

PYTHON FOR
BIOINFORMATICS

© 2010 by Taylor and Francis Group, LLC

CHAPMAN & HALL/CRC
Mathematical and Computational Biology Series

Aims and scope:
This series aims to capture new developments and summarize what is known
over the whole spectrum of mathematical and computational biology and
medicine. It seeks to encourage the integration of mathematical, statistical and
computational methods into biology by publishing a broad range of textbooks,
reference works and handbooks. The titles included in the series are meant to
appeal to students, researchers and professionals in the mathematical, statistical
and computational sciences, fundamental biology and bioengineering, as well
as interdisciplinary researchers involved in the field. The inclusion of concrete
examples and applications, and programming techniques and examples, is
highly encouraged.

Series Editors
Alison M. Etheridge
Department of Statistics
University of Oxford

Louis J. Gross
Department of Ecology and Evolutionary Biology
University of Tennessee

Suzanne Lenhart
Department of Mathematics
University of Tennessee

Philip K. Maini
Mathematical Institute
University of Oxford

Shoba Ranganathan
Research Institute of Biotechnology
Macquarie University

Hershel M. Safer
Weizmann Institute of Science
Bioinformatics & Bio Computing

Eberhard O. Voit
The Wallace H. Couter Department of Biomedical Engineering
Georgia Tech and Emory University

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
4th, Floor, Albert House
1-4 Singer Street
London EC2A 4BQ
UK

© 2010 by Taylor and Francis Group, LLC

Published Titles

Bioinformatics: A Practical Approach
Shui Qing Ye

Cancer Modelling and Simulation
Luigi Preziosi

Combinatorial Pattern Matching
Algorithms in Computational Biology
Using Perl and R
Gabriel Valiente

Computational Biology: A Statistical
Mechanics Perspective
Ralf Blossey

Computational Neuroscience: A
Comprehensive Approach
Jianfeng Feng

Data Analysis Tools for DNA
Microarrays
Sorin Draghici

Differential Equations and
Mathematical Biology
D.S. Jones and B.D. Sleeman

Engineering Genetic Circuits
Chris J. Myers

Exactly Solvable Models of Biological
Invasion
Sergei V. Petrovskii and Bai-Lian Li

Gene Expression Studies Using
Affymetrix Microarrays
Hinrich Göhlmann and Willem Talloen

Handbook of Hidden Markov Models in
Bioinformatics
Martin Gollery

Introduction to Bioinformatics
Anna Tramontano

An Introduction to Systems Biology:
Design Principles of Biological Circuits
Uri Alon

Kinetic Modelling in Systems Biology
Oleg Demin and Igor Goryanin

Knowledge Discovery in Proteomics
Igor Jurisica and Dennis Wigle

Meta-analysis and Combining
Information in Genetics and Genomics
Rudy Guerra and Darlene R. Goldstein

Modeling and Simulation of Capsules
and Biological Cells
C. Pozrikidis

Niche Modeling: Predictions from
Statistical Distributions
David Stockwell

Normal Mode Analysis: Theory and
Applications to Biological and Chemical
Systems
Qiang Cui and Ivet Bahar

Optimal Control Applied to Biological
Models
Suzanne Lenhart and John T. Workman

Pattern Discovery in Bioinformatics:
Theory & Algorithms
Laxmi Parida

Python for Bioinformatics
Sebastian Bassi

Spatial Ecology
Stephen Cantrell, Chris Cosner, and
Shigui Ruan

Spatiotemporal Patterns in Ecology
and Epidemiology: Theory, Models, and
Simulation
Horst Malchow, Sergei V. Petrovskii, and
Ezio Venturino

Stochastic Modelling for Systems
Biology
Darren J. Wilkinson

Structural Bioinformatics: An
Algorithmic Approach
Forbes J. Burkowski

The Ten Most Wanted Solutions in
Protein Bioinformatics
Anna Tramontano

© 2010 by Taylor and Francis Group, LLC

PYTHON FOR
BIOINFORMATICS

SEBASTIAN BASSI

© 2010 by Taylor and Francis Group, LLC

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-58488-929-8 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Bassi, Sebastian.
Python for bioinformatics / Sebastian Bassi.

p. cm. -- (Mathematical and computational biology series)
Includes bibliographical references and index.
ISBN 978-1-58488-929-8 (pbk. : alk. paper)
1. Bioinformatics. 2. Python (Computer program language) I. Title. II. Series.

QH324.2.B387 2009
570.285--dc22 2009025700

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2010 by Taylor and Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com
http://www.copyright.com
http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com
http://www.copyright.com

Contents

List of Tables xix

List of Figures xxi

Preface xxiii

Acknowledgments xxv

I Programming 1

1 Introduction 3
1.1 Who Should Read This Book 3

1.1.1 What You Should Already Know 3
1.2 Using this Book . 4

1.2.1 Python Versions . 4
1.2.2 Typographical Conventions 4
1.2.3 Code Style . 5
1.2.4 Get the Most from This Book without Reading It All 6

1.3 Why Learn to Program? . 6
1.4 Basic Programming Concepts 7

1.4.1 What Is a Program? 7
1.5 Why Python? . 9

1.5.1 Main Features of Python 10
1.5.2 Comparing Python with Other Languages 11
1.5.3 How It Is Used? . 13
1.5.4 Who Uses Python? . 15
1.5.5 Flavors of Python . 15
1.5.6 Special Python Bundles 16

2 First Steps with Python 19
2.1 Installing Python . 19

2.1.1 Learn Python by Using It 19
2.1.2 Python May Be Already Installed 19
2.1.3 Testing Python . 20
2.1.4 First Use . 20

2.2 Interactive Mode . 20
2.2.1 Baby Steps . 20

vii

© 2010 by Taylor and Francis Group, LLC

viii Contents

2.2.2 Basic Input and Output 21
2.2.3 More on the Interactive Mode 22
2.2.4 Mathematical Operations 24
2.2.5 Exit from Python Shell 25

2.3 Batch Mode . 26
2.3.1 Comments . 28
2.3.2 Indentation . 29

2.4 Choosing an Editor . 30
2.4.1 Kate . 31
2.4.2 Eric . 32
2.4.3 Eclipse . 33
2.4.4 IDLE . 35
2.4.5 Final Words about Editors 35

2.5 Additional Resources . 37
2.6 Self-Evaluation . 38

3 Basic Programming: Data Types 39
3.1 Strings . 39

3.1.1 Not All Strings Are Created Equal 40
3.1.2 String Manipulation 41
3.1.3 Methods Associated with Strings 42

3.2 Lists . 44
3.2.1 List Is the Workhorse Datatype in Python 44
3.2.2 List Initialization . 45
3.2.3 List Comprehension 45
3.2.4 Accessing List Elements 46
3.2.5 Copying a List . 47
3.2.6 Modifying Lists . 47

3.3 Tuples . 49
3.3.1 Tuples Are Immutable Lists 49

3.4 Common Properties of the Sequences 51
3.5 Dictionaries . 55

3.5.1 Mapping: Calling Each Value by a Name 55
3.5.2 Operating with Dictionaries 57
3.5.3 New in Python 3: Dictionary Views 58

3.6 Sets . 60
3.6.1 Unordered Collection of Objects 60
3.6.2 Set Operations . 61
3.6.3 Shared Operations with Other Data Types 63
3.6.4 Immutable Set: Frozenset 64

3.7 Naming Objects . 64
3.8 Assigning a Value to a Variable versus Binding a Name to an

Object . 65
3.9 Additional Resources . 68
3.10 Self-Evaluation . 70

© 2010 by Taylor and Francis Group, LLC

Contents ix

4 Programming: Flow Control 71
4.1 If-Else . 71

4.1.1 Pass Statement . 75
4.2 For Loop . 76
4.3 While Loop . 78
4.4 Break: Breaking the Loop 79
4.5 Wrapping It Up . 81

4.5.1 Estimate the Net Charge of a Protein 81
4.5.2 Search for a Low Degeneration Zone 82

4.6 Additional Resources . 85
4.7 Self-Evaluation . 86

5 Dealing with Files 87
5.1 Reading Files . 87

5.1.1 Example of File Handling 88
5.2 Writing Files . 91

5.2.1 File Reading and Writing Examples 91
5.3 A Special Kind of File: CSV 92

5.3.1 More Functions from the CSV Module 94
5.4 Pickle: Storing the Contents of Variables 96
5.5 File Handling: os Module . 97

5.5.1 Consolidate Multiple DNA or Protein Sequences into
One FASTA File . 99

5.5.2 Estimating Net Charge of Several Proteins 100
5.6 With: An Alternative Way to Open Files 101
5.7 Additional Resources . 102
5.8 Self-Evaluation . 103

6 Code Modularizing 105
6.1 Functions . 105

6.1.1 Standard Way to Modularize Python Code 105
6.1.2 Function Parameter Options 109
6.1.3 Generators . 112

6.2 Modules . 113
6.2.1 Using Modules . 114
6.2.2 Installing Modules . 115
6.2.3 Creating Modules . 120
6.2.4 Testing Our Modules 120

6.3 Additional Resources . 123
6.4 Self-Evaluation . 124

© 2010 by Taylor and Francis Group, LLC

x Contents

7 Error Handling 125
7.1 Introduction to Error Handling 125

7.1.1 Try and Except . 127
7.1.2 Exception Types . 132
7.1.3 Provoking Exceptions 134

7.2 Creating Customized Exceptions 135
7.3 Additional Resources . 136
7.4 Self-Evaluation . 137

8 Introduction to Object Orienting Programming (OOP) 139
8.1 Object Paradigm and Python 139
8.2 Exploring the Jargon . 140
8.3 Creating Classes . 142
8.4 Inheritance in Action . 146
8.5 Special Methods Attributes 149

8.5.1 Create a New Data Type Out of a Built-in Data Type 153
8.6 Making Our Code Private . 154
8.7 Additional Resources . 155
8.8 Self-Evaluation . 157

9 Regular Expressions 159
9.1 Introduction to Regular Expressions (REGEX) 159

9.1.1 REGEX Syntax . 160
9.2 The re Module . 161

9.2.1 Compiling a Pattern 163
9.2.2 REGEX Examples . 166
9.2.3 Pattern Replace . 167

9.3 REGEX in Bioinformatics 168
9.3.1 Cleaning Up a Sequence 170

9.4 Additional Resources . 170
9.5 Self-Evaluation . 172

II Biopython 173

10 Introduction to Biopython 175
10.1 What Is Biopython? . 175

10.1.1 Project Organization 175
10.2 Biopython Components . 176

10.2.1 Alphabet . 177
10.2.2 Seq . 178
10.2.3 MutableSeq . 180
10.2.4 SeqRecord . 180
10.2.5 Align . 182
10.2.6 ClustalW . 184
10.2.7 SeqIO . 187

© 2010 by Taylor and Francis Group, LLC

Contents xi

10.2.8 AlignIO . 190
10.2.9 BLAST . 191
10.2.10Data . 201
10.2.11Entrez . 203
10.2.12PDB . 208
10.2.13PROSITE . 210
10.2.14Restriction . 211
10.2.15SeqUtils . 214
10.2.16Sequencing . 216
10.2.17SwissProt . 218

10.3 Conclusion . 220
10.4 Additional Resources . 221
10.5 Self-Evaluation . 222

III Advanced Topics 223

11 Web Applications 225
11.1 CGI in Python . 226

11.1.1 Configuring a Web Server for CGI 226
11.1.2 Testing the Server with Our Script 227
11.1.3 Web Program to Calculate the Net Charge of a Protein

(CGI version) . 230
11.2 mod python . 232

11.2.1 Configuring a Web Server for mod python 232
11.2.2 Web Program to Calculate the Net Charge of a Protein

(mod python version) 233
11.2.3 mod python with Publisher 235
11.2.4 Web Program to Calculate the Net Charge of a Protein

(mod python.publisher version) 236
11.3 WSGI . 237

11.3.1 Preparatory Steps . 238
11.3.2 “Hello World” in WSGI 239

11.4 Alternative Options for Making Python Based Dynamic Web
Sites . 242

11.5 Some Words about Script Security 243
11.6 Where to Host Python Programs 244
11.7 Additional Resources . 245
11.8 Self-Evaluation . 247

12 XML 249
12.1 Introduction to XML . 249
12.2 Structure of an XML Document 253
12.3 Methods to Access Data inside an XML Document 258

12.3.1 DOM: Minidom . 259
12.3.2 ElementTree . 261

© 2010 by Taylor and Francis Group, LLC

xii Contents

12.3.3 SAX: cElementTree Iterparse 264
12.4 Summary . 266
12.5 Additional Resources . 267
12.6 Self-Evaluation . 268

13 Python and Databases 269
13.1 Introduction to Databases 269

13.1.1 Database Management: RDBMS 271
13.1.2 Components of a Relational Database 271
13.1.3 Database Data Types 274

13.2 Connecting to a Database . 275
13.3 Creating a MySQL Database 276

13.3.1 Creating Tables . 278
13.3.2 Loading a Table . 280

13.4 Planning Ahead . 282
13.4.1 PythonU: Sample Database 282

13.5 SELECT: Querying a Database 285
13.5.1 Building a Query . 286
13.5.2 Updating a Database 288
13.5.3 Deleting a Record from a Database 289

13.6 Accessing a Database from Python 289
13.6.1 MySQLdb Module . 289
13.6.2 Establishing the Connection 290
13.6.3 Executing the Query from Python 290

13.7 SQLite . 292
13.8 Additional Resources . 294
13.9 Self-Evaluation . 296

14 Collaborative Development: Version Control 297
14.1 Introduction to Version Control 297

14.1.1 Little History . 298
14.2 Version Control Terminology 298
14.3 Centralized versus Distributed 299
14.4 Bazaar: Distributed Revision Control System 300

14.4.1 Installing Bazaar . 300
14.5 Using Bazaar for the First Time 301
14.6 Different Ways to Use a VCS 302

14.6.1 Workflow: Single User 302
14.6.2 Workflow: Two Users Sharing Code without a Central

Server . 306
14.6.3 Workflow: Multiple Users Sharing Code with a Central

Server . 309
14.7 VCS Conclusion . 311
14.8 Additional Resources . 311
14.9 Self-Evaluation . 313

© 2010 by Taylor and Francis Group, LLC

Contents xiii

IV Python Recipes with Commented Source Code 315

15 Sequence Manipulation in Batch 317
15.1 Problem Description . 317
15.2 Problem One: Create a FASTA File with Random Sequences 317

15.2.1 Commented Source Code 317
15.3 Problem Two: Filter Not Empty Sequences from a FASTA File 318

15.3.1 Commented Source Code 319
15.4 Problem Three: Modify Every Record of a FASTA File . . . 321

15.4.1 Commented Source Code 321

16 Web Application for Filtering Vector Contamination 323
16.1 Problem Description . 323

16.1.1 Commented Source Code 324
16.2 Additional Resources . 327

17 Searching for PCR Primers Using Primer3 329
17.1 Problem Description . 329
17.2 Primer Design Flanking a Variable Length Region 330

17.2.1 Commented Source Code 331
17.3 Batch Primer Design from Multiple Sequences 332

17.3.1 Commented Source Code 333
17.4 Additional Resources . 334

18 Calculating Melting Temperature from a Set of Primers 335
18.1 Problem Description . 335

18.1.1 Commented Source Code 335
18.2 Additional Resources . 336

19 Filtering Out Specific Fields from a Genbank File 337
19.1 Extracting Selected Protein Sequences 337

19.1.1 Commented Source Code 337
19.2 Extracting the Upstream Region of Selected Proteins 338

19.2.1 Commented Source Code 338
19.3 Additional Resources . 339

20 Converting XML BLAST File into HTML 341
20.1 Problem Description . 341

20.1.1 XML to HTML without Biopython Commented Source
Code . 342

20.1.2 Biopython Version Commented Source Code 349
20.1.3 Biopython Version for Multiple BLAST Commented Source

Code . 355

© 2010 by Taylor and Francis Group, LLC

xiv Contents

21 Infering Splicing Sites 361
21.1 Problem Description . 361

21.1.1 Infer Splicing Sites with Commented Source Code . . 362
21.1.2 Sample Run of Estimate Intron Program 365

22 DNA Mutations with Restrictions 367
22.1 Problem Description . 367

22.1.1 Introduce Point Mutations and Get Restriction Profile 367
22.1.2 Sample Run of Introduce Point Mutations Program . 370

22.2 Additional Resources . 371

23 Web Server for Multiple Alignment 373
23.1 Problem Description . 373

23.1.1 Web Interface: Front-End. HTML Code 373
23.1.2 Web Interface: Server Side Script. Commented Source

Code . 375
23.2 Additional Resources . 377

24 Drawing Marker Positions Using Data Stored in a Database 379
24.1 Problem Description . 379

24.1.1 Preliminary Work on the Data 379
24.1.2 MySQL and SQLite Database Creation 381
24.1.3 MySQL Version with Commented Source Code 382
24.1.4 SQLite Version with Commented Source Code 387

A Python and Biopython Installation 393
A.1 Python Installation . 393

A.1.1 Windows . 393
A.1.2 Mac OS X . 393
A.1.3 Linux . 397
A.1.4 Installing Python with No Administrative Permissions 397

A.2 Biopython Installation . 403
A.2.1 Windows . 403
A.2.2 Linux . 404
A.2.3 Installing Old Biopython Versions 406

A.3 Biopython with Easy Install 407

B Selected Papers 409
B.1 Python All a Scientist Needs 409
B.2 Diving into the Gene Pool with Biopython 431

C Included DVD: Virtual Machine Installation and Use 449
C.1 General Overview . 449

C.1.1 Uncompress . 449
C.1.2 VMWare Player Installation 450

© 2010 by Taylor and Francis Group, LLC

Contents xv

C.1.3 Loading the VM . 452
C.2 Instructions for Mac Users 454
C.3 Accessing the Virtual Machine 454

C.3.1 Using DNALinux as a Server 455
C.3.2 Using Databases in DNALinux 456

C.4 Additional Resources . 456

D Python Language Reference 457
D.1 Python 2.5 Quick Reference 457

D.1.1 Invocation Options . 457
D.2 Environment Variables . 459
D.3 Notable Lexical Entities . 459

D.3.1 Keywords . 459
D.3.2 Identifiers . 461
D.3.3 String Literals . 461
D.3.4 Boolean Constants (Since 2.2.1) 463
D.3.5 Numbers . 463
D.3.6 Sequences . 463
D.3.7 Dictionaries (Mappings) 464
D.3.8 Operators and Their Evaluation Order 464

D.4 Basic Types and Their Operations 464
D.4.1 Comparisons (Defined between Any Types) 464
D.4.2 None . 465
D.4.3 Boolean Operators . 465
D.4.4 Numeric Types . 465
D.4.5 Operations on Sequence Types (Lists, Tuples, Strings) 467
D.4.6 Operations on Mutable Sequences (Type list) 468
D.4.7 Operations on Mappings / Dictionaries (Type dict) . 469
D.4.8 Operations on Strings (Types str & unicode) 471
D.4.9 String Formatting with the % Operator 474
D.4.10 String Templating . 475
D.4.11 File Objects . 476
D.4.12 Operators on File Objects 476
D.4.13 File Exceptions . 476
D.4.14 Sets . 476
D.4.15 Date/Time . 477

D.5 Advanced Types . 478
D.5.1 Statements . 479
D.5.2 Assignment Operators 479
D.5.3 Conditional Expressions 481
D.5.4 Control Flow Statements 481
D.5.5 Exception Statements 481
D.5.6 Name Space Statements 485
D.5.7 Function Definition . 486
D.5.8 Class Definition . 488

© 2010 by Taylor and Francis Group, LLC

xvi Contents

D.5.9 Iterators . 490
D.5.10 Generators . 490
D.5.11 Descriptors/Attribute Access 491
D.5.12 Decorators for Functions and Methods 492
D.5.13 Miscellaneous . 493

D.6 Built-in Functions . 494
D.7 Built-in Exception Classes 499
D.8 Standard Methods and Operators Redefinition in Classes . . 502

D.8.1 Operators . 504
D.9 Special Informative State Attributes for Some Types 505
D.10 Important Modules . 505

D.10.1 sys . 505
D.10.2 os . 507
D.10.3 posix . 510
D.10.4 posixpath . 510
D.10.5 shutil . 510
D.10.6 time . 510
D.10.7 String . 520
D.10.8 re (sre) . 520
D.10.9 Regular Expression Objects 520
D.10.10 Match Objects . 520
D.10.11 Math . 520
D.10.12 getopt . 523

D.11 List of Modules and Packages in Base Distribution 526
D.12 Workspace Exploration and Idiom Hints 527

E Answers to Odd-Numbered Questions 539
E.1 Chapter 2 . 539
E.2 Chapter 3 . 540
E.3 Chapter 4 . 541
E.4 Chapter 5 . 543
E.5 Chapter 6 . 543
E.6 Chapter 7 . 544
E.7 Chapter 8 . 545
E.8 Chapter 9 . 546
E.9 Chapter 10 . 547
E.10 Chapter 11 . 547
E.11 Chapter 12 . 548
E.12 Chapter 13 . 549
E.13 Chapter 14 . 550

© 2010 by Taylor and Francis Group, LLC

Contents xvii

F Python Style Guide 553
F.1 Introduction . 553
F.2 Code Lay-Out . 554
F.3 init .py Files . 558
F.4 Whitespace in Expressions and Statements 558
F.5 Other Recommendations . 559
F.6 Comments . 561
F.7 Documentation Strings . 562
F.8 Naming Conventions . 562

F.8.1 Module Names . 564
F.9 Programming Recommendations 567
F.10 Strings and Unicode . 569
F.11 Internationalization and Localization 570
F.12 Testing . 570
F.13 Documentation . 572

© 2010 by Taylor and Francis Group, LLC

List of Tables

2.1 Arithmetic-Style Operators 24

3.1 Common List Operations . 49
3.2 Methods Associated with Dictionaries 59

9.1 REGEX Special Sequences . 161

10.1 Parameters for ClustalW . 186
10.2 Sequence and Alignment Formats 189
10.3 Parameters for blastall . 194
10.4 eUtils . 205

11.1 Frameworks for Web Development 242

13.1 Students in Python University 274
13.2 Table with Primary Key . 274
13.3 MySQL Data Types . 276

D.1 Invocation Options . 458
D.2 Environment Variables . 460
D.3 String Literal Escapes . 462
D.4 Operators and Their Evaluation Order 464
D.5 Comparisons . 465
D.6 Boolean Operators . 466
D.7 Operators on All Numeric Types 467
D.8 Bit Operators on Integers and Long Integers 467
D.9 Operations on All Sequence Types 468
D.10 Operations on Mutable Sequences 469
D.11 Operations on Mappings/Dictionaries 470
D.12 String Formatting Characters 474
D.13 Format Codes . 475
D.14 Conversion Flag Characters 476
D.15 Operators on File Objects . 477
D.16 Main Set Operations . 478
D.17 Statements . 480
D.18 Assignment Operators . 481
D.19 Control Flow Statements . 482

xix

© 2010 by Taylor and Francis Group, LLC

xx List of Tables

D.20 Exception Statements . 483
D.21 Special Methods for Any Class 503
D.22 Numeric Operations Special Methods 504
D.23 Conversions . 505
D.24 Special Operations for Containers 506
D.25 Special Informative State Attributes: Modules 507
D.26 Special Informative State Attributes: Classes 507
D.27 Special Informative State Attributes: Instances 507
D.28 Special Informative State Attributes: User-Defined Functions 507
D.29 Special Informative State Attributes: User-Defined Methods . 508
D.30 Special Informative State Attributes: Built-in Functions and

Methods . 508
D.31 Special Informative State Attributes: Codes 508
D.32 Special Informative State Attributes: Frames 509
D.33 Special Informative State Attributes: Tracebacks 509
D.34 Special Informative State Attributes: Slices 509
D.35 Special Informative State Attributes: Complex Numbers . . . 509
D.36 Special Informative State Attributes: xranges 510
D.37 Some sys Variables . 511
D.38 Some sys Functions . 512
D.39 Some os Variables . 513
D.40 Some os Functions . 513
D.41 Posix Variables . 513
D.42 Posix Functions . 514
D.43 Posixpath Functions . 516
D.44 Shutil Functions . 517
D.45 Time Access and Conversions: Variables 517
D.46 Time: Some Functions . 518
D.47 Formatting in strftime() and strptime() 519
D.48 Some String Variables . 520
D.49 Some String Functions . 521
D.50 Regular Expression Syntax 522
D.51 Regular Expression Special Sequences 523
D.52 Regular Expression Variables 523
D.53 Regular Expression Functions 524
D.54 re Object Attributes . 525
D.55 re Object Methods . 525
D.56 Match Object Attributes . 526
D.57 Match Object Functions . 526
D.58 Math Constants . 526
D.59 Math Functions . 527
D.60 Standard Library Modules . 528
D.61 Workspace Exploration and Idiom Hints 538

© 2010 by Taylor and Francis Group, LLC

List of Figures

2.1 Eric Python Editor. 33
2.2 PyDeb: Easy Eclipse for Python. 34
2.3 IDLE. 36

3.1 Intersection. 62
3.2 Union. 62
3.3 Difference. 63
3.4 Symmetric difference. 63
3.5 Case 1. 67
3.6 Case 2. 67

5.1 Excel formatted spreadsheet called sampledata.xls. 95

8.1 IUPAC nucleic acid notation table. 147

10.1 Anatomy of a BLAST result 195

11.1 Our first CGI. 228
11.2 CGI accessed from local disk instead of a web server. 228
11.3 A very simple form. 229
11.4 CGI output. 230
11.5 HTML form to submit data to a Python script. 234
11.6 HTML generated by a Python script. 235
11.7 HTML generated by a Python script. 238

12.1 Screenshot of XML viewer. 257

13.1 Screenshot of PhpMyAdmin. 272
13.2 Screenshot of MySQL Query Browser. 273
13.3 Login screen to the MySQL database using phpMyAdmin. . . 277
13.4 Creating a new database using phpMyAdmin. 278
13.5 Creating a new table using phpMyAdmin. 280
13.6 View of the Student table. 281
13.7 An intentionally faulty “Score” table. 282
13.8 A better “Score” table. 283
13.9 Courses table: A lookup table. 284
13.10 Modified “Score” table. 284

xxi

© 2010 by Taylor and Francis Group, LLC

xxii List of Figures

13.11 Screenshot of SQLite manager. 292

16.1 HTML form for sequence filtering. 328

23.1 Muscle Web interface. 374

24.1 Product of code 24.2, using the demo dataset (NODBDEMO). . . 392

A.1 First screen of the Python installer (Windows). 394
A.2 Second screen of the Python installer (Windows). 394
A.3 Customize Python installation (Windows). 395
A.4 Installation progress (Windows). 395
A.5 Last installation screen (Windows). 396
A.6 Python shell ready to use (Windows). 396
A.7 First screen of the Python installer (Mac). 397
A.8 Second screen of the Python installer (Mac). 398
A.9 Python software agreement (Mac). 398
A.10 Accept to continue (Mac). 399
A.11 Select where to install Python (Mac). 399
A.12 Ready to install Python (Mac). 400
A.13 Enter your user name and password to continue (Mac). . . . 400
A.14 Installation progress (Mac). 401
A.15 Python is installed (Mac). 401
A.16 Python shell (Mac). 402
A.17 Biopython testing dialog. 406

B.1 The lambda phage GC-landscape generated by the sample code
in Example B.5. 422

B.2 Schema of an Adenine nucleotide. 432
B.3 Nucleotides forming a DNA strand of Adenine, Thymine, and

Guanine (ATG). 433
B.4 DNA strand and its complementary sequence. 434

C.1 Select the compressed virtual disk and extract it contents with
7zip. 450

C.2 VMWare First Installation Screen. 451
C.3 VMWare Finish Screen. 451
C.4 Starting VMWare Player. 452
C.5 Open File Dialog Box in Linux. 453
C.6 Open File Dialog Box in Windows. 453
C.7 DNALinux ready to use (inside a VMWare virtual machine). 454
C.8 Loading a page from the DNALinux Web server. 455

© 2010 by Taylor and Francis Group, LLC

Preface

This book is a result of the experience accumulated during several years of
working for an agricultural biotechnology company. As a genomic database
curator, I gave support to staff scientists with a broad range of bioinformatics
needs. Some of them just wanted to automate the same procedure they were
already doing by hand, while others would come to me with biological prob-
lems to ask if there were bioinformatics solutions. Most cases had one thing in
common: Programming knowledge was necessary for finding a solution to the
problem. The main purpose of this book is to help those scientists who want
to solve their biological problems by helping them to understand the basics of
programming. To this end, I have attempted to avoid taking for granted any
programming related concepts. The chosen language for this task is Python.

Python is an easy to learn computer language that is gaining traction among
scientists. This is likely because it is easy to use, yet powerful enough to
accomplish most programming goals. With Python the reader can start do-
ing real programming very quickly. Journals such as Computing in Science
and Engineering, Briefings in Bioinformatics and PLOS Computational Bi-
ology have published introductory articles about Python. Scientists are using
Python for molecular visualization, genomic annotation, data manipulation
and countless other applications.

In the particular case of the life sciences, the development of Python has
been very important; the best exponent is the Biopython package. For this
reason, Section II is devoted to Biopython. Anyhow, I don’t claim that Biopy-
thon is the solution to every biology problem in the world. Sometimes a simple
custom-made solution may better fit the problem at hand. There are other
packages like BioNEB and CoreBio that the reader may want to try.

The book begins from the very basic, with Section I (“Programming”),
teaching the reader the principles of programming. From the very beginning,
I place a special emphasis on practice, since I believe that programming is
something that is best learned by doing. That is why there are code frag-
ments spread over the book. The reader is expected to experiment with
them, and attempt to internalize them. There are also some spare compar-
isons with other languages; they are included only when doing so enlightens
the current topic. I believe that most language comparisons do more harm
than good when teaching a new language. They introduce information that
is incomprehensible and irrelevant for most readers.

In an attempt to keep the interest of the reader, most examples are somehow
related to biology. In spite of that, theses examples can be followed even if

xxiii

© 2010 by Taylor and Francis Group, LLC

xxiv Preface

the reader doesn’t have any specific knowledge in that field.
To reinforce the practical nature of this book, and also to use as refer-

ence material, Section IV is called “Python Recipes with Commented Source
Code.” These programs can be used as is, but are intended to be used as a ba-
sis for other projects. Readers may find that some examples are very simple;
they do their job without too many bells and whistles. This is intentional.
The main reason for this is to illustrate a particular aspect of the application
without distracting the reader with unnecessary features, as well as to avoid
discouraging the reader with complex programs. There will always be time to
add features and customizations once the basics have been learned.

The title of Section III (“Advanced Topics”) may seem intimidating, but in
this case, advanced doesn’t necessarily mean difficult. Eventually, everyone
will use the chapters in this section [especially relational database manage-
ment system -RDBMS- and XML]. An important part of the bioinformatics
work is building and querying databases, which is why I consider knowing a
RDBMS like MySQL to be a relevant part of the bioinformatics skill set. Inte-
grating data from different sources is one of tasks most frequently performed
in bioinformatics. The tool of choice for this task is XML. This standard is
becoming a widely used platform for data interchange between applications.
Python has several XML parsers and we explain most of them in this book.

Appendix B, “Selected Papers,” introductory provide level papers on Python.
Although there is some overlapping of subjects, this was done to show several
points on view of the same subject.

Researchers are not the only ones for whom this book will be beneficial. It
has also been structured to be used as a university textbook. Students can
use it for programming classes, especially in the new bioinformatics majors.

© 2010 by Taylor and Francis Group, LLC

Acknowledgments

A project such as this book couldn’t be done by just one person. For this
reason, there is a long list of people who deserve my thanks. In spite of the
fact that the average reader doesn’t care about the names, and at the risk of
leaving someone out, I would like to acknowledge the following people: My
wife Virginia Claudia Gonzalez (Vicky) and my son Maximo Bassi who had
to contend with my virtual absence during more than a year. Vicky also
assisted me in uncountable ways during manuscript preparation. My parents
and professors taught me important lessons. My family (Oscar, Graciela, and
Ramiro) helped me with the English copyediting, along with Hugo and Lucas
Bejar. Vicky, Griselda, and Eugenio also helped by providing a development
abstraction layer, which is needed for writers and developers. Thanks also to
Joel Spolsky for coining this term (and providing inspirational words).

The people at the local Python community (http://www.pyar.com.ar):
Facundo Batista, Lucio Torre, Gabriel Genellina, John Lenton, Alejandro J.
Cura, Manuel Kaufmann, Gabriel Patiño, Alejandro Weil, Marcelo Fernandez,
Ariel Rossanigo, Mariano Draghi, and Buanzo. I would choose Python again
just for this great community. The people at Biopython: Jeffrey Chang, Brad
Chapman, Peter Cock, Michiel de Hoon, Iddo Friedberg, and Andrew Dalke.
Peter Cock is specially thanked for his comments on the Biopython chapter.
Shashi Kumar and Pablo Di Napoli who helped me with the LATEX2εissues,
Martin Albisetti who overviewed the Version Control chapter, Zachary Voase
who contributed with his article “Diving into the Gene Pool with Biopy-
thon”, Julius B. Lucks for his work at “OpenWetWare,” Richard Gruet for
the “Python Quick Reference,” Luke Arno who contributed with the WSGI
section, and Sunil Nair who believed in me from the first moment.

xxv

© 2010 by Taylor and Francis Group, LLC

http://www.pyar.com.ar
http://www.pyar.com.ar

Part I

Programming

© 2010 by Taylor and Francis Group, LLC

Chapter 1

Introduction

1.1 Who Should Read This Book

This book is for the life science researcher who wants to learn how to pro-
gram. He may have previous exposure to computer programming, but this is
not necessary to understand this book (although it surely helps).

This book is designed to be useful to several separate but related audiences,
students, graduates, postdocs, and staff scientists, since all of them can benefit
from knowing how to program.

Exposing students to programming at early stages in their career helps to
boost their creativity and logical thinking, and both skills can be applied in
research. In order to ease the learning process for students, all subjects are
introduced with the minimal prerequisites. There are also questions at the
end of each chapter. They can be used for self-assessing how much you’ve
learnt. The answers are available to teachers in a separate guide.

Graduates and staff scientists having actual programming needs should find
its several real world examples and abundant reference material extremely
valuable.

1.1.1 What You Should Already Know

Since this book is called Python for Bioinformatics it has been written with
the following assumptions in mind:

• The reader should know how to use a computer. No programming knowl-
edge is assumed, but the reader is required to have minimum computer
proficiency to be able to use a text editor and handle basic tasks in your
operating system (OS). Since Python is multi-platform, most instruc-
tions from this book will apply to the most common operating systems
(Windows, Mac OSX and Linux); when there is a command or a proce-
dure that applies only to a specific OS, it will be clearly noted.

• The reader should be working (or at least planning to work) with bioin-
formatics tools. Even low scale hand made jobs, such as using the NCBI
BLAST to ID a sequence, aligning proteins, primer searching, or esti-
mating a phylogenetic tree will be useful to follow the examples. The

3

© 2010 by Taylor and Francis Group, LLC

4 Python for Bioinformatics

more familiar the reader is with bioinformatics the better he will be able
to apply the concepts learned in this book.

1.2 Using this Book

1.2.1 Python Versions

There are two versions of Python available for download: Python 2.6 (also
called 2.x series) and Python 3 (also known as Python 3000). Python 3 is
not fully compatible with the 2.x series. For that reason, at this time (mid
2009) most third party modules are not available for Python 3, in particular
the Biopython package that is a “must have” if you are planning to do serious
bioinformatics work. Developers are expected to test their packages in Python
3 and may port them by Python 3.1 or 3.2. The last Biopython release (1.50
at this time) works under Python 2.4, 2.5 and 2.6 in all supported platforms.

This books teaches Python fundamentals that can be applied to any Python
version. When a feature is exclusive to a particular Python version, it is
properly noted. All programs in this book were tested under Python 2.5 and
2.6. They are all “Python 3 aware,” that is, even if they don’t work because
they depend on an external library that wasn’t ported up to this date, they
are written with Python 3 syntax in mind and are expected to work with any
(or minor) modification when external libraries become available.

Regarding which version to use, if your script doesn’t rely on external pack-
ages, you may try Python 3 right now. But this is an unlikely scenario. If
the packages you need are not ported yet, you should use Python 2.6. The
Python 2.x line will continue to be supported and improved for years to come.
Python 2.6 has the “-3” command line option (Py3k warnings) that warns
about incompatibilities with Python 3 and there is also a tool called “2to3”
that converts Python 2.6 code to 3 compatible Python code.

1.2.2 Typographical Conventions

There are some typographical conventions I have tried to use in a uniform
way throughout the book. They should aid readability and were chosen to tell
apart user made names (or variables) from language keywords. This comes in
handy when learning a new computer language.

Bold: Objects provided by Python and by third party modules. With this
notation it should be clear that round is part of the language and not a user
defined name. Bold is also used to highlight parts of the text. There is no
chance to confuse one bold usage with the other.
Mono-spaced font: User declared variables and filenames.

© 2010 by Taylor and Francis Group, LLC

Introduction 5

Italics: In commands, it is used to denote a variable that can take dif-
ferent values. For example, in len(iterable), “iterable” can take different
values. Used in text, it marks a new word or concept. For example “One such
fundamental data structure is a sequence.”

<= : Break line. Some lines are longer than the available space in a printed
page, so this symbol is inserted to mean that what is on the next line in the
page represents the same line on the computer screen.

1.2.3 Code Style

Python source code is presented as listings. Each line of these listings is
numbered. These numbers are not intended to be typed, they are used to
reference each line in the text. All code is available in the accompanying
Virtual Machine.1 Each code sample is also available on the web in a site
especially crafted to show source code (Pastebin). You will see a URL (web
address) with this form “py3.us/#” (where # is a number) next to each listing.
Type this URL in your browser and you will see the same source code that
is presented in the book. The source code can be downloaded by using the
“download” link on its Pastebin webpage.

Code can be formatted in several ways and still be valid to the Python
interpreter. This following code is syntactically correct:

Dna=’accatcagt’
def MyFunction(X,N):

avG=sum(X)/N
" Calculate the average "
return avG

So is this one:

dna = ’accatcagt’
def my_function(x,n):

""" Calculate the average
"""
avg = sum(x)/n
return avg

The former code sample follows most accepted coding styles for Python.2

Throughout the book you will find mostly code formatted as the second sam-
ple. Some code in the book will not follow accepted coding styles for the
following reasons:

1Please refer to the instructions on the DVD on how to use the Virtual Machine.
2See page 553 for details on coding styles.

© 2010 by Taylor and Francis Group, LLC

6 Python for Bioinformatics

• There are some instances where the most didactic way to show a partic-
ular piece of code conflicts with the style guide. On those few occasions,
I choose to deviate from the style guide in favor of clarity.

• Due to size limitation in a printed book, some names were shortened
and other minor drifts from the coding styles have been introduced.

• To show there are more than one way to write the same code. Coding
style is a guideline, so some programmers don’t follow them. You should
be able to read “bad” code, since sooner or later you will have to read
other people’s code.

1.2.4 Get the Most from This Book without Reading It All

• If you want to learn how to program, read the first section, from
Chapter 1 to Chapter 8. The Regular Expressions (REGEX) chapter
(Chapter 9) can be skipped if you don’t need to deal with REGEX.

• If you know Python and just want to know about Biopython, read
first the Section II (from page 175 to page 222). It consists in a large
chapter on Biopython modules and functions. Then try to follow pro-
grams found in Section IV (from page 317 to page 391).

• If you need some introduction to biological basics before reading
about Biopython you can start with “Diving into the Gene Pool with
Biopython” from page 431 to page 447.

• To use it as reference material, see Section IV (Python Recipes with
Commented Source Code, from page 317 to page 391), D (Python Lan-
guage Reference, from 457 to 527) and F (Python Style Guide, from 553
to 576).

1.3 Why Learn to Program?

Many of the tasks that a researcher performs with his or her computer are
repetitive: Collect data from a Web page, convert files from one format to
another, execute or interpret 10 or hundreds of BLAST results, first design,
look for restriction enzymes, etc. In many cases it is evident that these are
tasks that can be performed with a computer, with less effort on our part and
without the possibility of errors caused by tiredness or distractions.

An important consideration when you’re evaluating whether or not to create
a program is the apparent time lost in the definition and formulation of the
problem, implementing it with code and then debugging it (correcting errors

© 2010 by Taylor and Francis Group, LLC

Introduction 7

that surface inevitably). It is incorrect to consider problem definition and
evaluation a waste of time. It is generally at this precise point in the process
where we understand thoroughly the problem that we face. It is common that
during the attempt to formulate a problem, we realize that many of our initial
assumptions were mistaken. It also helps us to detect when it is necessary to
restart the planning process. When this happens, it is better that it happens
at the planning stage than when we are in the middle of the project. In these
cases, the planning of the program represents time saved. Another advantage
to take into account is that the time that is invested to create a program once
is compensated by the speed with which the tasks are performed every time
we run it.

Not only can it automate the procedures that we do manually, but it will
also be able to do things that would otherwise not be possible: Personalized
graphics, web applications and interaction with databases, just to name a few.

Sometimes it is not very clear if a particular task can be done by a program.
Reading a book such as this one (including the examples) will help you identify
which tasks are feasible to automate with a script and which ones are better
done manually.

1.4 Basic Programming Concepts

Before installing Python, let’s review some programming fundamentals. If
you have some previous programming experience, you may want to skip this
section and jump straight to page 19 (Installing Python). This section in-
troduces basic concepts such as instructions, data types, variables and some
other related terminology that is used throughout this book.

1.4.1 What Is a Program?

A program is a set of ordered instructions designed to command the com-
puter to do something. The word “ordered” is there because is not enough
to declare what to do, but the actual order of the directions should also be
stated.3

A program is often characterized as a recipe. A typical recipe consists in a
list of ingredients followed by step by step instructions on how to prepare a
dish. This analogy is reflected in several programming websites and tutorials

3There are declarative languages that state what the program should accomplish, rather
than describing how to accomplish it. Since most computer languages (Python included)
are imperative instead of declarative, this book assumes that all programs are written in an
imperative form.

© 2010 by Taylor and Francis Group, LLC

8 Python for Bioinformatics

with the words “recipe” and “cookbook” on it. A laboratory protocol is an-
other useful analogy. A protocol is defined as a “predefined written procedural
method in the design and implementation of experiments.”

Here is a typical protocol, followed almost every day in several molecular
laboratories:

Listing 1.1: Protocol for Lambda DNA digestion

Restriction Digestion of Lambda DNA

Materials

5.0 mcL Lambda DNA (0.1 g/L)
2.5 mcL 10x buffer
16.5 mcL H2O
1.0 mcL EcoRI

Procedure

Incubate the reactions at 37◦C for 1 hr.
Add 2.5 mcL loading dye and incubate for another 15 minutes.
Load 20 mcL of the digestion mixture onto a minigel

There are at least two components of a protocol: procedure and materials.
A procedure provides specific order like incubate, add, mix, store, load and
many others. The same goes for a computer program. The programmer gives
specific order to the computer: print, read, write, add, multiply, assign, round,
and others.

While protocol procedures correlate with program instructions, materials
are the data. In protocols, procedures are applied to materials: Mix 2.5 µL
of buffer with 5 µL of Lambda DNA and 16.5 µL of H20, load 20 µL onto a
minigel. In a program, instructions are applied to data: print the text string
“Hello”, add two integer numbers, round a float number.

As a protocol can we written in different language (like English, Spanish
or French), there are different languages to program a computer. In science
protocols, English is the de facto language. Due to historical, commercial and
practical reasons, there is no such a equivalent in computer science. There are
several languages, each with its own strong points and weakness. For reasons
that will make sense shortly, Python was the computer language chosen for
this book.

Let’s see a simple Python program:

Listing 1.2: Sample Python Program

seq_1 = ’Hello,’
seq_2 = ’ you!’

© 2010 by Taylor and Francis Group, LLC

Introduction 9

total = seq_1 + seq_2
seq_size = len(total)
print(seq_size)

This small program can be read as “Name the string Hello, as seq 1.
Name the string you! as seq 2. Add the strings named seq 1 and seq 2
and call the result as total. Get the length of the string called total and
name this value as seq size. Print the value of seq size.” This program
prints 11.

As shown, there are different types of data (often called “data types” or
just “types”). Numbers (integers or float), text string, and other data types
are covered in Chapter 3. In print(seq size), the instruction is print and
seq size is the name of the data. Data is often represented as variables.
A variable is a name that stands for a value that may vary during program
execution. With variables, a programmer can represent a generic order like
“round n” instead of “round 2.9.” This way he can take into account for a
non fixed (hence variable) value. When the program is executed, “n” should
take a specific value since there is no way to “round n.” This can be done
by assigning a value to a variable or by binding a name to a value.4 The
difference between “assign a value to a variable” and “bind a name to a
value” is explained in detail in Chapter 3 (from page 65). In both cases, it is
expressed as:

var = value

Note that this is not an equality as seen in mathematics. In an equality,
terms can be interchanged, but in programming, the term of the right (value)
takes the name of the term of the left (var). For example,

seq_1 = ’Hello,’

After this assignment, the variable seq 1 can be used, like,

len(seq_1)

This is translated as “return the length of the value called seq 1”. This
command returns “6” because there are six characters in the string Hello,.

1.5 Why Python?

Let’s have a look at some Python features worth pointing out.

4In Python the later form is used.

© 2010 by Taylor and Francis Group, LLC

10 Python for Bioinformatics

1.5.1 Main Features of Python

• Readability: When we talk about readability, we refer as much to the
original programmer as any other person interested in understanding
the code. It is not an uncommon occurrence for someone to write some
code then return to it a month later and find it difficult to understand.
Sometimes Python is called a “human readable language.”

• Built-in features: Python comes with “Batteries included.” It has a rich
and versatile standard library which is immediately available, without
the user having to download separate packages. With Python you can,
with few lines, read an XML file, extract files from a zip archive, parse
and generate email messages, handle files, read data sent from a Web
browser to a Web server, open a URL as if were a file, and many more
possibilities.

• Availability of third party modules: 2/3D plotting, PDF generation,
bioinformatics analysis, animation, game development, interface with
popular databases, and application software are only a handful of ex-
amples of modules that can be installed to extend Python functionality.

• High level built-in data structures: Dictionaries, sets, lists, and tuples
help to model real world data.

• Multiparadigm: Python can be used as a “classic” procedural language
or as “modern” object oriented programming (OOP) language. Most
programmers start writing code in a procedural way and when they are
ready, they upgrade to OOP. Python doesn’t force programmers to write
OOP code when they just want to write a simple script.

• Extensibility: If the built-in methods and available third party mod-
ules are not enough for your needs, you can easily extend Python, even
in other programming languages. There are some applications written
mostly in Python but with a processor demanding routine in C or FOR-
TRAN. Python can also be extended by connecting it to specialized high
level languages like R or MATLAB.

• Open source: Python has a liberal open source license that makes it
freely usable and distributable, even for commercial use.

• Cross platform: A program made in Python can be run under any
computer that has a Python interpreter. This way a program made
under Windows Vista can run unmodified in Linux. Python interpreters
are available for most computer and operating systems, and even some
devices with embedded computers like the Nokia 6630 smartphone.

• Thriving community: Python is gaining momentum among the scientific
community. This translates into more libraries for your projects and
people you can go to for support.

© 2010 by Taylor and Francis Group, LLC

Introduction 11

Why Was Python Created in the First Place?

Here is a recounting by Guido van Rossum, Python author, about what
was the motivation for “inventing” a new computer language:

“I was working in the Amoeba distributed operating system group at CWI.
We needed a better way to do system administration than by writing either
C programs or Bourne shell scripts, since Amoeba had its own system call
interface which wasn’t easily accessible from the Bourne shell. My experience
with error handling in Amoeba made me acutely aware of the importance of
exceptions as a programming language feature.

It occurred to me that a scripting language with a syntax like ABC but
with access to the Amoeba system calls would fill the need. I realized that
it would be foolish to write an Amoeba-specific language, so I decided that I
needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I
decided to give it a try. During the next year, while still mostly working on
it in my own time, Python was used in the Amoeba project with increasing
success, and the feedback from colleagues made me add many early improve-
ments.

In February 1991, after just over a year of development, I decided to post
to USENET. The rest is in the Misc/HISTORY file.”

In January 2009, Guido opened a blog devoted to Python history. It can
be found at http://python-history.blogspot.com.

1.5.2 Comparing Python with Other Languages

You may be wondering why you should use Python, and not more well
known languages like C, Perl or JAVA. It is a good question. A programming
language can be regarded as a tool, and choosing the best tool for the job
makes a lot of sense.

Readability

Nonprofessional programmers tend to value the learning curve as much as
the legibility of the code (both aspects are tightly related).

A simple “hello world” program in Python looks like this:

print("Hello world!")

Compare it with the equivalent code in Java:

public class Hello
{

© 2010 by Taylor and Francis Group, LLC

http://python-history.blogspot.com
http://python-history.blogspot.com

12 Python for Bioinformatics

public static void main(String[] args) {
System.out.printf("Hello world!");

}
}

Let’s see a code sample in C language. The following program reads a file
(input.txt) and copies its contents into another file (output.txt):

#include <stdio.h>
int main(int argc, char **argv) {

FILE *in, *out;
int c;
in = fopen("input.txt", "r");
out = fopen("output.txt", "w");
while ((c = fgetc(in)) != EOF) {

fputc(c, out);
}
fclose(out);
fclose(in);

}

The same program in Python is shorter and easier to read:

in = open("input.txt")
out = open("output.txt", "w")
out.writelines(in)
in.close()
out.close()

A one-liner could also do the job:

open("output.txt", "w").writelines(open("input.txt"))

Let’s see a Perl program that calculates the average of a series of numbers:

sub avg(@_) {
$sum += $_ foreach @_;
return $sum / @_ unless @_ == 0;
return 0;

}
print avg((1..5))."\n";

The equivalent program in Python

def avg(data):
if len(data)==0:

return 0
else:

return sum(data)/float(len(data))
print(avg([1,2,3,4,5]))

© 2010 by Taylor and Francis Group, LLC

Introduction 13

The purpose of this Python program could be almost fully understood by
just knowing English.

Python is designed to be a highly readable language.5 The use of English
keywords, the use of spaces to limit code blocks and its internal logic (in-
dentation), contribute to this end. Its possible to write hard to read code in
Python, but it requires a deliberate effort to obfuscate the code.6

Speed

Another parameter to consider when choosing a programming language is
code execution speed. In the early days of computer programming, computers
were so slow that some differences due to language implementation were very
significant. It could take a week for a program to be executed in an interpreted
language, while the same code in a compiled language could be executed in a
day. This performance difference between interpreted and compiled languages
stays with the same proportion, but it is less relevant. This is because a
program that took a week to run, now takes less than ten seconds, while
the compiled one takes about one second. Although the difference seems
important, it is not so relevant if we consider the development time.

This does not mean that execution speed does not need to be considered.
A 10X speed difference can be crucial in some high performance computing
operations. Sometimes a lot of improvements can be achieved by writing
optimized code. If the code is written with speed optimization in mind, it
is possible to obtain results quite similar to the ones that could be obtained
in a compiled language. In the cases where the programmer is not satisfied
with the speed obtained by Python, it is possible to link to an external library
written in other language (like C or Fortran). This way, we can get the best
of both worlds: the ease of Python programming with the speed of a compiled
language.

1.5.3 How It Is Used?

Python has a wide range of applications. From cell phones to web servers,
there are installed thousands of Python applications in the most diverse fields.
There is Python code powering Wikipedia robots, the OLPC (One Laptop Per
Child) project7, and it is the scripting language of the OpenOffice suite.8

5Other languages are regarded as “write only,” since once written it is very difficult to
understand it.
6A simple print ’Hello World’ program could be written, if you are so inclined, as
print ”.join([chr((L>=65 and L<=122) and (((((L>=97) and (L-96) or (L-64))-
1)+13)%26+((L>=97) and 97 or 65)) or L) for L in [ord(C) for C in ’Uryyb
Jbeyq!’]]) (py3.us/1).
7http://wiki.laptop.org/go/OLPC_Python_Environment
8http://wiki.services.openoffice.org/wiki/Python

© 2010 by Taylor and Francis Group, LLC

http://wiki.laptop.org
http://wiki.services.openoffice.org
http://wiki.services.openoffice.org
http://wiki.laptop.org

14 Python for Bioinformatics

Some languages are strong in one niche (like Perl and PHP for web appli-
cations, Java for desktop programs), but Python can’t be typecasted easily.

With a single code-base, Python desktop applications run with a native look
and feel on multiple platforms. Well known examples of this category include
the BitTorrent p2p client/server, Emesene an IM client for Windows Live
Messenger, media players like Exaile and Tim Player and even a CAD
package, PythonCAD.

As a language for building web applications, Python can be found in Zooomr.
com, a popular image sharing site as well as several other Web sites like
Google, Yahoo and Nasa.gov. There are specialized software for building
Web sites (called webframeworks) in Python like Django, Pylons, Zope and
TurboGears. Tools for accessing webservices are also available in Python
(Yahoo Python Developer Center,9 Google Data API,10 Facebook API.11)

Python also excels in small one-use scripts. Not all programs are meant
to be publicly released, some are built just to solve a user’s problem. From
system administration to data analysis, Python provides a wide range of tools
to this end:

• Generic Operating System Services (os, io, time, curses)

• File and Directory Access (os.path, glob, tempfile, shutil)

• Data Compression and Archiving (zipfile, gzip, bz2)

• Interprocess Communication and Networking (subprocess, socket, ssl)

• Internet Data Handling (email, mimetools, rfc822)

• Internet Protocols (cgi, urllib, urlparse)

• String Services (string, re, codecs, unicodedata)

Python is gaining users in the scientific community. There is library (SciPy)
that integrates several modules like linear algebra, signal processing, opti-
mization, statistics, genetic algorithms, interpolation, ODE solvers, special
functions, etc. Python has support for parallel programming (if you have
appropriate hardware) with the pyMPI and 2D/3D scientific data plotting.

Python is known to be used in wide and diverse fields like engineering,
electronic, astronomy, biology, paleomagnetism, geography, and many more.

9http://developer.yahoo.com/python
10http://code.google.com/p/gdata-python-client
11http://wiki.developers.facebook.com/index.php/PythonPyFacebookTutorial

© 2010 by Taylor and Francis Group, LLC

http://developer.yahoo.com
http://code.google.com
http://wiki.developers.facebook.com
http://wiki.developers.facebook.com
http://code.google.com
http://developer.yahoo.com

Introduction 15

1.5.4 Who Uses Python?

Python is used by several companies, from small and unknown shops up
to big players in their fields like Google, Yahoo, Disney, NASA, NYSE, and
many more.

Google for instance has three “official languages” for deploying in pro-
duction services: JAVA, C++ and Python. They have Web sites made in
Python,12 stand-alone programs13 and even hosting solutions.14 As a confir-
mation that Google is taking Python seriously, in December 2005 they hired
Guido van Rossum, the creator of Python. He is working most of the time
improving Python. It may not be Google’s main language, but this shows
that they are a strong supporter of it.

Even Microsoft, a company not known for their support of open source
programs, have developed a version of Python to run their “.Net” platform.
This version is called IronPython.

Many well-known Linux distributions already use Python in their key tools.
Red Hat’s Anaconda installer, and Gentoo’s Portage package manager are
two examples. Ubuntu Linux (the most successful Linux distribution at this
time) “... prefers the community to contribute work in Python.” Python is
so tightly integrated into Linux that some distributions won’t run without a
working copy of Python.

1.5.5 Flavors of Python

Although in this book I refer to Python as one specific programming lan-
guage, Python is actually a language definition. What we use for programming
is a specific implementation. Since there is an implementation that is used by
most Python programmers (cPython, also known as Python), this subject is
usually overlooked by some users.

The most relevant Python implementations are: cPython, PyPy,15 Stack-
less,16 Jython17 and IronPython. This book will focus on the standard Python
version (cPython), but it is worth knowing about the different versions.

• CPython: The most used Python version, so the terms CPython and
Python are used interchangeably. It is made mostly in C (with some
modules made in Python) and is the version that is available from the
official Python Web site (http://www.python.org).

12See the “.py” at http://www.google.com/support/bin/topic.py?topic=352.
13http://code.google.com/p/sitemap-generators
14http://code.google.com/appengine
15http://codespeak.net/pypy/dist/pypy/doc/home.html
16http://www.stackless.com
17http://www.jython.org/Project

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.google.com
http://www.stackless.com
http://www.jython.org
http://code.google.com
http://code.google.com
http://codespeak.net
http://codespeak.net
http://code.google.com
http://code.google.com
http://www.jython.org
http://www.stackless.com
http://www.google.com
http://www.python.org

16 Python for Bioinformatics

• PyPy: A Python version made in Python. It was conceived to allow pro-
grammers to experiment with the language in a flexible way (to change
Python code without knowing C). It is mostly an experimental platform.

• Stackless: Is another experimental Python implementation. The aim
of this implementation doesn’t focus on flexibility as PyPy, instead,
it provides advanced features not available in the “standard” Python
version. This is done in order to overcome some design decisions taken
early in Python development history. Stackless allows custom designed
Python application to scale better than cPython counterparts. This
implementation is being used in the EVE Online massively multi-player
online game, Civilization IV, Second Life, and Twisted.

• Jython: A Python version written in JAVA. It works in a JVM (Java
Virtual Machine). One application of Jython is to add the Jython li-
braries to their JAVA system to allow users to add functionality to the
application. A very well known learning 3D programming environment
(Alice18) uses Jython to let the users program their own scripts.

• IronPython: Python version adapted by Microsoft to run on “.Net” and
“.Mono” platform. .Net is a technology that aims to compete with JAVA
regarding “write once, runs everywhere.” Another use of IronPython
envisioned by Microsoft is as a script language for running in the Web
browser along Silverlight (a Flash-like Microsoft technology).

1.5.6 Special Python Bundles

Apart from Python implementations, there are some special adaptations of
the original cPython that are packaged for specific purposes:

• Python(x,y): It is defined as a “free scientific and engineering develop-
ment software for numerical computations, data analysis and data vi-
sualization based on Python programming language, Qt graphical user
interfaces (and development framework) and Eclipse integrated devel-
opment environment.” In other words, it is a bundle of several Python
related package to ease the use and installation. The main advantage
of Python(x,y) is that by installing just one program you end up with
a complete development environment that includes, Eclipse, IPython,
C++, Fortran, Extensive documentation, Numeric, SciPy, Mayavi, and
others. It is available at http://www.pythonxy.com. Up to the moment
of writing this, it was available only for Windows.19 The main drawback
of this approach is that the resulting package is about 254 Mb long (or
150 Mb without Eclipse).

18Alice is available for free at http://www.alice.org.
19With an “available soon...” for Linux on the downloaded page.

© 2010 by Taylor and Francis Group, LLC

http://www.pythonxy.com
http://www.alice.org
http://www.alice.org
http://www.pythonxy.com

Introduction 17

• Enthought Python Distribution (EPD): Another “all-in-one” Python
solution. Includes over 60 additional tools and libraries, like NumPy,
SciPy, IPython, 2D and 3D visualization, database adapters, and other
libraries. Everything available as a single-click installer for Windows XP,
Mac OS X (a universal binary for Intel 10.4 and above), and RedHat EL3
and EL4 (x86 and amd64). This bundle is suitable for scientific users,
and it is made by the same people who made NumPy and SciPy. It
is free for academic and nonprofit private-sector use, and for an annual
fee for commercial and governmental use. It is available at http://
www.enthought.com/products/epd.php, and since it includes so many
libraries, the resulting size is about 400Mb.

• PortablePython: A Python version capable of running without the need
of installation. It can be used to carry a working program environment
in a pendrive or any removable storage unit. Another application of
PortablePython is to distribute Python program to people that can’t
or don’t want to install Python (like some controlled corporate and
academic environment).

© 2010 by Taylor and Francis Group, LLC

http://www.enthought.com
http://www.enthought.com
http://www.enthought.com
http://www.enthought.com

Chapter 2

First Steps with Python

2.1 Installing Python

2.1.1 Learn Python by Using It

This section shows how to install Python to start running your own pro-
grams. Learning by doing is the most efficient way of learning. It is even
better than just passively reading a book (even this book). You will find
“Python interactive mode” very rewarding in this sense, since it can answer
your questions faster than a book and even faster than a search engine. The
answers you get from the Python interpreter are definitive.

For these reasons I suggest installing Python before continuing to read this
book.

2.1.2 Python May Be Already Installed

Python is pre-installed in Mac OS X and most Linux distributions. In
Windows (XP or Vista), you have to download the Windows installer from
the Python download page (http://www.python.org/download) and then
install it. Installation is pretty straightforward and should not present any
difficult if you are used to installing Windows programs.

In a few words, you should double click the installer file (with msi extension)
and run the Python Install Wizard. Accepting the default settings and have
Python installed in a few minutes without hassle.

However, there is a step-by-step guide in Appendix A (from page 393). This
appendix also has instructions for users with Unix like systems (also called
*nix) that want to install an extra copy of Python. Having more than one
version of Python is useful for testing and for cases where the user has no
administrative privileges and wants to run his own copy of Python.

19

© 2010 by Taylor and Francis Group, LLC

http://www.python.org

20 Python for Bioinformatics

2.1.3 Testing Python

Once Python is installed, you should make sure it works. On Windows,
just double-click on the Python icon. Linux and Mac OS X1 users could open
a terminal and then type ’python’.

You should see a screen like this one:2

Python 2.5 (r25:51908, May 7 2007, 15:38:46)
[GCC 3.3.5 (Debian 1:3.3.5-3)] on linux2
Type "help", "copyright", "credits" or "license" for more <=
information.
>>>

2.1.4 First Use

There are two ways to use Python: interactive and batch mode. Both meth-
ods are complementary and they are used with different purposes. Interactive
mode allows the programmer to get an immediate reply to each instruction.
In batch mode, instructions are stored in one or more files and then executed.
This is the standard way of running Python programs. Interactive mode is
used mostly for small tests while most programs are run in batch mode. Since
testing is a fundamental step when learning a new skill, interactive mode will
be used thoroughly in this book.

Let’s learn some Python basics using the interactive mode.

2.2 Interactive Mode

2.2.1 Baby Steps

The following code shows how to command the interpreter to print the
string “Hello world!”3:

>>> print("Hello World!")
Hello World!

Note the three greater than characters (>>>), this is the Python prompt
of the interactive mode. You don’t need to type it. This means that Python
is ready to execute our commands or evaluate our expressions.

1On Mac the terminal is located under the Applications/Utilities folder.
2This output could vary from system to system depending on Python version, base system,
and options set during compilation.
3There is a tradition among programmers to show how a language works by printing the
string “Hello world”. Python programmers are not immune to this custom. See what
happens when you include this statement in your programs: import hello .

© 2010 by Taylor and Francis Group, LLC

First Steps with Python 21

2.2.2 Basic Input and Output

Output: Print

Before Python 3.0, print was a statement and worked like this:

>>> print "Hello World!"
Hello World!

It was very simple to use but lacked some functionality often requested by
developers: Change the program output (from screen to a file for example),
change the separator from space to another character, and more features not
easy to implement in a statement. This was fixed in Python 3, and print()
is now a function:4

>>> print("Hello World!")
Hello World!

The print function can receive several elements:

>>> print("Hello","World!")
Hello World!

Change the separator:

>>> print("Hello","World!",sep=",")
Hello,World!

Redirect the output to a file:

>>> print("Hello","World!",sep=",",file=filehandle)

Change the end of the output:

>>> print("Hello","World!",sep=";",end=’\n\n’)
Hello;World!

Input: raw input and input in Python 2.x

There are two functions to accept input from the user into a program:
raw input: Take a string of data from the user and return it:

>>> name = raw_input("Enter your name: ")
Enter your name: Seba
>>> name
’Seba’

4A function is a portion of code that performs a specific task. They are discussed in detail
in Chapter 6.

© 2010 by Taylor and Francis Group, LLC

22 Python for Bioinformatics

While input also takes a string of data, it attempts to evaluate it as if it
were a Python program:

>>> name = input("Enter your name: ")
Enter your name: Seba
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<string>", line 1, in <module>

NameError: name ’Seba’ is not defined

Since Seba is not a defined name, it triggers an error. So this time we enter
an expression that can be evaluated in Python (a string in this case):

>>> name = input("Enter your name: ")
Enter your name: "Seba"
>>> name
’Seba’

Input: input in Python 3

There is no raw input in Python 3, it was renamed to input:

>>> name = input("Enter your name: ")
Enter your name: Seba
>>> name
’Seba’

To evaluate an expression in Python 3, use the eval() function:

>>> input("Operation: ")
Operation: 2+2
’2+2’
>>> eval(input("Operation: "))
Operation: 2+2
4

The old input was deprecated since it was considered insecure.

2.2.3 More on the Interactive Mode

Interactive mode can be used as a calculator:

>>> 1+1
2

When ‘+’ is used on strings, it returns a concatenation:

© 2010 by Taylor and Francis Group, LLC

First Steps with Python 23

>>> ’1’+’1’
’11’
>>> "A string of " + ’characters’
’A string of characters’

Note that single (’) and double (”) quotes can be used in an indistinct way,
as long as they are used with consistency. That is, if a string definition is
started with one type of quotes, it must be finished with the same kind of
quote.5

Different data types can’t be added:

>>> ’The answer is ’ + 42
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: cannot concatenate ’str’ and ’int’ objects

Only elements of the same type can be added. To convert this into a sum
of strings, the number must be converted into a string, this is done with the
str() function:

>>> ’The answer is ’ + str(42)
’The answer is 42’

The same final result can be archived with “String Formatting Opera-
tions”6:

>>> ’The answer is %s’%42
’The answer is 42’

You can assign names to any Python element, and then refer to them later:

>>> n = 42
>>> ’The answer is %s’%n
’The answer is 42’

Names should contain only letters, numbers, and underscores (), but they
can’t start with numbers. In other programming languages names are ref-
ered as variables. There is a more detailed description on rules and naming
conventions on page 64 and in Appendix F.

5In Chapter 3 there is a detailed description of strings.
6See page 474 for reference on how to use String Formatting. In Python 2.6 and 3, there is
also a new String Formatting Operation described in PEP-3101 (http://www.python.org/
dev/peps/pep-3101).

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org

24 Python for Bioinformatics

TABLE 2.1:
Arithmetic-Style Operators

Symbol Description

+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation
% Modulus (remainder)

2.2.4 Mathematical Operations

Any standard mathematical operation can be done in the Python shell:

>>> 12*2
24
>>> 30/3
10
>>> 2**8/2+100
228

Double star (**) stands for “elevated to the power of” and the inverted
slash (/) is the division operation. So this expression means: 28 : 2 + 100. In
Table 2.1 there is a list of Arithmetic-Style operators supported by Python.

Note that the operator precedence is the same as used in math. An easy
way to remember precedence order is with the acronym PEMDAS:

P Parentheses have the highest precedence and are used to set the order of
expression evaluation. This is why 2 * (3-2) yields 2 and (3-1) ** (4-1)
yields 8. Parentheses can also be used to make expressions easier to
read.

E Exponentiation is the second in order, so 2**2+1 is 5 and not 8.

MD Multiplication and Division share the same precedence. 2*2-1 yields 3
instead of 2.

AS Addition and Subtraction also share the same (latest) order of prece-
dence.

Last but not least, operators with the same precedence are evaluated from
left to right. So 60/6*10 yields 100 and not 1. In Table D.4 (page 464) there
is a list with operators precedence order.

Something to take into account for mathematical operations in Python
versions prior to 3.0 is how to handle integer values.

© 2010 by Taylor and Francis Group, LLC

First Steps with Python 25

Division in Python 2.x

This may not be expected:

>>> 10/3
3

Division returns the floor, that is, the integer part of the result. To get the
floating point result, at least one operand must be float:

>>> 10.0/3
3.3333333333333335
>>> 10/3.
3.3333333333333335

Division in Python 3

In Python 3, any division is a floating point division:

>>> 10/3
3.3333333333333335
>>> 10/2
5.0

To get the previous behavior, use //:

>>> 10//3
3
>>> 10//2
5

2.2.5 Exit from Python Shell

You can exit from any version of Python with CRTL-D (that is pressing
Control and D simultaneously). Since Python 2.5, there is also the exit()
function:7

$ python2.5
Python 2.5 (r25:51908, May 7 2007, 15:38:46)
[GCC 3.3.5 (Debian 1:3.3.5-3)] on linux2
Type "help", "copyright", "credits" or "license" for more <=
information.
>>> exit()
$

7For exiting from a previous version of Python, use sys.exit().

© 2010 by Taylor and Francis Group, LLC

26 Python for Bioinformatics

2.3 Batch Mode

Although the interactive interpreter is very useful, most nontrivial programs
are stored in files. The code used in an interactive session can be accessed
only when the session is active. Each time that an interactive session is closed,
all typed code is gone. In order to have code persistence, programs are stored
in text files. When a program is executed from such a text file, rather than
line by line in an interactive interpreter, it is called batch mode.

These are regular text files usually with the “.py” extension. These files
can be generated with any standard text editor (as Windows Notepad).8

An optional feature of python scripts under a Unix-like system is a first line
with the path to the python interpreter. If the python interpreter is located
at /usr/bin/python (a typical location in Linux), the first line will be:

#!/usr/bin/python

This is called shebang and it is a Unix convention that allows the operating
system to know what is the interpreter for the program and this interpreter
can be executed without the user having to explicitly invoke the python in-
terpreter.9 Invoking a Python program without this line causes the operating
system to try to execute the program as a shell script.

Let’s suppose that you have this very simple program:

Listing 2.1: A “Hello World!” program (hello.py)

print("Hello World!")

This program will work from the command line only if it is called as an
argument of the Python interpreter:

$ python hello.py
Hello World!

But if you want to run it as a standalone program, you will see something
like this:

$./hello.py
./hello.py: line 1: syntax error near unexpected token <=
‘’Hello world!’’
./hello.py: line 1: ‘print(’Hello world!’)’

8Any text editor can be used for Python programming, but it is highly advisable to use a
programmer editor. At the end of this chapter there is a section devoted to choosing an
editor.
9To specify interpreter path can also be used to select a particular Python version when
there is more than one version installed.

© 2010 by Taylor and Francis Group, LLC

First Steps with Python 27

This error message is sent by the shell when trying to execute the program
as a system script (without invoking Python). It can be avoided by editing
the first line of the program:

Listing 2.2: Hello World! with python path

#!/usr/bin/python
print("Hello World!")

This version works as it were an executable binary file:10

$./hello2.py
Hello World!

If you want to invoke the first available Python interpreter instead of a
spefic interpreter, use #!/usr/bin/env python. Use the path to a specific
Python interpreter only when you want to run your program with a particular
version (like /mnt/hda2/py252/bin/python2.5).

In Windows, this line is ignored since the interpreter is launched according
to the file extension (.py).

Python can also be executed from within the programming editor, pro-
vided that the editor has this functionality. In Python IDLE (and most other
editors) you can launch a program with the F5 key.

Other line that is usually found in Python programs is the “encoding com-
ment”. This line defines the character econding for the rest of the document
and it takes this form:

-*- coding: ENCODING -*-

where ENCODING may be for example ascii, latin1, 8859-1, UTF-8 and
others. So a encoding line for a source code with Spanish characters will have
this line:

-*- coding: latin1 -*-

Without encoding comment, Python’s parser will assume ASCII (that is
the default encoding). If your source code includes a non-ASCII character,
you should assign an encoding.

10In Linux and Mac OSX you have to make sure that the file has executable permission,
this is done with chmod a+x hello.py.

© 2010 by Taylor and Francis Group, LLC

28 Python for Bioinformatics

2.3.1 Comments

If you tried IDLE or any other editor with syntaxis coloring capabilities for
this program, you may have noted that the first line (#!/usr/bin/python)
has a particular color. That is due to the use of the “#” symbol. This
character has special significance for Python. It is used to identify lines that
aren’t executed by the interpreter. As a result, the lines that begin with
that symbol are called “comments.” Comments don’t add functionality to
the program but help the programmer or other possible readers of the code.
Let’s look at the previous program with a comment:

Listing 2.3: Hello World! with comments

#!/usr/bin/env python
The next line prints the string "Hello World!"
print("Hello World!")

The comment in this particular code is rather pointless since there is no
doubt about what is the funcion of “print”. In other programs there is code
that is not so easy to understand and where a comment can improve code
readability. It is customary to put the comments before the code you are
refferring to.11 Comments are made mostly thinking in helping someone else
to understand our code, but they can be useful even for the same programmer
who see the code some time after writing and doesn’t remember the purpose
of a routine.

Comments can also be used to disable part of the code (this is called
“comment-out” in programming jargon). This is usually done for debugging
purposes. When trying alternative codes to accomplish a task, it is better to
have an inactive part of the code until you are sure which code you will use.
It is easier to uncomment an inactive code than retype something that was
deleted. This is such a common task that all Python editors have tools to
comment-out or to uncomment entire block of texts.12

Tip: Extensions in Python.
Python files have the .py extension, but you could also find other extensions

that are related to Python:

• py: Standard Python files.

• pyc: “Compiled” Python files. When you import a Python module
for the first time, it gets compiled into byte code, so the next time it

11There is a guide of code style to standardize the way code is written. An adapted version
of such a guide can be found in Appendix F.
12In Python default editor (IDLE) this tool is under the Format menu.

© 2010 by Taylor and Francis Group, LLC

First Steps with Python 29

starts faster. Compile can be forced from Python with the compile dir
function in the compileall module. Note that .pyc files load faster but
do not run faster.

• pyo: “Optimized” code. It is generated by running the Python inter-
preter with the -o flag. Don’t be fooled with the name, most code will
run at same speed even with the -o flag enabled.

• pyw: It is a standard Python file with an extension that makes Windows
to execute them with pythonw.exe instead of python.exe. Pythonw.exe
doesn’t launch the DOS console so it is prefered for graphical programs
under Windows.

2.3.2 Indentation

One of the first things that stands out to programmers about Python is
its code indentation system. Non-programmers must be wondering at this
point what is indentation of the source code. Here is some C code that is not
indented:

if (attr == -1){while (x<5){
printf("Waiting...\n");wait(1);
x = x+1;}printf("Everything is OK\n");}
else {printf("There is an error\n");}

Indented version of the same program portion (or “code snippet”):

if (attr == -1) {
while (x<5) {

printf("Waiting...\n");
wait(1);
x = x+1;}

printf("Everything is OK\n");}
else {

printf("There is an error\n");}

Even not knowing C we can say that the second program is “clearer” than
the first. In a programming language like C or Java code blocks that are
executed as an entity, are separated with braces. This way the interpreter
knows that for example printf("Everything is OK\n"); is within the if
structure but not within while. The logical relations between the elements
are clearer in an indented program than one without indentation. Inspect the
following code snippet in Python, where there are no braces but there are
code blocks that are defined by indentation.

© 2010 by Taylor and Francis Group, LLC

30 Python for Bioinformatics

if attr==-1:
while x<5:

print("Waiting...")
wait(1)
x = x + 1

print("Everything is OK")
else

print("There is an error")

It is not important if you don’t understand this program. The purpose of
this example is to show one of the most striking aspect of language. This
is considered an advantage because when the structure of the code is clearly
enough, there will be less chance to introduce coding mistakes. Some say that
it is annoying having to maintain the code this way, but this is not the case.
Most text editors deal with code indentation in an automatic way so there is no
burden to the programmer. Another criticism to the mandatory indentation
is the deep nesting of the code; some statements are placed at the far right.
There are programming tools to avoid writing code with too many levels of
indentation (such as writing modular code). Using these tools appropriately
is a desired skill to have and it is independent of the programming language
that you use.13 Forcing the programmer to use indentation is a feature that
goes along with one the Python’s design philosophy: Readability counts.14

As Oliver Fromme wrote in “Python: Myths about Indentation”:15 Python
forces you to use indentation that you would have used anyway, unless you
wanted to obfuscate the structure of the program.

2.4 Choosing an Editor

In principle any text editor can be used to program in Python. Nothing
prevents you to program in Notepad (if you are masochistic enough) or any
lightweight text editor, although the specifics of the syntax of Python make
it convenient to use an editor that takes into account their characteristics.

Taking this into account, text editors can be classified in terms of their
relationship with Python.

• Regular editors: Those without any kind support for Python, i.e.,
Notepad and Mousepad.

13Linus Torvalds, the creator of the Linux kernel has said “If you need more than 3 levels
of indentation, you’re screwed anyway, and should fix your program.”
14Please see http://www.python.org/dev/peps/pep-0020 for more information on the guid-
ing principles for Python’s design.
15http://www.secnetix.de/~olli/Python/block_indentation.hawk

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.secnetix.de
http://www.secnetix.de
http://www.python.org

First Steps with Python 31

• “Python aware” editors: General use or programmer oriented editors
that recognize Python syntax. It may have native support or added
by a plug-in or any other extension mechanism. The following editors
falls in this category: Kate, vim, Eclipse, and many others. These “all
purpose” editors have the advantage that what you learn can be used
to edit different types of documents.

• Pure Python: Editors created to program with Python. IDLE, the
official python editor is a clear representative of this group, although
there are much more like Dr Python, Eric, SPE, and others. The ad-
vantage of these types of editors is that they have exclusive features like
Code completion, context sensitive help, and integrated debugger.

In this chapter we deal with editors from the last two groups since they
are the only ones that are worthwhile for serious programming. Particularly
in this chapter I am going to review certain editors (chosen arbitrarily) to
evaluate their pros and cons.

Following is a short review of some popular editors.

2.4.1 Kate

Kate is one of the most popular multi-use text editors for Linux. It is
installed in KDE based linux distributions, although it can be installed as a
separate program. Kate is a very versatile editor, it has support for editing
files for tens of programming languages and other file types (such as MySQL,
LATEX, CSS, configuration files, etc.). Its most prominent features are:

• Multiple document interface: It supports having multiple open docu-
ments, each one overlapping, within the same window. Each one of
these windows can in turn be divided to look simultaneously at differ-
ent parts of the same document. All of this is configurable, to the point
of being able to override this functionality, forcing each document to
have its own interface (SDI, Single Document Interface).

• Save several files in named sessions: It is rare for a program to consist
only of one text file. Usually we have to manage a series of files (XML,
HTML, CSV, etc.) and this functionality allows us to group various files
under a single project.

• Block text selection: This allows us to select portions of text in arbitrary
forms, like a column of data.

• Change the end of line text sequence (EOF): This is useful for working
with several operating systems.

• Integrated Terminal Emulation: It incorporates a window where we
can execute operating system commands or start an interactive Python
session. It can be used for trying things out.

© 2010 by Taylor and Francis Group, LLC

32 Python for Bioinformatics

• Extensible with plugins : You can add new plugins created with javascript.16

Concerning its Python support, it has “syntax coloring,” automatic tabs
and code folding capabilities. Those of us who are already Kate users and
want to begin programming with Python will feel at home.

Availability

Kate is a free software released under the GPL. Since Kate is part of the
KDE project, it runs on any system where you can run KDE. Most Linux
systems run KDE natively. There are ports for Mac OS X (http://mac.kde.
org) and Windows (http://windows.kde.org).

2.4.2 Eric

Eric is an Integrated Development Environment for Python and Ruby. It is
writen in Python and it is one of the most complete products of those reviewed
in this chapter. However this “completeness” may be a bit intimidating at
first (see Figure 2.1). Most of the features are not visible just by looking at
the icons on the toolbar. It requires some dedication to learn how to use it
effectively. Investing time in this IDE is worth it, as you will benefit from an
increase in productivity that surpasses the time you invested to learn how to
use it.

Most prominent features are:

• Advanced project management facilities

• Sourcecode autocompletion

• Error highlighting (a red line tells you where the problem is)

• Integrated Python debugger

• Integrated class browser

• Integrated version control interface for VCS and Subversion repositories

If you are looking for a complete editor and you don’t mind having several
buttons on the screen,17 there is no doubt that Eric is a great option.

16http://www.kate-editor.org/article/scripting_katepart_with_javascript
17The number of buttons and windows can be reduced substantially from the configura-
tion section of the program. For this it has an extensive configuration menu in Settings,
Preferences.

© 2010 by Taylor and Francis Group, LLC

http://mac.kde.org
http://mac.kde.org
http://windows.kde.org
http://www.kate-editor.org
http://www.kate-editor.org
http://windows.kde.org
http://mac.kde.org
http://mac.kde.org

First Steps with Python 33

FIGURE 2.1: Eric Python Editor.

Availability

Eric is a free software released under GPL. Eric is available from its web
site (http://www.die-offenbachs.de/eric) and runs in most common plat-
forms.

2.4.3 Eclipse

Eclipse is not just a text editor. It is certainly the “500-pound gorilla”
of programming environments. According to its own definition it is an “ex-
tensible development platform for building, deploying and managing software
across the entire software lifecycle.” Eclipse is known as a JAVA Integrated
Development Environment (IDE),18 but there are plugins19 that extend it to
support other languages like C, Perl, Colobo, and of course, Python.20

The most prominent features of Eclipse are:

• Code completion

• Code folding

• Syntax highlighting

18http://www.eclipse.org/jdt
19http://www.eclipseplugincentral.com
20http://pydev.sourceforge.net

© 2010 by Taylor and Francis Group, LLC

http://www.die-offenbachs.de
http://www.eclipse.org
http://www.eclipseplugincentral.com
http://pydev.sourceforge.net
http://pydev.sourceforge.net
http://www.eclipseplugincentral.com
http://www.eclipse.org
http://www.die-offenbachs.de

34 Python for Bioinformatics

FIGURE 2.2: PyDeb: Easy Eclipse for Python.

• Refactoring

• Integrated debugger

• Support for plugins

• Very active community

• Supported by industry leaders such as Borland, Ericsson, Red Hat,
SuSE, HP, IBM, Intel, SAP, and others.

The definition of 500 pound gorilla fits perfectly to this program. If you
don’t have at least 1 Gb of RAM, don’t try to run Eclipse (unless you have
a lot of patience). Another inconvenience is the complexity of the software.
In this area, it is similar to Eric but with a better interface (see Figure 2.2).
In Eclipse, you don’t open a file and begin coding. First you have to create
a project, select the type of project, give it a name and then add files. Once
you’ve learned this routine and have a computer powerful enough, you will
enjoy programming with Eclipse, especially if you have some programming
experience.

Availability

Eclipse is a free software released under GPL and it is available for most
platforms. You can download the “Classic” version from the official web-

© 2010 by Taylor and Francis Group, LLC

First Steps with Python 35

site21 or download PyDev,22 a version of Eclipse preconfigured for Python
and Jython development.

