
Python Testing
Beginner's Guide

An easy and convenient approach to testing your
Python projects

Daniel Arbuckle

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Python Testing
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2010

Production Reference: 1120110

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-84-6

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Credits

Author

Daniel Arbuckle

Reviewers

Róman Joost

Andrew Nicholson

Herjend Teny

Acquisition Editor

Douglas Paterson

Development Editor

Ved Prakash Jha

Technical Editors

Aditya Belpathak

Charumathi Sankaran

Indexer

Monica Ajmera Mehta

Proofreader

Lesley Harrison

Production Editorial Manager

Abhijeet Deobhakta

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Lata Basantani

Project Coordinator

Srimoyee Ghoshal

Graphics

Geetanjali Sawant

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

 About the Author

Daniel Arbuckle received his Ph. D. in computer science from the University of Southern
California in 2007. He is an active member of the Python community and an avid unit tester.

I would like to thank Grig, Titus, and my family for their companionship and
encouragement along the way.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

About the Reviewers

Róman Joost is a professional Python software developer and a free software enthusiast,
currently living in Australia. Since 2003, he has been contributing to the GNU Image
Manipulation Program (GIMP) by writing documentation and contributing to the source
code. He uses testing frameworks and test-driven methodologies extensively, when writing
new components for the Z Object Publishing Environment (Zope) in Python.

Andrew Nicholson is a software engineer with over 12 years of professional commercial
experience in a broad range of technologies. He is passionate about free and open source
software (FOSS) and has actively participated in contributing code, ideas, and passion in the
open source community since 1999.

Nicholson's biography can be read at http://infiniterecursion.com.au/people/.

Herjend Teny is an electrical engineering graduate from Melbourne who has come to love
programming in Python after years of programming in mainline programming languages,
such as C, Java, and Pascal.

He is currently involved in designing web application using Django for an Article Repository
project on http://www.havingfunwithlinux.com/. The project would allow users to
post their article for public view and bookmark it onto their favorite blog.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Table of Contents
Preface	 1

Chapter 1: Testing for Fun and Profit	 7
How can testing help?	 8
Types of testing	 9

Unit testing	 9
Integration testing	 9
System testing	 9

You've got Python, right?	 10
Summary	 10

Chapter 2: Doctest: The Easiest Testing Tool	 11
Basic doctest	 11
Time for action – creating and running your first doctest	 12

The syntax of doctests	 13
Time for action – writing a more complex test	 14

Expecting exceptions	 15
Time for action – expecting an exception	 16

Expecting blank lines in the output	 17
Using directives to control doctest	 17

Ignoring part of the result	 17

Time for action – using ellipsis in tests	 17
Ignoring whitespace	 18

Time for action – normalizing whitespace	 19
Skipping an example entirely	 19

Time for action – skipping tests	 20
Other doctest directives	 21

Execution scope	 21
Embedding doctests in Python docstrings	 24
Time for action – embedding a doctest in a docstring	 24

Doctest directives	 25

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Table of Contents

[ii]

Execution scope	 26
Putting it in practice: an AVL tree	 26

English specification	 27
Node data	 28
Constructor	 30
Recalculate height	 30
Make deletable	 32
Rotation	 33
Locating a node	 34
Testing the rest of the specification	 34

Summary	 35

Chapter 3: Unit Testing with Doctest	 37
What is Unit testing and what it is not?	 37
Time for action – identifying units	 38
Unit testing throughout the development process	 40

Design phase	 41
Time for action – unit testing during design	 41

Development phase	 44
Time for action – unit testing during development	 44

Feedback phase	 47
Time for action – unit testing during feedback	 47

Back to the development phase	 51
Time for action – unit testing during development... again	 51

Maintenance phase	 53
Time for action – unit testing during maintenance	 53

Reuse phase	 55
Time for action – unit testing during reuse	 55
Summary	 59

Chapter 4: Breaking Tight Coupling by using Mock Objects	 61
Installing Python Mocker	 61
Time for action – installing Python Mocker	 62
The idea of a mock object	 62
Python Mocker	 63
Time for action – exploring the basics of Mocker 	 63

Mocking functions	 67
Mocking containers	 68
Parameter matching	 69

ANY	 69
ARGS	 70
KWARGS	 70
IS	 71

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Table of Contents

[iii]

IN	 71
CONTAINS	 72
MATCH	 72

Mocking complex expressions	 73
Returning iterators	 73
Raising exceptions	 74
Calling functions via a mock	 74
Specifying that an expectation should occur multiple times	 75
Replacing library objects with mocks	 77

Mocking self	 80
Time for action – passing a mock object as self	 80
Summary	 82

Chapter 5: When Doctest isn't Enough: Unittest to the Rescue	 83
Basic unittest	 83
Time for action – testing PID with unittest	 84

Assertions	 89
assertTrue	 89
assertFalse	 90
assertEqual	 90
assertNotEqual	 90
assertAlmostEqual	 90
assertNotAlmostEqual	 92
assertRaises	 92
fail	 93

Test fixtures	 94
Time for action – testing database-backed units	 95
Integrating with Python Mocker	 100
Summary	 100

Chapter 6: Running Your Tests: Follow Your Nose	 101
What is Nose?	 101
Installing Nose	 102
Organizing tests	 103
Time for action – organizing tests from previous chapters	 104

Finding doctests	 108
Customizing Nose's search	 109

Nose and doctest	 110
Time for action – creating a fixture for a doctest	 111
Nose and unittest	 112
Time for action – creating a module fixture	 113
Time for action – creating a package fixture	 114
Nose's own testing framework	 116

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Table of Contents

[iv]

Time for action – using Nose-specific tests	 116
Summary	 118

Chapter 7: Developing a Test-Driven Project	 119
Writing the specification	 119
Time for action – what are you going to do?	 125
Writing initial unit tests	 125
Time for action – nailing down the specification with unit tests	 139
Coding planner.data	 139
Using the tests to get the code right	 143
Fixing the code	 143
Time for action – writing and debugging code	 146
Writing persistence tests	 147
Writing persistence code	 148
Finishing up	 151
Summary	 153

Chapter 8: Testing Web Application Frontends using Twill	 155
Installing Twill	 155
Exploring the Twill language	 156
Time for action – browsing the web with Twill	 156
Time for action – Twill scripting	 159

Twill commands	 160
help	 160
setglobal	 160
setlocal	 161
add_auth	 161
add_extra_header	 161
clear_extra_headers	 162
show_extra_headers	 162
agent	 162
back	 162
clear_cookies	 162
code	 162
config	 163
debug	 163
echo	 163
exit	 163
extend_with	 164
find	 164
notfind	 164
follow	 164
formaction	 164
formclear	 165
formfile	 165

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Table of Contents

[�]

formvalue	 165
getinput	 165
getpassword	 165
go	 166
info	 166
save_cookies	 166
load_cookies	 166
show_cookies	 166
redirect_error	 166
redirect_output	 166
reset_error	 166
reset_output	 167
reload	 167
reset_browser	 167
run	 167
runfile	 167
save_html	 167
show	 167
showforms	 167
showhistory	 168
showlinks	 168
sleep	 168
submit	 168
tidy_ok	 168
title	 168
url	 168

Calling Twill scripts from tests	 169
Time for action – running Twill script files	 169
Time for action – running Twill script strings	 170

A nifty trick	 171
Integrating Twill operations into unittest tests	 172
Time for action – using Twill's browser object	 172

Browser methods	 173
get_code	 174
get_html	 174
get_title	 174
get_url	 174
find_link	 174
follow_link	 175
get_all_forms	 175
get_form	 175
get_form_field	 175
clicked	 176
submit	 176

Summary	 176

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Table of Contents

[vi]

Chapter 9: Integration Testing and System Testing	 177
Integration tests and system tests	 177
Time for action – figuring out the order of integration	 178
Automation with doctest, unittest, and Nose	 180
Time for action – writing integration tests for the time planner	 181
Summary	 202

Chapter 10: Other Testing Tools and Techniques	 203
Code coverage	 203

coverage.py	 204
Time for action – using coverage.py	 205
Version control hooks	 207

Bazaar	 208
Time for action – installing Nose as a Bazaar post-commit hook	 208

Mercurial	 210
Time for action – installing Nose as a Mercurial 	 210
post-commit hook	 210

Git	 211
Time for action – installing Nose as a Git post-commit hook	 212

Darcs	 213
Time for action – installing Nose as a Darcs post-record hook	 213

Subversion	 215
Time for action – installing Nose as a Subversion 	 216
post-commit hook	 216
Automated continuous integration	 219

Buildbot	 219
Time for action – using Buildbot with Bazaar	 219
Summary	 223

Appendix: Answers to Pop Quizes	 225
Chapter 2	 225

Pop quiz – doctest syntax	 225
Chapter 3	 225

Pop quiz – understanding units	 225
Pop quiz – unit testing during design	 226
Pop quiz – unit testing	 226

Chapter 4	 226
Pop quiz – Mocker usage	 226

Chapter 5	 227
Pop quiz – basic unittest knowledge	 227
Pop quiz – text fixtures	 227

Chapter 6	 227

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Table of Contents

[vii]

Pop quiz – testing with Nose	 227
Chapter 7	 227

Pop quiz – test-driven development	 227
Chapter 8	 228

Pop quiz – the Twill language	 228
Pop quiz – browser methods	 228

Chapter 9	 228
Pop quiz – diagramming integration	 228
Pop quiz – writing integration tests	 229

Chapter 10	 229
Pop quiz – code coverage	 229
Pop quiz – version control hooks	 229

Index	 231

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Preface
Like any programmer, you need to be able to produce reliable code that conforms to a
specification, which means that you need to test your code. In this book, you'll learn how to
use techniques and Python tools that reduce the effort involved in testing, and at the same
time make it more useful—and even fun.

You'll learn about several of Python's automated testing tools, and you'll learn about the
philosophies and methodologies that they were designed to support, like unit testing and
test-driven development. When you're done, you'll be able to produce thoroughly tested
code faster and more easily than ever before, and you'll be able to do it in a way that doesn't
distract you from your "real" programming.

What this book covers
Chapter 1: Testing for Fun and Profit introduces Python test-driven development and various
testing methods.

Chapter 2: Doctest: The Easiest Testing Tool covers the doctest tool and teaches you how
to use it.

Chapter 3: Unit Testing with Doctest introduces the ideas of unit testing and test-driven
development, and applies doctest to create unit tests.

Chapter 4: Breaking Tight Coupling by using Mock Objects covers mock objects and the
Python Mocker tool.

Chapter 5: When Doctest isn't Enough: Unittest to the Rescue introduces the unittest
framework and discusses when it is preferred over doctest.

Chapter 6: Running Your Tests: Follow Your Nose introduces the Nose test runner, and
discusses project organization.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Preface

[�]

Chapter 7: Developing a Test-Driven Project walks through a complete test-driven
development process.

Chapter 8: Testing Web Application Frontends using Twill applies the knowledge gained from
previous chapters to web applications, and introduces the Twill tool.

Chapter 9: Integration Testing and System Testing teaches how to build from unit tests to
tests of a complete software system.

Chapter 10: Other Testing Tools and Techniques introduces code coverage and continuous
integration, and teaches how to tie automated testing into version control systems.

Appendix: Answers to Pop Quizes contains the answers to all pop quizes, chapter-wise.

What you need for this book
To use this book, you will need a working Python interpreter, preferably one of the 2.6 version
series. You'll also need a source code editor, and occasional access to the internet. You will
need to be comfortable enough using your operating system's textual interface—your DOS
prompt or command shell—to do basic directory management and to run programs.

Who this book is for
If you are a Python developer and want to write tests for your applications, this book will get
you started and show you the easiest way to learn testing.

You need to have sound Python programming knowledge to follow along. An awareness of
software testing would be good, but no formal knowledge of testing is expected nor do you
need to have any knowledge of the libraries discussed in the book.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Preface

[�]

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use
of the include directive."

A block of code is set as follows:

... if node.right is not None:

... assert isinstance(node.right, AVL)

... assert node.right.key > node.key

... right_height = node.right.height + 1

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

... if node.right is not None:

... assert isinstance(node.right, AVL)

... assert node.right.key > node.key

... right_height = node.right.height + 1

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Preface

[�]

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for the book

Visit http://www.packtpub.com/files/code/8846_Code.zip to
directly download the example code.

The downloadable files contain instructions on how to use them.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration, and help us to improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the let us know link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata added to any
list of existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or web site name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

1
Testing for Fun and Profit

You're a programmer: a coder, a developer, or maybe a hacker! As such, it's
almost impossible that you haven't had to sit down with a program that you
were sure was ready for use—or worse yet, a program you knew was not
ready—and put together a bunch of tests to prove it. It often feels like an
exercise in futility, or at best a waste of time. We'll learn how to avoid that
situation, and make testing an easy and enjoyable process.

This book is going to show you a new way to test, a way that puts much of the
burden of testing right where it should be: on the computer. Even better, your
tests will help you to find problems early and tell you just where they are, so
that you can fix them easily. You'll love the easy, helpful methods of automated
testing and test-driven development that you will learn about in this book.

The Python language has some of the best tools available, when it comes to
testing. As a result, we'll learn how to make testing something that is easy,
quick, and fun by taking advantage of those tools.

In this book, we'll:

Study popular testing tools such as doctest, unittest, and Nose

Learn about testing philosophies like unit testing and test-driven development

Examine the use of mock objects and other useful testing secrets

Learn how to integrate testing with the other tools that we use, and with
our workflow

Introduce some secondary tools that make it easier to use the major testing tools











This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing for Fun and Profit

[�]

How can testing help?
This chapter started with a lot of grandiose claims, such as: You'll enjoy testing. You'll rely on
it to help you kill bugs early and easily. Testing will stop being a burden for you, and become
something that you want to do. You may be wondering how this is possible?

Think back to the last annoying bug that you had to deal with. It could have been anything;
a database schema mismatch, or a bad data structure.

Remember what caused the bug? The one line of code with a subtle logic error? The function
that didn't do what the documents said it would do? Whatever it was, keep it in mind.

Imagine a small chunk of code that could have caught the bug, if it had been run at the right
time, and informed you about it.

Now imagine that all of your code was accompanied by those little chunks of test code, and
that they are quick and easy to execute.

How long would your bug have survived? Not very long at all.

That gives you a basic understanding of what we'll be talking about in this book. There are
many tools and refinements that can make the process quicker and easier. The basic idea is
to tell the computer what you expect, using simple and easily-written chunks of code, and
then have the computer double-check your expectations throughout the coding process.
As expectations are easy to describe, you can write them down first, allowing the computer
to shoulder much of the burden of debugging your code. As a result, you can move on to
interesting things while the computer keeps a track of everything else.

When you're done, you'll have a code base that is highly tested and that you can be
confident in. You will have caught your bugs early and fixed them quickly. The best part
is that your testing was done by the computer based on what you told it you wanted the
program to do. After all, why should you do it, when the computer can do it for you?

I have programmed simple automated tests to catch everything from minor typos, to
instances of database access code being left dangerously out of date after a schema change,
and pretty much any other bug you can imagine. The tests caught the errors quickly, and
pinpointed their locations. A great deal of effort and bother was avoided because they
were there.

Imagine the time that you'll save or spend on writing new features, instead of chasing old
bugs. Better code, written more quickly, has a good cost/benefit ratio. Testing the right way
really is both more fun and more profitable.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 1

[�]

Types of testing
Testing is commonly divided into several categories, based on how complex the component
being tested is. Most of our time will be focused on the lowest level—unit testing—because
tests in the other categories operate on pretty much the same principles.

Unit testing
Unit testing is testing of the smallest possible pieces of a program. Often, this means
individual functions or methods. The keyword here is individual; something is a unit if it
there's no meaningful way to divide it up further.

Unit tests are used to test a single unit in isolation, verifying that it works as expected,
without considering what the rest of the program would do. This protects each unit from
inheriting bugs from mistakes made elsewhere, and makes it easy to narrow down on the
actual problem.

By itself, unit testing isn't enough to confirm that a complete program works correctly, but
it's the foundation upon which everything else is based. You can't build a house without
solid materials, and you can't build a program without units that work as expected!

Integration testing
In integration testing, the boundaries of isolation are pushed further back, so that the tests
encompass interactions between related units. Each test should still be run in isolation, to
avoid inheriting problems from outside, but now the test checks whether the tested units
behave correctly as a group.

Integration testing can be performed with the same tools as unit testing. For this reason,
newcomers to automated testing are sometimes lured into ignoring the distinction between
unit testing and integration testing. Ignoring this distinction is dangerous, because such
multipurpose tests often make assumptions about the correctness of some of the units that
they involve. This means that the tester loses much of the benefit which automated testing
would have granted. We're not aware of the assumptions we make until they bite us, so we
need to consciously choose to work in a way that minimizes assumptions. That's one of the
reasons why I refer to test-driven development as a discipline.

System testing
System testing extends the boundaries of isolation even further, to the point where they
don't even exist. System tests check parts of the program, after the whole thing has been
plugged together. In a sense, system tests are an extreme form of integration tests.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing for Fun and Profit

[10]

System tests are very important, but they're not very useful without integration tests and
unit tests. You have to be sure of the pieces before you can be sure of the whole. If there's a
subtle error somewhere, system testing will tell you that it exists, but not where it is or how
to fix it. The odds are good that you've experienced that situation before; it's probably why
you hate testing.

You've got Python, right?
This book assumes that you have working knowledge of the Python programming
language, and that you have a fully functional Python interpreter available. The
assumption is that you have at least version 2.6 of Python, which you can download
from http://www.python.org/. If you have an earlier version, don't worry: there
are sidebars that will help you navigate the differences. You'll also need your favorite
text editor.

Summary
In this chapter, we learned what this book is about and what to expect from it. We took a
glance at the philosophy of automated testing and test-driven development.

We talked about the different types of tests that combine together to form a complete
suite of tests for a program, namely: unit tests, integration tests, and system tests. We
learned that unit tests are related to the fundamental components of a program (such as
functions), integration tests cover larger swaths of a program (like modules), and system
tests encompass testing a program in its entirety.

We learned about how automated testing can help us, by moving the burden of testing
mostly onto the computer. You can tell the computer how to check your code, instead of
having to do the checks for yourself. That makes it convenient to check your code earlier and
more often, saves you from overlooking the things that you would otherwise miss, and helps
you quickly locate and fix bugs.

We shed some light on test-driven development, the discipline of writing your tests first, and
letting them tell you what needs to be done, in order to write the code you need.

We also discussed the development environment that you'll need, in order to work through
this book.

Now that we've learned about the lay of the land (so to speak), we're ready to start writing
tests—which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

2
Doctest: The Easiest Testing Tool

This chapter will introduce you to a fantastic tool called doctest. Doctest is a
program that ships with Python that lets you write down what you expect from
your code in a way that's easy for both people and computers to read. Doctest
files can often be created just by copying the text out of a Python interactive
shell and pasting it into a file. Doctest will often be the fastest and easiest way
to write tests for your software.

In this chapter, we shall:

Learn the doctest language and syntax

Write doctests embedded in text files

Write doctests embedded in Python docstrings

Basic doctest
Doctest will be the mainstay of your testing toolkit. You'll be using it for tests, of course,
but also for things that you may not think of as tests right now. For example, program
specifications and API documentation both benefit from being written as doctests and
checked alongside your other tests.

Like program source code, doctest tests are written in plain text. Doctest extracts the
tests and ignores the rest of the text, which means that the tests can be embedded in
human-readable explanations or discussions. This is the feature that makes doctest
so suitable for non-classical uses such as program specifications.







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[12]

Time for action – creating and running your first doctest
We'll create a simple doctest, to demonstrate the fundamentals of using doctest.

1.	 Open a new text file in your editor, and name it test.txt.

2.	 Insert the following text into the file:

	 This is a simple doctest that checks some of Python's arithmetic
 operations.

	 >>> 2 + 2
	 4

	 >>> 3 * 3
	 10

3.	 We can now run the doctest. The details of how we do that depend on which
version of Python we're using. At the command prompt, change to the directory
where you saved test.txt.

4.	 If you are using Python 2.6 or higher, type:

	 $ python ‑m doctest test.txt

5.	 If you are using python 2.5 or lower, the above command may seem to work, but it
won't produce the expected result. This is because Python 2.6 is the first version in
which doctest looks for test file names on the command line when you invoke it
this way.

6.	 If you're using an older version of Python, you can run your doctest by typing:

	 $ python ‑c "__import__('doctest').testfile('test.txt')"

7.	 When the test is run, you should see output as shown in the following screen:

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[13]

What just happened?
You wrote a doctest file that describes a couple of arithmetic operations, and executed it to
check whether Python behaved as the tests said it should. You ran the tests by telling Python
to execute doctest on the files that contained the tests.

In this case, Python's behavior differed from the tests because according to the tests, three
times three equals ten! However, Python disagrees on that. As doctest expected one thing
and Python did something different, doctest presented you with a nice little error report
showing where to find the failed test, and how the actual result differed from the expected
result. At the bottom of the report, is a summary showing how many tests failed in each file
tested, which is helpful when you have more than one file containing tests.

Remember, doctest files are for computer and human consumption. Try to write the
test code in a way that human readers can easily understand, and add in plenty of plain
language commentary.

The syntax of doctests
You might have guessed from looking at the previous example: doctest recognizes tests by
looking for sections of text that look like they've been copied and pasted from a Python
interactive session. Anything that can be expressed in Python is valid within a doctest.

Lines that start with a >>> prompt are sent to a Python interpreter. Lines that start with a
... prompt are sent as continuations of the code from the previous line, allowing you to
embed complex block statements into your doctests. Finally, any lines that don't start with
>>> or ..., up to the next blank line or >>> prompt, represent the output expected from
the statement. The output appears as it would in an interactive Python session, including
both the return value and the one printed to the console. If you don't have any output
lines, doctest assumes it to mean that the statement is expected to have no visible result
on the console.

Doctest ignores anything in the file that isn't part of a test, which means that you can place
explanatory text, HTML, line-art diagrams, or whatever else strikes your fancy in between
your tests. We took advantage of that in the previous doctest, to add an explanatory
sentence before the test itself.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[14]

Time for action – writing a more complex test
We'll write another test (you can add it to test.txt if you like) which shows off most of the
details of doctest syntax.

1.	 Insert the following text into your doctest file(test.txt), separated from the
existing tests by at least one blank line:

	 Now we're going to take some more of doctest's syntax for a spin.

	 >>> import sys
	 >>> def test_write():
	 ... sys.stdout.write("Hello\n")
	 ... return True
	 >>> test_write()
	 Hello
	 True

Think about it for a moment: What does this do? Do you expect the test to pass, or
to fail?

2.	 Run doctest on the test file, just as we discussed before. Because we added
the new tests to the same file containing the tests from before, we still see the
notification that three times three does not equal ten. Now, though, we also
see that five tests were run, which means our new tests ran and succeeded.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[15]

What just happened?
As far as doctest is concerned, we added three tests to the file.

The first one says that when we import sys, nothing visible should happen.

The second test says that when we define the test_write function, nothing visible
should happen.

The third test says that when we call the test_write function, Hello and True
should appear on the console, in that order, on separate lines.

Since all three of these tests pass, doctest doesn't bother to say much about them. All it did
was increase the number of tests reported at the bottom from two to five.

Expecting exceptions
That's all well and good for testing that things work as expected, but it is just as important to
make sure that things fail when they're supposed to fail. Put another way; sometimes your
code is supposed to raise an exception, and you need to be able to write tests that check
that behavior as well.

Fortunately, doctest follows nearly the same principle in dealing with exceptions, that it does
with everything else; it looks for text that looks like a Python interactive session. That means
it looks for text that looks like a Python exception report and traceback, matching it against
any exception that gets raised.

Doctest does handle exceptions a little differently from other tools. It doesn't just
match the text precisely and report a failure if it doesn't match. Exception tracebacks
tend to contain many details that are not relevant to the test, but which can change
unexpectedly. Doctest deals with this by ignoring the traceback entirely: it's only
concerned with the first line—Traceback (most recent call last)—which tells it that you
expect an exception, and the part after the traceback, which tells it which exception you
expect. Doctest only reports a failure if one of these parts does not match.

That's helpful for a second reason as well: manually figuring out what the traceback would
look like, when you're writing your tests would require a significant amount of effort, and
would gain you nothing. It's better to simply omit them.







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[16]

Time for action – expecting an exception
This is yet another test that you can add to test.txt, this time testing some code that
ought to raise an exception.

1.	 Insert the following text into your doctest file (Please note that the last line of this
text has been wrapped due to the constraints of the book's format, and should be a
single line):

	 Here we use doctest's exception syntax to check that Python is
	 correctly enforcing its grammar.

	 >>> def faulty():
	 ... yield 5
	 ... return 7
	 Traceback (most recent call last):
	 SyntaxError: 'return' with argument inside generator
	 (<doctest test.txt[5]>, line 3)

2.	 The test is supposed to raise an exception, so it will fail if it doesn't raise the
exception, or if it raises the wrong exception. Make sure you have your mind
wrapped around that: if the test code executes successfully, the test fails,
because it expected an exception.

3.	 Run the tests using doctest and the following screen will be displayed:

What just happened?
Since Python doesn't allow a function to contain both yield statements and return
statements with values, having the test to define such a function caused an exception. In
this case, the exception was a SyntaxError with the expected value. As a result, doctest
considered it a match with the expected output, and thus the test passed. When dealing
with exceptions, it is often desirable to be able to use a wildcard matching mechanism.
Doctest provides this facility through its ellipsis directive, which we'll discuss later.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[17]

Expecting blank lines in the output
Doctest uses the first blank line to identify the end of the expected output. So what do you
do, when the expected output actually contains a blank line?

Doctest handles this situation by matching a line that contains only the text <BLANKLINE> in
the expected output, with a real blank line in the actual output.

Using directives to control doctest
Sometimes, the default behavior of doctest makes writing a particular test inconvenient.
That's where doctest directives come to our rescue. Directives are specially formatted
comments that you place after the source code of a test, which tell doctest to alter its
default behavior in some way.

A directive comment begins with # doctest:, after which comes a comma-separated list of
options, that either enable or disable various behaviors. To enable a behavior, write a + (plus
symbol) followed by the behavior name. To disable a behavior, white a – (minus symbol)
followed by the behavior name.

Ignoring part of the result
It's fairly common that only part of the output of a test is actually relevant to determining
whether the test passes. By using the +ELLIPSIS directive, you can make doctest treat the
text ... (called an ellipsis) in the expected output as a wildcard, which will match any text in
the output.

When you use an ellipsis, doctest will scan ahead until it finds text matching whatever comes
after the ellipsis in the expected output, and continue matching from there. This can lead to
surprising results such as an ellipsis matching against a 0-length section of the actual output,
or against multiple lines. For this reason, it needs to be used thoughtfully.

Time for action – using ellipsis in tests
We'll use the ellipsis in a few different tests, to get a better feel for what it does and how to
use it.

1.	 Insert the following text into your doctest file:

	 Next up, we're exploring the ellipsis.

	 >>> sys.modules # doctest: +ELLIPSIS
	 {...'sys': <module 'sys' (built-in)>...}

	 >>> 'This is an expression that evaluates to a string'
	 ... # doctest: +ELLIPSIS
	 'This is ... a string'

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[18]

	 >>> 'This is also a string' # doctest: +ELLIPSIS
	 'This is ... a string'

	 >>> import datetime
	 >>> datetime.datetime.now().isoformat() # doctest: +ELLIPSIS

 '...-...-...T...:...:...'

2.	 Run the tests using doctest and the following screen is displayed:.

3.	 None of these tests would pass without the ellipsis. Think about that, and then try
making some changes and see if they produce the results you expect.

What just happened?
We just saw how to enable ellipsis matching. In addition, we saw a couple of variations on
where the doctest directive comment can be placed, including on a block continuation line
by itself.

We got a chance to play with the ellipsis a little bit, and hopefully saw why it should be used
carefully. Look at that last test. Can you imagine any output that wasn't an ISO-formatted
time stamp, but that it would match anyway?

Ignoring whitespace
Sometimes, whitespace (spaces, tabs, newlines, and their ilk) are more trouble than they're
worth. Maybe you want to be able to break a single line of expected output across several
lines in your test file, or maybe you're testing a system that uses lots of whitespace but
doesn't convey any useful information with it.

Doctest gives you a way to "normalize" whitespace, turning any sequence of whitespace
characters, in both the expected output and in the actual output, into a single space. It then
checks whether these normalized versions match.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[19]

Time for action – normalizing whitespace
We'll write a couple tests that demonstrate how whitespace normalization works.

1.	 Insert the following text into your doctest file:

	 Next, a demonstration of whitespace normalization.

	 >>> [1, 2, 3, 4, 5, 6, 7, 8, 9]
	 ... # doctest: +NORMALIZE_WHITESPACE
	 [1, 2, 3,
	 4, 5, 6,
	 7, 8, 9]

	 >>> sys.stdout.write("This text\n contains weird spacing.")
	 ... # doctest: +NORMALIZE_WHITESPACE
	 This text contains weird spacing.

2.	 Run the tests using doctest and the following screen is displayed:

3.	 Notice how one of the tests inserts extra whitespace in the expected output,
while the other one ignores extra whitespace in the actual output. When you
use +NORMALIZE_WHITESPACE, you gain a lot of flexibility with
regard to how things are formatted in the text file.

Skipping an example entirely
On some occasions, doctest would recognize some text as an example to be checked, when
in truth you want it to be simply text. This situation is rarer than it might at first seem,
because usually there's no harm in letting doctest check everything it can. In fact, it is usually
helpful to have doctest check everything it can. For those times when you want to limit what
doctest checks, though, there's the +SKIP directive.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[20]

Time for action – skipping tests
This is an example of how to skip a test:

1.	 Insert the following text into your doctest file:

	 Now we're telling doctest to skip a test

	 >>> 'This test would fail.' # doctest: +SKIP
	 If it were allowed to run.

2.	 Run the tests using doctest and the following screen will be displayed:

3.	 Notice that the test didn't fail, and that the number of tests that were run did
not change.

What just happened?
The skip directive transformed what would have been a test, into plain text(as far as doctest
is concerned). Doctest never ran the test, and in fact never counted it as a test at all.

There are several situations where skipping a test might be a good idea. Sometimes, you
have a test which doesn't pass (which you know doesn't pass), but which simply isn't
something that should be addressed at the moment. Using the skip directive lets you
ignore the test for a while. Sometimes, you have a section of human readable text that
looks like a test to the doctest parser, even though it's really only for human consumption.
The skip directive can be used to mark that code as not for actual testing.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[21]

Other doctest directives
There are a number of other directives that can be issued to adjust the behavior of
doctest. They are fully documented at http://docs.python.org/library/doctest.
html#option-flags-and-directives, but here is a quick overview:

+DONT_ACCEPT_TRUE_FOR_1, which makes doctest treat True and 1 as different
values, instead of treating them as matching as it normally does.

+DONT_ACCEPT_BLANKLINE, which makes doctest forget about the special
meaning of <BLANKLINE>.

+IGNORE_EXCEPTION_DETAIL, which makes doctest treat exceptions as
matches if the exception type is the same, regardless of whether the rest of
the exception matches.

+REPORT_UDIFF, which makes doctest use unified diff format when it displays
a failed test. This is useful if you are used to reading the unified diff format,
which is by far the most common diff format within the open source community.

+REPORT_CDIFF, which makes doctest use context diff format when it displays
a failed test. This is useful if you are used to reading the context diff format.

+REPORT_NDIFF, which makes doctest use ndiff format when it displays a failed
test. This is usefull if you are used to reading the ndiff format.

+REPORT_ONLY_FIRST_FAILURE makes doctest avoid printing out failure reports
on those tests after it is applied, if a failure report has already been printed. The
tests are still executed, and doctest still keeps track of whether they failed or not.
Only the report is changed by using this flag.

Execution scope
When doctest is running the tests from text files, all the tests from the same file are run in
the same execution scope. That means that if you import a module or bind a variable in one
test, that module or variable is still available in later tests. We took advantage of this fact
several times in the tests written so far in this chapter: the sys module was only imported
once, for example, although it was used in several tests.

That behavior is not necessarily beneficial, because tests need to be isolated from each
other. We don't want them to contaminate each other, because if a test depends on
something that another test does, or if it fails because of something that another test does,
those two tests are in some sense turned into one test that covers a larger section of your
code. You don't want that to happen, because knowing which test has failed doesn't give you
as much information about what went wrong and where it happened.















This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[22]

So, how can we give each test its own execution scope? There are a few ways to do it. One
would be to simply place each test in its own file, along with whatever explanatory text that
is needed. This works beautifully, but running the tests can be a pain unless you have a tool
to find and run all of them. We'll talk about one such tool (called nose) later.

Another way to give each test its own execution scope, is to define each test within a
function, as shown below:

>>> def test1():
... import frob
... return frob.hash('qux')
>>> test1()
77

By doing that, the only thing that ends up in the shared scope is the test function
(named test1 here). The frob module, and any other names bound inside the
function, are isolated.

The third way is to exercise caution with the names you create, and be sure to set them
to known values at the beginning of each test section. In many ways this is the easiest
approach, but it's also the one that places the most burden on you, because you have
to keep track of what's in the scope.

Why does doctest behave this way, instead of isolating tests from each other? Doctest
files are intended not just for computers to read, but also for humans. They often form a
sort of narrative, flowing from one thing to the next. It would break the narrative to be
constantly repeating what came before. In other words, this approach is a compromise
between being a document and being a test framework, a middle ground that works for
both humans and computers.

The other framework that we study in depth in this book (called simply unittest) works at a
more formal level, and enforces the separation between tests.

Pop quiz – doctest syntax
There is no answer key for these questions. Try your answers in doctest and see if
you're right!

1.	 How does doctest recognize the beginning of a test expression?

2.	 How does doctest know where the expected output of a text expression begins
and ends?

3.	 How would you tell doctest that you want to break a long expected output across
multiple lines, even though that's not how the test actually outputs it?

4.	 Which parts of an exception report are ignored by doctest?

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[23]

5.	 When you bind a variable in a test file, what code can "see" that variable?

6.	 Why do we care what code can see a variable created by a test?

7.	 How can we make doctest not care what a section of output contains?

Have a go hero – from English to doctest
Time to stretch your wings a bit! I'm going to give you a description of a single function,
in English. Your job is to copy the description into a new text file, and then add tests that
describe all the requirements in a way in which the computer can understand and check.

Try to make the doctests that are not just for the computer. Good doctests tend to clarify
things for human readers as well. By and large, that means that you present them to human
readers as examples interspersed with the text.

Without further ado, here is the English description:

The fib(N) function takes a single integer as its only parameter N. If
N is 0 or 1, the function returns 1. If N is less than 0, the function
raises a ValueError. Otherwise, the function returns the sum of fib(N
– 1) and fib(N – 2). The returned value will never be less than 1.
On versions of Python older than 2.2, and if N is at least 52, the
function will raise an OverflowError. A naïve implementation of this
function would get very slow as N increased.

I'll give you a hint and point out that the last sentence—about the function being slow—isn't
really testable. As computers get faster, any test you write that depends on an arbitrary
definition of "slow" will eventually fail. Also, there's no good way to test the difference
between a slow function and a function stuck in an infinite loop, so there's no point in trying.
If you find yourself needing to do that, it's best to back off and try a different solution.

Not being able to tell whether a function is stuck or just slow is called the
Halting Problem by computer scientists. We know that it can't be solved
unless we someday discover a fundamentally better kind of computer. Faster
computers won't do the trick, and neither will quantum computers, so don't
hold your breath!

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[24]

Embedding doctests in Python docstrings
Doctests aren't confined to simple text files. You can put doctests into Python's docstrings.

Why would you want to do that? There are a couple of reasons. First of all, docstrings are an
important part of the usability of Python code (but only if they tell the truth). If the behavior
of a function, method, or module changes and the docstring doesn't get updated, then the
docstring becomes misinformation, and a hindrance rather than a help. If the docstring
contains a couple of doctest examples, then the out-of-date docstrings can be located
automatically. Another reason for placing doctest examples into docstrings is simply that
it can be very convenient. This practice keeps the tests, documentation and code all in the
same place, where it can all be located easily.

If the docstring becomes home to too many tests, this can destroy its utility as documentation.
This should be avoided; if you find yourself with so many tests in the docstrings that they
aren't useful as a quick reference, move most of them to a separate file.

Time for action – embedding a doctest in a docstring
We'll embed a test right inside the Python source file that it tests, by placing it inside
a docstring.

1.	 Create a file called test.py with the following contents:

	 def testable(x):
	 r"""
	 The `testable` function returns the square root of its
	 parameter, or 3, whichever is larger.
	 >>> testable(7)
	 3.0
	 >>> testable(16)
	 4.0
	 >>> testable(9)
	 3.0
	 >>> testable(10) == 10 ** 0.5
	 True
	 """
	 if x < 9:
	 return 3.0
	 return x ** 0.5

2.	 At the command prompt, change to the directory where you saved test.py and
then run the tests by typing:

	 $ python ‑m doctest test.py

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[25]

As mentioned earlier before, if you have an older version of
Python, this isn't going to work for you. Instead, you need to type
python ‑c "__import__('doctest').testmod(__
import__('test'))"

3.	 If everything worked, you shouldn't see anything at all. If you want some
confirmation that doctest is doing something, turn on verbose reporting
by changing the command to:

	 python ‑m doctest ‑v test.py

For older versions of Python, instead use python ‑c "__
import__('doctest').testmod(__import__('test'),
verbose=True)"

What just happened?
You put the doctest right inside the docstring of the function it was testing. This is a
good place for tests that also show a user how to do something. It's not a good place
for detailed, low-level tests (the above example, which was quite detailed for illustrative
purposes, is skirting the edge of being too detailed), because docstrings need to serve as API
documentation. You can see the reason for this just by looking back at the example, where
the doctests take up most of the room in the docstring, without telling the readers any more
than they would have learned from a single test.

Any test that will serve as good API documentation is a good candidate for including in
the docstrings.

Notice the use of a raw string for the docstring (denoted by the r character before the
first triple-quote). Using raw strings for your docstrings is a good habit to get into, because
you usually don't want escape sequences—e.g. \n for newline—to be interpreted by the
Python interpreter. You want them to be treated as text, so that they are correctly passed
on to doctest.

Doctest directives
Embedded doctests can accept exactly the same directives as doctests in text files can, using
exactly the same syntax. Because of this, all of the doctest directives that we discussed
before can also be used to affect the way embedded doctests are evaluated.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[26]

Execution scope
Doctests embedded in docstrings have a somewhat different execution scope than doctests
in text files do. Instead of having a single scope for all of the tests in the file, doctest creates
a single scope for each docstring. All of the tests that share a docstring, also share an
execution scope, but they're isolated from tests in other docstrings.

The separation of each docstring into its own execution scope often means that we don't
need to put much thought into isolating doctests, when they're embedded in docstrings.
That is fortunate, since docstrings are primarily intended for documentation, and the tricks
needed to isolate the tests might obscure the meaning.

Putting it in practice: an AVL tree
We'll walk step-by-step through the process of using doctest to create a testable
specification for a data structure called an AVL Tree. An AVL tree is a way to organize
key-value pairs, so that they can be quickly located by key. In other words, it's a lot like
Python's built-in dictionary type. The name AVL references the initials of the people who
invented this data structure.

