CGIHTTPServer module that provides a quick and easy way to create your own CGlI
script server, eliminating the need to set up and configure a web server. This can be extremely time-

saving.

To set up a simple CGI script server, first set the root directory for the server to act in, and then create
an instance of the CGI script server using BaseHTTPSer ver . HTTPSer ver (addr ess, handl er). The addr ess

argument is a list including the server address and port, respectively. A simple server handler should
specify the default handler of CA HTTPSer ver. CA HTTPRequest Handl er . The CA HTTPRequest Handl er is

similar to a normal HTTPRequest Handl er ; however, the do_GET and do_HEAD functions have been modified

to handle CGI scripts, and the do_POST method will only allow posting to CGI scripts.

Note

You can override the do_GET, do_HEAD, and do_POST methods to create a customized CGI
script parser.

After you have created an instance of the CGI script server, start the server by calling its serve_f orever

() function.

Note

The default location for CGI scripts is / cgi - bi n or / ht bi n, relative to the root directory of
the script server. The CGI scripts will need to reside in one of these two locations, and the

Linux permissions must be set so that the scripts are executable (typically 0755).

i mport os
i nport BaseHTTPServer, CG HTTPServer

serverAddr = ("", 80)

#Set root directory
os.chdir("/myTest")

#Creat e server object
serv = BaseHTTPServer. HTTPServer (\
server Addr, Cd HTTPServer.CG HITPRequest Handl er)

#Start server
serv.serve_forever()

cgi_serv.py
Figure 10.10 shows the web page generated by cgi_form.cgi as it is executed by the cgi_serv.py script.

Figure 10.10. Output HTML page created by cgi_form.cgi code executed by
cgi_serv.py.

[View full size image]

EJCG Form Resposse - Bogilla Flielox

e R Vi S Revimacer 1ok " Yele = :
O = i - S U0 SN [3765768 cqd bindegl_form.cqifname=BradSquete-ChkiMRed =] 3 Go [CL

Current Quote

Erad CGlr Rack

e prcy ExT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/images/10fig10_alt.jpg

e Py EXT

Sending an HTTP GET Request from a Python Script

import httplib
htt pServ =\

httplib. HTTPConnecti on("testserver.net", 80)
htt pServ. connect ()

httpServ.request (' GET', "/test.htm™")

response = httpServ. getresponse()

if response.status == httplib. O
print Text (response.read())

htt pServ.request (' GET',

"/ cgi _form cgi ?nane=Br ad" e=Testi ng. ")
response = httpServ. getresponse()
if response.status == httplib. O

print Text (response.read())

Another important task when programming web services is to send GET requests directly to a web
server from a Python script rather to than a web browser. This effectively allows you to write client-side
applications without having to deal with the web browser.

The httplib module included with Python provides the classes and functions to connect to a web server,
send a GET request, and handle the response.

First, create a server connection object by executing the httpli b. HTTPConnect i on(addr ess, port)
function, which returns an HTTPServer object. Then, connect to the server by calling the connect ()
function of the HTTPServer object.

To send the GET request, call request (nethod [, url [, body [, headers). Specify GET as the net hod of
the request, and then specify the location of the file as the url .

Note

In the sample code, we send a CGI script with parameters. Because the web server
executed the CGI script, the response from the server will be the output of the CGI script,
not the script itself.

After you have sent the request, get the servers' response using the get response() function of the
HTTPServer object. The get response() function returns a response object that acts like a file object,
allowing you to read the response using the read() request.

Note

You can check the status of the response by accessing the st at us attribute of the response

object.

import httplib

def printText(txt):
lines = txt.split('\n")
for line in lines:
print line.strip()

#Connect to server
httpServ =\

httpl i b. HTTPConnecti on("137.65. 77. 28", 80)
htt pServ. connect ()

#Send Get htm request
htt pServ.request (' GET', "/test.htm")

#Wait for response
response = httpServ. getresponse()

if response.status == httplib. K
print "Qutput fromHTM. request"
print B e e

print Text (response.read())

#Send Cet cgi request
htt pServ.request (' GET', \
"/ cgi _form cgi ?nane=Br ad" e=Testing. ")

#Wait for response

response = httpServ. getresponse()

if response.status == httplib. OK
print "Qutput fromC3 request”
print "==s=======================
print Text (response.read())

htt pServ. cl ose()

http_get.py

Qut put from HTM. request

<! DOCTYPE htnl >

<htm [ang="en" xni:lang="en">

<head>

<neta content="text/htm ; charset=utf-8"
htt p- equi v="content -type" />

<title>HTM. Page</title>

</ head>

<body>

<hl1l>Test Link to Cd Script</hl>

cgi _text.cgi</body>

</htm >

Qut put from CA request

<title>CE@ Form Response</title>

<h2>Current Quote</h2><p>
Br ad</ b>: Testi ng.

