Graphical user interfaces for Python programs

John E. Grayson

L Tkinter

Programming

MMANNING

Python and Tkinter Programming

Python and Tkinter
Programming

JOHN E. GRAYSON

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

32 Lafayette Place Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2000 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or
otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in the book,
and Manning Publications was aware of a trademark claim, the designations have
been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s
policy to have the books we publish printed on acid-free paper, and we exert our best
efforts to that end.

/l/l Manning Publications Co. Copyeditor: Kristen Black
32 Lafayette Place Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

Second corrected printing 2000
Printed in the United States of America
23456789 10—-CM - 030201 00

To the memory of Backy, who taught me the value of language.

brief contents

preface xv

special thanks — xvii

about the reader xix

about the author xx

conventions xxi

about the cover xxii

author online xxiii

Part I Basic concepts 1

1
2
3

Python 3
Tkinter 12
Building an application 18

Part 2 Displays 29

1
1
1
13

N~ S NS Wn A

Tkinter widgets 31

Screen layout 77

Events, bindings and callbacks 95

Using classes, composites and special widgets 120
Dialogs and forms 140

Panels and machines 199

Drawing blobs and rubber lines 237

Graphs and charts 276

Navigation 300

The window manager 306

vii

Part 3 Putting it all together... 311

14
15
16
17
18
19

Extending Python 313

Debugging applications 329

Designing effective graphics applications 338
Programming for performance 348

Threads and asynchronous techniques 361
Distributing Tkinter applications 374

Part 4 Appendices 381

appendix A Mapping Tk to Tkinter 383

appendix B Tkinter reference 425

appendix C Pmuw reference: Python megawidgets 542

appendix D Building and installing Python, Tkinter 610

appendix E Events and keysyms 617

appendix F Cursors 621
appendix G References 625
index 629

viii

BRIEF CONTENTS

contents

preface xv

special thanks xvii

about the reader xix

about the author xx

conventions

xxi

about the cover xxii

author online

xxiii

Part I Basic concepts 1

1 Python 3

1.1

1.2

1.3

Introduction to Python programming and a feature review 3

Why Python? 4, Where can Python be used? 5

Key data types: lists, tuples and dictionaries 5

Lists 5, Tuples 7, Dictionaries 8

Classes 9

How do classes describe objects? 9, Defining classes 9, Neat Python trick #10 9,
Initializing an instance 10, Methods 10, Private and public variables and
methods 11, Inheritance 11, Multiple inheritance 11, Mixin classes 11

2 Tkinter 12

2.1

2.2
2.3

The Tkinter module 12
What is Tkinter? 12, What about performance? 13, How do I use
Tkinter? 13, Tkinter features 14

Mapping Tcl/Tk to Tkinter 14
Win32 and UNIX GUIs 15

x

2.4 Tkinter class hierarchy 16
2.5 Tkinter widget appearance 17

3 Building an application 18

3.1 Calculator example: key features 21
3.2 Calculator example: source code 21
3.3 Examining the application structure 27

3.4 Extending the application 28

Part 2 Displays 29

4 Thkinter widgets 31

4.1 Tkinter widget tour 31
Toplevel 32, Frame 33, Label 35, Button 36, Entry 37,
Radiobutton 37, Checkbutton 38, Menu 39, Message 42, Text 43,
Canvas 44, Scrollbar 45, Listbox 45, Scale 46

4.2 Fonts and colors 47
Font descriptors 47, X Window System font descriptors 47, Colors 48,
Setting application-wide default fonts and colors 49

4.3 Pmw Megawidget tour 49
AboutDialog 50, Balloon 50, ButtonBox 51, ComboBox 52,
ComboBoxDialog 53, Counter 54, CounterDialog 55, Dialog 56,
EntryField 56, Group 57, LabeledWidget 58, MenuBar 59,
MessageBar 59, MessageDialog 61, NoteBookR 61, NoteBookS 62,
NoteBook 63, OptionMenu 64, PanedWidget 65, PromptDialog 66,
RadioSelect 66, ScrolledCanvas 67, ScrolledField 68, ScrolledFrame 69,
ScrolledListbox 70, ScrolledText 70, SelectionDialog 71, TextDialog 72,
TimeCounter 73

4.4 Creating new megawidgets 73
Description of the megawidget 73, Options 74, Creating the
megawidget class 74

5 Screen layout 77

5.1 Introduction to layout 77
Geometry management 78

5.2 Packer 79
Using the expand option 82, Using the fill option 82, Using the padx and
pady options 84, Using the anchor option 84, Using hierarchical packing 84

5.3 Grid 86
5.4 Placer 90
5.5 Summary 94

x CONTENTS

6 Events, bindings and callbacks 95
6.1 Event-driven systems: a review 95
What are events? 96, Event propagation 97, Event types 97

6.2 Tkinter events 98
Events 98

6.3 Callbacks 102

6.4 Lambda expressions 103
Avoiding lambdas altogether 103

6.5 Binding events and callbacks 104
Bind methods 104, Handling multiple bindings 106

6.6 Timers and background procedures 107
6.7 Dynamic callback handlers 107

6.8 Putting events to work 108
Binding widgets to dynamic data 108, Data verification 111,
Formatted (smart) widgets 117

6.9 Summary 119

7 Using classes, composites and special widgets 120
7.1 Creating a Light Emitting Diode class 120
Let’s try that again 126, What has changed? 129

7.2 Building a class library 129
Adding a hex nut to our class library 131, Creating a switch class 133,
Building a MegaWidget 136

7.3 Summary 139

8 Dialogs and forms 140

8.1 Dialogs 141
Standard dialogs 141, Data entry dialogs 142, Single-shot forms 146,
Tkinter variables 152

8.2 A standard application framework 155
8.3 Data dictionaries 165

8.4 Notebooks 172

8.5 Browsers 175

8.6 Wizards 184

8.7 Image maps 191

8.8 Summary 198

9 Panels and machines 199

9.1 Building a front panel 199
9.2 Modularity 201

CONTENTS

9.3
9.4
9.5
9.6

9.7

Implementing the front panel 201
GIF, BMP and overlays 215
And now for a more complete example 220

Virtual machines using POV-Ray 232
And now for something completely different... #10 The Example 233

Summary 236

10 Drawing blobs and rubber lines 237

11

10.1

10.2
10.3
10.4
10.5
10.6
10.7
10.8

Drawing on a canvas 238
Moving canvas objects 243

A more complete drawing program 244
Scrolled canvases 251

Ruler-class tools 254

Stretching canvas objects 258

Some finishing touches 262

Speed drawing 271

Summary 275

Graphs and charts 276

11.1
11.2

11.3
11.4
11.5

Simple graphs 276

A graph widget 279

Adding bargraphs 286, DPie charts 289
3-D graphs 292

Strip charts 296

Summary 298

12 Navigation 300

12.1
12.2
12.3
12.4
12.5
12.6

Introduction: navigation models 300

Mouse navigation 301

Keyboard navigation: “mouseless navigation” 301
Building navigation into an application 302
Image maps 305

Summary 305

13 The window manager 306

xii

13.1
13.2
13.3
13.4

What is a window manager? 306
Geometry methods 307
Visibility methods 308

Icon methods 309

CONTENTS

13.5
13.6

Protocol methods 309

Miscellaneous wm methods 310

Part 3 Putting it all together... 311

14 Extending Python 313

14.1
14.2

14.3
14.4
14.5
14.6
14.7
14.8

Weriting a Python extension 313

Building Python extensions 316

Linking an extension statically in UNIX 316, Linking an extension
statically in Windows 317, Building a dynamic module in UNIX 317,
Building a dynamic module in Windows 318, Installing dynamic
modules 319, Using dynamic modules 319

Using the Python API in extensions 319
Building extensions in C++ 320

Format strings 321

Reference counts 324

Embedding Python 325

Summary 328

15 Debugging applications 329

15.1
15.2
15.3
15.4
15.5
15.6
15.7

Why print statements? 329
A simple example 330
How to debug 333

A Tkinter explorer 334
pdb 336

IDLE 336

DDD 337

16 Designing effective graphics applications 338

16.1
16.2

16.3
16.4

The elements of good interface design 339

Human factors 342
Choosing fonts 343, Use of color in graphical user interfaces 344,
Size considerations 346

Alternative graphical user interfaces 346

Summary 347

17 Programming for performance 348

17.1

CONTENTS

Everyday speedups 348

Program organization 349, Using the Python optimizer 350, Examining code 350

xiil

17.2 Tkinter performance 350
Keep it short! 350, Eliminate local variables 351, Keep it simple 351,
Fast initialization 352, Throttling events 352

17.3 Python techniques 352
Importing modules 353, Concatenating strings 353, Getting nested
loops right 354, Eliminate module references 354, Use local variables 355,
Using exceptions 356, Using map, filter and reduce 356

17.4 Application profiling 357
17.5 Python extensions 359
17.6 Summary 360

18 Threads and asynchronous techniques 361

18.1 Threading 361
Non-GUI threads 362, GUI threads 365

18.2 “after” processing 369
18.3 Summary 373

19 Distributing Tkinter applications 374
19.1 General issues in distributing applications 374
19.2 Distributing UNIX applications 375
19.3 Distributing Win32 applications 376
19.4 Python distribution tools 379

Part 4 Appendices 381

appendix A Mapping Tk to Tkinter 383

appendix B Tkinter reference 425

appendix C Pmuw reference: Python megawidgets 542
appendix D Building and installing Python, Tkinter 610
appendix E Events and keysyms 617

appendix F Cursors 621

appendix G References 625

index 629

xiv CONTENTS

preface

I first encountered Python in 1993 when I joined a small company in Rhode Island. Their pri-
mary product was a GUI-builder for X/Motif that generated code for C, C++, Ada and Python. I
was tasked with extending the object-oriented interface for X/Motif and Python. In the past I'd
become skeptical about the use of interpretive languages, so I began the task with little excite-
ment. Two days later I was hooked. It was easy to develop interfaces that would have taken much
more time and code to develop in C. Soon after, I began to choose interfaces developed using the
Python interface in preference to compiled C code.

After I left the company in Rhode Island, I began to develop applications using Tkinter,
which had become the preeminent GUI for Python. I persuaded one company, where 1 was
working on contract, to use Python to build a code-generator to help complete a huge project
that was in danger of overrunning time and budget. The project was a success. Four years later
there are many Python programmers in that company and some projects now use Tkinter and
Python for a considerable part of their code.

It was this experience, though, that led me to start writing this book. Very little documenta-
tion was available for Tkinter in the early days. The Tkinter Life Preserver was the first document
that helped people pull basic information together. In 1997 Fredrik Lundh released some excel-
lent documentation for the widget classes on the web, and this has served Tkinter programmers
well in the past couple of years. One of the problems that I saw was that although there were sev-
eral example programs available (the Python distribution contains several), they were mostly brief
in content and did not represent a framework for a full application written with Tkinter. Of
course, it is easy to connect bits of code together to make it do more but when the underlying
architecture relies on an interpreter it is easy to produce an inferior product, in terms of execu-
tion speed, aesthetics, maintainability and extensibility.

So, one of the first questions that I was asked about writing Tkinter was “How do I make an
XXX?” I'd usually hand the person a chunk of code that I'd written and, like most professional
programmers, they would work out the details. I believe strongly that learning from full, working
examples is an excellent way of learning how to program in a particular language and to achieve
particular goals.

When I was training in karate, we frequently traveled to the world headquarters of Shuko-
kai, in New Jersey, to train with the late Sensei Shigeru Kimura. Sensei Kimura often told us “I

XU

can't teach you how to do this (a particular technique)—you have to stea/ it.” My approach to
learning Tkinter is similar. If someone in the community has solved a problem, we need to steal
it from them. Now, I am not suggesting that we infringe copyright and professional practice! I
simply mean you should learn from whatever material is available. I hope that you will use the
examples in the book as a starting point for your own creations. In a small number of cases I have
used code or the ideas of other programmers. If this is the case I have given the original author an
appropriate acknowledgment. If you use one of these pieces of code, I'd appreciate it if you would
also acknowledge the original author. After all, what we “steal” has more value than what we pro-
duce ourselves—it came from the Sensei!

I was impressed by the format of Douglas A. Young’s The X Window System.: Programming
and Applications wirh Xr. It is a little old now, but it had a high proportion of complete code
examples, some of which made excellent templates upon which new applications could be built.
Python and Thkinter Programming has some parallels in its layout. You will find much longer
examples than you may be accustomed to in other programming books. I hope that many of the
examples will be useful either as templates or as a source of inspiration for programmers who
have to solve a particular problem.

One side effect of presenting complete examples as opposed to providing code fragments is
that you will learn a great deal about my style of programming. During the extensive reviews for
Python and Thkinter Programming some of the reviewers suggested alternate coding patterns for
some of the examples. Wherever possible, I incorporated their suggestions, so that the examples
now contain the programming styles of several people. I expect that you will make similar
improvements when you come to implement your own solutions.

I hope that you find Python and Tkinter Programming useful. If it saves you even a couple of
hours when you have an application to write, then it will have been worth the time spent reading

the book.

Xvi PREFACE

special thanks

Writing Python and Tkinter Programming has been the collective effort of many people. Each of
these persons contributed their time, expertise and effort to help make the book more effective.
Many of the words are theirs and not mine—the book is now better.

I want to thank the team of technical reviewers: Fred L. Drake, Robin Friedrich, Alan
Gauld, Bob Gibson, Lynn Grande, Doug Hellmann, Garrett G. Hodgson, Paul Kendrew,
Andrew M. Kuchling, Cameron Laird, Gregory A. Landrum, Ivan Van Laningham, Burt Leaven-
worth, Ken McDonald, Frank McGeough, Robert Meegan, William Peloquin, Robert J. Roberts
and Guido van Rossum. They provided detailed comments that resulted in significant improve-
ments to the booK’s content, focus and accuracy.

Some of the code examples were derived from code written by others. I want to thank these
authors for agreeing to allow me to use their code in this book.

Doug Hellman wrote an excellent module for Pmw, GUIAppD.py, which I adapted as App-
Shell.py and used for many examples within the book. Doug agreed that I could use the code. If
you find AppShell.py useful in your applications, please acknowledge the original author of this
work.

Konrad Hinsen wrote TkPlotCanvas.py, which was intended to be used with NumPy,
which uses extension modules optimized for numerical operations. I adapted it to run without
NumPy and also added some additional graphical capabilities. Again, if you find it useful, please
acknowledge Konrad Hinsen.

The Tree and Node classes used in chapter 8 are derived from code released by OpenChem
for inclusion within their Open Source project. You might want to look at any future releases
from this organization, since the tree-widget examples presented in this book are limited in their
capability.

Appendix B uses the man pages for Tk as a starting point for documenting Tkinter. The
copyright owners, the Regents of the University of California and Sun Microsystems allow deriv-
ative works to be made, provided that the original copyright is acknowledged.

I also want to thank Gordon Smith at General Dynamics for having confidence in the use
of Python and Tkinter in some of the projects for which he was responsible; observing their use
in real-world applications is one of the factors that prompted me to begin the task of writing the

xvii

book. I was able to test some of the draft chapters by giving them to his staff and intern students
to solve some of their programming tasks.

Next, I want to thank everyone at Manning Publications who turned my ideas into a book.
I had many long conversations with the publisher, Marjan Bace, who led me through the some-
what complex task of writing a book that is going to be useful to its readers. Ted Kennedy coor-
dinated the review process which produced much constructive criticism. Mary Piergies took care
of the production of the book with Kristen Black, the copyeditor, and Dottie Marsico, the type-
setter, who took my crude attempts to use FrameMaker and gave the book the professional edge
it needed. Doug Hellman did a fine technical edit and corrected many code problems found in
the final typeset copy.

Finally, I'd like to thank my wife, Allison, and my children, Nina, Chris, Jeff and Alana, for
understanding that it wasn’t so much losing a spouse and father but gaining an author.

XViii SPECIAL THANKS

about the reader

Python and Tkinter Programming is intended for programmers who already know Python or who
are learning Python (perhaps using Manning’s Quick Python as their guide) who wish to add
graphical user interfaces (GUIS) to their applications. Because Python and Tkinter Programming
presents many fully functional examples with lots of code annotations, experienced programmers
without Python expertise will find the book helpful in using Python and Tkinter to solve imme-
diate problems.

The book may also be used by Tcl/Tk script programmers as a guide to converting from
Tcl/Tk to Python and Tkinter. However, I do not intend to get into a philosophical discussion
about whether that would be a proper thing to do—I'm biased!

Xix

about the author

John Grayson is a consultant specializing in graphical user interfaces (GUIs). He has been sup-
porting application design at a large U.S. communications company for several years, designing
innovative interfaces and introducing Python and Object-Oriented Programming (OOP) to tra-
ditional development methods. Elsewhere, he has delivered real-world applications written in
Python and Tkinter for commercial use.

He holds a Bachelor's degree in Applied Biology and a Ph.D. in Molecular Biology—but
that has never been an impediment (especially because 90 percent of his thesis covered computer
modeling of enzyme behavior).

Before specializing in user interfaces, he was an operating-system specialist and was later
instrumental in developing support methodologies for UNIX at Stratus Computer, Inc., he built
an F77 compiler and UNIX porting tools at Pacer Software, Inc. and he was an operating-system
specialist at Prime Computer, Inc. both in the United States and Great Britain.

XX

CONVentions

Example code plays a very important role in Python and Thkinter Programming. Many program-
ming books feature short, simple examples which illustrate one or two points very well—but
really do little. In this book, the examples may be adapted for your own applications or even used
just as they are. Most of the examples are intended to be run stand-alone as opposed to being run
interactively. Most examples include markers in the body of the code which correspond to expla-
nations which follow. For example:

def mouseDown (self, event):
self.currentObject = None //‘)
self.lastx = self.startx = self.canvas.canvasx(event.x)
self.lasty = self.starty = self.canvas.canvasy (event.y)

if not self.currentFunc:
self.selObj = self.canvas.find_closest(self.startx, t’
self.starty) [0] g
self.canvas.itemconfig(self.selObj, width=2)

self.canvas.lift (self.selObj)

Code comments

The mouseDown method deselects any currently selected object. The event returns x and y coordi-
nates for the mouse-click as screen coordinates. The canvasx and canvasy methods of the
Canvas widget ...

If no drawing function is selected, we are in select mode and we search to locate the nearest
object on the canvas and select it. This method of ...

Occasionally, I have set portions of code in bold code font to highlight code which is of
special importance in the code example.

In a number of examples where the code spans several pages I have interspersed code expla-
nations within the code sequence so that the explanatory text appears closer to the code that is
being explained. The marker numbering is continuous within any given example.

xx1

about the cover

The cover illustration of this book is from the 1805 edition of Sylvain Maréchal’s four-volume
compendium of regional dress customs. This book was first published in Paris in 1788, one year
before the French Revolution. Its title alone required no fewer than 30 words:

Costumes Civils actuels de tous les peuples connus dessinés d'aprés nature gravés et
coloriés, accompagnés d'une notice historique sur leurs coutumes, moeurs, religions,
etc., etc., redigés par M. Sylvain Maréchal

The four volumes include an annotation on the illustrations: “gravé a la maniére noire par
Mixelle d’aprées Desrais et colorié.” Clearly, the engraver and illustrator deserved no more than to
be listed by their last names—after all they were mere technicians. The workers who colored each
illustration by hand remain nameless.

The colorful variety of this collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Dress codes have changed everywhere and the diver-
sity by region, so rich at the time, has faded away. It is now hard to tell the inhabitant of one con-
tinent from another. Perhaps we have traded cultural diversity for a more varied personal life—
certainly a more varied and exciting technological environment. At a time when it is hard to tell
one computer book from another, Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich diversity of regional life of two centuries
ago, brought back to life by Maréchal’s pictures. Just think, Maréchal’s was a world so different
from ours people would take the time to read a book title 30 words long.

xxi1

author online

Purchase of Python and Thkinter Programming includes free access to a private Internet forum
where you can make comments about the book, ask technical questions and receive help from
the author and other Python and Tkinter users. To access the forum, point your web browser to
www.manning.com/grayson. There you will be able to subscribe to the forum. This site also pro-
vides information on how to access the forum once you are registered, what kind of help is avail-
able and the rules of conduct on the forum.

All source code for the examples presented in this book is available from the Mannng web-
site. The URL www.manning.com/grayson includes a link to the source code files.

Xxxiii

PART

Basic concepts

In part 1, I'll introduce Python, Tkinter and application programming. Since I assume you're
already somewhat familiar with Python, chapter 1 is intended to illustrate the most important features
of the language that will be used throughout the book. Additionally, T'll discuss features of Python’s
support for object-oriented programming so that those of you familiar with C++ or Java can under-
stand how your experience may be applied to Python.

Chapter 2 quickly introduces Tkinter and explains how it relates to Tcl/Tk. You will find details
of mapping Tk to Tkinter, along with a brief introduction to the widgets and their appearance.

Chapter 3 illustrates application development with Tkinter using two calculator examples. The
first is a simple no-frills calculator that demonstrates basic principles. The second is a partially finished
application that shows you how powerful applications may be developed using Python’s and Tkinter’s
capabilities.

1.1

1

1.1 Introduction to Python programming and a feature review 3
1.2 Key data types: lists, tuples and dictionaries 5
1.3 Classes 9

This chapter defines the key features of Python that make the language ideal for rapid proto-
typing of systems and for fully-functional applications. Python and Tkinter Programming is
not intended to be a learning resource for beginning Python programmers; several other
publications are better-suited to this task: Quick Python, Learning Python, Programming
Python, Internet Programming in Python and The Python Pocker Reference are all excellent
texts. Further information is provided in the “References” section at the end of this book. In
this chapter, the key features of Python will be highlighted in concise examples of code to
illustrate some of the building blocks that will be used in examples throughout the book.

Introduction to Python programming and
a feature review

As stated earlier, this book is not intended to be used to learn Python basics directly. Pro-
grammers experienced in other languages will be able to analyze the examples and discover
the key points to programming in Python. However, if you are relatively new to program-
ming generally, then learning Python this way will be a tough, upward struggle.

1.1.1

This chapter is really not necessary for most readers, then, since the material will already
be familiar. Its purpose is to provide a refresher course for readers who worked with Python
in the early days and a map for Tcl/Tk programmers and those readers experienced with other
languages.

Readers unfamiliar with object-oriented programming (OOP) may find section 1.3 use-
ful as an introduction to OOP as it is implemented in Python. C++ or Java programmers who
need to see how Python’s classes operate will benefit as well.

I’'m not going to explain the reasons why Python was developed or when, since this infor-
mation is covered in every other Python book very well. I will state that Guido van Rossum,
Python’s creator, has been behind the language since he invented it at Stichting Mathematisch
Centrum (CWI) in Amsterdam, The Nederlands, around 1990; he is now at the Corporation
for National Research Initiatives (CNRI), Reston, Virginia, USA. The fact that one person has
taken control of the growth of the language has had a great deal to do with its stability and
elegance, although Guido will be the first to thank all of the people who have contributed, in
one way or another, to the language’s development.

Perhaps more important than any of the above information is the name of the language.
This language has nothing to do with snakes. Python is named after Monzy Python’s Flying Cir-
cus, the BBC comedy series which was produced from 1969 to 1974. Like many university stu-
dents around 1970, I was influenced by Monty Python, so when I started writing this book I
could not resist the temptation to add bits of Python other than the language. Now, all of you
that skipped the boring beginning bit of this book, or decided that you didn’t need to read this
paragraph are in for a surprise. Scattered through the examples you’ll find bits of Python. If
you have never experienced Monty Python, then I can only offer the following advice: if some-
thing about the example looks weird, it’s probably Python. As my Yugoslavian college friend
used to say “You find #har funny”?

Why Python?

Several key features make Python an ideal language for a wide range of applications. Adding
Tkinter to the mix widens the possibilities dramatically. Here are some of the highlights that
make Python what it is:

* Automatic compile to bytecode

* High-level data types and operations

* DPortability across architectures

* Wide (huge) range of supported extensions

* Object-oriented model

* Ideal prototyping system

* Readable code with a distinct C-like quality supports maintenance
* Easy to extend in C and C++ and embed in applications

* Large library of contributed applications and tools

* Excellent documentation

You might notice that I did not mention an interpreter explicitly. One feature of Python
is that it is a bytecode engine written in C. The extension modules are written in C. With a
litcle care in the way you design your code, most of your code will run using compiled C since
many operations are built into the system. The remaining code will run in the bytecode engine.

CHAPTER 1 PYTHON

The result is a system that may be used as a scripting language to develop anything from some
system administration scripts all the way to a complex GUI-based application (using database,
client/server, CORBA or other techniques).

1.1.2 Where can Python be used?

Knowing where Python can be used is best understood by learning where it might ot be the
best choice. Regardless of what I just said about the bytecode engine, Python has an interpre-
tive nature, so if you can’t keep within the C-extensions, there has to be a performance pen-
alty. Therefore, real-time applications for high-speed events would be a poor match. A set of
extensions to Python have been developed specifically for numerical programming (see
“NumPy” on page 626). These extensions help support compute-bound applications, but
Python is not the best choice for huge computation-intensive applications unless time isn* a
factor. Similarly, graphics-intensive applications which involve real-time observation are not a
good match (but see “Speed drawing” on page 271 for an example of what can be done).

1.2 Key data types: lists, tuples and dictionaries

Three key data types give Python the power to produce effective applications: two sequence
classes—lists and tuples—and a mapping class—dictionaries. When they are used together,
they can deliver surprising power in a few lines of code.

Lists and tuples have a lot in common. The major difference is that the elements of a list
can be modified in place but a tuple is immutable: you have to deconstruct and then reconstruct
a tuple to change individual elements. There are several good reasons why we should care about
this distinction; if you want to use a tuple as the 4ey to a dictionary, it’s good to know that it
can’t be changed arbitrarily. A small advantage of tuples is that they are a slightly cheaper
resource since they do not carry the additional operations of a list.

If you want an in-depth view of these data types take a look at chapters 6 and 8 of Quick Python.

1.2.1 Lists

Let’s look at lists first. If you are new to Python, remember to look at the tutorial that is avail-
able in the standard documentation, which is available at www.python.org.

Initializing lists

Lists are easy to create and use. To initialize a list:

1st = [] # Empty list
lst = ['a', 'b', 'c'l] # String list
st = [1, 2, 3, 4] # Integer list
lst = [[1,2,3]1, ['a','b','c']] # List of lists
Ist = [(1,'a'),(2,'D"),(3,'c")] # List of tuples

Appending to lists
Lists have an append method built in:

lst.append('e')
lst.append((5,'e"))

KEY DATA TYPES: LISTS, TUPLES AND DICTIONARIES 5

Concatenating lists
Combining lists works well:
1st = [1, 2, 3] + [4, 5, 6]
print 1lst
[1, 2, 3, 4, 5, 6]
Iterating through members
Iterating through a list is easy:
1st = ['first', 'second', 'third']

for str in 1st:
print 'this entry is %s' % str

set = [(1, 'uno'), (2, 'due'), (3, 'tres')]
for integer, str in set:
print 'Numero "$d" in Italiano: & "%s"' % (integer, str)

Sorting and reversing

Lists have built-in sort and reverse methods:
1lst = [4, 5, 1, 9, 2]
lst.sort()

print 1lst
[1, 2, 4, 5, 9]

lst.reverse()
print 1lst
[9, 5, 4, 2, 1]

Indexing
Finding an entry in a list:
1st = [1, 2, 4, 5, 9]

print lst.index(5)
3

Member

Checking membership of a list is convenient:

if 'jeg' in ['abc', 'tuv', ‘'kie', 'Jeg'l]:
if '*' in '123*abc':

Modifying members
A list member may be modified in place:

1lst = [1, 2, 4, 5, 9]
1st[3] = 10
print 1lst

[1, 2, 4, 10, 9]

CHAPTER 1 PYTHON

Inserting and deleting members

To insert a member in a list:

1lst = [1, 2, 3, 4, 10, 9]
lst.insert (4, 5)

print 1lst

[, 2, 3, 4, 5, 10, 91

To delete a member:

st = [1, 2, 3, 4, 10, 9]
del 1st(4)

print lst

[x, 2, 3, 4, 91

1.2.2 Tuples

Tuples are similar to lists but they are immutable (meaning they cannot be modified). Tuples
are a convenient way of collecting data that may be passed as a single entity or stored in a list
or dictionary; the entity is then unpacked when needed.

Initializing tuples
With the exception of a tuple containing one element, tuples are initialized in a similar man-
ner to lists (lists and tuples are really related sequence types and are readily interchangeable).

tpl = () # Empty tuple

tpl = (1,) # Singleton tuple
tpl = ('a', 'b', 'c') # String tuple
tpl = (1, 2, 3, 4) # Integer tuple
tpl = ([1,2,3], ['a','b','c']) # Tuple of lists
tpl = ((1,'a'"),(2,'b"),(3,'c")) # Tuple of tuples

Iterating through members

for i in tpl:

for i,a in ((1, 'a'), (2, 'b'), (3, 'c')):

Modifying tuples

(But you said tuples were immutable!)

a=1, 2, 3
a = al0], all]l, 10, al2]
a

(1, 2, 10, 3)

Note that you are not modifying the original tuple but you are creating a new name bind-
ing for a.

KEY DATA TYPES: LISTS, TUPLES AND DICTIONARIES 7

1.2.3 Dictionaries

Dictionaries are arrays of data indexed by keys. I think that they give Python the edge in
designing compact systems. If you use lists and tuples as data contained within
dictionaries you have a powerful mix (not to say that mixing code objects, dictionaries and
abstract objects isn't powerful!).

Initializing dictionaries

Dictionaries may be initialized by providing key:value pairs:

dict = {} # Empty dictionary
dict = {'a'': 1, 'b': 2, 'c': 3} # String key

dict = {1: 'a', 2: 'b', 3: 'c'} # Integer key

dict = {1: [1,2,3], 2: [4,5,6]} # List data

Modifying dictionaries

Dictionaries are readily modifiable:

dict['a'] = 10
dict[10] = 'Larch'

Accessing dictionaries
Recent versions of Python facilitate lookups where the key may not exist. First, the old way:
if dict.has_key('a'):
value = dict['a']
else:
value = None
or:
try:
value = dict['a']
except KeyError:
value = None
This is the current method:
value = dict.get('a', None)
Iterating through entries

Get the keys and then iterate through them:

keys = dict.keys()
for key in keys:

Sorting dictionaries

Dictionaries have arbitrary order so you must sort the keys if you want to access the keys in order:

keys = dict.keys () .sort ()
for key in keys:

CHAPTER 1 PYTHON

1.3 Classes

1.3.1

1.3.2

1.3.3

CLASSES

I'm including a short section on Python classes largely for C++ programmers who may need to
learn some of the details of Python’s implementation and for Python programmers who have
yet to discover OOP in Python.

How do classes describe objects?
A class provides the following object descriptions:

* The attributes (data-members) of the object
* The behavior of the object (methods)

* Where behavior is inherited from other classes (superclasses)

Having said all that, C++ programmers will probably be tuning out at this point—but
hold on for a little longer. There are some valuable features of Python classes, some of which
may come as a bit of a surprise for someone who is not fully up to speed with Python OOP.

Most of the examples of applications in this book rely heavily on building class libraries
to create a wide range of objects. The classes typically create instances with multiple formats
(see LEDs and Switches in chapter 7). Before we start building these objects, let’s review the
rules and features that apply to Python classes.

Defining classes

A Python class is a user-defined data type which is defined with a class statement:

class AClass:
statements

Statements are any valid Python statements defining attributes and member functions. In
fact, any Python statement can be used, including a pass statement, as we will see in the next
section. Calling the class as a function creates an instance of the class:

anInstanceOfAClass = AClass()

Neat Python trick #10

A class instance can be used like a C structure or Pascal record. However, unlike C and Pascal,
the members of the structure do not need to be declared before they are used—they can be
created dynamically. We can use this ability to access arbitrary data objects across modules;
examples using class instances to support global data will be shown later.

class DummyClass:
pass

Colors = DummyClass ()

Colors.alarm = 'red'
Colors.warning = 'orange'
Colors.normal = 'green'

If the preceding lines are stored in a file called programdata.py, the following is a possible
code sequence.

1.3.4

1.3.5

from programdata import Colors

Button (parent, bg=Colors.alarm, text='Pressure\nVessel',
command=evacuateBuilding)

Alternately, if you apply a little knowledge about how Python manages data internally,
you can use the following construction.

class Record:
def __init_ (self, **kw):
self.__dict__ .update (kw)
Colors = Record(alarm='red', warning='orange', normal='green')

Initializing an instance

Fields (instance variables) of an instance may be initialized by including an __init__
method in the class body. This method is executed automatically when a new instance of the
class is created. Python passes the instance as the first argument. It is a convention to name it
self (it’s called #his in C++). In addition, methods may be called to complete initialization.
The __init__ methods of inherited classes may also be called, when necessary.

class ASX200 (Frame) :
def _ _init_ (self, master=None) :
Frame._ init_ (self, master)
Pack.config(self)
self.state = NORMAL
self.set_hardware_data (FORE)
self.createWidgets ()

switch = ASX200 ()

N 1o To use instance variables you must reference the containing object (in the previ-
0 ous example it is switch.state, not self.state). If you make a reference to
a variable by itself, it is to a local variable within the executing function, not an instance
variable.

Methods

We have already encountered the __init_ method that is invoked when an instance is cre-
ated. Other methods are defined similarly with def statements. Methods may take argu-
ments: self is always the first or only argument.

You will see plenty of examples of methods, so little discussion is really necessary. Note
that Python accepts named arguments, in addition to positional arguments, in both methods
and function calls. This can make supplying default values for methods very easy, since omis-
sion of an argument will result in the default value being supplied. Take care when mixing posi-
tional and named arguments as it is very easy to introduce problems in class libraries this way.

CHAPTER 1 PYTHON

1.3.6

1.3.7

1.3.8

1.3.9

CLASSES

Private and public variables and methods

Unless you take special action, all variables and methods are public and virtual. If you make
use of name mangling, however, you can emulate private variables and methods. You mangle
the name this way: Any name which begins with a double-underscore (__) is private and is
not exported to a containing environment. Any name which begins with a single underscore
() indicates private by convention, which is similar to protected in C++ or Java. In fact, Python
usually is more intuitive than C++ or other languages, since it is immediately obvious if a ref-
erence is being made to a private variable or method.

Inheritance
The rules of inheritance in Python are really quite simple:

* Classes inherit behavior from the classes specified in their header and from any classes
above these classes.

* Instances inherit behavior from the class from which they are created and from all the
classes above this class.

When Python searches for a reference it searches in the immediate namespace (the
instance) and then in each of the higher namespaces. The first occurrence of the reference is
used; this means that a class can easily redefine attributes and methods of its superclasses. If
the reference cannot be found Python reports an error.

Note that inherited methods are not automatically called. To initialize the base class, a
subclass must call the __init__ method explicitly.

Multiple inheritance

Multiple inheritance in Python is just an extension of inheritance. If more than one class is
specified in a class’s header then we have multiple inheritance. Unlike C++, however, Python
does not report errors if attributes of classes are multiple defined; the basic rule is that the first
occurrence found is the one that is used.

Mixin classes

A class that collects a number of common methods and can be freely inherited by subclasses is
usually referred to as a mixin class (some standard texts may use base, generalized or abstract
classes, but that may not be totally correct). Such methods could be contained in a Python
module, but the advantage of employing a mixin class is that the methods have access to the
instance self and thus can modify the behavior of an instance. We will see examples of mixin
classes throughout this book.

11

2.1

2.11

CHAPTEHR 2

Tkinter

2.1 The Tkinter module 12 2.4 Tkinter class hierarchy 16
2.2 Mapping Tcl/Tk to Tkinter 14 2.5 Tkinter widget appearance 17
2.3 Win32 and Unix GUIs 15

This chapter describes the structure of the Tkinter module and its relationship to Tcl/Tk.
The mapping with Tcl/Tk constructs to Tkinter is explained in order to assist Tcl/Tk pro-
grammers in converting to Tkinter from Tcl/Tk. Native GUIs for UNIX, Win32 and Mac-
intosh implementations will be discussed and key architectural differences will be
highlighted. Font and color selection will be introduced, and I'll cover this topic in more
detail in “Tkinter widgets” on page 31. For readers who are unfamiliar with Tkinter, this
chapter illustrates its importance to Python applications.

The Tkinter module

What is Tkinter?

Tkinter provides Python applications with an easy-to-program user interface. Tkinter sup-
ports a collection of Tk widgets that support most application needs. Tkinter is the Python
interface to Tk, the GUI toolkit for Tcl/Tk. Tcl/Tk is the scripting and graphics facility
developed by John Ousterhout, who was originally at University of California at Berkeley

12

and later at Sun Microsystems. Currently, Tcl/Tk is developed and supported by the Scriptics
Corporation, which Ousterhout founded. T¢cl/Tk enjoys a significant following with develop-
ers in a number of fields, predominantly on UNIX systems, but more recently on Win32 sys-
tems and MacOS. Ousterhout’s 7¢c/ and the Tk Toolkit, which was the first Tcl/Tk book, is
still a viable, though old, reference document for Tcl/Tk. (You will find some excellent newer
texts on the subject in the section “References” on page 625).

Tcl/Tk was first designed to run under the X Window system and its widgets and win-
dows were made to resemble Motif widgets. The behavior of bindings and controls was also
designed to mimic Motif. In recent versions of T¢cl/Tk (specifically, release 8.0 and after), the
widgets resemble native widgets on the implemented architecture. In fact, many of the widgets
are native widgets and the trend to add more of them will probably continue.

Like Python extensions, Tcl/Tk is implemented as a C library package with modules to
support interpreted scripts, or applications. The Tkinter interface is implemented as a Python
module, Tkinter.py, which is bound to a C-extension (_tkinter) which utilizes these same
Tcl/Tk libraries. In many cases a Tkinter programmer need not be concerned with the imple-
mentation of T¢cl/Tk since Tkinter can be viewed as a simple extension of Python.

2.1.2 What about performance?

At first glance, it is reasonable to assume that Tkinter is not going to perform well. After all,
the Python interpreter is utilizing the Tkinter module which, in turn, relies on the _tkinter
interface which calls Tcl and Tk libraries and sometimes calls the Tcl interpreter to bind
properties to widgets. Well, this is all true, but on modern systems it really does not matter
too much. If you follow the guidelines in “Programming for performance” on page 348, you
will find that Python and Tkinter have the ability to deliver viable applications. If your reason
for using Python/Tkinter is to develop prototypes for applications, then the point is some-
what moot; you wil/ develop prototypes quickly in Python/Tkinter.

2.1.3 How do | use Tkinter?

Tkinter comprises a number of components. _tkinter, as mentioned before, is the low level
interface to the Tk libraries and is linked into Python. Until recently, it was the programmer’s
responsibility to add Tkinter to the Python build, but beginning with release 1.5.2 of Python,
Tkinter, Tcl and Tk are part of the installation package—at least for the Win32 distribution.
For several UNIX variants and Macintosh, it is still necessary to build Python to include
Tkinter. However, check to see if a binary version is available for your particular platform.

Once a version of Python has been built and _tkinter has been included, as a shared
library, dll or statically linked, the Tkinter module needs to be imported. This imports any
other necessary modules, such as Tkconstants.

tk =] B3

To create a Tkinter window, type three lines into the Python com-
mand line (or enter them into a file and type “python filename.py”).

Figure 2.1 Trivial
Example

THE TKINTER MODULE 13

14

2.14

2.2

from Tkinter import Label, mainloop 0
Label (text="This has to be the\nsimplest bit of code’) .pack() e
mainloop ()

Code comments

First, we import components from the Tkinter module. By using from module import
Label, mainloop we avoid having to reference the module to access attributes and methods
contained in the module.

We create a Label containing two lines of text and use the Pack geometry manager to realize
the widget.

Finally, we call the Tkinter mainloop to process events and keep the display activated. This
example does not react to any application-specific events, but we still need a mainloop for it
to be displayed; basic window management is automatic.

What you will see is shown in figure 2.1. Now, it really cannot get much simpler than
that!

Tkinter features

Tkinter adds object-oriented interfaces to Tk. Tcl/Tk is a command-oriented scripting lan-
guage so the normal method of driving Tk widgets is to apply an operation to a widget identi-
fier. In Tkinter, the widget references are objects and we drive the widgets by using object
methods and their attributes. As a result, Tkinter programs are easy to read and understand,
especially for C++ or Java programmers (although that is entirely another story!).

One important feature that Tk gives to any Tkinter application is that, with a little care
in selecting fonts and other architecture-dependent features, it will run on numerous flavors
of UNIX, Win32 and Macintosh without modification. Naturally, there are some intrinsic dif-
ferences between these architectures, but Tkinter does a fine job of providing an architecture-
independent graphics platform for applications.

It is the object-oriented features, however, that really distinguish Tkinter as an ideal plat-
form for developing application frameworks. You will see many examples in this book where
relatively little code will support powerful applications.

Mapping Tcl/Tk to Tkinter

Mapping of Tcl/Tk commands and arguments to Tkinter is really quite a simple process.

After writing Tkinter code for a short time, it should be easy for a Tcl/Tk programmer to

make the shift—maybe he will never go back to Tcl/Tk! Let’s look at some examples.
Commands in Tk map directly to class constructors in Tkinter.

TxI/Tk Tkinter

label .myLabel mylLabel = Label(master)

CHAPTER 2 TKINTER

Parent widgets (usually referred to as master widgets) are explicit in Tkinter:

Tcl/Tk Tkinter

label .screen.for label = Label(form) (screen is form's parent)

For configuration options, Tk uses keyword arguments followed by values or configure
commands; Tkinter uses either keyword arguments or a dictionary reference to the option of
the configure method in the target widget.

Tel/Tk Tkinter
label .mylLabel -bg blue myLabel = Label(master, bg="blue")
.myLabel configure -bg blue myLabel["bg”] = “blue”

myLabel.configure(bg = “blue”)

Since the Tkinter widget object has methods, you invoke them directly, adding argu-
ments as appropriate.

Tel/Tk Tkinter
pack label -side left fill y label.pack(side=LEFT, fill=Y)

The following illustration demonstrates how we access an inherited method pack from the
Packer. This style of programming contributes to the compact nature of Tkinter applications
and their ease of maintenance and reuse.

Full mappings of Tk to Tkinter are provided in “Mapping Tk to Tkinter” on page 383.

2.3 Win32 and Unix GUIs

As I mentioned earlier, it is reasonable to develop Tkinter applications for use in Win32,
UNIX and Macintosh environments. Tcl/Tk is portable and can be built on the specific plat-
form, as can Python, with its _tkinter C module. Using Pmw* (Python MegaWidgets),
which provides a portable set of composite widgets and is 100% Python code, it is possible to
use the bytecode generated on a UNIX system on a Win32 or Macintosh system. What you
cannot control is the use of fonts and, to a lesser extent, the color schemes imposed by the
operating system.

* Pmw—Python MegaWidgets provide complex widgets, constructed from fundamental Tkinter wid-
gets, which extend the available widgets to comboboxes, scrolled frames and button boxes, to name a
few. Using these widgets gives GUI developers a rich palette of available input devices to use in their
designs.

WIN32 AND UNIX GUIS 15

Take a look at figure 2.2. This
application uses Pmw combobox widgets
along with Tkinter button and entry
widgets arranged within frames. The
font for this example is Arial, bold and
16 point. Apart from the obvious Win32
controls in the border, there is little to
distinguish this window from the one
shown in figure 2.3, which was run on
UNIX. In this case, the font is Helvetica,
bold and 16 point. The window is
slightly larger because the font has
slightly different kerning rules and stroke
weight, and since the size of the widget is
dependent on the font, this results in a
slightly different layout. If precise align-
ment and sizing is an absolute require-
ment, it is possible to detect the platform
on which the application is running and
make adjustments for known differ-
ences. In general, it is better to design an
application that is not sensitive to small

Set Thresholds

=] B3

BER [1x106 |¥|
vSWR [12 [¥] [Alarm Over | ¥|
RxLevel [100 |¥| dB [Alarm Under ¥|
Tx Level lﬁ—ﬂ Watts lmﬂ
AC Supply Wll Volts Wﬂ
DC Supply l24—ﬂ Volts lmﬂ

Alarm Over ll

Execute |

| Xl

Figure 2.2 Tkinter and Pmw on win32

[setthreshoiss |]

BER |1x10—6 ﬂ IAIarm Over ll
VSWR |1 2 ﬂ IAIarm Over ll
Rx Level |—100 ¥| 4B IAIarm Under [¥|

Tx Level |5 ﬂ Watts IAIarm Under ll
AC Supply [110 '¥| Volts |Alarm Under | ¥ |
DC Supply |24 ﬂ Volts |Alarm Under ll

changes in layout.
If you look closely, you may also
notice a difference in the top and bottom

highlights for the Execute and Close but-
tons, but not for the buttons on the Pmw
widgets. This is because Tk is drawing
Motif decorations for UNIX and Win-
dows SDK decorations for Win32.

In general, as long as your applica-
tion does not make use of very platform-
specific fonts, it will be possible to
develop transportable code.

Reset
Execute Close Help

| A

Figure 2.3 Tkinter and Pmw running on UNIX

2.4 Tkinter class hierarchy

Unlike many windowing systems, the Tkinter hierarchy is really quite simple; in fact, there
really isn’t a hierarchy at all. The WM, Misc, Pack, Place and Grid classes are mixins to each
of the widget classes. Most programmers only need to know about the lowest level in the tree
to perform everyday operations and it is often possible to ignore the higher levels. The
notional “hierarchy” is shown in figure 2.4.

CHAPTER 2 TKINTER

(2222224

/’
]

rrrrrey

/ / ’
/ / ’
[y sy N ————"

Place

Mixin
Inheritance

Figure 2.4 Tkinter widget “hierarchy”

Toplevel

_[ofx
File Object Edit VYiew Tools Help
I Button | ¥ CheckButton Ra & Dio { Button
| Label widget: Entry widget

Listhox Entry One

Entry Three
Entry Four

In Dutch, the "G" in Guido is a hard G, pronounced roughly like the "ch" in]
Scottish "loch". {Listen to the sound clip below.) However, if you're American,
you may also pronounce it as the Italian "Guido", I'm not too worried about the
associations with mob assassins that some people have :-)

Spelling:

My last name is two words, and I'd like keep it that way, the spelling on my s
credit card notwithstanding. Dutch spelling rules dictate that when used
in combination with my first name, "van" is not capitalized: "Guido van

Rossum". But when my lastname is used alone to refer to me, it is x|
Scale widget ((‘“- ..
12 ((((
== Canvas

I This is a Message widget

Figure 2.5 Tkinter widgets: a collage

TKINTER WIDGET APPEARANCE

CheckButton

Label

Listbox

MenuButton

Message

RadioButton

Text

LS

2.5 Tkinter
widget
appearance

To conclude this initial introduction
to Tkinter, let’s take a quick look at
the appearance of the widgets avail-
able to a programmer. In this exam-
ple, we are just looking at the basic
configuration of the widgets and only
one canvas drawing option is shown.
Pve changed the border on the frames
to add some variety, but you are see-
ing the widgets with their default
appearance. The widgets are shown in
figure 2.5. The code is not presented
here, but it is available online.

17

CHAPTEHR 3

Building an application

3.1 Calculator example: key features 21
3.2 Calculator example: source code 21

3.3 Examining the application structure 27
3.4 Extending the application 28

Most books on programming languages have followed Kernigan and Ritchie’s example and
have presented the obligatory “Hello World” example to illustrate the ease with which that
language may be applied. Books with a GUI component seem to continue this tradition
and present a “Hello GUI World” or something similar. Indeed, the three-line example
presented on page 13 is in that class of examples.

Simple Calculator =11

There is a growing trend to present a calculator example in

111010651474 | recent publications. In this book I am going to start by present-
1 2 3 ing a simple calculator (you may add the word obligatory, if you
2 5 p wish) in the style of its predecessors. The example has been writ-
= = = ten to illustrate several Python and Tkinter features and to dem-
0 | onstrate the compact nature of Python code.