As its name suggests, an AVL tree organizes the keys that are stored in it into a tree structure,
with each key having up to two child keys—one child key that is less than the parent key by
comparison, and one that is more. In the following picture, the key Elephant has two child
keys, Goose has one, and Aardvark and Frog both have none.

The AVL tree is special, because it keeps one side of the tree from getting much taller
than the other, which means that users can expect it to perform reliably and efficiently no
matter what. In the previous image, an AVL tree would reorganize to stay balanced if Frog
gained a child.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[27]

We'll write tests for an AVL tree implementation here, rather than writing the
implementation itself. Therefore, we'll elaborate over the details of how an AVL
tree works, in favor of looking at what it should do when it works right.

If you want to know more about AVL Trees, you will find many good
references on the Internet. Wikipedia's entry on the subject is a good place
to start with: http://en.wikipedia.org/wiki/AVL_tree.

We'll start with a plain language specification, and then interject tests between
the paragraphs.

You don't have to actually type all of this into a text file; it is here for you
to read and to think about. It's also available in the code download that
accompanies this book.

English specification
The first step is to describe what the desired result should be, in normal language. This might
be something that you do for yourself, or something that somebody else does for you. If
you're working for somebody, hopefully you and your employer can sit down together and
work this part out.

In this case, there's not much to work out, because AVL Trees have been fully described for
decades. Even so, the description here isn't quite like one you'd find anywhere else. This
capacity for ambiguity is exactly the reason why a plain language specification isn't good
enough. We need an unambiguous specification, and that's exactly what the tests in a
doctest file can give us.

The following text goes in a file called AVL.txt, (which you can find in its final form in the
accompanying code archive. At this stage of the process, the file contains only the normal
language specification.):

An AVL Tree consists of a collection of nodes organized in a binary
tree structure. Each node has left and right children, each of which
may be either None or another tree node. Each node has a key, which
must be comparable via the less-than operator. Each node has a value.
Each node also has a height number, measuring how far the node is from
being a leaf of the tree -- a node with height 0 is a leaf.

The binary tree structure is maintained in ordered form, meaning that
of a node's two children, the left child has a key that compares
less than the node's key and the right child has a key that compares
greater than the node's key.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[28]

The binary tree structure is maintained in a balanced form, meaning
that for any given node, the heights of its children are either the
same or only differ by 1.

The node constructor takes either a pair of parameters representing
a key and a value, or a dict object representing the key-value pairs
with which to initialize a new tree.

The following methods target the node on which they are called, and
can be considered part of the internal mechanism of the tree:

Each node has a recalculate_height method, which correctly sets the
height number.

Each node has a make_deletable method, which exchanges the positions
of the node and one of its leaf descendants, such that the the tree
ordering of the nodes remains correct.

Each node has rotate_clockwise and rotate_counterclockwise methods.
Rotate_clockwise takes the node's right child and places it where
the node was, making the node into the left child of its own former
child. Other nodes in the vicinity are moved so as to maintain
the tree ordering. The opposite operation is performed by rotate_
counterclockwise.

Each node has a locate method, taking a key as a parameter, which
searches the node and its descendants for a node with the specified
key, and either returns that node or raises a KeyError.

The following methods target the whole tree rooted at the current
node. The intent is that they will be called on the root node:

Each node has a get method taking a key as a parameter, which locates
the value associated with the specified key and returns it, or raises
KeyError if the key is not associated with any value in the tree.

Each node has a set method taking a key and a value as parameters, and
associating the key and value within the tree.

Each node has a remove method taking a key as a parameter, and
removing the key and its associated value from the tree. It raises
KeyError if no values was associated with that key.

Node data
The first three paragraphs of the specification describe the member variables of a AVL
tree node, and tell us what the valid values for the variables are. They also tell us how tree
height should be measured and define what a balanced tree means. It's our job now to take
up those ideas, and encode them into tests that the computer can eventually use to check
our code.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[29]

We could check these specifications by creating a node and then testing the values, but that
would really just be a test of the constructor. It's important to test the constructor, but what
we really want to do is to incorporate checks that the node variables are left in a valid state
into our tests of each member function.

To that end, we'll define a function that our tests can call to check that the state of a node is
valid. We'll define that function just after the third paragraph:

Notice that this test is written as if the AVL tree implementation already existed.
It tries to import an avl_tree module containing an AVL class, and it tries
to use the AVL class is specific ways. Of course, at the moment there is no
avl_tree module, so the test will fail. That's as it should be. All that the failure
means is that, when the time comes to implement the tree, we should do so in a
module called avl_tree, with contents that function as our test assumes. Part
of the benefit of testing like this is being able to test-drive your code before you
even write it.

>>> from avl_tree import AVL

>>> def valid_state(node):
... if node is None:
... return
... if node.left is not None:
... assert isinstance(node.left, AVL)
... assert node.left.key < node.key
... left_height = node.left.height + 1
... else:
... left_height = 0
...
... if node.right is not None:
... assert isinstance(node.right, AVL)
... assert node.right.key > node.key
... right_height = node.right.height + 1
... else:
... right_height = 0
...
... assert abs(left_height - right_height) < 2
... node.key < node.key
... node.value

>>> def valid_tree(node):
... if node is None:
... return
... valid_state(node)
... valid_tree(node.left)
... valid_tree(node.right)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[30]

Notice that we didn't actually call those functions yet. They aren't tests, per se, but tools
that we'll use to simplify writing tests. We define them here, rather than in the Python
module that we're going to test, because they aren't conceptually part of the tested code,
and because anyone who reads the tests will need to be able to see what the helper
functions do.

Constructor
The fourth paragraph describes the constructor for an AVL node: The node constructor takes
either a pair of parameters representing a key and a value, or a dict object representing the
key-value pairs with which to initialize a new tree.

The constructor has two possible modes of operation:

it can either create a single initialized node

or it can create and initialize a whole tree of nodes. The test for the single node
mode is easy:

	 >>> valid_state(AVL(2, 'Testing is fun'))

The other mode of the constructor is a problem, because it is almost certain that it will be
implemented by creating an initial tree node and then calling its set method to add the
rest of the nodes. Why is that a problem? Because we don't want to test the set method
here: this test should be focused entirely on whether the constructor works correctly, when
everything it depends on works.

In other words, the tests should be able to assume that everything
outside of the specific chunk of code being tested works correctly.

However, that's not always a valid assumption. So, how can we write tests for things that call
on code outside of what's being tested?

There is a solution for this problem, about which we'll learn in Chapter 4. For now, we'll just
leave the second mode of operation of the constructor untested.

Recalculate height
The recalculate_height method is described in the fifth paragraph.

To test it, we'll need a tree for it to operate on, and we don't want to use the second mode
of the constructor to create it. After all, that mode isn't tested at all yet, and even if it
were, we want this test to be independent of it. We would prefer to make the test entirely
independent of the constructor, but in this case we need to make a small exception to the
rule(since it's difficult to create an object without calling its constructor in some way).





This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[31]

What we'll do is define a function that builds a specific tree and returns it. This
function will be useful in several of our later tests as well. Using this function, testing
recalculate_height will be easy.

>>> def make_test_tree():
... root = AVL(7, 'seven')
... root.height = 2
... root.left = AVL(3, 'three')
... root.left.height = 1
... root.left.right = AVL(4, 'four')
... root.right = AVL(10, 'ten')
... return root

>>> tree = make_test_tree()
>>> tree.height = 0
>>> tree.recalculate_height()
>>> tree.height
2

The make_test_tree function builds a tree by manually constructing each part of it and
hooking it together into a structure that looks like this:

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[32]

Make deletable
You can't delete a node that has children, because that would leave the node's children
disconnected from the rest of the tree. If we delete the Elephant node from the bottom of
the tree, what do we do about Aardvark, Goose, and Frog? If we delete Goose, how do we
find Frog afterwards?

The way around that is to have the node swap places with it's largest leaf descendant on the
left side (or its smallest leaf descendant on the right side, but we'll not do it that way).

We'll test this by using the same make_test_tree function that we defined before to
create a new tree to work on, and then checking that make_deletable swaps correctly:

Each node has a make_deletable method, which exchanges the positions
of the node and one of its leaf descendants, such that the the tree
ordering of the nodes remains correct.

>>> tree = make_test_tree()
>>> target = tree.make_deletable()
>>> (tree.value, tree.height)
('four', 2)
>>> (target.value, target.height)
('seven', 0)

Something to notice here is that the make_deletable function isn't
supposed to delete the node that it's called on. It's supposed to move
that node into a position where it could be safely deleted. It must do this
reorganization of the tree, without violating any of the constraints that
define an AVL tree structure.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[33]

Rotation
The two rotate functions perform a somewhat tricky manipulation of the links in a tree.
You probably found the plain language description of what they do, a bit confusing. This is
one of those times when a little bit of code makes a whole lot more sense than any number
of sentences.

While tree rotation is usually defined in terms of rearranging the links between nodes in
the tree, we'll check whether it worked by looking at the values (rather than by looking
directly at the left and right links). This allows the implementation to swap the contents of
nodes—rather than the nodes themselves—when it wishes. After all, it's not important to
the specification which operation happens, so we shouldn't rule out a perfectly reasonable
implementation choice.

The first part of the test code for rotation just creates a tree and verifies that it looks like we
expect it to:

>>> tree = make_test_tree()
>>> tree.value
'seven'
>>> tree.left.value
'three'

Once we have a tree to work with, we try a rotation operation and check that the result still
looks like it should:

>>> tree.rotate_counterclockwise()
>>> tree.value
'three'
>>> tree.left
None
>>> tree.right.value
'seven'
>>> tree.right.left.value
'four'
>>> tree.right.right.value
'ten'
>>> tree.right.left.value
'four'
>>> tree.left is None
True

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Doctest: The Easiest Testing Tool

[34]

Finally, we rotate back in the other direction, and check that the final result is the same as
the original tree, as we expect it to be:

>>> tree.rotate_clockwise()
>>> tree.value
'seven'
>>> tree.left.value
'three'
>>> tree.left.right.value
'four'
>>> tree.right.value
'ten'
>>> tree.right.left is None
True
>>> tree.left.left is None
True

Locating a node
The locate method is expected to return a node, or raise a KeyError exception,
depending on whether the key exists in the tree or not. We'll use our specially built
tree again, so that we know exactly what the tree's structure looks like.

>>> tree = make_test_tree()
>>> tree.locate(4).value
'four'
>>> tree.locate(17) # doctest: +ELLIPSIS
Traceback (most recent call last):
KeyError: …

The locate method is intended to facilitate insertion, deletion, and lookup of values
based on their keys, but it's not a high-level interface. It returns a node object, because
it's easy to implement the higher-level operations, if you have a function the finds the right
node for you.

Testing the rest of the specification
Like the second mode of the constructor, testing the rest of the specification involves testing
code that depends on things outside of itself, which we'll cover in Chapter 4.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 2

[35]

Summary
We learned the syntax of doctest, and went through several examples describing how
to use it. After that, we took a real-world specification for the AVL tree, and examined
how to formalize it as a set of doctests, so that we could use it to automatically check the
correctness of an implementation.

Specifically, we covered doctest's default syntax, and the directives that alter it, how to write
doctests in text files, how to write doctests in Python docstrings, and what it feels like to use
doctest to turn a specification into tests.

Now that we've learned about doctest, we're ready to talk about how to use doctest to do
unit testing—which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

3
Unit Testing with Doctest

Okay, so we've talked about what doctest does, and how to make it behave the
way we want. We've talked about testing things with doctest too. What's left
to talk about in this chapter, then? In this chapter, we'll be talking about the
programming discipline called Unit testing. We'll still be using doctest, but this
time the focus is on what you're doing and why, rather than on the details of
how to do it.

In this chapter we shall:

Discuss in detail what Unit testing is

Talk about the ways in which Unit testing helps various stages of development

Work with examples that illustrate Unit testing and its advantages

So, let's get on with it!

What is Unit testing and what it is not?
The title of this section, begs another question: "Why do I care?" One answer is that Unit
testing is a best practice that has been evolving toward its current form over most of the
time that programming has existed. Another answer is that the core principles of Unit testing
are just good sense; it might actually be a little embarrassing to our community as a whole
that it took us so long to recognize them.

Alright, so what is Unit testing? In its most fundamental form, Unit testing can be defined as
testing the smallest meaningful pieces of code (such pieces are called units), in such a way
that each piece's success or failure depends only on itself. For the most part, we've been
following this principle already.







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[38]

There's a reason for each part of this definition: we test the smallest meaningful pieces
of code because, when a test fails, we want that failure to tell where the problem is us
as specifically as possible. We make each test independent because we don't want a test
to make any other test succeed, when it should have failed; or fail when it should have
succeeded. When tests aren't independent, you can't trust them to tell you what you
need to know.

Traditionally, automated testing is associated with Unit testing. Automated testing makes
it fast and easy to run unit tests, which tend to be amenable to automation. We'll certainly
make heavy use of automated testing with doctest and later with tools such as unittest and
Nose as well.

Any test that involves more than one unit is automatically not a unit test. That matters
because the results of such tests tend to be confusing. The effects of the different units get
tangled together, with the end result that not only do you not know where the problem is
(is the mistake in this piece of code, or is it just responding correctly to bad input from some
other piece of code?), you're also often unsure exactly what the problem is this output is
wrong, but how does each unit contribute to the error? Empirical scientists must perform
experiments that check only one hypothesis at a time, whether the subject at hand is
chemistry, physics, or the behavior of a body of program code.

Time for action – identifying units
Imagine that you're responsible for testing the following code:

class testable:
 def method1(self, number):
 number += 4
 number **= 0.5
 number *= 7
 return number

 def method2(self, number):
 return ((number * 2) ** 1.27) * 0.3

 def method3(self, number):
 return self.method1(number) + self.method2(number)

 def method4(self):
 return 1.713 * self.method3(id(self))

1.	 In this example, what are the units? Is the whole class a single unit, or is each
method a separate unit. How about each statement, or each expression? Keep
in mind that the definition of a unit is somewhat subjective (although never bigger
than a single class), and make your own decision.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[39]

2.	 Think about what you chose. What would the consequences have been if you chose
otherwise? For example, if you chose to think of each method as a unit, what would
be different if you chose to treat the whole class as a unit?

3.	 Consider method4. Its result depends on all of the other methods working correctly.
On top of that, it depends on something that changes from one test run to another,
the unique ID of the self object. Is it even possible to treat method4 as a unit in
a self-contained test? If we could change anything except method4, what would
we have to change to enable method4 to run in a self-contained test and produce
a predictable result?

What just happened?
By answering those three questions, you thought about some of the deeper aspects of
unit testing.

The question of what constitutes a unit, is fundamental to how you organize your tests. The
capabilities of the language affects this choice. C++ and Java make it difficult or impossible
to treat methods as units, for example, so in those languages each class is usually treated
as a single unit. C, on the other hand, doesn't support classes as language features at all, so
the obvious choice of unit is the function. Python is flexible enough that either classes or
methods could be considered units, and of course it has stand-alone functions as well, which
are also natural to think of as units. Python can't easily handle individual statements within a
function or method as units, because they don't exist as separate objects when the test runs.
They're all lumped together into a single code object that's part of the function.

The consequences of your choice of unit are far-reaching. The smaller the units are, the
more useful the tests tend to be, because they narrow down the location and nature of bugs
more quickly. For example, one of the consequences of choosing to treat the testable class
as a single unit is that tests of the class will fail if there is a mistake in any of the methods.
That tells you that there's a mistake in testable, but not (for example) that it's in method2.
On the other hand, there is a certain amount of rigmarole involved in treating method4 and
its like as units, to such an extent that the next chapter of the book is dedicated to dealing
with such situations. Even so, I recommend using methods and functions as units most of the
time, because it pays off in the long run.

In answering the third question, you probably discovered that the functions id and
self.method3 would need to have different definitions, definitions that produced a
predictable result, and did so without invoking code in any of the other units. In Python,
replacing the real function with such stand-ins is fairly easy to do in an ad hoc manner,
but we'll be discussing a more structured approach in the next chapter.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[40]

Pop quiz – understanding units
Consider this code and then try to answer the questions:

class class_one:
 def __init__(self, arg1, arg2):
 self.arg1 = int(arg1)
 self.arg2 = arg2

 def method1(self, x):
 return x * self.arg1

 def method2(self, x):
 return self.method1(self.arg2) * x

1.	 Assuming that methods are units, how many units exist in the above code?

2.	 Which units make assumptions about the correct operation of other units? In other
words, which units are not independent?

3.	 What would you need to do to create a test for method2 that was independent of
other units?

Unit testing throughout the development process
We'll walk through the development of a single class, treating it with all the dignity of a real
project. We'll be strictly careful to integrate unit testing into every phase of the project. This
may seem silly at times, but just play along. There's a lot to learn from the experience.

The example we'll be working with is a PID controller. The basic idea is that a PID controller
is a feedback loop for controlling some piece of real-world hardware. It takes input from a
sensor that can measure some property of the hardware, and generates a control signal that
adjusts that property toward some desired state. The position of a robot arm in a factory
might be controlled by a PID controller.

If you want to know more about PID controllers, the Internet is
rife with information. The Wikipedia entry is a good place to start:
http://en.wikipedia.org/wiki/PID_controller.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[41]

Design phase
Our notional client comes to us with the following (rather sparse) specification:

We want a class that implements a PID controller for a single
variable. The measurement, setpoint, and output should all be real
numbers.

We need to be able to adjust the setpoint at runtime, but we want
it to have a memory, so that we can easily return to the previous
setpoint.

Time for action – unit testing during design
Time to make that specification a bit more formal—and complete—by writing unit tests that
describe the desired behavior.

1.	 We need to write a test that describes the PID constructor. After checking our
references, we determine that a PID controller is defined by three gains, and
a setpoint. The controller has three components: proportional, integral and
derivative (hence the name PID). Each gain is a number that determines how
much one of the three parts of the controller has on the final result. The setpoint
determines what the goal of the controller is; in other words, to where it's trying
to move the controlled variable. Looking at all that, we decide that the constructor
should just store the gains and the setpoint, along with initializing some internal
state that we know we'll need due to reading up on the workings of a PID controller:

>>> import pid

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0)

>>> controller.gains

(0.5, 0.5, 0.5)

>>> controller.setpoint

[0.0]

>>> controller.previous_time is None

True

>>> controller.previous_error

0.0

>>> controller.integrated_error

0.0

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[42]

2.	 We need to write tests that describe measurement processing. This is the controller
in action, taking a measured value as its input and producing a control signal that
should smoothly move the measured variable to the setpoint. For this to work
correctly, we need to be able to control what the controller sees as the current
time. After that, we plug our test input values into the math that defines a PID
controller, along with the gains, to figure out what the correct outputs would be:

	 >>> import time
	 >>> real_time = time.time
	 >>> time.time = (float(x) for x in xrange(1, 1000)).next
	 >>> pid = reload(pid)
	 >>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0)
	 >>> controller.measure(12)
	 -6.0
	 >>> controller.measure(6)
	 -3.0
	 >>> controller.measure(3)
	 -4.5
	 >>> controller.measure(-1.5)
	 -0.75
	 >>> controller.measure(-2.25)
	 -1.125
	 >>> time.time = real_time

3.	 We need to write tests that describe setpoint handling. Our client asked for
a setpoint stack, so we write tests that check such stack behavior. Writing
code that uses this stack behavior brings to our attention that fact that a PID
controller with no setpoint is not a meaningful entity, so we add a test that
checks that the PID class rejects that situation by raising an exception.

	 >>> pid = reload(pid)
	 >>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0)
	

	 >>> controller.push_setpoint(7)
	 >>> controller.setpoint
	 [0.0, 7.0]

	 >>> controller.push_setpoint(8.5)
	 >>> controller.setpoint
	 [0.0, 7.0, 8.5]

	 >>> controller.pop_setpoint()
	 8.5
	 >>> controller.setpoint

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[43]

	 [0.0, 7.0]
	
	 >>> controller.pop_setpoint()
	 7.0
	 >>> controller.setpoint
	 [0.0]
	
	 >>> controller.pop_setpoint()
	 Traceback (most recent call last):
	 ValueError: PID controller must have a setpoint

What just happened?
Our clients gave us a pretty good initial specification, but it left a lot of details to assumption.
By writing these tests, we've codified exactly what our goal is. Writing the tests forced us to
make our assumptions explicit. Additionally, we've gotten a chance to use the object, which
gives us an understanding of it that would otherwise be hard to get at this stage.

Normally we'd place the doctests in the same file as the specification, and in fact that's what
you'll find in the book's code archive. In the book format, we used the specification text as
the description for each step of the example.

You could ask how many tests we should write for each piece of the specification. After
all, each test is for certain specific input values, so when code passes it, all it proves is that
the code produces the right results for that specific input. The code could conceivably
do something entirely wrong, and still pass the test. The fact is that it's usually a safe
assumption that the code you'll be testing was supposed to do the right thing, and so a
single test for each specified property fairly well distinguishes between working and
non-working code. Add to that tests for any boundaries specified—for "The X input may
be between the values 1 and 7, inclusive" you might add tests for X values of 0.9 and
7.1 to make sure they weren't accepted—and you're doing fine.

There were a couple of tricks we pulled to make the tests repeatable and independent. In
every test after the first, we called the reload function on the pid module, to reload it
from the disk. That has the effect of resetting anything that might have changed in the
module, and causes it to re-import any modules that it depends on. That latter effect is
particularly important, since in the tests of measure, we replaced time.time with a
dummy function. We want to be sure that the pid module uses the dummy time function,
so we reload the pid module. If the real time function is used instead of the dummy, the
test won't be useful, because there will be only one time in all of history at which it would
succeed. Tests need to be repeatable.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[44]

The dummy time function is created by making an iterator that counts through the integers
from 1 to 999 (as floating point values), and binding time.time to that iterator's next
method. Once we were done with the time-dependent tests, we replaced the original
time.time.

Right now, we have tests for a module that doesn't exist. That's good! Writing the tests
was easier than writing the module will be, and it gives us a stepping stone toward getting
the module right, quickly and easily. As a general rule, you always want to have tests ready
before the code that they test is written.

Pop quiz – unit testing during design
1.	 Why should we care whether tests are independent of each other, when the code

they're testing is imaginary and the tests can't even be run?

2.	 Why are you, as a programmer, writing tests during this phase? Should this be part
of the job of the people writing the specification instead?

3.	 Tests at this phase try to make use of code that hasn't been written yet, and so they
end up—in a sense—defining that code. What advantages and disadvantages does
this have?

Have a go hero
Try this a few times on your own: Describe some program or module that you'd enjoy having
access to in real life, using normal language. Then go back through it and try writing tests,
describing the program or module. Keep an eye out for places where writing the test makes
you aware of ambiguities in your prior description, or makes you realize that there's a better
way to do something.

Development phase
With tests in hand, we're ready to write some code. The tests will act as a guide to us, a
specification that actively tells us when we get something wrong.

Time for action – unit testing during development
1.	 The first step is to run the tests. Of course, we have a pretty good idea of what's

going to happen; they're all going to fail. Still, it's useful to know exactly what the
failures are, because those are the things that we need to address by writing code.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[45]

There are many more failing tests after that, but you get the idea.

2.	 Taking our cue from the tests, and our references on PID controllers, we write the
pid.py module:

from time import time

class PID:
 def __init__(self, P, I, D, setpoint):
 self.gains = (float(P), float(I), float(D))
 self.setpoint = [float(setpoint)]
 self.previous_time = None
 self.previous_error = 0.0
 self.integrated_error = 0.0

 def push_setpoint(self, target):
 self.setpoint.append(float(target))

 def pop_setpoint(self):
 if len(self.setpoint) > 1:
 return self.setpoint.pop()
 raise ValueError('PID controller must have a setpoint')

 def measure(self, value):
 now = time()
 P, I, D = self.gains

 err = value - self.setpoint[-1]

 result = P * err
 if self.previous_time is not None:
 delta = now - self.previous_time
 self.integrated_error +q= err * delta
 result += I * self.integrated_error
 result += D * (err - self.previous_error) / delta

 self.previous_error = err
 self.previous_time = now

 return result

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[46]

3.	 Next we run the tests again. We're hoping that they will all pass, but unfortunately
the measure method seems to have some sort of bug.

There are several more reports showing similar things (five tests in total should fail).
The measure function is working backwards, returning positive numbers when it
should be returning negative, and vice-versa.

4.	 We know we need to look for a sign error in the measure method, so we don't
have too much trouble finding and fixing the bug. The measured value should be
subtracted from the setpoint, not the other way around, on the fourth line of
the measure method:

 err = self.setpoint[-1] – value

After fixing that, we find that all the tests pass.

What just happened?
We used our tests to tell us what needed to be done and when our code was finished. Our
first run of the tests gave us a list of things that needed to be written; a to-do list, of sorts.
After we wrote some code, we ran the tests again to see if it was doing what we expected,
which gave us a new to-do list. We keep on alternating between running the tests and
writing code until the tests all passed. When all the tests pass, either we're done, or we
need to write more tests.

Whenever we find a bug that isn't already caught by a test, the right thing to do is to add a
test that catches it, and then to fix it. That way, you not only have a fixed bug, you have a test
that covers some aspect of the program that wasn't tested before. That test may well catch
other bugs in the future, or tell you if you accidentally re-introduced the original bug.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[47]

This "test a little, code a little" style of programming is called Test-Driven Development, and
you'll find that it's very productive.

Notice that the pattern in the way the tests failed was immediately apparent. There's no
guarantee that this will always be the case, of course, but it's quite common. Combined with
the ability to narrow your attention to the specific units that are having problems, debugging
is usually a snap.

Another thing to think about is test isolation. The methods of the PID class make use of
variables stored in self, which means that in order for the tests to be isolated, we have to
make sure that none of the changes to self variables made by any method propagate to
any other method. We did that by just reloading the pid module and making a new instance
of the PID class for each test. As long as the test (and the code being tested) doesn't invoke
any other methods on self, that's all that we need.

Feedback phase
So, we have a PID controller, and it passes all the tests. We're feeling pretty good. Time to
brave the lions, and show it to the client!

Luckily for us, for the most part they like it. They do have a few requests, though: They
want us to let them optionally specify the current time as a parameter to measure, instead
of just using time.time to figure it out. They also want us to change the signature of the
constructor so that it takes an initial measurement and optional time as parameters. Finally,
they want us to rename the measure function to calculate_response, because they
think that more clearly describes what it does.

Time for action – unit testing during feedback
So, how are we going to deal with this? The program passes all the tests, but the tests no
longer reflect the requirements.

1.	 Add the initial parameter to the constructor test, and update the expected results.

2.	 Add a second constructor test, which tests the optional time
parameter that is now expected to be part of the constructor.

3.	 Change the measure method's name to calculate_response in all tests.

4.	 Add the initial constructor parameter in the calculate_response test
– while we're doing that, we notice that this is going to change the way
the calculate_response function behaves. We contact the client for
clarification, and they decide it's okay, so we update the expectations
to match what we calculate should happen after the change.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[48]

5.	 Add a second calculate_response test, which checks its behavior when the
optional time parameter is supplied.

6.	 After making all those changes, our specification/test file looks like the following.
Lines that have been changed or added are formatted differently, to help you
spot them more easily.

We want a class that implements a PID controller for a single
variable. The measurement, setpoint, and output should all be real
numbers. The constructor should accept an initial measurement
value in addition to the gains and setpoint.

>>> import time

>>> real_time = time.time

>>> time.time = (float(x) for x in xrange(1, 1000)).next

>>> import pid

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0,

... initial=12)

>>> controller.gains

(0.5, 0.5, 0.5)

>>> controller.setpoint

[0.0]

>>> controller.previous_time

1.0

>>> controller.previous_error

-12.0

>>> controller.integrated_error

0.0

>>> time.time = real_time

The constructor should also optionally accept a parameter
specifying when the initial measurement was taken.

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=1,

... initial=12, when=43)

>>> controller.gains

(0.5, 0.5, 0.5)

>>> controller.setpoint

[1.0]

>>> controller.previous_time

43.0

>>> controller.previous_error

-11.0

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[49]

>>> controller.integrated_error

0.0

>>> real_time = time.time

>>> time.time = (float(x) for x in xrange(1, 1000)).next

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0,

... initial=12)

>>> controller.calculate_response(6)

-3.0

>>> controller.calculate_response(3)

-4.5

>>> controller.calculate_response(-1.5)

-0.75

>>> controller.calculate_response(-2.25)

-1.125

>>> time.time = real_time

The calculate_response method should be willing to accept a
parameter specifying at what time the call is happening.

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0,

... initial=12, when=1)

>>> controller.calculate_response(6, 2)

-3.0

>>> controller.calculate_response(3, 3)

-4.5

>>> controller.calculate_response(-1.5, 4)

-0.75

>>> controller.calculate_response(-2.25, 5)

-1.125

We need to be able to adjust the setpoint at runtime, but we want
it to have a memory, so that we can easily return to the previous
setpoint.

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0,

... initial=12)

>>> controller.push_setpoint(7)

>>> controller.setpoint

[0.0, 7.0]

>>> controller.push_setpoint(8.5)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[50]

>>> controller.setpoint

[0.0, 7.0, 8.5]

>>> controller.pop_setpoint()

8.5

>>> controller.setpoint

[0.0, 7.0]

>>> controller.pop_setpoint()

7.0

>>> controller.setpoint

[0.0]

>>> controller.pop_setpoint()

Traceback (most recent call last):

ValueError: PID controller must have a setpoint

What just happened?
Our tests didn't match the requirements any more, so they had to change.

Well and good, but we don't want them to change too much, because our collection of tests
helps us avoid regressions in our code. Regressions are changes that cause something that
used to work, to stop working. One of the best ways to avoid them is to avoid deleting tests.
If you still have tests in place that check for every desired behavior and every bug fixed, then
if you introduce a regression you find out about it immediately.

That's one reason why we added new tests to check the behavior when the optional time
parameters are supplied. The other reason is that if we added those parameters to the
existing tests, we wouldn't have any tests of what happens when you don't use those
parameters. We always want to check every code path through each unit.

Sometimes, a test just isn't right any more. For example, tests that make use of the measure
method are just plain wrong, and need to	 be updated to call calculate_response
instead. When we change these tests, though, we still change them as little as possible. After
all, we don't want the test to stop checking for old behavior that's still correct, and we don't
want to introduce a bug in the test itself.

The addition of the initial parameter to the constructor is a big deal. It not only changes
the way the constructor should behave, it also changes the way the calculate_response
(née measure) method should behave in a rather dramatic way. Since this is a change in the
correct behavior (a fact which we didn't realize until the tests pointed it out to us, which in
turn allowed us to get confirmation of what the correct behavior should be from our clients
before we started writing the code), we have no choice but to go through and change the
tests, recalculating the expected outputs. However, doing all that work has a benefit over
and above the future ability to check that the function is working correctly; it makes it
much easier to comprehend how the function should work when we actually write it.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[51]

Back to the development phase
Well, it's time to go back into development. In real life, there's no telling how often
we'd have to cycle back and forth between development and feedback, but we would
want to keep the cycle short. The more often we switch back and forth, the more in
contact we are with what our clients really want, and that makes for a more productive,
more rewarding job.

Time for action – unit testing during development... again
We've got our updated tests, so now it's time to get back into a state where all of our
tests pass.

1.	 First off, let's run the tests, and so get a new list of things that need to be done.

There are several more error reports after this, of course. Doctest reports a total of
32 failing examples, although that's not particularly meaningful since none of the
tests are able to even construct a PID object right now. Fixing that constructor would
be a reasonable place to start.

2.	 Using the doctest report as a guide, we set about adjusting the PID class. This is
going to work best as an iterative process, where we make a few changes, then
run the tests, then make a few changes, and so on. In the end, though, we'll end
up with something like the following (the push_setpoint and pop_setpoint
methods are unchanged, so they've been omitted here to save space):

from time import time

class PID:

 def __init__(self, P, I, D, setpoint, initial, when=None):

 self.gains = (float(P), float(I), float(D))

 self.setpoint = [float(setpoint)]

 if when is None:

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[52]

 self.previous_time = time()

 else:

 self.previous_time = float(when)

 self.previous_error = self.setpoint[-1] - float(initial)

 self.integrated_error = 0.0

 def calculate_response(self, value, now=None):

 if now is None:

 now = time()

 else:

 now = float(now)

 P, I, D = self.gains

 err = self.setpoint[-1] - value

 result = P * err

 delta = now - self.previous_time

 self.integrated_error += err * delta

 result += I * self.integrated_error

 result += D * (err - self.previous_error) / delta

 self.previous_error = err

 self.previous_time = now

 return result

We check the tests again, and they all pass.

What just happened?
This wasn't very different from our first time through the development phase. Just as before,
we had a set of tests, and the error report from those tests gives us a checklist of things we
need to fix. As we work, we keep an eye out for things that need to be tested, but aren't yet,
and add those tests. When all the tests pass, we check with our client again (which means
we go back to the feedback phase). Eventually the client will be satisfied. Then we can move
on to releasing the code, and then into the maintenance phase.

As we're working, the tests give us a nice, fast way to get a sense of whether what we're
doing works, and how far along we are. It makes it easy for us to see that the code we're
writing does something, which in turn makes the coding process flow better, and even makes
it more fun. Writing code that just sits there is boring and bug-prone, but because we have
the tests, our code doesn't just sit there. It's active, and we can see the results at any time.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[53]

Maintenance phase
Now that we've passed on our work to our client, we have to make sure that they stay happy
with it. That means fixing any bugs that may have slipped past our tests (hopefully not many)
and making small improvements on request.

Time for action – unit testing during maintenance
Our client has come to us with a change request: they don't want the PID class to accept
negative gain values in its constructor, because negative gains make its output push things
further away from the setpoint, instead of pulling them toward it.

1.	 We add new tests that describe what should happen when negative gains are
passed to the constructor. We're testing something that the old tests don't
describe, so we get to leave the old tests alone and just add new tests. That's
a good thing, because it means that the old tests will be certain to catch
any regressions that we might introduce while we're working on this.

It's important that the P, I and D gains not be negative.

>>> pid = reload(pid)

>>> controller = pid.PID(P=-0.5, I=0.5, D=0.5, setpoint=0,

... initial=12)

Traceback (most recent call last):

ValueError: PID controller gains must be non-negative

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=-0.5, D=0.5, setpoint=0,

... initial=12)

Traceback (most recent call last):

ValueError: PID controller gains must be non-negative

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=-0.5, setpoint=0,

... initial=12)

Traceback (most recent call last):

ValueError: PID controller gains must be non-negative

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[54]

2.	 Run the tests to see what needs doing. As we might expect in this case, doctest
reports three failures, one for each of the tests we just added – The PID class
didn't raise the expected ValueErrors.

3.	 Now we write the code that will make the PID class pass the tests. That's easily
done by adding the following to the constructor:

if P < 0 or I < 0 or D < 0:

 raise ValueError('PID controller gains must be non-negative')

4.	 We run the tests again, and when they all pass, we can report to our client that
the change has been implemented.

Remember, if doctest doesn't print anything, then all the tests
passed. It only tells you about errors, unless you pass -v on its
command line.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[55]

What just happened?
That looked pretty straightforward, but the fact is that our body of tests was a big help to
us here. When we're mucking around in a codebase, trying to update its behavior, or to fix
a bug that we've never even considered might exist, it's easy to break other parts of the
program. This is doubly so when the codebase is one that we haven't worked with for a
while, as is often the case with maintenance requests. Thanks to the expertise stored in
 the tests that we wrote, we don't have to worry about forgetting details of what constitutes
correct behavior, or what might go wrong in various parts of the code. We don't have to
waste time or effort re-learning those details when we come back to the code. Instead,
we can just execute the tests.

Our clients don't necessarily know about our testing process, but they appreciate the fast
turnaround time we can give them because of it.

Reuse phase
Eventually, there comes a time when—if the code we wrote is useful—we'll want to use it
again in a different project. That means we're going to be putting it in a context where the
assumptions made in the code may no longer be valid.

Time for action – unit testing during reuse
Our client wants to use a PID controller in a new project, but there's a twist: The value
that's going to be measured and controlled is represented as a complex number. When we
wrote the PID controller, there was an implicit assumption that the values would always be
representable as floating point numbers. What do we have to do to re-use this code? Let's
find out.

By the way, if you don't know what complex numbers are, don't
worry. They're not actually complicated; a complex number is just
a pair of coordinates, much like latitude and longitude.

1.	 Write some tests that use complex numbers for setpoint, initial and the
measurements. Since we want to make sure we don't break code that still uses
floating point numbers, we don't replace the older tests, we just add more.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[56]

You'll notice that we're using some very random-looking numbers here.
They're not random at all. Complex numbers can be thought of as representing
coordinates; they represent the same values that we used in our earlier tests,
except rotated 45 degrees and translated by 1+1j. For example, where before
we used the value 12, we now use the value of 12 * complex(cos(0.25
* pi), sin(0.25 * pi))+ (1+1j), which is 9.4852813742385
695+9.4852813742385695j. If you don't understand, or don't care, it's
enough to know that the same expression can be used to calculate the value of
every complex number in this example: just substitute the appropriate number
in place of the 12. You can find sin, cos and pi in the math module.

(Some of the input lines here are very long, and have to be wrapped to fit onto the
page. They shouldn't be wrapped in the doctest file.)

We want to be able to use complex numbers as the measurement and
setpoint for the PID controller.

>>> pid = reload(pid)

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5,

... setpoint = 1 + 1j,

... initial = 9.4852813742385695+9.4852813742385695j,

... when = 1)

>>> controller.calculate_response(5.2426406871192848+5.24264068711
92848j, 2)

(-2.1213203435596424-2.1213203435596424j)

>>> controller.calculate_response(3.1213203435596424+3.12132034355
96424j, 3)

(-3.1819805153394638-3.1819805153394638j)

>>> controller.calculate_response(-0.060660171779821193-
0.060660171779821193j, 4)

(-0.53033008588991093-0.53033008588991093j)

>>> controller.calculate_response(-0.5909902576697319-
0.5909902576697319j, 5)

(-0.79549512883486606-0.79549512883486606j)

2.	 Okay, the correct behavior has been calculated and the tests have been
written. Let's run them and see what doesn't work. We run the doctests,
and the first thing that comes out of it is an exception raised in the
constructor. It looks like our floating point assumption is already causing
trouble. There are several more error reports after this, but since the
constructor didn't work, we can't expect them to make much sense.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[57]

3.	 The problems in the constructor arise from passing complex numbers into
the constructor for the float class, which is not allowed. Do we really
need to call float there? Sometimes we do, because we don't want to
use integers for setpoint and initial. Integer division doesn't work
the same way as floating point division in versions of Python less than
3.0, so integers could severely mess up the behavior of the system.

So, we want to call the float constructor on initial and setpoint, unless they
are complex numbers. That makes the constructor look like this (again, watch out for
the wrapping of long lines):

def __init__(self, P, I, D, setpoint, initial, when=None):

 self.gains = (float(P), float(I), float(D))

 if P < 0 or I < 0 or D < 0:

 raise ValueError('PID controller gains must be
non‑negative')

 if not isinstance(setpoint, complex):

 setpoint = float(setpoint)

 if not isinstance(initial, complex):

 initial = float(initial)

 self.setpoint = [setpoint]

 if when is None:

 self.previous_time = time()

 else:

 self.previous_time = float(when)

 self.previous_error = self.setpoint[-1] - initial

 self.integrated_error = 0.0

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Unit Testing with Doctest

[58]

4.	 Okay, we've fixed the constructor. We run the tests again, and all the tests pass!
Somewhat surprisingly, perhaps, the calculate_response function is already
compatible with complex numbers.