2.4.4 IDLE

IDLE is the “official” Python editor. On certain systems IDLE is included
with Python. As a result it is the most used Python editor. It is built with
Tcl/tk, for which its interface does not necessarily reflect the native look and
feel of the underlying platform. However do not be fooled by its appearance.
IDLE has all the features desired for a programmer’s editor:

• Multi-window text editor with multiple undo

• Python syntax colorizing with smart indent and call tips

• Basic debugger

• Integrated shell

IDLE can be recommended as a first editor, especially if you’ve never pro-
grammed with Python.

Availability

IDLE is available under a GPL compatible license. In Windows, IDLE is
part of Python, so once Python in installed, IDLE is available. In a De-
bian based Linux distribution, IDLE can be installed with apt-get install
idle-pythonx (where x is the Python version number, like 2.6). If you want
to manually install IDLE, install first TK-devel and TC-devel.

2.4.5 Final Words about Editors

There is no editor that is unquestionably better than all others in all areas.
IDLE for example is good as a first Python editor, although it may not be the
prettiest or most stable. Eric and Eclipse are the most complete, although not
all machines can run them efficiently. Despite not being specialized Python
editor, they very versatile and it not to be left behind in terms of features.

There are a lot more editors which, for space reasons have not been reviewed
but not because they are worse or less complete than those shown here. For
example SPE, DrPython, KomodoIDE, WingIDE, Emacs, NetBeans, among
the multi-platform editors, PythonWin (Windows only), and TextMate (Mac
OS X).

21http://www.eclipse.org/downloads
22http://pydev.sourceforge.net

© 2010 by Taylor and Francis Group, LLC

http://www.eclipse.org
http://pydev.sourceforge.net
http://pydev.sourceforge.net
http://www.eclipse.org

36 Python for Bioinformatics

FIGURE 2.3: IDLE.

© 2010 by Taylor and Francis Group, LLC

First Steps with Python 37

Although some illustrations of the book are based on IDLE, I am not going
to recommend a particular editor as I consider this a personal choice. My
recommendation is that you try all that you can and choose the one that best
fits your needs.

2.5 Additional Resources

• Python implementations:
http://www.python.org/dev/implementations

• IPython: an interactive computing environment.
http://ipython.scipy.org/moin

• bpython: a fancy interface to the Python interpreter for Unix-like oper-
ating systems:
http://www.bpython-interpreter.org/home

• Wikipedia article: “Comparison of text editors.”
http://en.wikipedia.org/wiki/Comparison_of_text_editors

• “Some notes on text editors for Stata users.” This article is oriented
towards Stata programers (Stata is a statistical software package), but
it is full of fundamental concepts about text editors so it is worth men-
tioning here.
http://fmwww.bc.edu/repec/bocode/t/textEditors.html

• “Python Mode for Emacs.”
http://www.emacswiki.org/emacs/PythonMode

• “Introduction to Python EA in NetBeans IDE”
http://www.netbeans.org/kb/docs/python/temperature-converter.
html

• “Useful VIM Settings for working with Python.”
http://www.vex.net/~x/python_and_vim.html

• vimrc file for following the coding standards specified in PEP 7 & 8.
http://svn.python.org/projects/python/trunk/Misc/Vim/vimrc

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://ipython.scipy.org
http://www.bpython-interpreter.org
http://en.wikipedia.org
http://fmwww.bc.edu
http://www.emacswiki.org
http://www.netbeans.org
http://www.vex.net
http://svn.python.org
http://www.netbeans.org
http://www.netbeans.org
http://svn.python.org
http://www.vex.net
http://www.netbeans.org
http://www.emacswiki.org
http://fmwww.bc.edu
http://en.wikipedia.org
http://www.bpython-interpreter.org
http://ipython.scipy.org
http://www.python.org

38 Python for Bioinformatics

2.6 Self-Evaluation

1. Define: Program, instruction, and variable.

2. What is the difference between Python and cPython?

3. Name some Python implementations.

4. What is the advantage of having both single and double quotes?

5. What is the difference between input and raw input in Python 2.x?

6. How do you replace Python 2.x input functionality in Python 3?

7. How do you make a float division in Python 2.x?

8. What is indentation? Why is it mandatory in Python?

9. What is a comment in a source code?

10. Is there a valid reason to comment out working source code?

11. What is a “shebang”?

12. What is an “encoding comment.” and when should you use it?

© 2010 by Taylor and Francis Group, LLC

Chapter 3

Basic Programming: Data Types

As said in the previous chapter, some data structures are shared between
different computer languages, but some of them are language specific. That
is why data types somehow define a computer language. Python has its own
characteristic data types.

One such fundamental data structure is a sequence. Inside sequence, we
have those data types having a sequential order. A well-known example is
the string which is nothing other than an ordered sequence of characters.
Other sequences are lists and tuples.1 Although fundamental differences
exist between these types of sequences, they share common properties. Se-
quence elements have an order, can be indexed, can be sliced, and can be
iterated. Don’t worry if you don’t understand some of these terms. Just keep
on reading. We’ll see all these points during this chapter.

Apart from sequences, there are also unordered data types: dictionaries
and sets. A dictionary2 stores relationships between a key and a value, while
a set is just an unordered collection of values. The next pages are focused on
ordered (string, list, and tuple) and unordered types (dictionary and set).

3.1 Strings

A string is a type of sequence of symbols delimited by a single quote (’),
double quotes (”), single triple quotes (”’), or double triple quotes (”””).
Therefore, the following strings are equivalent:

"This is a string in Python"
’This is a string in Python’
’’’This is a string in Python’’’
"""This is a string in Python"""

1There are more sequence types not covered in this book. For more information on other
sequence types see Additional Resources at the end of the chapter.
2Also classified as a mapping data type.

39

© 2010 by Taylor and Francis Group, LLC

40 Python for Bioinformatics

It may seem a little bit redundant to have so many ways to delimit a string.
The advantage of having both single (’) and double (”) quote delimiters is
that we can insert a single quote in a string delimited for double quote and
vice versa:

"A single quote (’) inside a double quote"
’Here we have "double quotes" inside single quotes’

The important thing to remember is that if we begin a string with a type
of quote, we must finish it with the same type of quote. The following string
is not valid:

>>> "Mixing quotes leads to the dark side’
File "<stdin>", line 1

"Mixing quotes leads to the dark side’
^

SyntaxError: EOL while scanning single-quoted string

Note: EOL stands for end-of-line.
Regarding strings enclosed by triple quotes, we can use them to indicate

multi-line strings (also known as block string):

"""Hi! I’m a
multiline

string"""

The character ’\n’ represents an end-of-line (EOL) character. Therefore,
the code above could be written in one line as:

"Hi! I’m a\nmultiline\n string"

You can use triple quotation marks to build and format a string just like
you’d expect to see it displayed. There are other uses for triple quoted strings
such as documentation. It is covered in section (6.1).

3.1.1 Not All Strings Are Created Equal

Python 2.x

There are two types of strings: byte strings and Unicode strings. Byte-
strings contain bytes while Unicode is intended for text. In practice, English
characters are stored as byte strings, while “international” characters are
stored as Unicode strings:
’I am a byte string in Python 2.5!!!’
u’I am UNICODE: π’

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 41

Note that Unicode strings have support for characters such as π, ℵ, ñ, ρ,
χ, and any other imaginable character.3

byte and unicode are interconvertible as long as you specify an ecoding
scheme:

>>> s = u’Sebastián’

>>> s.encode(’utf-8’)

’Sebasti\xc3\xa1n’
>>> b=s.encode(’utf-8’)

>>> x=unicode(b,’utf-8’)

>>> print x

Sebastián
>>> x==s

True

Python 3

In Python 3, strings are Unicode by default:

>>> ’Python 3, strings are Unicode: ~n’

’Python 3, strings are Unicode: ~n’

But there is a byte object that is defined as “an immutable array of bytes”
and it is equivalent to the default string (byte-string) of Python 2.x:

>>> b’Bytes in Python 3’

b’Bytes in Python 3’

Another new feature in Python 3 regarding strings are bytearray, that are
“a mutable array of bytes.” We will see the difference between mutable and
immutable later on this chapter.

3.1.2 String Manipulation

Strings are immutable (with the exception of bytearray in Python 3). Once
a string is created, it can’t be modified. If you need to change a string, what
you can do is to make a derivated string. This is done using the string as
a parameter in a function and then get the returned value. In the follow-

3For more information on available Unicode characters please see http://www.unicode.

org/charts.

© 2010 by Taylor and Francis Group, LLC

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org
http://www.unicode.org

42 Python for Bioinformatics

ing example there is a string that holds the amino-acid sequence of a signal
peptide,4 and it is called, with originality, signal peptide:

>>> signal_peptide="MASKATLLLAFTLLFATCIA"

To get a lower case version of the string, use the method lower():

>>> signal_peptide.lower()
’maskatlllaftllfatcia’

In spite of having obtained the string lower case, the original string has not
been modified:

>>> signal_peptide
’MASKATLLLAFTLLFATCIA’

If we want this new lower case string to have the same name as the previous
one, all we need to do is rename it:

>>> signal_peptide=signal_peptide.lower()
>>> signal_peptide
’maskatlllaftllfatcia’

The net effect is like we had modified the string. Bearing this in mind, it’s
time to see some methods associated with strings.

3.1.3 Methods Associated with Strings

replace(old,new[,count]): Allows us to replace a portion of a string (old)
with another (new). If the optional argument count is used, only the first
count occurrences of old will be replaced. Usage,

>>> DNAseq="TTGCTAG"
>>> mRNAseq=DNAseq.replace("T","U")
>>> mRNAseq
’UUGCUAG’

count(sub[, start[, end]]): Counts how many times the substring sub
appears, between start and end position (if available). Let’s see how it can
be used to calculate the CG content5 of a sequence:

4A signal peptide is a short amino acid chain (about 20 amino acids) that is recognized
by certain organelles to direct the transport of the nascent protein to a specific subcellular
location or to the secretory pathway.
5CG content is the amount of cytosine and guanine in a DNA sequence. CG content is
related to the DNA melting temperature and other physical properties.

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 43

>>> c=DNAseq.count("C")
>>> g=DNAseq.count("G")
>>> float(c+g)/len(DNAseq)*100
48.387096774193552

Note that the float function is used to force a floating point result, this is
not required in Python 3.

find(sub[,start[,end]]): Returns the position of the substring sub, be-
tween start and end position (if available). If the substring is not found in
the string, this method returns the value -1:

>>> mRNAseq.find("AUG")
17

index(sub[,start[,end]]): Works like find(). The difference is that in-
dex will raise a ValueError exception when the substring is not found. This
method is recommended over find() because the value -1 could be interpreted
as a valid value, while a ValueError returned by index() can’t be taken as a
valid value.

split([sep [,maxsplit]]): Separates the “words” of a string and returns
them in a list. If a separator (sep) is not specified, the default separator will
be the white space:

>>> "This string has words separated by spaces".split()
[’This’, ’string’, ’has’, ’words’, ’separated’, ’by’, ’spaces’]

When white space is not the data separator, we have to specify a custom
separator:

>>> "Alex Doe,5555-2333,nobody@example.com".split()
[’Alex’, ’Doe,5555-2333,nobody@example.com’]

In this case the separator is a comma (“,”), so we have to state it explicitly:

>>> "Alex Doe,5555-2333,nobody@example.com".split(",")
[’Alex Doe’, ’5555-2333’, ’nobody@example.com’]

Bioinformatic Application: Parsing BLAST Files. One of the
most used bioinformatics programs is NCBI-BLAST (this program is reviewed
from page 191).

BLAST standalone executable can generate output as a “tab separated
file” (by using -m 8 argument). This output file can be parsed by using
split(’\t’).

The inverse function of split() is join():
join(seq): Joins the sequence using a string as a “glue character”:

© 2010 by Taylor and Francis Group, LLC

mailto:nobody@example.com
mailto:nobody@example.com
mailto:nobody@example.com
mailto:nobody@example.com
mailto:nobody@example.com
mailto:nobody@example.com
mailto:nobody@example.com
mailto:nobody@example.com

44 Python for Bioinformatics

’;’.join([’Alex Doe’, ’5555-2333’, ’nobody@example.com’])
’Alex Doe;5555-2333;nobody@example.com’

To join a sequence without any glue character, use empty quotes (””):

>>> ’’.join([’A’,’C’,’A’,’T’])
’ACAT’

For a complete description of string methods, see Table D.4.8 in page 472
(Appendix D).

3.2 Lists

3.2.1 List Is the Workhorse Datatype in Python

Lists are one of the most versatile object types in Python. A list is an or-
dered collection of objects. It is represented by elements separated by commas
and enclosed between square brackets.

We already have seen a list as a result of applying the split() function:

>>> "Alex Doe,5555-2333,nobody@example.com".split(",")
[’Alex Doe’, ’5555-2333’, ’nobody@example.com’]

This is a three element list, ’Alex Doe’, ’5555-2333’ and ’nobody@example.com’,
all of them strings.

The next code shows how to define and name a list:

>>> first_list=[1,2,3,4,5]

This is a list with five elements. In this case, all the elements are of the
same type (integer). A list can hold different kinds of elements:

>>> other_list=[1,"two",3,4,"last"]

A list can even contain another list:

>>> nested_list=[1,"two",first_list,4,"last"]
>>> nested_list
[1, ’two’, [1, 2, 3, 4, 5], 4, ’last’]

An empty list is defined as empty brackets:

>>> empty_list=[]
>>> empty_list
[]

An empty list doesn’t have any use of its own, but sometimes we may want
to define an empty list to add elements at a later time.

© 2010 by Taylor and Francis Group, LLC

mailto:nobody@example.com
mailto:nobody@example.com
mailto:nobody@example.com
mailto:nobody@example.com
mailto:nobody@example.com

Basic Programming: Data Types 45

3.2.2 List Initialization

If you know in advance that a list is going to have five elements, we can
initialize it with a default value:

>>> codons = [None] * 5
>>> codons
[None, None, None, None, None]

This type of list initialization can be useful when working with big lists and
the number of elements is known beforehand. Defining a list with a fixed size
is more efficient than creating an empty list expanding it as needed. Fixed
sized lists don’t have the overhead of lists that change positions in memory.

3.2.3 List Comprehension

There is another way to define a list. A list can be created from another
list. As in mathematics where you can define a set by enumerating all its
elements (enumeration) or by describing properties enjoyed exclusively by its
members (comprehension), in Python a list can be created by both methods.

A set defined by enumeration,

A = {0, 1, 2, 3, 4, 5}
A list defined by enumeration in Python,

>>> A = [0,1,2,3,4,5]

A set defined by comprehension,

B = {3 ∗ x/x ∈ A}
This is equivalent to,

B = {0, 3, 6, 9, 12, 15}
A list defined by comprehension in Python,

>>> [3*x for x in A]
[0, 3, 6, 9, 12, 15]

Any Python function or method can be used to define a list by comprehen-
sion:

>>> animals = [’ king kong’, ’ godzilla ’, ’gamera ’]
>>> [y.strip() for y in animals]
[’king kong’, ’godzilla’, ’gamera’]

The resulting list can be narrowed by using a conditional statement:

© 2010 by Taylor and Francis Group, LLC

46 Python for Bioinformatics

>>> animals = [’ king kong’, ’ godzilla ’, ’gamera ’]
>>> [y.strip() for y in animals if ’i’ in y]
[’king kong’, ’godzilla’]

3.2.4 Accessing List Elements

As one of the other sequence data types, you access list elements by an
index starting at zero.

>>> first_list=[1,2,3,4,5]
>>> first_list[0]
1
>>> first_list[1]
2

You can also access lists from the right by using negative numbers:

>>> first_list=[1,2,3,4,5]
>>> first_list[-1]
5
>>> first_list[-4]
2

Another way of obtaining lists is by turning a non list object into a list by
using the built-in function list():

>>> aseq="atggctaggc"
>>> list(aseq)
[’a’, ’t’, ’g’, ’g’, ’c’, ’t’, ’a’, ’g’, ’g’, ’c’]

The function str() converts the input parameter into a string. Can we use
it to revert the effect of list()?

>>> str([’a’, ’t’, ’g’, ’g’, ’c’, ’t’, ’a’, ’g’, ’g’, ’c’])
’[’a’, ’t’, ’g’, ’g’, ’c’, ’t’, ’a’, ’g’, ’g’, ’c’]’

Clearly the result is not for what we were expecting. The str() function
turned the list into a string, but not into the original string. Instead, the
result was a literal representation of the list. To have the original string back,
we have to join the elements of the list. This can be done with the join()
function:

>>> "".join([’a’, ’t’, ’g’, ’g’, ’c’, ’t’, ’a’, ’g’, ’g’, ’c’])
’atggctaggc’

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 47

3.2.5 Copying a List

Copying a list can be tricky:

>>> a=[1,2,3]
>>> b=a
>>> b.pop()
3
>>> a
[1, 2]

As seen, “=” doesn’t copy the values, but works as it copy a reference to
the original object6. There are two ways to make an independent copy of a
list:

Using the copy module:

>>> import copy
>>> a=[1,2,3]
>>> b=copy.copy(a)
>>> b.pop()
3
>>> a
[1, 2, 3]

Without the copy module:

>>> a=[1,2,3]
>>> b=a[:]
>>> b.pop()
3
>>> a
[1, 2, 3]

3.2.6 Modifying Lists

Unlike strings, lists can be modified7 by either adding, removing, or chang-
ing their elements:

Adding

There are three ways to add elements into a list: append, insert, and
extend.

append(element): Adds an element at the end of the list.

6For a detailed review of what is going on under the hood, please see page 65.
7Lists are called “mutables” in Python jargon.

© 2010 by Taylor and Francis Group, LLC

48 Python for Bioinformatics

>>> first_list.append(99)
>>> first_list
[1, 2, 3, 4, 5, 99]

insert(position,element): Inserts the element element at the position
position.

>>> first_list.insert(2,50)
>>> first_list
[1, 2, 50, 3, 4, 5, 99]

extend(list): Extends a list by adding a list to the end of the original list.

>>> first_list.extend([6,7,8])
>>> first_list
[1, 2, 50, 3, 4, 5, 99, 6, 7, 8]

This is the same as using the + symbol:

>>> [1,2,3]+[4,5]
[1, 2, 3, 4, 5]

Removing

There is also three ways to remove elements from a list.
pop([index]): Removes the element in the index position and returns it

to the point where it was called. Without parameters, it returns the last
element.

>>> first_list
[1, 2, 50, 3, 4, 5, 99, 6, 7, 8]
>>> first_list.pop()
8
>>> first_list.pop(2)
50
>>> first_list
[1, 2, 3, 4, 5, 99, 6, 7]

remove(element): Removes the element specified in the parameter. In
the case where there is more than one copy of the same object in the list,
it removes the first one, counting from the left. Unlike pop(), this function
does not return anything.

>>> first_list.remove(99)
>>> first_list
[1, 2, 3, 4, 5, 6, 7]

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 49

TABLE 3.1: Common List Operations
Properties Description

s.append(x) Adds the x element to list s
s.count(x) Counts how many times x is in s
s.index(x) Returns where is x in list s
s.remove(x) Removes the element x from list s
s.reverse() Reverse list s
s.sort() Sort list s

Trying to remove a nonexistent element raises an error:8

>>> first_list
[1, 2, 3, 4, 5, 6, 7]
>>> first_list.remove(10)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

Another way of removing an element of a list is using the command del,
for what:

del first_list[0]

Has a similar effect to:

first_list.pop(0)

With the difference that pop() returns the extracted element where it was
called, while del just deletes it.9

Table 3.1 summarizes other properties of lists.

3.3 Tuples

3.3.1 Tuples Are Immutable Lists

Recall that a list is a collection of ordered objects. The main characteristic
of the tuple is that once created, it cannot be modified. That is why they are

8In Chapter 7 there is a more detailed description of exceptions.
9The object is not deleted. What actually happens is that the reference between the object
and its name is lost. For the programmer, this action has the same effect as if it were
deleted (it is not possible to gain access to the object). At some time in the future, the
“python garbage collector” will eliminate it in a transparent and automatic way.

© 2010 by Taylor and Francis Group, LLC

50 Python for Bioinformatics

referred to as “immutable lists.” Python objects are sometimes divided into
mutable and immutable. As the name implies, immutable objects cannot be
modified after they are created. You can easily tell a tuple from a list be-
cause the tuple’s elements are enclosed between parentheses instead of square
brackets:

>>> point=(23,56,11)

point is a tuple with three elements (23, 56 and 11).
There is a particular case that you should use a trailing comma, when

defining a tuple with one element:

lone_element_tuple = (5,)

This is done to sort the ambiguity of having (5) that means 5 (five) since
round brackets around an expression are ignored. With the trailing comma
and parentheses it is clear that it is a tuple and not an expression.

You are not allowed to add or to remove elements from a tuple:

>>> point.append(3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: ’tuple’ object has no attribute ’append’
>>> point.pop()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: ’tuple’ object has no attribute ’pop’

In a certain way, a tuple is like a limited list (limited in the sense that we
cannot modify it). So what are tuples good for? Why not just use a list
instead?

There is a conceptual difference between the data types stored as a tuple
and the data stored as a list. Lists should hold a variable quantity of objects
of the same data type. A list containing the file names of all the files in a
directory can be stored in a list. They are all of the same type (string), and
the number of elements in the list changes according to each directory. The
element ordering inside this list is not relevant.

On the other hand, a typical example of a tuple is a coordinate system.
In a three-dimensional coordinate system, each point is referred to by a three
element tuple (x, y, z). The number of elements for each tuple does not change
(since there are always three coordinates), and each position is important since
each point corresponds to a specific axis.

We can say the same thing regarding the elements that are returned from
a function or a dictionary key.10 Another advantage of the tuple is it can

10This will become clear after seeing functions and dictionaries.

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 51

be used to make safer code – the information we don’t want to change stays
“write-protected” in an immutable tuple.

Under some conditions, the processing speed of tuples is faster than that of
lists. While this true in most cases, this shouldn’t be a major consideration
when choosing between a list or a tuple.

3.4 Common Properties of the Sequences

Since sequences share common properties, we’ve seen them together. You
can apply these properties indifferently to lists, tuples, and strings.

Indexing

Indexing was discussed when covering list, but for the sake of completeness,
it is also here. Since the elements in the sequences are ordered, we can gain
access to any element through an index that begins at zero:

>>> point=(23,56,11)
>>> point[0]
23
>>> point[1]
56
>>> sequence="MRVLLVALALLALAASATS"
>>> sequence[0]
’M’
>>> sequence[5]
’V’
>>> parameters=[’UniGene’,’dna’,’Mm.248907’,5]
>>> parameters[2]
’Mm.248907’

We can also gain access to the elements of a sequence from the right by
using negative numbers:

>>> point[-1]
11
>>> point[-2]
56
>>> my_sequence[-2]
’T’
>>> my_sequence[-4]
’S’

© 2010 by Taylor and Francis Group, LLC

52 Python for Bioinformatics

>>> my_sequence[-1]
5

To access an element that is inside a sequence, which is itself inside another
sequence, you need to use another index:

>>> seqdata=("MRVLLVALALLA",12,"5FE9EEE8EE2DC2C7")
>>> seqdata[0][5]
’V’

The first index (0) indicates we’re accessing the first element of seqdata.
The second index (5) refers to the 6th element (’V’) of the first element
(’MRVLLVALALLA’)

Slicing

You can select a portion of a sequence using slice notation. Slicing consists
of using two indexes separated by a colon (:). These indexes represent a
position in the existing space between the elements. The string “Python”
can be represented as,

+---+---+---+---+---+---+
| P | y | t | h | o | n |
+---+---+---+---+---+---+
0 1 2 3 4 5 6

>>> my_sequence="Python"
>>> my_sequence[0:2]
’Py’

When omitting the first sub index, the index value defaults to the first
position (0):

>>> my_sequence[:2]
’Py’

On the other hand, when the second sub index is omitted, the index value
defaults to the last position (-1):

>>> my_sequence="Python"
>>> my_sequence[4:6]
’on’
>>> my_sequence[4:]
’on’

There is a third, optional index to skip positions (step argument):

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 53

>>> my_sequence[1:5]
’ytho’
>>> my_sequence[1:5:2]
’yh’

A step with a negative number is used to count backwards. So -1 (in the
third position) can be used to invert a sequence:

>>> my_sequence[::-1]
’nohtyP’

Note that slicing always returns another sequence.

Membership Test

You can verify whether an element belongs to a sequence, using the in
keyword:

>>> point=(23,56,11)
>>> 11 in point
True
>>> my_sequence="MRVLLVALALLALAASATS"
>>> "X" in my_sequence
False

This check can be used to avoid trying to remove an element that does not
belong to the sequence:

if "X" in my_sequence:
my_sequence.remove("X")

else:
pass # "X" is not an element of my_sequence, so do nothing.

Concatenation

You can concatenate two or more sequences of the same class using the “+”
sign:

>>> point=(23,56,11)
>>> point2=(2,6,7)
>>> point+point2
(23,56,11,2,6,7)
>>> DNAseq="ATGCTAGACGTCCTCAGATAGCCG"
>>> TATAbox="TATAAA"
>>> TATAbox+DNASeq
’TATAAAATGCTAGACGTCCTCAGATAGCCG’

© 2010 by Taylor and Francis Group, LLC

54 Python for Bioinformatics

Sequences of different types can’t be concatenated:

>>> point+TATAbox

Traceback (most recent call last):
File "<pyshell#48>", line 1, in <module>

point+TATAbox
TypeError: can only concatenate tuple (not "str") to tuple

len, max, and min

len() returns the amount of elements of a sequence:

>>> point=(23,56,11)
>>> len(point)
3
>>> my_sequence="MRVLLVALALLALAASATS"
>>> len(my_sequence)
19

The use of max() and min() is a no-brainer:

>>> point
(23, 56, 11)
>>> max(point)
56
>>> min(point)
11

max() and min() applied to strings returns a character according to the
maximum or minimum value of its ASCII code:

>>> MySequence="MRVLLVALALLALAASATS"
>>> max(MySequence)
’V’
>>> min(MySequence)
’A’

Turn a Sequence into a List:

To convert a sequence (like a tuple or a string) into a list, use list():

>>> TATAbox="TATAAA"
>>> list(TATAbox)
[’T’, ’A’, ’T’, ’A’, ’A’, ’A’]

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 55

Using list provides us with methods to indirectly modify a string. Since
lists, unlike strings, are mutable, we can convert a string to a list, modify this
list and then convert it back into a string (with str()).11 This process is not
efficient, so I suggest that whenever possible, use string properties to obtain
another string.

3.5 Dictionaries

3.5.1 Mapping: Calling Each Value by a Name

Dictionaries are a special data type not present in all programming lan-
guages. The main characteristic of a dictionary is that it stores arbitrary
indexed unordered data types.

This example shows us why this data type is called a dictionary:

>>> IUPAC = {’A’:’Ala’,’C’:’Cys’,’E’:’Glu’}
>>> print("C stands for the amino acid "+IUPAC[’C’])
C stands for the amino acid Cys

IUPAC is the name of a dictionary with three elements. It was defined by
enclosing is key:value pairs between curly brackets ({}).

This dictionary works as a translation table that allows us to translate
between the one-letter amino acid code to a three-letter code. Every element
consists of a pair key:value. The key is the index used to retrieve the value:

>>> IUPAC[’E’]
’Glu’

Not every object can be used as a dictionary key, only immutable objects
like strings, tuples and numbers can be used as keys. If the tuple contains
any mutable object, it cannot be used as a key.

A dictionary can also be created from a sequence with dict:

>>> rgb=[(’red’,’ff0000’),(’green’,’00ff00’),(’blue’,’0000ff’)]
>>> colors_d = dict(rgb)
>>> colors_d[’green’]
’00ff00’

dict also accepts name=value pairs in the keyword argument list:

>>> rgb = dict(red=’ff0000’,green=’00ff00’,blue=’0000ff’)
>>> rgb
{’blue’: ’0000ff’, ’green’: ’00ff00’, ’red’: ’ff0000’}

11By using the method join() as it was described on page 46.

© 2010 by Taylor and Francis Group, LLC

56 Python for Bioinformatics

Another way to initialize a dictionary is to create an empty dictionary and
add elements as needed:

>>> rgb = {}
>>> rgb[’red’] = ’ff0000’
>>> rgb[’green’] = ’00ff00’
>>> rgb
{’green’: ’00ff00’, ’red’: ’ff0000’}

len(), returns the number of elements in the dictionary:

>>> len(IUPAC)
3

To add values to a dictionary,

>>> IUPAC[’S’]=’Ser’
>>> len(IUPAC)
4

Dictionaries are labeled as unordered because they don’t keep track of the
order of it elements. In this interactive session, the keys are shown in the
same order as entered:

>>> IUPAC = {’A’:’Ala’,’C’:’Cys’,’E’:’Glu’}
>>> for aa in IUPAC:
... print aa
...
A
C
E

But after entering a new element, this order seems to disappear:

>>> IUPAC[’X’]=’Xaa’
>>> for aa in IUPAC:
... print aa
...
A
X
C
E

Don’t rely on a diccionary to keep track of element order12.

12Since there were a lot of demand for ordered dictionaries, it was implemented in Python
3.1 with the collections.OrderedDict method. See PEP-372 for more information (http:
//www.python.org/dev/peps/pep-0372/).

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

Basic Programming: Data Types 57

3.5.2 Operating with Dictionaries

As lists, dictionaries have their own methods.

Dictionaries Are Made of Keys and Values

In Python 2.x, you can list the keys and values of dictionaries with the
methods keys() and values() respectively:13

>>> IUPAC.keys()
[’A’, ’C’, ’E’, ’S’]
>>> IUPAC.values()
[’Ala’, ’Cys’, ’Glu’, ’Ser’]

The order of the keys correspond to the order of the values. Note that
value order is not guaranteed to be kept next time you retrieve data from the
dictionary.

These methods can be used to check the presence of a key in a dictionary.
keys() returns a list . You could use keys() as a possible check for the
presence of an element in a list:

>>> ’Z’ in IUPAC.keys() # Method not recommended!
False

There is no need to generate a list for checking for the presence of an
element. You can check directly on the dictionary. This is more effective,
because it does not generate a temporary list of keys built and discarded just
for this check.

>>> ’Z’ in IUPAC
False

The has key() method is also available, but its use is not recommended.14

I show it here anyway since a lot of existing codes still use it:

>>> IUPAC.has_key(’Z’) #use ’Z’ in IUPAC instead.
False

Another way of gaining access to the elements of a dictionary is by using
items():

>>> IUPAC.items()
[(’A’, ’Ala’), (’C’, ’Cys’), (’E’, ’Glu’), (’S’, ’Ser’)]

items() returns a list with a tuple for every key/value pair.

13This functionality is replaced by Dictionary views in Python 3. This is explained on
page 58.
14The rationale behind this is that if keyword in works for lists, it should also work for
dictionaries. There’s no reason to remember a separate function (has key()), which does
the same thing as in.

© 2010 by Taylor and Francis Group, LLC

58 Python for Bioinformatics

Safe Query of Dictionary Values

A way to query a value from a dictionary, without the risk of invoking an
exception, is to use get(k,x). K represents the key of the element to extract,
while x is the element that will be returned in case k is not found as a key of
the dictionary.

>>> IUPAC.get(’A’,’No translation’)
’Ala’
>>> IUPAC.get(’Z’,’No translation’)
’No translation’

If you omit x, and there is no k present in the dictionary, the method returns
None.

>>> IUPAC.get(’Z’)
None

Erasing Elements

To erase elements from a dictionary, use the del instruction:

>>> del IUPAC[’A’]
>>> IUPAC
[(’C’, ’Cys’), (’E’, ’Glu’), (’F’, ’Phe’)]

Table 3.2 summarizes the properties of dictionaries.

3.5.3 New in Python 3: Dictionary Views

In Python 3, keys(), values() and items() methods don’t return a list as in
previous versions. They return a special kind of object called dict view :

>>> IUPAC.values() # Under Python 3.0
<dict_values object at 0xb7d145a0>

This object can be iterated as a list (it’s an iterable object), so the following
code is still good:

>>> for x in IUPAC.values():
... print(x)
...
Ala
Cys
Glu
Ser

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 59

TABLE 3.2: Methods Associated with Dictionaries

Properties
Description

len(a) Number of elements of a
a[k] The element from a that has a k key
a[k] = v Set a[k] to v
del a[k] Remove a[k] from a
a.clear() Remove all items from a
a.copy() A copy of a
k in a True if a has a key k, else False
k not in a Equivalent to not k in a
a.has key(k) Equivalent to k in a, use that form in new code
a.items() A copy of a’s list of (key, value) pairs
a.keys() A copy of a’s list of keys
a.update([b]) Updates (and overwrites) key/value pairs from b
a.fromkeys(seq[,
value])

Creates a new dictionary with keys from seq and
values set to value

a.values() A copy of a’s list of values
a.get(k[, x]) a[k] if k in a, else x
a.setdefault(k[, x]) a[k] if k in a, else x (also setting it)
a.pop(k[, x]) a[k] if k in a, else x (and remove k)
a.popitem() Remove and return an arbitrary (key, value) pair

This is more memory efficient than Python 2.x,15 since Python doesn’t store
the whole list in memory. If you need to get the list anyway, use list():

>>> list(IUPAC.values())
[’Ala’, ’Cys’, ’Glu’, ’Ser’]

Another difference worth pointing out is that the dict view are kept in
sync with the current content of the dictionary. In Python 2.x, the result of
keys(), values(), and items() were not modified by subsequent changes in the
dictionary:

>>> d={1:’a’,2:’b’,3:’c’}
>>> k=d.keys()
>>> k
[1, 2, 3]
>>> d[6]=’p’
>>> k
[1, 2, 3]

Dict view objects from Python 3.0 keeps track of dictionary contents:

15To get an iterator in older versions of Python you had to use iterkeys(), itervalues()
and iteritems() instead of keys(), values() and items().

© 2010 by Taylor and Francis Group, LLC

60 Python for Bioinformatics

>>> d={1:’a’,2:’b’,3:’c’}
>>> k=d.keys()
>>> list(k)
[1, 2, 3]
>>> d[6]=’p’
>>> list(k)
[1, 2, 3, 6]

3.6 Sets

3.6.1 Unordered Collection of Objects

This type of data is also not commonly found in other programming lan-
guages. Even in Python, sets are not very popular as they were implemented
as a native data type only recently.16 A set is a structure frequently found
in mathematics. It is similar to a list, with two outstanding differences: its
elements do not preserve an implied order and every element is unique.

The most common uses of sets are membership testing, duplicate removal,
and the application of mathematical operations: intersections, unions, differ-
ences, and symmetrical differences.

Creating a Set

Sets are created with the instruction set():

>>> first_set = set([’CP0140.1’,’EF3613.1’,’EF3616.1’])

It is also possible to create an empty set and then add the elements as
needed:

>>> first_set = set()
>>> first_set.add(’CP0140.1’)
>>> first_set.add(’EF3613.1’)
>>> first_set.add(’EF3616.1’)
>>> first_set
set([’CP0140.1’,’EF3613.1’,’EF3616.1’])

16In Python 2.3, sets were not available unless imported as from sets import Set. Note
that old versions uses Set with uppercase ‘S’.

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 61

New in Python 3: New Syntax for Sets

In Python 3 you don’t need to create an iterable and then apply a set
function. A set can be declared by using {}:
>>> first_set = {’CP0140.1’,’EF3613.1’,’EF3616.1’}
>>> first_set
{’EF3616.1’, ’EF3613.1’, ’CP0140.1’}

Python 3 also supports defining a set by comprehension, as in list compre-
hension (see page 45):

>>> {2*x for x in [1,1,2,2,3,3]}
{2, 4, 6}

Since a set does not accept repeated elements, there is no effect when you
try to add an element that is already in the set:

>>> first_set.add(’CP0140.1’)
>>> first_set
set([’CP0140.1’,’EF3613.1’,’EF3616.1’])

This property can be used to remove duplicated elements from a list:

>>> uniqueIds = set([2,2,3,4,5,3])
>>> uniqueIds
set([2, 3, 4, 5])

3.6.2 Set Operations

Intersection

To get the common elements in two sets (as shown in Figure 3.1), use the
operator intersection():

>>> first_set = set([’CP0140.1’,’EF3613.1’,’EF3616.1’])
>>> other_set = set([’CP0140.2’,’EF3613.1’,’EF3616.2’])
>>> common = first_set.intersection(other_set)
>>> common
set([’EF3613.1’])

Instead of intersection(), it is possible to use the shortcut &:

>>> common = first_set & other_set
>>> common
set([’EF3613.1’])

© 2010 by Taylor and Francis Group, LLC

62 Python for Bioinformatics

FIGURE 3.1: Intersection.

FIGURE 3.2: Union.

Union

The union of two (or more) sets is the operator union (as seen in Figure
3.2) and its abbreviated form is |:

>>> first_set.union(other_set)
set([’EF3616.2’, ’EF3613.1’, ’EF3616.1’, ’CP0140.1’, ’CP0140.2’])
>>> first_set | other_set
set([’EF3616.2’, ’EF3613.1’, ’EF3616.1’, ’CP0140.1’, ’CP0140.2’])

Difference

A difference is the resulting set of elements that belongs to one set but
not to the other (See Figure 3.3). Its shorthand is −:

>>> first_set.difference(other_set)
set([’CP0140.1’, ’EF3616.1’])
>>> first_set - other_set
set([’CP0140.1’, ’EF3616.1’])

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 63

FIGURE 3.3: Difference.

FIGURE 3.4: Symmetric difference.

Symmetric Difference

A symmetric difference refers to those elements that are not a part of the
intersection (see Figure 3.4); its operator is symmetric difference and it is
shorted as ˆ:

>>> first_set.symmetric_difference(other_set)
set([’EF3616.2’, ’CP0140.1’, ’CP0140.2’, ’EF3616.1’])
>>> first_set ^ other_set
set([’EF3616.2’, ’CP0140.1’, ’CP0140.2’, ’EF3616.1’])

3.6.3 Shared Operations with Other Data Types

Maximum, Minimum, and Length

Sets share some properties with the sequences, as max, min, len, in, etc.
As we can expect, these properties work in the same way.

Converting a Set into a List

As with strings, sets can be turned into lists with the function list():

© 2010 by Taylor and Francis Group, LLC

64 Python for Bioinformatics

>>> first_set = set([’CP0140.1’,’EF3613.1’,’EF3616.1’])
>>> list(first_set)
[’EF3616.1’, ’EF3613.1’, ’CP0140.1’]

Table D.16 in page 478 summarizes all properties of sets.

3.6.4 Immutable Set: Frozenset

Frozenset is the immutable version of set. It contents cannot be changed,
so methods like add() and remove() are not available:

>>> fs = frozenset([’a’,’b’])
>>> fs
frozenset({’a’, ’b’})
>>> fs.remove(’a’)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: ’frozenset’ object has no attribute ’remove’
>>> fs2 = frozenset([’c’,’d’])
>>> fs.add(fs2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: ’frozenset’ object has no attribute ’add’

Since frozensets are immutable, they can be used as a dictionary key.

3.7 Naming Objects

Names rules are straightforward: Valid names should contain letters, num-
bers and undercores (), but they can’t start with numbers. Another restric-
tion is the use of a “language reserved word” like:

and del from not try
as elif global None while
assert else if or with
break except import pass yield
class exec in print
continue finally is raise
def for lambda return

Here is a sample of invalid names, with an explanation in a comment:

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 65

>>> 23crm = "1" # Start with a number
>>> 23 = "1" # Start with a number
>>> Var? = "value" # Has an invalid character (?).
>>> $five = 5 # Has an invalid character ($)
>>> for = 123 # Has a reserved word
>>> if = "data" # Has a reserved word

We’ve seen several name assignments up to this point:

>>> MySequence="MRVLLVALALLALAASATS"
>>> first_list=[1,2,3,4,5]
>>> d={1:’a’,2:’b’,3:’c’}
>>> k=d.keys()
>>> point=(23,56,11)
>>> first_set = set([’CP0140.1’,’EF3613.1’,’EF3616.1’])
>>> fs = frozenset([’a’,’b’])

Those are valid names. Appart from valid names, there are naming conven-
tions that must be followed to improve code readability. These conventions
are part the Python Style Guide and this book has chapter devoted to it (F,
from page 553 to 576). According to this guide, names should be lowercase,
with words separated by underscores as necessary to improve readability.

3.8 Assigning a Value to a Variable versus Binding a
Name to an Object

The following statements can be thought of as a variable assignment:

>>> a=3
>>> b=[1,2,a]

Translated into English, they mean: “Let the variable a have a value of 3”
and “Let the variable b have a list with three elements: 1, 2 and a (that has
the value 3)”.

Printing b seems to confirm both statements:

>>> print b
[1, 2, 3]

So by changing the value of a, the value of b should also change:

>>> a=5
>>> print b
[1, 2, 3]

© 2010 by Taylor and Francis Group, LLC

66 Python for Bioinformatics

What happened here? If you know another programming language, you
may think that “Python is storing the value instead of the reference to the
value.” That is not exactly the case so I urge you to keep on reading.

The following statements seem to work in a different way:

>>> c=[1,2,3]
>>> d=[5,6,c]

Translated into English, they mean: “Let the variable c have a list with
three elements: 1, 2 and 3” and “Let the variable d has a list with three
elements: 5, 6 and c (that has three elements: 1, 2, and 3)”.

This can be confirmed by printing both variables:

>>> print c
[1, 2, 3]
>>> print d
[5,6,[1, 2, 3]]

Let’s change the value of c to see what happens with d:

>>> c.pop()
3
>>> print c
[1, 2]
>>> print d
[5,6,[1, 2]]

In this case, changing one variable, does change the other variable. It seems
like an inconsistent behavior. If we think all these variable assignment as a
binding names with objects, what seems inconsistent, starts to make sense.
Try following next explanation using Figure 3.5.

>>> a=3
>>> b=[1,2,a]

Translated into English, they mean: “Let the object 3 be called a” and
“Let the list with three elements (1, 2 and a) be called b”.

Printing b seems to confirm both statements:

>>> print b
[1, 2, 3]

Then we create a new object (5) and name it a. So the previous reference
(a=3) is destroyed (this is represented by a cross in the arrow from a to 3).
The name a is not bound to 3 anymore, now a is bound to 5. What about b?

© 2010 by Taylor and Francis Group, LLC

Basic Programming: Data Types 67

FIGURE 3.5: Case 1.

FIGURE 3.6: Case 2.

© 2010 by Taylor and Francis Group, LLC

68 Python for Bioinformatics

>>> a=5
>>> print b
[1, 2, 3]

Since the third position in the list called b was not altered, b remains
unmodified. We only changed the binding between a and 3.

The next sample case can also be explained by taking into account that
there is no variable assignments in Python, but names that bind objects. In
this case you should follow Figure 3.6.

>>> c=[1,2,3]
>>> d=[5,6,c]

Translated into English, they mean, “Let the list with three elements: 1, 2
and 3 be called c” and “Let the list with three elements: 5, 6 and c (which
is the name of a list of three elements: 1, 2 and 3) be called d.” This can be
confirmed by requesting the contents or both names:

>>> print c
[1, 2, 3]
>>> print d
[5,6,[1, 2, 3]]

In the next step, modify the list called c by removing the last element and
see what happens with d:

>>> c.pop()
3
>>> print c
[1, 2]
>>> print d
[5,6,[1, 2]]

This time, c was modified (and not just a relationship). Since the actual
value of c was altered, this is reflected every time it is called. See Figure 3.6
in case of doubt.

Even if names are bound to objects and there is no variable assignment in
Python, force of habit is strong and most texts (even this book) use the terms
variables and names interchangeably.

3.9 Additional Resources

• “Learn to Program Using Python: Variables and Identifiers.”
http://www.developer.com/lang/other/article.php/626321

© 2010 by Taylor and Francis Group, LLC

http://www.developer.com
http://www.developer.com

Basic Programming: Data Types 69

• “Python 101—Introduction to Python”
http://ascii-world.wikidot.com/python-101

• “Beginning Python for Bioinformatics”
http://www.onlamp.com/lpt/a/2727

• String Methods
http://docs.python.org/lib/string-methods.html

• Unicode HOWTO
http://www.amk.ca/python/howto/unicode

• “Adding a Built-in Set Object Type”
http://www.python.org/dev/peps/pep-0218/

• “Set Types—set, frozenset”
http://docs.python.org/lib/types-set.html

• “Revamping dict.keys(), .values(), and .items()”
http://www.python.org/dev/peps/pep-3106/

© 2010 by Taylor and Francis Group, LLC

http://ascii-world.wikidot.com
http://www.onlamp.com
http://docs.python.org
http://www.amk.ca
http://www.python.org
http://docs.python.org
http://www.python.org
http://www.python.org
http://docs.python.org
http://www.python.org
http://www.amk.ca
http://docs.python.org
http://www.onlamp.com
http://ascii-world.wikidot.com

70 Python for Bioinformatics

3.10 Self-Evaluation

1. Which are the principal data types in Python?

2. What is the difference between a list and a tuple? When would you use
each one?

3. What is a set and when would you use it?

4. How do you test if an element is inside a list?

5. What is a dictionary?

6. What data type can be used as key in a dictionary?

7. What is a “dictionary view”?

8. Can you iterate over an unordered sequence?

9. Sort the data types below according to the following criteria:

• Mutable–inmutable

• Sorted–unsorted

• Sequence–mapping

Data types to sort: Lists, tuples, dictionaries, sets, strings.

10. What is the difference between a set and a frozenset?

11. How do you convert any iterable data type into a list?

12. How do you create a dictionary from a list?

13. How do you create a list from a dictionary?

© 2010 by Taylor and Francis Group, LLC

Chapter 4

Programming: Flow Control

In order to be able to do something useful, programs must have some mech-
anism to manage how and when instructions are executed. In the same way
that traffic lights control vehicular flow in a street, flow control structures
direct that code portion is executed at a given time.

For greater simplicity, Python has only three flow control structures. There
is one conditional and two iteration structures. A conditional structure (if)
determines, after an expression evaluation, whether a block of code is executed
or not. Iterative structures allow multiple execution of the same code portion.
How many times is the code associated to a iterative structure executed? It
depends the kind of cycle. A for cycle executes a code block many times as
elements on are available in a specified iterable element, while the code under
a while cycle is executed until a given condition turns false.1

4.1 If-Else

The most classic control structure is the conditional one. It acts upon the
result of an evaluation. If you know any other computer language, chances
are that you are familiar with if-else.

If evaluates an expression. If the expression is true, the block of code just
after the if clause is executed. Otherwise, the block under else is executed.

A basic schema of an if-else condition,

if EXPRESSION:
Block1

else:
Block2

EXPRESSION must be an expression that returns True or False. This
is the case of all comparison operators: x < y (less than), x > y (greater
than), x == y (equal to), x! = y (not equal to),2 x <= y (less than or equal

1This is equivalent to saying that the condition is executed while the condition is true.
2There is an outdated equivalent operator: <>. You may find it in old Python code.

71

© 2010 by Taylor and Francis Group, LLC

72 Python for Bioinformatics

to), x >= y (greater than or equal to).

Let’s see an example:

Listing 4.1: Basic if-else sample

1 a = 8
2 if a>5:
3 print("a is greater than 5")
4 else:
5 print("a is smaller than 5")

Program output,

a is greater than 5

Another example,

Listing 4.2: if-else in action

1 trans = {"A":"Ala","N":"Asn","D":"Asp","C":"Cys"}
2 aa = raw_input("Enter one letter: ")
3 if aa in trans:
4 print("The three letter code for "+aa+" is: "+trans[aa])
5 else:
6 print("Sorry, I don’t have it in my dictionary")

Program output,

Enter one letter: A
The three letter code for A is: Ala

To evaluate more than one condition, use elif :

if EXPRESSION1:
Block1

elif EXPRESSION2:
Block2

elif EXPRESSION3:
Block3

else:
Block4

You can use as many elif as conditions you want to evaluate. Take into
account that once a condition is evaluated as true, the remaining conditions
are not checked.

The following program evaluates more than one condition using elif :

© 2010 by Taylor and Francis Group, LLC

Programming: Flow Control 73

Listing 4.3: Using elif

1 dna = raw_input("Enter your DNA sequence: ")
2 seqsize = len(dna)
3 if seqsize < 10:
4 print("The primer must have at least ten nucleotides")
5 elif seqsize < 25:
6 print("This size is OK")
7 else:
8 print("The primer is too long")

This program ask for a DNA sequence entered with the keyboard at run-
time. This sequence is called dna. In line 2 its size is calculated and this result
is binded to the name seqsize. In line 3 there is an evaluation. If seqsize is
lower than ten, the message “The primer must have at least ten nucleotides”
is printed. The program flows goes to the end of this if statement, without
evaluating any other condition in this if statement. But if it is not true (for
example if the sequence length was 15), it would execute the next condition
and its associated block in case that this condition is evaluated as true. If the
sequence length were of a value greater than 10, the program would skip line 4
(the block of code associated with the first condition) and would evaluate the
expression in line 5. If this condition is met, it will print “This size is OK.”
If there is no expression that evaluates as true, the else block is executed.

Tip: What Is True?
Remember that the statement after the if condition is executed only when
the expression is evaluated as True. So the question “What is True?” (and
“What is False?”) is relevant.

What is True?:

• Nonempty data structures (lists, dictionaries, tuples, strings, sets). Empty
data structures count as True,

• 0 and None count as False (while other values count as True,

• Keyword True is True and False is False.

If you have a doubt if an expression is True or False, use bool():

>>> a=1
>>> b=’1’
>>> bool(a==b)
False

Conditionals can be nested:

© 2010 by Taylor and Francis Group, LLC

74 Python for Bioinformatics

Listing 4.4: Nested if

1 dna = raw_input("Enter your DNA sequence: ")
2 seqsize = len(dna)
3 if seqsize < 10:
4 print("Your primer must have at least ten nucleotides")
5 if seqsize==0:
6 print("You must enter something!")
7 elif seqsize < 25:
8 print("This size is OK")
9 else:

10 print("Your primer is too long")

In line 5 there is a condition inside another.
Note the double equal sign (“==”) instead of the single equal. Double

equal is used to compare values, while the equal sign is used to assign values:

>>> answer=42
>>> answer
42
>>> answer==3
False
>>> answer==42
True

The nested if introduced in code 4.4, can be avoided:

Listing 4.5: Nested if

1 dna = raw_input("Enter your DNA sequence: ")
2 seqsize = len(dna)
3 if seqsize==0:
4 print("You must enter something!")
5 elif 0<seqsize<10:
6 print("Your primer must have at least ten nucleotides")
7 elif seqsize < 25:
8 print("This size is OK")
9 else:

10 print("Your primer is too long")

See how the expression is evaluated in line 5. This leads us to think about
inserting multiple statements in one if, like in code 4.6:

Listing 4.6: Multiple part condition

1 x = ’N/A’
2 if x!=’N/A’ and 5<float(x)<20:

© 2010 by Taylor and Francis Group, LLC

Programming: Flow Control 75

3 print(’OK’)
4 else:
5 print(’Not OK’)

This expression is evaluated from left to right. If one part of the expression
is false, the following parts are not evaluated. Since x=’N/A’, the program
will print ’Not OK’ (because the first condition is false). Look what happens
when the same expression is written in reverse order.

This program,

Listing 4.7: Multiple part condition, inverted

x=’N/A’
if 5<float(x)<20 and x!=’N/A’:

print(’OK’)
else:

print(’Not OK’)

returns:

Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>

if 5<float(x)<20 and x!=’N/A’:
ValueError: invalid literal for float(): N/A

The ValueError is produced because the string ’N/A’ can’t be converted
to float. In code 4.7, x is also evaluated as ’N/A’, but there is no ValueError
because this part of the expression is skipped before evaluation.

4.1.1 Pass Statement

Sometimes there is no need of an alternative choice in an if statement, in
this case you just can avoid using else:

if EXPRESSION:
Block

Rest of the program...

To make the same code more readable, Python provides the pass state-
ment. This statement is like a placeholder, it has any other pupose than put
something when a statement is required syntactically. The following code
produces the same output as the former code:

if CONDITION:
BLOCK

else:
pass

Rest of the program...

© 2010 by Taylor and Francis Group, LLC

76 Python for Bioinformatics

Advanced Tip: Conditional Expressions.
Sometimes comes in handy the availability of a special syntax to write an if
condition in one line. Since Python 2.5, the following structure is available:

expression1 if condition else expression2

This line will take the value of expression1, if condition is true; otherwise, it
will take the value of expression2.

This syntax allows us to write:

>>> print("Average = %s"%(t/n if n!=0 else "N/A"))

instead of,

if n!=0:
print("Average = %s"%(t/n))

else:
print("Average = N/A")

4.2 For Loop

This control structure allows code to be repeatedly executed while keeping
a variable with the value of an iterable object.3 The generic form of a for
loop is,

for VAR in ITERABLE:
BLOCK

Note the colon at the end of ITERABLE. It is mandatory. As the inden-
tation of the block of code that is part of the for loop. This structure results
on the repetition of BLOCK as many times as elements are in the iterable
object. On each iteration, V AR takes the value of the current element in
ITERABLE. In the following code for walk through a list (bases) with four
elements. On each iteration, x takes the value of one of the elements in the
list.

3The most common iterable objects are: lists, tuples, strings and dictionaries. Files and
custom made objects can also be iterable.

© 2010 by Taylor and Francis Group, LLC

Programming: Flow Control 77

>>> bases = ["C","T","G","A"]
>>> for x in bases:
... print(x)
...
C
T
G
A

In other languages, the for loop is used to allow a block of code to run
a number of times while changing a counter variable. This behavior can be
reproduced in Python by iterating over a list of numbers:

>>> for x in [0,1,2,3]:
... print(str(x)+"*"+str(x)+" = "+str(x*x))
...
0*0 = 0
1*1 = 1
2*2 = 4
3*3 = 9

A shortcut to generate the list is by using the built-in function range(n).
This function returns a list with many elements as the first parameter entered
in the function,4

>>> for x in range(4):
... print str(x)+"*"+str(x)+" = "+str(x*x)
...
0*0 = 0
1*1 = 1
2*2 = 4
3*3 = 9

The following code calculates the molecular weight of a protein based on
its individual amino acids.5 Since the amino acid is stored in a string, the
program will walk through each letter by using can for,

Listing 4.8: Using for to calcule the weight of a protein (py3.us/55)

1 protseq = raw_input("Enter your protein sequence: ")

4All built-in functions are described in section D.6 (page 494).
5Amino acids are the building blocks of the proteins. Each amino acid (represented by a
single letter) has an individual weight. Since each amino acid bond release a water molecule
(with a weight of 18 iu), the weight of all the water molecules released is subtracted from
the total.

© 2010 by Taylor and Francis Group, LLC

78 Python for Bioinformatics

2 protweight = {"A":89,"V":117,"L":131,"I":131,"P":115,"F":165,
3 "W":204,"M":149,"G":75,"S":105,"C":121,"T":119,
4 "Y":181,"N":132,"Q":146,"D":133,"E":147,
5 "K":146,"R":174,"H":155}
6 totalW = 0
7 for aa in protseq:
8 totalW = totalW + protweight.get(aa.upper(),0)
9 totalW = totalW-(18*(len(protseq)-1))

10 print("The net weight is: "+str(totalW))

Code explanation: On the first line the user is requested to enter a pro-
tein sequence (like for example MKTFVLHIFIFALVAF). The string returned by
raw input is named protseq. From line 2 to 5, a dictionary (protweight)
with the amino acid weights is initialized. A for loop is used in line 7 to
iterate over each element in protseq. In each iteration, aa takes a value from
an element from protseq. This value is used to seach in the protweight
dictionary. After the cycle, totalW will end up with the sum of the weight of
all amino acids. In line 9 there is a correction due to the fact that each bond
involves the loss of a water molecule (with molecular weight of 18). The last
line prints out the net weight.

4.3 While Loop

A loop very similar to for since it also executes a code portion in a repeated
way. In this case there is no iteration over an object, so this loop doesn’t end
when the iteration object is traversed, but when a given condition is not true.

Model of while loop,

while EXPRESSION:
BLOCK

It is very important to take into account that there should be an instruction
inside the block to make the while condition false. Otherwise, we could enter
into an infinite loop.

>>> a=10
>>> while a<40:
... print(a)
... a = a+10
...
10
20
30

© 2010 by Taylor and Francis Group, LLC

Programming: Flow Control 79

A way to exit from a while loop is using break. In this case the loop is bro-
ken without evaluating the loop condition. break is often used in conjunction
with a condition that is always true:

>>> a=10
>>> while True:
... if a<40:
... print a
... else:
... break
... a += 10
...
10
20
30

This is done to ensure the block inside the loop is executed at least once.
In other languages there is a separate loop type for these cases (do while),
but it is not present in Python.6

4.4 Break: Breaking the Loop

Break is used to escape from a loop structure. We’ve just seen a usage
example with while but it also can be used under for.

It is not easy at first to realize where using a break statement actually
makes sense.

Take, for example, code 4.9:

Listing 4.9: Searching a value in a list of tuples

1 cc = [(’red’,1), (’green’,2), (’blue’,3), (’black’,4)]
2 name = ’blue’
3 for colorpair in cc:
4 if name==colorpair[0]:
5 code = colorpair[1]
6 print code

In this code there is a for loop to iterate over cc list. For each element,
that is, for each tuple, it checks for the first element. When it matches our
query (name), the program stores the associated code into code.

6There is a proposal to add this structure into Python filled under PEP-315 (http://www.
python.org/dev/peps/pep-0315) but it has no implementation date, so don’t rely on it.

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

80 Python for Bioinformatics

So the output of this program is just “3.”
The problem with this program is that the whole sequence is walked over,

even if we don’t need to. In this case, the condition in line 4 is evaluated once
per each element in cc when it is clear that once the match is positive there
is no need to keep on testing. You can save some time and processing power
by breaking the loop just after the positive match:

Listing 4.10: Searching a value in a list of tuples

1 cc = [(’red’,1), (’green’,2), (’blue’,3), (’black’,4)]
2 name = ’blue’
3 for colorpair in cc:
4 if name==colorpair[0]:
5 code = colorpair[1]
6 break
7 print code

This code is identical to 4.9 with the exception of the break statement in
line 6. The output is the same as before, but this time you don’t waste CPU
cycles iterating over a sequence without a reason. The time saved in this
example is negligible, but if the program has to do it several times over a
big list or file (you can also iterate over a file), break can speed it up in a
significant way.

The use of break can be avoided, but the resulting code is not so legible
as in program 4.10:

Listing 4.11: Searching a value in a list of tuples

1 cc = [(’red’,1), (’green’,2), (’blue’,3), (’black’,4)]
2 name = ’blue’
3 i = 0
4 while name!=cc[i][0]:
5 i += 1
6 code = cc[i][1]
7 print code

In a case like this, with a list that can easily fit in memory, it is a better
idea to create a dictionary and query it:

Listing 4.12: Searching a value in a list of tuples using a dictionary

1 cc = [(’red’,1), (’green’,2), (’blue’,3), (’black’,4)]
2 name = ’blue’
3 cc_d = dict(cc)
4 print cc_d[name]

© 2010 by Taylor and Francis Group, LLC

Programming: Flow Control 81

4.5 Wrapping It Up

Combining if, for, while and the data type seen up to this point. Here I
present some small programs made with the tools we’ve just learned:

4.5.1 Estimate the Net Charge of a Protein

At a fixed pH, it is possible to calculate the net charge of a protein summing
the charge of its individual amino acids. This is an approximation since it
doesn’t take into account if the amino acids are exposed or buried in the
protein structure. This program also fails to take into account the fact that
cysteine add charge only when it is not part of a disulfide bridge. Since it is
an approximate value the obtained value should be regarded as an estimation.
Here is the first version of protnetcharge.py:

Listing 4.13: Net charge of a protein (py3.us/3)

1 protseq = raw_input("Enter protein sequence: ")
2 charge = -0.002
3 AACharge = {"C":-.045,"D":-.999,"E":-.998,"H":.091,
4 "K":1,"R":1,"Y":-.001}
5 for aa in protseq:
6 if aa in AACharge:
7 charge += AACharge[aa]
8 else:
9 pass

10 print(charge)

The problem with this program is that it recognizes amino acids only in
uppercase. If the user enters an amino acid in lowercase, it is ignored. A way
to fix this is by extending the AACharge dictionary with the lowercase letters
as keys. A better option is to convert all amino acid into uppercase using
upper().

The if statement in line 6 can be avoided with get():

Listing 4.14: Net charge of a protein using get (py3.us/4)

1 protseq = raw_input("Enter protein sequence: ").upper()
2 charge = -0.002
3 AACharge = {"C":-.045,"D":-.999,"E":-.998,"H":.091,
4 "K":1,"R":1,"Y":-.001}
5 for aa in protseq:
6 charge += AACharge.get(aa,0)
7 print charge

© 2010 by Taylor and Francis Group, LLC

82 Python for Bioinformatics

4.5.2 Search for a Low Degeneration Zone

To find PCR primers, it is better to use a DNA region with less degeneration
(or more conservation). This is made in order to have a better chance to find
the target sequence. The aim of this program is to search for this region.
Since a PCR primer has about 16 nucleotides, to give room for the primer
design, the search space should be at least 45 nucleotides long. We should
find a 15 amino acid region in the input sequence. 15 amino acids provides a
search region of 45 nucleotides (3 nucleotides per amino acid).

Each amino acid is encoded by a determined amount of codons. For example
valine (V) can be encoded by four different codons (GTT, GTA, GTC, GTG),
while tryptophan (W) is encoded only by one codon (TGG). It is clear that
a region rich in valines will have more variability than a region with lots of
tryptophan.

A program that finds a low degeneration region,

First Version

Listing 4.15: Search for a low degeneration zone (py3.us/5)

1 protseq = raw_input("Protein sequence: ").upper()
2 protdeg = {"A":4,"C":2,"D":2,"E":2,"F":2,"G":4,"H":2,
3 "I":3,"K":2,"L":6,"M":1,"N":2,"P":4,"Q":2,
4 "R":6,"S":6,"T":4,"V":4,"W":1,"Y":2}
5 segsvalues = []
6 for aa in range(len(protseq)):
7 segment = protseq[aa:aa+15]
8 degen = 0
9 if len(segment)==15:

10 for x in segment:
11 degen += protdeg.get(x,3.05)
12 segsvalues.append(degen)
13 else:
14 pass
15 min_value = min(segsvalues)
16 minpos = segsvalues.index(min_value)
17 print protseq[minpos:minpos+15]

Code explanation: lessdeg.py takes a string (protseq) entered by the
user. The program uses a dictionary (protdeg) to store the amount of codons
that corresponds to each amino acid. From line 6 to 8, we generate sliding
windows of length 15. For each 15 amino acid segments, the amount of codons
is evaluated, then we select the segment with less degeneration (line 15). Note
that in line 9 there is a check of the size of segment, since when the sequence
slide away of protseq, the subchain has less than 15 amino acids.

© 2010 by Taylor and Francis Group, LLC

Programming: Flow Control 83

Version with While

Listing 4.16: Searching for a low degeneration zone, version with while
(py3.us/6)

1 ProtSeq = raw_input("Protein sequence: ").upper()
2 ProtDeg = {"A":4,"C":2,"D":2,"E":2,"F":2,"G":4,"H":2,
3 "I":3,"K":2,"L":6,"M":1,"N":2,"P":4,"Q":2,
4 "R":6,"S":6,"T":4,"V":4,"W":1,"Y":2}
5 SegsValues=[]; SegsSeqs=[]; segment=ProtSeq[:15]; a=0
6 while len(segment)==15:
7 degen = 0
8 for x in segment:
9 degen += ProtDeg.get(x,3.05)

10 SegsValues.append(degen)
11 SegsSeqs.append(segment)
12 a += 1; segment = ProtSeq[a:a+15]
13 print SegsSeqs[SegsValues.index(min(SegsValues))]

Code explanation: This version don’t use for for walk over protseq;
instead, it uses while. Code will be executed as long as the sliding windows
is inside protseq. Another difference is lines 15, 16, and 17 of listing 4.15 are
consolidated in line 13.

Version without List of Subchains

Listing 4.17: Searching for a low degeneration zone without subchains
(py3.us/7)

1 ProtSeq = raw_input("Protein sequence: ").upper()
2 ProtDeg = {"A":4,"C":2,"D":2,"E":2,"F":2,"G":4,"H":2,
3 "I":3,"K":2,"L":6,"M":1,"N":2,"P":4,"Q":2,
4 "R":6,"S":6,"T":4,"V":4,"W":1,"Y":2}
5 SegsValues=[]; i=0
6 while len(ProtSeq[i:i+15])==15:
7 degen = 0
8 for x in ProtSeq[i:i+15]:
9 degen += ProtDeg.get(x,3.05)

10 SegsValues.append(degen); i += 1
11 print ProtSeq[SegsValues.index(min(SegsValues)):
12 SegsValues.index(min(SegsValues))+15]

Code explanation: In this version, there is no list with all subchains
SegsSeqs and the variable that stored each evaluated segment segment. Since
there is no subchain list, the answer is evaluated using subindexes in ProtSeq.

© 2010 by Taylor and Francis Group, LLC

84 Python for Bioinformatics

Code 4.17 uses a list (SegsValues) to store the degeneration values of all
possible subchains. This is better than previous code since it doesn’t store
every possible subchain, but still is storing a list with a size proportional to
the input sequence. This can be avoided:

Listing 4.18: Searching for a low degeneration zone without subchains
(py3.us/8)

1 ProtSeq = raw_input("Protein sequence: ").upper()
2 ProtDeg = {"A":4,"C":2,"D":2,"E":2,"F":2,"G":4,"H":2,
3 "I":3,"K":2,"L":6,"M":1,"N":2,"P":4,"Q":2,
4 "R":6,"S":6,"T":4,"V":4,"W":1,"Y":2}
5 degen_tmp = max(ProtDeg.values())*15
6 for n in range(len(ProtSeq)-15):
7 degen = 0
8 for x in ProtSeq[n:n+15]:
9 degen += ProtDeg.get(x,3.05)

10 if degen <= degen_tmp:
11 degen_tmp = degen
12 seq = ProtSeq[n:n+15]
13 print seq

Code explanation: In this case every degeneration value is compared with
the last one (line 10), and if the current value is lower, it is stored. Note that
the first time a degeneration value is evaluated, there is no value to compare
it with. This problem is sorted in line 5 where a maximun theoretical value
is provided.

The next program is the Python 3 version of code 4.18:

Listing 4.19: Searching for a low degeneration zone without subchains
(py3.us/9)

1 ProtSeq = input("Protein sequence: ").upper()
2 ProtDeg = {"A":4,"C":2,"D":2,"E":2,"F":2,"G":4,"H":2,
3 "I":3,"K":2,"L":6,"M":1,"N":2,"P":4,"Q":2,
4 "R":6,"S":6,"T":4,"V":4,"W":1,"Y":2}
5 degen_tmp = max(ProtDeg.values())*15
6 for n in range(len(ProtSeq)-15):
7 degen = 0
8 for x in ProtSeq[n:n+15]:
9 degen += ProtDeg.get(x,3.05)

10 if degen <= degen_tmp:
11 degen_tmp = degen
12 seq = ProtSeq[n:n+15]
13 print(seq)

© 2010 by Taylor and Francis Group, LLC

Programming: Flow Control 85

Code explanation: There are only two differences, with respect to 4.18,
line 1 and 13. Note that input fit the role raw input in Python 2.x, while
print is a function.

4.6 Additional Resources

• “Python Tutorial: More Control Flow Tools.”
http://www.python.org/doc/2.5.2/tut/node6.html

• “Python Programming: Flow control.”
http://en.wikibooks.org/wiki/Python_Programming/Flow_control

• “Python in a Nutshell, Second Edition.” By Alex Martelli. Chapter 4.
Excerpt at http://www.devshed.com/c/a/Python/The-Python-Language.

• “Beginning Python: Controlling the Flow.” By Al Lukaszewski, About.com.
http://python.about.com/od/tutorial1/ss/begpyctrl.htm

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://en.wikibooks.org
http://www.devshed.com
http://python.about.com
http://python.about.com
http://www.devshed.com
http://en.wikibooks.org
http://www.python.org

86 Python for Bioinformatics

4.7 Self-Evaluation

1. What is a control structure?

2. How many control structures has Python? Name them.

3. When would you use for and when would you use while?

4. Some languages have a do while control structure. How can you get a
similiar function in Python?

5. Explain when you would use pass and when you would use break.

6. In line 6 of listing 4.17, the condition under the while can be changed
from len(ProtSeq[i : i + 15]) == 15 to i < (len(ProtSeq)− 7). Why?

7. Make a program that outputs all possible IP addresses, that is, from
0.0.0.0 to 255.255.255.255.

8. Make a program to solve a linear equation with two variables. The
equation must have this form:

a1.x + a2.y = a3

b1.x + b2.y = b3

The program must ask for a1, a2, a3, b1, b2, and b3 and return the value
of x and y.

9. Make a program to check if a given number is a palindrome (that is, it
remains the same when its digits are reversed, like 404).

10. Make a program to convert temperature Fahrenheit to Celsius and write
the result with only one decimal value. Use this formula to make the
conversion: Tc = (5/9) ∗ (Tf − 32)

11. Make a program that converts everything you type into Leetspeak, using
the following equivalence: 0 for O, 1 for I (or L), 2 for Z (or R), 3 for E,
4 for A, 5 for S, 6 for G (or B), 7 for T (or L), 8 for B and 9 for P (or
G and Q). So “Hello world!” is rendered as “H3770 w02ld!”

12. Given two words, the program must determine if they rhyme or not. For
this question “rhyme” means that the last three letters are the same,
like wizard and lizard.

13. Given a protein sequence in the one letter code, calculate the percentage
of methionine (M) and cysteine (C). For example from MFKFASAVILC-
LVAASSTQA the result must be 10% (1 M and 1 C over 20 amino acids).

14. Make a program like 4.18 but without using a predefined maximun value.

© 2010 by Taylor and Francis Group, LLC

Chapter 5

Dealing with Files

Saving the program output to a file is important for archival purposes. It is
also useful to ensure reproducibility of your program. Having a copy of your
program output always comes in handy. Reading a previously saved file is a
must-have feature on almost every computer program.

This chapter shows how to read and write any text file. For the purposes of
this book, “reading a text file” is the process of entering the data from a file
into a program. The process of understanding the meaning of the data units
in the program is called parsing. A simple example will clarify this:

A file can have four data units in a line like this:

1,Joe,Doe,1976

When this line is read, Python sees it as one string. So there is a need
to take an extra step for the program to recognize each of the four data on
it. This step is the parsing. The parsing step depend on the format of the
data, so there is no universal method for text parsing. This chapter covers
how to parse data separated by a special character such as a comma or the
tab character.1

5.1 Reading Files

Reading a file is a three step process in Python:

1. Open the file: There is a built-in function called open, that creates
a filehandle. This filehandle is used to refer to the file during all the
file lifetime. The open function takes two parameters: Name of the
file and opening mode. The file name is a string with the file name, in
most cases including system path. When the system path is included,
this absolute path is used by the program. In case you enter just the
file name (without any path), a relative path is assumed.2 The second

1These kinds of file are often called CSV files and they are covered on page 92.
2Use os.getcwd() in case you need to know the current path.

87

© 2010 by Taylor and Francis Group, LLC

88 Python for Bioinformatics

parameter has the following valid parameters: “r” to read, “w” to write
and “a” to append data at the end of a file. The default value is “r”. If
you want to open a file for both read and write, use “r+”.

Using open,

Create a file handle to read a file:

>>> fh=open(’/home/sb/Readme.txt’)
>>> fh
<open file ’/home/sb/Readme.txt’, mode ’r’ at 0xb7d41380>

As you see, fh is not the file, but a reference to it. Since reading
mode is the default option, it was omitted.

2. Read the file: Once the file is opened, we can read it contents. There
are several ways to read a file, here are the most used:

read(n) : Reads n bytes from the file. Without parameters, it reads
the whole file.3

readline() : Returns a string with only one line from the file, including
’\n’ as an end of line marker. When it reaches the end of the file,
it returns an empty string.

readlines() : Returns a list where each element is a string with a line
from the file.

3. Close the file. Once we are done with the file, we close it by using:
filehandle.close(). If we don’t close it, Python will do it after program
execution. However it is considered a good programming practice to
close it in an explicit way.

5.1.1 Example of File Handling

Let’s suppose we have a file called seqA.fas that contains:4

>O00626|HUMAN Small inducible cytokine A22.
MARLQTALLVVLVLLAVALQATEAGPYGANMEDSVCCRDYVRYRLPLRVVKHFYWTSDS<=
CPRPGVVLLTFRDKEICADPR
VPWVKMILNKLSQ

3Due to the amount of memory it could take, it is not advisable to read the whole file in
this way, unless you are sure of the file size. To process big files, there are better strategies
like reading one line at a time.
4It is a FASTA file with one entry, the first line have a > followed by sequence name
and description. The following lines has the sequence (DNA or amino acids). For more
information on FASTA files, please see http://www.ncbi.nlm.nih.gov/BLAST/fasta.shtml.

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

Dealing with Files 89

From this file we need the name and the sequence. A first approach is to
read the file with read():

>>> fh=open(’/home/sb/bioinfo/seqA.fas’)
>>> fh.read()
’>O00626|HUMAN Small inducible cytokineA22.\nMARLQTALLVVLVL<=
LAVALQATEAGPYGANMEDSVCCRDYVRYRLPLRVVKHFYWTSDSCPRPGVVLLTFRDK<=
EICADPR\nVPWVKMILNKLSQ\n’

In this case my goal is to have two variables, one with the sequence name
and the other with the sequence itself. In code 5.1 we can see a way to do it
using read():

Listing 5.1: FastaRead.py: First try to read a FASTA file

1 fh = open(’/home/sb/bioinfo/seqA.fas’)
2 myfile = fh.read() #myfile is a string
3 name = myfile.split(’\n’)[0][1:]
4 sequence = ’’.join(myfile.split(’\n’)[1:])
5 print("The name is: %s"%name)
6 print("The sequence is: %s"%sequence)
7 fh.close()

The first line opens the file in read mode and creates a file handle that we
call fh. On line two, the whole file is read with read() and the resulting
string is stored in system memory with the name myfile. The next step is
to separate the names from the sequences. Since the name is after the “>”
symbol and before the ’\n’, this information can be used to get the data we
want (line 3). The sequence is obtained by joining the elements resulting of
spliting myfile string, but without the first element.

The problem with this code is that it uses the read() function to read
the file at once. This is a potential problem if there is not enough memory
available to accommodate the file’s contents. This is why it is better to use
readline() (unless you know that you can handle the size of the file):

Listing 5.2: Read a FASTA file using readline()

1 fh = open(’/home/sb/seqA.fas’)
2 FirstLine = fh.readline()
3 name = FirstLine[1:-1]
4 sequence = ""
5 while True:
6 line = fh.readline()
7 if line=="":
8 break
9 sequence += line.replace(’\n’,’’)

© 2010 by Taylor and Francis Group, LLC

90 Python for Bioinformatics

10 print("The name is: %s"%name)
11 print("The sequence is: %s"%sequence)
12 fh.close()

Code explanation: The first line is identical to the first line of the pre-
vious code listing (code 5.1). In the second line we use readline() function
to read the first line of the FASTA file. From this line we take the substring
between the “>” and the first ’\n’ (line 3). In this case we don’t need to use
the index function to search for the ’\n’ character because we know it is at
the end of the line, returned by readline(). From line 5 to 9, there is a loop
to execute the readline() function, several times to finish reading the file.
The exit condition is line=="" that is returned at the end of the file.

Although this version is more efficient than code 5.1, it could be rewriten
to make it easier to read:

Listing 5.3: FastaRead.py: Reads FASTA file, sequentially

1 fh = open(’/home/sb/seqA.fas’)
2 name = fh.readline()[1:-1]
3 sequence = ""
4 for line in fh:
5 sequence += line.replace(’\n’,’’)
6 print "The name is: %s"%name
7 print "The sequence is: %s"%sequence
8 fh.close()

Code explanation: The FistLine variable that was present in listing
5.2 is omitted and the result of fh.readline()[1:-1] is called name. The
formula for x in filehandle (line 4) is the clearest and most efficient way to
iterate through all the lines of a file. At this point we may add to our protein
net charge calculation program (code listing 4.14) the ability to use as input
data, a FASTA format sequence, instead of entering it manually.

Listing 5.4: Calculate the net charge, reading the input from a file

1 fh = open(’/home/sb/prot.fas’)
2 fh.readline()
3 sequence = ""
4 for line in fh:
5 sequence += line[:-1].upper()
6 charge = -0.002
7 AACharge = {"C":-.045,"D":-.999,"E":-.998,"H":.091,
8 "K":1,"R":1,"Y":-.001}
9 for aa in sequence:

10 charge += AACharge.get(aa,0)
11 print charge
12 fh.close()

© 2010 by Taylor and Francis Group, LLC

Dealing with Files 91

Code explanation: The code is essentially the same as that in listing
4.14, with the difference that the first 5 lines are similar to those of listing 5.3
and are used to fill the sequence variable with the string that is read from the
FASTA file. The only difference is on line 2, where the first line of the file is
read as input, but not stored in any variable.

5.2 Writing Files

Writing a file is very similar to reading it. The steps 1 and 3 are similar.
The change is at the second state. Let’s have a look at the entire process
anyway:

1. Open the file. It is similar to opening a file for reading, only that it
is necessary to take into consideration the use of the open mode that
corresponds to the operation that we are going to do. To create a new
file, use “w” as the open mode. To append data to the end of the file,
use “a.”

Creating a file handle for a new file:

>>> fh=open(’/home/sb/newfile.txt’,’w’)
>>> fh
<open file ’/home/sb/newfile.txt’, mode ’w’ at 0xb7d413c8>

Creating a new file handle to append information to a file:

>>> fh=open(’/home/sb/error.log’,’a’)
>>> fh
<open file ’/home/sb/error.log’, mode ’a’ at 0xb7d41380>

2. Write data to the file. The method to write data to a file is called
write. It accepts as a parameter a string, which will be written to the
file represented by the filehandle on which the function will be applied.
Schematically: filehandle.write(string). Take into consideration that
write does not add line feeds, for which they must be added as needed.

3. Close the file, the same way as done previously: filehandle.close().

5.2.1 File Reading and Writing Examples

The code that follows will save to a file the numbers from 1 to 5, each one on
a separate line. Between each number the respective line feeds are indicated.

© 2010 by Taylor and Francis Group, LLC

92 Python for Bioinformatics

Listing 5.5: Newfile.py: Write to a file.

1 fh=open(’/home/sb/numbers.txt’,’w’)
2 fh.write("1\n2\n3\n4\n5")
3 fh.close()

Program in listing 5.4 can be modified to write the result to a file, instead
of displaying it on the screen:

Listing 5.6: Net charge calculation, saving results into a file (py3.us/10)

1 fh = open(’prot.fas’)
2 fh.readline()
3 sequence = ""
4 for line in fh:
5 sequence += line[:-1].upper()
6 fh.close()
7 charge = -0.002
8 AACharge={"C":-.045,"D":-.999,"E":-.998,"H":.091,
9 "K":1,"R":1,"Y":-.001}

10 for aa in sequence:
11 charge += AACharge.get(aa,0)
12 fhout = open(’out.txt’,’w’)
13 fhout.write(str(charge))
14 fhout.close()

Code explanation: The code is similar to listing 5.4, with the addition
of the functionality on the three final lines to write the result to the file.

5.3 A Special Kind of File: CSV

While doing data processing work, it’s very common to encounter a file
type called CSV. CSV stands for “Comma Separated Values”. These are files
where the data are separated by commas, although sometimes other separators
are used (such as colons, tabs, etc.). Another feature of this text file format
in particular is that each line represents a separate record. All spreadsheets
can be read and write this file format which helps to explain their popularity.
Take, for example, the following file:

MarkerID,LenAmpForSeq,MotifAmpForSeq
TKO001,119,AG(12)
TKO002,255,TC(16)
TKO003,121,AG(5)

© 2010 by Taylor and Francis Group, LLC

Dealing with Files 93

TKO004,220,AG(9)
TKO005,238,TC(17)

The line contains a description of each field. Like the information it stores,
the descriptions are also separated by commas. The following lines contain
the data, following the same order of the description. To get the average of
the value in the second column, we can do something like this:

Listing 5.7: Reading data from a CSV file (py3.us/11)

1 tlen = 0; n = 0
2 fh = open(’B1.csv’)
3 fh.readline()
4 for line in fh:
5 data = line.split(",")
6 tlen += int(data[1])
7 n += 1
8 print(tlen/float(n))
9 fh.close()

Code explanation: Is a program that walks through a file, like code 5.6,
but this time the method split() is used to split components of each line. In
line 6 the sum of the second field is stored (this field has the length of the
sequence).

These files are so extended that Python has a module to deal with them:
csv.

Listing 5.8: Reading data from a CSV file, using csv module (py3.us/12)

1 import csv
2 tlen=0;n=0
3 lines = csv.reader(open(’/home/sb/B1.csv’))
4 lines.next()
5 for line in lines:
6 tlen += int(line[1])
7 n += 1
8 print tlen/float(n)

Code explanation: This program is very similar to the previous one with
the difference being the use of the csv module allows us access to the contents
of each line without having to use the split method. The csv module has other
advantages that we will see further in the text but for now let’s analyze the
program. Line 4 is equivalent to line 3 of the previous listing, it is used to
skip the first line, where the header/descriptions are located. On line 5, the
object returned by the csv module is traversed, instead of traversing the file
directly as was done in the previous listing.

© 2010 by Taylor and Francis Group, LLC

94 Python for Bioinformatics

One way of using the csv module is to convert the object returned by the
reader method to a list. Doing this, we generate something similar to a matrix
from a csv file, with one line of code:

>>> data = list(csv.reader(open(’B1.csv’)))
>>> data[0][2]
’MotifAmpForSeq’
>>> data[1][1]
’119’
>>> data[1][2]
’AG(12)’
>>> data[3][0]
’TKO003’

This way we have a two-dimensional array of the type name[row, column].
Taking this into consideration we can rewrite the program from listing 5.8:

Listing 5.9: Reading a CSV file using the csv module

1 import csv
2 tlen = 0
3 data = list(csv.reader(open(’B1.csv’)))
4 for x in range(1,len(data)):
5 tlen += int(data[x][1])
6 print float(tlen)/(len(data)-1)

Code explanation: This code is similar to listing 5.8, with a few differ-
ences. On line 4 the data is stored as a list in data, for which the for loop
traverses only the part of the data that interests us.