" | . | " | y | - The example is not complete because it accepts only

mouse input; in a full example, we would expect keyboard input

as well. However, it does work and it demonstrates that you do

Figure 3.1 A simple not need a lot of code to get a Tkinter screen up and running.

calculator Let’s take a look at the code that supports the screen:

18

calc1.py

from Tkinter import *

def frame(root, side):
w = Frame (root)
w.pack (side=side, expand=YES, fill=BOTH)
return w

def button(root, side, text, command=None) :
w = Button(root, text=text, command=command)
w.pack (side=side, expand=YES, fill=BOTH)
return w

class Calculator (Frame) :
def _ _init_ (self):
Frame._ _init_ (self)
self.pack (expand=YES, fill=BOTH)
self.master.title('Simple Calculator')
self .master.iconname("calcl")

display = StringVar ()
Entry(self, relief=SUNKEN,

textvariable=display) .pack (side=TOP,

£i11=BOTH)

for key in ("123", "456", "789", "-0."):

keyF = frame(self, TOP)
for char in key:
button (keyF, LEFT, char,

lambda w=display, s=' %s '%char: w.set(w.get()+s))

opsF = frame(self, TOP)
for char in "+-*/=":
if char == '=':

btn = button(opsF, LEFT, char)

btn.bind('<ButtonRelease-1>",

lambda e, s=self, w=display: s.calc(w), '+")

else:

btn = button(opsF, LEFT, char,
lambda w=display, c=char:

clearF = frame(self, BOTTOM)

expand=YES,

FO

FG

w.set (w.get ()+' '+c+' "))

button(clearF, LEFT, 'Clr', lambda w=display: w.set(''))

def calc(self, display):
try:
display.set (" eval (display.get()))
except ValueError:
display.set ("ERROR")

if _ name_ == '__main__ ':
Calculator () .mainloop ()

0

19

20

Code comments

We begin by defining convenience functions to make the creation of frame and button wid-
gets more compact. These functions use the pack geometry manager and use generally useful
values for widget behavior. It is always a good idea to collect common code in compact func-
tions (or classes, as appropriate) since this makes readability and maintenance much easier.

We call the Frame constructor to create the toplevel shell and an enclosing frame. Then, we
set titles for the window and icon.

Next, we create the display at the top of the calculator and define a Tkinter variable which
provides access to the widget’s contents:
display = StringVar ()
Entry(self.master, relief=SUNKEN,
textvariable=variable) .pack (side=TOP, expand=YES,
£111=BOTH)
Remember that character strings are sequences of characters in Python, so that each of the
subsequences is really an array of characters over which we can iterate:
for key in ("123", "456", "789", "-0."):
keyF = frame(self, TOP)
for char in key:

We create a frame for each row of keys.

We use the convenience function to create a button, passing the frame, pack option, label
and callback:
button (keyF, LEFT, char,
lambda w=display, c=char: w.set(w.get() + c))
Don’t worry about the lambda form of the callback yet, I will cover this in more detail
later. Its purpose is to define an inline function definition.

The = key has an alternate binding to the other buttons since it calls the calc method when
the left mouse button is released:
btn.bind('<ButtonRelease-1>"',
lambda e, s=self, w=display: s.calc(w))
The calc method attempts to evaluate the string contained in the display and then it replaces
the contents with the calculated value or an ERROR message:
display.set (eval (display.get()))

Personally, I don’t like the calculator, even though it demonstrates compact code and will
be quite easy to extend to provide more complete functionality. Perhaps it is the artist in me,
but it doesn’t look like a calculator!

Let’s take a look at a partly-finished example application which implements a quite
sophisticated calculator. It has been left unfinished so that curious readers can experiment by
adding functionality to the example (by the time you have finished reading this book, you will
be ready to build a Cray Calculator!). Even though the calculator is unfinished, it can still be
put to some use. As we will discover a little later, some surprising features are hidden in the
reasonably short source code.

Let’s start by taking a look at some of the key features of the calculator.

CHAPTER 3 BUILDING AN APPLICATION

3.1 Calculator example: key features

The calculator example illustrates many features of applications written in Python and
Tkinter, including these:

* GUI application structure Although this is a simple

Thinter Toolkit TT-42 example, it contains many of the elements of larger
applications that will be presented later in the book.
627517335 * Multiple inberitance It is simple in this example, but it

illustrates how it may be used to simplify Python code.
451 0585010858 o Lists, dictionaries and tuples As mentioned in
chapter 1, these language facilities give Python a con-
siderable edge in building concise code. In particular,
this example illustrates the use of a dictionary to dis-
patch actions to methods. Of particular note is the use
of lists of tuples to define the content of each of the
keys. Unpacking this data generates each of the keys,
labels and associated bindings in a compact fashion.

* Pmw (Python megawidgets) The scrolled text widget is
implemented with Pmw. This example illustrates set-
ting its attributes and gaining access to its components.

* Basic Tkinter operations Creating widgets, setting
attributes, using text tags, binding events and using a
geometry manager are demonstrated.

* eval and exec functions The example uses eval to
perform many of the math functions in this example.
However, as you will see later in this chapter, eval can-
not be used to execute arbitrary Python code; exec is

used to execute single or multiple lines of code (and

Figure 3.2 multiple lines of code can include control flow
A better calculator structures).

3.2 Calculator example: source code

calc2.py

from Tkinter import *

import Pmw © Python MegaWidgets

class SLabel (Frame) :
""" SLabel defines a 2-sided label within a Frame. The
left hand label has blue letters; the right has white letters. """
def _ _init__ (self, master, leftl, rightl):
Frame.__init_ (self, master, bg='gray40')
self.pack(side=LEFT, expand=YES, fill=BOTH)
Label (self, text=leftl, fg='steelbluel',
font=("arial", 6, "bold"), width=5, bg='gray40') .pack(
side=LEFT, expand=YES, fill=BOTH)
Label (self, text=rightl, fg='white',
font=("arial", 6, "bold"), width=1, bg='gray40') .pack/(

CALCULATOR EXAMPLE: SOURCE CODE 21

22

side=RIGHT, expand=YES, fill=BOTH)
class Key(Button) :
def __init_ (self, master, font=('arial', 8, 'bold'),
fg='white',width=5, borderwidth=5, **kw):
kw['font'] = font
kw['fg']l = fg
kw['width'] = width
kw('borderwidth'] = borderwidth
apply (Button._ _init_ , (self, master), kw)
self.pack(side=LEFT, expand=NO, fill=NONE)
class Calculator (Frame) :
def _ init_ (self, parent=None) :
Frame._ _init_ (self, bg='gray40')
self.pack (expand=YES, fill=BOTH)
self.master.title('Tkinter Toolkit TT-42"')
self.master.iconname ('Tk-42")
self.calc = Evaluator() # This is our evaluator
self.buildCalculator () # Build the widgets

This is an incomplete dictionary - a good exercise!

self.actionDict = {'second': self.doThis, 'mode': self.doThis,
'delete': self.doThis, 'alpha': self.doThis,
'stat!': self.doThis, 'math': self.doThis,
'matrix': self.doThis, 'program': self.doThis,
'vars': self.doThis, 'clear': self.clearall,
'sin': self.doThis, 'cos': self.doThis,
'tan': self.doThis, 'up': self.doThis,
X1 self.doThis, 'X2': self.doThis,
'log!': self.doThis, 'In': self.doThis,
'store': self.doThis, 'off': self.turnoff
'neg': self.doThis, 'enter': self.doEnter,

}

self.current = ""

def doThis(self,action):

print '"%$s" has not been implemented' % action
def turnoff (self, *args):

self.quit()
def clearall(self, *args):

self.current = ""

self.display.component ('text').delete(1.0, END) ‘)
def doEnter (self, *args):
self.display.insert (END, '\n')
result = self.calc.runpython(self.current) ‘3
if result:
self.display.insert (END, '%s\n' % result, 'ans') (3

self.current = ""

def doKeypress(self,
key = event.char

if key != "\b':
self.current =

event) :

CHAPTER 3 BUILDING AN APPLICATION

self.current + key

o b 0

else:
self.current = self.current[:-1]

def keyAction(self, key):
self.display.insert (END, key)
self.current = self.current + key

def evalAction(self, action):
try:
self.actionDict[action] (action)
except KeyError:
pass

Code comments

@ Pmw (Python MegaWidgets) widgets are used. These widgets will feature prominently in this
book since they provide an excellent mechanism to support a wide range of GUI requirements
and they are readily extended to support additional requirements.

@ In the constructor for the Key class, we add key-value pairs to the kw (keyword) dictionary
and then apply these values to the Button constructor.

def __init_ (self, master, font=('arial', 8, 'bold'),
fg='white',width=5, borderwidth=5, **kw):
kw['font'] = font

apply(Button._ init_ , (self, master), kw)
This allows us a great deal of flexibility in constructing our widgets.

© The Calculator class uses a dictionary to provide a dispatcher for methods within the class.

'matrix': self.doThis, 'program': self.doThis,
'vars': self.doThis, 'clear': self.clearall,
'sin': self.doThis, 'cos': self.doThis,

Remember that dictionaries can handle much more complex references than the rela-
tively simple cases we need for this calculator.

O We use a Pmw ScrolledText widget, which is a composite widget. To gain access to the
contained widgets, the component method is used.

self.display.component ('text').delete (1.0, END)
© When the ENTER key is clicked, the collected string is directed to the calculator’s evaluator:
result = self.calc.runpython(self.current)
The result of this evaluation is displayed in the scrolled text widget.

@ The final argument in the text insert function is a text tag 'ans ' which is used to change the

foreground color of the displayed text.
self.display.insert (END, '%$s\n' % result, 'ans')

@ dokeypress is a callback bound to all keys. The event argument in the callback provides the
client data for the callback. event . char is the key entered; several attributes are available in
the client data, such as x-y coordinates of a button press or the state of a mouse operation (see
“Tkinter events” on page 98). In this case we get the character entered.

O A simple exception mechanism to take action on selected keys is used.

CALCULATOR EXAMPLE: SOURCE CODE 23

calc2.py (continued)

def buildCalculator(self):

FUN =1 # A Function Fo
KEY =0 # A Key
KC1 = 'gray30' # Dark Keys
KC2 = 'gray50' # Light Keys
KC3 = 'steelbluel' # Light Blue Key
KC4 = 'steelblue' # Dark Blue Key
keys = [
[('2nd"', Y, '', KC3, FUN, 'second'), # Row 1
('Mode', 'Quit', '', KC1, FUN, 'mode'),
('Del"', 'Ins', vy, KC1l, FUN, ‘'delete')
('Alpha', 'Lock', '', KC2, FUN, 'alpha'),
('Stat', 'List', '', KC1l, FUN, 'stat')],
[('Math', 'Test', 'A', KC1l, FUN, 'math'), # Row 2
('Mtrx', 'Angle',K 'B', KC1l, FUN, 'matrix'),
('Prgm', 'Draw', 'C', KC1l, FUN, 'program'),
('Vars', 'YvVars','', KCl, FUN, 'vars'),
('Clr', Y, '', KCl, FUN, 'clear')],
[('X-1", 'Abs', 'D', KC1l, FUN, 'X1'), # Row 3
('Sin"', 'Sin-1','E', KC1, FUN, 'sin'),
('Cos"', 'Cos-1','F', KCl, FUN, 'cos'),
('Tan', 'Tan-1','G', KCl, FUN, 'tan'),
('~ 'PT', 'H', KC1, FUN, 'up')l],
[('x2", 'Root', 'I', KC1l, FUN, 'X2'), # Row 4
(', ", 'EE", 'J', KC1l, KEY, ','),
("¢, {r, 'K', KCl, KEY, '('),
(')y*, '¥', 'L', KCl, KEY, ')'),
('/", Yy, 'M', KC4, KEY, '/')1,
[('Log', '10x"', 'N', KCl, FUN, 'log'), # Row 5
(7", 'Un-1', 'O', KC2, KEY, '7'),
('8", 'Vn-1', 'P', KC2, KEY, '8'),
('9", 'n', 'Q', KC2, KEY, '9'),
('x', Y, 'R', KC4, KEY, '*')],
[('Ln", 'ex', 'S', KC1, FUN, 'ln'), # Row 6
('4, ‘L4, 'T', KC2, KEY, '4'),
('5" ‘L5, 'U', KC2, KEY, '5'),
('6', 'Lé6', 'V', KC2, KEY, '6'),
(=, 1, 'W', KC4, KEY, '-')1],
[('STO"', 'RCL"', 'X', KCl, FUN, 'store'), # Row 7
(1, 'Ll', 'Y', KC2, KEY, '1'),
('2', ‘L2, 'Z', KC2, KEY, '2'),
('3, 'L3"', ‘', KC2, KEY, '3'),
('+', 'MEM', 'wt, KC4, KEY, '+')1,
[('Off", v, ', KCl, FUN, 'off'), # Row 8
(ro', v, ‘', KC2, KEY, '0'),
(*.', ‘':', '', KC2, KEY, '.'),
(" (=) "ANS', '?', KC2, FUN, 'neg'),
('Enter', 'Entxry',"'"', KC4, FUN, 'enter')]]

self.display = Pmw.ScrolledText (self, hscrollmode='dynamic',
vscrollmode='dynamic', hull_relief='sunken',

hull_background='gray40', hull_borderwidth=10,

CHAPTER 3 BUILDING AN APPLICATION

text_background="'honeydewsd "',
text_foreground='black',
text_padx=10,
text_font=('arial',
expand=YES,

self.display.pack(side=TOP,

self.display.tag_config('ans',

self.display.component ('text') .bind('<Key>",
self.display.component ('text') .bind('<Return>"',

for row in keys:

text_width=16,
text_height=6,
text_pady=10, text_relief='groove',
12, 'bold'))
£i11=BOTH)
foreground='white') m
self.doKeypress)
self.doEnter)

rowa = Frame(self, bg='gray40')
rowb = Frame(self, bg='gray40')
for pl, p2, p3, color, ktype, func in row:
if ktype == FUN:
a = lambda s=self, a=func: s.evalAction(a)
else:
a = lambda s=self, k=func: s.keyAction (k)
SLabel (rowa, p2, p3)
Key (rowb, text=pl, bg=color, command=a)
rowa.pack (side=TOP, expand=YES, fill1=BOTH)
rowb.pack (side=TOP, expand=YES, fill=BOTH)

class Evaluator:
def _ _init_ (self):
self .myNameSpace = {}

self.runpython ("from math import *")

def runpython(self,
try:

code) :

return "eval (code,
except SyntaxError:

try:

exec code in self.myNameSpace,
except:

return 'Error'

Calculator () .mainloop ()

self .myNameSpace,

[13)

self .myNameSpace) *

(1)

self .myNameSpace

Code comments (continued)

© A number of constants are defined. The following data structure is quite complex. Using con-

stants makes it easy to change values throughout such a complex structure and they make the
code much more readable and consequently easier to maintain.

FUN = 1 # A Function
KEY = 0 # A Key

KC1l = 'gray30' # Dark Keys
KC2 = 'gray50' # Light Keys

These are used to populate a nested list of lists, which contains tuples. The tuples store

three labels, the key color, the function or key designator and the method to bind to the key’s

cmd (activate) callback.

@ We create the Pmw ScrolledText widget and provide values for many of its attributes.

self.display =

CALCULATOR EXAMPLE: SOURCE CODE

Pmw.ScrolledText (self,

hscrollmode="'dynamic',

25

26

®06

vscrollmode='dynamic', hull_relief='sunken',
hull_background='gray40', hull_borderwidth=10,
text_background="honeydewd', text_width=16,

Notice how the attributes for the hul1l (the container for the subordinate widgets within
Pmw widgets) and the text widget are accessed by prefixing the widget.

We define a text tag which is used to differentiate output from input in the calculator’s screen.

self.display.tag_config('ans', foreground='white')

We saw this tag in use earlier in the text insert method.

Again, we must use a lambda expression to bind our callback function.

Python exceptions are quite flexible and allow simple control of errors. In the calculator’s

evaluator (runpython), we first run eval.

try:

return ‘eval (code, self.myNameSpace, self.myNameSpace)

This is used mainly to support direct calculator math. eval cannot handle code sequences,

however, so when we attempt to eval a code sequence, a SyntaxError exception is raised.

We trap the exception:

except SyntaxError:
try:

exec code in self.myNameSpace, self.myNameSpace

except:

return 'Error'

and then the code is exec’ed in the except clause. Notice how this is enclosed by another

try... except clause.

,'_name_ ','_
_stderr__',"'__stdin__","_
_stdout__', ‘argv’, 'builtin
_module_names', 'copyri

['__doc__

Figure 3.3 Python input

atform’, 'prefix’, 'setcheck
interval’, 'setprofile’, 'settr
ace', 'stderr’, 'stdin’, 'stdo

ut', 'version’, 'winver']

Figure 3.4 Output
from dir()

Figure 3.2 shows the results of clicking keys on the cal-
culator to calculate simple math equations. Unlike many cal-
culators, this displays the input and output in different
colors. The display also scrolls to provide a history of calcu-
lations, not unlike a printing calculator. If you click on the
display screen, you may input data directly. Here is the sur-
prise: you can enter Python and have exec run the code.

Figure 3.3 shows how you can import the sys module
and access built-in functions within Python. Technically,
you could do almost anything from this window (within the
constraint of a very small display window). However, I don’t
think that this calculator is the much-sought Interactive
Development Environment (IDE) for Python! (Readers who
subscribe to the Python news group will understand that
there has been a constant demand for an IDE for Python.
Fortunately, Guido Van Rossum has now released IDLE
with Python.)

When you press ENTER after dir (), you will see output

similar to figure 3.4. This list of built-in symbols has scrolled the display over several lines (the

widget is only 16 characters wide, after all).

CHAPTER 3 BUILDING AN APPLICATION

Because we are maintaining a local namespace, it is possible
<type 'int’> to set up an interactive Python session that can do some use-
ful work. Figure 3.5 shows how we are able to set variables
within the namespace and manipulate the data with built-ins.

Figure 3.5 Variables and
built-in functions

Figure 3.6 is yet another example of our ability to gain access

<l o the interpreter from an interactive shell. While the exam-

ples have been restricted to operations that fit within the lim-

ited space of the calculator’s display, they do illustrate a

785398163397 potential for more serious applications. Note how Python
! allows you to create and use variables within the current

namespace.

Figure 3.6 Using the math
module

NOZ& When developing applications, I generally hide a button or bind a “secret” key

sequence to invoke a GUI which allows me to execute arbitrary Python so that
I can examine the namespace or modify objects within the running system. It is really a
miniature debugger that I always have access to during development when something
unusual happens. Sometimes restarting the application for a debug session just does not
get me to the solution. An example of one of these tools is found in “A Tkinter explorer”

on page 334.

3.3 Examining the application structure

The calculator example derives its compact code from the fact that Tkinter provides much of
the structure for the application. Importing Tkinter establishes the base objects for the system
and it only requires a little extra code to display a GUL. In fact, the minimal Tkinter code that
can be written is just four lines:

from Tkinter import *

aWidget = Label (None, text='How little code does it need?’)

awidget.pack ()

aWidget.mainloop ()

In this fragment, the label widget is realized with the pack method. A mainloop is nec-
essary to start the Tkinter event loop. In our calculator example, the application structure is a
little more complex:

from Tkinter import *
define helper classes

class Calculator:

EXAMINING THE APPLICATION STRUCTURE 27

28

3.4

create widgets

Calculator.mainloop ()

Calling calculator.mainloop () creates a

‘ imported modules ‘ calculator instance and starts the mainloop.
‘ As we develop more applications, you will see
this structure repeatedly. For those of us that tend
to think spatially, the diagram shown in figure 3.7
may help.
All we have to do is fill in the blocks and we’re
finished! Well, nearly finished. I believe that the

‘ ‘global’ data

Helper Classes
and Functions

Main Class most important block in the structure is the last
one: “Test Code.” The purpose of this section is to
| GUI Init | allow you to test a module that is part of a suite of

modules without the whole application structure
being in place. Writing Python code this way will
‘ Test Code ‘ save a great deal of effort in integrating the com-

‘ Main Class Instantiation ‘

ponents of the application. Of course, this

Figure 3.7 Application structure approach applies to any implementation.

Extending the application

I leave you now with an exercise to extend the calculator and complete the functions that have
been left undefined. It would be a simple task to modify the keys list to remove unnecessary
keys and produce a rather more focused calculator. It would also be possible to modify the
keys to provide a business or hex calculator.

In subsequent examples, you will see more complex manifestations of the application
structure illustrated by this example.

CHAPTER 3 BUILDING AN APPLICATION

PART

Displays

In this section of the book we are going to examine the components that are used to build an appli-
cation. We will begin with Tkinter widgets in chapter 4 and an explanation of their key features and
their relationship to the underlying Tk widgets they are driving. Remember that Tkinter provides an
object-oriented approach to GUISs, so that even though the behavior of the widgets is the same as those
widgets created within a Tcl/Tk program, the methods used to create and manipulate them are quite
different from within a Tkinter program.

Once we have looked at the widgets and examined Pmw (Python MegaWidgets), which provides
a valuable library of application-ready widgets, we will discuss laying out the screen using the various
geometry managers that are defined in chapter 5.

Chapter 6 explains how to make your application react to external events. This is an important
chapter, since it covers a variety of methods for handling user input.

Chapter 7 shows the application of classes and inberitance as they apply to Tkinter. This is impor-
tant for programmers new to object-oriented programming and it may be useful for those who are used
to OOP as it applies to C++ and Java, since there are some notable differences. Then, in chapter 8, I
will introduce more advanced techniques to drive a variety of dialogs and other interaction models.

Chapter 9 introduces panels and machines; this may be a new idea to some readers. It shows how
to construct innovative user interfaces which resemble (in most cases) the devices that they control or
monitor.

Chapter 10 gives information on building interfaces that permit the user to draw objects on a
screen. It then explains methods to change their properties. You will also find some example code which
illustrates how Tcl/Tk programs from the demonstration programs distributed with the software can
be converted to Tkinter quite easily. Chapter 11 explains how to draw graphs using fairly conventional
two-dimensional plots along with some alternative three-dimensional graphics.

4.1

CHAPTTEHR 4

Tkinter widgets

4.1 Tkinter widget tour 31

4.2 Fonts and colors 47

4.3 Pmw Megawidget tour 49
4.4 Creating new megawidgets 73

In this chapter I'll present the widgets and facilities available to Tkinter. Pmw Python Mega-
Widgets, will also be discussed, since they provide valuable extensions to Tkinter. Each
Tkinter and Pmw widget will be shown along with the source code fragment that produces
the display. The examples are short and simple, although some of them illustrate how easy it
is to produce powerful graphics with minimal code.

This chapter will not attempt to document all of the options available to a Tkinter pro-
grammer; complete documentation for the options and methods available for each widget is
presented in appendix B. Similarly, Pmw options and methods are documented in
Appendix C. Uses these appendices to determine the full range of options for each widget.

Tkinter widget tour

The following widget displays show typical Tkinter widget appearance and usage. The code
is kept quite short, and it illustrates just a few of the options available for the widgets. Some-
times one or more of a widget’s methods will be used, but this only scratches the surface. If

31

32

4.1.1

you need to look up a particular method or option, refer to appendix B. Each widget also has
references to the corresponding section in the appendix.

With the exception of the first example, the code examples have been stripped of the boil-
erplate code necessary to import and initialize Tkinter. The constant code is shown bolded in
the first example. Note that most of the examples have been coded as functions, rather than
classes. This helps to keep the volume of code low. The full source code for all of the displays
is available online.

Toplevel

The Toplevel widget provides a separate container for other widgets, such as a Frame. For
simple, single-window applications, the 700z Toplevel created when you initialize Tk may be
the only shell that you need. There are four types of toplevels shown in figure 4.1:

1 The main toplevel, which is normally referred to as the rooz.

2 A child toplevel, which acts independently to the root, unless the root is destroyed, in
which case the child is also destroyed.

3 A transient toplevel, which is always drawn on top of its parent and is hidden if the par-
ent is iconified or withdrawn.

4 A Toplevel which is undecorated by the window manager can be created by setting the
overrideredirect flag to a nonzero value. This creates a window that cannot be

resized or moved directly.

Toplevel

This is the main (default) Toplevel

Mo wm decorations

This is a child of root

Toplevel x|

This is a transient window of root Figure 4.1
Toplevel widgets

from Tkinter import *

root = Tk()

root.option readfile('optionDB')
root.title('Toplevel')

Label (root, text='This is the main (default) Toplevel') .pack (pady=10)

tl = Toplevel (root)

Label (tl, text='This is a child of root') .pack(padx=10, pady=10)

t2 = Toplevel (root)

Label (t2, text='This is a transient window of root') .pack(padx=10, pady=10)
t2.transient (root)

t3 = Toplevel (root, borderwidth=5, bg='blue')

CHAPTER 4 TKINTER WIDGETS

Label (t3, text='No wm decorations', bg='blue', fg='white') .pack (padx=10,
pady=10)
t3.overrideredirect (1)

t3.geometry ('200x70+150+150")

root.mainloop ()

Note The use of the option_readfile call in each of the examples to set applica-

tion-wide defaults for colors and fonts is explained in “Setting application-wide
default fonts and colors” on page 49. This call is used to ensure that most examples have
consistent fonts and predictable field sizes.

Documentation for the Toplevel widget starts on page 539.

4.1.2 Frame

Frame widgets are containers for other widgets. Although you can bind mouse and keyboard
events to callbacks, frames have limited options and no methods other than standard widget
options.

One of the most common uses for a frame is as a master for a group of widgets which will
be handled by a geometry manager. This is shown in figure 4.2. The second frame example,
shown in figure 4.3 below, uses one frame for each row of the display.

Frames

raized || sunken flat ridge || groove || zolid |

Figure 4.2 Frame widget

for relief in [RAISED, SUNKEN, FLAT, RIDGE, GROOVE, SOLID]:
f = Frame(root, borderwidth=2, relief=relief)
Label (f, text=relief, width=10) .pack(side=LEFT)
f.pack(side=LEFT, padx=5, pady=5)

In a similar manner to buttons and labels, the appearance of the frame can be modified
by choosing a relief type and applying an appropriate borderwidth. (See figure 4.3.) In fact, it
can be hard to tell the difference between these widgets. For this reason, it may be a good idea
to reserve particular decorations for single widgets and not allow the decoration for a label to
be used for a button, for example:

class GUI:
def _ _init_ (self):

of = [None]*5

for bdw in range(5):
of [bdw] = Frame(self.root, borderwidth=0)
Label (of [bdw], text='borderwidth = %d ' % bdw) .pack(side=LEFT)
ifx =0
iff = []

for relief in [RAISED, SUNKEN, FLAT, RIDGE, GROOVE, SOLID]:

TKINTER WIDGET TOUR 33

34

iff.append (Frame (of [bdw], borderwidth=bdw, relief=relief))
Label (iff[ifx], text=relief, width=10) .pack(side=LEFT)
iff[ifx] .pack(side=LEFT, padx=7-bdw, pady=5+bdw)
ifx = ifx+1

of [bdw] .pack ()

bordenwidth = 0 raized sunken flat ridge groove zolid

bordenwidth = 1 raized sunken flat ridge groove

bordenwidth = 2 raized | I sunken flat | ridge | | groove | | zolid |
bordenwidth = 3 raized I I sunken flat | ridge | | groove | I zolid I

bordenwidth = 4 raized II sunken flat I ridge || groove | I zolid I

Figure 4.3 Frame styles combining relief type with varying
borderwidths

A common use of the GROOVE relief type is to provide a labelled frame (sometimes called
a panel) around one or more widgets. There are several ways to do this; figure 4.4 illustrates
just one example, using two frames. Note that the outer frame uses the Placer geometry man-
ager to position the inner frame and label. The widgets inside the inner frame use the Packer
geometry manager.

Buttons

Self-defence against fruit

You shot him!

He's dead! He's completely dead! Figure 4.4 Using a Frame

widget to construct a panel

f = Frame(root, width=300, height=110)
xf = Frame(f, relief=GROOVE, borderwidth=2)
Label (xf, text="You shot him!") .pack (pady=10)

Button (xf, text="He's dead!", state=DISABLED) .pack(side=LEFT, padx=5,
pady=8)
Button (xf, text="He's completely dead!", command=root.quit) .pack(side=RIGHT,

padx=5, pady=8)
xf.place(relx=0.01, rely=0.125, anchor=NW)
Label (f, text='Self-defence against fruit') .place(relx=.06, rely=0.125,
anchor=Ww)
f.pack()

Documentation for the Frame widget starts on page 491.

CHAPTER 4 TKINTER WIDGETS

4.1.3 Label

Label widgets are used to display text or images. Labels can contain text spanning multiple
lines, but you can only use a single font. You can allow the widget to break a string of text fit-
ting the available space or you can embed linefeed characters in the string to control breaks.
Several labels are shown in figure 4.5.

Labels =] E3

I mean, it's a little confusing for me when
you say 'dog kennel' if you want a
mattress. Why not just say 'mattress'?

It's not working, we need more!l I'm not coming out!

Figure 4.5 Label widget

Although labels are not intended to be used for interacting with users, you can bind
mouse and keyboard events to callbacks. This may be used as a “cheap” button for certain
applications.

Label (root, text="I mean, it's a little confusing for me when you say "
"'dog kennel' if you want a mattress. Why not just say 'mattress'?",
wraplength=300, justify=LEFT) .pack(pady=10)

fl=Frame (root)
Label (f1, text="It's not working, we need more!",
relief=RAISED) .pack(side=LEFT, padx=5)
Label (f1, text="I'm not coming out!", relief=SUNKEN) .pack (side=LEFT,
padx=5)
fl.pack()

f2=Frame (root)

for bitmap,rlf in [('woman',6 RAISED), ('mensetmanus', SOLID),
('terminal', SUNKEN), ('escherknot',6 FLAT),
('calculator',GROOVE), ('letters',RIDGE)]:
Label (f2, bitmap='@bitmaps/%s' % bitmap, relief=rlf) .pack(side=LEFT,
padx=5)
f2.pack ()

Documentation for the Label widget starts on page 495.

TKINTER WIDGET TOUR 35

36

4.1.4

Button

Strictly, buttons are labels that react to mouse and key-
board events. You bind a method call or callback that is
invoked when the button is activated. Buttons may be

Buttons

You shot him!

He's dead! | He's completely dead! disabled to prevent the user from activating a button.
Button widgets can contain text (which can span mul-
Figure 4.6 Button widgets tiple lines) or images. Buttons can be in the tab group,

which means that you can navigate to them using the
TAB key. Simple buttons are illustrated in figure 4.6.

Label (root, text="You shot him!") .pack (pady=10)

Button(root, text="He's dead!", state=DISABLED) .pack(side=LEFT)

Button (root, text="He's completely dead!",
command=root.quit) .pack (side=RIGHT)

Not all GUI programmers are aware that the relief option may be used to create buttons
with different appearances. In particular, FLAT and SOLID reliefs are useful for creating toolbars
where icons are used to convey functional information. However, some care must be exercised
when using some relief effects. For example, if you define a button with a SUNKEN relief, the
widget will not have a different appearance when it is activated, since the default behavior is to
show the button with a SUNKEN relief; alternative actions must be devised such as changing the
background color, font or wording within the button. Figure 4.7 illustrates the effect of com-
bining the available relief types with increasing borderwidth. Note that increased borderwidth
can be effective for some relief types (and RIDGE and GROOVE don’t work unless borderwidth
is 2 or more). However, buttons tend to become ugly if the borderwidth is too great.

Button

bordenwidth = 0 raiged sunken flat ridge qroove zolid

bordenwidth = 1 raiged sunken flat ridge | qroove zolid

bordenwidth = 2 raiged | I sunken I flat % | ridge | | groove | | zolid |
bordenwidth = 3 raiged | I sunken flat | ridge | | qroove | I zolid I
bordenwidth = 4 raiged I I sunken flat I ridge | | qroove | I zolid I

Figure 4.7 Combining relief and varying borderwidth

class GUI:
def __init_ (self):
of = [None] *5
for bdw in range(5):

of [bdw] = Frame(self.root, borderwidth=0)

Label (of [bdw], text='borderwidth = %$d' % bdw) .pack(side=LEFT)

for relief in [RAISED, SUNKEN, FLAT, RIDGE, GROOVE, SOLID]:
Button (of[bdw], text=relief,
borderwidth=bdw, relief=relief, width=10,
command=lambda s=self, r=relief, b=bdw: s.prt(r,b))\

CHAPTER 4 TKINTER WIDGETS

.pack (side=LEFT, padx=7-bdw, pady=7-bdw)
of [bdw] .pack ()
def prt(self, relief, border):
print '%s:%d' % (relief, border)

Documentation for the Button widget starts on page 453.

4.1.5 Entry

Entry widgets are the basic widgets used to collect input from a user. They may also be used
to display information and may be disabled to prevent a user from changing their values.

Entry widgets are limited to a single line of text which can be in only one font. A typical
entry widget is shown in figure 4.8. If the text entered into the widget is longer than the avail-
able display space, the widget scrolls the contents. You may change the visible position using
the arrow keys. You may also use the widget’s scrolling methods to bind scrolling behavior to
the mouse or to your application.

Entry ISI=] E3

Anagram: |'A shroe! A shroe! My dingkom for a shroe!"

Figure 4.8 Entry widget

Label (root, text="Anagram:").pack(side=LEFT, padx=5, pady=10)
e = StringVar ()

Entry (root, width=40, textvariable=e) .pack(side=LEFT)
e.set("'A shroe! A shroe! My dingkom for a shroe!'")

Documentation for the Entry widget starts on page 484.

4.1.6 Radiobutton

ooy —=1=11 [he Radiobutton widget may need renaming soon! It is becoming
unusual to see car radios with mechanical button selectors, so it
might be difficult to explain the widget to future GUI designers.
However, the idea is that all selections are exclusive, so that selecting
one button deselects any button already selected.

Oranges In a similar fashion to Button widgets, Radiobuttons can dis-
Rl play text or images and can have text which spans multple lines,
although in one font only. Figure 4.9 illustrates typical Radiobuttons.

Passion fruit

Loganberries

I
I
& Mangoes in syrup
I
I
I

Grapefruit A . .
You normally associate all of the radiobuttons in a group to a

Figure 4.9 single variable.
Radiobutton widget
var = IntVar ()
for text, value in [('Passion fruit', 1), ('Loganberries', 2),

('Mangoes in syrup', 3), ('Oranges', 4),

('Apples', 5), ('Grapefruit', 6)1]:

Radiobutton (root, text=text, value=value, variable=var) .pack (anchor=Ww)
var.set(3)

TKINTER WIDGET TOUR 37

38

4.1.7

If the indicatoron flag is set to FALSE, the radiobutton group behaves as a button box,
as shown in figure 4.10. The selected button is normally indicated with a SUNKEN relief.

var = IntVar ()

for text, value in [('Red Leicester',6 1), ('Tilsit', 2), ('Caerphilly', 3),
('stilton', 4), ('Emental', 5),
('Roquefort', 6), ('Brie', 7)1]:

Radiobutton (root, text=text, value=value, variable=var,
indicatoron=0) .pack (anchor=W, f£fill=X, ipadx=18)
var.set (3)

Radiobutton =] E3

Red Leicester

Tilsit

Caerphilly

Stilton

Emental

Roquefort

Brie

Figure 4.10 Radiobuttons: indicatoron=0

Documentation for the Radiobutton widget starts on page 519.

Checkbutton

Checkbutton widgets are used to provide on/off selections for one or more items. Unlike
radiobuttons (see “Radiobutton” on page 37) there is no interaction between checkbuttons.
You may load checkbuttons with either text or images. Checkbuttons should normally have a
variable (Intvar) assigned to the variable option which allows you to determine the state of
the checkbutton. In addition (or alternately) you may bind a callback to the button which will
be called whenever the button is pressed.

Note that the appearance of checkbuttons is quite different on UNIX and Windows; UNIX
normally indicates selection by using a fill color, whereas Windows uses a checkmark. The
Windows form is shown in figure 4.11.

hutton

¥ John Cleese ¥ Eric Idle
" Graham Chapman M Terry Jones

¥ Michael Palin ¥ Terry Gilliam) .
Figure 4.11 Checkbutton widget

for castmember, row, col, status in [
('John Cleese', 0,0,NORMAL), ('Eric Idle', 0,1,NORMAL),
('Graham Chapman', 1,0,DISABLED), ('Terry Jones', 1,1,NORMAL),

CHAPTER 4 TKINTER WIDGETS

('Michael Palin',2,0,NORMAL), ('Terry Gilliam', 2,1,NORMAL)]:
setattr (var, castmember, IntVar())
Checkbutton (root, text=castmember, state=status, anchor=W,
variable = getattr(var, castmember)) .grid(row=row, col=col, sticky=W)

Documentation for the Checkbutton widget starts on page 481.

4.1.8 Menu

Menu widgets provide a familiar method to allow the user to choose operations within an
application. Menus can be fairly cumbersome to construct, especially if the cascades walk out
several levels (it is usually best to try design menus so that you do not need to walk out more
than three levels to get to any functionality).

Tkinter provides flexibility for menu design, allowing multiple fonts, images and bit-
maps, and checkbuttons and radiobuttons. It is possible to build the menu in several schemes.
The example shown in figure 4.12 is one way to build a menu; you will find an alternate
scheme to build the same menu online as altmenu.py.

Button Commands Lascading Menus LCheckbutton Menus Badiobutton Menus Dizabled Menu

Figure 4.12 Menu widget

Figure 4.13 illustrated adding Button commands to menu.

Button Commands Lascading Menus LCheckbutton Menus Badiobutton Menus Dizabled Menu

Wild Font

Cmit

Figure 4.13 Menu: Button commands

mBar = Frame (root, relief=RAISED, borderwidth=2)
mBar.pack (£il11=X)
CmdBtn = makeCommandMenu ()
CasBtn = makeCascadeMenu ()
ChkBtn = makeCheckbuttonMenu ()
RadBtn = makeRadiobuttonMenu ()
NoMenu = makeDisabledMenu ()
mBar . tk_menuBar (CmdBtn, CasBtn, ChkBtn, RadBtn, NoMenu)
def makeCommandMenu () :
CmdBtn = Menubutton (mBar, text='Button Commands', underline=0)

TKINTER WIDGET TOUR 39

40

CmdBtn.pack (side=LEFT, padx="2m")
CmdBtn.menu = Menu (CmdBtn)

CmdBtn.menu.add_command (label="Undo")
CmdBtn.menu.entryconfig(0, state=DISABLED)

CmdBtn.menu.add_command (label='New...', underline=0, command=new_file)
CmdBtn.menu.add_command (label='0Open...', underline=0, command=open_file)
CmdBtn.menu.add_command (label='Wild Font', underline=0,
font=('Tempus Sans ITC', 14), command=stub_action)
CmdBtn.menu.add_command (bitmap="@bitmaps/RotateLeft")
CmdBtn.menu.add ('separator')
CmdBtn.menu.add_command (label='Quit', underline=0,
background='white', activebackground='green',
command=CmdBtn.quit)

CmdBtn['menu'] = CmdBtn.menu
return CmdBtn

Figure 4.14 shows the appearance of Cascade menu entries.

Button Commands Lascading Menus LCheckbutton Menus Badiobutton Menus Dizabled Menu

Wooden Leg
Hire Purchase
Dead Crab
Tree Surgeon

Filing Cabinet
Goldfish

Stockbroker
Cuantity Surveyor

Figure 4.14 Menu: Cascade

def makeCascadeMenu () :
CasBtn = Menubutton (mBar, text='Cascading Menus', underline=0)
CasBtn.pack (side=LEFT, padx="2m")
CasBtn.menu = Menu (CasBtn)

CasBtn.menu.choices = Menu (CasBtn.menu)
CasBtn.menu.choices.wierdones = Menu(CasBtn.menu.choices)

CasBtn.menu.choices.wierdones.add_command (label="'Stockbroker')
CasBtn.menu.choices.wierdones.add_command (label='Quantity Surveyor')
CasBtn.menu.choices.wierdones.add_command (label='Church Warden')
CasBtn.menu.choices.wierdones.add_command(label='BRM')
CasBtn.menu.choices.add_command (label='Wooden Leg')
CasBtn.menu.choices.add_command(label='Hire Purchase')
CasBtn.menu.choices.add_command (label='Dead Crab')
CasBtn.menu.choices.add_command (label='Tree Surgeon')
CasBtn.menu.choices.add_command (label='Filing Cabinet')

CHAPTER 4 TKINTER WIDGETS

CasBtn.menu.choices.add_command(label='Goldfish')
CasBtn.menu.choices.add_cascade(label='Is it a..."',
menu=CasBtn.menu.choices.wierdones)

CasBtn.menu.add_cascade (label="'Scipts', menu=CasBtn.menu.choices)
CasBtn['menu'] = CasBtn.menu

return CasBtn

Check buttons may be used within a menu, as shown in figure 4.15.

=g

Button Commands Lascading Menus LCheckbutton Menus Badiobutton Menus Dizabled Menu

v Stig O'Tracy
Vince

Gloria Pules Figure 4.15 Menu: Checkbuttons

def makeCheckbuttonMenu () :
ChkBtn = Menubutton (mBar, text='Checkbutton Menus', underline=0)
ChkBtn.pack (side=LEFT, padx='2m')
ChkBtn.menu = Menu (ChkBtn)

ChkBtn.menu.add_checkbutton (label="'Doug"')
ChkBtn.menu.add_checkbutton (label='Dinsdale"')
ChkBtn.menu.add_checkbutton(label="Stig O'Tracy")
ChkBtn.menu.add_checkbutton (label='Vince')
ChkBtn.menu.add_checkbutton (label='Gloria Pules')

ChkBtn.menu. invoke (ChkBtn.menu.index ('Dinsdale'))
ChkBtn['menu'] = ChkBtn.menu
return ChkBtn

An alternative is to use Radiobuttons in a menu, as illustrated in figure 4.16.

def makeRadiobuttonMenu () :
RadBtn = Menubutton (mBar, text='Radiobutton Menus', underline=0)
RadBtn.pack (side=LEFT, padx='2m')
RadBtn.menu = Menu (RadBtn)

RadBtn.menu.add_radiobutton (label="metonymy"')
RadBtn.menu.add_radiobutton (label="'zeugmatists')
RadBtn.menu.add_radiobutton(label='synechdotists"')
RadBtn.menu.add_radiobutton(label='axiomists')
RadBtn.menu.add_radiobutton (label="'anagogists"')
RadBtn.menu.add_radiobutton (label='catachresis')
RadBtn.menu.add_radiobutton (label='periphrastic')
RadBtn.menu.add_radiobutton(label='litotes"')
RadBtn.menu.add_radiobutton (label='circumlocutors"')

RadBtn['menu'] = RadBtn.menu
return RadBtn

TKINTER WIDGET TOUR

42

4.1.9

def makeDisabledMenu () :
Dummy_button = Menubutton (mBar, text='Disabled Menu', underline=0)
Dummy_button.pack (side=LEFT, padx='2m')
Dummy_button["state"] = DISABLED
return Dummy_button

Documentation for the Menu widget starts on page 501.
Documentation for the Menubut ton widget starts on page 506.
Documentation for the OptionMenu class starts on page 510.

Button Commands Lascading Menus LCheckbutton Menus Badiobutton Menus Dizabled Menu |

metonymy
zeugmatists
synechdotists
axiomists
anagogists

v catachresis

litotes

circurmnlocutors

Figure 4.16 Menu: Radiobuttons

Message

The Message widget provides a convenient way to present multi-line text. You can use one
font and one foreground/background color combination for the complete message. An exam-

ple using this widget is shown in figure 4.17.
The widget has the standard widget methods.

Message (root, text="Exactly. It's my belief that these sheep are laborin’
"under the misapprehension that they're birds. Observe their "
"be'avior. Take for a start the sheeps' tendency to 'op about "

"the field on their 'ind legs. Now witness their attempts to "
"fly from tree to tree. Notice that they do not so much fly "
"as...plummet.", bg='royalblue', fg='ivory',
relief=GROOVE) .pack (padx=10, pady=10)

Documentation for the Message widget starts on page 508.

Exactly. It's my belief that these sheep
are laborin' under the misapprehension
that they're birds. Observe their

be'avior. Take for a start the sheeps'
tendency to 'op about the field on their
'ind legs. Now witness their attmpts to
fly from tree to tree. Notice that they do
not so much fly as...plummet.

Figure 4.17 Message widget

CHAPTER 4 TKINTER WIDGETS

4.1.10 Text

The Text widget is a versatile widget. Its primary purpose is to display text, of course, but it
is capable of multiple styles and fonts, embedded images and windows, and localized event

binding.

The Text widget may be used as a simple editor, in which case defining multiple tags and
markings makes implementation easy. The widget is complex and has many options and meth-
ods, so please refer to the full documentation for precise details. Some of the possible styles and
embedded objects are shown in figure 4.18.

Something up with my banter, chaps? =
Four hours to bury a cat?

Can I call you "Frank"?

What's happening Thursday then?

Did you

[this symphony in the shed?

1 do live at 46 Horton terrace

f"bkeyouﬂegsoﬁ!

Ll

text

= Text (root,

height=26, width=50)

scroll = Scrollbar (root, command=text.yview)

text

text.
text.
text.
text.

text.

text.

text

text.
text.
text.

.configure (yscrollcommand=scroll.set)

tag_configure('bold_italics', font=('Verdana', 12, 'bold',
tag_configure('big', font=('Verdana',6 24, 'bold'))

button = Button(text, text='I do live at 46 Horton terrace')
text.window_create (END, window=button)

TKINTER WIDGET TOUR

'italic!

tag_configure('color', foreground='blue', font=('Tempus Sans ITC',
tag_configure('groove', relief=GROOVE, borderwidth=2)
tag_bind('bite', '<1>',

lambda e, t=text: t.insert(END, "I'll bite your legs off!"))
insert (END, 'Something up with my banter, chaps?\n')
.insert (END, 'Four hours to bury a cat?\n', 'bold _italics')
insert (END, 'Can I call you "Frank"?\n', 'big'")
insert (END, "What's happening Thursday then?\n", 'color')
insert (END, 'Did you write this symphony in the shed?\n', 'groove')

Figure 4.18 Text widget with
several embedded objects

))

14))

43

4.1.11

44

photo=PhotoImage (file="'lumber.gif"')
text.image_create (END, image=photo)

text.insert (END, 'I dare you to click on this\n', 'bite')
text.pack (side=LEFT)
scroll.pack(side=RIGHT, fill=Y)

Documentation for the Text widget starts on page 528.

Canvas

Canvases are versatile widgets. Not only can you use them to draw complex objects, using
lines, ovals, polygons and rectangles, but you can also place images and bitmaps on the canvas
with great precision. In addition to these features you can place any widgets within a canvas
(such as buttons, listboxes and other widgets) and bind mouse or keyboard actions to them.

You will see many examples in this book where canvas widgets have been used to provide
a free-form container for a variety of applications. The example shown in figure 4.19 is a some-
what crude attempt to illustrate most of the available facilities.

One property of canvas widgets, which can be either useful or can get in the way, is that
objects are drawn on top of any objects already on the canvas. You can change the order of can-
vas items later, if necessary.

§
m |Embedded Frame/Label

Figure 4.19 Canvas widget

canvas = Canvas (root, width =400, height=400)

canvas.create_oval (10,10,100,100, fill='gray90')
canvas.create_line(105,10,200,105, stipple='@bitmaps/gray3')
canvas.create_rectangle(205,10,300,105, outline='white', fill='gray50')
canvas.create_bitmap (355, 53, bitmap='questhead')

xy = 10, 105, 100, 200
canvas.create_arc(xy, start=0, extent=270, fill='gray60')

CHAPTER 4 TKINTER WIDGETS

canvas.create_arc(xy, start=270, extent=5, fill='gray70')
canvas.create_arc (xy, start=275, extent=35, fill='gray80')
canvas.create_arc(xy, start=310, extent=49, fill='gray90')

canvas.create_polygon (205,105,285,125,166,177,210,199,205,105, fill='white')
canvas.create_text (350,150, text='text', fill='yellow', font=('verdana',6 36))

img = PhotoImage(file='img52.gif"')
canvas.create_image (145,280, image=img, anchor=CENTER)

frm = Frame (canvas, relief=GROOVE, borderwidth=2)

Label (frm, text="Embedded Frame/Label") .pack()
canvas.create_window (285, 280, window=frm, anchor=CENTER)
canvas.pack ()

Documentation for the Canvas widget starts on page 456.
Documentation for the Bitmap class starts on page 452.
Documentation for the Photolmage class starts on page 512.

4.1.12 Scrollbar

Scrollbar widgets can be added to any widget that supports scrolling
such as Text, Canvas and Listbox widgets.

Associating a Scrollbar widget with another widget is as simple

o as adding callbacks to each widget and arranging for them to be dis-
18 played together. Of course, there is no requirement for them to be co-
19 =l| located but you may end up with some unusual GUIs if you don’t! Fig-
ure 4.20 shows a typical application.
Figure 4.20

Scrollbar widget

list = Listbox(root, height=6, width=15)
scroll = Scrollbar (root, command=list.yview)
list.configure (yscrollcommand=scroll.set)
list.pack(side=LEFT)
scroll.pack(side=RIGHT, fill=Y)
for item in range(30):

list.insert (END, item)

Documentation for the Scrollbar widget starts on page 525.

4.1.13 Listbox

Listbox widgets display a list of values that may be chosen by the user. The default behavior
of the widget is to allow the user to select a single item in the list. A simple example is shown
in figure 4.21. You may add additional bindings and use the selectmode option of the widget
to allow multiple-item and other properties.

See “Scrollbar” above, for information on adding scrolling capability to the listbox.

TKINTER WIDGET TOUR 45

4.1.14

46

list = Listbox(root, width=15)

list.pack()

for item in range(10):
list.insert (END, item)

Documentation for the Listbox widget starts on page 497.

o @ q:;IIA W N c|

Figure 4.21 List
box widget

Scale

The scale widget allows you to set linear values between selected lower and upper values and
it displays the current value in a graphical manner. Optionally, the numeric value may be
displayed.