What just happened?
Writing our tests originally helped us to determine what assumptions we were making, and
the tests check those assumptions explicitly. Furthermore, even the assumptions that we
didn't know we were making have a tendency to be checked by our tests, because they are
implicit in our expectations. An example of this is the floating point results that the tests
expected. If we had just removed the calls to float in the constructor entirely, all of those
tests that were expecting a float would have failed, telling us that we'd violated an implicit
assumption about the behavior of the code.

Our tests give us confidence that our code is correct (even when its operating on complex
numbers), and that we haven't broken anything else by changing the code. No muss, no fuss;
it works. If one of the tests had failed, that would have told us where the problems lay. Either
way, we know where we are in the project and what needs to be done next, which lets us
keep the process rolling along.

Pop quiz – unit testing
1.	 When you write a test, should you do it while referring to the code being tested, or

should you do it based on your expectations of what correct behavior should be,
before the code is even written?

2.	 True or false: You should avoid changing or deleting tests whenever possible,
and prefer changing them to deleting them when you aren't able to keep them
untouched.

3.	 How often do you think your tests should be run? Can you think of any particularly
good times to execute the tests?

4.	 If your development process is test driven, you as a programmer will spend most of
your time doing what?

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 3

[59]

Have a go hero – test-driven development
Try using the methods that we've talked about in this chapter to implement this plain
language specification:

The library consists of three classes, one representing bank accounts,
one representing people, and one representing monetary transactions.
Person objects should be able to draw on zero or more accounts,
and account objects should be accessible to one or more people.
Transactions should represent the transfer of a certain amount of
money between one person and another, by transferring the money from
an account accessible by the first person to an account accessible by
the second.
Attempts to create invalid transactions should fail.
After having been created, it should be possible to execute a
transaction to perform the actual transfer between accounts.
All monies should be represented as fixed point numbers, not floating
point.

Summary
We learned a lot in this chapter about Unit testing and Test-Driven Development, which are
best-practice disciplines for quickly building reliable programs.

Specifically, we covered the definition of Unit testing, how unit testing can help during each
stage of the development process, what it feels like to use unit testing to drive development,
and how it can make the process quicker and more pleasant.

Now that we've learned about Unit testing, we're ready to talk about making it easier to
isolate tests with the help of mock objects—which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

4
Breaking Tight Coupling by

using Mock Objects

Several times in the previous chapters, we've run across cases where we needed
to go out of our way to make sure that units didn't contaminate each others'
tests. Now we're going to look at a formalization of how to handle those
situations—mock objects—and also at a specific mock object toolkit called
Python Mocker.

In this chapter, we shall:

Examine the ideas of mock objects in general

Learn how to use Python Mocker

Learn how to mock the "self" parameter of a method

So let's get on with it!

Installing Python Mocker
For the first time, we're using a tool that isn't included in the standard Python distribution.
That means that we need to download and install it.







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[62]

Time for action – installing Python Mocker
1.	 At the time of this writing, Python Mocker's home page is located at

http://labix.org/mocker, while its downloads are hosted at
https://launchpad.net/mocker/+download. Go ahead and
download the newest version, and we'll see about installing it.

2.	 The first thing that needs to be done is to unzip the downloaded file. It's a
.tar.bz2, which should just work for Unix, Linux, or OSX users. Windows users
will need a third-party program (7-Zip works well: http://www.7-zip.org/) to
uncompress the archive. Store the uncompressed file in some temporary location.

3.	 Once you have the files unzipped somewhere, go to that location via
the command line. Now, to do this next step, you either need to be
allowed to write files into your Python installation's site-packages
directory (which you are, if you're the one who installed Python in the
first place) or you need to be using Python version 2.6 or higher.

4.	 If you can write to site-packages, type

	 $ python setup.py install

5.	 If you can't write to site-packages, but you're using Python 2.6 or higher, type

	 $ python setup.py install --user

Sometimes, a tool called easy_install can simplify the installation
process of Python modules and packages. If you want to give it a try,
download and install setuptools from http://pypi.python.org/
pypi/setuptools, according to the directions on that page, and then run
the command easy_install mocker. Once that command is done, you
should be ready to use Nose.

Once you have successfully run the installer, Python Mocker is ready for use.

The idea of a mock object
"Mock" in this sense means "imitation," and that's exactly what a mock object does. Mock
objects imitate the real objects that make up your program, without actually being those
objects or relying on them in any way.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[63]

Instead of doing whatever the real object would do, a mock object performs predefined
simple operations that look like what the real object should do. That means its methods
return appropriate values (which you told it to return) or raise appropriate exceptions
(which you told it to raise). A mock object is like a mockingbird; imitating the calls of
other birds without comprehending them.

We've already used one mock object in our earlier work when we replaced time.time with
an object (in Python, functions are objects) that returned an increasing series of numbers.
The mock object was like time.time, except that it always returned the same series of
numbers, no matter when we ran our test or how fast the computer was that we ran it
on. In other words, it decoupled our test from an external variable.

That's what mock objects are all about: decoupling tests from external variables. Sometimes
those variables are things like the external time or processor speed, but usually the variables
are the behavior of other units.

Python Mocker
The idea is pretty straightforward, but one look at that mock version of time.time from
the previous chapter shows that creating mock objects without using a toolkit of some sort
can be a dense and annoying process, and can interfere with the readability of your tests.
This is where Python Mocker (or any of several other mock object toolkits, depending on
preference) comes in.

Time for action – exploring the basics of Mocker
We'll walk through some of the simplest—and most useful—features of Mocker. To
do that, we'll write tests that describe a class representing a specific mathematical
operation (multiplication) which can be applied to the values of arbitrary other
mathematical operation objects. In other words, we'll work on the guts of a
spreadsheet program (or something similar).

We're going to use Mocker to create mock objects to stand in place of the real
operation objects.

1.	 Create up a text file to hold the tests, and add the following at the beginning
(assuming that all the mathematical operations will be defined in a module
called operations):

>>> from mocker import Mocker

>>> import operations

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[64]

2.	 We've decided that every mathematical operation class should have a
constructor accepting the objects representing the new object's operands.
It should also have an evaluate function that accepts a dictionary of variable
bindings as its parameter and returns a number as the result. We can write
the tests for the constructor fairly easily, so we do that first (Note that we've
included some explanation in the test file, which is always a good idea):

We're going to test out the constructor for the multiply
operation, first. Since all that the constructor has to do is
record all of the operands, this is straightforward.

>>> mocker = Mocker()

>>> p1 = mocker.mock()

>>> p2 = mocker.mock()

>>> mocker.replay()

>>> m = operations.multiply(p1, p2)

>>> m.operands == (p1, p2)

True

>>> mocker.restore()

>>> mocker.verify()

3.	 The tests for the evaluate method are somewhat more complicated, because
there are several things we need to test. This is also where we start seeing the real
advantages of Mocker:

Now we're going to check the evaluate method for the multiply
operation. It should raise a ValueError if there are less than two
operands, it should call the evaluate methods of all operations
that are operands of the multiply, and of course it should return
the correct value.

>>> mocker = Mocker()

>>> p1 = mocker.mock()

>>> p1.evaluate({}) #doctest: +ELLIPSIS

<mocker.Mock object at ...>

>>> mocker.result(97.43)

>>> mocker.replay()

>>> m = operations.multiply(p1)

>>> m.evaluate({})

Traceback (most recent call last):

ValueError: multiply without at least two operands is meaningless

>>> mocker.restore()

>>> mocker.verify()

>>> mocker = Mocker()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[65]

>>> p1 = mocker.mock()

>>> p1.evaluate({}) #doctest: +ELLIPSIS

<mocker.Mock object at ...>

>>> mocker.result(97.43)

>>> p2 = mocker.mock()

>>> p2.evaluate({}) #doctest: +ELLIPSIS

<mocker.Mock object at ...>

>>> mocker.result(-16.25)

>>> mocker.replay()

>>> m = operations.multiply(p1, p2)

>>> round(m.evaluate({}), 2)

-1583.24

>>> mocker.restore()

>>> mocker.verify()

4.	 If we run the tests now, we get a list of failed tests. Most of them are due to Mocker
being unable to import the operations module, but the bottom of the list should
look like this:

5.	 Finally, we'll write some code in the operations module that passes these tests,
producing the following:

class multiply:
 def __init__(self, *operands):
 self.operands = operands

 def evaluate(self, bindings):
 vals = [x.evaluate(bindings) for x in self.operands]

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[66]

 if len(vals) < 2:
 raise ValueError('multiply without at least two '
 'operands is meaningless')

 result = 1.0
 for val in vals:
 result *= val
 return result

6.	 Now when we run the tests, none of them should fail.

What just happened?
The difficulty in writing the tests for something like this comes(as it often does) from the
need to decouple the multiplication class from all of the other mathematical operation
classes, so that the results of the multiplication test only depend on whether multiplication
works correctly.

We addressed this problem by using the Mocker framework for mock objects. The way
Mocker works is that you first create an object representing the mocking context, by doing
something such as mocker = Mocker(). The mocking context will help you create mock
objects, and it will store information about how you expect them to be used. Additionally, it
can help you temporarily replace library objects with mocks (like we've previously done with
time.time) and restore the real objects to their places when you're done. We'll see more
about doing that in a little while.

Once you have a mocking context, you create a mock object by calling its mock method, and
then you demonstrate how you expect the mock objects to be used. The mocking context
records your demonstration, so later on when you call its replay method it knows what
usage to expect for each object and how it should respond. Your tests (which use the mock
objects instead of the real objects that they imitate), go after the call to replay.

Finally, after test code has been run, you call the mocking context's restore method
to undo any replacements of library objects, and then verify to check that the actual
usage of the mocks was as expected.

Our first use of Mocker was straightforward. We tested our constructor, which is specified to
be extremely simple. It's not supposed to do anything with its parameters, aside from store
them away for later. Did we gain anything at all by using Mocker to create mock objects to
use as the parameters, when the parameters aren't even supposed to do anything? In fact,
we did. Since we didn't tell Mocker to expect any interactions with the mock objects, it will
report nearly any usage of the parameters (storing them doesn't count, because storing
them isn't actually interacting with them) as errors during the verify step. When we call
mocker.verify(), Mocker looks back at how the parameters were really used and reports
a failure if our constructor tried to perform some action on them. It's another way to embed
our expectations into our tests.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[67]

We used Mocker twice more, except in those later uses we told Mocker to expect a call to an
evaluate method on the mock objects (i.e. p1 and p2), and to expect an empty dictionary
as the parameter to each of the mock objects' evaluate call. For each call we told it to
expect, we also told it that its response should be to return a specific floating point number.
Not coincidentally, that mimics the behavior of an operation object, and we can use the
mocks in our tests of multiply.evaluate.

If multiply.evaluate hadn't called the evaluate methods of mock, or if it had
called one of them more than once, our mocker.verify call would have alerted us to
the problem. This ability to describe not just what should be called but how often each
thing should be called is a very useful too that makes our descriptions of what we expect
much more complete. When multiply.evaluate calls the evaluate method of mock,
the values that get returned are the ones that we specified, so we know exactly what
multiply.evaluate ought to do. We can test it thoroughly, and we can do it without
involving any of the other units of our code. Try changing how multiply.evaluate
works and see what mocker.verify says about it.

Mocking functions
Normal objects (that is to say, objects with methods and attributes created by instantiating
a class) aren't the only things you can make mocks of. Functions are another kind of object
that can be mocked, and it turns out to be pretty easy.

During your demonstration, if you want a mock object to represent a function, just call it.
The mock object will recognize that you want it to behave like a function, and it will make
a note of what parameters you passed it, so that it can compare them against what gets
passed to it during the test.

For example, the following code creates a mock called func, which pretends to be a function
that, when called once with the parameters 56 and hello, returns the number 11. The
second part of the example uses the mock in a very simple test:

>>> from mocker import Mocker

>>> mocker = Mocker()

>>> func = mocker.mock()

>>> func(56, "hello") # doctest: +ELLIPSIS

<mocker.Mock object at ...>

>>> mocker.result(11)

>>> mocker.replay()

>>> func(56, "hello")

11

>>> mocker.restore()

>>> mocker.verify()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[68]

Mocking containers
Containers are another category of somewhat special objects that can be mocked. Like
functions, containers can be mocked by simply using a mock object as if it were a container
during your example.

Mock objects are able to understand examples that involve the following container
operations: looking up a member, setting a member, deleting a member, finding the length,
and getting an iterator over the members. Depending on the version of Mocker, membership
testing via the in operator may also be available.

In the following example, all of the above capabilities are demonstrated, but the in tests are
disabled for compatibility with versions of Mocker that don't support them. Keep in mind
that even though, after we call replay, the object called container looks like an actual
container, it's not. It's just responding to stimuli we told it to expect, in the way we told it to
respond. That's why, when our test asks for an iterator, it returns None instead. That's what
we told it to do, and that's all it knows.

>>> from mocker import Mocker

>>> mocker = Mocker()
>>> container = mocker.mock()

>>> container['hi'] = 18

>>> container['hi'] # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(18)

>>> len(container)
0
>>> mocker.result(1)

>>> 'hi' in container # doctest: +SKIP
True
>>> mocker.result(True)

>>> iter(container) # doctest: +ELLIPSIS
<...>
>>> mocker.result(None)

>>> del container['hi']
>>> mocker.result(None)

>>> mocker.replay()

>>> container['hi'] = 18

>>> container['hi']
18

>>> len(container)
1

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[69]

>>> 'hi' in container # doctest: +SKIP
True

>>> for key in container:
... print key
Traceback (most recent call last):
TypeError: iter() returned non-iterator of type 'NoneType'

>>> del container['hi']

>>> mocker.restore()
>>> mocker.verify()

Something to notice in the above example is that during the initial phase, a few of the
demonstrations (for example, the call to len) did not return a mocker.Mock object, as we
might have expected. For some operations, Python enforces that the result is of a particular
type (for example, container lengths have to be integers), which forces Mocker to break
its normal pattern. Instead of returning a generic mock object, it returns an object of the
correct type, although the value of the returned object is meaningless. Fortunately, this only
applies during the initial phase, when you're showing Mocker what to expect, and only in a
few cases, so it's usually not a big deal. There are times when the returned mock objects are
needed, though, so it's worth knowing about the exceptions.

Parameter matching
Sometimes, we would like our mocked functions and methods to accept a whole domain
of parameters, instead of limiting itself to the accepting objects that compare equal to
the parameters we specifically told it about. This can be useful for any number of reasons:
perhaps the mock needs to accept an external variable as a parameter (the current time,
or available disk space, for example), or maybe the mock example will be invoked multiple
times (which we'll discuss soon), or maybe the parameters are simply not important to the
definition of correct behavior.

We can tell a mock function to accept a domain of parameters by using the ANY, ARGS,
KWARGS, IS, IN, CONTAINS, and MATCH special values, all of which are defined in the
mocker module. These special values are passed to a mock object as function call
parameters during its demonstration phase (before you call replay).

ANY
Passing ANY as a function parameter causes the object to accept any single object as its
parameter in that position.

>>> from mocker import Mocker, ANY
>>> mocker = Mocker()
>>> func = mocker.mock()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[70]

>>> func(7, ANY) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.replay()
>>> func(7, 'this could be anything')
5
>>> mocker.restore()
>>> mocker.verify()

ARGS
Passing ARGS as a function parameter causes the object to accept any number of positional
arguments, as if it had been declared with *args in its parameter list.

>>> from mocker import Mocker, ARGS
>>> mocker = Mocker()
>>> func = mocker.mock()
>>> func(7, ARGS) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.replay()
>>> func(7, 'this could be anything', 'so could this', 99.2)
5
>>> mocker.restore()
>>> mocker.verify()

KWARGS
Passing KWARGS as a function parameter causes the object to accept any number of keyword
arguments, as if it had been declared with **kwargs in its parameter list.

>>> from mocker import Mocker, KWARGS
>>> mocker = Mocker()
>>> func = mocker.mock()
>>> func(7, KWARGS) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.replay()
>>> func(7, a='this could be anything', b='so could this')
5
>>> mocker.restore()
>>> mocker.verify()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[71]

IS
Passing IS(some_object) is unusual, because instead of being an inexact parameter,
it's more exact than the default. Mocker will normally accept any parameter that is == to
the value passed during the initial phase, but if you use IS, it instead checks whether the
parameter and some_object are in fact the exact same object, and only accepts the call if
they are.

>>> from mocker import Mocker, IS
>>> mocker = Mocker()
>>> param = [1, 2, 3]
>>> func = mocker.mock()
>>> func(7, IS(param)) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.replay()
>>> func(7, param) # func(7, [1, 2, 3]) would fail
5
>>> mocker.restore()
>>> mocker.verify()

IN
Passing IN(some_container) causes Mocker to accept any parameter that is contained in
the container object called some_container.

>>> from mocker import Mocker, IN
>>> mocker = Mocker()
>>> func = mocker.mock()
>>> func(7, IN([45, 68, 19])) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> func(7, IN([45, 68, 19])) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> func(7, IN([45, 68, 19])) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.replay()
>>> func(7, 19)
5
>>> func(7, 19)
5
>>> func(7, 45)
5
>>> mocker.restore()
>>> mocker.verify()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[72]

CONTAINS
Passing CONTAINS(some_object) causes Mocker to accept any parameter for which
some_object in parameter is True.

>>> from mocker import Mocker, CONTAINS
>>> mocker = Mocker()
>>> func = mocker.mock()
>>> func(7, CONTAINS(45)) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.replay()
>>> func(7, [12, 31, 45, 18])
5
>>> mocker.restore()
>>> mocker.verify()

MATCH
Finally, if none of the above lets you describe the conditions under which you want Mocker
to accept a parameter as matching its expectation, you can pass MATCH(test_function).
The test_function should be a function with one parameter, which will be passed the
received parameter when the mocked function gets called. If the test_function returns
True, the parameter is accepted.

>>> from mocker import Mocker, MATCH
>>> def is_odd(val):
... return val % 2 == 1
>>> mocker = Mocker()
>>> func = mocker.mock()
>>> func(7, MATCH(is_odd)) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.replay()
>>> func(7, 1001)
5
>>> mocker.restore()
>>> mocker.verify()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[73]

Mocking complex expressions
It would be nice to be able to combine the various operations that Mocker's mock objects
support. Simple attribute accesses, container member accesses and method calls make
up the majority of object interactions, but they are commonly used in combinations,
like container[index].attribute.method(). We could write a demonstration of
something equivalent to this out, step-by-step, using the things we already know about
Mocker's mock objects, but it would be nice to be able to just write the example as we
expect it to be in the actual code.

Fortunately, we can usually do exactly that. Throughout the previous examples in this
chapter, you've been seeing expressions that return <mocker.Mock object at ...>.
Those return values are mock objects, just like the ones you create by calling Mocker.
mock, and they can be used in the same ways. That means that as long as part of a complex
expression returns a mock object during the demonstration, you can continue chaining
more parts of the complex expression onto it. With something like container[index].
attribute.method(), container[index] returns a mock object, attribute access on
that object returns another mock object, and we call a method on that object. The method
call also returns a mock object, but we don't need to do anything with it in order to correctly
demonstrate our expectations.

Mocker remembers our demonstration of use, no matter how complex it is or how deeply
we drill down into nested objects. Later after we call replay, it checks that the usage is as
we described it, even for very complicated usage patterns.

Have a go hero
Try telling Mocker to expect a function call which returns a string, which is then trimmed of
whitespace and split on commas, and do it all as a single complex expression.

Returning iterators
So far, we've been calling Mocker.result to tell Mocker that the result of evaluating a
particular example expression should be some specific value. That's great for simulating
most expressions, and it covers the common usage of functions and methods as well, but
it doesn't really do the trick for simulating a generator, or other function that returns an
iterator. To handle that, we call Mocker.generate instead of Mocker.result, like so:

>>> from mocker import Mocker
>>> from itertools import islice
>>> mocker = Mocker()
>>> generator = mocker.mock()
>>> generator(12) # doctest: +ELLIPSIS
<mocker.Mock object at ...>

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[74]

>>> mocker.generate([16, 31, 24, 'hike'])

>>> mocker.replay()
>>> tuple(islice(generator(12), 1, 2))
(31,)
>>> mocker.restore()
>>> mocker.verify()

Raising exceptions
Some expressions raise an exception instead of returning a result, so we need to be
able to make our mock objects do the same. Fortunately, it's not difficult: you call
Mocker.throw to tell Mocker that the correct response to an expected expression
is to raise a particular exception.

>>> from mocker import Mocker
>>> mocker = Mocker()
>>> obj = mocker.mock()
>>> obj.thingy # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.throw(AttributeError('thingy does not exist'))

>>> mocker.replay()
>>> obj.thingy
Traceback (most recent call last):
AttributeError: thingy does not exist
>>> mocker.restore()
>>> mocker.verify()

Calling functions via a mock
Sometimes a function that we're mocking has side-effects that are important to our tests.
Mocker handles these situations by allowing you to specify one or more functions that
should be called, when a particular expression occurs. These functions can either be existing
functions that are pulled from somewhere in your codebase, or they can be special functions
that you've embedded in your test specifically to produce the desired side effects.

There is one restriction on which functions can be called as a result of interacting with one of
the mock objects of Mocker: such a function must not require any parameters. This isn't as
big a restriction as you might think, because you know exactly which parameters should be
passed to the called functions, and so you can write a small wrapper function that just calls
the target function with those parameters. This is demonstrated in the next example.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[75]

The Python lambda keyword is a mechanism for wrapping a single expression
up as a function. When the function gets called, the expression is evaluated, and
whatever the expression evaluated to is returned from the function. The uses of
lambda are many and varied, but using it to create minor wrappers around calls
to other functions is a common one.

Calling functions in this way isn't exclusive with having the mocked function return a result.
In the following example, the mocked function makes two function calls and returns the
number 5.

>>> from mocker import Mocker
>>> from sys import stdout
>>> mocker = Mocker()
>>> obj = mocker.mock()
>>> obj.method() # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.call((lambda: stdout.write('hi')))
>>> mocker.call((lambda: stdout.write('yo\n')))
>>> mocker.result(5)

>>> mocker.replay()

>>> obj.method()
hiyo
5

>>> mocker.restore()
>>> mocker.verify()

Specifying that an expectation should occur multiple times
As you may have noticed in some of the preceding examples, sometimes telling Mocker what
to expect can get repetitive. The example of the IN parameter matcher show this well: We
did a lot of repetitive work telling Mocker that we expected three calls to the func function.
That makes the test long (which reduces its readability) and it violates the DRY (Don't Repeat
Yourself) principle of programming, making it harder to modify the test later on. Besides
which, it's annoying to write all those duplicate expectations.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[76]

To solve this problem, Mocker allows us to specify the number of times that an expectation
ought to occur during the execution of the test. We do this by calling Mocker.count to
specify the expected number of repetitions. To see the simplest way to do that, let's
re-write the IN example, so that we don't have to keep repeating ourselves:

>>> from mocker import Mocker, IN
>>> mocker = Mocker()
>>> func = mocker.mock()
>>> func(7, IN([45, 68, 19])) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.count(3)

>>> mocker.replay()
>>> func(7, 19)
5
>>> func(7, 19)
5
>>> func(7, 45)
5
>>> mocker.restore()
>>> mocker.verify()

Notice how parameter matching works well with specifying a count, letting us compress
several different calls to func into a single expectation, even though they have different
parameters. By using these two features in conjunction, the expectations of a mock can
often be shortened significantly, removing redundant information. Keep in mind though, that
you don't want to remove important information from a test; if it mattered that the first call
to func had 19 as its parameter, or that the calls came in a particular order, compressing the
expectation this way would lose that information, which would compromise the test.

In the above example, we specified a precise number of times to expect the call to func
to repeat, but count is more flexible than that. By giving it two parameters, count can be
told to expect any number of repetitions between a minimum and a maximum number. As
long as the actual number of repetitions during the test is at least as many as the minimum
number, and no more than the maximum number, Mocker will accept it as correct usage.

>>> from mocker import Mocker, IN
>>> mocker = Mocker()
>>> func = mocker.mock()
>>> func(7, IN([45, 68, 19])) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.count(1, 3)

>>> mocker.replay()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[77]

>>> func(7, 19)
5
>>> func(7, 45)
5
>>> func(7, 19)
5
>>> mocker.restore()
>>> mocker.verify()

Finally, it's possible to specify that an expectation is to be repeated at least a certain number
of times, but with no maximum number of repetitions. As long as the expectation is met at
least as many times as specified, Mocker considers its usage to have been correct. To do this,
we pass None as the maximum parameter when we call count.

>>> from mocker import Mocker, IN
>>> mocker = Mocker()
>>> func = mocker.mock()
>>> func(7, IN([45, 68, 19])) # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(5)
>>> mocker.count(1, None)

>>> mocker.replay()
>>> [func(7, 19) for x in range(50)] == [5] * 50
True
>>> mocker.restore()
>>> mocker.verify()

That last example uses a couple of esoteric Python features. On the left side of
the == is a "list comprehension," which is a compact way of constructing a list
as a transformation of another iterable. On the right is list multiplication, which
creates a new list containing the members of the old list repeated a number of
times—in this case, the list contains 50 repetitions of the value 5.

Replacing library objects with mocks
Several times, we've seen a need to replace something outside of our own code with a mock
object: for example, time.time needed to be replaced with something that produced
predictable results, in order for the tests on our PID controller to be meaningful.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[78]

Mocker provides us with a tool to address this common need, and it's quite simple to
use. Mocker's mocking contexts contain a method called replace which behaves pretty
much like mock from our point of view, but which is able to completely replace an existing
object with a mock object, no matter what module (or modules) it exists in, or when it was
imported. Even better, when we call restore the mock goes away, and original object is
returned to its rightful place.

This gives us an easy way to isolate our tests even from library code that we couldn't
normally control, and to do it without leaving any trace after we're done.

To illustrate replace, we're going to temporarily replace time.time with a mock. We've
done this before—in our PID tests—in an ad hoc manner. It made our tests ugly and difficult
to read. It also only replaced the name time.time with our mock: if we'd done from
time import time in our PID code, the replacement wouldn't have caught it unless
the replacement was done before we imported PID. Mocker will handle such complex
replacements correctly, no matter when the imports occur or what form they take, with
no extra effort on our part.

>>> from time import time
>>> from mocker import Mocker

>>> mocker = Mocker()
>>> mock_time = mocker.replace('time.time')

>>> mock_time() # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(1.3)

>>> mock_time() # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(2.7)

>>> mock_time() # doctest: +ELLIPSIS
<mocker.Mock object at ...>
>>> mocker.result(3.12)

>>> mocker.replay()
>>> '%1.3g' % time()
'1.3'
>>> '%1.3g' % time()
'2.7'
>>> '%1.3g' % time()
'3.12'
>>> mocker.restore()
>>> mocker.verify()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[79]

Notice that we imported time before we replace it with a mock, and yet when we actually
used it, it turned out to be the mock we were using. After the call to restore, if we'd called
time again, it would have been the real time function again.

Why did we use string formatting on the output from time? We did this
because floating point numbers are imprecise, meaning that the number
we entered as 3.12, for example, might be represented in the system as
3.1200000000000001 or some other value that is very close to, but not precisely,
3.12. The exact value used can vary from system to system, so comparing against
a float makes your tests less portable. Our string formatting rounded the number
to just the relevant digits.

Pop quiz – Mocker usage
1.	 Which of the following would you use to check whether a parameter passed to a

mock was one of a set of allowed parameters: CONTAINS, IN, IS?

2.	 When you specify that an expectation can repeat, how do you specify that there is
no upper limit to how many times it can be repeated?

3.	 What does mocker.verify() do?

Have a go hero – mocking datetime
Take a look at the following test code, and fill in the missing Mocker demonstrations so that
the test passes:

>>> from datetime import datetime
>>> from mocker import Mocker
>>> mocker = Mocker()

Here's where your Mocker demonstrations should go.

>>> mocker.replay()
>>> now = datetime.now()
>>> then = now.replace(hour = 12)
>>> then.isocalendar()
(2009, 24, 3)
>>> then.isoformat()
'2009-06-10T12:30:39.812555'
>>> mocker.restore()
>>> mocker.verify()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[80]

Mocking self
When a method of an object is called, it's first parameter is a reference to the object that
contains the method. We'd like to be able to replace it with a mock, because that's the only
way to truly separate each method, so that each can be tested as an individual unit. If we
can't mock self, the methods will tend to interfere with each other's tests by interacting
via their containing object.

The stumbling block in all this is that the self object isn't passed explicitly by the caller
when a method gets called: Python already knows which object the method is bound to,
and fills it in automatically. How can we substitute a mock for a parameter that doesn't
come from us?

We can solve this problem by finding the function that we're testing in its class and
invoking it directly, rather than invoking it as a method bound to an object. That way,
we can pass all of the parameters, including the first one, without the interpreter
performing any of its magic.

Time for action – passing a mock object as self
1.	 Remember the testable class that we used, among other things, to demonstrate

how it can be difficult to separate methods so we can deal with them as units?
Although we saw this before in Chapter 3, here it is again:

class testable:
 def method1(self, number):
 number += 4
 number **= 0.5
 number *= 7
 return number

 def method2(self, number):
 return ((number * 2) ** 1.27) * 0.3

 def method3(self, number):
 return self.method1(number) + self.method2(number)

 def method4(self):
 return self.method3(id(self))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 4

[81]

2.	 We're going to write a unit test for method3. Like all unit tests, it needs to not
involve any code from any other unit, which in this case means that self.method1
and self.method2 need to be mock objects. The best way to achieve that is to
have self itself be a mock object, so that's what we're going to do. The first step
is to create a mock object that expects the interactions that method3 ought
to perform:

>>> from testable import testable

>>> from mocker import Mocker

>>> mocker = Mocker()

>>> target = mocker.mock()

>>> target.method1(12) # doctest: +ELLIPSIS

<mocker.Mock object at ...>

>>> mocker.result(5)

>>> target.method2(12) # doctest: +ELLIPSIS

<mocker.Mock object at ...>

>>> mocker.result(7)

3.	 method3 is supposed to call method1 and method2, and the mock we just created
expects to see calls to method1 and method2. So far, so good, so what's the trick to
getting this mock object to be self for a call to method3? Here's the rest of the test:

>>> mocker.replay()

>>> testable.method3.im_func(target, 12)

12

What just happened?
We went to the testable class and looked up its method3 member, which is something
called an "unbound method object." Once we had an unbound method object, we looked
inside of it for its im_func attribute, which is simply a function, without any of the
razzmatazz associated with methods. Once we had a normal function in hand, it was
easy to call it, and pass our mock object as its first parameter.

Python version 3.0 made this easier, by getting rid of unbound method
objects in favor of just storing the function object directly in the class.
This means that if you're using Python 3.0 or higher, you can just call
testable.method3(target, 12).

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Breaking Tight Coupling by using Mock Objects

[82]

Summary
We learned a lot in this chapter about mocking, and about the Python Mocker. We
focused on the assorted features that Mocker provides to help you keep units separate
from each other.

Specifically, we covered what mock objects are, and what they're for, how to use Python
Mocker to make mocking easier, lots of ways to customize Mocker's behavior to suit your
needs, and how to substitute a mock object for a method's self parameter.

By this time, we've started to see situations where doctest—simple and easy though it
is—begins getting unwieldy. In the next chapter, we're going to look at Python's other
built-in framework for unit testing: unittest.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

5
When Doctest isn't Enough:

Unittest to the Rescue

As the tests get more detailed (or complex), or they require more setup code to
prepare the way for them, doctest begins to get a little bit annoying. The very
simplicity that makes it the best way to write testable specifications and other
simple tests starts to interfere with writing tests for complicated things.

In this chapter we shall:

Learn how to write and execute tests in the unittest framework

Learn how to express familiar testing concepts using unittest

Discuss the specific features that make unittest suitable for more complicated
testing scenarios

Learn about of couple of Mocker's features that integrate well with unittest

So let's get on with it!

Basic unittest
Before we start talking about new concepts and features, let's take a look at how to
use unittest to express the ideas that we've already learned about. That way, we'll
have something solid to ground our new understanding into.









This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

When Doctest isn't Enough: Unittest to the Rescue

[84]

Time for action – testing PID with unittest
We'll revisit the PID class (or at least the tests for the PID class) from Chapter 3. We'll rewrite
the tests so that they operate within the unittest framework.

Before moving on, take a moment to refer back to the final version of the pid.txt file from
Chapter 3. We'll be implementing the same tests using the unittest framework.

1.	 Create a new file called test_pid.py in the same directory as pid.py. Notice
that this is a .py file: unittest tests are pure python source code, rather than
being plain text with source code embedded in it. That means the tests will be less
useful from a documentary point of view, but grants other benefits in exchange.

2.	 Insert the following code into your newly-created test_pid.py (and please
note that a few lines are long enough to get wrapped on the book's page):

from unittest import TestCase, main
from mocker import Mocker

import pid

class test_pid_constructor(TestCase):
 def test_without_when(self):
 mocker = Mocker()
 mock_time = mocker.replace('time.time')
 mock_time()
 mocker.result(1.0)

 mocker.replay()

 controller = pid.PID(P=0.5, I=0.5, D=0.5,
 setpoint=0, initial=12)

 mocker.restore()
 mocker.verify()

 self.assertEqual(controller.gains, (0.5, 0.5, 0.5))
 self.assertAlmostEqual(controller.setpoint[0], 0.0)
 self.assertEqual(len(controller.setpoint), 1)
 self.assertAlmostEqual(controller.previous_time, 1.0)
 self.assertAlmostEqual(controller.previous_error, -12.0)
 self.assertAlmostEqual(controller.integrated_error, 0)

 def test_with_when(self):
 controller = pid.PID(P=0.5, I=0.5, D=0.5,
 setpoint=1, initial=12,
 when=43)

 self.assertEqual(controller.gains, (0.5, 0.5, 0.5))
 self.assertAlmostEqual(controller.setpoint[0], 1.0)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 5

[85]

 self.assertEqual(len(controller.setpoint), 1)
 self.assertAlmostEqual(controller.previous_time, 43.0)
 self.assertAlmostEqual(controller.previous_error, -11.0)
 self.assertAlmostEqual(controller.integrated_error, 0)

class test_calculate_response(TestCase):
 def test_without_when(self):
 mocker = Mocker()
 mock_time = mocker.replace('time.time')
 mock_time()
 mocker.result(1.0)
 mock_time()
 mocker.result(2.0)
 mock_time()
 mocker.result(3.0)
 mock_time()
 mocker.result(4.0)
 mock_time()
 mocker.result(5.0)

 mocker.replay()

 controller = pid.PID(P=0.5, I=0.5, D=0.5,
 setpoint=0, initial=12)

 self.assertEqual(controller.calculate_response(6), -3)
 self.assertEqual(controller.calculate_response(3), -4.5)
 self.assertEqual(controller.calculate_response(-1.5), -0.75)
 self.assertEqual(controller.calculate_response(‑2.25),
‑1.125)

 mocker.restore()
 mocker.verify()
 def test_with_when(self):
 controller = pid.PID(P=0.5, I=0.5, D=0.5,
 setpoint=0, initial=12,
 when=1)

 self.assertEqual(controller.calculate_response(6, 2), -3)
 self.assertEqual(controller.calculate_response(3, 3), -4.5)
 self.assertEqual(controller.calculate_response(‑1.5, 4),
‑0.75)
 self.assertEqual(controller.calculate_response(‑2.25, 5),
‑1.125)

if __name__ == '__main__':
 main()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

When Doctest isn't Enough: Unittest to the Rescue

[86]

3.	 Run the tests by typing:

	 $ python test_pid.py

What just happened?
Let's go through the code section and see what each part does. After that, we'll talk about
what it all means when put together.

from unittest import TestCase, main
from mocker import Mocker

import pid

class test_pid_constructor(TestCase):
 def test_without_when(self):
 mocker = Mocker()
 mock_time = mocker.replace('time.time')
 mock_time()
 mocker.result(1.0)

 mocker.replay()

 controller = pid.PID(P=0.5, I=0.5, D=0.5,
 setpoint=0, initial=12)

 mocker.restore()
 mocker.verify()

 self.assertEqual(controller.gains, (0.5, 0.5, 0.5))
 self.assertAlmostEqual(controller.setpoint[0], 0.0)
 self.assertEqual(len(controller.setpoint), 1)
 self.assertAlmostEqual(controller.previous_time, 1.0)
 self.assertAlmostEqual(controller.previous_error, -12.0)
 self.assertAlmostEqual(controller.integrated_error, 0)

After a little bit of setup code, we have a test that the PID controller works correctly when
not given a when parameter. Mocker is used to replace time.time with a mock that always
returns a predictable value, and then we use several assertions to confirm that the attributes
of the controller have been initialized to the expected values.

 def test_with_when(self):
 controller = pid.PID(P=0.5, I=0.5, D=0.5,
 setpoint=1, initial=12,
 when=43)

 self.assertEqual(controller.gains, (0.5, 0.5, 0.5))
 self.assertAlmostEqual(controller.setpoint[0], 1.0)
 self.assertEqual(len(controller.setpoint), 1)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 5

[87]

 self.assertAlmostEqual(controller.previous_time, 43.0)
 self.assertAlmostEqual(controller.previous_error, -11.0)
 self.assertAlmostEqual(controller.integrated_error, 0)

This test confirms that the PID constructor works correctly when the when parameter is
supplied. Unlike the previous test, there's no need to use Mocker, because the outcome of
the test is not supposed to be dependant on anything except the parameter values—the
current time is irrelevant.

class test_calculate_response(TestCase):
 def test_without_when(self):
 mocker = Mocker()
 mock_time = mocker.replace('time.time')
 mock_time()
 mocker.result(1.0)
 mock_time()
 mocker.result(2.0)
 mock_time()
 mocker.result(3.0)
 mock_time()
 mocker.result(4.0)
 mock_time()
 mocker.result(5.0)

 mocker.replay()

 controller = pid.PID(P=0.5, I=0.5, D=0.5,
 setpoint=0, initial=12)

 self.assertEqual(controller.calculate_response(6), -3)
 self.assertEqual(controller.calculate_response(3), -4.5)
 self.assertEqual(controller.calculate_response(-1.5), -0.75)
 sel+f.assertEqual(controller.calculate_response(‑2.25),
‑1.125)

 mocker.restore()
 mocker.verify()

The tests in this class describe the intended behavior of the calculate_response method.
This first test checks the behavior when the optional when parameter is not supplied, and
mocks time.time to make that behavior predictable.

 def test_with_when(self):
 controller = pid.PID(P=0.5, I=0.5, D=0.5,
 setpoint=0, initial=12,
 when=1)

 self.assertEqual(controller.calculate_response(6, 2), -3)
 self.assertEqual(controller.calculate_response(3, 3), -4.5)
 self.assertEqual(controller.calculate_response(‑1.5, 4),
‑0.75)
 self.assertEqual(controller.calculate_response(‑2.25, 5),
‑1.125)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

When Doctest isn't Enough: Unittest to the Rescue

[88]

In this test, the when parameter is supplied, so there is no need to mock time.time. We
just have to check that the result is what we expected.

The actual tests that we performed are the same ones that were written in the doctest. So
far, all that we see is a different way of expressing them.