5.3.1 More Functions from the CSV Module

The field delimiter is changed with the delimiter attribute. By default it
is “,”, but any string can be used to delimit the fields:

rows = csv.reader(open("passwd"), delimiter=’:’)

For some files it is better to specify what is the CSV “dialect” that we are
interested in. This is important because not all csv files are the same. There
may be subtle differences that may spoil our data processing. In some cases
the data is enclosed between quotations, in others the quotations are reserved
for text data only. These are just a few of the possible variations. For the csv
files generated by Excel, we have the Excel “dialect”:

rows = csv.reader(open("data.csv"), dialect=’excel’)

© 2010 by Taylor and Francis Group, LLC

Dealing with Files 95

FIGURE 5.1: Excel formatted spreadsheet called sampledata.xls.

Additionally there is a diaclect for Excel csv files that use a “tab” instead of
the comma to separate data. If we aren’t sure of the dialect that our code will
have to handle, the csv module has a class that tries to guess it: Sniffer():

dialect = csv.Sniffer().sniff(open(’data.csv’).read())
rows = csv.reader(open("data.csv"), dialect=dialect)

The csv module provides some more functions, but I stop here because this
is enough to deal with most type of CSV files. For other uses, I recommend
the module documentation were you will see more information.

Tip: Reading and Writing Excel Files.
The csv module allows to read files, provided that the file is converted first

to csv. This step can be avoided with the xlrd module. This module has to
be downloaded from http://www.lexicon.net/sjmachin/xlrd.htm.

Listing 5.10 retrieves data from an Excel file called sampledata.xls (see
Figure 5.1). We want to make a dictionary (iedb) out of column B (keys)
and Column C (values), so this program walks over both columns and fills the
dictionary:

Listing 5.10: Reading an XLS file with xlrd (py3.us/13)

1 import xlrd
2 iedb = {} # Empty dictionary
3 book = xlrd.open_workbook(’sampledata.xls’)
4 sh = book.sheet_by_index(0)
5 for i in range(1,sh.nrows): #skips fist line.
6 iedb[sh.cell_value(rowx=i, colx=1)] = \
7 sh.cell_value(rowx=i, colx=2)

To write Excel files, there are two modules: pyExcelerator and xlwt.
Code 5.11 writes list1 and list2 in column A and B using xlwt.

© 2010 by Taylor and Francis Group, LLC

http://www.lexicon.net
http://www.lexicon.net

96 Python for Bioinformatics

Listing 5.11:Write an XLS file with xlwt (py3.us/14)

1 import xlwt
2 list1 = [1,2,3,4,5]
3 list2 = [234,267,281,301,331]
4 wb = xlwt.Workbook()
5 ws = wb.add_sheet(’First sheet’)
6 ws.write(0,0,’Column A’)
7 ws.write(0,1,’Column B’)
8 i = 1
9 for x,y in zip(list1,list2): #Walk two list at the same time.

10 ws.write(i,0,x) # Row, Column, Data.
11 ws.write(i,1,y)
12 i += 1
13 wb.save(’mynewfile.xls’)

For sample usage of pyExcelerator, see code 18.2 on page 336.

5.4 Pickle: Storing the Contents of Variables

All variables created during the lifetime of a program are temporarily stored
in memory and they disappear when you turn off the computer. Python
provides a module to store and retrieve the contents of these variables: Pickle5

(and its C version, cPickle).
Suppose that a program generates a dictionary (SPdict) and we want it

to be available from another program (or from the same program in another
run). For this, we first need to save its contents into a file (spdict.data):

>> import cPickle
>> fh = open("spdict.data", ’w’)
>> cPickle.dump(SPdict, fh)
>> fh.close()

With this command the file handle (fh) was created and then the variable
SPdict was saved to the file referenced by this handle. The function that
saves the variable is called dump and accepts three parameters: The object
to save, filehandle of the file where it will be saved and an optional protocol.

5Pickle has other features than those described in this book; in order to have a more exten-
sive view of what pickle has to offer, see http://docs.python.org/lib/module-pickle.

html.

© 2010 by Taylor and Francis Group, LLC

http://docs.python.org
http://docs.python.org

Dealing with Files 97

The protocol is a code that represents the way in which the information will
be encoded. If no protocol is specified, it is assumed to be 0 which is the
original ASCII protocol. This has the advantage that it can be read without
any special program, although it is slower than the binary protocols (1 and
2). The higher the protocol number, the faster it is. Although it is necessary
to take into consideration that the reader for these types of objects (load)
can read the same protocol with which it was saved or an earlier version.

Retrieving a Stored Object

The load method requires the filehandle of the object we want to pick up:

>> fh = open("spdict.data")
>> SPdict = cPickle.load(fh)
>> fh.close()

New in Python 3.0: New Behavior for Pickle
pickle and cPickle modules are consolidated as pickle. From Python 3.0, there
is no cPickle module since the interpreter uses automatically an optimized C
implementation of Pickle when available. Otherwise the pure Python imple-
mentation is used.

There is a new protocol (version 3) that has explicit support for bytes and
cannot be unpickled by Python 2.x pickle modules.

5.5 File Handling: os Module

There are more actions with files apart from reading and writing. Python
os module allows us to do with the files the same operations that are available
from the operating system. Copy, move, delete, list, change directory, set file
properties, and so on.

Let’s see some important functions on file handling:
getcwd(): Return a string representing the current working directory.

>>> import os
>>> os.getcwd()
’/home/sb’

chdir(path): Change the current working directory to path.

>>> os.getcwd()

© 2010 by Taylor and Francis Group, LLC

98 Python for Bioinformatics

’/home/sb’
>>> os.chdir(’..’)
>>> os.getcwd()
’/home’

listdir(dir): Return a list containing the names of the entries in the di-
rectory. To know if a name returned from listdir is a file or a directory, use
other either os.path.isdir() or os.path.isfile().

>>> os.listdir(’/home/sb/bioinfo/seqs’)
[’ms122.ab1’,’readme.txt’,’ms115.ab1’,’ms123.ab1’]

path.isfile(string) and path.isdir(string): Check if the string passed as
argument is a file or a directory. Returns True or False.

>>> os.path.isfile(’/home/sb’)
False
>>> os.path.isdir(’/home/sb’)
True

remove(file): Remove a file. The file should exist and you should have
write permission on it.

>>> os.remove(’/home/sb/bioinfo/seqs/ms115.ab1’)

rename(source, destination): Rename the file or directory source to
destination.

>>> os.rename(’/home/sb/seqs/readme.txt’,’/home/sb/Readme’)

mkdir(path): Create a directory named path.

>>> os.mkdir(’/home/sb/processed-seqs’)

path.join(directory1,directory2,...): Join two or more pathname com-
ponents, inserting the operating system path separator as needed. In Windows
it will add ”\”, while in Linux and OSX it will insert ”/”. path.join will not
try the check if the created path is valid.

>>> os.path.join(os.getcwd(), "images")
’/home/images’

path.exists(path): Checks if given path exists.

>>> os.path.exists(os.path.join(os.getcwd(), "images"))
False

path.split(path): Returns a tuple splitting the file or directory name at
the end and the rest of the path.

© 2010 by Taylor and Francis Group, LLC

Dealing with Files 99

>>> os.path.split(’/home/sb/seqs/ms2333.ab1’)
(’/home/sb/seqs’, ’ms2333.ab1’)

path.splitext(path): Splits out the extension of a file. It returns a tuple
with the dotted extension and the original parameter up to the dot.

>>> os.path.splitext(’/home/sb/seqs/ms2333.ab1’)
(’/home/sb/seqs/ms2333’, ’.ab1’)

Tip: The shutil Module.

Some functions related to file handle are in another module: shutil.
The most important functions are copy, copy2 and copytree.
copy(source,destination): Copy the file source to destination.
copy2(source,destination): Copies also the last access time and last modifi-

cation (like the Unix command cp -p).
copytree(source,destination): Recursively copy an entire directory tree from

source directory to a destination directory that must not already exist.
For more information on shutil, see the documentation on http://docs.

python.org/lib/module-shutil.html (or with help(shutil) on the Python
shell).

5.5.1 Consolidate Multiple DNA or Protein Sequences into
One FASTA File

The following program asumes that we have a directory with several se-
quences in FASTA format we want to consolidate them in a single FASTA
file. This file can be used for example as an input file for a BLAST run.

Listing 5.12: Consolidating several files in one (py3.us/15)

1 import os
2 mypath = ’/home/sb/bioinfo/test/’
3 pathout = ’out.fas’
4 fout = open(pathout,"w")
5 for x in os.listdir(mypath):
6 fh = open(os.path.join(mypath,x))
7 data = fh.read()
8 fh.close()
9 fout.write(data)

10 fout.close()

Code explanation: The program retrieves the list of files in the directory
mypath (defined in line 2) and walks over each file, reading its contents (line

© 2010 by Taylor and Francis Group, LLC

http://docs.python.org
http://docs.python.org
http://docs.python.org
http://docs.python.org

100 Python for Bioinformatics

7). In line 9 the content of the file is written to the output filehandle. The
last line closes the output filehandle and the data is actually writen to the
disk.

5.5.2 Estimating Net Charge of Several Proteins

This program calculates the net charge from a group of FASTA files. It
scans a directory, checks for the file extension (the program assumes that
FASTA files has .fas as extension) and calculates the net charge. The result
of each calculation is written to a file, as one line for FASTA file.

Listing 5.13: Get net charge value from several files (py3.us/16)

1 import os
2 mypath=’/home/sb/bioinfo/test/’
3 AACharge = {"C":-.045,"D":-.999,"E":-.998,
4 "H":.091,"K":1,"R":1,"Y":-.001}
5 for x in os.listdir(mypath):
6 if os.path.splitext(x)[1]==’.fas’:
7 fh = open(os.path.join(mypath,x),’U’)
8 name = fh.readline()[1:-1]
9 seq = ""

10 for line in fh:
11 seq = seq + line[:-1].upper()
12 fh.close()
13 charge = -0.002
14 for aa in seq:
15 charge += AACharge.get(aa,0)
16 fh = open(os.path.join(mypath,’netvalues.txt’),’a’)
17 fh.write("%s,%s\n"%(name,charge))
18 fh.close()

Code explanation: On line 5 a for loop begins that iterates through all
the files returned by os.listdir. It checks that the file extension is “.fas” (line
6) as we want to perform the calculation of the net charge only on these file
types. In this case, the os.path.splitext() function is used, which separates
a filename in two parts: filename and extension. An alternative could have
been to use x.endswith(”fas”). On line 8 we obtain the name that we will
use to identify the sequence. Take note that the first character is removed
(which is the “>” symbol in FASTA files) and the last character (which is
the end of line character). From 9 to 15, the program is similar to listing 5.4.
From 16 to 18 the output file is written, using the mode “append” in order
to add a line to the final file for each processed FASTA file.

© 2010 by Taylor and Francis Group, LLC

Dealing with Files 101

5.6 With: An Alternative Way to Open Files

From version 2.6, Python provides a new tool that can be used to open files
securely:6 with.

with is a statement that takes this form:

with EXPRESSION as VARIABLE:
BLOCK

When this statement is executed, EXPRESSION is evaluated. A special
method (enter) of the object returned by EXPRESSION is called. What-
ever is returned by enter is called as VARIABLE. The code in BLOCK
will be executed. When is it finished (by extanaution of the block or by an
error), a method called exit is called. This method can handle exceptions,
so if there is an error inside BLOCK, the programmer is assured that a specific
code will be executed. This code could be used to close an open resource.

In the case of the file object, it has both enter and exit methods.
enter returns the file object itself, and exit closes the file. If an error

occurs that causes the program to terminate before closing an open file, the
data will be lost and the file will not be accessible from other applications.
With with we can be sure that whatever happens with the code in BLOCK
the file will be closed.

Let’s look at code listing 5.13 using with:

Listing 5.14: Similar to code 5.13 with the use of with (py3.us/17)

1 from __future__ import with_statement
2 import os, glob
3 mypath = ’/home/sb/bioinfo/test/’
4 AACharge = {"C":-.045,"D":-.999,"E":-.998,
5 "H":.091,"K":1,"R":1,"Y":-.001}
6 for x in glob.glob(mypath+’*.fas’):
7 with open(x,’U’) as fh:
8 name = fh.readline()[1:-1]
9 seq = ""

10 for line in fh:
11 seq += line[:-1].upper()
12 charge = -0.002
13 for aa in seq:
14 charge += AACharge.get(aa,0)
15 with open(os.path.join(mypath,’netvalue.txt’),’a’) as fh:

6In Python 2.5 with is available by importing it from “the future”: from future import

with.

© 2010 by Taylor and Francis Group, LLC

102 Python for Bioinformatics

16 fh.write("%s,%s\n"%(name,charge))

Code explanation: This program is similar to 5.13. The most important
changes are in line 8 and 16. In line 9 is where the file is opened using with.
Note that with is imported in line 1, this is required in Python 2.5 since with
is available directly only from Python 2.6. Another difference is the use of
glob.glob. It finds all the pathnames matching a specified pattern.

This topic was included in this chapter because with can be used with
file objects. Of course, the use of with is not limited to opening files, but
for any objects that support the previously mentioned methods. We will not
elaborate further on its use because to be able to take full advantage, it is
necessary to have knowledge of object creation and error handling. For more
information about with check the links in Additional Resources.

5.7 Additional Resources

• File and Directory Access
http://docs.python.org/library/filesys.html

• Generate temporary files and directories
http://docs.python.org/library/tempfile.html

• CSV File API
http://www.python.org/dev/peps/pep-0305/

• Working with Excel Files in Python
http://www.python-excel.org

• The “with” Statement
http://www.python.org/dev/peps/pep-0343/

© 2010 by Taylor and Francis Group, LLC

http://docs.python.org
http://docs.python.org
http://www.python.org
http://www.python-excel.org
http://www.python.org
http://www.python.org
http://www.python-excel.org
http://www.python.org
http://docs.python.org
http://docs.python.org

Dealing with Files 103

5.8 Self-Evaluation

1. What is the difference between “w” and “a” modes if both allow to write
files?

2. Why all files that are not longer in use must be closed?

3. Program 5.9 estimates the average in line 6. Instead of dividing over
the total number of rows, it does on the total less one. Why?

4. Make a program that asks a name, and then write it to a file called
MyName.txt.

5. Is it possible to parse csv files without csv module? If so, how it is done?

6. Why it is not recommended to read a file using read()?

7. What is the most efficient way to walk through a file line by line?

8. What is the difference between Pickle and cPickle in Python 2.x? Why
there is no cPickle in Python 3?

9. Make a program to detect in a text which lines have two consecutive
identical words. To detect typos like “the the.”

10. Make a program that reads all the numbers from the second column of
an Excel file and prints the average of these values.

© 2010 by Taylor and Francis Group, LLC

Chapter 6

Code Modularizing

With what we have seen so far we have an interesting portfolio of resources
for Python programming. We can read files, do some data processing and
store its results. Although programs made so far are very short, it is easy to
imagine that they could grow up to a size that it may be difficult to manage.

There are several resources that can used to modularize source code in a
way that we may end up with a small program that calls pre-made code blocks
(also called routines in other computer languages). This approach favors code
re-usability and readability. Both features also help maintenance, since you
have to debug only one code implementation, regardless of how many times
this code is used. As an additional advantage, it helps to improve performance,
since any optimization on a modularized code benefits all the code that calls
it.

For some authors, code modularizing is “The Greatest Invention in Com-
puter Science,”1 I don’t know if this is the “greatest invention” or not, but
sure it is a fundamental concept that you can’t live without if you plan to do
any serious programming.

Python provides several ways to modularize the source code: Functions,
modules, packages and classes. This chapter covers all of them, with the
exception of objects, that have their own chapter.

6.1 Functions

6.1.1 Standard Way to Modularize Python Code

Functions are the most used way to modularize code. A function takes
values (called arguments or parameters), executes some operation based on
those values and it returns a value. We have already seen several Python
built-in function.2 For example range(), first mentioned on page 77, it takes

1Read the Steve McConnell column at http://www.stevemcconnell.com/ieeesoftware/

bp16.htm.
2A list of all available functions in Python are available at: http://docs.python.org/lib/
built-in-funcs.html.

105

© 2010 by Taylor and Francis Group, LLC

http://www.stevemcconnell.com
http://docs.python.org
http://www.stevemcconnell.com
http://docs.python.org
http://docs.python.org
http://www.stevemcconnell.com
http://docs.python.org
http://www.stevemcconnell.com

106 Python for Bioinformatics

a number as parameter and returns a list:

>>> range(5)
[0, 1, 2, 3, 4]

Let’s see how to make our own functions. The general syntax of a function
is:

def FunctionName(argument1, argument2, ...):
""" Optional Function description (Docstring) """
... FUNCTION CODE ...
return DATA

The code in listing 4.14 can be rewritten as a function:

Listing 6.1: Function to calculate the net charge of a protein

1 def protcharge(AAseq):
2 """ Returns the net charge of a protein sequence """
3 protseq = AAseq.upper()
4 charge = -0.002
5 AACharge = {"C":-.045,"D":-.999,"E":-.998,"H":.091,
6 "K":1,"R":1,"Y":-.001}
7 for aa in protseq:
8 charge += AACharge.get(aa,0)
9 return charge

To “use” the function, it must be called with the parameter:

>>> protcharge("QTALLVVLVLLAVALQATEAGPYGA")
-1.001
>>> print protcharge("EEARGPLRGKGDQKSAVSQKPRSRGILH")
4.094

If we forget to pass the parameter, or if we pass an incorrect number of
parameters, we get an error:

>>> protcharge()

Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>

protcharge()
TypeError: protcharge() takes exactly 1 argument (0 given)

In this example, the function returns a number (of float type). If we want
that it returns more than one value, we can make it return a list or a tuple.3.

3It makes more sense to return a tuple instead of a list since for a given function there is a
fixed number of parameters returned.

© 2010 by Taylor and Francis Group, LLC

Code Modularizing 107

The function protcharge (coded in listing 6.1) could be modified to return,
besides the net charge, the proportion of charged amino acids:

Listing 6.2: Function to calculate two parameters (py3.us/18)

1 def chargeandprop(AAseq):
2 """ Returns the net charge of a protein sequence
3 and proportion of charged amino acids
4 """
5 protseq = AAseq.upper()
6 charge = -0.002
7 cp = 0
8 AACharge={"C":-.045,"D":-.999,"E":-.998,"H":.091,
9 "K":1,"R":1,"Y":-.001}

10 for aa in protseq:
11 charge += AACharge.get(aa,0)
12 if aa in AACharge:
13 cp += 1
14 prop = 100.*cp/len(AAseq)
15 return (charge,prop)

If we call the function with the same parameters of the last example, we
get another result:

>>> chargeandprop("QTALLVVLVLLAVALQATEAGPYGA")
(-1.0009999999999999, 8.0)
>>> chargeandprop("EEARGPLRGKGDQKSAVSQKPRSRGILH")
(4.0940000000000003, 39.285714285714285)

Use subscripts to get only one value:

>>> chargeandprop("QTALLVVLVLLAVALQATEAGPYGA")[0]
-1.0009999999999999
>>> chargeandprop("EEARGPLRGKGDQKSAVSQKPRSRGILH")[1]
39.285714285714285

All function returns something. A function can be used to “do something”
instead of returning a value. In this case the value returned is None. For
example the following function stores the contents of a list into a text file:4

Listing 6.3: Converts a list into a text file

1 def savelist(L,fname):
2 """ A list (L) is saved in a file (fname) """

4For a way to save all kind of Python data structures, see Pickle on page 96.

© 2010 by Taylor and Francis Group, LLC

108 Python for Bioinformatics

3 fh = open(fname,"w")
4 for x in L:
5 fh.write(’%s\n’%x)
6 fh.close()
7 return None

The return None statement is optional. The function will work without
it, but Python coders prefer explicit statements than implicit assumptions.

Note that in Python 3, code 6.3 can be written with the print function:

Listing 6.4: Converts a list into a text file, using print

1 # Works on Python 3.
2 def savelist2(L,fname):
3 """ A list (L) is saved to a file (fname) """
4 fh = open(fname,"w")
5 for x in L:
6 print(x,file=fh)
7 fh.close()
8 return None

The “for loop” in line 5 can be avoided by using a property not seen yet.
Code 6.7 on page 111 shows an alternative whitout the loop.

Function Scope

Variables declared inside a function are valid only inside the function. To
access the contents of a function variable from outside the function, the vari-
able must be returned to the main program by using the return statement.
In the following example, the variable z, defined inside the test function,
is not affected by an assignation of the same variable outside the function.
The same code also shows how an internal variable (x) is accessible only from
inside the function:

>>> def test(x):
... z=10
... print("The value of z is "+str(z))
... return x*2

>>> z=50
>>> test(3)
The value of z is 10
6
>>> z
50
>>> x

© 2010 by Taylor and Francis Group, LLC

Code Modularizing 109

Traceback (most recent call last):
File "<pyshell#27>", line 1, in <module>

x
NameError: name ’x’ is not defined

It can be specified inside a function that a variable is of global type, so
its life won’t be confined to the place it was defined. It is not a good idea to
use global variables, since it can be modified at unexpected places. Another
problem related to global variables is that Python has to keep track of its value
for the entire runtime so it is not memory-efficient. If despite all warnings
against the use of global variables, you still want to use them, here is the way:

>>> def test(x):
... global z
... z = 10
... print("z=%s"%z)
... return x*2
...
>>> z=1
>>> test(4)
z=10
8
>>> z
10

When a variable is referred, Python first searches locally in the scope it was
referred (in a function, module, object), if it is not there, it looks in the upper
level, if it still can’t be located there, it is searched at a global level:

>>> f=1
>>> def test():
... print f
... return None
...
>>> test()
1

6.1.2 Function Parameter Options

Placement of Arguments

Up to this point the arguments were put in the same order as originally
defined. The function savelist can be called this way:
savelist([1,2,3],"temp.txt").
If we try to invert the parameters order (savelist("temp.txt",[1,2,3]))

we get an error message, since this function expects a string as a second

© 2010 by Taylor and Francis Group, LLC

110 Python for Bioinformatics

parameter instead of a list. To call the function with the parameters in a
different order as it was originally defined, the parameter must be named
when calling the function:

>>> savelist(fname="temp.txt",L=[1,2,3,4])

This way the order of parameters is irrelevant.

Arguments with Default Values

Python allows default value in the arguments. It is done by entering the
default value in function definition:

def name(arg1=defaultvalue, arg2=defaultvalue, ...)

For example the function savelist, which saves the contents of a list to a
file, may have a default file name:

Listing 6.5: Function with a default parameter

1 def savelist(L,fname="temp.txt"):
2 """ A list (L) is saved to a file (fname) """
3 fh = open(fname,"w")
4 for x in L:
5 fh.write(str(x)+"\n")
6 fh.close()
7 return None

In this way the function can be called with only one parameter:

mylist = [’MS233’,’MS772’,’MS120’,’MS93’,’MS912’]
>>> savelist(mylist)

Undetermined Numbers of Arguments

Functions can have a variable numbers of arguments if the final parameter
is preceded by a “*”. Any excess arguments will be assigned to the last
parameter as a tuple:

Listing 6.6: Function to calculate the average of values entered as param-
eters

1 def average(*numbers):
2 if len(numbers)==0:
3 return None
4 else:
5 total = sum(numbers)
6 return float(total)/len(numbers)

© 2010 by Taylor and Francis Group, LLC

Code Modularizing 111

In this way the average function can be called with an undetermined num-
ber of arguments:

>>> print(average(2,3,4,3,2))
2.8
>>> print(average(2,3,4,3,2,6,1,9))
3.75

In Python 3, “*” can be used to assign a variable to multiple arguments.5

This property is used here (line 5 in code 6.7) to avoid using a loop for walk
over all elements of L:

Listing 6.7: Converts a list into a text file, using print and *

1 # Works on Python 3.
2 def savelist(L,fname):
3 """ A list (L) is saved to a file (fname) """
4 with open(fname,"w") as fh:
5 print(*L,sep=’\n’,file=fh)
6 return None

Undetermined Number of Keyword Arguments

The functions can also accept an arbitrary number of arguments with key-
words. In this case we use the final parameter preceded by “**” (two aster-
isks). The excess arguments are passed to the function as a dictionary:

Listing 6.8: Function that accepts a variable number of arguments

1 def commandline(name, **parameters):
2 line = ""
3 for parname,parvalue in parameters.iteritems():
4 line = line + " -" + parname + " " + parvalue
5 return name+line

This function can be called with a variable number of keyword parameters:

>>> commandline("formatdb",t="Caseins",i="indata.fas")
’formatdb -i indata.fas -t Caseins’
>>> commandline("formatdb",t="Caseins",i="indata.fas",p="F")
’formatdb -i indata.fas -p F -t Caseins’

5This is explained in detail in PEP-3132 (http://www.python.org/dev/peps/pep-3132).

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org

112 Python for Bioinformatics

Tip: A Word about docstrings.
Functions can have a text string immediately following the function defini-

tion, this line (or lines) is called “docstring”.
These strings are used for online help, automatic documentation generation

systems and for anyone who cares to read the source code. You can write
anything inside a docstring, but there are written guidelines to standardize the
structure of a docstring. Please refer to PEP-257 (http://www.python.org/
dev/peps/pep-0257) for more information on Docstring format conventions.

Not only functions can have docstrings, modules, class and method defini-
tion are expected to have its documentation as the first statement.

6.1.3 Generators

Generators are a special kind of function. Functions perform some action
and the result is returned to the point where it was called. It is like a process
that is executed in batch until completion. If the result of the function is a
big object (like a big list, tuple, set, file, etc.), this could cause problems such
as system instability.

Take for example a function that reads records from a file and returns a
data structure with data from this file. If the file is too big (like several times
the available memory), the resulting data structure may not fit in memory.
If the idea is to process each record, we would need a function that returns a
record at a time. A function can’t do that because it doesn’t keep a state, so
each time it is executed, it has to process all the data again. Generators can
be defined as functions that can keep their internal state. They introduce a
new keyword: yield. When a yield VALUE statement is found, it returns
(or yields) VALUE back to where it was called (as a function) but keeps track
of its internal values, so next time it is called, it resumes operation from where
it was before yielding the value.

Before Python 3, there was range() and xrange() as built-in function.
range() was a function, but xrange() works as a generator:

>>> range(5)
[0, 1, 2, 3, 4]
>>> xrange(5)
xrange(5)

Both allow iteration over the resulting values, but xrange() doesn’t return
a list, but it returns a value each time it is called. Since Python 3, range()
works as a generator and xrange() is deprecated. If you need the old fun-
cionality of range() (that is, a list of numbers), you can apply list() function
over Python 3 range().

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

Code Modularizing 113

Creating a Generator

Code 6.9 has a function (putn()) that returns all prime numbers present
up to a given value. It returns them all together in a list:

Listing 6.9: Function that returns all prime numbers up to a given value
(py3.us/19)

1 def isprime(n):
2 for i in range(2,n-1):
3 if n%i == 0:
4 return False
5 return True
6
7 def putn(n):
8 p = []
9 for i in xrange(1,n):

10 if isprime(i):
11 p.append(i)
12 return p

Function putn() from code 6.9 can be replaced with generator gputn():

Listing 6.10: Generator that replaces putn() in code 6.9. (py3.us/20)

1 def gputn(n):
2 for i in xrange(1,n):
3 if isprime(i):
4 yield i

Note that code 6.10 doesn’t use a list, since there is no need because it yields
one result at a time. Both functions can be used to walk over the results, but
putn() generates a list, while gputn() doesn’t:

for x in putn(1000):
print x

for x in gputn(1000):
print x

6.2 Modules

A module is a file with function definitions, constants or any type of object
that you can use from other module or from your main program. Modules also
provide namespaces, so two functions may be given the same name provided

© 2010 by Taylor and Francis Group, LLC

114 Python for Bioinformatics

that they are defined in different modules. The name of the module is taken
from the name of the file. If the module filename is my module.py, the module
name is my module.

6.2.1 Using Modules

To access contents of a module, use import. Usually import is issued at
the beginning of the program. It is not mandatory to place the imports at the
beginning of the file, but it must be placed before calling any of the elements
of the module. It is customary, however, to place the import statement at
the beginning of the program. There are many ways to use import. The most
used form is by calling a module by its name. To call the built-in module os,
use,

>>> import os

When a module is imported for the first time, its contents are executed. If
the module is imported more than once, the successive imports will not have
any effect. This gives us the assurance that we can put an import statement
inside a function and not worry about if it is called repeatedly.

Once a module is imported, to access a function or a variable, use the name
of the module as a prefix:

>>> os.getcwd()
’/mnt/hda2’
>>> os.sep
’/’

It is also possible to import from a module only a required function. This
way we can call it without having to use the name of the module as a prefix.

>>> from os import getcwd
>>> getcwd()
’/mnt/hda2’

To import all the contents of a module, use the “*” operator (asterisk)

>>> from os import *
>>> getcwd()
’/mnt/hda2’
>>> sep
’/’

Warning: Don’t use the from module import * unless you know what
you are doing. The problem with importing all the elements of the module
is that it may produce conflicts with the names already defined in the main

© 2010 by Taylor and Francis Group, LLC

Code Modularizing 115

program (or defined in other modules and imported the same way). In Python
programming standards, wildcard imports are equivalent to the dark side of
the force. They’re quicker, easier, more seductive but dangerous.

It is also possible to import a module using a different name than it has:

>>> import xml.etree.ElementTree as ET
>>> tree = ET.parse("/home/sb/bioinfo/smallUniprot.xml")

Don’t worry if you don’t know what is xml.etree.ElementTree, we will
look at this in the XML chapter, but from this moment take into account that
this entire name (xml.etree.ElementTree) is called “ET.”

6.2.2 Installing Modules

Python comes with several modules (so called built-in modules). These
modules are installed together with Python so they are ready to use as soon
as you have a working Python interpreter6.

There are also third party modules that extend Python functionality, as
mentioned on page 10. Installation can be as easy as copying a single file to a
specific location up to executing several programs in a predetermined order.
It depends on the complexity of the modules (they range from self contained
in one file to several files spanned in multiple directories that interact with
other programs) and each particular Python installation. So there is no single
way to install every module available to Python.

Copying to PYTHONPATH

This is not the most frequent module installation procedure, but it is men-
tioned first because it is very simple. Just copy the module where Python
seaches for modules. Where does Python search for modules? There are
three places:

• In the same directory where the program that will call the module is
located.

• In the same directory where the Python executable is located. This
directory is different on each operating system.7

• In a directory created especially for our modules. In this case, it must
be specified in the environment variable PYTHONPATH or in the

6Check http://docs.python.org/library/index.html for a complete description of the
Python Standard Library including built-in modules.
7On Windows it is usually found at C:\program files\Python while on Linux it is found
at /usr/bin/python. To find out the path to the Python executable in *nix, use which

python.

© 2010 by Taylor and Francis Group, LLC

http://docs.python.org
http://docs.python.org

116 Python for Bioinformatics

variable sys.path. This final variable lists all the paths where Python
should look for a module. To add a directory to sys.path, modify it as
you would do with any list, using the append method:

>>> import sys
>>> sys.path
[’/home/sb’, ’/usr/local/bin’, ’/usr/local/lib/python2.5’, <=
’/usr/local/lib/python2.5/site-packages’, <=
’/usr/local/lib/python2.5/site-packages/Numeric’]
>>> sys.path.append("/home/sb/MyPyModules")

A module that is installed this way is PathModule.8 This module helps
when dealing with files by adding an interface layer over os, glob and shutil
module. See module documentation (inside the source code) for usage infor-
mation.

Using System Package Management

Some Python modules are installed as any other application. For example
to install NumPy in Windows or MacOSX (a fundamental package needed
for scientific computing with Python), just download the corresponding Win-
dows or MacOSX installer from NumPy webpage9 and install it as any other
application.

Under Linux use the package management software that you normally use
in your distribution (rpm for Red Hat-based system, and apt-get for Debian,
and Ubuntu-based systems).

The advantage of using system package management is that you can keep
track of installed Python modules the same way you keep track of every other
software in your system. Upgrades and uninstallations are easier and with-
out nasty consequences such as orphan files or broken installations. Package
management also has its drawbacks, like a gap between last program version
and the version available in your distro repository. Some modules develop at
a fast pace, sometimes so fast that package managers can’t keep up to date.
For example Ubuntu users who want to install Biopython using apt-get, at
time of writing, are limited to version 1.45 when 1.49 is the last version avail-
able at Biopython website. Another problem is that you need administration
rights to use package management. The last problem involving package man-
agement is that sometimes the required package is not available. For example
Windows users who want to install Biopython 1.49 using provided executable
files are unable to do it since a required package (NumPy for Python 2.6)

8PathModule is available at http://wiki.python.org/moin/PathModule.
9NumPy webpage is located at http://numpy.scipy.org.

© 2010 by Taylor and Francis Group, LLC

http://wiki.python.org
http://numpy.scipy.org
http://numpy.scipy.org
http://wiki.python.org

Code Modularizing 117

is not available. Therefore Windows users who want to use only their pack-
age management system should install Biopython 1.49 under Python 2.5 (or
resign using executable files and do a manual install to get the last version).

Easy Install with easy install

Some modules support an alternative installation method called easy install.
The first step is to install the easy install script, that is part of setup-
tools package. Windows installer is available from setuptools homepage
(http://pypi.python.org/pypi/setuptools) and in Linux it can be in-
stalled from all major distro repositories (with python-setuptools as package
name):

For Debian/Ubuntu:

$ sudo apt-get install python-setuptools

Once installed, Python modules can be installed with:

$ sudo easy_install MODULE_NAME

Where MODULE NAME is the name of the module you want to install.
When you request a module (like MODULE NAME), easy install searches if it
is available in this URL: http://pypi.python.org/simple/MODULE_NAME. If
found, it downloads the last version and installs it. Here is a sample installa-
tion of pyexcelerator, a program to write Excel files:

$ sudo easy_install pyexcelerator
[sudo] password for sb:
Searching for pyexcelerator
Reading http://pypi.python.org/simple/pyexcelerator/
Reading http://sourceforge.net/projects/pyexcelerator/
Reading http://www.sourceforge.net/projects/pyexcelerator
Best match: pyexcelerator 0.6.0a
Downloading http://pypi.python.org/packages/source/p/pyExcelerat<=
or/pyexcelerator-0.6.0a.zip#md5=df116f024919e129487366729e619928
Processing pyexcelerator-0.6.0a.zip
Running pyExcelerator-0.6.0a/setup.py -q bdist_egg --dist-dir <=
/tmp/easy_install-23lOQH/pyExcelerator-0.6.0a/egg-dist-tmp-YR3GKH
zip_safe flag not set; analyzing archive contents...
Adding pyExcelerator 0.6.0a to easy-install.pth file

Installed /usr/lib/python2.5/site-packages/pyExcelerator-0.6.0a-<=
py2.5.egg
Processing dependencies for pyexcelerator
Finished processing dependencies for pyexcelerator

To see what modules are available to install using easy install, see the list
in http://pypi.python.org/simple.

© 2010 by Taylor and Francis Group, LLC

http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://sourceforge.net
http://www.sourceforge.net
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://www.sourceforge.net
http://sourceforge.net
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org

118 Python for Bioinformatics

Easy Install without Administrative Rights

When using easy install with administrative rights, the program is installed
system-wide. This is not a problem if we have such administrative rights and
we are the only user. Both conditions are usually met on personal computers,
but not Web servers and computer clusters.

The first step is to install virtualenv. It can be installed with easy install:

$ sudo easy_install virtualenv

Virtualenv is a tool to set up isolated Python environments. Using vir-
tualenv you can install Python modules without affecting other users (or
even yourself, since you can set up unlimited virtual environments for private
use). If can’t make your System Administrator to install virtualenv, down-
load the .tar.gz package from http://pypi.python.org/pypi/virtualenv,
unpack it, change to the new directoy and use the virtualenv.py file from
it:

$ wget http://pypi.python.org/packages/source/v/virtualenv/<=
virtualenv-1.3.2.tar.gz
$ tar xfz virtualenv-1.3.2.tar.gz
$ cd virtualenv-1.3.2

Once the program is installed (system wide or by unpacking it in a user
directory), run it like this:

$ mkdir MY_DIR
$ virtualenv --no-site-packages MY_DIR
New python executable in MY_DIR/bin/python
Also creating executable in MY_DIR/bin/python
Installing setuptools.............done.

Then cd to MY DIR (replace MY DIR with any name you want) and activate
the new virtual environment:

$ cd MY_DIR
$. bin/activate
(MY_DIR)$

This is valid for *nix systems. In Windows there is a .bat file that must be
executed:

> \path\to\env\bin\activate.bat
(MY_DIR)>

Note that the prompt changed to (MY DIR)$, this indicate that every pro-
gram that we install from now on, won’t interfere with any other Python
installation. What is modified in MY DIR, remains in MY DIR. For example:

© 2010 by Taylor and Francis Group, LLC

http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org

Code Modularizing 119

(MY_DIR)$ easy_install Numpy
Searching for Numpy
Reading http://pypi.python.org/simple/Numpy/
(...cut...)
Finished processing dependencies for Numpy
(MY_DIR)$ easy_install biopython
Searching for biopython
Reading http://pypi.python.org/simple/biopython/
(...cut...)
Finished processing dependencies for biopython

This NumPy and Biopython installation will not interfere with any other
installation in your system (if any).

To use this virtual installation, run the Python interpreter from the bin
directory inside MY DIR:

(MY_DIR)$./bin/python2.4
Python 2.4 (#2, Dec 3 2004, 17:59:05)
[GCC 3.3.5 (Debian 1:3.3.5-2)] on linux2
Type "help", "copyright", "credits" or "license" for more <=
information.
>>> import Bio
>>>

Once you are done with working with the virtual environment, you should
deactivate it to return to your standard prompt:

(MY_DIR)$ deactivate
$

In windows:

(MY_DIR)> \path\to\env\bin\deactivate.bat
>

Standard Build and Install

If you can’t use system packages and don’t want to (or can’t) use easy install,
there is always a manual way to install packages. Download the module
files (usually packet and compressed in “.tar.gz”), unpack it and look for a
setup.py file. In most cases installing it is a matter of running:

python setup.py install

If there are any problems, see the README file. In fact it is advisable to check
the README file before trying to install the program (who does that?). In most

© 2010 by Taylor and Francis Group, LLC

http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org

120 Python for Bioinformatics

cases problem arises from missing dependencies (like you need module X to
run module Y), that you will have to fulfill. That is why it is better to install,
when possible, Python modules with the package manager and let it handle
the dependency hell.10

6.2.3 Creating Modules

To create a module you have to create a file and save it with the “.py”
extension. It should be saved in a directory where the Python interpreter
searches for it, like those in the PYTHONPATH variable (see page 115 for
more information).

For example, store the function savelist in a module and call it utils.
For this create the file utils.py with the following contents:

utils.py file
def savelist(anylist,fn="temp.txt"):

""" A list (anylist) is saved in a file (fn) """
fh = open(fn,"w")
for x in anylist:

fh.write("%s\n"%x)
fh.close()
return None

This way, this function (savelist) can be used from any program, provided
that this file is saved in a location accessible from Python:

>>> import utils
>>> utils.savelist([1,2,3])

6.2.4 Testing Our Modules

A good programming practice involves the creation of tests to verify the
correct functioning of the module. As the modules are designed to be used
from within a program, these tests must be executed only when called from
the command line. This has the advantage that the tests will not interfere
with the normal operation of the program.

To achieve this, we need to be able to differentiate when code is being
executed as a stand alone program and when it is executed as a module
from another program. When the code is executed as a program, the variable
name takes the value ” main ”. As a result, the way to incorporate test

code is by doing it after verifying that the program executes independently.

10See this Wikipedia article if you never found this term before: http://en.wikipedia.

org/wiki/Dependency_hell.

© 2010 by Taylor and Francis Group, LLC

http://en.wikipedia.org
http://en.wikipedia.org
http://en.wikipedia.org
http://en.wikipedia.org

Code Modularizing 121

if __name__ == "__main__":
#Do something

This type of test is usually included at the end of a module. In code B.11
(page 443) we can see a test in action.

Python provides a module that facilitates the task of testing that our code
works as we expect. This module is called doctest.

Doctest, Testing Modules in an Automatic Way

Doctest is a module that searches for pieces of Python code inside a doc-
string. This code is executed as if it were an interactive Python session. The
module tests if this code works exactly as shown in the docstring or in an
external file.

In code 6.11 we have isprime(), a function that checks if a given number
(n) is prime. Let’s see how we can incorporate a test unit and run it:

Listing 6.11: Module with doctest (py3.us/21)

1 def isprime(n):
2 """ Check if n is a prime number.
3 Sample usage:
4 >>> isprime(0)
5 False
6 >>> isprime(1)
7 True
8 >>> isprime(2)
9 True

10 >>> isprime(3)
11 True
12 >>> isprime(4)
13 False
14 >>> isprime(5)
15 True
16 """
17
18 if n<=0:
19 # This is only for numbers>0.
20 return False
21 for x in range(2,n):
22 if n%x==0:
23 return False
24 else:
25 pass
26 return True

© 2010 by Taylor and Francis Group, LLC

122 Python for Bioinformatics

27
28 def _test():
29 import doctest
30 doctest.testmod()
31
32 if __name__ == "__main__":
33 _test()

Code Explanation: The isprime(n) function is defined from line 1 to
26, but the actual functionality starts at line 18. Up to this line there are
some tests. These tests are not executed if the program is called from another
program, this is checked in line 32. If the program is executed as a stand
alone program, all test are run:

$ python prime.py
$

No news, good news. Let’s see what happens when I change line 21 in 6.11
to “for x in range(1,n):”:

>>> isprime(1)
False

In this case, the test fails:

**
File "./doctestSN.py", line 10, in __main__.isprime
Failed example:

isprime(2)
Expected:

True
Got:

False
**
File "./doctestSN.py", line 12, in __main__.isprime
Failed example:

isprime(3)
Expected:

True
Got:

False
**
File "./doctestSN.py", line 16, in __main__.isprime
Failed example:

isprime(5)
Expected:

© 2010 by Taylor and Francis Group, LLC

Code Modularizing 123

True
Got:

False
**
1 items had failures:

3 of 6 in __main__.isprime
Test Failed 3 failures.

Some people believe that testing is so important that they propose to design
a test for every function before start writing code. This is called test-driven
development. Testing may not be perceived as a primary need for a program,
but one cannot be certain that a function works unless one tests it (and
testing it does not assure us that it will work). Python has extensive support
for software testing (with modules doctest and unittest), but this is out
of the scope of this book. For more information on testing see “Additional
Resources.”

6.3 Additional Resources

• “Modules, The Python Tutorial.”
http://docs.python.org/tutorial/modules.html

• “Default Parameter Values in Python, by Fredrik Lundh.”
http://effbot.org/zone/default-values.htm

• “Python Library Reference. Unittest API.”
http://www.python.org/doc/2.5.2/lib/doctest-unittest-api.html

• “Installing Python Modules.”
http://docs.python.org/install/index.html

• Easy Install.
http://peak.telecommunity.com/DevCenter/EasyInstall

• “Recipe 305292: doctest, unittest, and python 2.4’s cool doctest.DocFileSuite.”
http://code.activestate.com/recipes/305292

• “Extreme Programming.” Wikipedia article.
http://en.wikipedia.org/wiki/Extreme_Programming

© 2010 by Taylor and Francis Group, LLC

http://docs.python.org
http://effbot.org
http://www.python.org
http://docs.python.org
http://peak.telecommunity.com
http://code.activestate.com
http://en.wikipedia.org
http://en.wikipedia.org
http://code.activestate.com
http://peak.telecommunity.com
http://docs.python.org
http://www.python.org
http://effbot.org
http://docs.python.org

124 Python for Bioinformatics

6.4 Self-Evaluation

1. What is a function?

2. How many values can return a function?

3. Can a function be called without any parameters?

4. What is a docstring and why is it related to functions and modules?

5. Does every function need to know in advance how many parameters will
receive?

6. Write a code that shows that xrange() is not a generator.

7. Why must all optional arguments in a function be placed at the end in
the function call?

8. What is a module?

9. Why are modules invoked at the beginning of the program?

10. How do you import all contents of a module? Is this procedure advis-
able?

11. How can you test if your code is being executed as a stand alone program
or called as a module?

© 2010 by Taylor and Francis Group, LLC

Chapter 7

Error Handling

NAESER’S LAW: You can make it foolproof, but you can’t make it damn-
foolproof.

7.1 Introduction to Error Handling

A program rarely works as expected, at least on the first try.
Traditionally a programmer would choose between one of these two strate-

gies when faced with runtime program errors. The problem is ignored or each
condition is verified where an error may occur and then he or she would write
code in consequence. The first option which is very popular is not advisable
if we want our program to be used by anyone besides ourselves. The second
option which is also known as LBYL (Look Before You Leap), is time con-
suming and may make code unreadable. Let’s have a look at an example of
each strategy.

The following program reads a file (myfile.csv) separated by tabs and
looks for a number that is found in the first column of the first line. This value
is multiplied by 0.2 and that result is written to another file (otherfile.csv).

This version does not check for any types of errors and limits itself to its
core functionality.

Listing 7.1: Program with no error checking

1 fh = open(’myfile.csv’)
2 line = fh.readline()
3 fh.close()
4 value = line.split(’\t’)[0]
5 fw = open(’other’,"w")
6 fw.write(str(int(value)*.2))
7 fw.close()

This program may do its job provided that there are no unexpected events.
What does “unexpected events” mean in this context? The first line is prone
to error. For example, it may be trying to open a file that doesn’t exist. In

125

© 2010 by Taylor and Francis Group, LLC

126 Python for Bioinformatics

this case when the program executes it will immediately stop after executing
the first line and the user will face something like the following:

Traceback (most recent call last):
File "wotest.py", line 1, in ?

fh = open(’myfile.csv’)
IOError: [Errno 2] No such file or directory: ’myfile.csv’

This is a problem because the program stops, and it is not professional to
show the end user a system error.

This program can fail on various possible spots. There may be no tabs in
the file, there may be letters instead of numbers and we may not have the
write permissions in the directory where we intend to write the output file.

That is what happens when the file exists but there is no tabs inside.

Traceback (most recent call last):
File "wotest.py", line 6, in ?

fw.write(str(int(value)*.2))
ValueError: invalid literal for int():

The result is similar to the previous one. It causes the program to stop and
the interpreter shows us another error message. This way we may continue
with all the blocks of code that are prone to the failure.

Let’s look at the strategy of checking each condition likely to generate an
error in order to prevent its occurrence. (LBYL)

Listing 7.2: Error handling LBYL version (py3.us/22)

1 import os
2 while True:
3 iname = raw_input("Enter input filename: ")
4 oname = raw_input("Enter output filename: ")
5 if os.path.exists(iname):
6 fh = open(iname)
7 line = fh.readline()
8 fh.close()
9 if "\t" in line:

10 value = line.split(’\t’)[0]
11 if os.access("/home/sb/"+oname,os.W_OK)==0:
12 fw = open("/home/sb/"+oname,"w")
13 if value.isdigit():
14 fw.write(str(int(value)*.2))
15 fw.close()
16 break
17 else:
18 print("It can’t be converted to int")

© 2010 by Taylor and Francis Group, LLC

Error Handling 127

19 else:
20 print("Output file is not writable")
21 else:
23 print("There is no TAB. Check the input file")
24 else:
25 print("The file doesn’t exist")

This program considers almost all the possible errors. If the file that the
user enters does not exist, the program will not have an abnormal termination.
Instead it will display an error message designed by the programmer that
would allow the user to reenter the name of the input file.

The disadvantage of this option is that the code is both difficult to read and
maintain because the error checking is mixed with its processing and with the
main objective of the program. It is for this reason that new programming
languages have included a specific system for the control of exceptional con-
ditions. Contrary to LBYL, this strategy is known as EAFP (It’s easier to
ask forgiveness than permission). With Python the statements try, except,
else y finally are used.

7.1.1 Try and Except

try delimits the code that we want to execute, while the except delimits
the code that will be executed if there is an error in the code under the try
block. Errors detected during execution are called exceptions. Let’s look at
the general outline:

try:
code block 1
...some error prone code...

except:
code block 2
...do something with the error...

[else:
code block 3
...to do when there is no error...

finally:
code block 4
#...some clean up code..].

This code will first try to execute the code in block 1. If the code is executed
without problems, the flow of execution continues through the code in block
3 and finally through block 4. In case the code in block 1 produces an error
(or raises an exception according to the jargon), the code in block 2 will be
executed and then the code in block 4. The idea behind this mechanism is to
put the block of code that we suspect may produce an error (block 1), inside

© 2010 by Taylor and Francis Group, LLC

128 Python for Bioinformatics

the try clause. The code that does should be called in case of a problem is
placed in the except block. This code (code block 2) deals with the exception,
or in another words, it handles the exception. Error messages are what the
user gets when exceptions are not handled:

>>> 0/0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

Optionally, it is possible to add the statement else, which will be executed
only if the code inside try (code block 1) executes successfully. Note that the
code below else can be placed in the try block because it would have the
same effect (it would execute if there are no errors). The actual difference is
conceptual, the block inside try should contain only the code that is suspected
to raise an exception, while we would have to leave for the block below else
the instructions that should be executed when the instructions below try are
executed without error. Note that the code inside finally is always executed.

This is an oversimplified example:

try:
print 0/0

except:
print("Houston, we have a problem...")

The result is:

Houston, we have a problem...

The first thing that we take note of is that neither else nor finally is
included as they are optional statements. In this case, the statement print
0/0 raises an exception. This exception is “caught” by the code that follows
except. This way we can securely test a block of code as any error that
occurs will redirect the program flow in a predictable way.

In this code exception handling is applied to code listing 7.2:

Listing 7.3: Similar to 7.2 but with exception handling (py3.us/23). Python
2.x only.

1 import os
2 while True:
3 try:
4 iname = raw_input("Enter input filename: ")
5 oname = raw_input("Enter output filename: ")
6 fh = open(iname)
7 line = fh.readline()

© 2010 by Taylor and Francis Group, LLC

Error Handling 129

8 fh.close()
9 value = line.split(’\t’)[0]

10 fw = open("/home/sb/"+oname,"w")
11 fw.write(str(int(value)*.2))
12 fw.close()
13 except IOError, (errno,errtext):
14 if errno==13:
15 print "Can’t write to outfile."
16 elif errno==2:
17 print "File not exist"
18 except ValueError, strerror:
19 if "substring not found" in strerror.message:
20 print "There is no tab"
21 elif "invalid literal for int" in strerror.message:
22 print "The value can’t be converted to int"
23 else:
24 print "Thank you!. Everything went OK."
25 break

At first look it is noticieable that this code is easier to follow than the
previous version (7.2). At least the code logic is separated from the error
handling. We can note that from line 4 to 12, the same code is repeated as
in the original listing (7.1). It is from line 13 where the exception handling
begins. According to the type of exception, it is the code that will be executed
below. We will see how to distinguish between the different types of exceptions
later.

Listing 7.3 is an introductory example of how to apply exception handling
to the listing 7.1, and not a definitive guide of how to handle exceptions.

For example if the integer conversion of line 11 fails, an exception of type
ValueError will be raised, a message will be printed and the program flow will
return to line 3 (because it is under a while TRUE), without releasing the
resources used (the filehandle fw). One way to solve this problem is to copy
the statement where the resource is closed (line 12) to the block where the
corresponding exception is managed (after line 22). This way we ensure to
release the resource.

Listing 7.4: Another version of 7.3 code (py3.us/24)

1 import os
2 while True:
3 try:
4 iname = raw_input("Enter input filename: ")
5 oname = raw_input("Enter output filename: ")
6 fh = open(iname)
7 line = fh.readline()

© 2010 by Taylor and Francis Group, LLC

130 Python for Bioinformatics

8 fh.close()
9 value = line.split(’\t’)[0]

10 fw = open(os.path.join("/home/sb/",oname),"w")
11 fw.write(str(int(value)*.2))
12 fw.close()
13 except IOError, (errno,errtext):
14 if errno==13:
15 print("Can’t write to outfile.")
16 elif errno==2:
17 print("File not exist")
18 except ValueError, strerror:
19 if "substring not found" in strerror.message:
20 print("There is no tab")
21 elif "invalid literal for int" in strerror.message:
22 print("The value can’t be converted to int")
23 fw.close()
24 else:
25 print("Thank you!. Everything went OK.")
26 break

Even if this code does its job, it is not a good idea to repeat the same
statement (fw.close()) in two places (line 12 and 23). If we have a block of
code that always needs to be executed whether or not an error occurs we can
include it in finally, which is where the code that is executed independently of
what happens with the code in try. The problem with including fw.close()
under finally is that there may be an exception before opening fh (for example
in the integer conversion, line 10 of the listing 7.4) and we are going to try
to close a file that was never opened, which will cause another error by itself.
This error in turn, can be predicted, for which we can use the exception
mechanism and include a try/except clause within finally:

Listing 7.5: Code with nested exceptions

1 import os
2 while True:
3 try:
4 iname = raw_input("Enter input filename: ")
5 oname = raw_input("Enter output filename: ")
6 fh = open(iname)
7 line = fh.readline()
8 fh.close()
9 value = line[:line.index("\t")]

10 fw = open(os.path.join("/home/sb/",oname),"w")
11 fw.write(str(int(value)*.2))
12 except IOError, (errno,errtext):

© 2010 by Taylor and Francis Group, LLC

Error Handling 131

13 if errno==13:
14 print("Can’t write to outfile.")
15 elif errno==2:
16 print("File not exist")
17 except ValueError, strerror:
18 if "substring not found" in strerror.message:
19 print("There is no tab")
20 elif "invalid literal for int" in strerror.message:
21 print("The value can’t be converted to int")
22 else:
23 print("Thank you!. Everything went OK.")
24 break
25 finally:
26 try:
27 fw.close()
28 except:
29 pass
30 else:
31 print("All resources freed")

The code from the listing 7.5 was made to illustrate the use of a nested try,
but it is not the best way to solve the problem. We may avoid causing an
exception while the filehandle is open by making the integer conversion before
opening the file. Another change to consider is to remove the raw input
statements in the try block, because it is convenient to include only the
statements that are expected to cause exceptions.

Listing 7.6: Similar to code 7.4 without nested exceptions

1 import os, errno
2 while True:
3 iname = raw_input("Enter input filename: ")
4 oname = raw_input("Enter output filename: ")
5 try:
6 fh = open(iname)
7 line = fh.readline()
8 value = str(int(line[:line.index("\t")])*.2)
9 fw = open("/home/sb/"+oname,"w")

10 fw.write(value)
11 except IOError, (errno,errtext):
12 if errno==errno.EACCES:
13 print("Permission denied")
14 elif errno==errno.ENOENT:
15 print("No such file")
16 except ValueError, strerror:

© 2010 by Taylor and Francis Group, LLC

132 Python for Bioinformatics

17 if "substring not found" in strerror.message:
18 print("There is no tab")
19 elif "invalid literal for int" in strerror.message:
20 print("The value can’t be converted to int")
21 else:
22 fw.close()
23 fh.close()
24 break

We’ve seen in general terms how the try/except, clause works and now
we can go a little deeper to discuss the types of exceptions:

7.1.2 Exception Types

Exceptions can be distinguished. A non existent variable and mixing incom-
patible data types are not the same. The first exception is of the NameError
type while the second is of the TypeError type. A complete list of exceptions
can be found in Section D.7 (page 499).

How to Respond to Different Exceptions:

It is possible to handle an error generically using except without a param-
eter:

d = {"A":"Adenine","C":"Cisteine","T":"Timine","G":"Guanine"}
try:

print d[raw_input("Enter letter: ")]
except:

print "No such nucleotide"

Just because we may be able to respond generically to all errors doesn’t
mean that it is a good idea (in fact it is a bad idea). This makes debugging
our code difficult because an unanticipated error can pass unnoticed. This
code will return a “No such nucletide” for any type of error. If we introduce
an EOF signal, EOF (end of file, CONTROL-D), the program will output
“No such nucleotide”. It is useful to distinguish between the different types
of abnormal events, and react in consequence. For example to differentiate
the entrance of an EOF from a nonexistent dictionary key:

d={"A":"Adenine", "C":"Cisteine", "T":"Timine", "G":"Guanine"}
try:

print(d[raw_input("Enter letter: ")])
except EOFError:

print("Good bye!")
except KeyError:

print("No such nucleotide")

© 2010 by Taylor and Francis Group, LLC

Error Handling 133

This way, the program prints “No such nucleotide” when the user enters
a key that does not exist in d dictionary and “Good bye!” when it gets an
EOF.

We are now ready to consider the code 7.3 (page 128) in detail. Let’s start
in line 13, where an exception of type IOError is caught: except IOError,
(errno,errtext). Besides catching the exception there are also two values:
errno and errtext. The first value corresponds to a code related to the type
of IOError that was produced. The IO error includes various distinct related
errors. This is why an error code exists which is used (in the lines 14 and 16)
to determine exactly which error was produced. The error type ValueError
also includes more than one error. On one hand it is called when a value
is searched for in a list that does not exist (it may occur on line 9) and on
the other hand, when one wants to perform data type conversions between
incompatible types (line 11). The way to distinguish between these conditions
is by the error message, as shown on lines 19 and 21.

To get information about the exception that is currently being handled, use
sys.exc info():

Listing 7.7: Using sys.exc info() (py3.us/25)

1 import sys
2
3 try:
4 0/0
5 except:
6 a,b,c=sys.exc_info()
7 print(’Error name: %s’ % a.__name__)
8 print(’Message: %s’ % b.message)
9 print(’Error in line: %s’ % c.tb_lineno)

This program prints:

Error name: ZeroDivisionError
Message: integer division or modulo by zero
Error in line: 4

Listing 7.8: Another use of sys.exc info()

1 import sys
2
3 try:
4 x=open(’a_random_filename’)
5 except:
6 a,b=sys.exc_info()[:2]
7 print ’Error name: %s’ % a.__name__
8 print ’Error code: %s’ % b.args[0]
9 print ’Error message: %s’ % b.args[1]

© 2010 by Taylor and Francis Group, LLC

134 Python for Bioinformatics

This program prints:

Error name: IOError
Error code: 2
Error message: No such file or directory

7.1.3 Provoking Exceptions

Exceptions can be activated manually, without the need to wait for them
to occur. The statement used to raise an exception is raise. At this point,
you may be wondering why you would want to provoke an exception. An
appropriately raised exception may be more helpful to the programmer (or to
the user if he or she is not the same programmer) than an exception that is
fired in an uncontrolled way. This is especially true when debugging programs.

This type of concept is better understood with an example. Below there is
a function that calculates the average of a sequence of numbers:

def avg(numbers):
return sum(numbers)/len(numbers)

A function of this type will have problems with an empty list:

>>> avg([])

Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>

avg([])
File "<pyshell#3>", line 2, in avg

return sum(numbers)/len(numbers)
ZeroDivisionError: integer division or modulo by zero

The problem with this error message is that it does not tell us that it was
caused by the empty list, but says that it was provoked but trying to divide
by zero. Knowing how the function works, one can deduce that an empty list
causes this error. However, it would be more interesting if this error points
this out, without having to know the internal structure of the function. For
this we can raise an error by ourselves.

def avg(numbers):
if not numbers:

raise ValueError("Please enter at least one element")
return sum(numbers)/len(numbers)

In this case, the error type is closer to the actual problem.

© 2010 by Taylor and Francis Group, LLC

Error Handling 135

>>> avg([])

Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>

avg2([])
File "<pyshell#6>", line 3, in avg2

raise ValueError("Please enter at least one element")
ValueError: Please enter at least one element

We could have avoided the error if we printed a string without raising the
error, but this will be against pythonic principles, especially against “errors
should not pass unnoticed”. In practice this may cause problems because if
a function returns an unanticipated value, the effects can be unpredictable.
On raising the exception, we assure ourselves that the error will not pass
unnoticed.

In some texts or old code you will find a syntax of the form raise ”This
is an error”. These types of exceptions (called chained exceptions), will not
work from Python 2.6 and greater. It is also not recommended using raise
ValueError, ’A message’, instead of raise ValueError(’A message’).
The latter form is preferred because in large chains the parentheses indicates
“continue on the next line”. In Python 3.0 the latter form is mandatory.1

7.2 Creating Customized Exceptions

An advantage of the exception system is that we don’t have to limit our-
selves to those provided by Python. We can define new exceptions in function
of our needs. In order to create an exception, we need to work with Object
Oriented Programming, a topic that has not been covered. As a result, if
you’re reading this book from the start, my recommendation is that you skip
the rest of this chapter and proceed directly to OOP. After reading OOP,
return to this section if you still want to create your own exceptions.

All Exceptions Derive from Exception Class

Since all exception derive from the exceptions class, we can make our own
exception by subclassing the exception class. Take for example this exception
that I called NotDNAException. It should be raised when there is a DNA
sequence with a character not belonging to either ’a’, ’c’, ’t’ or ’g’. Let’s see
a custom exception defined:

1Please see PEP 3109 (http://www.python.org/dev/peps/pep-3109) regarding the ratio-
nale for this.

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org

136 Python for Bioinformatics

class NotDNAException(Exception):
""" A user-defined exception.
"""
def __init__(self, dna):

self.dna = dna
def __str__(self):

for nt in self.dna:
if nt not in ’atcg’:

return nt

The programmer should create a code to detect the exception:

dnaseq = ’agcttacagt’
if set(dnaseq) != set(’atcg’):

raise NotDNAException(dnaseq)
else:

print ’OK’

If dnaseq is an iterable object with either ’a’, ’c’, ’t’ and ’g’, this code prints
OK. But if dnaseq contains a non-DNA character, the exception will be raised.
This is the result of the former code but with a ’w’ in dnaseq:

Traceback (most recent call last):
File "/home/sb/newexcep.py", line 16, in <module>

raise NotDNAException(dnaseq)
NotDNAException: w

7.3 Additional Resources

• Mark Pilgrim. “Dive into Python. Exceptions and File Handling.”
http://www.diveintopython.org/file_handling/index.html

• Python Documentation. “Built-in Exceptions.”
http://www.python.org/doc/current/lib/module-exceptions.html

• Python Documentation. “Standard errno system symbols.”
http://docs.python.org/library/errno.html

• C H. Swaroop. “Python en:Exceptions.”
http://www.swaroopch.com/notes/Python_en:Exceptions

• Ian Bicking. “Re-Raising Exceptions.”
http://blog.ianbicking.org/2007/09/12/re-raising-exceptions

© 2010 by Taylor and Francis Group, LLC

http://www.diveintopython.org
http://www.python.org
http://docs.python.org
http://www.swaroopch.com
http://blog.ianbicking.org
http://blog.ianbicking.org
http://www.swaroopch.com
http://docs.python.org
http://www.python.org
http://www.diveintopython.org

Error Handling 137

7.4 Self-Evaluation

1. What is the meaning of LBYL and EAFP? Which one is used in Python?

2. What is an exception?

3. What is an “unhandled exception”?

4. When do you use finally and when do you use else?

5. Exceptions are often associated with file handling. Why?

6. How do you sort an error derived from a disk full condition from trying
to write to a read-only file system?

7. Why is it not advisable to use except: to catch all kind of exceptions,
instead of using, for example, except IOError:?

8. Exceptions can be raised at will. Why would you do that?

9. What is the purpose of sys.exc info()?

10. Explain the purpose of this function:

def formatExceptionInfo():
""" Author: Arturo ’Buanzo’ Busleiman """
cla, exc = sys.exc_info()[:2]
excName = cla.__name__
try:

excArgs = exc.__dict__["args"]
except KeyError:

excArgs = str(exc)
return (excName, excArgs)

© 2010 by Taylor and Francis Group, LLC

Chapter 8

Introduction to Object Orienting
Programming (OOP)

8.1 Object Paradigm and Python

As mentioned in the introduction of the book, Python is an object ori-
ented language. Unlike other languages that handle objects, Python allows
us to program in a classic procedural way, without considering the objects
paradigm. Sometimes this is called “multi-paradigm language.” Although
this makes it easy to start programming, in the long run it can tempt the
programmer not to take advantage of all the possibilities that Python offers.

We already used objects, even without stating it in an explicit way. Data
types included in Python are objects. A string, a dictionary and a list, are
implementation of objects. Each of them has its associated functions (methods
in the jargon) and its attributes. We have seen that lower() returns a string
in lower case, this is because all the objects of the class string have the method
lower() associated with them. The same is true for other types of data that
are included in Python.

A class can be used to define a data type. Although data types included
in Python are many and varied, its capacity to include all our information
modelling needs is limited. One of the goals of programming is to represent the
real world. We can use a dictionary to represent a translation table between
nucleotides and amino acids, a string to represent a DNA sequence or a tuple
to represent the space coordinates of an atom in a protein. But, what data
type do we use to represent a metabolic state of a cell? The different domains
in a protein? The result of a BLAST run? What about an ecosystem?

There is a need for the ability to define our own data types, to be able
to model any system, either biological or of any other type. Although the
functions are useful to modularize the code, they are not designed to fulfill
this role. The functions cannot store states, since the values of variables only
have life while the function is being executed. Other languages have their
personalized data types, like “structs” in C or “record” in Pascal, but they
do not have the same flexibility as the objects of languages based on OOP
(like Java, C++ or Python). Only objects have enough ductility to be able
to model any type of system and its possible relations with other systems.

139

© 2010 by Taylor and Francis Group, LLC

140 Python for Bioinformatics

8.2 Exploring the Jargon

The world of OOP has its own vocabulary. In this section I will try to clarify
a few of the many new words such as class, method, instance, attributes,
polymorphism, inheritance, etc. The definitions will not be exhaustive. Some
of them will not even be exact, but the priority will be the understanding of the
subject rather than being overly formal. Let’s remember that the objective
of this book is to provide programming tools to solve biological problems.
Keeping this in mind, the following definitions and their respective examples
have been written.

Classes: Object Generators

We can see a class as a user defined data type. However this definition is
incomplete, it does not consider that a class has associated functions and is
not just a data container. That is why sometimes it is presented as a mold
to generate objects, since the general characteristics of objects are defined in
a class. A class can be genome, people, sequences, etc. Any object capable
of being abstracted can be a class.

Instance: Particular Implementation of Class

An instance is the implementation of a class. For instance, if we have a
class orca, an instance can be Willy. Several instances from the same class
can be created (for example, Shamu) and all are independent of each other.

Attributes or Instance Variables: Characteristic of Objects

Each object will have its own characteristics (or attributes), for example
weight. Willy surely will have a weight different from Shamu, but in spite of
having variations in their attributes, both instances, belong to the same class
orca. They share at least the “type of attributes.” We could create a class
dog, with instances Lassie, Laika and Rin-tin-tin. This class can have
the attribute hair color, which is not going to be shared by instances of the
Orca class.

Methods: Behavior of Objects

A method is a function that belongs to a class. Methods define how the
objects derived from that class “behave.” For example the DNA class can have
the method translate that allows translating an amino acid sequence into
a protein. This method is nothing but a function associated to a class. It

© 2010 by Taylor and Francis Group, LLC

Introduction to Object Orienting Programming (OOP) 141

could require as parameters a string with the DNA sequence and a dictionary
including its related translation table.

Class Variables: The Characteristics of Classes

They are variables associated to all the objects of a class. Whenever an
object is created from a class, this object inherits the variable of the class.

Inheritance: Properties Are Transmitted between the Re-
lated Classes

Classes can be related between themselves and are not isolated entities. It
is possible to have a mammal class with common properties with the orca
class and the dog class. For example, the method reproduction can be defined
for the mammal class. When we create the classes dog and orca, we can define
them as “children” of mammal. It won’t be necessary to create for them the
method reproduction. Child classes will be able to have their own methods
themselves that make them unique, like immersion and race.

Polymorphism

Is the ability of different types of objects to respond to the same method
with a different behaviour. For example you can iterate over a list, a set, a
dictionary, a file, a database, and more in the same way.

Encapsulation

Is the ability to hide the internal operation of an object and leave access
for the programmers only through their public methods. The term encap-
sulation is not associated with Python because this language does not have
a true encapsulation. It is possible to make the access to certain methods
difficult, but not to prevent it. It is not in the philosophy of Python to be in
the way of the programmer. What it is possible to do in Python is to make
clear what methods and properties are owned by a class and those thought
to be shared. Sometimes this behavior is referred to as pseudo-encapsulation
or translucent encapsulation. It is up to the programmer to make a rational
use of this option. That is called in Python: Protection by convention, not by
legislation. See the section “Making our code private” on page 154 for using
this property.

© 2010 by Taylor and Francis Group, LLC

142 Python for Bioinformatics

8.3 Creating Classes

Remember that classes are the template of the objects. The syntax to
create classes in Python is very simple:

class NAME:
[body]

Let’s see a class that actually does something:

class Square:
def __init__(self):

self.side=1

This class (Square) has a method called init . It is a special method
that has as a characteristic the fact that it does not return anything and that
it is executed whenever an instance of Square is created. In this case it sets
the value of the attribute side. Another peculiarity to consider is the word
self that is repeated as parameter of the method and as part of the name
of the attribute. Self is a variable that is used to represent the instance of
Square. It is possible to use another name instead of self, but self is used
by convention. It is advisable to follow the convention because it makes our
program easier to understand by other programmers who may want to read
our code in the future.1

Instantiation uses function notation. It is like a function without parameters
that returns a new instance of the class. Let’s see an example, the use of the
Square class, with the creation of the instance Bob:

>>> Bob=Square() # Bob is an instance of Square.
>>> Bob.side #Let’s see the value of side
1

It is possible to change the value of the attribute side of the instance Bob:

>>> Bob.side=5 #Assing a new value to side
>>> Bob.side #Let’s see the new value of side
5

Although this change is specific for this instance, when new instances are
created the method init is executed again to assign the side value to the
new instance:

1There are also code analyzers that depend on this convention for working.

© 2010 by Taylor and Francis Group, LLC

Introduction to Object Orienting Programming (OOP) 143

>>> Krusty=Square()
>>> Krusty.side
1

In the case that the variable side is a variable that must be accessible from
all the instances of the class, it is advisable to use a class variable. These
variables are shared by all the objects of the same class.

class Square:
side=1

This way, the value of side will be defined even before we create an instance
of Square:

>>> Square.side
1

Of course if we created instances of Square, they will also have this value
of side:

>>> Crab=Square()
>>> Crab.side
1

The class variables can have information on the instances. For example it
is possible to use them to control how many instances of a class have been
created.

class Square:
CountObjects=0
def __init__(self):

Square.CountObjects=Square.CountObjects+1
print "Object created successfully"

This version of Square can count the number of instances that have been
created. Note that the CountObjects variable is acceded within the class as
Square.CountObjects to distinguish itself from an instance variable, which
is noted with the prefix self.VARIABLENAME. Let’s see how this object is
used:

>>> Bob=Square()
Object created successfully
>>> Patrick=Square()
Object created successfully
>>> Square.CountObjects
2

© 2010 by Taylor and Francis Group, LLC

144 Python for Bioinformatics

Let’s see a more useful, though simple class:

class Sequence:
TranscriptionTable = {"A":"U","T":"A","C":"G","G":"C"}
def __init__(self, seqstring):

self.seqstring=seqstring.upper()
def transcription(self):

tt = ""
for x in self.seqstring:

if x in ’ATCG’:
tt += self.TranscriptionTable[x]

return tt

This class has two methods and one attribute. The method init is used
to set the value of seqstring in each instance:

>>> DangerousVirus=Sequence(’atggagagccttgttcttggtgtcaa’)
>>> DangerousVirus.seqstring
’ATGGAGAGCCTTGTTCTTGGTGTCAA’
>>> HarmlessVirus=Sequence(’aatgctactactattagtagaattgatgcca’)
>>> HarmlessVirus.seqstring
’AATGCTACTACTATTAGTAGAATTGATGCCA’

The Sequence class also has a method called transcription that has as its
only parameter the instance itself (represented by self). This parameter does
not appear when the function is called, because it is implicit. Notice that the
function transcription uses the class variable of the TranscriptionTable (that
is a dictionary) to convert the sequence seqstring to its transcript equivalent:

>>> DangerousVirus.transcription()
’GCUAAGAGCUCGCGUCCUCAGAGUUUAGGA’

The methods can also have parameters. In order to show this, here is a
new mehod (restriction) in the Sequence class. This method calculates how
many restriction sites has a sequence for a given enzyme.2 Therefore, this
method will require as parameter a restriction enzyme. Another difference is
that this class will contain a dictionary that relates the name of the enzyme
to the recognition sequence:

Listing 8.1: Sequence class (py3.us/26)

class Sequence:
TranscriptionTable = {"A":"U","T":"A","C":"G","G":"C"}

2Remember that a restriction enzyme is a protein that recognizes a specific DNA sequence
and produces a cut within the recognition zone.

© 2010 by Taylor and Francis Group, LLC

Introduction to Object Orienting Programming (OOP) 145

Dictionary with the name of the restriction enzyme and
the recognition sequence.
EnzDict = {"EcoRI":"GAATTC","EcoRV":"GATATC"}
def __init__(self, seqstring):

self.seqstring = seqstring.upper()
def restriction(self,enz):

try:
return self.seqstring.count(Sequence.EnzDict[enz])

except:
return 0

def transcription(self):
tt = ""
for x in self.seqstring:

if x in ’ATCG’:
tt += Sequence.TranscriptionTable[x]

return tt

Using the Sequence class:

>>> other_virus=Sequence(’atgatatcggagaggatatcggtgtcaa’)
>>> other_virus.transcription()
’UACUAUAGCCUCUCCUAUAGCCACAGUU’
>>> other_virus.restriction("EcoRV")
2

Tip: Not All Classes Are Created Equal: Classic Versus
New-Style Classes.

The type of class that is available from Python version 2.2 is called “new-
style” classes, in contrast to “traditional” classes (known also as “classic”).
The difference between them is that the new-style classes derive from “object,”
inheriting its methods and properties. This was done because before Python
2.2, built-in types and user-defined classes were different. There was no way
to create classes derived from the built-in types (lists, dictionaries, sets, and so
on). Inherit from types is not its unique advantage. New-style classes provides
new methods, as described in PEP 2523 and the “Unifying types and classes
in Python 2.2” document.4 From Python 3, all classes are “new-style” classes,
so there is no need to distinguish between classic and new-style.

3http://www.python.org/dev/peps/pep-0252/
4http://www.python.org/download/releases/2.2.3/descrintro

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

146 Python for Bioinformatics

8.4 Inheritance in Action

Remember that the inheritance of classes implies that the new class “inher-
its” the methods and attributes of the base class. The following is the syntax
used to create a class that inherits from other class:

class DerivedClass(BaseClass):
[body]

Let’s see as an example a class called Plasmid5 that is based on the Sequence
class. Because plasmid is a type of DNA sequence, we created the Plasmid
class that inherits methods and properties from Sequence. We also defined
methods and attributes that are exclusive to this new class, like AbResDict
and ABres. The method ABres is used to know if our plasmid has resistance to
a particular antibiotic, whereas the AbResDict attribute has the information
of the regions that characterize the different antibiotic resistances.

Listing 8.2: Plasmid class (py3.us/82)

class Plasmid(Sequence):
AbResDict = {"Tet":"ctagcat","Amp":"CACTACTG"}
def __init__(self,seqstring):

Sequence.__init__(self,seqstring)
def ABres(self,ab):

if self.AbResDict[ab] in self.seqstring:
return True

else:
return False

Notice that within the method init of Plasmid we called to the method
init of Sequence. This is the way that our class inherits the attributes

and methods of the “father” class. Let’s see how the Plasmid class uses its
own methods and those of its father (Sequence). The method ABres works in
a way similar to Restriction with the difference that instead of giving back
the position which we are looking for, it simply informs us if it is present or
absent.

Introducing Some Biopython Objects

While there is a special section of Biopython ahead in this book, we will
see some Biopython structures to get familiar with them.

5A plasmid is a DNA molecule that is independent of the chromosomal DNA of a microor-
ganism.

© 2010 by Taylor and Francis Group, LLC

Introduction to Object Orienting Programming (OOP) 147

FIGURE 8.1: IUPAC nucleic acid notation table.

Class IUPACAmbiguousDNA: The class IUPACAmbiguousDNA is
in the module IUPAC. It is a class that derives from alphabet and
holds the information regarding the IUPAC6 approved letters for DNA
sequences. In this case (AmbiguousDNA) ambiguity is taken into ac-
count, that is, we can denote when a position is not fully determined.
For example, if a nucleotide in a specific position can be A or G, it is
indicated with an R (See figure 8.1 for the complete IUPAC nucleic acid
notation table). For this reason IUPACAmbiguousDNA has a class vari-
able letters that holds the string ’GATCRYWSMKHBVDN’. At first sight
it doesn’t seem a very useful class, but in the class Seq its usefulness
will be shown.

Class IUPACUnambiguousDNA: Like IUPACAmbiguousDNA, there
is IUPACUnambiguousDNA. This class derives from the former, so
it keeps its properties. The only difference is that this class defines again
the letters attribute, with ’GATC’ as the content.

6IUPAC stands for International Union for Pure and Applied Chemistry; it is the body
that regulates the nomenclature used in chemistry.

© 2010 by Taylor and Francis Group, LLC

148 Python for Bioinformatics

Class Seq: In the module Seq there is a class called Seq. The purpose of the
objects derived from this class is to store sequence information. Up until
now we have represented the sequences as strings. The problem with this
approach is that the string just holds sequence information, and we have
to guess about what kind of sequence it is (DNA, RNA, amino acids). In
the Seq class, there are two parameters: data and alphabet. Data is
a string with the sequence and alphabet is an object of the alphabet
type. It contains information about the type of sequence alphabet.
Another feature of this class, is that it is “immutable”, that is, once a
sequence is defined, it can’t be modified (just as a string). This way we
are sure the sequence remains the same even after several manipulations.
In order to change the sequence, we have to use a MutableSeq kind of
object.

The Seq class defines several methods, being the most important: com-
plement (Returns the complement sequence), reverse complement (Re-
turns the reverse complement sequence), tomutable (returns a Muta-
bleSeq object) and tostring (returns the sequence as a string). Let’s
see it in action:

>>> from Bio.Alphabet import IUPAC
>>> from Bio.Seq import Seq
>>> first_seq = Seq(’GCTATGCAGC’, IUPAC.unambiguous_dna)
>>> first_seq
Seq(’GCTATGCAGC’, IUPACUnambiguousDNA())
>>> first_seq.complement()
Seq(’CGATACGTCG’, IUPACUnambiguousDNA())
>>> first_seq.tostring()
’GCTATGCAGC’

This object has special methods that allows the programmer to work
with a Seq type object as if it were a string:

>>> first_seq[:10] #slice a sequence
Seq(’GCTAT’, IUPACUnambiguousDNA())
>>> len(first_seq) #get the length of the sequence
10
>>> first_seq[0] #get one character
’G’

Class MutableSeq: It is an object very similar to Seq, with the main dif-
ference that its sequence can be modified. It has the same methods as
Seq, with some methods tailored to handle mutable sequences.

We can create it from scratch or it can be made from a Seq object using
the tomutable method:

© 2010 by Taylor and Francis Group, LLC

Introduction to Object Orienting Programming (OOP) 149

>>> first_seq
Seq(’GCTATGCAGC’, IUPACUnambiguousDNA())
>>> AnotherSeq=first_seq.tomutable()
>>> AnotherSeq.extend("TTTTTTT")
>>> print(AnotherSeq)
MutableSeq(’GCTATGCAGCTTTTTTT’, IUPACUnambiguousDNA())
>>> AnotherSeq.pop()
’T’
>>> AnotherSeq.pop()
’T’
>>> print(AnotherSeq)
MutableSeq(’GCTATGCAGCTTTTT’, IUPACUnambiguousDNA())

8.5 Special Methods Attributes

Some methods have a special meaning. We have already seen the init
method that is executed each time a new instance is created (or a new object
is instantiated). Other methods are executed under other conditions. Each
special method is executed under a pre-established condition. What can be
modified is how the object responds to a particular condition.

Take for example the len method. This method is activated in an object
each time the function len(instance) is called. What this method returns is
the responsibility of the programmer. Recall the Sequence class (listing 8.1)
and see what happens when you want to find out the length of a sequence:

>>> len(Sequence("ACGACTCTCGACGGCATCCACCCTCTCTGAGA"))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: Sequence instance has no attribute ’__len__’

This was somewhat expected. We didn’t define what is the meaning of the
length of Sequence. This object has several attributes, the interpreter has no
way to know which attribute returns when len(Sequence) is required. The
error message gives us a clue about the problem: “Sequence instance has no
attribute ’ len ’ ”. Hence if we want to set a behaivor for len() function, we
have to define the special method attribute len :

def __len__(self):
return len(self.seqstring)

This method must be included in the class definition (8.1). Now that we
have defined the len method, we can apply the function len to the Se-
quence objects:

© 2010 by Taylor and Francis Group, LLC

150 Python for Bioinformatics

>>> M13=Sequence("ACGACTCTCGACGGCATCCACCCTCTCTGAGA")
>>> len(M13)
32

In the same way that we can control what is returned by len(), we can do
it with other methods that can be programmed in our class. Let’s see some
of them:7

• str This method is invoked when the string representation of an
object is required. This representation is obtained with str(object) or
with print object. This way the programmer can choose how its ob-
jects “looks.” For example, the translation table provided by Biopython
Bio.Data.CodonTable is stored as a dictionary, but its representation
appears as a table:

>>> import Bio.Data.CodonTable
>>> print(Bio.Data.CodonTable.standard_dna_table)
Table 1 Standard, SGC0

| T | C | A | G |
--+---------+---------+---------+---------+--
T | TTT F | TCT S | TAT Y | TGT C | T
T | TTC F | TCC S | TAC Y | TGC C | C
T | TTA L | TCA S | TAA Stop| TGA Stop| A
T | TTG L(s)| TCG S | TAG Stop| TGG W | G
--+---------+---------+---------+---------+--
C | CTT L | CCT P | CAT H | CGT R | T
C | CTC L | CCC P | CAC H | CGC R | C
C | CTA L | CCA P | CAA Q | CGA R | A
C | CTG L(s)| CCG P | CAG Q | CGG R | G
--+---------+---------+---------+---------+--
A | ATT I | ACT T | AAT N | AGT S | T
A | ATC I | ACC T | AAC N | AGC S | C
A | ATA I | ACA T | AAA K | AGA R | A
A | ATG M(s)| ACG T | AAG K | AGG R | G
--+---------+---------+---------+---------+--
G | GTT V | GCT A | GAT D | GGT G | T
G | GTC V | GCC A | GAC D | GGC G | C
G | GTA V | GCA A | GAA E | GGA G | A
G | GTG V | GCG A | GAG E | GGG G | G
--+---------+---------+---------+---------+--

7In Table D.21 (page 503) there is a list of Special methods.