The scale widget has several options to control its appearance and behavior; otherwise
it is a fairly simple widget.

The following example, shown in figure 4.22, is an adaptation of one of the demonstra-
tions supplied with the Tcl/Tk distribution. As such, it may be useful for programmers in Tcl/
Tk to see how a conversion to Tkinter can be made.

0 0
50 50
?zlztE
100 100
150 150
200 200
226 F%
250 250
Figure 4.22 Scale widget: application

def setHeight (canvas, heightStr):

height = string.atoi (heightStr)

height = height + 21

v2 = height - 30

if y2 < 21:
v2 = 21

canvas.coords ('poly',
15,20,35,20,35,y2,45,y2,25,height,5,y2,15,vy2,15,20)

CHAPTER 4 TKINTER WIDGETS

canvas.coords('line"',
15,20,35,20,35,y2,45,y2,25,height,5,y2,15,y2,15,20)

canvas = Canvas (root, width=50, height=50, bd=0, highlightthickness=0)
canvas.create_polygon(0,0,1,1,2,2, fill='cadetblue', tags='poly')
canvas.create_line(0,0,1,1,2,2,0,0, fill='black', tags='line')

scale = Scale(root, orient=VERTICAL, length=284, from_=0, to=250,
tickinterval=50, command=lambda h, c=canvas:setHeight(c,h))

scale.grid(row=0, column=0, sticky='NE')

canvas.grid(row=0, column=1, sticky='NWSE')

scale.set (100)

Documentation for the scale widget starts on page 522.

4.2 Fonts and colors

The purpose of this section is to present the reader with an overview of fonts and colors as
they apply to Tkinter. This will provide sufficient context to follow the examples that will be
presented throughout the text.

4.2.1 Font descriptors

Those of us that have worked with X Window applications have become accustomed to the
awkward and precise format of X window font descriptors. Fortunately, with release 8.0 and
above of Tk, there is a solution: Tk defines font descriptors. Font descriptors are architecture
independent. They allow the programmer to select a font by creating a tuple containing the
family, pointsize and a string containing optional styles. The following are examples:
('Arial', 12, 'italic")
('Helvetica', 10)

('Verdana', 8, 'medium')

If the font family does not contain embedded spaces, you may pass the descriptor as a sin-
gle string, such as:

'Verdana 8 bold italic'

4.2.2 X Window System font descriptors

Of course, the older font descriptors are available if you really want to use them. Most X Win-
dow fonts have a 14-field name in the form:

-foundry-family-weight-slant-setwidth-style-pixelSize-pointSize-
Xresolution-Yresolution-spacing-averageWidth-registry-encoding

Normally, we only care about a few of the fields:

-*-family-weight-slant-*-*-*-pointSize-*-*-*-*-registry-encoding

These fields are defined as follows:

e family A string that identifies the basic typographic style for example, helvetica,
arial,ﬂr).

FONTS AND COLORS 47

48

4.2.3

* weight A string that identifies the nominal blackness of the font, according to the
Jfoundry's judgment (for example, medium, bold, etc.).

* slant A code string that indicates the overall posture of the typeface design used in
the font—one of roman (R), italic (I) or oblique (0).

* pointSize An unsigned integer-string typographic metric in device-independent
units which gives the body size for which the font was designed.

* encoding A registered name that identifies the coded character set as defined by the
specified registry.

An example of an X font descriptor might be:
'-*-verdana-medium-r-*-*-8-*-*_k_k_k_%_%1

This describes an 8-point Verdana font, medium weight and roman (upright). Although
the descriptor is somewhat ugly, most programmers get used to the format quickly. With X-
servers, not all fonts scale smoothly if a specific pointsize is unavailable in a font; unfortunately
it is a trial-and-error process to get exactly the right combination of font and size for optimal
screen appearance.

Colors

Tkinter allows you to use the color names defined by the X-server. These names are quite florid,
and do not always fully describe the color: LavenderBlushl, LemonChiffon, LightSalmon,
MediumOrchid3 and 0ldLace are just a few. Common names such as red, yellow, blue and
black may also be used. The names and the corresponding RGB values are maintained in a Tk
include file, so the names may be used portably on any Tkinter platform.*

It is often easier to precisely define colors using color strings:

#RGB for 4-bit values (16 levels for each color)
#RRGGBB for 8-bit values (256 levels for each color)
#RRRRGGGGBBBB for 16-bit values (65526 levels for each color)

Here is an example of how one might set up part of a color definition table for an appli-
cation (incomplete code):

These are the color schemes for xxx and yyy front panels

Panel LED off ON Active Warning
COLORS = [('#545454', '#656565"', 'LawnGreen', 'ForestGreen', 'DarkOrange’, \
Alarm Display Inside Chrome InsideP Chassis

"HEE342fF ", "#747474, ' #343434 ', '#efefef ', '#444444 ", '#a0al0al',\
DkChassis LtChassis VDkChassis VLtChassis Bronze

"#767600', '#848400', '#6c6c00"', '#909000"', '#7e5b41 "),

etc.

* X window color names are present in the standard X11 distribution but are not specified by the X11
Protocol or Xlib. It is permissible for X-server vendors to change the names or alter their intepretation.
In rare cases you may find an implementation that will display different colors with Tkinter and X
Window applications using the same color name.

CHAPTER 4 TKINTER WIDGETS

4.2.4 Setting application-wide default fonts and colors

When designing an application, you may find that the default colors, fonts and font-sizes sup-
plied by the system are not appropriate for the particular layout that you have in mind. At
such times you must set their values explicitly. The values cou/d be put right in the code (you
will see several examples in the book where this has been done). However, this prevents end
users or system administrators from tailoring an application to their particular requirements
or business standards. In this case the values should be set in an external option database. For
X window programmers this is equivalent to the resource database which is usually tailored
using a .Xdefaults file. In fact the format of the Tk option database is exactly like the .Xde-

faults file:

*font: Verdana 10
*Label*font: Verdana 10 bold
*pbackground: Gray80
*Entry*background: white
*foreground: black
*Listbox*foreground: RoyalBlue

The purpose of these entries is to set the font for all widgets excepr Labels to Verdana
10 (regular weight) and Labels to Verdana 10 bold. Similarly we set the default colors for
background and foreground, modifying Entry backgrounds and Listbox foregrounds. If we
place these entries in a file called optionDB, we can apply the values using an
option_readfilecﬂh

root = Tk()
root.option_readfile('optionDB')

This call should be made early in the code to ensure that all widgets are created as
intended.

4.3 Pmw Megawidget tour

Python megawidgets, Pmuw, are composite widgets written entirely in Python using Tkinter
widgets as base classes. They provide a convenient way to add functionality to an application
without the need to write a lot of code. In particular, the ComboBox is a useful widget, along
with the Entry field with several built-in validation schemes.

In a similar fashion to the Tkinter tour, above, the following displays show typical Pmw
widget appearance and usage. The code is kept short and it illustrates some of the options avail-
able for the widgets. If you need to look up a particular method or option, refer to appendix C.
Each widget also has references to the corresponding section in the appendix.

Pmw comes with extensive documentation in HTML format. Consequently this chapter
will not repeat this information here. Additionally, there is example code for all of the widgets
in the demos directory in the Pmw distribution. Most of the examples shown are simplifica-
tions derived from that code.

With the exception of the first example, the code examples have been stripped of the boil-
erplate code necessary to import and initialize Tkinter. The common code which is not shown
in any sequences after the first is shown in bold. The full source code for all of the displays is
available online.

PMW MEGAWIDGET TOUR 49

50

4.3.1

4.3.2

AboutDialog

The aboutbDialog widget provides a convenience dialog to present version, copyright and
developer information. By providing a small number of data items the dialog can be displayed
with minimal code. Figure 4.23 shows a typical AboutDialog.

About About Dialog =] E3

About Dialog

¥Yersion 1.5
Copyright Company Name 1999
All rights reserved

Fma

For information about this application contact:
Sales at Company Name
Phone: (401) 555-1212
email: info@company_name.com

Figure 4.23 Pmw

AboutDialog widget

from Tkinter import *

import Pmw

root = Tk()
root.option_readfile('optionDB')
Pmw.initialise()

Pmw.aboutversion('1.5")
Pmw.aboutcopyright ('Copyright Company Name 1999\nAll rights reserved')
Pmw.aboutcontact (

'For information about this application contact:\n' +

' Sales at Company Name\n' +

! Phone: (401) 555-1212\n' +

' email: info@company_name.com'

)

about = Pmw.AboutDialog(root, applicationname='About Dialog')

root.mainloop ()

This widget is used in the AppShel1 class which will be presented in “A standard appli-
cation framework” on page 155 and it is used in several examples later in the book.
Documentation for the AboutDialog widget starts on page 542.

Balloon

The Balloon widget implements the now somewhat familiar balloon help motif (this is some-
times called 700/ Tips). The purpose of the widget is to display help information when the
cursor is placed over a widget on the screen, normally after a short delay. Additionally (or
alternatively) information may be displayed in a status area on the screen. The information in
this area is removed after a short delay. This is illustrated in figure 4.24.

Although balloon help can be very helpful to novice users, it may be annoying to experts.
If you provide balloon help make sure that you provide an option to turn off output to the

CHAPTER 4 TKINTER WIDGETS

balloon and the status area, and make such choices persistent so that the user does not have
to turn off the feature each time he uses the application.

balloon = Pmw.Balloon (root)

frame = Frame (root)

frame.pack(padx = 10, pady = 5)

field = Pmw.EntryField(frame, labelpos=W, label_text='Name:"')
field.setentry('A.N. Other')

field.pack(side=LEFT, padx = 10)

balloon.bind(field, 'Your name',6 'Enter your name')

check = Button(frame, text='Check')

check.pack (side=LEFT, padx=10)

balloon.bind(check, 'Look up', 'Check if name is in the database')
frame.pack()

messageBar = Pmw.MessageBar (root, entry_width=40,
entry_relief=GROOVE,
labelpos=W, label_text='Status:"')
messageBar.pack(fill=X, expand=1, padx=10, pady=5)

balloon.configure (statuscommand = messageBar.helpmessage)

Balloon Help M=]E3

Name:lA.N. Other Check k
Status:|Check if name is in the database @_‘

... After a few seconds

Balloon Help M=]E3

Name:lA.N. Other Check k

Status: | Look up Figure 4.24 Pmw
Balloon widget

Documentation for the Balloon widget starts on page 545.

ButtonBox _[O[=] 4.3.3 ButtonBox
ButtonBox: The ButtonBox widget provides a convenient way to imple-
oK | paraly | cancel | ment a number of buttons and it is usually used to provide a

command area within an application. The box may be laid out

either horizontally or vertically and it is possible to define a

Figure 4.25 default button. A simple ButtonBox is shown in figure 4.25.
Pmw ButtonBox widget

PMW MEGAWIDGET TOUR 51

4.3.4

52

def buttonPress (btn) :

print 'The "%s" button was pressed' % btn
def defaultKey(event) :

buttonBox.invoke ()

buttonBox = Pmw.ButtonBox (root, labelpos='nw', label_text='ButtonBox:')
buttonBox.pack (fi11=BOTH, expand=1, padx=10, pady=10)

buttonBox.add('OK"', command = lambda b='ok': buttonPress (b))
buttonBox.add('Apply', command = lambda b='apply': buttonPress (b))
buttonBox.add('Cancel', command = lambda b='cancel': buttonPress (b))

buttonBox.setdefault ('OK"')
root.bind('<Return>', defaultKey)
root.focus_set ()
buttonBox.alignbuttons ()

Documentation for the But tonbox widget starts on page 546.

ComboBox

The comboBox widget is an important widget, originally found on Macintosh and Windows
interfaces and later on Motif. It allows the user to select from a list of options, which, unlike
an OptionMenu, may be scrolled to accommodate large numbers of selections. The list may
be displayed permanently, such as the example at the left of figure 4.26 or as a dropdown list,
shown at the right of figure 4.26. Using the dropdown form results in GUIs which require
much less space to implement complex interfaces.

choice = None

def choseEntry(entry) :
print 'You chose "%s"' % entry
choice.configure (text=entry)

asply = ("The Mating of the Wersh", "Two Netlemeng of Verona", "Twelfth
Thing", "The Chamrent of Venice", "Thamle", "Ring Kichard the Thrid")

choice = Label (root, text='Choose play', relief='sunken',6 padx=20, pady=20)
choice.pack (expand=1, fill='both', padx=8, pady=8)

combobox = Pmw.ComboBox (root, label_text='Play:', labelpos='wn',
listbox_width=24, dropdown=0,
selectioncommand=choseEntry,
scrolledlist_items=asply)

combobox.pack (£i11=BOTH, expand=1, padx=8, pady=8)

combobox.selectitem(asply[0])

combobox = Pmw.ComboBox(root, label_text='Play:', labelpos='wn',
listbox_width=24, dropdown=1,

Documentation for the ComboBox widget starts on page 549.

CHAPTER 4 TKINTER WIDGETS

ComboBox 2 =1 E3

Choose play

X

PIay:lThe Mating of the Wersh ll

ComboBox 1 =1 E3
Twelfth Thing ComboBox 2 = [=1E3
Choose play
PIay:lTweIfth Thing
The Mating of the Wersh
Two Netlemeng of Yerona Play:[The Mating of the wersh | ¥|
2 H 1
elithiTRinG - b [The Mating of the Wersh
The Chamrent of Yenice
Two Netlemeng of Yerona
Thamle

Twelfth Thing

The Chamrent of Yenice
Thamle

Ring Kichard the Thrid

Ring Kichard the Thrid

ComboBox 2 =1 E3

The Chamrent of Yenice

Play:|The Chamrent of Yenice ll
Figure 4.26 Pmw ComboBox widget

4.3.5 ComboBoxDialog

The comboBoxDialog widget provides a convenience dialog to allow the user to select an item
from a ComboBox in response to a question. It is similar to a SelectionDialog widget except
that it may allow the user to type in a value in the EntryField widget or select from a perma-
nently displayed list or a dropdown list. An example is shown in figure 4.27.

choice = None

def choseEntry(entry) :
print 'You chose "%$s"' % entry
choice.configure (text=entry)

plays = ("The Taming of the Shrew", "Two Gentelmen of Verona", "Twelfth

Night", "The Merchant of Venice", "Hamlet", "King Richard the Third")

dialog = Pmw.ComboBoxDialog(root, title = 'ComboBoxDialog',
buttons=('OK', 'Cancel'), defaultbutton='OK"',

combobox_labelpos=N, label_text='Which play?',
scrolledlist_items=plays, listbox_width=22)
dialog.tkraise()

result = dialog.activate()
print 'You clicked on', result, dialog.get()

PMW MEGAWIDGET TOUR 53

54

ComboB oxDialog — O] x|

Which play?
[Twelfth Night

The Taming of the Shrew
Two Gentelmen of Yerona
The Merchant of Yenice
Hamlet

King Richard the Third

oK | Cancel

Figure 4.27 Pmw ComboBoxDialog widget

Documentation for the ComboBoxDialog widget starts on page 551.

4.3.6 Counter

The counter widget is a versatile widget which allows the user to cycle through a sequence
of available values. Pmw provides integer, real, time and date counters and it is possible to
define your own function to increment or decrement the displayed value. There is no limita-
tion on the value that is displayed as the result of incrementing the counter, so there is no
reason that the counter cannot display “eine, zwei, drei” or whatever sequence is appropriate
for the application. Some examples are shown in figure 4.28.

Date (4-digit year): «18/10/1999 L||
A
Integer: E
|
Real {with comma): 1' 2,3 LI
| | Figure 4.28 Pmw Counter widget

def execute(self):
print 'Return pressed, value is', date.get()

date = Pmw.Counter (root, labelpos=W,
label_text='Date (4-digit year):',
entryfield_value=time.strftime('%d/%m/%Y"',
time.localtime (time.time())),
entryfield_command=execute,
entryfield_validate={'validator' : 'date', 'format' : 'dmy'},
datatype = {'counter' : 'date', 'format' : 'dmy', 'yyyy' : 1})

real = Pmw.Counter (root, labelpos=W,
label_text='Real (with comma):',

CHAPTER 4 TKINTER WIDGETS

entryfield_value='1,5",

datatype={'counter' : 'real', 'separator' : ', '},
entryfield_validate={'validator' : 'real’',
'min' : '-2,0', 'max' : '5,0',
'separator' : ','},
increment= .1)
int = Pmw.Counter (root, labelpos=W,

label_text='Integer:',
orient=VERTICAL,
entry_width=2,
entryfield_value=50,

entryfield_validate={'validator' : 'integer',
'min' : 0, 'max' : 99})
counters = (date, real)

Pmw.alignlabels (counters)

for counter in counters:
counter.pack (fill=X, expand=1l, padx=10, pady=5)
int.pack (padx=10, pady=5)

Documentation for the Counter widget starts on page 553.

4.3.7 CounterDialog

The counterDialog widget provides a convenience dialog requesting the user to select a
value from a Counter widget. The counter can contain any data type that the widget is capa-
ble of cycling through, such as the unlikely sequence shown in figure 4.29.

Twit of the Year =1 E3

Enter the humber of twits {2 to 8)

Al >

oK | Can094

Figure 4.29 Pmw CounterDialog widget

choice = None

dialog = Pmw.CounterDialog (root,
label_text='Enter the number of twits (2 to 8)\n',
counter_labelpos=N, entryfield_value=2,
counter_datatype='numeric',
entryfield_validate={'validator': 'numeric', 'min': 2, 'max': 8},
buttons=('OK', 'Cancel'), defaultbutton='0OK"',
title='Twit of the Year')

dialog.tkraise()

result = dialog.activate()
print 'You clicked on', result, dialog.get()

Documentation for the CounterDialog widget starts on page 556.

PMW MEGAWIDGET TOUR 55

4.3.8

4.3.9

56

Dialog

The pialog widget provides a simple way to create a toplevel containing a ButtonBox
and a child site area. You may populate the child site with whatever your application requires.
Figure 4.30 shows an example of a Dialog.

Simple dialog =] E3

Pmw Dialog

Bring out your dead!

oK | Applyl Cancell Help |

Figure 4.30 Pmw Dialog widget

dialog = Pmw.Dialog(root, buttons=('OK', 'Apply', 'Cancel', 'Help'),
defaultbutton='0K', title='Simple dialog')
w = Label (dialog.interior (), text='Pmw Dialog\nBring out your dead!',

background='black', foreground='white', pady=20)
w.pack (expand=1, fill=BOTH, padx=4, pady=4)
dialog.activate()

Documentation for the Dialog widget starts on page 558.

EntryField

The EntryField widget is an Entry widget with associated validation methods. The built-
in validation provides validators for integer, hexadecimal, alphabetic, alphanumeric, real, time
and date data formats. Some of the controls that may be placed on the validation include
checking conformity with the selected data format and checking that entered data is between
minimum and maximum limits. You may also define your own validators. A few examples are
shown in figure 4.31.

EntryField S [=] 3
No validation |type anything here

Real (96.0 to 107.0):(98.4

Integer (5 to 42): |4

Date (in 2000): |2000/1/1
Figure 4.31 Pmw EntryField widget

noval = Pmw.EntryField(root, labelpos=W, label_text='No validation',
validate = None)

real = Pmw.EntryField(root, labelpos=W,value = '98.4"',
label_text = 'Real (96.0 to 107.0):',
validate = {'validator' : 'real',
'min' : 96, 'max' : 107, 'minstrict' : 0})

CHAPTER 4 TKINTER WIDGETS

int = Pmw.EntryField(root, labelpos=W, label_text = 'Integer (5 to 42):'
validate = {'validator' : 'numeric',
'min' : 5, 'max' : 42, 'minstrict' : 0},
value = '12"')

date = Pmw.EntryField(root, labelpos=W,label_text = 'Date (in 2000):',
value = '2000/1/1', validate = {'validator' : 'date’',
'min' : '2000/1/1', 'max' : '2000/12/31',
'minstrict' : 0, 'maxstrict' : O,
'format' : 'ymd'})

widgets = (noval, real, int, date)
for widget in widgets:

widget.pack (fill=X, expand=1, padx=10, pady=5)
Pmw.alignlabels (widgets)

real.component ('entry') .focus_set ()

Documentation for the EntryField widget starts on page 559.

4.3.10 Group

The Group widget provides a convenient way to place a labeled frame around a group of wid-
gets. The label can be any reasonable widget such as a Label but it can also be an Entry-
Field, RadioButton or CheckButton depending on the application requirements. It is also
possible to use the widget as a graphic frame with no label. These examples are shown in

figure 4.32.

— place label here ——

A group with a
simple Label tag

A group
without a tag

— ¥ checkbutton —

Figure 4.32 Pmw Group widget

w = Pmw.Group (root, tag_text='place label here')

w.pack (£111=BOTH, expand=1, padx=6, pady=6)

cw = Label (w.interior (), text='A group with a\nsimple Label tag')
cw.pack (padx=2, pady=2, expand=1, fill=BOTH)

w = Pmw.Group (root, tag_pyclass=None)

w.pack (fi11=BOTH, expand=1, padx=6, pady=6)

cw = Label (w.interior (), text='A group\nwithout a tag"')
cw.pack (padx=2, pady=2, expand=1, fill=BOTH)

w = Pmw.Group (root, tag_pyclass=Checkbutton,
tag_text='checkbutton', tag_foreground='blue')

PMW MEGAWIDGET TOUR 57

4.3.11

58

w.pack (£f111=BOTH, expand=1, padx=6, pady=6)
cw = Frame(w.interior(),width=150,height=20)
cw.pack (padx=2, pady=2, expand=1, fill=BOTH)

Documentation for the Group widget starts on page 564.

LabeledWidget

The Labeledwidget widget is a convenience container which labels a widget or collection of
widgets. Options are provided to control the placement of the label and control the appear-
ance of the graphic border. The child site can be populated with any combination of widgets.
The example shown in figure 4.33 uses the widget as a frame which requires less code than
using individual components.

Labeledwidget (O]

Sunset on Cat Island

Figure 4.33 Pmw LabeledWidget widget

frame = Frame(root, background = 'gray80')
frame.pack (£fi11=BOTH, expand=1)

lw = Pmw.LabeledWidget (frame, labelpos='n',

label_ text='Sunset on Cat Island')
1lw.component ('hull') .configure (relief=SUNKEN, borderwidth=3)
lw.pack (padx=10, pady=10)

img = PhotoImage(file='chairs.gif')
cw = Button(lw.interior (), background='yellow', image=img)

cw.pack (padx=10, pady=10, expand=1, fill=BOTH)

Documentation for the Labeledwidget widget starts on page 565.

CHAPTER 4 TKINTER WIDGETS

4.3.12 MenuBar

The MenuBar widget is a manager widget which provides methods to add menu buttons and
menus to the menu bar and to add menu items to the menus. One important convenience is
that it is easy to add balloon help to the menus and menu items. Almost all of the menu
options available with Tkinter Menu widgets (see “Menu” on page 39) are available through
the Pmw MenuBar. Figure 4.34 illustrates a similar menu to the one shown in figure 4.13
using discrete Tkinter widgets.

— O] x

Buttons Cascade Checkbutton Radiobutton

[ooe

JEi Figure 4.34 Pmw MenuBar widget

balloon = Pmw.Balloon (root)

menuBar = Pmw.MenuBar (root, hull_relief=RAISED,hull_borderwidth=1,
balloon=balloon)

menuBar .pack (£111=X)

menuBar .addmenu ('Buttons', 'Simple Commands')

menuBar .addmenuitem('Buttons', 'command', 'Close this window',
font=('StingerLight', 14), label='Close')

menuBar.addmenuitem('Buttons', 'command',
bitmap="@bitmaps/RotateLeft", foreground='yellow')

menuBar .addmenuitem('Buttons', 'separator')

menuBar.addmenuitem('Buttons', 'command',

'Exit the application', label='Exit')

menuBar .addmenu ('Cascade', 'Cascading Menus')
menuBar.addmenu ('Checkbutton', 'Checkbutton Menus')
menuBar .addmenu ('Radiobutton', 'Radiobutton Menus')

Documentation for the MenuBar widget starts on page 572.

4.3.13 MessageBar

The MessageBar widget is used to implement a status area for an application. Messages in
several discrete categories may be displayed. Each message is displayed for a period of time
which is determined by its category. Additionally, each category is assigned a priority so the
message with the highest priority is displayed first. It is also possible to specify the number of
times that the bell should be rung on receipt of each message category. Figure 4.35 shows how
a system error would appear.

messagebar = box = None

def selectionCommand() :
sels = box.getcurselection()
if len(sels) > 0:

PMW MEGAWIDGET TOUR 59

messagetype = sels[0]
if messagetype == 'state':

messagebar.message('state', 'Change of state message')
else:

text = messages[messagetype]

messagebar.message (messagetype, text)

messages = { 'help' : 'Save current file',
'userevent' : 'Saving file "foo"',
'busy' : 'Busy deleting all files from file system ...°'
'systemevent': 'File "foo" saved',
'usererror' : 'Invalid file name "foo/bar"',
'systemerror': 'Failed to save file: file system full',

}

messagebar = Pmw.MessageBar (root, entry width=40, entry relief=GROOVE,
labelpos=W, label_text='Status:')
messagebar.pack (side=BOTTOM, fill=X, expand=1, padx=10, pady=10)

box = Pmw.ScrolledListBox (root,listbox_selectmode=SINGLE,
items=('state', 'help', 'userevent', 'systemevent',
'usererror', 'systemerror',6 'busy',),
label_text='Message type', labelpos=N,
selectioncommand=selectionCommand)
box.pack (£i11=BOTH, expand=1, padx=10, pady=10)

Documentation for the MessageBar widget starts on page 574.

MeszageBar =] E3

Message type

state

help
userevent
systemevent
usererror

systemerror

busy

Status: |Fai|ed to save file: file system full

Figure 4.35 Pmw MessageBar widget

60 CHAPTER 4 TKINTER WIDGETS

4.3.14 MessageDialog

The MessageDialog widget is a convenience dialog which displays a single message, which
may be broken into multiple lines, and a number of buttons in a But tonBox. It is useful for
creating simple dialogs “on-the-fly.” Figure 4.36 shows an example.

Simple Dialog =] E3

This dialog box was constructed on demand

oK | Apply | Cancell Help | Figure 4.36 Pmw
MessageDialog widget

dialog = Pmw.MessageDialog(root, title = 'Simple Dialog',
defaultbutton = 0,
buttons = ('OK', 'Apply', 'Cancel', 'Help'),
message_text = 'This dialog box was constructed on demand')
dialog.iconname ('Simple message dialog')

result = dialog.activate()
print 'You selected', result

Documentation for the MessageDialog widget starts on page 576.

4.3.15 NoteBookR

The NoteBookR widget implements the popular property sheer motif. Methods allow a num-
ber of pages or panes to be created. Any content may then be added to the panels. The user
selects a panel by clicking on the tab at its top. Alternatively panels may be raised or lowered
through instance methods. An example is shown in figure 4.37.

nb = Pmw.NoteBookR (root)

nb.add('pl', label='Page 1')
nb.add('p2', label='Page 2')
nb.add('p3', label='Page 3')

pl = nb.page('pl').interior ()

p2 = nb.page('p2').interior ()

p3 = nb.page('p3').interior()

nb.pack (padx=5, pady=5, f£ill=BOTH, expand=1)

Button (pl, text='This is text on page 1', fg='blue') .pack(pady=40)

= Canvas (p2, bg='gray30')

= c.winfo_reqwidth()

= c.winfo_regheight ()

.create_oval(10,10,w-10,h-10,fill="'DeepSkyBluel")

.create_text(w/2,h/2,text="This is text on a canvas', fill='white',
font=('Verdana', 14, 'bold'))

c.pack (fil1=BOTH, expand=1)

QP g

PMW MEGAWIDGET TOUR 61

4.3.16

62

Notebook R)] [

Page 1] Page 2] Page 3]

This is text on a canvas

Figure 4.37 Pmw
NoteBookR widget

Documentation for the NotebookR widget starts on page 580.

NoteBookS

The NoteBooks widget implements an alternative style of NoteBook. NoteBooksS provides
additional options to control the color, dimensions and appearance of the tabs. Otherwise it is
quite similar to NoteBookR. Figure 4.38 illustrates a similar layout using Notebooks.

MNotebook 5)] [

This is text on a canvas

Figure 4.38 Pmw
NoteBookS widget

nb = Pmw.NoteBookS (root)
nb.addPage('Page 1')

nb.addPage('Page 2')
nb.addPage ('Page 3')

CHAPTER 4 TKINTER WIDGETS

fl = nb.getPage('Page 1')
f2 = nb.getPage('Page 2')
f3 = nb.getPage('Page 3')

nb.pack (pady=10, padx=10, fill=BOTH, expand=1)
Button (fl, text='This is text on page 1', fg='blue') .pack (pady=40)

= Canvas (f2, bg='gray30')

= c.winfo_regwidth()

= c.winfo_regheight ()

.create_oval (10,10,w-10,h-10, fill="DeepSkyBluel"')

.create_text (w/2,h/2,text="'This is text on a canvas', fill='white',
font=('Verdana', 14, 'bold'))

c.pack (fil11=BOTH, expand=1)

Qo P a0

Documentation for the Notebooks widget starts on page 582.

4.3.17 NoteBook

Release 0.8.3 of Pmw replaces NoteBookR and NoteBooksS with Notebook. While it is quite
similar to the previous notebooks, there are some small changes. In fact, you will have to make
changes to your code to use NoteBook with existing code. However, the changes are minor
and the new form may be a little easier to use. Figure 4.39 illustrates the new widget.

MNotebook

PageS'

Page 1 | Page 2

This is text on a canvas

Figure 4.39 Pmw NoteBook
widget (version 0.8.3)

from Tkinter import *
import Pmw

root = Tk()
root.option_readfile('optionDB')
root.title('Notebook")
Prw.initialise()

nb = Pmw.NoteBook (root)
pl nb.add('Page 1')

PMW MEGAWIDGET TOUR 63

4.3.18

64

p2 = nb.add('Page 2"')
p3 = nb.add('Page 3')
nb.pack (padx=5, pady=5, fill=BOTH, expand=1)

Button(pl, text='This is text on page 1', fg='blue') .pack(pady=40)

c = Canvas (p2, bg='gray30')

= c.winfo_regwidth ()

= c.winfo_regheight ()

.create_oval(10,10,w-10,h-10,fill="'DeepSkyBluel"')

.create_text(w/2,h/2,text="'This is text on a canvas', fill='white',
font=('Verdana', 14, 'bold'))

c.pack (fill1=BOTH, expand=1)

(O N =)

nb.setnaturalpagesize ()
root.mainloop ()

Documentation for the Notebook widget starts on page 578.

OptionMenu

The optionMenu widget implements a classic popup menu motif familiar to Motif program-
mers. However, the appearance of the associated popup is a little different, as shown in figure 4.40.
OptionMenus should be used to select limited items of data. If you populate the widget with large
numbers of data the popup may not fit on the screen and the widget does not scroll.

OptionMenu M=]E3

Choose profession: Quantity Surveyor — |

OptionMenu M=]E3 |

Choose profession: Quantity St Quantity Surveyor
Church Warden

BRM
OptionMenu M=]E3
Choose profession: Stockbroker =i |
Figure 4.40 Pmw OptionMenu widget
var = StringVar ()
var.set ('Quantity Surveyor')
opt_menu = Pmw.OptionMenu (root, labelpos=W,
label_text='Choose profession:', menubutton_textvariable=var,

CHAPTER 4 TKINTER WIDGETS

items=('Stockbroker', 'Quantity Surveyor', 'Church Warden', 'BRM'),
menubutton_width=16)
opt_menu.pack (anchor=W, padx=20, pady=30)

Documentation for the OptionMenu widget starts on page 584.

4.3.19 PanedWidget

The Panedwidget widget creates a manager containing multiple frames. Each frame is a con-
tainer for other widgets and may be resized by dragging on its handle or separator line. The
area within each pane is managed independently, so a single pane may be grown or shrunk to
modify the layout of its children. Figure 4.41 shows an example.

Panedwidget =] E3
U L U
Pane Fixed Pane Pane
1] Size 2 3
-t
Figure 4.41 Pmw
PanedWidget widget

pane = Pmw.PanedWidget (root, hull_width=400, hull_height=300)
pane.add('top', min=100)
pane.add('bottom', min=100)

topPane = Pmw.PanedWidget (pane.pane('top'), orient=HORIZONTAL)
for num in range(4):
if num == 1:
name = 'Fixed\nSize'
topPane.add (name, min=.2, max=.2)
else:
name = 'Pane\n' + str (num)
topPane.add (name, min=.1, size=.25)
button = Button (topPane.pane(name), text=name)
button.pack (expand=1)
topPane.pack (expand=1, fil1=BOTH)

pane.pack (expand=1, fill1=BOTH)

Documentation for the Panedwidget widget starts on page 586.

PMW MEGAWIDGET TOUR 65

4.3.20

4.3.21

66

PromptDialog

The PromptDialog widget is a convenience dialog which displays a single EntryField and
a number of buttons in a ButtonBox. It is useful for creating a simple dialog on-the-fly. The
example shown in figure 4.42 collects a password from a user.

Password =1 E3

Password:
|*********

oK | Cancel

Figure 4.42 Pmw PromptDialog widget

dialog = Pmw.PromptDialog(root, title='Password',6 label_text='Password:',
entryfield_labelpos=N, entry show='*', defaultbutton=0,
buttons=('OK', 'Cancel'))

result = dialog.activate()
print 'You selected', result

Documentation for the PromptDialog widget starts on page 587.

RadioSelect

The RadioSelect widget implements an alternative to the Tkinter RadioButton widget.
RadioSelect creates a manager that contains a number of buttons. The widget may be con-
figured to operate either in single-selection mode where only one button at a time may be
activated, or multiple selection mode where any number of buttons may be selected. This is

illustrated in figure 4.43.

R adioButtons _ O] x|

horizontal | Passion fruit | I Loganberries Mangoes in syrup | Oranges | Apples | Grapefruit |
Multiple) o Ii .
selection] | Dinsdale Stig O'Tracy vince Gloria Pules

Figure 4.43 Pmw RadioSelect widget

horiz = Pmw.RadioSelect(root, labelpos=W, label_text=HORIZONTAL,
frame_borderwidth=2, frame_relief=RIDGE)
horiz.pack(fill=X, padx=10, pady=10)

for text in ('Passion fruit', 'Loganberries', 'Mangoes in syrup',

'Oranges', 'Apples', 'Grapefruit'):
horiz.add (text)

CHAPTER 4 TKINTER WIDGETS

horiz.invoke ('Mangoes in syrup')

multiple = Pmw.RadioSelect (root, labelpos=W, label_text='Multiple\nselection',
frame_borderwidth=2, frame_relief=RIDGE, selectmode=MULTIPLE)
multiple.pack(fill=X, padx=10)

for text in ('Doug', 'Dinsdale', "Stig O'Tracy", 'Vince', 'Gloria Pules'):
multiple.add(text)

multiple.invoke('Dinsdale')

Documentation for the RadioSelect widget starts on page 589.

4.3.22 ScrolledCanvas

The Scrolledcanvas widget is a convenience widget providing a Canvas widget with asso-
ciated horizontal and vertical scrollbars. An example is shown in figure 4.44.

ScrolledCanvas =1 E3

ScrolledCanvas

Figure 4.44 Pmw
ScrolledCanvas widget

sc = Pmw.ScrolledCanvas (root, borderframe=1, labelpos=N,
label_text='ScrolledCanvas', usehullsize=1,
hull_width=400,hull_height=300)

for i in range(20):

x = -10 + 3*i

y = -10

for j in range(10):
sc.create_rectangle('%dc'%x, '%dc'%y, 'dc' (x+2), '%dc 'S (y+2),

fill='cadetblue', outline='black')
sc.create_text ('%dc'$(x+1), '%dc'$(y+1),text='%d,%d'%(1i,3),
anchor=CENTER, fill='white')

y =y +3

sc.pack ()
sc.resizescrollregion()

Documentation for the ScrolledCanvas widget starts on page 592.

PMW MEGAWIDGET TOUR 67

4.3.23

68

ScrolledField

The scrolledField widget provides a labeled EntryField widget with bindings to allow
the user to scroll through data which is too great to be displayed within the available space.
This widget should be reserved for very special uses, since it contravenes many of the com-
monly considered human factors for GUI elements. Figure 4.45 shows the effect of scrolling
the field using the keyboard arrow keys.

ScrolledField M=]E3 ScrolledField M=]E3
Scroll the field using the Scroll the field using the
middle mouse button middle mouse button
|ding, aloof, terrifying. This year, this| | mystical temple, surrounded by the |

Changeﬁeml Changeﬁeml

Figure 4.45 Pmw ScrolledField widget

lines = (
"Mount Everest. Forbidding, aloof, terrifying. This year, this",
"remote Himalayan mountain, this mystical temple, surrounded by the",
"most difficult terrain in the world, repulsed yet another attempt to",
"conquer 1it. (Picture changes to wind-swept, snowy tents and people)",
"This time, by the International Hairdresser's Expedition. In such",
"freezing, adverse conditions, man comes very close to breaking",
"point. What was the real cause of the disharmony which destroyed",
"their chances at success?")

global index
field = index = None
def execute():
global index
field.configure(text=1lines[index % len(lines)])
index = index + 1
field = Pmw.ScrolledField(root, entry width=30,
entry_relief=GROOVE, labelpos=N,
label_text='Scroll the field using the\nmiddle mouse button')
field.pack(fill=X, expand=1, padx=10, pady=10)

button = Button(root, text='Change field', command=execute)
button.pack(padx=10, pady=10)

index = 0
execute ()

Documentation for the ScrolledField widget starts on page 594.

CHAPTER 4 TKINTER WIDGETS

4.3.24 ScrolledFrame

The scrolledFrame widget is a convenience widget providing a Frame widget with associ-
ated horizontal and vertical scrollbars. An example is shown in figure 4.46.

ScrolledFrame M=]E3

ScrolledFrame

ore 7 ;I
o | (1,1 J
©2 | a2 | @2

o3 | as | @9 | @9
on | an|en|en| e
05| an | en|en| s e

] Figure 4.46 Pmw
<I I * -
2 ScrolledFrame widget

global row, col

row = col = 0

sf = frame = None

def addButton() :
global row, col
button = Button(frame, text = '(%d,%d)' % (col, row))
button.grid(row=row, col=col, sticky='nsew')
frame.grid_rowconfigure (row, weight=1)
frame.grid_columnconfigure(col, weight=1)
sf.reposition()

if col == row:
col =0
row = row + 1
else:
col = col + 1

sf = Pmw.ScrolledFrame (root, labelpos=N, label_text='ScrolledFrame',
usehullsize=1, hull_width=400, hull_height=220)

sf.pack (padx=5, pady=3, fill='both', expand=1)

frame = sf.interior ()

for i in range(250):
addButton ()

Documentation for the ScrolledFrame widget starts on page 595.

PMW MEGAWIDGET TOUR 69

4.3.25

4.3.26

70

ScrolledListbox

The scrolledListbox widget is a convenience widget providing a ListBox widget with
associated horizontal and vertical scrollbars. Figure 4.47 shows a typical ScrolledListbox.

ScrolledListbox =1 E3

Cast Members

John Cleese =
Eric Idle
Graham Chapman
erry Jones
Michael Palin
Terry Gilliam

Figure 4.47 Pmw ScrolledListbox widget

box = None
def selectionCommand() :
sels = box.getcurselection()

if len(sels) == 0:
print 'No selection'
else:
print 'Selection:', sels[0]

box = Pmw.ScrolledListBox (root, listbox_selectmode=SINGLE,

items=('John Cleese', 'Eric Idle', 'Graham Chapman',
'Terry Jones', 'Michael Palin', 'Terry Gilliam'),

labelpos=NW, label_text='Cast Members',
listbox_height=5, vscrollmode='static',
selectioncommand=selectionCommand,
dblclickcommand=selectionCommand,
usehullsize=1, hull_width=200, hull_height=200,)

box.pack (fi11=BOTH, expand=1, padx=5, pady=5)

Documentation for the ScrolledListbox widget starts on page 598.

ScrolledText

The scrolledText widget is a convenience widget providing a Text widget with associated
horizontal and vertical scrollbars, as shown in figure 4.48.

st = Pmw.ScrolledText (root, borderframe=1, labelpos=N,
label_text='Blackmail', usehullsize=1,
hull width=400, hull_height=300,
text_padx=10, text_pady=10,
text_wrap='none')
st.importfile('blackmail.txt"')
st.pack (fi11=BOTH, expand=1, padx=5, pady=5)

Documentation for the ScrolledText widget starts on page 600.

CHAPTER 4 TKINTER WIDGETS

ScrolledT ext M=]E3

Blackmail

'Ello, Mrs. Teal, lovely to have you on the show. Now Mrs. Teal, if you're -
looking in tonight, this is for 15 pounds: and is to stop us from revealing
the name of your LOYER IN BOLTON!! So, Mrs. Teal, send us 15 pounds, by
return of post please, and your husband Trevor, and your lovely children
Diane, Janice, and Juliet, need never know the name... of your LOYER IN
BOLTOMN!

(applause; organ music)

Thank you Onan! And now: a letter, a hotel registration book, and a series of
photographs, which could add up to divorce, premature retirement, and poss
criminal proceedings for a company director in Bromsgrove. He's a freemasc
and a conservative M.P., so that's 3,000 pounds please Mr. §... thank you...
to stop us from revealing:
Your name —
The name of the three other people involved,

4] | |

Figure 4.48 Pmw ScrolledText widget

4.3.27 SelectionDialog

The selectionDialog widget provides a convenience dialog to allow the user to select an
item from a ScrolledList in response to a question. It is similar to a ComboBoxDialog
except that there is no provision for the user to type in a value. Figure 4.49 shows an example.

String =] E3

Who sells string?

Mousebat
Follicle
Goosecreature
Ampersand
Spong
Wapcaplet
Looseliver
Yendetta
Prang

oK | Cancel

Figure 4.49 Pmw SelectionDialog widget

dialog = None
def execute(result):
sels = dialog.getcurselection()
if len(sels) == 0:
print 'You clicked on', result, '(no selection)'

PMW MEGAWIDGET TOUR 71

else:
print 'You clicked on', result, sels[0]
dialog.deactivate (result)

dialog = Pmw.SelectionDialog(root, title='String',
buttons=('OK', 'Cancel'), defaultbutton='0OK"',
scrolledlist_labelpos=N, label_text='Who sells string?',
scrolledlist_items=('Mousebat', 'Follicle', 'Goosecreature’,
'Mr. Simpson', 'Ampersand', 'Spong', 'Wapcaplet',
'Looseliver', 'Vendetta', 'Prang'),
command=execute)
dialog.activate()

Documentation for the selectionDialog widget starts on page 603.

4.3.28 TextDialog

The TextDialog widget provides a convenience dialog used to display multi-line text to the
user. It may also be used as a simple text editor. It is shown in figure 4.50.

Sketch = (00]]

The Hospital

Doctor: Mr. Bertenshaw?

Mr. B: Me, Doctor.

Doctor: No, me doctor, you Mr. Bertenshaw.

Mr. B: My wife, doctor...

Doctor: No, your wife patient.

Sister: Come with me, please.

Mr. B: Me, Sister?

Doctor: No, she Sister, me doctor, you Mr. Bertenshaw.

Nurse: Dr. Walters?

Doctor: Me, nurse...You Mr. Bertenshaw, she Sister, you doctor.

Sister: No, doctor.

Doctor: No doctor: call ambulance, keep warm.

Nurse: Drink, doctor?

Doctor: Drink doctor, eat Sister, cook Mr. Bertenshaw, nurse me!

Nurse: You, doctor?

Doctor: ME doctor!! You Mr. Bertenshaw. She Sister!

Mr. B: But my wife, nurse...

Doctor: Your wife not nurse. She nurse, your wife patient. Be patient,
she nurse your wife. Me doctor, you tent, you tree, you Tarzan, me
Jane, you Trent, you Trillo...me doctor!

Figure 4.50 Pmw TextDialog widget

sketch = """Doctor: Mr. Bertenshaw?
Mr. B: Me, Doctor.
- Lines removed----------

Jane, you Trent, you Trillo...me doctor!"""

dialog = Pmw.TextDialog(root, scrolledtext_labelpos='n"',

72 CHAPTER 4 TKINTER WIDGETS

title='Sketch',
defaultbutton=0,
label_text='The Hospital')
dialog.insert (END, sketch)
dialog.configure (text_state='disabled')
dialog.activate()
dialog.tkraise()

Documentation for the TextDialog widget starts on page 605.

4.3.29 TimeCounter

The TimeCounter widget implements a device to set hours, minutes and seconds using up
and down arrows. The widget may be configured to autorepeat so that holding down a button
will slew the value displayed in the widget. Figure 4.51 shows the widget’s appearance.

A | a
HH:MM:sS [09]15[42]
Y v ¥

Figure 4.51 Pmw TimeCounter widget

time = Pmw.TimeCounter (root, labelpos=W, label_text='HH:MM:SS',
min='00:00:00"', max='23:59:59")
time.pack (padx=10, pady=5)

Documentation for the TimeCounter widget starts on page 607.

4.4 Creating new megawidgets

In addition to supplying useful widgets, Pmw provides a simple mechanism to allow you to
develop new megawidgets. The documentation supplied with Pmw describes the process of
coding a megawidget. This description is an adaptation of that material.

4.4.1 Description of the megawidget

This widget will implement a simple gauge which tracks an integer value supplied by
a a Scale widget, which selects a number from a range. The gauge indicates the setting
[asa percentage of the range. The completed megawidget will look like the one shown
in figure 4.52.
The scale widget will be a component of the megawidget since the range may be
set by the programmer; the size and color of the gauge may similarly be changed, as
appropriate for the application, so we make this a component, too.

Figure 4.52 Gauge widget

CREATING NEW MEGAWIDGETS 73

4.4.2 Options

In addition to the options for the scale and gauge components, we will need to define some
options for the megawidget. First, we define min and max to allow the programmer the range
supported by the widget. Secondly, we define £111 and size to control the color and size of
the gauge. Lastly, we define value to allow us to set the initial value of the megawidget.

4.4.3 Creating the megawidget class

74

Pmw megawidgets inherit from either Pmw.Megawidget, Pmw.MegaToplevel or Pmw.Dia-
log. The gauge widget is intended to be used within other code widgets so it inherits from
Pmw . MegaWidget. Here is the code for the megawidget.

pmw_megawindget.py

from Tkinter import *
import Pmw

class Gauge (Pmw.MegaWidget) :

def __init__ (self, parent=None, **kw):

Define the options for the megawidget

optiondefs = (
('min"', 0, Pmw.INITOPT) ,
('max"', 100, Pmw.INITOPT) ,
('fi11°', 'red', None) ,
('size', 30, Pmw.INITOPT) , 0
('value', 0, None) ,
('showvalue', 1, None) ,
)

self.defineoptions (kw, optiondefs)

Initialize the base class
Pmw.MegaWidget._ init_ (self, parent)

©0

interior = self.interior()

Create the gauge component
self.gauge = self.createcomponent ('gauge',
(), None,
Frame, (interior,),
borderwidth=0) ‘,
self.canvas = Canvas (self.gauge,
width=self['size'], height=self['size'],
background=interior.cget ('background'))
self.canvas.pack(side=TOP, expand=1, fill=BOTH)
self.gauge.grid()

Create the scale component

self.scale = self.createcomponent ('scale’',
(), None,
Scale, (interior,),
command=self._setGauge,
length=200,

CHAPTER 4 TKINTER WIDGETS

from_ = self['min'],

to = self['max'],

showvalue=self['showvalue'])
self.scale.grid() /e

value=self['value']
if value is not None:
self.scale.set (value)

Check keywords and initialize options ‘,
self.initialiseoptions (Gauge)

def _setGauge(self, wvalue):
self.canvas.delete('gauge')

ival = self.scale.get()

ticks = self['max'] - self['min"']
arc = (360.0/ticks) * ival

xy = 3,3,self['size'],self['size"']
start = 90-arc

if start < O:
start = 360 + start
self.canvas.create_arc(xy, start=start, extent=arc-.001,
fill=self['fill"'], tags=('gauge',))

Pmw. forwardmethods (Gauge, Scale, 'scale') "

root = Tk()
root.option_readfile('optionDB')
root.title('Gauge"')
Pmw.initialise()

gl = Gauge(root, fill='red',K wvalue=56, min=0, max=255)
gl.pack(side=LEFT, padx=1, pady=10)

g2 = Gauge(root, fill='green',6 value=60, min=0, max=255)
g2.pack (side=LEFT, padx=1, pady=10)

g3 = Gauge(root, fill='blue', value=36, min=0, max=255)
g3.pack (side=LEFT, padx=1l, pady=10)

root.mainloop ()

Code comments

@ Options for the megawidget are specified by a three-element sequence of the option name,
default value and a final argument. The final argument can be either a callback function,
Pmw . INITOPT or None. If it is Pmw.INITOPT then the option may only be provided as an
initialization option and it cannot be set by calling configure. Calling self.defineop-
tions includes keyword arguments passed in the widget’s constructor. These values may over-
ride any default values.