The first thing to notice is that the test file is divided up into classes that inherit from
unittest.TestCase, each of which contains one or more test methods. The name of each
test method begins with the word test, which is how unittest recognizes that they are tests.

Each test method embodies a single test of a single unit. This gives us a convenient way to
structure our tests, grouping together related tests into the same class, so that they're easier
to find.

Putting each test into its own method means that each test executes in an isolated
namespace, which makes it somewhat easier to keep unittest‑style tests from interfering
with each other, relative to doctest‑style tests. It also means that unittest knows how
many unit tests are in your test file, instead of simply knowing how many expressions
there are (you may have noticed that doctest counts each >>> line as a separate test).
Finally, putting each test in its own method means that each test has a name, which
can be a valuable feature.

Tests in unittest don't directly care about anything that isn't part of a call to one of the assert
methods of TestCase. That means that when we're using Mocker, we don't have to be
bothered about the mock objects that get returned from demonstration expressions, unless
we want to use them. It also means that we need to remember to write an assert describing
every aspect of the test that we want to have checked. We'll go over the various assertion
methods of TestCase shortly.

Tests aren't of much use, if you can't execute them. For the moment, the way we'll be doing
that is by calling unittest.main when our test file is executed as a program by the Python
interpreter. That's about the simplest way to run unittest code, but it's cumbersome when
you have lots of tests spread across lots of files. We'll be learning about tools to address that
problem in the next chapter.

if __name__ == '__main__': might look strange to you, but its
meaning is fairly straight forward. When Python loads any module, it stores that
module's name in a variable called __name__ within the module (unless the
module is the one passed to the interpreter on the command line). That module
always gets the string '__main__' bound to its __name__ variable. So, if
__name__ == '__main__': means—if this module was executed directly
from the command line.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 5

[89]

Assertions
Assertions are the mechanism that we use to tell unittest what the important outcomes of
the test are. By using appropriate assertions, we can tell unittest exactly what to expect from
each test.

assertTrue
When we call self.assertTrue(expression), we're telling unittest that the expression
must be true in order for the test to be a success.

This is a very flexible assertion, since you can check for nearly anything by writing the
appropriate boolean expression. It's also one of the last assertions you should consider
using, because it doesn't tell unittest anything about the kind of comparison you're making,
which means that unittest can't tell you as clearly what's gone wrong if the test fails.

For an example of this, consider the following test code which contains two tests that are
guaranteed to fail:

from unittest import TestCase, main

class two_failing_tests(TestCase):
 def test_assertTrue(self):
 self.assertTrue(1 == 1 + 1)

 def test_assertEqual(self):
 self.assertEqual(1, 1 + 1)

if __name__ == '__main__':
 main()

It might seem like the two tests are interchangeable, since both test the same thing.
Certainly they'll both fail (or in the unlikely event that one equals two, they'll both pass),
so why prefer one over the other?

Take a look at what happens when we run the tests (and also notice that the tests were not
executed in the same order as they were written; tests are totally independent of each other,
so that's okay, right?):

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

When Doctest isn't Enough: Unittest to the Rescue

[90]

Do you see the difference? The assertTrue test was able to correctly determine that the
test should fail, but it didn't know enough to report any useful information about why it
failed. The assertEqual test, on the other hand, knew first of all that it was checking that
two expressions were equal, and second it knew how to present the results, so that they
would be most useful: by evaluating each of the expressions that it was comparing and
placing a != symbol between the results. It tells us both what expectation failed, and
what the relevant expressions evaluate to.

assertFalse
The assertFalse method will succeed when the assertTrue method would fail, and vice
versa. It has the same limits in terms of producing useful output that assertTrue has, and
the same flexibility in terms of being able to test nearly any condition.

assertEqual
As mentioned in the assertTrue discussion, the assertEqual assertion checks that its
two parameters are in fact equal, and reports a failure if they are not, along with the actual
values of the parameters.

assertNotEqual
The assertNotEqual assertion fails whenever the assertEqual assertion would have
succeeded, and vice versa. When it reports a failure, its output indicates that the values of
the two expressions are equal, and provides you with those values.

assertAlmostEqual
As we've seen before, comparing floating point numbers can be troublesome. In particular,
checking that two floating point numbers are equal is problematic, because things that you
might expect to be equal—things that, mathematically, are equal—may still end up differing
down among the least significant bits. Floating point numbers only compare equal when
every bit is the same.

To address that problem, unittest provides assertAlmostEqual, which checks that
two floating point values are almost the same; a small amount of difference between
them is tolerated.

Lets look at this problem in action. If you take the square root of 7, and then square it, the
result should be 7. Here's a pair of tests that check that fact:

from unittest import TestCase, main

class floating_point_problems(TestCase):
 def test_assertEqual(self):
 self.assertEqual((7.0 ** 0.5) ** 2.0, 7.0)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 5

[91]

 def test_assertAlmostEqual(self):
 self.assertAlmostEqual((7.0 ** 0.5) ** 2.0, 7.0)

if __name__ == '__main__':

 main()

The test_assertEqual method checks that 7 7 7= =
2
1
2

2_
, which is true in reality. In the more

specialized number system available to computers, though, taking the square root of 7
and then squaring it doesn't quite get us back to 7, so this test will fail. More on that in
a moment.

Test test_assertAlmostEqual method checks that 7 7 7=
2
1
2

~~
2_

, which even the computer
will agree is true, so this test should pass.

Running those tests produces the following, although the specific number that you get back
instead of 7 may vary depending on the details of the computer the tests are being run on:

Unfortunately, floating point numbers are not precise, because the majority of numbers
on the real number line can not be represented with a finite, non-repeating sequence
of digits, much less a mere 64 bits. Consequently, what you get back from evaluating
the mathematical expression is not quite 7. It's close enough for government work
though—or practically any other sort of work as well—so we don't want our test to quibble
over that tiny difference. Because of that, we should use assertAlmostEqual and
assertNotAlmostEqual when we're comparing floating point numbers for equality.

This problem doesn't generally carry over into other comparison operators.
Checking that one floating point number is less than the other, for example, is
very unlikely to produce the wrong result due to insignificant errors. It's only in
cases of equality that this problem bites us.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

When Doctest isn't Enough: Unittest to the Rescue

[92]

assertNotAlmostEqual
The assertNotAlmostEqual assertion fails whenever the assertAlmostEqual assertion
would have succeeded, and vice versa. When it reports a failure, its output indicates that the
values of the two expressions are nearly equal, and provides you with those values.

assertRaises
As always, we need to make sure that our units correctly signal errors. Doing the right thing
when they receive good inputs is only half the job; they need to do something reasonable
when they receive bad inputs, as well.

The assertRaises method checks that a callable (a callable is a function, a method, or
a class. A callable can also be an object of any arbitrary type, so long as it has a __call__
method) raises a specified exception, when passed a specified set of parameters.

This assertion only works with callables, which means that you don't have a way of checking
that other sorts of expressions raise an expected exception. If that doesn't fit the needs of
your test, it's possible to construct your own test using the fail method, described below.

To use assertRaises, first pass it the expected exception, then pass the callable, and then
the parameters that should be passed to the callable when it's invoked.

Here's an example test using assertRaises. This test ought to fail, because the callable
won't raise the expected exception. '8ca2' is perfectly acceptable input to int, when
you're also passing it base = 16. Notice that assertRaises will accept any number of
positional or keyword arguments, and pass them on to the callable on invocation.

from unittest import TestCase, main

class silly_int_test(TestCase):
 def test_int_from_string(self):
 self.assertRaises(ValueError, int, '8ca2', base = 16)

if __name__ == '__main__':
 main()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 5

[93]

When we run that test, it fails (as we knew it would) because int didn't raise the exception
we told assertRaises to expect.

If an exception is raised, but it's not the one you told unittest to expect, unittest considers
that an error. An error is different from a failure. A failure means that one of your tests has
detected a problem in the unit it's testing. An error means that there's a problem with the
test itself.

fail
When all else fails, you can fall back on fail. When the code in your test calls fail,
the test fails.

What good does that do? When none of the assert methods does what you need, you can
instead write your checks in such a way that fail will be called if the test does not pass. This
allows you to use the full expressiveness of Python to describe checks for your expectations.

Let's take a look at an example. This time, we're going to test on a less-than operation, which
isn't one of the operations directly supported by an assert method. Using fail, it's easy to
implement the test anyhow.

from unittest import TestCase, main

class test_with_fail(TestCase):
 def test_less_than(self):
 if not (2.3 < 5.6):
 self.fail('2.3 is not less than 5.6, but it should be')

if __name__ == '__main__':
 main()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

When Doctest isn't Enough: Unittest to the Rescue

[94]

A couple of things to notice here: first of all, take note of the not in the if statement.
Since we want to run fail if the test should not pass, but we're used to describing the
circumstances when the test should succeed, a good way to write the test is to write the
success condition, and then invert it with not. That way we can continue thinking in the way
we're used to when we use fail. The second thing to note is that you can pass a message to
fail when you call it, which will be printed out in unittest's report of failed tests. If you choose
your message carefully, it can be a big help.

There's no screen capture of what to expect from running this test, because the test should
pass, and the report wouldn't contain anything interesting. You might experiment with
changing the test around and running it, to see what happens.

Pop quiz – basic unittest knowledge
1.	 What is the unittest equivalent of this doctest?

>>> try:
... int('123')
... except ValueError:
... pass
... else:
... print 'Expected exception was not raised'

2.	 How do you check whether two floating point numbers are equal?

3.	 When would you choose to use assertTrue? How about fail?

Have a go hero – translating into unittest
Look back at some of the tests we write in the previous chapters, and translate them from
doctests into unittests. Given what you already know of unittest, you should be able to
translate any of the tests.

While you're doing this, think about the relative merits of unittest and doctest for each of
the tests you translate. The two systems have different strengths, so it makes sense that
each will be the more appropriate choice for different situations. When is doctest the better
choice, and when is unittest?

Test fixtures
Unittest has an important and highly useful capability that doctest lacks. You can tell unittest
how to create a standardized environment for your unit tests to run inside, and how to clean
up that environment when it's done. This ability to create and destroy a standardized test
environment is a test fixture. While test fixtures doesn't actually make any tests possible
that were impossible before, they can certainly make them shorter and less repetitive.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 5

[95]

Time for action – testing database-backed units
Many programs need to access a database for their operation, which means that many of the
units those programs are made of also access a database. The point is that the purpose of
a database is to store information and make it accessible in arbitrary other places (in other
words, databases exist to break the isolation of units). (The same problem applies to other
information stores as well: for example, files in permanent storage.)

How do we deal with that? After all, just leaving the units that interact with the database
untested is no solution. We need to create an environment where the database connection
works as usual, but where any changes that are made do not last. There are a few different
ways we could do that, but no matter what the details are, we need to set up the special
database connection before each test that uses it, and we need to destroy any changes after
each such test.

Unittest helps us to do that by providing test fixtures via the setUp and tearDown methods
of the TestCase class. These methods exist for us to override, with the default versions
doing nothing.

Here's some database-using code (let's say it exists in a file called employees.py), for which
we'll write tests:

This code uses the sqlite3 database which ships with Python. Since the
sqlite3 interface is compatible with Python's DB-API 2.0, any database
backend that you find yourself using will have a similar interface to what
you see here.

class employees:
 def __init__(self, connection):
 self.connection = connection

 def add_employee(self, first, last, date_of_employment):
 cursor = self.connection.cursor()
 cursor.execute('''insert into employees
 (first, last, date_of_employment)
 values
 (:first, :last, :date_of_
employment)''',
 locals())
 self.connection.commit()

 return cursor.lastrowid

 def find_employees_by_name(self, first, last):
 cursor = self.connection.cursor()
 cursor.execute('''select * from employees
 where
 first like :first

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

When Doctest isn't Enough: Unittest to the Rescue

[96]

 and
 last like :last''',
 locals())

 for row in cursor:
 yield row

 def find_employees_by_date(self, date):
 cursor = self.connection.cursor()
 cursor.execute('''select * from employees
 where date_of_employment = :date''',
 locals())

 for row in cursor:
 yield row

1.	 We'll start writing the tests by importing the modules that we need and introducing
our TestCase class.

from unittest import TestCase, main
from sqlite3 import connect, PARSE_DECLTYPES
from datetime import date
from employees import employees

class test_employees(TestCase):

2.	 We need a setUp method to create the environment that our tests depend on.
In this case, that means creating a new database connection to an in-memory-
only database, and populating that database with the needed tables and rows.

 def setUp(self):
 connection = connect(':memory:',
 detect_types=PARSE_DECLTYPES)
 cursor = connection.cursor()

 cursor.execute('''create table employees
 (first text,
 last text,
 date_of_employment date)''')

 cursor.execute('''insert into employees
 (first, last, date_of_employment)
 values
 ("Test1", "Employee", :date)''',
 {'date': date(year = 2003,
 month = 7,
 day = 12)})

 cursor.execute('''insert into employees
 (first, last, date_of_employment)
 values
 ("Test2", "Employee", :date)''',
 {'date': date(year = 2001,
 month = 3,
 day = 18)})

 self.connection = connection

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 5

[97]

3.	 We need a tearDown method to undo whatever the setUp method did, so that
each test can run in an untouched version of the environment. Since the database
is only in memory, all we have to do is close the connection, and it goes away.
tearDown may end up being much more complicated in other scenarios.

 def tearDown(self):
 self.connection.close()

4.	 Finally, we need the tests themselves, and the code to execute the tests.

 def test_add_employee(self):
 to_test = employees(self.connection)
 to_test.add_employee('Test1', 'Employee', date.today())

 cursor = self.connection.cursor()
 cursor.execute('''select * from employees
 order by date_of_employment''')

 self.assertEqual(tuple(cursor),
 (('Test2', 'Employee', date(year=2001,
 month=3,
 day=18)),
 ('Test1', 'Employee', date(year=2003,
 month=7,
 day=12)),
 ('Test1', 'Employee', date.today())))

 def test_find_employees_by_name(self):
 to_test = employees(self.connection)

 found = tuple(to_test.find_employees_by_name('Test1',
'Employee'))
 expected = (('Test1', 'Employee', date(year=2003,
 month=7,
 day=12)),)

 self.assertEqual(found, expected)

 def test_find_employee_by_date(self):
 to_test = employees(self.connection)

 target = date(year=2001, month=3, day=18)
 found = tuple(to_test.find_employees_by_date(target))

 expected = (('Test2', 'Employee', target),)

 self.assertEqual(found, expected)

if __name__ == '__main__':
 main()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

When Doctest isn't Enough: Unittest to the Rescue

[98]

What just happened?
We used a setUp method for our TestCase, along with a matching tearDown method.
Between them, these methods made sure that the environment in which the tests were
executed was the one they needed (that was setUp's job) and that the environment of each
test was cleaned up after the test was run, so that the tests didn't interfere with each other
(which was the job of tearDown). Unittest made sure that setUp was run once before each
test method, and that tearDown was run once after each test method.

Because a test fixture—as defined by setUp and tearDown—gets wrapped around every
test in a TestCase class, the setUp and tearDown for TestCase classes that contain too
many tests can get very complicated and waste a lot of time dealing with details that are
unnecessary for some of the tests. You can avoid that problem by simply grouping together,
those tests that require specific aspects of the environment into their own TestCase
classes. Give each TestCase an appropriate setUp and tearDown, only dealing with those
aspects of the environment that are necessary for the tests it contains. You can have as many
TestCase classes as you want, so there's no need to skimp on them when you're deciding
which tests to group together.

Notice how simple the tearDown method that we used was. That's usually a good sign:
when the changes that need to be undone in the tearDown method are simple to describe,
it often means that you can be sure of doing it perfectly. Since any imperfection of the
tearDown makes it possible for tests to leave behind stray data that might alter how other
tests behave, getting it right is important. In this case, all of our changes were confined to
the database, so getting rid of the database does the trick.

Pop quiz – test fixtures
1.	 What is the purpose of a test fixture?

2.	 How is a test fixture created?.

3.	 Can a test fixture have a tearDown method without a setUp? How about setUp
without tearDown?

Have a go hero – file path abstraction
Below is a class definition that describes an abstraction of file paths. Your challenge is to
write unit tests (using unittest) that check each of the methods of the class, making sure that
they behave as advertised. You will need to use a test fixture to create and destroy a sandbox
area in the filesystem for your tests to operate on.

Because doctest doesn't support test fixtures, writing these tests using that framework
would be quite annoying. You'd have to duplicate the code to create the environment
before each test, and the code to clean it up after each test. By using unittest, we can
avoid that duplication.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 5

[99]

There are several things about this class that are wrong, or at least not as right as they ought
to be. See if you can catch them with your tests.

from os.path import isfile, isdir, exists, join
from os import makedirs, rmdir, unlink

class path:
 r"""

 Instances of this class represent a file path, and facilitate
 several operations on files and directories.

 Its most surprising feature is that it overloads the division
 operator, so that the result of placing a / operator between two
 paths (or between a path and a string) results in a longer path,
 representing the two operands joined by the system's path
 separator character.

 """

 def __init__(self, target):
 self.target = target

 def exists(self):
 return exists(self.target)

 def isfile(self):
 return isfile(self.target)

 def isdir(self):
 return isdir(self.target)

 def mkdir(self, mode = 493):
 makedirs(self.target, mode)

 def rmdir(self):
 if self.isdir():
 rmdir(self.target)
 else:
 raise ValueError('Path does not represent a directory')

 def delete(self):
 if self.exists():
 unlink(self.target)
 else:
 raise ValueError('Path does not represent a file')

 def open(self, mode = "r"):
 return open(self.target, mode)

 def __div__(self, other):
 if isinstance(other, path):
 return path(join(self.target, other.target))
 return path(join(self.target, other))

 def __repr__(self):
 return '<path %s>' % self.target

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

When Doctest isn't Enough: Unittest to the Rescue

[100]

Integrating with Python Mocker
You've used Mocker enough to see the repetitiveness involved in creating a mocking context
at the beginning of the text and calling its verify and restore methods at the end.
Mocker simplifies this for you by providing a class called MockerTestCase in the mocker
module. MockerTestCase behaves just like a normal unittest TestCase, except that for
each test, it automatically creates a mocking context, which it then verifies and restores after
the test. The mocking context is stored in self.mocker.

The following example demonstrates MockerTestCase by using it to write a test
involving a mock of time.time. Before the test gets executed, a mocking context is stored
in self.mocker. After the test is run, the context is automatically verified and restored.

from unittest import main
from mocker import MockerTestCase
from time import time

class test_mocker_integration(MockerTestCase):
 def test_mocking_context(self):
 mocker = self.mocker
 time_mock = mocker.replace('time.time')
 time_mock()
 mocker.result(1.0)

 mocker.replay()

 self.assertAlmostEqual(time(), 1.0)

if __name__ == '__main__':
 main()

The above is a simple test that checks that the current time is 1.0, which it would not be
if we didn't mock time.time. Instead of creating a new Mocker instance, we have one
already available to us as self.mocker, so we use that. We also get to leave off the calls
to verify and restore, because the MockerTestCase takes care of that for us.

Summary
This chapter contained a lot of information about how to use the unittest framework to write
your tests.

Specifically, we covered how to use unittest to express concepts that you were already
familiar with from doctest, differences and similarities between unittest and doctest, how to
use test fixtures to embed your tests in a controlled and temporary environment, and how to
use Python Mocker's MockerTestCase to simplify the integration of unittest and Mocker.

Until now, we've been running tests individually, or in small groups, by directly instructing
Python to run them. Now that we've learned about unittest, we're ready to talk about
managing and executing large bodies of tests, which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

6
Running Your Tests: Follow Your Nose

So far, we've talked a lot about how to write tests, but we haven't said much
about how to run them. We've had to explicitly tell Python which tests to run,
and we've had the either worry about which version of Python we were using
(in the case of doctest) or put an if __name__ == '__main__' inside every
module (for unittest). Clearly, there's room for improvement, when it comes to
running tests.

In this chapter we shall:

Learn about a Python tool called Nose, which automatically finds and executes tests

Learn how to make Nose find and execute doctest tests

Learn how to make Nose find and execute unittest tests

Learn how to use Nose's internal test framework

So let's get on with it!

What is Nose?
Nose is a tool for finding and running all of your tests, in one easy step. It finds tests in
multiple files, organizes them, runs them, and presents you with a nice report at the end.
You don't have to put any special code in your files to make the tests runnable and you don't
have to worry about which Python version you're running, unless your tests make use of
recently added features to the language. Nose understands doctest and unittest tests;
it even adds a few features to both.









This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Running Your Tests: Follow Your Nose

[102]

Installing Nose
At the time of this writing, Nose's home page is http://code.google.com/p/python-
nose/, with downloads available at http://code.google.com/p/python-nose/
downloads/list. Go ahead and download the latest version, and uncompress it into
a temporary directory. If you're using Windows, you'll need a program such as 7-Zip
(http://7-zip.org/) to uncompress the file; Linux and Mac users won't need any
special software.

After uncompressing Nose, we need to install it. Everything we had to consider when
installing Mocker applies here too: If you installed Python, you can just change to the
Nose directory and type:

$ python setup.py install

If you didn't install Python, but you're using version 2.6 or higher, you can instead type:

$ python setup.py install --user

If you go for the --user installation, you might need to add a directory
to the search path of your operating system. You'll know you need to if you
can't run the nosetests program after installing it. On Linux or Mac, the
directory that you need to add is ~/.local/bin, while on Windows it's
%APPDATA%\Python\Scripts. Additionally, on Windows you may need to
create a file called nosetests.bat in the %APPDATA%\Python\Scripts
directory, containing the line: @python %APPDATA%\Python\
Scripts\nosetests.

Sometimes, a tool called easy_install can simplify the installation process
of Python modules and packages. If you want to give it a try, download and
install setuptools from http://pypi.python.org/pypi/setuptools,
and then run the command easy_install nose. Once that command is executed,
you should be ready to use Nose.

After installing it, you should be able to run nosetests by typing its name on the command
line. If you run it in an empty directory, you should see output similar to this:

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 6

[103]

Organizing tests
All right, we've got Nose installed, so what's it good for? Nose looks through a directory's
structure, finds the test files, sorts out the tests that they contain, runs the tests, and reports
the results back to you. That's a lot of work that it saves you from having to do each time you
want to run your tests (which should be often).

Nose recognizes test files based on their names. Any file whose name contains test or
Test either at the beginning or following any of the characters _, ., or – (this is often
referred to as "underscore", dot, or dash) is recognized as a file that contains unittest
TestCases (or Nose's own test functions, which we'll talk about later) which should be
executed. Any directory whose name matches the same pattern is recognized as a directory
that might contain tests, and so should be searched for test files. Nose can find and execute
doctest tests as well, either embedded in docstrings or written in separate test files. By
default, it won't look for doctest tests unless we tell it to. We'll see how to change the
default shortly.

Since Nose is so willing to go looking for our tests, we have a lot of freedom with respect to
how we organize them. It often turns out to be a good idea to separate all of the tests into
their own directory, or for larger projects into a whole tree of directories. A big project can
end up having thousands of tests, so organizing them for easy navigation is a big benefit. If
doctests are being used as documentation, as well as testing, it's probably a good idea to
store them in yet another separate directory, with a name that communicates that they are
documentary. For a moderately-sized project, the recommended structure might look like
the following:

Project

package

test_module.1.py
test_module.1.py

init.py

tests

docs_with_test
module1.txt
module1.txt

module.1.py
module.2.py
..

..

..

That structure is only a recommendation (it's for your benefit, not for Nose's). If a different
structure would make things easier for you, go ahead and use it.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Running Your Tests: Follow Your Nose

[104]

Time for action – organizing tests from previous chapters
We're going to take our tests from the previous chapters and organize them all into a tree of
directories. Then we'll use Nose to run them all.

1.	 Create a directory to hold our code and tests; you can choose any name for it, but
I'll refer to it as project here.

2.	 Put pid.py, operations.py and testable.py inside of project. When we
run nosetests in the project directory, modules (and packages) stored in
project will be accessible to all of the tests, no matter where the test is stored
in the directory tree.

3.	 Create a subdirectory called test_chapter2, and place the test.txt and
test.py files from Chapter 2 in it.

4.	 Create a subdirectory called test_chapter3, and place the final pid.txt file
from Chapter 3 in it.

5.	 Create a subdirectory called test_chapter4, and place the code from the
Chapter 4 examples (if you have them) and Time for action sections in it.

6.	 Create a subdirectory called test_chapter5, and place the code from the
Chapter 5 examples (if you have them) and Time for action sections into it.
Because Chapter 5 uses unittest tests, we also need to rename each of the files
so that Nose will recognize them as test files. Good names for the files are:

test_equal_and_almost_equal.py, test_fail.py, test_mocker_
test_case.py, test_pid.py, test_raises.py, test_setup_
teardown.py, test_true_and_false.py.

7.	 Now that you have the tests all put together and organized, let's run
them. To do that, change to the project directory and type:

	 $ nosetests --with-doctest --doctest-extension=txt -v

You can leave off the -v if you want. All it does is to tell
Nose to give a more detailed report of what it's doing.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 6

[105]

8.	 All of the tests should run. We expect to see a few failures, since some of the
tests from previous chapters were intended to fail, for illustrative purposes.
There's one failure though, that we need to consider:

9.	 The first part of that error report can be safely ignored: it just means that
the whole doctest file is being treated as a failing test by Nose. The useful
information comes in the second part of the report. It's telling us that where
we expected to get a previous time of 1.0, we're instead getting a very large
number (which will be different, and larger, when you run the test for yourself,
since it happens to represent the time in seconds since a point several
decades in the past). What's going on? Didn't we replace time.time for
that test with a mock? Let's take a look at the relevant part of pid.txt:

>>> import time
>>> real_time = time.time
>>> time.time = (float(x) for x in xrange(1, 1000)).next
>>> import pid
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12)
>>> controller.gains
(0.5, 0.5, 0.5)
>>> controller.setpoint
[0.0]
>>> controller.previous_time
1.0

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Running Your Tests: Follow Your Nose

[106]

10.	We mocked time.time, but we did it the ad hoc way instead of by using
Mocker's replace method. This means that modules which did a from time
import time and were imported before the test file is executed will have
imported the real time function, and won't know about our mock. So, was
pid.py imported by some other thing, before pid.txt imported it? As it
happens, it was: Nose itself imported it when it was scanning for tests to
execute. If we're using Nose, we can't count on our import statements actually
being the first to import any given module. We can fix the problem easily,
though, by using Mocker (Note that we're only looking at the first test in the
file here. There is another test that also needs to be fixed in the same way):

>>> from mocker import Mocker
>>> mocker = Mocker()
>>> mock_time = mocker.replace('time.time')
>>> t = mock_time()
>>> mocker.result(1.0)
>>> mocker.replay()
>>> import pid
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12)
>>> controller.gains
(0.5, 0.5, 0.5)
>>> controller.setpoint
[0.0]
>>> controller.previous_time
1.0
>>> controller.previous_error
-12.0
>>> controller.integrated_error
0.0
>>> mocker.restore()
>>> mocker.verify()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 6

[107]

11.	Now when we use nosetests to run the tests again, the only failures are the
expected ones. Here's the overview that Nose prints because we passed the
-v command line option:

What just happened?
We ran all of those tests, with a single command. Pretty good, right? We're getting to the
point now where testing is becoming broadly useful.

Thanks to Nose, we don't need those goofy if __name__ == '__main__' blocks at the
end of each unittest file, and we don't need to memorize any arcane commands to execute
the doctest files. We can store our tests in a separate and well-organized directory structure,
and run them all with a single, quick, and simple command. We can also easily run a subset
of our tests, by passing the filenames, module names, or directories containing the tests that
we want to run as command line parameters.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Running Your Tests: Follow Your Nose

[108]

We also saw how hidden assumptions can break tests, just as they can break the code being
tested. Until now, we've been assuming that when one of our tests imports a module, that's
the first time the module has been imported. Some of our tests relied on that assumption
to replace library objects with mocks. Now that we're dealing with running many tests
aggregated together, with no guaranteed order of execution, that assumption wasn't
reliable. On top of that, the module we had trouble with actually had to be imported to
search it for tests, before any of our tests were run. That would have been a problem, except
we already have a tool for replacing library objects, regardless of the order of imports. A
quick switch of the affected tests to use Mocker and we're good to go.

Finding doctests
The nosetests command that we used in the previous section was fairly easy to
understand, but it was still a bit long to type in all of the time. Instead of:

$ nosetests --with-doctest --doctest-extension=txt -v

We'd really like to be able to just type:

$ nosetests -v

Or even:

$ nosetests

To execute our tests, and still have it find and execute all of our doctests.

Fortunately, it's a simple matter to tell Nose that we want it to use different defaults for
the values of those command line switches. To do this, just create a configuration file called
nose.cfg or .noserc (either name will work) in your home directory, and placing the
following inside of it:

[nosetests]
with-doctest=1
doctest-extension=txt

From now on, whenever you run nosetests, it will assume those options, unless you tell
it otherwise. You don't have to type them on the command line any more. You can use the
same trick for any option that Nose can accept on the command line.

If you're a Windows user, you might not be sure what the phrase 'home
directory' is supposed to refer to in this context. As far as Python is concerned,
your home directory is defined by your environment variables. If HOME is
defined, that's your home directory. Otherwise, if USERPROFILE is defined (it
usually is, pointing at C:\Documents and Settings\USERNAME) then
that's what is considered to be your home directory. Otherwise, the directory
described by HOMEDRIVE and HOMEPATH (often C:\)is your home directory.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 6

[109]

Customizing Nose's search
We've said before that Nose looks for tests in directories and modules whose names start
with test or Test, or contain a '_', '.', or '-' followed by test or Test. That's the default,
but it's not actually the whole story.

If you know regular expressions, you can customize the pattern that Nose uses to look for
tests. You do this by passing the --include=REGEX command line option or by putting
include=REGEX in your nose.cfg or .noserc.

For example, if you do this:

nosetests --include="(?:^[Dd]oc)"

Nose will (in addition to looking for names as described above) also look for names that
start with doc or Doc. That means you can call the directory containing your doctest files
docs, Documentation, doctests, and so on, and Nose will still find it and run the tests. If
you use this option often, you'll almost certainly want to add it to your configuration file, as
described under the previous heading.

The full syntax and use of regular expressions is a subject in itself, and has been
the topic of many books. However, you can find everything you need, to do this
sort of thing in the Python documentation at http://docs.python.org/
library/re.html.

Pop quiz – testing with Nose
1.	 By running nosetests --processes=4, Nose can be made to launch four testing

processes, which can provide a big performance gain if you're running the tests on a
quad-core system. How would you make Nose always launch four testing processes,
without being told on the command line?

2.	 If some of your tests were stored in a directory called specs, how would you tell
Nose that it should search that directory for tests?

3.	 Which of the following will by default be recognized by Nose as possibly containing
tests: UnitTests, unit_tests, TestFiles, test_files, doctests?

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Running Your Tests: Follow Your Nose

[110]

Have a go hero – nosing around
Write some doctest and unittest tests for the following specification, and create a
directory tree to contain them and the code that they describe. Write the code using the
test-driven methodology, and use Nose to run the tests.

The graph module contains two classes: Node and Arc. An Arc is a
connection between two Nodes. Each Node is an intersection of an
arbitrary number of Arcs.

Arc objects contain references to the Node objects that the Arc
connects, a textual identification label, and a "cost" or "weight",
which is a real number.

Node objects contain references to all of the connected Arcs, and a
textual identification label.

Node objects have a find_cycle(self, length) method which returns a
list of Arcs making up the lowest cost complete path from the Node
back to itself, if such a path exists with a length greater than 2
Arcs and less than or equal to the length parameter.

Node and Arc objects have a __repr__(self) method which returns a
representation involving the identification labels assigned to the
objects.

Nose and doctest
Nose doesn't just support doctest, it actually enhances it. When you're using Nose, you can
write test fixtures for your doctest files.

If you pass --doctest-fixtures=_fixture on the command line, Nose will go looking
for a fixture file whenever it finds a doctest file. The name of the fixture file is based on the
name of the doctest file and is calculated by appending the doctest fixture suffix (in other
words, the value of doctest-fixtures) to the main part of the doctest file name, and
then adding .py to the end. For example, if Nose found a doctest file called pid.txt, and
had been told that doctest‑fixtures=_fixture, it would try to find the test fixture in a
file called pid_fixture.py.

The test fixture file for a doctest is very simple: it's just a Python module that contains a
setup() or setUp() function and a teardown() or tearDown() function. The setup
function is executed before the doctest file, and the teardown function is executed after.

The fixture operates in a different namespace to the doctest file, so none of the variables
that get defined in the fixture module are visible in the actual tests. If you want to share
variables between the fixture and the test, you'll probably want to do it by making a simple
little module to hold the variables, which you can import into both the fixture and the test.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 6

[111]

Mocker replacements work fine when done in a doctest fixture. As long as you don't
restore() them during the setup (and why would you do a silly thing like that?) then
they'll still be in place when the test uses the replaced object.

Time for action – creating a fixture for a doctest
We'll provide a mock time.time() in our test fixture and use it in our doctest.

1.	 Create a file called times.txt containing the following doctest code:

>>> from time import time

This isn't a reasonable test for any purpose, but it serves to
illustrate a test that can't work without a mock object in place.

>>> '%0.1f' % time()
'1.0'
>>> '%0.1f' % time()
'1.1'
>>> '%0.1f' % time()
'1.2'

2.	 Run the doctest file using Nose, and the following screen gets displayed:

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Running Your Tests: Follow Your Nose

[112]

3.	 Unless your computer's clock was reset to the beginning of the epoch at just the
right moment, the doctest failed. We need a mock to replace time.time() if we
want these tests to pass reliably. Create a file called times_fixture.py and insert
the following Python code:

from mocker import Mocker

mocker = Mocker()

def setup():
 fake_time = mocker.replace('time.time')

 fake_time()
 mocker.result(1.0)
 fake_time()
 mocker.result(1.1)
 fake_time()
 mocker.result(1.2)

 mocker.replay()

def teardown():
 mocker.restore()
 mocker.verify()

4.	 Now when we run Nose and tell it how to find doctest fixtures, the doctest passes,
because it's using the mock that we set up in the fixture:

5.	 If you use this facility often, it makes sense to add doctest‑fixtures=_fixture
to your Nose configuration file.

Nose and unittest
Nose enhances unittest, by providing test fixtures at the package and module levels. The
package setup function is run before any of the tests in any of the modules in a package,
while the teardown function is run after all of the tests in all of the modules in the package
have completed. Similarly, the module setup is run before any of the tests in a given module
execute, and the module teardown is executed after all of the tests in the module have
been executed.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 6

[113]

Time for action – creating a module fixture
We'll build a test module with a module-level fixture. In the fixture, we'll replace the
datetime.date.today function, which normally returns an object representing the
current date. We want it to return a specific value, so that our tests can know what
to expect.

1.	 Create a directory called tests. We'll use this directory in this Time for action,
as well as in the next one.

2.	 Within the tests directory, create a file called module_fixture_tests.py
containing the following code:

from unittest import TestCase
from mocker import Mocker
from datetime import date

mocker = Mocker()

def setup():
 fake_date = mocker.replace(date)

 fake_date.today()
 mocker.result(date(year = 2009, month = 6, day = 12))
 mocker.count(1, None)

 mocker.replay()

def teardown():
 mocker.restore()
 mocker.verify()

class first_tests(TestCase):
 def test_year(self):
 self.assertEqual(date.today().year, 2009)

 def test_month(self):
 self.assertEqual(date.today().month, 6)

 def test_day(self):
 self.assertEqual(date.today().day, 12)

class second_tests(TestCase):
 def test_isoformat(self):
 self.assertEqual(date.today().isoformat(), '2009-06-12')

3.	 Notice that there are two TestCase classes in this module. Using pure unittest,
we'd have to duplicate the fixture code in each of those classes.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Running Your Tests: Follow Your Nose

[114]

4.	 Go ahead and run the tests by moving to the directory that contains the tests
directory and typing:

	 $ nosetests

5.	 Nose will recognize tests as a directory that may contain tests (because of the
directory name), find the module_fixtures_tests.py file, run the setup
function, run all of the tests, and then run the teardown function. There won't
be much to see though, aside from a simple report of how many tests passed.

What just happened?
We saved ourselves some time and effort by using a second 'layer' of test fixtures, which
wrap around entire test modules instead of single test methods. By doing this, we saved
ourselves from duplicating the fixture code inside every test class in the module, but this
savings comes with a cost. The setup and teardown aren't run before and after each test,
as normal test fixtures are. Instead, all of the tests in the module happen between a single
module-level setup/teardown pair, which means that if a test does something that affects
the environment created by the setup function, it won't be undone before the next test runs.
In other words, isolation of tests is not guaranteed with respect to the environment created
by a module-level fixture.

Now we'll expand on the previous Time for action by including a package-level test fixture.
Like the module-level test fixture, this is a labor-saving feature of Nose.

Time for action – creating a package fixture
Now we'll create a fixture that wraps around all the test modules in an entire package.

1.	 Add a new file called __init__.py in the tests directory that we created in the
last Time for action section. (That's two underbars, the word 'init, and two more
underbars). The presence of this file tells Python that the directory is a package.
Place the following code inside of __init__.py in the tests directory:

from mocker import Mocker
from datetime import datetime

mocker = Mocker()

def setup():
 fake_datetime = mocker.replace(datetime)

 fake_datetime.now()
 mocker.result(datetime(year = 2009, month = 6, day = 12,
 hour = 10, minute = 15, second = 5))
 mocker.count(1, None)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 6

[115]

 mocker.replay()

def teardown():
 mocker.restore()
 mocker.verify()

It's fairly common that __init__.py files are completely empty,
but they're a perfect place for code that is general to an entire
package, so that's where Nose looks for a package-level fixture.

2.	 Add a new file called package_fixtures_tests.py to the tests directory,
with the following contents:

from unittest import TestCase
from datetime import datetime

class first_tests(TestCase):
 def test_year(self):
 self.assertEqual(datetime.now().year, 2009)

 def test_month(self):
 self.assertEqual(datetime.now().month, 6)

 def test_day(self):
 self.assertEqual(datetime.now().day, 12)

 def test_hour(self):
 self.assertEqual(datetime.now().hour, 10)

 def test_minute(self):
 self.assertEqual(datetime.now().minute, 15)

 def test_second(self):
 self.assertEqual(datetime.now().second, 5)

3.	 Add the following code to the already-existing module_fixtures_tests.py
(We could place it in its own file too. The point is placing it in a separate module
from the tests in step 2, for you to see that the package test fixture is in place):

from datetime import datetime
class third_tests(TestCase):
 def test_isoformat(self):
 self.assertEqual(datetime.now().isoformat(),
 '2009-06-12T10:15:05')

4.	 Go ahead an run the tests again. (You won't see much output, but that means
everything worked) Go to the directory containing tests and run the following:

	 $ nosetests

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Running Your Tests: Follow Your Nose

[116]

What just happened?
We worked with yet another layer of test fixture, this time wrapping around all of the test
modules in the tests directory. As you can see from looking at the code that we just wrote,
the environment created by the package-level test fixture is available in every test in every
module in the package.

Like module-level test fixtures, package-level test fixtures can be a big labor-saving shortcut.
However, they don't provide you with the protection against communication between tests
that real test-level fixtures do.