Output from http_get.py code.

NEXT B

e Py EXT

Sending an HTTP POST Request from a Python Script

import httplib

htt pServ = httplib. HTTPConnecti on("testserver.net", 80)
htt pServ. connect ()

guote = "Use a Python script to post to the CA Script."
htt pServ.request (' POST', '/cgi _formcgi',

' nanme=Br ad" e=%" \

% quot e)
response = httpServ. getresponse()
if response.status == httplib. OK

print Text (response.read())
htt pServ. cl ose()

You also might need to send POST requests directly to a web server from a Python script rather than a
web browser. This effectively enables you to write client-side applications without having to deal with
the web browser.

The httplib module included with Python provides the classes and functions to connect to a web server,
send a POST request, and handle the response without the use of a web browser.

First, create a server connection object by executing the htt pli b. HTTPConnecti on(addr ess, port)
function, which returns an HTTPServer object. Then connect to the server by calling the connect ()
function of the HTTPServer object.

To send the POST request, call request (nmethod [, url [, body [, headers). Specify POST as the net hod
of the request. Specify the location of the script to handle the post as the url . Specify the query string
that needs to be passed with the POST as the body.

Note

In the sample code, we send a CGI script with parameters. Because the web server
executed the CGI script, the response from the server will be the output of the CGI script,
not the script itself.

After you have sent the request, get the server's response using the getresponse() function of the
HTTPServer object. The get response() function returns a response object that acts like a file object,
allowing you to read the response using the read() request.

Note

You can check the status of the response by accessing the status attribute of the response
object.

import httplib

def printText(txt):
lines = txt.split('\n")
for line in lines:
print line.strip()

#Connect to server

htt pServ = httplib. HTTPConnecti on("testserver.net",

htt pServ. connect ()

#Send Get cgi request

guote =\

"Use a Python script to post to the CA Script.”
htt pServ.request (' POST', \

"/cgi _formcgi', 'nanme=Brad"e=%"' % quote)

#Wait for response
response = httpServ. getresponse()

if response.status == httplib. O
print "CQutput fromC3 request”
pr int "=s=========mmom-ooooo—mm==

print Text (response.read())

htt pServ. cl ose()

http_post.py

Qut put from CA request

<title>CA@ Form Response</title>

<h2>Current Quote</h2><pP>
Br ad</ b>:
Use a Python script to post to the CAd Script.

Output from http_post.py code.

80)

MNEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Creating an XML-RPC Server

i mport Si npl eXMLRPCSer ver

serv =
Si mpl eXMLRPCSer ver . Si npl eXMLRPCSer ver (ser vAddr)
serv.register_function(areaSquare)
serv.register_introspection_functions()
serv.serve_forever()

The Si npl eXMLRPCSer ver module provided with Python allows you to implement web services that support

the XML-RPC protocol for remote procedure calls or RPCs. The XML-RPC protocol uses XML data
encoding to transmit remote procedure calls across the HTTP protocol. This section discusses how to use
the Si npl eXMLRPCSer ver module to create a simple XML-RPC server.

The first step is to create an XML-RPC server object by calling the Si npl eXM_.RPCSer ver (addr [,
request Handl er [, |ogRequests]]) function of the Si npl eXM_LRPCSer ver module. The Si npl eXM_LRPCSer ver

function accepts a list containing the address and port to use for the server and returns an XML-RPC
server object. The requst Handl er argument specifies a request handler object if needed, and the

| ogRequest s is a Boolean flag that specifies whether or not to log incoming requests.

After you have created the XML-RPC server object, register locally defined functions that will be provided
remotely by calling the regi ster_functi on(function) function of the XML-RPC server object.

After you have registered the local functions that will be provided remotely, register the introspection
functions using the regi ster _i ntrospection_functions(function) function of the XML-RPC server object.

The XML-RPC server supports the XML introspection API, which provides the system | i st Met hods(),

syst em net hodHel p(), and syst em Met hodSi gnat ur e() introspection functions. The

regi ster_introspecti on_functions() function registers those introspection functions so that they can be
accessed by a remote client.

After you have registered the introspection functions, start the server using the serve_forever () function

of the XML-RPC server object. The server will begin accepting remote procedure call requests from
remote clients.

i mport Si npl eXMLRPCSer ver
servAddr = ("l ocal host", 8080)

def areaSquare(length):
return | ength*l ength

def areaRectangl e(l ength, w dth):
return | ength*wi dth

def areaCircle(radius):
return 3. 14*(radi us*radi us)

serv =
Si npl eXMLRPCSer ver . Si npl eXMLRPCSer ver (ser vAddr)

#Regi ster RPC functions

serv. regi ster_function(areaSquare)
serv.register_function(areaRectangl e)
serv.register_function(areaCircle)

#Regi ster Introspective functions
serv.register_introspection_functions()

#Handl e Requests
serv.serve_forever()

xml-rpc_serv.py

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Creating an XML-RPC Client

import xmrpclib

servAddr = "http://1 ocal host: 8080"
s = xm rpclib. ServerProxy(servAddr)
net hods = s.system i st Met hods()

s. areaSquar e(5)

s. areaRect angl e(4, 5)

s.areaCircl e(5)

The xm rpcl i b module provided with Python allows you to create clients that can access web services

that support the XML-RPC protocol. The XML-RPC protocol uses XML data encoding to transmit remote
procedure calls across the HTTP protocol. This section discusses how to use the xm rpcl i b module to

create a client to access an XML-RPC server.