@ Having set the options we call the constructor of the base class, passing the parent widget as
the single argument.

© By convention, Pmw defines an interior attribute which is the container for components.

CREATING NEW MEGAWIDGETS 75

76

@0

We then create the gauge’s indicator, which is going to be drawn on a canvas contained in a
frame. The createcomponent method has five standard arguments (name, aliases,
group, class and arguments to the constructor) followed by any number of keyword argu-
ments.

Then, we construct the scale component in a similar manner.

Having completed the constructor, we first call initialiseoptions to check that all of the

keyword arguments we supplied have been used. It then calls any option callbacks that have
been defined.

Once the megawidget’s class has been defined we call the Pmw. forwardmethods method to
direct any method calls from other widgets to the scale component.

81

L
L

172 j j
20 N

Figure 4.53 Using the gauge megawid-
get as a color mixer

Figure 4.53 illustrates a possible application of the gauge megawidget as a color mixer.
The widget may be reconfigured to show or hide the current value of each slider. It is an easy
task to add more options to the widget.

CHAPTER 4 TKINTER WIDGETS

5.1

CHAPTTEHR 5

Screen layout

5.1 Introduction to layout 77 5.4 Placer 90
5.2 Packer 79 5.5 Summary 94
5.3 Grid 86

GUI layout is an often-misunderstood area; a programmer could conceivably waste a lot of
time on it. In this chapter, the three geometry managers, Pack, Grid and Place are covered
in detail. Some advanced topics, including approaches to variable-size windows and the atten-
dant problems of maintaining visually attractive and effective interfaces, will be presented.

Introduction to layout

Geometry managers are responsible for controlling the size and position of widgets on the
screen. In Motif, widget placement is handled by one of several manager widgets. One
example is the Constraint Widget class which includes the xmForm widget. Here, layout is
controlled by attaching the widget by one, or more, of the top, bottom, left or right sides to
adjacent widgets and containers. By choosing the appropriate combinations of attachments,
the programmer can control a number of behaviors which determine how the widget will
appear when the window is grown or shrunk.

Tk provides a flexible approach to laying out widgets on a screen. X defines several man-
ager class widgets but in Tk, three geometry managers may be used. In fact, it is possible to

77

/8

5.1.1

use the managers with each other (although there are some rather important rules about how
one goes about this). Tk achieves this flexibility by exploiting the X behavior that says widget
geometry is determined by the geometry managers and 7oz by the widgets themselves. Like X,
if you do not manage the widget, it will not be drawn on the screen, although it will exist in
memory.

Geometry managers available to Tkinter are these: the Packer, which is the most com-
monly used manager; the Grid, which is a fairly recent addition to Tk; the Placer, which has
the least popularity, but provides the greatest level of control in placing widgets. You will see
examples of all three geometry managers throughout the book. The geometry managers are
available on all architectures supported by Tkinter, so it is not necessary to know anything
about the implementation of the architecture-dependent toolkits.

Geometry management

Geometry management is a quite complex topic, because a lot of negotiation goes on between
widgets, their containers, windows and the supporting window manager. The aim is to lay out
one or more slave widgets as subordinates of a master widget (some programmers prefer to
refer to child widgets and parents). Master widgets are usually containers such as a Frame or a
Canvas, but most widgets can act as masters. For example, place a button at the bottom of a
frame. As well as simply locating slaves within masters, we want to control the behavior of the
widget as more widgets are added or when the window is shrunk or grown.

The negotiation process begins with each slave widget requesting width and height ade-
quate to display its contents. This depends on a number of factors. A button, for example, cal-
culates its required size from the length of text displayed as the label and the selected font size
and weight.

Next, the master widget, along with its geometry manager, determines the space available
to satisfy the requested dimensions of the slaves. The available space may be more or less than
the requested space, resulting in squeezing, stretching or overlapping of the widgets, depending
on which geometry manager is being employed.

Next, depending on the design of the window, space within a master’s master must be
apportioned between all peer containers. The results depend on the geometry manager of the
peer widgets.

Finally, there is negotiation between the toplevel widget (normally the toplevel shell) and
the window manager. At the end of negotiations the available dimensions are used to deter-
mine the final size and location in which to draw the widgets. In some cases there may not be
enough space to display all of the widgets and they may not be realized at all. Even after this
negotiation has completed when a window is initialized, it starts again if any of the widgets
change configuration (for example, if the text on a button changes) or if the user resizes the
window. Fortunately, it is a lot easier to use the geometry managers than it is to discuss them!

A number of common schemes may be applied when a screen is designed. One of the prop-
erties of the Packer and to a lesser extent the Grid, is that it is possible to allow the geometry
manager to determine the final size of a window. This is useful when a window is created
dynamically and it is difficult to predict the population of widgets. Using this approach, the win-
dow changes size as widgets are added or removed from the display. Alternatively, the designer
might use the Placer on a fixed-size window. It really depends on the effect that is wanted.

Let’s start by looking at the Packer, which is the most commonly used manager.

CHAPTER 5 SCREEN LAYOUT

5.2 Packer

PACKER

The Packer positions slave widgets in the master by adding them one at a time from the out-
side edges to the center of the window. The Packer is used to manage rows, columns and com-
binations of the two. However, some additional planning may have to be done to get the
desired effect.

The Packer works by maintaining a list of slaves, or the packing list, which is kept in the
order that the slaves were originally presented to the Packer. Take a look at figure 5.1 (this fig-
ure is modeled after John Ousterhout’s description of the Packer).

Figure 5.1(1) shows the space available for placing widgets. This might be within a frame
or the space remaining after placing other widgets. The Packer allocates a parcel for the next
slave to be processed by slicing off a section of the available space. Which side is allocated is
determined by the options supplied with the pack request; in this example, the side=LEFT and
£i111=Y options have been specified. The actual size allocated by the Packer is determined by
a number of factors. Certainly the size of the slave is a starting point, but the available space
and any optional padding requested by the slave must be taken into account. The allocated par-
cel is shown in figure 5.1(2).

Master
. . 3
Available Space =
P Slave g
1 2
Space available
for remaining
slaves
3 4
- Parcel
5
6 7

Figure 5.1 Packer operation

79

80

Pack - Exampl... [M=lE3

Left | Center | Right |

Next, the slave is positioned within the parcel. If the available space
results in a smaller parcel than the size of the slave, it may be

Figure 5.2 Pack ge-
ometry manager

slave with side=LEFT
size of the slave (figure

shown in figure 5.1(7).

squeezed or cropped, depending on the requested options. In this
example, the slave is smaller than the available space and its height
is increased to fill the available parcel. Figure 5.1(4) shows the
available space for more slaves. In figure 5.1(5) we pack another
and £i11=BOTH options. Again, the available parcel is larger than the
5.1(6)) so the widget is grown to fill the available space. The effect is

Here is a simple example of using the pack method, shown in figure 5.2:

Example_5_1.py

from Tkinter import *

class App:
def _ _init_ (sel

f, master):

Button (master, text='Left') .pack(side=LEFT)
Button (master, text='Center') .pack(side=LEFT) ,W"
Button (master, text='Right') .pack(side=LEFT)

root = Tk()

root.option_add('*font', ('verdana',6 12, 'bold'))

root.title("Pack -
display = App (root)
root.mainloop ()

Example 1")

Code comments

@ The side=LEFT argument tells the Packer to start locating the widgets in the packing list
from the left-hand side of the container. In this case the container is the default Toplevel

shell created by the Tk

Pack - Example 2

Leftl This is the Center button | Rightl

initializer. The shell shrinks or expands to enclose the packed widgets.

Enclosing the widgets in a frame has no effect
on the shrink-wrap effect of the Packer. In this

Figure 5.3 Packer accommodates

example (shown in figure 5.3), we have
increased the length of the text in the middle

requested widget sizes button and the frame is simply stretched to the

requested size.

Example_5_2.py

fm = Frame (master)

Button (fm,
Button (fm,
Button (fm,
fm.pack()

text='Left') .pack(side=LEFT)
text="This is the Center button') .pack(side=LEFT)
text='Right') .pack (side=LEFT)

CHAPTER 5 SCREEN LAYOUT

PACKER

Packing from the top of the frame generates the result shown
in figure 5.4. Note that the Packer centers the widgets in the
available space since no further options are supplied and since
Bottom the window is stretched to fit the widest widget.

This is the Center button |

Figure 5.4 Packing from
the top side

Example_5_2a.py

Button (fm, text='Top') .pack (side=TOP)
Button (fm, text='This is the Center button') .pack(side=TOP)
Button (fm, text='Bottom') .pack (side=TOP)

Combining side options in the Packer list may achieve the

Left desired effect (although more often than not you'll end up with an
Center | Right | effect you did not plan on!). Figure 5.5 illustrates how unusual lay-
= outs may be induced.
Figure 5.5

Combining sides

In all of these examples we have seen that the Packer negoti-
ates the overall size of containers to fit the required space. If you

Pack - Exarmpl... M=l E3

want to control the size of the container, you will have to use geomn-

Leftl Centerl Rightl . . .
etry options, because attempting to change the Frame size (see

Figure 5.6 Effect of example_5_4.py) has no effect as shown in figure 5.6.

changing frame size

Example_5_4.py

fm = Frame (master, width=300, height=200)
Button (fm, text='Left') .pack(side=LEFT)

Sizing windows is often a problem when pro-
grammers start to work with Tkinter (and most
other toolkits, for that matter) and it can be frustrat-
ing when there is no response as width and height
options are added to widget specifications.

To set the size of the window, we have to make
use of the wm.geometry option. Figure 5.7 shows
the effect of changing the geometry for the root
window.

Pack - Example &

Left | Center | Right |

Figure 5.6 Assigning the geome- Example_5_5.py

try of the Toplevel shell
master.geometry ("300x200")

81

5.2.1 Using the expand option

The expand option controls whether the Packer expands the widget when the window is
resized. All the previous examples have accepted the default of expand=No. Essentially, if
expand is true, the widget 7ay expand to fill the available space within its parcel; whether it
does expand is controlled by the £i11 option (see “Using the fill option” on page 82).

Pack - Example 6 Pack - Example 6a M=]E3

Left Center Right | Center |
Bottom |

Figure 5.7 Expand without fill options

Example_5_6.py

Button(fm, text='Left') .pack(side=LEFT, expand=YES)
Button (fm, text='Center') .pack(side=LEFT, expand=YES)
Button (fm, text='Right').pack(side=LEFT, expand=YES)

Figure 5.7 shows the effect of setting expand to true (YES) without using the fill option
(see Example_5_06.py). The vertical orientation in the second screen is similar to side=Top
(see Example_5_2a.py).

5.2.2 Using the fill option

Example_5_7.py illustrates the effect of combining £i11 and expand options; the output is
shown in figure 5.9(1)

Pack - Example 7 = =] E3 Pack - Example 7a Pack - Example g§a
Top

Top |
Center
. Bottom

Left | Center | Right | Center |

Bottom |

1 2 3

Figure 5.8 Using the fill option

82 CHAPTER 5 SCREEN LAYOUT

Example_5_7.py

Button (fm, text='Left') .pack(side=LEFT, £ill=X, expand=YES)
Button (fm, text='Center') .pack(side=LEFT, £ill=X, expand=YES)
Button (fm, text='Right') .pack(side=LEFT, £ill=X, expand=YES)

If the £111 option alone is used in Example_5_7.py, you will obtain a display similar to
figure 5.9(2). By using £i11 and expand we see the effect shown in figure 5.9(3).

Varying the combination of £111 and expand options may be used for different effects
at different times. If you mix expand options, such as in example_5_8.py, you can allow some
of the widgets to react to the resizing of the window while others remain a constant size. Figure
5.10 illustrates the effect of stretching and squeezing the screen.

Pack - Example 8 _ O] x| Pack - Example 8 =] 3
Leftl Center|Right| Left| Centerl Right | Leftl Centerl Right
— - - —

Figure 5.9 Allowing widgets to expand and fill independently

Example_5_8.py

Button (fm, text='Left') .pack(side=LEFT, fill=X, expand=NO)
Button (fm, text='Center').pack(side=LEFT, fill=X, expand=NO)
Button (fm, text='Right') .pack(side=LEFT, fill=X, expand=YES)

Using £i11=BOTH allows the widget to use all of its parcel. However, it might create some
rather ugly effects, as shown in figure 5.11. On the other hand, this behavior may be exactly
what is needed for your GUL

Pack - Example 9 Pack - Example 9a
Top
Left Center Right Center
Bottom

Figure 5.10 Using fill=-BOTH

PACKER 83

5.2.3

5.24

5.2.5

84

Using the padx and pady options

Pack - Example 10 M=l E3

Left | Center | Right |

Figure 5.11 Using padx
to create extra space

The padx and pady options allow the widget to be packed with
additional space around it. Figure 5.12 shows the effect of add-
ing padx=10 to the pack request for the center button. Padding
is applied to the specified left/right or top/bottom sides for
padx and pady respectively. This may not achieve the effect you
want, since if you place two widgets side by side, each with a

padx=10, there will be 20 pixels between the two widgets and 10 pixels to the left and right of
the pair. This can result in some unusual spacing.

Using the anchor option

\AN

Figure 5.12 Anchoring
a widget within the
available space

The anchor option is used to determine where a widget will be
placed within its parcel when the available space is larger than
the size requested and none or one £i111 direction is specified.
Figure 5.13 illustrates how a widget would be packed if an
anchor is supplied. The option anchor=CENTER positions the
widget at the center of the parcel. Figure 5.14 shows how this
looks in practice.

Pack - Example 11

side=TOP, anchor=w |

side=TOP, anchor=w |

side=TOP, anchor=w |

Pack - Example 11
side=TOP, anchor=NwW |

side=TOP, anchor=w |

side=TOP, anchor=E |

Figure 5.13 Using the anchor option to place widgets

Using hierarchical packing

While it is relatively easy to use the Packer to lay out simple screens, it is usually necessary to

apply a hierarchical approach and employ a design which packs groups of widgets within

frames and then packs these frames either alongside one other or inside other frames. This

allows much more control over the layout, particularly if there is a need to fill and expand the

widgets.

Figure 5.15 illustrates the result of attempting to lay out two columns of widgets. At first
glance, the code appears to work, but it does not create the desired layout. Once you have

CHAPTER 5 SCREEN LAYOUT

packed a slave using side=TOP, the remaining space is below the slave, so you cannot pack
alongside existing parcels.

Example_5_12.py

fm = Frame (master)

Button (fm, text='Top') .pack(side=TOP, anchor=W, fill=X, expand=YES)
Button (fm, text='Center') .pack(side=TOP, anchor=W, fill=X, expand=YES)
Button (fm, text='Bottom').pack(side=TOP, anchor=W, f£ill=X, expand=YES)
Button (fm, text='Left') .pack(side=LEFT)

Button (fm, text='This is the Center button') .pack(side=LEFT)

Button (fm, text='Right') .pack(side=LEFT)

fm.pack ()
Pack - Example 12 =] E3
Top
Center
Bottom
Left | This is the Center button | Right
Figure 5.14 Abusing the Packer

All we have to do is to pack the two columns of widgets in separate frames and then pack
the frames side by side. Here is the modified code:

Example_5_13.py

fm = Frame (master)

Button (fm, text='Top') .pack(side=TOP, anchor=W, fill=X, expand=YES)
Button (fm, text='Center') .pack(side=TOP, anchor=W, fill=X, expand=YES)
Button(fm, text='Bottom').pack(side=TOP, anchor=w, fill=X, expand=YES)
fm.pack(side=LEFT)

fm2 = Frame (master)

Button (fm2, text='Left') .pack(side=LEFT)

Button (fm2, text='This is the Center button') .pack(side=LEFT)
Button (fm2, text='Right') .pack(side=LEFT)

fm2.pack(side=LEFT, padx=10)

Figure 5.16 shows the effect achieved by running Example_5_13.py.

This is an important technique which will be seen in several examples throughout the
book. For an example which uses several embedded frames, take a look at Examples/chapter17/
Example_16_9.py, which is available online.

Pack - Example 13 _[Olx]
Top

Center Leftl This is the Center button | Right|

Bottom

Figure 5.15 Hierarchical packing

PACKER 85

5.3 Grid

Many programmers consider the Grid geometry manager the easiest manager to use. Person-
ally, I don’t completely agree, but you will be the final judge. Take a look at figure 5.17. This
is a fairly complex layout task to support an image editor which uses a “by example” motif.
Laying this out using the Packer requires a hierarchical approach with several nested Frames
to enclose the target widgets. It also requires careful calculation of padding and other factors
to achieve the final layout. It is much easier using the Grid.

Enhance

 Focus
 Contrast
@« Brightness
 Golor
Variation
M Apply Figure 5.16 An image

el [enhancer using Grid
geometry management

Before we tackle laying out the image editor, let’s take
alook at a simpler example. We'll create a dialog containing
three labels with three entry fields, along with 0k and can-
cel buttons. The fields need to line up neatly (the example

ok | conce | is a change-password dialog). Figure 5.18 shows what the
Grid manager does for us. The code is quite simple, but I

Figure 5.17 A dialog laid out have removed some less-important lines for clarity:
using Grid

Example_5_14.py

class GetPassword(Dialog) :
def body(self, master):
self.title("Enter New Password")

Enter New Password E

Old Password:
Mew Password:

Enter Mew Pazsword Again:

Label (master, text='0ld Password:') .grid(row=0, sticky=W) //"

Label (master, text='New Password:').grid(row=1, sticky=W) ’

Label (master, text='Enter New Password Again:').grid(row=2,
sticky=W)

CHAPTER 5 SCREEN LAYOUT

GRID

o0

self.oldpw = Entry(master, width = 16, show='%*")
self.newpwl = Entry(master, width = 16, show='%*") /!g
self.newpw2 = Entry(master, width = 16, show='%*")

self.oldpw.grid(row=0, column=1, sticky=W)
self.newpwl.grid(row=1, column=1, sticky=W) !3
self.newpw2.grid(row=2, column=1, sticky=W)

Code comments

First, we create the labels. Since we do not need to preserve a reference to the label, we can
apply the grid method directly. We specify the row number but allow the column to default
(in this case to column 0). The sticky attribute determines where the widget will be
attached within its cell in the grid. The sticky attribute is similar to a combination of the
anchor and expand options of the Packer and it makes the widget look like a packed widget
with an anchor=w option.

We do need a reference to the entry fields, so we create them separately.

Finally, we add the entry fields to the grid, specifying both row and column.

Let’s go back to the image editor example. If you plan the layout for the fields in a grid
it is easy to see what needs to be done to generate the screen. Look at figure 5.19 to see how
the areas are to be gridded. The important feature to note is that we need to span both rows
and columns to set aside the space for each of the components. You may find it convenient to
sketch out designs for complex grids before committing them to code. Here is the code for the
image editor. I have removed some of the code, since I really want to focus on the layout and
not the operation of the application. The full source code for this example is available online.

o
-
N
w
IS
@
®
N

(3] -h:w'N

Figure 5.18 Designing the layout for a gridded display

87

imageEditor.py

from Tkinter import *
import sys, Pmw, Image, ImageTk, ImageEnhance ‘)

class Enhancer:
def _ _init_ (self, master=None, imgfile=None) :
self.master = master
self.masterImg = Image.open (imgfile)
self.masterImg.thumbnail ((150, 150))

self.images = [None]*9
self.imgs = [Nonel]*9
for i in range(9): 9\
image = self.masterImg.copy ()
self.images[i] = image
self.imgs[i] = ImageTk.PhotoImage (self.images([i] .mode,
self.images[i].size)
i=0

for r in range(3):
for ¢ in range(3):
1bl = Label (master, image=self.imgs[i]) ,/¢,
1bl.grid(row=r*5, column=c*2,
rowspan=5, columnspan=2, sticky=NSEW,
padx=5, pady=5)
i=1+1

self.original = ImageTk.PhotoImage (self.masterImg)
Label (master, image=self.original) .grid(row=0, column=6,
rowspan=5, columnspan=2)

Label (master, text='Enhance', bg='gray70').grid(row=5, column=6,
columnspan=2, sticky=NSEW)

self.radio = Pmw.RadioSelect (master, labelpos = None, ‘3
buttontype = 'radiobutton', orient = 'vertical',
command = self.selectFunc)

self.radio.grid(row=6, column=6, rowspan=4, columnspan=2)

--- Code Removed ------—--—--mmmm e e

Label (master, text='Variation',

bg='gray70') .grid(row=10, column=6,
columnspan=2, sticky=NSWE)
self.variation=Pmw.ComboBox (master, history=0, entry width=11,
selectioncommand = self.setVariation,
scrolledlist_items=('Fine', 'Medium Fine', 'Medium',
'Medium Course', 'Course'))

self.variation.selectitem('Medium')

self.variation.grid(row=11, column=6, columnspan=2)

CHAPTER 5 SCREEN LAYOUT

GRID

Button (master, text='Undo', t’
state='disabled') .grid(row=13, column=6)

Button (master, text='Apply',

state='disabled') .grid(row=13, column=7)
Button (master, text='Reset',

state='disabled') .grid(row=14, column=6)
Button (master, text='Done’',

command=self.exit) .grid(row=14, column=7)

--- Code Removed —————=——-—-----— -
root = Tk()
root.option_add('*font', ('verdana', 10, 'bold'))

root.title('Image Enhancement')
imgEnh = Enhancer (root, sys.argv[1l])
root.mainloop ()

Code comments

This example uses the Python Imaging Library (PIL) to create, display, and enhance images.
See “Python Imaging Library (PIL)” on page 626 for references to documentation supporting
this useful library of image methods.

Although it’s not important in illustrating the grid manager, I left some of the PIL code in place
to demonstrate how it facilitates handling images. Here, in the constructor, we open the master
image and create a thumbnail within the bounds specified. PIL scales the image appropriately.
self.masterImg = Image.open(imgfile)
self.masterImg.thumbnail ((150, 150))
Next we create a copy of the image and create a Tkinter Photolmage placeholder for each of
the images in the 3x3 grid.
Inside a double for loop we create a Label and place it in the appropriate cell in the grid,
adding rowspan and columnspan options.
1bl = Label (master, image=self.imgs[i])
1bl.grid(row=r*5, column=c*2,
rowspan=5, columnspan=2, sticky=NSEW, padx=5,pady=5)
Note that in this case the sticky option attaches the images to all sides of the grid so
that the grid is sized to constrain the image. This means that the widget will stretcch and
shrink as the overall window size is modified.

Similarly, we grid a label with a different background, using the sticky option to fill all of
the available cell.

Label (master, text='Enhance', bg='gray70') .grid(row=5, column=6,
columnspan=2, sticky=NSEW)

The Pmw RadioSelect widget is placed in the appropriate cell with appropriate spans:

self.radio = Pmw.RadioSelect (master, labelpos = None,
buttontype = 'radiobutton', orient = 'vertical',
command = self.selectFunc)

self.radio.grid(row=6, column=6, rowspan=4, columnspan=2)

Finally, we place the Button widgets in their allocated cells.

89

You have already seen one example of the ImageEditor in use (figure 5.17). The real
advantage of the grid geometry manager becomes apparent when you run the application with
another image with a different aspect. Figure 5.20 shows this well; the grid adjusts perfectly
to the image. Creating a similar effect using the Packer would require greater effort.

Image Enhancement _|Of x|

Enhance

© Focus
 Contrast
& Brightness
 Color

Variation

| [Medium Fine ll

Undo | Apply |
Reset | Done Figure 5.19 ImageEditor—scales for

image size

The Placer geometry manager is the simplest of the
available managers in Tkinter. It is considered diffi-
cult to use by some programmers, because it allows
precise positioning of widgets within, or relative to,
a window. You will find quite a few examples of its
use in this book so I could take advantage of this
precision. Look ahead to figure 9.5 on page 213 to
see an example of a GUI that would be fairly diffi-
cult to implement using pack or grid. Because we
will see so many examples, I am only going to
present two simple examples here.

Let’s start by creating the simple scrapbook
window shown in figure 5.21. Its function is to dis-
play some images, which are scaled to fit the window.
Figure 5.20 A simple scrapbook The images are selected by clicking on the numbered
tool

90 CHAPTER 5 SCREEN LAYOUT

buttons. It is quite easy to build a little application like this; again, we use PIL to provide sup-
port for images.

It would be possible to use pack to lay out the window (and, of course, grid would work
if the image spanned most of the columns) but place provides some useful behavior when
windows are resized. The Buttons in figure 5.21 are attached to relative positions, which means
that they stay in the same relative position as the dimensions of the window change. You
express relative positions as a real number with 0.0 representing minimum x or y and 1.0 rep-
resenting maximum x or y. The minimum values for the axes are conventional for window
coordinates with x0 on the left of the screen and y0 at the top of the screen. If you run scrap-
book.py, test the effect of squeezing and stretching the window and you will notice how the
buttons reposition. If you squeeze too much you will cause the buttons to collide, but somehow
the effect using place is more acceptable than the clipping that occurs with pack. Here is the
code for the scrapbook.

scrapbook.py

from Tkinter import *
import Image, ImageTk, os

class Scrapbook:
def _ _init_ (self, master=None) :
self.master = master
self.frame = Frame (master, width=400, height=420, bg='gray50"',
relief=RAISED, bd=4)

self.1lbl = Label (self.frame) ”/"
self.1lbl.place(relx=0.5, rely=0.48, anchor=CENTER)

self.images = [] 9
images = os.listdir ("images")

xpos = 0.05
for i in range(10):
Button (self.frame, text='%d'%$(i+1), bg='graylO',
fg='white', command=lambda s=self, img=i: \ //i,
s.getImg(img)) .place(relx=xpos, rely=0.99, anchor=S)
xpos = xpos + 0.08
self.images.append (images[i])

Button(self.frame, text='Done', command=self.exit,

bg='red', fg='yellow') .place(relx=0.99, rely=0.99, anchor=SE)
self.frame.pack()

self.getImg(0)

def getImg(self, img): e
self.masterImg = Image.open(os.path.join("images",
self.images[img]))
self.masterImg.thumbnail ((400, 400))
self.img = ImageTk.PhotoImage (self.masterImg)
self.lbl['image'] = self.img

def exit(self):
self.master.destroy ()

root = Tk()

PLACER 91

92

(-~

root.title('Scrapbook"')
scrapbook = Scrapbook (root)
root.mainloop ()

Code comments

We create the Label which will contain the image, placing it approximately in the center of
the window and anchoring it at the center. Note that the relative placings are expressed as per-
centages of the width or height of the container.

self.lbl.place(relx=0.5, rely=0.48, anchor=CENTER)

We get a list of files from the images directory

place really lends itself to be used for calculated positioning. In the loop we create a Button,
binding the index of the button to the activate callback and placing the button at the next
available position.

We put one button at the bottom right of the screen to allow us to quit the scrapbook. Note
that we anchor it at the SE corner. Also note that we pack the outer frame. It is quite com-
mon to pack a group of widgets placed within a container. The Packer does all the work of
negotiating the space with the outer containers and the window manager.

getImg is the PIL code to load the image, create a thumbnail, and load it into the Label.

In addition to providing precise window placement, place also provides rubber sheet
placement, which allows the programmer to specify the size and location of the slave window
in terms of the dimensions of the master window. It is even possible to use a master window
which is 7ot the parent of the slave. This can be very useful if you want to track the dimensions
of an arbitrary window. Unlike pack and grid, place allows you to position a window out-
side the master (or sibling) window. Figure 5.22 illustrates the use of a window to display some
of an image’s properties in a window above each of the images. As the size of the image changes,
the information window scales to fit the width of the image.

Figure 5.21 Adding a sibling window which tracks changes in attached window

CHAPTER 5 SCREEN LAYOUT

PLACER

The Placer has another important property: unlike the other Tkinter managers, it does
not attempt to set the geometry of the master window. If you want to control the dimensions
of container widgets, you must use widgets such as Frames or Canvases that have a config-
ure option to allow you to control their sizes. Let’s take a look at the code needed to implement
the information window.

scrapbook2.py

from

Tkinter import *
import Image, ImageTk, os, string

class Scrapbook:

def _ _init_ (self, master=None) :
--- Code Removed ———=——=——-—-----—- oo
Button(self.frame, text='Info', command=self.info,

bg="blue', fg='yellow').place(relx=0.99, rely=0.90, anchor=SE)
self.infoDisplayed = FALSE

def getImg(self, img):
--- Code Removed ——--—=——————— - -

if self.infoDisplayed:
self.info();self.info()

def info(self):
if self.infoDisplayed:
self.fm.destroy ()
self.infoDisplayed = FALSE

else:
self.fm = Frame(self.master, bg='grayl0') ///e,

self.fm.place(in_=self.1bl, relx=0.5,
relwidth=1.0, height=50, anchor=S,
rely=0.0, y=-4, bordermode='outside')
ypos = 0.15
for lattr in ['Format',6 'Size', 'Mode']:
Label (self.fm, text='%s:\t%s' % (lattr,
getattr (self.masterImg,

'%s' % string.lower (lattr))),
bg='grayl0', fg='white',
font=('verdana', 8)).place(relx=0.3, k‘,
rely= ypos, anchor=w)

ypos = ypos + 0.35
self.infoDisplayed = TRUE

--- Code Removed -—=—--=————-——----- -

93

94

00 ©0

@

Code comments

We add a button to display the image information.

To force a refresh of the image info, we toggle the info display.

self.info();self.info()
The info method toggles the information display.
If the window is currently displayed, we destroy it.

Otherwise, we create a new window, placing it above the image and setting its width to match
that of the image. We also add a negative increment to the y position to provide a little
whitespace.

self.fm.place(in_=self.1lbl, relx=0.5,
relwidth=1.0, height=50, anchor=sS,
rely=0.0, y=-4, bordermode='outside')

The entries in the information window are placed programmatically.

Summary

Mastering the geometry managers is an important step in developing the ability to produce
attractive and effective GUIs. When starting out with Tkinter, most readers will find grid
and pack to be easy to use and capable of producing the best results when a window is resized.
For very precise placement of widgets, place is a better choice. However, this does take quite
a bit more effort.

You will see many examples of using the three managers throughout the book. Remember
that it is often appropriate to combine geometry managers within a single window. If you do,
you must be careful to follow some rules; if things are just not working out, then you have
probably broken one of those rules!

CHAPTER 5 SCREEN LAYOUT

6.1

CHAPTTEHR 6

Events, bindings and
callbacks

6.1 Event-driven systems: a review 95 6.6 Timers and background

6.2 Tkinter events 98 procedures 107

6.3 Callbacks 102 6.7 Dynamic callback handlers 107
6.4 Lambda expressions 103 6.8 Putting events to work 108

6.5 Binding events and callbacks 104 6.9 Summary 119

GUI applications rely heavily on events and binding callbacks to these events in order to
attach functionality to widgets. I anticipate that many readers may have some familiarity
with this topic. However, this may be a new area for some of you, so I will go into some
detail to make sure that the subject has been fully covered. Advanced topics will be discussed,
including dynamic callback handlers, data verification techniques and “smart” widgets.

Event-driven systems: a review

It quite possible to build complex GUI applications without knowing anything about the
underlying event-mechanism, regardless of whether the application is running in a UNIX,
Windows or Macintosh environment. However, it is usually easier to develop an application
that behaves the way yox want it to if you know how to request and handle events within
your application.

95

96

6.1.1

Readers familiar with events and event handlers in X or with Windows messages might
wish to skip ahead to look at “Tkinter events” on page 98, since this information is specific to

Tkinter.

What are events?

Events are notifications (messages in Windows parlance) sent by the windowing system (the X-
server for X, for example) to the client code. They indicate that something has occurred or
that the state of some controlled object has changed, either because of user input or because
your code has made a request which causes the server to make a change.

In general, applications do not receive events automatically. However, you may not be
aware of the events that have been requested by your programs indirectly, or the requests that
widgets have made. For example, you may specify a command callback to be called when a but-
ton is pressed; the widget binds an activate event to the callback. It is also possible to request
notification of an event that is normally handled elsewhere. Doing this allows your application
to change the behavior of widgets and windows generally; this can be a good thing but it can
also wreck the behavior of complex systems, so it needs to be used with care.

All events are placed in an event queue. Events are usually removed by a function called
from the application’s mainloop. Generally, you will use Tkinter’s mainloop but it is possible
for you to supply a specialized mainloop if you have special needs (such as a threaded appli-
cation which needs to manage internal locks in a way which makes it impossible to use the stan-
dard scheme).

Tkinter provides implementation-independent access to events so that you do not need
to know too much about the underlying event handlers and filters. For example, to detect when
the cursor enters a frame, try the following short example:

Example_6_1.py

from Tkinter import *
root = Tk()

def enter (event) :
print 'Entered Frame: x=%d, y=%d' % (event.x, event.y)

frame = Frame (root, width=150, height=150)
frame.bind('<Any-Enter>', enter) # Bind event
frame.pack ()

root.mainloop ()

The bind method of Frame is used to bind the enter callback to an Any-Enter event.
Whenever the cursor crosses the frame boundary from the outside to the inside, the message

will be printed.

Nd& This example introduces an interesting issue. Depending on the speed with

which the cursor enters the frame, you will observe that the x and y coordinates
show some variability. This is because the x and y values are determined at the time that
the event is processed by the event loop not at the time the actual event occurs.

CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

6.1.2 Event propagation

Events occur relative to a window, which is usually described as the source window of the
event. If no client has registered for a particular event for the source window, the event is
propagated up the window hierarchy until it either finds a window that a client has registered
with, it finds a window that prohibits event propagation or it reaches the root window. If it
does reach the root window, the event is ignored.

Only device events that occur as a result of a key, pointer motion or mouse click are prop-
agated. Other events, such as exposure and configuration events, have to be registered for
explicitly.

6.1.3 Event types

Events are grouped into several categories depending on X event masks. Tk maps Windows
events to the same masks when running on a Windows architecture. The event masks recog-
nized by Tk (and therefore Tkinter) are shown in table 6.1.

Table 6.1 Event masks used to group X events

NoEventMask StructureNotifyMask Button3MotionMask
KeyReleaseMask SubstructureNotifyMask Button5SMotionMask
ButtonReleaseMask FocusChangeMask KeymapStateMask
LeaveWindowMask ColormapChangeMask VisibilityChangeMask
PointerMotionHintMask KeyPressMask ResizeRedirectMask
Button2MotionMask ButtonPressMask SubstructureRedirectMask
Buttond4MotionMask EnterWindowMask PropertyChangeMask
ButtonMotionMask PointerMotionMask OwnerGrabButtonMask
ExposureMask ButtonlMotionMask

Keyboard events

Whenever a key is pressed, a KeyPress event is generated, and whenever a key is released, a
KeyRelease event is generated. Modifier keys, such as SHIFT and CONTROL, generate key-
board events.

Pointer events

If buttons on the mouse are pressed or if the mouse is moved, ButtonPress, ButtonRe-
lease and MotionNotify events are generated. The window associated with the event is the
lowest window in the hierarchy unless a pointer grab exists, in that case, the window that ini-
tiated the grab will be identified. Like keyboard events, modifier keys may be combined with
pointer events.

Crossing events

Whenever the pointer enters or leaves a window boundary, an EnterNotify or LeaveNo-
tify event is generated. It does not matter whether the crossing was a result of moving the
pointer or because of a change in the stacking order of the windows. For example, if a window
containing the pointer is lowered behind another window, and the pointer now is in the top

EVENT-DRIVEN SYSTEMS: A REVIEW 97

98

6.2

6.2.1

window, the lowered window receives a LeaveNotify event and the top window receives an
EnterNotify event.

Focus events

The window which receives keyboard events is known as the focus window. Focusin and
FocusoOut events are generated whenever the focus window changes. Handling focus events is
a little more tricky than handling pointer events because the pointer does not necessarily have
to be in the window that is receiving focus events. You do not usually have to handle focus
events yourself, because setting takefocus to true in the widgets allows you to move focus
between the widgets by pressing the TaB key.

Exposure events

Whenever a window or a part of a window becomes visible, an Exposure event is generated.
You will not typically be managing exposure events in Tkinter GUIs, but you do have the
ability to receive these events if you have some very specialized drawing to support.

Configuration events

When a window’s size, position or border changes, ConfigureNotify events are generated.
A configureNotify event will be created whenever the stacking order of the windows
changes. Other types of configuration events include Gravity, Map/Unmap, Reparent and
Visibility.

Colormap events

If a new colormap is installed, a ColormapNotify event is generated. This may be used by
your application to prevent the annoying colormap flashing which can occur when another
application installs a colormap. However, most applications do not control their colormaps
directly.

Tkinter events

In general, handling events in Tkinter applications is considerably easier than doing the same
in X/Motif, Win32 or QuickDraw. Tkinter provides convenient methods to bind callbacks to
specific events.

Events

We express events as strings, using the following format:
<modifier-type-qualifier>

* modifier is optional and may be repeated, separated by spaces or a dash.
* type is optional if there is a qualifier.
* qualifier is either a button-option or a keysym and is optional if type is present.

Many events can be described using just type, so the modifier and qualifier may
be left out. The type defines the class of event that is to be bound (in X terms it defines the

CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

event mask). Many events may be entered in a shorthand form. For example, <key-a>, <Key-

Press-a>, and a are all acceptable event identifiers for pressing a lower-case a.

Here are some of the more commonly used events. You will find a complete list of events
and keysyms in “Events and keysyms” on page 617

Event Alt. 1 Alt2 Mod Type Qualifier Action to generate event
<Any-Enter> Any Enter Enter event regardless of
mode.
<Button-1> ButtonPress-1 1 Button 1 Left mouse button click.
<Button-2> ButtonPress-2 2 ButtonPress 1 Middle mouse button click.
<B2-Motion> Bl Motion Mouse movement with
middle mouse button down.
<ButtonRelease-3> ButtonRe- 3 Release third mouse but-
lease ton 3.
<Configure> Configure Size stacking or position has
changed.
<Control-Insert> Control Insert Press INSerT key with Con-
TROL key down.
<Control-Shift-F3> Control- F3 Press CONTROL-SHIFT and F3
Shift keys simultaneously.
<Destroy> Destroy Window is being destroyed.
<Double-Button-1> Double Button 1 Double-click first mouse
button 1.
<Enter> Enter Cursor enters window.
<Expose> Expose Window fully or partially
exposed.
<FocusIn> FocusIn Widget gains focus.
<FocusOut> FocusOut Widget loses focus
<KeyPress> Key KeyPress Any key has been pressed.
<KeyRelease-back- KeyRelease backslash Backslash key has been
slash> released.
<Leave> Leave Cursor leaves window.
<Map> Map Window has been mapped.
<Print> Print PRINT key has been pressed.

Z

Capital Z has been pressed.

Let’s take a look at some example code that allows us to explore the event mechanism as

it’s supported by Tkinter.

Example_6_2.py

from Tkinter import *
import Pmw

eventDict = {

TKINTER EVENTS

99

100

'2': 'KeyPress', '3': 'KeyRelease', '4': 'ButtonPress',

'5': 'ButtonRelease', '6': 'Motion', '7': 'Enter',
'8': 'Leave', '9': 'FocusIn', '10': 'FocusOut',

'12': 'Expose', '1l5': 'Visibility', '17': 'Destroy',
'18': 'Unmap', '19': 'Map', '21': 'Reparent’',

'22': 'Configure', '24': 'Gravity', '26': 'Circulate’',
'28': 'Property', '32': 'Colormap', '36': 'Activate',
'37': 'Deactivate',

root = Tk()

def reportEvent (event) :

rpt = '\n\n%s' % (80*'=")
rpt = '%s\nEvent: type=%s (%s)' % (rpt, event.type,
eventDict.get (event.type, 'Unknown')) t,\
rpt = '$s\ntime=%s' % (rpt, event.time) ‘
rpt = '%s widget=%s' % (rpt, event.widget)
rpt = '%s x=%d, y=%d'% (rpt, event.x, event.y)
rpt = '%s x_root=%d, y_root=%d' % (rpt, event.x_root, event.y_root)
rpt = '$s y_root=%d' % (rpt, event.y_root)
rpt = '%s\nserial=%s' % (rpt, event.serial)
rpt = '%s num=%s' % (rpt, event.num)
rpt = '%s height=%s' % (rpt, event.height)
rpt = '%s width=%s' % (rpt, event.width)
rpt = '%s keysym=%s' % (rpt, event.keysym)
rpt = '%s ksNum=%s' % (rpt, event.keysym_num)

Some event types don't have these attributes
try:

rpt = '%s focus=%s' % (rpt, event.focus)
except:
try:
rpt = '%s send=%s' % (rpt, event.send_event)
except:
pass

text2.yview (END)
text2.insert (END, rpt)

frame = Frame (root, takefocus=1, highlightthickness=2)
text = Entry(frame, width=10, takefocus=1, highlightthickness=2)
text2 = Pmw.ScrolledText (frame)

for event in eventDict.values():

frame.bind('<%s>' % event, reportEvent)
text.bind('<%s>' % event, reportEvent)

text.pack()

text2.pack (fill=BOTH, expand=YES)
frame.pack()

text.focus_set ()

root.mainloop ()

CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

Code comments

@ cventpict defines all of the event types that Tkinter (strictly Tk) recognizes. Not all of the
event masks defined by X are directly available to Tkinter applications, so you will see that the
enumerated event type values are sparse.

'12': 'Expose', '15': 'Visibility', '17': 'Destroy’',
The dictionary is also used to look up the event-type name when the event is detected.

@ reportEvent is our event handler. It is responsible for formatting data about the event. The
event type is retrieved from eventDict; if an unrecognized event occurs, we will type it as
Unknown.
def reportEvent (event) :

rpt = '\n\n%s' % (80*'=")
rpt = '%s\nEvent: type=%s (%s)' % (rpt, event.type,
eventDict.get (event.type, 'Unknown'))

© Nor all events supply focus and send_event attributes, so we handle AttributeErrors
appropriately.

@ Finally, we bind each of the events to the reportEvent callback for the Frame and Entry
widgets:
for event in eventDict.values():

frame.bind('<%s>' % event, reportEvent)
text.bind('<%s>' % event, reportEvent)

Figure 6.1 shows the result of running Example_6_2.py. The displayed events show the
effect of typing SHIFT-M. You can see the KeyPress for the SHIFT key, and the KeyPress for
the M key, followed by the corresponding KeyRelease events.

tk | (O] x|
IM |
=

Event: type=2 [KeyPress)
time=95763410 widget= 8654512.86583712 »=19, v=13 «_root=51E, »_root=169 v_root=1E9
zenal=2092 num=16 height=0 width=0 keyzym=5hiftt_L ksMum=55505

Event: type=2 [KeyPress)
time=95763590 widget= 8654512.86583712 »=19, v=13 «_root=H1E, »_root=169 v_root=1E9
zenal=2117 num=77 height=0 width=0 keyzym=b ksMum=77

Event: type=3 [KeyRelease]
time=95763670 widget= 8654512.86583712 »=19, v=13 «_root=H1E, »_root=169 y_root=1E9
zenal=2143 num=77 height=0 width=0 keyzym=M ksMum=77 zend=0

Event: type=3 [KeyRelease]
time=95763730 widget= 8654512.86583712 »=19, v=13 «_root=51E, »_root=169 v_root=1E9
zenial=2166 num=16 height=0 width=0 keyzym=Shift_L ksMum=E5505 send=0

Ewent: type=E [Mation]
time=95763771 widget= 8654512.8663712 »=189, y=14 _root=616, y_root=170 y_root=170 Figure 6.1 An event
zenal=2189 num=256 height=0 width=0 keypsym=77? ksMum=0 zend=0 = .

monitor

TKINTER EVENTS 101

6.3

102

N’o If you are new to handling events, you might find it useful to run

Example_6_2.py to investigate the behavior of the system as you perform some
simple tasks in the window. For example, holding the SHIFT key down creates a stream of
events; moving the mouse creates a stream of motion events at an even greater frequency.

This may come as a surprise initially, since the events are normally invisible to
the user (and to the programmer). It is important to be aware of this behavior and as you
program to take account of how events will actually be generated. It is especially impor-
tant to make sure that the callback does not do any intensive processing; otherwise, it is
easy to cause severe performance problems.

Callbacks

Callbacks are simply functions that are called as the result of an event being generated. Han-
dling arguments, however, can be problematic for beginning Tkinter programmers, and they
can be a source of latent bugs, even for seasoned programmers.

The number of arguments depends on the type of event that is being processed and
whether you bound a callback directly or indirectly to an event. Here is an example of an indi-
rect binding:

btn = Button(frame, text='0OK', command=buttonAction)

command is really a convenience function supplied by the Button widget which calls the
buttonAction callback when the widget is activated. This is usually a result of a <Button-
Press-1> event, but a <KeyPress-space> is also valid, if the widget has focus. However,
be aware that many events have occurred as a result of moving and positioning the mouse
before the button was activated.

We could get the same effect by binding directly:

btn.bind('<Button-1>', buttonAction)
btn.bind('<KeyPress-space>', buttonAction)

So what is the difference? Well, apart from the extra line of code to bind the events directly,
the real difference is in the invocation of the callback. If the callback is invoked from the event,
the event object will be passed as the first (in this case the only) argument of the callback.

N0 Event handlers can be a source of latent bugs if you don’t completely test your

applications. If an event is bound (intentionally or erroneously) to a callback
and the callback does not expect the event object to be passed as an argument, then the
application could potentially crash. This is more likely to happen if the event rarely
occurs or is difficult to simulate in testing.

If you want to reuse but tonaction and have it called in response to both direct and indirect
events, you will have to write the callback so that it can accept variable arguments:

def buttonAction (event=None) :

if event:
print 'event in: %s' % event.type

CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

else:
print 'command in:'

Of course, this does increase complexity, particularly if the function already has arguments,
since you will have to determine if the first argument is an event object or a regular argument.

6.4 Lambda expressions

Oh no! Not the dreaded lambda again!* Although lambda has been mentioned earlier in the
book, and has been used extensively in examples, before we go on to the next section we must
take another look at the use of 1ambda.

The term lambda originally came from Alonzo Church’s lambda calculus and you will
now find lambda used in several contexts—particularly in the functional programming disci-
plines. Lambda in Python is used to define an anonymous function which appears to be a state-
ment to the interpreter. In this way you can put a single line of executable code where it would
not normally be valid.

Take a look at this code fragment:

var = IntVar ()
value 10

btn.bind('Button-1', (btn.flash(), var.set(value)))

A quick glance at the bolded line might not raise any alarms, but the line will fail at run-
time. The intent was to flash the button when it was clicked and set a variable with some pre-
determined value. What is actually going to happen is that both of the calls will be called when
the bind method executes. Later, when the button is clicked, we will not get the desired effect,
since the callback list contains just the return values of the two method calls, in this case
(None, None). Additionally, we would have missed the event object—which is always the first
argument in the callback—and we could possibly have received a runtime error. Here is the
correct way to bind this callback:

btn.bind('Button-1', lambda event, b=btn, v=var, i=value:
(b.flash(), v.set(i)))

Notice the event argument (which is ignored in this code fragment).

6.4.1 Avoiding lambdas altogether

If you don’t like lambda expressions, there are other ways of delaying the call to your func-
tion. Timothy R. Evans posted a suggestion to the Python news group which defines a com-
mand class to wrap the function.

class Command:
def _ _init_ (self, func, *args, **kw):
self.func = func
self.args = args

* “Cardinal Fang! Bring me the lambda!”

LAMBDA EXPRESSIONS 103

6.5

6.5.1

104

self.kw = kw

def _ _call__ (self, *args, **kw):
args = self.args + args
kw.update (self.kw)
apply (self.func, args, kw)

Then, you define the callback like this:
Button (text='label', command=Command (function, arg [, moreargs...]))

The reference to the function and arguments (including keywords) that are passed to the
Command class are stored by its constructor and then passed on to the function when the call-
back is activated. This format for defining the callbacks may be a little easier to read and main-
tain than the lambda expression. At least there are alternatives!

Binding events and callbacks

The examples so far have demonstrated how to bind an event handler to an instance of a wid-
get so that its behavior on receiving an event will not be inherited by other instances of the
widget. Tkinter provides the flexibility to bind at several levels:

1 At the application level, so that the same binding is available in all windows and widgets
in the application, so long as one window in the application has focus.
2 At the class level, so that all instances of widgets have the same behavior, at least initially.
3 At the shell (Toplevel or root) level.
4 At the instance level, as noted already.
Binding events at the application and class level must be done carefully, since it is quite
easy to create unexpected behavior in your application. In particular, indiscriminate binding

at the class level may solve an immediate problem, but cause new problems when new func-
tionality is added to the application.

N It is generally good practice to avoid creating highly nonstandard behavior in

widgets or interfaces with which the user is familiar. For example, it is easy to
create bindings which allow an entry field to fill in reverse (so typing 123 is displayed as
321), but this is not typical entry behavior and it might be confusing to the user.