Nose's own testing framework
Nose supports two new kinds of tests: stand-alone test functions and non-TestCase test
classes. It finds these tests by using the same pattern matching that it uses to find test
modules. When looking through a module whose name matches the pattern, any functions
or classes whose names also match the pattern, are assumed to be tests.

Time for action – using Nose-specific tests
We'll write a few tests that demonstrate Nose's support for test functions and non-TestCase
test classes.

1.	 Create a file called nose_specific_tests.py with the following contents:

import sys
from sqlite3 import connect

class grouped_tests:
 def setup(self):
 self.connection = connect(':memory:')
 cursor = self.connection.cursor()
 cursor.execute('create table test (a, b, c)')
 cursor.execute('''insert into test (a, b, c)
 values (1, 2, 3)''')
 self.connection.commit()

 def teardown(self):
 self.connection.close()

 def test_update(self):
 cursor = self.connection.cursor()
 cursor.execute('update test set b = 7 where a = 1')

 def test_select(self):
 cursor = self.connection.cursor()
 cursor.execute('select * from test limit 1')
 assert cursor.fetchone() == (1, 2, 3)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 6

[117]

2.	 Now add the following text to the same file, outside of the grouped_tests class:

def platform_setup():
 sys.platform = 'test platform'

def platform_teardown():
 global sys
 sys = reload(sys)

def standalone_test():
 assert sys.platform == 'test platform'

standalone_test.setup = platform_setup
standalone_test.teardown = platform_teardown

3.	 Run the tests, although as usual you don't want to see any output
beyond a report of how many tests were executed:

	 $ nosetests

What just happened?
The grouped_tests class contains a test fixture (the setup and teardown methods) and
two tests, but it's not a unittest TestCase class. Nose recognized it as a test class because
its name follows the same pattern that Nose looks for, when it checks module names to find
test modules. It then looks through the class for a test fixture (and any test methods), and
runs them appropriately.

Since the class isn't a TestCase, the tests don't have access to any of unittest's assert
methods; Nose considers such a test to pass unless it raises an exception. Python has an
assert statement that raises an exception if its expression is false, which is helpful for
this sort of thing. It's not as nice as assertEqual, but it does the job in many cases.

We wrote another test in the function standalone_test. Like grouped_tests,
standalone_test is recognized as a test by Nose because its name matches the same
pattern that Nose uses to search for test modules. Nose runs standalone_test as a test,
and reports a failure if it raises an exception.

We were able to attach a test fixture to standalone_test, by setting its setup and
teardown attributes to a pair of functions that we defined for that purpose. As usual,
the setup function gets executed before the test function and the teardown function
gets run after.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Running Your Tests: Follow Your Nose

[118]

Summary
We learned a lot in this chapter about the Nose testing meta-framework.

Specifically, we covered:

How Nose finds the files that contain tests, and how you can adapt the process to fit
into your organization scheme

How to run all of your tests with Nose, whether they are doctest, unittest,
or nose-specific tests

How Nose enhances the other frameworks with additional support for test fixtures

How to use Nose's test functions and non-TestCase test classes

Now that we've learned about Nose and running all of our tests easily, we're ready to tackle
a complete test-driven project—which is the topic of the next chapter.









This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

7
Developing a Test-Driven Project

In this chapter, we won't talk about new techniques for testing in Python,
neither will we spend much time talking about the philosophy of testing.
Instead, what we'll do is walk step-by-step through a record of an actual
development process. Your humble and sadly fallible author has memorialized
his mistakes—and the ways that testing helped him fix them—while developing
part of a personal scheduling program.

In this chapter, we shall:

Write a testable specification

Write unit tests

Write code that complies with the specification and unit tests

Use the testable specification and unit tests to help debug

You'll be prompted to design and build your own module as you read through this chapter,
so that you can walk through your own process as well.

Writing the specification
As usual, the process starts with a written specification. The specification is a doctest,
(which we learned about in Chapters 2 and 3), so the computer can use it to check the
implementation. The specification isn't strictly a set of unit tests though; the discipline of
unit testing has been sacrificed (for the moment) in exchange for making the document
more accessible to a human reader. That's a common trade-off, and it's fine as long as you
make up for it by also writing unit tests covering the code.









This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[120]

The goal of the project is to make a Python package capable of representing personal time
management information.

The following code goes in a file called docs/outline.txt:

This project is a personal scheduling system intended to keep track of
a single person's schedule and activities. The system will store and
display two kinds of schedule information: activities and statuses.
Activities and statuses both support a protocol which allows them to
be checked for overlap with another object supporting the protocol.

>>> from planner.data import activities, statuses
>>> from datetime import datetime

Activities and statuses are stored in schedules, to which they can be
added and removed.

>>> from planner.data import schedules
>>> activity = activities('test activity',
... datetime(year=2009, month=6, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=6, day=1,
... hour=12, minute=30))
>>> duplicate_activity = activities('test activity',
... datetime(year=2009, month=6, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=6, day=1,
... hour=12, minute=30))
>>> status = statuses('test status',
... datetime(year=2009, month=7, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=7, day=1,
... hour=12, minute=30))
>>> schedule = schedules()
>>> schedule.add(activity)
>>> schedule.add(status)
>>> status in schedule
True
>>> activity in schedule
True
>>> duplicate_activity in schedule
True
>>> schedule.remove(activity)
>>> schedule.remove(status)
>>> status in schedule
False
>>> activity in schedule

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[121]

False

Activities represent tasks that the person must actively engage in,
and they are therefore mutually exclusive: no person can have two
activities that overlap the same period of time.

>>> activity1 = activities('test activity 1',
... datetime(year=2009, month=6, day=1,
... hour=9, minute=5),
... datetime(year=2009, month=6, day=1,
... hour=12, minute=30))
>>> activity2 = activities('test activity 2',
... datetime(year=2009, month=6, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=6, day=1,
... hour=13, minute=30))
>>> schedule = schedules()
>>> schedule.add(activity1)
>>> schedule.add(activity2) # doctest:+ELLIPSIS
Traceback (most recent call last):
schedule_error: "test activity 2" overlaps with "test activity 1"

Statuses represent tasks that a person engages in passively, and so
can overlap with each other and with activities.

>>> activity1 = activities('test activity 1',
... datetime(year=2009, month=6, day=1,
... hour=9, minute=5),
... datetime(year=2009, month=6, day=1,
... hour=12, minute=30))
>>> status1 = statuses('test status 1',
... datetime(year=2009, month=6, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=6, day=1,
... hour=13, minute=30))
>>> status2 = statuses('test status 2',
... datetime(year=2009, month=6, day=1,
... hour=8, minute=45),
... datetime(year=2009, month=6, day=1,
... hour=15, minute=30))
>>> schedule = schedules()
>>> schedule.add(activity1)
>>> schedule.add(status1)
>>> schedule.add(status2)
>>> activity1 in schedule
True
>>> status1 in schedule

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[122]

True
>>> status2 in schedule
True

Schedules can be saved to a sqlite database, and they can be reloaded
from that stored state.

>>> from planner.persistence import file
>>> storage = file(':memory:')
>>> schedule.store(storage)
>>> newsched = schedules.load(storage)
>>> schedule == newsched
True

This doctest will serve as a testable specification for my project, which means that it will be
the foundation stone on which all of my other tests (and my program code) will be built on.
Let's look at each section in more detail:

This project is a personal scheduling system intended to keep track of
a single person's schedule and activities. The system will store and
display two kinds of schedule information: activities and statuses.
Activities and statuses both support a protocol which allows them to
be checked for overlap with another object supporting the protocol.

>>> from planner.data import activities, statuses
>>> from datetime import datetime

The above code consists of some introductory English text and a couple of import statements
that bring in code that we need for these tests. By doing so, they also tell us about some
of the structure of the planner package. Specifically, they tell us that it contains a module
called data, which defines activities and statuses.

>>> from planner.data import schedules
>>> activity = activities('test activity',
... datetime(year=2009, month=6, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=6, day=1,
... hour=12, minute=30))
>>> duplicate_activity = activities('test activity',
... datetime(year=2009, month=6, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=6, day=1,
... hour=12, minute=30))
>>> status = statuses('test status',
... datetime(year=2009, month=7, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=7, day=1,
... hour=12, minute=30))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[123]

>>> schedule = schedules()
>>> schedule.add(activity)
>>> schedule.add(status)
>>> status in schedule
True
>>> activity in schedule
True
>>> duplicate_activity in schedule
True
>>> schedule.remove(activity)
>>> schedule.remove(status)
>>> status in schedule
False
>>> activity in schedule
False

The above tests describe some of the desired behavior of schedules for activities and
statuses. According to these tests, schedules must accept activities and statuses
as parameters of its add and remove methods. Once they're added, the in operator must
return True for an object until it is removed. Furthermore, two activities that have the
same parameters must be treated as the same object by schedules.

>>> activity1 = activities('test activity 1',
... datetime(year=2009, month=6, day=1,
... hour=9, minute=5),
... datetime(year=2009, month=6, day=1,
... hour=12, minute=30))
>>> activity2 = activities('test activity 2',
... datetime(year=2009, month=6, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=6, day=1,
... hour=13, minute=30))
>>> schedule = schedules()
>>> schedule.add(activity1)
>>> schedule.add(activity2) # doctest:+ELLIPSIS
Traceback (most recent call last):
schedule_error: "test activity 2" overlaps with "test activity 1"

The above test code describes what should happen when overlapping activities are added to
a schedule. Specifically, a schedule_error should be raised.

>>> activity1 = activities('test activity 1',
... datetime(year=2009, month=6, day=1,
... hour=9, minute=5),
... datetime(year=2009, month=6, day=1,
... hour=12, minute=30))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[124]

>>> status1 = statuses('test status 1',
... datetime(year=2009, month=6, day=1,
... hour=10, minute=15),
... datetime(year=2009, month=6, day=1,
... hour=13, minute=30))
>>> status2 = statuses('test status 2',
... datetime(year=2009, month=6, day=1,
... hour=8, minute=45),
... datetime(year=2009, month=6, day=1,
... hour=15, minute=30))
>>> schedule = schedules()
>>> schedule.add(activity1)
>>> schedule.add(status1)
>>> schedule.add(status2)
>>> activity1 in schedule
True
>>> status1 in schedule
True
>>> status2 in schedule
True

The above test code describes what should happen when overlapping statuses are added
to a schedule: the schedule should accept them. Furthermore, if a status and an activity
overlap, they can still both be added.

>>> from planner.persistence import file
>>> storage = file(':memory:')
>>> schedule.store(storage)
>>> newsched = schedules.load(storage)
>>> schedule == newsched
True

The above code describes how schedule storage should work. It also tells us that the
planner package needs to contain a persistence module, which in turn should
contain file.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[125]

Time for action – what are you going to do?
It's time for you to come up with a project of your own, something that you can work on by
yourself; we step through the development process:

1.	 Think of a project of approximately the same complexity as the one described in
this chapter. It should be a single module or a few modules in a single package.

2.	 Imagine that the project is already done, and you need to write a description
of what you've done, along with a little bit of demonstration code. Then go
ahead and write your description and demo code in the form of a doctest file.

3.	 As you're writing the doctest file, look out for places where your original idea
has to change a little bit to make the demo easier to write, or work better.
When you find such cases, pay attention to them! At this stage, it's better to
change the idea a little bit and save yourself effort all through the process.

What just happened?
We've got testable specifications for moderately-sized projects, now. These will help
us to write unit tests and code, and they'll give us a sense of how complete the project is,
as a whole.

In addition, the process of writing code into the doctest gave us a chance to test-drive our
ideas. We've probably improved our projects a little bit by using them in a concrete manner,
even though the project implementation is still merely imaginary.

Once again, it's important that we have written these tests before writing the code that they
will test. By writing the tests first, we give ourselves a touchstone that we can use to judge
how well our code conforms to what we intended. If we write the code first, and then the
tests, all we end up doing is enshrining what the code actually does—as opposed to what
we meant for it to do—into the tests.

Writing initial unit tests
Since the specification doesn't contain unit tests, there's still a need for unit tests before
the coding of the module can begin. The planner.data classes are the first target for
implementation, so they're the first ones to get tests.

Activities and statuses are defined to be very similar, so their test modules are also similar.
They're not identical though, and they're not required to have any particular inheritance
relationship, so the tests remain distinct.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[126]

The following tests are in tests/test_activities.py:

from unittest import TestCase
from mocker import MockerTestCase
from planner.data import activities, task_error
from datetime import datetime

class constructor_tests(TestCase):
 def test_valid(self):
 activity = activities('activity name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2008, month=4, day=27))

 self.assertEqual(activity.name, 'activity name')
 self.assertEqual(activity.begins,
 datetime(year = 2007, month = 9, day = 11))
 self.assertEqual(activity.ends,
 datetime(year = 2008, month = 4, day = 27))

 def test_backwards_times(self):
 self.assertRaises(task_error,
 activities,
 'activity name',
 datetime(year=2008, month=4, day=27),
 datetime(year=2007, month=9, day=11))

 def test_too_short(self):
 self.assertRaises(task_error,
 activities,
 'activity name',
 datetime(year = 2008, month = 4, day = 27,
 hour = 7, minute = 15),
 datetime(year = 2008, month = 4, day = 27,
 hour = 7, minute = 15))

class utility_tests(TestCase):
 def test_repr(self):
 activity = activities('activity name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2008, month=4, day=27))

 expected = "<activity name 2007‑09‑11T00:00:00 2008‑04‑27T00:
00:00>"

 self.assertEqual(repr(activity), expected)

class exclusivity_tests(TestCase):
 def test_excludes(self):
 activity = activities('activity name',
 datetime(year=2007, month=9, day=11),

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[127]

 datetime(year=2007, month=10, day=6))

 # Any activity should exclude any other activity
 self.assertTrue(activity.excludes(activity))

 # Anything not known to be excluded should be included
 self.assertFalse(activity.excludes(None))

class overlap_tests(MockerTestCase):
 def setUp(self):
 pseudo = self.mocker.mock()

 pseudo.begins
 self.mocker.result(datetime(year=2007, month=10, day=7))
 self.mocker.count(0, None)

 pseudo.ends
 self.mocker.result(datetime(year=2008, month=2, day=5))
 self.mocker.count(0, None)

 self.other = pseudo

 self.mocker.replay()

 def test_overlap_before(self):
 activity = activities('activity name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2007, month=10, day=6))

 self.assertFalse(activity.overlaps(self.other))

 def test_overlap_begin(self):
 activity = activities('activity name',
 datetime(year=2007, month=8, day=11),
 datetime(year=2007, month=11, day=27))

 self.assertTrue(activity.overlaps(self.other))

 def test_overlap_end(self):
 activity = activities('activity name',
 datetime(year=2008, month=1, day=11),
 datetime(year=2008, month=4, day=16))

 self.assertTrue(activity.overlaps(self.other))

 def test_overlap_inner(self):
 activity = activities('activity name',
 datetime(year=2007, month=10, day=11),
 datetime(year=2008, month=1, day=27))

 self.assertTrue(activity.overlaps(self.other))

 def test_overlap_outer(self):
 activity = activities('activity name',
 datetime(year=2007, month=8, day=12),

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[128]

 datetime(year=2008, month=3, day=15))

 self.assertTrue(activity.overlaps(self.other))

 def test_overlap_after(self):
 activity = activities('activity name',
 datetime(year=2008, month=2, day=6),
 datetime(year=2008, month=4, day=27))

 self.assertFalse(activity.overlaps(self.other))

Let's take a look at each section of the above unit test code:

 def test_valid(self):
 activity = activities('activity name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2008, month=4, day=27))

 self.assertEqual(activity.name, 'activity name')
 self.assertEqual(activity.begins,
 datetime(year = 2007, month = 9, day = 11))
 self.assertEqual(activity.ends,
 datetime(year = 2008, month = 4, day = 27))

The test_valid method checks that the constructor works correctly when all of the
parameters are correct. This is an important test, because it defines what correct behavior
in the normal case should be. We need more tests though, to define correct behavior in
abnormal situations.

 def test_backwards_times(self):
 self.assertRaises(task_error,
 activities,
 'activity name',
 datetime(year=2008, month=4, day=27),
 datetime(year=2007, month=9, day=11))

Here, we'll make sure that you can't create an activity that ends before it begins. That
doesn't make any sense, and could easily throw off assumptions made during the
implementation.

 def test_too_short(self):
 self.assertRaises(task_error,
 activities,
 'activity name',
 datetime(year = 2008, month = 4, day = 27,
 hour = 7, minute = 15),
 datetime(year = 2008, month = 4, day = 27,
 hour = 7, minute = 15))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[129]

We don't want extremely short activities either. In the real world, an activity that takes no
time is meaningless, so we have a test here to make sure that such things are not allowed.

class utility_tests(TestCase):
 def test_repr(self):
 activity = activities('activity name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2008, month=4, day=27))

 expected = "<activity name 2007‑09‑11T00:00:00 2008‑04‑27T00:
00:00>"

 self.assertEqual(repr(activity), expected)

While repr(activity) isn't likely to be used in any production code paths, it's handy
during development and debugging. This test defines how the text representation of an
activity should look, to make sure that it contains the desired information.

class exclusivity_tests(TestCase):
 def test_excludes(self):
 activity = activities('activity name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2007, month=10, day=6))

 # Any activity should exclude any other activity
 self.assertTrue(activity.excludes(activity))

 # Anything not known to be excluded should be included
 self.assertFalse(activity.excludes(None))

Since activities are supposed to be exclusive of each other when they overlap, we check that
here. The activity obviously overlaps with itself, so the excludes method should return
True. On the other hand, an activity shouldn't just assume it excludes everything, so calling
excludes on unknown objects (such as None) should return False.

class overlap_tests(MockerTestCase):
 def setUp(self):
 pseudo = self.mocker.mock()

 pseudo.begins
 self.mocker.result(datetime(year=2007, month=10, day=7))
 self.mocker.count(0, None)

 pseudo.ends
 self.mocker.result(datetime(year=2008, month=2, day=5))
 self.mocker.count(0, None)

 self.other = pseudo

 self.mocker.replay()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[130]

Here we created a test fixture that creates a mock object which pretends to be an activity or
status. We'll use this mock object (called self.other) in several of the following tests.

 def test_overlap_before(self):
 activity = activities('activity name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2007, month=10, day=6))

 self.assertFalse(activity.overlaps(self.other))

 def test_overlap_begin(self):
 activity = activities('activity name',
 datetime(year=2007, month=8, day=11),
 datetime(year=2007, month=11, day=27))

 self.assertTrue(activity.overlaps(self.other))

 def test_overlap_end(self):
 activity = activities('activity name',
 datetime(year=2008, month=1, day=11),
 datetime(year=2008, month=4, day=16))

 self.assertTrue(activity.overlaps(self.other))

 def test_overlap_inner(self):
 activity = activities('activity name',
 datetime(year=2007, month=10, day=11),
 datetime(year=2008, month=1, day=27))

 self.assertTrue(activity.overlaps(self.other))

 def test_overlap_outer(self):
 activity = activities('activity name',
 datetime(year=2007, month=8, day=12),
 datetime(year=2008, month=3, day=15))

 self.assertTrue(activity.overlaps(self.other))

 def test_overlap_after(self):
 activity = activities('activity name',
 datetime(year=2008, month=2, day=6),
 datetime(year=2008, month=4, day=27))

 self.assertFalse(activity.overlaps(self.other))

These tests describe the behavior of activity overlap checking in the cases where the activity:

Comes after the mock object

Overlaps the end of the mock object

Overlaps the beginning of the mock object

Starts after the mock object and ends before it

Starts before the mock object and ends after it











This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[131]

The following tests are in tests/test_statuses.py. Many of these are similar to the
tests for activities. We'll concentrate on the differences:

from unittest import TestCase
from mocker import MockerTestCase
from planner.data import statuses, task_error
from datetime import datetime

class constructor_tests(TestCase):
 def test_valid(self):
 status = statuses('status name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2008, month=4, day=27))

 self.assertEqual(status.name, 'status name')
 self.assertEqual(status.begins,
 datetime(year=2007, month=9, day=11))
 self.assertEqual(status.ends,
 datetime(year=2008, month=4, day=27))

 def test_backwards_times(self):
 self.assertRaises(task_error,
 statuses,
 'status name',
 datetime(year=2008, month=4, day=27),
 datetime(year=2007, month=9, day=11))

 def test_too_short(self):
 self.assertRaises(task_error,
 statuses,
 'status name',
 datetime(year=2008, month=4, day=27,
 hour=7, minute=15),
 datetime(year=2008, month=4, day=27,
 hour=7, minute=15))

class utility_tests(TestCase):
 def test_repr(self):
 status = statuses('status name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2008, month=4, day=27))

 expected = "<status name 2007‑09‑11T00:00:00 2008‑04‑27T00:00
:00>"

 self.assertEqual(repr(status), expected)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[132]

class exclusivity_tests(TestCase):
 def test_excludes(self):
 status = statuses('status name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2007, month=10, day=6))

 # A status shouldn't exclude anything
 self.assertFalse(status.excludes(status))
 self.assertFalse(status.excludes(None))

class overlap_tests(MockerTestCase):
 def setUp(self):
 pseudo = self.mocker.mock()

 pseudo.begins
 self.mocker.result(datetime(year=2007, month=10, day=7))
 self.mocker.count(1, None)

 pseudo.ends
 self.mocker.result(datetime(year=2008, month=2, day=5))
 self.mocker.count(1, None)

 self.other = pseudo

 self.mocker.replay()

 def test_overlap_before(self):
 status = statuses('status name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2007, month=10, day=6))

 self.assertFalse(status.overlaps(self.other))

 def test_overlap_begin(self):
 status = statuses('status name',
 datetime(year=2007, month=8, day=11),
 datetime(year=2007, month=11, day=27))

 self.assertTrue(status.overlaps(self.other))

 def test_overlap_end(self):
 status = statuses('status name',
 datetime(year=2008, month=1, day=11),
 datetime(year=2008, month=4, day=16))

 self.assertTrue(status.overlaps(self.other))

 def test_overlap_inner(self):
 status = statuses('status name',
 datetime(year=2007, month=10, day=11),
 datetime(year=2008, month=1, day=27))

 self.assertTrue(status.overlaps(self.other))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[133]

 def test_overlap_outer(self):
 status = statuses('status name',
 datetime(year=2007, month=8, day=12),
 datetime(year=2008, month=3, day=15))

 self.assertTrue(status.overlaps(self.other))

 def test_overlap_after(self):
 status = statuses('status name',
 datetime(year=2008, month=2, day=6),
 datetime(year=2008, month=4, day=27))

 self.assertFalse(status.overlaps(self.other))

There's one significant area of difference between this test file and the previous one, the
test_excludes method.

class exclusivity_tests(TestCase):
 def test_excludes(self):
 status = statuses('status name',
 datetime(year=2007, month=9, day=11),
 datetime(year=2007, month=10, day=6))

 # A status shouldn't exclude anything
 self.assertFalse(status.excludes(status))
 self.assertFalse(status.excludes(None))

Unlike an activity, a status should never force itself to be exclusive with something else, so
this test uses assertFalse, instead of assertTrue for the first assertion.

The following tests are in tests/test_schedules.py. We define several mock objects
in the setUp method that behave as if they were activities or statuses. These mock
objects simulate activities or statuses, and so by using them instead of real activities or
statuses they allow us to check that the schedules class correctly handles events that
either do or do not overlap, and that either do or do not exclude each other, all without
actually using code from outside the unit being tested.

from unittest import TestCase
from mocker import MockerTestCase, ANY
from planner.data import schedules, schedule_error
from datetime import datetime

class add_tests(MockerTestCase):
 def setUp(self):

 overlap_exclude = self.mocker.mock()
 overlap_exclude.overlaps(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 overlap_exclude.excludes(ANY)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[134]

 self.mocker.result(True)
 self.mocker.count(0, None)

 overlap_include = self.mocker.mock()
 overlap_include.overlaps(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 overlap_include.excludes(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)

 distinct_exclude = self.mocker.mock()
 distinct_exclude.overlaps(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)
 distinct_exclude.excludes(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)

 distinct_include = self.mocker.mock()
 distinct_include.overlaps(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)
 distinct_include.excludes(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)

 self.overlap_exclude = overlap_exclude
 self.overlap_include = overlap_include
 self.distinct_exclude = distinct_exclude
 self.distinct_include = distinct_include

 self.mocker.replay()

 def test_add_overlap_exclude(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 self.assertRaises(schedule_error,
 schedule.add,
 self.overlap_exclude)

 def test_add_overlap_include(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 schedule.add(self.overlap_include)

 def test_add_distinct_exclude(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 schedule.add(self.distinct_exclude)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[135]

 def test_add_distinct_include(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 schedule.add(self.distinct_include)

 def test_add_over_overlap_exclude(self):
 schedule = schedules()
 schedule.add(self.overlap_exclude)
 self.assertRaises(schedule_error,
 schedule.add,
 self.overlap_include)

 def test_add_over_distinct_exclude(self):
 schedule = schedules()
 schedule.add(self.distinct_exclude)
 self.assertRaises(schedule_error,
 schedule.add,
 self.overlap_include)

 def test_add_over_overlap_include(self):
 schedule = schedules()
 schedule.add(self.overlap_include)
 schedule.add(self.overlap_include)

 def test_add_over_distinct_include(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 schedule.add(self.overlap_include)

class in_tests(MockerTestCase):
 def setUp(self):
 fake = self.mocker.mock()
 fake.overlaps(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 fake.excludes(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)

 self.fake = fake

 self.mocker.replay()

 def test_in_before_add(self):
 schedule = schedules()
 self.assertFalse(self.fake in schedule)

 def test_in_after_add(self):
 schedule = schedules()
 schedule.add(self.fake)
 self.assertTrue(self.fake in schedule)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[136]

Let's go over those tests section by section.

 def setUp(self):

 overlap_exclude = self.mocker.mock()
 overlap_exclude.overlaps(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 overlap_exclude.excludes(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)

 overlap_include = self.mocker.mock()
 overlap_include.overlaps(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 overlap_include.excludes(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)

 distinct_exclude = self.mocker.mock()
 distinct_exclude.overlaps(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)
 distinct_exclude.excludes(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)

 distinct_include = self.mocker.mock()
 distinct_include.overlaps(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)
 distinct_include.excludes(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)

 self.overlap_exclude = overlap_exclude
 self.overlap_include = overlap_include
 self.distinct_exclude = distinct_exclude
 self.distinct_include = distinct_include

 self.mocker.replay()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[137]

We created four mock objects here: overlap_exclude, overlap_include, distinct_
exclude, and distinct_include. Each of them represents a different combination of
behavior of its overlaps method and its excludes method. Between these four mock
objects, we have every combination of overlapping or not overlapping, and excluding or not
excluding. In the following tests, we'll add various combinations of these mock objects to a
schedule, and make sure it does the right things.

 def test_add_overlap_exclude(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 self.assertRaises(schedule_error,
 schedule.add,
 self.overlap_exclude)

 def test_add_overlap_include(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 schedule.add(self.overlap_include)

 def test_add_distinct_exclude(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 schedule.add(self.distinct_exclude)

 def test_add_distinct_include(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 schedule.add(self.distinct_include)

These four tests cover cases, where we add a non-overlapping object to a schedule. All
of them are expected to accept the non-overlapping object, except the first. In that test,
we've previously added an object that claims that it does indeed overlap, and furthermore
it excludes anything it overlaps. That test shows that if either the object being added or an
object already in the schedule believes there's an overlap, the schedule must treat it as
an overlap.

 def test_add_over_overlap_exclude(self):
 schedule = schedules()
 schedule.add(self.overlap_exclude)
 self.assertRaises(schedule_error,
 schedule.add,
 self.overlap_include)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[138]

In this test, we'll make sure that if an object already in the schedule overlaps a new object
and claims exclusivity, then adding the new object will fail.

 def test_add_over_distinct_exclude(self):
 schedule = schedules()
 schedule.add(self.distinct_exclude)
 self.assertRaises(schedule_error,
 schedule.add,
 self.overlap_include)

In this test, we'll make sure that even though the object already in the schedule doesn't
think it overlaps with the new object, it excludes the new object because the new object
thinks that there's an overlap.

 def test_add_over_overlap_include(self):
 schedule = schedules()
 schedule.add(self.overlap_include)
 schedule.add(self.overlap_include)

 def test_add_over_distinct_include(self):
 schedule = schedules()
 schedule.add(self.distinct_include)
 schedule.add(self.overlap_include)

These tests make sure that inclusive objects don't somehow interfere with adding each other
to a schedule.

class in_tests(MockerTestCase):
 def setUp(self):
 fake = self.mocker.mock()
 fake.overlaps(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 fake.excludes(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)

 self.fake = fake

 self.mocker.replay()

 def test_in_before_add(self):
 schedule = schedules()
 self.assertFalse(self.fake in schedule)

 def test_in_after_add(self):
 schedule = schedules()
 schedule.add(self.fake)
 self.assertTrue(self.fake in schedule)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[139]

These two tests describe schedule behavior with respect to the in operator. Specifically, in
should return True when the object in question is actually in the schedule.

Time for action – nailing down the specification with unit tests
A specification—even a testable specification written in doctest—is still home to a lot
of ambiguities that can be ironed out with good unit tests. Add that to the fact that the
specification doesn't maintain separation between different tests, and you can see that it's
time for your project to gain some unit tests.

Find some element of your project which is described in (or implied by)
your specification

Write a unit test that describes the behavior of that element when given
correct input

Write a unit test that describes the behavior of that element when given
incorrect input

Write unit tests that describe the behavior of the element at the boundaries
between correct and incorrect input

Go back to step 1 if you can find another untested part of your program.

What just happened?
It doesn't take many bullet points to describe the procedure, but this is an important
process. This is where you really take what was an ill-defined idea and turn it into a precise
description of what you're going to do.

The end result can be quite lengthy, which shouldn't come as much of a surprise. After
all, your goal at this stage is to completely define the behavior of your project; and even
without bothering yourself with the details of how that behavior is implemented, that's
a lot of information.

Coding planner.data
It's time to write some code, using the specification document and the unit tests as guides.
Specifically, it's time to write the planner.data module, which contains statuses,
activities, and schedules.

I made a directory called planner, and within that directory created a file called __init__
.py. There's no need to put anything inside __init__.py, but the file itself needs to exist
to tell Python that the planner directory is a package.











This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[140]

The following code goes in planner/data.py:

from datetime import timedelta

class task_error(Exception):
 pass

class schedule_error(Exception):
 pass

class _tasks:
 def __init__(self, name, begins, ends):
 if ends < begins:
 raise task_error('The begin time must precede the
 end time')
 if ends - begins < timedelta(minutes = 5):
 raise task_error('The minimum duration is 5 minutes')

 self.name = name
 self.begins = begins
 self.ends = ends

 def excludes(self, other):
 raise NotImplemented('Abstract method. Use a child class.')

 def overlaps(self, other):
 if other.begins < self.begins:
 return other.ends > self.begins
 elif other.ends > self.ends:
 return other.begins < self.ends
 else:
 return True

 def __repr__(self):
 return ''.join(['<', self.name,
 ' ', self.begins.isoformat(),
 ' ', self.ends.isoformat(),
 '>'])

class activities(_tasks):
 def excludes(self, other):
 return isinstance(other, activities)

class statuses(_tasks):
 def excludes(self, other):
 return False

class schedules:
 def __init__(self, name='schedule'):
 self.tasks = []
 self.name = name

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[141]

 def add(self, task):
 for contained in self.tasks:
 if task.overlaps(contained):
 if task.exclude(contained) or contained.exclude(task):
 raise schedule_error(task, containeed)

 self.tasks.append(task)

 def remove(self, task):
 try:
 self.tasks.remove(task)
 except ValueError:
 pass

 def __contains__(self, task):
 return task in self.tasks

Let's go over this section by section:

class _tasks:
 def __init__(self, name, begins, ends):
 if ends < begins:
 raise task_error('The begin time must precede the end
time')
 if ends - begins < timedelta(minutes = 5):
 raise task_error('The minimum duration is 5 minutes')

 self.name = name
 self.begins = begins
 self.ends = ends

 def excludes(self, other):
 raise NotImplemented('Abstract method. Use a child class.')

 def overlaps(self, other):
 if other.begins < self.begins:
 return other.ends > self.begins
 elif other.ends > self.ends:
 return other.begins < self.ends
 else:
 return True

 def __repr__(self):
 return ''.join(['<', self.name,
 ' ', self.begins.isoformat(),
 ' ', self.ends.isoformat(),
 '>'])

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[142]

The _tasks class here contains most of the behavior that is needed for both the
activities and the statuses classes. Since so much of what they do is common to both,
it makes sense to write the code once and reuse it. Only the excludes method needs to be
different in each of the subclasses.

class activities(_tasks):
 def excludes(self, other):
 return isinstance(other, activities)

class statuses(_tasks):
 def excludes(self, other):
 return False

class schedules:
 def __init__(self, name='schedule'):
 self.tasks = []
 self.name = name

 def add(self, task):
 for contained in self.tasks:
 if task.overlaps(contained):
 if task.exclude(contained) or contained.exclude(task):
 raise schedule_error(task, containeed)

 self.tasks.append(task)

 def remove(self, task):
 try:
 self.tasks.remove(task)
 except ValueError:
 pass

 def __contains__(self, task):
 return task in self.tasks

Here we have the implementations of the classes that our tests actually require to exist. The
activities and statuses classes are very simple, by virtue of inheriting from _tasks.
The schedules class turns out to be pretty easy, too. But is it right? Our tests will tell us.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[143]

Using the tests to get the code right
All right, so that code looks fairly good. Unfortunately, Nose tells us there are a few
problems. Actually, Nose reports quite a large number of problems, but the first ones
needing to be fixed are shown below:

The reason for focusing on those errors, when we have so many to choose from, is simple.
A lot of the other errors seem to be derived from these. The unit tests also report problems
with exclude, so we know that one isn't derived from some other error—remember that unit
tests aren't influenced by each other, unlike the tests in our specification.

Fixing the code
To fix the first error, add the following code to the _tasks class in planner/data.py:

 def __eq__(self, other):
 return self.name == other.name and self.begins == other.begins
and self.ends == other.ends

 def __ne__(self, other):
 return not self.__eq__(other)

(Beware of the wrapped line in __eq__)

As you can probably tell, that code overrides the equality comparison between two _tasks,
declaring them to be equal if they have the same name, begin time and end time. That's the
equality metric that's implicitly assumed by the test code.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[144]

The second error can be fixed by fixing the typographical errors in schedules.add:

 def add(self, task):
 for contained in self.tasks:
 if task.overlaps(contained):
 if task.excludes(contained) or contained.
excludes(task):
 raise schedule_error(task, containeed)

 self.tasks.append(task)

In this case, we changed the incorrect method name exclude to the correct method name
excludes. (Again, watch out for wrapped lines)

So now, I run Nose again and it breaks:

Fortunately, this is an easy fix: take out the extra 'e' in 'contained':

 raise schedule_error(task, contained)

For the skeptical reader, I'm compelled to admit that, yes, that typo really did slip by until the
test caught it. Sometimes tests catch boring mistakes instead of dramatic problems, typos
instead of logic errors. It doesn't really matter, because either way the test is helping you
make your code more solid, more reliable, and better.

So now, when I run Nose it breaks:

Okay, fine, this is easy to fix too. The error is just formatted wrongly. Fix that by replacing the
'raise' in schedules.add:

 raise schedule_error('"%s" overlaps with "%s"' %
 (task.name, contained.name))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[145]

This time when I run Nose, it tells me that my unit test is broken:

Specifically, it's telling me that my mockups of activities and statuses are missing the
name attribute. This too is simply fixed by changing the setUp method of add_tests in
tests/test_schedules.py:

 def setUp(self):

 overlap_exclude = self.mocker.mock()
 overlap_exclude.overlaps(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 overlap_exclude.excludes(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 overlap_exclude.name
 self.mocker.result('overlap_exclude')
 self.mocker.count(0, None)

 overlap_include = self.mocker.mock()
 overlap_include.overlaps(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 overlap_include.excludes(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)
 overlap_include.name
 self.mocker.result('overlap_include')
 self.mocker.count(0, None)

 distinct_exclude = self.mocker.mock()
 distinct_exclude.overlaps(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)
 distinct_exclude.excludes(ANY)
 self.mocker.result(True)
 self.mocker.count(0, None)
 distinct_exclude.name

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[146]

 self.mocker.result('distinct_exclude')
 self.mocker.count(0, None)

 distinct_include = self.mocker.mock()
 distinct_include.overlaps(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)
 distinct_include.excludes(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)
 distinct_include.name
 self.mocker.result('distinct_include')
 self.mocker.count(0, None)

 self.overlap_exclude = overlap_exclude
 self.overlap_include = overlap_include
 self.distinct_exclude = distinct_exclude
 self.distinct_include = distinct_include

 self.mocker.replay()

Having fixed that, Nose still reports errors, but all of them have to do with persistence. Those
errors aren't surprising, because there's no persistence implementation yet.

Time for action – writing and debugging code
The basic procedure (as we've discussed before), is to write some code and run the tests to
find problems with the code, and repeat. When you come across an error that isn't covered
by an existing test, you write a new test and continue the process.

1.	 Write code that ought to satisfy at least some of your tests

2.	 Run your tests. If you used it when we talked about it in previous
chapters, you should be able to run everything simply by executing:

 $ nosetests

3.	 If there are errors in the code you've already written, use the test
output to help you locate and identity them. Once you understand
the bugs, try to fix them and then go back to step 2.

4.	 Once you've fixed all the errors in the code you've written, and if your project
isn't complete, choose some new tests to concentrate on and go back to step 1.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[147]

What just happened?
Enough iterations on this procedure leads you to having a complete and tested project. Of
course, the real task is more difficult than simply saying "it will work," but in the end, it will
work. You will produce a codebase that you can be confident in. It will also be an easier
process than it would have been without the tests.

Your project may be done, but there's still more to do on the personal scheduler. At this
stage of the chapter, I haven't finished going through the writing and debugging process. It's
time to do that.

Writing persistence tests
Since I don't have any actual unit tests for the persistence code yet, I'll start off by making
some. In the process, I have to figure how persistence will actually work. The following code
goes in tests/test_persistence.py:

from unittest import TestCase
from mocker import MockerTestCase
from planner.persistence import file

class test_file(TestCase):
 def test_basic(self):
 storage = file(':memory:')
 storage.store_object('tag1', ('some object',))
 self.assertEqual(tuple(storage.load_objects('tag1')),
 (('some object',),))

 def test_multiple_tags(self):
 storage = file(':memory:')

 storage.store_object('tag1', 'A')
 storage.store_object('tag2', 'B')
 storage.store_object('tag1', 'C')
 storage.store_object('tag1', 'D')
 storage.store_object('tag3', 'E')
 storage.store_object('tag3', 'F')

 self.assertEqual(set(storage.load_objects('tag1')),
 set(['A', 'C', 'D']))

 self.assertEqual(set(storage.load_objects('tag2')),
 set(['B']))

 self.assertEqual(set(storage.load_objects('tag3')),
 set(['E', 'F']))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[148]

Looking at each of the important sections of the test code, we see the following:

 def test_basic(self):
 storage = file(':memory:')
 storage.store_object('tag1', ('some object',))
 self.assertEqual(tuple(storage.load_objects('tag1')),
 (('some object',),))

The test_basic test creates a storage, stores a single object under the name tag1, and
then loads that object back from storage and checks that it is equal to the original object.

 def test_multiple_tags(self):
 storage = file(':memory:')

 storage.store_object('tag1', 'A')
 storage.store_object('tag2', 'B')
 storage.store_object('tag1', 'C')
 storage.store_object('tag1', 'D')
 storage.store_object('tag3', 'E')
 storage.store_object('tag3', 'F')

 self.assertEqual(set(storage.load_objects('tag1')),
 set(['A', 'C', 'D']))

 self.assertEqual(set(storage.load_objects('tag2')),
 set(['B']))

 self.assertEqual(set(storage.load_objects('tag3')),
 set(['E', 'F']))

The test_multiple_tags test creates a storage, and then stores multiple objects in it,
some with duplicate tags. It then checks that the storage keeps all of the objects with a given
tag, and returns all of them on request.