The first step is to authenticate to the XML-RPC proxy server by calling the Server Proxy(uri [,
transport [, encoding [, verbose [, allow none]]]]) function. The Server Proxy function connects to
the remote location specified by uri and returns an instance of the Server Proxy object.

After you have connected to the XML-RPC server, you can invoke methods on the remote server by
calling them as a function of the Server Proj ect object. For example, you can call the introspection

system | i st Met hods() using the "." syntax shown in the sample code xml-rpc_client.py. The system
I'i st Met hods() function returns a list of functions that are available on the XML-RPC server. Other remote
functions that are registered on the XML-RPC server are invoked the same way.

import xmrpclib
servAddr = "http://I ocal host: 8080"

#Attach to XM.- RPC server
s = xm rpclib. ServerProxy(servAddr)

#Li st Met hods
pr int "Mt hods\ n==============="
net hods = s.system i st Met hods()
for min nethods:

print m

#Cal | Met hods
pri nt "\ nArea\ Nn================"

print "5 in. Square =", s.areaSquare(b)
print "4x5 in. Rectangle =", s.areaRectangle(4,5)
print "10 in. Crcle =", s.areaCrcle(5)

xml-rpc_client.py

areaCircle

areaRect angl e

ar eaSquar e

system | i st Met hods
system net hodHel p

syst em net hodSi gnat ure

5 in. Square = 25
4x5 in. Rectangle = 20
10 in. Crcle = 78.5

Output of xml-rpc_client.py

e Py EXT

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

e Py EXT

Using SOAPpy to Access SOAP Web Services Through a WSDL File

from SOAPpy i nport WSDL

wServer = WSDL. Proxy(\
"http://api.googl e.conf Googl eSear ch. wsdl ')
print wServer. net hods. keys()

net hodDat a = wSer ver. net hods[' doGoogl eSearch']
for p in nethodData.inparans:

print " % %" % (p.nane.ljust(12), p.type[l])
hits = wServer. doGoogl eSear ch(key, searchStr, 0, \

10, False, "", False, "", "utf-8", "utf-8")

print len(hits.resultEl enents), "Hits . . ."
for hit in hits.resultEl enments:

print "\nURL:", hit.URL

print "Title:", hit.title

print "Desc:", hit.snippet

The dynamics of the Python language make it a perfect fit for SOAP web services. The SOAPpy module,
available at http://pywebsvcs.sourceforge.net/, includes functions that enable you to create Python

scripts that allow you to access SOAP web services.

This phrase is designed to familiarize you with using the SOAPpy module to access SOAP web services
through a Web Service Definition Language (WSDL) file. A WSDL file is an XML file that describes the
URL, namespace, type of web service, functions, arguments, argument data types, and function return
values of the SOAP web service. In this case, the sample code accesses the Google search SOAP web
service through the GoogleSearch.wsdl file.

The first step is to create an instance of the WSDL proxy server using the WsDL. Proxy(wsdl fil e) function
of the SOAPpy module. The WSDL. Proxy function accepts a WSDL filename as its only argument and
returns a WSDL proxy server object.

After you have created the WSDL proxy server object, you can view the available methods using the
met hods attribute of the WSDL proxy server object, as shown in the sample code wServer . net hods. keys

() . The net hods attribute is a dictionary containing the available methods of the web service.

To view the arguments associated with a specific method, look up the method in the dictionary to get a
method data object, as shown in the sample code Server. net hods[' doGoogl eSearch'] . Once you have the

method data object, the arguments can be accessed using the i npar ans attribute, which is a list of

parameter objects. The name and type of the parameter are available using the name and type
attributes of the parameter object, as shown in the sample code p. nane. | just (12), p.type[1]).

The methods on the SOAP server can be called as methods of the WSDL proxy server object using the

. " syntax as shown in the example soap_wsdl.py.

Note

http://pywebsvcs.sourceforge.net/

This phrase focuses on using Google's SOAP web service; however, there are numerous
services out there that can be accessed in much the same way. A good place to start is to
look at the services provided at http://www.xmethods.net/.