Bind methods

You will find more information on bind and unbind methods in “Common options” on
page 425, so in this section, I will just illustrate bind methods in the context of the four bind-
ing levels.

Application level

Applications frequently use F1 to deliver help. Binding this keysym at the application level
means that pressing F1, when any of the application’s windows have focus, will bring up a
help screen.

CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

Class level

Binding at the class level allows you to make sure that classes behave uniformly across an
application. In fact, Tkinter binds this way to provide standard bindings for widgets. You will
probably use class binding if you implement new widgets, or you might use class binding to
provide audio feedback for entry fields across an application, for example.

Toplevel window level

Binding a function at the root level allows an event to be generated if focus is in any part of a
shell. This might be used to bind a print screen function, for example.

Instance level

We have already seen several examples of this, so we will not say any more at this stage.
The following hypothetical example illustrates all four of the binding modes together.

Example_6_3.py

from Tkinter import *
def displayHelp (event) :

def displayHelp (event) :
print 'hlp', event.keysym

def sayKey (event) :
print 'say',event.keysym, event.char

def printWindow (event) :
print 'prt', event.keysym

def cursor (*args):
print 'cursor'

def unbindThem (*args) : /. unbind all bindings
root.unbind_all('<F1l>"')
root.unbind_class('Entry', '<KeyPress>')
root.unbind('<Alt_L>") t’

frame.unbind ('<Control-Shift-Down>")
print 'Gone...'

root = Tk()

frame = Frame (root, takefocus=1, highlightthickness=2)

text = Entry(frame, width=10, takefocus=1, highlightthickness=2)
root.bind_all('<Fl>', displayHelp) ,G,
text.bind_class('Entry', '<KeyPress>',6 lambda e, x=101: sayKey (e, x)) ¢’
root.bind('<Alt_L>', printWindow) G’
frame.bind('<Control-Shift-Down>' , cursor)

text.bind('<Control-Shift-Up>', unbindThem)

BINDING EVENTS AND CALLBACKS 105

~)

©@ 0 06 °o

6.5.2

106

text.pack()
frame.pack()
text.focus_set ()
root.mainloop ()

Code comments
First, the callbacks are defined. These are all simple examples and all but the last one take
account of the event object being passed as the callback’s argument, from which we extract
the keysym of the key generating the event.

def displayHelp (event) :

print 'hlp', event.keysym

Although the class-level binding was made with a method call to an Entry widget,
bind_class is an inherited method, so any instance will work and root.unbind_class is
quite acceptable. This is not true for an instance binding, which is local to the instance.
We make an application-level binding:

root.bind_all('<Fl>', displayHelp)
In this class-level binding we use a lambda function to construct an argument list for the callback:

text.bind_class('Entry', '<KeyPress>', lambda e, x=101: sayKey(e,x))
Here we make a toplevel binding for a print-screen callback:

root.bind('<Alt_L>', printWindow)
Finally, we make instance bindings with double modifiers:

frame.bind('<Control-Shift-Down>', cursor)
text.bind('<Control-Shift-Up>', unbindThem)

Nd& Be prepared to handle multiple callbacks for events if you use combinations of
the four binding levels that have overlapping bindings.
Tkinter selects the best binding at each level, starting with any instance bind-
ings, then toplevel bindings, followed by any class bindings. Finally, application level
bindings are selected. This allows you to override bindings at any level.

Handling multiple bindings

As I mentioned in the note above, you can bind events at each of the four binding events.
However, because events are propagated, that might not result in the behavior that you
intended.

For a simple example, suppose you want to override the behavior of a widget, and rather
than have BACKSPACE remove the previous character, you want to insert \h into the widget. So
you set up the binding like this:

text.bind('<BackSpace>', lambda e: dobackspace(e))
and define the callback like this:

def dobackspace (event) :

event.widget.insert (END, '\\h')

CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

Unfortunately this doesn’t work, because the event is bound at the application level. The
widget still has a binding for BACKSPACE, so after the application level has been invoked and
\h has been inserted into the widget, the event is propagated to the class level and the h is
removed.

There is a simple solution: return “break” from the last event handler that you want to
propagate events from and the superior levels don’t get the event. So, the callback looks like this:

def dobackspace(event) :
event.widget.insert (END, '\\h')

return "break"

6.6 Timers and background procedures

The mainloop supports callbacks which are not generated from events. The most important
result of this is that it is easy to set up timers which call callbacks after a predetermined delay
or whenever the GUI is idle. Here is a code snippet from an example later in the book:

if self.blink:
self.frame.after(self.blinkrate * 1000, self.update)

def update(self):
Code removed
self.canvas.update_idletasks ()
if self.blink:
self.frame.after (self.blinkrate * 1000, self.update)

This code sets up to call self.update after self.blinkrate * 1000 milliseconds. The
callback does what it does and then sets up to call itself again (these timers are called once
only—if you want them to repeat you must set them up again).

For more information on timers, see “Common options” on page 425.

6.7 Dynamic callback handlers

A single callback is frequently bound to an event for the duration of an application. However,
there are many cases where we need to change the bindings to the widget to support applica-
tion requirements. One example might be attaching a callback to remove reverse video (that
was applied as the result of a validation error) on a field when a character is input.

Getting dynamic callbacks to work is simply a matter of binding and unbinding events.
We saw examples of this in Example_6_3.py on page 105, and there are other examples in the
source code.

N" If you find that you are constantly binding and unbinding events in your code,

it may be a good idea to review the reasons why you are doing this. Remember
that events can be generated in rapid succession—mouse movement, for example, gener-
ates a slew of events. Changing bindings during an event storm may have unpredictable
results and can be very difficult to debug. Of course, we burn CPU cycles as well, so it
can have a considerable effect on application performance.

DYNAMIC CALLBACK HANDLERS 107

6.8 Putting events to work

In several of the early chapters, we saw examples of setting widgets with data and of getting
that data and using it in our applications. In “Dialogs and forms” on page 140, we will see
several schemes for presenting and getting data. This is an important topic that may require
some ingenuity on your part to devise correct behavior. In the next few paragraphs, T'll
present some ideas to help you solve your own requirements.

6.8.1 Binding widgets to dynamic data

Tkinter provides a simple mechanism to bind a variable to a widget. However, it not possible
to use an arbitrary variable. The variable must be subclassed from the variable class; several
are predefined and you could define your own, if necessary. Whenever the variable changes,
the widget’s contents are updated with the new value. Look at this simple example:

Example_6_4.py

from Tkinter import *
root = Tk()

class Indicator:

def _ _init_ (self, master=None, label='"', value=0):
self.var = BooleanVar ()
self.i = Checkbutton(master, text=label, variable = self.var,

command=self.valueChanged)
self.var.set (value)
self.i.pack()

def valueChanged(self) :
print 'Current value = %s' % ['Off','On'][self.var.get()]

ind = Indicator (root, label='Furnace On',6 value=1)
root.mainloop ()

This example defines sel£.var and binds it to the widget’s variable; it also defines a call-
back to be called whenever the value of the widget changes. In this example the value is changed
by clicking the checkbutton—it could equally be set programmatically.

Setting the value as a result of an external change is a reasonable scenario, but it can intro-
duce performance problems if the data changes rapidly. If our GUI contained many widgets
that displayed the status and values of components of the system, and if these values changed
asynchronously (for instance, each value arrived in the system as SNMP traps), the overhead
of constantly updating the widgets could have an adverse effect on the application’s perfor-
mance. Here is a possible implementation of a simple GUI to monitor the temperature
reported by ten sensors.

Example_6_5.py

from Tkinter import *
import random
root = Tk()

108 CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

class Indicator:
def __init_ (self, master=None, label='', value=0.0):

self.var = DoubleVar ()

~

self.s = Scale(master, label=label, variable=self.var,

from_=0.0, to=300.0, orient=HORIZONTAL,

length=300)
self.var.set (value) €’
self.s.pack()
def setTemp () :
slider = random.choice(range(10)) /o
value = random.choice(range (0, 300))

slist[slider] .var.set (value)

©0

root.after (5, setTemp)

slist = []
for i in range(10):
slist.append(Indicator (root, label='Probe %d' % (i+1)))

setTemp () 0
root.mainloop ()

Code comments

First we create a Tkinter variable. For this example we store a real value:
self.var = DoubleVar ()

We then bind it to the Tk variable:
self.s = Scale(master, label=label, variable=self.var,

Then we set its value. This immediately updates the widget to display the new value:
self.var.set (value)

The purpose of the setTemp function is to create a value randomly for one of the “sensors” at

5 millisecond intervals.

The variable is updated for each change:

slist[slider].var.set (value)
Since after is a one-shot timer, we must set up the next timeout:

root.after (5, setTemp)’

© © 6 6 © ©0 ©

The call to setTemp starts the simulated stream of sensor information.

The display for this example is not reproduced here (the code is available online, of
course). However, the display’s behavior resembles Brownian motion, with widgets con-

PUTTING EVENTS TO WORK 109

stantly displaying new values. In a “real” application, the update rate would be annoying to the
user, and it requires throttling to create a reasonable update rate. Additionally, constantly
redrawing the widgets consumes an exceptionally high number of CPU cycles. Compare
Example_6_5.py with the code for Example_6_6.py.

Example_6_6.py

from Tkinter import *
import random
root = Tk()

class Indicator:
def __init_ (self, master=None, label='', value=0.0):

self.var = DoubleVar ()

self.s = Scale(master, label=label, variable=self.var,
from_=0.0, to=300.0, orient=HORIZONTAL,
length=300)

self.value = value ‘)

self.var.set (value)

self.s.pack()

self.s.after (1000, self.update) t’

def set(self, value): G’
self.value = value

def update(self):
self.var.set (self.value)
self.s.update_idletasks()
self.s.after (1000, self.update)

def setTemp() :
slider = random.choice(range(10))
value = random.choice(range(0, 300))
slist[slider].set(value) (a
root.after (5, setTemp)

slist = []
for i in range(10):
slist.append(Indicator (root, label='Probe %d' % (i+1)))
setTemp ()
root.mainloop ()

Code comments

© In addition to the Tkinter variable, we create an instance variable for the widget’s current
value:

self.value = value

@ Anafter timeout arranges for the update method to be called in one second:
self.s.after (1000, self.update)

© The class defines a set method to set the current value.

110 CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

The update method sets the Tkinter variable with the current value, updating the widget’s
display. To redraw the widgets, we call update_idletasks which processes events waiting
on the event queue.

self.s.update_idletasks()
© Now, when the value changes, we set the instance variable:

slist[slider].set(value)

The display now updates the widgets once a second, which results in a more relaxed dis-
play and noticeably lowers the CPU overhead. You can optimize the code more, if you wish,
to further reduce the overhead. For example, the widgets could be updated from a single update
timeout rather than from a one-per-widget call.

- Pmw EntryField Validation O x|

Date (mm/dd/yy): [15/02/1993

Time {(24hr clock): |8:DD:DD

Real (50.0 to 1099.0):[127.2

Social Security #: [p10-11

Quit | Figure 6.2 Validating entry
fields (Example_6_7.py)

6.8.2 Data verification

An important part of a GUI, which performs data entry, is verifying appropriate input values.
This area can consume a considerable amount of time and effort for the programmer. There
are several approaches to validating input, but we will not attempt to cover all of them here.

Pmw EntryField widgets provide built-in validation routines for common entryfield
types such as dates, times and numeric fields. Using these facilities can save you a considerable
amount of time. Here is a simple example of using Pmw validation:

Example_6_7.py

import time, string
from Tkinter import *
import Pmw

class EntryValidation:
def _ _init_ (self, master):
now = time.localtime(time.time())
self._date = Pmw.EntryField(master,

labelpos = 'w', label_text = 'Date (mm/dd/vyy):',
value = '$d/%d/%d' % (now[1l], now([2], now[0]),
validate = {'validator':'date',

'format':'mdy', 'separator':'/'}) ¥/"

PUTTING EVENTS TO WORK 111

self._time = Pmw.EntryField(master,

labelpos = 'w', label_text = 'Time (24hr clock):',
value = '8:00:00",
validate = {'validator':'time"',

'min':'00:00:00', 'max':'23:59:59"',
'minstrict':0, 'maxstrict':0})

self._real = Pmw.EntryField(master,
labelpos = 'w',value = '127.2"',
label_text = 'Real (50.0 to 1099.0):',
validate = {'validator':'real', .
'min':50, 'max':1099,
'minstrict':0},
modifiedcommand = self.valueChanged)

Setup real
field

self._ssn = Pmw.EntryField(master,
labelpos = 'w', label_text = 'Social Security #:',
validate = self.validateSSN, value = '') G’

fields = (self._date, self._time, self._real, self._ssn)
for field in fields:
field.pack(fill='x"', expand=1, padx=12, pady=8)

Pmw.alignlabels (fields) "
self._date.component ('entry') .focus_set ()

def valueChanged(self) :
print 'Value changed, value is', self._real.get()
def validateSSN(self, contents):
result = -1
if '-' in contents: /o
ssnf = string.split(contents, '-"')
try:

and \

if len(ssnf[0] 3
2 and \
4:

01)
len(ssnf[l])
len(ssnf[2]) =

result =1
except IndexError:
result = -1
elif len(contents) == 9:
result =

1
return result

if _ name_ == '_ _main__ ':
root = Tk()
root.option_add('*Font', 'Verdana 10 bold')
root.option_add('*EntryField.Entry.Font', 'Courier 10')
root.option_add('*EntryField.errorbackground', 'yellow')
Pmw.initialise(root, useTkOptionDb=1)

root.title('Pmw EntryField Validation')

quit = Button(root, text='Quit', command=root.destroy)
quit.pack(side = 'bottom')

top = EntryValidation (root)

root.mainloop ()

112 CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

Code comments

@ The date field uses the built-in date validator, specifying the format of the data and the
separators:
validate = {'validator':'date',
'format':'mdy', 'separator':'/'})
© The time field sets maximum and minimum options along with minstrict and maxstrict:
validate = {'validator':'time"',
'min':'00:00:00', 'max':'23:59:59"',
'minstrict':0, 'maxstrict':0})
Setting minstrict and maxstrict to False (zero) allows values outside of the min
and max range to be set. The background will be colored to indicate an error. If they are set to
True, values outside the range cannot be input.

© Thesocial Security field uses a user-supplied validator:
validate = self.validateSSN, value = '')
O Pmw provides a convenience method to align labels. This helps to reduce the need to set up
additional formatting in the geometry managers.

Pmw.alignlabels (fields)
self._date.component ('entry') .focus_set ()

It is always a good idea to set input focus to the first editable field in a data-entry screen.

@ The validatessn method is simple; it looks for three groups or characters separated by
dashes.

Since the entry is cumulative, the string.split call will fail until the third group has been
entered.

©

@ We set the Tk options database to override fonts and colors in all components used in
the Pmw widgets.

root.option_add('*Font', 'Verdana 10 bold')
root.option_add (' *EntryField.Entry.Font', 'Courier 10')
root.option_add('*EntryField.errorbackground', 'yellow')

Pmw.initialise(root, useTkOptionDb=1)
This construct will be seen in many examples. However, this is a less-frequently used
option to Pmw. initialise to force the use of the Tk option database.

Running Example_6_7 displays a screen similar to figure 6.2. Notice how the date and
Social Security fields haveashaded background to indicate that they contain an invalid
format.

Although validation of this kind is provided automatically by the Pmw Entryfield wid-
get, it has some drawbacks.

1 There is no indication of the actual validation error. The user is required to determine
the cause of the error himself.

2 Data which is valid, when complete, is indicated as being in error as it is being entered
(the social security field in figure 6.2 is a good example).

PUTTING EVENTS TO WORK 113

114

3 Where validation requires complex calculations and access to servers and databases, etc,.
the processing load can be high. This could be a source of performance problems in cer-
tain environments.

To circumvent these and other problems you may use alternative approaches. Of course,
your application may not use Pmw widgets, so yet another approach may be required.

N’o Personally, I prefer not to use the built-in validation in Pmw widgets. If the

action of formatting the content of the widget requires a redraw, you may
observe annoying display glitches, particularly if the system is heavily loaded; these may
distract the user. The following method avoids these problems.

To avoid validating every keystroke (which is how the Pmw EntryField manages data
input), we will arrange for validation to be done in the following cases:
1 When the user moves the mouse pointer out of the current field.
2 When the focus is moved from the field using the Tas key.
3 When the ENTER key is pressed.
Validating this way means that you don’t get false errors as an input string is built up. In

figure 6.3, for example, entering 192.311.40.10 would only raise a validation error when the
field was left or if RETURN was pressed, thereby reducing operator confusion and CPU overhead..

i Invalid IP Addre...F3

Format: nnn.nnn.nnn.nnn
-1 < nnn < 256

Entry Validation

i Invalid Card-P... E
IP Address: 192.111.40.10
Card - Port: 01-32 Format: nnn-nnn
0 < nnn < 101

Logical Name: |CP-Serial-Mux

« Invalid Logical Na... A

x Faormat: CP+<text>

Figure 6.3 Data verification:
error dialogs

Example_6_8.py

import string
from Tkinter import *
from validation import *

CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

class EntryValidation:
def __init__ (self, master):
self._ignoreEvent = 0
self._ipaAddrVv self._crdprtv

frame = Frame (master)
Label (frame, text='
Label (frame, text='

') .grid(row=0,
') .grid(row=0,

self._ipaddr
label="IP Address:',
enter=self.activate)
self._crdprt
label='Card - Port:',
enter=self.activate)

self._lname
label="'Logical Name:',

enter=self.activate)

self.

self.createField (frame,

self.createField(frame,

self.createField(frame,

_lnameVv

column=0, sticky=W)
column=3, sticky=W)

width=15, row=0, col=2,
valid=self.validate,
width=8, row=1l, col=2,

valid=self.validate,

width=20, row=2, col=2,
valid=self.validate,

self._wDict = {self._ipaddr: ('_ipAddrV',6 validIP),
self._crdprt: ('_crdprtV', validCP),
self._lname: ('_lnameV', validLName) }
frame.pack (side=TOP, padx=15, pady=15)
def createField(self, master, label='',6 text='',6 width=1,
valid=None, enter=None, row=0, col=0):

Label (master,
id = Entry(master,

id.bind('<Any-Leave>', valid)
id.bind ('<FocusOut>"', wvalid)
id.bind('<Return>"', enter)

id.grid(row=row,
return id

column=col,

def activate(self, event):
print '<Return>: value is',
def validate(self, event):

if self._ignoreEvent:

text=1label) .grid(row=row,
text=text, width=width,

column=col-1,
takefocus=1)

sticky=W)

event.widget.get ()

°

self._ignoreEvent = 0
else:
currentValue = event.widget.get ()
if currentvalue:
var, validator = self._wDict[event.widget]
nValue, replace, valid = validator (currentvValue)
if replace:
self._ignoreEvent = 1
setattr(self, var, nValue)
event .widget.delete (0, END)
event.widget.insert (0, nValue)
if not valid:
self._ignoreEvent = 1
event .widget.focus_set ()
root = Tk()

PUTTING EVENTS TO WORK

°

sticky=W)

115

116

root.option_add('*Font', 'Verdana 10 bold')
root.option_add('*Entry.Font', 'Courier 10')
root.title('Entry Validation')

top = EntryValidation (root)
quit = Button(root, text='Quit', command=root.destroy)
quit.pack(side = 'bottom')

root.mainloop ()

Code comments

The grid geometry manager sometimes needs a little help to lay out a screen. We use an
empty first and last column in this example:
Label (frame, text=' ') .grid(row=0, column=0,sticky=W)
Label (frame, text=' ') .grid(row=0, column=3,sticky=W)
You cannot use the Grid manager’s minsize option if the column (or row) is empty;
you have to use the technique shown here. As an alternative, you can pack the gridded widget
inside a Frame and use padding to add space at the sides.

Since we are using native Tkinter widgets, we have to create a Label and Entry widget for
each row of the form and place them in the appropriate columns. We use the createField
method to do this.

We create a dictionary to define a variable used to store the contents of each widget.

self._wDict = {self._ipaddr: ('_ipAddrV',6 wvalidIP),
self._crdprt: ('_crdprtv', validCP),
self._lname: ('_lnameV', validLName) }

Using the dictionary enables us to use bindings to a single event-handler with multiple
validators, which simplifies the code.

The bindings for validation are when the cursor leaves the widget and when focus is lost (tab-
bing out of the field). We also bind the activate function called when the ENTER key is
pressed.
id.bind ('<Any-Leave>', valid)
id.bind ('<FocusOut>"', wvalid)
id.bind ('<Return>"', enter)
One of the complications of using this type of validation scheme is that whenever a field loses
focus, its validator is called—including when we return to a field to allow the user to correct
an error. We provide a mechanism to ignore one event:
if self._ignoreEvent:
self._ignoreEvent = 0
We get the variable and validator for the widget creating the event:
var, validator = self._wDict[event.widget]
nValue, replace, valid = validator (currentValue)
and call the validator to check the widgets contents—possibly editing the content, as
appropriate.

CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

Finally, we react to the result of validation, setting the widget’s content. In the case of a vali-
dation error, we reset focus to the widget. Here we set the flag to ignore the resulting focus
event:

self._ignoreEvent = 1

6.8.3 Formatted (smart) widgets

Several data-entry formats benefit from widgets that format data as it is entered. Some exam-
ples include dates, times, telephone numbers, Social Security numbers and Internet (IP)
addresses. Making this work may reintroduce some of the issues that were solved by the previ-
ous example, since the ideal behavior of the widget is to update the format continuously as
opposed to the alternate scheme of reformatting the field after it has been entered. This intro-
duces even more problems. Take entering a phone number, for example. Several number
groupings are typical:

1 1-(401) 111-2222 Full number with area code
1-401-111-2222 Full number separated with dashes
401-111-2222 Area code and number without /
111-2222 Local number
017596-475222 International (United Kingdom)
3-1111-2222 International (Japan)

o g » W N

With so many combinations, it is important that the user is shown the format of the tele-
phone number, or other data, in the label for the widget. If your application has requirements
to accommodate a range of conflicting formats, it may be better to format the string after it
has been entered completely or else leave the formatting to the user. For date and time fields,
you might want to use Pmw widgets, which help the user get the input in the correct format.

For other formats, you are going to have to write code. This example demonstrates how
to format phone numbers and Social Security numbers.

Example_6_9.py

import string
from Tkinter import *

class EntryFormatting:

def _ _init_ (self, master):
frame = Frame (master)
Label (frame, text=' ') .grid(row=0, column=0,sticky=W)
Label (frame, text=' ') .grid(row=0, column=3, sticky=W)

self._ipaddr = self.createField(frame, width=16, row=0, col=2,

label="'Phone Number:\n (nnn)-nnn-nnn',
format=self.fmtPhone, enter=self.activate) L/‘)

self._crdprt = self.createField(frame, width=11, row=1l, col=2,
label='SSN#:', format=self.fmtSSN,
enter=self.activate)

frame.pack (side=TOP, padx=15, pady=15)

PUTTING EVENTS TO WORK 117

def createField(self, master, label='', text='', width=1,
format=None, enter=None, row=0, col=0):
Label (master, text=label).grid(row=row, column=col-1,
padx=15, sticky=W)
id = Entry(master, text=text, width=width, takefocus=1)
id.bind ('<KeyRelease>', format) t’
id.bind ('<Return>"', enter)
id.grid(row=row, column=col, pady=10, sticky=W)
return id

def activate(self, event):
print '<Return>: value is', event.widget.get()

def fmtPhone(self, event):

current = event.widget.get ()

if len(current) == 1: G,
current = 'l1-(%s' % current

elif len(current) == 6:
current = '%s)-' % current

elif len(current) == 11:
current = '$%$s-' % current

event .widget.delete (0, END)
event.widget.insert (0, current)

def fmtSSN(self, event):
current = event.widget.get()

if len(current) in [3, 6]:
current = '%s-' % current
event.widget.delete (0, END)

event.widget.insert (0, current)

root = Tk()
root.title('Entry Formatting')

top = EntryFormatting (root)
quit = Button(root, text='Quit', command=root.destroy)
quit.pack(side = 'bottom')

root.mainloop ()

Code comments

The createField method provides a wrapper to bind a formatting function that runs when-
ever the user presses a key.

This is the binding that initiates the formatting.

The £mtPhone method has to count the digits entered into the field to supply the additional
separators.

© 00 ©

Similarly, fmt SSN inserts hyphens at the appropriate positions.

If you run Example_6_9.py, you will see output similar to figure 6.4.

118 CHAPTER 6 EVENTS, BINDINGS AND CALLBACKS

Entry Formatting M=1F
Phone Number: I—l_ (401) -555-1212
{nnn)-nnn-nnn
SEN#: IDlD—lD—DlDl

Quit |

Figure 6.4 Simple formatted widgets

6.9 Summary

The material contained in this chapter is important to a GUI programmer. Almost all GUIs
are event-driven and appropriate responses to what can be a deluge of events can be important

for performance-sensitive applications.
The second half of the chapter introduced data input validation. This is also an important

topic, since failure to identify values that are inappropriate can be infuriating to a user, espe-
cially if the user has to retype information into a data-entry screen.

SUMMARY 119

71

CHAPTEHR 7

Using classes, composites
and special widgets

7.1 Creating a Light Emitting Diode class 120
7.2 Building a class library 129
7.3 Summary 139

The Object-Oriented Programming (OOP) capabilities of Python position the language as
an ideal platform for developing prototypes and, in most cases, complete applications. One
problem of OOP is that there is much argument over the methodologies (Object-Oriented
Analysis and Design—OOAD) which lead to OOP, so many developers simply avoid OOP
altogether and stay with structured programming (or unstructured programming in some
case). There is nothing really magical about OOP; for really simple problems, it might not
be worth the effort. However, in general, OOP in Python is an effective approach to devel-
oping applications. In this chapter, we are making an assumption that the reader is conver-
sant with OOP in C++, Java or Python, so the basic concepts should be understood. For an
extended discussion of this subject, Harms’ & McDonald’s Quick Python or Lutz and
Ascher’s Learning Python.

Creating a Light Emitting Diode class

The following example introduces an LED class to define Light Emitting Diode objects.
These objects have status attributes of on, off, warn and alarm (corresponding to typical net-

120

work management alarm levels) along with the blink on/off state, which may be selected at
instantiation. The LED class also defines the methods to set the status and blink state at run-
time. Figure 7.1 demonstrates the wide range of LED formats that can be generated from this
simple class.

LED Example - Stage 1 =] E3

O
. I
i
]
i
A |
-
v

T O)

Figure 7.1 LED example

Example_7_1.py

from Tkinter import *
SQUARE =1
ROUND = 2
ARROW =3
POINT_DOWN =0
POINT_UP =1
POINT_RIGHT =2 @ Define constants
POINT_LEFT =3
STATUS_OFF =1
STATUS_ON =2
STATUS_WARN =3
STATUS_ALARM =4
STATUS_SET =5

class StructClass:

pass
Color = StructClass()

Color.PANEL = '#545454 "
Color.OFF = '#656565"
Color.ON = '#00FF33"'
Color .WARN = "#ffcc00"
Color.ALARM = "HE£44227

class LED:
def _ _init_ (self, master=None, width=25, height=25,
appearance=FLAT,

CREATING A LIGHT EMITTING DIODE CLASS 121

122

status=STATUS_ON, bd=1,
bg=None,

shape=SQUARE, outline="",
blink=0, blinkrate=1,
orient=POINT_UP,
takefocus=0) :

Preserve attributes

self.master = master
self.shape = shape
self.onColor = Color.ON
self.offColor = Color.OFF
self.alarmColor = Color.ALARM
self.warningColor = Color.WARN
self.specialColor = '#00ffdd:
self.status = status
self.blink = blink
self.blinkrate = int(blinkrate)
self.on =0

self.onState = None

if not bg:

bg = Color.PANEL

Base frame to contain light

self.

frame=Frame (master, relief=appearance, bg=bg, bd=bd,
takefocus=takefocus)

basesize = width
d = center = int(basesize/2)
if self.shape == SQUARE:

elif

else:

self.canvas=Canvas (self.frame, height=height, width=width,
bg=bg, bd=0, highlightthickness=0)
self.light=self.canvas.create_rectangle(0, 0, width, height,
fill=Color.ON)
self.shape == ROUND:
r = int((basesize-2)/2)
self.canvas=Canvas (self.frame, width=width, height=width,
highlightthickness=0, bg=bg, bd=0)
if bd > 0:
self.border=self.canvas.create_oval (center-r, center-r,
center+r, center+r)
r =r - bd
self.light=self.canvas.create_oval (center-r-1, center-r-1,
center+r, center+r, fill=Color.ON,
outline=outline)
Default is an ARROW
self.canvas=Canvas (self.frame, width=width, height=width,
highlightthickness=0, bg=bg, bd=0)

x =d
y =d
if orient == POINT_DOWN: (1)

self.light=self.canvas.create_polygon (x-d,y-d, x,y+d,
x+d,y-d, x-d,y-d, outline=outline)
elif orient == POINT_UP:
self.light=self.canvas.create_polygon(x,y-d, x-d,y+d,
x+d,y+d, x,y-d, outline=outline)

CHAPTER 7 CLASSES, COMPOSITES & SPECIAL WIDGETS

elif orient == POINT_RIGHT:
self.light=self.canvas.create_polygon (x-d,y-d, x+d,vy,
x-d,y+d, x-d,y-d, outline=outline)
elif orient == POINT_LEFT:
self.light=self.canvas.create_polygon (x-d,y, x+d,y+d,
x+d,y-d, x-d,y, outline=outline)

self.canvas.pack(side=TOP, fill=X, expand=NO)
self.update ()

def turnon(self): e
self.status = STATUS_ON
if not self.blink: self.update()
def turnoff (self):
self.status = STATUS_OFF
if not self.blink: self.update()
def alarm(self):
self.status = STATUS_ALARM
if not self.blink: self.update()
def warn(self):
self.status = STATUS_WARN
if not self.blink: self.update()
def set(self, color):
self.status = STATUS_SET
self.specialColor = color
self.update ()
def blinkon (self):
if not self.blink:
self.blink 1
self.onState = self.status
self.update ()
def blinkoff (self):
if self.blink:

self.blink =0
self.status = self.onState
self.onState = None

self.on =0

self.update ()

def blinkstate(self, blinkstate):
if blinkstate:
self.blinkon()
else:
self.blinkoff ()

def update(self):
First do the blink, if set to blink
if self.blink:
if self.on:
if not self.onState:
self.onState = self.status
self.status = STATUS_OFF
self.on =0
else:
if self.onState:

CREATING A LIGHT EMITTING DIODE CLASS 123

self.status = self.onState # Current ON color

self.on = 1

if self.status == STATUS_ON: @
self.canvas.itemconfig(self.light, fill=self.onColor)

elif self.status == STATUS_OFF:
self.canvas.itemconfig(self.light, fill=self.offColor)

elif self.status == STATUS_WARN:
self.canvas.itemconfig(self.light, fill=self.warningColor)

elif self.status == STATUS_SET:

self.canvas.itemconfig(self.light, fill=self.specialColor)
else:

self.canvas.itemconfig(self.light, fill=self.alarmColor)
self.canvas.update_idletasks () ()
if self.blink:

self.frame.after (self.blinkrate * 1000, self.update)

if _ name_ == '__main__ ':
class TestLEDs (Frame) :
def _ init_ (self, parent=None) :
List of Colors and Blink On/Off
states = [(STATUS_OFF, 0),
(STATUS_ON, 0),

(STATUS_WARN, 0),
(STATUS_ALARM, 0),

(STATUS_SET,
(STATUS_ON,

0),
1),

(STATUS_WARN, 1),
(STATUS_ALARM, 1),

(STATUS_SET,

1)1

List of LED types to display,

with sizes and other attributes

leds = [(ROUND, 25, 25, FLAT, 0, None, ""),
(ROUND, 15, 15, RAISED, 1, None, ""),
(SQUARE, 20, 20, SUNKEN, 1, None, ""),
(SQUARE, 8, 8, FLAT, 0, None, ""),
(SQUARE, 8, 8, RAISED, 1, None, ""),
(SQUARE, 16, 8, FLAT, 1, None, ""),
(ARROW, 14, 14, RIDGE, 1, POINT_UP, ""),
(ARROW, 14, 14, RIDGE, 0, POINT_RIGHT, ""),
(ARROW, 14, 14, FLAT, 0, POINT_DOWN, "white")]

Frame._ init_ (self) # Do superclass init
self.pack()

self.master.title('LED Example - Stage 1')

Iterate for each type of LED
for shape, w, h, app, bd, orient, outline in leds:
frame = Frame(self, bg=Color.PANEL)
frame.pack (anchor=N, expand=YES, fill=X)
Iterate for selected states
for state, blink in states:
LED (frame, shape=shape, status=state,
width=w, height=h, appearance=app,
orient=orient, blink=blink, bd=bd,

124 CHAPTER 7 CLASSES, COMPOSITES ¢ SPECIAL WIDGETS

outline=outline) .frame.pack (side=LEFT,
expand=YES, padx=1l, pady=1)

TestLEDs () .mainloop ()

Code comments

We have some simple drawing constructs to draw a triangular area on the canvas.

The LED widget has a number of methods to change the appearance of the display, show sev-
eral colors and turn blink on and off.
© The selected state of the LED is updated:

if self.status == STATUS_ON:
self.canvas.itemconfig(self.light, fill=self.onColor)

@ We always flush the event queue to ensure that the widget is drawn with the current appearance.

NoZ& Throughout this book I will encourage you to find ways to reduce the amount

of code that you have to write. This does not mean that I am encouraging you
to write obfuscated code, but there is a degree of elegance in well-constructed Python.
The TestLED:s class in Example_7_1.py is a good example of code that illustrates Python
economy. Here I intended to create a large number of LEDs, so I constructed two lists:
one to contain the various statuses that I want to show and another to contain the LED
shapes and attributes that I want to create. Put inside two nested loops, we create the
LEDs with ease.

This technique of looping to generate multiple instances of objects will be
exploited again in other examples. You can also expect to see other rather elegant ways of
creating objects within loops, but more of that later.

Example_7_1.py produces the screen shown in figure 7.1. Although this might not seem
to be very useful at this point, it illustrates the ability of Tkinter to produce some output that
might be useful in an application.

Unfortunately, it is not possible to see the LEDs flashing on a printed page, so you will
have to take my word that the four columns on the right flash on and off (you can obtain the
examples online to see the example in action).

LED - Stage 2 [H[=I =
0009000000
(B 2N 2N
Ol mom = m o
| " m = u

CTARBACTTT

Figure 7.2 LED example (shorter code)

CREATING A LIGHT EMITTING DIODE CLASS 125

7.1.1 Let’'s try that again

One thing that most Python programmers quickly discover is that whenever they take a look
at a piece of code they wrote some time before, it always seems possible to rewrite it in fewer
lines of code. In addition, having written a segment of code, it is often possible to reuse that
code in later segments.

To demonstrate the ability to reduce the amount of code required to support our exam-
ple, let’s take a look at how we can improve the code in it. First, we'll remove the constants
that we defined at the start of the program and save the code in Common_7_1.py; I'm sure
that we'll be using these constants again in later examples.

Common_7_1.py

SQUARE =1
ROUND =2
Color.WARN = '"#ffcc00"
Color.ALARM = '"#££4422"

Now, we have an excellent opportunity to make the LED methods mixins, since we can
readily reuse the basic methods of the LED class to construct other widgets.

GUICommon_7_1.py

from Common_7_1 import *

class GUICommon:
def turnon(self):
self.status = STATUS_ON
if not self.blink: self.update()

def turnoff (self):
self.status = STATUS_OFF
if not self.blink: self.update()

def alarm(self):
self.status = STATUS_ALARM
if not self.blink: self.update()

def warn(self):
self.status = STATUS_WARN
if not self.blink: self.update()

def set(self, color):
self.status STATUS_SET
self.specialColor = color
self.update()

def blinkon(self):
if not self.blink:
self.blink =1
self.onState = self.status
self.update()

126 CHAPTER 7 CLASSES, COMPOSITES ¢ SPECIAL WIDGETS

def blinkoff (self):
if self.blink:

self.blink =0
self.status = self.onState
self.onState = None
self.on=0
self.update ()
def blinkstate(self, blinkstate): (@

if blinkstate:
self.blinkon()

else:
self.blinkoff ()

def update(self):
raise NotImplementedError

The following define drawing vertices for various
graphical elements
ARROW_HEAD_VERTICES = [

['x-d', 'y-d', 'x', 'y+d', 'x+d', 'y-d', 'x-d', 'y-d'], /!D
['x", 'y-d', 'x-d', 'y+d', 'x+d', ‘'y+d', 'x', 'y-d']
['x-d', 'y-d', 'x+d', 'y', 'x-d', 'y+d', 'x-d', 'y-4d'l,
['x-d', 'y', 'x+d', 'y+d', 'x+d', 'y-d', 'x-d', 'y' 1]

Code comments

© Note that although we have added methods such as turnon and blinkoff, we have defined
an update method that raises a Not ImplementedError. Since every widget will use very
different display methods, this serves as a reminder to the developer that he is responsible for
providing a method to override the base class.

@ The previous code used a four-case i f-elif-else statement to process the arrow direction.
I like to remove these whenever possible, so we'll take a different approach to constructing the
code. Instead of breaking out the individual vertices for the arrow graphic, we are going to
store them in yet another list, ARROW_HEAD_VERTICES, for later use.

Example_7_2.py

from Tkinter import *
from Common_7_1 import * ‘)
from GUICommon_7_1 import *
class LED(GUICommon) : 9

def __init__ (self, master=None, width=25, height=25,

appearance=FLAT,
status=STATUS_ON, bd=1,
bg=None,
shape=SQUARE, outline='"’,
blink=0, blinkrate=1,
orient=POINT_UP,
takefocus=0) :

Preserve attributes

self.master = master

CREATING A LIGHT EMITTING DIODE CLASS 127

self.shape = shape

self.Colors = [None, Color.OFF, Color.ON,
Color.WARN, Color.ALARM, ‘#00ffdd’] ¥/€,
self.status = status
self.blink = blink
self.blinkrate = int(blinkrate)
self.on =0
self.onState = None
if not bg:

bg = Color.PANEL

Base frame to contain light
self.frame=Frame (master, relief=appearance, bg=bg, bd=bd,
takefocus=takefocus)

basesize = width
d = center = int(basesize/2)

if self.shape == SQUARE:
self.canvas=Canvas (self.frame, height=height, width=width,
bg=bg, bd=0, highlightthickness=0)

self.light=self.canvas.create_rectangle(0, 0, width, height,
fill=Color.ON)
elif self.shape == ROUND:
r = int((basesize-2)/2)
self.canvas=Canvas (self.frame, width=width, height=width,
highlightthickness=0, bg=bg, bd=0)
if bd > 0:
self.border=self.canvas.create_oval (center-r, center-r,
center+r, center+r)
r =r - bd
self.light=self.canvas.create_oval (center-r-1, center-r-1,
center+r, center+r,
fill=Color.ON,
outline=outline)
else: # Default is an ARROW
self.canvas=Canvas (self.frame, width=width, height=width,
highlightthickness=0, bg=bg, bd=0)
x =d
y =d w

VL = ARROW_HEAD_VERTICES[orient] # Get the vertices for the arrow
self.light=self.canvas.create_polygon(eval (VL[0]),

eval (VL[1]), eval(VL[2]), eval(VLI[31]),
eval (VL[4]), eval(VL[5]), eval(VL[6]),
eval (VL[7]), outline = outline)

self.canvas.pack(side=TOP, fill=X, expand=NO)
self.update()

def update(self):
First do the blink, if set to blink
if self.blink:
if self.on:

128 CHAPTER 7 CLASSES, COMPOSITES ¢ SPECIAL WIDGETS

if not self.onState:
self.onState = self.status

self.status = STATUS_OFF
self.on =0
else:
if self.onState:
self.status = self.onState # Current ON color

self.on = 1

Set color for current status
self.canvas.itemconfig(self.light, fill=self.Colors[self.status])

self.canvas.update_idletasks ()

if self.blink:
self.frame.after (self.blinkrate * 1000, self.update)

Code comments
First, we import the newly-created constants file and the GUI mixins.

We inherit from the GuICommon mixin. This mixin does not have a constructor so we do not
need to call it.

We build a list of colors, which act as an enumeration when we key by current status.

0 o060

We extract the appropriate list of x/y coordinate data and eval each value to calculate the off-
set based on the current location.

7.1.2 What has changed?

Actually, we have not changed very much. We have removed some common code and created
a mixin class to allow us to create a superclass to contain some of the reusable code. To elimi-
nate at least one of the 1f-elif-else constructs we have made color attributes for the class
into a list. The ugly code to draw arrowheads has been replaced by a list reference to the
arrowhead vertices. Similarly, the references to statuses have been converted to a reference to a
list. Finally, we've changed the appearance of some of the LEDs by changing sizes and out-
lines so that you know that we have not just copied figure 7.1!

If Example_7_2.py is run, we’ll observe a screen similar to the one generated by the pre-
vious example (figure 7.2). I don’t expect you to see any change in the execution of the exam-
ple, but the Python code is somewhat more compact.

7.2 Building a class library

Now that we have seen the concept of mixin classes and subclassing at work, we can start to
build our class library of useful objects for our GUIs. There is often a need to create a series of
coordinated colors in our displays, so let’s create a routine to create a range of coordinated
shades from a base color.

First, we have to extend our GUICommon class to add some color transformation methods.
Here are the mixin methods that we will add to GUICommon_7_l.py to create
GUICommon_7_2.py:

BUILDING A CLASS LIBRARY 129

GUICommon_7_2_py (modifications only)

This routine modifies an RGB color (returned by winfo_rgb),
applies a factor, maps -1 < Color < 255, and returns a new RGB string
def transform(self, rgb, factor):

retval = "#"
for v in [rgb[0], rgb[l], rgb[2]]:
v = (v*factor) /256
if v > 255: v = 255
if v < 0: v =0
retval = "%s%02x" % (retval, v)

return retval

This routine factors dark, very dark, light, and very light colors
from the base color using transform
def set_colors(self):

rgb = self.winfo_rgb(self.base) ‘)
self.dbase = self.transform(rgb, 0.8)
self.vdbase = self.transform(rgb, 0.7)
self.lbase = self.transform(rgb, 1.1)
self.vlbase = self.transform(rgb, 1.3)

Code comments

@ We calculate color variations derived from the base color. winfo_rgb returns a tuple for the
RGB values.

@ We set arbitrary values for each of the color transformations.

The following example illustrates the use of these routines:

Example_7_3.py

from Tkinter import *
from GUICommon_7_2 import *

import string

class TestColors (Frame, GUICommon) :
def _ _init_ (self, parent=None) :

Frame.__init_ (self) @ Init base class
self.base = "#848484" @ et base color
self.pack()

self.set_colors() o Spread colors

self.make_widgets ()
def make_widgets (self):
for tag in ['VDBase', 'DBase', 'Base', 'LBase', 'VLBase'l]:

Button(self, text=tag, bg=getattr(self, ‘'%s'% string.lower (tag)),
fg='white', command=self.quit) .pack(side=LEFT)

if _ name_ == '_ _main__ ':
TestColors () .mainloop ()

Running Example_7_3.py displays the screen shown in figure 7.3:

130 CHAPTER 7 CLASSES, COMPOSITES ¢ SPECIAL WIDGETS

7.2.1

Figure 7.3 Transforming colors

Adding a hex nut to our class library

Now let’s make use of the color transformations to add some visual effects to a drawn object.
In this example we are going to create hex nuts. As you'll see later, these simple objects can be
used in many different ways.

We will begin by extending some of the definitions in Common_7_1.py, which will be
saved as Common_7_2.py:

Common_7_2.py

NUT_FLAT =0
NUT_POINT =1
Color.BRONZE = ‘#7e5b4l’
Color.CHROME = ‘#c5c5b8”
Color.BRASS = ‘#cdb800"

Here is the code for our HexNut class. This example is a little more complex and has options
for instantiating a variety of nuts. The test routine illustrates some of the possible variations.
Running this code displays the window shown in figure 7.4.

Figure 7.4 Basic nuts

Example_7_4.py

from Tkinter import *
from GUICommon_7_2 import *
from Common_7_2 import *

BUILDING A CLASS LIBRARY 131

class HexNut (GUICommon) :
def _ _init_ (self, master, frame=1, mount=1, outside=70, inset=8,
bg=Color.PANEL, nutbase=Color.BRONZE,
top=NUT_FLAT, takefocus=0, x=-1, y=-1):
points = ['%d-r2, %d+r, %$d+r2, %3d+r, $d+r+2,%d, 3d+r2, 3d-r, \
%d-r2,%d-r,%$d-r-2,%d, %d-r2, %d+r ',
'%d, $d-r-2,%d+r, $d-r2, $d+r, 3d+r2, %d, 3d+r+2, \
%d-r, $d+r2,%d-r,%$d-r2,%d, $d-r-2"']
self .base = nutbase
self.status = STATUS_OFF
self.blink = 0
self.set_colors()
basesize = outside+4
if frame:
self.frame = Frame(master, relief="flat", bg=bg, bd=0,
highlightthickness=0,
takefocus=takefocus)
self. frame.pack (expand=0)
self.canv=Canvas (self.frame, width=basesize, bg=bg,
bd=0, height=basesize,
highlightthickness=0)
else:
self.canv = master # it was passed in...
center = basesize/2
if x >= 0:
centerx = x
centery =y
else:
centerx = centery = center
r = outside/2
First, draw the mount, if needed
if mount:
self.mount=self.canv.create_oval (centerx-r, centery-r,
centerx+r, centery+r,
fill=self.dbase,
outline=self.vdbase)
Next, draw the hex nut
r =1r - (inset/2)
r2 = 1r/2
pointlist = points[top] % (centerx,centery,centerx,centery,
centerx, centery, centerx, centery,
centerx, centery, centerx, centery,
centerx, centery)

setattr(self, 'hexnut', self.canv.create_polygon(pointlist,
outline=self.dbase, fill=self.lbase))

Now, the inside edge of the threads

r = r - (inset/2)

self.canv.create_oval (centerx-r, centery-r,
centerx+r, centery+r,
fill=self.lbase, outline=self.vdbase)

Finally, the background showing through the hole

r=1r - 2

self.canv.create_oval (centerx-r, centery-r,

132 CHAPTER 7 CLASSES, COMPOSITES ¢ SPECIAL WIDGETS

centerx+r, centery+r,
fill=bg, outline="")
self.canv.pack(side="top", fill='x', expand='no')

class Nut (Frame, HexNut) :

def _ _init_ (self, master, outside=70, inset=8, frame=1, mount=1,
bg="gray50", nutbase=Color.CHROME, top=NUT_FLAT) :
Frame.__init__ (self)
HexNut.__init_ (self, master=master, outside=outside,

inset=inset, frame=frame, mount=mount,
bg=bg, nutbase=nutbase, top=top)

class TestNuts (Frame, GUICommon) :

def _ _init_ (self, parent=None) :
Frame._ init_ (self)
self.pack()

self.make_widgets ()
def make_widgets (self) :
List of Metals to create
metals = [Color.BRONZE, Color.CHROME, Color.BRASS]
List of nut types to display,
with sizes and other attributes
nuts = [(70, 14, NUT_POINT, 0), (70, 10, NUT_FLAT, 1),
(40, 8, NUT_POINT, O0), (100,16, NUT_FLAT, 1)1
Iterate for each metal type
for metal in metals:
mframe = Frame(self, bg="slategray2")
mframe.pack (anchor=N, expand=YES, fill=X)
Iterate for each of the nuts
for outside, inset, top, mount in nuts:

Nut (mframe, outside=outside, inset=inset,
mount=mount, nutbase=metal,
bg="slategray2",
top=top) . frame.pack (side=LEFT,

expand=YES,
padx=1, pady=1)

if _ name_ == '__main__ ':
TestNuts () .mainloop ()

Note Another way of handling variable data: In Example 7_2.py, we used a mecha-

nism to allow us to draw the vertices of the polygon used for the arrowheads. In
this example we employ another technique which will be used repeatedly in other exam-
ples. Because of the relative complexity of the polygon used to depict the hex nut and the
fact that we have to calculate the vertices for both the point and £lat forms of the nut,
we use the setattr function. This allows us to set the value of an attribute of an object
using a reference to the object and a string representation of the attribute.

7.2.2 Creating a switch class

It’s time for something more interesting than LEDs and nuts. Once you get started creating
classes it really is hard to stop, so now let’s create some switches. Although these could be

BUILDING A CLASS LIBRARY 133

134

pretty boring, we can add some pizzazz to any GUI that represents any device which has on/
off controls. We are also going to introduce some animation, albeit simple.

N In subsequent examples, GUICommon.py and Common.py will be edited
directly, rather than creating new versions each time.