© 2010 by Taylor and Francis Group, LLC

Introduction to Object Orienting Programming (OOP) 151

• repr Invoked with repr() built-in function and when the object is
entered into the interative shell. It should look like a valid Python
expression that could be used to recreate an object with the same value,
when not possible, a string of the form <...some useful description...>.
It is used mostly on debugging. See the same object as above but with
repr() instead of print():

>>> repr(Bio.Data.CodonTable.standard_dna_table)
’<Bio.Data.CodonTable.NCBICodonTableDNA instance at 0xb7da0c>’

• getitem Is used to access an object sequentially or by using a sub-
script like object[n]. Each time you try to access an object as object[n],
object. getitem (n) is executed. This method requires two parameters:
The object (usually self) and the index. There is a usage sample in
listing 8.4.

• iter Allows walking over a sequence. With iter we can iterate
the same way over many different objects such as dictionaries, lists,
files, strings and so on. The for statement calls the build-in function
iter on the object being iterated over. iter defines how the items
are returned when using the next method. It is easy to understand
them with a couple of examples. In the first example we create the
Straight class, where its elements are returned in the same order as they
are stored, while the Reverse class returns its elements using an inverted
order:

Listing 8.3: Straight and Reverse classes (py3.us/28)

class Straight:
def __init__(self, data):

self.data = data
self.index = 0

def __iter__(self):
return self

def next(self):
if self.index == len(self.data):

raise StopIteration
answer = self.data[self.index]
self.index = self.index + 1
return answer

class Reverse:
def __init__(self, data):

self.data = data
self.index = len(data)

© 2010 by Taylor and Francis Group, LLC

152 Python for Bioinformatics

def __iter__(self):
return self

def next(self):
if self.index == 0:

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

Let’s see them in action:

>>> A=Straight("123")
>>> for x in A:

print x

1
2
3
>>> B=reverse("123")
>>> for x in B:

print x

3
2
1

• setitem Is used to assign a value to a key (with the form self[key]=value).
Normally we use it to change the value of a dictionary key, but remem-
ber that we are the ones who define what the method actually does. For
example, we could use it to replace a character in a string:

def __setitem__(self, key, value):
if len(value)==1:

self.seq=self.seq[:key]+value+self.seq[key+1:]
return None

else:
raise ValueError

• delitem Implements the deletion of objects of the form self[key]. It
can be used with any object that supports the deletion of its elements.

Sequence class with some special methods attributes:

© 2010 by Taylor and Francis Group, LLC

Introduction to Object Orienting Programming (OOP) 153

Listing 8.4: Sequence class with special methods attributes (py3.us/29)

class Sequence:
TranscriptionTable = {"A":"U","T":"A","C":"G","G":"C"}
CompTable = {"A":"T","T":"A","C":"G","G":"C"}
def __init__(self, seqstring):

self.seqstring=seqstring.upper()
def restriction(self,enz):

EnzDict={"EcoRI":"ACTGG","EcoRV":"AGTGC"}
if EnzDict.get("EcoRI") in self.seqstring:

return self.seqstring.count(EnzDict[enz])
else:

return 0
def __getitem__(self,index):

return self.seqstring[index]
def __getslice__(self,low,high):

return self.seqstring[low:high]
def __len__(self):

return len(self.seqstring)
def __str__(self):

if len(self.seqstring)>=28:
return self.seqstring[:25]+"..."+self.seqstring[-3:]

else:
return self.seqstring

def transcription(self):
tt = ""
for x in self.seqstring:

if x in ’ATCG’:
tt += self.TranscriptionTable[x]

return tt
def complement(self):

tt=""
for x in self.seqstring:

if x in ’ATCG’:
tt += self.CompTable[x]

return tt

8.5.1 Create a New Data Type Out of a Built-in Data Type

“New style” allows us to create our own classes derived from built-in data
types. To illustrate this point, see how to create a variant of the dict type.
Zdict is a dictionary-like object, it behaves like a dictionary with one differ-
ence: Instead of raising an exception when trying to retrieve a value with a
nonexistent key, it returns 0 (zero).

© 2010 by Taylor and Francis Group, LLC

154 Python for Bioinformatics

Listing 8.5: Sequence class with special methods attributes (py3.us/30)

1 class Zdic(dict):
2 """ A dictionary-like object that return 0 when a user
3 request a non-existent key.
4
5 """
6
7 def __missing__(self,x):
8 return 0

Code explanation: In line 1 we name the class and pass a data type as
argument (dict). This means that the resulting class (Zdic) inherits from
the dict type. From line 7 to 8 there is the definition of a special method:
missing . This method is triggered when the user tries to retrieve a value

with a nonexistent key. It takes as argument the value of the key, but in this
case the program don’t use such value (x) since it returns 0 disregarding of
the key value:

>>> a=Zdic()
>>> a[’blue’]=’azul’
>>> a[’red’]
0

8.6 Making Our Code Private

At the beginning of this chapter it was highlighted that one of the charac-
teristics of the OOP is encapsulation. Encapsulation is about programmers
ignoring the internal operation of objects and only being able to see their
available methods. Some of these methods that we will create will not be for
“external consumption,” but they will serve as support for other methods of
the class, which we do want to be used from other sections of the program.
Some languages allow the hiding of methods and properties. In the jargon,
this is called “to make a method private.” Python does not allow the hiding
of a method, because it is one of its premises not to be in the way of the
programmer. But it has a syntax that makes it difficult to access a method
or a property from outside of a class. This is called mangling and its syntax
consists of adding two underscores at the beginning (but not at the end) of
the name of the method or attribute that we want to be private. Let’s see an
example of a class that defines 2 methods, a and b:

class TestClass:
def a(self):

© 2010 by Taylor and Francis Group, LLC

Introduction to Object Orienting Programming (OOP) 155

pass
def __b(self):

mangled to _TestClass__b
pass

Trying to access to b() raises an error:

>>> MyObject = TestClass()
>>> MyObject.a()
>>> MyObject.__b()

Traceback (most recent call last):
File "<pyshell#14>", line 1, in <module>

MyObject.__b()
AttributeError: TestClass instance has no attribute ’__b’

It is possible to access the method a, but not b, at least not directly. The
notation object. Class method should be used. For example:

>>> MyObject._TestClass__b()

You may be wondering what the point is of a privacy method that is not
really private. On one hand the methods that have this “semi-protection”
are inherited/associated with the child classes (and the name space is not
contaminated). On the other, when an object is explored using dir, this class
of objects won’t be seen. An important thing to consider is that the protection
offered by this notation is a convention to know how to proceed more than a
real protection.

8.7 Additional Resources

• Python Programming/OOP:
http://en.wikibooks.org/wiki/Python_Programming/OOP

• Introduction to OOP with Python:
http://www.voidspace.org.uk/python/articles/OOP.shtml

• Dive into Python (Mark Pilgrim). Chapter 5. “Objects and Object-
Orientation”:
http://diveintopython.org/object_oriented_framework

• Python Objects (Fredrik Lundh):
http://www.effbot.org/zone/python-objects.htm

© 2010 by Taylor and Francis Group, LLC

http://en.wikibooks.org
http://www.voidspace.org.uk
http://diveintopython.org
http://www.effbot.org
http://www.effbot.org
http://diveintopython.org
http://www.voidspace.org.uk
http://en.wikibooks.org

156 Python for Bioinformatics

• Java Tutorial: Lesson: Object-Oriented Programming Concepts:
http://java.sun.com/docs/books/tutorial/java/concepts/

• Introduction to New-Style Classes in Python:
http://www.geocities.com/foetsch/python/new_style_classes.htm

© 2010 by Taylor and Francis Group, LLC

http://java.sun.com
http://www.geocities.com
http://www.geocities.com
http://java.sun.com

Introduction to Object Orienting Programming (OOP) 157

8.8 Self-Evaluation

1. Why is Python often characterized as a multi-paradigm language?

2. Name the main characteristics of Object-Oriented Programming (OOP).

3. Explain the following concepts: Inheritance, Encapsulation and Poly-
morphism.

4. What is the difference between class attributes and instance attributes?

5. What is a special method attribute? Name at least four.

6. What is the difference between str and repr

7. What is a private method? Are they really private in Python?

8. Why were “new style” classes introduced?

9. Define a class that keeps track of how many instances have instantiated.

10. Define a new type based in a built-in type.

© 2010 by Taylor and Francis Group, LLC

Chapter 9

Regular Expressions

9.1 Introduction to Regular Expressions (REGEX)

A common feature of every scripting language is support of regular expres-
sion (REGEX in programming jargon). What are regular expressions? They
are expressions that sumarize a text pattern. A known case of regular ex-
pression is the abreviations used in most operating systems, like using “ls
*.py” (or “dir *.py”) to list all files ended in “.py”. These are known as
wildchars.

When doing text processing it is often necessary to give special treatment to
strings containing a specific condition. For example, you may want to extract
everything that is between <pre> and </pre> in an html file, or remove from
a file any character that is not A, T, C, or G.

Biological applications of this feature are straightforward. Regular expres-
sions can be used to locate domains in proteins, sequence patterns in DNA
like CpG islands, repeats, restriction enzyme, nuclease recognition sites and
so on. There are even biological databases devoted to protein domains, like
PROSITE.1

Nevertheless, your programming needs may not include the use of regular
expressions. In this case, you can skip this chapter and read it when you need
it. The rest of this book can be read without knowledge of regular expressions.

Each language has its own REGEX syntax. In Python, this syntax is close
to the one used in Perl. So if you know Perl, learning Python REGEX is easy.
If you never heard of REGEX before, don’t worry, basic REGEX syntax is
not so hard to learn. Some REGEX could turn into obscure and complex
expressions in specific cases. Due to this potential complexity, there are even
whole books on this subject.2

1http://www.expasy.ch/prosite/
2Please see Additional Resources for book recommendations.

159

© 2010 by Taylor and Francis Group, LLC

http://www.expasy.ch
http://www.expasy.ch

160 Python for Bioinformatics

9.1.1 REGEX Syntax

In general the letters and characters match with themselves. “Python” is
going to match with “Python” (but not with “python”). The exceptions to
this rule are metacharacters, which are characters that have a special meaning
in the context of the REGEX:

. ^ $ * + ? { [] \ | ()

Let’s see the meaning of most commonly used special characters:
. (dot): Matches any character, except new line: “ATT.T” will match

“ATTCT”, “ATTFT” but not “ATTTCT”.
ˆ(carat): Matches the beginning of the chain: “ˆAUG” will match “AU-

GAGC” but not “AAUGC”. Using inside a group means “opposite”.
$(dollar): Matches the end of the chain or just before a new line at the

end of the chain: “UAA$” will match “AGCUAA” but not “ACUAAG”.
* (star): Matches 0 or more repetitions of the preceding token: “AT*” will

match “AAT”, “A”, but not “TT”.
+ (plus): The resulting REGEX will match 1 or more repetitions of the

preceding REGEX: “AT+” will match “ATT”, but not “A”.
? (question mark): The resulting REGEX matches 0 or 1 repetitions of

the preceding RE. “AT?” will match either “A” or “AT”.
(...): Matches whatever regular expression is inside the parentheses, and

indicates the start and end of a group. To match the literals ”(” or ”)”, use
\(or \), or enclose them inside a character class: [(] [)].

(?:...): A non-grouping version of regular parentheses. The substring
matched by the group cannot be retrieved after performing a match.

{n}: Exactly n copies of the previous REGEX will match: “(ATTG){3}”
will match “ATTGATTGATTG” but not “ATTGATTG”.

{m,n}: The resulting REGEX will match from m to n repetitions of
the preceding REGEX: “(AT){3,5}” will match “ATATTATATAT” but not
“ATATTATAT”. Without m, it will match from 0 repetitions. Without n, it
will match all repetitions.

[] (square brackets): Indicates a set of characters. “[A-Z]” will match
any uppercase letter and “[a-z0-9]” will match any lowercase letter or digit.
Meta characters are not active inside REGEX sets. “[AT*]” will match “A”,
“T” or “*”. The ˆinside a set will math the complement of a set. “[ˆR]” will
match any character but “R”.

”\” (backslash): Used to escape reserved characters (to match characters
like “?”, “*”). Since Python also uses backslash as the escape character, you
should pass a raw string to express the pattern.
| (vertical bar): As in logic, it reads as “or”. Any number of REGEX can

be separated by “|”. “A|T” will match “A”, “T” or “AT”.
There are also special sequences with “\” and a character. They are listed

in Table 9.1.

© 2010 by Taylor and Francis Group, LLC

Regular Expressions 161

TABLE 9.1: REGEX Special Sequences

Name
Description

\number The contents of the group of the same number, starting
from 1

\A Only at the start of the string
\b The empty string, only at the beginning or end of a word
\B The empty string, only when it is not at the beginning or

end of a word
\d Any decimal digit (as [0-9])
\D Any non-digit (as [ˆ0-9])
\s Any whitespace character (as [\t\n\r\f\v])
\S Any non-whitespace character (as [ˆ\t\n\r\f\v])
\w Any alphanumeric character (as [a-zA-Z0-9])
\W Any non-alphanumeric character (as [ˆa-zA-Z0-9]
\Z Only the end of the string

9.2 The re Module

The re module provides methods like compile, search, findall, match, and
other. These functions are used to process a text using a pattern built with
the REGEX syntax.

A basic search works like this:

>>> import re
>>> mo = re.search("hello","Hello world, hello Python!")

The search from re method requires a pattern as a first argument and as
a second argument, a string where the patter will be searched. In this case
the pattern can be translated as “H or h, followed by ello”. When a match
is found, this function returns a match object (called mo in this case) with
information about the first match. If there is no match, it returns None. A
match object can be queried with methods shown here:

>>> mo.group()
’hello’
>>> mo.span()
(13, 18)

group() returns the string matched by the REGEX, while span() returns
a tuple containing the (start, end) positions of the match (that is the (0, 5)
returned by mo.span()).

This result is very similar to what the index method returns:

© 2010 by Taylor and Francis Group, LLC

162 Python for Bioinformatics

>>> "Hello world, hello Python!".index("hello")
13

The difference lies in the chance of using REGEX instead of plain strings.
For example we would like to match “Hello” and “hello”:

>>> import re
>>> mo = re.search("[Hh]ello","Hello world, hello Python!")

The first match now is,

>>> mo.group()
’Hello’

re.findall

To find all the matches, and not just the first one, use findall:

>>> re.findall("[Hh]ello","Hello world, hello Python,!")
[’Hello’, ’hello’]

Note that findall returns a list with the actual matches instead of match
objects.

re.finditer

If we want to have a match object for each match, there is the finditer
method. As an additional bonus, it doesn’t return a list, but an iterator. This
means that each time finditer is invoked it returns the next element without
having to calculate them all at once. As with any iterator, this optimizes
memory usage:

>>> re.finditer("[Hh]ello","Hello world, hello Python,!")
<callable-iterator object at 0xb6f43d8c>

Walking on the results:

>>> mos = re.finditer("[Hh]ello","Hello world, hello Python,!")
>>> for x in mos:

print x.group()
print x.span()

Hello
(0, 5)
hello
(13, 18)

© 2010 by Taylor and Francis Group, LLC

Regular Expressions 163

re.match

There is a match method that works like search but it looks only at the
start of a string. When the pattern is not found, it returns None:

>>> mo = re.match("hello", "Hello world, hello Python!")
>>> print mo
None

Ah search, when the pattern is found, it returns a match object:

>>> mo = re.match("Hello", "Hello world, hello Python!")
>>> mo
<_sre.SRE_Match object at 0xb7b5eb80>

This match object can be queried as before:

>>> mo.group()
’Hello’
>>> mo.span()
(0, 5)

9.2.1 Compiling a Pattern

A pattern can be compiled (converted to an internal representation) to
speed up the search. This step is not mandatory but recommended for large
amounts of text. Let’s see findall with a regular pattern and then with a
“compiled” pattern (rgx):

>>> re.findall("[Hh]ello","Hello world, hello Python,!")
[’Hello’, ’hello’]
>>> rgx = re.compile("[Hh]ello")
>>> rgx.findall("Hello world, hello Python,!")
[’Hello’, ’hello’]

Compiled patterns have all methods available in the re module:

>>> rgx = re.compile("[Hh]ello")
>>> rgx.search("Hello world, hello Python,!")
<_sre.SRE_Match object at 0xb6f494f0>
>>> rgx.match("Hello world, hello Python,!")
<_sre.SRE_Match object at 0xb6f493d8>
>>> rgx.findall("Hello world, hello Python,!")
[’Hello’, ’hello’]

Program 9.1 shows how to compile a pattern in the context of a search:

© 2010 by Taylor and Francis Group, LLC

164 Python for Bioinformatics

Listing 9.1: Find the first “TAT” repeat (py3.us/31)

1 import re
2 seq = "ATATAAGATGCGCGCGCTTATGCGCGCA"
3 rgx = re.compile("TAT")
4 i = 1
5 for mo in rgx.finditer(seq):
6 print(’Ocurrence %s: %s’%(i,mo.group()))
7 print(’Position: From %s to %s’%(mo.start(),mo.end()))
8 i += 1

Code explanation: In line 3 the pattern (TAT) is compiled. The compiled
object returned in line 3 (rgx) has the methods found in the re module,
like finditer. This operation returns a “match” type object (mo). From
this object, in lines 6 and 7, the group and span methods are invoked.
Note that mo.start() and mo.end() are equivalent to mo.span()[0] and
mo.span()[1].

This is the result of running the program:

Ocurrence 1: TAT
Position: From 1 to 4
Ocurrence 2: TAT
Position: From 18 to 21

Groups

Sometimes you need to match more than one pattern; this can be done by
grouping. Groups are marked by a set of parentheses (“()”). Groups can be
“capturing” (“named” or “unnamed”) and “non-capturing.” The difference
between them will be clear later.

A “capturing” group is used when you need to retrieve the contents of a
group. Groups are captured with groups. Don’t confuse group with groups.
As seen on page 161, group returns the string matched by the REGEX.

>>> import re
>>> seq = "ATATAAGATGCGCGCGCTTATGCGCGCA"
>>> rgx = re.compile("(GC){3,}")
>>> result = rgx.search(seq)
>>> result.group()
’GCGCGCGC’

This case is just like code snipet shown in page 162. Instead, groups return
a tuple with all the subgroups of the match. In this case, since search returns
one match and there is one group in the pattern, the result is a tuple with
one group:

© 2010 by Taylor and Francis Group, LLC

Regular Expressions 165

>>> result.groups()
(’GC’,)

There is a “CG” group, like in the pattern. If you want to whole pattern
returned by groups, you need to declare another group like in this example:

>>> rgx = re.compile("((GC){3,})")
>>> result = rgx.search(seq)
>>> result.groups()
(’GCGCGCGC’, ’GC’)

Both groups present in the pattern are retrieved (counting from left to
right). This is this way because by default every group is “capturing.” If
you don’t need the internal subgroup (the “CG” group), you can label as
“non-capturing.” This is done by adding “?:” at the beginning of the group:

>>> # Only the inner group is non-capturing
>>> rgx = re.compile("((?:GC){3,})")
>>> result = rgx.search(seq)
>>> result.groups()
(’GCGCGCGC’,)

findall also behaves differently if there is a group in the pattern. Without
a group it returns a list of matching strings (as seen on page 162). If there
is one group in the pattern, it returns a list with the group. If there is more
than one group, it return a list of tuples:

>>> rgx = re.compile("TAT") # No group at all.
>>> rgx.findall(seq) # This returns a list of matching strings.
[’TAT’, ’TAT’]
>>> rgx = re.compile("(GC){3,}") # One group. Return a list
>>> rgx.findall(seq) # with the group for each match.
[’GC’, ’GC’]
>>> rgx = re.compile("((GC){3,})") # Two groups. Return a
>>> rgx.findall(seq) # list with tuples for each match.
[(’GCGCGCGC’, ’GC’), (’GCGCGC’, ’GC’)]
>>> rgx = re.compile("((?:GC){3,})") # Using a non-capturing
>>> rgx.findall(seq) # group to get only the matches.
[’GCGCGCGC’, ’GCGCGC’]

Groups can be labeled to refer to them later. To give a name to a group,
use: ?P<name>. Code 9.2 shows how to use this feature:

Listing 9.2: Find multiple sub-patterns (py3.us/32)

1 import re
2 rgx = re.compile("(?P<TBX>TATA..).*(?P<CGislands>(?:GC){3,})")

© 2010 by Taylor and Francis Group, LLC

166 Python for Bioinformatics

3 seq = "ATATAAGATGCGCGCGCTTATGCGCGCA"
4 result = rgx.search(seq)
5 print(result.group(’CGislands’))
6 print(result.group(’TBX’))

This program returns:

GCGCGC
TATAGA

9.2.2 REGEX Examples

As a REGEX example, code 9.3 shows how many lines in a given file have a
pattern entered from the command line.3 The program is executed like this:
program name.py file name pattern
Where file name is the name of the file where pattern is searched.

Listing 9.3: Count lines with a user-supplied pattern on it

1 import re, sys
2 myregex = re.compile(sys.argv[2])
3 counter = 0
4 fh = open(sys.argv[1])
5 for line in fh:
6 if myregex.search(line):
7 counter += 1
8 fh.close()
9 print(counter)

Code explained: The re module is imported and the expression to search
is “compiled” (line 1 and 2). This “compilation” is optional but recommended.
It accelerates the search by compiling the REGEX into an internal structure
that is later used by the interpreter. sys.argv is a list of strings. Each
string is an argument taken from the command line. If the command line is
program.py word myfile.txt, the contents of sys.argv is [’program.py’,
’word’, ’myfile.txt’]. In line 4 the program opens the file entered as the
first argument. In line 5 it parses the open file and in 5 and 6 it does the regular
expression search “Python” within each line. If the expression is found, the
counter variable (counter) is incremented (line 7).

This script doesn’t count how many occurrences of your word are in the
file. If a word is repeated more than once in the same line, it is counted as
one. The following script counts all the occurrences of a given pattern:

3There are more efficient ways to accomplish this, like using the Unix grep command, but
it is shown here for a didactic purpose.

© 2010 by Taylor and Francis Group, LLC

Regular Expressions 167

Listing 9.4: Count the occurrence of a pattern in a file (py3.us/33)

1 import re, sys
2 myregex = re.compile(sys.argv[2])
3 i = 0
4 fh = open(sys.argv[1])
5 for line in fh:
6 i += len(myregex.findall(line))
7 fh.close()
8 print(i)

Tip: Testing a REGEX with Kodos.
Kodos is a nice GUI utility (made in Python) that allows you to test and

debug your regular expressions. It has a window where you enter your REGEX
pattern and another window where you enter a string to test your REGEX
pattern against. As a result you will have the matching group information (if
applicable), the match of the REGEX pattern in relation to the text string by
using colors and several variations of using the REGEX pattern in a Python
application.

The program is released under the GNU Public License (GPL) and it is
available at http://kodos.sourceforge.net.

9.2.3 Pattern Replace

The re module, can be used to replace patterns, with the sub function:

re.sub

sub(rpl,str[,count=0]): Replace rpl with the portion of the string (str)
that coincides with the REGEX to which it applies. The third parameter,
which is optional, indicates how many replacements we want made. By default
the value is zero and means that it replaces all of the occurrences. It is very
similar to the string method called replace, just that instead of replacing one
text for another, the replaced text is located by a REGEX.

Listing 9.5: Delete GC repeats (more than 3 GC in a row) (py3.us/34)

1 import re
2 regex = re.compile("(?:GC){3,}")
3 seq="ATGATCGTACTGCGCGCTTCATGTGATGCGCGCGCGCAGACTATAAG"
4 print "Before:",seq
5 print "After:",regex.sub("",seq)

© 2010 by Taylor and Francis Group, LLC

http://kodos.sourceforge.net
http://kodos.sourceforge.net

168 Python for Bioinformatics

The product of this program is

Before: ATGATCGTACTGCGCGCTTCATGTGATGCGCGCGCGCAGACTATAAG
After: ATGATCGTACTTTCATGTGATAGACTATAAG

re.subn

subn(rpl,str[,count=0]): It has the same function as sub, differing in
that instead of returning the new string, it returns a tuple with two elements:
the new string and the number of replacements made. This function is used
when, in addition to replacing a pattern in a string, it’s required to know how
many replacements have been made.

With this we have a very general vision of the possibilities that Regular
Expressions open for us. The idea was to give an introduction to the subject
and tools to start making our own REGEX. Next, we will see an example use
of what has been learned so far.

9.3 REGEX in Bioinformatics

As I mentioned at the beginning of the chapter, the REGEX can be used
to search PROSITE style patterns.4 The patterns are sequences of characters
that describe a group of sequences in a condensed form. For example, the
following is the pattern for the active site of the enzyme isocitrate lyase:

K-[KR]-C-G-H-[LMQR]

This pattern is interpreted as: a K in the first position, a K or R in the
second, then the sequence CGH and finally, one of the following amino acids:
L ,M, Q or R. If we want to search for this pattern in this sequence, as a first
measure one must convert the pattern from PROSITE to a Python REGEX.
The conversion in this case is immediate:

"K[KR]CGH[LMQR]"

To change a PROSITE profile to REGEX basically consists of removing
the hyphens (-), replacing the numbers between parentheses with numbers
between braces and replacing the “x” with a period. Let’s see an example of
the adenylyl cyclase associated protein 2:

PROSITE version:

4If you are not familiar with protein patterns, please take a look at the PROSITE user
manual, located at: http://www.expasy.org/prosite/prosuser.html.

© 2010 by Taylor and Francis Group, LLC

http://www.expasy.org
http://www.expasy.org

Regular Expressions 169

[LIVM](2)-x-R-L-[DE]-x(4)-R-L-E

REGEX version:

"[LIVM]{2}.RL[DE].{4}RLE"

Let’s suppose that we want to find a pattern of this type in a sequence in
FASTA format. Besides finding the pattern, we may need to retrieve it in a
context, that is, 10 amino acids before and after the pattern. Here is a sample
FASTA file:

>Q5R5X8|CAP2_PONPY CAP 2 - Pongo pygmaeus (Orangutan).
MANMQGLVERLERAVSRLESLSAESHRPPGNCGEVNGVIGGVAPSVEAFDKLMDSMVAEF
LKNSRILAGDVETHAEMVHSAFQAQRAFLLMASQYQQPHENDVAALLKPISEKIQEIQTF
RERNRGSNMFNHLSAVSESIPALGWIAVSPKPGPYVKEMNDAATFYTNRVLKDYKHSDLR
HVDWVKSYLNIWSELQAYIKEHHTTGLTWSKTGPVASTVSAFSVLSSGPGLPPPPPPPPP
PGPPPLLENEGKKEESSPSRSALFAQLNQGEAITKGLRHVTDDQKTYKNPSLRAQGGQTR
SPTKSHTPSPTSPKSYPSQKHAPVLELEGKKWRVEYQEDRNDLVISETELKQVAYIFKCE
KSTLQIKGKVNSIIIDNCKKLGLVFDNVVGIVEVINSQDIQIQVMGRVPTISINKTEGCH
IYLSEDALDCEIVSAKSSEMNILIPQDGDYREFPIPEQFKTAWDGSKLITEPAEIMA

The program in code 9.6 reads the FASTA file.

Listing 9.6: Search a pattern in a FASTA file (py3.us/89)

1 import re
2 pattern = "[LIVM]{2}.RL[DE].{4}RLE"
3 fh = open(’/home/sb/bioinfo/prot.fas’)
4 fh.readline() # Discard the first line.
5 seq = ""
6 for line in fh:
7 seq += line.strip()
8 rgx = re.compile(pattern)
9 result = rgx.search(seq)

10 patternfound = result.group()
11 span = result.span()
12 leftpos = span[0]-10
13 if leftpos<0:
14 leftpos = 0
15 print(seq[leftpos:span[0]].lower()+patternfound+
16 seq[span[1]:span[1]+10].lower())
17 fh.close()

The result of this program is

lrsyrrdewaLLTRLDAQWERLElwmdrfatki

© 2010 by Taylor and Francis Group, LLC

170 Python for Bioinformatics

Code explanation: Up to line 7 the program reads the FASTA file and
stores the protein sequence (seq). In line 8 the pattern defined in line 2 is
compiled. The search is done at line 9. From line 10 onwards the program
works on displaying the result. As requested, the resulting pattern is shown
in a context of 10 amino acids on each side.

9.3.1 Cleaning Up a Sequence

It’s more than common to find a file with sequences in a nonstandard for-
mat, such as the following sequence:

1 ATGACCATGA TTACGCCAAG CTCTAATACG ACTCACTATA GGGAAAGCTT GCATGCCTGC

61 AGGTCGACTC TAGAGGATCT ACTAGTCATA TGGATATCGG ATCCCCGGGT ACCGAGCTCG

121 AATTCACTGG CCGTCGTTTT

The following code reads a text file with the sequence in this format and
returns only the sequence, without any strange (number or whitespace) char-
acter:

Listing 9.7: Cleans a DNA sequence

1 import re
2 regex = re.compile(’ |\d|\n|\t’)
3 seq = ’’
4 for line in open(’pMOSBlue.txt’):
5 seq += regex.sub(’’,line)
6 print seq

This program prints:

ATGACCATGATTACGCCAAGCTCTAATACGACTCACTATAGGGAAAGCTTGCATGCCTGC<=
AGGTCGACTCTAGAGGATCTACTAGTCATATGGATATCGGATCCCCGGGTACCGAGCTCG<=
AATTCACTGGCCGTCGTTTT

Code explained: Line 2 defines the characters we are going to search
for removal. In this case the characters are: whitespaces, numbers, carriage
return and tabs. In lines 4 and 5 the program parses all the lines of the file
(pMOSBlue.txt) and removes the pattern each time it’s found.

9.4 Additional Resources

• Jeffrey EF Friedl, “Mastering Regular Expressions,” Third Edition,
2006, O’Reilly Media.

© 2010 by Taylor and Francis Group, LLC

Regular Expressions 171

http://www.oreilly.com/catalog/regex2

• Tony Stubblebine, “Regular Expression Pocket Reference,” Second Edi-
tion, 2007. O’Reilly Media.
http://www.oreilly.com/catalog/9780596514273/

• “The Premier Web site about Regular Expressions.”
http://www.regular-expressions.info.

• “The Python Regular Expression Debugger.” Local application to test
your regular expressions. See Tip on page 167 for more information.
http://kodos.sourceforge.net

• “Regular Expressions in Java.” Test your regular expressions online.
http://www.javaregex.com/test.html

• “Python Regular Expression Builder.” Pyreb is a wxPython GUI to the
re python module; it will speed up the development of Python regular
expression (similar to PCRE).
http://savannah.nongnu.org/projects/pyreb

• Harry J Mangalam. “tacg - a grep for DNA.” BMC Bioinformatics 2002,
3:8.
http://www.biomedcentral.com/1471-2105/3/8

© 2010 by Taylor and Francis Group, LLC

http://www.oreilly.com
http://www.oreilly.com
http://www.regular-expressions.info
http://kodos.sourceforge.net
http://www.javaregex.com
http://savannah.nongnu.org
http://www.biomedcentral.com
http://www.biomedcentral.com
http://savannah.nongnu.org
http://www.javaregex.com
http://kodos.sourceforge.net
http://www.regular-expressions.info
http://www.oreilly.com
http://www.oreilly.com

172 Python for Bioinformatics

9.5 Self-Evaluation

1. What is a REGEX?

2. What is the difference between a “capturing” and a “non-capturing”
group?

3. How text patterns search can be applied to biology?

4. Line 13 of Code 9.6 (page 169) is checked if the value leftpos is less
than 0. Why?

5. In Code 9.7, the pattern used was “|\d|\n|\t”. What other alternative
could have been employed?

6. Make a program that retrieves all phone number found in a file. The
numbers must be in the format nnn-nnn-nnnn, where n is a number.

7. Make a program to retrieve every e-mail ending in .com present in every
file in a given directory.

8. Make a program to sort if a sequence is made out of DNA or amino acids.
Hint: DNA sequences can only have these characters: “ATCGN.”

9. Write a REGEX pattern to detect a HindII restriction site. This enzyme
recognizes the DNA sequence GTYRAC (where “Y” means “C” or “T” and
“R” means “G” or “A”).

10. What is the meaning of the following REGEX and write a string that
match with it.

"[0-9]{1,4}/[0-9]{1,2}/[0-9]{1,2}"

© 2010 by Taylor and Francis Group, LLC

Part II

Biopython

© 2010 by Taylor and Francis Group, LLC

Chapter 10

Introduction to Biopython

10.1 What Is Biopython?

Biopython1 is a package of useful modules to develop bioinformatics ap-
plications. Although each bioinformatics analysis is unique, there are some
tasks that are repeated, constants shared between programs and standard file
formats. This situation suggests the need for a package to deal with biological
problems.

Biopython started as an idea in August of 1999, it was an initiative by
Jeff Chang and Andrew Dalke. Although they came up with the idea, col-
laborators soon joined the project. Among the most active developers, Brad
Chapman, Peter Cock, Michiel de Hoon and Iddo Friedberg stand out. The
project began to take code form in February 2000 and in July of the same year
the first release was made. The original idea was to build a package equiv-
alent to BioPerl which back then was the principal bioinformatics package.
Although BioPerl may have been Biopython’s inspiration, the conceptual dif-
ferences between Perl and Python have given Biopython a particular way of
doing things. Biopython is part of the family of open-bio projects (also known
as Bio*), for which institutionally it is a member of the Open Bioinformatics
Foundation.2

10.1.1 Project Organization

It is an open source community project. Although the Open Bioinformat-
ics Foundation takes care of administrative, economic and legal aspects, its
content is managed by the programmers and users.

Anyone can participate in the project. The code is public domain and is
available in CVS form through the Web.3 The procedure that you have to

1Available from http://www.biopython.org.
2http://www.open-bio.org
3The following address is likely to change as Biopython moves from CVS to Git or an-
other version control system: http://cvs.biopython.org/cgi-bin/viewcvs/viewcvs.cgi/
?cvsroot=biopython Please see http://biopython.org/wiki/GitMigration for more infor-
mation on the migration to Git distributed version control.

175

© 2010 by Taylor and Francis Group, LLC

http://www.biopython.org
http://www.open-bio.org
http://cvs.biopython.org
http://biopython.org
http://cvs.biopython.org
http://cvs.biopython.org
http://biopython.org
http://cvs.biopython.org
http://www.open-bio.org
http://www.biopython.org

176 Python for Bioinformatics

follow to collaborate on Biopython is similar to other open source projects.
You have to use the software and then determine if it needs any additional
features or if you want to modify any of the existing features. Before writing
any code my recommendation is to discuss your ideas on the development
mailing list.4 first There you will find out if that feature had already been
discussed and was rejected or if it was not included because no one needed it
until that time. In the case of a bug fix, you don’t need to ask, just report
it in the bug tracking software,5 and if possible, add a solution proposal. If
what we have is a proposal for improvement and there weren’t any objections
from the list, we can send the code using the bug tracking system, although
it has to be marked as “enhancement” in the “Severity” drop-down menu.

Due to the open nature of the project tens of people have contributed
code from diverse fields within Bioinformatics, from information theory to
population genetics.

I was involved in Biopython as a user since 2002 and submited my first
contribution on 2003 with lcc.py, a function to calculate the local composi-
tional complexity of a sequence. In 2004 I submitted code for melting point
calculation of oligonucleotides. My last submission was some functions for the
CheckSum module in 2007.6 In every case I found a supportive community,
especially in the first submission when my coding skills were at a beginner
level.

For more information concerning how to participate in the Biopython project,
see the specific instructions at http://biopython.org/wiki/Contributing.

The Biopython code is developed under the “Biopython License.7” It is
very liberal and there are virtually no restrictions to its use.8

10.2 Biopython Components

Biopython has various modules. Some facilitate tasks that are undertaken
on a daily basis in a molecular biology laboratory while others have very
specific objectives. What is “commonly used” will depend on the work envi-
ronment of the reader, but after having worked giving IT support to molecular

4http://lists.open-bio.org/mailman/listinfo/biopython-dev
5http://bugzilla.open-bio.org
6Bassi, Sebastian and Gonzalez, Virginia. New checksum functions for Biopython. Avail-
able from Nature Precedings <http://dx.doi.org/10.1038/npre.2007.278.1> (2007).
7The license is included in the biopython package and available online at http://www.

biopython.org/DIST/LICENSE.
8The only condition imposed for using Biopython are related to publishing the copyright
notice and not to use the name of the contributors in advertising.

© 2010 by Taylor and Francis Group, LLC

http://biopython.org
http://dx.doi.org
http://www.biopython.org
http://lists.open-bio.org
http://bugzilla.open-bio.org
http://www.biopython.org
http://www.biopython.org
http://bugzilla.open-bio.org
http://lists.open-bio.org
http://www.biopython.org
http://dx.doi.org
http://biopython.org

Introduction to Biopython 177

biologists at a biotech research center, reading the mailing list for Biopython
for a few years and doing consulting work, I think I can identify key modules.

As with all enumerations, it is arbitrary and it is possible that it would
not reflect the interests of all readers. It’s sorted in didactic fashion with the
intention that the first items will help you to understand the rest.

10.2.1 Alphabet

In bioinformatics we constantly deal with alphabets. DNA has a 4 letter
alphabet (A,C,T,G) while proteins have their 20 amino acids, each one repre-
sented by a letter of the alphabet. There are also special “alphabets” like the
ones that contemplate ambiguity positions, these are, positions where more
than one nucleotide may be present. For example the letter S may represent
the nucleic acids C or G, the letter H represents A, C, or T. This ambiguous al-
phabet in Python is called ambiguous dna. Concerning the proteins, there is
also an extended dictionary, which is, the dictionary that contains amino acids
that are not normally found in proteins9 (ExtendedIUPACProtein). Simi-
larly, there is an extended alphabet for nucleotides (ExtendedIUPACDNA)
that allows letters with modified bases. Going back to proteins, there is also
a reduced alphabet that, taking into account common physicochemical prop-
erties, lumps together several amino acids into one letter.

There is even one alphabet that is not DNA or amino-acid based: Sec-
ondaryStructure. This alphabet represents domains like Helix, Turn, Strand
and Coil.

Alphabets defined by IUPAC are stored in Biopython as classes of the IU-
PAC module. Parent module (Bio.Alphabet) includes more general/generic
cases. Here are some attributes of the alphabets:

>>> import Bio.Alphabet
>>> Bio.Alphabet.ThreeLetterProtein.letters
[’Ala’, ’Asx’, ’Cys’, ’Asp’, ’Glu’, ’Phe’, ’Gly’, ’His’, <=
’Ile’, ’Lys’, ’Leu’, ’Met’, ’Asn’, ’Pro’, ’Gln’, ’Arg’, <=
’Ser’, ’Thr’, ’Sec’, ’Val’, ’Trp’, ’Xaa’, ’Tyr’, ’Glx’]
>>> from Bio.Alphabet import IUPAC
>>> IUPAC.IUPACProtein.letters
’ACDEFGHIKLMNPQRSTVWY’
>>> IUPAC.unambiguous_dna.letters
’GATC’
>>> IUPAC.ambiguous_dna.letters
’GATCRYWSMKHBVDN’
>>> IUPAC.ExtendedIUPACProtein.letters
’ACDEFGHIKLMNPQRSTVWYBXZ’

9Selenocysteine and pyrrolysine are typical examples.

© 2010 by Taylor and Francis Group, LLC

178 Python for Bioinformatics

>>> IUPAC.ExtendedIUPACDNA.letters
’GATCBDSW’

Alphabets are used to define the content of a sequence. How do you know
that sequence made of “CCGGGTT” is a small peptide with several cys-
teine, glycine and threonine or it is a DNA fragment of cytosine, guanine and
thymine? If sequences were stored as strings, there would be no way to know
what kind of sequence it is. This is why Biopython introduces Seq objects.

10.2.2 Seq

This object is composed of the sequence itself and an alphabet that defines
the nature of the sequence.

Let’s create a sequence object as a DNA fragment:

>>> from Bio.Seq import Seq
>>> import Bio.Alphabet
>>> seq = Seq(’CCGGGTT’,Bio.Alphabet.IUPAC.unambiguous_dna)

Since this sequence (seq) is defined as DNA, you can apply operations
that are permitted to DNA sequences. Seq objects have the transcribe and
translate methods:

>>> seq.transcribe()
Seq(’CCGGGUU’, IUPACUnambiguousRNA())
>>> seq.translate()
Seq(’PG’, IUPACProtein())

An RNA sequence can’t be transcribed, but it can be translated:

>>> rna_seq = Seq(’CCGGGUU’,Bio.Alphabet.IUPAC.unambiguous_rna)
>>> rna_seq.transcribe()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/sb/Seq.py", line 520, in transcribe

raise ValueError("RNA cannot be transcribed!")
ValueError: RNA cannot be transcribed!
>>> rna_seq.translate()
Seq(’PG’, IUPACProtein())

You can go back from RNA to DNA using the back transcribe method

>>> rna_seq.back_transcribe()
Seq(’CCGGGTT’, IUPACUnambiguousDNA())

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 179

Tip: The Transcribe Function in Biopython.
Note that the transcribe function may not work as expected by most biol-
ogists. This function replaces each occurrence of “T” in the sequence with a
“U”. In biology, a transcription means replace each DNA nucleotide with its
complementary nucleotide and reverse the resulting string. transcribe func-
tion works this way because all biological publications show the non-template
strand. Biopython is assuming that you are giving to the function the non-
template strand. The Bio.Seq module also has transcribe, back transcribe
and translate functions that can be used on Seq objects or strings:

>>> from Bio.Seq import translate, transcribe, back_transcribe
>>> dnaseq = "ATGGTATAA"
>>> translate(dnaseq)
’MV*’
>>> transcribe(dnaseq)
’AUGGUAUAA’
>>> rnaseq = transcribe(dnaseq)
>>> translate(rnaseq)
’MV*’
>>> back_transcribe(rnaseq)
’ATGGTATAA’

Seq Objects as a String

Seq objects behave almost like a string, so many string operations are al-
lowed:

>>> seq = Seq(’CCGGGTTAACGTA’,Bio.Alphabet.IUPAC.unambiguous_dna)
>>> seq[:5]
Seq(’CCGGG’, IUPACUnambiguousDNA())
>>> len(seq)
13
>>> print seq
CCGGGTTAACGTA

This behaivor is constantly evolving, so expect more string-like features in
the next Biopython releases.10

If you need a string representation of a Seq object, since Biopython 1.45
you can use the Python built-in str() function. There is also a tostring()

10Biopython Bug# 2351 deals with this feature (http://bugzilla.open-bio.org/show_
bug.cgi?id=2351).

© 2010 by Taylor and Francis Group, LLC

http://bugzilla.open-bio.org
http://bugzilla.open-bio.org
http://bugzilla.open-bio.org
http://bugzilla.open-bio.org

180 Python for Bioinformatics

method that still works but it is recommended only if you want to make your
code compatible with older Biopython versions.

10.2.3 MutableSeq

Seq objects are not mutable. This is intended since you may want to keep
your data without changes. This way immutable seq matches Python string
behavior. Attempting to modify it raises an exception:

>>> seq[0]=’T’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: ’Seq’ instance has no attribute ’__setitem__’

This problem can be solved by generating a MutableSeq with the to-
mutable() method:

>>> mut_seq = seq.tomutable()
>>> mut_seq
MutableSeq(’CCGGGTT’, IUPACUnambiguousDNA())

Introduce a change to test that it is mutable:

>>> mut_seq[0]=’T’
>>> mut_seq
MutableSeq(’TCGGGTT’, IUPACUnambiguousDNA())

You can change the sequence as if it were a list, with append(), insert(),
pop() and remove(). There are also some methods specific for changing a
DNA sequence:

>>> mut_seq.reverse()
>>> mut_seq
MutableSeq(’TTGGGCT’, IUPACUnambiguousDNA())
>>> mut_seq.complement()
>>> mut_seq
MutableSeq(’AACCCGA’, IUPACUnambiguousDNA())
>>> mut_seq.reverse_complement()
>>> mut_seq
MutableSeq(’TCGGGTT’, IUPACUnambiguousDNA())

10.2.4 SeqRecord

The Seq class is important because it stores the main subject of study in
bioinformatics: The sequence. Sometimes we need more information than
the plain sequences, like the name, id, description, and cross references to

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 181

external databases and annotations. For all this information related with the
sequence, there is the SeqRecord class. In other words, a SeqRecord is a
Seq object with associated metadata:

>>> SeqRecord(seq, id=’001’, name=’My Sequence’)
SeqRecord(seq=Seq(’CCGGGTTAACGTA’, IUPACUnambiguousDNA()), <=
id=’001’, name=’My Sequence’, description=’<unknown descrip<=
tion>’, dbxrefs=[])

SeqRecord has two main attributes:

id A string with an identifier. This attribute is optional but highly recom-
mended.

seq A Seq object. This attribute is required.

There are some additional attributes:

name A string with the name of the sequence.

description A string with more information.

dbxrefs A list of strings, each string is a database cross reference id.

features A list of SeqFeature objects. This represents those Sequence Fea-
ture found in Genbank records. This attribute is usually populated
when we retrieve a sequence from a Genbank file (using for example
the SeqIO parser). It contains the sequence location, type, strand and
other variables.

annotations A dictionary with further information about the whole sequence.
This attribute can’t be set when initializing a SeqRecord object.

Creating a SeqRecord object from scratch:

>>> from Bio.SeqRecord import SeqRecord
>>> from Bio.Seq import Seq
>>> from Bio.Alphabet import generic_protein
>>> rec = SeqRecord(Seq("mdstnvrsgmksrkkkpkttvidddddcmtcsacqs"\

+ "klvkisditkvsldyintmrgntlacaacgsslkllndfas",
generic_protein),
id="P20994.1", name="P20994",
description="Protein A19",
dbxrefs=["Pfam:PF05077", "InterPro:IPR007769",
"DIP:2186N"])

>>> rec.annotations["note"] = "A simple note"

To create a SeqRecord from a Genbank file, please see page 187.

© 2010 by Taylor and Francis Group, LLC

182 Python for Bioinformatics

10.2.5 Align

The Align module contains code for dealing with alignments. The central
object of this module is the Alignment class. This object stores sequence
alignments. It is not meant for making alignments, it is supposed that the
sequences are already aligned before trying to store it in.

Here is a simple two small peptide sequence alignment:

MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW
|| ||||||||*|||||||||||||| ||
MH--IFIYQIGYALKSGYIQSIRSPEY-NW

This alignment can be stored in one object by using Biopython as in code
10.1:

Listing 10.1: Using Align module (py3.us/36)

1 # Import all required classes
2 from Bio import Alphabet
3 from Bio.Alphabet import IUPAC
4 from Bio.Align.Generic import Alignment
5 from Bio.Seq import Seq
6 # Create and name our two sequences
7 seq1 = ’MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW’
8 seq2 = ’MH--IFIYQIGYALKSGYIQSIRSPEY-NW’
9 # Initialize an alignment object

10 a = Alignment(Alphabet.Gapped(IUPAC.protein))
11 # Add the sequences to this alignment object
12 a.add_sequence("asp",seq1)
13 a.add_sequence("unk",seq2)

Code explanation: The Alignment class is instantiated in line 10. a is
the name of the Alignment object. Both sequences are added in line 12 and
13.

Let’s see the contents of this object:

>>> print a
ProteinAlphabet() alignment with 2 rows and 30 columns
Seq(’MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW’, ProteinAlphabet()) asp
Seq(’MH--IFIYQIGYALKSGYIQSIRSPEY-NW’, ProteinAlphabet()) unk

Here are the methods associated with Alignment:

• get all seqs: Retrieves all sequences stored in the alignment. It returns
a list with a SeqRecord object for each sequence. It can be used to
iterate over all the alignment sequences. The following code calculates
the isoelectric point of each sequence in the alignment:

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 183

from Bio.SeqUtils.ProtParam import ProteinAnalysis as PA
for s in a.get_all_seqs():

print PA(str(s.seq)).isoelectric_point()

Since the alignment object allows iteration over the records directly, this
code can be rewritten as,

from Bio.SeqUtils.ProtParam import ProteinAnalysis as PA
for s in a:

print PA(str(s.seq)).isoelectric_point()

• get seq by num(n): Retrieves only the selected sequence:

>>> str(a.get_seq_by_num(0))
’MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW’
>>> str(a.get_seq_by_num(1))
’MH--IFIYQIGYALKSGYIQSIRSPEY-NW’

Since Biopython 1.48 SeqRecord supports subindexes:

>>> a[0]
SeqRecord(seq=Seq(’MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW’, Gapped(<=
IUPACProtein(), ’-’)), id=’asp’, name=’<unknown name>’, des<=
cription=’asp’, dbxrefs=[])

Note that the subindexes return a SeqRecord object while get seq by num
returns a Seq object. To get the Seq object using subindexes, get it from
the resulting SeqRecord:

>>> a[0].seq
Seq(’MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW’, Gapped(IUPACProtein(), ’-’))
>>> str(a[0].seq)
’MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW’

• get alignment length(): Get the length of the alignment:

>>> a.get_alignment_length()
30

• get column(n): Returns a string with all the letters in the n column:

>>> a.get_column(0)
’MM’
>>> a.get_column(2)
’Q-’

© 2010 by Taylor and Francis Group, LLC

184 Python for Bioinformatics

This may change in the future since there are plans to also offer array
like access to the data.

The usefulness of the Align objects will be clear after reading the Clustalw
section in this chapter.

AlignInfo

The AlignInfo module is used to extract information from alignment ob-
jects. It provides the print info content function, the SummaryInfo and
PSSM class:

• print info content():

Let’s see them in action:

>>> from Bio.Align import AlignInfo
>>> from Bio.Align.AlignInfo import SummaryInfo
>>> summary = SummaryInfo(a)
>>> print(summary.information_content())
120.674950704
>>> summary.dumb_consensus()
Seq(’MHQAIFFIYQIGYPLKSGYIQSIRSPEYDNW’, ProteinAlphabet())
>>> summary.gap_consensus()
Seq(’MHQAI-FIYQIGYPLKSGYIQSIRSPEYDNW’, ProteinAlphabet())
>>> summary.get_column(2)
’Q-’
>>> summary.get_column(1)
’HH’
>>> summary.dumb_consensus()
Seq(’MHQAIFIYQIGYXLKSGYIQSIRSPEYDNW’, ProteinAlphabet())
>>> print summary.alignment
ProteinAlphabet() alignment with 2 rows and 30 columns
MHQAIFIYQIGYPLKSGYIQSIRSPEYDNW asp
MH--IFIYQIGYALKSGYIQSIRSPEY-NW unk

10.2.6 ClustalW

This module has clasess and functions to interact with ClustalW.11 You
may know ClustalX, a popular graphical multiple alignment program au-
thored by Julie Thompson and Francois Jeanmougin. ClustalX is a graphical
front-end for ClustalW, a command line multiple alignment program.

The main object in ClustalW is MultipleAlignCL. It is used to build
the ClustalW command line:

11This program is available from ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW.

© 2010 by Taylor and Francis Group, LLC

ftp://ftp-igbmc.u-strasbg.fr
ftp://ftp-igbmc.u-strasbg.fr

Introduction to Biopython 185

>>> from Bio.Clustalw import MultipleAlignCL
>>> cl = MultipleAlignCL(’inputfile.fasta’)
>>> cl.set_output(’cltest.txt’)
>>> print("Command line: %s"%cl)
Command line: clustalw inputfile.fasta -OUTFILE=cltest.txt

If the clustalw program is not in your system path, you have to spec-
ify its location when initializing the object. For example, if clustalw is
in c:\windows\program file\clustal\clustalw.exe, MultipleAlignCL
is initialized as:

>>> clpath=’c:\\windows\\program file\\clustal\\clustalw.exe’
>>> cl = MultipleAlignCL(’inputfile.fasta’,command=clpath)

To run the program use the do alignment(command line) function:

>>> from Bio.Clustalw import do_alignment
>>> align = do_alignment(cl)

The function returns an Alignment object (the same object already seen on
page 182):

>>> for seq in align.get_all_seqs():
print seq.description
print seq.seq

40|1tetH|gi|13278069
QVQLQQSDAELVKPGASVKISCKVSGYTFTDHT----IHWVKQRPE
139|1tetH|gi|19343851
QVQLLQSGPELVKPGASVKISCRASGYAFSKSW----MNWVKRRPG
84|8fabA|gi|18044241
SVLTQPP-SVSGAPGQRVTISCTGSSSNIG---AGYDVHWYQQLPG

Passing Parameters to ClustalW

Some parameters can be set as attributes:

>>> from Bio.Clustalw import MultipleAlignCL
>>> cl = MultipleAlignCL(’inputfile.fasta’)
>>> cl.gap_open_pen=5
>>> cl.gap_ext_pen=3
>>> cl.new_tree=’outtree.txt’
>>> print(cl)
clustalw inputfile.fasta -NEWTREE=outtree.txt -align -GAPOPEN=5<=
-GAPEXT=3

© 2010 by Taylor and Francis Group, LLC

186 Python for Bioinformatics

TABLE 10.1: Parameters for ClustalW

Attribute Name
Description

gap open pen Gap opening penalty
gap ext pen Gap extension penalty
is no end pen A flag as to whether or not there should be a gap separation

penalty for the ends
gap sep range The “pairs” and “simple” alignment format from the EM-

BOSS tools
is no pgap A flag to turn off residue specific gaps
is no hgap A flag to turn off hydrophilic gaps
h gap residues A list of residues to count a hydrophilic
max div A percent identity to use for delay
trans weight The weight to use for transitions

MultipleAlignCL parameters are in Table 10.1.
Some parameters are set via functions:

• output parameters: set output

– output file

– output type

– output order

– change case

– add seqnos

• a guide tree to use: set guide tree

– guide tree

– new tree

• matrices: set protein matrix and set dna matrix

– protein matrix

– dna matrix

• type of residues: set type

– type

Code 10.2 shows how to set up a ClustalW command line:

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 187

Listing 10.2: Set up a ClustalW command line (py3.us/37)

1 from Bio.Clustalw import MultipleAlignCL
2 from Bio.Clustalw import do_alignment
3
4 cl = MultipleAlignCL(’myseqs.fasta’)
5 cl.gap_open_pen = 5
6 cl.gap_ext_pen = 3
7 cl.type=’protein’
8 cl.set_output(’outfile.aln’, output_type=’PHYLIP’,
9 output_order=’ALIGNED’)

10 cl.set_protein_matrix(’PAM’)
11 # cl.set_guide_tree(’tree1.txt’)
12 cl.set_new_guide_tree(’newtree.txt’)
13 print cl

10.2.7 SeqIO

Bio.SeqIO is a common interface to input and output sequence file formats.
Sequences retrieved with this interface are passed to your program as Se-
qRecord objects. Bio.SeqIO can also read alignment file formats, and it will
return each record as a SeqRecord object. To retrieve an alignment as an
Alignment object, use the Bio.AlignIO module.

Reading Sequence Files

The method used for reading sequences is parse(file handle, format).
Where format can be “fasta”, “genbank” or any other present in table 11.1.
This parser returns a generator. The elements returned by this generator are
of the SeqRecord type:

>>> from Bio import SeqIO
>>> f_in = open(’/home/sb/bioinfo/a19.gbk’)
>>> SeqIO.parse(f_in,’genbank’).next()
SeqRecord(seq=Seq(’MDSTNVRSGMKSRKKKPKTTVIDDDDDCMTCSACQSKLVKISDIT<=
KVSLDYINT...FAS’, IUPACProtein()), id=’P20994.1’, name=’P20994’,<=
description=’Protein A19.’, dbxrefs=[])

Where there is only one sequence in the file, use SeqIO.read() instead of
SeqIO.parse():

>>> f_in = open(’/home/sb/bioinfo/a19.gbk’)
>>> SeqIO.read(f_in,’genbank’)
SeqRecord(seq=Seq(’MDSTNVRSGMKSRKKKPKTTVIDDDDDCMTCSACQSKLVKISDIT<=
KVSLDYINT...FAS’, IUPACProtein()), id=’P20994.1’, name=’P20994’,<=
description=’Protein A19.’, dbxrefs=[])

© 2010 by Taylor and Francis Group, LLC

188 Python for Bioinformatics

In Listing 10.3 there is a script that reads a file full of sequences in FASTA
format and displays the title and the length of each entry.

Listing 10.3: Read a FASTA file

1 from Bio import SeqIO
2 fh = open("myprots.fas")
3 for record in SeqIO.parse(fh, "fasta"):
4 id = record.id
5 seq = record.seq
6 print("Name: %s, size: %s"%(id,len(seq)))
7 fh.close()

Content of the input file:

Listing 10.4: A file with protein sequences in FASTA format

>Protein-X [Simian immunodeficiency virus]
NYLNNLTVDPDHNKCDNTTGRKGNAPGPCVQRTYVACH
>Protein-Y [Homo sapiens]
MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDA
>Protein-Z [Rattus norvegicus]
MKAAVLAVALVFLTGCQAWEFWQQDEPQSQWDRVKDFATVYVDAVKDSGRDYVSQFESST

Code 10.3 parses the file 10.4 and generates the following output:

Name: Protein-X, size: 38
Name: Protein-Y, size: 62
Name: Protein-Z, size: 60

Writing Sequence Files

SeqIO has a method for writing sequences: write(iterable, file handle,
format). The first parameter that this function takes is an iterable object
with SeqRecord objects (e.g. a list of SeqRecord objects). The second param-
eter is the file handle that will be used to write the sequences. The format
argument works as in parse.

Code 10.5 shows how to read a file with a sequence as a plain text and write
it as a FASTA sequence:

Listing 10.5: Read a file and write it as a FASTA sequence (py3.us/38)

1 from Bio import SeqIO
2 from Bio.Seq import Seq
3 from Bio.SeqRecord import SeqRecord
4 fh = open(’NC2033.txt’)

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 189

TABLE 10.2: Sequence and Alignment Formats

Format

name

Description Alignment

- Sequence

ace Reads the contig sequences from an ACE assembly
file.

S

clustal Ouput from Clustal W or X A
embl The EMBL flat file format. S
emboss The “pairs” and “simple” alignment format from the

EMBOSS tools.
A

fasta A simple format where each record starts with an
identifer line starting with a “>” character, followed
by lines of sequence.

A/S

fasta-m10 Alignments output by Bill Pearson’s FASTA tools
when used with the -m 10 command line option.

A

genbank The GenBank or GenPept flat file format. S
ig IntelliGenetics file format, also used by MASE. A/S
nexus Used by MrBayes and PAUP. See also the mod-

ule Bio.Nexus which can also read any phylogenetic
trees in these files.

A

phd Output from PHRED. S
phylip Used by the PHYLIP tools. A
stockholm Used by PFAM. A
swiss Swiss-Prot (UniProt) format. S
tab Simple two column tab separated sequence files. S

5 f_out = open(’NC2033.fasta’,’w’)
6 rawseq = fh.read().replace(’\n’,’’)
7 #record = [SeqRecord(Seq(rawseq),’NC2033.txt’,’’,’’)]
8 record = (SeqRecord(Seq(rawseq),’NC2033.txt’,’’,’’),)
9 SeqIO.write(record, f_out,’fasta’)

10 f_out.close()
11 fh.close()

Knowing how to read and write most biological file formats allows one to
read a file with sequences in one format and write them into another format:

from Bio import SeqIO
fo_handle = open(’myseqs.fasta’,’w’)
readseq = SeqIO.parse(open(’myseqs.gbk’), "genbank")
SeqIO.write(readseq, fo_handle, "fasta")
fo_handle.close()

There are more examples of SeqIO usage in Chapter 15.

© 2010 by Taylor and Francis Group, LLC

190 Python for Bioinformatics

10.2.8 AlignIO

AlignIO is the Input/Output interface for alignments. It works mostly as
SeqIO, but instead of returning a SeqRecord object, it returns an Alignment
object. It has three main methods: read, parse and write. The first two
methods are used for input and the last one for output.

• read(handle,format[,sec count]): Take the file handle and the align-
ment format as arguments and return an Alignment object.

>>> from Bio import AlignIO
>>> fn = open("secu3.aln")
>>> align = AlignIO.read(fn, "clustal")
>>> print align
SingleLetterAlphabet() alignment with 3 rows and 1098 columns
--------------------------------------...--- secu3
--------------------------------------...--- AT1G14990.1-CDS
GCTTTGCTATGCTATATGTTTATTACATTGTGCCTCTG...CAC AT1G14990.1-SEQ

The sec count argument can be used with any file format although it
is used mostly with FASTA alignments. It indicates the number of
sequences per alignment, useful to sort out if a file is only one alignment
with 15 sequences or three alignments of 5 sequences.

• parse(handle,format): This method is used for parsing alignments
from a file with more than one alignment. Taking the same arguments
as read, it returns an iterator with all the alignments present in this
file. It is meant to be used in a loop:

>>> from Bio import AlignIO
>>> fn = open("example.aln")
>>> for alignment in AlignIO.parse(fn, "clustal") :

alignment.get_alignment_length()

1098
233

• write(iterable,handle,format): Take a set of Alignment objects, a
file handle and a file format, to write them into a file. You are expected
to call this function with all alignments in iterable and close the file
handle. The following code reads an alignment in Clustal format and
writes it in Phylip format.

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 191

Listing 10.6: Alignments

fi = open(’/home/sb/bioinfo/example.aln’)
fo = open(’/home/sb/bioinfo/example.phy’,’w’)
align = AlignIO.read(fi,"clustal")
AlignIO.write([alig],fo,"phylip")
fo.close()

10.2.9 BLAST

Basic Local Alignment Search Tool (BLAST) is a sequence similarity search
program used to compare a user’s query to a database of sequences. Given
a DNA or amino acid sequence, the BLAST heuristic algorithm finds short
matches between the two sequences and attempts to start alignments from
these “hot spots.” BLAST also provides statistical information about an
alignment such as the “expect” value.12

BLAST is one of the most widely used bioinformatics research tools, since
it has several applications. Here is a list of typical BLAST applications:

• Following the discovery of a previously unknown gene in one species,
search other genomes to see if other species carry a similar gene.

• Finding functional and evolutionary relationships between sequences.

• Search for consensus regulatory patterns such as promoter signals, splic-
ing sites and transcription factor binding sites.

• Infer protein structure based on previously crystallized proteins.

• Help identify members of gene families.

If you work in bioinformatics, chances are that you will need to run some
BLAST queries or face the need to process BLAST queries generated by you
or by another person. Biopython provides tools for both tasks:

BLAST Running and Processing with Biopython

BLAST can be run online on the NCBI webserver or locally on your own
computer. Running BLAST over the Internet is a good option for small jobs
involving few sequences. Larger jobs tend to get aborted by the remote server
with the message “CPU usage limit was exceeded.” Since NCBI BLAST is
a public service, they have to put quotas on CPU usage to avoid overloading
their servers. Another compelling reason to use a local version of BLAST is

12The expect value (E) is a parameter that describes the number of hits one can “expect”
to see by chance when searching a database of a particular size.

© 2010 by Taylor and Francis Group, LLC

192 Python for Bioinformatics

when you need to query a custom database. There is some flexibility regard-
ing the database(s) you could use in the NCBI BLAST server, but it can’t
accomodate custom data.13

For all these reasons, it is not uncommon for most research laboratories to
run in-house BLAST searches.

Starting a BLAST Job

Biopython has a wrapper to the BLAST executable, so you can run the
BLAST program from inside your script. This wrapper is a function called
blastall, inside the Bio.Blast.NCBIStandalone module.

Here is the blastall syntaxis:

blastall(blast executable, program name, database, input file, <=
[align_view=7], [parameters])

This function returns a tuple with two file objects. The first one is the
actual result while the second one is the BLAST error message (if any). Most
parameters are self explanatory. Code in listing 10.7 will make it clear:

Listing 10.7: Running a local NCBI BLAST

1 from Bio.Blast import NCBIStandalone as BLAST
2 b_exe = ’/home/sb/blast-2.2.20/bin/blastall’
3 f_in = ’seq3.txt’
4 b_db = ’/home/sb/blast-2.2.20/data/TAIR8cds’
5 rh, eh = BLAST.blastall(b_exe, "blastn", b_db, f_in)

The BLAST program is run in line 5. To retrieve the result, you have to
read the returned file like object rh as already seen in chapter 5:

>>> rh.readline()
<?xml version="1.0"?>
>>> rh.readline()
’<!DOCTYPE BlastOutput PUBLIC "-//NCBI//NCBI BlastOutput/EN"<=
"http://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd">\n’

The output is in XML format. This information can be parsed using the
tools learned in chapter 12 or with the tools provided by Biopython (more on
this in the next section). There is also a way to avoid dealing with the XML
output by forcing blastall to use plain text as output. This is done by using
-m 1 as an optional parameter in the command line or align view=1 in the
blastall Biopython function. This will result in an easier to read (by a human)
but hard to parse (by a computer) output. If the last sentence seems strange,

13You can’t query your private database in the public NCBI server.

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov

Introduction to Biopython 193

bear with me for a few paragraphs to understand why a “human readable”
format may not be suitable for automated processing.

The eh filehandle stores the error message returned by blastall. In this
case it is empty (since there was no error):

>>> eh.readline()
’’

Function call present in line 5 is the equivalent of entering the following
statement in the command line:

$./blastall -p blastn -i seq3.txt -d TAIR8cds -m 7

Most parameters in this command line can be matched up with a parameter
in the Biopython blastall function, except -m 7, the last parameter. This
argument is used to force the output to the XML format. Biopython blastall
function defaults its output to XML since this is the more reliable format
for parsing. Other BLAST output formats like plain text and HTML tend
to change from version to version, making keeping an up to date parser very
difficult.14 This is why an easy to read output ends up being harder to parse.

There are many aspects of a blast query that can be controlled via optional
parameters that are appended at the end of the function call. In table 10.3
there is a list of all accepted parameters.

Once you have the BLAST result as a file object, you may need to process
it. If you plan to store the result for later processing, you need to save it:

>>> fh = open(’testblast.xml’,’w’)
>>> fh.write(rh.read())
>>> fh.close()

Most of the time you will need to extract some information from the BLAST
output. For this purpose the NCBIXML parser, featured in the next subsec-
tion, comes in handy.

Reading the BLAST Output

Parsing the contents of a BLAST file is something any bioinformatician has
to deal with. Biopython provides a useful parser in the Bio.Blast.NCBIXML
module (called parse). With this parser the programmer can extract any
significative bit from a BLAST output file. This parser takes as input a file
object with the BLAST result and returns an iterator for each record inside

14There is an official statement from NCBI about this: “NCBI does not advocate the use
of the plain text or HTML of BLAST output as a means of accurately parsing the data.”
For more information on this please see this letter: http://www.bioperl.org/w/index.php?
title=NCBI_Blast_email&oldid=5114.

© 2010 by Taylor and Francis Group, LLC

http://www.bioperl.org
http://www.bioperl.org
http://www.bioperl.org
http://www.bioperl.org

194 Python for Bioinformatics

TABLE 10.3: Parameters for blastall

Variable
Class Effect

Scoring
matrix Matrix to use.
gap open Gap open penalty.
gap extend Gap extension penalty.
window size Multiple hits window size.
npasses Number of passes.
passes Hits/passes. Integer 0-2.

Algorithm
gapped Whether to do a gapped alignment. T/F
expectation Expectation value cutoff.
wordsize Word size.
keep hits Number of best hits from a region to keep.
xdrop Dropoff value (bits) for gapped alignments.
hit extend Threshold for extending hits.
region length Length of region used to judge hits.
db length Effective database length.
search length Effective length of search space.
nbits gapping Number of bits to trigger gapping.
pseudocounts Pseudocounts constants for multiple passes.
xdrop final X dropoff for final gapped alignment.
xdrop extension Dropoff for blast extensions.
model threshold E-value threshold to include in multipass model.
required start Start of required region in query.
required end End of required region in query.

Processing
program The blast program to use. (PHI-BLAST)
filter Filter query sequence for low complexity (with SEG) T/F
believe query Believe the query defline T/F
nprocessors Number of processors to use.

Formatting
html Produce HTML output T/F
descriptions Number of one-line descriptions.
alignments Number of alignments.
align view Alignment view. Int or str 0-11
show gi Show GI’s in deflines T/F
seqalign file seqalign file to output.
align outfile Output file for alignment.
checkpoint outfile Output file for PSI-BLAST checkpointing.
restart infile Input file for PSI-BLAST restart.
hit infile Hit file for PHI-BLAST.
matrix outfile Output file for PSI-BLAST matrix in ASCII.

the file. In this context, record represents an object with all the information
of each BLAST result (assuming that the BLAST file has inside the result

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 195

FIGURE 10.1: Anatomy of a BLAST result. This query sequence has
three alignments. Each alignment has at least one HSP. Note that an align-
ment (or hit) can have more than one HSP like the “Alignment 3”.

of several BLAST queries15). Since it returns an iterator, you can retrieve
BLAST records one by one using a for loop:

from Bio.Blast import NCBIXML
for blast_record in NCBIXML.parse(rh):

Do something with blast_record

What’s in a BLAST Record Object?

Every bit of information present in a BLAST file can be retrieved from the
blast record object . Here is the big picture: A BLAST record contains the
information of the BLAST run. This information is divided in two groups.
First there are fixed features such as the characteristics of the program, query
sequence and database (like program name, program version, query name,
database length, name). The other group of data is related with the align-
ments (or hits). Each hit is the alignment between the query sequence and the
target found. In turn, each alignment may have more than one HSP (High-
scoring Segment Pairs). An HSP is a segment of an alignment. Figure 10.1
should make these concepts more accessible.

The BLAST record object mirrors this structure. It has an alignments
property which is a list of (BLAST) alignment objects. Each alignment object
has the information of the hit (hit id, hit definition, title) and a list (hsps)
with the information of each HSP. The data associated with each HSP is
usually the most requested information from a BLAST record (like bit score,
E value, position). Let’s see a plain text BLAST output in listing 10.8:

15This is a bug in BLAST versions prior to 2.2.14 with the way it formats the XML results
for multiple queries, so you must use newer NCBI BLAST versions.

© 2010 by Taylor and Francis Group, LLC

196 Python for Bioinformatics

Listing 10.8: A BLAST output

BLASTN 2.2.18 [Mar-02-2008]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro
A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and
David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs",
Nucleic Acids Res. 25:3389-3402.

Query= sample-5
(73 letters)

Database: NCBI genome chromosomes - other
6369 sequences; 2,950,119,688 total letters

Searching...done

Score E
Sequences producing significant alignments: (bits) Value

ref|NC_008258.1| Shigella flexneri 5 str. 8401 76 2e-12
ref|AC_000091.1| Escherichia coli W3110 DNA 76 2e-12
ref|NC_008563.1| Escherichia coli APEC O1 60 1e-07

>ref|NC_008258.1| Shigella flexneri 5 str. 8401, complete genome
gb|CP000266.1| Shigella flexneri 5 str. 8401, complete genome

Length = 4574284

Score = 75.8 bits (38), Expect = 2e-12
Identities = 41/42 (97%)
Strand = Plus / Plus

Query: 1 taataagcggggttaccggttgggatagcgagaagagccagt 42
|||||||||||||||||||||||| |||||||||||||||||

Sbjct: 67778 taataagcggggttaccggttgggttagcgagaagagccagt 67819

>ref|AC_000091.1| Escherichia coli W3110 DNA, complete genome
dbj|AP009048.1| Escherichia coli W3110 DNA, complete genome

Length = 4646332

Score = 75.8 bits (38), Expect = 2e-12
Identities = 41/42 (97%)
Strand = Plus / Plus

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 197

Query: 1 taataagcggggttaccggttgggatagcgagaagagccagt 42
|||||||||||||||||||||||| |||||||||||||||||

Sbjct: 70268 taataagcggggttaccggttgggttagcgagaagagccagt 70309

Score = 56.0 bits (28), Expect = 2e-06
Identities = 31/32 (96%)
Strand = Plus / Plus

Query: 42 tgcttgatcggcgactggatttctttctggct 73
|||||||| |||||||||||||||||||||||

Sbjct: 71549 tgcttgatgggcgactggatttctttctggct 71580

>ref|NC_008563.1| Escherichia coli APEC O1, complete genome
gb|CP000468.1| Escherichia coli APEC O1, complete genome

Length = 5082025

Score = 60.0 bits (30), Expect = 1e-07
Identities = 39/42 (92%)
Strand = Plus / Plus

Query: 1 taataagcggggttaccggttgggatagcgagaagagccagt 42
||||||||||||||||||||||| ||| |||||||||||||

Sbjct: 72088 taataagcggggttaccggttggattagtgagaagagccagt 72129

Database: NCBI genome chromosomes - other
Posted date: Aug 29, 2007 6:02 PM

Number of letters in database: 2,950,119,688
Number of sequences in database: 6369

Lambda K H
1.37 0.711 1.31

Gapped
Lambda K H

1.37 0.711 1.31

Matrix: blastn matrix:1 -3
Gap Penalties: Existence: 5, Extension: 2
Number of Sequences: 6369
Number of Hits to DB: 1,810,978
Number of extensions: 84567
Number of successful extensions: 129
Number of sequences better than 10.0: 40
Number of HSP’s gapped: 129
Number of HSP’s successfully gapped: 42
Length of query: 73

© 2010 by Taylor and Francis Group, LLC

198 Python for Bioinformatics

Length of database: 2,950,119,688
Length adjustment: 19
Effective length of query: 54
Effective length of database: 2,949,998,677
Effective search space: 159299928558
Effective search space used: 159299928558
X1: 11 (21.8 bits)
X2: 15 (29.7 bits)
X3: 50 (99.1 bits)
S1: 16 (32.2 bits)
S2: 17 (34.2 bits)

Listing 10.8 is the product of a blastn of a DNA query sequence against the
NCBI genome chromosomes database, using default program settings.16 Note
that there are three alignments in this result. The first and last alignments
have only one HSP, while the second one, has two HSP’s.

See in code 10.9 how to retrieve the name of all the target sequence names:

Listing 10.9: Extract alignments title from a BLAST output (py3.us/39)

1 from Bio.Blast import NCBIXML
2 xmlfh = open(’/home/sb/bioinfo/other.xml’) # BLAST output file.
3 for record in NCBIXML.parse(xmlfh):
4 for align in record.alignments:
5 print align.title

Code 10.9 produces an output like this:

gi|110804074|ref|NC_008258.1| Shigella flexneri 5 str. 8401
gi|89106884|ref|AC_000091.1| Escherichia coli W3110 DNA
gi|117622295|ref|NC_008563.1| Escherichia coli APEC O1

You can get more information from each alignment like the length of the
target sequence, and other related information:

>>> alig.length
3630528
>>> alig.hit_id
u’gi|23097455|ref|NC_004193.1|’
>>> alig.accession
u’NC_004193’
>>> alig.hit_def

16This listing is a reduced version of the actual output, some results were intentionally left
out to avoid showing redundant data and facilitate the reader focusing on how the parser
works.

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 199

u’Oceanobacillus iheyensis HTE831, complete genome’
>>> alig.hsps
[<Bio.Blast.Record.HSP instance at 0xb65eb8cc>]

hsps contain a list of HSP. Each HSP instance, as already mentioned, has
the information most users want to extract from a BLAST output. Look at
an HSP:

>ref|NC_008258.1| Shigella flexneri 5 str. 8401, complete genome
gb|CP000266.1| Shigella flexneri 5 str. 8401, complete genome

Length = 4574284

Score = 75.8 bits (38), Expect = 2e-12
Identities = 41/42 (97%)
Strand = Plus / Plus

Query: 1 taataagcggggttaccggttgggatagcgagaagagccagt 42
|||||||||||||||||||||||| |||||||||||||||||

Sbjct: 67778 taataagcggggttaccggttgggttagcgagaagagccagt 67819

This is how this information can be retrieved with the BLAST parser:

>>> blast_record = NCBIXML.parse(open(xmlfile)).next()
>>> align = blast_record.alignments[0]
>>> hsp = align.hsps[0]
>>> hsp.bits
75.822299999999998
>>> hsp.score
38.0
>>> hsp.expect
2.3846099999999999e-12
>>> hsp.identities
41
>>> hsp.align_length
42
>>> hsp.frame
(1, 1)
>>> hsp.query_start
1
>>> hsp.query_end
42
>>> hsp.sbjct_start
67778
>>> hsp.sbjct_end
67819
>>> hsp.query

© 2010 by Taylor and Francis Group, LLC

200 Python for Bioinformatics

u’TAATAAGCGGGGTTACCGGTTGGGATAGCGAGAAGAGCCAGT’
>>> hsp.match
u’|||||||||||||||||||||||| |||||||||||||||||’
>>> hsp.sbjct
u’TAATAAGCGGGGTTACCGGTTGGGTTAGCGAGAAGAGCCAGT’

Having this in mind, we can answer questions like: What are accession
numbers of the alignments with E value lesser than a threshold value? (listing
10.10) and other questions involving any parameter in the BLAST output.
This parser can be used in more complex programs like 20.2 (page 349).

Listing 10.10: Extract accession numbers of sequences that have an E
value less than a specific threshold (py3.us/40)

1 from Bio.Blast import NCBIXML
2 threshold = 0.0001
3 xmlfh = open(’/home/sb/bioinfo/other.xml’)
4 blast_record = NCBIXML.parse(open(xmlfh)).next()
5 for align in blast_record.alignments:
6 if align.hsps[0].expect < threshold:
7 print align.accession

Code explained: This program is very similar to code 10.9. It retrieves
the first BLAST record in the xml file (note the next() method in line 4). This
method is used because older Biopython version lacks the NCBIXML.read()
method. If you are using Biopython 1.50, and there is only one BLAST
record in the xml file, use NCBIXML.read(open(xmlfh)). The program walks
through all alignments in blast record (from line 5). For each alignment
(align in line 5), it checks the expect value of the first HSP (line 6), if the
E value is less than the threshold defined in line 2, the program prints the
accession number of the alignment.

Note that when doing a BLAST search you can set an E value either from
command line or from Biopython blastall wrapper. Once the output is gen-
erated you can apply a filter like in code 10.10.

Detailing how to extract every possible data from a BLAST record can
result in a dull reading; if you need to extract a bit of data that is not present
in the examples above, I recommend reading listing 20.2 on page 349 that
converts an XML BLAST output into HTML.

Tip: BLAST Running and Processing without Biopython.

Although Biopython can be used to run and parse BLAST searches, we can
get by without Biopython if necessary.

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 201

BLAST can be executed as any external program with os.system, os.-
popen3 or better yet, with subprocess.Popen. Remember to set up the
“m” option according to how you plan to process the output.

There are two ways to process the BLAST output. If the BLAST was set
produce the output in XML (with command line the option “-m 7”), the
result can be parsed with the tools shown in chapter 12. Another easier way
to parse BLAST results is to use the CSV module (seen on page 92). To do
this, the BLAST output should be formated in a compatible way (with the
command line option “-m 8”).

10.2.10 Data

Biopython is not just a collection of tools. It has some biological related
data. This data is included in Biopython for internal usage, like translation ta-
bles (CodonTable.unambiguous dna by name) for the Translate func-
tion, amino acid weights (protein weights) for molecular weight function.

Your code can also accesses these data. For example the code in this in-
teractive session access to the dictionary that converts an “ambiguous dna
value” to its possible values:

>>> from Bio.Data import IUPACData
>>> IUPACData.ambiguous_dna_values[’M’]
’AC’
>>> IUPACData.ambiguous_dna_values[’H’]
’ACT’
>>> IUPACData.ambiguous_dna_values[’X’]
’GATC’

Remember the protein weight calculator from code 4.8 on page 77? With
Biopython there is no need to define a dictionary with amino acid weights
since such a dictionary is already included:

Listing 10.11: Protein weight calculator with Biopython

1 from Bio.Data.IUPACData import protein_weights as protweight
2 protseq = raw_input("Enter your protein sequence: ")
3 totalW = 0
4 for aa in protseq:
5 totalW += protweight.get(aa.upper(),0)
6 totalW -= 18*(len(protseq)-1)
7 print("The net weight is: %s" % totalW)

The resulting program is shorter than the original version and there is
no need to define a dictionary with values taken from a reference table, let
Biopython programmers handle this for you.

© 2010 by Taylor and Francis Group, LLC

202 Python for Bioinformatics

Most data available from Bio.Data.IUPACData and Bio.Data.Codon-
Table is presented in listing 10.12 and 10.13, respectively.

Listing 10.12: Data from Bio.Data.IUPACData

protein_letters
extended_protein_letters
ambiguous_dna_letters
unambiguous_dna_letters
ambiguous_rna_letters
unambiguous_rna_letters
ambiguous_dna_complement
ambiguous_dna_values
ambiguous_dna_weight_ranges
ambiguous_rna_complement
ambiguous_rna_values
ambiguous_rna_weight_ranges
avg_ambiguous_dna_weights
avg_ambiguous_rna_weights
avg_extended_protein_weights
extended_protein_values
extended_protein_weight_ranges
protein_weight_ranges
protein_weights
unambiguous_dna_weight_ranges
unambiguous_dna_weights
unambiguous_rna_weight_ranges
unambiguous_rna_weights

Listing 10.13: Data from Bio.Data.CodonTable

ambiguous_dna_by_id
ambiguous_dna_by_name
ambiguous_generic_by_id
ambiguous_generic_by_name
ambiguous_rna_by_id
ambiguous_rna_by_name
generic_by_id
generic_by_name
standard_dna_table
standard_rna_table
unambiguous_dna_by_id
unambiguous_dna_by_name
unambiguous_rna_by_id
unambiguous_rna_by_name

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 203

To get the bacterial DNA translation table,

>>> from Bio.Data.CodonTable import unambiguous_dna_by_id
>>> bact_trans=unambiguous_dna_by_id[11]
>>> bact_trans.forward_table[’GTC’]
’V’
>>> bact_trans.back_table[’R’]
’CGT’

To have a graphical representation of a translation table:

>>> from Bio.Data import CodonTable
>>> print CodonTable.generic_by_id[2]
Table 2 Vertebrate Mitochondrial, SGC1

| U | C | A | G |
--+---------+---------+---------+---------+--
U | UUU F | UCU S | UAU Y | UGU C | U
U | UUC F | UCC S | UAC Y | UGC C | C
U | UUA L | UCA S | UAA Stop| UGA W | A
U | UUG L | UCG S | UAG Stop| UGG W | G
--+---------+---------+---------+---------+--
C | CUU L | CCU P | CAU H | CGU R | U
C | CUC L | CCC P | CAC H | CGC R | C
C | CUA L | CCA P | CAA Q | CGA R | A
C | CUG L | CCG P | CAG Q | CGG R | G
--+---------+---------+---------+---------+--
A | AUU I(s)| ACU T | AAU N | AGU S | U
A | AUC I(s)| ACC T | AAC N | AGC S | C
A | AUA M(s)| ACA T | AAA K | AGA Stop| A
A | AUG M(s)| ACG T | AAG K | AGG Stop| G
--+---------+---------+---------+---------+--
G | GUU V | GCU A | GAU D | GGU G | U
G | GUC V | GCC A | GAC D | GGC G | C
G | GUA V | GCA A | GAA E | GGA G | A
G | GUG V(s)| GCG A | GAG E | GGG G | G
--+---------+---------+---------+---------+--

10.2.11 Entrez

Entrez is a search engine that integrates several health sciences databases
at the National Center for Biotechnology Information (NCBI) website. From
a single webpage you can search on diverse datasets such as “scientific litera-
ture, DNA and protein sequence databases, 3D protein structure and protein

© 2010 by Taylor and Francis Group, LLC

204 Python for Bioinformatics

domain data, expression data, assemblies of complete genomes, and taxonomic
information.17”

This search engine is available at http://www.ncbi.nlm.nih.gov/sites/
gquery. You can use it online as any standard search engine, but using it
from a browser is not useful for incorporating data to your scripts. That is
why the NCBI created the “Entrez Programming Utilities” (eUtils). This
is a server side set of tools for querying the Entrez database without a web
browser and can be used for retrieving search results to include them in your
own programs.

eUtils at a Glance

The user must construct a specially crafted URL. This URL should contain
the name of the program to use in the NCBI web server and all required
parameters (like database name and search terms). Once this URL is posted,
the NCBI sends the resulting data back to the user. This data is sent, in most
cases, in XML format.