Note

In the sample code, key is set to | NSERT_YOUR _KEY_HERE. You will need to go to http://api.
google.com and create an account to get your own key. Once you have your own key,
insert it into the sample code.

from SOAPpy i nport WSDL

searchStr = ' python'
key = ' NSERT_YOUR_KEY_HERE'

#Create WSDL server object
wServer = WSDL. Proxy(\
"http://api.googl e.conl Googl eSear ch. wsdl ')

#Di spl ay net hods
print "\ nAvail abl e Met hods\ n======================"
print wServer. net hods. keys()

#Di spl ay net hod argunents
print "\ ndoGoogl eSearch Args\n===================="
net hodDat a = wSer ver. net hods[' doGoogl eSear ch']
for p in nethodData.inparans:
print " 9% %" % (p.nane.ljust(12), p.type[l])

#Cal | net hod
hits = wServer. doGoogl eSear ch(key, searchStr, 0, \
10, False, "", False, "", "utf-8", "utf-8")

#Print results
pri nt "\ nResul ts\ N=====================—==—========"
print len(hits.resultEl enents), "Hts . . ."
for hit in hits.resultEl enents:
print "\nURL:", hit.URL
print "Title:", hit.title
print "Desc:", hit.snippet

soap_wsdl.py

Avai | abl e Met hods

[u' doGoogl eSearch', u' doGet CachedPage',
u' doSpel | i ngSuggesti on']

doCGoogl eSearch Args

key string

http://www.xmethods.net/
http://api.google.com/
http://api.google.com/

q string

start i nt
maxResul ts i nt
filter bool ean
restrict string
saf eSear ch bool ean
lr string
ie string
oe string

Resul ts

10 Hits

URL: http://ww. python. org/

Title: Python Language Wbsite

Desc: Honme page for Python, an interpreted,
interactive, object-oriented, extensible

progranmm ng | anguage. It provides an extraordi nary
conbi nation of clarity and ...

URL: http://ww. python. org/ downl oad/

Title: Downl oad Pyt hon Software

Desc: The original inplenentation of Python,
witten in C

URL: http://ww. python. or g/ doc/

Title: Pyt hon Docunentation | ndex

Desc: O ficial tutorial and references, including
l'i brary/ modul e usage, Macintosh
 |ibraries,

| anguage synt ax, extendi ng/ enbeddi ng, and the
Pyt hon</ b>/ C API .

Output of soap_wsdl.py

NEXT B

file:///Z|/Sams/(Sams)%20Phrasebook%20Python%20(2006)/0768666465/29051536.html

k=2
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

e Py EXT

k=2
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [£]

"" (double quotes)

""" (triple quotes)

" (single quotes)

... prompt
<INPUT> tag (HTML)

>>> prompt

e prcy ExT

@ prev |
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] (9] [K] [L] [M] [N] [O] [P] [Q] [RT [S] [T] [U] [V] [W] [X] [Z]

acc_list.py code example

accessing
child nodes
element attributes

lists
SOAP web services

words in files
acquire() method

activating sockets

active databases

add() method

add dbm.py code example

add dict.py code example

add list.py code example

add zip.py code example

adding
child nodes to DOM trees
database entries 2nd
files to ZIP files

HTML to web pages

list items
quotes to HTML document attribute values

values to dictionaries

anonymous methods

anydbm module

append() method
appendChild() method
architecture() method
ASCIlI encoding
attributes

childNodes

element

HTML documents

objects
authenticating servers

NEXT B

k=2
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N] [O] [P] [Q] [RT [S] [T] [U] [V] W] [X] [Z]

BaseHTTPRequestHandler class

BaseHTTPServer module

BaseHTTPServer module,
GET requests
POST requests
beginnings of strings
finding
trimming
bind() method
break statements

build opener() method

built-in methods

built-in types
built-in types,

callable
classes

files
mapping
modules 2nd
none
numbers
sequences

set
type

e Py EXT

@ prev |
Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] (W] [X] [Z]

callable type
calling methods

capitalize() method

cgi module
CGl scripts

files, uploading

HTML web pages, creating

parameters, processing

processing

self-posting
servers, configuring

cqgi_form.cqgi code example

cgi selfpost.cqi code example

cgi_serv.py code example

cgi_text.cgi code example

cgi_upload.cqgi code example
CGIHTTPServer module
CharacterData() method

CharacterDataHandlers() method

child nodes

accessing
adding

deleting
childNodes attribute

class namespace

class statement

classes

classes type

classes,
BaseHTTPRequestHan dler
inheritance

tag handler

text parser
Thread

clearcache() method

client-side sockets, implementing

client_socket.py code example
clock() method

close() method

closing
files
POP3 connections

SMTP connections

code

indenting
strings
commands (SQL)