We need to define two more constants in Common.py because switches point up when on in
the U.S., but point down when on in the UK (I know that this is an arcane property of
switches in these countries, but it is important to the locals!):

MODE_UK =0
MODE_US =1

Here is the code to draw a toggle switch:

Example_7_5.py

from Tkinter import *
from GUICommon import *
from Common import *

from Example_7_4 import HexNut

class ToggleSwitch (Frame, HexNut) :
def _ _init__ (self, master, outside=70, inset=8, bg=Color.PANEL,
nutbase=Color.CHROME, mount=1, frame=1,
top=NUT_POINT, mode=MODE_US, status=STATUS_ON) :

Frame._ init_ (self)

HexNut.__init__ (self,master=master, outside=outside+40,
inset=35, frame=frame, mount=mount, call
bg=bg, nutbase=nutbase, top=top) constructors

self.status = status for base classes

self.mode = mode

self.center = (outside+44)/2

self.r = (outside/2)-4

First Fill in the center

self.rl=self.canv.create_oval (self.center-self.r,
self.center-self.r, self.center+self.r,
self.center+self.r, fill=self.vdbase,
outline=self.dbase, width=1)

self.update() ## The rest is dependent on the on/off state

def update(self):

self.canv.delete('lever') ## Remove any previous toggle lever

direction = POINT_UP

if (self.mode == MODE_UK and self.status == STATUS_ON) or \
(self.mode == MODE_US and self.status == STATUS_OFF) :

direction = POINT_DOWN

Now update the status

if direction == POINT_UP: o
Draw the toggle lever

CHAPTER 7 CLASSES, COMPOSITES & SPECIAL WIDGETS

self.pl=self.canvas.create_polygon(self.center-self.r,
self.center, self.center-self.r-3,
self.center-(4*self.r), self.center+self.r+3,
self.center- (4*self.r), self.center+self.r,
elf.center, fill=self.dbase,
outline=self.vdbase, tags="lever")

centerx = self.center

centery = self.center - (4*self.r)

r = self.r + 2

Draw the end of the lever

self.r2=self.canv.create_oval (centerx-r, centery-r,
centerx+r, centery+r, fill=self.base,
outline=self.vdbase, width=1, tags="lever")

centerx = centerx - 1
centery = centery - 3
r=1r / 3

Draw the highlight

self.r2=self.canv.create_oval (centerx-r, centery-r,
centerx+r, centery+r, fill=self.vlbase,
outline=self.lbase, width=2, tags="lever")

else:

Draw the toggle lever

self.pl=self.canv.create_polygon(self.center-self.r,
self.center, self.center-self.r-3,
self.center+ (4*self.r), self.center+self.r+3,
self.center+(4*self.r), self.center+self.r,
self.center, fill=self.dbase,
outline=self.vdbase, tags="lever")

centerx = self.center

centery = self.center + (4*self.r)

r = gself.r + 2

Draw the end of the lever

self.r2=self.canv.create_oval (centerx-r, centery-r,
centerx+r, centery+r, fill=self.base,
outline=self.vdbase, width=1, tags="lever")

centerx = centerx - 1

centery = centery - 3

r=1r /3

Draw the highlight

self.r2=self.canv.create_oval (centerx-r, centery-r,
centerx+r, centery+r, fill=self.vlbase,
outline=self.lbase, width=2, tags="lever")

self.canv.update_idletasks ()

class TestSwitches (Frame, GUICommon) :

def _ _init_ (self, parent=None) :
Frame.__init__ (self)
self.pack()

self.make_widgets ()

def make_widgets (self) :
List of metals to create

metals = (Color.BRONZE, Color.CHROME, Color.BRASS)
List of switches to display, with sizes and other attributes
switches = [(NUT_POINT, 0, STATUS_OFF, MODE_US),

BUILDING A CLASS LIBRARY 135

(NUT_FLAT,1, STATUS_ON, MODE_US) ,
(NUT_FLAT, 0, STATUS_ON, MODE_UK) ,
(NUT_POINT, 0, STATUS_OFF, MODE_UK)]
Iterate for each metal type
for metal in metals:
mframe = Frame(self, bg="slategray2")
mframe.pack (anchor=N, expand=YES, fill=X)
Iterate for each of the switches
for top, mount, state, mode in switches:
ToggleSwitch (mframe,
mount=mount, outside=20,
nutbase=metal, mode=mode,
bg="slategray2", top=top,
status=state) . frame.pack (side=LEFT,
expand=YES,
padx=2, pady=6)
if _ name_ == '__main__ ':
TestSwitches () .mainloop ()

Code comments

@ direction determines if the toggle is up or down. Since this may be changed programmati-
cally, it provides simple animation in the GUIL.

Running this code displays the window in figure 7.5.

v O®

104 ¢

7.2.3 Building a MlegaWidget

Now that we have mastered creating objects and subclassing to create new behavior and

L
5\

Figure 7.5 Toggle switches

appearance, we can start to create some even more complex widgets, which will result ulti-
mately in more efficient GUIs, since the code required to generate them will be quite com-
pact. First, we need to collect all of the class definitions for LED, HexNut, Nut and
ToggleSwitch in a single class library called Components.py.

Next, we are going to create a new class, SwitchIndicator, which displays a toggle
switch with an LED indicator above the switch, showing the on/off state of the switch. Every-
thing is contained in a single frame that can be placed simply on a larger GUI. Here is the code
to construct the composite widget:

136 CHAPTER 7 CLASSES, COMPOSITES ¢ SPECIAL WIDGETS

Example_7_6.py

from Tkinter import *
from Common import *
from Components import *

class SwitchIndicator:
def _ _init_ (self, master, outside=70,
metal=Color.CHROME, mount=1,
shape=ROUND,

self.frame = Frame (master, bg=bg)
self.frame.pack (anchor=N, expand=YES,
self.led = LED(self.frame, width=outside,
status=status, bg=bg, shape=
outline=metal)
self.led. frame.pack (side=TOP)
self.switch = ToggleSwitch(self.frame,
outside=outside,
mode=mode, bg=bg, top=
status=status)
self.switch. frame.pack (side=TOP)
self.update()

def update(self):
self.led.update()
self.switch.update()

class TestComposite (Frame) :
def __init__ (self, parent=None) :
Frame._ _init__ (self)
self.pack()
self.make_widgets ()

def make_widgets (self) :
List of switches to display,
with sizes and other attributes

bg=Color.PANEL,
frame=
top=NUT_POINT, mode=MODE_US,

1,
status=1) :

£i11=X)

height=outside,
shape,

mount=mount,
nutbase=metal,

top,

MODE_US) ,
MODE_UK) ,

STATUS_OFF, MODE_UK)]

switches = [(NUT_POINT, 0, STATUS_OFF, MODE_US),
(NUT_FLAT,1, STATUS_ON,
(NUT_FLAT, 0, STATUS_ON,
(NUT_POINT, O,

frame = Frame(self, bg="gray80")

frame.pack (anchor=N, expand=YES, fill=X)
for top, mount, state, mode in switches:
SwitchIndicator (frame,
mount=mount,
outside=20,
metal=Color.CHROME,
mode=mode,
bg="gray80",
top=top,

status=state) . frame.pack (side=LEFT,

BUILDING A CLASS LIBRARY

137

expand=YES,
padx=2,
pady=6)

if _ name_ == '__main__ ':
TestComposite () .mainloop ()

You can see from this example that the test code is beginning to exceed the size of the code
needed to construct the widget; this is not an unusual situation when building Python code! If
you run Example_7_6.py the following switches shown in figure 7.6 are displayed:

tk I [a] B
]

L 2 2
@ @ @ Figure 7.6 Composite

Switch/Indicator Widgets

N’o The two switches on the left are US switches while the two on the right are UK
switches. American and British readers may be equally confused with this if
they have never experienced switches on the opposite side of the Atlantic Ocean.

In the preceding examples we have simplified the code by omitting to save the instances
of the objects that we have created. This would not be very useful in real-world applications.
In future examples we will save the instance in the class or a local variable. Changing our code
to save the instance has a side effect that requires us to separate the instantiation and the call
to the Packer in our examples. For example, the following code:

for top, mount, state, mode in switches:

SwitchIndicator (frame, mount=mount, outside=20, metal=Color.CHROME,
mode=mode, bg="gray80", top=top,
status=state) . frame.pack (side=LEFT,

expand=YES, padx=2, pady=6)

becomes:
idx = 0
for top, mount, state, mode in switches:
setattr(self, 'swin%d' % idx, None)

var = getattr(self, 'swin%d' % idx)

var = SwitchIndicator (frame,
mount=mount,
outside=20,
metal=Color.CHROME,
mode=mode,
bg="gray80",

138 CHAPTER 7 CLASSES, COMPOSITES ¢ SPECIAL WIDGETS

73

SUMMARY

top=top,
status=state)
var. frame.pack (side=LEFT, expand=YES,
padx=2, pady=6)
idx = idx + 1

This code is not quite so elegant, but it allows access to the methods of the instance:

self.swinO.turnon()
self.swin3.blinkon ()

There will be several examples of using composite widgets and inherited methods in examples
in later chapters.

Summary

In this chapter we have seen how we can build classes to define quite complex GUI objects
and that these can be instantiated so that they exhibit quite different appearance even though
the underlying behavior of the objects is quite similar. I have demonstrated the use of mixin
classes to encapsulate common properties within related classes, and I have given you some
insight into the way that Python handles multiple-inheritance.

139

CHAPTEHR 8

Dialogs and forms

8.1 Dialogs 141 8.5 Browsers 175

8.2 A standard application 8.6 Wizards 184
framework 155 8.7 Image maps 191

8.3 Darta dictionaries 165 8.8 Summary 198

8.4 Notebooks 172

This chapter presents examples of a wide range of designs for dialogs and forms. If you are
not in the business of designing and developing forms for data entry, you could possibly
expend a lot of extra energy. It’s not that this subject is difficult, but as you will see in
“Designing effective graphics applications” on page 338, small errors in design quickly lead
to ineffective user interfaces.

The term dialog is reasonably well understood, but form can be interpreted in several
ways. In this chapter the term is used to describe any user interface which collects or dis-
plays information and which may allow modification of the displayed values. The way the
data is formatted depends very much on the type of information being processed. A dialog
may be interpreted as a simple form. We will see examples from several application areas;
the volume of example code may seem a little overwhelming at first, but it is unlikely that
you would ever need to use a// of the example types within a single application—pick and
choose as appropriate.

We begin with standard dialogs and typical fill-in-the-blank forms. More examples
demonstrate ways to produce effective forms without writing a lot of code. The examples will

140

provide you with some readily-usable templates that may be used in your own applications.
Many of the standard form methods will be used again in examples in later chapters.

Pmw widgets will be used extensively in the examples since these widgets encapsulate a
lot of functionality and allow us to construct quite complex interfaces with a relatively small
amount of code. The use and behavior of these widgets are documented in more detail in
“Pmw reference: Python megawidgets” on page 542.

8.1 Dialogs

Dialogs are really just special cases of forms. In general, dialogs present warning or error mes-
sages to the user, ask questions or collect a limited number of values from the user (typically
one value). You could argue that all forms are dialogs, but we don’t need an argument! Nor-
mally dialogs are modal: they remain displayed until dismissed. Modality can be application-
wide or system-wide, although you must take care to make sure that system-modal dialogs are
reserved for situations that must be acknowledged by the user before any other interaction is
possible.

N»OZ& Exercise care in selecting when to use a modal dialog to get input from the user.

You'll have many opportunities to use other methods to get input from the user
and using too many dialogs can be annoying to the user. A typical problem is an applica-
tion that always asks “Are you sure you want to...” on almost every operation. This can be
a valuable technique for novice users, but an expert soon finds the dialogs frustrating. It is
important to provide a means to switch off such dialogs for expert users.

Tkinter provides a Dialog module, but it has the disadvantage of using X bitmaps for
error, warning and other icons, and these icons do not look right on Windows or MacOS. The
tkSimpleDialogInodukckﬁnesaskstring,askintegerandaskfloattocoﬂectﬂﬂng&
integers and floats respectively. The tkMessageBox module defines convenience functions
sudlasshowinfo,showwarning,showeerror:uKiaskyesno.ThciconsLwedfbrtkMes—
sageBox are architecture-specific, so they look right on all the supported platforms.

8.1.1 Standard dialogs

Standard dialogs are simple to use. Several convenience functions are available in
tkMessageBox, including showerror, showwarning and askretrycancel. The example
shown here illustrates the use of just one form of available dialogs (askquestion). However,
figure 8.1 shows all of the possible formats both for UNIX and Windows.

Example_8_1.py

from Tkinter import *
from tkMessageBox import askquestion
import Pmw

class App:
def _ _init_ (self, master):
self.result = Pmw.EntryField(master, entry_ width=8,

value="",

DIALOGS 141

label_text='Returned value: ',
labelpos=W, labelmargin=1)
self.result.pack(padx=15, pady=15)

root = Tk()
question = App (root)

button = askquestion("Question:",
"Oh Dear, did somebody\nsay mattress to Mr Lambert?",
default=NO)

© 00

question.result.setentry (button)

root.mainloop ()

Code comments
@ The first two arguments set the title and prompt (since this is a question dialog).

@ cefault sets the button with the selected string to be the default action (the action associated
with pressing the RETURN key).

© The standard dialogs return the button pressed as a string—for example, ok for the OK but-
ton, cancel for the CANCEL button.

For this example, all of the standard dialogs are presented, both for Windows and UNIX
architectures (the UNIX screens have light backgrounds); the screen corresponding to
Example_8_1.py is the first screen in figure 8.1.

8.1.2 Data entry dialogs

A dialog can be used to request information from the user. Let’s take a quick look at how we
query the user for data using the tkSimpleDialog module. Unlike many of our examples,
this one is short and to the point:

Example_8_2.py

from Tkinter import *
from tkSimpleDialog import askinteger
import Pmw

class App:
def _ _init_ (self, master):
self.result = Pmw.EntryField(master, entry_width=8,

value="'",

label_text='Returned value: ',

labelpos=W, labelmargin=1)
self.result.pack(padx=15, pady=15)

root = Tk()
display = App(root)

retVal = askinteger ("The Larch",
"What is the number of The Larch?",
minvalue=0, maxvalue=50) t’

142 CHAPTER 8 DIALOGS AND FORMS

i Question

askquestion

?

&

[~ Guesion |

Oh dear, did somebody
say mattress to Mr Lambert?

Yes | Mo |

showinfo

1 Warning

showwarning

showerror

i Self Defense

askokcancel

askyesno

askretrycancel

i

know

Yeah, well it’s not easy to pad these
python files out to 150 lines, you

¢

[~ wammg |

['m sorry, the five minutes is up

QK

©

T

It’s not a palindrome!
The palindrome of "Bolton”
would be "Notlob"!!

[~ sarbefense |

? Do you know Llap—Goch?

oK | Cancel |

= vesno |

@ Pray,doesit talk?

¥es | Mo |

EL

[~ Tvagan |

Oh, this is futile!
Try again?

Retry Cancel

Figure 8.1 Standard dialogs

DIALOGS

143

display.result.setentry(retval)

root.mainloop ()

Code comments

askinteger can be used with just two arguments: title and prompt.

©Q

In this case, a minimum and maximum value have been added. If the user types a value out-
side this range, a dialog box is displayed to indicate an error (see figure 8.1).

Na?te Avoid popping up dialogs whenever additional information is required from

the user. If you find that the current form that is displayed frequently requires
the user to supply additional information, it’s very possible that your original form design
is inadequate. Reserve popup dialogs for situations which occur infrequently or for near-
boundary conditions.

Running Example_8_2.py displays screens similar to those shown in figure 8.2.

x|

‘what iz the number of The Larch? “ ;IEILI

52

I Returned swalue: I‘I 0

(] 3 I Cancel |
3ﬂ The Larch X
& The allowed maximum value iz 50, Please ty again. IWhat is the number of The Larch?
L 10

(] 3 I Cancel

Figure 8.2 tkSimpleDialog: askinteger

Despite the warning in the note above, if you have just a few fields to collect from the
user, you can use dialog windows. This is especially true if the application doesn’t require the
information every time it is run; adding the information to screens in the application adds
complexity and clutters the screen. Using a dialog saves quite a bit of work, but it may not be
particularly attractive, especially if you need to have more than two or three entry fields or if
you need several widget types. However, this example is quite short and to the point.

Example_8_3.py

from Tkinter import *
from tkSimpleDialog import Dialog
import tkMessageBox

144 CHAPTER 8 DIALOGS AND FORMS

import Pmw

class GetPassword(Dialog) :
def body(self, master):
self.title("Enter New Password")

Label (master, text='0ld Password:') .grid(row=0, sticky=W)

Label (master, text='New Password:').grid(row=1l, sticky=W)

Label (master, text='Enter New Password Again:').grid(row=2,
sticky=W)

self.oldpw = Entry(master, width = 16, show='%*")

self.newpwl = Entry(master, width = 16, show='%*") t’

self.newpw?2 Entry (master, width = 16, show='*")

self.oldpw.grid(row=0, column=1, sticky=W)
self.newpwl.grid(row=1, column=1, sticky=W)
self.newpw2.grid(row=2, column=1, sticky=W)
return self.oldpw

def apply(self):
opw = self.oldpw.get()
npwl = self.newpwl.get ()
npw2 = self.newpw2.get () /e Validate
if not npwl == npw2:
tkMessageBox.showerror ('Bad Password',
'New Passwords do not match')

else:
This is where we would set the new password...
pass

root = Tk()
dialog = GetPassword (root)

Code comments
@ This example uses the grid geometry manager. The sticky attribute is used to make sure that
the labels line up at the left of their grid cells (the default is to center the text in the cell). See
“Grid” on page 86 for more details.
Label (master, text='0ld Password:') .grid(row=0, sticky=W)
@ Since we are collecting passwords from the user, we do not echo the characters that are typed.
Instead, we use the show attribute to display an asterisk for each character.
self.oldpw = Entry(master, width = 16, show='%*")
© When the user clicks the OK button, the apply callback gets the current data from the wid-
gets. In a full implementation, the original password would be checked first. In our case were
just checking that the user typed the same zew password twice and if the passwords do not
match we pop up an error dialog, using showerror.

tkMessageBox.showerror ('Bad Password',
'New Passwords do not match')

Figure 8.3 illustrates the output of Example_8_3.py.

DIALOGS 145

Enter Mew Passwaord : .Bad Fassw'ﬂrd m

0ld Pazsward: B
Mew Pazsword: i 0 Mew Pazswordz do not match
Enter Mew Password Again; =]

(] Cancel |

Figure 8.3 A tkSimpleDialog that is used to collect passwords. The error dialog is
displayed for bad entries.

8.1.3 Single-shot forms
If your application has simple data requirements, you may need only simple forms. Many user
interfaces implement a simple model:
1 Display some fields, maybe with default values.
2 Allow the user to fill out or modify the fields.
Collect the values from the screen.

Do something with the data.

g » W

Display the results obtained with the values collected.

If you think about the applications you’re familiar with, you’ll see that many use pretty
simple, repetitive patterns. As a result, building forms has often been viewed as a rather tedious
part of developing GUISs; I hope that I can make the task a little more interesting.

There is a problem in designing screens for applications that do not need many separate
screens; developers tend to write a lot more code than they need to satisfy the needs of the
application. In fact, code that supports forms often consumes more lines of code than we might
prefer. Later, we will look at some techniques to reduce the amount of code that has to be writ-
ten, but for now let’s write the code in full.

This example collects basic information about a user and displays some of it. The example
uses Pmw widgets and is a little bit longer than it needs to be, so that we can cover the basic
framework now; we will leave those components out in subsequent examples.

Example_8_4.py

from Tkinter import *
import Pmw
import string

class Shell:
def __init__ (self, title=''):
self.root = Tk() ”"
Pmw.initialise(self.root)
self.root.title(title)

146 CHAPTER 8 DIALOGS AND FORMS

DIALOGS

def doBaseForm(self, master):
Create the Balloon.
self.balloon = Pmw.Balloon(master)

self.menuBar = Pmw.MenuBar (master, hull_borderwidth=1,
hull_relief = RAISED,
hotkeys=1, balloon = self.balloon)
self.menuBar.pack (fill=X)

self.menuBar.addmenu('File', 'Exit')
self .menuBar.addmenuitem('File', 'command',
'Exit the application',
label="Exit', command=self.exit)
self .menuBar.addmenu('View', 'View status')
self.menuBar.addmenuitem('View', 'command',
'Get user status',
label="'Get status',
command=self.getStatus)

self.menuBar.addmenu('Help', 'About Example 8-4', side=RIGHT)
self.menuBar.addmenuitem('Help', 'command',
'Get information on application',
label="About...', command=self.help)

self.dataFrame = Frame (master)
self.dataFrame.pack (£il1=BOTH, expand=1)

self.infoFrame = Frame(self.root,bd=1, relief='groove')
self.infoFrame.pack (fill=BOTH, expand=1, padx = 10)

self.statusBar = Pmw.MessageBar (master, entry_width = 40,
entry_ relief='groove',
labelpos = W,
label_text = '")
self.statusBar.pack(fill = X, padx = 10, pady = 10)

Add balloon text to statusBar

0

self.balloon.configure(statuscommand = self.statusBar.helpmessage)

Create about dialog.
Pmw . aboutversion('8.1")
Pmw . aboutcopyright ('Copyright My Company 1999’
‘\nAll rights reserved')

Pmw . aboutcontact (

'For information about this application contact:\n'

' My Help Desk\n'

' Phone: 800 555-1212\n'

' email: help@my.company.com'

)
self.about = Pmw.AboutDialog (master,

applicationname = 'Example 8-4"')

self.about.withdraw/()

def exit(self):
import sys
sys.exit (0)

+

147

148

Code comments

The constructor initializes both Tk and Pmw:

self.root = Tk()
Pmw.initialise(self.root)

Note that Pmw.initialise is not a typo; Pmw comes from Australia!

We create an instance of the Pmw.Balloon to implement Balloon Help. Naturally, this bit
could have been left out, but it is easy to implement, so we might as well include it.
self.balloon = Pmw.Balloon(master)

Actions are bound later.

The next few points illustrate how to construct a simple menu using Pmw components. First
we create the MenuBar, associating the balloon and defining hotkey as true (this creates
mnemonics for menu selections).

self.menuBar = Pmw.MenuBar (master, hull_borderwidth=1,
hull_relief = RAISED,
hotkeys=1, balloon = self.balloon)
self.menuBar.pack (£fill=X)

N 1e It is important to pack each form component in the order that they are to be
0 displayed—having a menu at the bottom of a form might be considered a little
strange!

The File menu button is created with an addmenu call:
self.menuBar.addmenu('File', 'Exit')
The second argument to addmenu is the balloon help to be displayed for the menu but-
ton. We then add an item to the button using addmenuitem:

self.menuBar.addmenuitem('File', 'command',
'Exit the application',
label="Exit', command=self.exit)
addmenuitem creates an entry within the specified menu. The third argument is the

help to be displayed.

We create a Frame to contain the data-entry widgets and a second frame to contain some dis-
play widgets:

self.dataFrame = Frame (master)

self.dataFrame.pack (£fi11=BOTH, expand=1)
At the bottom of the form, we create a statusBar to display help messages and other infor-
mation:

self.statusBar = Pmw.MessageBar (master, entry width = 40,
entry_relief=GROOVE,
labelpos = W,
label text = '')
self.statusBar.pack(fill = X, padx = 10, pady = 10)
We bind the balloon’s statuscommand to the MessageBar widget:

self.balloon.configure(statuscommand = self.statusBar.helpmessage)

CHAPTER 8 DIALOGS AND FORMS

© We create an About. . . dialog for the application. This is definitely something we could have
left out, but now that you have seen it done once, I won't need to cover it again. First, we

define the data to be displayed by the dialog:

Pmw.aboutversion('8.1")

Pmw . aboutcopyright ('Copyright My Company 1999°
‘\nAll rights reserved')

Pmw . aboutcontact (

'For information about this application contact:\n'

' My Help Desk\n' +
' Phone: 800 555-1212\n' +
' email: help@my.company.com')

© Then the dialog is created and withdrawn (unmapped) so that it remains invisible until

required:

self.about = Pmw.AboutDialog(master, applicationname

self.about.withdraw/()

Example_8_4.py (continued)

def getStatus(self):
username = self.userName.get ()
cardnumber = self.cardNumber.get ()

self.img = PhotoImage(file='%s.gif'
self.pictureID['image'] = self.img

2

self.userInfo.importfile('%$s.txt' %
self.userInfo.configure(label_text =

def help(self):
self.about.show ()

def doDataForm(self) :

self.userName=Pmw.EntryField(self.dataFrame,

value="",

% username)

= 'Example 8-1")

® 6 6 o

entry_width=8,

modifiedcommand=self.upd_username,

label_text='User name:’,

labelpos=W, labelmargin=1)
self.userName.place(relx=.20, rely=.325, anchor=W)

self.cardNumber = Pmw.EntryField(self.dataFrame, entry width=8§,

value="",
modifiedcommand=self.upd_cardnumber,
label_text='Card number: ',
labelpos=W, labelmargin=1)
self.cardNumber.place(relx=.20, rely=.70, anchor=Ww)

def doInfoForm(self):

DIALOGS

self.pictureID=Label (self.infoFrame, bd=0)
self.picturelID.pack(side=LEFT, expand=1)

self.userInfo = Pmw.ScrolledText (self.infoFrame,
borderframe=1,
labelpos=N,
usehullsize=1,

14]

149

hull_width=270,

hull_height=100,

text_padx=10,

text_pady=10,

text_wrap=NONE)
self.userInfo.configure(text_font = ('verdana',6 8))
self.userInfo.pack(£fill=BOTH, expand=1)

def upd_username (self) :
upname = string.upper (self.userName.get())
if upname:
self.userName.setentry (upname)

def upd_cardnumber (self) :
valid = self.cardNumber.get ()
if valid:
self.cardNumber.setentry(valid)

if _ name_ == '_ _main_ ':
shell=Shell (title='Example 8-4"')
shell.root.geometry ("%$dx%d" % (400,350))
shell.doBaseForm(shell.root)
shell.doDataForm()
shell.doInfoForm()
shell.root.mainloop ()

Code comments (continued)

@ oetstatus is a placeholder for a more realistic function that can be applied to the collected
data. First, we use the get methods of the Pmw widgets to obtain the content of the widgets:

username = self.userName.get ()
cardnumber = self.cardNumber.get ()

@ Using username, we retrieve an image and load it into the 1abel widget we created earlier:
self.img = PhotoImage(file='%s.gif' % username)
self.pictureID['image'] = self.img

@ Then we load the contents of a file into the ScrolledText widget and update its title:
self.userInfo.importfile('$s.txt' % username)
self.userInfo.configure(label_text = username)

@® Using the About dialog is simply a matter of binding the widget’s show method to the menu

item:
def help(self):
self.about.show()
@ The form itself uses two Pmw EntryField widgets to collect data:

self.userName=Pmw.EntryField(self.dataFrame, entry_width=8,
value="'",
modifiedcommand=self.upd_username,
label_text='User name:"‘,
labelpos=W, labelmargin=1)

self.userName.place(relx=.20, rely=.325, anchor=Ww)

150 CHAPTER 8 DIALOGS AND FORMS

L15]

The modifiedcommand in the previous code fragment binds a function to the widget to be
called whenever the content of the widget changes (a valuechanged callback). This allows us
to implement one form of validation or, in this case, to change each character to upper case:
upname = string.upper (self.userName.get())
if upname:
self.userName.setentry (upname)
Finally, we create the root shell and populate it with the subcomponents of the form:

shell=Shell (title='Example 8-4")

shell.root.geometry ("%$dx%d" % (400,350))

shell.doBaseForm(shell.root)

shell.doDataForm()

shell.doInfoForm()

shell.root.mainloop ()

Note that we delay calling the doBaseForm, doDataForm and doInfoForm methods to

allow us flexibility in exactly how the form is created from the base classes.

If you run Example_8_4.py, you will see screens similar to the one in figure 8.4. Notice
how the scrolledText widget automatically adds scroll bars as necessary. In fact, the overall
layout changes slightly to accommodate several dimension changes. The title to the
ScrolledText widget, for example, adds a few pixels to its containing frame; this has a slight
effect on the layout of the entry fields. This is one reason why user interfaces need to be com-
pletely tested.

Nolo Automatic scroll bars can introduce some bothersome side effects. In figure 8.4,

the vertical scroll bar was added because the number of lines exceeded the
height of the widget. The horizontal scroll bar was added because the vertical scroll bar
used space needed to display the longest line. If T had resized the window about 10 pixels
wider, the horizontal scroll bar would not have been displayed.

Eile Miﬁw

Example 8-4
Help File View Help

View user information
| USer name: I User name: IGUIDd
Card number; | Card number: |

GUIDO

Fronunciation:

In Dwutch, the "G" in Guido is a hard G,
pronounced roughly like the "ch" in
Seattish "lach". (Listen to the sound

clip below.) However, if yvou're Americar
you may also pronounce it as the Italiar
"Guida", I'm not too worried about the
associations with mob assassins that
same people have :-)

]
4 | »
|view user information |
Figure 8.4 Single-shot form
DIALOGS 151

8.1.4 Tkinter variables

152

The previous example used Pmw widgets to provide setentry and get methods to give
access to the widget’s content. Tk provides the ability to link the current value of many wid-
gets (such as text, toggle and other widgets) to an application variable. Tkinter does not
support this mode, instead it provides a variable class which may be subclassed to give
access to the variable, textvariable, value, and other options within the widget. Cur-
rently, Tkinter supports Stringvar, IntVar, DoubleVar and Booleanvar. These objects
define get and set methods to access the widget.

Example_8_5.py

from Tkinter import *

class Var (Frame) :
def __init__ (self, master=None) :
Frame._ _init_ (self, master)
self.pack()

self.field = Entry()
self.field.pack()

self.value = StringVar ()
self.value.set ("Jean-Paul Sartre")
self.field["textvariable"] = self.value

o000

self.field.bind('<Key-Return>', self.print_value)

def print_value(self, event):
print 'Value is "%s"' % self.value.get() (’

test = Var()
test.mainloop ()

Code comments

© Remember that you cannot get directly at the Tk widget’s variable; you must create a Tkinter
variable. Here we create an instance of Stringvar.

© Set the initial value.
© Bind the variable to the textvariable option in the widget.
@O Extract the current value using the get method of the string variable.

e M= If you run this example, you will see a dialog similar to

figure 8.5. This is as simple a dialog as you would want to see;
|J ean-Faul Sartre

on the other hand, it really is not very effective, because the only

way to get anything from the entry field is to press the RETURN
Figure 8.5 Using

g . key, and we do not give the user any information on how to use
Tkinter variables v & Y

the dialog. Nevertheless, it does illustrate Tkinter variables!
Pmw provides built-in methods for setting and getting values within widgets, so you do
not need to use Tkinter variables directly. In addition, validation, valuechanged (modi-
fied) and selection callbacks are defined as appropriate for the particular widget.

CHAPTER 8 DIALOGS AND FORMS

Example_8_6.py

from Tkinter import *
from tkSimpleDialog import Dialog
import Pmw

class MixedWidgets (Dialog) :
def body(self, master):

Label (master, text='Select Case:').grid(row=0, sticky=W)
Label (master, text='Select Type:').grid(row=1l, sticky=W)
Label (master, text='Enter Value:').grid(row=2, sticky=W)

self.combol = Pmw.ComboBox (master,
scrolledlist_items=("Upper", "Lower", "Mixed"),
entry_width=12, entry state="disabled",
selectioncommand = self.ripple)

self.combol.selectitem("Upper")

self.combol.component ('entry') .config(bg='gray80")

000

self.combo2 = Pmw.ComboBox (master, scrolledlist_items=(),
entry_width=12, entry state="disabled")
self.combo2.component ('entry') .config(background="'gray80"')

self.entryl = Entry(master, width = 12)

self.combol.grid(row=0, column=1, sticky=W)
self.combo2.grid(row=1, column=1, sticky=W)
self.entryl.grid(row=2, column=1, sticky=W)

return self.combol

def apply(self):
cl = self.combol.get()
c2 = self.combo2.get()
el = self.entryl.get()
print cl, c2, el

def ripple(self, value): /‘B
lookup = {'Upper': ("ANIMAL", "VEGETABLE", "MINERAL"),
'Lower': ("animal", "vegetable", "mineral"),
'Mixed': ("Animal", "Vegetable", "Mineral")}
items = lookup[value]
self.combo2.setlist (items) ‘3

self.combo2.selectitem(items([0])

root = Tk()
dialog = MixedWidgets (root)

Code comments

@ comboBoxes are important widgets for data entry and selection. One of their most valuable
attributes is that they occupy little space, even though they may give the user access to an
unlimited number of selectable values.

self.combol = Pmw.ComboBox (master,
scrolledlist_items=("Upper", "Lower", "Mixed"),

DIALOGS 153

154

In this case, we are just loading three values into the combo’s list. Typically data may be
either loaded from databases or calculated.

We do not intend for the values selected in this ComboBox to be editable, so we need to dis-
able the entry field component of the widget.
entry_width=12, entry state="disabled",
self.combol.component ('entry').config(bg='gray80')
We set the background of the Entry widget to be similar to the background to give the
user a clear indication that the field is not editable.

This one is an unusual one. Frequently, fields on a screen are dependent on the values con-
tained within other fields on the same screen (on other screens in some cases). So, if you
change the value in the combobox, you ripple the values within other widgets. (Ripple is a
term that I invented, but it somewhat conveys the effect you can see as the new values ripple
through the interface.)

selectioncommand = self.ripple)

Nﬂ Careless use of the ripple technique can be dangerous! Using ripple must be
considered carefully, since it is quite easy to design a system which results in
constant value modification if several fields are dependent on each other. Some sort of
control flag is necessary to prevent a continuous loop of selectioncommand callbacks
consuming CPU cycles.
See “Tkinter performance” on page 350 for other important factors you should
consider when designing an application.

We select default value from the lists or else the entry would be displayed as blank, which

is probably not appropriate for a non-editable combobox.
self.combol.selectitem("Upper")

This is our ripple callback function. The selectioncommand callback returns the value of

the item selected as an argument. We use this to look up the list to be applied to the second

combobox:

def ripple(self, value):

lookup = {'Upper': ("ANIMAL", "VEGETABLE", "MINERAL"),
'Lower': ("animal", "vegetable", "mineral"),
'Mixed': ("Animal", "Vegetable", "Mineral")}

items = lookup[valuel]

The list obtained from the lookup replaces the current list.

self.combo2.setlist (items)
self.combo2.selectitem(items[0])

As before, you need to select one of the values in the lists to be displayed in the widget.

If you run Example_8_6.py, you will see this simple example of rippled widgets. Part of
the effect can be seen in figure 8.6.

CHAPTER 8 DIALOGS AND FORMS

Select Case: |Upper x| Select Case: |Lower x|

Select Type: ll Select Type: | animal ll

Enter alue: Enter alue:

()3 I Cancel | ()3 I Cancel |
Select Case: |Lower x|
Select Type: | animal ll
Enter Yalue: | aard . .
e Ve | Figure 8.6 Handling
Ok I Cancel | dependencies between
widgets —Ripple

8.2 A standard application framework

One of the problems with designing forms is that some features are common to most applica-
tions. What we need is a standard application framework which can be adapted to each appli-
cation; this should result in moderate code reuse. Many applications fit the general form
shown in figure 8.7. In addition, we need the ability to provide busy cursors *, attach balloon

\\ Title

Menu Bar
[—""" Data Area

/ Control Buttons
/ Status Area
Progress Area

Figure 8.7 Standard application framework

help and help messages to fields, supply an about... message and add buttons with appropri-
ate callbacks. To support these needs, I'll introduce AppShell.py, which is a fairly versatile
application framework capable of supporting a wide range of interface needs. Naturally, this
framework cannot be applied to all cases, but it can go a long way to ease the burden of devel-
oping effective interfaces.

* A busy cursor is normally displayed whenever an operation takes more than a few hundred millisec-
onds, it is often displayed as a watch or hourglass. In some cases the application may also inhibit
button-presses and other events until the operation has completed.

A STANDARD APPLICATION FRAMEWORK 155

Since AppShell is an important feature of several of our examples, we are going to examine
the source code in detail; additionally, if you are going to use AppShell directly, or adapt it for
your own needs, you need to understand its facilities and operations.

AppShell.py

from Tkinter import *

import Pmw

import sys, string

import ProgressBar "

class AppShell (Pmw.MegaWidget) :
appversion= '1.0'
appname = 'Generic Application Frame'
copyright= 'Copyright YYYY Your Company. All Rights Reserved' ,/‘9
contactname= 'Your Name'
contactphone= '(999) 555-1212"
contactemail= 'youremail@host.com'

framewidth= 450
frameHeight= 320
padx =5 /e
pady =5
usecommandarea= 0
balloonhelp= 1

busyCursor = 'watch'

def __init__ (self, **kw):

optiondefs = (
('padx', 1, Pmw.INITOPT) ,
('pady', 1, Pmw . INITOPT) , /o
('framewidth', 1, Pmw.INITOPT),
('frameheight', 1, Pmw.INITOPT),

('usecommandarea', self.usecommandarea, Pmw.INITOPT))
self.defineoptions (kw, optiondefs)

self.root = Tk()

self.initializeTk(self.root)

Pmw.initialise(self.root) ’/‘B

self.root.title(self.appname)

self.root.geometry ('$dx%d' % (self.frameWidth,
self.frameHeight))

Initialize the base class
Pmw.MegaWidget._ init_ (self, parent=self.root) ‘,

Initialize the application
self.appInit ()

Create the interface
self._ createlInterface()

Create a table to hold the cursors for
widgets which get changed when we go busy

156 CHAPTER 8 DIALOGS AND FORMS

self.preBusyCursors = None

Pack the container and set focus

to ourselves

self._hull.pack(side=TOP, fill=BOTH, expand=YES)
self.focus_set ()

Initialize our options

self.initialiseoptions (AppShell)

def appInit (self):
Called before interface is created (should be overridden) .

pass
def initializeTk(self, root): (7]
Initialize platform-specific options
if sys.platform == 'mac':
self._ _initializeTk_mac (root)
elif sys.platform == 'win32':
self._ _initializeTk_win32 (root)
else:
self.__initializeTk_unix(root)

def __initializeTk_colors_common (self, root):

root.option_add (' *background', 'grey')
root.option_add('*foreground', 'black')
root.option_add (' *EntryField.Entry.background', 'white')
root.option_add (' *MessageBar.Entry.background', 'gray85')
root.option_add('*Listbox*background', 'white')
root.option_add (' *Listbox*selectBackground', 'dark slate blue')
root.option_add (' *Listbox*selectForeground', 'white')

def __initializeTk_win32(self, root):
self._ initializeTk_colors_common (root)
root.option_add('*Font', 'Verdana 10 bold')
root.option_add (' *EntryField.Entry.Font', 'Courier 10')
root.option_add('*Listbox*Font', 'Courier 10')

def __initializeTk_mac (self, root):
self.__initializeTk_colors_common (root)

def __initializeTk_unix(self, root):
self._ initializeTk_colors_common (root)

Code comments

@ AppShell imports ProgressBar. Its code is not shown here, but is available online.

import ProgressBar

@ AppShell inherits Prw. Megawidget since we are constructing a megawidget.

class AppShell (Pmw.MegaWidget) :
appversion= '1.0'
appname = 'Generic Application Frame'
copyright= 'Copyright YYYY Your Company. All Rights Reserved'
contactname= 'Your Name'
contactphone= '(999) 555-1212"
contactemail= 'youremail@host.com'

A STANDARD APPLICATION FRAMEWORK 157

We then define several class variables which provide default data for the version, title and
about... information. We assume that these values will be overridden.

© Default dimensions and padding are supplied. Again we expect that the application will over-
ride these values.

framewidth= 450
frameHeight= 320
padx =5
pady =5
usecommandarea= 0
balloonhelp= 1

usecommandarea is used to inhibit or display the command (button) area.
O I[nthe init_ for AppShell, we build the options supplied by the megawidget.
def __init_ (self, **kw):

optiondefs = (
('padx', 1, Pmw.INITOPT)
('pady ', 1, Pmw. INITOPT),
('framewidth', 1, Pmw.INITOPT),
(' frameheight', 1, Pmw.INITOPT),

('usecommandarea', self.usecommandarea, Pmw.INITOPT))
self.defineoptions (kw, optiondefs)
Pmw . INITOPT defines an option that is available only at initialization—it cannot be set
with a configure call. (See “Pmw reference: Python megawidgets” on page 542 for more
information on defining options.)

@ Now we can initialize Tk and Pmw and set the window’s title and geometry:
self.root = Tk()
self.initializeTk(self.root)
Pmw.initialise(self.root)
self.root.title(self.appname)
self.root.geometry ('%dx%d' % (self.framewidth,
self.frameHeight))

@ After defining the options and initializing Tk, we call the constructor for the base class:
Pmw.MegaWidget.__init__ (self, parent=self.root)

© AppShell is intended to support the major Tkinter architectures; the next few methods define
the colors and fonts appropriate for the particular platform.

AppShell.py (continued)

def busyStart(self, newcursor=None) : (’
if not newcursor:

newcursor = self.busyCursor LLLLLLLLLL
newPreBusyCursors = {}

for component in self.busyWidgets:
newPreBusyCursors [component] = component|['cursor']
component .configure (cursor=newcursor)

158 CHAPTER 8 DIALOGS AND FORMS

component .update_idletasks ()
self.preBusyCursors = (newPreBusyCursors,

def busyEnd(self) :
if not self.preBusyCursors:
return
oldPreBusyCursors = self.preBusyCursors([0]

self.preBusyCursors = self.preBusyCursors([1l]

for component in self.busyWidgets:
try:

self.preBusyCursors)

component.configure (cursor=o0ldPreBusyCursors [component])

except KeyError:
pass
component .update_idletasks ()

def _ createAboutBox (self): ‘,
Pmw . aboutversion (self.appversion)
Pmw.aboutcopyright (self.copyright)
Pmw . aboutcontact (

'For more information, contact:\n %$s\n Phone: %$s\n Email: %s' %\
(self.contactname, self.contactphone,
self.contactemail))
self.about = Pmw.AboutDialog(self._hull,
applicationname=self.appname)
self.about.withdraw()
return None
def showAbout (self):
Create the dialog to display about and contact information.
self.about.show()
self.about.focus_set ()
def toggleBalloon(self): ﬂ)
if self.toggleBalloonVar.get () :
self._ _balloon.configure(state = 'both')
else:
self._ balloon.configure(state = 'status')
def _ createMenuBar (self) : (D
self.menuBar = self.createcomponent ('menubar',
Pmw .MenuBar,
(self._hull,),
hull_relief=RAISED,
hull_borderwidth=1,
balloon=self.balloon())
self.menuBar.pack (fill=X)
self.menuBar.addmenu ('Help', 'About %s' % self.appname, side='right')

self .menuBar.addmenu('File', 'File commands and Quit')

def createMenuBar (self):

A STANDARD APPLICATION FRAMEWORK

159

self.menuBar.addmenuitem('Help', 'command',

'Get information on application',

label="'About...', command=self.showAbout)
self.toggleBalloonVar = IntVar()
self.toggleBalloonVar.set (1)
self.menuBar.addmenuitem('Help', 'checkbutton',

'Toggle balloon help',

label='Balloon help',

variable = self.toggleBalloonVar,

command=self.toggleBalloon)

self .menuBar.addmenuitem('File', 'command', 'Quit this application',
label="'Quit"',
command=self.quit)

Code comments (continued)

© The next few methods support setting and unsetting the busy cursor:

def busyStart(self, newcursor=None) :

© Next we define methods to support the about . . . functionality. The message box is created
before it is used, so that it can be popped up when required.
def _ createAboutBox(self) :

@ Balloon help can be useful for users unfamiliar with an interface, but annoying to expert users.
AppShell provides a menu option to turn off balloon help, leaving the regular status messages
displayed, since they do not tend to cause a distraction.

def toggleBalloon(self):
if self.toggleBalloonVar.get():
self._ balloon.configure(state = 'both')
else:
self._ balloon.configure(state = 'status')

@ Menu bar creation is split into two member functions. __createMenuBar creates a Pmw
MenuBar component and createMenuBar populates the menu with standard options, which
you may extend as necessary to support your application.

AppShell.py (continued)

def _ _createBalloon(self): 09
Create the balloon help manager for the frame.
Create the manager for the balloon help
self.__balloon = self.createcomponent ('balloon', (), None,
Pnw.Balloon, (self._hull,))

def balloon(self):
return self._ _balloon

def _ createDataArea (self): (B
Create a data area where data entry widgets are placed.
self.dataArea = self.createcomponent ('dataarea’,
(), None,

160 CHAPTER 8 DIALOGS AND FORMS

Frame, (self._hull,),
relief=GROOVE,
bd=1)
self.dataArea.pack (side=TOP, fill=BOTH, expand=YES,
padx=self['padx'], pady=self['pady'])

def _ createCommandArea (self) : (D
Create a command area for application-wide buttons.
self._ commandFrame = self.createcomponent ('commandframe', (), None,
Frame,
(self._hull,),
relief=SUNKEN,
bd=1)
self._ buttonBox = self.createcomponent ('buttonbox', (), None,
Pmw.ButtonBox,
(self.__ commandFrame,),
padx=0, pady=0)
self._ buttonBox.pack(side=TOP, expand=NO, fill=X)
if self['usecommandarea']:
self._ commandFrame.pack (side=TOP,
expand=NO,
fill=Xx,
padx=self['padx'],
pady=self['pady'])

def __ createMessageBar (self) : (B
Create the message bar area for help and status messages.
frame = self.createcomponent ('bottomtray', (), None,
Frame, (self._hull,), relief=SUNKEN)
self.__messageBar = self.createcomponent ('messagebar',
(), None,
Pmw.MessageBar,
(frame,),
#entry_width = 40,
entry_relief=SUNKEN,
entry_bd=1,
labelpos=None)
self._ messageBar.pack(side=LEFT, expand=YES, fill=X)

self._ progressBar = ProgressBar.ProgressBar (frame, ﬂa
fillColor='slateblue',
doLabel=1,
width=150)
self._ progressBar.frame.pack(side=LEFT, expand=NO, fill=NONE)

self.updateProgress(0)
frame.pack (side=BOTTOM, expand=NO, fill=X)

self._ balloon.configure(statuscommand = \
self._ _messageBar.helpmessage)

def messageBar (self):
return self.__messageBar

def updateProgress (self, newValue=0, newLimit=0):
self._ progressBar.updateProgress (newValue, newLimit)

A STANDARD APPLICATION FRAMEWORK 161

def bind(self, child, balloonHelpMsg, statusHelpMsg=None) :
Bind a help message and/or status message to a widget.
self._ balloon.bind(child, balloonHelpMsg, statusHelpMsg)

def interior(self): m
Retrieve the interior site where widgets should go.
return self.dataArea

def buttonBox(self):
Retrieve the button box.
return self._ buttonBox

def buttonAdd(self, buttonName, helpMessage=None, ﬂ)
statusMessage=None, **kw) :
Add a button to the button box.
newBtn = self._ buttonBox.add (buttonName)
newBtn.configure (kw)
if helpMessage:
self.bind(newBtn, helpMessage, statusMessage)
return newBtn

Code comments (continued)

@® Theballoon component is created:

def _ createBalloon(self):
self._ _balloon = self.createcomponent('balloon', (), None,
Pnw.Balloon, (self._hull,))

@® The dataarea component is simply a frame to contain whatever widget arrangement is
needed for the application:

def _ createDataArea (self):
self.dataArea = self.createcomponent ('dataarea’,
(), None,
Frame, (self._hull,),
relief=GROOVE,
bd=1)
@® The commandarea is a frame containing a Pmw But tonBox:
def __ createCommandArea (self):
self._commandFrame = self.createcomponent ('commandframe', (), None,
Frame,
(self._hull,),
relief=SUNKEN,
bd=1)
self.__buttonBox = self.createcomponent ('buttonbox', (), None,
Pmw.ButtonBox,
(self._ commandFrame,),
padx=0, pady=0)

@ Similarly, the messagebar is a frame containing a Pmw MessageBox:

def __ createMessageBar (self) :

@® To complete our major components, we create a progressbar component next to the mes-

sagebar:

162 CHAPTER 8 DIALOGS AND FORMS

self._ progressBar = ProgressBar.ProgressBar (frame,

@ Itisa Pmw convention to provide a method to return a reference to the container where wid-
gets should be created; this method is called interior:

def interior(self):
return self.dataArea

@ [Italso provides a method to create buttons within the commandarea and to bind balloon and
status help to the button:

def buttonAdd(self, buttonName, helpMessage=None,
statusMessage=None, **kw) :
newBtn = self._ buttonBox.add (buttonName)
newBtn.configure (kw)
if helpMessage:
self.bind (newBtn, helpMessage, statusMessage)
return newBtn

AppShell.py (continued)

def _ createInterface(self): q)
self._ createBalloon()
self.__ createMenuBar ()
self._ createDataArea()
self._ createCommandArea ()
self._ createMessageBar ()
self._ createAboutBox ()

#

Create the parts of the interface

which can be modified by subclasses.
#

self.busyWidgets = (self.root,)
self.createMenuBar ()
self.createInterface()

def createInterface(self):
Override this method to create the interface for the app.
pass

def main(self):
self.pack()
self.mainloop ()

def run(self):
self.main()

class TestAppShell (AppShell) :
usecommandarea=1

def createButtons(self): q)
self.buttonAdd('0Ok"',
helpMessage="'Exit"',
statusMessage="'Exit',
command=self.quit)

def createMain(self): GD

A STANDARD APPLICATION FRAMEWORK 163

164

self.label = self.createcomponent ('label', (), None,
Label,
(self.interior(),),
text='Data Area')
self.label.pack()
self.bind(self.label, 'Space taker')

def createlInterface(self): (B
AppShell.createInterface(self)
self.createButtons|()
self.createMain/()

if _ name_ == '__main__ ':
test = TestAppShell (balloon_state='both')
test.run()

Code comments (continued)

@ __createInterface creates each of the standard areas and then calls the createInterface
method (which is overridden by the application) to complete the population of the various
areas:

def _ createInterface(self):
self._ createBalloon()
self._createMenuBar ()
self._ createDataArea ()
self._ createCommandArea ()
self._ createMessageBar ()
self._ createAboutBox ()
self.busyWidgets = (self.root,)
self.createMenuBar ()
self.createInterface()

@ For this example, we define just one button to exit the application; you would add all of your
buttons to this method for your application.
def createButtons(self):
self.buttonAdd('0Ok",
helpMessage="'Exit"',
statusMessage="'Exit',
command=self.quit)
@ Again, for the purpose of illustration, the dataarea has not been populated with any more
than a simple label:
def createMain(self):
self.label = self.createcomponent ('label', (), None,
Label,
(self.interior(),),
text='Data Area')
self.label.pack()
self.bind(self.label, 'Space taker')

Notice how we define balloon help for the label.
@ Finally, here is the createInterface method which extends AppShells method:

def createInterface(self):
AppShell.createInterface(self)

CHAPTER 8 DIALOGS AND FORMS

self.createButtons ()
self.createMain/()

If you run AppShell.py, you will see a shell similar to the one in figure 8.8. Look for the
toggle menu item in the Help menu to enable or disable balloon help.

e o o _[olx

Eile Help

File commands and Quit Iata Area HEIP

v Balloon help

o

Figure 8.8 AppShell—A standard application framework

8.3 Data dictionaries

The forms that I have presented as examples have been coded explicitly for the material to be
displayed; this becomes cumbersome when several forms are required to support an applica-
tion. The solution is to use a data dictionary which defines fields, labels, widget types and
other information. In addition, it may provide translation from database to screen and back to
database, and define validation requirements, editable status and other behavior. We will see
some more complete examples in “Putting it all together...” on page 311. However, the exam-
ples presented here will certainly give you a clear indication of their importance in simplifying
form design.