The rationale behind this procedure is that the program must build the
URL automatically, post it, retrieve and process the results. The URL is not
supposed to be built by hand, neither parsing the resulting XML file.

It is possible to combine eUtils components to form customized data pipelines
within these applications.

Biopython and eUtils

Python has tools to fetch a URL (urllib2) and to parse XML files (like
miniDOM), so it could be used to access eUtils. Even using the relevant
Python modules to interact with the eUtils involves a lot of work. For this
reason Biopython includes the Entrez module. The Bio.Entrez module
provides functions to call every eUtils program without having to know how
to build a URL or how to parse an XML file.

There are two ways to interact with the Entrez database: Query the database
and retrieving actual data. The first action can be performed with esearch
and egquery Bio.Entrez functions, while the efetch and esummary func-
tions are used for data retrieval. Table 10.4 summarizes all functions available
in the eUtils module.

eUtils: Retrieving Bibliography

The following script queries Pubmed through Entrez. Pubmed is a search
engine for MEDLINE, a literature database of life sciences and biomedical
information.

17http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helpbook.TOC

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

Introduction to Biopython 205

TABLE 10.4: eUtils

Name
Description

efetch Retrieves records in the requested format from a list of one
or more primary IDs or from the user’s environment.

einfo Provides field index term counts, last update, and available
links for each database.

egquery Provides Entrez database counts in XML for a single search
using Global Query.

elink Checks for the existence of an external or Related Articles
link from a list of one or more primary IDs.

epost Posts a file containing a list of primary IDs for future use
in the user’s environment to use with subsequent search
strategies.

esearch Searches and retrieves primary IDs (for use in EFetch,
ELink, and ESummary).

espell Retrieves spelling suggestions.
esummary Retrieves document summaries from a list of primary IDs

or from the user’s environment.
read Parses the XML results returned by any of the above func-

tions.

Listing 10.14: Retrieve and display data from Pubmed (py3.us/41)

1 from Bio import Entrez
2 my_em = ’user@example.com’
3 db = "pubmed"
4 # Search de Entrez website using esearch from eUtils
5 # esearch returns a handle (called h_search)
6 h_search = Entrez.esearch(db=db, email=my_em,
7 term="python and bioinformatics")
8 # Parse the result with Entrez.read()
9 record = Entrez.read(h_search)

10 # Get the list of Ids returned by previous search
11 res_ids = record["IdList"]
12 # For each id in the list
13 for r_id in res_ids:
14 # Get summary information for each id
15 h_summ = Entrez.esummary(db=db, id=r_id, email=my_em)
16 # Parse the result with Entrez.read()
17 summ = Entrez.read(h_summ)
18 print(summ[0][’Title’])
19 print(summ[0][’DOI’])
20 print(’==’)

© 2010 by Taylor and Francis Group, LLC

mailto:user@example.com%E2%80%99
mailto:user@example.com%E2%80%99

206 Python for Bioinformatics

Provided that there is a working Internet connection when running code
10.14, it outputs something like this:

Optimal spliced alignments of short sequence reads.
10.1093/bioinformatics/btn300
==
Mixture models for protein structure ensembles.
10.1093/bioinformatics/btn396
==
Contact replacement for NMR resonance assignment.
10.1093/bioinformatics/btn167
==

eUtils: Retrieving Gene Information

Since eUtils is an interface for several databases, the same program that is
used to retrieve bibliographic data (code 10.14) can be used to retrieve gene
information. The key change in code 10.15 is the database field (line 3).

Listing 10.15: Retrieve and display data from pubmed (py3.us/42)

1 from Bio import Entrez
2 my_em = ’user@example.com’
3 db = "gene"
4 term = ’cobalamin synthase homo sapiens’
5 h_search = Entrez.esearch(db=db, email=my_em, term=term)
6 record = Entrez.read(h_search)
7 res_ids = record["IdList"]
8 for r_id in res_ids:
9 h_summ = Entrez.esummary(db=db, id=r_id, email=my_em)

10 summ = Entrez.read(h_summ)
11 print(r_id)
12 print(summ[0][’Description’])
13 print(summ[0][’Summary’])
14 print(’==’)

Code 10.15 produces a result like this:

326625
methylmalonic aciduria (cobalamin deficiency) cblB type
This gene encodes a protein that catalyzes the final step in <=
the conversion of vitamin B(12) into adenosylcobalamin (AdoCb<=
l), a vitamin B12-containing coenzyme for methylmalonyl-CoA m<=
utase. Mutations in the gene are the cause of vitamin B12-dep<=
endent methylmalonic aciduria linked to the cblB complementat<=
ion group. [provided by RefSeq]

© 2010 by Taylor and Francis Group, LLC

mailto:user@example.com%E2%80%99
mailto:user@example.com%E2%80%99

Introduction to Biopython 207

==
4524
5,10-methylenetetrahydrofolate reductase (NADPH)
Methylenetetrahydrofolate reductase (EC 1.5.1.20) catalyzes t<=
he conversion of 5,10-methylenetetrahydrofolate to 5-methylte<=
trahydrofolate, a cosubstrate for homocysteine remethylation <=
to methionine.[supplied by OMIM]
==
(...)

Note that there is a number in this output that was not present in the result
of code 10.14. This number is the ID returned by esearch function. This ID
was used to retrieve the summary with the esummary function. The next
code uses this ID to retrieve an actual DNA sequence:

>>> n = "nucleotide"
>>> handle = Entrez.efetch(db=n, id="326625", rettype=’fasta’)
>>> print handle.read()
>gi|326625|gb|M77599.1|HIVED82FO Human immunodeficiency virus<=
type 1 gp120 (env) gene sequence

TTAATAGTACTTGGAATTCAACATGGGATTTAACACAACTTAATAGTACTCAGAATAAAGA
AGAAAATATCACACTCCCATGTAGAATAAAACAAATTATAAACATGTGGCAGGAAGTAGGA
AAAGCAATGTATGCCCCTCCCATCAAAGGACAAATTAAATGTTCATCAAATATTACAGGGC
TACTATTAACAAGAGATGGTGGTAATAGTGGTAACAAAAGCAACGACACCACCGAGACCTT
CAGACC

By changing the rettype parameter to “genbank” you can get the genbank
record instead of the plain sequence. Once the sequence is in genbank format,
it can parse it with the SeqIO module as seen on page 187. An alternative
way to parse the results is to retrieve them in XML format and then parsing
them with the Entrez.read() function:

>>> handle = Entrez.efetch(db=n, id="326625", retmode=’xml’)
>>> record[0][’GBSeq_moltype’]
’RNA’
>>> record[0][’GBSeq_sequence’]
’ttaatagtacttggaattcaacatgggatttaacacaacttaatagtactcagaataaaga<=
agaaaatatcacactcccatgtagaataaaacaaattataaacatgtggcaggaagtaggaa<=
aagcaatgtatgcccctcccatcaaaggacaaattaaatgttcatcaaatattacagggcta<=
ctattaacaagagatggtggtaatagtggtaacaaaagcaacgacaccaccgagaccttcag<=
acc’
>>> record[0][’GBSeq_organism’]
’Human immunodeficiency virus 1’

© 2010 by Taylor and Francis Group, LLC

208 Python for Bioinformatics

10.2.12 PDB

PDB files store information regarding three dimensional structures of mol-
ecules held at the Protein Data Bank.

This database, with more than fifty thousand records, is the reference repos-
itory of protein structural data. A PDB file stores spacial positions of atoms
obtained by X-ray crystallography, NMR spectroscopy and other experimental
techniques.

This data is used by several programs, like molecule structure viewers like
Deep View,18 Cn3D19 and PyMol,20 protein analysis and structure prediction
software such as MakeMultimer21 and Modeller.22

Records of this database can be accessed through the RCSB webpage at
http://www.rcsb.org/pdb/home/home.do.23 If you want to make your own
application to analyze protein structure data, your program will have to be
able to parse the data from PDB files. This is the role of the Bio.pdb module.

To effectively use the Bio.PDB module, you have first to understand the
PDB file structure. A protein structure is modeled with a top-down hierarchy.
It begins with the structure class, down to the atom subclass. Intermedi-
ate orders are model, chain and residue. This hierarchy is also known as
SMCRA. Some proteins don’t follow this pattern, but PDB files do.24

Bio.PDB Module

The PDB module provides the PDBParser class.25 This class has the
get structure method. This method needs as input an id and a file name,
and it returns a structure object. This SMCRA hierarchy can be accessed
by an identifier as a key:

>>> from Bio.PDB.PDBParser import PDBParser
>>> pdbfn = ’/home/sb/bioinfo/1FAT.pdb’
>>> parser = PDBParser(PERMISSIVE=1)
>>> structure = parser.get_structure("1fat", pdbfn)
WARNING: Chain A is discontinuous at line 7808.

18http://spdbv.vital-it.ch
19http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
20http://pymol.sourceforge.net
21http://watcut.uwaterloo.ca/cgi-bin/makemultimer
22http://www.salilab.org/modeller
23RCSB is the Research Collaboratory for Structural Bioinformatics, the consortium in
charge of the management of the PDB.
24There are some malformed PDB out there, when the Bio.PDB module finds a problem
it can generate an exception or a warning, depending on the PERMISSIVE argument (0
for no tolerance and 1 for the parser to issue warnings).
25In some Linux installations you have to install the python-numeric-ext package for this
module to run.

© 2010 by Taylor and Francis Group, LLC

http://www.rcsb.org
http://www.ncbi.nlm.nih.gov
http://www.salilab.org
http://spdbv.vital-it.ch
http://pymol.sourceforge.net
http://watcut.uwaterloo.ca
http://watcut.uwaterloo.ca
http://pymol.sourceforge.net
http://spdbv.vital-it.ch
http://www.salilab.org
http://www.ncbi.nlm.nih.gov
http://www.rcsb.org

Introduction to Biopython 209

(... some warnings removed ...)
WARNING: Chain D is discontinuous at line 7870.
>>> structure.child_list
[<Model id=0>]
>>> model = structure[0]
>>> model.child_list
[<Chain id=A>, <Chain id=B>, <Chain id=C>, <Chain id=D>, <=
<Chain id= >]
>>> chain = model[’B’]
>>> chain.child_list[:5]
[<Residue SER het= resseq=1 icode= >, <Residue ASN het= <=
resseq=2 icode= >, <Residue ASP het= resseq=3 icode= >,<=
<Residue ILE het= resseq=4 icode= >, <Residue TYR het= <=
resseq=5 icode= >]

>>> residue = chain[4]
>>> residue.child_list
[<Atom N>, <Atom CA>, <Atom C>, <Atom O>, <Atom CB>, <=
<Atom CG1>, <Atom CG2>, <Atom CD1>]
>>> atom = residue[’CB’]
>>> atom.bfactor
14.130000000000001
>>> atom.coord
array([34.30699921, -1.57500005, 29.06800079],’f’)

The following program opens a PDB file that is compressed with gzip.26

It scans through all chains of the protein, in each chain it walks through all
the atoms in each residue, to print the residue and atom name when there is
a disordered atom:

Listing 10.16: Parse a gzipped PDB file (py3.us/43)

1 import gzip
2 from Bio.PDB.PDBParser import PDBParser
3
4 def disorder(structure):
5 for chain in structure[0].get_list():
6 for residue in chain.get_list():
7 for atom in residue.get_list():
8 if atom.is_disordered():
9 print residue, atom

10 return None

26gzip is the “standard” application used in *nix systems for file compression but it is also
available in most common platforms. It is shown in this example because most of the public
accessible molecular data files are compressed in this format.

© 2010 by Taylor and Francis Group, LLC

210 Python for Bioinformatics

11
12 pdbfn = ’/home/sb/bioinfo/pdb1apk.ent.gz’
13 handle = gzip.GzipFile(pdbfn)
14 parser = PDBParser()
15 structure = parser.get_structure("test", handle)
16 disorder(structure)

10.2.13 PROSITE

PROSITE is a database of documentation entries describing protein do-
mains, families and functional sites as well as associated patterns and profiles
used to identify them.

This database is accessed through the PROSITE site at http://www.expasy.
org/prosite or distributed as a single plain text file.27 This file can be parsed
with the parse function in the Prosite module:

>>> from Bio import Prosite
>>> handle = open("prosite.dat")
>>> records = Prosite.parse(handle)
>>> for r in records:

print(r.accession)
print(r.name)
print(r.description)
print(r.pattern)
print(r.created)
print(r.pdoc)
print("===================================")

PS00001
ASN_GLYCOSYLATION
N-glycosylation site.
N-{P}-[ST]-{P}.
APR-1990
PDOC00001
===================================
PS00004
CAMP_PHOSPHO_SITE
cAMP- and cGMP-dependent protein kinase phosphorylation site.
[RK](2)-x-[ST].
APR-1990

27Release 20.36, of 02-Sep-2008 is a 22 Mb file available at ftp://ftp.expasy.org/

databases/prosite/prosite.dat.

© 2010 by Taylor and Francis Group, LLC

http://www.expasy.org
ftp://ftp.expasy.org
http://www.expasy.org
ftp://ftp.expasy.org
ftp://ftp.expasy.org
http://www.expasy.org
ftp://ftp.expasy.org
http://www.expasy.org

Introduction to Biopython 211

PDOC00004
===================================
PS00005
PKC_PHOSPHO_SITE
Protein kinase C phosphorylation site.
[ST]-x-[RK].
APR-1990
PDOC00005
===================================

10.2.14 Restriction

Recombinant DNA technology is based on the possibility of combining DNA
sequences (usually from different organisms) that would not normally occur
together. This kind of biological cut and paste is accomplished by a restriction
endonuclease, a special group of enzymes that works as a specific molecular
scissors.

The main characteristic of these enzymes is that they recognize a specific
sequence of nucleotides and cut both DNA strands. When a researcher wants
to introduce a cut in a known DNA sequence, he or she must first check which
enzyme has a specificity for a site inside the sequence. All available restriction
enzymes are stored in a database called REBASE.28

A well known restriction enzyme is EcoRI, this enzyme recognizes the
“GAATTC” sequence. So this enzyme cuts any doublestranded DNA hav-
ing this sequence, like

CGCGAATTCGCG
GCGCTTAAGCGC

In this case the restriction site is found in the middle of the top strand
(marked with ’-’): CGC-GAATTC-GCG. The separated pieces look like this:

CGC GAATTCGCG
GCGCTTAA GCGC

Bio.Restriction Module

Biopython provides tools for dealing with restriction enzymes, including en-
zyme information retrieved from REBASE. All restriction enzymes are avail-
able from Restriction module:

>>> from Bio import Restriction
>>> Restriction.EcoRI
EcoRI

28REBASE is available at http://rebase.neb.com/rebase/rebase.html.

© 2010 by Taylor and Francis Group, LLC

http://rebase.neb.com
http://rebase.neb.com

212 Python for Bioinformatics

Restriction enzyme objects have several methods, like search, that can be
used to search for restriction sites in a DNA sequence:

>>> from Bio.Seq import Seq
>>> from Bio.Alphabet.IUPAC import IUPACAmbiguousDNA
>>> alfa = IUPACAmbiguousDNA()
>>> gi1942535 = Seq(’CGCGAATTCGCG’, alfa)
>>> Restriction.EcoRI.search(gi1942535)
[5]

Note that the search function returns a list with all positions where the
enzyme cuts. The position is the first nucleotide after the cut, beginning in
1 instead of 0 (as usual in other parts of Python). Another parameter in
search is linear. It is defaulted to False and should be set as True when the
sequence is circular.

Segments produced after a restriction can be seen with the catalyze func-
tion:

>>> Restriction.EcoRI.catalyse(gi1942535)
(Seq(’CGCG’, IUPACAmbiguousDNA()), Seq(’AATTCGCG’, <=
IUPACAmbiguousDNA()))

To analyze several enzymes at the same time there is the Restriction-
Batch class:

>>> enz1 = Restriction.EcoRI
>>> enz2 = Restriction.HindIII
>>> batch1 = Restriction.RestrictionBatch([enz1, enz2])
>>> batch1.search(gi1942535)
{EcoRI: [5], HindIII: []}

The search function applied over a set of enzymes returns a dictionary:

>>> dd = batch1.search(gi1942535)
>>> dd.get(Restriction.EcoRI)
[5]
>>> dd.get(Restriction.HindIII)
[]

Enzymes can be added or removed as if the RestrictionBatch instance
were a set:

>>> batch1.add(Restriction.EarI)
>>> batch1
RestrictionBatch([’EarI’, ’EcoRI’, ’HindIII’])
>>> batch1.remove(Restriction.EarI)
>>> batch1
RestrictionBatch([’EcoRI’, ’HindIII’])

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 213

There are also some predefined sets in the Restriction module, like AllEn-
zymes, CommOnly and NonComm:

>>> batch2 = Restriction.CommOnly

Analysis Class: All in One

Analysis class simplifies dealing with multiple enzymes:

>>> an1 = Restriction.Analysis(batch1,gi1942535)
>>> an1.full()
{HindIII: [], EcoRI: [5]}

Up to this point, the result of full() method in the Analysis object is the
same as a search over a RestrictionBatch. Analysis provides:

>>> an1.print_that()

EcoRI : 5.

Enzymes which do not cut the sequence.

HindIII

>>> an1.print_as(’map’)
>>> an1.print_that()

5 EcoRI
|

CGCGAATTCGCG
||||||||||||
GCGCTTAAGCGC
1 12

Enzymes which do not cut the sequence.

HindIII

>>> an1.only_between(1,8)
{EcoRI: [5]}

This covers most of the functions available in Restriction module. For
more information please refer to the Biopython tutorial at http://biopython.
org/DIST/docs/cookbook/Restriction.html and see the code 22.1 on page
367.

© 2010 by Taylor and Francis Group, LLC

http://biopython.org
http://biopython.org

214 Python for Bioinformatics

10.2.15 SeqUtils

This module has several functions to deal with DNA and protein sequences,
such as: CG, GC skew, molecular weight, checksum algorithms, Codon Usage,
Melting Temperature and others. All functions are properly documented, so
I will explain only a few functions to get the idea of how to use them.

DNA Utils

SeqUtils has plenty of functions that can be applied to DNA sequences.
Let’s see some of them:

GC content: The percentage of bases which are either guanine or cytosine
is a parameter that affects some physical properties of the DNA molecule. It
is calculated with the GC function:

>>> from Bio.SeqUtils import GC
>>> GC(’gacgatcggtattcgtag’)
50.0

DNA Melting Temperature: It can be calculated with the Melting-
Temp.Tm staluc function. This function implements the “nearest neighbor
method”29 and can be use for both DNA and RNA sequences:

>>> from Bio.SeqUtils import MeltingTemp
>>> MeltingTemp.Tm_staluc(’tgcagtacgtatcgt’)
42.211472744873447
>>> print ’%.2f’%MeltingTemp.Tm_staluc(’tgcagtacgtatcgt’)
42.21

CheckSum functions: A checksum is a usually short alphanumeric string
based in an input file mostly used to test data integrity. From any kind of data
(like a text file, a DNA sequence), using an algorithm you can generate a small
string (usually called “signature”) that can represent the original data. Some
programs attach a checksum information to sequence information to ensure
data integrity. A simple checksum is implemented by the GCG program.

This is a sequence in the gcg format:

ID AB000263 standard; RNA; PRI; 368 BP.
XX
AC AB000263;
XX
DE Homo sapiens mRNA for prepro cortistatin like peptide.
XX

29For more information on nearest neighbor method, see the work of “Santalucia, et al.
(1996) Biochemistry 35, 3555-3562.”

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 215

SQ Sequence 37 BP;
AB000263 Length: 37 Check: 1149 ..

1 acaagatgcc attgtccccc ggcctcctgc tgctgct

The Check number (1149 in this case) is derived from the sequence. If the
sequence is changed, the number is (hopefully) changed. There is always a
chance of a random collision, that is, when two different sequences generate the
same signature. The “gcg checksum” is weak in the sense it allows only 10000
different signatures. This is why there are some other stronger checksums like
the crc32, crc64 and seguid.30

All these checksums are available from the CheckSum module. They are
shown in order from the weaker to the strongest checksum algorithm.

>>> from Bio.SeqUtils import CheckSum
>>> myseq = ’acaagatgccattgtcccccggcctcctgctgctgct’
>>> CheckSum.gcg(myseq)
1149
>>> CheckSum.crc32(myseq)
-2106438743
>>> CheckSum.crc64(myseq)
’CRC-A2CFDBE6AB3F7CFF’
>>> CheckSum.seguid(myseq)
’9V7Kf19tfPA5TntEP75YiZEm/9U’

Protein Utils

Protein related functions are accessible from the ProtParam class. Avail-
able protein properties are: Molecular weight, aromaticity, instability index,
flexibility, isoelectric point and secondary structure fraction. Function names
are straightforward. See them in code 10.17:

Listing 10.17: Apply PropParam functions to a group of proteins (py3.us/44)

1 from Bio.SeqUtils.ProtParam import ProteinAnalysis
2 from Bio.SeqUtils import ProtParamData
3 from Bio import SeqIO
4
5 fh = open(’/home/sb/bioinfo/pdbaa’)
6 for rec in SeqIO.parse(fh,’fasta’):
7 myprot = ProteinAnalysis(str(rec.seq))
8 print(myprot.count_amino_acids())
9 print(myprot.get_amino_acids_percent())

30For more information on the checksums, refer to “Bassi, Sebastian and Gonzalez,
Virginia. New checksum functions for Biopython. Available from Nature Precedings
<http://dx.doi.org/10.1038/npre.2007.278.1> (2007).”

© 2010 by Taylor and Francis Group, LLC

http://dx.doi.org
http://dx.doi.org

216 Python for Bioinformatics

10 print(myprot.molecular_weight())
11 print(myprot.aromaticity())
12 print(myprot.instability_index())
13 print(myprot.flexibility())
14 print(myprot.isoelectric_point())
15 print(myprot.secondary_structure_fraction())
16 print(myprot.protein_scale(ProtParamData.kd, 9, .4))
17 fh.close()

10.2.16 Sequencing

Sequencing projects usually generate .ace and .phd.1 files.31

Phd Files

The DNA sequencer trace data is read by the Phred program. This program
calls bases, assigns quality values to the bases, and writes the base calls and
quality values to output files (with .phd.1 extension).

The following code (listing 10.18) shows how to extract the data from the
.phd.1 files:

Listing 10.18: Extract data from a .phd.1 file (py3.us/45)

1 import pprint
2 from Bio.Sequencing import Phd
3
4 fn = ’/home/sb/bt/biopython-1.50/Tests/Phd/phd1’
5 fh = open(fn)
6 rp = Phd.RecordParser()
7 # Create an iterator
8 it = Phd.Iterator(fh,rp)
9 for r in it:

10 # All the comments are in a dictionary
11 pprint.pprint(r.comments)
12 # Sequence information
13 print(’Sequence: %s’ % r.seq)
14 # Quality information for each base
15 print(’Quality: %s’ % r.sites)
16 fh.close()

If you only want to extract the sequence, it is easier to use SeqIO:

31This depends on sequencing technology; these files are generated by processing sequence
trace chromatogram with popular sequencing processing software such as Phred, Phrap,
CAP3, and Consed.

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 217

>>> from Bio import SeqIO
>>> fn = ’/home/sb/bioinfo/biopython-1.43/Tests/Phd/phd1’
>>> fh = open(fn)
>>> seqs = SeqIO.parse(fh,’phd’)
>>> seqs = SeqIO.parse(fh,’phd’)
>>> for s in seqs:

print(s.seq)

ctccgtcggaacatcatcggatcctatcacagagtttttgaacgagttctcg
(...)

Ace Files

In a typical sequencing strategy, several overlapping sequences (or “reads”)
are assembled electronically into one long contiguous sequence. This con-
tiguous sequence is called “contig” and is made with specialized programs
like CAP3 and Phrap. Contig files are used for viewing or further analysis.
Biopython has the ACEParser in the Ace module. For each .ace file you
can get the number of contigs, number of reads and some file information:

>>> from Bio.Sequencing import Ace
>>> fn=’836CLEAN-100.fasta.cap.ace’
>>> acefilerecord=Ace.read(open(fn))
>>> acefilerecord.ncontigs
87
>>> acefilerecord.nreads
277
>>> acefilerecord.wa[0].info
[’phrap 304_nuclsu.fasta.screen -new_ace -retain_duplicates’, <=
’phrap version 0.990329’]
>>> acefilerecord.wa[0].date
’040203:114710’

The Ace.read also retrieves relevant information of each contig as shown
in code 10.19.

Listing 10.19: Retrieve data from an “.ace” file (py3.us/46)

1 from Bio.Sequencing import Ace
2
3 fn = ’/home/sb/bt/biopython-1.50/Tests/Ace/contig1.ace’
4 acefilerecord = Ace.read(open(fn))
5
6 # For each contig:
7 for ctg in acefilerecord.contigs:

© 2010 by Taylor and Francis Group, LLC

218 Python for Bioinformatics

8 print ’==’
9 print ’Contig name: %s’%ctg.name

10 print ’Bases: %s’%ctg.nbases
11 print ’Reads: %s’%ctg.nreads
12 print ’Segments: %s’%ctg.nsegments
13 print ’Sequence: %s’%ctg.sequence
14 print ’Quality: %s’%ctg.quality
15 # For each read in contig:
16 for read in ctg.reads:
17 print ’Read name: %s’%read.rd.name
18 print ’Align start: %s’%read.qa.align_clipping_start
19 print ’Align end: %s’%read.qa.align_clipping_end
20 print ’Qual start: %s’%read.qa.qual_clipping_start
21 print ’Qual end: %s’%read.qa.qual_clipping_end
22 print ’Read sequence: %s’%read.rd.sequence
23 print ’==’

10.2.17 SwissProt

SwissProt32 is a hand annotated protein sequence database. It is main-
tained collaboratively by the Swiss Institute for Bioinformatics (SIB) and the
European Bioinformatics Institute (EBI), forming the UniProt consortium.
It is known for its reliable protein sequences associated with a high level of
annotation, being the reference database for proteins. As of September 2008
it has almost 400,000 entries while the whole UniProt database has more than
6,000,000 records. Its reduced size is due to its hand curation process.

Swissprot files are text file structured so as to be usable by human readers as
well as by computer programs. Specifications for this file format are available
at http://www.expasy.org/sprot/userman.html, but there is no need to
know it internals to parse it with Biopython.

A sample SwissProt file is shown below:33

ID 6PGL_ECOLC Reviewed; 331 AA.
AC B1IXL9;
DT 20-MAY-2008, integrated into UniProtKB/Swiss-Prot.
DT 29-APR-2008, sequence version 1.
DT 02-SEP-2008, entry version 5.
DE RecName: Full=6-phosphogluconolactonase;
DE Short=6-P-gluconolactonase;
DE EC=3.1.1.31;

32http://www.expasy.org/sprot
33This file is slighted modified to fit in this page, the original file can be retrieved from
http://www.expasy.org/uniprot/B1IXL9.txt.

© 2010 by Taylor and Francis Group, LLC

http://www.expasy.org
http://www.expasy.org
http://www.expasy.org
http://www.expasy.org
http://www.expasy.org
http://www.expasy.org

Introduction to Biopython 219

GN Name=pgl; OrderedLocusNames=EcolC_2895;
OS Escherichia coli (strain ATCC 8739 / DSM 1576 / Crooks).
OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC Enterobacteriaceae; Escherichia.
OX NCBI_TaxID=481805;
RN [1]
RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
RA Copeland A., Lucas S., Lapidus A., Glavina del Rio T., Dalin E.,
RA Tice H., Bruce D., Goodwin L., Pitluck S., Kiss H., Brettin T.;
RT "Complete sequence of Escherichia coli C str. ATCC 8739.";
RL Submitted (FEB-2008) to the EMBL/GenBank/DDBJ databases.
CC -!- FUNCTION: Catalyzes the hydrolysis of 6-phosphogluconolactone
CC to 6-phosphogluconate (By similarity).
CC -!- CATALYTIC ACTIVITY: 6-phospho-D-glucono-1,5-lactone + H(2)O
CC = 6-phospho-D-gluconate.
CC -!- PATHWAY: Carbohydrate degradation; pentose phosphate pathway;
CC D-ribulose 5-phosphate from D-glucose 6-phosphate (oxidative
CC stage): step 2/3.
CC -!- SIMILARITY: Belongs to the cycloisomerase 2 family.
CC ---
CC Copyrighted by the UniProt Consortium, see
CC http://www.uniprot.org/terms Distributed under the Creative
CC Commons Attribution-NoDerivs License
CC ---
DR EMBL; CP000946; ACA78522.1; -; Genomic_DNA.
DR RefSeq; YP_001725849.1; -.
DR GeneID; 6065358; -.
DR GenomeReviews; CP000946_GR; EcolC_2895.
DR KEGG; ecl:EcolC_2895; -.
DR GO; GO:0017057; F:6-phosphogluconolactonase activity; IEA:HAMAP.
DR GO; GO:0006006; P:glucose metabolic process; IEA:HAMAP.
DR HAMAP; MF_01605; -; 1.
DR InterPro; IPR015943; WD40/YVTN_repeat-like.
DR Gene3D; G3DSA:2.130.10.10; WD40/YVTN_repeat-like; 1.
PE 3: Inferred from homology;
KW Carbohydrate metabolism; Complete proteome; Glucose metabolism;
KW Hydrolase.
FT CHAIN 1 331 6-phosphogluconolactonase.
FT /FTId=PRO_1000088029.
SQ SEQUENCE 331 AA; 36308 MW; D731044CFCF31A8F CRC64;

MKQTVYIASP ESQQIHVWNL NHEGALTLTQ VVDVPGQVQP MVVSPDKRYL YVGVRPEFRV
LAYRIAPDDG ALTFAAESAL PGSPTHISTD HQGQFVFVGS YNAGNVSVTR LEDGLPVGVV
DVVEGLDGCH SANISPDNRT LWVPALKQDR ICLFTVSDDG HLVAQDPAEV TTVEGAGPRH
MVFHPNEQYA YCVNELNSSV DVWELKDPHG NIECVQTLDM MPENFSDTRW AADIHITPDG
RHLYACDRTA SLITVFSVSE DGSVLSKEGF QPTETQPRGF NVDHSGKYLI AAGQKSHHIS

© 2010 by Taylor and Francis Group, LLC

http://www.uniprot.org
http://www.uniprot.org

220 Python for Bioinformatics

VYEIVGEQGL LHEKGRYAVG QGPMWVVVNA H
//

The code 10.20 shows how to retrieve data from a SwissProt file with mul-
tiple records:

Listing 10.20: Retrieve data from a SwissProt file (py3.us/47)

1 from Bio import SwissProt
2 fh = open(’spfile.txt’)
3 records = SwissProt.parse(fh)
4 for record in records:
5 print(’Entry name: %s’ % record.entry_name)
6 print(’Accession(s): %s’ % ’,’.join(record.accessions))
7 print(’Keywords: %s’ % ’,’.join(record.keywords))
8 print(’Sequence: %s’ % record.sequence)
9 fh.close()

The code 10.21 shows all atributes in record parsed by SwissProt module:

Listing 10.21: Atributes of a SwissProt record (py3.us/48)

1 from Bio import SwissProt
2 fh = open(’/home/sb/bioinfo/spfile.txt’)
3 record = SwissProt.parse(fh).next()
4 for att in dir(record):
5 if not att.startswith(’__’):
6 print(att,getattr(record,att))

10.3 Conclusion

Most used Biopython features had been covered in this chapter. Following
the code samples presented here and the full programs in Section IV should
give you an insight on how to use Biopython. You should also learn how to use
the Python built-in help since online documentation tends to be more up to
date than anything printing. Biopython development happens at a fast pace.
So fast that this chapter was rewritten several times while I was working on
it. The best way to keep updated with Biopython development is to subscribe
to the Biopython development mailing list and receive the RSS feed from the
code repository.

© 2010 by Taylor and Francis Group, LLC

Introduction to Biopython 221

10.4 Additional Resources

• Chang J, Chapman B, Friedberg I, Hamelryck T, de Hoon M, Cock P,
Antão, T. “Biopython Tutorial and Cookbook.”
http://www.biopython.org/DIST/docs/tutorial/Tutorial.html or
http://www.biopython.org/DIST/docs/tutorial/Tutorial.pdf.

• Hamelryck T, Manderick B., “PDB file parser and structure class im-
plemented in Python.” Bioinformatics. 2003 Nov 22;19(17):2308-10.
http://bioinformatics.oxfordjournals.org/cgi/screenpdf/19/17/
2308.pdf

• Sohm, F. “Manual in cookbook style on using the Restriction module.”
http://biopython.org/DIST/docs/cookbook/Restriction.html

• Wu C.H., Apweiler R., Bairoch A., Natale D.A, Barker W.C., Boeck-
mann B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane M.,
Martin M.J., Mazumder R., O’Donovan C., Redaschi N. and Suzek B.
(2006). “The Universal Protein Resource (UniProt): an expanding uni-
verse of protein information.” Nucleic Acids Research 34: D187-D191.

• Magrane M., Apweiler R. (2002). “Organisation and standardisation of
information in Swiss-Prot and TrEMBL.” Data Science Journal 1(1):
13-18.
http://journals.eecs.qub.ac.uk/codata/Journal/Contents/1_1/1_
1pdf/DS101.Pdf

• Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Os-
tell, and David L. Wheeler. “GenBank.” Nucleic Acids Res. 2008
January; 36(Database issue): D25-D30.
http://dx.doi.org/10.1093/nar/gkm929

• Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA,
McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson
JD, Gibson TJ, Higgins DG. “Clustal W and Clustal X version 2.0.
Bioinformatics.” 2007 Nov 1;23(21):2947-8. Epub 2007 Sep 10.

• Wikipedia contributors. “Restriction enzyme.” Wikipedia, The Free
Encyclopedia. February 13, 2009, 16:44 UTC.
http://en.wikipedia.org/wiki/Restriction_enzyme.

• EFetch for Sequence and other Molecular Biology Databases
http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.
html

• Cock P. “Clever tricks with NCBI Entrez EInfo (& Biopython)”
http://news.open-bio.org/news/2009/06/ncbi-einfo-biopython

© 2010 by Taylor and Francis Group, LLC

http://www.biopython.org
http://www.biopython.org
http://bioinformatics.oxfordjournals.org
http://biopython.org
http://journals.eecs.qub.ac.uk
http://dx.doi.org
http://en.wikipedia.org
http://www.ncbi.nlm.nih.gov
http://news.open-bio.org
http://journals.eecs.qub.ac.uk
http://www.ncbi.nlm.nih.gov
http://bioinformatics.oxfordjournals.org
http://bioinformatics.oxfordjournals.org
http://www.ncbi.nlm.nih.gov
http://journals.eecs.qub.ac.uk
http://news.open-bio.org
http://www.ncbi.nlm.nih.gov
http://en.wikipedia.org
http://dx.doi.org
http://journals.eecs.qub.ac.uk
http://biopython.org
http://bioinformatics.oxfordjournals.org
http://www.biopython.org
http://www.biopython.org

222 Python for Bioinformatics

10.5 Self-Evaluation

1. What is an Alphabet in Biopython? Name at least four.

2. Describe Seq and SeqRecord objects.

3. What advantage provides a Seq object over a string?

4. Seq object provides some string operations. Why?

5. What is a MutableSeq object?

6. What is the relation between the Align and ClustalW module?

7. Name the methods of the SeqIO module.

8. What is the difference between line 7 and 8 in code 10.5?

9. Name five functions found in SeqUtils.

10. What kind of sequence files can be read with Sequencing module?

11. What module would you use to retrieve data from the NCBI Web server?

12. Make a program to count all ordered atoms in a PDB file. The PDB
file must passed to the program on the command line, in the form:
program.py file.pdb.

© 2010 by Taylor and Francis Group, LLC

Part III

Advanced Topics

© 2010 by Taylor and Francis Group, LLC

Chapter 11

Web Applications

We have just seen how to run programs on our own computer. This chapter
shows how to port your programs to the web using what you have learned up
to this point in addition to some new techniques.

The main advantage of making a program available on the Web is that
it can reach more users without the need for them to install a copy of the
program and to have a Python installation. It also helps users who do not
have the permissions necessary to install software on a particular machine.
Sometimes the program accesses huge databases that can’t be installed on
the end user’s hard drive.

In order to make web programming it is not enough to know Python. It is
also necessary to have a basic understanding of Web servers and Web page
design using HTML. Both of these topics are beyond the scope of this book,
for which reason I recommend that you read up on them if you have never
designed a WEB page before. Knowing the basics of HTML has special im-
portance as most IT Labs have staff dedicated to the setup and maintenance
of the WEB server but the HTML design is something that they will rarely
do for you. For more information on HTML, please see the “Additional Re-
sources” section. Concerning the Web server, besides using the one provided
by the institution where you work you can use for learning purposes the one
included with DNA Virtual Desktop Edition that is included with this book.

There are several ways to use Python on a Web server, CGI (Common
Gateway Interface), mod python and WSGI (Web Server Gateway Inter-
face). CGI is the most used method, as it is the easiest to configure and
is available on almost all Web servers without having to install additional
software. It is essentially a protocol to connect an application, written in any
language with a Web server. mod python in particular consists of an Apache
Module that integrates Python with the Web server. The advantage of this
approach is the fast execution time of our scripts, since the Python interpreter
is loaded with the Web server.1 The disadvantage is that it works “only” with
the Apache Web server, which is a minor disadvantage as we are probably
already using Apache as it is the most used Web server on the Internet.

1This will depend on a lot of factors, but there are benchmarks that show speed increases
of up to 100%. In some cases the difference will be a determining factor, although the
processing speed of modern computer systems makes the difference unimportant most of
the time.

225

© 2010 by Taylor and Francis Group, LLC

226 Python for Bioinformatics

WSGI, in turn, is a “specification for Web servers and application servers
to communicate with Web applications.” Since it is a specification, there
are several implementations. The main advantage of WSGI is that once you
have made a WSGI application, it can be deployed in any WSGI compatible
server (or even using a Python provided Web server). As in mod python, the
execution speed is better than CGI, because there is no overhead for starting
the Python interpreter on each request.

11.1 CGI in Python

11.1.1 Configuring a Web Server for CGI

Although I have said that the web server configuration is beyond the scope
of this book, I think that it is reasonable to offer a few recommendations to
help you configure a server for CGI.

In the server configuration file2 there should be specifications that scripts
can be executed via CGI, in which directories and how they will be named.

If we want our scripts to be located at /var/www/apache2-default/cgi-bin,
we have to include the following lines in the server’s configuration file.

<Directory /var/www/apache2-default/cgi-bin>
Options +ExecCGI

</Directory>

To specify that the executable scripts are those that have the file extension
.py, the following line is added

AddHandler cgi-script .py

If the configuration file already has a line with the file extensions registered,
you only need to add .py to it.

AddHandler cgi-script .cgi .pl .py

Finally we have to configure the ScriptAlias variable to where scripts are
stored.

ScriptAlias /cgi-bin/ /var/www/apache2-default/cgi-bin/

This is all there is to the server configuration file. The only thing that is
left to do is make sure that the script has the Apache user permissions. If you
have access to the server’s terminal you can enter:

2In Apache Web server, in most cases configuration file is httpd.conf or apache2.conf and
it is located at /etc/apache2 directory. This can change on each installation.

© 2010 by Taylor and Francis Group, LLC

Web Applications 227

chmod a+x MyScript.py

If you only have FTP access, use a FTP client to set the permissions.

11.1.2 Testing the Server with Our Script

To confirm that our server is ready to execute CGI programs, we can do
that with the following code:

Listing 11.1: First CGI script

1 #!/usr/bin/env python
2 print("Content-Type: text/html\n")
3 print("<html><head><title>Test page</title></head><body>")
4 print("<h1>HELLO WORLD!</h1>")
5 print("</body></html>")

Code explanation: The first line indicates the location of the Python
interpreter. Usually, this line is optional and we add it only when we want
to run the script directly without first having to start the Python interpreter
but for CGI programs this line is mandatory.3 The second line is important
for the web server to know that it is going to be sent an HTML page. We
have to send the string Content-Type/html followed by two carriage returns.
Although on line two there is only one implicit carriage return (\n), the other
one is added by the print command. The rest of the program is similar to
the others that we’ve done up to this point, the difference being that we print
HTML code to be read by the browser.

If we upload this program to a web server and then access the page with
our browser, the results we will see will be similar to Figure 11.1. What we
have to take special note of from this example is that we are not seeing the
content of our file but the product of its execution on the server. Neither do
we see directly the results of its execution but what we see is the rendering by
a client (Web browser) of the HTML produced by the execution of the code
11.1.

As a result of this it is important to take into account that in order to test
our pages we need them to be processed by a web server, and not open them
directly from our hard drive. In this case we will have as a result what you
see in Figure 11.2, which is not what we want.

3If you don’t know where the Python interpreter is, ask the system administrator to install
your script. Another option, if you have access to the server command line is to execute
whereis python.

© 2010 by Taylor and Francis Group, LLC

228 Python for Bioinformatics

FIGURE 11.1: Our first CGI.

FIGURE 11.2: CGI accessed from local disk instead of a web server.

© 2010 by Taylor and Francis Group, LLC

Web Applications 229

FIGURE 11.3: A very simple form.

Sending Data to a CGI Program

The previous program is mostly useless, as it doesn’t accept any parameters
from the user. Let’s see an example of minimalist HTML form that sends data
though CGI to a Python program that will run using this data.

The first step is to design the form. In this case we will create a simple
form with one field and it will be saved as greeting.html:

Listing 11.2: HTML front end send data to a CGI program (py3.us/49)

1 <html><head><title>Very Simple Form</title></head>
2 <body>
3 <form action=’greeting.cgi’ method=’post’>
4 Your name: <input type=’text’ name=’username’> <p>
5 <input type=’submit’ value=’Send’>
6 </form></body></html>

Code explained: There are two important features to note on this small
form. Line 3 is specified where the program that is going to process the data
is located (greeting.cgi). On line 4 there is the field that the user has to
fill (“text” type), with an associated variable (username). You have to take
note of this variable name because the information entered by the user will
be bound to this name. The form looks like the one in Figure 11.3

Let’s see how to write the code the will accept that data sent by the form
and from this data it builds a Web page “on the fly.”

Listing 11.3: CGI program (py3.us/50)

1 #!/usr/bin/env python
2 import cgi
3 print "Content-Type: text/html\n"
4 form = cgi.FieldStorage()

© 2010 by Taylor and Francis Group, LLC

230 Python for Bioinformatics

FIGURE 11.4: CGI output.

5 name = form.getvalue("username","NN")
6 print("<html><head><title>A CGI script</title></head>")
7 print("<body><h2>Hello %s</h2></body></html>"%name)

Code explained: On line four we create an instance (form) from the
class cgi.FieldStorage. This class takes the values sent by the form and is
responsible for taking the values sent by the form and making them accessible
in a dictionary like fashion. On the next line (5), we see a way to access the
data sent by the form. The get-value method takes as a necessary argument,
the name of the field whose content we want to access. The second argument
is optional and indicates which value will be returned in case the wanted field
is blank. Take note that this is similar to the get dictionary function. From
line 6 forward the program doesn’t have anything new, except that instead of
printing ordinary text, we display the HTML code that will be rendered in
our browser.

In summary, we used the form 11.2 to enter a name and press “Send.” This
sends the data, it is then read by the program thanks to the cgi.FieldStorage
class and referenced as a variable name that is used in the program to generate
a Web page. See the ouput in Figure 11.4.

11.1.3 Web Program to Calculate the Net Charge of a Pro-
tein (CGI version)

Using the code from 6.2, we can easily adapt it to use from a Web page. As
a first step we need to design a form where a user can enter the data. This is
a proposed form:

Listing 11.4: HTML front end to send data to a CGI program (py3.us/51)

<html><head><title>Protein Charge Calculator</title></head>
<body><h2>Protein Charge Calculator</h2>
<form action=’protcharge.cgi’ method=’post’>
Enter the amino-acid sequence:
<textarea name="seq" rows="5" cols="40"></textarea><p>

© 2010 by Taylor and Francis Group, LLC

Web Applications 231

Do you want to see the proportion of charged amino-acid?
<p><input type="radio" name="prop" value="y">Yes

<input type="radio" name="prop" value="n"> No
<p>
Job title (optional):
<input type="text" size="30" name="title"
value="">
<p>
<input type=’submit’ value=’Send’></form></body></html>

Below the code (emphprotcharge.cgi) that will be called when the form
is used:

Listing 11.5: Web version of function to calculate the net charge of a
protein and proportion of charged amino acid (py3.us/52)

1 #!/usr/bin/env python
2 import cgi, cgitb
3 def chargeandprop(AAseq):
4 protseq = AAseq.upper()
5 charge = -0.002
6 cp = 0
7 AACharge = {"C":-.045,"D":-.999,"E":-.998,"H":.091,
8 "K":1,"R":1,"Y":-.001}
9 for aa in protseq:

10 charge += AACharge.get(aa,0)
11 if aa in AACharge:
12 cp += 1
13 prop = float(cp)/len(AAseq)*100
14 return (charge,prop)
15 cgitb.enable()
16 print("Content-Type: text/html\n")
17 form = cgi.FieldStorage()
18 uname = form.getvalue("username","NN")
19 seq = form.getvalue("seq","QWERTYYTREWQRTYEYTRQWE")
20 prop = form.getvalue("prop","n")
21 jobtitle = form.getvalue("title","No title")
22 charge,propvalue = chargeandprop(seq)
23 print("<html><body>Job title:"+jobtitle+"
")
24 print("Your sequence is:
"+seq+"
")
25 print("Net charge:",charge,"
")
26 if prop=="y":
27 print("Proportion of charged AA: %.2f
" %propvalue)
28 print "</body></html>"

Code explanation: On line 17 we create an instance (form) of the class
cgi.FieldStorage. This class is responsible for taking the values sent by
the form and making them available in a dictionary-like fashion. From 18 to

© 2010 by Taylor and Francis Group, LLC

232 Python for Bioinformatics

21 we retrieve values entered by the user. In line 22, the “net charge” and
“proportion of charged amino acids” are evaluated. Line 23 up to the end
generates the HTML that will be sent to the browser.

11.2 mod python

One of the problems with CGI is the execution speed of the programs. For
servers with a small number of users it is not something that is easily noticed.
However, if the program is executed multiple times, the difference in speed
can be significant. This is because for each CGI execution, a new instance of
the program is loaded in memory. When the server has a high load, it may
run out of memory needed to process all the requests and as a result some of
the processes will crash and others will run more slowly. This makes another
option necessary. There are various CGI options to run Python applications
like mod python.

What is mod python? It is an Apache Web server module that contains the
Python interpreter. In this form, although there may be many simultaneous
requests, only one instance of the interpreter will be executed. The difference
in performance that can be obtained through this method can be up to a
thousand times compared to CGI. The disadvantage is that being an Apache
module, it only works with this web server, which is a minor disadvantage
taking into consideration that Apache is the most installed web server and is
available for all important platforms.

11.2.1 Configuring a Web Server for mod python

Since this is an Apache module, it must be installed separately.4 Then we
have to modify the apache server configuration file adding:

<Directory /var/www/apache2-default>
AddHandler mod_python .py
PythonHandler mptest
PythonDebug On

</Directory>

The directory (in this case /var/www/apache2-default) specified will be
the directory where our script will be located. mod python is activated with
the line AddHandler modpython .py and the name of the script that will be

4Under Linux the package is installed with apt-get install libapache-mod-python2.5 in
Debian-based systems or with yum install mod python for Red Hat. For Windows there
is an installer.

© 2010 by Taylor and Francis Group, LLC

Web Applications 233

used to process the request is named, in this case, mptest. At this level it
is important to point out an important difference with CGI. In this case, all
requests for whichever type of file *.py will be directed to a single Python
script (mptest in this case). The last line (PythonDebug On) offers adequate
error messages to debug the program and it is convenient to leave it while
building the program.

Below there is a possible mptest.py script:

Listing 11.6: Executable program in a mod python server

1 from mod_python import apache
2
3 def handler(req):
4 req.content_type = "text/plain"
5 req.write("Hello, World!")
6 return apache.OK

Code explanation: On the first line the Apache module is imported to
the server as an interface to the web server. This line will be present each time
we use mod python. On line 3 we define the handler function which will be
called when we execute the script. Take note that the parameter is req, which
is an object that offers us all the information about this request. On line 4 we
indicate the type of content, in this case we use “text/plain” because we will
test it with text. If we are going to produce HTML, we will use “text/html.”
On line 5 we wrote the string that the user will see. The final line indicates
to Apache that the request has been processed correctly.

11.2.2 Web Program to Calculate the Net Charge of a Pro-
tein (mod python version)

We can create the same program that we created on page 231, but using
mod python instead of CGI. This will allow us to observe the differences
between both methods. As a first step we will show the HTML code for the
form, that practically doesn’t have any differences, except for the name of the
program that will process it.

<html><head><title>Protein Charge Calculator</title></head>
<body><h2>Protein Charge Calculator</h2>
<form action=’mptest.py’ method=’post’>
Enter the amino-acid sequence:
<textarea name="seq" rows="5" cols="40"></textarea><p>
Do you want to see the proportion of charged amino-acid?
<p><input type="radio" name="prop" value="y">Yes

<input type="radio" name="prop" value="n"> No
<p>
Job title (optional):
<input type="text" size="30" name="title"

© 2010 by Taylor and Francis Group, LLC

234 Python for Bioinformatics

FIGURE 11.5: HTML form to submit data to a Python script.

value="">
<p>
<input type=’submit’ value=’Send’></form></body></html>

This generates a form like the one in Figure 11.5.
The script that processes our form has a few significant differences:

Listing 11.7: Function to calculate the net charge of a protein proportion
of charged amino acid with mod python (py3.us/53)

1 #!/usr/bin/env python
2 from mod_python import apache
3 from mod_python.util import FieldStorage
4
5 def chargeandprop(AAseq):
6 protseq=AAseq.upper()
7 charge = -0.002
8 cp = 0
9 AACharge = {"C":-.045,"D":-.999,"E":-.998,"H":.091,

10 "K":1,"R":1,"Y":-.001}
11 for aa in protseq:
12 charge += AACharge.get(aa,0)
13 if aa in AACharge:
14 cp += 1
15 prop=float(cp)/len(AAseq)*100
16 return (charge,prop)
17

© 2010 by Taylor and Francis Group, LLC

Web Applications 235

FIGURE 11.6: HTML generated by a Python script.

18 def handler(req):
19 req.content_type=’text/html’
20 fs = dict(FieldStorage(req))
21 charge,pvalue = chargeandprop(fs[’seq’])
22 req.write("<html><body>Job title:"+fs[’title’]+"
"+
23 "Your sequence is:
"+fs[’seq’]+"
"+
24 "Net charge:"+str(charge)+"
")
25 if fs[’prop’]=="y":
26 req.write("Proportion of charged AA: %.2f "
27 %pvalue)
28 req.write("
</body></html>")
29 return apache.OK

Code explanation: The first two lines are those that are expected for
these types of programs. On line 3 FieldStorage is imported in order to
recover the data sent by the form. From lines 5 to 16, there is a function that
calculates the net charge and the proportion of charged amino acids. The
main section of the program is in reality the function handler, that begins
from line 18. On line 19 we define the content type as “text/html.” On line
20 we generate a dictionary (fs) with the values sent by the form. The rest
of the code is similar to the CGI example.

In Figure 11.6, we see the output generated by script 11.7.

11.2.3 mod python with Publisher

An alternative that involves mod python is to use a higher level handler
called Publisher.

Modifying Apache to Use Publisher

The Apache configuration file must be slightly modified to use Publisher:

© 2010 by Taylor and Francis Group, LLC

236 Python for Bioinformatics

<Directory /var/www/apache2-default>
SetHandler mod_python
PythonHandler mod_python.publisher
PythonDebug On

</Directory>

The first line (SetHandler mod python) tells the web server that all files in
this directory (texttt/var/www/apache2-default in this case) must be handled
by mod python. The second line (textttPythonHandler mod python.publisher)
is where the handler publisher is specified. Remember to restart the Apache
Eeb server after modifying the configuration file.5

To compare both systems we will use the same example as before.

11.2.4 Web Program to Calculate the Net Charge of a Pro-
tein (mod python.publisher version)

The web form is the same as the previous one, with the only difference in the
path of the script that processes the data. Apart from pointing to the script,
you have to specify the name of the function that should process the data. If
the script is called handler.py and the function is netc, the associated path
for this request would be: http://yoursite/handler.py/netc. This system
creates cleaner and easier to read URLs. As an additional bonus, the site will
be indexed better by search engines. Let’s see the HTML form code:

<html>
<head><title>Protein Charge Calculator</title></head>
<body>
<h2>Protein Charge Calculator</h2>
<form action=’/apache2-default/handler.py/netc’ method=’POST’>
Enter the amino-acid sequence:
<textarea name=’seq’ rows=’5’ cols=’40’></textarea><p>
Do you want to see the proportion of charged amino-acid?<p>
<input type=’radio’ name=’prop’ value=’y’>Yes

<input type=’radio’ name=’prop’ value=’n’>No
<p>
Job title (optional):
<input type=’text’ size=’30’ name=’title’>
<p>
<input type=’submit’ value=’Send’>
</form>
</body>
</html>

The script associated with this form is different to previous cases. The first
detail to take into account is that the code must be inside a function and this

5In Debian based Linux Apache is restarted with the script apachectl : $ sudo

/usr/sbin/apache2ctl -k restart.

© 2010 by Taylor and Francis Group, LLC

http://yoursite/handler.py
http://yoursite/handler.py

Web Applications 237

should be called like the variable action from the form that invokes it. In this
case, the function that works as the entry point to our code is netc. Another
difference to spot is that the variable names can be passed to the function in
a straightforward manner.

Listing 11.8: Net charge of a protein with Web Publisher (py3.us/54)

1 #!/usr/bin/env python
2
3 def chargeandprop(AAseq):
4 protseq = AAseq.upper()
5 charge = -0.002
6 cp = 0
7 AACharge = {"C":-.045,"D":-.999,"E":-.998,"H":.091,
8 "K":1,"R":1,"Y":-.001}
9 for aa in protseq:

10 charge += AACharge.get(aa,0)
11 if aa in AACharge:
12 cp += 1
13 prop = float(cp)/len(AAseq)*100
14 return (charge,prop)
15
16 def netc(req,seq,title,prop):
17 req.content_type = ’text/html’
18 charge,propval = chargeandprop(seq)
19 req.write("<html><body>Job title: "+title+"
"+
20 "Your sequence is:
"+seq+"
"+
21 "Net charge: "+str(charge)+"
")
22 if prop=="y":
23 req.write("Proportion of charged AA: %.2f" %propval)
24 req.write("
</body></html>")
25 return None

The result is identical to the one in Figure 11.6, with the only difference in
the URL path in the address bar.

11.3 WSGI

Before WSGI there was a lot of incompatible choices for web programming
in Python. Some of them were web frameworks, that is, a set of programs for
development of dynamic Web sites. The problem with these frameworks was
that each one operated in a different way and most of them were tied to a
Web server, limiting the choice of Web server/application pair.

© 2010 by Taylor and Francis Group, LLC

238 Python for Bioinformatics

FIGURE 11.7: HTML generated by a Python script.

WSGI was made to fill this gap, and it is defined as a “simple and universal
interface between web servers and web applications or frameworks.” A lot of
components (or middleware) are now WSGI compatible, so the programmer
doesn’t need to deal directly with WSGI. Once an application works with a
middleware, it can be deployed in any WSGI compliant server. WSGI is now
standardized and part of the Python language (as described in PEP 333). For
these reasons, WSGI is the recommended choice for Web programming.

11.3.1 Preparatory Steps

There are several ways to run a WSGI in the Apache Web server. In
this book we will use mod wsgi, an Apache module made to host Python
application which supports the Python WSGI interface.

The module can be downloaded from the project website6 or installed au-
tomagically by using operating system package manager.7

Once mod wsgi is installed, you have to modify the apache.conf file by
adding a line like this:

WSGIScriptAlias webpath path_in_server

Where webpath is the path seen by the user and path in server is the
path to the file that will receive all the request in this directory. For example,

WSGIScriptAlias / /var/www/sitepath/htdocs/test.wsgi

That means that every request pointing to any page in the root directory of
the Web server will be handled by a script localted in /var/www/sitepath/-
htdocs/test.wsgi.

6http://code.google.com/p/modwsgi/
7It is called libapache2-mod-wsgi in Debian based systems.

© 2010 by Taylor and Francis Group, LLC

http://code.google.com
http://code.google.com

Web Applications 239

11.3.2 “Hello World” in WSGI

Here is a simple “Hello World” application in WSGI:

Listing 11.9:Hello World in WSGI (py3.us/55)

1 def application(environ, start_response):
2 status = ’200 OK’
3 output = "<html><head><title>HW WSGI</title></head>\
4 <body>Hello World!</body></html>"
5 response_headers = [(’Content-type’, ’text/html’),
6 (’Content-Length’, str(len(output)))]
7 start_response(status, response_headers)
8 return output

application is a function that the server calls for each request. It has
two parameters, environ and start response. The first one (environ) is
a dictionary with the CGI defined variables and some extra information.
start response is an executable function with the information that returns
the HTTP headers. As you may see, there is a lot of “low level” statements
going around. This can be avoided by using middleware, that is, applications
used as a glue between different software components (like your program and
the WSGI server). Since WSGI is included with Python, there are a lot of
middleware created for it.8

Tip: Using the Built-in Server.

You don’t need a full featured web server to test your scripts. Since Python
2.5 there is a web server as part of the standard library. This server is not
suitable for real life large scale applications, but it is more than enough for
testing. If you don’t have access to a web server, you can program your
application anyway, test it in this built-in server and deploy the application
in any other WSGI compatible web server when available.

In order to run the server, import make server, initialize it with the host-
name, port and application name and start the server with serve forever().
In other words, it only takes three lines to have a working web server:

from wsgiref.simple_server import make_server
server = make_server(’localhost’, 8888, application)
server.serve_forever()

8See a complete list in http://wsgi.org/wsgi/Middleware_and_Utilities.

© 2010 by Taylor and Francis Group, LLC

http://wsgi.org/wsgi
http://wsgi.org/wsgi

240 Python for Bioinformatics

In this book we will use yaro and selector, both useful middleware devel-
oped by Luke Arno.9 yaro (Yet Another Request Object) hides under the
hood lot of WSGI functions. In the word of the author: “is intended to be
simple and useful for web developers who don’t want to have to know a lot
about WSGI to get the job done.” selector is used to select which function
is executed according to URL path and method (post or get). See the same
code as listing 11.9 but with yaro:

Listing 11.10: Hello World with yaro (py3.us/56)

1 from yaro import Yaro
2
3 def _application(req):
4 output = "<html><head><title>HW WSGI</title></head>\
5 <body>Hello World!</body></html>"
6 return output
7
8 application = Yaro(_application)

Code explanation: The main function is defined in the application
function. This function is wrapped by Yaro (line 8), this way Yaro adds
functionality to application. Note that this function takes req as argument.
This is the request object and it contains useful methods, like the environ
object.

This example shows how to use WSGI with yaro, but doesn’t show what a
complete application looks like. For this reason I present code 11.11 that is
the version WSGI version of code 11.8:

Listing 11.11: Net charge in WSGI with yaro (py3.us/57)

1 #!/usr/bin/env python
2
3 from selector import Selector
4 from yaro import Yaro
5
6 rootdir = ’/var/www/mywebsite/htdocs/’
7
8 def index(req):
9 return open(rootdir+’form.html’).read()

10
11 def _chargeandprop(AAseq):

9Both programs are available at http://lukearno.com/projects.

© 2010 by Taylor and Francis Group, LLC

http://lukearno.com
http://lukearno.com

Web Applications 241

12 protseq = AAseq.upper()
13 charge = -0.002
14 cp = 0
15 AACharge = {"C":-.045,"D":-.999,"E":-.998,"H":.091,
16 "K":1,"R":1,"Y":-.001}
17 for aa in protseq:
18 charge += AACharge.get(aa,0)
19 if aa in AACharge:
20 cp += 1
21 prop = 100.*cp/len(AAseq)
22 return (charge,prop)
23
24 def netc(req):
25 seq = req.form.get(’seq’,’’)
26 title = req.form.get(’title’,’’)
27 prop = req.form.get(’prop’,’’)
28 charge,propval = _chargeandprop(seq)
29 yield "<html><body>Job title: %s
"%title+\
30 "Your sequence is:
%s
"%seq+\
31 "Net charge: %s
"%charge
32 if prop=="y":
33 yield "Proportion of charged AA: %.2f"%propval
34 yield "
</body></html>"
35
36 s = Selector(wrap=Yaro)
37 s.add(’/’, GET=index)
38 s.add(’/netc’, POST=netc)
39 application = s

Code Explanation: This program is composed of two main functions:
index (from line 8) and netc (from line 24), each function represents a page
that the user receives when the function is invoked. The program begins at
line 36 where a Selector is instanced as s. Note that wrap=Yaro part, this
indicates that every function must be wrapped by the Yaro class (thus saving
a step like line 8 in code 11.10). Line 37 can be read as: If the user makes
a GET request of the root page, send him what returns function index. In
the same way line 38 means: If the user makes a POST request of page netc,
send him the result of the function netc. In fact, netc is not a function, but
a generator. And it will be executed until exhausted. Note that index just
returns a file. This also can be accomplished with the Static module10 from
the same author or Yaro and Selector. It even has some functions to server
“template files” and give them variable content “on the fly.” This is slower
than letting the Web server handle a static file. You can’t serve static pages

10It is available from http://lukearno.com/projects/static.

© 2010 by Taylor and Francis Group, LLC

http://lukearno.com/projects/static
http://lukearno.com/projects/static

242 Python for Bioinformatics

from the same directory where you are serving WSGI pages. So you should
serve them from another directory or even from another subdomain. In line
39 the selected object is named application, that is the name of the function
that is executed in the WSGI program. Note lines 25 to 27, where the method
form of the req object is invoked to get the data entered by the user in the
Web form.

11.4 Alternative Options for Making Python Based Dy-
namic Web Sites

Solutions presented up to this point are useful enough to build small and
medium sized sites from the ground up. But if your website uses advanced
features like multiple forms, user and session management and international-
ization support, it would be better to use a framework (or Web framework)
where most of these features are already covered. Since these types of applica-
tion are beyond the scope of this book, I will show a table that summarizes the
most important frameworks (see table 11.1). The table is sorted roughly on
abstraction level. The first entries are systems with less features and requires
more tweaking to achieve the same result than a higher level framwork.

No framework has received the status of “Python official web framework,”
so there is some usage and developer dispersion. In spite of that, Django is
gaining momentum as the most popular web framework.

TABLE 11.1: Frameworks for Web Development (sorted by abstraction level)

Name
URL Description

Web.py webpy.org Minimalist Web framework
Pylons pylonshq.com Rapid Web application development

framework
Zope zope.org One of the first Web application servers

written in Python
Twisted twistedmatrix.com An event-driven networking engine
Plone plone.net Content management system built on Zope
Django djangoproject.com High-level Python Web framework that en-

courages rapid development
TurboGears turbogears.org Complete Web framework that integrates:

SQLObject, Cherrypy, Kid, and Mochikit
web2py mdp.cti.depaul.edu Full-stack framework for agile development

of database-driven Web-based applications

© 2010 by Taylor and Francis Group, LLC

Web Applications 243

There are some alternatives to Web frameworks for Python Web develop-
ing. Pyjamas is a Python-to-JavaScript compiler with an AJAX Framework
and Widget set that can be used to write applications that run in most Web
browsers. Since Web browsers can’t execute Python code, this program trans-
late Python code into JavaScript, a language fully supported in any modern
Web browser. This is port of the Google Web Toolkit, a set of tools that con-
vert Java code into JavaScript. Note that this program is made for front-end
design using client-side scripting insted of server-side applications.

Another client-side alternative is Silverlight, a Flash-like run-time sys-
tem made by Microsoft. From version 2 of Silverlight, applications can be
written in any .net programming language. Since IronPython is a Python
implementation that runs on .net platform, it can be used to make Silverlight
applications with Python. Silverlight 2 is already available for Windows and
Mac, and the Linux support is in the works via the Moonlight project from
Mono.

11.5 Some Words about Script Security

If your scripts are made only for your own consumption, you can skip this
section and jump to the next section on page 244.

Something to have in mind when designing web applications is that the
user may (and will) enter data in an unexpected format. Even if this is not
always true, when the form is publicly accessible on the Internet, this threat
shouldn’t be underestimated.

There will be people who will not know how to complete the online form
and try whatever they think is best. There will be attackers who will test
your site looking for any exploitable vulnerability.

A first barrier that can be used to avoid misuse of your scripts is to use
JavaScript (JS) for form validation. It is not the purpose of this book to teach
JS, so there are links in the “Additional resources” section.

JS can be used to avoid problems associated with the end user, but it is
rather useless as a deterrent for anyone who is determined to attack your
server. If anyone wants to interact with your script, he could do it without
using the Web browser, bypassing completely your carefully created JS code.

This is why all data validation must be done “server side” instead of leave
it to a random user who cannot be trusted.

A script like the one in code 11.8 does not require as much precautions as a
CGI script that runs a shell session and pass user entered parameters to the
Operating System.

Another critical point to watch out for is when a script accesses a database
engine. There is a chance that an attacker could inject SQL commands to

© 2010 by Taylor and Francis Group, LLC

244 Python for Bioinformatics

produce unwanted results (like listing the full contents of a table with sensitive
information like usernames and passwords11). This kind of attack is called
“SQL injection” and it will be covered in the “Python and databases” chapter.

There is no rule of thumb regarding how to sanitize every kind of input,
but it depends on the particular application. Anyway there are some outlines
of what to take into consideration at the moment of designing the security of
our application.

1. Identify where the data can access the application. Clearly the most
evident point of entry are the forms you set up for data input. But
you should not overlook other points of entry like URLs, files stored on
the server, other web sites if your scripts read external sources like RSS
feeds.

2. Watch for escape characters used by the program your application in-
teracts with. These should always be filtered. If your program accesses
a Unix shell, filter the “;” character (semicolon) since it can be used
to issue arbitrary commands. This depends on the type of shell your
system is using. Some characters you should consider watching are: ;,
&&, ||, \ and ”.

3. Consider making a list of valid accepted characters (a “white list”) to
make sure that your strings have only the required characters.

4. The running privileges of the web server program must be the lowest
possible. Most Unix systems use an ad-hoc user for the web server
process. This is called “Principle of Least Privilege.” The program is
given the smallest amount of privilege required to do its job. This limits
the abuse that can be done to a system if the web server process is
hijacked by an attacker.

11.6 Where to Host Python Programs

If you’ve tested satisfactorily your scripts on your local server, it’s time
to put them on the Internet so that the rest of the world can enjoy them.
Usually the institution that you work for has a web server where you can
store your scripts, for which the first step would be to ask for support from
your IT department. In the event that you don’t get a satisfactory response,
you would have to consider resolving the problem by yourself. It is not too

11It is not a good idea anyway to store passwords in plain text in a database. The best
practice is to store a hash of the password instead, like SHA224. Python has several message
digest algorithms in the hashlib module.

© 2010 by Taylor and Francis Group, LLC

Web Applications 245

difficult. There are thousands of web hosting businesses. Look for one that
explicitly supports Python.

Among the diverse plans that offer the web hosting businesses, choose the
“shared” plan type if your script is very simple and does not involve instal-
lation of programs or additional modules. If your script executes programs
that aren’t installed on the server, as is the case with Biopython, you can ask
for it to be installed. Ask before contracting the service if the install modules
on demand. Another problem that can surface is with the web frameworks.
Some work as a long running process, which is not permitted by the hosting
agreement.

Make sure that the version of Python installed on the hosting server is
compatible with your scripts. This is not a minor topic considering that the
servers are used to not having the latest version of Python installed.

If the web hosting service does not allow program installation, you will
have to consider the dedicated hosting type, where you have root access to
a computer where there are not limits with regard to what you can install
(assuming that the necessary disk space is available). These types of plans
tend to be expensive as they require contracting the use of a computer for
each user, but thanks to virtualization technologies, it is possible to contract a
dedicated virtual hosting plan at a more than affordable price. This is because
the computer is shared between various users, but it differs from the shared
hosting plan type in that each user has total access to the server. For very
demanding applications, this may not be the best solution and you may have
to resort to the use of dedicated hosting (not virtual).

A new alternative to consider is the “Google App Engine,” this system
enables you to build web applications on the same scalable systems that
power Google applications. Leave Google take care of Apache web server
configs, startup scripts, the SQL database, server monitoring and software
upgrades. You just write your Python code. Applications designed for this
engine are implemented using the Python programming language. The App
Engine Python runtime environment includes a specialized version of the
Python interpreter. For more information on “Google App Engine,” see
http://code.google.com/appengine.

On the Python official site there is a listing of hosting providers with Python
support. It includes both community and commercial providers: http://
wiki.python.org/moin/WebProgramming.

11.7 Additional Resources

• W3Schools: “JavaScript Form Validation.”
http://www.w3schools.com/js/js_form_validation.asp

© 2010 by Taylor and Francis Group, LLC

http://code.google.com
http://wiki.python.org
http://wiki.python.org
http://www.w3schools.com
http://www.w3schools.com
http://wiki.python.org
http://wiki.python.org
http://code.google.com

246 Python for Bioinformatics

• JavaScript-Coder.com: “JavaScript Form Validation : quick and easy!”
http://www.javascript-coder.com

• Python Web Server Gateway Interface v1.0.
http://www.python.org/dev/peps/pep-0333

• Server Fault is a Q&A site for system administrators and IT profession-
als that’s free.
http://serverfault.com

• Armin Ronacher, “Getting Started with WSGI.”
http://lucumr.pocoo.org/2007/5/21/getting-started-with-wsgi

• Pesto: A library for Python Web applications.
http://pesto.redgecko.org

• Microsoft Silverlight: A Flash-like web application framework.
http://www.silverlight.net/

• Pyjamas: A port of Google Web Toolkit to Python.
http://pyjs.org/

© 2010 by Taylor and Francis Group, LLC

http://www.javascript-coder.com
http://www.python.org
http://serverfault.com
http://lucumr.pocoo.org
http://pesto.redgecko.org
http://www.silverlight.net
http://pyjs.org
http://pyjs.org
http://www.silverlight.net
http://pesto.redgecko.org
http://lucumr.pocoo.org
http://serverfault.com
http://www.python.org
http://www.javascript-coder.com

Web Applications 247

11.8 Self-Evaluation

1. What is CGI?

2. What is cgitb? When should you avoid its use?

3. How do you use cgi.FieldStorage to retrieve values sent over an HTML
form?

4. What is mod python? Name advantages of mod python over CGI.

5. What is WSGI? Why is it the recommended choice for Web program-
ming?

6. What is the rationale for using Yaro or any other “middleware”?

7. Python includes a limited web server. Why would you use such a Web
server if there are free full featured web servers like Apache?

8. Name security considerations to take into account when running a live
Web server.

9. Why is client-side data validation not useful as server-side data valida-
tion?

10. What is the difference between shared, dedicated and virtual dedicated
hosting? When would you use dedicated hosting over a shared plan?

© 2010 by Taylor and Francis Group, LLC

Chapter 12

XML

12.1 Introduction to XML

What Is XML?

A widespread problem in all branches of information technology is the stor-
age and interchange of data. Each application has its own particular way of
storing the generated information, which is often a problem, especially when
we don’t have the application that generated the data.

For example, DNA sequencers made by Applied Biosystems generate data
and store it in files with the extension .ab1. If we want to access data stored
in such a file, we need to know how it is structured internally. In this case,
the creator of the format has released the specification of the file;1 and it
would be possible, though not necessarily easy, to write code to extract our
data from these files. Usually we do not have such good luck, and it is very
common to find data file formats poorly documented, or not documented
at all. In many cases those who have wanted to open these files have had
to resort to “reverse engineering,” with mixed results. To avoid this type
of problem and to make more fluid exchange of data between applications
from different manufacturers, the W3C2 developed the eXtensible Markup
Language, better known as XML.

XML is a way of representing data. What kind of data? Practically any
type can be represented using XML. Configuration files, databases, web pages,
spreadsheets, and even drawings can be represented and stored in XML.

For some specific applications, there have been defined subsets of XML,
prepared for representing a particular type of data. So, mathematical formulas
can be stored in an XML dialect called MathML,3 vector graphics in SVG,4

chemical formulas in CML.5, and page printouts can be represented with

1File format specification for ABI files are available at www.appliedbiosystems.com/

support/software_community/ABIF_File_Format.pdf.
2The World Wide Web Consortium, abbreviated W3C, is an international consortium that
produces standards for the World Wide Web.
3http://www.w3.org/Math
4http://www.w3.org/Graphics/SVG
5http://www.xml-cml.org

249

© 2010 by Taylor and Francis Group, LLC

http://www.appliedbiosystems.com
http://www.w3.org
http://www.w3.org
http://www.xml-cml.org
http://www.appliedbiosystems.com
http://www.appliedbiosystems.com
http://www.xml-cml.org
http://www.w3.org
http://www.w3.org
http://www.appliedbiosystems.com

250 Python for Bioinformatics

XSLFO.6 In terms of bioinformatics, there are various formats based on XML,
the most well-known being BSML7 and INSDSeq XML.8

In addition to the above formats, more applications store their data in
XML. This means that, by learning to read XML, we can access a multitude
of files from the most diverse origins.

Before going into details on how to process this type of file, I want to share
a W3C document called “XML in 10 points” that can shows the big picture:

XML in 10 Points9

1. XML is for structuring data: Structured data includes things like spread-
sheets, address books, configuration parameters, financial transactions,
and technical drawings. XML is a set of rules (you may also think of
them as guidelines or conventions) for designing text formats that let
you structure your data. XML is not a programming language, and you
don’t have to be a programmer to use it or learn it. XML makes it
easy for a computer to generate data, read data, and ensure that the
data structure is unambiguous. XML avoids common pitfalls in lan-
guage design: it is extensible, platform-independent, and it supports
internationalization and localization. XML is fully Unicode-compliant.

2. XML looks a bit like HTML: Like HTML, XML makes use of tags (words
bracketed by ’<’ and ’>’) and attributes (of the form name=”value”).
While HTML specifies what each tag and attribute means, and often
how the text between them will look in a browser, XML uses the tags
only to delimit pieces of data, and leaves the interpretation of the data
completely to the application that reads it. In other words, if you see
“<p>” in an XML file, do not assume it is a paragraph. Depending on
the context, it may be a price, a parameter, a person, a p... (and who
says it has to be a word with a “p”?).

3. XML is text, but isn’t meant to be read: Programs that produce spread-
sheets, address books, and other structured data often store that data on
disk, using either a binary or text format. One advantage of a text for-
mat is that it allows people, if necessary, to look at the data without the
program that produced it; in a pinch, you can read a text format with

6http://www.w3.org/TR/xsl11
7Bioinformatic Sequence Markup LanguageTM(http://www.bsml.org) created by the Na-
tional Human Genome Research Institute.
8Format of the International Nucleotide Sequence Database Collaboration (http://www.
insdc.org/files/documents/INSD_V1.4.dtd).
9Taken from http://www.w3.org/XML/1999/XML-in-10-points. Authorized by “Copyright
c©[1999] World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Re-
served. http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.”

© 2010 by Taylor and Francis Group, LLC

http://www.w3.org
http://www.bsml.org
http://www.insdc.org
http://www.insdc.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.insdc.org
http://www.insdc.org
http://www.bsml.org
http://www.w3.org

XML 251

your favorite text editor. Text formats also allow developers to more eas-
ily debug applications. Like HTML, XML files are text files that people
shouldn’t have to read, but may when the need arises. Compared to
HTML, the rules for XML files allow fewer variations. A forgotten tag,
or an attribute without quotes makes an XML file unusable, while in
HTML such practice is often explicitly allowed. The official XML spec-
ification forbids applications from trying to second-guess the creator of
a broken XML file; if the file is broken, an application has to stop right
there and report an error.

4. XML is verbose by design: Since XML is a text format and it uses tags
to delimit the data, XML files are nearly always larger than comparable
binary formats. That was a conscious decision by the designers of XML.
The advantages of a text format are evident (see point 3), and the
disadvantages can usually be compensated at a different level. Disk
space is less expensive than it used to be, and compression programs
like zip and gzip can compress files very well and very fast. In addition,
communication protocols such as modem protocols and HTTP/1.1, the
core protocol of the Web, can compress data on the fly, saving bandwidth
as effectively as a binary format.

5. XML is a family of technologies: XML 1.0 is the specification that de-
fines what “tags” and “attributes” are. Beyond XML 1.0, “the XML
family” is a growing set of modules that offer useful services to ac-
complish important and frequently demanded tasks. XLink describes
a standard way to add hyperlinks to an XML file. XPointer is a syn-
tax in development for pointing to parts of an XML document. An
XPointer is a bit like a URL, but instead of pointing to documents on
the Web, it points to pieces of data inside an XML file. CSS, the style
sheet language, is applicable to XML as it is to HTML. XSL is the
advanced language for expressing style sheets. It is based on XSLT, a
transformation language used for rearranging, adding and deleting tags
and attributes. The DOM is a standard set of function calls for manip-
ulating XML (and HTML) files from a programming language. XML
Schemas 1 and 2 help developers to precisely define the structures of
their own XML-based formats. There are several more modules and
tools available or under development. Keep an eye on W3C’s technical
reports page.

6. XML is new, but not that new: Development of XML started in 1996
and it has been a W3C Recommendation since February 1998, which
may make you suspect that this is rather immature technology. In fact,
the technology isn’t very new. Before XML there was SGML, developed
in the early ’80s, an ISO standard since 1986, and widely used for large
documentation projects. The development of HTML started in 1990.
The designers of XML simply took the best parts of SGML, guided

© 2010 by Taylor and Francis Group, LLC

252 Python for Bioinformatics

by the experience with HTML, and produced something that is no less
powerful than SGML, and vastly more regular and simple to use. Some
evolutions, however, are hard to distinguish from revolutions... And it
must be said that while SGML is mostly used for technical documenta-
tion and much less for other kinds of data, with XML it is exactly the
opposite.

7. XML leads HTML to XHTML: There is an important XML application
that is a document format: W3C’s XHTML, the successor to HTML.
XHTML has many of the same elements as HTML. The syntax has
been changed slightly to conform to the rules of XML. A format that is
“XML-based” inherits the syntax from XML and restricts it in certain
ways (e.g, XHTML allows “<p>”, but not “<r>”); it also adds meaning
to that syntax (XHTML says that “<p>” stands for “paragraph”, and
not for “price”, “person”, or anything else).

8. XML is modular: XML allows you to define a new document format
by combining and reusing other formats. Since two formats developed
independently may have elements or attributes with the same name,
care must be taken when combining those formats (does “<p>” mean
“paragraph” from this format or “person” from that one?). To eliminate
name confusion when combining formats, XML provides a namespace
mechanism. XSL and RDF are good examples of XML-based formats
that use namespaces. XML Schema is designed to mirror this support
for modularity at the level of defining XML document structures, by
making it easy to combine two schemas to produce a third which covers
a merged document structure.

9. XML is the basis for RDF and the Semantic Web: W3C’s Resource
Description Framework (RDF) is an XML text format that supports re-
source description and metadata applications, such as music play-lists,
photo collections, and bibliographies. For example, RDF might let you
identify people in a Web photo album using information from a personal
contact list; then your mail client could automatically start a message
to those people stating that their photos are on the Web. Just as HTML
integrated documents, images, menu systems, and forms applications to
launch the original Web, RDF provides tools to integrate even more,
to make the Web a little bit more into a Semantic Web. Just like peo-
ple need to have agreement on the meanings of the words they employ
in their communication, computers need mechanisms for agreeing on
the meanings of terms in order to communicate effectively. Formal de-
scriptions of terms in a certain area (shopping or manufacturing, for
example) are called ontologies and are a necessary part of the Seman-
tic Web. RDF, ontologies, and the representation of meaning so that
computers can help people do work are all topics of the Semantic Web
Activity.

© 2010 by Taylor and Francis Group, LLC

XML 253

10. XML is license-free, platform-independent and well-supported: By choos-
ing XML as the basis for a project, you gain access to a large and growing
community of tools (one of which may already do what you need!) and
engineers experienced in the technology. Opting for XML is a bit like
choosing SQL for databases: you still have to build your own database
and your own programs and procedures that manipulate it, but there
are many tools available and many people who can help you. And since
XML is license-free, you can build your own software around it without
paying anybody anything. The large and growing support means that
you are also not tied to a single vendor. XML isn’t always the best
solution, but it is always worth considering.

12.2 Structure of an XML Document

We do not need to know the details of the internal structure of an XML
document. This is because Python has its own tools for accessing this type
of file. The developers of Python had to deal with the internals of XML in
order to construct these tools; however I think that is necessary is to have a
minimal notion of the structure of XML files, in order to make better use of
the facilities Python provides us for handling this type of document.