CREATE DATABASE

CREATE Table

executing

INSERT INTO

SELECT

SHOW TABLES
communication (Internet)

data
receiving
sending

emalil
retrieving

sending
FTP files, retrieving

streaming data
receiving

sending
comp str.py code example

comparing strings

conditional looping

configuring CGI script servers

connections
MySQL database servers
POP3
SMTP

constructing dictionaries

converting tuples to lists

cookielib module

cookies
CREATE DATABASE SOL command

CREATE Table SOL command
create thread.py code example

createDocument() method

createElement() method

ctime() method

cwd() method

| 4 PREY | NEXT B

k=2
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

d.has key() method
data types

dictionaries
adding values

constructing
defined

retrieving values
slicing
swapping with keys

lists

accessing

adding items
defining

deleting items
reversing order
slicing

sorting

tuples conversions

tuples
defined

lists
values
dictionaries
functions
objects
shelve files
databases
active
entries
adding
retrieving
updating
MySQL
adding entries
connecting

creating
pending requests, flushing

retrieving entries

objects

pickling to files
unpickling to files

decode() method

def dict.py code example

def list.py code examples

defining

lists

tag handler classes

text parser class

del tree.py code example

deleting

child nodes

files, recursively

list items

subdirectories, recursively

dictionaries

constructing
defined
slicing
values
adding
retrieving
swapping with keys

dir() method

dir tree.py code example

directory trees, walking

do GET() method

do POST() method

Document objects

documents

HTML

attribute value quotes, adding

cookies

images
links

opening
text
XML

accessing child nodes

adding child nodes

deleting child nodes

element attributes, accessing

loading
searching

text, extracting
well formed

DOM objects

DOM trees, child nodes
accessing
adding

deleting
double (") quotes

dump() method

e prcy ExT

@ prev |
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

element attributes (XML documents)

elif statements

email

retrieving

sending
empty() method

encode() method
encoding (ASCII
end str.py code example

endings of strings
finding
trimming

endswith() method
files, finding
strings

entries (databases)
adding 2nd
retrieving 2nd

updating
enumerate() method

error handling

eval() method

eval str.py code example

exec() method

execute() method

databases, creating

SOL commands

executing

code inside strings

SOL commands

exit thread.py code example

expat parser objects

extend() method

extensions (files)

extract() method

extract py.py code example

extracting
files

text

MNEXT B

e Py EXT

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

feed() method
fetchall() method
FieldStorage() method
files

adding to ZIP files

closing
deleting, recursively

finding by extensions

FTP, retrieving

individually processing words

modes
built-in functions

tarfile module
number of lines
opening
pickling
reading

entire contents

single lines

renaming
retrieving from ZIP files

shelve
changing objects

retrieving objects
storing objects
values
TAR
creating
files, extracting
opening
type
unpickling
uploading to web servers
writing
WSDL

ZIP

adding

retrieving
find() method

find file.py code example
finding
files by extensions
strings

substrings
XML documents

flow control statements

flushing pending requests

for statements

format str.py code example

formatting strings 2nd

FTP servers

ftp_client.py code example
ftplib module

ftplib.FTP() method

full() method

functions [See methods.]

NEXT B

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

GET requests

handling
sending to web servers

get dbm.py code example

get zip.py code example

getDOMImplemenation() method

getElementsByTagName() method

getline() method

getresponse() method

geturl() method

global namespaces

global statement

NEXT B

NEXT B

e Py EXT

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

handle data() method
handle starttag() method

handling

€rrors

GET requests

POST requests
hasAttribute() method
HTML

<INPUT> tag
adding to web pages

documents

attribute values

cookies

images
links

opening
text
html| cookie.py code example

html| images.py code example

htm! links.py code example

htm!| open.py code example

htm!| quotes.py code example

htm! text.py code example
HTMLParser module (HTML documents)

attribute value quotes, adding

images
inks

text
HTTP servers
CGl scripts, processing
GET requests
POST requests 2nd

http get.py code example

http get serv.py code example

http post.py code example

http post serv.py code example

HTTPConnection() method
httplib module

GET requests

POST requests
HTTPServer() method

MEXT B

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

identity objects

if statements

images, retrieving

importing modules

indenting code

index() method

inheritance (classes)

INSERT INTO SOL command

insert() method

integration
Internet communication

data
receiving
sending

email
retrieving

sending
FTP files, retrieving

streaming data
receiving
sending
interpolating variables

interpreter
items (lists

items() method

NEXT B

NEXT B

k=2
Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [Z]

join() method

join_str.py code example

joining strings

& PREY | NEXT B

k=2
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [RT [S] [T] [U] [V] [W] [X] [Z]

keys() method

keyterms, reverse

e prcy | NEXT B

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [RT [S] [T] [U] [V] [W] [X] [Z]