Firstlet’s take a look at a simple data dictionary; in this case it really 7s a Python dictionary,
but other data structures could be used.

datadictionary.py

LC =1 # Lowercase Key "

uc =2 # Uppercase Key

XX =3 # As Is

DT =4 # Date Insert

ND =5 # No Duplicate Keys

ZP =6 # Pad Zeroes

ZZ =7 # Do Not Display

zZS =8 # Do Not display, but fill in with key if blank

BLANKOK = 0 # Blank is valid in this field

DATA DICTIONARIES 165

166

(3]

NONBLANK = 1 # Field cannot be blank

dataDict = {

'crewmembers': ('crewmembers', 0.11, 0.45, 0.05, [C’
('"Employee #', 'employee_no', 9, XX, 'valid_blank', NONBLANK)G,
('PIN', 'pin', 4, XX, '', BLANKOK),

('Category’ "type', 1, UC, 'valid_category', NONBLANK) ,
('SSN #', ssn', 9, XX, 'valid_ssn', BLANKOK),
('First Name' 'firstname', 12, XX, 'valid_blank', NONBLANK),
('Middle Name 'middlename', 10, XX, '', BLANKOK),
('Last Name', 'lastname', 20, XX, 'valid_blank', NONBLANK),
('Status" 'status', 1, UC, '', BLANKOK),
('New lee 'newhire', 1, UC, 'valid_y n_blank', BLANKOK),
('Senlorlty Date' 'senioritydate', 8, XX, 'valid_blank', NONBLANK),
('Seniority’ senlority', 5, XX, 'valid_blank', NONBLANK),
('Base’ 'base', 3, UC, 'valid_base', NONBLANK),
('Language 1', 'langl', 2, UC, 'valid_lang', BLANKOK),
('Language 2', 'lang2', 2, UC, 'valid_lang', BLANKOK),
('Language 3', 'lang3', 2, UC, 'valid_lang', BLANKOK),
('Language 4', 'lang4', 2, UC, 'valid_lang', BLANKOK),
('Language 5', 'lang5', 2, UC, 'valid_lang', BLANKOK),
('Language 6', 'lang6', 2, UC, 'valid_lang', BLANKOK)],

'Crew Members', [0]), "

'‘crewqualifications': ('crewqualification',0.25,0.45,0.075, [
("Employee #', 'employee_no', 9, XX, '', BLANKOK),

('Equipment', 'equipment', 3, UC, '', BLANKOK),

("Egpt. Code', 'equipmentcode', 1, UC, '', BLANKOK),

('Position', 'position', 2, UC, '', BLANKOK),

('Pos. Code', 'positioncode', 2, UC, '', BLANKOK),

('Reserve', 'reserve', 1, UC, 'valid_r_blank', BLANKOK),

('Date of Hire', 'hiredate', 8, UC, '', BLANKOK),

('End Date', 'enddate', 8, UC, '', BLANKOK),

('Base Code', 'basecode', 1, UC, '', BLANKOK),

('Manager', 'manager', 1, UC, 'valid_y_n_blank', BLANKOK)],
'Crew Qualifications', [0]) 1}

Code comments

We define several constants to characterize the behavior of entry fields, controlling case-
changing, for example:

LC =1 # Lowercase Key
ucC =2 # Uppercase Key
XX =3 # As Is

The first section of each entry in the dictionary defines the key, database table and layout data
to customize the position of the first line, label/field position and the line spacing respectively.

'crewmembers': ('crewmembers', 0.11, 0.45, 0.05, [

Each entry in the dictionary defines the label, database key, field length, entry processing, val-
idation and whether the field may be left blank.

("Employee #', 'employee_no', 9, XX, 'valid_blank', NONBLANK),
('"PIN', 'pin', 4, XX, '', BLANKOK),
('Category', 'type', 1, UC, 'valid_category', NONBLANK),

CHAPTER 8 DIALOGS AND FORMS

@ The final entry in each table defines the title and a list of indices for the primary and second-
ary keys (in this case, we are only using a single key):

'Crew Members', [0]),

Now let’s use datadictionary.py to create an interface. We will also use AppShell to pro-
vide the framework.

Example_8_7.py

from Tkinter import *

import Pmw
import os

import AppShell
from datadictionary import *

class DDForm (AppShell.AppShell) : ‘)
usecommandarea = 1
appname = 'Update Crew Information'
dictionary = 'crewmembers'
framewidth = 600
frameHeight = 590
def createButtons(self): t’

self.buttonAdd('sSave',

self.

self.

self.

self.

self.

self.

self.

DATA DICTIONARIES

helpMessage='Save current data',
statusMessage='Write current information to database',
command=self.unimplemented)
buttonAdd('Undo"',
helpMessage="'Ignore changes',
statusMessage='Do not save changes to database',
command=self.unimplemented)
buttonAdd ('New',
helpMessage='Create a New record',
statusMessage='Create New record',
command=self.unimplemented)
buttonAdd('Delete’,
helpMessage="'Delete current record',
statusMessage='Delete this record',
command=self.unimplemented)
buttonAdd('Print',
helpMessage='Print this screen',
statusMessage='Print data in this screen',
command=self.unimplemented)
buttonAdd (' Prev',
helpMessage='Previous record',
statusMessage='Display previous record',
command=self.unimplemented)
buttonAdd ('Next',
helpMessage='Next record',
statusMessage='Display next record',
command=self.unimplemented)
buttonAdd('Close’,
helpMessage='Close Screen',
statusMessage="'Exit"',

167

168

command=self.unimplemented)

def createForm(self):

self.form = self.createcomponent ('form', (), None,
Frame, (self.interior(),),)

self.form.pack(side=TOP, expand=YES, fill=BOTH)

self.formwidth = self.root.winfo_width()

def createFields (self):

self.table, self.top, self.anchor, self.incr, self.fields, \
self.title, self.keylist = dataDict[self.dictionary]

self.
self.
self.
self.
self.
self.
self.

self.
self.
if se

Label

self.
self.
self.
self.

self.
idx =

records= []

dirty= FALSE
changed= []
newrecs= []
deleted= []
checkDupes = FALSE
delkeys= []

ypos = self.top

recrows = len(self.records)

1f.recrows < 1: # Create one!

self.recrows = 1

trec = []

for i in range(len(self.fields)):
trec.append (None)
self.records.append((trec))

(self.form, text=self.title, width=self.formwidth-4,

bd=0) .place(relx=0.5, rely=0.025,

lmarker = Label (self.form, text="",
lmarker.place(relx=0.02, rely=0.99,
rmarker = Label (self.form, text="",
rmarker.place(relx=0.99, rely=0.99,

current = 0
0

anchor=CENTER)

bd=0, width=10)

anchor=8W)

bd=0, width=10)

anchor=SE)

(6]

for label, field, width, proc, valid, nonblank in self.fields: t’
pstr = 'Label (self.form, text="%s") .place(relx=%f,rely=%f, '\

self.

'anchor=E)\n' % (label, (self.anchor-0.02),

if idx == self.keylist[0]:

pstr = '%sself.%s=Entry(self.form, text="",
'insertbackground="yellow", width=%d+1, '\

'highlightthickness=1)\n' % (pstr, field,width)

else:

pstr = '%sself.%s=Entry(self.form, text="",

'insertbackground="yellow", '\
'width=%d+1)\n' % (pstr,field,

width)

pstr = '%sself.®%s.place(relx=%f, rely=%f,"

'anchor=W)\n' % (pstr,field, (self.anchor+0.02),self.ypos)

exec '$sself.%$sV=StringVar()\n'\

'self.%s["textvariable"] = self.%sV' % \
(pstr, field, field, field)

self.ypos = self.ypos + self.incr
idx = idx + 1
update_display ()

CHAPTER 8 DIALOGS AND FORMS

self.ypos)

"\

"\

def update_display (self): (’
idx = 0
for label, field, width, proc, valid, nonblank in self.fields:
v=self.records[self.current] [1dx]
if not v:v=""
exec 'self.%sV.set(v)' % field
idx = idx + 1
if self.current in self.deleted:
self.rmarker|['text'] = 'Deleted’
elif self.current in self.newrecs:
self.rmarker['text'] = 'New'
else:
self.rmarker|['text'] = "'
if self.dirty:
self.lmarker['text'] = "Modified"
self.lmarker['foreground'] = "#FF3333"
else:
self.lmarker['text'] = "
self.lmarker['foreground'] = "#00FF44"
We'll set focus on the first widget
label, field, width, proc, valid, nonblank = self.fields[0]

exec 'self.%s.focus_set()' % field
def unimplemented(self): c’
pass

def createInterface(self):
AppShell.AppShell.createInterface(self)
self.createButtons()
self.createForm()
self.createFields()

if _ name_ == '_ _main__ ':
ddform = DDForm()
ddform.run/()

Code comments

© First we define the Application class, inheriting from AppShell and overriding its class vari-
ables to set the title, width, height and other values:
class DDForm(AppShell.AppShell):

usecommandarea = 1

appname = 'Update Crew Information'
dictionary = 'crewmembers'

framewidth = 600

frameHeight = 590

@ In this example, we are defining a more realistic complement of control buttons:

def createButtons(self):
self.buttonAdd('Save',
helpMessage='Save current data',
statusMessage='Write current information to database',
command=self.save)

DATA DICTIONARIES 169

170

Rather than use the default megawidget interior, we create our own form component:
def createForm(self):
self.form = self.createcomponent ('form', (), None,
Frame, (self.interior(),),)
self.form.pack(side=TOP, expand=YES, fill=BOTH)
self.formwidth = self.root.winfo_width()

We extract the data from the selected data dictionary element and initialize data structures:

def createFields(self):
self.table, self.top, self.anchor, self.incr, self.fields, \
self.title, self.keylist = dataDict[self.dictionary]
self.records= []
self.dirty= FALSE

This example does not interface with any database, but we still need to create a single empty
record even for this case. We create one empty entry for each field:
self.ypos = self.top

self.recrows = len(self.records)
if self.recrows < 1: # Create one!
self.recrows = 1
trec = []

for i in range(len(self.fields)):
trec.append (None)
self.records.append((trec))
Although we are not going to be able to save any information input to the form, we still define
markers at the left- and right-bottom of the screen to indicate when a record has been modi-

fied or added:

Label (self.form, text=self.title, width=self.formwidth-4,
bd=0) .place(relx=0.5, rely=0.025, anchor=CENTER)

self.lmarker = Label (self.form, text="", bd=0, width=10)
self.lmarker.place(relx=0.02, rely=0.99, anchor=SWw)
self.rmarker = Label (self.form, text="", bd=0, width=10)

self.rmarker.place(relx=0.99, rely=0.99, anchor=SE)
This is where we create the label/field pairs which make up our interface. We give the user a
visual clue that a field is the key by increasing the highlight thickness:

for label, field, width, proc, valid, nonblank in self.fields:

pstr = 'Label (self.form, text="%s") .place(relx=%f,rely=%f, '\
'anchor=E)\n' % (label, (self.anchor-0.02), self.ypos)
if idx == self.keylist[O0]:

pstr = '%sself.%$s=Entry(self.form, text="", "'\

'insertbackground="yellow", width=%d+1, '\
'highlightthickness=1)\n' % (pstr,field,width)
else:

N0 In this application we have chosen to use highlightthickness to provide a

visual clue to the user that the field contains the key to the data. You might
choose one of several other methods to get this effect, such as changing the background
color or changing the borderwidth.

CHAPTER 8 DIALOGS AND FORMS

The update_display method is responsible for setting the markers to indicate new, deleted
and modified records:

def update_display(self):

idx = 0

for label, field, width, proc, valid, nonblank in self.fields:
v=gself.records[self.current] [1dx]
if not wv:iv=""
exec 'self.%sV.set(v)' % field
idx = idx + 1

if self.current in self.deleted:

© The methods bound to the control buttons do nothing in our example, but they are required
for Python to run the application:

def unimplemented(self) :
pass

Running Example_8_7.py will display a screen similar to figure 8.9. Notice that the lay-
out could be improved if the fields were individually placed, or if more than one field were
placed on a single line, but that would obviate the simplicity of using a data dictionary.

Update Crew Information

101111111

19971012

oo
1226
r
Lottt
E—
[

N
[1o571012

>
=
z

2]
A

[ezeo [Jusss]] Jrow [Jewzw | Joom) o Jomi| Jaimn
|

Print this screen

Figure 8.9 A screen created from a data dictionary

DATA DICTIONARIES 171

8.4 Notebooks

Notebooks (sometimes referred to as style or property sheets) have become a common motif for
user interfaces. One large advantage is that they allow the form designer to display a large
number of entry fields without overwhelming the user. Additionally, the fields can be
arranged in related groupings, or less-important fields can be separated from fields which are
frequently changed.

The next example demonstrates the use of notebooks, data dictionaries and AppShell to
present the same basic data in Example_8_7.py on three separate notebook panes.
datadictionary.py has been rearranged as datadictionary2.py, but it will not be presented
here (the previous dictionary has been divided into one section for each pane of the notebook).

Example_8_9.py

from Tkinter import *

import Pmw

import os

import AppShell

from datadictionary2 import *

class DDNotebook (AppShell.AppShell) :
usecommandarea = 1

appname = 'Update Crew Information'
dictionary = 'crewmembers'

framewidth = 435

frameHeight = 520

def createButtons(self):

self.buttonAdd('Save"',
helpMessage='Save current data',
statusMessage='Write current information to database',
command=self.save)

self.buttonAdd('Close’,
helpMessage='Close Screen',
statusMessage="'Exit"',
command=self.close)

def createNotebook(self):
self.notebook = self.createcomponent ('notebook', (), None, "
Pmw.NoteBookR, (self.interior(),),)
self.notebook.pack(side=TOP, expand=YES, fill=BOTH, padx=5, pady=5)
self.formwidth = self.root.winfo_width()

def addPage(self, dictionary):
table, top, anchor, incr, fields, \
title, keylist = dataDict[dictionary]

self.notebook.add(table, label=title) /‘D

self.current = 0

ypos = top

idx = 0

for label, field, width, proc, valid, nonblank in fields: G,
pstr = 'Label (self.notebook.page(table) .interior (), '\

172 CHAPTER 8 DIALOGS AND FORMS

o

'text="%s") .place(relx=%f,rely=%f, anchor=E)\n' % \
(label, (anchor-0.02), ypos)

if idx == keylist[0]:
pstr = '%$sself.%s=Entry(self.notebook.page(table) .\
‘interior(), text="", insertbackground="yellow"",

‘width=%d+1, highlightthickness=1)\n' % \
(pstr, field,width)

else:
pstr = '%$sself.%s=Entry(self.notebook.page(table) .\
‘interior (), text="", insertbackground="yellow",'
'width=%d+1)\n' % (pstr,field,width)
pstr = '%sself.%s.place(relx=%f, rely=%f, '\

'anchor=W)\n' % (pstr,field, (anchor+0.02),ypos)
exec '%sself.%sV=StringVar()\n'\

'self.%$s["textvariable"] = self.%sV' % (pstr, field, field, field)
ypos = ypos + incr
idx = idx + 1
def createPages(self): ‘,

self.addPage('general')
self.addPage ('language')
self.addPage('crewqualifications')
self.update_display ()

def update_display (self):
pass

def save(self):
pass

def close(self):
self.quit ()

def createlInterface(self):
AppShell .AppShell.createInterface(self)
self.createButtons|()
self.createNotebook ()
self.createPages|()

if _ name_ == '__main__ ':
ddnotebook = DDNotebook ()
ddnotebook.run ()

Code comments

@ Creating a notebook within the AppShell is simply a case of creating a Pmw NoteBookR com-

ponent.
def createNotebook (self):
self.notebook = self.createcomponent ('notebook', (), None,
Pmw.NoteBookR, (self.interior(),),)

self.notebook.pack (side=TOP, expand=YES, fill=BOTH, padx=5, pady=5)

Pmw provides an alternate notebook widget, NoteBooks (see figure 8.10 on page 174

for an example). I do not recommend that you use this widget since it has a generally inferior
layout.

NOTEBOOKS 173

@ The name and text displayed in the notebook tab comes directly from the data dictionary:

def addPage(self, dictionary):
table, top, anchor, incr, fields, \
title, keylist = dataDict[dictionary]
self.notebook.add (table, label=title)
© Loading the fields from the data dictionary is similar to the previous example:

for label, field, width, proc, valid, nonblank in fields:
pstr = 'Label (self.notebook.page(table) .interior (), '\
'text="%s") .place(relx=%f, rely=%f, anchor=E)\n' % \
(label, (anchor-0.02), ypos)

O The pages are tagged with the dictionary key:

def createPages(self):
self.addPage('general')
self.addPage ('language')
self.addPage('crewqualifications')
self.update_display ()

Figure 8.10 shows the result of running Example_8_9.py. Notice how the fields are much
less cluttered and that they now have clear logical groupings.

Update Crew Information Update Crew Information

[pevcpecs [amaeta, |

12345
8866
010111234

O
v
o

Figure 8.10 Notebooks

174 CHAPTER 8 DIALOGS AND FORMS

8.5 Browsers

Browsers have become a popular motif for navigating information that is, or can be, organized
as a hierarchy. Good examples of browsers include the Preferences editor in Netscape and
Windows Explorer. The advantage of browsers is that branches of the typical tree display can
be expanded and collapsed, resulting in an uncluttered display, even though the volume of
data displayed can be quite high.

As an example, we are going to develop a simple image browser which will display all of
the images in a particular directory. Tk, and therefore Tkinter, supports three image formats:
GIF, PPM (truecolor), and XBM. To extend the capability of the example, we will use PIL
from Secret Labs A.B. to build the images. This does not add a great deal of complexity to the
example, as you will see when we examine the source code.

The browser uses several icons to represent various file types; for the purpose of this exam-
ple we are using a mixture of icons created for this application. They are similar in style to those
found in most current window systems.

The tree browser class is quite general and can readily be made into a base class for other
browsers.

Example_8_10.py

from Tkinter import *
import Pmw

import os

import AppShell

import Image, ImageTk "

path = "./icons/"

imgs = "./images/"

class Node: e
def __init__ (self, master, tree, icon=None,

openicon=None, name=None, action=None) :
self.master, self.tree = master, tree
self.icon = PhotoImage(file=icon)
if openicon:

self.openicon = PhotoImage (file=openicon)
else:

self.openicon = None

self.width, self.height = 1.5*self.icon.width(), \
1.5*self.icon.height ()

self.name = name

self.var = StringVar () G,

self.var.set (name)

self.text = Entry(tree, textvariable=self.var, bg=tree.bg,
bd=0, width=len (name)+2, font=tree.font,
fg=tree.textcolor, insertwidth=1,
highlightthickness=1,
highlightbackground=tree.bg, k/t,
selectbackground="#044484",

selectborderwidth=0,
selectforeground="'white')

BROWSERS 175

self.action = action

self.x = self.y = 0 #drawing location
self.child = []

self.state = 'collapsed’

self.selected = 0

def addChild(self, tree, icon=None, openicon=None, name=None, ‘3
action=None) :
child = Node(self, tree, icon, openicon, name, action)
self.child.append(child)
self.tree.display ()
return child

def deleteChild(self, child):
self.child.remove (child)
self.tree.display ()

def textForget(self):
self.text.place_forget ()
for child in self.child:
child. textForget ()

def deselect(self):
self.selected = 0
for child in self.child:
child.deselect ()

def boxpress(self, event=None) : ‘3
if self.state == 'expanded':
self.state = 'collapsed’
elif self.state == 'collapsed':
self.state = 'expanded'

self.tree.display()

def invoke(self, event=None) : t’
if not self.selected:
self.tree.deselectall ()
self.selected =1
self.tree.display ()
if self.action:
self.action(self.name)
self.name = self.text.get()
self.text.config(width=1len(self.name)+2)

Code comments

@ We begin by importing PIL modules:
import Image, ImageTk

@ The Node class defines the subordinate tree and the open and closed icons associated with the
node.

class Node:
def __init__ (self, master, tree, icon=None,
openicon=None, name=None, action=None) :

176 CHAPTER 8 DIALOGS AND FORMS

BROWSERS

Each node has a Tkinter variable assigned to it since we are going to allow the nodes to be
renamed (although code to use the new name is not provided in the example):

self.name = name

self.var = StringVar()

self.var.set (name)

self.text = Entry(tree, textvariable=self.var, bg=tree.bg,
The Entry widget does not display a highlight by default. To indicate that we are editing the
filename, we add a highlight.

When we construct the hierarchy of nodes later, we will use the addchild method in the
Node class:
def addChild(self, tree, icon=None, openicon=None, name=None,
action=None) :
child = Node(self, tree, icon, openicon, name, action)
self.child.append(child)
self.tree.display ()
return child

This creates an instance of Node and appends it to the child list.
The boxpress method toggles the state of nodes displayed in the browser; clicking on +
expands the node, while clicking on —collapses the node.

def boxpress(self, event=None):

if self.state == 'expanded':
self.state = 'collapsed'

elif self.state == 'collapsed':
self.state = 'expanded'

self.tree.display ()

If the node is not currently selected, invoke supports an action assigned to either clicking or
double-clicking on a node in the tree. For example, it might open the file using an appropriate
target.

def invoke(self, event=None):

if not self.selected:
self.tree.deselectall ()
self.selected = 1
self.tree.display ()
if self.action:

self.action(self.name)
self.name = self.text.get()
self.text.config(width=1en(self.name)+2)

Example_8_10.py (continued)

def displayIconText (self): "
tree, text = self.tree, self.text
if self.selected and self.openicon:
self.pic = tree.create_image(self.x, self.y,
image=self.openicon)
else:
self.pic = tree.create_image(self.x, self.y,
image=self.icon)

text.place(x=self.x+self.width/2, y=self.y, anchor=Ww)

177

178

text.bind("<ButtonPress-1>", self.invoke)
tree.tag_bind(self.pic, "<ButtonPress-1>", self.invoke, "+")

text.bind("<Double-Button-1>",

self.boxpress)

tree.tag_bind(self.pic, "<Double-Button-1>",

self.boxpress, "+")

def displayRoot (self):
if self.state == 'expanded':
for child in self.child:
child.display ()
self.displayIconText ()

def displayLeaf (self):

self.tree.hline(self.y, self.master.x+1l, self.x)

self.tree.vline(self.master.x,
self.displayIconText ()

def displayBranch(self):

self.master.y, self.y)

master, tree = self.master, self.tree

x, vy = self.x, self.y
tree.hline(y, master.x, x)
tree.vline (master.x, master.y,

Y)

if self.state == 'expanded' and self.child != []:

for child in self.child:
child.display()

box = tree.create_image (master.x, vy,
image=tree.minusnode)

elif self.state == 'collapsed'

and self.child !'= []:

box = tree.create_image (master.x, vy,
image=tree.plusnode)
tree.tag_bind(box, "<ButtonPress-1>", self.boxpress, "+")

self.displayIconText ()

def findLowestChild(self, node) :

1)

if node.state == 'expanded' and node.child != []:
return self.findLowestChild(node.child[-11])

else:
return node

def display(self):

master, tree = self.master, self.tree

n = master.child.index(self)
self.x = master.x + self.width

self.y = self.findLowestChild(previous) .y + self.height

if n == 0:
self.y = master.y + (n+l)*self.height
else:
previous = master.child[n-1]
if master == tree:
self.displayRoot ()
elif master.state == 'expanded':

if self.child == []:
self.displayLeaf ()

else:
self.displayBranch/()

CHAPTER 8 DIALOGS AND FORMS

tree.lower('line')

class Tree(Canvas) :
def __init__ (self, master, icon, openicon, treename, action,

bg='white', relief='sunken', bd=2,
linecolor='#808080', textcolor='black',
font=('MS Sans Serif', 8)):

Canvas._ _init_ (self, master, bg=bg, relief=relief, bd=bd,

highlightthickness=0)
self.pack(side='left', anchor=Nw, fill='both', expand=1)

self.bg, self.font= bg, font

self.linecolor, self.textcolor= linecolor, textcolor

self.master = master

self.plusnode = PhotoImage(file=os.path.join(path, 'plusnode.gif'))
self.minusnode = PhotolImage (file=os.path.join(path, 'minusnode.gif'))
self.inhibitDraw = 1 @

self.imageLabel = None

self.imageData = None

self.child = []

self.x = self.y = -10

self.child.append(Node(self, self, action=action,
icon=icon, openicon=openicon, name=treename))

def display(self):
if self.inhibitDraw: return
self.delete (ALL)
for child in self.child:
child. textForget ()
child.display()

def deselectall(self):
for child in self.child:
child.deselect ()

def vline(self, x, y, yl): ®
for i in range(0, abs(y-yl), 2):
self.create_line(x, y+i, x, y+i+l, fill=self.linecolor,
tags='line')

def hline(self, vy, x, x1):
for i in range(0, abs(x-x1), 2):
self.create_line(x+i, y, x+i+l, y, fill=self.linecolor,
tags='line')

Code comments (continued)

© displayIconText displays the open or closed icon and the text associated with the node,
and it binds single- and double-button-clicks to the text field:
def displayIconText (self):
tree, text = self.tree, self.text
if self.selected and self.openicon:
self.pic = tree.create_image(self.x, self.y,
image=self.openicon)

BROWSERS 179

text.bind("<ButtonPress-1>", self.invoke)
tree.tag_bind(self.pic, "<ButtonPress-1>", self.invoke, "+")
text.bind("<Double-Button-1>", self.boxpress)
tree.tag_bind(self.pic, "<Double-Button-1>",

self.boxpress, "+")

© displayLeaf draws a horizontal and vertical line connecting the icon with the current place
in the tree:

def displayLeaf (self):
self.tree.hline(self.y, self.master.x+1l, self.x)
self.tree.vline(self.master.x, self.master.y, self.y)
self.displayIconText ()

@ Similarly, aisplayBranch draws the lines and an open or closed box:

def displayBranch(self):
master, tree = self.master, self.tree
x, v = self.x, self.y
tree.hline(y, master.x, x)
tree.vline (master.x, master.y, V)
if self.state == 'expanded' and self.child != []:
for child in self.child:
child.display ()
box = tree.create_image (master.x, vy,
image=tree.minusnode)
elif self.state == 'collapsed' and self.child != []:
box = tree.create_image (master.x, vy,
image=tree.plusnode)
tree.tag_bind(box, "<ButtonPress-1>", self.boxpress, "+")
self.displayIconText ()

@ rtindrowestchild is a recursive method that finds the lowest terminal child in a given
branch:
def findLowestChild(self, node):
if node.state == 'expanded' and node.child != []:
return self.findLowestChild(node.child[-1])
else:
return node
@® We define a flag called inhibitDraw to prevent the tree from being redrawn every time we
add a node. This speeds up the time it takes to construct a complex tree by saving many CPU
cycles:
self.inhibitDraw = 1

@ viine and hline are simple routines to draw vertical and horizontal lines:

def vline(self, x, vy, vl):
for i in range(0, abs(y-yl), 2):
self.create_line(x, y+i, x, y+i+l, fill=self.linecolor,
tags='line")

Example_8_10.py (continued)

class ImageBrowser (AppShell.AppShell) :
usecommandarea=1

180 CHAPTER 8 DIALOGS AND FORMS

appname = 'Image Browser'
def createButtons(self):
self.buttonAdd('0Ok"',
helpMessage="'Exit"',
statusMessage="'Exit',
command=self.quit)

def createMain(self):
self.panes = self.createcomponent ('panes', (), None,
Pmw . PanedWidget,
(self.interior(),),
orient='horizontal')
self.panes.add('browserpane', min=150, size=160)
self.panes.add('displaypane', min=.1)

f = os.path.join(path, 'folder.gif')
of = os.path.join(path, 'openfolder.gif')

self.browser = self.createcomponent ('browse', (), None,
Tree,
(self.panes.pane('browserpane'),),
icon=f,

openicon=of,

treename='Multimedia’',

action=None)
self.browser.pack(side=TOP, expand=YES, fill=Y)

self.datasite = self.createcomponent ('datasite', (), None,
Frame,
(self.panes.pane('displaypane'),))

self.datasite.pack(side=TOP, expand=YES, fill=BOTH)

f = os.path.join(path, 'folder.gif') ﬂD
of = os.path.join(path, 'openfolder.gif')

gf = os.path.join(path, 'gif.gif')

jf = os.path.join(path, 'jpg.gif')

xf = os.path.join(path, 'other.gif')

self.browser.inhibitDraw = 1

top=self.browser.child[0]

top.state="'expanded'

jpeg=top.addChild(self.browser, icon=f, openicon=of,
name='Jpeg',action=None)

gif=top.addChild(self.browser, icon=f, openicon=of,
name='GIF', action=None)

other=top.addChild(self.browser, icon=f, openicon=of,

name='Other', action=None)

imageDir = { '.jpg': (jpeg, jf), '.jpeg': (jpeg, Ff), qa
'.gif': (gif, gf), '.bmp': (other, xf),
'.ppm': (other, xf)}

files = os.listdir (imgs) (D

for file in files:
r, ext = os.path.splitext(file)

BROWSERS 181

cont, icon = imageDir.get (ext, (None, None))
if cont:
cont.addChild(self.browser, icon=icon,
name=file, action=self.showMe)
self.browser.inhibitDraw = 0 ﬂ)
self.browser.display()
self.panes.pack(side=TOP, expand=YES, fill=BOTH)

def createImageDisplay(self):

self.imageDisplay = self.createcomponent ('image', (), None,
Label,
(self.datasite,))
self.browser.imageLabel = self.imageDisplay

self.browser.imageData= None
self.imageDisplay.place(relx=0.5, rely=0.5, anchor=CENTER)

def createInterface(self):
AppShell.AppShell.createInterface(self)
self.createButtons ()
self.createMain/()
self.createImageDisplay ()

def showMe (self, dofile):
if self.browser.imageData: del self.browser.imageData
self.browser.imageData = ImageTk.PhotoImage (\
Image.open('%$s%s' % \
(imgs, dofile)))
self.browser.imageLabel['image'] = self.browser.imageData

if _ name_ == '_ _main_ ':
imageBrowser = ImageBrowser ()
imageBrowser.run ()

Code comments (continued)

@ We define all of the icons that may be displayed for each file type:
f = os.path.join(path, 'folder.gif')
of = os.path.join(path, 'openfolder.gif')
gf = os.path.join(path, 'gif.gif'")
jf = os.path.join(path, 'jpg.gif')
xf = os.path.join(path, 'other.gif')
@ Now the root of the tree is created and we populate the root with the supported image types:
top=self.browser.child[0]
top.state="'expanded’
jpeg=top.addChild(self.browser, icon=f, openicon=of,
name="'Jpeg',action=None)

@ We create a dictionary to provide translation from file extensions to an appropriate image type
and icon (dictionaries are an efficient way of determining properties of an object which have
varied processing requirements).

imageDir = { '.Jjpg': (jpeg, jf), '.jpeg': (jpeg, jf),
'.gif': (gif, gf), '.bmp': (other, xf),
'.ppm': (other, xf)}

182 CHAPTER 8 DIALOGS AND FORMS

@ We scan the disk, finding all files with recognizable extensions and add the nodes to the tree:

BROWSERS

files =

os.

listdir (imgs)

for file in files:

r, ext = os.path.splitext(file)
cont, icon = imageDir.get (ext,
if cont:

cont.addChild(self.browser,

name=file,

(None,

None))

icon=icon,

action=self.showMe)

This code would probably be a little more complex in reality; I can see a couple of poten-
tial problems as I'm writing this (I could write “I leave this as an exercise for you to identify
problems with this code”).

Once the tree has been built, we reset the inhibitDraw flag and display the tree:

self.browser.inhibitDraw = 0
self.browser.display ()

That probably seems like a lot of code, but the resulting browser provides a highly-
acceptable interface. In addition, users will understand the interface’s navigation and it is
readily adaptable to a wide range of data models.

Running Example_8_10.py (with a Python built with PIL) will display a screen similar
to the one in figure 8.11.

Image Browser

Eile

I [=] E3

Help

1 Multimedia

=l Jpeg
[a] beach.jpag
[a] boat.jpg
[a] chairz.jpg
= s6ipg
e
@ s8ipg
[a] sunzet jpg

=4 GIF
!ﬁ castle.gif
B dive.gi
!ﬁ python, gif
!ﬁ readmore, gif

- Other

o]

Figure 8.11 Image browser

183

8.6 Wizards

Windows 95/98/NT users have become familiar with wizard interfaces since they have
become prevalent with installation and configuration tools. Wizards guide the user through a
sequence of steps, and they allow forward and backward navigation. In many respects they are
similar to Notebooks, except for their ordered access as opposed to the random access of the
Notebook.

This example illustrates a wizard that supports software installation. WizardShell.py is
derived from AppShell.py, but it has sufficient differences to preclude inheriting AppShell’s
properties. However, much of the code is similar to AppShell and is not presented here; the
complete source is available online.

WizardShell.py

from Tkinter import *
import Pmw
import sys, string

class WizardShell (Pmw.MegaWidget) :
wizversion= '1.0"'
wizname = 'Generic Wizard Frame'
wizimage= 'wizard.gif'

panes =4 o

def __init_ (self, **kw):
optiondefs = (
('framewidth', 1, Pmw.INITOPT) ,
(' frameheight', 1, Pmw. INITOPT))

self.defineoptions (kw, optiondefs)

setup panes 0
self.pCurrent = 0
self.pFrame = [None] * self.panes

def wizardInit (self):
Called before interface is created (should be overridden) .

pass
def _ createWizardArea (self): B
self._wizardArea = self.createcomponent ('wizard', (), None,
Frame, (self._hull,),
relief=FLAT, bd=1)
self._ illustration = self.createcomponent('illust', (), None,
Label, (self._ wizardArea,))
self._ _illustration.pack(side=LEFT, expand=NO, padx=20)

self._ wizimage = PhotoImage(file=self.wizimage)
self._ _illustration|'image'] = self._ _wizimage
self.__dataArea = self.createcomponent ('dataarea', (), None,

Frame, (self._ wizardArea,),
relief=FLAT, bd=1)

self._ dataArea.pack(side=LEFT, fill = 'both', expand = YES)

184 CHAPTER 8 DIALOGS AND FORMS

self._ wizardArea.pack(side=TOP, fill=BOTH, expand=YES)

def __ createSeparator (self):
self._ separator = self.createcomponent ('separator', (), None,
Frame, (self._hull,),
relief=SUNKEN,
bd=2, height=2)
self._ separator.pack(fill=X, expand=YES)

def _ createCommandArea (self):
self._ commandFrame = self.createcomponent ('commandframe', (), None,
Frame, (self._hull,),
relief=FLAT, bd=1)
self._ commandFrame.pack (side=TOP, expand=NO, fill=X)

def interior(self):
return self._ dataArea

def changePicture(self, gif):
self._ wizimage = PhotoImage(file=gif)
self._ illustration['image'] = self._ wizimage

def buttonAdd(self, buttonName, command=None, state=1): "
frame = Frame(self.__commandFrame)
newBtn = Button(frame, text=buttonName, command=command)
newBtn.pack ()
newBtn['state'] = [DISABLED,NORMAL] [state]
frame.pack (side=RIGHT, ipadx=5, ipady=5)
return newBtn

def _ createPanes(self): (a
for i in range(self.panes):
self.pFrame[i] = self.createcomponent ('pframe', (), None,

Frame, (self.interior(),),
relief=FLAT, bd=1)
if not i1 == self.pCurrent:
self.pFrame[i] .forget ()
else:
self.pFrame[i] .pack (fil1=BOTH, expand=YES)

def pInterior(self, idx): ‘3
return self.pFrame[idx]

def next (self): (7)

cpane = self.pCurrent

self.pCurrent = self.pCurrent + 1

self.prevB['state'] = NORMAL

if self.pCurrent == self.panes - 1:
self.nextB['text'] = 'Finish'
self.nextB['command'] = self.done

self.pFrame[cpane] . forget ()

self.pFrame[self.pCurrent] .pack(£il11=BOTH, expand=YES)

def prev(self):

cpane = self.pCurrent
self.pCurrent = self.pCurrent - 1

WIZARDS 185

if self.pCurrent <= 0:
self.pCurrent = 0

self.prevB['state'] = DISABLED

if cpane == self.panes - 1:
self.nextB['text'] = 'Next'
self.nextB['command'] = self.next

self.pFrame[cpane] . forget ()
self.pFrame[self.pCurrent] .pack(fi11=BOTH, expand=YES)

def done(self):
#to be Overridden
pass

def _ createInterface(self):
self._ createWizardArea()
self._ createSeparator ()
self.__ createCommandArea ()
self._ createPanes|()
self.busyWidgets = (self.root,)
self.createInterface()

class TestWizardShell (WizardShell) :
def createButtons(self):
self.buttonAdd('Cancel’, command=self.quit) ‘)
self.nextB = self.buttonAdd('Next', command=self.next)
self.prevB = self.buttonAdd('Prev', command=self.prev, state=0)

def createMain(self):

self.wl = self.createcomponent('wl', (), None,
Label, (self.pInterior(0),),
text='Wizard Area 1'")

self.wl.pack()

self.w2 = gself.createcomponent('w2', (), None,
Label, (self.pInterior(1l),),
text='Wizard Area 2')

self.w2.pack()

def createInterface(self):
WizardShell.createInterface(self)
self.createButtons ()
self.createMain/()

def done (self): Q
print 'All Done'

if _ name_ == '_ _main__ ':
test = TestWizardShell ()
test.run()

Code comments

@ WizardShell uses AppShell’s class variables, adding panes to define the number of discrete
steps to be presented in the wizard.

class WizardShell (Pmw.MegaWidget) :
panes =4

186 CHAPTER 8 DIALOGS AND FORMS

@ We initialize an empty pane for each step and initialize for the first step:

self.pCurrent = 0
self.pFrame = [None] * self.panes

© The main wizardarea is created:

def __ _createWizardArea(self):
def __ _createSeparator (self):
def _ createCommandArea (self) :

'Then,aSeparatorand&lCommandAreaaIeadded

O buttonadd is slightly more comprehensive than AppShell’s since we have to enable and dis-
able the next and prev buttons as we move through the sequence:

def buttonAdd(self, buttonName, command=None, state=1):
frame = Frame(self.__ commandFrame)
newBtn = Button (frame, text=buttonName, command=command)
newBtn.pack ()
newBtn['state'] = [DISABLED,NORMAL] [state]
frame.pack (side=RIGHT, ipadx=5, ipady=5)
return newBtn

© Now we create a pane for each step, packing the current frame and forgetting all others so that
they are not displayed:

def __ _createPanes (self):
for i in range(self.panes):
self.pFrame[i] = self.createcomponent ('pframe’,
Frame, (self.interior(
relief=FLAT, bd=1)
if not i == self.pCurrent:
self.pFrame[i] . forget ()
else:
self.pFrame[i] .pack (fi11=BOTH, expand=YES)

None,

(),
) i)

© Similar to the convention to define an interior method, we define the pInterior method
to give access to individual panes in the wizard:
def pInterior(self, idx):
return self.pFrame[idx]
@ The next and prev methods forget the current pane and pack the next pane, changing the
state of buttons as appropriate and changing the labels as necessary:
def next (self):
cpane = self.pCurrent
self.pCurrent = self.pCurrent + 1
self.prevB['state'] = NORMAL
if self.pCurrent == self.panes - 1:
self.nextB['text'] = 'Finish'
self.nextB['command'] = self.done
self.pFrame[cpane] . forget ()
self.pFrame[self.pCurrent] .pack(£i11=BOTH, expand=YES)
© Unlike AppShell, we have to store references to the control buttons so that we can manipulate
their state and labels:

WIZARDS 187

class TestWizardShell (WizardShell) :
def createButtons(self):
self.buttonAdd('Cancel"’, command=self.quit)
self.nextB = self.buttonAdd('Next', command=self.next)
self.prevB = self.buttonAdd('Prev', command=self.prev, state=0)

© The done method is clearly intended to be overridden!

def done(self):
print 'All Done'

Generic Wizard Frame =] 3
Wizard Area 1

Prevl Nextl Cancel

Figure 8.12 Wizard

If you run wizardshell.py, you’'ll see the basic shell shown in figure 8.12. Now we need
to populate the wizard. Here is an example installation sequence:

Example_8_11.py

from Tkinter import *
import Pmw

import sys, string
import WizardShell

class Installer (WizardShell.WizardShell) :
wizname = 'Install Widgets'
panes= 4

def createButtons(self):
self.buttonAdd('Cancel’, command=self.quit, state=1)
self.nextB = self.buttonAdd('Next', command=self.next, state=1)
self.prevB = self.buttonAdd('Prev', command=self.prev, state=0)

def createTitle(self, idx, title): ‘)
label = self.createcomponent('1%d' % idx, (), None,
Label, (self.pInterior(idx),),
text=title,

188 CHAPTER 8 DIALOGS AND FORMS

WIZARDS

font=('verdana', 18, 'bold', 'italic'))

label .pack ()
return label

def createExplanation(self, idx):

text = self.createcomponent ('t%d' % idx, (), None,
Text, (self.pInterior (idx),),
bd=0, wrap=WORD, height=6)

fd = open('install%d.txt' % (idx+1))

text.insert (END, fd.read())

fd.close()

text.pack (pady=15)

def createPanelOne(self):
self.createTitle (0, 'Welcome!"')
self.createExplanation (0)

def createPanelTwo (self):
self.createTitle(l, 'Select Destination\nDirectory')
self.createExplanation (1)
frame = Frame(self.pInterior(l), bd=2, relief=GROOVE)

self.entry = Label (frame, text='C:\\Widgets\\WidgetStorage',

font=('Verdana', 10))
self.entry.pack(side=LEFT, padx=10)
self.btn = Button (frame, text='Browse...')
self.btn.pack(side=LEFT, ipadx=5, padx=5, pady=5)
frame.pack()

def createPanelThree (self):
self.createTitle(2, 'Select Components')
self.createExplanation(2)
frame = Frame(self.pInterior(2), bd=0)

idx = 0
for label, size in [('Monkey', '526k'), ('Aardvark', '356k'),
('Warthog', '625k"),
('Reticulated Python', '432k')]:
ck = Checkbutton (frame) .grid(row=idx, column=0)

1bl = Label (frame, text=label) .grid(row=idx, column=1,

columnspan=4, sticky=W)

siz = Label (frame, text=size).grid(row=idx, column=5)

idx = idx + 1
frame.pack()

def createPanelFour (self):
self.createTitle(3, 'Finish Installation')
self.createExplanation (3)

def createInterface(self):
WizardShell.WizardShell.createInterface(self)
self.createButtons()
self.createPanelOne ()
self.createPanelTwo ()
self.createPanelThree ()
self.createPanelFour ()

def done (self): (4)

189

190

print 'This is where the work starts!'

if _ name_ == '_ _main_ ':
install = Installer()
install.run()

Code comments

We begin by defining some routines to perform common tasks. Each of the wizard panes has
a title:

def createTitle(self, idx, title):
label = self.createcomponent('1%d' % idx, (), None,
Label, (self.pInterior(idx),),
text=title,
font=('verdana', 18, 'bold', 'italic'))
label .pack()
return label

Wizards need to supply concise and clear directions to the user; this routine formats the infor-
mation appropriately using a regular Tkinter Text widget—the text is read from a file:

def createExplanation(self, idx):
text = self.createcomponent ('t%d' % idx, (), None,
Text, (self.pInterior (idx),),
bd=0, wrap=WORD, height=6)
fd = open('install%d.txt' % (idx+1))
text.insert (END, fd.read())
fd.close()
text.pack (pady=15)
Each pane in the wizard is constructed separately—here is an example:
def createPanelTwo (self):
self.createTitle(l, 'Select Destination\nDirectory')
self.createExplanation (1)
frame = Frame(self.pInterior(1l), bd=2, relief=GROOVE)
self.entry = Label (frame, text='C:\\Widgets\\WidgetStorage',
font=('Verdana', 10))
self.entry.pack(side=LEFT, padx=10)
self.btn = Button(frame, text='Browse...')
self.btn.pack (side=LEFT, ipadx=5, padx=5, pady=5)
frame.pack()

This example is still a bit of a cheat because the done function still does not do very much!
(However, I'm sure that you've got the idea by now!)

Figure 8.13 shows the sequence supported by the wizard. Screens such as these will clearly
give a polished image for an installation program.

CHAPTER 8 DIALOGS AND FORMS

Instail Widgets O] x] Instail Widgets O] x]

Welcome! Select Destination
Directory

This installation program will install

Widgets version 1.0 on your system.
Please select the directory where the

Press the Next button to begin Wwidget files are to be placed.

installation. You can press the Cancel
button at any time to stop the

Cih\widgets\WidgetStorage Browse... ‘

Prev Next | Cancel Prev Next | Cancel

Install Widgets - [O]] Instail Widgets - [O]]
Select Components Finish Installation

Please press finish to complete the
installation.

Please select which components to
install by clicking the boxes below.

¥ Monkey 526k
T Aardvark 356k
¥ warthog 625k
¥ Reticulated Python 432k
Prev Next | Cancel Prev | Finish | Cancel
3 4

Figure 8.13 An installation wizard

8.7 Image maps

The final topic in this chapter presents an input technique which is typically used with web
pages; image maps associate actions with clickable areas on an image. You could argue that
this topic belongs in “Panels and machines” on page 199, but I am including it here since it is
a viable method for getting input from the user.

If you take a look at “Building an application” on page 18 again, you will remember how
a simple calculator was constructed using button widgets to bind user input to calculator
functions. The application could be reworked using an image map; the major motivation for
this would be to increase the realism of the interface by presenting an image of the calculator
rather than a drawing.

One of the problems of creating image maps is that without a tool to define the targets for
the map, it can be a time-consuming task to measure and input all of the coordinates. Take a
look at figure 8.14. The area around each of the buttons (the targets for this case) have been out-

IMAGE MAPS 191

192

167, 217

200, 236

ALG TaBLE
TRACH

quj

[BLECLLL

Figure 8.14 Coordinate system for an image map

lined in gray. The enlarged section shows the arrow keys in a little more detail. For each target,
we need to determine the x-y coordinate of the top-left-hand corner and the x-y coordinate of
the bottom-right-hand corner; together they define the rectangular area containing the button.

The next example demonstrates how a simple tool can be constructed to first collect the
coordinates of rectangular areas on an image, and then to generate a simple program to test
the image map. This example supports only rectangular targets; you may wish to extend it to
support polygonal and other target shapes.