In other words, a persistence file is a multimap from string keys to object values.

Writing persistence code
Now that there are at least basic unit tests covering the persistence mechanism, it's time to
write the persistence code itself. The following goes in planner/persistence.py:

import sqlite3
from cPickle import loads, dumps

class file:
 def __init__(self, path):
 self.connection = sqlite3.connect(path)

 try:

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[149]

 self.connection.execute("""
 create table objects (tag, pickle)
 """)
 except sqlite3.OperationalError:
 pass

 def store_object(self, tag, object):
 self.connection.execute('insert into objects values (?, ?)',
 (tag, dumps(object)))

 def load_objects(self, tag):
 cursor = self.connection.execute("""
 select pickle from objects where tag like ?
 """, (tag,))
 return [loads(row[0]) for row in cursor]

The store_object method runs a short SQL statement to store the object into a database
field. The object serialization is handled by the dumps function from the cPickle module.

The load_object method uses SQL to query the database for the serialized version of
every object stored under a given tag, and then uses cPickle.loads to transform those
serializations into real objects for it to return.

Now I run Nose to find out what's broken:

I forgot that sqlite returns text data as unicode. Pickle is understandably unwilling to work
with a Unicode string: it expects a byte string, and the correct way to interpret Unicode as a
byte string is ambiguous. This can be solved by telling sqlite to store the pickled object as
a BLOB (Binary Large Object). Modify the store_object and load_objects methods of
file in planner/persistence.py:

 def store_object(self, tag, object):
 self.connection.execute('insert into objects values (?, ?)',
 (tag, sqlite3.Binary(dumps(object))))

 def load_objects(self, tag):
 cursor = self.connection.execute("""
 select pickle from objects where tag like ?
 """, (tag,))
 return [loads(str(row[0])) for row in cursor]

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[150]

Now Nose is saying that the schedules class doesn't have store and load methods,
which is true. Furthermore, there aren't any unit tests that check those methods... the only
error is coming from the specification doctest. Time to write some more unit tests in tests/
test_schedules.py:

from mocker import MockerTestCase, ANY, IN
…
class store_load_tests(MockerTestCase):
 def setUp(self):
 fake_tasks = []
 for i in range(50):
 fake_task = self.mocker.mock()
 fake_task.overlaps(ANY)
 self.mocker.result(False)
 self.mocker.count(0, None)
 fake_task.name
 self.mocker.result('fake %d' % i)
 self.mocker.count(0, None)
 fake_tasks.append(fake_task)

 self.tasks = fake_tasks

 def test_store(self):
 fake_file = self.mocker.mock()

 fake_file.store_object('test_schedule', IN(self.tasks))
 self.mocker.count(len(self.tasks))

 self.mocker.replay()

 schedule = schedules('test_schedule')
 for task in self.tasks:
 schedule.add(task)

 schedule.store(fake_file)

 def test_load(self):
 fake_file = self.mocker.mock()

 fake_file.load_objects('test_schedule')
 self.mocker.result(self.tasks)
 self.mocker.count(1)

 self.mocker.replay()

 schedule = schedules.load(fake_file, 'test_schedule')

 self.assertEqual(set(schedule.tasks),
 set(self.tasks))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[151]

Now that I have some tests to check against, it's time to write the store and load methods
of the schedules class in planner/data.py:

 def store(self, storage):
 for task in self.tasks:
 storage.store_object(self.name, task)

 @staticmethod
 def load(storage, name = 'schedule'):
 value = schedules(name)

 for task in storage.load_objects(name):
 value.add(task)

 return value

The @staticmethod notation means that you can call load without first
creating an instance of schedules. Notice that the load method does not
receive a self parameter.

The @ syntax for function decorators was introduced in Python 2.4. In
earlier versions back to Python 2.2, you could instead write load =
staticmethod(load) after the method definition, which means the same
thing. Before Python 2.2, there was no staticmethod function: the easiest
way to do static "methods" was to write one as a standalone function in the
same module.

This new bunch of tests and code allows us to save and restore schedules from files, and
clears up most of the remaining test failures. The planner package is nearly finished!

Finishing up
Now, Nose only reports one failed test, the check to see whether the original schedules
instance and the one loaded from the file are equal. The problem here is that, once again,
there's a need to redefine what it means to be equal.

That can be fixed by adding the following to the definition of schedules in planner/
data.py:

 def __eq__(self, other):
 if len(self.tasks) != len(other.tasks):
 return False

 left_tasks = list(self.tasks)
 left_tasks.sort(key = (lambda task: task.begins))
 right_tasks = list(other.tasks)
 right_tasks.sort(key = (lambda task: task.begins))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Developing a Test-Driven Project

[152]

 return tuple(left_tasks) == tuple(right_tasks)

 def __ne__(self, other):
 return not self.__eq__(other)

The key parameter of sort was added in Python 2.4. Prior to that version,
doing such a sort would have looked like left_tasks.sort(cmp =
(lambda t1, t2: cmp(t1.begins, t2.begins))).

These methods define equality between schedules to be when they contain exactly the same
tasks, and define inequality to be whenever they aren't equal (It may sound silly to have to
define inequality that way, but it turns out that there actually are some situations where
you'd want to define it differently).

Now, the tests all pass. There's something worth paying attention to though, in the way that
they pass. Specifically, a couple of them are very slow. A little investigation reveals that the
slow tests are the ones that deal with schedules that contain a larger number of tasks. That
reveals something very important: the schedules implementation is now conformant with
the tests and specifications, but it stores and organizes data in a naïve way, and so it doesn't
scale up well.

Now that there is a working implementation, well covered by unit tests, the time is ripe
for optimization.

Pop quiz – test-driven development
1.	 I didn't follow unit testing discipline when I wrote my testable specification. What

did I have to do because of that, which I wouldn't have had to do otherwise? Was it
wrong to choose that path?

2.	 Is it desirable to minimize the number of times you run your tests?

3.	 If you start writing code before you write any tests, what opportunities have
you lost?

Have a go hero
You worked through your own project, and we worked through a project together. Now it's
time to try something completely on your own. I'll give you a little help coming up with a
goal, but from there on out, it's your time to shine.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 7

[153]

A Skip list is another dictionary-like data structure. You can find quite a
bit of information about them on Wikipedia at http://en.wikipedia.
org/wiki/Skip_list. Using that information (and any other references
you can find, if you feel like it) and the test-driven process, write your own skip
list module.

Summary
In this chapter, we looked at how to apply the skills covered in earlier parts of this book. We
did this by stepping through a recording of your humble author's actual process in writing a
package. At the same time, you had the chance to work through your own project, making
your own decisions, and designing your own tests. You've taken the lead in a test-driven
project, and you should be able to do it again whenever you want.

Now that we've covered the heart of Python testing, we're ready to talk about testing web-
based user interfaces with Python and Twill—which is the topic of the next chapter.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

8
Testing Web Application

Frontends using Twill

We haven't talked at all about testing user interfaces. Mostly because graphical
user interfaces are not very amenable to being checked by automated testing
tools (it can be difficult to feed input to the system and difficult to disentangle
all of the units involved). However, web applications are an exception to that
rule, and their importance keeps increasing.

In this chapter, we shall:

Learn to use Twill to script interactions with web sites

Learn how run Twill scripts from inside a testing framework

Learn how to integrate Twill operations directly into unittest tests

So let's get on with it!

Installing Twill
You can find Twill in the Python Package Index at http://pypi.python.org/pypi/
twill/. At the time of writing, the latest version can be directly downloaded from
http://darcs.idyll.org/~t/projects/twill-0.9.tar.gz.







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[156]

Windows users will need to use an archiving program which understands
Tar and GZip formats, such as 7-Zip (http://www.7-zip.org/) to
extract the files.

Once you have the files unpacked, you can install them by opening a command prompt,
changing to the twill-0.9 directory, and running:

$ python setup.py install

or, if you can't write to Python's site-packages directory,

$ python setup.py install --user

If you're using a version of Python older than 2.6, you won't be able to do
a --user installation, which means you'll need to have write access to
the Python installation's site-packages directory.

Exploring the Twill language
Now that you've installed Twill, you can open a shell program that lets you interactively
explore its language and capabilities. We'll go through some of the most useful ones here.

Time for action – browsing the web with Twill
We'll take Twill for a spin, using its interactive interpreter.

1.	 Start the interactive Twill interpreter:

	 $ twill-sh

You may notice a couple of warnings about the deprecated md5
module when you start Twill. You may safely ignore them.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[157]

2.	 Get a list of Twill commands. You can get further information about a specific
command by typing help <command> at the prompt.

	 >> help

3.	 Tell Twill to go to a web site. Although slashdot.org is used in this example, the
reader is encouraged to try out other sites as well.

	 >> go http://slashdot.org/

Twill will print out a couple of lines indicating that it is now browsing
http://slashdot.org/.

4.	 Check that the web server returned a 'no error' code (which is to say, code
200). We could just as easily check for other codes—for example, making sure
that our interface returned an error when asked to do something invalid.

	 >> code 200

5.	 Follow a link, which is specified by providing a regular expression. If you're not
comfortable with regular expressions—or even if you are—you're usually fine
by just specifying enough of the link text to identify the one that you want to
follow. After following the link, check the code again to make sure it worked.

	 >> follow Science
	 >> code 200

6.	 Fill in a form field. This fills the first field of the second form with the word monkey.
At the time of this writing, the second form is a search form, and the first field is the
search box. If the page layout were to change, this example wouldn't be correct
any more.

	 >> formvalue 2 1 "monkey"

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[158]

7.	 We can also refer to forms and form fields by name (if they have names). The specific
form used here doesn't have a name, but the field does. The following sets the
value of the same field as the command in step 6, this time to the value aardvark.

	 >> formvalue 2 fhfilter "aardvark"

8.	 Now we can submit the form. This moves Twill to a new working
URL, as well as sending information to the server.

	 >> submit

9.	 Once again, we want to make sure that the server returned the expected code.

	 >> code 200

10.	 Does the page contain what we expect? We can check with the find command.
In this case, we'll be checking two things. The first is whether the word aardvark
appears within the code of the result page. With the system currently in place
on slashdot.org, we can expect that it will. The second check, for the word
Elephant is probably going to fail.

	 >> find aardvark

	 >> find Elephant

What just happened?
We used Twill to browse to slashdot.org, navigated into the Science section, searched for
aardvark, and then checked to see if the resulting page contained the words aardvark and
Elephant. Of what use it that?

We're not limited to goofing around on slashdot.org. We can use the Twill language to
describe any interaction between a web browser and a web server. That means, we can
use it to describe the expected behavior of our own web applications. If we can describe
expected behavior, we can write tests.

It would be nice to be able to store the commands in a file though, so that we can automate
the tests. Like any good interpreter, Twill will let us do that.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[159]

Time for action – Twill scripting
We'll write a Twill script that checks whether a site obeys the same interface that we used
for interacting with slashdot.org, and then applies it to a few different web sites to see
what happens.

1.	 Create a file called slashdot.twill containing the following code:

code 200

follow Science

code 200

formvalue 2 fhfilter "aardvark"

submit

code 200

find aardvark

2.	 Now, we'll run that script on http://slashdot.org/ and see whether it works.

	 $ twill-sh -u http://slashdot.org/ slashdot.twill

3.	 All right, that worked nicely. So, let's see if espn.com works the same way as
slashdot.org did.

	 $ twill-sh -u http://espn.com/ slashdot.twill

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[160]

What just happened?
By storing the Twill commands in a file, we were able to run them as an automated test.
That's definitely a step forward for testing our web-based applications.

The -u command line option that we passed to twill-sh is very useful: it has the same
effect as a go command at the start of the file, but of course we can change it every time we
run the script. This is particularly helpful if you're not sure what the base URL for your web
app will end up being.

Twill commands
Twill has a number of commands, and so far we've only covered a few of them. In this
section you'll find a brief discussion of each of Twill's commands.

help
The help command prints out a list of all of Twill's commands, or tells you the details
of a specific command. For example, to get the details of the add_auth command, you
should type:

>> help add_auth

If you want to know the detailed syntax of any of the other commands,
use the help command to get that information.

setglobal
The setglobal command assigns a value to a variable name. These variable names can
then be used as parameters of later commands. Thus, if you tell Twill to:

>> setglobal target http://www.example.org/

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[161]

Twill will set the global variable target to the value http://www.example.org/. You
would then be able to say:

>> go target

to tell Twill to go to http://www.example.org/.

Variable values can also be inserted into text strings by surrounding the variable name with
${ and }, so that:

>> go "${target}/example.html"

tells Twill to go to http://www.example.org/example.html.

setlocal
The setlocal command behaves generally like the setglobal command, with one
significant difference; variables bound with setlocal only exist while Twill is executing
the same script file (or, technically, interactive session) in which they were bound. Once
Twill switches to a new script, local variables are forgotten until execution returns to the
original script.

add_auth
The add_auth command lets you log in to a site protected by the Basic Authentication
scheme of HTTP. The command takes four parameters, in this order: realm, URI, username,
and password. The username and password are what a user would type in to gain access to
the site. The URI is a prefix for all of the web addresses where you want the authentication
to be applied: if you pass http://example.com/ as the URI, the username and password
might be used to login to any page on example.com. The realm is an arbitrary text string
chosen by the server, which must be included in any authorization. If you're testing your own
web app, you should already know what it is.

You can find out all about HTTP Basic Authentication at
http://tools.ietf.org/html/rfc2617#section-2.

So, to log in to the example realm on example.com with the username of testuser and the
password of 12345, you would use the following command:

>> add_auth example http://example.com/ testuser 12345

add_extra_header
By using add_extra_header, you can include any arbitrary HTTP header into all
subsequent requests that Twill makes. The command takes two parameters: the name
of the header field to be added, and the value to be assigned to the header field.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[162]

You need to keep in mind that HTTP allows the same header to exist multiple times in the
same request, and to have different values each time. If you tell Twill

>> add_extra_header moose 12

>> add_extra_header moose 15

then there will be two 'moose' headers sent in each request, with different values.

clear_extra_headers
The clear_extra_headers command removes all of the previously defined extra headers
from future requests. Removed headers can be re-added later.

show_extra_headers
The show_extra_headers command prints out a list of all of the currently added extra
headers, along with their values.

agent
You can make Twill masquerade as a different web browser, by using the agent
command. You can use any user agent string as the parameter. At the time of this writing,
http://user-agent-string.info/ was a useful resource for finding the user agent
strings used by web browsers.

back
The back command works just as the back button on a web browser would, returning to the
most recent URL in Twill's history.

clear_cookies
The clear_cookies command causes Twill to forget all of its currently stored cookies.

code
The code command checks that the HTTP response code from the previous navigation
command was the expected value. The value that means 'success' is 200. 404 means that
the page wasn't found, 401 means that a login is required before you can browse the page,
301 and 302 are redirects, and so on.

You can find a complete list of official HTTP response codes at
http://tools.ietf.org/html/rfc2616#section-6.1.1.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[163]

config
The config command lets you modify the behavior of the Twill interpreter. It takes a
configuration parameter name and an integer value as parameters, and Twill modifies its
behavior according to the values given to the configuration variable.

For a complete list of current configuration variables, type:

>> help config

debug
The debug command causes Twill to output trace information as it operates. At the time
of writing, there were three different kinds of debug trace available: HTTP, commands, and
handling of the HTTP-EQUIV refresh tag.

If you tell Twill to:

>> debug http 1

then whenever Twill performs an HTTP operation, you'll see a printout of the request and
response lines, along with the HTTP header fields that were returned with the response.

The debug commands 1 command isn't useful when you're interacting directly with the
Twill interpreter, but if you place it in a Twill script, it will cause Twill to print out each
command as it executes, so that you can see what the script is doing.

If you tell Twill to

>> debug equiv-refresh 1

then it will print out extra information whenever it runs across a page with a <META HTTP-
EQUIV="refresh"...> tag in the header.

echo
The echo command is useful if you want your Twill scripts to output information, but don't
find that any of the debug subcommands really does what you want. Whatever parameters
you pass to echo, are printed to the screen.

exit
The exit command causes the Twill interpreter to terminate. It takes an error code—which
is just an integer, with 0 normally being interpreted as 'no error'—as an optional parameter.
Even if you pass a non-zero value to exit, Twill will print out that the script succeeded,
after all of the commands that it ran executed correctly, including exit. The error code
is only meaningful if the program that executed Twill uses it, so in many cases it will be
ignored completely.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[164]

extend_with
The extend_with command is a mechanism for customizing the Twill interpreter. It imports
a Python module, and adds any functions in it as new Twill commands.

find
The find command searches the current page for text that matches a regular expression.
Python's regular expression syntax is described in the online docs at http://docs.
python.org/library/re.html#regularexpressionsyntax, but for our purposes it's
enough to know that if you type a word, find will look for it.

The find command also accepts an optional second parameter. This parameter is a text
string representing options controlling how the search is performed. If the string contains
the letter i then the search is case-insensitive, meaning that capital and lowercase letters
match with each other. The letters m and s mean to use 'MULTILINE' and 'DOTALL' modes,
respectively. These modes are described in the above documentation.

The find command also binds the matched text to the local variable name __match__, so
that you can refer to it in later commands, just as if it had been set by setlocal.

notfind
The notfind command works like the find command, except that if it finds a match for the
regular expression, it fails. If it does not find a match, it succeeds.

follow
The follow command searches the current page for a link that matches a regular
expression, and goes to the linked address. Using follow is like clicking on a link in
a normal web browser.

Unlike the find command, the follow command does not accept regular expression flags,
and does not bind the __match__ name. It just goes where the hyperlink points it.

formaction
The formaction command lets you change the address to which a form will be submitted.
It takes two parameters: an identifier for the form you want to change, and the URL that you
want the form submitted to.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[165]

For example, the following HTML would produce a form that would be submitted to the
current URL, because that is the default when the action attribute is omitted from
the form tag:

<form name="form1" method="post">

After executing this formaction command,

>> formaction form1 http://example.com/viewer

it would be as if the form had been written:

<form name="form1" method="post" action="http://example.com/viewer">

formclear
The formclear command resets a form to its initial state, meaning that data entered by
other commands get forgotten.

formfile
The formfile command fills in a value for an <input type="file"> form field. It has
three required parameters: the form's name or number, the field's name or number, and the
filename of the file. Optionally, a fourth parameter can be added which specifies the mime
content type of the file.

formvalue
The formvalue command fills in values for HTML form fields. It accepts three parameters:
the form's name or number, the field's name or number, and the value to be assigned. We
used formvalue in the example Twill script above.

getinput
The getinput command allows Twill scripts to be interactive. The command accepts one
parameter, a prompt that will be displayed to the user. After printing the prompt, Twill waits
for the user to type something and hit enter, after which whatever the user typed is stored in
the local variable called __input__.

getpassword
The getpassword command works mostly like getinput. The differences are that
getpassword does not display the text that the user types, and that the text is bound
to the local variable name __password__ after being input.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[166]

go
The go command directs Twill to go to a new URL and load the page at that address. Unlike
follow, go doesn't care what links exist on the current page. Using go is like typing an
address into the address bar of a normal web browser.

info
The info command prints some general information about the page that Twill is currently
browsing. This information includes the URL, the HTTP code, the MIME content-type of the
page, the title, and the number of forms on the page.

save_cookies
The save_cookies command saves a copy of any cookies that Twill is currently aware of.
These cookies can be re-loaded later. The command takes a single parameter: the file name
in which to store the cookies.

load_cookies
The load_cookies command replaces any cookies that Twill currently knows about with
the cookies stored in a file. It takes a single parameter: the filename of the cookie file to load.

show_cookies
The show_cookies command will print out any cookies currently aware of.

redirect_error
The redirect_error command causes all of Twill's error messages to be stored in a file
instead of being printed to the screen. It takes a single parameter representing the file name
in which to store the errors.

redirect_output
The redirect_output command causes Twill to save all of its normal output to a file,
instead of printing it to the screen. It takes a single parameter representing the file name in
which to store the output.

This is not a command that will be of much use in an interactive Twill shell. It can be useful in
scripts and tests.

reset_error
The reset_error command undoes the effect of redirect_error.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[167]

reset_output
The reset_output command undoes the effect of redirect_output.

reload
The reload command reloads the current URL, just as the reload or refresh button on a
normal web browser would.

reset_browser
The reset_browser command destroys all of the state information pertaining to the
current Twill session. It has the same effect as stopping Twill and then starting it up again.

run
The run command executes an arbitrary Python statement. The only parameter is the
Python statement to execute. If the statement contains spaces, it must be placed within
quotes, so Twill doesn't mistake it for multiple parameters.

runfile
The runfile command executes a Twill script that's stored in a separate file. The executed
script will have its own local namespace (c.f. the setlocal command), and will share the
global namespace (c.f. setglobal)

save_html
The save_html command saves the HTML content of the current page into a file. It accepts
a filename to save into as an optional parameter. If no filename is specified, Twill will choose
for itself based on the URL of the data being saved.

show
The show command prints out the HTML content of the current page. This can be useful in
an interactive session for getting a handle on what Twill is seeing, and it can occasionally be
useful in a test script if you want to make sure that a page has precisely specified content.

showforms
The showforms command prints out a list of all of the forms in the current page. Each form
has a printout containing the form's number (and name, if it has a name), along with the
numbers, names, types, ids, and current values for each field.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[168]

showhistory
The showhistory command prints out a list of all of the URLs previously visited in the
current Twill session, in order from oldest to most recent.

showlinks
The showlinks command prints out a (potentially quite long) list of the links in the current
page. This can be helpful for figuring out what you need to type into the follow command,
or just for general debugging.

sleep
The sleep command can be used to inject pauses in the execution of a Twill script.
It accepts one optional parameter specifying the number of seconds to pause before
continuing to execute the script. If the time is not specified, it defaults to one second.

submit
The submit command submits the form containing the field most recently changed by the
formvalue command. It accepts one optional parameter specifying which submit button
to use, specified in the same way a field would be specified for the formvalue command. If
the submit button is not specified, the first one in the form is used.

tidy_ok
If you have HTML Tidy (http://tidy.sourceforge.net/) installed, the tidy_ok
command will use it to check whether the current page's code is correct. If you put tidy_ok
in a script and the current page does not meet Tidy's standards of correctness, the script will
be considered a failure.

title
The title command accepts a regular expression as its only parameter, and tries to match
the current page's title against the regular expression. If they don't match, the title
command fails. Used in a script file, this will cause the entire script to be considered a
failure if the title does not match.

url
The url command accepts a regular expression as it's only parameter, and tries to match the
current page's URL against the regular expression. If they don't match, the url command
fails, and causes the script it's part of to fail. If the regular expression does match the URL,
the local variable __match__ is bound to the matching part of the URL.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[169]

Pop quiz – the Twill language
1.	 Which form is submitted when you use the submit command?

2.	 Which command would you use to check that an error message is not on the page?

3.	 When you're executing a Twill script and a command fails, what happens?

Have a go hero – browsing the web with Twill
Open up a Twill interactive shell, use it to search Google, follow one of the links in the search
result, and navigate around the linked site. While you're doing that, try to get some hands on
experience with as many of the Twill commands as you can.

Calling Twill scripts from tests
While it's nice to be able to use twill-sh to execute a bunch of Twill scripts as a form of
automated testing, we'd really like to be able to run the Twill scripts as part of our normal
test suite. Fortunately, it's fairly easy to do so. There are two nice ways to run Twill scripts
from Python code, and you can choose whichever better suits your needs.

Time for action – running Twill script files
The first way is to store the Twill script in a separate file, and then use the twill.parse.
execute_file function to run it.

1.	 Place the following code into a file called fail.twill:

go http://slashdot.org/

find this_does_not_exist

2.	 Naturally, this script will fail, but go ahead and run it with twill‑sh to see
for yourself.

	 $ twill-sh fail.twill

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[170]

3.	 Now to run the script from Python. Pull up an interactive Python shell and do
the following:

	 >>> from twill.parse import execute_file
	 >>> execute_file('fail.twill')

4.	 Simple as that, we ran the script from inside Python code. That would work equally
well in doctest, unittest, or in nose-specific test code.

5.	 Notice that what the Twill shell would report as an error, execute_file reports as a
twill.errors.TwillAssertionError exception. That integrates nicely with
the automated testing tools we've discussed previously.

What just happened?
With just a couple of lines of code, we executed a Twill script that was stored in a separate
file, and received any errors that it encountered as Python exceptions. This is ideal for
situations where you have a pre-existing Twill script, and just want a way to have it run
alongside the rest of your test suite. It's also convenient if you want to automatically
generate the Twill script, or if you simply want to keep different languages in different files.

Time for action – running Twill script strings
The second way to run a Twill script from inside Python code is to store the script in a string.

1.	 Open up an interactive Python interpreter and type the following commands:

	 >>> from twill.parse import execute_string

	 >>> execute_string("""

	 ... go http://slashdot.org/

	 ... find this_does_not_exist

	 ... """, no_reset = False)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[171]

2.	 The result will be just the same as when we executed a file containing
those commands.

Notice the no_reset = False parameter that we passed to
execute_string. We need that because if we leave it out, Twill
will assume that all of our calls to execute_string should be
executed, as if they were all part of the same browser session. We
don't want that because we want our tests to be separated from each
other. execute_file will make the opposite assumption, so, we
don't need to pass it a no_reset parameter (although we could).

What just happened?
This time, the script was embedded directly into the Python code as a string constant. This
is desirable when the Twill script is seen as simply being another way to write part of a test,
rather than a separate thing in itself.

A nifty trick
If you're using Python 2.4 or greater, you can define a function decorator that makes it
simple to write Twill tests as Python functions.

from twill.parse import execute_string
from twill.errors import TwillAssertionError

def twill_test(func):
 def run_test(*args):
 try:
 execute_string(func.__doc__, no_reset = False)
 except TwillAssertionError, err:
 if args and hasattr(args[0], 'fail'):
 args[0].fail(str(err))
 else:
 raise
 return run_test

If you put that code in a Python module (here called twill_decorator) and then import
twill_test into your testing code, you can write Twill tests like so:

from unittest import TestCase
from twill_decorator import twill_test

class web_tests(TestCase):
 @twill_test
 def test_slashdot(self):
 """
 go http://slashdot.org/
 find this_does_not_exist
 """

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[172]

When you use Nose or unittest to run that test module, the test_slashdot function will
automatically execute the Twill script in its document string, and report any errors as test
failures. You don't have to remember to pass no_reset = False, or any of the other
details of running Twill from a string.

Integrating Twill operations into unittest tests
So far, our unit tests have treated each Twill script as a single operation that produces either
a success or a failure. What if we want to, say, download an HTML page, perform some
assertions about relationships between its content and a database, then follow a link to
another page?

We can do this sort of thing by accessing Twill's browser object directly from our test code.
The browser object has methods similar to the commands of the Twill language, so this
should seem fairly familiar.

Time for action – using Twill's browser object
Here we see how to access the browser object directly, and use it to interact with the web.

1.	 Place the following code into a Python test module:

	 from unittest import TestCase
	 import twill

	 class test_twill_browser(TestCase):
	 def test_slashdot(self):
	 browser = twill.get_browser()
	

	 browser.go('http://slashdot.org/')
	 self.assertTrue(browser.get_code() in (200, 201))

	 html = browser.get_html()
	 self.assertTrue(html.count('slashdot') > 150)

	 link = browser.find_link('Science')
	 browser.follow_link(link)

	 form = browser.get_form(2)
	 form.set_value('aardvark', name = 'fhfilter')
	 browser.clicked(form, None)
	 browser.submit()
	 self.assertEqual(browser.get_code(), 200)

2.	 Run the test module using nosetests. If Slashdot hasn't changed their interface
since this was written, then the test will pass. If they have, the test will probably fail.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[173]

What just happened?
Instead of using the Twill language to describe the interaction with a web site, we used
Twill as a library that we could call from our test code. This allowed us to interleave Twill
operations with unittest assertions. We could have included any other operations that we
needed, as well. Using this technique, our tests can treat the web as just one more source
of data that they can access.

It's important to notice the differences between the Twill language and the methods
available on the browser object. For example, where the Twill language has a show
command that prints out the HTML of the current page, the browser has a get_html
method that returns the HTML of the current page.

Pay special attention to the interactions with the form, at the end of the test. These
interactions use a form object, which can be retrieved by calling the browser object's
get_form method.

The set_value method of a form object accepts the new value for the control as the first
parameter, and then has a number of keyword arguments that can be used to specify which
control should take on that value. The most useful of these arguments are name, as used
above, and nr, which selects the control by number.

In order for submit to work, it should be preceded by a call to the clicked method
targeting one of the controls of the form (it doesn't matter which).

Browser methods
The browser object retrieved with twill.get_browser() has the following
useful methods:

go

reload

back

get_code

get_html

get_title

get_url

find_link

follow_link

set_agent_string

get_all_forms

get_form

























This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[174]

get_form_field

clicked

submit

save_cookies

load_cookies

clear_cookies

Many of those work just as the related Twill command, except that you pass the parameters
as strings into a method call [e.g. browser.save_cookies('cookies.txt')]. A few of
them behave differently, though, or don't have a Twill language equivalent, so we'll go into
more detail about those now:

get_code
The get_code method returns the HTTP code for the current page. It doesn't do any
comparisons between the code and an expected value. If you want to raise an exception
if the code isn't 200, you need to do it yourself.

get_html
The get_html method returns the HTML for the current page as a Python string.

get_title
The get_title method returns the title of the current page as a Python string.

get_url
The get_url method returns the URL of the current page as a Python string.

find_link
The find_link method searches for a link whose URL, text or name matches matches
the regular expression that was passed in as a parameter. If it finds such a link, it returns
an object representing that link. If no such link exists, find_link returns None.

A link object has a number of useful attributes. If you have a link object named link, then
link.attrs is a list of (name, value) tuples, link.text is the text appearing between
the <a> and tags, and link.absolute_url is the address to which the link points.













This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 8

[175]

follow_link
The follow_link method takes a link object as a parameter, and goes to the address
represented by the link. If you have a URL in the form of a string, rather than a link object,
you should use the go method instead.

get_all_forms
The get_all_forms method returns a list of form objects representing all forms appearing
in the page. If there are any form controls on the page that aren't inside of <form> tags, a
special form object will be created to contain them, and will be the first element of the list.

get_form
The get_form method takes a regular expression as a parameter, and searches for a
form whose id, name or number matches. If it finds such a form, it returns a form object
representing it.

A form object has several useful attributes. If you have a form object called form, then
form.name is the name of the form if it has a name, form.method is the form's method
(usually 'GET' or 'POST'), form.action is the URL to which the form should be submitted,
form.enctype is the content type to use when encoding the form for transmission, and
form.attrs is a dictionary of attributes applied to the form.

A form object also has methods that help you manipulate its contents. Notable among these
are form.get_value, form.set_value, form.clear, form.clear_all, and form.
add_file. All of these methods except for clear_all target a specific control within the
form. You tell it which control to target by passing one or more of the following keyword
arguments to the method: name, type, kind, id, nr, and label. The nr keyword is short
for 'number'. If no control matches all of the specified parameters, an _mechanize_dist.
ClientForm.ControlNotFoundError exception will be raised.

The set_value and add_file methods accept a value or a filename, respectively, as their
first parameters. The get_value method returns the current value of the selected control.
The clear method returns a control to its default value.

get_form_field
The get_form_field method takes a form object as its first parameter and a regular
expression as its second. If precisely one of the form's controls has an id, name or index
that matches the regular expression, an object representing that control is returned.

For the most part this is not needed, because the form object's methods are more
flexible ways to manipulate form controls. Its primary use is to provide input to the
clicked method.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Testing Web Application Frontends using Twill

[176]

clicked
The clicked method exists to keep the browser object appraised about which part of the
page is the current focus. In particular, this tells it which form to submit when the submit
method is called.

The clicked method takes two parameters: the form object that will become the focus,
and the specific control within the form where the click should be registered.

It is usually simplest to pass None as the specific control. You may, however, pass a control
object (as returned by get_form_field). If this control object represents a submit control,
that control becomes the new default to use when submitting the form. The initial default is
the first submit control in the form.

submit
The submit method submits the last-clicked form, as per its action and method. You
may optionally pass a fieldname parameter representing which submit control to use
for the submission. If it exists, this parameter will be passed to get_form_field to find
the appropriate submit control. If you don't pass a fieldname to the method, the default
submit control will be used.

Pop quiz – browser methods
1.	 How do you indicate which form object you want to retrieve when you call

get_form?

2.	 What does the clicked method do?

3.	 How does the get_code method differ from the code command?

Summary
We learned a lot in this chapter about Twill, and how to use it to write tests for
web applications.

Specifically, we covered:

The Twill language

Invoking Twill scripts from Python tests

Integrating Twill's capabilities as a library into Python testing code

Now that we've learned about testing web applications, we're ready to move on to talking
about integration testing and system testing – which is the topic of the next chapter.







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

9
Integration Testing and

System Testing

With all of the tools, techniques, and practices that we've discussed so
far, we've still only been been thinking about testing units: the smallest
meaningfully testable pieces of code. It's time to expand the focus and start
testing code that incorporates multiple units.

In this chapter, we shall:

Describe integration testing and system testing

Learn how to break up a program into testable multi-unit sections

Use doctest, unittest, and Nose to automate multi-unit tests

So let's get on with it!

Integration tests and system tests
Integration testing is the process of checking that the units making up your program work
correctly in concert with each other, rather than in isolation. It's not practical to start the
process with integration testing, because if the units don't work, the integration won't work
either, and it will be harder to track down the cause of your problems. Once your units are
solid though, it's necessary to test that the things you build out of them also work. The
interactions between units can be surprising.







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[178]

While you perform integration testing, you'll be putting the units together into bigger and
bigger collections and testing those collections. When your integration tests expand to cover
the entirety of your program, they have become system tests.

The trickiest part of integration testing is choosing which units to integrate into each test, so
that you always have a solid base of code that you can believe in; a place to stand, while you
pull in more code.

Time for action – figuring out the order of integration
We'll walk through an exercise that can help with the process of deciding where to put the
boundaries of integration tests.

1.	 Using a piece of paper or a graphics program, write out names or representations
for each of the units in the time planner project from Chapter 7. Group the methods
of each class together. Being part of the same class is an obvious relationship
between units, and we'll take advantage of that. (The == symbol here represents
the Python == operator, which invokes the __eq__ method on an object).

2.	 Now, draw arrows between units that are supposed to directly interact
with each other, from the caller to the callee. Laying everything out in
an orderly fashion (like in step 1) can actually make this harder, so feel
free to move the classes around to help the lines make sense.

activities
excludes

schedules
add

remove
store
load

in

statuses

file
store_object
load_object

overlaps

excludes
overlaps

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[179]

3.	 Draw circles around each class and each pair of classes that is connected by at
least one line.

Statuses
excludes
overlaps

File
store_object
load_object

Schedules
add
remove
store
load
in

Activities
excludes
overlaps

4.	 Continue the process by drawing circles around overlapping pairs of circles, until
there are only three circles left. Circle a pair of them and then put one more big
circle around the whole mess.

statuses
excludes
overlaps

file
store_object
load_object

schedules
add
remove
store
load
in

activities
excludes
overlaps

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[180]

5.	 These circles tell us which order to write our integration tests in. The smaller the
circle, the sooner the test should be written.

What just happened?
What we just did is a way to visualize and concretize the process of building up integration
tests. While it's not critical to actually draw the lines and circles, it's useful to follow the
process in your head. For larger projects, a lot can be gained from actually drawing the
diagrams. When you can see the diagram, the correct next step tends to jump right out at
you—especially if you use multiple colors to render the diagram—where it might otherwise
be hidden behind the complexity of the program.

Pop quiz – diagramming integration
1.	 What's the point of grouping units together into classes during the early part of this

process?

2.	 When we move classes around to help the arrows make sense, what effect does that
have on the later process?

3.	 Why do we always focus on grouping together pairs when we do this?

Have a go hero – diagram your own program
Take one of your own programs and build an integration diagram for it. If your program
is large enough that the diagram begins to get clumsy, try putting different 'levels' of the
diagram on separate pages.

Automation with doctest, unittest, and Nose
The only real difference between an integration test and a unit test, is that you could break
the code being tested into smaller meaningful chunks, in an integration test. In a unit test, if
you divided the code up any more it wouldn't be meaningful. For this reason, the same tools
that help automate unit testing can be applied to integration testing. Since system testing is
really the highest level of integration testing, the tools can be used for that as well.

The role of doctest in integration testing tends to be fairly limited. The real strengths of
doctest are in the early part of the development process. It's easy for a testable specification
to stray into integration testing—as mentioned before, that's fine as long as there are unit
tests as well—but after that it's likely that you'll prefer unittest and Nose for writing your
integration tests.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[181]

Integration tests need to be isolated from each other. Even though they contain multiple
interacting units within themselves, you still benefit from knowing that nothing outside the
test is affecting it. For this reason, unittest is a good choice for writing automated integration
tests. Working together with unittest, Nose and Mocker complete the picture nicely.

Time for action – writing integration tests for the time planner
Now that we've got an integration diagram for the time planner code, we can move ahead
with actually writing automated integration tests.

1.	 The integration diagram provides only a partial ordering of the integration
tests, and there are several tests that could be the first one we write. Looking
at the diagram, we see that the statuses and activities classes are at
the ends of a lot of arrows, but not at the beginnings of any. This makes them
particularly good places to start, because it means that they don't call on anything
outside of themselves to operate. Since there's nothing to distinguish one of
them as a better place to start than the other, we can choose between them
arbitrarily. Let's start with statuses, and then do activities. We're going
to write tests that exercise the whole class. At this low level, the integration
tests will look a lot like the unit tests for the same class, but we're not going
to use mock objects to represent other instances of the same class: we'll use
real instances. We're testing whether the class correctly interacts with itself.