Lanqguage (WSDL)
len() method

line cache.py code example

lines (files)
links (HTML documents)

list() method
converting tuples to lists

email messages

listen() method
listMethods() method
lists

accessing
defining
items
adding
deleting
order, reversing
slicing
sorting
tuples conversions
ljust() method
load() method
loading XML documents

local namespaces
local strings
localtime() method
Lock() method

looping
lower() method

Istrip() method
LWPCookieJar() method

NEXT B

MNEXT B

e Py EXT

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

make parser() method 2nd

mapping type
methods

acquire()

add
anonymous
append()
appendChild()
architecture()
bind()
build_opener()
built-in

calling

capitalize()
CharacterData()

CharacterDataHandlers()

clearcache
clock

:

close

createDocument()

createElement()

creating
ctime()

.has_ke
ir

o GET
o_POST

mpt

HHHEE

encode

endswith()
files, finding
strings

enumerate()

eval

iE

Xec

execute() databases, creating

SOL commands

xtend
xtract
eed

i

etchall
FieldStorage()
ind

tplib.FTP

ull

E[E

getDOMImplementation()

getElementsByTagName()

getline()
getresponse()
geturl()
handle data()
handle_starttag()

hasAttribute()
HTTPConnection()

HTTPServer()

>
o
D
x

nsert

=
®
3
7

join

=~

eys

g

en
list()
converting tuples to

email messages

isten
istMethods
just

oad
ocaltime

ock

[[[E[[

lower

Istrip()
LWPCookieJar()

make parser() 2nd
open()

database entries

files
shelve module
TAR files

parameters, passing

parse()

expat parser objects

XML documents

parse_gsl()
ParserCreate() 2nd
Pickler()
pop()
poplib.POP3()
Proxy()
python version()
gsize()
quit()

POP3 connections

SMTP connections
range()
read()
files
HTML documents
ZIP files
readline()

readlines()

files
HTML documents
reqgister function()

reqgister introspection functions()

registering
remove()
removeChild()
rename()
replace()
Request() 2nd
retr()
retrbinary()
reverse()
rfile.readline()
rfind()
rindex()

rjust()

rstrip()
sendmail()
serv_forever()

ServerProxy()
setContentHandler() 2nd

SimpleXMLRPCServer()
lee
smtplib.SMTP()

ocket

92

ort

[7)]
c 8 |8
S
-

files, finding
strings
words in files

splitlines()

start new thread

startElement()
startswith()

stri

substitutive()

wapcase

:

0

Template

imer
oxml

name
UnPickler

THUHE

rlioin
urllib.urlopen()
urlparse

urlunparse

1

directory trees

files, deleting
write()
writelines()
ZipFile()

minidom objects

modules
modules,

anydbm
BaseHTTPServer

GET requests
POST requests
cqi
CGIHTTPServer
cookielib
ftplib
HTMLParser (HTML documents)
images
links

quotes, adding

text
httplib
GET requests
POST requests
importing
MySQLdb
namespace
0s 2nd
platform
poplib
shelve
SimpleXMLRPCServer

smtplib

SOAPpy
socket

client-side sockets

server-side sockets

SocketServer
receiving streaming data

sending streaming data

Sys
tarfile

time
type 2nd
urllib
urlparse
xml.dom

xml.parsers.expat

xml.sax

well formed XML documents

XML tags, parsing

xmirpdib
multi-line statements

multiple threads
MySQL databases

connecting
creating
entries
adding
retrieving
pending requests, flushing

MySOL website
MySQL add.py code example

MySOL conn.py code example

MySOL create.py code example

MySOL get.py code example
MySOLdb module

MNEXT B

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

namespaces

namespaces,
class
global
local

module

naming files

negative indices (strings)

lists, accessing

slices, grabbing

nodes
child

accessing

adding

deleting
creating

none type
number of lines (files)

numbers type

NEXT B

MNEXT B

e Py EXT

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

objects

objects,
attributes
Document
DOM

expat parser
identity
minidom
parser
pickling to files
Request
shelve files
changing
retrieving
storing
types
unpickling to files

values
open() method

database entries

files
shelve module
TAR files
open_file.py code example

opening
files
HTML documents
TAR files

0s module 2nd

e prcy ExT

@ prev |
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

parameters

CGl scripts
methods, passing

parse() method

expat parser objects

XML documents

parse gsl() method

parser objects, creating

ParserCreate() method 2nd

parsing
query strings
URLs

XML tags
pending requests, flushing

pickle data.py code example
Pickler() method

pickling objects to files

platform module

0 method
POP3 servers

connections, closing

email, retrieving

pop3 mail.py code example

poplib module
poplib.POP3() method
portability

POST requests

handling
sending to web servers

post form.html code example

prompts
protocol families (sockets)