Let’s see a sample XML document, in this case a Uniprot record:10

10This record was altered sligthly to fit the page. Information left out was not relevant for
explanation in this book.

© 2010 by Taylor and Francis Group, LLC

254 Python for Bioinformatics

Listing 12.1: UNIPROT record in XML

<?xml version="1.0" encoding="UTF-8"?>
<uniprot xmlns="http://uniprot.org/uniprot"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://uniprot.org/uniprot
http://www.uniprot.org/support/docs/uniprot.xsd">

<entry dataset="TrEMBL" created="2000-10-01" version="35">
<accession>Q9JJE1</accession>
<organism key="1">

<name type="scientific">Mus musculus</name>
<lineage>
<taxon>Eukaryota</taxon>
<taxon>Metazoa</taxon>
<taxon>Chordata</taxon>
<taxon>Craniata</taxon>
<taxon>Vertebrata</taxon>
<taxon>Euteleostomi</taxon>
<taxon>Mammalia</taxon>
<taxon>Eutheria</taxon>
<taxon>Euarchontoglires</taxon>
<taxon>Glires</taxon>
<taxon>Rodentia</taxon>
<taxon>Sciurognathi</taxon>
<taxon>Muroidea</taxon>
<taxon>Muridae</taxon>
<taxon>Murinae</taxon>
<taxon>Mus</taxon>

</lineage>
</organism>
<dbReference type="UniGene" id="Mm.248907" key="5"/>
<sequence length="393" checksum="E0C0CC2E1F189B8A">

MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL
EAFLTQKQKVGELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIH
LEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGS
LDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKIMHRDVKPSNILVNS
RGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSMG
LSLVEMAVGRYPIPPPDAKELELLFGCHVEGDAAETPPRPRTPGGPLSSY
GMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERA
DLKQLMVHAFIKRSDAEEVDFAGWLCSTIGLNQPSTPTHAASI
</sequence>
</entry>
</uniprot>

© 2010 by Taylor and Francis Group, LLC

http://www.w3.org
http://uniprot.org
http://uniprot.org
http://uniprot.org
http://uniprot.org
http://www.w3.org

XML 255

In broad outlines, the structure of an XML document is very simple. It
generally consists of a prologue, a body, and an epilogue.11

Prologue

The prologue is an optional section that marks the beginning of the XML
data and gives important information to the parser. A prologue might have
only one line, like this one,

<?xml version="1.0" encoding="UTF-8"?>

Or several lines:

<?xml version="1.0"?>
<!DOCTYPE BlastOutput PUBLIC "-//NCBI//NCBI BlastOutput/EN"
"http://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd">
<!-- edited with XMLSPY (http://www.xmlspy.com) by Andy -->

The first line is the XML declaration where the XML version and char-
acter code are specified. Character code information is optional only if the
document is encoded in UTF-8 or UTF-16.

The second line is the DOCTYPE declaration, whose purpose is to relate
the XML document with a document type definition (DTD). This DTD file
contains information about the particular structure of the XML file: it says
which tags and attributes are permitted, as well as where they can be found.
In some cases, in place of a DTD reference, there are references to an alternate
method to DTD called XML Schema which serves the same function but
with better performance, and with a syntax based on XML. The structure
of a DTD or XML Schema file is beyond the scope of this book; however,
there are several, quite complete, references on the Internet (see Additional
Resources at the end of this chapter).

The third line, in this case, is a comment. It is equivalent to # in Python.
It begins with “<!−−” and ends with “−− >”, and can be in the prologue
as well as in the body of an XML document. It is the same type of comment
that is used in HTML and it can span multiple lines.

Body

The body is where reside the elements, the true protagonists of XML files.
An element is the information from the beginning of the start tag to the end
of the end tag, including all that lies in between.

An example of an element that can be found in the body of an XML doc-
ument:

11This feature is seldom used, so the prologue and the body are the most important parts
of an XML file.

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.xmlspy.com
http://www.xmlspy.com
http://www.ncbi.nlm.nih.gov

256 Python for Bioinformatics

<taxon>Eukaryota</taxon>

Where <taxon> is the start tag, </taxon> is the end tag, and the contents
(Eukaryota), is that which is between the two tags.

Elements may show up empty. It is valid to write, for example:

<accession></accession>

While in this case it doesn’t make much sense to have nothing contained
in the “accession” element (a Uniprot base should always have a number
of accessions), it is possible that in some circumstances the contents of an
element will be optional.

There is an abbreviated way to represent empty elements, called an “empty
element tag,” and consists of the name of the element followed by a forward
slash (/), all enclosed by angle brackets, for example:

<accession/>

The elements can be “nested” inside one another. In listing 12.1 we can see
how the element “taxon” is nested within “lineage”. This gives an idea of a
hierarchical structure: there are elements which are subordinate to others. We
see that “taxon” is an element of “lineage”, which is an element of “organism”.
Normally this type of structure is compared to a tree. The first element is
called the “Document Element” (in this case, “uniprot”), from which hangs
all the rest, which are its “children.” To obtain a graphical representation of
this tree, one can use a program like XML Viewer.12, which shows something
similar to figure 12.1

Some elements have “attributes,” that is, additional information about the
element. The general syntax of an element with an attribute is,

<element attributeName="value">

Continuing with the example of listing 12.1, we come across other elements
with attributes as, for example,

<name type="scientific">

In this case the element called “name” is an attribute of “type”, which has
a value of “scientific.” Additionally it can have more than one attribute, as
in the element “sequence”:

<sequence length="393" checksum="E0C0CC2E1F189B8A">

12XML Viewer is available at http://sourceforge.net/projects/ulmxmlview.

© 2010 by Taylor and Francis Group, LLC

http://sourceforge.net
http://sourceforge.net

XML 257

FIGURE 12.1: Screenshot of XML viewer: Tree viewer shows the structure
of the document in listing 12.1.

© 2010 by Taylor and Francis Group, LLC

258 Python for Bioinformatics

Here the attributes are “length” and “checksum”, whose values are “393”
and “E0C0CC2E1F189B8A”, respectively.

At this level already we have elements which give us an idea of the data
contained in an XML file. Of the record of listing 12.1 we can say that
the element “sequence” contains a nucleotide sequence which has a length of
393bp, a known signature, and has as an ID “Q9JJE1” of the UniProt base.
All this without prior knowledge of the data structure and without the use
of a special program. Try to open an .ab1 file to see if you can find any
recognizable element.

Despite having a general overview of the structure of XML files, you will
find the format has other particularities that go beyond the scope of this book.
If you are interested in knowing more about XML, see the list of resources at
the end of the chapter.

The following section shows how to access the contents of XML documents
using Python.

12.3 Methods to Access Data inside an XML Document

Regardless of the programming language you use, there are two strategies
that you can use to gain access to the information contained in an XML file.

On one hand, you can read the file in its entirety, analyze the relationships
between the elements, and build a tree-type structure, by which the appli-
cation can navigate the data. This is called the Document Object Model
(DOM) and is the manner recommended by the W3C in parsing XML doc-
uments. In this chapter we will see two parsers of this type: Minidom and
ElementTree.

Another possibility is that the application detects and reports events such
as the start and the end of an element, without the necessity of constructing a
tree-type representation. In the case that a tree representation is needed, this
task is left to the programmer. This is the method used by the Simple API
for XML (SAX). Generally these types of parsers are called “event driven
parsers.” In this chapter we will see, as an example of an event-based parser,
Iterparse of cElementTree.

In some cases it is convenient to use DOM, while in other cases SAX is
the preferred option. DOM usually implies saving the whole tree in memory
for later traversal. This can present a problem at the time of parsing large
documents, especially when what you want to do is simply detect the pres-
ence of a single element’s value. In these cases a SAX is the most efficient
parser. Nevertheless, many applications require operating on all the elements
within the tree, for which we must turn to DOM. From the perspective of
the programmer, the DOM interface is easier to use than SAX as it doesn’t

© 2010 by Taylor and Francis Group, LLC

XML 259

require event-driven programming.

12.3.1 DOM: Minidom

One of the DOM parsers in Python is “Minidom.” This provides a method
called “parse,” which is what does the dirty work of reading all the archive,
analyzing the structure contained in the XML, and reproduces in a represen-
tation accessible from our Python program.

Let’s see an XML parse in action:

>>>from xml.dom.minidom import parse
>>>midom=parse("smallUniprot.xml")

This creates an object called “midom” that contains a representation, in tree
form, of the data contained in smallUniprot.xml. From now on we will refer
to this object to extract the information in the XML file. In this case, I am
interested in the information of the protein sequence and its associated data,
although the methods described here serve to extract whatever information
is contained in any XML file.

This tree can be navigated with the following methods:
childNodes: A method which returns a list of all the nodes contained in

the node to which this method is applied. If we apply this to our object
derived from the parser:

>>> midom.childNodes
[<DOM Element: uniprot at 0xb65efccc>]

The result is a list with only one item: the reference to an element called
uniprot. This was expected, since each XML file has one node from which
hang all the others, and this is the element found. A way of directly accessing
this particular element is by using documentElement:

>>> midom.documentElement
<DOM Element: uniprot at 0xb65efccc>

To see inside uniprot element, we have to apply childNodes again. The
only difference is that this time it should be done on the first item returned
by the first childNodes function:

>>> a = midom.childNodes[0].childNodes
>>> print a
[<DOM Text node "
">, <DOM Element: entry at 0xb65ef50c>, <DOM Text node "
">]

© 2010 by Taylor and Francis Group, LLC

260 Python for Bioinformatics

The result in this case is a list with three items, two text-type elements
and one of type “element”. The text objects correspond to what is found
between the tags. If we peruse the original document, we see that the only
thing between the “uniprot” tag and “entry” is a linefeed (’\n’). Use the
method data to get that linefeed from Python:

>>>a[0].data
"\n"

In the case of the element names, the method to use is nodeName:

>>>a[1].nodeName
"entry"

To know what type of node is involved, there is nodeType method, which
returns an integer (from 1 to 12) representing a node type. The node class
enumerates all the constants symbolically. The list of node types follows:
ELEMENT NODE, ATTRIBUTE NODE, TEXT NODE,

CDATA SECTION NODE, ENTITY NODE, PROCESSING INSTRUCTION NODE,
COMMENT NODE, DOCUMENT NODE, DOCUMENT TYPE NODE, NOTATION NODE

To know what class of element is “entry”:

>>> a[1].nodeType
1

Or check its type using these constants:

>>> a[1].nodeType==x[1].TEXT_NODE
False
>>> a[1].nodeType==a[1].ELEMENT_NODE
True

To resume traversing the tree, apply childNodes as ascend and descend
the tree structure (see what happens with a[1].childNodes), or search for a
particular element using getElementsByTagName(TAGNAME):

>>> a[1].getElementsByTagName("sequence")
[<DOM Element: sequence at 0xb65fff6c>]

Combining all we’ve seen so far, we can get the sequence:

>>> seq=a[1].getElementsByTagName("sequence")[0]
>>> seq.childNodes[0].data
’\nMPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL\nEAFLTQK...’

To remove line-feeds (\n), use the replace() method:

© 2010 by Taylor and Francis Group, LLC

XML 261

>>> seq.childNodes[0].data.replace("\n","")
’MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRLEAFLTQK...’

It doesn’t end here; the element tagged “sequence” has some attributes that
can be recovered. As a first step, check if “sequence” has attributes:

>>> seq.hasAttributes()
True

The list of attributes is provided by attributes.keys() and the contents of
these can be obtained with attributes.get(ATTRIB).value:

>>> seq.attributes.keys()
[u’checksum’, u’length’]
>>> seq.attributes.get("checksum").value
u’E0C0CC2E1F189B8A’
>>> seq.attributes.get("length").value
u’393’

12.3.2 ElementTree

ElementTree is an alternative to minidom. It’s not a module designed
especially for XML, but stores in memory anything in a hierarchical structure.
Because of this it can be applied to XML.

To compare different methods, the same sample file (12.1, uniprot.xml)
is used. Following the same pattern as before, we will use the parser pro-
vided by ElementTree (parse), which since version 2.5 of Python resides in
xml.etree.ElementTree:

>>> import xml.etree.ElementTree as ET
>>> tree=ET.parse("/home/sb/bioinfo/smallUniprot.xml")

Unlike Minidom, it doesn’t return an element, but a tree instance:

>>> tree
<xml.etree.ElementTree.ElementTree instance at 0xb64ac94c>

To obtain the first element, use the getroot() method:

>>> tree.getroot()
<Element {http://uniprot.org/uniprot}uniprot at b64b0ccc>

The result is very similar to what is obtained by childNodes in minidom,
with the difference that it does not returns a list with only one element, but
the root element. Another difference is the presence of the namespaceURI
in the name of the element.

Each element has one required property and others that are optional. The
required property is the tag which identifies the element, the equivalent of
minidom’s nodeName.

© 2010 by Taylor and Francis Group, LLC

http://uniprot.org
http://uniprot.org

262 Python for Bioinformatics

>>> tree.getroot().tag
’{http://uniprot.org/uniprot}uniprot’

Among the optional element properties are:
attrib: Works like a dictionary where the names and values of the attributes

are stored. Remembering the element “entry” that has three attributes:

<entry dataset="TrEMBL" created="2000-10-01" version="35">

Applying attrib on this element, it returns:

{’created’: ’2000-10-01’, ’version’: ’35’, ’dataset’: ’TrEMBL’}

text: Returns the text of an element, for example, from,

<taxon>Vertebrata</taxon>

It returns:

’Vertebrata’

Child elements: The elements which hang from a higher-level element,
and can be obtained by any of these methods:

getiterator(tag): It returns a list13 of sub-elements matching the given
tag, searching in all levels beneath the node in which it is invoked. The
elements are returned in the order they appear in the document:

>>> root=tree.getroot()
>>> root.getiterator("{http://uniprot.org/uniprot}name")
[<Element {http://uniprot.org/uniprot}name at b64b434c>]

To see the contents of an element of the list, use the property “text”:

>>> root.getiterator("{http://uniprot.org/uniprot}name")[0].text
’Mus musculus’

getiterator() can be invoked without arguments, and in that case returns
a list14 with all the elements beneath the node from which it is invoked.

>>> root.getiterator()
[<Element {http://uniprot.org/uniprot}uniprot at b64b0ccc>,<=
<Element {http://uniprot.org/uniprot}entry at b64b420c>,<=
<Element {http://uniprot.org/uniprot}accession at b64b428c>,<=
... cut ...
<Element {http://uniprot.org/uniprot}taxon at b64b4a8c>,<=
<Element {http://uniprot.org/uniprot}dbReference at b64b4b4c>,<=
<Element {http://uniprot.org/uniprot}sequence at b64b4c0c>]

13In ElementTree it returns a list, but in cElementTree it returns a generator object.
14As commented in previous footnote, ElementTree returns a list, but cElementTree returns
a generator object.

© 2010 by Taylor and Francis Group, LLC

XML 263

Using this method the namespaceURI information can ve removed:

>>> for elem in root.getiterator():
elem.tag=elem.tag.split("}",1)[1]

>>> root.getiterator()
[<Element uniprot at b6eac9cc>, <Element entry at b65b872c>,
<Element accession at b65b898c>, <Element organism at b65b8a8c>,
<Element name at b65b8b0c>, <Element lineage at b65b8b6c>,
<Element taxon at b65b8bac>, <Element taxon at b65b8bec>,
... cut ...
<Element taxon at b65be10c>, <Element dbReference at b65be1cc>,
<Element sequence at b65be28c>]

With a shorter name, it’s easier to refer to them:

>>> [x.text for x in root.getiterator("taxon")]
[’Eukaryota’, ’Metazoa’, ’Chordata’, ’Craniata’,<=
’Vertebrata’, ’Euteleostomi’, ’Mammalia’, ’Eutheria’,<=
’Euarchontoglires’,’Glires’, ’Rodentia’, ’Sciurognathi’,<=
’Muroidea’, ’Muridae’, ’Murinae’, ’Mus’]

find(pattern): Returns the first sub-element which matches the given pat-
tern, or “None” in case there are no matching elements. Note that it searches
only in the level just below the element upon which it is called:

>>> root.find("entry")
<Element entry at b65c69ec>
>>> root.find("entry").tag
’entry’
>>> root.find("entry").find("accession")
<Element accession at b65c648c>

Use text to retrieve the value of the text attribute:

>>> root.find("entry").find("accession").text
’Q9JJE1’

Or using instead findtext(pattern):

>>> root.find("entry").findtext("accession")
’Q9JJE1’

Both find and findtext find the first matching element:

>>> root.find("entry/organism/lineage").find("taxon")
<Element taxon at b65c61cc>

To have a list of all matching elements, use findall(pattern):

© 2010 by Taylor and Francis Group, LLC

264 Python for Bioinformatics

>>> lineage=root.find("entry/organism/lineage")
>>> [x.text for x in lineage.findall("taxon")]
[’Eukaryota’, ’Metazoa’, ’Chordata’, ’Craniata’, ’Vertebrata’, <=
’Euteleostomi’, ’Mammalia’, ’Eutheria’, ’Euarchontoglires’, <=
’Glires’, ’Rodentia’, ’Sciurognathi’, ’Muroidea’, ’Muridae’, <=
’Murinae’, ’Mus’]

As in the case of Minidom, we now look for the sequence and its attributes:

>>> root.getiterator("sequence")[0].text
’\nMPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL\nEAFLT...’

For the attributes, attrib works as a dictionary:

>>> root.getiterator("sequence")[0].attrib["checksum"]
’E0C0CC2E1F189B8A’
>>> root.getiterator("sequence")[0].attrib["length"]
’393’

cElementTree

Since Python 2.5, there is a C version of ElementTree (cElementTree) that
is optimized to parse quickly and with less use of memory. cElementTree
is used the same way as ElementTree. If your installation has this module
available, it is advisable to use it. Another advantage of cElementTree is a
function (not found in ElementTree) called Iterparse. This function provides
us the use of an event based parser, which will be explained in the next section.

12.3.3 SAX: cElementTree Iterparse

cElementTree Iterparse isn’t SAX, but it is included here because, unlike
the other parsers, it is based on events.

Iterparse returns a flow iterable by tuples in the form (event, element). It
is used to iterate over the elements and processing them on the fly. Once
we’ve learned to use cElementTree, the path to understanding how to use
Iterparse is less steep.

Let’s first look for the protein sequence and its attributes:

>>> import xml.etree.cElementTree as cET
>>> for event, elem in cET.iterparse("smallUniprot.xml",

events=("start", "end")):
if event=="end" and "sequence" in elem.tag:

print elem.text
print elem.attrib["checksum"]
print elem.attrib["length"]
elem.clear()

© 2010 by Taylor and Francis Group, LLC

XML 265

MPKKKPTPIQLNPAPDGSAVNGTSSAETNLEALQKKLEELELDEQQRKRL
EAFLTQKQKVGELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIH
LEIKPAIRNQIIRELQVLHECNSPYIVGFYGAFYSDGEISICMEHMDGGS
LDQVLKKAGRIPEQILGKVSIAVIKGLTYLREKHKIMHRDVKPSNILVNS
RGEIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSVQSDIWSMG
LSLVEMAVGRYPIPPPDAKELELLFGCHVEGDAAETPPRPRTPGGPLSSY
GMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVNKCLIKNPAERA
DLKQLMVHAFIKRSDAEEVDFAGWLCSTIGLNQPSTPTHAASI

E0C0CC2E1F189B8A
393

Looks like text and attributes are accessed the same way as with Element-
Tree. The difference is that it’s necessary to iterate it by the tuples iterparse
returns, and that we use the clear method. The first element of the tuple is
the “event” and can be one of two values: “start” or “end”. If the event we
received is “start”, it means that we can access the name of the element and
its attributes, but not necessarily its text. When we receive “end”, we can
be assured that we’ve processed all the components of that element. For this
reason the previous code checked not only that we had reached the chosen
element, but that we had also found the “end” event.15 If the parser were to
return only “end”, there would be no need for this check:

>>> for event, elem in cET.iterparse("smallUniprot.xml"):
if "sequence" in elem.tag:

print elem.text
print elem.attrib["checksum"]
print elem.attrib["length"]
elem.clear()

As for the clean method, it is used to “clean up” the node after it’s used,
because unlike a classic SAX parser like ElementTree, iterparse constructs
a complete tree. The problem with this code is that the primary element
remains with all its (now empty) children, and that uses memory. In this
simple example, this behavior is not problematic, but it could very well be
when processing large files. The ideal would be to access the parent node in
order to clean it up.

A way to do this is to save a reference to the first variable; for this we create
an iterator and obtain from it the first element, calling it “root”:

15In the current implementation, the parser goes along reading 16Kb chunks, so in this case
the whole sequence could be read from the “start” element. To make sure that you pick up
all the elements you should read it after an “end” element.

© 2010 by Taylor and Francis Group, LLC

266 Python for Bioinformatics

>>> allelements = iterparse(source, events=("start", "end"))
>>> allelements = iter(allelements)
>>> event, root = allelements.next()

Now we process it the same as before, only this time we can delete the
parent element specifically:

>>> for event, elem in allelements:
if event=="end" and "sequence" in elem.tag:

print elem.text
root.clear()

To see the cElementTree parser in action, please turn to page 342, where
there is a script that parses the product of a BLAST run.

12.4 Summary

XML means eXtensible Markup Language and was created to enable a
standard way of storing and exchanging data. One of the advantages of XML
is that it is supported by various programming languages, among which is
Python. XML documents consist of a prologue, a body, and an epilogue. The
prologue contains information on the version, the encoding, and the structure
of that document. The body contains all the information of the document,
divided into hierarchically ordered elements. Each element consists of a tag
with its text. Optionally, an element can have attributes. There also exist
elements without text at all, called “empty elements.”

Without regard of the programming language used, there are two major
strategies used when accessing these types of files. On one hand, it can analyze
the relationships between all the elements, and construct the corresponding
tree. This implies having the whole file structure in memory, and is called the
Document Object Model (DOM). The other option is to recurse over the file
and generate events by which we can then travel, recursing on each distinct
element. At each event we can process our data. These are called “event
driven parsers” and the most well known is Simple API for XML (SAX).

In this chapter we presented as examples of DOM, Minidom and Element-
Tree. As an example of a parser based on events, we saw the use of Iterparse,
provided by cElementTree. DOM is often easier to use because it does not
involve event handling; however, on some occasions it’s more convenient to
use a parser based on events, especially for large files. There are more parsers
than the ones presented here, like BeautifulSoup,16 a parser that can be used
both for XML and HTML.

16Available at http://www.crummy.com/software/BeautifulSoup.

© 2010 by Taylor and Francis Group, LLC

http://www.crummy.com

XML 267

12.5 Additional Resources

• Extensible Markup Language (XML). Links to W3C Recommendations,
Proposed Recommendations and Working Drafts.
http://www.w3.org/XML

• Software Carpentry course, by Greg Wilson. “XML.”
http://swc.scipy.org/lec/xml.html

• O’Reilly Media Bioinformatics XML reference page.
http://www.xml.com/pub/rg/Bioinformatics

• Mark Pilgrim. Dive into Python. Chapter 9. XML Processing.
http://diveintopython.org/xml_processing/

• Python and XML: An Introduction.
http://www.boddie.org.uk/python/XML_intro.html

• Resources on DTD:
http://www.w3schools.com/dtd/, http://www.xmlfiles.com/dtd, and
http://www.w3.org/TR/REC-xml/#dt-doctype.

• Resources on XML Schema:
http://www.w3schools.com/schema/schema_intro.asp.

© 2010 by Taylor and Francis Group, LLC

http://www.w3.org
http://swc.scipy.org
http://www.xml.com
http://diveintopython.org
http://www.boddie.org.uk
http://www.w3schools.com
http://www.xmlfiles.com
http://www.w3.org
http://www.w3schools.com
http://www.w3schools.com
http://www.w3.org
http://www.xmlfiles.com
http://www.w3schools.com
http://www.boddie.org.uk
http://diveintopython.org
http://www.xml.com
http://swc.scipy.org
http://www.w3.org

268 Python for Bioinformatics

12.6 Self-Evaluation

1. What does the OpenOffice format have in common with RSS feeds and
GoogleEarth’s geographic coordinates?

2. What are the benefits of using XML for data storage and information
interchange?

3. When you will not use XML?

4. Why an XML parser should not read a malformed XML document?

5. Distinguish between the terms: tag, element, attribute, value, DTD,
and Schema.

6. In the example XML file (listing 12.1) there is one empty-element tag.
Which one is it?

7. What is the difference between the SAX and DOM models of XML file
processing?

8. If you have to parse an XML file that has a size approaching or exceeding
available RAM, what is the recommended parser?

9. In cElementTree.iterparse there are both start and end event types.
By default it returns only end event. When would you use the infor-
mation in a start event?

10. Make two programs to parses all hit names in an XML formated BLAST
output. One program should use Python XML tools and the other
should read the input file as text.

© 2010 by Taylor and Francis Group, LLC

Chapter 13

Python and Databases

13.1 Introduction to Databases

The amount of data that is handled in a typical bioinformatics project
forces us to use something more versatile than the data structures bundled
with Python. Lists, tuples, and dictionaries are very flexible, but they are
not suitable to model all the complexity associated with real world data.
Sometimes it is necessary to have a permanent data repository (in computer
terms this is called data persistence), since data structures are available
only while the program is running. While it is possible to write out the
data to a file using pickle, this is not as efficient as using a database engine
designed for that purpose.

What Is a Database?

A database is an ordered collection of related data. Generally, they are
constructed to model real-world situations: a person’s video collection, the
students of a university, a firm’s inventory, etc. The database stores relevant
data for the users of our program. In modeling the students of a university,
we have to take into account the first and last names, the year of entry, and
the subjects studied; we wouldn’t care about the hair color or height of the
student. Designing a database is like modeling a natural process. The first
step is to determinate what are the relevant variables.

One advantage of databases is that, in addition to data storage, they provide
search tools. Some of these searches have immediate replies, such as “how
many students are there?” Others are trickier, involving combining different
information sources to enable a response, as for example “How many different
subjects, on average, did each 2007 freshman take?” In a biological database
a typical question might be “What are the proteins with a weight of less than
134 kDa that have been crystallized?” It’s interesting to note that one need
not anticipate all the questions that could be asked; but having an idea of the
most common questions will help the design process.

In any case, the advantage of having a database is that we can ask these
questions and receive these answers without having to program the search
mechanism. That is the job of the database engine, which is optimized to

269

© 2010 by Taylor and Francis Group, LLC

270 Python for Bioinformatics

quickly handle large amounts of data. Using Python, we communicate with
the database engine and process its responses, without having to worry about
the internal processes. This doesn’t mean we have to totally disengage from
the functioning of the database, as the more we understand the internals, the
better results we can achieve.

Database Types

Not all databases are the same. There are different theoretical models
for describing both the structure of the database and the interrelationships
of the data. Some of the most popular models are: Hierarchical, Network,
Relational, and Entity-relationship. Choosing between the different models
is more a job for IT professionals than for bioinformatics researchers. In this
chapter we will spend our time only with the Relational model due to the
flexibility it offers, the many implementations available, and (why not?) its
popularity.

A relational database is a database that groups data using common at-
tributes. The resulting sets of organized data can be handled in a logical
way.

For example, a data set containing all the real estate transactions in a town
can be grouped by the year the transaction occurred; or it can be grouped
by the sale price of the transaction; or it can be grouped by the buyer’s last
name; and so on.

Such a grouping uses the relational model. Hence such a database is called
a ”relational database.” To manage a relational database, you must use a
specific computer language called SQL (Structured Query Language). It al-
lows a programmer to create, query, update and delete data from a database.
Although SQL is an ANSI standard, due to several reasons there are multiple
non compatible implementations. Even if they are different, since all versions
are based in the same published standard, it is not hard to transfer your
knowledge from one SQL dialect to another.

Among the different implementations of relational databases and query lan-
guages, this book focus on two of them: MySQL and SQLite. MySQL (it is
pronounced “My Ess Cue Ell”) is the most popular database used in web
applications, with more than 10 million installations. The great majority
of small and medium websites use MySQL. While many system adminis-
trators would not consider using MySQL for very demanding applications,
there are many high-traffic sites successfully using it. One example of this
is YouTube.com, which needs no introduction. Other popular MySQL-based
sites are Wikipedia.org, Flickr.com, and Slashdot.org.1 SQLite’s target is
much more narrowly defined: it is made for small embedded systems, both

1Granted, they are not default installations running on commodity hardware, but highly
optimized installations running on branded hardware.

© 2010 by Taylor and Francis Group, LLC

Python and Databases 271

hardware and software. The Firefox browser uses SQLite internally, as do
Symbian cell phones; even the operating system like OS X and Solaris 10.
This versatility is due to its small size (about 250KB), its lack of external
dependencies, and its storage of a database in a single file. These advantages
of small size and simplicity are offset by a lack of features, but for its unique
niche this is not a problem.

In both cases, the fundamentals are similar; and the concepts explained in
this chapter are applicable to all relational databases. When a characteristic
is exclusive to a database in particular, this will be pointed out.

13.1.1 Database Management: RDBMS

RDBMS stands for Relational DataBase Management System. It is soft-
ware designed to act as an interface between the database engine, the user,
and the applications. The just mentioned MySQL and SQLite are examples
of RDBMS.2

In the case of MySQL, the RDBMS is separated into two components: A
server and a client. The server is the program that accomplishes the hard work
associated with the database engine; it can work on our own computer or on a
remotely accessible server. The client is the program that gives us an interface
to the server. MySQL provides its own client (mysql), that is a command line
program, but nothing prevents us from using any other compatible client.
A popular client is PhpMyAdmin,3 that requires a Web server to run, but
provides to the final user a nice Web-based front-end to the MySQL server
(see Figure 13.1). There are also desktop clients with the same function, like
MySQL GUI,4 SQLyog,5, and Navicat6 among others. There is a screenshot
of MySQL GUI in Figure 13.2.

SQLite, on the other hand, is available as a library to include into your
programs or as a stand-alone executable. Since version 2.5 Python has a
built-in module (sqlite3) to interface with SQLite and it works “out of the
box” if Python was compiled with SQLite present. It also can be linked to an
external executable file with the module pysqlite2.dbapi2.

13.1.2 Components of a Relational Database

The first concept of databases we need to understand is that of entities.
Formally, an entity is defined as every significant element that should be
stored. We should distinguish between an entity type and occurrence of

2Other well known RDBMS are Oracle, DB2, and PostgreSQL.
3http://www.phpmyadmin.net
4http://dev.mysql.com/downloads/gui-tools/5.0.html
5http://webyog.com/en/
6http://www.navicat.com

© 2010 by Taylor and Francis Group, LLC

http://www.phpmyadmin.net
http://www.navicat.com
4http://dev.mysql.com
http://webyog.com
http://webyog.com
4http://dev.mysql.com
http://www.navicat.com
http://www.phpmyadmin.net

272 Python for Bioinformatics

FIGURE 13.1: Screenshot of PhpMyAdmin: Easy to use HTML front end
to administrate a MySQL database.

an entity. In an administration database, Students is an entity type, while
each student in particular is an occurrence of this entity.

Each entity has its own attributes. The attributes are the data associ-
ated to an entity. Let’s go back to the college administration database we
have just schemed. name, lastname, DateJoined, and OutstandingBalance are
attributes of the entity Students.

In turn, each entity has its own attributes. The attributes are the data
associated with an entity. Let’s create a college administration database,
where Name, Lastname, DateJoined, and OutstandingBalance are attributes
of the entity Students.

The data in a relational database are not isolated, but, as the name implies,
they are represented by relations. A relation maps a key, or a grouping
of keys, with a grouping of rows. Each key corresponds to an occurrence
of one entity, which relates to the group of attributes associated with that
occurrence. These relationships are displayed as tables, independently of how
they are stored physically. A database can have multiple tables. Continuing
the example of the university administration database, we might have a table
with information on the students and another on the professors, as each entity
has its own attributes.

In Table 13.1 we can see an example of the students relation.

© 2010 by Taylor and Francis Group, LLC

Python and Databases 273

FIGURE 13.2: Screenshot of MySQL Query Browser.

© 2010 by Taylor and Francis Group, LLC

274 Python for Bioinformatics

TABLE 13.1: Students in Python University
Name LastName DateJoined OutstandingBalance

Joe Campbell 2006-02-10 No
Joe Doe 2004-02-16 No
Rick Hunter 2005-03-20 No
Laura Ingalls 2001-03-15 Yes
Virginia Gonzalez 2003-04-02 No

A Key Concept: Primary Key

Every table has to have a means of identifying a row of data; it must
have an attribute, or group of attributes, that serve as a unique identifier.
This attribute is called a primary key. In the case that no single attribute
can be used as a primary key, several can be taken simultaneously to make a
composite key. Returning to Table 13.1, we can see that the attribute Name
cannot be used as a primary key, as there is more than one occurrence of an
entity with the same attribute (Joe Campbell and Joe Doe share the same
first name). One solution to this problem would be to use Name and LastName
as a composite key; but this would not be the best solution, because it’s still
possible to have more than one occurrence of an entity sharing this particular
composite key, such as another Joe Doe. For this reason, normally we add to
the table an ID field–a unique identifier–instead of depending on the data to
have a primary key. In most databases there are mechanisms for automatically
generating such a primary key when we insert data. Let us look at a version
of Table 13.1 with a new attribute that can be used as the primary key:

TABLE 13.2: Table with Primary Key
ID Name LastName DateJoined OutstandingBalance

1 Joe Campbell 2006-02-10 No
2 Joe Doe 2004-02-16 No
3 Rick Hunter 2005-03-20 No
4 Laura Ingalls 2001-03-15 Yes
5 Virginia Gonzalez 2003-04-02 No

13.1.3 Database Data Types

As in programming languages, databases have their own data types. For
example, in Python we have int, float and string (among others); databases
have their own data types such as tinyint, smallint, mediumint, int, bigint,
float, char, varchar, text, and others. You may be wondering why there are
so many data types (such as five different data types for integers). The main

© 2010 by Taylor and Francis Group, LLC

Python and Databases 275

reason is that with so many options it is possible to the make best use of
available resources. If we need a field where we wish to store the age of the
students, we can achieve that with a field of type tinyint, as it supports a
range of values between -128 and 127 (which can be stored in one byte). Of
course, we can just as well store it in a field of type int, which supports a range
between -2147483648 to 2147483647 (that is, 4 bytes); but that would be a
waste of memory, as the system must unnecessarily reserve space. Because
of the difference in the number of bytes, a number stored as int occupies 4
times as much RAM and disk space as one stored as tinyint. The difference
between one and four bytes may seem insignificant and not worth mentioning,
but then multiply it by the number of data entries you have; when the dataset
is large enough, disk space and access time could be an issue. That is why
you should be aware of the data type storage requirements.7

Table 13.3 summarizes the characteristics of the main data types in MySQL.
Note that some of the minor characteristics may vary depending on the version
of MySQL used, which is why it is advisable to consult the documentation
for your particular version.8 In the case of SQLite, there are only 5 data
types: INTEGER, REAL, TEXT, BLOB and NULL. However, one must realize that
SQLite is typeless, and that any data can be inserted into any column. For
this reason, SQLite has the idea of “type affinity”: it treats the data-types as
a recommendation, not a requirement.9

13.2 Connecting to a Database

To connect to the MySQL database server, you need a valid user; and to
set up a user, you need to connect to the database. This catch-22 is solved
by accessing the server with the default user and password (user: “root”,
password:“”). From the command line, if the server is in the same computer,
it is possible to access with this command:

$ mysql -u root -p

7Estimating what data types are adequate for the situation is no minor issue. In the online
multi-player game World of Witchcraft, some players found they could not receive more
gold when they had reached the limit of the variable in which money was stored, a signed
32-bit integer. Much more serious was the case of the software in the Ariane 5 rocket when
a 64-bit real was converted to a 16-bit signed integer. This led to a cascade of problems
culminating in destruction of the entire flight, costing 370 million US dollars.
8MySQL has a complete online reference manual. Data Type documentation for MySQL
5.1 is available at http://dev.mysql.com/doc/refman/5.1/en/data-types.html.
9For more information about the idea of “type affinity” I recommend the section “Datatypes
In SQLite Version 3” (utlhttp://www.sqlite.org/datatype3.html) of the SQLite online doc-
umentation.

© 2010 by Taylor and Francis Group, LLC

http://dev.mysql.com
http://www.sqlite.org
http://www.sqlite.org
http://dev.mysql.com

276 Python for Bioinformatics

TABLE 13.3: Most Used MySQL Data Types

Data type
Comment

TINYINT ±127 (0-255 UNSIG.)
SMALLINT ±32767 (0-65535 UNSIG.)
MEDIUMINT ±8388607 (0-16777215 UNSIG.)
INT ±2147483647 (0-4294967295 UNSIG.)
BIGINT ±9223372036854775807 (0-18446744073709551615 UNSIG.)
FLOAT A small number with a floating decimal point.
DOUBLE A large number with a floating decimal point.
DATETIME From ’1000-01-01 00:00:00’ to ’9999-12-31 23:59:59’
DATE From ’1000-01-01’ to ’9999-12-31’
CHAR(n) A fixed section with n characters long (up to 255).
VARCHAR(n) A variable section with n characters long (up to 255).
TEXT A string with a maximum length of 65535 characters.
BLOB A binary string version of TEXT.
MEDIUMTEXT A string with a maximum length of 16777215 characters.
MEDIUMBLOB Binary string equivalent to MEDIUMTEXT.
LONGTEXT A string with a maximum length of 4294967295 characters.
LONGBLOB Binary string equivalent to LONGTEXT.
ENUM String value taken from a list of allowed values.

Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 8
Server version: 5.0.45-Debian_1ubuntu3 Debian etch distribution

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql>

From now on, interaction with MySQL server will be shown by using the
phpMyAdmin front-end, as shown in Figure 13.3.

13.3 Creating a MySQL Database

Before working with a database, we should create one. You could skip this
step if you plan to access a database previously created. But it is likely that
sooner or later you will need to create your own database. Creating a database
is a simple task and will help you to understand the data you are going to
handle, and create more effective queries.

Since database creation is something that is done only once for each database,

© 2010 by Taylor and Francis Group, LLC

Python and Databases 277

FIGURE 13.3: Login screen to the MySQL database using phpMyAdmin.

© 2010 by Taylor and Francis Group, LLC

278 Python for Bioinformatics

FIGURE 13.4: Creating a new database using phpMyAdmin.

there is not much need to automate this task with a program. This step is
usually done manually. My recommendation is to use a graphical tool to de-
sign the database. The already mentioned PhpMyAdmin and Navicat will do
the job.

To create a database from phpMyAdmin, one simply fills in a form field with
the name of the database in “Create new database” (see Figure 13.4).

In SQLite a new database is created when one first calls it, as in:

$ sqlite3 a_new_db.db
SQLite version 3.3.5
Enter ".help" for instructions
sqlite>

13.3.1 Creating Tables

Once we have a newly created database, the next step is to create the tables
where the data will be stored. Creating the tables using this kind of software
doesn’t seem a problem worth mentioning in this book, so we will focus more
on the table structure rather than on the procedure of dealing with a GUI
tool.

We must keep in mind that a table represents a relationship between the
data; it makes no sense to create a table for one entity and then populate
it with data of another entity. Continuing with the example of our “Python
University,” we can think about what information related to students we need
to store in the Students table.

As we saw earlier, in the table Students we assigned the following fields:
ID, Name, LastName, DateJoined and OutstandingBalance.

© 2010 by Taylor and Francis Group, LLC

Python and Databases 279

The assignment of fields is somewhat arbitrary. There are no special criteria
for deciding which fields should be in which table; nor even is the definition of
each field set in stone. But that does not mean there are no rules of thumb, or
at least “good practices,” for database design. You could even write a book
on the subject; in fact, there are a number of such books. It is certainly not
easy to convey in this space the necessary knowledge to achieve an efficient
design for every situation; in any case, good database design is something that
one learns with practice.

Let’s see how we define each field in this case:
ID: Is a unique id for each registrant. Since Python University is expected to

have several students, an unsigned INT data type is used (up to 4294967295).
There is no need to use negative numbers in an ID, so this field should be set
as unsigned.
Name: Since the size of a name is variable with less than 255 characters,

VARCHAR is used. The maximum size for names in characters, according to
my arbitrary criteria, is 150.
LastName: This field was set with the same criteria as the former field.

The only difference is in the maximum size for a last name; that is set to 200
characters.
DateJoined: There is not much choice here. A simple DATE field would

do it best.
OutstandingBalance: This field represents whether the student has paid

the tuition in full or not. Since there are only two possible values (paid or not
paid), a BINARY data type is chosen. This data type stores a 0 or a 1. It is
up to the programmer to assign a meaning to this values, but in mathematical
notation 0 stands for FALSE and 1 for TRUE, so this convention is generally
used.

The last choice is the table type (InnoDB or MyISAM). In this case it
is OK to leave the default option (MyISAM), which will be appropriate for
most uses. Please see Advanced Tip: MyISAM vs InnoDB on page 281 for a
brief discussion on both table types.

If you want to manually create the table, here are the commands you should
type into the MySQL prompt (also available at py3.us/58):

CREATE TABLE ‘Students‘ (
‘ID‘ INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY ,
‘Name‘ VARCHAR(150) NOT NULL ,
‘LastName‘ VARCHAR(200) NOT NULL ,
‘DateJoined‘ DATE NOT NULL ,
‘OutstandingBalance‘ BINARY NOT NULL
) ENGINE = MYISAM COMMENT = ’Principal table.’;

No wonder I recommended the use of a GUI to design the table!

© 2010 by Taylor and Francis Group, LLC

280 Python for Bioinformatics

FIGURE 13.5: Creating a new table using phpMyAdmin.

Tip: Creating a Database Using Another Database as a
Template.
Instead of manually defining each field on each table, you could import a
“MySQL dump” from another database and create a database in one step.
There are two different kinds of dump files: “Structure only” and “structure
and data” dump files. Both files are imported the same way into a newly
created database:

$ mysql -p database_name < dbname.sql

You may be wondering where do you get the dump file in the first place.
You can get a dump file from the backup of another database or from the
installation files of a program that requires a database.

13.3.2 Loading a Table

Once we have the table created, it is time to load the data into it. This
operation can be done from any MySQL front-end, either row by row or in
batch. Since there are several data to load at the beginning, and the manual
data load is intuitive, let’s see how to load data in batch mode.

The most common way to upload data is by using csv files. This kind of
file was reviewed in section 5.3 (page 92). To upload the data that is seen in
table 13.2, we can prepare a csv file (data.txt) with the following format:

1,Joe,Campbell,2006-02-10,No
2,Joe,Doe,2004-02-16,No

© 2010 by Taylor and Francis Group, LLC

Python and Databases 281

FIGURE 13.6: View of the Student table.

3,Rick,Hunter,2005-03-20,No
4,Laura,Ingalls,2001-03-15,Yes
5,Virginia,Gonzalez,2003-04-02,No

To upload the csv file into the MySQL database, use the LOAD DATA INFILE
command10 at the MySQL prompt:

LOAD DATA INFILE ’data.txt’ INTO TABLE Students
FIELDS TERMINATED BY ’,’;

An alternative way, using INSERT statements:

INSERT INTO ‘Students‘
VALUES (’1’, ’Joe’, ’Campbell’, ’2006-02-10’, ’No’);
INSERT INTO ‘Students‘
VALUES (’2’, ’Joe’, ’Doe’, ’2004-02-16’, ’No’);
INSERT INTO ‘Students‘
VALUES (’3’, ’Rick’, ’Hunter’, ’2005-03-20’, ’No’);
INSERT INTO ‘Students‘
VALUES (’4’, ’Laura’, ’Ingalls’, ’2001-03-15’, ’Yes’);
INSERT INTO ‘Students‘
VALUES (’5’, ’Virginia’, ’Gonzalez’, ’2003-04-02’, ’No’);

Once the data is loaded into the database, the table looks like the one in
figure 13.6.

Advanced Tip: MyISAM versus InnoDB.
There are several formats for the internal data structures in MySQL tables.

The most commonly used formats are InnoDB and MyISAM. MyISAM is used
by default and is characterized by its higher reading speed (using SELECT
operations), and uses less disk space. It is slower than InnoDB at data writ-
ing, since when a datum is being recorded, the table is momentarily blocked

10For a complete reference of this command, see the MySQL online manual at http://dev.
mysql.com/doc/refman/5.1/en/load-data.html.

© 2010 by Taylor and Francis Group, LLC

http://devmysql.com
http://devmysql.com
http://devmysql.com
http://devmysql.com

282 Python for Bioinformatics

FIGURE 13.7: An intentionally faulty “Score” table.

until finished, so all other operations must wait to complete. This limita-
tion doesn’t exist in a InnoDB table. The main advantage of this format is
that it allows secure transactions and has a better crash recovery. InnoDB
is thus recommended for intensively updated tables and for storing sensitive
information. To sum up, since you can use different table types in the same
database, choose the appropriate table type according to the operation that
will be performed most on each table.

13.4 Planning Ahead

Making a database requires some planning. This is specially true when there
is a large amount of data and we want to optimize the time it takes to answer
our queries. A bad design can make a database unusable. In this section I
present a sample database to show the basis of database design. To have a
better idea of designing relational databases, you should read elsewhere about
“Database normalization,” but this section should give you a brief glimpse of
this field.

13.4.1 PythonU: Sample Database

Let’s keep the example of a student database from the fictional Python
University (whose database is called PythonU), to store student data and
subjects taken. To store student data, we already have the table Students.
We have to make a table to store the scores associated with each subject (a
“Score” table). As in many other aspects of programming, there is more than
one way to accomplish this. We will start by showing some non optimal ways,
to better understand why there is a recommended way.

Score Table

In the table Score we want to store for each student: subjects studied,
score, and date each course was taken.

A proposed Score table for two courses is depicted in Figure 13.7.

© 2010 by Taylor and Francis Group, LLC

Python and Databases 283

FIGURE 13.8: A better “Score” table.

This design (schema) has several flaws. The first design error in the table
is its inflexibility. If we want to add a new course, we have to modify the
table. This is not considered good programming practice; a change in the
structure of an already populated table is an expensive operation which must
be avoided whenever possible. The other problem that arises from this design,
as seen in the diagram, is that there is no place to store the score of a student
who has taken a course more than once. How do we solve this? With a more
intelligent design. An almost optimal solution can be seen in Figure 13.8.

The first problem, the need to redesign the table for entering new subjects,
we solve by entering the course name as a new field: Course. This field can
be of type TEXT or VARCHAR. And the problem of being able to keep track
of when a student took a course more than once, we solved with the field
Term. While this is a decidedly better design than the previous one, it is far
from being optimal. It is evident that storing the name of each subject for
each student is an unnecessary waste of resources. A way to save this space
is to use the datatype ENUM in the field Course; in this way we can save a
substantial amount of space, because MySQL internally uses one or two bytes
for each entry of this type. The table remains the same as seen before (Figure
13.8), and only changes the way the field Course is defined, saving disk space
as mentioned.

Is this now the best way? The problem with using ENUM with the field
Course is that when we wish to add a new subject, we still have to alter the
table structure. This modification, to add a new option to the ENUM, is not
as costly as adding a new column, but conceptually it is not a good idea to
modify the definition of a new table in order to accommodate a new type of
data. In cases like these, we resort to “lookup tables.”

Courses Table

A lookup table is a reference table that is used to store values that are
used as a content of a column located in another table. Continuing with the
example of Python University, we can make a lookup table for the subjects
(see Figure 13.9).

This table Courses contains a field for storing the ID of the course (CourseID)
and another for the name of the course (Course Name). For this scheme to

© 2010 by Taylor and Francis Group, LLC

284 Python for Bioinformatics

FIGURE 13.9: Courses table: A lookup table.

FIGURE 13.10: Modified “Score” table.

work, we must change the field Course of the table Score; in place of an
ENUM field, we now use an INT field (see Figure 13.10).

The data in CourseID now correspond to that of the field Course in the
table Score. Using a single lookup, we can then link the ID with the corre-
sponding course name. This way we save the same amount of space in the
Students table as when we used an ENUM for the Course field, with the ad-
ditional advantage that we can expand the list of subjects simply by adding
one element to the Courses table.

Tip: ENUM field type versus Lookup Table.
We have seen how convenient it is to use a lookup table in place of an ENUM
field. You are probably wondering how to decide when to use one strategy
or the other when designing your database. ENUM is better than TEXT
or VARCHAR in the cases where the number of possibilities is limited and
not expected to vary: for example, a list of colors, the months of the year,
and other options that by their very nature have a set range. One disadvan-
tage that should be taken into account with regard to ENUM, is that it is a
datatype specific to MySQL which may not be available on other DB engines;
this limits the potential portability of the database.

Now we have the PythonU database with 3 tables: Students, Score, and
Courses. It’s time to learn how to construct queries.

© 2010 by Taylor and Francis Group, LLC

Python and Databases 285

13.5 SELECT: Querying a Database

The most useful operation in a database, once it is created and popu-
lated, is querying its contents. We can extract information from one table
or many tables simultaneously. For example, to have a list of students, the
table Students must be queried. On the other hand, if we want to know a
student’s average scores, we need to query the Students and Scores tables.
In addition, there are cases where one must query 3 tables simultaneously, as
when finding out a student’s score in one particular subject.

Let’s look at each case:

Simple Query

To obtain a listing of students (first and last names) from the Students
table, we would use the following command at the MySQL prompt:

mysql> SELECT Name, LastName FROM Students;

While this command is quite self-explanatory, we will see later what options
there are for constructing a query.

Combining Two Queries

To obtain the average scores of a particular student, we need to extract
all the scores corresponding to that student. As the scores are in the Score
table and the names in the Students table, we need to query both tables in
order to receive a reply to our question. First we need to query Students for
the ID of the student; then with this ID we must search for all corresponding
records.

Supposing that the student in question is Joe Campbell:

SELECT AVG(Score) FROM Scores
WHERE StudentID = (SELECT ID FROM Students
WHERE Name=’Joe’ AND LastName=’Campbell’);

We can also accomplish it with a single query, without using the nested
SELECT:

SELECT AVG(Score) FROM Scores, Students
WHERE Scores.StudentID=Students.ID
AND Students.Name=’Joe’ AND Students.LastName=’Campbell’;

There are two new things to understand in this example: when we use
fields from more than one table, we should prepend the table name to avoid
ambiguities in the field names. Thus, StudentID becomes Scores.StudentID.
The following statement is equivalent to the above:

© 2010 by Taylor and Francis Group, LLC

286 Python for Bioinformatics

SELECT AVG(Score) FROM Scores, Students
WHERE StudentID=ID AND Name=’Joe’ AND LastName=’Campbell’;

If the field name is present only in one table, there is no need to add the
table name, but it makes the query easer to parse for the programmer.

The other feature worth pointing out on this example is that instead of
looking only the student ID, there is a condition that matches the IDs of both
tables (Scores.StudentID = Students.ID).

In either case, the result is the same: 7.5

Querying Several Tables

To retrieve the average score of one student (Rick Hunter) in one particular
course (Python 101), there is a need to build a query using more than one
table:

SELECT Scores.Score FROM Scores, Courses, Students
WHERE Courses.CourseID = Scores.Course
AND Courses.Course_Name = ’Python 101’
AND Students.ID = Scores.StudentID
AND Students.Name = ’Rick’ AND Students.LastName = ’Hunter’;

13.5.1 Building a Query

The general syntax of SELET statements is,

SELECT field(s)_to_retrieve FROM table(s)_where_to_look_for
WHERE condition(s)_to_met] [ORDER BY ordering_criteria]
[LIMIT limit_the_records_returned];

To use grouping functions, include at the end of your query:

GROUP BY variable_to_be_grouped HAVING condition(s)_to_met

The aggregating functions are: AVG(), COUNT(), MAX(), MIN() and
SUM().

Note that HAVING works like WHERE. The difference is that HAVING is used
only with GROUP BY since it restricts the records after they have been grouped.

These constructs can be understood better with actual examples. The
following cases shows how to execute the queries from the MySQL command
line.

To get all the elements of a table, use wildcards,

mysql> select * from Students;
+----+----------+----------+------------+--------------------+
| ID | Name | LastName | DateJoined | OutstandingBalance |

© 2010 by Taylor and Francis Group, LLC

Python and Databases 287

+----+----------+----------+------------+--------------------+
1	Joe	Campbell	2006-02-10	N
2	Joe	Doe	2004-02-16	N
3	Rick	Hunter	2005-03-20	N
4	Laura	Ingalls	2001-03-15	Y
5	Virginia	Gonzalez	2003-04-02	N
+----+----------+----------+------------+--------------------+
5 rows in set (0.07 sec)

To obtain a count of all elements in a table,

mysql> select COUNT(*) from Students;
+----------+
| COUNT(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)

To see the average score of all students,

mysql> select avg(Score) from Scores GROUP BY StudentID;
+------------+
| avg(Score) |
+------------+
| 7.5000 |
| 7.5000 |
| 6.0000 |
+------------+
3 rows in set (0.21 sec)

To retrieve the best score of one particular student (Joe Campbell):

mysql> select max(Scores.Score) from Scores,Students
WHERE studentID=ID AND Students.Name = ’Joe’
AND Students.Lastname=’Campbell’;
+-------------------+
| max(Scores.Score) |
+-------------------+
| 8 |
+-------------------+
1 row in set (0.00 sec)

Which courses have the string “101” in their names?

mysql> SELECT Course_Name FROM Courses

© 2010 by Taylor and Francis Group, LLC

288 Python for Bioinformatics

WHERE Course_Name LIKE ’%101%’;
+-------------+
| Course_Name |
+-------------+
| Python 101 |
+-------------+
1 row in set (0.00 sec)

Note that % is used as a wildcard character when working with strings.

How many students have flunked a class? Supposing that the passing score
is 7, this query is equivalent to asking how many scores are below 7.

mysql> SELECT Name,LastName,Score FROM Students,Scores
WHERE Scores.Score<7 and Scores.StudentID=Students.id;
+------+----------+-------+
| Name | LastName | Score |
+------+----------+-------+
| Joe | Doe | 6 |
| Rick | Hunter | 5 |
+------+----------+-------+
2 rows in set (0.00 sec)

The above was simply an example of the possibilities of the SELECT com-
mand. For more complex queries I recommend the resources indicated in
“Additional Resources.”

13.5.2 Updating a Database

While values can be changed using any of the aforementioned GUI tools,
it’s good to know the syntax for updating data, to enable implementing it
from Python when necessary.

The general syntax is:11

UPDATE table_name(s) SET variable1=expr1 [,variable2=expr2 ...]
[WHERE condition(s)];

Suppose you want the database to reflect the fact that Joe Campbell didn’t
pay his tuition, therefore we must make sure the OutstandingBalance field
in the Students table is set to Y. Here is the SQL command with the server’s
response:

11For more information on this command see the MySQL manual at: http://dev.mysql.

com/doc/refman/5.1/en/update.html.

© 2010 by Taylor and Francis Group, LLC

http://dev.mysql.com
http://dev.mysql.com
http://dev.mysql.com
http://dev.mysql.com

Python and Databases 289

mysql> UPDATE Students SET OutstandingBalance=’Y’
WHERE Name=’Joe’ and LastName=’Campbell’;
Query OK, 1 row affected (0.67 sec)
Rows matched: 1 Changed: 1 Warnings: 0

It is also possible, instead of changing a specific value, to apply a function 12

to all values in a column. For example, to subtract one point from all scores:

mysql> UPDATE Scores SET Score = Score-1;
Query OK, 6 rows affected (0.00 sec)
Rows matched: 6 Changed: 6 Warnings: 0

13.5.3 Deleting a Record from a Database

To delete a record use the DELETE command:

mysql> DELETE from Students WHERE ID = "5";

As in SELECT, the WHERE clause specifies the conditions that identify which
rows to delete. Without the WHERE clause, all rows are deleted. But this
is not the best way to delete a whole table. Instead of deleting all records
row by row, you can use the TRUNCATE command that drops and recreates the
table. This is faster for large tables.

To limit the number of records to delete, there is the LIMIT clause:

mysql> DELETE from Students WHERE ID = "5" LIMIT=1;

In this case there is no difference since there is only one record that matches
the WHERE clause.

13.6 Accessing a Database from Python

Now that we know how to access our data using SQL, we can take advantage
of Python’s tools for interfacing with databases.

13.6.1 MySQLdb Module

This module allows accessing MySQL databases from Python. It’s not
installed by default; there are even webservers lacking the module (in a
shared webhosting environment you may have to request the installation of the

12Any valid MySQL function can be used. To see a list with available functions, check the
MySQL manual at: http://dev.mysql.com/doc/refman/5.1/en/functions.html.

© 2010 by Taylor and Francis Group, LLC

http://dev.mysql.com
http://dev.mysql.com

290 Python for Bioinformatics

MySQLdb Python module). To know if the module is installed, try importing
it. If you get an import error, it’s not installed:

>>> import MySQLdb
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ImportError: No module named MySQLdb
>>>

To install it, download it from its web site13, or from your software reposi-
tory if using Linux.14

13.6.2 Establishing the Connection

There is the connect method in the MySQLdb module. This method re-
turns a connection object which we’ll need to act upon later, so we should
give it a name (in the same way we would give a name to the object resulting
from opening a file):

>>> import MySQLdb
>>> db = MySQLdb.connect(host="localhost", user="root",
... passwd="mypassword", db="PythonU")

13.6.3 Executing the Query from Python

Once the connection to the database is established, we have to create a
cursor. A cursor is a structure used to walk through the records of the result
set.

The method used to create the cursor has a clever name, cursor() :

>>> cursor = db.cursor()

The connection is established, and the cursor has been created. It is time
to execute some SQL commands:

>>> cursor.execute("SELECT * FROM Students")
5L

The execute method is used to execute SQL commands. Note that there
is no need to add a semicolon (;) at the end of the command. Now the
question is how to retrieve data from the cursor object. To get one element,
use fetchone():

13http://sourceforge.net/projects/mysql-python
14In this case, the package name is python-mysqldb.

© 2010 by Taylor and Francis Group, LLC

http://sourceforge.net
http://sourceforge.net

Python and Databases 291

>>> cursor.fetchone()
(1L, ’Joe’, ’Campbell’, datetime.date(2006, 2, 10), ’N’)

fetchone() returns a row with the elements of the first record of the table.
Remaining records can be extracted one by one in the same way:

>>> cursor.fetchone()
(2L, ’Joe’, ’Doe’, datetime.date(2004, 2, 16), ’N’)
>>> cursor.fetchone()
(3L, ’Rick’, ’Hunter’, datetime.date(2005, 3, 20), ’N’)

In contrast, fetchall() extracts all the elements at once:

>>> cursor.fetchall()
((1L, ’Joe’, ’Campbell’, datetime.date(2006, 2, 10), ’N’),
(2L, ’Joe’, ’Doe’, datetime.date(2004, 2, 16), ’N’),
(3L, ’Rick’, ’Hunter’, datetime.date(2005, 3, 20), ’N’),
(4L, ’Laura’, ’Ingalls’, datetime.date(2001, 3, 15), ’Y’),
(5L, ’Virginia’, ’Gonzalez’, datetime.date(2003, 4, 2), ’N’))

Which method to use depends on the amount of data returned, the available
memory in the PC, and above all, what we’re trying to accomplish. When
working with limited datasets, there’s no problem using fetchall(); but if the
database is too large to fit in memory, one must implement a strategy like
that found in listing 13.1.

Listing 13.1: Reading results once at a time (py3.us/59)

1 import MySQLdb
2 db = MySQLdb.connect(host="localhost",
3 user="root",passwd="secret", db="PythonU")
4 cursor = db.cursor()
5 recs = cursor.execute("SELECT * FROM Students")
6 for x in range(recs):
7 print(cursor.fetchone())

While indeed the code in listing 13.1 works flawlessly, in fact it was shown
as an example of using fetchone(). Conceptually it is easier to iterate directly
over the cursor object.15 (as seen in code 13.2):

Listing 13.2: Iterating directly over the DB cursor (py3.us/60)

15If we pay strict attention to the language rules, we should iterate using
iter(cursor.fetchone, None). In this case it isn’t necessary because both MySQLdb
and sqlite3 support direct iteration over the cursor.

© 2010 by Taylor and Francis Group, LLC

292 Python for Bioinformatics

FIGURE 13.11: Screenshot of SQLite manager: A SQLite GUI as a Fire-
fox add-on.

1 import MySQLdb
2 db = MySQLdb.connect(host="localhost",
3 user="root",passwd="secret", db="PythonU")
4 cursor = db.cursor()
5 cursor.execute("SELECT * FROM Students")
6 for row in cursor:
7 print row

13.7 SQLite

The following example shows that, practically speaking, there is no differ-
ence in working with one database type or another:

Listing 13.3: Same script as 13.2, but with SQLite (py3.us/61)

© 2010 by Taylor and Francis Group, LLC

Python and Databases 293

1 import sqlite3
2 db = sqlite3.connect(’PythonU.db’)
3 cursor = db.cursor()
4 cursor.execute("Select * from Students")
5 for row in cursor:
6 print(row)

The only thing that changed in listing 13.3 with respect to 13.2 was the
first two lines. In line 1, module sqlite3 was imported instead of MySQLdb.
Meanwhile, in line 2 the connection code is far simpler, as it does not require
a password nor a username to connect to an SQLite database.16

There is an externally maintained version of sqlite (pysqlite2.dbapi2) that
can be downloaded from http://pysqlite.org. This version is always adding
new features, does not depend on Python release schedules, and is also avail-
able for older Python releases such as 2.3 and higher.

Tip: Creating a Table in SQLite.

It is possible, and even recommendable, to create a table in SQLite using
one of the GUIs already mentioned. But if you wish to do it from the command
line, here is an example:

$ sqlite3 PythonU.db #Creating a DB
SQLite version 3.4.2
Enter ".help" for instructions
sqlite> create table Students(ID int, Name text, LastName char,
DateJoined datetext, OutstandingBalance Boolean);
sqlite> .separator ,
sqlite> .import mybackup.csv Students

The first step is creating an empty database file ($ sqlite3 PythonU.db).
Then create tables with the create table command. The next step is to
set the data separator (a comma in this case) with .separator. The last
step is to populate the table by importing it from mybackup.csv file with the
.import command.

As with MySQL, there are some GUI for SQLite. SQLite Administrator17

is a Windows application18 that allows the user to create new databases or
modify existing ones. SQLite Manager19 has similar capacities but is available

16The author argues that access permissions can be applied by using the normal file access
permissions of the underlying operating system.
17Available at http://sqliteadmin.orbmu2k.de.
18It also works on Linux with Wine.
19Available from http://www.sqlabs.net/sqlitemanager.php.

© 2010 by Taylor and Francis Group, LLC

http://pysqlite.org
http://sqliteadmin.orbmu2k.de
http://www.sqlabs.net
http://www.sqlabs.net
http://sqliteadmin.orbmu2k.de
http://pysqlite.org

294 Python for Bioinformatics

both for Windows and Mac OSX. A multi-platform SQLite front-end is the
SQLite Manager Firefox add-on,20 it should work on any platform the Firefox
browser runs. See Figure 13.11 for a screen-shot of SQLite Manager.

13.8 Additional Resources

• Marc-Andre Lemburg. “Python Databases API Specification.”
http://www.python.org/dev/peps/pep-0249/

• “Database Interfaces in Python.”
http://wiki.python.org/moin/DatabaseInterfaces

• Robin Schumacher and Arjen Lentz. “Dispelling the Myths.”
http://dev.mysql.com/tech-resources/articles/dispelling-the-
-myths.html

• MySQL queries examples.
http://www.pantz.org/software/mysql/mysqlcommands.html

• Richard Hipp. “SQLite Lecture.”
http://video.google.com/videoplay?docid=-5160435487953918649

• SQLite FAQ.
http://www.sqlite.org/cvstrac/wiki/wiki?p=SqliteWikiFaq

• SQLite Applications Comparison, comparison of GUIs, mostly for Mac
OSX.
http://www.tandb.com.au/sqlite/compare

• Software:

– MySQL homepage
http://www.mysql.com

– SQuirreL SQL Client - JDBC SQL GUI Client
http://www.squirrelsql.org/

– SQLite homepage
http://www.sqlite.org/

– SQLite Administrator
http://sqliteadmin.orbmu2k.de/

– PostgreSQL home page
http://www.postgresql.org

20Available at http://code.google.com/p/sqlite-manager.

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://wiki.python.org
http://dev.mysql.com
http://dev.mysql.com
http://www.pantz.org
http://video.google.com
http://www.sqlite.org
http://www.tandb.com.au
http://www.mysql.com
http://www.squirrelsql.org
http://www.sqlite.org
http://sqliteadmin.orbmu2k.de
http://www.postgresql.org
http://code.google.com
http://code.google.com
http://www.postgresql.org
http://sqliteadmin.orbmu2k.de
http://www.sqlite.org
http://www.squirrelsql.org
http://www.mysql.com
http://www.tandb.com.au
http://www.sqlite.org
http://video.google.com
http://www.pantz.org
http://dev.mysql.com
http://dev.mysql.com
http://wiki.python.org
http://www.python.org

Python and Databases 295

– PL/Python - Python Procedural Language (This language allows
PostgreSQL functions to be written in Python)
http://www.postgresql.org/docs/8.2/interactive/plpython.
html

• Alternative Solutions:

– Choosing a non-relational database; why we migrated from MySQL
to MongoDB.
http://bit.ly/1N97s

– The CouchDB Project
http://couchdb.apache.org

– HyperTable: Performance and scalability.
http://www.hypertable.org

– libcloud: a unified interface to the cloud
http://libcloud.org

© 2010 by Taylor and Francis Group, LLC

http://www.postgresql.org
http://blog.boxedice.com
http://couchdb.apache.org
http://www.hypertable.org
http://libcloud.org
http://www.postgresql.org
http://www.postgresql.org
http://libcloud.org
http://www.hypertable.org
http://couchdb.apache.org
http://blog.boxedice.com
http://www.postgresql.org

296 Python for Bioinformatics

13.9 Self-Evaluation

1. What is a database?

2. Give some examples of databases.

3. What is a relational database?

4. Define the following terms: entity, attributes, and relationships.

5. What is SQL?

6. What is a query?

7. Translate this query into English:
SELECT LastName,Score FROM Student,Scores WHERE Scores.Score>3;

8. What is the difference between MySQL and SQLite?

9. When is it appropriate to use SQLite?

10. What are the limitations of SQLite with regard to MySQL?

© 2010 by Taylor and Francis Group, LLC

Chapter 14

Collaborative Development: Version
Control

14.1 Introduction to Version Control

While programs usually start as a single file handled by a single developer,
sometimes these grow to include tens or hundreds of files shared by many
people working in different places with different timetables. It is possible
that more than one programmer might work on the same portion of code or
that one many work on the basis of an outdated version. Without a proper
order, it is a recipe for disaster. There is also the case where there is a single
programmer who may want to work from different locations (like home and
work) and keep track of different versions, without moving files from one side
to the other. This kind of problem could be applied to any text file, not only
computer code. So solutions found on this chapter could be applied in any
document.1

VCS, CVS, SCM, Version Control, Revision Control. What Is in a Name?

There are many different names for the same concept: “The management of
multiple revisions of the same unit of information.” Sometimes it is referred
to as CVS (Concurrent Version System) because this is the name of one of
the first programs of its class and it became a kind of “generic term.” This
is why in some texts you will find terms like CSV server when it is referring
to a specific version control server program that is not CSV. A more generic
term is VCS, for Version Control System.

1There are specific web services for sharing documents like Zoho Writer (http://writer.
zoho.com) and Google Docs (http://docs.google.com).

297

© 2010 by Taylor and Francis Group, LLC

http://writer.zoho.com
http://writer.zoho.com
http://docs.google.com
http://docs.google.com
http://writer.zoho.com
http://writer.zoho.com

298 Python for Bioinformatics

14.1.1 Little History

In the mid 1980s, Dick Grune, a professor of Vrije University (Amsterdam),
created cmt, the antecessor of one of the most used programs for version
control: CVS.

Dick was working in a C compiler with two students. They faced the type
of problem described above, because they were not working together since
they all had different schedules. The first system consisted of a series of shell
scripts that contained the core functions of the program.

When the project was completed, cmt kept evolving in an independent
way to generate the C written CVS program that is known today. One of
the reasons for its popularity, apart from being the first program of its kind,
is that it was adopted by high profile projects such as the development of
the Linux kernel. Another reason for its success is that the developer site
http://sourceforge.net/ provides CVS hosting for open source software.
In regards to bioinformatics, http://www.bioinformatics.org also provides
free access to a CSV server.

14.2 Version Control Terminology

Whatever the version control program you decide to use, there is a set
of terminology that is shared among them. Some version control program
documentation uses the terminology in its own way, so this guide should not
be taken literally. Here I introduce the most used terms, sorted in a coherent
way, where each term can be understood taking into account the former term
definition.

Repository: The place where all the shared files and complete revision
history are stored. Some version control systems follow a client-server
approach and have a central repository. Some other version control sys-
tems have a peer-to-peer approach where each peer has a full working
copy of the codebase.

Trunk: By convention, the unique line of development that is not a
branch (sometimes also called Baseline or Mainline).

Branch: A set of files under version control which may be branched or
forked at a point in time so that, from that time forward, two copies
of those files may be developed at different speeds or in different ways
independently of the other.

Commit (also known as check-in): When a change made by a pro-
grammer is written into the repository (either personal or shared).

© 2010 by Taylor and Francis Group, LLC

http://sourceforge.net
http://www.bioinformatics.org
http://www.bioinformatics.org
http://sourceforge.net

Collaborative Development: Version Control 299

Revision: A snapshot of the files you’re working with. A revision also
has some metadata associated with it, such as who committed it, when
it was committed and a commit message.

Change: Represents a specific modification to a document under ver-
sion control.

Check-out: Creates a copy of the code from the repository. Usually the
latest version is requested, but also a specific version can be retrieved if
needed.

Merge: A merge brings together two sets of changes from a set of files
into a unified version of these files.

Conflict: When two changes are made by different programmers to the
same document, and the system is unable to reconcile the changes, a
user must resolve the conflict by combining the changes, or by selecting
one change in favor of the other.

Export: Similar to a check-out except that it creates a clean directory
tree without the version control metadata. Often used prior to pub-
lishing the contents. This is generally output in a compressed file, like
tarballs (.tar.gz, tar.bz2).

14.3 Centralized versus Distributed

One of the most important features of version control systems is the repos-
itory localization. As mentioned in the glossary, a version control system can
be distributed or centralized.

Centralized version control systems have only one repository from which all
programmers check-out code. To submit code (commit), they have to connect
to the repository, so they are compelled to work online. Since there is one
central repository, only a small group of “core developers” can write to it.

On the other hand, in distributed version control systems (DVCS), each
programmer has his or her own repository. There is no need to connect
to an external repository to make a commit, permitting everybody to take
advantage of revision control. Network access is only required when publishing
changes or when accessing changes from somebody else’s repository. Since
each programmer has his or her own repository, he or she can commit locally
without having access to the main repository (trunk). This speeds up the
development process.

Open source developers are increasingly adopting DVCS for their projects.
The Linux Kernel and the Gnome Desktop migrated from centralized con-

© 2010 by Taylor and Francis Group, LLC

300 Python for Bioinformatics

trol systems to Git. Python has chosen Mercurial, MySQL uses Bazaar and
Biopython will move to Git2.

14.4 Bazaar: Distributed Revision Control System

Choosing a version control program is not easy. There are several alter-
natives,3 most with their own unique advantages. Sometimes the choice is
limited by the options given by the leader of the project you are working on.
But when you work in your own project, you have to make the choice. For
this book, Bazaar was chosen because of the following features:

• Coded purely in Python (it has some optional C optimizations)

• Decentralized

• Provides multi-platform support

• Ease of use

• Provides complete documentation

• Easy to integrate into Launchpad.net

• Open Source

Bazaar has other nice features such as plug-in architecture, commercial
training and support. These features were not taken into account for this
book since they are not used for entry level projects. I mention them since
they might be good selling points for larger projects.

14.4.1 Installing Bazaar

Since Bazaar can work without a central server, the installation is straight-
forward. An often highlighted feature of Bazaar is that If you can run Python
2.4, then you can run Bazaar. While this is true, there are some optional
dependencies. It is better to have cElementTree installed, as well as other li-
braries like Pyrex. With Python 2.5 or later cElementTree is not needed since
it is already included. Paramiko must be installed together with pyCrypto if
you want to use sftp to upload your code.

2Please see http://biopython.org/wiki/GitMigration for more information.
3See Additional Resources on page 311 for other programs.

© 2010 by Taylor and Francis Group, LLC

http://biopython.org
http://biopython.org

Collaborative Development: Version Control 301

Under Windows there is a standard installer.4 In Linux the software is
in the distribution repositories5 and can be installed (in any Debian based
system) as:

$ sudo apt-get install bzr

As an alternative, you can download the latest version from the Bazaar
website and install it like any other Python program:

$ sudo python setup.py install

To test that everything went OK, try the command bzr version and you
should get an output similar to this one:

$ bzr version
Bazaar (bzr) 1.1.0

Python interpreter: /usr/local/bin/python2.5 2.5.0.final.0
Python standard library: /usr/local/lib/python2.5
bzrlib: /mnt/hda2/bzr-1.1/bzrlib
Bazaar configuration: /home/sbassi/.bazaar
Bazaar log file: /home/sbassi/.bzr.log

Copyright 2005, 2006, 2007, 2008 Canonical Ltd.
http://bazaar-vcs.org/

bzr comes with ABSOLUTELY NO WARRANTY. bzr is free software, and
you may use, modify and redistribute it under the terms of the GNU
General Public License version 2 or later.

14.5 Using Bazaar for the First Time

The first step is to identify yourself to the program. This way your contri-
butions will be properly credited in the revision logs.

The usual way to do it is by using your full name and email address, like:

$ bzr whoami "Sebastian Bassi sbassi@gmail.com"

4The latest version of the Windows installer can be downloaded from http://bazaar-vcs.

org/releases/win32/bzr-setup-latest.exe.
5Since the program develops at a fast pace, in general the version available in the repository
is not the last version. To make sure you have the most updated version, you have to include
in the repositories list file, the repositories included at this page: https://launchpad.net/
~bzr/+archive.

© 2010 by Taylor and Francis Group, LLC

mailto:sbassi@gmail.com
http://bazaar-vcs.org
https://launchpad.net
http://bazaar-vcs.org
https://launchpad.net
http://bazaar-vcs.org
http://bazaar-vcs.org
https://launchpad.net
http://bazaar-vcs.org
https://launchpad.net
http://bazaar-vcs.org
mailto:sbassi@gmail.com

302 Python for Bioinformatics

To check that everything went OK:

$ bzr whoami
Sebastian Bassi sbassi@gmail.com

As a general rule, the syntax of the bzr command is bzr command [options]
[arguments].

14.6 Different Ways to Use a VCS

There are several ways to use a VCS program. Here are some common
scenarios:

• A single user

• Two users without a central server

• Multiple users with a central server

Even if you plan to follow only one of the proposed settings, I recommend
reading all of them in the order presented here since most concepts exposed
in one case are used in the following:

14.6.1 Workflow: Single User

A programer working alone can benefit by using a VCS a software tool.
While he is not going to incorporate versions of code from other parties or
publish their work for others to make new derivated code, he can use the VCS
capability of tracking revisions to return to a previous state if necessary.

The samples below are based on a programmer (let’s call him Lone Ranger)
using Bazaar:

The fist step is to create the working directory (dna calculator):

loneranger@hp:~$ mkdir dna_calculator
loneranger@hp:~$ cd dna_calculator

Bazaar has to be initialized in this directory:

loneranger@hp:~/dna_calculator$ bzr init

If there is no message, then there was no error (that is a UNIX legacy
of “no news, good news”). The next step is editing the files (data.txt and
main.py).

© 2010 by Taylor and Francis Group, LLC

mailto:sbassi@gmail.com
mailto:sbassi@gmail.com

Collaborative Development: Version Control 303

loneranger@hp:~/dna_calculator$ pico data.txt
loneranger@hp:~/dna_calculator$ pico main.py
loneranger@hp:~/dna_calculator$ ls
data.txt main.py

Once the programmer has his files ready, he adds them to the project:

loneranger@hp:~/dna_calculator$ bzr add
added data.txt
added main.py

Note that since no additional arguments where passed to add, Bazaar added
all the versioned files available in the directory recursively.

The second step is to commit the files. This will be revision 1 of the Lone
Ranger program:

$ bzr commit -m "My first commit"
Committing to: /home/loneranger/dna_calculator/
added data.txt
added main.py
Committed revision 1.

If the programmer edits one of the files (like main.py), he can see the
difference between the edited version and the version already included in the
repository.

loneranger@hp:~/dna_calculator$ pico main.py
loneranger@hp:~/dna_calculator$ bzr diff
=== modified file ’main.py’
--- main.py 2008-03-01 17:39:05 +0000
+++ main.py 2008-03-01 17:44:13 +0000
@@ -1,3 +1,5 @@
#!/usr/local/bin/python2.5

import __hello__
+
+print "This works in Python 2.5"

When the programmer is satisfied with the changes, he can commit it
again:

$ bzr commit -m "A print statement added"
Committing to: /home/loneranger/dna_calculator/
modified main.py
Committed revision 2.

This procedure (modify and commit) can be repeated anytime that it is
needed. To see the change log, use the log command:

© 2010 by Taylor and Francis Group, LLC

304 Python for Bioinformatics

loneranger@hp:~/dna_calculator$ bzr log
--
revno: 6
committer: Lone Ranger <loneranger@hp>
branch nick: dna_calculator
timestamp: Sat 2008-03-01 15:07:56 -0300
message:

comment
--
revno: 5
committer: Lone Ranger <loneranger@hp>
branch nick: dna_calculator
timestamp: Sat 2008-03-01 15:06:38 -0300
message:

Corrected data
--
revno: 4
committer: Lone Ranger <loneranger@hp>
branch nick: dna_calculator
timestamp: Sat 2008-03-01 15:06:04 -0300
message:

New data
--
revno: 3
committer: Lone Ranger <loneranger@hp>
branch nick: dna_calculator
timestamp: Sat 2008-03-01 14:45:51 -0300
message:

Print for Python 3000
--
revno: 2
committer: Lone Ranger <loneranger@hp>
branch nick: dna_calculator
timestamp: Sat 2008-03-01 14:44:52 -0300
message:

A print statement added
--
revno: 1
committer: Lone Ranger <loneranger@hp>
branch nick: dna_calculator
timestamp: Sat 2008-03-01 14:39:05 -0300
message:

My first commit

This log command can be applied to a specific file:

© 2010 by Taylor and Francis Group, LLC

Collaborative Development: Version Control 305

loneranger@hp:~/dna_calculator$ bzr log data.txt
--
revno: 5
committer: Lone Ranger <loneranger@hp>
branch nick: dna_calculator
timestamp: Sat 2008-03-01 15:06:38 -0300
message:

Corrected data
--
revno: 4
committer: Lone Ranger <loneranger@hp>
branch nick: dna_calculator
timestamp: Sat 2008-03-01 15:06:04 -0300
message:

New data
--
revno: 1
committer: Lone Ranger <loneranger@hp>
branch nick: dna_calculator
timestamp: Sat 2008-03-01 14:39:05 -0300
message:

My first commit

If Lone Ranger wants to go back to the state in revision number 3, he can
accomplish this by using the revert command:

$ bzr revert -r 3
M data.txt
M* main.py

If he only wants to go back to the previous state, he can use:

$ bzr revert filename

After making the changes, he has to commit again:

$ bzr commit -m "Going back to version 3"
Committing to: /home/loneranger/dna_calculator/
modified data.txt
modified main.py
Committed revision 7.

To publish his code,6 he can use any protocol he desires (i.e., FTP, sFTP,
SSH, etc.).7 The fact that the programmer doesn’t need a special server is a

6Lone Ranger programs alone, but he shares his code when it is finished.
7Remember that for using sFTP you need the paramiko module.

© 2010 by Taylor and Francis Group, LLC

306 Python for Bioinformatics

big selling point for Bazaar. In this case Lone Ranger has a (fictional) server
called site.com to which he uploads files using FTP,8:

$ bzr push <=
ftp://loneranger%40site.com@site.com/dna_calc
FTP loneranger@site.com@site.com password:
Created new branch.

If unlike Lone Ranger you don’t have a web-server, there are some free
project hosting servers like Launchpad.net:9

$ bzr push bzr+ssh://lone.ranger@bazaar.launchpad.net/~lone.<=
ranger/py4bio/newbranch
Enter passphrase for key ’/home/loneranger/.ssh/id_dsa’:
Created new branch.

From now on, anybody can get a copy of your code with the command:

$ bzr branch http://bazaar.launchpad.net/~lone.ranger/py4bio/<=
newbranch
Branched 7 revision(s).

A feature of Launchpad is that any user can see the code from a web
browser, without using Bazaar. This is made possible thanks to Loggerhead
(http://www.lag.net/loggerhead), a program to view, annotate, search
and syndicate projects made with Bazaar. This example can be seen online.10

Another way to publish your code is using the export function:

$ bzr export ../last_release/dnacalc-0.9.tar.gz

14.6.2 Workflow: Two Users Sharing Code without a Cen-
tral Server

In this scenario we have two programmers (Harry and Sally) who want to
sync a shared branch. There are several steps in common with the previously
described process. Each user has his or her own directory to save the project
files:

8Note that some commercial hosting providers will give usernames in the form of
“user@domain”. In this case you should write your user as user%40domain so the full
URL would be: ftp://user%40domain@domain.
9Launchpad.net describes itself as a “free software hosting and development website.” It is
a service from Canonical Ltd, the commercial sponsor of Ubuntu Linux. There are other
similar services like sourceforge.net, bioinformatics.org and http://code.google.com/

hosting. Launchpad is featured here because it is open source and is written in Python.
10At this URL: http://bazaar.launchpad.net/~lone.ranger/py4bio/newbranch/

changes.

© 2010 by Taylor and Francis Group, LLC

http://www.lag.net
http://code.google.com
http://bazaar.launchpad.net
http://bazaar-vcs.org
ftp://user%40domain@domain
ftp://user%40domain@domain
http://bazaar-vcs.org
http://bazaar.launchpad.net
http://code.google.com
http://www.lag.net

Collaborative Development: Version Control 307

harry@hp:~$ mkdir projectY
harry@hp:~$ cd projectY
harry@hp:~/projectY$

The same with Sally,

sally@ibm:~$ mkdir projectY
sally@ibm:~$ cd projectY
sally@ibm:~/projectY$

Harry works on “project Y” and generates two files: main.py and data.txt.
The first step is to initialize Bazaar in this directory:

harry@hp:~/projectY$ bzr init

The second step is to include his files:

harry@hp:~/projectY$ bzr add
added data.txt
added main.py

Now, it is time for the first commit:

harry@hp:~/projectY$ bzr commit -m "First commit"
Committing to: /home/harry/projectY/
added data.txt
added main.py
Committed revision 1.