Example_8_12.py

from Tkinter import *
import sys, string
class MakeImageMap:

def _ _init_ (self, master, file=None):
self.root = master
self.root.title("Create Image Map")
self.rubberbandBox = None
self.coordinatedata = []
self.file = file

self.img = PhotoImage(file=file)
self.width = self.img.width()
self.height = self.img.height ()

self.canvas = Canvas(self.root, width=self.width,
height=self.height)

self.canvas.pack(side=TOP, fill=BOTH, expand=0)

self.canvas.create_image (0,0, anchor=NW, image=self.img)

self.framel = Frame(self.root, bd=2, relief=RAISED)
self.framel.pack(fill=X)

CHAPTER 8 DIALOGS AND FORMS

self.reference = Entry(self.framel, width=12)

self.reference.pack(side=LEFT, fill=X, expand=1)

self.add = Button(self.framel, text='Add', command=self.addMap)

self.add.pack(side=RIGHT, fill=NONE, expand=0)

self.frame2 = Frame(self.root, bd=2, relief=RAISED)

self.frame2.pack (£fill=X)

self.done = Button(self.frame2, text='Build ImageMap',
command=self.buildMap)

self.done.pack(side=TOP, fill=NONE, expand=0) Af?

Widget.bind(self.canvas, "<Button-1>", self.mouseDown)

Widget.bind(self.canvas, "<Buttonl-Motion>", self.mouseMotion)

Widget.bind(self.canvas, "<Buttonl-ButtonRelease>", self.mouseUp)
def mouseDown (self, event): G’

self.startx = self.canvas.canvasx(event.x)
self.starty = self.canvas.canvasy (event.y)

def mouseMotion(self, event): ‘,
x = self.canvas.canvasx(event.x)
v = self.canvas.canvasy(event.y)

if (self.startx != event.x) and (self.starty != event.y)
self.canvas.delete(self.rubberbandBox)
self.rubberbandBox = self.canvas.create_rectangle(
self.startx, self.starty, X, y, outline='white',6 width=2)
self.root.update_idletasks () (a
(6

def mouseUp(self, event):
self.endx = self.canvas.canvasx(event.x)
self.endy = self.canvas.canvasy (event.y)
self.reference.focus_set ()
self.reference.selection_range (0, END)

def addMap (self): 0
self.coordinatedata.append(self.reference.get (),
self.startx, self.starty,
self.endx, self.endy)

def buildMap (self) : (5]
filename = os.path.splitext(self.file) [0]
ofd = open('%s.py' % filename, 'w')
ifd = open('imagel.inp"') ‘,
lines = ifd.read()
ifd.close()
ofd.write(lines)

for ref, sx,sy, ex,ey in self.coordinatedata:
ofd.write (" self.iMap.addRegion(((%5.1f,%5.1f),"
"(%5.1£,%5.1f)), '%s')\n" % (sx,sy, ex,ey, ref))

ofd.write('\n%s\n' % ('#'*70)) (1)
ofd.write('if _ name__ == "__main__":\n')
ofd.write("' root = Tk()\n")
ofd.write (' root.title("%$s")\n' % self.file)
(t =

ofd.write ("' imageTes ImageTest (root, width=%d, height=%d, "

IMAGE MAPS 193

'file="%s")\n' % (self.width, self.height, self.file))
ofd.write ("' imageTest.root.mainloop()\n")
ofd.close()
self.root.quit ()

if _ name_ == '_ _main_ ':
file = sys.argv(l]
root = Tk()

makeImageMap = MakeImageMap (root, file=file)
makeImageMap.root.mainloop ()

Code comments

@ The first task is to determine the size of the image to be mapped. Since we want to display the
image on a canvas, we cannot just load the image, because the canvas will not resize to fit the
image. Therefore, get the size of the image and size the canvas appropriately:

self.img = PhotoImage(file=file)
self.width = self.img.width()
self.height = self.img.height ()

©® Our tool implements a simple graphic selection rectangle to show the selected target area. We
bind functions to mouse button press and release and also to mouse motion:

Widget.bind(self.canvas, "<Button-1>", self.mouseDown)
Widget.bind(self.canvas, "<Buttonl-Motion>", self.mouseMotion)
Widget.bind(self.canvas, "<Buttonl-ButtonRelease>", self.mouseUp)

© ousenown converts the x- and y-screen coordinates of the mouse button press to coordi-
nates relative to the canvas, which corresponds to the image coordinates:
def mouseDown (self, event):
self.startx = self.canvas.canvasx(event.x)
self.starty = self.canvas.canvasy (event.y)
O rouserotion continuously updates the size of the selection rectangle with the current coordinates:

def mouseMotion(self, event):
x = self.canvas.canvasx(event.x)
vy = self.canvas.canvasy (event.y)

if (self.startx != event.x) and (self.starty != event.y)
self.canvas.delete(self.rubberbandBox)
self.rubberbandBox = self.canvas.create_rectangle (
self.startx, self.starty, x, y, outline='white',width=2)
@ Each time we update the selection rectangle, we have to call update_idletasks to display the
changes. Doing a drag operation such as this causes a flood of events as the mouse moves, so
we need to make sure that the screen writes get done in a timely fashion:

self.root.update_idletasks|()

@ When the mouse button is released, we convert the coordinates of the finishing location and
set focus to the entry widget to collect the identity of the map:
def mouseUp(self, event):
self.endx = self.canvas.canvasx(event.x)
self.endy = self.canvas.canvasy (event.y)
self.reference.focus_set ()
self.reference.selection_range (0, END)

194 CHAPTER 8 DIALOGS AND FORMS

@ Once the map ID has been entered, clicking the add button adds the ID and the map coordi-
nates to the list of map entries:
def addMap (self):
self.coordinatedata.append(self.reference.get(),
self.startx, self.starty,
self.endx, self.endy)

© When the Build button is pressed, we generate a Python file to test the image map:

def buildMap (self) :
filename = os.path.splitext(self.file) [0]
ofd = open('%s.py' % filename, 'w')
@ The first section of the code is boilerplate, so it can be read in from a file:
ifd = open('imagel.inp', 'r')
lines = ifd.readlines()
ifd.close()
ofd.writelines(lines)
@ Then we generate an entry for each map collected previously:

for ref, sx,sy, ex,ey in self.coordinatedata:
ofd.write (" self.iMap.addRegion(((%5.1f,%5.1f),"
"(%5.1f£,%5.1f)), '%s')\n" % (sx,sy, ex,ey, ref))
@ Finally, we add some code to launch the image map:
‘\n%s\n' % ('#'*70))
'if _ _name__ == "__main__":\n'")
' root = Tk()\n")
' root.title("%s")\n' % self.file)

ofd.write
ofd.write
ofd.write
ofd.write

(
(
(
(

ofd.write (' imageTest = ImageTest (root, width=%d, height=%4d,"'
'file="%s")\n' % (self.width, self.height, self.file))
ofd.write ("' imageTest.root.mainloop()\n")

ofd.close()
All you have to do is supply a GIF file and then drag the selection rectangle around each
of the target regions. Give the region an identity and click the Add button. When you have
identified all of the regions, click the Build button.

N'OZ(’/ This example illustrates how Python can be used to generate code from input

data. Python is so easy to use and debug that it can be a valuable tool in build-
ing complex systems. If you take a little time to understand the structure of the target
code, you can write a program to generate that code. Of course, this only works if you
have to produce lots of replicated code segments, but it can save you a lot of time and
effort!

IMAGE MAPS 195

196

} .
Create Image Map =1 E3

CALG TABLE
i ZO6OM | TRACE GRAPH

our ms

B o= =

ALOCK LNK | LSF

xTe | srar

TEBT A ANGLE B DRAWG. YRR
MATH MATAX PRGM = VARS CLEAR

ABE B SN E GBS F TANT G T M
x k!

s | cos

|lefq Add

Build ImageMap |
Add.

Figure 8.15 Creating an image map

Let’s take a quick look at the code generated by the tool.

Calculator.py

from Tkinter

import *

from imagemap import *
class ImageTest:

def hit(self, event):

self.

infovar.set (self.iMap.getRegion(event.x, event.y))

def __init__ (self, master, width=0, height=0, file=None):

self.
self.
self.

self.
self.

self.
self.
self.
self.
self.
self.

self.
self.

root = master
root.option_add('*font', ('verdana',6 12, 'bold'))
iMap = ImageMap ()

canvas = Canvas (self.root, width=width, height=height)
canvas.pack(side="top", f£il1l1=BOTH, expand='no')

img = PhotoImage(file=file)
canvas.create_image (0, 0,anchor=NW, image=self.img)
canvas.bind('<Button-1>', self.hit)

infovVar = StringVar ()

info = Entry(self.root, textvariable=self.infoVar)
info.pack (fill=X)

iMap.addRegion(((61.0,234.0),(96.0,253.0)), 'mode')
iMap.addRegion(((104.0,234.0), (135.0,250.0)), 'del")

CHAPTER 8 DIALOGS AND FORMS

self.iMap.addRegion(((19.0,263.0),(55.0,281.0)), 'alpha')

self.iMap.addRegion(((63.0,263.0),(96.0,281.0)), 'x-t-phi'")
self.iMap.addRegion(((105.0,263.0), (134.0,281.0)), 'stat')

- Some lines removed for brevity-------------—-—-
self.iMap.addRegion(((24.0,467.0),(54.0,488.0)), 'on')
self.iMap.addRegion(((64.0,468.0),(97.0,486.0)), '0")
self.iMap.addRegion(((104.0,469.0), (138.0,486.0)), '.")
self.iMap.addRegion(((185.0,469.0),(220.0,491.0)), 'enter')

if __name__ == "__main__":

root = Tk()

root.title("calculator.gif™")
imageTest = ImageTest (root, width=237, height=513,file="calculator.gif")
imageTest.root.mainloop ()

It’s really quite simple. The image map uses the ImageMap class. This class can be readily
extended to support regions other than rectangles:

imagemap.py

class Region: (1]
def __init__ (self, coords, ref):
self.coords = coords
self.ref = ref
def inside(self, x, y): (2]
isInside = 0

if self.coords[0][0] <= x <= self.coords[1][0] and \
self.coords[0][1] <=y <= self.coords[1][1]:
isInside = 1
return isInside

class ImageMap:
def __init__ (self):
self.regions = []
self.cache = {}

def addRegion(self, coords, ref):
self.regions.append(Region(coords, ref))

def getRegion(self, x, vy):
try:
return self.cachel (x,y)]
except KeyError:

for region in self.regions: ¢’
if region.inside(x, y) == 1:
self.cache[(x,y)] = region

return region.ref
return None

Code comments

@ The region class provides a container for the target regions:
class Region:

def _ _init_ (self, coords, ref):

IMAGE MAPS 197

198

self.coords = coords
self.ref = ref
Detecting when a button press occurs within a region is a simple test:
def inside(self, x, y):
isInside = 0
if self.coords[0][0] <= x <= self.coords[1][0] and \
self.coords[0][1] <= y <= self.coords[1][1]:
isInside =1
return isInside
When we attempt to find a region, we first look in the cache that is accumulated from previ-
ous lookups:
def getRegion(self, x, vy):
try:
return self.cachel(x,y)]

If it is not in the cache, we have to search each of the regions in turn; we cache the map if we
find it:

except KeyError:
for region in self.regions:
if region.inside(x, y) == 1:
self.cache[(x,y)] = region
return region.ref

Figure 8.16 shows calculator.py in action.

BB TEXAS INSTRUMENTS

8.8 Summary

This chapter has covered several types of forms and dialogs,

ranging from simple fill-in-the-blank dialogs through browsers

and wizards to image-mapping techniques. I hope that you will

— find sufficient material here so you can create forms appropriate
for your own applications.

Bum | ms

= Rxnz DeL

LNk LIST
xTe | sTAT

ANGLE B DRAWC VRRE
MATRX . PRGM VARS

BN E EOST F
"

[mode

Figure 8.16 Running
calculator.py

CHAPTER 8 DIALOGS AND FORMS

9.1

CHAPTTEHR 9

Panels and machines

9.1 Building a front panel 199 9.5 And now for a more complete
9.2 Modularity 201 example 220

9.3 Implementing the front panel 201 9.6 Virtual machines using

9.4 GIF, BMP and overlays 215 POV-Ray 232

9.7 Summary 236

This chapter is where Tkinter gets to be FUN! (Maybe I should find a hobby!) Network
management applications have set a standard for graphical formats; many hardware device
manufacturers supply a software front-panel display showing the current state of LEDs, con-
nectors and power supply voltages—anything that has a measurable value. In general, such
devices are SNMP-capable, although other systems exist. This model may be extended to
subjects which have no mechanical form—even database applications can have attractive
interfaces. The examples presented in this chapter should be useful for an application devel-
oper needing a framework for alternative user interfaces.

Building a front panel

Let’s construct a hypothetical piece of equipment. The task is to present a front-panel dis-
play of a switching system (perhaps an ATM switch or a router) to an administrator. The
display will show the current state of the interfaces, line cards, processors and other compo-
nents. For the purposes of the example, we shall assume that the device is SNMP-capable

199

200

and that the code to poll the devices agent and to receive and process traps will be developed
independently from the GUI.

If this were not a hypothetical device, you would have either the equipment itself or some
technical specifications for the device to work from. For this example, we can dream up almost
anything! Figure 9.1 shows a line drawing for the equipment. The device has two power sup-
plies, each with a power connector and an on/off switch along with an LED showing the status
of the power supply (off, on or failed). There are nine empty card slots, which will be populated
with a variety of cards, and there are passive decorations such as the air-intake screens and chas-
sis-mounting screws. The card slots will be populated with a switch card, a processor card, an
eight-port 10Base-T Ethernet card*, a four-port FDDI cardf, a two-channel T3 access card¥
and four high-speed serial cards. I'm not sure what this device is going to do, who will be con-
figuring it, or who will be paying for it, but it should be fun conjuring it up!

O) O®

T~

LED
CT::;E Power Supply
&
Screw

Power Connector
and Switch
Empty Card
slots

@

Figure 9.1 Hypothetical router/switch chassis

The most widely installed Ethernet local area networks (LANSs) use ordinary telephone twisted-pair
wire. When used on Ethernet, this carrier medium is known as 10BASE-T. 10BASE-T supports Ether-
net's 10 Mbps transmission speed.

1 FDDI is a standard for data transmission on fiber optic lines in a local area network that can extend in
range up to 200 km (124 miles).

1 The T-3 line, a variant of the T-carrier system introduced by the Bell System in the USA in the 1960s,
provides 44.736 Mbps. It is commonly used by internet service providers (ISPs).

CHAPTER 9 PANELS AND MACHINES

Each of the cards has LEDs, connectors and passive components such as buttons, card-
pullers and locking screws. Sounds like a lot? It is not as difficult as it may seem, on first anal-
ysis, and once the basic components have been built, you will observe a great deal of code reuse.

9.2 Modularity

In section 7.2 on page 129 we started to develop a class library of components such as LEDs,
switches and other devices. In this chapter we are going to use an expanded library of indica-
tors, connectors and panel devices. We will also make use of the built-in status methods of the
composite widgets, which was only briefly noted in the previous examples. We will also intro-
duce the topic of navigation in the GUI, (see “Navigation” on page 300) since our front panel
should provide the administrator access to functionality bound to each of the graphical ele-
ments on the panel. A good example of such a binding is to warp the user to the list of alarms
associated with an LED on the display or a configuration screen to allow him to set opera-
tional parameters for a selected port.

If you look again at figure 9.1, it is possible to identify a number of graphical components
that must be developed to build the front panel. Although the configuration of each of the
cards has not been revealed at this point, there are some “future” requirements for components
to be displayed on the card which drives the following list:

1 A chassis consisting of the rack-mount extensions and base front panel along with pas-
sive components such as mounting screws.
2 Card slots which may be populated with a variety of cards.

3 A number of cards consisting of LEDs, connectors and other active devices along with
the card front to mount the devices and other passive components such as card pullers

and labels.
4 Power supply modules containing connectors, switches and LEDs.
5 Passive components such as the air-intake screens and the logo.
6 LEDs, connectors (J-45*, BNCt, FDDI{, J-25, J-50 and power) and power switches.

9.3 Implementing the front panel

Some preparation work needs to be done to convert the notional front panel to a working sys-
tem. In particular, it is necessary to calculate the sizes of screen components based on some
scaling factors, since the majority of panels are much larger than typical computer screens. As
the reader will observe in the following example code, the author tends to work with relative
positioning on a canvas. This is a somewhat more difficult approach to widget placement

*] connectors are typically used for serial connections. The number of pins available for connection is
indicated by the suffix of the connector. Common connectors are J-9, J-25, and J-50.

T A Bayonet Neil-Concelman (BNC) connector is a type of connector used to connect using coaxial
cable.

1 FDDI connectors are used to connect fiber-optic lines and to normally connect a pair of cables, one
for reception and one for transmission.

IMPLEMENTING THE FRONT PANEL 201

202

O (A

Figure 9.2 Making router/switch chassis
measurements

»
»
H
M
8
»
b4
*

when contrasted with using
the pack or grid geometry man-
agers. However, precise place-
ment of graphical objects
requires the precision of the
place geometry manager.

The approach I took to
implement this panel was to
take a drawing of the panel and
to perform some basic mea-
surements. In figure 9.2, lines
have been drawn marking the
key dimensions that are needed
to recreate a graphic represen-

tation. Making measurements on a drawing can be easier than performing the measurements
on a real device. Overall width and height are measured in some standard units (such as inches
or centimeters) and then the relative size of each of the rectangular objects and the relative off-
set of one corner of the object must be calculated. The offset is used for the placer calls in the
code. The selected corner is the anchor for this call. It may appear to be a lot of work, but it

takes just a few minutes to get the required information.

The example extends the class library to provide a number of new graphical elements; in
the listings that follow, elements that have already been presented have been eliminated.

Components_1.py

from Tkinter import *
from GUICommon import *
from Common import *

class Screen (GUICommon) :

def _ init_ (self, master, bg=Color.PANEL, height=1, width=1):
self.screen_frame = Frame (master, width=width, height=height,

bg=bg, bd=0)
self.base = bg 6 creating an

self.set_colors(self.screen_frame)
radius = 4 # radius of an air hole

ssize = radius*3 # spacing between holes
rows = int (height/ssize)
cols = int(width/ssize)

instance

self.canvas = Canvas(self.screen_frame, height=height, width=width,
bg=bg, bd=0, highlightthickness=0)

self.canvas.pack(side=TOP, fill=BOTH, expand=NO)

performance

y = ssize - radius# (2] Optimizing
for r in range(rows) :
x0 = ssize -radius
for ¢ in range(cols):
x = x0 + (ssize*c)

CHAPTER 9

PANELS AND MACHINES

self.canvas.create_oval (x-radius, y-radius,
x+radius, y+radius,
fill=self.dbase,
outline=self.lbase)
y =y + ssize

class PowerConnector:
def _ _init_ (self, master, bg=Color.PANEL) :
self.socket_frame = Frame (master, relief="raised", width=60,
height=40, bg=bg, bd=4)

inside=Frame (self.socket_frame, relief="sunken", width=56,
height=36, bg=Color.INSIDE, bd=2)
inside.place(relx=.5, rely=.5, anchor=CENTER)

ground=Frame (inside, relief="raised", width=6, height=10,
bg=Color.CHROME, bd=2)
ground.place(relx=.5, rely=.3, anchor=CENTER)

pl=Frame (inside, relief="raised", width=6, height=10,
bg=Color.CHROME, bd=2)
pl.place(relx=.25, rely=.7, anchor=CENTER)

p2=Frame (inside, relief="raised", width=6, height=10,
bg=Color.CHROME, bd=2)
p2.place(relx=.75, rely=.7, anchor=CENTER)

class PowerSwitch (GUICommon) :
def _ _init_ (self, master, label='I 0', base=Color.PANEL) :
self.base = base Cchaﬁng
self.set_colors (master) colors

self.switch_frame = Frame (master, relief="raised", width=45,
height=28, bg=self.vlbase, bd=4)
switch = Frame (self.switch_frame, relief="sunken", width=32,
height=22, bg=self.base, bd=2)
switch.place(relx=0.5, rely=0.5, anchor=CENTER)

1bl=Label (switch, text=label, font=("Verdana", 10, "bold"),
fg='white', bd=0, bg=self.dbase)
1bl.place(relx=0.5, rely=0.5, anchor=CENTER)

class PowerSupply (GUICommon) :
def _ _init_ (self, master, width=160, height=130, bg=Color.PANEL,
status=STATUS_ON) :
self.base = bg
self.set_colors (master)

self.psu_frame = Frame (master, relief=SUNKEN, bg=self.dbase, bd=2,
width=width, height=height)

Label (self.psu_frame, text='DC OK', fg='white',
bg=self.dbase, font=('Verdana', 10, 'bold'),bd=0) .place(relx=.8,
rely=.15, anchor=CENTER)

self.led = LED(self.psu_frame, height=12, width=12, shape=ROUND,
bg=self.dbase)

IMPLEMENTING THE FRONT PANEL 203

self.led.led_frame.place(relx=0.8, rely=0.31, anchor=CENTER)

lsub = Frame(self.psu_frame, width=width/1.2, height=height/2,
bg=self.dbase, bd=1l, relief=GROOVE)
lsub.place(relx=0.5, rely=0.68, anchor=CENTER)

pwr=PowerConnector (1lsub)

pwr.socket_frame.place(relx=0.30, rely=0.5, anchor=CENTER)
sw=PowerSwitch (1sub)

sw.switch_frame.place(relx=0.75, rely=0.5, anchor=CENTER)

class Screw(GUICommon) :
def _ init_ (self, master, diameter=18, base="gray40", bg=Color.PANEL) :
self.base = base

basesize = diameter+6

self.screw_frame = Frame(master, relief="flat", bg=bg, bd=0,
highlightthickness=0)

self.set_colors(self.screw_frame)

canvas=Canvas (self.screw_frame, width=basesize, height=basesize,
highlightthickness=0, bg=bg, bd=0)

center = basesize/2

r = diameter/2

r2 =r - 4.0

canvas.create_oval (center-r, center-r, center+r, center+r,
fill=self.base, outline=self.lbase)

canvas.create_rectangle (center-r2, center-0.2,

center+r2, center+0.2,

fill=self.dbase, width=0)
canvas.create_rectangle(center-0.2, center-r2,

center+0.2, center+r2,

fill=self.dbase, width=0)
canvas.pack(side="top", fill='x', expand='no')

class CardBlank (GUICommon) :
def _ _init_ (self, master=None, width=20, height=396,
appearance="raised", bd=2, base=Color.CARD) :
self.base = base
self.set_colors(master)
self.card_frame=Frame (master, relief=appearance, height=height,
width=width, bg=base, bd=bd)

top_pull = CardPuller (self.card_frame, CARD_TOP, width=width)
top_pull.puller_frame.place(relx=.5, rely=0, anchor=N)

bottom_pull = CardPuller(self.card_frame, CARD_BOTTOM, width=width)
bottom_pull.puller_frame.place(relx=.5, rely=1.0,anchor=3)

Code comments

@ [some of the earlier examples we used Tkinter's internal reference to the instance of the wid-
gets, so the following was possible:
Button (parent, text='0OK’) .pack(side=LEFT)

204 CHAPTER 9 PANELS AND MACHINES

The structure of the code for this example requires that we make sure that instances of
objects are unique. Each widget must keep references to its child widgets.

self.screen_frame = Frame (master, width=width, height=height,
bg=bg, bd=0)

This creates a specific instance of screen_frame within self.

@ The air-intake screen illustrates the ease with which repeated graphical objects may be created.
It also highlights the importance of careful code construction—it is easy to forget that Python
is an interpreted language and it is important to ensure that code is constructed in a way that
optimizes execution.

y = ssize - radius
for r in range(rows) :
x0 = ssize -radius
for ¢ in range(cols):
x = x0 + (ssize*c)
self.canvas.create_oval (x-radius, y-radius,
x+radius, y+radius,
fill=self.dbase,
outline=self.lbase)
Yy =y + ssize
Some additional code might be appropriate here, since the first air intake is the “call” by
“narrow” case, but the lower intake has an opposite aspect. The loop could be improved by
having the outer loop iterate over largest dimension to reduce some of the math operations in
the inner loop. Of course, this would increase the code complexity and for many operations
might be unnecessary, but is worth considering. Remember that a good C or C++ would opti-
mize loops for you; you are Python’s optimizer!

© cuIcommon.set_colors has been extended to pass a widget to provide access to winfo
early in the initializer.
def _ _init_ (self, master, label='I 0', base=Color.PANEL) :
self.base = base
self.set_colors (master)
In this case, the master container widget and base color have been passed in the con-
structor and are used to set the color variants for the object.

Components_1.py (continued)

class CardPuller (GUICommon) :

def _ _init_ (self, master, torb, width=20):
self.base = master|['background'] ’!)
self.set_colors (master) -
self.puller_frame=Frame (master, width=width, height=32,
bg=self.lbase, relief='flat')

Frame (self.puller_frame, width=width/8, height=8,
bg=self.dbase) .place (relx=1.0, rely=[1.0,0] [torb], (5]
anchor=[SE,NE] [torb])

Frame (self.puller_frame, width=width/3, height=24,
bg=self.vdbase) .place(relx=1.0, rely=[0,1.0] [torb],

IMPLEMENTING THE FRONT PANEL 205

206

anchor=[NE, SE] [torDb])

Screw(self.puller_frame, diameter=10, base=self.base,
bg=self.lbase) .screw_frame.place(relx=0.3, rely=[0.2,0.8][torb],
anchor=CENTER)

class Chassis:
def _ _init_ (self, master):

self.outer=Frame (master, width=540, height=650,
borderwidth=2, bg=Color.PANEL)
self.outer. forget () ‘3

self.inner=Frame (self.outer, width=490, height=650,
borderwidth=2, relief=RAISED, bg=Color.PANEL)
self.inner.place(relx=0.5, rely=0.5, anchor=CENTER)

self.rack = Frame(self.inner, bd=2, width=325, height=416,
bg=Color.CHASSIS)
self.rack.place(relx=0.985, rely=0.853, anchor=SE)

incr = 325/9
x = 0.0 ? Creating blank cards
for i in range(9):
card =CardBlank(self.rack, width=incr-1, height=414)
card.card_frame.place(x=x, y=0, anchor=NW)
X = X + incr

self.img = PhotoImage(file='images/logo.gif')
self.logo=Label (self.outer, image=self.img, bd=0)
self.logo.place(relx=0.055, rely=0.992, anchor=SWw)

for x in [0.02, 0.98]:
for y in [0.0444, 0.3111, 0.6555, 0.9711]:
screw = Screw(self.outer, base="gray50")
screw.screw_frame.place(relx=x, rely=y, anchor=CENTER)

self.psul = PowerSupply (self.inner)
self.psul.psu_frame.place(relx=0.99, rely=0.004, anchor=NE)
self.psu2 = PowerSupply(self.inner)
self.psu2.psu_frame.place(relx=0.65, rely=0.004, anchor=NE)

self.psu2.led.turnoff () © Deactivating LED

screenl = Screen(self.inner, width=150, height=600, bg=Color.PANEL)
screenl.screen_frame.place(relx=0.16, rely=0.475, anchor=CENTER)
screen2 = Screen(self.inner, width=330, height=80, bg=Color.PANEL)
screen2.screen_frame.place(relx=0.988, rely=0.989, anchor=SE)

Code comments (continued)
O In the cardpuller class we obtain the base color from the parent widget, rather than passing
it in the constructor.
def __init__ (self, master, torb, width=20):

self.base = master|['background']
self.set_colors (master)

CHAPTER 9 PANELS AND MACHINES

©@ We index into a list to obtain the y-coordinate and the anchor-position for the place call.
This valuable technique is used in many examples throughout the book.

bg=self.dbase) .place(relx=1.0, rely=[1.0,0][torb],
anchor=[SE,NE] [torb])

O 1f widgets are created in a complex GUI, there can be some somewhat ugly effects to the dis-
play if the window is realized. One of these effects is that with the pack or grid geometry man-
agers, the widgets are readjusted several times as additional widgets are created. Another effect
is that it takes longer to draw the widgets, since the system redraws the widgets several times as
widget configurations change. The solution is to delay the realization of the outer container of
the widget hierarchy:

self.outer.forget ()

@ The loop populates the card rack with blank cards:
incr = 325/9
x = 0.0
for i in range(9):
card =CardBlank (self.rack, width=incr-1, height=414)
card.card_frame.place(x=x, y=0, anchor=NW)
X = X + incr

© Finally, we change the state of one of the LEDs on the display. You'll learn more about this
later.
self.psu2.led. turnoff ()

Since the front panel will be built incrementally, for the purpose of illustration, a sepa-
rate module, FrontPanel_1.py, is used to create the device.

FrontPanel.py

#! /bin/env/python

from Tkinter import *
from Components_1 import *
from GUICommon import *
from Common import *

class Router (Frame) :
def _ _init_ (self, master=None) :
Frame._ init_ (self, master)
Pack.config(self)
self.createChassis()

def createChassis(self):
self.chassis = Chassis(self)
Realize the outer frame (which
was forgotten when created)
self.chassis.outer.pack (expand=0) " Realize the frame

if _ name__ == '__main__ ':
root = Router ()
root.master.title("CisForTron")
root.master.iconname ("CisForTron")
root.mainloop ()

IMPLEMENTING THE FRONT PANEL 207

208

Code comments

If you examine the __init__ method for each of the frames in the various classes in
Components_1.py, you will notice that there are no geometry-management calls. It would
have been possible to pass the location to place the object or simply pack the object within the
constructor, but the style of coding used here allows the user to have more control over widget
geometry. This is especially true for the chassis frame; this widget was explicitly forgotten so
that the screen updates are made before the chassis is realized. This improves performance
considerably when a large number of graphic objects need to be drawn.
self.chassis.outer.pack (expand=0)

Here, the chassis frame is packed, realizing the widget and drawing the contained wid-

gets. It does make a difference!

When FrontPanel.py is run, the screen shown in figure 9.3 is displayed. This display
draws remarkably fast, even though we have to construct each of the air-screen holes individ-
ually. For highly computational or memory-intensive graphics which depict purely passive
components, it is probably better to use GIF or bitmap images. Some aspects of this are dis-
cussed in “GIF, BMP and overlays” on page 215. Notice how we use the intrinsic three-dimen-
sional properties of the widgets to create some depth in the display. In general, it is best to avoid
trying to totally mimic the actual device and produce some level of abstraction.

Let’s create one of the cards that will populate the chassis. The T3 Access card has four
BNC connectors (two pairs of Rx/Tx connectors), four LEDs for each pair of BNC connectors,
and some identifying labels. Every card in the chassis has a power (PWR) and fault (FLT) LED.

CisForTron

Figure 9.3 Basic router chassis

CHAPTER 9 PANELS AND MACHINES

Here is the code to construct a BNC connector:

Components.py (fragment)

class BNC (GUICommon) :

Color.WARN, Color.ALARM,

def __init__ (self, master, status=0,
port=-1, fid='"'):

self.base = master|['background']
self.hitID = fid
self.status=status
self.blink =0
self.blinkrate =1
self.on =0
self.onState = None
self.Colors = [None,
basesize = diameter+6
self.bnc_frame = Frame (master,

bd=0,

self.bnc_frame.pack (expand=0)
self.bnc_frame.bind('<FocusIn>"',
self.bnc_frame.bind('<FocusOut>",

self.canvas=Canvas (self.bnc_frame,
height=basesize,
bg=self.base, bd=0)
center basesize/2

r = diameter/2

self.pins=self.canvas.create_rectangle (0,
fill=Color.CHROME)
self.bnc=self.canvas.create_oval (center-r,
center+r,

10,

center+r,

relief="flat",
highlightthickness=0,

self.focus_in)

diameter=18,

Color.CHROME, Color.ON,

'#00££fad"]

bg=self.base,
takefocus=1)

| k@

self.focus_out

width=basesize,

highlightthickness=0,

center+2, basesize-1,

center-r,

fill=Color.CHROME,
outline="black")

r = r-3
self.canvas.create_oval (center-r,

fill=Color.INSIDE,

r = r-2
self.canvas.create_oval (center-r,

fill=Color.CHROME)

r = r-3
self.canvas.create_oval (center-r,

fill=Color.INSIDE,

self.canvas.pack(side=TOP, fill=X,
if self.hitID:
self.hitID = '%$s.%d' %

for widget in

widget.bind('<Button-1>"
for widget in [self.canvas]:
widget.bind('<1l>",

def focus_in(self, event):

self.last_bg= self.canvas.itemcget (self.bnc,

IMPLEMENTING THE FRONT PANEL

center-r, center+r, center+r,
outline="'black')

center-r, center+r, center+r,
center-r, center+r, center+r,

outline='black"')

expand=0)

(self.hitID, port)
[self.bnc_frame]:
widget.bind('<KeyPress-space>"',

self.panelMenu)
, self.panelMenu)

self.panelMenu)

'f£illt)

209

self.canvas.itemconfig(self.bnc, fill=Color.HIGHLIGHT)
self.update()

def focus_out(self, event):
self.canvas.itemconfig(self.bnc, fill=self.last_bg)
self.update()

def update(self): G’
First do the blink, if set to blink
if self.blink:
if self.on:
if not self.onState:

self.onState = self.status
self.status = STATUS_OFF
self.on =0

else:
if self.onState:
self.status = self.onState # Current ON color
self.on = 1
now update the status
self.canvas.itemconfig(self.bnc, fill=self.Colors[self.status])
self.canvas.itemconfig(self.pins, fill=self.Colors[self.status])
self.bnc_frame.update_idletasks()
if self.blink:
self.bnc_frame.after (self.blinkrate * 1000, self.update)

Code comments

© This example uses the GUICommon mixin class to define basic methods for widget state
manipulation.
class BNC (GUICommon) :

@ Here we bind callbacks to Focusn and FocusoOut events.

self.bnc_frame.bind('<FocusIn>', self.focus_in)
self.bnc_frame.bind('<FocusOut>', self.focus_out)

This binds the focus_in and focus_out functions to the widget so that if we tab into
the widget or click the widget, we highlight it and enable the functions to be accessed.

© All of the graphical objects (LEDs, BNC, J and FDDI connectors) define a specific update
method to change the appearance of the widget based upon current status. We need special-
ized methods to allow us to update the color of particular areas within the composite. This
method is also responsible for blinking the widget at one-second intervals.

def update(self):
First do the blink, if set to blink
if self.blink:
if self.on:
if not self.onState:
self.onState = self.status
self.status = STATUS_OFF
self.on =0
else:
if self.onState:
self.status = self.onState # Current ON color

210 CHAPTER 9 PANELS AND MACHINES

self.on = 1
now update the status
self.canvas.itemconfig(self.bnc, fill=self.Colors[self.statusl])
self.canvas.itemconfig(self.pins, fill=self.Colors[self.status])
self.bnc_frame.update_idletasks()
if self.blink:
self.bnc_frame.after(self.blinkrate * 1000, self.update)

Now, we complete the example by defining the layout of the T3 Access card:

class StandardLEDs (GUICommon) : "
def __init_ (self, master=None, bg=Color.CARD) :
for led, label, xpos, ypos, state in [('flt', 'Flt', 0.3, 0.88, 1),
('pwr', 'Pwr', 0.7, 0.88, 2)1:

setattr(self, led, LED(self.card_frame, shape=ROUND,width=8,
status=state, bg=bg))
getattr(self, led).led_frame.place(relx=xpos,rely=ypos,
anchor=CENTER)
Label (self.card_frame, text=1label, font=("verdana", 4),
fg="white",bg=bg) .place(relx=xpos, rely=(ypos+0.028),
anchor=CENTER)

class T3AccessCard(CardBlank, StandardLEDs) : e’
def __init_ (self, master, width=1, height=1):
CardBlank._ _init_ (self, master=master, width=width, height=height)
bg=master|['background']
StandardLEDs.__init_ (self, master=master, bg=bg)

for port, 1lbl, tag, ypos in [(1,'RX1', 'T3AccessRX', 0.30),
(2,'TX1', 'T3AccessTX', 0.40),
(3, 'RX2"', 'T3AccessRX', 0.65),
(4, 'TX2"', 'T3AccessRX', 0.75)1]:

setattr (self, ‘bnc%$d’ % port, BNC(self.card_frame,
fid=tag, port=port))
getattr(self, ‘bnc%d’ % port) .bnc_frame.place(relx=0.5,
rely=ypos, anchor=CENTER)) ¢)\\
Label (self.card_frame, text=1bl,
font=("verdana", 6), fg="white",
bg=bg) .place(relx=0.5,rely=(ypos+0.045) ,anchor=CENTER)

for led, 1lbl, xpos, ypos, state in [('rxc',6 'RXC',0.3,0.18,2)

[

('oos','00S',0.7,0.18,1)
(*flt','FLT',0.3,0.23,1)
('syn','SYN',0.7,0.23,2)
('rxc','RXC',0.3,0.53,2)
('oos','00S',0.7,0.53,1)
(*f1t','FLT',0.3,0.58,1)

('syn','SYN',0.7,0.58,2)]:
setattr(self, led, LED(self.card_frame, shape=ROUND,width=8,
status=state, bg=bg))
getattr(self, led).led_frame.place(relx=xpos,rely=ypos,
anchor=CENTER)

Label (self.card_frame, text=1bl,

font=("verdana", 4), fg="white",

bg=bg) .place (relx=xpos, rely=(ypos+0.028),anchor=CENTER)

IMPLEMENTING THE FRONT PANEL 211

212

Code comments

We add one class to draw the LEDs that appear on each card in the rack:
class StandardLEDs (GUICommon) :

The T3 access card inherits from the CardBlank and StandardLEDs classes which are explic-
itly constructed:

class T3AccessCard(CardBlank, StandardLEDs) :
def _ init_ (self, master, width=1, height=1):
CardBlank._ _init_ (self, master=master, width=width,
height=height) bg=master|['background']
StandardLEDs.__ init_ (self, master=master, bg=bg)

Readers who have been observing my coding style will have noticed a definite pattern; I like to
create objects from lists of tuples! This example is no exception:

for port, 1lbl, tag, ypos in [(1,'RX1', 'T3AccessRX', 0.30),
(2, 'TX1', 'T3AccessTX', 0.40),
(3, 'RX2"', 'T3AccessRX', 0.65),
(4, 'TX2', 'T3AccessRX', 0.75)]:

Python’s ability to unpack a tuple contained in a list of tuples provides a mechanism to
compress the amount of code required to achieve a desired effect.

The arguments unpacked from the tuple are substituted in setattr and getattr calls:
setattr(self, ‘bnc%d’ % port, BNC(self.card_frame,
fid=tag, port=port))
getattr(self, ‘bnc%d’ % port) .bnc_frame.place(relx=0.5,
rely=ypos, anchor=CENTER))
Label (self.card_frame, text=1bl,
font=("verdana", 6), fg="white",
bg:bg).place(relx:O.S,rely:(ypos+0.045),anchor:CENTER)|

This style of coding results in tight code. It may be a little difficult to read initially, but it
is still an efficient way of creating graphic elements in a loop.

As the last step to adding the T3 card, we must modify the loop that generates blank cards
to add one of the T3 Access cards:

for i in range(9):
if 1 ==
card =T3AccessCard(self.rack, width=incr-1, height=414)
else:
card =CardBlank(self.rack, width=incr-1, height=414)
card.card_frame.place(x=x, y=0, anchor=NW)
X = X + incr

CHAPTER 9 PANELS AND MACHINES

Figure 9.5 Populated chassis

IMPLEMENTING THE FRONT PANEL

Figure 9.4
T3 access card

Running FrontPanel2.py will display the
screen shown in figure 9.4. The next step is a little
scary. Creating the additional graphic elements and
placing them on the cards does not require a lot of
code. The code will not be presented here, it may
be obtained online. If you run FrontPanel_3.py,
you will see the screen in figure 9.5.

A few more words of explanation about the
code presented earlier: We are attaching a menu
operation to the widget. Access to the menu will be
from the keyboard, using the spacebar or by click-
ing with the mouse.

213

if self.hitID:
self.hitID = '%$s.%d' % (self.hitID, port)
for widget in [self.bnc_frame]:
widget.bind('<KeyPress-space>', self.panelMenu)
widget.bind('<Button-1>', self.panelMenu)
for widget in [self.canvas]:
widget.bind('<1l>', self.panelMenu)

We define the focus_in and focus_out methods.

def focus_in(self, event):
self.last_bg= self.canvas.itemcget(self.bnc, 'fill")
self.canvas.itemconfig(self.bnc, fill=Color.HIGHLIGHT)
self.update()

def focus_out(self, event):
self.canvas.itemconfig(self.bnc, fill=self.last_bg)
self.update()

The purpose of these methods is to change the high-
light color of the widgets as we either click on them with
the mouse or navigate to them using the tab key. As we
navigate from widget to widget, we display a highlight to
show the user where the focus is. Figure 9.6 shows the
effect of tabbing through the field. Although it’s less obvi-
ous without color, the selected connector is blue; in con-
trast, the other connectors are gray.

This method of navigation is somewhat alien to users
who have been conditioned to using the mouse to navigate

GUIs. However, the ability to select tiny graphic objects
Figure 9.6 Widget focus is valuable and it can change a user’s opinion of a product
markedly. Without naming names, I have seen network
management systems which required the user to click on graphic elements no more than 2mm
square!
Components_3.py contains some additional code to animate the display to show the
effect of status changes. Basically, each class that defines objects which can display status
appends the instance to a widget list:

st_wid.append(self) # register for animation

We then bind the animate function to the logo:
self.img = PhotoImage(file='logo.gif"')
self.logo=Label (self.outer, image=self.img, bd=0)
self.logo.place(relx=0.055, rely=0.992, anchor=SWw)
self.logo.bind('<Button-1>', self.animate)

The animate function is quite simple:

def animate(self, event):

import random
choice = random.choice(range (0, len(st_wid)-1))

214 CHAPTER 9 PANELS AND MACHINES

op = random.choice(range (0, len(ops)-1))

pstr = 'st_wid[%d].%s()' % (choice, opslop])
self.cobj = compile(pstr, 'inline',6 'exec')
self.rack.after (50, self.doit)

def doit(self):
exec (self.cobj)
self.rack.after (50, self.animate (None))

If you run FrontPanel 3.py and click on the
logo, you will activate the animation. Of course,
it is difficult to depict the result of this in a black-
and-white printed image, but you should be able
to discern differences in the shading of the con-
trols on the panels—especially the J45 connectors
on the fourth panel from the left in figure 9.7.

Of course, there is quite a lot of work to
turn a panel such as this into a functional system.
You would probably use a periodic SNMP poll of
the device to get the state of each of the compo-
nents and set the LEDs appropriately. In addi-
tion, you might monitor the content of the card
rack to detect changes in hardware, if the device
supports “hot pull” cards. Finally, menus might
be added to the ports to give access to configura-
tion utilities.

Figure 9.7 Animated widgets

9.4 GIF, BMP and overlays

The panels and machines introduced in the previous section used drawn interfaces. With a lit-
tle effort, it is possible to produce a panel or machine that closely resembles the actual device.
In some cases, it is necessary to have a little artistic flair to produce a satisfactory result, so an
alternate approach must be used. Sometimes, it can be easier to use photographs of the device
to produce a totally accurate representation of it; this is particularly true if the device is large.
In this section I will provide you with a number of techniques to merge photographic images
with GUIs.

Let’s begin by taking a look at the front panel of the Cabletron SmartSwitch 6500 shown
in figure 9.8. If you contrast the magnified section in this figure with the components in figure
9.6, you may notice that the drawn panel shows clearer detail, particularly for text labels. How-
ever, if you consider the amount of effort required to develop code to precisely place the com-
ponents on the panels, the photo image is much easier. In addition, the photo image
reproduces every detail, no matter how small or complex, and it has strong three-dimensional
features which are time-consuming to recreate with drawn panels.

GIF, BMP AND OVERLAYS 215

216

@rowen @rowen
£ = ®AcTiv @ ACTIVE
@sTANDE @sTANDE
ee X L X
é g3 és : @Fal @Fan
e :5: = é @ENET ADY @ENET AOY
i i) 1
ENET ENET
o - @TxDATA @TXDATA
z =
g B S @ Fx DATA DFX DATA
L £
}' 0 = " Figure 9.8 EC6110 Switch. The High-

TR R TR

lighted area is magnified.
Photo courtesy Cabletron Systems

The task of creating modular panels is somewhat easier than creating similar panels with

drawn components. Constructing a system with images requires the following steps:

1

2
3
4

Photograph the device with an empty card rack, if possible.
Photograph the device with cards inserted (singly, if possible) at the same scale.
Crop the card images so that they exactly define a card face.

Create a class for each card type, loading appropriate graphics and overlays for active
components (LEDs, annunciators, etc.) and navigable components (connectors, but-

tons, etc.).
Create a chassis population based on configuration.

Write the rest of the supporting code.

In the following code, just a sample of the code will be presented. The full source code

may be obtained online.

Components_4.py

class C6C110_CardBlank (GUICommon) :

def _ _init_ (self, master=None, width=10, height=10,

appearance=FLAT, bd=0) :
self.card_frame=Frame (master, relief=appearance, height=height,
width=width, bd=bd, highlightthickness=0)

class C6C110_ENET(C6C110_CardBlank) :

def _ _init_ (self, master, slot=0):

CHAPTER 9 PANELS AND MACHINES

self.img = PhotoImage(file='images/6cl1l10_enet.gif')
setattr(glb, ‘img%d % slot, self.img)

self.width = self.img.width()

self.height = self.img.height ()

C6C110_CardBlank._ _init_ (self, master=master, width=self.width,
height=self.height)

xypos = [(10,180), (10,187),
(10,195), (10,203), LED Positions
(10,210), (10,235),
(10,242)1]

self.canvas = Canvas (self.card_frame, width=self.width,
bd=0,highlightthickness=0,
height=self.height, selectborderwidth=0)
self.canvas.pack(side="top", fill=BOTH, expand='no')
self.canvas.create_image (0,0, anchor=NW,
image=eval ('glb.img%d' % slot))

<

for i, y in [(0, 0.330), (1, 0.619)]:
setattr(self, 'j%d' % 1, EnetlObaseT(self.card_frame,
fid="10Base-T-%d" % i, port=i, orient=HW_LEFT,
status=STATUS_OFF, xwidth=15, xheight=12))
getattr(self, 'j%d' % 1i).j45_frame.place(relx=0.52,
rely=y, anchor=CENTER)

for i in range(len (xypos)): w Create LEDs
XpOs,ypos = xypos[i]
setattr(self, 'led%d' % (i+1l), CLED(self.card_frame,
self.canvas, shape=ROUND, width=4, status=STATUS_ON,
relx=xpos, rely=ypos))

class C6C110_Chassis:
def _ _init_ (self, master):
self.outer=Frame (master, borderwidth=0, bg=Color.PANEL)
self.outer.forget ()

self.img = PhotoImage(file='images/6c110_chassis.gif')
self.width = self.img.width()
self.height = self.img.height ()

self.canvas = Canvas (self.outer, width=self.width,
height=self.height, selectborderwidth=0)

self.canvas.pack(side="top", fill=BOTH, expand='no')

self.canvas.create_image (0,0, anchor=NW, image=self.img)

self.rack = Frame(self.outer, bd=0, width=self.width-84,
height=self.height-180,
bg=Color.CHASSIS, highlightthickness=0)
self.rack.place(relx=0.081, rely=0.117, anchor=NW)

x = 0.0
for i in range(12): "
if 1 in [0,1,2,3,4,5]:
card =C6C110_FDDI (self.rack, slot=i)

GIF, BMP AND OVERLAYS 217

218

elif i in [6,7,8,9]:

card =C6C110_ENET (self.rack, slot=i)
else:

card =C6C110_PSU(self.rack, slot=i)
card.card_frame.place(x=x, y=0, anchor=NW)
x = x + card.width

Code comments

Most of the code resembles that for drawn panel components. The code is a little shorter,
since it is not necessary to build as many components.

self.img = PhotoImage(file='images/6¢cl10_enet.gif"')

setattr (glb, ‘img%d % slot, self.img)

self.width = self.img.width()

self.height = self.img.height()

In the __init__ method, we create a PhotoImage instance. It is important that this
reference remains within scope. If the image gets garbage-collected, you'll see an empty back-
ground field where you had hoped to have an image. The size of the image is obtained (in pix-
els) in order to construct the panels.

As might be expected, we build a list of tuples to contain the calculated positions of the LEDs.
xypos = [(10,180),(10,187),

All borders, highlights, and selectionborders must be zero-width to ensure that the panels can
be butted together.
self.canvas = Canvas (self.card_frame, width=self.width,
bd=0,highlightthickness=0,
height=self.height, selectborderwidth=0)
The image is created on the base canvas using the stored PhotoImage.

self.canvas.create_image (0,0, anchor=NW,

)

image=eval ('glb.img%d' % slot))
The J45 connectors are drawn over the connectors depicted in the image; this adds navigation
and statu