Proxy() method

Python
python version() method

NEXT B

k=2
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

gsize() method

query strings
queue thread.py code example

queues (priority)

quit() method

POP3 connections

SMTP connections

quotes 2nd

e Py EXT

@ prev |
Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] (W] [X] [Z]

range() method
read() method

files
HTML documents
ZIP files

read file.py code

read words.py code example

reading files

entire contents

individually processing words

single lines
readline() method

readlines() method

readlines() method,

files

HTML documents
receiving streaming data

recursively deleting files/subdirectories

register function() method

register introspection functions() method

registering methods

remove() method

removeChild() method

ren file.py code example

rename() method

renaming files

replace() method

replace str.py code example

replacing substrings

Request objects
Request() method 2nd
requests

GET

handling
sending to web servers

POST

handling
sending to web servers

ret dict.py code example

retr() method

retrbinary() method

retrieving
cookies
database entries 2nd

email
files 2nd
HTML document links

Images

objects
text

values

reverse keyterm

reverse() method

reversing list order

rfile.readline() method
rfind() method
rindex() method

riust() method

rstrip() method

NEXT B

@ prev |
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

scoping
scripts (CGl)

files, uploading

HTML web pages, creating

HTTP servers, processing

parameters, processing

self-posting
servers, configuring

search str.py code example

searching [See finding.]
SELECT SOL command
self-posting CGl scripts

send _smtp.py code example

sending
email

GET requests to web servers

POST requests to web servers

streaming data

sendmail() method

sequences

sequential looping

serv forever() method

server-side sockets

server socket.py code example

ServerProxy() method

servers

authenticating

CGl script
FTP

HTTP

CGil scripts, processing

handling GET requests
POST requests
sending GET requests to web servers

sending POST requests to web servers

POP3
SMTP

starting
XML-RPC

set type 2nd
setContentHandler() method 2nd

shelve files

objects

changing
retrieving

storing
values

shelve module

shelve edit.py code example

shelve get.py code example

shelve_store.py code example
SHOW TABLES SQL command
SimpleXMLRPCServer module
SimpleXMLRPCServer() method
single (') quotes

sleep() method

slice list.py code example

slicing

dictionaries

lists
SMTP servers
smtplib module
smtplib.SMTP() method
SOAP web services

soap wsdl.py code example
SOAPpy module
socket module

client-side sockets

server-side sockets

socket() method

sockets

activating
binding to addresses/ports

client-side

creating
protocol families

server-side

types
SocketServer module (streaming data)
receiving

sending
sort() method

sort_list.py code example
sorting lists
split() method

files, finding

strings
words in files

split str.py code example

splitlines() method

splitting strings

SQL commands
CREATE DATABASE
CREATE Table
executing
INSERT INTO
SELECT
SHOW TABLES
start_new_thread() method

startElement() method

starting

servers

threads
startswith() method

statements
break
class
elif
flow control
for
global
if
multi-line
while

storing objects

stream client.py code example

stream server.py code example

streaming data

receiving

sending
strings
code inside, executing

comparing
decode() method

endings
finding
trimming
finding
formatting
joining
local
splitting
substrings
templates
text
formatting
replacing

trimming 2nd
unicode

variables
strip() method

sub dict.py code example

subdirectories

substitutive() method

substrings
finding
replacing
swap_dict.py code example

swapcase() method

sync thread.py code example

synchronizing threads

syntax
code indentation

quotes
statements

flow control
multi-line
strings, formatting

sys module
system tools (modules)

system tools (modules),

0s
platform

3

[
(9]

¢ Priev e »

@ prev |
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

tag handler classes

tags
HTML, <INPUT>
XML

TAR files

creating
files, extracting

opening
tar file.py code example

tarfile module

Template() method
templates
text
HTML documents
strings
formatting

replacing
XML documents

text parser class

Thread class
threads

creating
multiple
starting

synchronizing
timer-interrupted

time module

time() method

Timer() method

timer-interrupted threads

timer thread.py code example

tools (system modules)

tools (system modules),
0s

platform

sys
time

toxml() method

trees (DOM), child nodes

accessing
adding
deleting
trim_str.py code example

trimming strings

triple (""",) quotes

tuple.py code example

tuples
tuples,

converting to lists

defined
type type
types
built-in
callable
classes
files
mapping
modules 2nd
none
numbers

sequences 2nd

set
data [See data types, values, objects.]

objects
sockets

type

e Py EXT

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

uname() method

unicode strings

unicode str.py code example

unpickle data.py code example

UnPickler() method
unpickling objects to files

update dbm.py code example

updating database entries

uploading files to web servers

upper() method

URL parse.py code example

urljoin() method

urllib module

urllib.urlopen() method

urlparse module

urlparse() method

URLSs, parsing

urlunparse() method

NEXT B

MEXT B

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

values
dictionaries
adding

retrieving
swapping with keys

functions

objects

shelve files
values() method

var str.py code example

variables (strings)