At this time, Sally wants to work with Harry’s code. As the first step, she
has to make a branch of Harry’s code. This branch will be called by Sally
projectY-fromH:

sally@ibm:~/projectY$ bzr branch
sftp://harry@192.168.0.1/home/sally/projectY/ projectY-fromH
Branched 1 revision(s).

Work on this branch is just a matter of changing the working directory and
editing those files:

sally@ibm:~/projectY$ cd projectY-fromH
sally@ibm:~/projectY/projectY-fromH$ pico main.py

Once the changes are done, she can see the differences between the files by
using the diff :

© 2010 by Taylor and Francis Group, LLC

sftp://harry@192.168.0.1/home/sally/projectY
sftp://harry@192.168.0.1/home/sally/projectY

308 Python for Bioinformatics

sally@ibm:~/projectY/projectY-fromH$ bzr diff main.py
=== modified file ’main.py’
--- main.py 2008-02-21 01:16:21 +0000
+++ main.py 2008-02-21 01:27:50 +0000
@@ -1,8 +1,8 @@
#This program is made for the Python Book
protseq=raw_input("Enter your protein sequence: ")

-protweight={"A":89,"V":117,"L":131,"I":131,"P":115,"F":165,\
- "W":204,"M":149,"G":75,"S":105,"C":121,"T":119,\
- "Y":181,"N":132,"Q":146,"D":133,"E":147,\
+protweight={"A":89,"V":117,"L":131,"I":131,"P":115,"F":165,
+ "W":204,"M":149,"G":75,"S":105,"C":121,"T":119,
+ "Y":181,"N":132,"Q":146,"D":133,"E":147,

"K":146,"R":174,"H":155}
totalW=0
for aa in protseq:

The diff output tells Harry that Sally has removed the symbols “\” from
the lines starting with the sign “-”. The backslash is used to break a line into
multiple lines, but it is not needed here since there are brackets ({}).

Since Sally is happy with this change, she commits it into her branch:

sally@ibm:~/projectY/projectY-fromH$ bzr commit -m <=
"Some slash removed"
Committing to: /home/user2/projectY/projectY-fromH/
modified main.py
Committed revision 2.

Now it is time to contribute her modification to Harry’s code. To this end,
Sally prepares a patch:

sally@ibm:~/projectY/projectY-fromH$ bzr send -o sally.patch
sftp://harry@192.168.0.1/home/sally/projectY/

This file (sally.patch) is created based on Sally’s code and Harry’s code
base. Now Sally can email this file to Harry. He will check if he likes the
change; if so, this file will be merged into Harry’s code:

harry@hp:~/projectY$ bzr merge sally.patch
M main.py

All changes applied successfully.

When Harry merges Sally’s patch into his project, he is warned that the
file main.py was modified. Now Harry runs a diff as if he were the one who
modified the main.py file:

© 2010 by Taylor and Francis Group, LLC

sftp://harry@192.168.0.1/home/sally/projectY
sftp://harry@192.168.0.1/home/sally/projectY

Collaborative Development: Version Control 309

harry@hp:~/projectY$ bzr diff
=== modified file ’main.py’
--- main.py 2008-02-21 01:16:21 +0000
+++ main.py 2008-02-22 17:59:35 +0000
@@ -1,8 +1,8 @@
#This program is made for the Python Book
protseq=raw_input("Enter your protein sequence: ")

-protweight={"A":89,"V":117,"L":131,"I":131,"P":115,"F":165,\
- "W":204,"M":149,"G":75,"S":105,"C":121,"T":119,\
- "Y":181,"N":132,"Q":146,"D":133,"E":147,\
+protweight={"A":89,"V":117,"L":131,"I":131,"P":115,"F":165,
+ "W":204,"M":149,"G":75,"S":105,"C":121,"T":119,
+ "Y":181,"N":132,"Q":146,"D":133,"E":147,

"K":146,"R":174,"H":155}
totalW=0
for aa in protseq:

It is time to commit the change into Harry’s personal repository:

harry@hp:~/projectY$ bzr commit -m "Sally patch"
Committing to: /home/harry/projectY/
modified main.py
Committed revision 2.

14.6.3 Workflow: Multiple Users Sharing Code with a Cen-
tral Server

In this case there is a group of people who want to work together to develop
a program.

The first step is to put a version of the code in a place available for all
parties. This is done by creating a central shared repository:

$ bzr init-repo sftp://user1@myserver.com/projectX1
sFTP user1@myserver.com password:

A common way to populate a central branch is by making a local branch
and pushing it into the newly created central branch:

$ bzr init-repo projectX1
$ bzr init projectX1/trunkv2
$ cd projectX1/trunkv2

After editing your files:

$ bzr add
$ bzr commit -m "Initial import"
$ bzr push sftp://user1@myserver.com/projectX1/trunkv2

© 2010 by Taylor and Francis Group, LLC

sftp://user1@myserver.com/projectX1
mailto:user1@myserver.com
sftp://user1@myserver.com/projectX1/trunkv2
sftp://user1@myserver.com/projectX1/trunkv2
mailto:user1@myserver.com
sftp://user1@myserver.com/projectX1

310 Python for Bioinformatics

Now we use bind to keep the local commits to the server in synch:

$ bzr bind sftp://user1@myserver.com/projectX1/trunkv2

From now on, each commit in our local branch well be replicated into the
central branch:

$ bzr commit -m "new code with range"
FTP user1@myserver.com password:
Committing to: ftp://user1@myserver.com/projectX1/MyTrunk/
modified main.py
Committed revision 2.
[===================] Running post_commit hooks - Stage 6/6

To go back to apply commits in local mode, use unbind

$ bzr unbind

From now on, the commit are local again. This is equivalent to use bzr
commit --local each time you use commit. To interact again with the
server, use bind. Another option is to use update to sync the changes with
the server. In this case we have to use commit to send the changes to the
central server.

When other users want to modify the code, they will have to checkout to
have a copy, and then each time they make a commit, it will be updated in
the server:

$ bzr checkout ftp://user2@myserver.com/projectX1/MyTrunk/
FTP ftp://user2@myserver.com password:
$ cd MyTrunk/
$ ls
main.py
$ pico main.py
$ bzr commit -m"print x"
FTP ftp://user2@myserver.com password:
Committing to: ftp://user2@myserver.com/projectX1/MyTrunk/
modified main.py
Committed revision 3.

Use update to make sure you are working with the last available version:

$ bzr update
FTP ftp://user2@myserver.com password:
Tree is up to date at revision 3.

© 2010 by Taylor and Francis Group, LLC

sftp://user1@myserver.com/projectX1/trunkv2
mailto:user1@myserver.com
ftp://user1@myserver.com/projectX1/MyTrunk
ftp://user2@myserver.com/projectX1/MyTrunk
ftp://user2@myserver.com
ftp://user2@myserver.com
ftp://user2@myserver.com/projectX1/MyTrunk
ftp://user2@myserver.com
ftp://user2@myserver.com
ftp://user2@myserver.com/projectX1/MyTrunk
ftp://user2@myserver.com
ftp://user2@myserver.com
ftp://user2@myserver.com/projectX1/MyTrunk
ftp://user1@myserver.com/projectX1/MyTrunk
mailto:user1@myserver.com
sftp://user1@myserver.com/projectX1/trunkv2

Collaborative Development: Version Control 311

14.7 VCS Conclusion

There are several ways to use a VCS program. This chapter barely touches
the surface of this subject. It is up to the reader to keep researching on this
matter (please see Additional Resources for more information).

14.8 Additional Resources

• Jennifer Vesperman. “Introduction to CVS.”
http://www.linuxdevcenter.com/pub/a/linux/2002/01/03/cvs_intro.
html

• Dave O Connor. “Getting Started with CVS.”
http://www.linux.ie/articles/tutorials/cvs.php

• “Git for Computer Scientists” by Tommi Virtanen (aka Tv).
http://eagain.net/articles/git-for-computer-scientists

• “Easy Git – git for mere mortals.”
http://www.gnome.org/~newren/eg/

• “An Introduction to (Easy) Git,” by Elijah Newren.
http://www.gnome.org/ newren/eg/presentations/git-introduction.pdf

• “Bazaar Tutorial”
http://doc.bazaar-vcs.org/bzr-0.15/tutorial.htm

• “Bazaar Tutorial Screencasts And Videos.”
http://showmedo.com/videos/bazaar

• “PEP-374: Migrating from svn to a distributed VCS.”
http://www.python.org/dev/peps/pep-0374/

• Noble WS, 2009 “A Quick Guide to Organizing Computational Biology
Projects.” PLoS Comput Biol 5(7): e1000424.
http://dx.doi.org/10.1371/journal.pcbi.1000424

• Software:

– Bazaar
http://bazaar-vcs.org

– Git
http://git.or.cz

© 2010 by Taylor and Francis Group, LLC

http://www.linuxdevcenter.com
http://www.linux.ie
http://eagain.net
http://www.gnome.org
http://www.gnome.org
http://doc.bazaar-vcs.org
http://showmedo.com
http://www.python.org
http://dx.doi.org
http://bazaar-vcs.org
http://git.or.cz
http://www.linuxdevcenter.com
http://www.linuxdevcenter.com
http://git.or.cz
http://bazaar-vcs.org
http://dx.doi.org
http://www.python.org
http://showmedo.com
http://doc.bazaar-vcs.org
http://www.gnome.org
http://www.gnome.org
http://eagain.net
http://www.linux.ie
http://www.linuxdevcenter.com

312 Python for Bioinformatics

– Easy Git
http://gitorious.org/projects/eg

– Mercurial
http://www.selenic.com/mercurial/wiki

© 2010 by Taylor and Francis Group, LLC

http://gitorious.org
http://www.selenic.com
http://www.selenic.com
http://gitorious.org

Collaborative Development: Version Control 313

14.9 Self-Evaluation

1. What is version control software?

2. Name advantages of using version control.

3. Why would a single programmer use such a program?

4. What is the difference between centralized and distributed version con-
trol?

5. Define (in the context of version control): repository, branch, commit,
merge and check-out.

6. What is the difference between local and remote commit?

7. What kind of server is needed to publish a branch using Bazaar?

8. Name advantages of Bazaar over other version control software.

9. What is a patch file and how do you submit one?

10. What is Launchpad.net and how is it related to Bazaar?

© 2010 by Taylor and Francis Group, LLC

Part IV

Python Recipes with
Commented Source Code

© 2010 by Taylor and Francis Group, LLC

Chapter 15

Sequence Manipulation in Batch

15.1 Problem Description

15.2 Problem One: Create a FASTA File with Random
Sequences

There are some statistical tests where random sequences are useful. Ran-
dom sequences can also be used to test programs when you don’t have real
data in the required amount.

In code 15.1 we assume that we need to generate 5000 sequences, each one
with a length between 4000 and 15000 nucleotides.

15.2.1 Commented Source Code

Listing 15.1: Generate random sequences (py3.us/62)

1 import random
2
3 from Bio.SeqRecord import SeqRecord
4 from Bio.Seq import Seq
5 from Bio import SeqIO
6
7 def new_rnd_seq(sl):
8 """ Generate a random DNA sequence with a sequence length
9 of "sl" (int).

10 """
11 s = ’’
12 for x in range(sl):
13 s += random.choice(’ATCG’)
14 # s += random.sample(’ATCG’,1)[0] is not so fast.
15 return s
16
17 newfh = open(’randomseqs.txt’,’w’)

317

© 2010 by Taylor and Francis Group, LLC

318 Python for Bioinformatics

18 for i in range(1,501):
19 # Creates a random number in the range of 4000-15000
20 rsl = random.randint(4000,15000)
21 # Generate the random sequence
22 rawseq = new_rnd_seq(rsl)
23 # Generate a correlative name
24 seqname = ’Sequence_number_’ + str(i)
25 rec = SeqRecord(Seq(rawseq),id=seqname,description=’’)
26 SeqIO.write([rec],newfh,’fasta’)
27 newfh.close()

Code explanation: Generation of the random sequence is done in the
new rnd seq function (fron lines 7 to 15). This function is called inside the
for loop and it is stored as rawseq. In line 25 a SeqRecord object is created.
This object is passed to SeqIO.write in line 26.

15.3 Problem Two: Filter Not Empty Sequences from a
FASTA File

Sometimes you need to get rid of malformed sequences from a FASTA file.
Some programs choke when they receive in the input file an empty sequence.
Formatdb, the program used to format BLAST databases, is known behave
like this. The code in listing 15.2 asumes that you have a FASTA file like this:

>SSR86 [ssr] : Tomato-EXPEN 2000 map, chr 3
AGGCCAGCCCCCTTTTCCCTTAAGAACTCTTTGTGAGCTTCCCGCGGTGGCGGCCGCTCTAG
>SSR91 [ssr]
>SSR252 [ssr]
TGGGCAGAGGAGCTCGTANGCATACCGCGAATTGGGTACACTTACCTGGTACCCCACCCGGG
TGGAAAATCGATGGGCCCGCGGCCGCTCTAGAAGTACTCTCTCTCT
>SSR257 [ssr]
TGAGAATGAGCACATCGATACGGCAATTGGTACACTTACCTGCGACCCCACCCGGGTGGAAA
ATCGATGGGCCCGCGGCC
>SSR92 [ssr] : Tomato-EXPEN 2000 map, chr 1

And it should produce a version of the file without the empty records:

>SSR86 [ssr] : Tomato-EXPEN 2000 map, chr 3
AGGCCAGCCCCCTTTTCCCTTAAGAACTCTTTGTGAGCTTCCCGCGGTGGCGGCCGCTCTAG
>SSR252 [ssr]
TGGGCAGAGGAGCTCGTANGCATACCGCGAATTGGGTACACTTACCTGGTACCCCACCCGGG
TGGAAAATCGATGGGCCCGCGGCCGCTCTAGAAGTACTCTCTCTCT
>SSR257 [ssr]

© 2010 by Taylor and Francis Group, LLC

Sequence Manipulation in Batch 319

TGAGAATGAGCACATCGATACGGCAATTGGTACACTTACCTGCGACCCCACCCGGGTGGAAA
ATCGATGGGCCCGCGGCC

15.3.1 Commented Source Code

Listing 15.2: Filter a FASTA file (py3.us/63)

1 from Bio import SeqIO
2 # Name of the input file
3 fh = open(’out22.fas’)
4 # Name of the output file
5 newfh = open(’out22-GOOD.fas’,’w’)
6
7 def retseq(seqfh):
8 """ Parse a fasta file and store non empty records
9 into the fullseqs list.

10 """
11 # Empty list to store good sequences
12 fullseqs = []
13 for record in SeqIO.parse(seqfh,’fasta’):
14 if len(record.seq)!=0:
15 fullseqs.append(record)
16 seqfh.close()
17 return fullseqs
18
19 SeqIO.write(retseq(fh),newfh,’fasta’)
20 newfh.close()

Although this program does its job, it is not an example of efficient use of
computer resources. The list fullseqs ends up with the information on every
non-empty sequence in the file. For short sequence files this is not noticieable.
In a realistic scenario, an input file of 500 Mb long can easily bring a server
to its knees.

The same program can be adapted for low memory usage. This is accom-
plished in code 15.3 by the use of a generator. A generator is a special kind
of function. Syntactically, a generator and a function are very alike, both
has a header with the def keyword, a name and parameters (if any). The
most visible difference is that instead of having the word return as an exit
point, generators has yield . The conceptual diference between a function and
a generator is that the generator keeps its internal state after being called.
The next time the generator is called, it resumes its execution from the point
it was before. This property is used to yield several values, one at a time.

© 2010 by Taylor and Francis Group, LLC

320 Python for Bioinformatics

Listing 15.3: Filter a FASTA file with a generator (py3.us/64)

1 from Bio import SeqIO
2 # Name of the input file
3 fh = open(’out22.fas’)
4 # Name of the output file
5 newfh = open(’out22-GOOD.fas’,’w’)
6
7 def retseq(seqfh):
8 for record in SeqIO.parse(seqfh,’fasta’):
9 if len(record.seq)!=0:

10 yield record
11
12 SeqIO.write(retseq(fh),newfh,’fasta’)
13 newfh.close()
14 fh.close()

Code explanation: This code is very similar to 15.2. The first difference
that is apparent when they are compared line by line is that in this code there
is no empty list to store the sequences (it was called fullseqs in listing 15.2).
Another difference is that in the first code, retseq is a function while in the last
version it is a generator. Both differences are tightly related: Since generators
return elements one by one, there is no need to use a list. The generator yields
one record to SeqIO.write, which keeps on calling the generator until it gets
a StopIteration exception.

There is another way to do the same task without using generators and
functions, while still consuming an optimal amount of RAM:

Listing 15.4: Yet another way to filter a FASTA file (py3.us/65)

1 from Bio import SeqIO
2 fh = open(’out22.fas’)
3 newfh = open(’out22-GOOD.fas’,’w’)
4 for record in SeqIO.parse(fh,’fasta’):
5 if len(record.seq)!=0:
6 SeqIO.write([record],newfh,’fasta’)
7 # Try (record,) as an alternative to [record]
8 newfh.close()
9 fh.close()

Note that there is no list creation (hence no RAM abuse) and there is no
generator because the SeqIO.write function saves the records as soon as it
receives them.1 If code 15.4 was shown in the first place, I wouldn’t have the
chance to show the difference between using a function and a generator.

1There is some internal small RAM caching but it is not relevant in terms of how this
function works.

© 2010 by Taylor and Francis Group, LLC

Sequence Manipulation in Batch 321

15.4 Problem Three: Modify Every Record of a FASTA
File

In this problem we have a FASTA file that looks the one in listing 15.5:

Listing 15.5: Input file

>Protein-X
NYLNNLTVDPDHNKCDNTTGRKGNAPGPCVQRTYVACH
>Protein-Y
MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDA
>Protein-Z
MKAAVLAVALVFLTGCQAWEFWQQDEPQSQWDRVKDFATVYVDAVKDSGRDYVSQFESST

The goal of the exercise is to modify all the sequences by adding the species
tag in each sequence name. This kind of file modification may be required for
sequence submission for a genetic data bank. A modified FASTA file would
look like this:

Listing 15.6: Input file

>Protein-X [Rattus norvegicus]
NYLNNLTVDPDHNKCDNTTGRKGNAPGPCVQRTYVACH
>Protein-Y [Rattus norvegicus]
MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDA
>Protein-Z [Rattus norvegicus]
MKAAVLAVALVFLTGCQAWEFWQQDEPQSQWDRVKDFATVYVDAVKDSGRDYVSQFESST

Note that in listing 15.6 there is the tag [Rattus norvegicus] in the name
of each record. There are several ways to accomplish this task. Here is a
version with Biopython Bio.SeqIO module (listing 15.7) and another that
uses just the Standard Python Library (listing 15.8)

15.4.1 Commented Source Code

Listing 15.7: Add a tag in a FASTA sequence with Biopython (py3.us/66)

1 from Bio import SeqIO
2
3 # Name of the input file
4 fh = open(’out22.fas’)
5 # Name of the output file
6 newfh = open(’out3.fas’,’w’)
7 for record in SeqIO.parse(fh,’fasta’):

© 2010 by Taylor and Francis Group, LLC

322 Python for Bioinformatics

8 # Modify description
9 record.description += ’[Rattus norvegicus]’

10 SeqIO.write([record],newfh,’fasta’)
11 newfh.close()
12 fh.close()

Even if you can use Biopython to modify a FASTA sequence, sometimes
this is overkill. The following code shows how to accomplish the same task
without Biopython:

Listing 15.8: Add a tag in a FASTA sequence (py3.us/67)

1 # Name of the input file
2 fh = open(’out22.fas’)
3 # Name of the output file
4 newfh = open(’out3.fas’,’w’)
5 for line in fh:
6 if line.startswith(’>’):
7 line = line.replace(’\n’,’’)+’ [Rattus norvegicus]\n’
8 newfh.write(line)
9 newfh.close(); fh.close()

© 2010 by Taylor and Francis Group, LLC

Chapter 16

Web Application for Filtering Vector
Contamination

16.1 Problem Description

DNA sequences are usually inserted into a cloning vector for manipulation.
When sequencing, these constructs frequently produce raw sequences that
include segments derived from a vector. If the vector part of the raw sequence
is not removed, the finished sequenced will be contaminated, spoiling further
analysis. There are multiple sources of DNA contamination, like transposons,
insertion sequences, organisms infecting our samples and other organisms used
in the same laboratory (e.g., cross contamination from dirty equipment).

Sequence contamination is not a minor issue, since it can lead to several
problems like:1

• Time and effort wasted on meaningless analyses

• Misassembly of sequence contigs and false clustering

• Erroneous conclusions drawn about the biological significance of the
sequence

• Pollution of public databases

• Delay in the release of the sequence in a public database

In order to identify the vector part of a sequence, a BLAST can be done
against a vector sequence database (or against any other database that you
think your sequence could be contaminated by). To help in removing those
sequences, this program take a sequence or a group of sequences in FASTA
format and makes the BLAST against a user selected database. It identifies
the match and the contamination is masked by using “N” character in the
sequence input by the user.

This program works as a web application, so there is an HTML form for
the user to enter the data and a Python file to process it.

1For information regarding each item please see NCBI VecScreen program at http://www.

ncbi.nlm.nih.gov/VecScreen/contam.html.

323

© 2010 by Taylor and Francis Group, LLC

http://www
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www

324 Python for Bioinformatics

16.1.1 Commented Source Code

HTML form

Listing 16.1: Primer design out of one sequence (py3.us/68)

1 <html><head><title>Vector filter</title></head>
2 <body>Paste sequences in FASTA format:
3 <form action="../cgi-bin/filtro.py"
4 enctype="multipart/form-data" method="post">
5 <textarea name="seqs" rows="25" cols="80"></textarea>
6
<p>Or enter the sequence(s) in a file:

7 <input type="file" name="seqdatafile" size="40">
8 <p>Filter by:
9 <select name="blastdb">

10 <option value="customdb">Custom vectors</option>
11 <option value="ncbivector">NCBI Vector DB</option>
12 </select>
<input type="submit" value=" Filter " />
13 </form></body></html>

This code produces, when rendered by a web browser, a page like the one
shown in figure 16.1.

In line 4 there is a call to the Python script that processes the form. This
script is shown in listing 16.2:

Listing 16.2: Web script to filter a DNA sequence (py3.us/69)

1 #!/usr/bin/python
2
3 import cgi, cgitb
4 from Bio import SeqIO
5 from Bio.SeqRecord import SeqRecord
6 from Bio.Blast import NCBIXML, NCBIStandalone
7 from tempfile import NamedTemporaryFile
8
9 blast_exe = ’/var/www/blast-2.2.18/bin/blastall’

10
11 cgitb.enable()
12 mask = "N" # Mask character
13 form = cgi.FieldStorage()
14 # Get sequence data from text area
15 seqs = form.getvalue("seqs")
16 # Check if the textarea is empty
17 if not seqs:
18 # Since the textarea is empty, check the uploaded file
19 seqs = form.getvalue("seqdatafile")

© 2010 by Taylor and Francis Group, LLC

Web Application for Filtering Vector Contamination 325

20
21 blast_db = form.getvalue("blastdb",’customdb’)
22 if blast_db == ’customdb’:
23 db = ’/var/www/blast/db/lauravect’
24 elif blast_db == ’ncbivector’:
25 db = ’/var/www/blast/db/vector’
26 elif blast_db == ’plantmito’:
27 db = ’/var/www/blast/db/plantmitogenomes’
28 else:
29 # In case someone sends an unexpected string to
30 # the script, it defaults to the custom vector DB
31 db = ’/var/www/blast/db/lauravect’
32
33 def create_rel(XMLin):
34 """ Create a dictionary that relate the sequence name
35 with the region to mask """
36 bat1 = {}
37 b_records = NCBIXML.parse(XMLin)
38 for b_record in b_records:
39 for alin in b_record.alignments:
40 for hsp in alin.hsps:
41 qs = hsp.query_start
42 qe = hsp.query_end
43 if qs>qe:
44 qe,qs=qs,qe
45 if b_record.query not in bat1:
46 bat1[b_record.query] = [(qs,qe)]
47 else:
48 bat1[b_record.query].append((qs,qe))
49 return bat1
50
51 def maskseqs(ffh,bat1):
52 """ Take a FASTA file and apply the mask using the
53 positions in the dictionary"""
54 outseqs = []
55 for record in SeqIO.parse(ffh, "fasta"):
56 if record.id in bat1:
57 # Generate a mutable sequence object to store
58 # the sequence with the "mask".
59 mutable_seq = record.seq.tomutable()
60 coords = bat1[record.id]
61 for x in coords:
62 mutable_seq[x[0]:x[1]] = mask*(x[1]-x[0])
63 seq_rec = SeqRecord(mutable_seq,record.id,’’,’’)
64 outseqs.append(seq_rec)

© 2010 by Taylor and Francis Group, LLC

326 Python for Bioinformatics

65 else:
66 # Leave the sequence as found when its name is
67 # not in the dictionary.
68 outseqs.append(record)
69 return outseqs
70
71 # Create a temporary file
72 fasta_in_fh = NamedTemporaryFile()
73 # Write the user entered sequence into this temporary file
74 fasta_in_fh.write(seqs)
75 # Flush the data to disk without closing and deleting the file,
76 # since that closing a temporary file also deletes it
77 fasta_in_fh.flush()
78 # Get the name of the temporary file
79 file_in = fasta_in_fh.name
80 # Run the BLAST query
81 rh, eh = NCBIStandalone.blastall(blast_exe, "blastn", db,
82 file_in, expectation=’1e-6’)
83 # Create contamination position and store it in a dictionary
84 bat1 = create_rel(rh)
85 # Reset the pointer position to the begining of the file
86 fasta_in_fh.seek(0)
87 # Get the sequences masked
88 newseqs = maskseqs(fasta_in_fh,bat1)
89 # Close and delete the temporary file
90 fasta_in_fh.close()
91 # Creates a new temporary file
92 fasta_out_fh = NamedTemporaryFile()
93 # Write the masked sequence into this temporary file
94 SeqIO.write(newseqs,fasta_out_fh,’fasta’)
95 # Reset the pointer position to the begining of the file
96 fasta_out_fh.seek(0)
97 # Read the file
98 finalout = fasta_out_fh.read()
99 # Close and delete the temporary file

100 fasta_out_fh.close()
101
102 print ’Content-type: text/html\n’
103 print """<html><head><title>Vector Filter Output</title></head>
104 <body>Filtered sequences:
<p></p><pre>%s</pre>
105 </body></html>"""%(finalout)

© 2010 by Taylor and Francis Group, LLC

Web Application for Filtering Vector Contamination 327

Note that this code assumes that there is a BLAST formated database (from
line 19 to 27). To create such a base you should run the formatdb utility that
is included in the NCBI BLAST package.2

If your sequence file is called mito.nt, a formatdb command may look like
this:

$./formatdb -i mito.nt -p F -o T

Where -i means “input file”, -p F stands for nucleotide (-p T is for protein)
and -o T is used only when you want to index the database to create links
to the NCBI Web site (use -o T when the file is downloaded from the NCBI
ftp server and -o F if the fasta file is made in situ). The formatdb manual is
available from the command line with the option --help or posted at ftp:
//ftp.ncbi.nih.gov/blast/documents/formatdb.html.

16.2 Additional Resources

• K. W. Liao, Y. W. Chang, S. R. Roffler, “Presence of cloning vector
sequences in the untranslated region of some genes in Genbank,” J.
Biomed. Sci., 7(6):529-30, 2000.

• C. Miller, J. Gurd, A. Brass, “A RAPID algorithm for sequence database
comparisons: application to the identification of vector contamination
in the EMBL databases,” Bioinformatics, 15(2):111-21, 1999.

• G. A. Seluja, A. Farmer, M. McLeod, C. Harger, P. A. Schad, “Es-
tablishing a method of vector contamination identification in database
sequences,” Bioinformatics, 15(2):106-10, 1999.

• C. Savakis, R. Doelz, “Contamination of cDNA sequences in databases,”
Science, 259(5102):1677-8, 1993.

2Look for the appropriate package for your system on this FTP site: ftp://ftp.ncbi.nih.
gov/blast/executables/LATEST.

© 2010 by Taylor and Francis Group, LLC

ftp://ftp.ncbi.nih.gov
ftp://ftp.ncbi.nih.gov
ftp://ftp.ncbi.nih.gov
ftp://ftp.ncbi.nih.gov
ftp://ftp.ncbi.nih.gov
ftp://ftp.ncbi.nih.gov
ftp://ftp.ncbi.nih.gov
ftp://ftp.ncbi.nih.gov

328 Python for Bioinformatics

FIGURE 16.1: HTML form for sequence filtering.

© 2010 by Taylor and Francis Group, LLC

Chapter 17

Searching for PCR Primers Using
Primer3

17.1 Problem Description

Primers are small DNA strands (from 15 to 30 base pairs long) that are
complementary to a specific spot in a DNA molecule. They are needed for
DNA replication to take place. In molecular biology, primers are used for a
DNA amplification chain reaction called PCR (Polymerase Chain Reaction).
PCR primers have their own characteristics like: specific melting temperature,
primer length, need to avoid self-complementarity and other parameters.1

PCR primer design is one of the most ubiquitous tasks done in a molecular
biology laboratory. There are several programs that help researchers to pick
good primers. Some programs are Web based, some of them are stand-alone
GUI applications like VectorNTI Suite2 and Oligo.net. These programs are
suitable for case by case study of a few sequences, but they are not the chosen
option for automatic batch generation of hundreds of primers, a task that
is routinely done in sequencing and fingerprinting projects. One of the most
used programs is primer3.3 This is due to the high quality of proposed primers
and because it can be run in batch and generate multiple primers at once.

Primer3 takes care of primer design, what is left for us is to prepare the
input file for primer3. This input file holds the sequence for which the primer
should be picked and other required and optional parameters like desired
primer name, primer size, product size, regions to exclude and others.

A primer3 input file looks like this:

1For more information on primer design please see “Additional Resources.”
2VectorNTI Web site: http://www.informax.com.
3This software is available at http://sourceforge.net/projects/primer3, please see the
included documentation for how to cite this software if used in a publication.

329

© 2010 by Taylor and Francis Group, LLC

http://www.informax.com
http://sourceforge.net
http://sourceforge.net
http://www.informax.com

330 Python for Bioinformatics

PRIMER_SEQUENCE_ID=<Name>
SEQUENCE=<DNA Sequence in one line>
TARGET=<start>,<length>
PRIMER_OPT_SIZE=<size>
PRIMER_MIN_SIZE=<size>
PRIMER_MAX_SIZE=<size>
PRIMER_NUM_NS_ACCEPTED=<int>
PRIMER_EXPLAIN_FLAG=<int>
PRIMER_PRODUCT_SIZE_RANGE=<start>-<end>
=

Each parameter is detailed in the primer3 README.txt file, although most
of them are self-explanatory. The = character is used to terminate the record.
Several records can be included in one primer3 input file.

This recipe chapter is divided in two tasks. The first task will be to generate
an input file for primer3 based in a FASTA file with one sequence inside and
one restriction. The second task involves analysis of several sequences for the
generation of a multiple sequence primer3 input file.

17.2 Primer Design Flanking a Variable Length Region

This script should read a FASTA formated file with one sequence inside.
This sequence has a microsatellite4 of variable length where we should avoid
doing primer design over it. In fact, we need to assure that the chosen primer
flanks this region. We don’t know either the length neither the position of the
microsatellite, but we know it is a repeat of the “AAT” sequence and it can
be present between 5 to 15 times.

This task could be divided in the following steps:

1. Read the sequence from the FASTA file: Biopython provides the SeqIO
module that will be used to read the sequence.

2. Detect the region with the microsatellite and store its position: A sliding
windows approach will be used. On each possible 45 base pair long win-
dow5 we will count how many times our repeated sequence is present.
The chosen window will be the one with the highest number of repeti-
tions inside. We need to store the position of this window.

4A microsatellite is a region in the chromosome that is characterized by having a small
DNA sequence repeated a variable number of times. Since they are inheritable, they can
be used to trace relationship between individuals.
5This size is estimated by calculating a 3 letter repeat (AAT) and this sequence can be
repeated up to 15 times.

© 2010 by Taylor and Francis Group, LLC

Searching for PCR Primers Using Primer3 331

3. Generate the primer3 input file: This is trivially accomplished by using
the retrieved sequence and the previously stored position as a target.

17.2.1 Commented Source Code

Listing 17.1: Primer design out of one sequence (py3.us/70)

1 from Bio import SeqIO
2
3 sfile = open(’/home/sb/bioinfo/seqwrep.fasta’)
4 # mysel stores a SeqRecord object generated from the
5 # first (and only) record in the fasta file.
6 myseq = SeqIO.read(sfile, "fasta")
7 # title stores the "id" attribute of the SeqRecord object.
8 title = myseq.id
9 # seq stores the sequence converted into string and

10 # uppercased.
11 seq = str(myseq.seq).upper()
12 win_size = 45
13 i = 0
14 number_l = []
15 # This while is used to walk over the sequence.
16 while i<=(len(seq)-win_size):
17 # Each position of number_l stores the amount of ’AAT’
18 # found on each window.
19 number_l.append(seq[i:i+win_size].count(’AAT’))
20 i += 1 # This is the same as i = i+1
21 # pos stores the position of the window with the highest
22 # amount of ’AAT’
23 pos = number_l.index(max(number_l))
24 fout = open(’/home/sb/bioinfo/swforprimer3.txt’,’w’)
25 fout.write(
26 ’’’PRIMER_SEQUENCE_ID=%s
27 SEQUENCE=%s
28 TARGET=%s,%s
29 PRIMER_OPT_SIZE=18
30 PRIMER_MIN_SIZE=15
31 PRIMER_MAX_SIZE=20
32 PRIMER_NUM_NS_ACCEPTED=0
33 PRIMER_EXPLAIN_FLAG=1
34 PRIMER_PRODUCT_SIZE_RANGE=%s-%s
35 =’’’ % (title,seq,pos,win_size,win_size,len(seq)))
36 fout.close()
37 sfile.close()
38 # Saves the data formated as the input file needed by

© 2010 by Taylor and Francis Group, LLC

332 Python for Bioinformatics

39 # primer3.

This program could process a file like this one:6

>Upstream region of mitochondrial ATP
AATGAAGAAAGCATCTCAATTGGAGAAAAGTTTGTTTTCCCGGGGAATTTGCTTGTCAAC
GAAATTCCACAATAATAATAATAATACTGGCGATAAGCGGATATTTCATAAGTAGGTTCA
CATCGTGATCTAAGTTCCATTTCCCATCGAGAGGTTATGATACTGGTAAAGAGTCCTATT
CTAATAGCTCCGGGC

The result of code 17.1 run with the former sequence as an input, produces
a file like this one:

PRIMER_SEQUENCE_ID=Upstream
SEQUENCE=AATGAAGAAAGCATCTCAATTGGAGAAAAGTTTGTTTTCCCGGGGAA<=
TTTGCTTGTCAACGAAATTCCACAATAATAATAATAATACTGGCGATAAGCGGATA<=
TTTCATAAGTAGGTTCACATCGTGATCTAAGTTCCATTTCCCATCGAGAGGTTATG<=
ATACTGGTAAAGAGTCCTATTCTAATAGCTCCGGGC
TARGET=40,45
PRIMER_OPT_SIZE=18
PRIMER_MIN_SIZE=15
PRIMER_MAX_SIZE=20
PRIMER_NUM_NS_ACCEPTED=0
PRIMER_EXPLAIN_FLAG=1
PRIMER_PRODUCT_SIZE_RANGE=45-195
=

This file is used as input into primer3 in this way:

$./primer3_core < swforprimer3.txt > primer3out.txt

17.3 Batch Primer Design from Multiple Sequences

For this recipe we have 40 files, each file with a sequence pair (that is, a
total of 80 sequences) that we are going to search primers for. Each sequence
is from an end of a clone and we want to find out the region between each
end. To this end we need to amplify that sequence using a primer from a
known region. The idea is to search for the left primer over the first sequence
and for the right primer over the second one.

This task could be divided in the following steps:

6To change the name of the input file you have to change line three.

© 2010 by Taylor and Francis Group, LLC

Searching for PCR Primers Using Primer3 333

1. Read all the “.fasta” file names and store them into a list.

2. Read the sequences from each fasta file (by walking over the previously
created list), using the same SeqIO module just used in the 17.1 pro-
gram. The first FASTA record should be read “as is,” while the second
one should be converted into its inverse complementary sequence.7 This
is done in order to leave both sequences in the same polarity.

3. Both sequences should be concatenated into one. This “new sequence”
is a dummy sequence since it doesn’t exist as is. The region between
them is missing. This is why we are picking the primers in the first place,
to sequence this unknown region. Remember that the idea behind this
task is to search for a primer on each end. This way we will flank the
missing region.

4. With these sequences, we are ready to write the multirecord primer3
input file. To command the program to search for primers into the
desired region, a TARGET directive should be specified in the input
file. This target must be in the region where both ends are joined.

17.3.1 Commented Source Code

Listing 17.2: Primer design out of several sequences (py3.us/71)

1 import glob
2
3 from Bio import SeqIO
4
5 fout = open(’/home/sb/bioinfo/mfdir/forprimer3.txt’,’w’)
6 for x in glob.glob(’/home/sb/bioinfo/mfdir/*.fasta’):
7 # Read both records in each fasta file.
8 seq1 = SeqIO.parse(open(x), "fasta").next()
9 seq2 = SeqIO.parse(open(x), "fasta").next()

10 # Get the title of each fasta record.
11 seq1title = seq1.description
12 seq2title = seq2.description
13 # Get the sequence. In seq2, get the reverse complement.
14 seq1 = str(seq1.seq)
15 seq2 = str(seq2.seq.reverse_complement())
16 # Generate a dummy sequence title in the form:
17 # "title1--title2".

7Complementary inverse sequence is obtained by inverting the DNA sequence and obtaining
the complentary sequence from this reverted sequence. The inverse complementary sequence
of AAAGTCC is GGACTTT.

© 2010 by Taylor and Francis Group, LLC

334 Python for Bioinformatics

18 totaltitle = ’%s--%s’ % (seq1title,seq2title)
19 # Generate the dummy sequence.
20 totalseq = seq1+seq2
21 fout.write(
22 ’’’PRIMER_SEQUENCE_ID=%s
23 SEQUENCE=%s
24 TARGET=%s,2
25 PRIMER_OPT_SIZE=18
26 PRIMER_MIN_SIZE=15
27 PRIMER_MAX_SIZE=20
28 PRIMER_NUM_NS_ACCEPTED=0
29 PRIMER_EXPLAIN_FLAG=1
30 PRIMER_PRODUCT_SIZE_RANGE=30-5000
31 =
32 ’’’ % (totaltitle,totalseq,len(seq1)))
33 # Write the primer3 input file.
34 fout.close()

17.4 Additional Resources

• Steve Rozen and Helen J. Skaletsky. 2000. Primer3 on the WWW for
general users and for biologist programmers. (Bioinformatics Methods
and Protocols: Methods in Molecular Biology. Totowa, NJ: Human
Press, 365-386). Source code available at http://sourceforge.net/
projects/primer3. The paper above is available at http://jura.wi.
mit.edu/rozen/papers/rozen-and-skaletsky-2000-primer3.pdf.

• Integrating PCR theory and bioinformatics into a research-oriented primer
design exercise. (CBE Life Sci Educ. 2008 Spring;7(1):89-95)

• Enhancements and modifications of primer design program Primer3.
(Bioinformatics. 2007 May 15;23(10):1289-91. Epub 2007 Mar 22)

© 2010 by Taylor and Francis Group, LLC

http://sourceforge.net
http://jura.wi.mit.edu
http://sourceforge.net
http://jura.wi.mit.edu
http://jura.wi.mit.edu
http://sourceforge.net
http://jura.wi.mit.edu
http://sourceforge.net

Chapter 18

Calculating Melting Temperature
from a Set of Primers

18.1 Problem Description

In this case we have a text file full of PCR primers. These primers were
obtained from different sources, so their Tm was calculated under different
programs and conditions. A researcher may want to uniform the criteria of
Tm of his set of primers.

The first version of the program will output the file formated as a csv
(comma separated value). This kind of file could be opened with a spreadsheet
or with a custom made program. The second version will output the file as
an Excel spreadsheet (xls).

Proposed steps to get the melting temperatures of a set of primers:

1. Read the input file line by line.

2. For each line, calculate the melting temperature (Tm) by using the
MeltingTemp module from Biopython Bio.SeqUtils.

3. Print the primer sequence, a comma and its Tm value.

4. In the xls case, print the primer sequence in a cell and its Tm value in
the next cell in the same row, using pyExcelerator.

18.1.1 Commented Source Code

Listing 18.1:Primer Tm calculation (py3.us/72)

1 from Bio.SeqUtils import MeltingTemp as MT
2 primerfile = ’primerlist.txt’
3 for line in open(primerfile,’rU’):
4 # prm stores the primer, without EOL character.
5 prm = line.replace(’\n’,’’)
6 # %2.2f is used to print up to two integers, the
7 # decimal separator and two decimal numbers.
8 print ’%s,%2.2f’ % (prm, MT.Tm_staluc(prm))

335

© 2010 by Taylor and Francis Group, LLC

336 Python for Bioinformatics

Version of the same code with Excel output:

Listing 18.2:Primer Tm calculation, excel output (py3.us/73)

1 from Bio.SeqUtils import MeltingTemp as MT
2 import pyExcelerator
3 primerfile = ’primerlist.txt’
4 # w is the name of a newly created workbook.
5 w = pyExcelerator.Workbook()
6 # ws is the name of a new sheet in this workbook.
7 ws = w.add_sheet(’Result’)
8 # These two lines writes the titles of the columns.
9 ws.write(0,0,’Primer Sequence’)

10 ws.write(0,1,’Tm’)
11 i = 1
12 for line in open(primerfile):
13 # For each line in the input file, write the primer
14 # sequence and the Tm
15 j = 0
16 primer = line.replace(’\n’,’’)
17 ws.write(i,j,primer)
18 ws.write(i,j+1,’%2.2f’ %(MT.Tm_staluc(primer)))
19 i += 1
20 # Save the spreadsheel into a file.
21 w.save(’/home/sb/bioinfo/primerout.xls’)

18.2 Additional Resources

• PCR Primer Design Guidelines.
http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html

• Molecular Biology Techniques Manual, Vernon E Coyne, M Diane James,
Sharon J Reid, and Edward P Rybicki eds.
http://www.mcb.uct.ac.za/pcroptim.htm

• 10 Tips for Designing PCR Primers That Work.
http://smartnote.miraibio.com/blog/?p=12

• Nicolas Le Novère. MELTING, computing the melting temperature of
nucleic acid duplex.(Bioinformatics 2001 17: 1226-1227).

© 2010 by Taylor and Francis Group, LLC

http://www.premierbiosoft.com
http://www.mcb.uct.ac.za
http://smartnote.miraibio.com
http://smartnote.miraibio.com
http://www.mcb.uct.ac.za
http://www.premierbiosoft.com

Chapter 19

Filtering Out Specific Fields from a
Genbank File

Genomes for whole organisms are available at Genbank, the most complete
genetic sequence database. The National Center for Biotechnology Informa-
tion (NCBI) at the National Library of Medicine (NLM), National Institutes
of Health (NIH) is responsible for producing and distributing the GenBank
Sequence Database. Genbank is also the name of the format in which Gen-
bank records are stored (GenBank Flat File Format). Biopython has reading
support for this kind of file (with the Bio.SeqIO module).

19.1 Extracting Selected Protein Sequences

A researcher wants to extract the protein sequences of each NADH found
in the Nicotiana tabacum mitochondria.

19.1.1 Commented Source Code

Listing 19.1: Extract sequences from a Genbank file (py3.us/34)

1 from Bio import SeqIO, SeqRecord, Seq
2 from Bio.Alphabet import IUPAC
3
4 gbfile = open("MTtabacum.gbk") # file at: py3.us/mt.html
5 # mr stores the genbank record.
6 mr = SeqIO.read(gbfile, "genbank")
7 seqsforfasta = []
8 for x in mr.features:
9 # Each Genbank record is full of features, the program

10 # will walk over all the features.
11 qf = x.qualifiers
12 # Each feature has several parameters
13 # Pick selected parameters.
14 if ’NADH’ in qf.get(’product’,[’’])[0] and \

337

© 2010 by Taylor and Francis Group, LLC

338 Python for Bioinformatics

15 ’product’ in qf and ’translation’ in qf:
16 id = qf[’db_xref’][0][3:]
17 desc = qf[’product’][0]
18 s = Seq.Seq(qf[’translation’][0],IUPAC.protein)
19 # ’s’ is a NADH protein sequence
20 srec = SeqRecord.SeqRecord(s,id=id,description=desc)
21 # ’srec’ is a SeqRecord object from s sequence.
22 seqsforfasta.append(srec)
23 # Add this SeqRecord object into seqsforfasta list.
24 outf = open(’/home/sb/t4.txt’,’w’)
25 SeqIO.write(seqsforfasta,outf,’fasta’)
26 # Write all the sequences as a FASTA file.
27 outf.close()

19.2 Extracting the Upstream Region of Selected Pro-
teins

Regulatory elements are found mostly upstream of the beginning of the
genes. They include polyadenylation signals, TATA box, enhancers and more.

For this program we have a Genbank file and list of genes (cox2, atp6, atp9,
cob) whose sequences we want to extract their sequence plus the upstream
region, up to 1000 base pairs.

19.2.1 Commented Source Code

Listing 19.2: Extract upstream regions (py3.us/75)

1 from Bio import SeqIO
2 from Bio.SeqRecord import SeqRecord
3
4 gbfile = open("MTtabacum.gbk") # file avail. at: py3.us/mt.html
5 # The first genbank record is named mr
6 mr = SeqIO.read(gbfile, "genbank")
7 gbfile.close()
8 seqsforfasta = []
9 tg = ([’cox2’],[’atp6’],[’atp9’],[’cob’])

10 for x in mr.features:
11 if x.qualifiers.get(’gene’) in tg and x.type==’gene’:
12 # Get the name of the gene
13 genename = x.qualifiers.get(’gene’)
14 # Get the start position

© 2010 by Taylor and Francis Group, LLC

Filtering Out Specific Fields from a Genbank File 339

15 startpos = x.location.start.position
16 # Get the required slice
17 newfrag = mr.seq[startpos-1000:startpos]
18 # Build a SeqRecord object
19 newrec = SeqRecord(newfrag, genename[0]+
20 ’ 1000bp upstream’,’’,’’)
21 seqsforfasta.append(newrec)
22 outf = open(’t4.txt’,’w’)
23 # Write all the sequences as a FASTA file.
24 SeqIO.write(seqsforfasta,outf,’fasta’)
25 outf.close()

19.3 Additional Resources

• Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. “Gen-
Bank.” Nucleic Acids Res. 36(Database issue), D25-30 (2008).
http://www.ncbi.nlm.nih.gov/pubmed/18073190

• GenBank Flat File Format. Sample record with detailed specifications.
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

Chapter 20

Converting XML BLAST File into
HTML

20.1 Problem Description

The command line standalone version of NCBI BLAST1 can generate its
output in several formats, being HTML, Text and XML being the most pop-
ular. HTML and Text are most used since they are the best format to display
data for human consumption. XML is also popular because it is a structured
format that can be easily parsed by most moderm programming languages
(Python included).

Sometimes there is a need to generate both XML and HTML output, the
XML version for your program needs and the HTML for publishing in a web
site. The current NCBI BLAST2 outputs only to one format, XML or HTML.
If you run multiple BLAST you know how time consuming it can be. It is not
unusual to wait two weeks to get the result of a 7000 sequence set against the
NCBI non-redundant (NR) database. Running a BLAST algorigthm twice
just for a cosmetic reason is not my idea of fun.

Since a Python program can read any XML file, it could convert an XML
BLAST output into an HTML page.

There are several ways to accomplish this. By using Python capabilities
to parse XML (as shown in chapter 12) and by using Biopython NCBI XML
parser (as shown in Chapter 10). Once parser choice is made, there are two
ways to present the result, a single HTML file with all the BLAST results
together or several HTML files, each one with the result of one BLAST run.

A version with and without Biopython, with output to one single file is
presented for the reader to have as a reference for the use of cElementTree
XML parser and as a Biopython reference. A version with multiple file output
by using Biopython is also shown.

Note that this code introduces the optparse module. This module is a
powerful command line option parser. It allows to set options that a program

1This program was commented on page 191.
2Up to version 2.2.18, which is the last release at time of writing.

341

© 2010 by Taylor and Francis Group, LLC

342 Python for Bioinformatics

will accept from a command line and generates usage and help messages in
an automatic way.

20.1.1 XML to HTML without Biopython Commented Source
Code

Listing 20.1: Convert from XML to HTML (py3.us/76)

1 #!/usr/bin/env python
2
3 # From BLAST XML to HTML. By Sebastian Bassi.
4 # Tested with BLASTN xml files from 2.2.16 to 2.2.18.
5 # BLASTN xml files < 2.2.16 are not properly formatted.
6 # Converts a single BLAST XML to one HTML file.
7
8 import xml.etree.cElementTree as cET
9 from optparse import OptionParser

10
11 helpstr = ’’’XML2HTML converts a BLAST XML file into one,
12 or multiple HTML files. This version requires Biopython 1.45
13 with CSV fixes or higher.
14
15 Author: Sebastian Bassi (sbassi@genesdigitales.com)
16 Thanks to Yoan Jacquemin for help in testing.
17 License: GPL 3.0 (http://www.gnu.org/licenses/gpl-3.0.txt)’’’
18 usage = helpstr + ’\n\nusage: %prog input_file [options]’
19 parser = OptionParser(usage=usage)
20 parser.add_option("-o", "--output", dest="o_file", default=None,
21 help="name of the output file")
22 parser.add_option("-v", ’--descriptions’, dest="desc_n",
23 default=None, type="int",
24 help="descriptions keep in output file")
25 parser.add_option("-b", ’--alignments’, dest="align_n",
26 default=None, type="int",
27 help="alignments keep in output file")
28
29 def htmlhead(f_in,outf):
30 tree = cET.parse(f_in)
31 root = tree.getroot()
32 version_date = root.find(’BlastOutput_version’).text
33 application = root.find(’BlastOutput_program’).text
34 reference = root.find(’BlastOutput_reference’).text[12:]
35 fo = open(outf,’w’)
36 fo.write(’’’<HTML>

© 2010 by Taylor and Francis Group, LLC

http://www.gnu.org
mailto:sbassi@genesdigitales.com
mailto:sbassi@genesdigitales.com
http://www.gnu.org

Converting XML BLAST File into HTML 343

37 <TITLE>BLAST Search Results</TITLE>
38 <BODY BGCOLOR="#FFFFFF" LINK="#0000FF" \
39 VLINK="#660099" ALINK="#660099">
40 <!-- Generated from %s by XML2HTML (Sebastian Bassi) -->
41 <PRE>’’’ %(f_in))
42 fo.write(’%s %s’ %(application,version_date))
43 fo.write(’\n<a href="http://www.ncbi.nlm.nih.gov/entrez/\
44 query.fcgi?db=PubMed&cmd=Retrieve&list_uids=9254694&dopt=\
45 Citation">Reference:’+reference.replace(’~’,’ ’)
46 +’\n’)
47 return (fo,root)
48
49 def htmlfoot(fo,f_in,root):
50 b_version = root.findtext(’BlastOutput_db’)
51 num_letter_db = root.findtext(
52 ’BlastOutput_iterations/Iteration/Iteration_stat/Statistics/\
53 Statistics_db-num’)
54 num_seqs_db = root.findtext(
55 ’BlastOutput_iterations/Iteration/Iteration_stat/Statistics/\
56 Statistics_db-len’)
57 lambd = root.findtext(
58 ’BlastOutput_iterations/Iteration/Iteration_stat/Statistics/\
59 Statistics_lambda’)
60 kappa = root.findtext(
61 ’BlastOutput_iterations/Iteration/Iteration_stat/Statistics/\
62 Statistics_kappa’)
63 entrop = root.findtext(
64 ’BlastOutput_iterations/Iteration/Iteration_stat/Statistics/\
65 Statistics_entropy’)
66 b_prg = root.findtext(’BlastOutput_program’)
67 p_sc_match = root.findtext(’BlastOutput_param/Parameters/\
68 Parameters_sc-match’)
69 p_sc_mismatch = root.findtext(’BlastOutput_param/Parameters/\
70 Parameters_sc-mismatch’)
71 p_gap_open = root.findtext(’BlastOutput_param/Parameters/\
72 Parameters_gap-open’)
73 p_gap_extend = root.findtext(’BlastOutput_param/Parameters/\
74 Parameters_gap-extend’)
75 fo.write(’’’<PRE>
76 Database: %s
77 Number of letters in database: %s
78 Number of sequences in database: %s
79
80 Lambda K H
81 %.2f %.3f %.2f

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

344 Python for Bioinformatics

82
83 Matrix: %s matrix:%s %s
84 Gap Penalties: Existence: %s, Extension: %s
85 Number of Sequences: %s
86 Length of database: %s
87 </PRE>
88 </BODY>
89 </HTML>’’’ %(b_version,num_letter_db,num_seqs_db,
90 float(lambd),float(kappa),
91 float(entrop),b_prg,p_sc_match,
92 p_sc_mismatch,p_gap_open,p_gap_extend,
93 num_seqs_db,num_letter_db))
94 fo.close()
95 return None
96
97 def prettyalign(fo,q,qs,qe,m,s,ss,se):
98 """ Format the alignment in slices of 60 characters
99 """

100 #fo=file handler
101 #q query sequence
102 #qs query_start (or query_from)
103 #qe query_end (or query_to)
104 #m match sequence
105 #s, ss and se are the equivalent for subject/hit
106 pos = 0
107 qr=range(qs,qe-1,-1) if qs>qe else range(int(qs),int(qe)+61)
108 qini = qs
109 qend = qe
110 sr = range(ss,se-1,-1) if ss>se else range(ss,ss+len(s))
111 mx = max(len(str(qr[-1])),len(str(sr[-1])))
112 q_desp = 0
113 s_desp = 0
114 if max(len(q),len(s))>=60:
115 finant_u = (pos+1 if ss>se else pos-1)
116 finant_d = (pos+1 if ss>se else pos-1)
117 while pos<max(len(q)-(len(q)%60),len(s)-(len(s)%60)):
118 q_desp += (q[pos:pos+60].count(’-’)
119 if ’-’ in q[pos:pos+60] else 0)
120 s_desp += (s[pos:pos+60].count(’-’)
121 if ’-’ in s[pos:pos+60] else 0)
122 fo.write(’Query: %-*s %s %s\n’%(mx,
123 qr[finant_u-1 if ss>se else finant_u+1],
124 q[pos:pos+60],qr[pos+59-q_desp]))
125 fo.write(’ ’+’ ’*mx+’ ’+m[pos:pos+60]+’\n’)
126 fo.write(’Sbjct: %-*s %s %s\n\n’%

© 2010 by Taylor and Francis Group, LLC

Converting XML BLAST File into HTML 345

127 (mx,sr[finant_d-1 if ss>se else finant_d+1],
128 s[pos:pos+60],sr[pos+59-s_desp]))
129 finant_u = pos+59-q_desp
130 finant_d = pos+59-s_desp
131 pos += 60
132 if len(q)%60!=0:
133 q_desp += (q[pos:pos+60].count(’-’)
134 if ’-’ in q[pos:pos+60] else 0)
135 s_desp += (s[pos:pos+60].count(’-’)
136 if ’-’ in s[pos:pos+60] else 0)
137 fo.write(’Query: %-*s %s %s\n’%(mx,qr[pos-q_desp],
138 q[pos:pos+60],qend))
139 fo.write(’ ’+’ ’*mx+’ ’+m[pos:pos+60]+’\n’)
140 fo.write(’Sbjct: %-*s %s %s\n\n’%(mx,sr[pos-s_desp],
141 s[pos:pos+60],sr[-1]))
142 else:
143 fo.write(’Query: %-*s %s %s\n’%(mx,qini,
144 q[pos:pos+60],qend))
145 fo.write(’ ’+’ ’*mx+’ ’+m[pos:pos+60]+’\n’)
146 fo.write(’Sbjct: %-*s %s %s\n\n’%(mx,sr[pos],
147 s[pos:pos+60],sr[-1]))
148 return None
149
150 def blastconv(f_in,fo,de,al):
151 i_hits = {}
152 hits = {}
153 hsps = {}
154 for ev,x in cET.iterparse(f_in):
155 if ’BlastOutput_query-def’ in x.tag:
156 b_query_def = x.text
157 elif ’BlastOutput_query-len’ in x.tag:
158 b_query_len = x.text
159 elif ’BlastOutput_db’ in x.tag:
160 b_db = x.text
161 elif ’Statistics_db-num’ in x.tag:
162 s_db_num=x.text
163 elif ’Statistics_db-len’ in x.tag:
164 s_db_len=x.text
165 elif ’Parameters_expect’ in x.tag:
166 p_expect = x.text
167 elif ’Parameters_filter’ in x.tag:
168 p_filter = x.text
169 elif ’Iteration_query-def’ in x.tag:
170 i_query_def = x.text
171 elif ’Iteration_iter-num’ in x.tag:

© 2010 by Taylor and Francis Group, LLC

346 Python for Bioinformatics

172 i_iter_num = x.text
173 elif ’Iteration_query-ID’ in x.tag:
174 i_query_id = x.text
175 elif ’Iteration_query-len’ in x.tag:
176 i_query_len = x.text
177 elif ’Iteration’==x.tag:
178 i_hits[int(i_iter_num)] = (i_query_id, i_query_def,
179 i_query_len, hits)
180 hits = {}
181 elif ’Hit_num’ in x.tag:
182 h_num = x.text
183 elif ’Hit_id’ in x.tag:
184 h_id = x.text
185 elif ’Hit_def’ in x.tag:
186 h_def = x.text
187 elif ’Hit_accession’ in x.tag:
188 h_accession = x.text
189 elif ’Hit_len’ in x.tag:
190 h_len = x.text
191 elif ’Hit’==x.tag:
192 hits[int(h_num)] = (h_id,h_def,h_accession,h_len,
193 hsps)
194 hsps = {}
195 elif ’Hsp_num’ in x.tag:
196 hsp_num = x.text
197 elif ’Hsp_bit-score’ in x.tag:
198 hsp_bit_score = x.text
199 elif ’Hsp_score’ in x.tag:
200 hsp_score = x.text
201 elif ’Hsp_evalue’ in x.tag:
202 hsp_evalue = x.text
203 elif ’Hsp_query-from’ in x.tag:
204 hsp_query_from = x.text
205 elif ’Hsp_query-to’ in x.tag:
206 hsp_query_to = x.text
207 elif ’Hsp_hit-from’ in x.tag:
208 hsp_hit_from = x.text
209 elif ’Hsp_hit-to’ in x.tag:
210 hsp_hit_to = x.text
211 elif ’Hsp_query-frame’ in x.tag:
212 hsp_query_frame = x.text
213 elif ’Hsp_hit-frame’ in x.tag:
214 hsp_hit_frame = x.text
215 elif ’Hsp_identity’ in x.tag:
216 hsp_identity = x.text

© 2010 by Taylor and Francis Group, LLC

Converting XML BLAST File into HTML 347

217 elif ’Hsp_positive’ in x.tag:
218 hsp_positive = x.text
219 elif ’Hsp_align-len’ in x.tag:
220 hsp_align_len = x.text
221 elif ’Hsp_qseq’ in x.tag:
222 hsp_qseq = x.text
223 elif ’Hsp_hseq’ in x.tag:
224 hsp_hseq = x.text
225 elif ’Hsp_midline’ in x.tag:
226 hsp_mid = x.text
227 elif ’Hsp’==x.tag:
228 try:
229 hn = (hsp_bit_score,hsp_score,hsp_evalue,
230 hsp_query_from,hsp_query_to,
231 hsp_hit_from,hsp_hit_to,
232 hsp_query_frame,hsp_hit_frame,
233 hsp_identity,hsp_positive,
234 hsp_align_len,hsp_qseq,hsp_hseq,hsp_mid)
235 except UnboundLocalError:
236 hn = (hsp_bit_score,hsp_score,hsp_evalue,
237 hsp_query_from,hsp_query_to,
238 hsp_hit_from,hsp_hit_to,
239 hsp_query_frame,hsp_query_frame,
240 hsp_identity,hsp_positive,
241 hsp_align_len,hsp_qseq,hsp_hseq,hsp_mid)
242 hsps[int(hsp_num)]= hn
243 elif ’Statistics_hsp-len’ in x.tag:
244 s_hsp_len = x.text
245 ihits = i_hits.keys()
246 ihits.sort()
247 # Iterations with no BLAST result are missing, so the script
248 # can’t iterate over a range from one to the end.
249 for x in ihits:
250 fo.write(’Query= %s\n’ %(i_hits[x][1]))
251 fo.write(’ (%s letters)\n’ %(i_hits[x][2]))
252 fo.write(’Database: %s\n’ %(b_db))
253 fo.write(’ %s sequences; %s total letters\n’
254 %(s_db_num,s_db_len))
255 fo.write(’’’Searching...................................\
256 ...done
257 <PRE>
258
259
260 \
261 Score E

© 2010 by Taylor and Francis Group, LLC

348 Python for Bioinformatics

262 Sequences producing significant alignments: \
263 (bits) Value
264
265 ’’’)
266 for y in range(1,len(i_hits[x][3])+1)[:de]:
267 k = i_hits[x][3][y][0]
268 desc = i_hits[x][3][y][1]
269 bs = i_hits[x][3][y][4][1][0]
270 sc = i_hits[x][3][y][4][1][2]
271 if ’gi|’ in k:
272 m = k.index(’gi|’)+3
273 gi = k[m:k[m:].index(’|’)+3]
274 fo.write(’<a href="http://www.ncbi.nlm.nih.gov/\
275 entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=%s&dopt=\
276 GenBank" >%s %s %s %s\n’ %(gi,
277 k.replace(’gi|’+gi+’|’,’’),desc[:36]+’...’,gi,
278 bs,sc))
279 else:
280 fo.write(’>%s\n’%(k,desc))
281 fo.write(’\n</PRE>\n’)
282 for y in range(1,len(i_hits[x][3])+1)[:al]:
283 fo.write(’<PRE>\n’)
284 k = i_hits[x][3][y][0]
285 desc = i_hits[x][3][y][1]
286 if ’gi|’ in k:
287 m = k.index(’gi|’)+3
288 gi = k[m:k[m:].index(’|’)+3]
289 fo.write(’><a href="http://www.ncbi.nlm.nih.gov/\
290 entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=%s&dopt=\
291 GenBank" >%s %s \n’ %(gi,k.replace(’gi|’+gi+’|’,’’),desc))
292 else:
293 fo.write(’>%s %s\n’ %(k,desc))
294 fo.write(’ Length = ’+i_hits[x][3][y][3]+’\n’)
295 # Walk over all the hsps
296 for z in xrange(1,len(i_hits[x][3][y][4])+1):
297 bs = i_hits[x][3][y][4][z][0]
298 hsc = i_hits[x][3][y][4][z][1]
299 sc = i_hits[x][3][y][4][z][2]
300 h_id = i_hits[x][3][y][4][z][10]
301 h_pos = i_hits[x][3][y][4][z][11]
302 q_frame = i_hits[x][3][y][4][z][7]
303 h_frame = i_hits[x][3][y][4][z][8]
304 q_from = int(i_hits[x][3][y][4][z][3])
305 q_to = int(i_hits[x][3][y][4][z][4])
306 h_from = int(i_hits[x][3][y][4][z][5])

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

Converting XML BLAST File into HTML 349

307 h_to = int(i_hits[x][3][y][4][z][6])
308 qseq = i_hits[x][3][y][4][z][12]
309 hseq = i_hits[x][3][y][4][z][13]
310 mid = i_hits[x][3][y][4][z][14]
311 qf = ’Plus’ if int(q_frame)>0 else ’Minus’
312 hf = ’Plus’ if int(h_frame)>0 else ’Minus’
313 fo.write(’Score = %s bits (%s), Expect = %s\n’
314 %(bs,hsc,sc))
315 fo.write(’Identities = %s/%s (%.0f%%)\n’
316 %(h_id,h_pos,
317 float(int(h_id))/int(h_pos)*100))
318 fo.write(’Strand = %s/%s\n\n\n’ %(qf,hf))
319 prettyalign(fo,qseq,q_from,q_to,mid,hseq,
320 h_from,h_to)
321 fo.write(’</PRE>\n’)
322 return fo
323
324 def doconvert(f_in,outfile,desc,align):
325 fo,root = htmlhead(f_in,outfile,)
326 fo = blastconv(f_in,fo,desc,align)
327 htmlfoot(fo,f_in,root)
328 return None
329
330 (opts, args) = parser.parse_args()
331 if len(args)<1:
332 errmsg = "Bad or missing option in input."
333 errmsg += " This program requires an input file"
334 errmsg += " Please see the help with -h or --help"
335 parser.error(errmsg)
336 elif len(args)==1:
337 f = args[0]
338 if opts.o_file is None:
339 opts.o_file = f[:-3]+’html’
340 doconvert(f, opts.o_file, opts.desc_n, opts.align_n)
341 elif len(args)>1:
342 for f in args:
343 outfile = f[:-3]+’html’
344 doconvert(f, outfile, opts.desc_n, opts.align_n)

20.1.2 Biopython Version Commented Source Code

Listing 20.2: From XML to HTML using Biopython (py3.us/77)

1 #!/usr/bin/env python

© 2010 by Taylor and Francis Group, LLC

350 Python for Bioinformatics

2
3 # From BLAST XML to HTML. By Sebastian Bassi.
4 # Tested with BLASTN xml files from 2.2.16 to 2.2.18.
5 # BLASTN xml files < 2.2.16 are not properly formatted.
6
7 from optparse import OptionParser
8
9 from Bio.Blast import NCBIXML

10
11 helpstr=’’’XML2HTML converts a BLAST XML file into an HTML file.
12 This version requires Biopython 1.45 with CSV fixes or higher.
13
14 Author: Sebastian Bassi (sbassi@genesdigitales.com)
15 Thanks to Yoan Jacquemin for help in testing.
16 License: GPL 3.0 (http://www.gnu.org/licenses/gpl-3.0.txt)’’’
17 usage = helpstr + ’\n\nusage: %prog input_file [options]’
18 parser = OptionParser(usage=usage)
19 parser.add_option("-o", "--output", dest="o_file", default=None,
20 help="name of the output file")
21 parser.add_option("-v", ’--descriptions’, dest="desc_n",
22 default=None, type="int",
23 help="descriptions keep in output file")
24 parser.add_option("-b", ’--alignments’, dest="align_n",
25 default=None, type="int",
26 help="alignments keep in output file")
27
28 def htmlhead(fr,oid,f_in):
29 fo = open(oid,’w’)
30 fo.write(’’’<HTML>
31 <TITLE>BLAST Search Results</TITLE>
32 <BODY BGCOLOR="#FFFFFF" LINK="#0000FF" \
33 VLINK="#660099" ALINK="#660099">
34 <!-- Generated from %s by XML2HTML (Sebastian Bassi) -->
35 <PRE>’’’ %(f_in))
36 fo.write(’%s’
37 %(fr.application+’ ’+fr.version+’ ’+fr.date))
38 fo.write(’\n<a href="http://www.ncbi.nlm.nih.gov/entrez/\
39 query.fcgi?db=PubMed&cmd=Retrieve&list_uids=9254694&dopt=\
40 Citation">Reference:’+fr.reference.replace(’~’,’ ’)
41 +’\n’)
42 return fo
43
44 def htmlfoot(fo,fr):
45 try:
46 nldb = fr.num_letters_in_database

© 2010 by Taylor and Francis Group, LLC

http://www.gnu.org
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
mailto:sbassi@genesdigitales.com
mailto:sbassi@genesdigitales.com
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.gnu.org

Converting XML BLAST File into HTML 351

47 except:
48 nldb = fr._num_letters_in_database
49 fo.write(’’’<PRE>
50 Database: %s
51 Number of letters in database: %s
52 Number of sequences in database: %s
53
54 Lambda K H
55 %.2f %.3f %.2f
56
57 Matrix: %s matrix:%s %s
58 Gap Penalties: Existence: %s, Extension: %s
59 Number of Sequences: %s
60 Length of database: %s
61 </PRE>
62 </BODY>
63 </HTML>’’’ %(fr.database,fr.num_letters_in_database,
64 fr.num_sequences_in_database,
65 fr.ka_params[0],fr.ka_params[1],
66 fr.ka_params[2],fr.application,
67 fr.sc_match,fr.sc_mismatch,
68 fr.gap_penalties[0],fr.gap_penalties[1],
69 fr.num_sequences_in_database,
70 nldb))
71 fo.close()
72 return None
73
74 def prettyalign(fo,q,qs,qe,m,s,ss,se):
75 """ Format the alignment in slices of 60 characters
76 """
77 #fo file handler
78 #q query sequence
79 #qs query_start (or query_from)
80 #qe query_end (or query_to)
81 #m match sequence
82 #s, ss and se are the equivalent for subject/hit
83 pos = 0
84 qr = range(qs,qe-1,-1) if qs>qe else range(qs,qe+61,1)
85 qini = qs
86 qend = qe
87 sr=range(ss,se-1,-1) if ss>se else range(ss,ss+len(s),1)
88 mx = max(len(str(qr[-1])),len(str(sr[-1])))
89 q_desp = 0
90 s_desp = 0
91 if max(len(q),len(s))>=60:

© 2010 by Taylor and Francis Group, LLC

352 Python for Bioinformatics

92 finant_u = (pos+1 if ss>se else pos-1)
93 finant_d = (pos+1 if ss>se else pos-1)
94 while pos<max(len(q)-(len(q)%60),len(s)-(len(s)%60)):
95 q_desp += (q[pos:pos+60].count(’-’)
96 if ’-’ in q[pos:pos+60] else 0)
97 s_desp += (s[pos:pos+60].count(’-’)
98 if ’-’ in s[pos:pos+60] else 0)
99 fo.write(’Query: %-*s %s %s\n’%

100 (mx,qr[finant_u-1 if ss>se else finant_u+1],
101 q[pos:pos+60],qr[pos+59-q_desp]))
102 fo.write(’ ’+’ ’*mx+’ ’+m[pos:pos+60]+’\n’)
103 fo.write(’Sbjct: %-*s %s %s\n\n’%
104 (mx,sr[finant_d-1 if ss>se else finant_d+1],
105 s[pos:pos+60],sr[pos+59-s_desp]))
106 finant_u = pos+59-q_desp
107 finant_d = pos+59-s_desp
108 pos += 60
109 if len(q)%60!=0:
110 q_desp += (q[pos:pos+60].count(’-’) if
111 ’-’ in q[pos:pos+60] else 0)
112 s_desp += (s[pos:pos+60].count(’-’) if
113 ’-’ in s[pos:pos+60] else 0)
114 fo.write(’Query: %-*s %s %s\n’%(mx,qr[pos-q_desp],
115 q[pos:pos+60],qend))
116 fo.write(’ ’+’ ’*mx+’ ’+m[pos:pos+60]+’\n’)
117 fo.write(’Sbjct: %-*s %s %s\n\n’%(mx,sr[pos-s_desp],
118 s[pos:pos+60],sr[-1]))
119 else:
120 fo.write(’Query: %-*s %s %s\n’%(mx,qini,
121 q[pos:pos+60],qend))
122 fo.write(’ ’+’ ’*mx+’ ’+m[pos:pos+60]+’\n’)
123 fo.write(’Sbjct: %-*s %s %s\n\n’%(mx,sr[pos],
124 s[pos:pos+60],sr[-1]))
125 return None
126
127 def blastconv(rec,fo,fr,de=None,al=None):
128 """ Get a blast record in XML en saves the same
129 record in HTML
130 """
131 fo.write(’\nQuery= %s’ %(rec.query))
132 fo.write(’\n (%s letters)’ %(rec.query_letters))
133 fo.write(’\nDatabase: %s’ %(rec.database))
134 try:
135 fo.write(’\n %s sequences; %s total letters\n’
136 %(fr.num_sequences_in_database,

© 2010 by Taylor and Francis Group, LLC

Converting XML BLAST File into HTML 353

137 fr.num_letters_in_database))
138 except:
139 # For Biopython > 1.45
140 fo.write(’\n %s sequences; %s total letters\n’
141 %(fr.num_sequences_in_database,
142 fr._num_letters_in_database))
143 fo.write(’’’Searching...................................\
144 ...done
145 <PRE>
146
147
148 \
149 Score E
150 Sequences producing significant alignments: \
151 (bits) Value
152
153 ’’’)
154 for d in rec.descriptions[:de]:
155 k = d.accession
156 desc = d.title
157 bs = d.bits
158 sc = d.e
159 if ’gi|’ in k:
160 m = k.index(’gi|’)+3
161 gi = k[m:k[m:].index(’|’)+3]
162 fo.write(’<a href="http://www.ncbi.nlm.nih.gov\
163 /entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids\
164 =%s&dopt=GenBank" >%s %s %.1f%s%s\n’
165 %(gi,k.replace(’gi|’+gi+’|’,’’),desc,k,bs,4*" ",sc))
166 else:
167 fo.write(’%s ... %.1f%s%s\n’
168 %(desc[:60],k,bs,4*" ",sc))
169 fo.write(’</PRE>\n’)
170 for alig in rec.alignments[:al]:
171 fo.write(’<PRE>\n’)
172 k = alig.hit_id
173 desc = alig.hit_def
174 if ’gi|’ in k:
175 m = k.index(’gi|’)+3
176 gi = k[m:k[m:].index(’|’)+3]
177 fo.write(’><a href="http://\
178 www.ncbi.nlm.nih.gov/entrez/query.fcgi?\
179 cmd=Retrieve&db=Nucleotide&list_uids=%s&dopt=GenBank" >\
180 %s %s \n’ %(alig.accession,gi,k.replace(’gi|’+gi+’|’,’’),
181 desc))

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

354 Python for Bioinformatics

182 else:
183 fo.write(’>%s’%(alig.accession,desc))
184 fo.write(’\n Length = %s\n’ %(alig.length))
185 # Walk over all the hsps
186 for hsp in alig.hsps:
187 bs = hsp.bits
188 hsc = hsp.score
189 sc = hsp.expect
190 h_id = hsp.identities
191 h_pos = hsp.positives
192 h_alen = hsp.align_length
193 q_frame = hsp.frame[0]
194 try:
195 h_frame = hsp.frame[1]
196 except IndexError:
197 h_frame = q_frame
198 q_from = hsp.query_start
199 q_to = hsp.query_end
200 h_from = hsp.sbjct_start
201 h_to = hsp.sbjct_end
202 qseq = hsp.query
203 hseq = hsp.sbjct
204 mid = hsp.match
205 qf = ’Plus’ if q_frame>0 else ’Minus’
206 hf = ’Plus’ if h_frame>0 else ’Minus’
207 fo.write(’\n\nScore = %s bits (%s), Expect = %s\n’
208 %(bs,hsc,sc))
209 fo.write(’Identities = %s/%s (%.0f%%)\n’
210 %(h_id,h_alen,float(int(h_id))/int(h_alen)*100))
211 fo.write(’Strand = %s/%s\n\n’ %(qf,hf))
212 prettyalign(fo,qseq,q_from,q_to,mid,hseq,h_from,h_to)
213 fo.write(’</PRE>\n’)
214 return fo
215
216 def doconvert(f_in,outfile,desc,align):
217 # fr is the first record, where ’Parameters’ are stored.
218 fr = NCBIXML.parse(open(f_in)).next()
219 f_out = htmlhead(fr,outfile,f_in)
220 for b_rec in NCBIXML.parse(open(f_in)):
221 f_out = blastconv(b_rec,f_out,fr,desc,align)
222 htmlfoot(f_out,fr)
223 return None
224
225 (opts, args) = parser.parse_args()
226 if len(args)<1:

© 2010 by Taylor and Francis Group, LLC

Converting XML BLAST File into HTML 355

227 errmsg = "Bad or missing option in input."
228 errmsg += " This program requires an input file"
229 errmsg += " Please see the help with -h or --help"
230 parser.error(errmsg)
231 elif len(args)==1:
232 f = args[0]
233 if opts.o_file is None:
234 opts.o_file = f[:-3]+’html’
235 doconvert(f, opts.o_file, opts.desc_n, opts.align_n)
236 elif len(args)>1:
237 for f in args:
238 outfile = f[:-3]+’html’
239 doconvert(f, outfile, opts.desc_n, opts.align_n)

20.1.3 Biopython Version for Multiple BLAST Commented
Source Code

Listing 20.3: From XML to HTML using Biopython (py3.us/78)

1 #!/usr/bin/env python
2
3 # From BLAST XML to HTML. By Sebastian Bassi.
4 # Tested with BLASTN xml files from 2.2.16 to 2.2.18.
5 # BLASTN xml files < 2.2.16 are not properly formatted.
6
7 import os
8 from optparse import OptionParser
9

10 from Bio.Blast import NCBIXML
11
12 helpstr = ’’’XML2HTML converts a BLAST XML file into one or
13 multiple HTML files. This version requires Biopython 1.45
14 with CSV fixes or higher.
15
16 Author: Sebastian Bassi (sbassi@genesdigitales.com)
17 Thanks to Yoan Jacquemin for help in testing.
18 License: GPL 3.0 (http://www.gnu.org/licenses/gpl-3.0.txt)’’’
19 usage = helpstr + ’\n\nusage: %prog input_file [options]’
20 parser = OptionParser(usage=usage)
21 parser.add_option("-o", "--output", dest="o_dir", default=’.’,
22 help="name of the output directory")
23 parser.add_option("-v", ’--descriptions’, dest="desc_n",
24 default=None, type="int",
25 help="descriptions to keep in output file")

© 2010 by Taylor and Francis Group, LLC

http://www.gnu.org
mailto:sbassi@genesdigitales.com
mailto:sbassi@genesdigitales.com
http://www.gnu.org

356 Python for Bioinformatics

26 parser.add_option("-b", ’--alignments’, dest="align_n",
27 default=None, type="int",
28 help="alignments keep in output file")
29 parser.add_option("-V", ’--verbose’, dest="verb",
30 action="store_true", default=False,
31 help="prints output filename(s)")
32 parser.add_option("-t", ’--title’, dest="title",
33 action="store_true", default=False,
34 help="use sequence title as filename")
35
36 def htmlhead(fr,oid,f_in,odir,rec):
37 if oid:
38 fo = open(os.path.join(odir,rec.query_id+’.html’),’w’)
39 else:
40 fo = open(os.path.join(odir,rec.query+’.html’),’w’)
41 fo.write(’’’<HTML>
42 <TITLE>BLAST Search Results</TITLE>
43 <BODY BGCOLOR="#FFFFFF" LINK="#0000FF" \
44 VLINK="#660099" ALINK="#660099">
45 <!-- Generated from %s by XML2HTML (Sebastian Bassi) -->
46 <PRE>’’’ %(f_in))
47 fo.write(’%s %s %s’ %(fr.application,fr.version,
48 fr.date))
49 fo.write(’\n<a href="http://www.ncbi.nlm.nih.gov/entrez/\
50 query.fcgi?db=PubMed&cmd=Retrieve&list_uids=9254694&dopt=\
51 Citation">Reference:’+fr.reference.replace(’~’,’ ’)
52 +’\n’)
53 return fo
54
55 def htmlfoot(fo,fr):
56 try:
57 nldb = fr.num_letters_in_database
58 except:
59 nldb = fr._num_letters_in_database
60 fo.write(’’’<PRE>
61 Database: %s
62 Number of letters in database: %s
63 Number of sequences in database: %s
64
65 Lambda K H
66 %.2f %.3f %.2f
67
68 Matrix: %s matrix:%s %s
69 Gap Penalties: Existence: %s, Extension: %s
70 Number of Sequences: %s

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

Converting XML BLAST File into HTML 357

71 Length of database: %s
72 </PRE>
73 </BODY>
74 </HTML>’’’ %(fr.database,fr.num_letters_in_database,
75 fr.num_sequences_in_database,
76 fr.ka_params[0],fr.ka_params[1],
77 fr.ka_params[2],fr.application,
78 fr.sc_match,fr.sc_mismatch,
79 fr.gap_penalties[0],fr.gap_penalties[1],
80 fr.num_sequences_in_database, nldb))
81 fo.close()
82 return None
83
84 def prettyalign(fo,q,qs,qe,m,s,ss,se):
85 """ Format the alignment in slices of 60 characters
86 """
87 #fo=file handler
88 #q query sequence
89 #qs query_start (or query_from)
90 #qe query_end (or query_to)
91 #m match sequence
92 #s, ss and se are the equivalent for subject/hit
93 pos = 0
94 qr=range(qs,qe-1,-1) if qs>qe else range(qs,qe+61,1)
95 qini = qs
96 qend = qe
97 sr = range(ss,se-1,-1) if ss>se else range(ss,ss+len(s),1)
98 mx = max(len(str(qr[-1])),len(str(sr[-1])))
99 q_desp = 0

100 s_desp = 0
101 if max(len(q),len(s))>=60:
102 finant_u = (pos+1 if ss>se else pos-1)
103 finant_d = (pos+1 if ss>se else pos-1)
104 while pos<max(len(q)-(len(q)%60),len(s)-(len(s)%60)):
105 q_desp += (q[pos:pos+60].count(’-’)
106 if ’-’ in q[pos:pos+60] else 0)
107 s_desp += (s[pos:pos+60].count(’-’)
108 if ’-’ in s[pos:pos+60] else 0)
109 fo.write(’Query: %-*s %s %s\n’%
110 (mx,qr[finant_u-1 if ss>se else finant_u+1],
111 q[pos:pos+60],qr[pos+59-q_desp]))
112 fo.write(’ ’+’ ’*mx+’ ’+m[pos:pos+60]+’\n’)
113 fo.write(’Sbjct: %-*s %s %s\n\n’%
114 (mx,sr[finant_d-1 if ss>se else finant_d+1],
115 s[pos:pos+60],sr[pos+59-s_desp]))

© 2010 by Taylor and Francis Group, LLC

358 Python for Bioinformatics

116 finant_u = pos+59-q_desp
117 finant_d = pos+59-s_desp
118 pos += 60
119 if len(q)%60!=0:
120 q_desp+=(q[pos:pos+60].count(’-’) if
121 ’-’ in q[pos:pos+60] else 0)
122 s_desp+=(s[pos:pos+60].count(’-’) if
123 ’-’ in s[pos:pos+60] else 0)
124 fo.write(’Query: %-*s %s %s\n’%(mx,qr[pos-q_desp],
125 q[pos:pos+60],qend))
126 fo.write(’ ’+’ ’*mx+’ ’+m[pos:pos+60]+’\n’)
127 fo.write(’Sbjct: %-*s %s %s\n\n’%(mx,sr[pos-s_desp],
128 s[pos:pos+60],sr[-1]))
129 else:
130 fo.write(’Query: %-*s %s %s\n’%(mx,qini,
131 q[pos:pos+60],qend))
132 fo.write(’ ’+’ ’*mx+’ ’+m[pos:pos+60]+’\n’)
133 fo.write(’Sbjct: %-*s %s %s\n\n’%(mx,sr[pos],
134 s[pos:pos+60],sr[-1]))
135 return None
136
137 def blastconv(rec,fo,odir,de=None,al=None,oid=’T’):
138 """ Get a blast record in XML en saves the same
139 record in HTML
140 """
141 fo.write(’\nQuery= %s’ %(rec.query))
142 fo.write(’\n (%s letters)’ %(rec.query_letters))
143 fo.write(’\nDatabase: %s’ %(rec.database))
144 try:
145 fo.write(’\n %s sequences; %s total letters\n’
146 %(fr.num_sequences_in_database,
147 fr.num_letters_in_database))
148 except:
149 # For Biopython > 1.45
150 fo.write(’\n %s sequences; %s total letters\n’
151 %(fr.num_sequences_in_database,
152 fr._num_letters_in_database))
153 fo.write(’’’Searching................................done
154
155 <PRE>
156
157
158 ’’’)
159 fo.write(’ ’*65+’Score E\n’)
160 fo.write(’Sequences producing significant alignments:’+\

© 2010 by Taylor and Francis Group, LLC

Converting XML BLAST File into HTML 359

161 ’ ’*22+’(bits) Value\n’)
162 for d in rec.descriptions[:de]:
163 k = d.accession
164 desc = d.title
165 bs = d.bits
166 sc = d.e
167 if ’gi|’ in k:
168 m = k.index(’gi|’)+3
169 gi = k[m:k[m:].index(’|’)+3]
170 fo.write(’<a href="http://www.ncbi.nlm.nih.gov\
171 /entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids\
172 =%s&dopt=GenBank" >%s %s %.1f%s%s\n’
173 %(gi,k.replace(’gi|’+gi+’|’,’’),desc,k,bs,4*" ",sc))
174 else:
175 fo.write(’%s ... %.1f%s%s\n’
176 %(desc[:60],k,bs,4*" ",sc))
177 fo.write(’</PRE>\n’)
178 for alig in rec.alignments[:al]:
179 fo.write(’<PRE>\n’)
180 k = alig.hit_id
181 desc = alig.hit_def
182 if ’gi|’ in k:
183 m = k.index(’gi|’)+3
184 gi = k[m:k[m:].index(’|’)+3]
185 fo.write(’><a href="http://\
186 www.ncbi.nlm.nih.gov/entrez/query.fcgi?\
187 cmd=Retrieve&db=Nucleotide&list_uids=%s&dopt=GenBank" >\
188 %s %s \n’
189 %(alig.accession,gi,k.replace(’gi|’+gi+’|’,’’),desc))
190 else:
191 fo.write(’>%s’%(alig.accession,desc))
192 fo.write(’\n Length = %s\n’ %(alig.length))
193 # Walk over all the hsps
194 for hsp in alig.hsps:
195 bs = hsp.bits
196 hsc = hsp.score
197 sc = hsp.expect
198 h_id = hsp.identities
199 h_pos = hsp.positives
200 h_alen = hsp.align_length
201 q_frame = hsp.frame[0]
202 try:
203 h_frame = hsp.frame[1]
204 except IndexError:
205 h_frame = q_frame

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

360 Python for Bioinformatics

206 q_from = hsp.query_start
207 q_to = hsp.query_end
208 h_from = hsp.sbjct_start
209 h_to = hsp.sbjct_end
210 qseq = hsp.query
211 hseq = hsp.sbjct
212 mid = hsp.match
213 qf = ’Plus’ if q_frame>0 else ’Minus’
214 hf = ’Plus’ if h_frame>0 else ’Minus’
215 fo.write(’\n\nScore = %s bits (%s), Expect = %s\n’
216 %(bs,hsc,sc))
217 fo.write(’Identities = %s/%s (%.0f%%)\n’
218 %(h_id,h_alen,float(int(h_id))/int(h_alen)*100))
219 fo.write(’Strand = %s/%s\n\n’ %(qf,hf))
220 prettyalign(fo,qseq,q_from,q_to,mid,hseq,h_from,h_to)
221 fo.write(’</PRE>\n’)
222 return fo
223
224 (opts, args) = parser.parse_args()
225 if len(args)<1:
226 errmsg = "Bad or missing option in input."
227 errmsg += " This program requires an input file"
228 errmsg += " Please see the help with -h or --help"
229 parser.error(errmsg)
230 else:
231 title = opts.title
232 desc = opts.desc_n
233 align = opts.align_n
234 for f in args:
235 if opts.o_dir==’.’:
236 o_dir = ""
237 else:
238 o_dir = opts.o_dir
239 fr = NCBIXML.parse(open(f)).next()
240 for rec in NCBIXML.parse(open(f)):
241 f_out = htmlhead(fr,title,f,o_dir,rec)
242 f_out = blastconv(rec,f_out,o_dir,desc,align,title)
243 htmlfoot(f_out,fr)
244 if opts.verb:
245 print(rec.query_id if title else rec.query+
246 ’.html’)

© 2010 by Taylor and Francis Group, LLC

Chapter 21

Infering Splicing Sites

21.1 Problem Description

An expressed sequence tag or EST is a short sub-sequence of a transcribed
spliced nucleotide sequence (either protein-coding or not). They may be used
to identify gene transcripts, and are instrumental in gene discovery and gene
sequence determination.[1] The identification of ESTs has proceeded rapidly,
with approximately 52 million ESTs now available in public databases (e.g.
GenBank 5/2008, all species).