2.	 Here is the test code for statuses:

from unittest import TestCase
from planner.data import statuses, task_error
from datetime import datetime

class statuses_integration_tests(TestCase):
 def setUp(self):
 self.A = statuses('A',
 datetime(year=2008, month=7, day=15),
 datetime(year=2009, month=5, day=2))

 def test_repr(self):
 self.assertEqual(repr(self.A), '<A 2008-07-15T00:00:00
2009‑05‑02T00:00:00>')

 def test_equality(self):
 self.assertEqual(self.A, self.A)
 self.assertNotEqual(self.A, statuses('B',
 datetime(year=2008, month=7, day=15),
 datetime(year=2009, month=5, day=2)))
 self.assertNotEqual(self.A, statuses('A',
 datetime(year=2007, month=7, day=15),

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[182]

 datetime(year=2009, month=5, day=2)))
 self.assertNotEqual(self.A, statuses('A',
 datetime(year=2008, month=7, day=15),
 datetime(year=2010, month=5, day=2)))

 def test_overlap_begin(self):
 status = statuses('status name',
 datetime(year=2007, month=8, day=11),
 datetime(year=2008, month=11, day=27))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_end(self):
 status = statuses('status name',
 datetime(year=2008, month=1, day=11),
 datetime(year=2010, month=4, day=16))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_inner(self):
 status = statuses('status name',
 datetime(year=2007, month=10, day=11),
 datetime(year=2010, month=1, day=27))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_outer(self):
 status = statuses('status name',
 datetime(year=2008, month=8, day=12),
 datetime(year=2008, month=9, day=15))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_after(self):
 status = statuses('status name',
 datetime(year=2011, month=2, day=6),
 datetime(year=2015, month=4, day=27))

 self.assertFalse(status.overlaps(self.A))

3.	 Here is the test code for activities:

from unittest import TestCase
from planner.data import activities, task_error
from datetime import datetime

class activities_integration_tests(TestCase):
 def setUp(self):
 self.A = activities('A',
 datetime(year=2008, month=7, day=15),
 datetime(year=2009, month=5, day=2))
 def test_repr(self):
 self.assertEqual(repr(self.A), '<A 2008-07-15T00:00:00
2009‑05‑02T00:00:00>')

 def test_equality(self):

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[183]

 self.assertEqual(self.A, self.A)
 self.assertNotEqual(self.A, activities('B',
 datetime(year=2008, month=7, day=15),
 datetime(year=2009, month=5, day=2)))
 self.assertNotEqual(self.A, activities('A',
 datetime(year=2007, month=7, day=15),
 datetime(year=2009, month=5, day=2)))
 self.assertNotEqual(self.A, activities('A',
 datetime(year=2008, month=7, day=15),
 datetime(year=2010, month=5, day=2)))

 def test_overlap_begin(self):
 activity = activities('activity name',
 datetime(year=2007, month=8, day=11),
 datetime(year=2008, month=11, day=27))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_end(self):
 activity = activities('activity name',
 datetime(year=2008, month=1, day=11),
 datetime(year=2010, month=4, day=16))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_inner(self):
 activity = activities('activity name',
 datetime(year=2007, month=10, day=11),
 datetime(year=2010, month=1, day=27))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_outer(self):
 activity = activities('activity name',
 datetime(year=2008, month=8, day=12),
 datetime(year=2008, month=9, day=15))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_after(self):
 activity = activities('activity name',
 datetime(year=2011, month=2, day=6),
 datetime(year=2015, month=4, day=27))

 self.assertFalse(activity.overlaps(self.A))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[184]

4.	 Looking at our diagram, we can see that the next level out from either
statuses or activities represents the integration of those classes with the
schedules class. Before we write that integration, we ought to write any tests
that involve the schedules class interacting with itself, without mocking it.

from unittest import TestCase
from mocker import MockerTestCase, MATCH, ANY
from planner.data import schedules, schedule_error
from datetime import datetime

class schedules_tests(MockerTestCase):
 def setUp(self):
 mocker = self.mocker

 A = mocker.mock()
 A.__eq__(MATCH(lambda x: x is A))
 mocker.result(True)
 mocker.count(0, None)
 A.__eq__(MATCH(lambda x: x is not A))
 mocker.result(False)
 mocker.count(0, None)
 A.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 A.begins
 mocker.result(5)
 mocker.count(0, None)

 B = mocker.mock()
 A.__eq__(MATCH(lambda x: x is B))
 mocker.result(True)
 mocker.count(0, None)
 B.__eq__(MATCH(lambda x: x is not B))
 mocker.result(False)
 mocker.count(0, None)
 B.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 B.begins
 mocker.result(3)
 mocker.count(0, None)

 C = mocker.mock()
 C.__eq__(MATCH(lambda x: x is C))
 mocker.result(True)
 mocker.count(0, None)
 C.__eq__(MATCH(lambda x: x is not C))
 mocker.result(False)
 mocker.count(0, None)
 C.overlaps(ANY)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[185]

 mocker.result(False)
 mocker.count(0, None)
 C.begins
 mocker.result(7)
 mocker.count(0, None)

 self.A = A
 self.B = B
 self.C = C

 mocker.replay()

 def test_equality(self):
 sched1 = schedules()
 sched2 = schedules()

 self.assertEqual(sched1, sched2)

 sched1.add(self.A)
 sched1.add(self.B)

 sched2.add(self.A)
 sched2.add(self.B)
 sched2.add(self.C)

 self.assertNotEqual(sched1, sched2)

 sched1.add(self.C)

 self.assertEqual(sched1, sched2)

5.	 Now that interactions within the schedules class have been tested, we can write
tests that integrate schedules and one of statuses or activities. Let's start
with statuses, then do activities. Here are the tests for schedules
and statuses:

from planner.data import schedules, statuses
from unittest import TestCase
from datetime import datetime, timedelta

class test_schedules_and_statuses(TestCase):
 def setUp(self):
 self.A = statuses('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = statuses('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = statuses('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

 def test_usage_pattern(self):
 sched = schedules()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[186]

 sched.add(self.A)
 sched.add(self.C)

 self.assertTrue(self.A in sched)
 self.assertTrue(self.C in sched)
 self.assertFalse(self.B in sched)

 sched.add(self.B)

 self.assertTrue(self.B in sched)

 self.assertEqual(sched, sched)

 sched.remove(self.A)

 self.assertFalse(self.A in sched)
 self.assertTrue(self.B in sched)
 self.assertTrue(self.C in sched)

 sched.remove(self.B)
 sched.remove(self.C)

 self.assertFalse(self.B in sched)
 self.assertFalse(self.C in sched)

6.	 Here are the tests for schedules and activities:

from planner.data import schedules, activities, schedule_error
from unittest import TestCase
from datetime import datetime, timedelta

class test_schedules_and_activities(TestCase):
 def setUp(self):
 self.A = activities('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = activities('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = activities('C',
 datetime.now() + timedelta(minutes =
 10),
 datetime.now() + timedelta(hours = 1))

 def test_usage_pattern(self):
 sched = schedules()

 sched.add(self.A)
 sched.add(self.C)

 self.assertTrue(self.A in sched)
 self.assertTrue(self.C in sched)
 self.assertFalse(self.B in sched)

 self.assertRaises(schedule_error, sched.add, self.B)

 self.assertFalse(self.B in sched)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[187]

 self.assertEqual(sched, sched)

 sched.remove(self.A)

 self.assertFalse(self.A in sched)
 self.assertFalse(self.B in sched)
 self.assertTrue(self.C in sched)

 sched.remove(self.C)

 self.assertFalse(self.B in sched)
 self.assertFalse(self.C in sched)

7.	 It's time to pull schedules, statuses, and activities all together into the
same tests.

from planner.data import schedules, statuses, activities,
schedule_error
from unittest import TestCase
from datetime import datetime, timedelta

class test_schedules_activities_and_statuses(TestCase):
 def setUp(self):
 self.A = statuses('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = statuses('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = statuses('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

 self.D = activities('D',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))

 self.E = activities('E',
 datetime.now() + timedelta(minutes=30),
 datetime.now() + timedelta(hours=1))

 self.F = activities('F',
 datetime.now() - timedelta(minutes=20),
 datetime.now() + timedelta(minutes=40))

 def test_usage_pattern(self):
 sched = schedules()

 sched.add(self.A)
 sched.add(self.B)
 sched.add(self.C)

 sched.add(self.D)

 self.assertTrue(self.A in sched)
 self.assertTrue(self.B in sched)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[188]

 self.assertTrue(self.C in sched)
 self.assertTrue(self.D in sched)

 self.assertRaises(schedule_error, sched.add, self.F)
 self.assertFalse(self.F in sched)

 sched.add(self.E)
 sched.remove(self.D)

 self.assertTrue(self.E in sched)
 self.assertFalse(self.D in sched)

 self.assertRaises(schedule_error, sched.add, self.F)

 self.assertFalse(self.F in sched)

 sched.remove(self.E)

 self.assertFalse(self.E in sched)

 sched.add(self.F)

 self.assertTrue(self.F in sched)

8.	 The next thing that we need to pull in is the file class, but before we integrate it
with the rest of the system, we need to integrate it with itself; checking its internal
interactions without using mock objects.

from unittest import TestCase
from planner.persistence import file
from os import unlink

class test_file(TestCase):
 def setUp(self):
 storage = file('file_test.sqlite')

 storage.store_object('tag1', 'A')
 storage.store_object('tag2', 'B')
 storage.store_object('tag1', 'C')
 storage.store_object('tag1', 'D')
 storage.store_object('tag3', 'E')
 storage.store_object('tag3', 'F')

 def tearDown(self):
 unlink('file_test.sqlite')

 def test_other_instance(self):
 storage = file('file_test.sqlite')

 self.assertEqual(set(storage.load_objects('tag1')),
 set(['A', 'C', 'D']))

 self.assertEqual(set(storage.load_objects('tag2')),
 set(['B']))

 self.assertEqual(set(storage.load_objects('tag3')),
 set(['E', 'F']))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[189]

9.	 Now we can write tests that integrate schedules and file. Notice that for this
step, we still aren't involving statuses or activities, because they're outside
the oval.

from mocker import Mocker, MockerTestCase, ANY
from planner.data import schedules
from planner.persistence import file
from os import unlink

def unpickle_mocked_task(begins):
 mocker = Mocker()
 ret = mocker.mock()
 ret.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 ret.begins
 mocker.result(begins)
 mocker.count(0, None)
 mocker.replay()
 return ret
unpickle_mocked_task.__safe_for_unpickling__ = True

class test_schedules_and_file(MockerTestCase):
 def setUp(self):
 mocker = self.mocker

 A = mocker.mock()
 A.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 A.begins
 mocker.result(5)
 mocker.count(0, None)
 A.__reduce_ex__(ANY)
 mocker.result((unpickle_mocked_task, (5,)))
 mocker.count(0, None)

 B = mocker.mock()
 B.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 B.begins
 mocker.result(3)
 mocker.count(0, None)
 B.__reduce_ex__(ANY)
 mocker.result((unpickle_mocked_task, (3,)))
 mocker.count(0, None)

 C = mocker.mock()
 C.overlaps(ANY)
 mocker.result(False)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[190]

 mocker.count(0, None)
 C.begins
 mocker.result(7)
 mocker.count(0, None)
 C.__reduce_ex__(ANY)
 mocker.result((unpickle_mocked_task, (7,)))
 mocker.count(0, None)

 self.A = A
 self.B = B
 self.C = C

 mocker.replay()

 def tearDown(self):
 try:
 unlink('test_schedules_and_file.sqlite')
 except OSError:
 pass

 def test_save_and_restore(self):
 sched1 = schedules()

 sched1.add(self.A)
 sched1.add(self.B)
 sched1.add(self.C)

 store1 = file('test_schedules_and_file.sqlite')
 sched1.store(store1)

 del sched1
 del store1

 store2 = file('test_schedules_and_file.sqlite')
 sched2 = schedules.load(store2)

 self.assertEqual(set([x.begins for x in sched2.tasks]),
 set([3, 5, 7]))

10.	We've built our way up to the outermost circle now, which means that it's time
to write tests that involve the whole system, with no mock objects anywhere.

from planner.data import schedules, statuses, activities,
schedule_error
from planner.persistence import file
from unittest import TestCase
from datetime import datetime, timedelta
from os import unlink

class test_system(TestCase):
 def setUp(self):
 self.A = statuses('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[191]

 self.B = statuses('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = statuses('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

 self.D = activities('D',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))

 self.E = activities('E',
 datetime.now() + timedelta(minutes=30),
 datetime.now() + timedelta(hours = 1))

 self.F = activities('F',
 datetime.now() - timedelta(minutes=20),
 datetime.now() + timedelta(minutes=40))

 def tearDown(self):
 try:
 unlink('test_system.sqlite')
 except OSError:
 pass

 def test_usage_pattern(self):
 sched1 = schedules()

 sched1.add(self.A)
 sched1.add(self.B)
 sched1.add(self.C)
 sched1.add(self.D)
 sched1.add(self.E)

 store1 = file('test_system.sqlite')
 sched1.store(store1)

 del store1

 store2 = file('test_system.sqlite')
 sched2 = schedules.load(store2)

 self.assertEqual(sched1, sched2)

 sched2.remove(self.D)
 sched2.remove(self.E)

 self.assertNotEqual(sched1, sched2)

 sched2.add(self.F)

 self.assertTrue(self.F in sched2)
 self.assertFalse(self.F in sched1)

 self.assertRaises(schedule_error, sched2.add, self.D)
 self.assertRaises(schedule_error, sched2.add, self.E)

 self.assertTrue(self.A in sched1)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[192]

 self.assertTrue(self.B in sched1)
 self.assertTrue(self.C in sched1)
 self.assertTrue(self.D in sched1)
 self.assertTrue(self.E in sched1)
 self.assertFalse(self.F in sched1)

 self.assertTrue(self.A in sched2)
 self.assertTrue(self.B in sched2)
 self.assertTrue(self.C in sched2)
 self.assertFalse(self.D in sched2)
 self.assertFalse(self.E in sched2)
 self.assertTrue(self.F in sched2)

What just happened?
We've just tested our whole code base, always being careful to test one thing at a time.
Because we took care to go step-by-step, we always knew where newly discovered bugs
originated, and we were able to fix them easily.

Let's take a moment to examine each section of the code.

class statuses_integration_tests(TestCase):
 def setUp(self):
 self.A = statuses('A',
 datetime(year=2008, month=7, day=15),
 datetime(year=2009, month=5, day=2))

We're creating a status object here in our setUp method. Because it's a setUp
method—part of the test fixture—each test will have its own unique version of self.A,
and changes made in one test won't be visible to any other test.

 def test_equality(self):
 self.assertEqual(self.A, self.A)
 self.assertNotEqual(self.A, statuses('B',
 datetime(year=2008, month=7, day=15),
 datetime(year=2009, month=5, day=2)))
 self.assertNotEqual(self.A, statuses('A',
 datetime(year=2007, month=7, day=15),
 datetime(year=2009, month=5, day=2)))
 self.assertNotEqual(self.A, statuses('A',
 datetime(year=2008, month=7, day=15),
 datetime(year=2010, month=5, day=2)))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[193]

The test_equality test checks that a status compares equal to itself, and that differences
in name, start time or end time cause statuses to compare as unequal.

def test_overlap_begin(self):
 status = statuses('status name',
 datetime(year=2007, month=8, day=11),
 datetime(year=2008, month=11, day=27))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_end(self):
 status = statuses('status name',
 datetime(year=2008, month=1, day=11),
 datetime(year=2010, month=4, day=16))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_inner(self):
 status = statuses('status name',
 datetime(year=2007, month=10, day=11),
 datetime(year=2010, month=1, day=27))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_outer(self):
 status = statuses('status name',
 datetime(year=2008, month=8, day=12),
 datetime(year=2008, month=9, day=15))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_after(self):
 status = statuses('status name',
 datetime(year=2011, month=2, day=6),
 datetime(year=2015, month=4, day=27))

 self.assertFalse(status.overlaps(self.A))

This series of tests checks that statuses correctly recognize when they overlap, whether that
overlap happens at the beginning, at the end, or because one status is within the other.

class activities_integration_tests(TestCase):
 def setUp(self):
 self.A = activities('A',
 datetime(year=2008, month=7, day=15),
 datetime(year=2009, month=5, day=2))

 def test_repr(self):
 self.assertEqual(repr(self.A), '<A 2008-07-15T00:00:00
2009‑05‑02T00:00:00>')

 def test_equality(self):
 self.assertEqual(self.A, self.A)
 self.assertNotEqual(self.A, activities('B',
 datetime(year=2008, month=7, day=15),

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[194]

 datetime(year=2009, month=5, day=2)))
 self.assertNotEqual(self.A, activities('A',
 datetime(year=2007, month=7, day=15),
 datetime(year=2009, month=5, day=2)))
 self.assertNotEqual(self.A, activities('A',
 datetime(year=2008, month=7, day=15),
 datetime(year=2010, month=5, day=2)))

As with statuses, activities are tested by creating a sample object in the setUp method,
and performing operations on it in the tests. Equality checking is the same as in statuses;
we want to make sure that a different name, begin time, or end time means that the two
activities are not equal.

def test_overlap_begin(self):
 activity = activities('activity name',
 datetime(year=2007, month=8, day=11),
 datetime(year=2008, month=11, day=27))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_end(self):
 activity = activities('activity name',
 datetime(year=2008, month=1, day=11),
 datetime(year=2010, month=4, day=16))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_inner(self):
 activity = activities('activity name',
 datetime(year=2007, month=10, day=11),
 datetime(year=2010, month=1, day=27))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_outer(self):
 activity = activities('activity name',
 datetime(year=2008, month=8, day=12),
 datetime(year=2008, month=9, day=15))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_after(self):
 activity = activities('activity name',
 datetime(year=2011, month=2, day=6),
 datetime(year=2015, month=4, day=27))

 self.assertFalse(activity.overlaps(self.A))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[195]

This series of tests makes sure that activities correctly recognize when they overlap with
each other, whether that overlapping happens at the beginning, the end, or in the middle.

class schedules_tests(MockerTestCase):
 def setUp(self):
 mocker = self.mocker

 A = mocker.mock()
 A.__eq__(MATCH(lambda x: x is A))
 mocker.result(True)
 mocker.count(0, None)
 A.__eq__(MATCH(lambda x: x is not A))
 mocker.result(False)
 mocker.count(0, None)
 A.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 A.begins
 mocker.result(5)
 mocker.count(0, None)

 B = mocker.mock()
 A.__eq__(MATCH(lambda x: x is B))
 mocker.result(True)
 mocker.count(0, None)
 B.__eq__(MATCH(lambda x: x is not B))
 mocker.result(False)
 mocker.count(0, None)
 B.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 B.begins
 mocker.result(3)
 mocker.count(0, None)

 C = mocker.mock()
 C.__eq__(MATCH(lambda x: x is C))
 mocker.result(True)
 mocker.count(0, None)
 C.__eq__(MATCH(lambda x: x is not C))
 mocker.result(False)
 mocker.count(0, None)
 C.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 C.begins
 mocker.result(7)
 mocker.count(0, None)

 self.A = A
 self.B = B
 self.C = C

 mocker.replay()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[196]

We'll test how schedules interacts with itself, but not yet how it interacts with
activities and statuses. As such, we need some mock objects to represent those
things. Here in the test fixture, we create three mock objects for just that purpose.

 def test_equality(self):
 sched1 = schedules()
 sched2 = schedules()

 self.assertEqual(sched1, sched2)

 sched1.add(self.A)
 sched1.add(self.B)

 sched2.add(self.A)
 sched2.add(self.B)
 sched2.add(self.C)

 self.assertNotEqual(sched1, sched2)

 sched1.add(self.C)

 self.assertEqual(sched1, sched2)

The only interaction that schedules has with itself is equality comparison, so here we've
tested that the comparison between two real schedules works the way it's supposed to.

class test_schedules_and_statuses(TestCase):
 def setUp(self):
 self.A = statuses('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = statuses('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = statuses('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

Where before we used mock objects to represent the statuses, now we can use the real
thing. Since we're testing the interaction between schedules and statuses, we need to
use the real thing.

 def test_usage_pattern(self):
 sched = schedules()

 sched.add(self.A)
 sched.add(self.C)

 self.assertTrue(self.A in sched)
 self.assertTrue(self.C in sched)
 self.assertFalse(self.B in sched)

 sched.add(self.B)

 self.assertTrue(self.B in sched)
 self.assertEqual(sched, sched)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[197]

 sched.remove(self.A)

 self.assertFalse(self.A in sched)
 self.assertTrue(self.B in sched)
 self.assertTrue(self.C in sched)

 sched.remove(self.B)
 sched.remove(self.C)

 self.assertFalse(self.B in sched)
 self.assertFalse(self.C in sched)

This test runs through the whole expected usage pattern between schedules and
statuses, all in one test. This sort of thing isn't a good idea when we perform unit testing,
because it naturally involves more than one unit. We're doing integration testing now,
though, and all of the involved units have already been tested in isolation. We actually
want to have them interact with each other to make sure it works, and this is a good
way to achieve that.

class test_schedules_and_activities(TestCase):
 def setUp(self):
 self.A = activities('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = activities('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = activities('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

 def test_usage_pattern(self):
 sched = schedules()

 sched.add(self.A)
 sched.add(self.C)

 self.assertTrue(self.A in sched)
 self.assertTrue(self.C in sched)
 self.assertFalse(self.B in sched)

 self.assertRaises(schedule_error, sched.add, self.B)

 self.assertFalse(self.B in sched)

 self.assertEqual(sched, sched)

 sched.remove(self.A)

 self.assertFalse(self.A in sched)
 self.assertFalse(self.B in sched)
 self.assertTrue(self.C in sched)

 sched.remove(self.C)

 self.assertFalse(self.B in sched)
 self.assertFalse(self.C in sched)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[198]

These tests are a lot like the tests for schedules and statuses together. The differences
are due to the fact that activities can exclude each other from participating in a schedule, so
when we try to add an overlapping activity to the schedule, it should raise an exception, and
then should not be added to the schedule.

class test_schedules_activities_and_statuses(TestCase):
 def setUp(self):
 self.A = statuses('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = statuses('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = statuses('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

 self.D = activities('D',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))

 self.E = activities('E',
 datetime.now() + timedelta(minutes=30),
 datetime.now() + timedelta(hours=1))

 self.F = activities('F',
 datetime.now() - timedelta(minutes=20),
 datetime.now() + timedelta(minutes=40))

We're not using any mocks at all here. These tests use schedules, activities, and
statuses without any limits on their interactions. Our test fixture just creates a bunch
of them, so we don't have to duplicate that code in each of the tests.

 def test_usage_pattern(self):
 sched = schedules()

 sched.add(self.A)
 sched.add(self.B)
 sched.add(self.C)

 sched.add(self.D)

 self.assertTrue(self.A in sched)
 self.assertTrue(self.B in sched)
 self.assertTrue(self.C in sched)
 self.assertTrue(self.D in sched)

 self.assertRaises(schedule_error, sched.add, self.F)
 self.assertFalse(self.F in sched)

 sched.add(self.E)
 sched.remove(self.D)

 self.assertTrue(self.E in sched)
 self.assertFalse(self.D in sched)

 self.assertRaises(schedule_error, sched.add, self.F)

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[199]

 self.assertFalse(self.F in sched)

 sched.remove(self.E)

 self.assertFalse(self.E in sched)

 sched.add(self.F)

 self.assertTrue(self.F in sched)

Here again, we have a single test for a complete usage pattern. We're intentionally not
limiting the interactions between the tested components; instead we're putting them
together and making sure that they work.

class test_file(TestCase):
 def setUp(self):
 storage = file('file_test.sqlite')

 storage.store_object('tag1', 'A')
 storage.store_object('tag2', 'B')
 storage.store_object('tag1', 'C')
 storage.store_object('tag1', 'D')
 storage.store_object('tag3', 'E')
 storage.store_object('tag3', 'F')

 def tearDown(self):
 unlink('file_test.sqlite')

Our test fixture creates a persistence database, containing several objects before each test
runs, and deletes that database after each test. As usual, that means we know what the
environment looks like for each test, and they don't interact with each other.

 def test_other_instance(self):
 storage = file('file_test.sqlite')

 self.assertEqual(set(storage.load_objects('tag1')),
 set(['A', 'C', 'D']))

 self.assertEqual(set(storage.load_objects('tag2')),
 set(['B']))

 self.assertEqual(set(storage.load_objects('tag3')),
 set(['E', 'F']))

In this test, we create a new persistence file object, and tell it to load data from the
database created in the setUp method. Then we make sure that the loaded data match
our expectations.

When we run this test, it turns up an error which was not previously visible. The changes
to the database aren't being committed to the file, and so they aren't visible outside of
the transaction where they were stored. Not testing the persistence code in separate
transactions was an oversight, but that's exactly the sort of mistake that we perform
integration testing to catch.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[200]

We can fix the problem by altering the store_object method of the file class in
persistence.py as follows:

 def store_object(self, tag, object):
 self.connection.execute('insert into objects values (?, ?)',
 (tag, sqlite3.Binary(dumps(object))))
 self.connection.commit()

def unpickle_mocked_task(begins):
 mocker = Mocker()
 ret = mocker.mock()
 ret.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 ret.begins
 mocker.result(begins)
 mocker.count(0, None)
 mocker.replay()
 return ret
unpickle_mocked_task.__safe_for_unpickling__ = True

The unpickle_mocked_task function is necessary because one thing that mocks doesn't
handle very well is being 'pickled' and 'unpickled'. We used tuples in the tests for file
because of that, but we need mocks for this test, so we have to go to the extra trouble of
telling Pickle how to handle them.

class test_schedules_and_file(MockerTestCase):
 def setUp(self):
 mocker = self.mocker

 A = mocker.mock()
 A.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 A.begins
 mocker.result(5)
 mocker.count(0, None)
 A.__reduce_ex__(ANY)
 mocker.result((unpickle_mocked_task, (5,)))
 mocker.count(0, None)

 B = mocker.mock()
 B.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 B.begins
 mocker.result(3)
 mocker.count(0, None)
 B.__reduce_ex__(ANY)
 mocker.result((unpickle_mocked_task, (3,)))
 mocker.count(0, None)

 C = mocker.mock()

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 9

[201]

 C.overlaps(ANY)
 mocker.result(False)
 mocker.count(0, None)
 C.begins
 mocker.result(7)
 mocker.count(0, None)
 C.__reduce_ex__(ANY)
 mocker.result((unpickle_mocked_task, (7,)))
 mocker.count(0, None)

 self.A = A
 self.B = B
 self.C = C

 mocker.replay()

 def tearDown(self):
 try:
 unlink('test_schedules_and_file.sqlite')
 except OSError:
 pass

This should be a fairly familiar sort of test fixture, by now. The new thing is that the
tearDown method will delete a database file, (if it exists) but won't complain if it doesn't.
The database is expected to be created within the test itself, and we don't want to leave it
lying around, but if it's not there, it's not a test fixture error.

 def test_save_and_restore(self):
 sched1 = schedules()

 sched1.add(self.A)
 sched1.add(self.B)
 sched1.add(self.C)

 store1 = file('test_schedules_and_file.sqlite')
 sched1.store(store1)

 del sched1
 del store1

 store2 = file('test_schedules_and_file.sqlite')
 sched2 = schedules.load(store2)

 self.assertEqual(set([x.begins for x in sched2.tasks]),
 set([3, 5, 7]))

We're testing the interaction between schedules and persistence files, which means we've
created and populated a schedule, created a persistence file, stored the schedule, and
then created a new persistence file object using the same database file and loaded a new
schedule from it. If the loaded schedule matches our expectations, all's well.

A lot of the test code in this chapter might seem redundant to you. That's because, in some
sense, it is. Some things are repeatedly checked in different tests. Why bother?

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Integration Testing and System Testing

[202]

The main reason for the redundancy is that each test is supposed to stand alone. We're
not supposed to care what order they run in, or whether any other tests even exist. Each
test is self-contained, so if it fails, we know exactly what needs to be fixed. Because each test
is self-contained, some foundational things end up getting tested multiple times. In the case
of this simple project, that redundancy is even more pronounced than it would normally be.

Whether it's blatant or subtle, the redundancy isn't a problem. The so-called DRY (Don't
Repeat Yourself) principle doesn't particularly apply to tests. There's not much downside to
having something tested multiple times. This is not to say that it's a good idea to copy and
paste tests, because it's most certainly not. Don't be surprised or alarmed to see similarity
between your tests, but don't use that as an excuse.

Pop quiz – writing integration tests
1.	 Which integration tests do you write first?

2.	 What happens when you have a large chunk of integrated code, but the next section
you need to pull in doesn't have any integration tests at all?

3.	 What's the point of writing tests that check the integration of a chunk of code
with itself?

4.	 What is a system test, and how do system tests relate to integration tests?

Have a go hero – integrating your own program
Earlier, you wrote an integration diagram for one of your own programs. It's time now to
follow up on that and write integration tests for that code, guided by the diagram.

Summary
In this chapter, we learned about the process of building up from a foundation of unit tests,
into a set of tests that cover the whole system.

Specifically, we covered:

How to draw an integration diagram

How to interpret an integration diagram to decide in what order to build the tests

How to write integration tests

Now that we've learned about integration testing, we're ready to introduce a number of
other useful testing tools and strategies—which is the topic of the next chapter.







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

10
Other Testing Tools and Techniques

We've covered the core elements of testing in Python, but there are a number
of peripheral methods and tools that will make your life easier. In this chapter,
we'll go over several of them in brief.

In this chapter, we shall:

Discuss code coverage, and learn about coverage.py

Discuss continuous integration, and learn about buildbot

Learn how to integrate automated testing into popular version control systems

So let's get on with it!

Code coverage
Tests tell you when the code you're testing doesn't work the way you thought it would, but
they don't tell you a thing about the code that you're not testing. They don't even tell you
that the code you're not testing isn't being tested.

Code coverage is a technique, which can be used to address that shortcoming. A code
coverage tool watches while your tests are running, and keeps track of which lines of code
are (and aren't) executed. After the tests have run, the tool will give you a report describing
how well your tests cover the whole body of code.







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[204]

It's desirable to have the coverage approach 100%, as you probably figured out already.
Be careful not to focus on the coverage number too intensely though, it can be a bit
misleading. Even if your tests execute every line of code in the program, they can easily not
test everything that needs to be tested. That means you can't take 100% coverage as certain
proof that your tests are complete. On the other hand, there are times when some code
really, truly doesn't need to be covered by the tests—some debugging support code, for
example—and so less than 100% coverage can be completely acceptable.

Code coverage is a tool to give you insight into what your tests are doing, and what they may
be overlooking. It's not the definition of a good test suite.

coverage.py
We're going to be working with a module called coverage.py, which is—unsurprisingly—a
code coverage tool for Python.

Since coverage.py isn't built in to Python, we'll need to download and install it. You can
download the latest version from the Python Package Index at http://pypi.python.
org/pypi/coverage. As before, users of Python 2.6 or later can install the package by
unpacking the archive, changing to the directory, and typing:

$ python setup.py install --user

Users of older versions of Python need write permission to the
system-wide site-packages directory, which is part of the Python
installation. Anybody who has such permission can install coverage
by typing:

$ python setup.py install

At the time of this writing, Windows users also had the option of
downloading a Windows installer file from the Python Package Index
and running it to install coverage.py.

We'll walk through the steps of using coverage.py here, but if you want more
information you can find it on the coverage.py home page at http://nedbatchelder.
com/code/coverage/.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[205]

Time for action – using coverage.py
We'll create a little toy code module with tests, and then apply coverage.py to find out
how much of the code the tests actually use.

1.	 Place the following test code into test_toy.py. There are several problems
with these tests, which we'll discuss later, but they ought to run.

from unittest import TestCase
import toy

class test_global_function(TestCase):
 def test_positive(self):
 self.assertEqual(toy.global_function(3), 4)

 def test_negative(self):
 self.assertEqual(toy.global_function(-3), -2)

 def test_large(self):
 self.assertEqual(toy.global_function(2**13), 2**13 + 1)

class test_example_class(TestCase):
 def test_timestwo(self):
 example = toy.example_class(5)
 self.assertEqual(example.timestwo(), 10)

 def test_repr(self):
 example = toy.example_class(7)
 self.assertEqual(repr(example), '<example param="7">')

2.	 Put the following code into toy.py. Notice the if __name__ == '__main__'
clause at the bottom. We haven't dealt with one of those in a while, so I'll remind
you that the code inside that block runs doctest if we were to run the module with
python toy.py.

def global_function(x):
 r"""
 >>> global_function(5)
 6
 """
 return x + 1

class example_class:
 def __init__(self, param):
 self.param = param

 def timestwo(self):
 return self.param * 2

 def __repr__(self):
 return '<example param="%s">' % self.param

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[206]

if __name__ == '__main__':
 import doctest
 doctest.testmod()

3.	 Go ahead and run Nose. It should find them, run them, and report that all is well.
The problem is, some of the code isn't ever tested.

4.	 Let's run it again, only this time we'll tell Nose to use coverage.py to measure
coverage while it's running the tests.

	 $ nosetests --with-coverage --cover-erase

What just happened?
In step 1, we have a couple of TestCase classes with some very basic tests in them. These
tests wouldn't be much use in a real world situation, but all we need them for is to illustrate
how the code coverage tool works.

In step 2, we have the code that satisfies the tests from step 1. Like the tests themselves, this
code wouldn't be much use, but it serves as an illustration.

In step 4, we passed --with-coverage and --cover-erase as command line parameters
when we ran Nose. What did they do? Well, ‑‑with‑coverage is pretty straightforward: it
told Nose to look for coverage.py and to use it while the tests execute. That's just what we
wanted. The second parameter, ‑‑cover‑erase, tells Nose to forget about any coverage
information that was acquired during previous runs. By default, coverage information is
aggregated across all of the uses of coverage.py. This allows you to run a set of tests using
different testing frameworks or mechanisms, and then check the cumulative coverage. You
still want to erase the data from previous test runs at the beginning of that process, though,
and the ‑‑cover‑erase command line is how you tell Nose to tell coverage.py that
you're starting anew.

What the coverage report tells us is that 9/12 (in other words, 75%) of the executable
statements in the toy module were executed during our tests, and that the missing lines
were line 16 and a lines 19 through 20. Looking back at our code, we see that line 16 is the
__repr__ method. We really should have tested that, so the coverage check has revealed
a hole in our tests that we should fix. Lines 19 and 20 are just code to run doctest, though.
They're not something that we ought to be using under normal circumstances, so we can
just ignore that coverage hole.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[207]

Code coverage can't detect problems with the tests themselves, in most cases. In the above
test code, the test for the timestwo method violates the isolation of units and invokes two
different methods of example_class. Since one of the methods is the constructor, this may
be acceptable, but the coverage checker isn't in a position to even see that there might be a
problem. All it saw was more lines of code being covered. That's not a problem— it's how a
coverage checker ought to work— but it's something to keep in mind. Coverage is useful, but
high coverage doesn't equal good tests.

Pop quiz – code coverage
1.	 What does a high coverage percentage mean?

2.	 If your boss asks you for a quantifiable measure of test quality, will you use the
coverage percentage?

3.	 What is the most useful information on the coverage report?

Have a go hero – checking coverage in earlier chapters
Go back through the code from earlier chapters and use code coverage to check for things
that should have been tested, but weren't. Try it on some of your own tested code too.

Version control hooks
Most version control systems have the ability to run a program that you've written in
response to various events, as a way of customizing the version control system's behavior.
These programs are commonly called hooks.

Version control systems are programs for keeping track of changes to a source
code tree, even when those changes are made by different people. In a sense,
they provide an universal undo history and change log for the whole project,
going all the way back to the moment you started using the version control
system. They also make it much easier to combine work done by different
people into a single, unified entity, and to keep track of different editions of
the same project.

You can do all kinds of things by installing the right hook programs, but we'll only focus on
one use. We can make the version control program automatically run our tests, when we
commit a new version of the code to the version control repository.

This is a fairly nifty trick, because it makes it difficult for test-breaking bugs to get into the
repository unnoticed. Somewhat like code coverage, though there's potential for trouble
if it becomes a matter of policy rather than simply being a tool to make your life easier.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[208]

In most systems, you can write the hooks such that it's impossible to commit code that
breaks tests. That may sound like a good idea at first, but it's really not. One reason for this
is that one of the major purposes of a version control system is communication between
developers, and interfering with that tends to be unproductive in the long run. Another
reason is that it prevents anybody from committing partial solutions to problems, which
means that things tend to get dumped into the repository in big chunks. Big commits are
a problem because they make it hard to keep track of what changed, which adds to the
confusion. There are better ways to make sure you always have a working codebase socked
away somewhere, such as version control branches.

Bazaar
Bazaar is a distributed version control system, which means that it is capable of operating
without a central server or master copy of the source code. One consequence of the
distributed nature of Bazaar is that each user has their own set of hooks, which can be
added, modified, or removed without involving anyone else. Bazaar is available on the
Internet at http://bazaar-vcs.org/.

If you don't have Bazaar already installed, and don't plan on using it, you can skip
this section.

Time for action – installing Nose as a Bazaar post-commit hook
1.	 Bazaar hooks go in your plugins directory. On Unix-like systems, that's

~/.bazaar/plugins/, while on Windows it's C:\Documents and Settings\
<username>\Application Data\Bazaar\<version>\plugins\. In either
case, you may have to create the plugins subdirectory, if it doesn't already exist.

2.	 Place the following code into a file called run_nose.py in the plugins directory.
Bazaar hooks are written in Python:

from bzrlib import branch
from os.path import join, sep
from os import chdir
from subprocess import call

def run_nose(local, master, old_num, old_id, new_num, new_id):
 try:
 base = local.base
 except AttributeError:
 base = master.base

 if not base.startswith('file://'):
 return

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[209]

 try:
 chdir(join(sep, *base[7:].split('/')))
 except OSError:
 return

 call(['nosetests'])

branch.Branch.hooks.install_named_hook('post_commit',
 run_nose,
 'Runs Nose after each
 commit')

3.	 Make a new directory in your working files, and put the following code into
it in a file called test_simple.py. These simple (and silly) tests are just to
give Nose something to do, so that we can see that the hook is working.

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same")

4.	 Still in the same directory as test_simple.py, run the following commands to
create a new repository and commit the tests to it. The output you see might
differ in details, but it should be quite similar overall.

	 $ bzr init
	 $ bzr add
	 $ bzr commit

5.	 Notice that there's a Nose test report after the commit notification. From now on,
any time you commit to a Bazaar repository, Nose will search for
and run whatever tests it can find within that repository.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[210]

What just happened?
Bazaar hooks are written in Python, so we've written our hook as a function called run_nose.
Our run_nose function checks to make sure that the repository which we're working on is
local, and then it changes directories into the repository and runs nose. We registered
run_nose as a hook by calling branch.Branch.hooks.install_named_hook.

Mercurial
Like Bazaar, Mercurial is a distributed version control system, with hooks that are managed
by each user individually. Mercurial's hooks themselves, though, take a rather different form.
You can find Mercurial on the web at http://www.selenic.com/mercurial/.

If you don't have Mercurial installed and don't plan to use it, you can skip this section.

Mercurial hooks can go in several different places. The two most useful are in your personal
configuration file and in your repository configuration file.

Your personal configuration file is ~/.hgrc on Unix-like systems, and %USERPROFILE%\
Mercurial.ini (which usually means c:\Documents and Settings\<username>\
Mercurial.ini) on Windows-based systems.

Your repository configuration file is stored in a subdirectory of the repository, specifically
.hg/hgrc, on all systems.

Time for action – installing Nose as a Mercurial
post-commit hook

1.	 We'll use the repository configuration file to store the hook, which means that
the first thing we have to do is have a repository to work with. Make a new
directory at a convenient place and execute the following command in it:

	 $ hg init

2.	 One side-effect of that command is that a .hg subdirectory got created. Change to
that directory, and then create a text file called hgrc containing the following text:

[hooks]
commit = nosetests

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[211]

3.	 Back in the repository directory (i.e. the parent of the .hg directory), we need some
tests for Nose to run. Create a file called test_simple.py containing the following
(admittedly silly) tests:

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same")

4.	 Run the following commands to add the test file and commit it to the repository:

	 $ hg add

	 $ hg commit

5.	 Notice that the commit triggered a run-through of the tests. Since we put the
hook in the repository configuration file, it will only take effect on commits
to this repository. If we'd instead put it into your personal configuration
file, it would be called when you committed to any repository.