NEXT B

NEXT B

k=2
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

walk() method

directory trees

files, deleting
walking directory trees

web services
CGil scripts
files, uploading

parameters, processing

self-posting, creating

GET requests
HTML web pages, creating

HTTP servers

CGl scripts, processing

GET requests, handling
POST requests

POST requests

SOAP

XML-RPC
clients

servers
websites

MySQL

SOAP web services

while statements

write() method

writelines() method

writing files

WSDL (Web Service Definition Language)
WSDL files

e prcy ExT

k=2
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

XML documents

child nodes

accessing
adding
deleting
element attributes
loading
searching
text, extracting
well formed
XML tags
XML-RPC

clients

servers
xml-rpc client.py code example

xml-rpc serv.py code example

xml.dom module

xml.parsers.expat module

xml.sax module

well formed XML documents

XML tags, parsing

xml addnode.py code example

xml attribute.py code example

xml child.py code example

Xxml open.py code example

xml removenode.py code example

xml search.py code example

xml tags.py code example

xml text.py code example

xml wellformed.py code example

xmlrpdib module

e Py EXT

| 4 PREV
Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] W] [X] [£]

ZIP files

adding

retrieving
ZipFile() method

	Cover
	Python Phrasebook: Essential Code and Commands
	Table of Contents
	Copyright
	Acknowledgments
	About the Author
	Introduction
	Chapter 1. Understanding Python
	Why Use Python?
	Invoking the Interpreter
	Built-In Types
	Understanding Python Syntax
	Python Objects, Modules, Classes, and Functions
	Error Handling
	Using System Tools

	Chapter 2. Manipulating Strings
	Comparing Strings
	Joining Strings
	Splitting Strings
	Searching Strings for Substrings
	Search and Replace in Strings
	Searching Strings for Specific Endings/Beginnings
	Trimming Strings
	Aligning/Formatting Strings
	Executing Code Inside Strings
	Interpolating Variables Inside Strings
	Converting Unicode to Local Strings

	Chapter 3. Managing Data Types
	Defining a List
	Accessing a List
	Slicing a List
	Adding and Removing Items in a List
	Sorting a List
	Using Tuples
	Constructing a Dictionary
	Adding a Value to a Dictionary
	Retrieving a Value from a Dictionary
	Slicing a Dictionary
	Swapping Keys for Values in a Dictionary

	Chapter 4. Managing Files
	Opening and Closing Files
	Reading an Entire File
	Reading a Single Line from a File
	Accessing Each Word in a File
	Writing a File
	Determining the Number of Lines in a File
	Walking the Directory Tree
	Renaming Files
	Recursively Deleting Files and Subdirectories
	Searching for Files Based on Extension
	Creating a TAR File
	Extracting a File from a TAR File
	Adding Files to a ZIP File
	Retrieving Files from a ZIP File

	Chapter 5. Managing Threads
	Starting a New Thread
	Creating and Exiting Threads
	Synchronizing Threads
	Implementing a Multithreaded Priority Queue
	Initiating a Timer-Interrupted Thread

	Chapter 6. Managing Databases
	Adding Entries to a DBM File
	Retrieving Entries from a DBM File
	Updating Entries in a DBM File
	Pickling Objects to a File
	Unpickling Objects from a File
	Storing Objects in a Shelve File
	Retrieving Objects from a Shelve File
	Changing Objects in a Shelve File
	Connecting to a MySQL Database Server
	Creating a MySQL Database
	Adding Entries to a MySQL Database
	Retrieving Entries from a MySQL Database

	Chapter 7. Implementing Internet Communication
	Opening a Server-Side Socket for Receiving Data
	Opening a Client-Side Socket for Sending Data
	Receiving Streaming Data Using the ServerSocket Module
	Sending Streaming Data
	Sending Email Using SMTP
	Retrieving Email from a POP3 Server
	Using Python to Fetch Files from an FTP Server

	Chapter 8. Processing HTML
	Parsing URLs
	Opening HTML Documents
	Retrieving Links from HTML Documents
	Retrieving Images from HTML Documents
	Retrieving Text from HTML Documents
	Retrieving Cookies in HTML Documents
	Adding Quotes to Attribute Values in HTML Documents

	Chapter 9. Processing XML
	Loading an XML Document
	Checking for Well-Formed XML Documents
	Accessing Child Nodes
	Accessing Element Attributes
	Adding a Node to a DOM Tree
	Removing a Node from a DOM Tree
	Searching XML Documents
	Extracting Text from XML Documents
	Parsing XML Tags

	Chapter 10. Programming Web Services
	Adding HTML to Web Pages Using CGI Scripts
	Processing Parameters Passed to CGI Scripts
	Creating Self-Posting CGI Scripts
	Allowing Users to Upload Files via CGI Scripts
	Creating an HTTP Server to Handle GET Requests
	Creating an HTTP Server to Handle POST Requests
	Creating an HTTP Server to Process CGI Scripts
	Sending an HTTP GET Request from a Python Script
	Sending an HTTP POST Request from a Python Script
	Creating an XML-RPC Server
	Creating an XML-RPC Client
	Using SOAPpy to Access SOAP Web Services Through a WSDL File

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