What just happened?
Mercurial's hooks are commands, just like you would enter into your operating systems
command shell (also known as a DOS prompt on Windows). We just had to edit Mercurial's
configuration file and tell it which command to run. Since we wanted it to run our Nose test
suite when we commit, we set the commit hook to nosetests.

Git
Git is a distributed version control system. Similar to Bazaar and Mercurial, it allows every
user to control their own hooks, without involving other developers or server administrators.

Git hooks are stored in the .git/hooks/ subdirectory of the
repository, each in its own file.

If you don't have Git installed, and don't plan to use it, you can skip this section.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[212]

Time for action – installing Nose as a Git post-commit hook
1.	 The hooks are stored in a subdirectory of a Git repository, so the first thing that we

need to do is initialize a repository. Make a new directory for the Git repository and
execute the following command inside of it:

	 $ git init

2.	 Git hooks are executable programs, so they can be written in any language. To
run Nose, it makes sense to use a shell script (on Unix-like systems) or batch file
(on Windows) for the hook. If you're using a Unix-like system, place the following
two lines into a file called post-commit in the .git/hooks/ subdirectory, and
then use the chmod +x post-commit command to make it executable.

#!/bin/sh
nosetests

If you're using a Windows system, place the following lines inside a file called
post-commit.bat in the .git\hooks\ subdirectory.

@echo off
nosetests

3.	 We need to put some test code in the repository directory (that is, the parent of the
.git directory), so that Nose has something to do. Place the following (useless)
code into a file called test_simple.py:

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same")

4.	 Run the following commands to add the test file and commit it to the repository:

	 $ git add test_simple.py

	 $ git commit -a

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[213]

5.	 Notice that the commit triggered an execution of Nose and printed out the
test results.

Because each repository has its own hooks, only the repositories that were
specifically configured to run Nose will do so.

What just happened?
Git finds its hooks by looking for programs with specific names, so we could have used any
programming language to write our hook, as long as we could give the program the right
name. However, all that we want is to run the nosetests command, so that we can use
a simple shell script or batch file. All this simple program does is invoke the nosetests
program, and then terminate.

Darcs
Darcs is a distributed version control system. Each user has control over their own set
of hooks.

If you don't have Darcs installed, and you don't plan to use it, you can skip this section.

Time for action – installing Nose as a Darcs post-record hook
1.	 Each local repository has its own set of hooks, so the first thing we need to do is

create a repository. Make a directory to work in, and execute the following
command in it:

	 $ darcs initialize

2.	 We need to put some test code in the repository directory so that Nose
has something to do. Place the following (useless) code into a file called
test_simple.py.

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same")

3.	 Run the following command to add the test file to the repository:

	 $ darcs add test_simple.py

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[214]

4.	 Darcs hooks are identified using command line options. In this case, we want
to run nosetests after we tell Darcs to record changes, so we use the
following command:

	 $ darcs record --posthook=nosetests

5.	 Notice that Darcs ran our test suite once it was done recording the changes, and
reported the results to us.

6.	 That's well and good, but Darcs doesn't remember that we want nosetests
to be a post-record hook. As far as it's concerned, that was a one-time deal.
Fortunately, we can tell it otherwise. Create a file called defaults in the
_darcs/prefs/ subdirectory, and place the following text into it:

record posthook nosetests

7.	 Now if we change the code and record again, nosetests should run without
us specifically asking for it. Make the following change to test_simple.py:

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same!")

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[215]

8.	 Run the following command to record the change and run the tests:

	 darcs record

9.	 If you want to skip the tests for a commit, you can pass the --no-posthook
command line option when you record your changes.

What just happened?
Darcs hooks are specified as command line options, so when we issue the record command
we need to specify a program to run as a hook. Since we don't want to do that manually
every time we record changes, we make use of Darcs' ability to accept additional command
line options in its configuration file. This allows us to make running nosetests as a hook
into the default behavior.

Subversion
Unlike the other version control systems that we've discussed, Subversion is a centralized
one. There is a single server tasked with keeping track of everybody's changes, which
also handles running hooks. This means that there is a single set of hooks that applies to
everybody, probably under control of a system administrator.

Subversion hooks are stored in files in the hooks/ subdirectory of
the server's repository.

If you don't have Subversion and don't plan on using it, you can skip this section.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[216]

Time for action – installing Nose as a Subversion
post-commit hook

Because Subversion operates on an centralized, client-server architecture, we'll need both
the client and server set up for this example. They can both be on the same computer, but
they'll need to be in different directories.

1.	 First we need a server. You can create one by making a new directory called
svnrepo and executing the following command:

	 $ svnadmin create svnrepo/

2.	 Now we need to configure the server to accept commits from us. To do this, we
open up the file called conf/passwd and add the following line at the bottom:

testuser = testpass

3.	 Then we need to edit conf/svnserve.conf, and change the line
reading # password-db = passwd to password-db = passwd.

4.	 The Subversion server needs to be running, before we can interact with it. This is
done by making sure that we're in the svnrepo directory and then running
the following command:

	 svnserve -d -r ..

5.	 Next we need to import some test code into the Subversion repository. Make a
directory and place the following (simple and silly) code into it in a file called
test_simple.py:

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same")

You can perform the import by executing:

	$ svn import --username=testuser --password=testpass svn://
localhost/svnrepo/

That command is likely to print out a gigantic, scary message about remembering
passwords. In spite of the warnings, just say yes.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[217]

6.	 Now that we've got the code imported, we need to check out a copy
of it to work on. We can do this with the following command:

$ svn checkout --username=testuser --password=testpass svn://
localhost/svnrepo/ svn

From here on in this example, we'll assume that the Subversion
server is running in a Unix-like environment (the clients might be
running on Windows, we don't care). The reason for this, is that
the details of the post-commit hook are significantly different
on systems that don't have a Unix style shell scripting language,
although the concepts remain the same.

7.	 The following code goes into a file called hooks/post-commit inside the
subversion server's repository. (The svn update and svn checkout lines
have been wrapped around to fit on the page. In actual use, this wrapping
should not be present.)

#!/bin/sh
REPO="$1"

if /usr/bin/test -e "$REPO/working"; then
 /usr/bin/svn update --username=testuser --password=testpass
"$REPO/working/";
else
 /usr/bin/svn checkout --username=testuser --password=testpass
svn://localhost/svnrepo/ "$REPO/working/";
fi

cd "$REPO/working/"

exec /usr/bin/nosetests

8.	 Use the chmod +x post-commit command to make the hook executable.

9.	 Change to the svn directory created by the checkout in step 5, and edit
test_simple.py to make one of the tests fail. We do this because
if the tests all pass, Subversion won't show us anything to indicate
that they were run at all. We only get feedback if they fail.

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same!")

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[218]

10.	Now commit the changes using the following command:

	 $ svn commit --username=testuser --password=testpass

11.	Notice that the commit triggered the execution of Nose, and that if any of the tests
fail, Subversion shows us the errors.

Because Subversion has one central set of hooks, they apply automatically to anybody who
uses the repository.

What just happened?
Subversion hooks are run on the server. Subversion locates its hooks by looking for
programs with specific names, so we needed to create a program called post-commit
to be the post-commit hook. We could have used any programming language to write
the hook, as long as the program had the right name, but we chose to use shell scripting
language, for simplicity's sake.

Pop quiz – version control hooks
1.	 In what ways can hooking your automated tests into your version control system

help you?

2.	 What are a couple of the things you could do with version control hooks,
but shouldn't?

3.	 What is the biggest difference between hooks in distributed version control systems,
and hooks in centralized version control systems?

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[219]

Automated continuous integration
Automated continuous integration tools are a step beyond using a version control hook to
run your tests when you commit code to the repository. Instead of running your test suite
once, an automated continuous integration system compiles your code (if need be) and runs
your tests many times, in many different environments.

An automated continuous integration system might, for example, run your tests under
Python versions 2.4, 2.5, and 2.6 on each of Windows, Linux, and Mac OS X. This not only
lets you know about errors in your code, but also about unexpected problems caused by the
external environment. It's nice to know when that last patch broke the program on Windows,
even though it worked like a charm on your Linux box.

Buildbot
Buildbot is a popular automated continuous integration tool. Using Buildbot, you can create
a network of 'build slaves' that will check your code each time you commit to you commit
it to your repository. This network can be quite large, and it can be distributed around the
Internet, so Buildbot works even for projects with lots of developers spread around
the world.

Buildbot's home page is at http://buildbot.net/. Following links from that site, you can
find the manual and download the latest version of the tool. Glossing over details that we've
discussed several times before, installation requires you to unpack the archive, and then run
the commands python setup.py build, and python setup.py install --user.

Buildbot operates in one of two modes, termed buildmaster and buildslave. A
buildmaster manages a network of buildslaves, while the buildslaves run the tests in their
assorted environments.

Time for action – using Buildbot with Bazaar
1.	 To set up a buildmaster, create a directory for it to operate in and then run

the command:

	 $ buildbot create-master <directory>

where <directory> is the directory you just created for buildbot to work in.

2.	 Similarly, to set up a buildslave, create a directory for it to operate in and then run
the command:

	 $ buildbot create-slave <directory> <host:port> <name> <password>

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[220]

where <directory> is the directory you just created for the buildbot to work
in, <host:port> are the internet host and port where the buildmaster can be
found, and <name> and <password> are the login information that identifies
this buildslave to the buildmaster. All of this information (except the directory) is
determined by the operator of the buildmaster.

3.	 You should edit <directory>/info/admin and <directory>/info/
host to contain the email address you want associated with this buildslave
and a description of the buildslave's operating environment, respectively.

4.	 On both the buildmaster and the buildslave, you'll need to start up
the buildbot background process. To do this, use the command:

 $ buildbot start <directory>

5.	 Configuring a buildmaster is a significant topic in itself (and one that we' won't
be addressing in detail). It's fully described in Buildbot's own documentation.
We will provide a simple configuration file, though, for reference and
quick setup. This particular configuration file assumes that you're using
Bazaar, but it is not significantly different for other version control systems.
The following goes in the master <directory>/master.cfg file:

-*- python -*-
ex: set syntax=python:

c = BuildmasterConfig = {}

c['projectName'] = "<replace with project name>"
c['projectURL'] = "<replace with project url>"
c['buildbotURL'] = "http://<replace with master url>:8010/"

c['status'] = []
from buildbot.status import html
c['status'].append(html.WebStatus(http_port=8010,
 allowForce=True))

c['slavePortnum'] = 9989

from buildbot.buildslave import BuildSlave
c['slaves'] = [
 BuildSlave("bot1name", "bot1passwd"),
]

from buildbot.changes.pb import PBChangeSource
c['change_source'] = PBChangeSource()

from buildbot.scheduler import Scheduler
c['schedulers'] = []
c['schedulers'].append(Scheduler(name="all", branch=None,
 treeStableTimer=2 * 60,
 builderNames=["buildbot-full"]))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[221]

from buildbot.process import factory
from buildbot.steps.source import Bzr
from buildbot.steps.shell import Test
f1 = factory.BuildFactory()
f1.addStep(Bzr(repourl="<replace with repository url>"))
f1.addStep(Test(command = 'nosetests'))

b1 = {'name': "buildbot-full",
 'slavename': "bot1name",
 'builddir': "full",
 'factory': f1,
 }
c['builders'] = [b1]

6.	 To make effective use of that Buildbot config, you also need to install a version
control hook that notifies Buildbot of changes. Generically, this can be done
by calling the buildbot sendchange command from the hook, but there's
a nicer way to tie in with Bazaar: copy the contrib/bzr_buildbot.py
file from the buildbot distribution archive into your Bazaar plugins directory,
and then edit the locations.conf file, which you should find right next to
the plugins directory. Add the following entry to locations.conf:

[<your repository path>]
buildbot_on = change
buildbot_server = <internet address of your buildmaster>
buildbot_port = 9989

You'll need to add similar entries for each repository that you want to be connected
to buildbot.

7.	 Once you have the buildmaster and buildslaves configured, and have hooked
buildbot into your version control system, and have started the buildmaster and
buildslaves, you're in business.

What just happened?
We just set up Buildbot to run our tests, whenever it notices that our source code has been
unchanged for two hours.

We told it to run the tests by adding a build step that runs nosetests:

f1.addStep(Test(command = 'nosetests'))

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Other Testing Tools and Techniques

[222]

We told it to wait for the source code to be unchanged for two hours by adding a
build scheduler:

c['schedulers'].append(Scheduler(name="all", branch=None,
 treeStableTimer=2 * 60,
 builderNames=["buildbot-full"]))

You'll be able to see a report of the Buildbot status in your web browser, by navigating to the
buildbotURL that you configured in the master.cfg file. One of the most useful reports
is the so-called 'waterfall' view. If the most recent commit passes the tests, you should see
something similar to this:

On the other hand, when the commit fails to pass the tests, you'll see something more
like this:

Either way, you'll also see a history of earlier versions, and whether or not they passed the
tests, as well as who made the changes, when, and what the output of the test command
looked like.

Pop quiz – Buildbot
1.	 What kind of projects benefit most from Buildbot and other such tools?

2.	 When is it better to use Buildbot, as opposed to just running Nose from a version
control hook?

3.	 When is it worse?

4.	 Aside from running tests, what sort of tasks would Buildbot be useful for?

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Chapter 10

[223]

Have a go hero
This is an open-ended assignment: take what you've learned and put it to use. Try a small
project first (but make it test-driven), with tests integrated into your version control system.
Once you have an implementation, use code coverage to help you have a comprehensive
test suite. If it makes sense for your project, use Buildbot.

Summary
We learned a lot in this chapter about code coverage and plugging our tests into the other
automation systems that we use while writing software.

Specifically, we covered:

What code coverage is, and what it can tell us about our tests

How to run Nose automatically when our version control software detects changes
in the source code

How to set up the Buildbot automated continuous integration system

Now that we've learned about code coverage, version control hooks, and automated
continuous integration, you're ready to tackle more or less anything. Congratulations!







This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Answers to Pop Quizes

Chapter 2

Pop quiz – doctest syntax
1.	 Test expression always start with >>>.

2.	 Continuation on lines always start with ���...

3.	 The expected output begins immediately after the expression, and continues until
the next blank line.

4.	 By using the normalize whitespace directive.

5.	 doctest ignores everything between the Traceback (most recent
last call).

6.	 All of the later code within the same text file can see the variable.

7.	 We care because tests are supposed to be isolated from each other, and if two tests
use the same variable, they can influence each others' results.

8.	 We can represent that section with an ellipsis(...) in the expected output.

Chapter 3

Pop quiz – understanding units
1.	 3 units exist: __init__, method1 and method2.

2.	 Both method1 and method2 assume the correct operation of __init__, and
additionally method2 assumes the correct operation of method1.

3.	 Tests for method2 would need to use a fake method1.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Answers to Pop Quizes

[226]

Pop quiz – unit testing during design
1.	 The tests we're building now are the foundation of the whole development process.

The choices we make here affect everything that comes after; it's important to do
it right.

2.	 If the people who write the specification aren't the same people who are writing
the code, then it's important for the coders to start involving themselves as soon as
possible, to keep the whole process within the bounds of what can usefully be done.
If the specifiers are the coders, then the question is academic.

3.	 The big advantage is that the tests allow the code's interfaces to be test-
driven, before the effort gets put into actually implementing them. The primary
disadvantage is that the tests can lock in a design which might have benefitted
from further evolution.

Pop quiz – unit testing
1.	 The test should be written before the code that will be tested, based on the

expectations for that code.

2.	 True.

3.	 Tests should be run as often as possible. It is very useful to run the tests regularly
while coding, as well as just before storing the code into a version control system.

4.	 You will spend most of you time using the output of the tests as a tool to guide you
in finding and fixing errors in the code.

Chapter 4

Pop quiz – Mocker usage
1.	IN.

2.	 Pass None as the upper bound.

3.	 It checks that the mocked objects were actually used in the way that we described.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Appendix

[227]

Chapter 5

Pop quiz – basic unittest knowledge
1.	 class test_exceptions(TestCase):

 def test_ValueError(self):
 self.assertRaises(ValueError, int, '123')

2.	 Use the assertAlmostEqual method.

3.	 You would use assertTrue if none of the more specialized assertions suited your
needs. You would use fail if you needed to express the conditions for test failure,
so complex that they don't fit comfortably into a single Boolean expression.

Pop quiz – text fixtures
1.	 To provide each test with an identical, isolated environment.

2.	 Add setUp and/or tearDown methods to a TestCase subclass.

3.	 A test fixture can consist of either or both methods, so the answer is yes.

Chapter 6

Pop quiz – testing with Nose
1.	 put processes=4 in your Nose configuration file.

2.	 add --include="specs" to the Nose command line.

3.	unit_tests, TestFiles, and test_files will be recognized.

Chapter 7

Pop quiz – test-driven development
1.	 Because the testable specification didn't follow unit testing discipline, it didn't

satisfy my need for unit tests. I had to write additional tests to fill that need. It's
fine to do that, as long as I don't skimp on the real unit tests.

2.	 In no way. It's actually desirable to run your tests as often as possible.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Answers to Pop Quizes

[228]

3.	 You've lost the opportunity to give your code's planned interface a test drive
before you set it in stone. You've lost the opportunity to write down your
expectations without having them contaminated by the actual behavior of your first
implementation. You've lost the opportunity to have the computer tell you what
needs to be done to create a working implementation.

Chapter 8

Pop quiz – the Twill language
1.	 Whatever form was last touched by the formvalue command is submitted.

2.	 The notfind command.

3.	 Twill will report that the entire script failed, and not execute any of the
later commands.

Pop quiz – browser methods
1.	 The value you pass as a parameter is matched against the form's name, number,

and ID.

2.	 The clicked method moves the simulated input focus to a new control on the
web page.

3.	 The code command checks the response code and raises an exception if it doesn't
match an expected value. The get_code method simply returns the response code.

Chapter 9

Pop quiz – diagramming integration
1.	 Those units wouldn't exist within the same class if they weren't related to each

other. By grouping them into their classes visually, we can take advantage of that
relationship to make our diagrams more easily.

2.	 Usually, it saves us trouble later on. Things that are related to each other at one level
are often part of the same thing at a higher level.

3.	 In testing, as in chemistry, it's important to change only one thing at a time. If we
pull together more than two things in a single step, we've changed more than one
thing, and so we can lose track of where any problems we find came from.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Appendix

[229]

Pop quiz – writing integration tests
1.	 The ones in the smallest circles, especially if they don't have any lines pointing from

themselves to other circles.

2.	 Start from the smallest circles involving that code, and build up step by step until
you're ready to integrate it with your earlier code.

3.	 When we were doing unit testing, even other instances of the same class were
mocked; we were concerned that this code did what it was supposed to, without
involving anything else. Now that we're doing integration testing, we need to
test that instances of the same class interact correctly with each other, or with
themselves when they're allowed to retain state from one operation to the next.
The two kinds of tests cover different things, so it makes sense that we would
need both.

4.	 A system test is the final stage of integration testing. It's a test that involves the
whole code base.

Chapter 10

Pop quiz – code coverage
1.	 It means that most of the code base was executed while running the tests.

2.	 That would be a bad idea, because coverage doesn't tell you anything about the
quality of your tests. It's for helping you find things that need to be tested, not for
telling you whether your tests are any good.

3.	 The most useful ��� information�� that the coverage report provides is the list of lines
that weren't executed, because that's what allows you to know what new tests
you might want to add.

Pop quiz – version control hooks
1.	 It can ensure that your tests are executed frequently, and can make you immediately

aware when you're checking in broken code.

2.	 Don't make it impossible to check in broken code. Don't make version control hooks
a matter of company policy.

3.	 In a centralized version control system, the hooks are usually under the control of
a system administrator, and executed on a server. In a distributed version control
system, the hooks are usually under the control of the user, and executed on the
user's computer.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Index
Symbols
@staticmethod notation 151
@ syntax 151
_tasks class 142, 143
+x post-commit command 217
7-zip

URL 62

A
add_auth command 161
add_extra_header command 161
agent command 162
answers, pop quiz 225-229
ANY 69
ARGS 70
assertAlmostEqual assertion 90, 91
assertEqual assertion 90
assertFalse assertion 90
assertions

about 89
assertAlmostEqual 90, 91
assertEqual 90
assertFalse 90
assertNotAlmostEqual 92
assertNotEqual 90
assertRaises 92, 93
assertTrue 89
fail 93

assertNotAlmostEqual assertion 92
assertNotEqual assertion 90
assertRaises assertion 92, 93
assertTrue assertion 89
automated continuous integration

about 219

Buildbot 219
AVL tree

about 26, 27
constructor 30
english specification 27, 28
locate method 34
make_test_tree function 31
make deletable 32
node data 28-30
recalculate_height method 30
rotate functions 33, 34

B
back command 162
Bazaar

about 208
Nose, installing as Bazaar post-commit hook

208-210
browser object, methods 173, 174
Buildbot

about 219
buildmaster mode 219
buildslave mode 219
using, with Bazaar 219-222

C
clear_cookies command 162
clear_extra_headers command 162
clicked method 176
code

debugging 146
fixing 143-146
writing 146

code command 162

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

[232]

code coverage
about 203
coverage.py 204

complex expressions, Python Mocker
mocking 73

config command 163
constructor, AVL tree 30
container[index].attribute.method() 73
containers

mocking 68
CONTAINS(some_object) 72
coverage.py

about 204
using 205, 206

D
Darcs

about 213
Nose, installing as Darcs post-commit hook

213-215
debug command 163
design phase

about 41
unit testing 41-44

development phase
about 44
unit testing 44-52

development process, unit testing
about 40
design phase 41
development phase 44, 51
feedback phase 47
maintenance phase 53
reuse phase 55

docstrings
doctests, embedding 24, 25

doctest
about 11
and Nose 110
blank lines in output, expecting 17
complex test, writing 14
creating 12
directives 21, 25
embedding, in docstrings 24, 25
embedding, in Python docstrings 24
exception, expecting 16

exceptions, expecting 15
execution scope 21, 22, 26
fixture, creating 111, 112
role, in integration test 180
running 12
syntax 13

doctest, controlling
directives used 17
doctest, directives 21
ellipsis, using 17, 18
example, skipping 19, 20
tests, skipping 20
whitespace, ignoring 18
whitespace, normalizing 19

doctests
finding 108

E
easy_install tool 62
echo command 163
ellipsis

using, in tests 17, 18
english specification, AVL tree 28
evaluate method 64, 67
exceptions

raising 74
excludes method 142
execution scope, doctest 21, 22
exit command 163
expectation

occurance, specifying 75-77
extend_with command 164

F
fail assertion 93, 94
feedback phase

about 47
unit testing 47-50

find_link method 174, 175
find command 164
follow_link method 175
follow command 164
formaction command 164, 165
formclear command 165
formfile command 165
formvalue command 165

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

[233]

frob module 22
func function 75
functions

calling, mock used 74, 75
mocking 67, 68

G
get_all_forms method 175
get_code method 174
get_form_field method 175
get_form method 175
get_html method 174
get_title method 174
get_url method 174
getinput command 165
getpassword command 165
Git

about 211
Nose, installing as Git post-commit

hook 212, 213
go command 166
grouped_tests class 117

H
help command 160

I
im_func attribute 81
IN(some_container) 71
info command 166
installing

Python Mocker 61, 62
integration testing

about 9, 177
and unit testing, differences 180
doctest, role 180
integration, diagramming 180
integration order, checking 178-180
writing 202
writing, for time planner 181-192

IS 71
IS(some_object) 71
iterators

returning 73

K
KWARGS 70

L
lambda keyword 75
library objects

datetime, mocking 79
replacing, with mocks 77-79

load_cookies command 166
load_object method 149
locate method, AVL tree 34

M
maintenance phase

about 53
unit testing 53, 54

make_deletable method 28
make_test_tree function 31
MATCH 72
MATCH(test_function) 72
Mercurial

about 210
Nose, installing as Mercurial post-commit hook

210, 211
Mocker

about 63
used, for creating mock objects 63-66

Mocker.count 76
Mocker.generate 73
mocker.Mock object 69
Mocker.result 73
Mocker.throw 74
mocker.verify() 66
MockerTestCase class 100
mock method 66
mock object

about 62, 63
creating, Mocker used 63-66
passing, as self 80, 81

multiply.evaluate 67

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

[234]

N
node data, AVL tree 28, 30
non-TestCase test classes 116
Nose

about 101
and doctest 110
and unittest 112, 113
installing 102
specific tests, using 116, 117
testing framework 116
testing with 109

Nose and doctest
about 110
fixture, creating for doctest 111, 112

Nose and unittest
about 112
module fixture, creating 113, 114
package fixture, creating 114, 115

Nose search
customizing 109

nosetests 102
notfind command 164

O
operations module 65

P
parameters, Python Mocker

ANY, passing as function parameter 69
ARGS, passing as function parameter 70
CONTAINS, passing as function parameter 72
IN, passing as function parameter 71
IS, passing as function parameter 71
KWARGS, passing as function parameter 70, 71
MATCH 72
matching 69

persistence code
writing 148-151

persistence tests
writing 147, 148

planner.data
coding 139-142

planner.data classes 125
pop quiz

answers 225-229

Python
testing 119

Python docstrings
doctests, embedding 24

Python documentation
URL 109

Python Mocker
about 61, 63
basics 63-65
complex expressions, mocking 73
containers, mocking 68, 69
exceptions, raising 74
expectation occurance, specifying 75-77
functions, mocking 67, 68
functions calling, mock used 74, 75
installing 61, 62
integrating with 100
iterators, returning 73
library objects, replacing with mocks 77-79
parameters, matching 69

R
recalculate_height method 30
redirect_error command 166
redirect_output command 166
reload command 167
replay method 66
reset_browser command 167
reset_error command 166
reset_output command 167
restore method 66
reuse phase

about 55
test-driven development 59
unit testing 55-58

rotate_clockwise method 28
rotate_counterclockwise method 28
rotate functions, AVL tree 33, 34
run command 167
runfile command 167

S
save_cookies command 166
save_html command 167
schedules class 142

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

[235]

self
mock object, passing 80, 81

self.assertTrue(expression) 89
self object

mocking 80
set_value method 173
setglobal command 160, 161
setlocal command 161
setUp() function 110
setup() function 110
setUp method 96, 97, 133
show_cookies command 166
show_extra_headers command 162
show command 167
showforms command 167
showhistory command 168
showlinks command 168
Skip list 153
sleep command 168
some_container 71
specification

writing 119-124
staticmethod function 151
store_object method 149
submit command 168
submit method 176
Subversion

Nose, installing as Subversion post-commit
hook 216-218

system testing
about 9, 10
and integration testing, differences 180

T
tearDown() function 110
teardown() function 110
tearDown method 97, 98
test-driven project

developing 119
test_assertAlmostEqual method 91
test_assertEqual method 91
test_basic test 148
test_excludes method 133
test_function 72
test_multiple_tags test 148
test_valid method 128

testable.method3(target, 12) 81
testable class 81
TestCase class 96, 117
test fixtures

about 94
database-backed units, testing 95-97
file path, abstracting 98, 99

testing
integration testing 9
system testing 9, 10
types 9
unit testing 9
uses 8

tests, organizing
about 103
from previous chapters 104-108

tidy_ok command 168
time 79
time.time 63
title command 168
Twill

browser object, accessing 172, 173
browser object, methods 173
commands 160
installing 155, 156
language, exploring 156
operations, integrating into

unittest tests 172, 173
scripting 159, 160
web, browsing 156-158

Twill, commands
add_auth command 161
add_extra_header command 161
agent command 162
back command 162
clear_cookies command 162
clear_extra_headers command 162
code command 162
config command 163
debug command 163
echo command 163
exit command 163
extend_with command 164
find command 164
follow command 164
formaction command 164, 165

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

[236]

formclear command 165
formfile command 165
formvalue command 165
getinput command 165
getpassword command 165
go command 166
help command 160
info command 166
load_cookies command 166
notfind command 164
redirect_error command 166
redirect_output command 166
reload command 167
reset_browser command 167
reset_error command 166
reset_output command 167
run command 167
runfile command 167
save_cookies command 166
save_html command 167
setglobal command 160, 161
setlocal command 161
show_cookies command 166
show_extra_headers command 162
show command 167
showforms command 167
showhistory command 168
showlinks command 168
sleep command 168
submit command 168
tidy_ok command 168
title command 168
url command 168

twill.get_browser()
methods 173, 174

twill.get_browser() methods
clicked method 176
find_link method 174, 175
follow_link method 175
get_all_forms method 175
get_code method 174
get_form_field method 175
get_form method 175
get_html method 174
get_title method 174
get_url method 174
submit method 176

Twill language
exploring 156
Twill, scripting 159, 160
web, browsing 156-158

Twill scripts
files, running 169, 170
strings, running 170, 171

U
unittest

about 83
and Nose 112, 113
PID, testing 84-88

Unit testing
about 9, 37, 38
and integration testing, differences 180
during design phase 41-44
during development phase 44-52
during feedback phase 47-50
during maintenance phase 53, 54
during reuse phase 55-58
units, identifying 38, 39

unit tests
specifications 139
writing 125-137

url command 168

V
version control systems

about 207
Bazaar 208
Darcs 213
Git 211
Mercurial 210
Subversion 215

W
when parameter 88

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Thank you for buying
Python Testing: Beginner's Guide

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that project.
Therefore by purchasing Python Testing: Beginner's Guide, Packt will have given some of the money
received to the Python project.

In the long term, we see ourselves and you—customers and readers of our books—as part of the Open
Source ecosystem, providing sustainable revenue for the projects we publish on. Our aim at Packt is
to establish publishing royalties as an essential part of the service and support a business model that
sustains Open Source.

If you're working with an Open Source project that you would like us to publish on, and subsequently
pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing your
Python software

1.	 Learn Python development best practices from
an expert, with detailed coverage of naming and
coding conventions

2.	 Apply object-oriented principles, design patterns,
and advanced syntax tricks

3.	 Manage your code with distributed
version control

4.	 Profile and optimize your code

5.	 Proactive test-driven development and
continuous integration

Professional Plone Development
ISBN: 978-1-847191-98-4 Paperback: 420 pages

Building robust, content-centric web applications with
Plone 3, an open source Content Management System

1.	 Plone development fundamentals

2.	 Customizing Plone

3.	 Developing new functionality

4.	 Real-world deployments

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Django 1.0 Website Development
ISBN: 978-1-847196-78-1 Paperback: 272 pages

Build powerful web applications, quickly and cleanly, with
the Django application framework

1.	 Teaches everything you need to create a
complete Web 2.0-style web application with
Django 1.0

2.	 Learn rapid development and clean,
pragmatic design

3.	 No knowledge of Django required

4.	 Packed with examples and screenshots for better
understanding

Grok 1.0 Web Development
ISBN: 978-1-847197-48-1 Paperback: 250 pages

Create flexible, agile web applications using the power of
Grok—a Python web framework

1.	 Develop efficient and powerful web applications
and web sites from start to finish using Grok,
which is based on Zope 3

2.	 Integrate your applications or web sites with
relational databases easily

3.	 Extend your applications using the power of the
Zope Toolkit

4.	 Easy-to-follow and packed with practical, working
code with clear explanations

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Django 1.1 Testing and Debugging
ISBN: 978-1-847197-56-6 Paperback: 430 pages

Building rigorously tested and bug-free Django applications

1.	 Develop Django applications quickly with fewer
bugs through effective use of automated testing
and debugging tools.

2.	 Ensure your code is accurate and stable
throughout development and production by
using Django’s test framework.

3.	 Understand the working of code and its
generated output with the help of debugging
tools.

4.	 Packed with detailed working examples that
illustrate the techniques and tools for debugging

Practical Plone 3
ISBN: 978-1-847191-78-6 Paperback: 592 pages

1.	 Get a Plone-based website up and running
quickly without dealing with code

2.	 Beginner’s guide with easy-to-follow instructions
and screenshots

3.	 Learn how to make the best use of Plone’s out-of-
the-box features

4.	 Customize security, look-and-feel, and many
other aspects of Plone

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

Django 1.0 Template Development
ISBN: 978-1-847195-70-8 Paperback: 272 pages

A practical guide to Django template development with
custom tags, filters, multiple templates, caching, and more

1.	 Dive into Django’s template system and build
your own template

2.	 Learn to use built-in tags and filters in Django 1.0

3.	 Practical tips for project setup and template
structure

4.	 Use template techniques to improve your
application’s performance

Matplotlib for Python Developers
ISBN: 978-1-847197-90-0 Paperback: 308 pages

Build remarkable publication-quality plots the easy way

1.	 Create high quality 2D plots by using Matplotlib
productively

2.	 Incremental introduction to Matplotlib, from the
ground up to advanced levels

3.	 Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them in
Python applications

4.	 Deploy Matplotlib in web applications and
expose it on the Web using popular web
frameworks such as Pylons and Django

5.	 Get to grips with hands-on code and complete
realistic case study examples along with highly
informative plot screenshots

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Betty Vaughan-Pope on 1st February 2010

2601 S Broadway St, Unit 29, La Porte, , 77571

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Testing for Fun and Profit
	How can testing help?
	Types of testing
	Unit testing
	Integration testing
	System testing

	You've got Python, right?
	Summary

	Chapter 2: Doctest: The Easiest Testing Tool
	Basic doctest
	Time for action – creating and running your first doctest
	The syntax of doctests

	Time for action – writing a more complex test
	Expecting exceptions

	Time for action – expecting an exception
	Expecting blank lines in the output
	Using directives to control doctest
	Ignoring part of the result

	Time for action – using ellipsis in tests
	Ignoring whitespace

	Time for action – normalizing whitespace
	Skipping an example entirely

	Time for action – skipping tests
	Other doctest directives
	Execution scope

	Embedding doctests in Python docstrings
	Time for action – embedding a doctest in a docstring
	Doctest directives
	Execution scope

	Putting it in practice: an AVL tree
	English specification
	Node data
	Constructor
	Recalculate height
	Make deletable
	Rotation
	Locating a node
	Testing the rest of the specification

	Summary

	Chapter 3: Unit Testing with Doctest
	What is Unit testing and what it is not?
	Time for action – identifying units
	Unit testing throughout the development process
	Design phase

	Time for action – unit testing during design
	Development phase

	Time for action – unit testing during development
	Feedback phase

	Time for action – unit testing during feedback
	Back to the development phase

	Time for action – unit testing during development... again
	Maintenance phase

	Time for action – unit testing during maintenance
	Reuse phase

	Time for action – unit testing during reuse
	Summary

	Chapter 4: Breaking Tight Coupling by using Mock Objects
	Installing Python Mocker
	Time for action – installing Python Mocker
	The idea of a mock object
	Python Mocker
	Time for action – exploring the basics of Mocker
	Mocking functions
	Mocking containers
	Parameter matching
	ANY
	ARGS
	KWARGS
	IS
	IN
	CONTAINS
	MATCH

	Mocking complex expressions
	Returning iterators
	Raising exceptions
	Calling functions via a mock
	Specifying that an expectation should occur multiple times
	Replacing library objects with mocks

	Mocking self
	Time for action – passing a mock object as self
	Summary

	Chapter 5: When Doctest isn't Enough: Unittest to the Rescue
	Basic unittest
	Time for action – testing PID with unittest
	Assertions
	assertTrue
	assertFalse
	assertEqual
	assertNotEqual
	assertAlmostEqual
	assertNotAlmostEqual
	assertRaises
	fail

	Test fixtures
	Time for action – testing database-backed units
	Integrating with Python Mocker
	Summary

	Chapter 6: Running Your Tests: Follow Your Nose
	What is Nose?
	Installing Nose
	Organizing tests
	Time for action – organizing tests from previous chapters
	Finding doctests
	Customizing Nose's search

	Nose and doctest
	Time for action – creating a fixture for a doctest
	Nose and unittest
	Time for action – creating a module fixture
	Time for action – creating a package fixture
	Nose's own testing framework
	Time for action – using Nose-specific tests
	Summary

	Chapter 7: Developing a Test-Driven Project
	Writing the specification
	Time for action – what are you going to do?
	Writing initial unit tests
	Time for action – nailing down the specification with unit tests
	Coding planner.data
	Using the tests to get the code right
	Fixing the code
	Time for action – writing and debugging code
	Writing persistence tests
	Writing persistence code
	Finishing up
	Summary

	Chapter 8: Testing Web Application Frontends using Twill
	Installing Twill
	Exploring the Twill language
	Time for action – browsing the web with Twill
	Time for action – Twill scripting
	Twill commands
	help
	setglobal
	setlocal
	add_auth
	add_extra_header
	clear_extra_headers
	show_extra_headers
	agent
	back
	clear_cookies
	code
	config
	debug
	echo
	exit
	extend_with
	find
	notfind
	follow
	formaction
	formclear
	formfile
	formvalue
	getinput
	getpassword
	go
	info
	save_cookies
	load_cookies
	show_cookies
	redirect_error
	redirect_output
	reset_error
	reset_output
	reload
	reset_browser
	run
	runfile
	save_html
	show
	showforms
	showhistory
	showlinks
	sleep
	submit
	tidy_ok
	title
	url

	Calling Twill scripts from tests
	Time for action – running Twill script files
	Time for action – running Twill script strings
	A nifty trick

	Integrating Twill operations into unittest tests
	Time for action – using Twill's browser object
	Browser methods
	get_code
	get_html
	get_title
	get_url
	find_link
	follow_link
	get_all_forms
	get_form
	get_form_field
	clicked
	submit

	Summary

	Chapter 9: Integration Testing and System Testing
	Integration tests and system tests
	Time for action – figuring out the order of integration
	Automation with doctest, unittest, and Nose
	Time for action – writing integration tests for the time planner
	Summary

	Chapter 10: Other Testing Tools and Techniques
	Code coverage
	coverage.py

	Time for action – using coverage.py
	Version control hooks
	Bazaar

	Time for action – installing Nose as a Bazaar post-commit hook
	Mercurial

	Time for action – installing Nose as a Mercurial
	post-commit hook
	Git

	Time for action – installing Nose as a Git post-commit hook
	Darcs

	Time for action – installing Nose as a Darcs post-record hook
	Subversion

	Time for action – installing Nose as a Subversion
	post-commit hook
	Automated continuous integration
	Buildbot

	Time for action – using Buildbot with Bazaar
	Summary

	Appendix: Answers to Pop Quizes
	Chapter 2
	Pop quiz – doctest syntax

	Chapter 3
	Pop quiz – understanding units
	Pop quiz – unit testing during design
	Pop quiz – unit testing

	Chapter 4
	Pop quiz – Mocker usage

	Chapter 5
	Pop quiz – basic unittest knowledge
	Pop quiz – text fixtures

	Chapter 6
	Pop quiz – testing with Nose

	Chapter 7
	Pop quiz – test-driven development

	Chapter 8
	Pop quiz – the Twill language
	Pop quiz – browser methods

	Chapter 9
	Pop quiz – diagramming integration
	Pop quiz – writing integration tests

	Chapter 10
	Pop quiz – code coverage
	Pop quiz – version control hooks

	Index