An EST is produced by one-shot sequencing of a cloned mRNA (i.e. se-
quencing several hundred base pairs from an end of a cDNA clone taken from
a cDNA library). The resulting sequence is a relatively low quality fragment
whose length is limited by current technology to approximately 500 to 800
nucleotides. Because these clones consist of DNA that is complementary to
mRNA, the ESTs represent portions of expressed genes. They may be present
in the database as either cDNA/mRNA sequence or as the reverse complement
of the mRNA, the template strand.

Preparatory program,

Listing 21.1: Convert data for entering into a SQLite database (py3.us/79)

1 """
2 Convert TAIR fasta file in a CSV file for making a
3 SQLite database.
4 """
5 from Bio import SeqIO
6
7 seqfile = open(’TAIR8_seq_20080412’)
8 cdsfile = open(’TAIR8_cds_20080412’)
9 f_out = open(’TAIR.csv’,’w’)

10 atD = {}
11 # Get all sequences from TAIR sequences file.
12 for record in SeqIO.parse(seqfile, "fasta"):
13 sid = record.id
14 seq = record.seq.data

361

© 2010 by Taylor and Francis Group, LLC

362 Python for Bioinformatics

15 atD[sid] = [seq]
16 # Get all sequences from TAIR CDS file.
17 for record in SeqIO.parse(cdsfile, "fasta"):
18 sid = record.id
19 seq = record.seq.data
20 atD[sid].append(seq)
21 # Write to a CSV file only the entries of the dictionary that
22 # has data from both sources
23 for x in atD:
24 if len(atD[x])==2:
25 # Write in this order: Seq. ID, CDS, SEQ.
26 f_out.write(’%s,%s,%s\n’ %(x,atD[x][1],atD[x][0]))
27 f_out.close()

Program 21.1 generates the CSV file used in the SQLite database. Here are
the steps to create and populate the database:

$./sqlite3-3.5.9.bin AT.db
SQLite version 3.5.9
Enter ".help" for instructions
sqlite> create table seqs(ID, CDS, Seq);
sqlite> .separator ,
sqlite> .import TAIR.csv seqs
sqlite> CREATE INDEX IDidx on seqs (ID);

Command to format the TAIR cds database to BLAST use:

$ formatdb -t ATCDS -i TAIR8_seq_20080412 -p F -n TAIR8seq

21.1.1 Infer Splicing Sites with Commented Source Code

Listing 21.2: Estimate introns (py3.us/80)

1 #!/usr/bin/env python
2
3 import sys
4 import os
5 import sqlite3
6 from tempfile import NamedTemporaryFile
7 from Bio import SeqIO, SeqRecord, Seq, Clustalw
8 from Bio.Blast import NCBIStandalone
9 from Bio.Blast import NCBIXML

10 from Bio.Clustalw import MultipleAlignCL
11
12 dbpath = ’AT.db’
13 blast_exe =’/home/sb/blast-2.2.20/bin/blastall’

© 2010 by Taylor and Francis Group, LLC

Infering Splicing Sites 363

14 blast_db = ’/home/sb/blast-2.2.20/data/TAIR8cds’
15
16 def allgaps(seq):
17 """Return a list with tuples containing all gap positions
18 and length. seq is a string."""
19 i = 0
20 gaps = []
21 indash = False
22 for c in seq:
23 if indash is False and c==’-’:
24 c_ini = i
25 indash = True
26 dashn = 0
27 elif indash is True and c==’-’:
28 dashn += 1
29 elif indash is True and c!=’-’:
30 indash = False
31 gaps.append((c_ini,dashn+1))
32 i += 1
33 return gaps
34
35 def iss(record):
36 """Infer Splicing Sites from a FASTA file full of EST
37 sequences"""
38 usersid = record.id
39 userseq = record.seq
40 tf = NamedTemporaryFile()
41 fth = tf.file
42 fth.write(record.format("fasta"))
43 tfn = tf.name
44 fth.flush()
45 # Note: expectation, descriptions, alignments are passed as
46 # strings due to Biopython bug#2538. It is fixed in Biopython
47 # 1.48.
48 result, err = NCBIStandalone.blastall(blast_exe, "blastn",
49 blast_db, tfn, expectation=’1e-10’,
50 descriptions=’1’, alignments=’1’)
51 fth.close()
52 b_record = NCBIXML.read(result)
53 if len(b_record.alignments) > 0:
54 title = b_record.alignments[0].title
55 sid = title[title.index(’ ’)+1:title.index(’ |’)]
56 # Polarity information of returned sequence.
57 # 1 = normal, -1 = reverse.
58 frame = b_record.alignments[0].hsps[0].frame[1]

© 2010 by Taylor and Francis Group, LLC

364 Python for Bioinformatics

59 db = sqlite3.connect(dbpath)
60 # Run the SQLite query
61 t = (sid,)
62 c = db.cursor()
63 c.execute("SELECT CDS, Seq from seqs WHERE ID=?", t)
64 cds,seq = c.fetchone()
65 if cds==’’:
66 print ’There is no matching CDS’
67 exit()
68 # Check sequence polarity.
69 if frame==1:
70 seqCDS = SeqRecord.SeqRecord(Seq.Seq(cds),
71 id=sid+’-CDS’,name="",description="")
72 fullseq = SeqRecord.SeqRecord(Seq.Seq(seq),
73 id=sid+’-SEQ’,name="",description="")
74 else:
75 seqCDS = SeqRecord.SeqRecord(
76 Seq.Seq(cds).reverse_complement(),id=sid+’-CDS’,
77 name="",description="")
78 fullseq = SeqRecord.SeqRecord(
79 Seq.Seq(seq).reverse_complement(),id=sid+’-SEQ’,
80 name="",description="")
81 # Create a tuple with the user sequence and both AT sequences.
82 allseqs = (record,seqCDS,fullseq)
83 tf = NamedTemporaryFile()
84 trifh = tf.file
85 # Write the file with the three sequences.
86 SeqIO.write(allseqs,trifh,"fasta")
87 tfn = tf.name
88 trifh.flush()
89 # Do the alignment:
90 cline = MultipleAlignCL(tfn)
91 cline.set_output(usersid+".aln")
92 alignment = Clustalw.do_alignment(cline)
93 trifh.close()
94 # Walk over all aligned sequences and look for query sequence
95 for seq in alignment.get_all_seqs():
96 if usersid in seq.id:
97 seqstr = str(seq.seq)
98 gaps = allgaps(seqstr.strip(’-’))
99 break

100 print "Original sequence:",usersid
101 print "\nBest match in AT CDS:",sid
102 i = 0
103 acc = 0

© 2010 by Taylor and Francis Group, LLC

Infering Splicing Sites 365

104 for gap in gaps:
105 i += 1
106 print "Intron #%s: Start at position %s, length %s"\
107 %(i,gap[0]-acc,gap[1])
108 acc += gap[1]
109 print ’\n’+seqstr.strip(’-’)
110 print ’\nAlignment file: %s.aln\n’%usersid
111 return None
112
113 try:
114 f_name = sys.argv[1]
115 except:
116 print "Run this program from command line as:"
117 print "iss.py file_in"
118 exit()
119 records = SeqIO.parse(open(f_name), "fasta")
120 for record in records:
121 iss(record)

21.1.2 Sample Run of Estimate Intron Program

$ iss.py /mnt/hda2/bio/t3.txt
Original sequence: secu3

Best match in AT CDS: AT1G14990.1
Putative Intron #1: Start at position 171, length 95
Putative Intron #2: Start at position 250, length 153

CTAGCCACTTCCAACGAGTTGGCCTTGAGATAGAAGGTGAGCCATGTATTGGGAGTGGTAAA<=
CGTATGGAGATTTTCCCTGGCGATCAAAATGCTTAGCCATTATGCAGAATTCAACAGGACCG<=
GAATCTTCAGATTCATAGCCTTTCCCAAGCGCCGCTTTGTACAGCTT---------------<=
--<=
------------------AGCTGTGTCGGTCAAAAGTTCGGTGCCAGCAGTCGAAGATGCAT<=
AAAACTGATCTCCCCTGGAATATCCTGCTCTTGTT---------------------------<=
--<=
--<=
--GTGTTGTTTGTATAGAAGAATGTGAGGGCAGCAGTGAAGCAGTAGAATCCGGCGTAAGAG<=
ACAGCCCGTCGTAGCTTCTGGATAATTATAACCTCTGAGCGGTCATCCAAGATCATCAT

Alignment file: secu3.aln

© 2010 by Taylor and Francis Group, LLC

Chapter 22

DNA Mutations with Restrictions

22.1 Problem Description

A researcher needs to design a DNA sequence based on a coding sequence.
This sequence codes for a polypeptide that the researcher is interested in. The
new sequence has to code for the same polypeptide, so all nucleotide changes
in the new sequence must be “silent mutations.” A silent mutation is one that
does not result in a change to the amino acid sequence of the resulting protein.
This is done by taking advantage of the DNA code redundancy. For example
AAG codes for “Lysine” (K), as AAA, so changing G for A doesn’t change the
resulting polypeptide.

The point of generating different DNA sequences is to be able to sort them
by using restriction enzymes.

Given a DNA sequence, the program must first convert it into a polypeptide
and then generate all possible DNA sequences that code such a polypeptide.
The next step is to calculate which enzymes cut the original sequence and
each new generated DNA sequence and compare them. The program should
print the names of those enzymes that are exclusive to each sequence.

22.1.1 Introduce Point Mutations and Get Restriction Pro-
file

Listing 22.1: Introduce point mutations (py3.us/81)

1 #!/usr/bin/env python
2
3 from Bio import Translate
4 from Bio import Seq
5 from Bio.Alphabet import IUPAC
6 from Bio import Restriction
7 from Bio.Data import CodonTable
8
9 def backtrans(ori_pep,TableID=1):

10 # Function to make backtranslation (from peptide to DNA)
11 # This function needs the peptide sequence and the code of

367

© 2010 by Taylor and Francis Group, LLC

368 Python for Bioinformatics

12 # translation table. Code number is the same as posted in:
13 # http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
14 def recurs(order, pos):
15 for letter in bt[order[pos]]:
16 if pos == len(order) - 1:
17 yield letter
18 continue
19 for prox in recurs(order, pos+1):
20 yield (letter+prox)
21 def combine(order):
22 ordened = set()
23 for frase in recurs(order, 0):
24 ordened.add(frase)
25 return ordened
26 t = CodonTable.generic_by_id[TableID]
27 bt = dict()
28 for a1 in "ATCG" :
29 for a2 in "ATCG" :
30 for a3 in "ATCG" :
31 codon = a1+a2+a3
32 try :
33 amino = t.forward_table[codon]
34 except KeyError :
35 assert codon in t.stop_codons
36 continue
37 try :
38 bt[amino].append(codon)
39 except KeyError :
40 bt[amino] = [codon]
41 return list(combine(ori_pep))
42
43 def seqcomp(s1,s2):
44 # Compares 2 sequences and returns a value with
45 # how many differents elements they have.
46 p = len(s1)
47 for x,y in zip(s1,s2): # Walk through 2 sequences.
48 if x==y:
49 p -= 1
50 return p
51
52 n_mut = 1 # Number or allowed mutations.
53 trans = Translate.unambiguous_dna_by_id[1]
54 builtin_seq = "ATGggtaaTtgcaacggggCATCCAAG".upper()
55 dna = Seq.Seq(builtin_seq, IUPAC.unambiguous_dna)
56 # Translate DNA sequence.

© 2010 by Taylor and Francis Group, LLC

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

DNA Mutations with Restrictions 369

57 ori_pep = str(trans.translate(dna))
58 # Get all backtranslations.
59 bakpeps = backtrans(ori_pep)
60 print ’builtin_seq: %s\nPeptide: %s\n’ %(builtin_seq,ori_pep)
61 print "ORIGINAL SEQUENCE:"
62 # Make a restriction analysis for the orignal sequence.
63 anal = Restriction.Analysis(Restriction.CommOnly, dna)
64 anal.print_as("map")
65 anal.print_that()
66 # Store the enzymes that cut in the original sequence.
67 enzORI = anal.with_sites().keys()
68 enzORIset = set(enzORI)
69 # Get a string out of the enzyme list, only for
70 # printing purposes.
71 oname = str(enzORI)[1:-1]
72 # Note: str(enzORI)[1:-1] == ", ".join(str(n) for n in enzORI)
73 print "========================="
74
75 for x in bakpeps:
76 if x not in builtin_seq:
77 # Make a restriction analysis for each sequence.
78 anal = Restriction.Analysis(Restriction.CommOnly, \
79 Seq.Seq(x, IUPAC.unambiguous_dna))
80 # Store the enzymes that cut in this sequence.
81 enzTMP = anal.with_sites().keys()
82 enzTMPset = set(enzTMP)
83 # Get the number of mutations in backpep sequence.
84 y = seqcomp(builtin_seq,x)
85 if enzTMPset!=enzORIset and enzORI!=None and y<=n_mut:
86 print ’Original sequence enzymes: %s’ % oname
87 # Get a string out of the enzyme list, only for
88 # printing purposes.
89 pames = str(enzTMP)[1:-1]
90 print ’Proposed sequence enzymes: %s’ % pames
91 anal.print_as("map")
92 anal.print_that()
93 # o: Only in original sequences, p: proposed seq.
94 o = str(list(enzORIset.difference(enzTMPset)))[1:-1]
95 p = str(list(enzTMPset.difference(enzORIset)))[1:-1]
96 print "Enzimes only in original sequence: %s\n" % o
97 print "Enzimes only in proposed sequence: %s" % p
98 print "========================="

© 2010 by Taylor and Francis Group, LLC

370 Python for Bioinformatics

22.1.2 Sample Run of Introduce Point Mutations Program

builtin_seq: ATGGGTAATTGCAACGGGGCATCCAAG
Peptide: MGNCNGASK

ORIGINAL SEQUENCE:

7 FokI Tsp509I TspEI Sse9I
|
| 12 HpyCH4V CviRI
| |
| | 20 BseGI BstF5I
| | |

ATGGGTAATTGCAACGGGGCATCCAAG
|||||||||||||||||||||||||||
TACCCATTAACGTTGCCCCGTAGGTTC
1 27

Enzymes which do not cut the sequence.

AccII AciI AfaI AluI AspLEI BfaI ...
BshFI BsiSI Bsp143I BspANI BstFNI BstHHI ...
(...cut...)
=========================
Original sequence enzymes: BstF5I, Tsp509I, TspEI, FokI, <=
HpyCH4V, BseGI, Sse9I, CviRI
Proposed sequence enzymes: FokI, BseGI, HpyCH4V, BstF5I, <=
CviRI, MaeIII

5 MaeIII
|
| 7 FokI
| |
| | 12 HpyCH4V CviRI
| | |
| | | 20 BseGI BstF5I
| | | |

ATGGGTAACTGCAACGGGGCATCCAAG
|||||||||||||||||||||||||||
TACCCATTGACGTTGCCCCGTAGGTTC
1 27

Enzymes which do not cut the sequence.

© 2010 by Taylor and Francis Group, LLC

DNA Mutations with Restrictions 371

AccII AciI AfaI AluI AspLEI BfaI ...
BshFI BsiSI Bsp143I BspANI BstFNI BstHHI ...
(...cut...)

Enzimes only in original sequence: TspEI, Sse9I, Tsp509I

Enzimes only in proposed sequence: MaeIII
=========================
(...cut...)

22.2 Additional Resources

• Roberts, R.J., Vincze, T., Posfai, J., Macelis, D. (2007). “REBASE–
enzymes and genes for DNA restriction and modification.” Nucleic
Acids Res. 35: D269-D270.
http://rebase.neb.com/rebase/rebase.html

• Bickle TA, Kruger DH (June 1993). “Biology of DNA restriction.” Mi-
crobiol. Rev. 57 (2): 434-50.
http://mmbr.asm.org/cgi/reprint/57/2/434?view=long&pmid=8336674

© 2010 by Taylor and Francis Group, LLC

http://rebase.neb.com
http://mmbr.asm.org
http://mmbr.asm.org
http://rebase.neb.com

Chapter 23

Web Server for Multiple Alignment

23.1 Problem Description

DNA sequences of different organisms are often related. The closer the
species, the more similar are their genomes. Some genes are highly conserved
while others have extensive arrangement and mutations. Sequence multiple
alignment (msa) help to evidence the relationship between sequences and infer
an evolutionary history.

There are several programs to perform msa. It is out of the scope of this
book to review them, but there are pointers to several papers in “Additional
Resources” for those interested in msa software.

One of these programs is muscle (Multiple Sequence alignment by log-
expectation), that is characterized by its improved speed and accuracy over
currently available programs. Since muscle has no graphical interface (it is
a command line application), we will build a GUI using a web server.

The advantage of the use of a web server it is not only the GUI, but the
ability to use it from several computers.

23.1.1 Web Interface: Front-End. HTML Code

The first step is to make the GUI in HTML. Before reinventing the wheel,
I searched for a Muscle Web server and found one at the EBI website (http:
//www.ebi.ac.uk/Tools/muscle). Inspired on this site, I made the form
displayed in figure refmusclewi. The HTML code for this form is shown in
listing 23.1.

Listing 23.1: Web Interface to Muscle: Front End (py3.us/82)

1 <html>
2 <head>
3 <title>Muscle Web Interface</title>
4 </head>
5 <body bgcolor="#eef5f5">
6 <h2>Muscle Web Interface</h2>
7 <form action=’musclewi.py’ method=’post’ enctype="multipart<=

373

© 2010 by Taylor and Francis Group, LLC

http://www.ebi.ac.uk
http://www.ebi.ac.uk
http://www.ebi.ac.uk
http://www.ebi.ac.uk

374 Python for Bioinformatics

FIGURE 23.1: Muscle Web interface.

/form-data">
8 Maximum number of iterations:
9 <select name="iterat" style="width: 45px" >

10 <option value="1" selected="selected">1</option>
11 <option value="4">4</option>
12 <option value="8">8</option>
13 <option value="10">10</option>
14 <option value="12">12</option>
15 <option value="14">14</option>
16 <option value="14">16</option>
17 </select>
18 Output Format:
19 <select name="output" style="width: 140px" >
20 <option value="fasta" selected="selected">FASTA</option>
21 <option value="clw">ClustalW2</option>
22 <option value="clwstrict">ClustalW2 (Strict)</option>
23 <option value="html">HTML</option>
24 <option value="msf">MSF</option>
25 </select>
26 Output Order:
27 <select name="outorder" style="width: 90px">
28 <option value="group" selected="selected">aligned</option>
29 <option value="stable">input</option>
30 </select>
31 <p>Enter or Paste a set of Sequences in any supported format:
32
<textarea name="seq" rows="5" cols="90"></textarea><p>

© 2010 by Taylor and Francis Group, LLC

Web Server for Multiple Alignment 375

33 Or upload a file: <input type="file" name="upfile" />
34 <input type=’submit’ value=’Send to Muscle server’></form>
35 </body></html>

23.1.2 Web Interface: Server Side Script. Commented Source
Code

Listing 23.2: Web Interface to Muscle (py3.us/83)

1 #!/usr/bin/env python
2
3 import cgi
4 import cgitb
5 import subprocess
6 import sys
7 import os
8 from tempfile import mkstemp
9

10 # Uncomment the following line when debugging
11 #cgitb.enable()
12
13 def badrequest(bad):
14 """ Display an error message """
15 print("<h1>Bad Request</h1>\n")
16 print("Use the options provided in the form: %s"%bad)
17 print("</body></html>")
18 # Get out of here:
19 return sys.exit()
20
21 print("Content-Type: text/html\n")
22
23 form = cgi.FieldStorage()
24 iterat = form.getvalue("iterat","4")
25 output = form.getvalue("output","html")
26 outorder = form.getvalue("outorder","group")
27 # Get sequence data from text area
28 seqs = form.getvalue("seq")
29 if not seqs:
30 # Since the textarea is empty, check the uploaded file
31 seqs = form.getvalue("upfile")
32
33 # Verify that the user entered valid information.
34 if iterat not in set((’1’,’4’,’8’,’10’,’12’,’14’,’16’)):

© 2010 by Taylor and Francis Group, LLC

376 Python for Bioinformatics

35 badrequest(iterat)
36 valid_output = set((’html’,’fasta’,’msf’,’clw’,’clwstrict’))
37 if output not in valid_output:
38 badrequest(output)
39 if outorder not in set((’group’, ’stable’)):
40 badrequest(outorder)
41
42 print "<html><head><title>A CGI script</title></head><body>"
43
44 # Make a random filename for user entered data
45 fi_name=mkstemp(’.txt’,’userdata_’,"/var/www/muscleweb/")[1]
46 # Open this random filename
47 fi_fh = open(fi_name,’w’)
48 # Write the user entered sequences into this temporary file
49 fi_fh.write(seqs)
50 fi_fh.close()
51
52 # Make a random filename for program output
53 fo_name=mkstemp(’.txt’,’outfile_’,"/var/www/muscleweb/")[1]
54
55 erfh = open(’err.log’,’w’)
56 cmd = [’./muscle’, ’-in’, fi_name, ’-out’, fo_name,
57 ’-quiet’, ’-maxiters’, iterat, ’-%s’%output,
58 ’-%s’%outorder]
59
60 # Uncomment to check the generated command
61 #print ’ ’.join(cmd)
62 # Run the program with user provided parameters
63 p = subprocess.Popen(cmd, stderr=erfh, cwd=’/var/www/muscleweb’)
64 # Wait until finished
65 p.communicate() # Same result as os.waitpid(p.pid,0)
66 erfh.close()
67 # Remove the input file since the it is not needed anymore.
68 os.remove(fi_name)
69
70 fout_fh = open(fo_name)
71 if output==’html’:
72 print(fout_fh.read())
73 else:
74 print(’<pre>%s</pre>’%fout_fh.read())
75 fout_fh.close()
76
77 # Remove the output file
78 os.remove(fo_name)
79

© 2010 by Taylor and Francis Group, LLC

Web Server for Multiple Alignment 377

80 print("</body></html>")

Code explanation: The code is widely commented, but I think it worth
some explanations. Note line 33 to 40, data entered by the user is checked
before feeding the script with data originated from external sources (as com-
mented in Chapter 11). In lines 45 and 53, two files with random names are
created. One file is for storing the data entered by the user and the other is
the filename of the muscle output. You may be wondering why I choose to
use a function to generate files with random names instead of using a fixed
name for each file. The problem with fixed files is that a web program can
be used simultaneously by several users and there is a risk of data override.
Another feature of this program is the use subprocess.Popen in line 63
and 65. The subprocess module replaces os.system, os.spawn and others.
This module allows you to spawn new processes and have complete control
over it. Temporary files are removed (lines 68 and 78).

23.2 Additional Resources

• Edgar, Robert C. (2004), “MUSCLE: multiple sequence alignment with
high accuracy and high throughput.” Nucleic Acids Research 32(5),
1792-97.

• Edgar, Robert C. (2004), “MUSCLE: a multiple sequence alignment
method with reduced time and space complexity.” BMC Bioinformatics
2004, 5:113doi:10.1186/1471-2105-5-113.

• Sellis Diamantis and Charissi Anna. “Comparison of Multiple Sequence
Alignment programs.”
http://www.ceng.metu.edu.tr/~tcan/ceng465/Spring2006/Schedule/
MSAComparison.pdf

• Notredame, C (2007). “Recent evolutions of multiple sequence align-
ment algorithms.” PLOS Computational Biology 8(3):e123
doi:10.1371/journal.pcbi.0030123.

© 2010 by Taylor and Francis Group, LLC

http://www.ceng.metu.edu.tr
http://www.ceng.metu.edu.tr

Chapter 24

Drawing Marker Positions Using
Data Stored in a Database

24.1 Problem Description

This program makes a graphical representation of a selected locus in five
chromosomes of Arabidopsis thaliana.1 The position data of the locus are
stored in a relational database, so the program has to connect such a database
and retrieve the data before plotting it. The first implementation uses a
MySQL database and the second one uses SQLite, just to exemplify the use
of both databases covered in the book. The drawing part is made by using
the BasicChromosome class from Biopython.

In Figure 24.1 at the end of this chapter there is an example of what the
output looks like.

24.1.1 Preliminary Work on the Data

The raw data used by this program is provided by the Arabidopsis In-
formation Resource2 (TAIR). The file is located at their FTP server and can
be retrieved with any web browser from ftp://ftp.arabidopsis.org/home/
tair/Genes/TAIR7_genome_release/TAIR7_Transcripts_by_map_position.
gz. It is a gzipped compressed CSV file with more information than the lo-
cus position into the chromosome. From this file we need four fields: Locus,
Chromosome, Map start coordinate and Map end coordinate.

Here is a brief sample of TAIR data:

Locus Locus_orientation_is_5 Genbank_acc external_id <=
Type(1=cDNA 2=EST) Chromosome Transcript_orientation_is_5 <=
Map_start_coordinate Map_end_coordinate
(... cut ...)
AT1G01280 1 BX814827 42472162 1 1 1 112263 113195

1Arabidopsis thaliana (wall cress or mouse-ear cress) is a small flowering plant that is widely
used as a model organism in plant biology. It is used in this example because there are
completed physical and genetic maps available.
2TAIR website is available at http://www.arabidopsis.org.

379

© 2010 by Taylor and Francis Group, LLC

ftp://ftp.arabidopsis.org
http://www.arabidopsis.org
ftp://ftp.arabidopsis.org
ftp://ftp.arabidopsis.org
ftp://ftp.arabidopsis.org
ftp://ftp.arabidopsis.org
http://www.arabidopsis.org
ftp://ftp.arabidopsis.org

380 Python for Bioinformatics

AT1G01280 1 BX814827 42472162 1 1 1 113279 113861
AT1G01280 1 AA720028 2733638 2 1 1 112341 112589
AT1G01280 1 AV535036 8695319 2 1 1 112300 112919
AT1G01280 1 AV532990 8693273 2 1 0 113720 113947
AT1G01280 1 BT022023 63003811 1 1 1 112283 113195
AT1G01280 1 BT022023 63003811 1 1 1 113279 113944
(... cut ...)

Another nuisance in this dataset is that the lowest and highest positions
are not properly marked. In the small text snip displayed above, the lower
position is 112263 and the highest is 113947, so this text should be translated
into the following line:

AT1G01280,1,112263,113947

Therefore a custom made script is needed to convert the data for entering
into a database:

Listing 24.1: Convert the format of a csv for entering into a database
(py3.us/84)

1 #!/usr/bin/env python
2
3 import csv
4 import sys
5 import gzip
6
7 f_name = ’TAIR7_Transcripts_by_map_position.gz’
8
9 # Get a file handler of an uncompressed file:

10 f_unzip = gzip.GzipFile(f_name)
11
12 lines = csv.reader(f_unzip, delimiter=’\t’)
13 lines.next() # Ignore the header
14
15 # Dictionary for storing markers and associated information:
16 atD = {}
17 # Load the dictionary using the data in the file:
18 for line in lines:
19 if line[0] in atD:
20 tup = atD[line[0]]
21 l7 = int(line[7])
22 left = l7 if l7<int(tup[1]) else tup[1]
23 l8 = int(line[8])
24 right = l8 if l8>int(tup[2]) else tup[2]
25 atD[line[0]] = (tup[0],left,right)

© 2010 by Taylor and Francis Group, LLC

Drawing Marker Positions Using Data Stored in a Database 381

26 else:
27 atD[line[0]] = (line[5],int(line[7]),int(line[8]))
28
29 # Prints the contend of the dictionary to a CSV file:
30 out_fname= ’TAIR7.csv’
31 o_fh = open(out_fname,’w’)
32 for x in atD:
33 chrom = atD[x][0] # Chromosome number
34 s_pos = atD[x][1] # Start position
35 e_pos = atD[x][2] # End position
36 o_fh.write(’%s,%s,%s,%s\n’ %(x,chrom,s_pos,e_pos))
37 o_fh.close()

24.1.2 MySQL and SQLite Database Creation

To have a database where you can retrieve marker position, you need to
create it first. This is a two step procedure. It begins by creating the database
with an appropriate table for this data. A MySQL command line session would
look like this:

$ mysql -uroot -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 29
Server version: 5.0.45-Debian_1ubuntu3 Debian etch distribution

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> CREATE DATABASE at;
Query OK, 1 row affected (0.20 sec)
mysql> USE at2;
Database changed
mysql> CREATE TABLE ‘pos‘ (

-> ‘Locus‘ varchar(9) NOT NULL,
-> ‘Chrom‘ tinyint(4) NOT NULL,
-> ‘LStart‘ int(11) NOT NULL,
-> ‘LEnd‘ int(11) NOT NULL
->) ENGINE=MyISAM DEFAULT CHARSET=latin1;

Query OK, 0 rows affected (0.71 sec)

Alternatively, the following procedure should be used to create a SQLite
database and import the data generated by the code in 24.1:

$ sqlite3 AT.db
SQLite version 3.4.2

© 2010 by Taylor and Francis Group, LLC

382 Python for Bioinformatics

Enter ".help" for instructions
sqlite> CREATE TABLE pos (Locus TEXT, Chrom INTEGER, LStart <=
INTEGER, LEnd INTEGER);
sqlite> .separator ,
sqlite> .import TAIR7.csv pos
sqlite> .quit

With these commands the SQLite database AT.db with the table pos is
created. This file should be accessible from the program that uses SQLite
(listing 24.3). The advantage of using SQLite is that you only need this file,
instead of setting up a database server.

24.1.3 MySQL Version with Commented Source Code

With the database in place, we finally can make a program to retrieve the
marker information from the MySQL database and plot the PDF document
with the graphic.

The program asks for a list of loci, it checks if each locus conforms to a
specific pattern (lines 142 and 175 show how to check a pattern using regex)
and then retrieves the data from the database. This program also has two
“test modes”: DBDEMO and NODBDEMO. These modes are used to
test the program without entering all loci by hand. The first mode uses a
predefined list of loci (starting at line 156) and then retrieves them from the
database. The second mode uses a built-in list of loci with its positions (from
line 161) to test the program without a database connection.3

Listing 24.2: Draw markers in chromosomes from data extracted from a
MySQL database (py3.us/85)

1 #!/usr/bin/env python
2
3 # standard library
4 import os
5 import sys
6 import re
7
8 # local stuff
9 import MySQLdb

10 from Bio.Graphics import BasicChromosome
11
12 # reportlab

3Having the data inside the program is calling hardcoded. In most cases it is not recom-
mended since it is a better idea to have the data in an easy to change external file. In this
case the data is hardcoded since this data is only for debugging purposes.

© 2010 by Taylor and Francis Group, LLC

Drawing Marker Positions Using Data Stored in a Database 383

13 from reportlab.lib import colors
14
15 def sortmarkers(crms,end):
16 """ Sort markers into chromosomes
17 """
18 i = 0
19 crms_o = [[] for r in range(len(end))]
20 crms_fo = [[] for r in range(len(end))]
21 for crm in crms:
22 for marker in crm:
23 # add the marker start position at each chromosome.
24 crms_fo[i].append(marker[1])
25 crms_fo[i].sort() # Sort the marker positions.
26 i += 1
27 i = 0
28 for order in crms_fo:
29 # Using the marker order set in crms_fo, fill crms_o
30 # with all the marker information
31 for pos in order:
32 for mark in crms[i]:
33 try:
34 if pos==mark[1]:
35 crms_o[i].append(mark)
36 except:
37 pass
38 i += 1
39 return crms_o
40
41 def getchromo(crms_o,end):
42 """ From an ordered list of markers, generate chromosomes.
43 """
44 chromo = [[] for r in range(len(end))]
45 i = 0
46 for crm_o in crms_o:
47 j = 0
48 if len(crm_o)>1:
49 for mark in crm_o:
50 if mark==crm_o[0]: #first marker
51 chromo[i].append((’’,None,mark[1]))
52 chromo[i].append((mark[0],colors.red,
53 mark[2]-mark[1]))
54 ant = mark[2]
55 elif mark==crm_o[-1]: #last marker
56 chromo[i].append((’’,None,mark[1]-ant))
57 chromo[i].append((mark[0],colors.red,

© 2010 by Taylor and Francis Group, LLC

384 Python for Bioinformatics

58 mark[2]-mark[1]))
59 chromo[i].append((’’,None,end[i]-mark[2]))
60 else:
61 chromo[i].append((’’,None,mark[1]-ant))
62 chromo[i].append((mark[0],colors.red,
63 mark[2]-mark[1]))
64 ant=mark[2]
65 elif len(crm_o)==1: # For chromosomes with one marker
66 chromo[i].append((’’,None,crm_o[0][1]))
67 chromo[i].append((crm_o[0][0],colors.red,
68 crm_o[0][2]-crm_o[0][1]))
69 chromo[i].append((’’,None,end[i]-crm_o[0][2]))
70 else:
71 # For chromosomes without markers
72 # Add 3% of each chromosome.
73 chromo[i].append((’’,None,int(0.03*end[i])))
74 chromo[i].append((’’,None,end[i]))
75 chromo[i].append((’’,None,int(0.03*end[i])))
76 i += 1
77 j += 1
78 return chromo
79
80 def addends(chromo):
81 """ Adds a 3% of blank region at both ends for better
82 graphic output.
83 """
84 # get length:
85 size = 0
86 for x in chromo:
87 size += x[2]
88 # get 3% of size of each chromosome:
89 endsize = int(float(size)*.03)
90 # add this size to both ends in chromo:
91 chromo.insert(0,(’’, None, endsize))
92 chromo.append((’’, None, endsize))
93 return chromo
94
95 def load_chrom(chr_name):
96 """ Generate a chromosome with information
97 """
98 cur_chromosome = BasicChromosome.Chromosome(chr_name[0])
99 chr_segment_info = chr_name[1]

100
101 for seg_info_num in range(len(chr_segment_info)):
102 label, color, scale = chr_segment_info[seg_info_num]

© 2010 by Taylor and Francis Group, LLC

Drawing Marker Positions Using Data Stored in a Database 385

103 # make the top and bottom telomeres
104 if seg_info_num == 0:
105 cur_segment = BasicChromosome.TelomereSegment()
106 elif seg_info_num == len(chr_segment_info) - 1:
107 cur_segment = BasicChromosome.TelomereSegment(1)
108 ## otherwise, they are just regular segments
109 else:
110 cur_segment = BasicChromosome.ChromosomeSegment()
111 if label != "":
112 cur_segment.label = label
113 cur_segment.label_size = 12
114 if color is not None:
115 cur_segment.fill_color = color
116 cur_segment.scale = scale
117 cur_chromosome.add(cur_segment)
118
119 cur_chromosome.scale_num = max(end) + (max(end)*.04)
120 return cur_chromosome
121
122 def dblookup(atgids):
123 """ Code to retrieve all marker data from name using mysql.
124 """
125 db = MySQLdb.connect(host="localhost", user="root",
126 passwd="12345", db="at")
127 markers = []
128 cur = db.cursor()
129 for x in atgids:
130 cur.execute("SELECT * from pos WHERE Locus = ’%s’"%x)
131 # Check if the requested marker is on the DB.
132 mrk = cur.fetchone()
133 if mrk:
134 markers.append((mrk[0],(mrk[1],mrk[2],mrk[3])))
135 else:
136 print "Marker %s is not in the DB" %x
137 return markers
138
139 # Size of each chromosome:
140 end=(30427563,19696817,23467989,18581571,26986107)
141 gids = []
142 rx_rid = re.compile(’^AT[1-5]G\d{5}$’)
143 print ’’’Enter AT ID or press ’enter’ to stop entering IDs.
144 Valid IDs:
145 AT2G28000
146 AT3G03020
147

© 2010 by Taylor and Francis Group, LLC

386 Python for Bioinformatics

148 Also you can enter DBDEMO to use predefined set of markers
149 fetched from a MySQL database. Enter NODBDEMO to use a
150 predefined set of markers without database access.’’’
151 while True:
152 rid = raw_input("Enter Gene ID: ")
153 if not rid: global z
154 break
155 if rid=="DBDEMO":
156 gids = [’AT3G14890’,’AT1G66160’,’AT3G55260’,’AT5G59570’,
157 ’AT4G32551’,’AT1G01430’,’AT4G26000’,’AT2G28000’,
158 ’AT5G21090’,’AT5G10470’]
159 break
160 elif rid=="NODBDEMO":
161 samplemarkers=[(’AT3G14890’, (’3’, 5008749, 5013275)),
162 (’AT1G66160’, (’1’, 24640827, 24642411)),
163 (’AT3G55260’, (’3’, 20500225, 20504056)),
164 (’AT1G10960’, (’1’, 3664385, 3665040)),
165 (’AT5G23350’, (’5’, 7857646, 7859280)),
166 (’AT5G15250’, (’5’, 4950414, 4952780)),
167 (’AT1G55700’, (’1’, 20825263, 20827306)),
168 (’AT5G21090’, (’5’, 7164583, 7167257)),
169 (’AT5G10470’, (’5’, 3289228, 3297249)),
170 (’AT2G28000’, (’2’, 11933524, 11936523)),
171 (’AT3G03020’, (’3’, 680920, 682009)),
172 (’AT4G26000’, (’4’, 13197255, 13199845)),
173 (’AT4G32551’, (’4’, 15707516, 15713587))]
174 break
175 if rx_rid.match(rid):
176 gids.append(rid)
177 else:
178 print "Bad format, please enter it again"
179
180 if rid!="NODBDEMO":
181 samplemarkers = dblookup(gids)
182
183 crms = [[] for r in range(len(end))]
184 for x in samplemarkers:
185 crms[int(x[1][0])-1].append((x[0],x[1][1],x[1][2]))
186
187 crms_o = sortmarkers(crms,end)
188 chromo = getchromo(crms_o,end)
189 all_chr_info = [("I",chromo[0]),("II",chromo[1]),
190 ("III",chromo[2]), ("IV",chromo[3]),
191 ("V",chromo[4])]
192

© 2010 by Taylor and Francis Group, LLC

Drawing Marker Positions Using Data Stored in a Database 387

193 pdf_organism = BasicChromosome.Organism()
194 for x in all_chr_info:
195 newcrom = (x[0],addends(x[1]))
196 pdf_organism.add(load_chrom(newcrom))
197
198 pdf_organism.draw(’at.pdf’,’Arabidopsis thaliana’)

24.1.4 SQLite Version with Commented Source Code

Note that the following code is almost a verbatim copy of code 24.2, the
only differences are in the lines related to the database connection (lines 9
and 125).

Listing 24.3:Draw markers in chromosomes from data extracted from a
SQLite database (py3.us/86)

1 #!/usr/bin/env python
2
3 # standard library
4 import os
5 import sys
6 import re
7
8 # local stuff
9 import sqlite3

10 from Bio.Graphics import BasicChromosome
11
12 # reportlab
13 from reportlab.lib import colors
14
15 def sortmarkers(crms,end):
16 """ Sort markers into chromosomes
17 """
18 i = 0
19 crms_o = [[] for r in range(len(end))]
20 crms_fo = [[] for r in range(len(end))]
21 for crm in crms:
22 for marker in crm:
23 # add the marker start position at each chromosome.
24 crms_fo[i].append(marker[1])
25 crms_fo[i].sort() # Sort the marker positions.
26 i += 1
27 i = 0
28 for order in crms_fo:

© 2010 by Taylor and Francis Group, LLC

388 Python for Bioinformatics

29 # Using the marker order set in crms_fo, fill crms_o
30 # with all the marker information
31 for pos in order:
32 for mark in crms[i]:
33 try:
34 if pos==mark[1]:
35 crms_o[i].append(mark)
36 except:
37 pass
38 i += 1
39 return crms_o
40
41 def getchromo(crms_o,end):
42 """ From an ordered list of markers, generate chromosomes.
43 """
44 chromo = [[] for r in range(len(end))]
45 i = 0
46 for crm_o in crms_o:
47 j = 0
48 if len(crm_o)>1:
49 for mark in crm_o:
50 if mark==crm_o[0]: #first marker
51 chromo[i].append((’’,None,mark[1]))
52 chromo[i].append((mark[0],colors.red,
53 mark[2]-mark[1]))
54 ant = mark[2]
55 elif mark==crm_o[-1]: #last marker
56 chromo[i].append((’’,None,mark[1]-ant))
57 chromo[i].append((mark[0],colors.red,
58 mark[2]-mark[1]))
59 chromo[i].append((’’,None,end[i]-mark[2]))
60 else:
61 chromo[i].append((’’,None,mark[1]-ant))
62 chromo[i].append((mark[0],colors.red,
63 mark[2]-mark[1]))
64 ant=mark[2]
65 elif len(crm_o)==1: # For chromosomes with one marker
66 chromo[i].append((’’,None,crm_o[0][1]))
67 chromo[i].append((crm_o[0][0],colors.red,
68 crm_o[0][2]-crm_o[0][1]))
69 chromo[i].append((’’,None,end[i]-crm_o[0][2]))
70 else:
71 # For chromosomes without markers
72 # Add 3% of each chromosome.
73 chromo[i].append((’’,None,int(0.03*end[i])))

© 2010 by Taylor and Francis Group, LLC

Drawing Marker Positions Using Data Stored in a Database 389

74 chromo[i].append((’’,None,end[i]))
75 chromo[i].append((’’,None,int(0.03*end[i])))
76 i += 1
77 j += 1
78 return chromo
79
80 def addends(chromo):
81 """ Adds a 3% of blank region at both ends for better
82 graphic output.
83 """
84 # get length:
85 size = 0
86 for x in chromo:
87 size += x[2]
88 # get 3% of size of each chromosome:
89 endsize = int(float(size)*.03)
90 # add this size to both ends in chromo:
91 chromo.insert(0,(’’, None, endsize))
92 chromo.append((’’, None, endsize))
93 return chromo
94
95 def load_chrom(chr_name):
96 """ Generate a chromosome with information
97 """
98 cur_chromosome = BasicChromosome.Chromosome(chr_name[0])
99 chr_segment_info = chr_name[1]

100
101 for seg_info_num in range(len(chr_segment_info)):
102 label, color, scale = chr_segment_info[seg_info_num]
103 # make the top and bottom telomeres
104 if seg_info_num == 0:
105 cur_segment = BasicChromosome.TelomereSegment()
106 elif seg_info_num == len(chr_segment_info) - 1:
107 cur_segment = BasicChromosome.TelomereSegment(1)
108 ## otherwise, they are just regular segments
109 else:
110 cur_segment = BasicChromosome.ChromosomeSegment()
111 if label != "":
112 cur_segment.label = label
113 cur_segment.label_size = 12
114 if color is not None:
115 cur_segment.fill_color = color
116 cur_segment.scale = scale
117 cur_chromosome.add(cur_segment)
118

© 2010 by Taylor and Francis Group, LLC

390 Python for Bioinformatics

119 cur_chromosome.scale_num = max(end) + (max(end)*.04)
120 return cur_chromosome
121
122 def dblookup(atgids):
123 """ Code to retrieve all marker data fom name using mysql.
124 """
125 db = sqlite3.connect(’TAIR.db’)
126 markers = []
127 cur = db.cursor()
128 for x in atgids:
129 cur.execute("SELECT * from pos WHERE Locus = ’%s’"%x)
130 # Check if the requested marker is on the DB.
131 mrk = cur.fetchone()
132 if mrk:
133 markers.append((mrk[0],(mrk[1],mrk[2],mrk[3])))
134 else:
135 print "Marker %s is not in the DB" %x
136 return markers
137
138 # Size of each chromosome:
139 end=(30427563,19696817,23467989,18581571,26986107)
140 gids = []
141 rx_rid = re.compile(’^AT[1-5]G\d{5}$’)
142 print ’’’Enter AT ID or press ’enter’ to stop entering IDs.
143 Valid IDs:
144 AT2G28000
145 AT3G03020
146
147 Also you can enter DBDEMO to use predefined set of markers
148 fetched from a SQLite database. Enter NODBDEMO to use a
149 predefined set of markers without database access.’’’
150 while True:
151 rid = raw_input("Enter Gene ID: ")
152 if not rid:
153 break
154 if rid=="DBDEMO":
155 gids = [’AT3G14890’,’AT1G66160’,’AT3G55260’,’AT5G59570’,
156 ’AT4G32551’,’AT1G01430’,’AT4G26000’,’AT2G28000’,
157 ’AT5G21090’,’AT5G10470’]
158 break
159 elif rid=="NODBDEMO":
160 samplemarkers=[(’AT3G14890’, (’3’, 5008749, 5013275)),
161 (’AT1G66160’, (’1’, 24640827, 24642411)),
162 (’AT3G55260’, (’3’, 20500225, 20504056)),
163 (’AT1G10960’, (’1’, 3664385, 3665040)),

© 2010 by Taylor and Francis Group, LLC

Drawing Marker Positions Using Data Stored in a Database 391

164 (’AT5G23350’, (’5’, 7857646, 7859280)),
165 (’AT5G15250’, (’5’, 4950414, 4952780)),
166 (’AT1G55700’, (’1’, 20825263, 20827306)),
167 (’AT5G21090’, (’5’, 7164583, 7167257)),
168 (’AT5G10470’, (’5’, 3289228, 3297249)),
169 (’AT2G28000’, (’2’, 11933524, 11936523)),
170 (’AT3G03020’, (’3’, 680920, 682009)),
171 (’AT4G26000’, (’4’, 13197255, 13199845)),
172 (’AT4G32551’, (’4’, 15707516, 15713587))]
173 break
174 if rx_rid.match(rid):
175 gids.append(rid)
176 else:
177 print "Bad format, please enter it again"
178
179 if rid!="NODBDEMO":
180 samplemarkers = dblookup(gids)
181
182 crms = [[] for r in range(len(end))]
183 for x in samplemarkers:
184 crms[int(x[1][0])-1].append((x[0],x[1][1],x[1][2]))
185
186 crms_o = sortmarkers(crms,end)
187 chromo = getchromo(crms_o,end)
188 all_chr_info = [("I",chromo[0]),("II",chromo[1]),
189 ("III",chromo[2]), ("IV",chromo[3]),
190 ("V",chromo[4])]
191
192 pdf_organism = BasicChromosome.Organism()
193 for x in all_chr_info:
194 newcrom = (x[0],addends(x[1]))
195 pdf_organism.add(load_chrom(newcrom))
196
197 pdf_organism.draw(’at.pdf’,’Arabidopsis thaliana’

© 2010 by Taylor and Francis Group, LLC

392 Python for Bioinformatics

FIGURE 24.1: Product of code 24.2, using the demo dataset (NODBDEMO).

© 2010 by Taylor and Francis Group, LLC

Appendix A

Python and Biopython Installation

As was mentioned on page 19, Python installation is straightforward. This
chapter shows Python installation on most systems used (Windows, Mac OS
X and Linux). A special case is taken into account: Installing more than one
version of Python on the same machine. Developers sometimes need to try
their programs in more than one Python version. Users with no administrative
rights on their machine can install in their home directory a Python version
that is different from the one that came installed in the system (if any).
Another advantage in installing a Python version in your directory is that
you can install modules even if the system administrator can’t do it system-
wide.

A.1 Python Installation

A.1.1 Windows

Python is not included in any version of Windows, so if you want to do
Python programming under Windows, you will have to install it. This is a
nonissue since a full Python installation is only a few clicks away.

Tip: Vista Note. Installing Python in Vista for All Users.

Administrators installing Python for all users on Windows Vista either need
to be logged in as Administrator or use the runas command, as in,

runas /user:Administrator "msiexec /i <path>\<file>.msi"

A.1.2 Mac OS X

OS X comes with Python preinstalled. The problem with the preinstalled
version is that it tends not to be the last Python version.

393

© 2010 by Taylor and Francis Group, LLC

394 Python for Bioinformatics

FIGURE A.1: First screen of the Python installer for Windows: This is
the first screen you should get when you double click the Python installer. It
gives you the option to install Python for all users or just for you. If this is
not your machine, it is best to ask a system administrator which to choose
first.

FIGURE A.2: Second screen of the Python installer for Windows: In this
second screen, you have the option of which location to install Python. The
default is C:\Python25\. To continue, click Next.

© 2010 by Taylor and Francis Group, LLC

Python and Biopython Installation 395

FIGURE A.3: Customize Python installation: This screen lets you cus-
tomize the installation of Python 2.5.2. It has a list of the components of
Python, along with hard drive icons. If you click the drive icon beside a com-
ponent, you can choose to install on the local hard drive, or leave out that
particular feature. A disk usage button allows you to see if there is free space,
and an Advanced button lets you elect to compile the .py files to bytecode
after installation. Click Next to continue. (See also Advanced and disk usage
screen).

FIGURE A.4: Installation progress: After continuing, this screen shows
the progress of the install.

© 2010 by Taylor and Francis Group, LLC

396 Python for Bioinformatics

FIGURE A.5: Last installation screen under Windows: This is the install
finished page. Click Finish to close the installer.

FIGURE A.6: Python shell ready to use in Windows: After installation,
the Python25 folder should be in the Start Menu. Find and click IDLE (the
Python shell and editor) to open it.

© 2010 by Taylor and Francis Group, LLC

Python and Biopython Installation 397

FIGURE A.7: First screen of the Python installer for Mac: Af-
ter double-clicking and mounting the installer .dmg, then double-clicking
MacPython.mpkg, this is the first screen that should appear. Read it carefully
and hit Continue.

This version can be downloaded from http://www.python.org/download/
mac.

Here is the step-by-step guide for Mac OS X:

A.1.3 Linux

As stated in section 2.1 (Installing Python), Python comes preinstalled in
most Linux distributions. Installation and update are done with available
package management software (like apt-get or rpm). The next subsection
deals with the particular case of installation without administrative rights.

A.1.4 Installing Python with No Administrative Permissions

On your own machine you are supposed to have full administrative rights,
so you can perform a system wide installation without asking anyone else. On
a shared PC, you should ask the system administrator to have your program
installed for all the users. This is typical for a university cluster, a corpo-
rate server or for a shared hosting. Sometimes there could be reasons where
the system administrator will not be able to process your request. Limited
resources, restrictive security policies, lack of packages for a specific Linux
version, compatibility problems and other (unknown) reasons could prevent
you from getting the latest Python version installed into your system.

This can be solved by installing Python into your own directory. The first
step is to download the latest Python source code from www.python.org:

$ wget http://www.python.org/ftp/python/2.5.2/Python-2.5.2.tgz

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

398 Python for Bioinformatics

FIGURE A.8: Second screen of the Python installer for Mac: This screen
displays important information also contained in the ReadMe.txt file. Do note
that it says you must only install Python on your boot disk. It also explains
where on your hard drive you can find the Python applications.

FIGURE A.9: Python software agreement in Mac: This is the Python
software agreement. It explains the terms of using Python. After reading
press Continue to accept or decline the agreement.

© 2010 by Taylor and Francis Group, LLC

Python and Biopython Installation 399

FIGURE A.10: Accept to continue in Mac: If you understand and accept
the license from screen three, press Agree to continue.

FIGURE A.11: Select where to install Python: Select the volume where
you would like to install Python. This should be your boot disk. After
selection, press Continue.

© 2010 by Taylor and Francis Group, LLC

400 Python for Bioinformatics

FIGURE A.12: Ready to install Python: On this screen, pressing Install
will perform a Standard install of Python. If you need to install only certain
part of Python, you can choose selected components by clicking Customize(See
Custom Screen). Once you click install, the installer will move on to the next
screen.

FIGURE A.13: Enter your user name and password to continue (Mac).

© 2010 by Taylor and Francis Group, LLC

Python and Biopython Installation 401

FIGURE A.14: Installation progress: Now you should see a screen with a
progress bar that indicates the progress of the installation

FIGURE A.15: Python is successfully installed! You can close the Installer
by pressing Close.

© 2010 by Taylor and Francis Group, LLC

402 Python for Bioinformatics

FIGURE A.16: Python shell in Mac: After install, you can find the Python
Editor IDLE inside the MacPython 2.5 folder located in Applications. Double-
click it to bring up the shell, and you can now write your own Python scripts!.

Uncompress the file1 and change to this directory:

$ tar xfz Python-2.5.2.tgz
$ cd Python-2.5.2

Configure it with the path of the directory where you want to install it:

$./configure --prefix=/home/sb/py25
checking MACHDEP... linux2
checking EXTRAPLATDIR...
checking for --without-gcc... no
checking for gcc... gcc
checking for C compiler default output file name... a.out
(... output deleted ...)
creating Modules/Setup
creating Modules/Setup.local
creating Makefile
$ make
gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -O3 -Wall <=
-Wstrict-prototypes -I. -IInclude -I./Include <=

1Use tar xfj if you downloaded the bz2 version.

© 2010 by Taylor and Francis Group, LLC

Python and Biopython Installation 403

-DPy_BUILD_CORE -o Modules/python.o ./Modules/python.c
(... output deleted ...)
$ make install
/usr/bin/install -c -m 644 ./Include/abstract.h <=
/mnt/hda2/bio/py252/include/python2.5
(... output deleted ...)

Check if the program was successfully installed:

sb@xubuntu:~/python25/bin$./python2.5
Python 2.5.2 (r252:60911, Mar 23 2008, 17:03:19)
[GCC 4.0.3 (Ubuntu 4.0.3-1ubuntu5)] on linux2
Type "help", "copyright", "credits" or "license" for more <=
information.
>>>

A.2 Biopython Installation

A.2.1 Windows

Software requirements for Biopython are Python and Numpy.2

Requirements

Biopython needs Numpy. It is available from http://www.scipy.org/
Download. The file for Windows is numpy-1.2.1-win32-superpack-python2-
.5.exe.3 It is installed as any Windows program.

If you are installing an old Biopython version (before 1.49), you need Nu-
meric (also called Numerical Python). Its development is halted at version
24.2 and you can find a version for Python 2.3 and Python 2.4 in http://
sourceforge.net/project/showfiles.php?group_id=1369&package_id=1351.
Numeric for Python 2.5 is available at http://biopython.org/DIST/Numeric-24.
2.win32-py2.5.exe.

Installing Biopython

The current version of Biopython, 1.49 at the moment of writing this, works
with Python 2.4, 2.5 and 2.6.4

2Biopython up to version 1.48 used Numeric instead of Numpy.
3A Numpy for Python 2.6 is not available at the moment, this limits Biopython to Python
2.5 in Windows.
4Biopython 1.49 can’t be installed in Python 2.6 with a graphical installer.

© 2010 by Taylor and Francis Group, LLC

http://www.scipy.org
http://sourceforge.net
http://sourceforge.net
http://biopython.org
http://www.scipy.org
http://biopython.org
http://biopython.org
http://www.scipy.org
http://biopython.org
http://sourceforge.net
http://sourceforge.net
http://www.scipy.org

404 Python for Bioinformatics

Windows users should download the Biopython installer for their Python
version. For Python 2.5 the installer is biopython-1.49.win32-py2.5.exe and
it is available from the Biopython download page: http://biopython.org/
wiki/Download.

Biopython installation is a three step process: Click next first setup win-
dows, select the Python version which Biopython will be installed (or leave
the default option) and click next until the program is installed.

Tip: Installing Biopython for All Users.

If you installed Python for all users, you have to install Numpy as an
Administrator. To do this right-click on the Numpy executable file and select
“Run as administrator.”

A.2.2 Linux

Installing with Package Manager

Biopython is available in most Linux repositories and can be installed with
one command. The advantage of this method is that with a single program
(the package manager) you can keep track, update or remove every package
in your system. The main drawback is that the Biopython package available
in the repository usually is not the latest version. Installation is a one step
process:

For Debian/Ubuntu based systems,

$ sudo apt-get install python-biopython

For RedHat based systems:

$ sudo yum install python-biopython

Installing Biopython from Sources

When the Biopython version in the repository is not the same as the one in
the Biopython website, there is the need to install it from sources. The first
step is to install NumPy, the only external program needed by Biopython.
Numpy is available in all Linux repositories, so you can install it using your
package manager:

For Debian/Ubuntu based systems:

$ sudo apt-get install python-numpy

For RedHat based systems:

© 2010 by Taylor and Francis Group, LLC

http://biopython.org
http://biopython.org
http://biopython.org
http://biopython.org

Python and Biopython Installation 405

$ sudo yum install python-numpy

Before installing Biopython, check if you need to install some of the optional
software: Reportlab and MySQLdb.

ReportLab

ReportLab is a library used for generating PDF documents. It is used in
the BasicChromosome module. If you don’t plan to draw chromosomes with
this module, you don’t need to install it. In Debian based Linux (like Ubuntu)
it is available at program repositories with the name python-reportlab and
can be installed as usual:

$ sudo apt-get install python-reportlab

It can be installed in a particular Python installation if needed: Download
the sources from http://www.reportlab.org/downloads.html and copy the
file contents into a directory reachable for that Python version:

$ tar xfz ReportLab_2_1.tgz
$ cd reportlab_2_1/
$ cp -R reportlab /home/sb/py25/lib/python2.5/site-packages

MySQLdb

MySQLdb is used to access MySQL databases. Biopython uses it for
BioSQL, a database schema for storing sequence data.5 This module was
covered in section 13.6.1 (page 289). It is also available in all Linux reposito-
ries with the name python-mysqldb, so it is installed with:

$ sudo apt-get install python-mysqldb

Biopython

Once requirements are met, install Biopython from sources:

$ setup.py build
$ setup.py test
$ setup.py install

5See http://www.biopython.org/wiki/BioSQL for more information on BioSQL.

© 2010 by Taylor and Francis Group, LLC

http://www.reportlab.org
http://www.biopython.org
http://www.biopython.org
http://www.reportlab.org

406 Python for Bioinformatics

FIGURE A.17: Biopython testing dialog.

A.2.3 Installing Old Biopython Versions

Biopython up to version 1.48 required mx-texttools and Numeric. Note
that in Biopython 1.49 mx-texttools is not needed and Numeric was re-
placed by Numpy. Since each Biopython version fixes bugs and adds func-
tionality, it is not recommended to install an old version. But if you need
to install an old Biopython version, here are the instructions to install its
dependencies.

Installing mx-texttools

mx-texttools is a Python package that provides high-performance text
manipulation and searching algorithms and it is used by the Martel parser.
It can be installed with the package manager with the name python-egenix-
-mxtexttools. It also can be installed in a particular directory by doing
a manual installation: Download the egenix-mx-base package from http:
//www.egenix.com/products/python/mxBase, select the package for your
system (for this example I choose “Source Code”) and press “download.”
Unpack the file and go to the created directory:

$ tar xfz egenix-mx-base-3.1.0.tar.gz
$ cd egenix-mx-base-3.1.0

© 2010 by Taylor and Francis Group, LLC

http://www.egenix.com
http://www.egenix.com
http://www.egenix.com
http://www.egenix.com

Python and Biopython Installation 407

Install the program by calling the Python version you want to install it into.6

If this custom Python installation is located at “/home/sb/py25/bin/”, you
should run:

$ /home/sb/py25/bin/python2.5 setup.py install

Check that mx-texttools is installed:

>>> from mx.DateTime import now
>>> print now()
2008-03-20 10:51:49.04

Numeric (or Numerical Python)

Numeric is a Python package that provides support for large, multidimen-
sional arrays and matrices, and a large library of high-level mathematical
functions. Numeric is needed for Biopython up to version 1.48 and it is
now replaced with NumPy. It is available at Linux repositories with the
name python-numeric. To make a custom installation, download it from
http://numpy.scipy.org/#older_array. Uncompress, compile (build), and
install:

$ tar xfz Numeric-24.2.tar.gz
$ cd Numeric-24.2
$ /home/sb/py25/bin/python2.5 setup.py build
$ /home/sb/py25/bin/python2.5 setup.py install --prefix=/<=
home/sb/py25

Testing Numeric installation:

>>> import Numeric
>>>

A.3 Biopython with Easy Install

If you have easy install installed on your computer, you can download and
install the latest biopython distribution by executing this command:

easy_install biopython

6It is important not to just call the first “python” installation you have in your path. You
need to call the python version that is installed in your directory.

© 2010 by Taylor and Francis Group, LLC

http://numpy.scipy.org
http://numpy.scipy.org

408 Python for Bioinformatics

You will have to have administrator’s rights to do this. Eventually, on a
*nix system, you could use sudo:

$ sudo easy_install biopython

To install Biopython in a user directory (without affecting the rest of the
system), use virtualenv as shown on page 118.

© 2010 by Taylor and Francis Group, LLC

Appendix B

Selected Papers

B.1 Python All a Scientist Needs

By: Julius B. Lucks. Open writing projects/Python all a scientist needs.
(2008, December 3). OpenWetWare.

Copyright notice for this section (Python All a Scientist
Needs):
This text is licensed under a Creative Commons Attribution-Share Alike 3.0
Unported license, that means you are free to distribute the contents of this
section as long as you attribute authorship to Julius B. Lucks and link it
to this URL: http://openwetware.org/wiki/Julius_B._Lucks/Projects/
Python_All_A_Scientist_Needs. For a complete description of this license,
please see: http://creativecommons.org/licenses/by-sa/3.0.

Abstract

Any cutting-edge scientific research project requires a myriad of compu-
tational tools for data generation, management, analysis and visualization.
Python is a flexible and extensible scientific programming platform that of-
fered the perfect solution in our recent comparative genomics investigation [1].
In this paper, we discuss the challenges of this project, and how the combined
power of Biopython [2], Matplotlib [3] and SWIG [4] were utilized for the
required computational tasks. We finish by discussing how Python goes be-
yond being a convenient programming language, and promotes good scientific
practice by enabling clean code, integration with professional programming
techniques such as unit testing, and strong data provenance.

The Scientist’s Dilemma

A typical scientific research project requires a variety of computational tasks
to be performed. At the very heart of every investigation is the generation
of data to test hypotheses. An experimental physicist builds instruments

409

© 2010 by Taylor and Francis Group, LLC

http://openwetware.org
http://creativecommons.org
http://openwetware.org
http://openwetware.org
http://creativecommons.org
http://openwetware.org

410 Python for Bioinformatics

to collect light scattering data; a crystallographer collects X-ray diffraction
data; a biologist collects flouresence intensity data for reporter genes, or DNA
sequence data for these genes; and a computational researcher writes programs
to generate simulation data. All of these scientists use computer programs
to control instruments or simulation code to collect and manage data in an
electronic format.

Once data is collected, the next task is to analyze it in the context of
hypothesis-driven models that help them understand the phenomenon they
are studying. In the case of light, or X-ray scattering data, there is a well-
proven physical theory that is used to process the data and calculate the
observed structure function of the material being studied [5]. This structure
function is then compared to predictions made by the hypotheses being tested.
In the case of biological reporter gene data, light intensity is matched up with
phenotypic traits or DNA sequences, and statistically analyzed for trends that
might explain the observed patterns.

As these examples illustrate, across science, the original raw data of each in-
vestigation is extensively processed by computational programs in an effort to
understand the underlying phenomena. Visualization tools to create a variety
of scientific plots are often a preferred tool for both troubleshooting ongo-
ing experiments, and creating publication-quality scientific plots and charts.
These plots and charts are often the final product of a scientific investigation
in the form of data-rich graphics that demonstrate the truth of a hypothesis
compared to its alternatives [6].

Unfortunately, all too often scientists resort to a grab-bag of tools to perform
these varied computational tasks. For physicists and theoretical chemists, it
is common to use C or Fortran to generate simulation data, and C code is
used to control experimental apparatus; for biologists, perl is the language of
choice to manipulate DNA sequence data [7]. Data analysis is performed in
separate, external software packages such as MATLAB or Mathematica for
equation solving [8, 9], or Stata, SPSS or R for statistical calculations [10, 11,
12]. Furthermore, separate data visualization packages can be used, making
the scientific programming toolset extremely varied.

Such a mixed bag of tools is an inadequate solution for a variety of reasons.
From a computational perspective, most of these tools cannot be pipelined
easily which necessitates many manual steps or excessive glue code that most
scientists are not trained to write. Far more important than just an incon-
venience associated with gluing these tools together is the extreme burden
placed on the scientist in terms of data management. In such a complicated
system there are often a plethora of different data files in several different
formats residing at many different locations. Most tools do not produce ad-
equate metadata for these files, and scientists typically fall back on cryptic
file naming schemes to indicate what type of data the files contain and how it
was generated. Such complications can easily lead to mistakes. This in turn
provides poor at best data provenance when it is in fact of utmost importance
in scientific studies where data integrity is the foundation of every conclusion

© 2010 by Taylor and Francis Group, LLC

Selected Papers 411

reached and every fact established.
Furthermore, when data files are manually moved around from tool to tool,

it is not clear if an error is due to program error, or human error in using the
wrong file. Analyses can only be repeated by following work flows that have
to be manually recorded in a paper or electronic lab notebook. This practice
makes steps easily forgotten, and hard to pass on to future generations of
scientists, or current peers trying to reproduce scientific results.

The Python programming language and associated community tools [13]
can help scientists overcome some of these problems by providing a general
scientific programming platform that allows scientists to generate, analyze,
visualize and manage their data within the same computational framework.
Python can be used to generate simulation data, or control instrumentation
to capture data. Data analysis can be accomplished in the same way, and
there are graphics libraries that can produce scientific charts and graphs.
Furthermore python code can be used to glue all of these python solutions
together so that visualization code resides alongside the code that generates
the data it is applied to. This allows streamlined generation of data and
its analysis, which makes data management feasible. Most importantly, such
a uniform tool set allows the scientist to record the steps used in data work
flows to be written down in Python code itself, allowing automatic provenance
tracking.

In this paper, we outline a recent comparative genomics case study where
Python and associated community libraries were used as a complete scientific
programming platform. We introduce several specific Python libraries and
tools, and how they were used to facilitate input of standardized biological
data, create scientific plots, and provide solutions to speed bottle-necks in the
code. Throughout, we provide detailed tutorial-style examples of how these
tools were used, and point to resources for further reading on these topics. We
conclude with ideas about how Python promotes good scientific programming
practices, and tips for scientists interested in learning more about Python.

Comparative Genomics Case Study

Recently we performed a comparative genomics study of the genomic DNA
sequences of the 74 sequenced bacteriophages that infect E. coli, P. aerugi-
nosa, or L. lactis [1]. Bacteriophages are viruses that infect bacteria. The
DNA sequences of these bacteriophages contain important clues as to how the
relationship with their host has shaped their evolution.

Each virus that we examined has a DNA genome that is a long strand of four
nucleotides called Adenine (A), Threonine (T), Cytosine (C), and Guanine
(G). The specific sequences of As, Ts, Cs, and Gs encode for proteins that the
virus uses to take over the host bacteria and create more copies of itself. Each
protein is encoded in a specific region of the genomic DNA called a gene.

Proteins are made up of linear strings of 20 amino acids. There are 4
bases encoding for 20 amino acids, and the translation table that governs the

© 2010 by Taylor and Francis Group, LLC

412 Python for Bioinformatics

encoding, called the genetic code, is comprised of 3 base triplets called codons.
Each codon encodes a specific amino acid. Since there are 64 possible codons,
and only 20 amino acids, there is a large degeneracy in the genetic code. For
more information on the genetic code, and the biological process of converting
DNA sequences into proteins, see [14].

Because of this degeneracy, each protein can be “spelled” as a sequence
of codons in many possible ways. The particular sequence of codons used
to spell a given protein in a gene is called the gene’s “codon usage.” As we
found in [1], bacteriophages genomes favor certain codon spellings of genes
over the other possibilities. The primary question of our investigation was
does the observed spellings of the bacteriophage genome shed light onto the
relationship between the bacteriophage and its host [1]?

To address this question, we examined the codon usage of the protein coding
genes in these bacteria for any non-random patterns compared to all the
possible spellings, and performed statistical tests to associate these patterns
with certain aspects about the proteins.

The computational requirements of this study included:

• Downloading and parsing the genome files for viruses from GenBank in
order to get the genomic DNA sequence, the gene regions and annota-
tions: GenBank [15] is maintained by the National Center of Biotech-
nology Information (NCBI), and is a data warehouse of freely available
DNA sequences. For each virus, we needed to obtain the genomic DNA
sequence, the parts of the genome that code for genes, and the annotated
function of these genes. Listing B.1 displays this information for lambda
phage, a well-studied bacterophage that infects E. coli [14], in GenBank
format, obtained from NCBI. Once these files were downloaded and
stored, they were parsed for the required information.

• Storing the genomic information: The parsed information was stored in
a custom genome python class that also included methods for retrieving
the DNA sequences of specific genes.

• Drawing random genomes to compare to the sequenced genome: For
each genome, we drew random genomes according to the degeneracy
rules of the genetic code so that each random genome would theoretically
encode the same proteins as the sequenced genome. These genomes were
then visually compared to the sequenced genome through zero-mean
cumulative sum plots discussed below.

• Visualize the comparisons through “genome landscape” plots: Genome
landscapes are zero-mean cumulative sums, and are useful visual aids
when comparing nucleotide frequency properties of the genomes they are
constructed from (see [1] for more information). Genome landscapers
were computed for both the sequenced genome, and each drawn genome.
The genome landscape of the sequenced genome was compared to the

© 2010 by Taylor and Francis Group, LLC

Selected Papers 413

distribution of genome landscapes generated from the random genomes
to detect regions of the genomes that have extremely non-random pat-
terns in codon usage.

• Statistically analyzing the non-random regions with annotation and host
information: To understand the observed trends, we performed analysis
of variance (ANOVA) [16] analysis to detect correlations between protein
function annotation or host lifestyle information with these regions.

Python was used in every aspect of this computational work flow. Below we
discuss in more detail how Python was used in several of these areas specif-
ically, and provide illustrative tutorial-style examples. For more information
on the details of the computational work flow, and the biological hypotheses
we tested, see [1]. For specific details on the versions of software used in this
paper, and links to free downloads, see Materials and Methods.

Listing B.1: Lambda phage GenBank file snippet. The full file can be
found online, see [17].

LOCUS NC_001416 48502 bp DNA linear PHG 28-NOV-2007
DEFINITION Enterobacteria phage lambda, complete genome.
ACCESSION NC_001416
VERSION NC_001416.1 GI:9626243
PROJECT GenomeProject:14204
KEYWORDS .
SOURCE Enterobacteria phage lambda

ORGANISM Enterobacteria phage lambda
Viruses; dsDNA viruses, no RNA stage; <=

Caudovirales; Siphoviridae;
Lambda-like viruses.

REFERENCE 1 (sites)
AUTHORS Chen,C.Y. and Richardson,J.P.
TITLE Sequence elements essential for rho-dependent<=

transcription termination at lambda tR1
JOURNAL J. Biol. Chem. 262 (23), 11292-11299 (1987)
PUBMED 3038914

...
FEATURES Location/Qualifiers

source 1..48502
/organism="Enterobacteria phage lambda"
/mol_type="genomic DNA"
/specific_host="Escherichia coli"
/db_xref="taxon:10710"

gene 191..736
/gene="nu1"
/locus_tag="lambdap01"

© 2010 by Taylor and Francis Group, LLC

414 Python for Bioinformatics

/db_xref="GeneID:2703523"
CDS 191..736

/gene="nu1"
/locus_tag="lambdap01"
/codon_start=1
/transl_table=11
/product="DNA packaging protein"
/protein_id="NP_040580.1"
/db_xref="GI:9626244"
/db_xref="GeneID:2703523"
/translation="MEVNKKQLADIFGASIRTIQNWQEQGMPV<=

LRGGGKGNEVLYDSA
AVIKWYAERDAEIENEKLRREVEELRQASEADLQPGTIEYERH<=

RLTRAQADAQELKNA
...
ORIGIN

1 gggcggcgac ctcgcgggtt ttcgctattt atgaaaattt tccgg<=
tttaa ggcgtttccg

61 ttcttcttcg tcataactta atgtttttat ttaaaatacc ctctg<=
aaaag aaaggaaacg

121 acaggtgctg aaagcgaggc tttttggcct ctgtcgtttc ctttc<=
tctgt ttttgtccgt
...

Biopython

Biopython is an open-source suite of bioinfomatics tools for the Python
language [2]. The suite is comprehensive in scope, and offers Python mod-
ules and routines to parse bio-database files, facilitate the computation of
alignments between biological sequences (DNA and protein), interact with
biological web-services such as those provided by NCBI, and examine protein
crystallographic data to name a few.

In this project, Biopython was used both to download and parse genomic
viral DNA sequence files from the NCBI Genbank database [15] as outlined
in Listing B.2.

Listing B.2: Downloading and parsing the GenBank genome file for lambda
phage (refseq number NC 001416).

genbank.py - utilities for downloading
and parsing GenBank files

from Bio import GenBank #(1)
from Bio import SeqIO

© 2010 by Taylor and Francis Group, LLC

Selected Papers 415

def download(accession_list):
"""Download and save all GenBank records in

accession_list.
"""

try:
handle = GenBank.download_many(accession_list) #(2)

except:
print "Are you connected to the internet?"
raise

genbank_strings = handle.read().split(’//\n’) #(3)
for i in range(len(accession_list)):

#Save raw file as .gb
gb_file_name = accession_list[i]+’.gb’
f = open(gb_file_name,’w’)
f.write(genbank_strings[i]) #(4)
f.write(’//\n’)
f.close()

def parse(accession_list):
""" Parse all records in accession_list. """

parsed = []
for accession_number in accession_list:

gb_file_name = accession_number+’.gb’
print ’Parsing ... ’,accession_number
try:

gb_file = file(gb_file_name,’r’)
except IOError:

print ’Is the file %s downloaded?’ % gb_file_name
raise

gb_parsed_record = SeqIO.parse(gb_file,
"genbank").next() #(5)

gb_file.close()

print gb_parsed_record.id #(6)
print gb_parsed_record.seq

parsed.append(gb_parsed_record) #(7)

return parsed

© 2010 by Taylor and Francis Group, LLC

416 Python for Bioinformatics

Example of use of the above code:

Listing B.3: Using genbank parser.

import genbank # (8)
genbank.download([’NC_001416’])
genbank.parse([’NC_001416’])

1. The Biopython module is called Bio. The Bio.Genbank module is used
to download records from GenBank, and the Bio.SeqIO module provides
a general interface for parsing a variety of biological formats, including
GenBank.

2. The Bio.GenBank.download many method is used in the genbank.down-
load method to download GenBank records over the Internet. It takes a
list of GenBank accession numbers identifying the records to be down-
loaded.

3. GenBank records are separated by the character string ’\n’. Here we
manually separate GenBank files that are part of the same character
string.

4. When we save the GenBank records as individual files to disk, we include
the ’\n’ separator again.

5. The Bio.SeqIO.parse method can parse a variety of formats. Here we use
it to parse the GenBank files on our local disk using the “genbank” for-
mat parameter. The method returns a generator, whose next() method
is used to retrieve an object representing the parsed file.

6. The object representing the parsed GenBank file has a variety of meth-
ods to extract the record id and sequence. See Example 2 for more
details.

7. The genbank.parse method returns a listed of parsed objects, one for
each input sequence file.

8. To run the code in genbank.py, Biopython 1.44 must first be installed
(see Materials and Methods). Executing the following code should create
a file called ’NC 001416.gb’ on the local disk (see listing B.1), as well as
produce the following output:

Parsing ... NC_001416
NC_001416.1
Seq(’GGGCGGCGACCTCGCGGGTTTTCGCTATTTATGAAAATTTTCCGGTTTAAGG<=
CGTTTCCG ...’, IUPACAmbiguousDNA())

© 2010 by Taylor and Francis Group, LLC

Selected Papers 417

The benefits of using Biopython in this project are several, including:

1. Not having to write or maintain this code ourselves. This is an impor-
tant point as the number of web-available databases and services grows.
These often change rapidly, and require rigorous maintenance to keep up
with tweaks to API’s and formats - a monumental task that is completed
by an international group of volunteers for the Biopython project.

2. The Biopython parsing code can be wrapped in custom classes that
make sense for a particular project. Example B.4 illustrates the latter
by outlining a custom genome class used in this project to store the
location of coding sequences for genes (CDS seq).

Listing B.4: Using genbank parser.

genome.py - a custom genome class which wraps
biopython parsing code

import genbank # (1)
from Bio import Seq
from Bio.Alphabet import IUPAC

class Genome(object):
"""Genome - representing a genomic DNA sequence with genes

Genome.genes[i] returns the CDS sequences for each gene i."""

def __init__(self, accession_number):

genbank.download([accession_number]) # (2)
self.parsed_genbank = genbank.parse([

accession_number])[0]

self.genes = []

self._parse_genes()

def _parse_genes(self):
"""Parse out the CDS sequence for each gene."""

for feature in self.parsed_genbank.features: # (3)
if feature.type == ’CDS’:

#Build up a list of (start,end) tuples that will
#be used to slice the sequence in

© 2010 by Taylor and Francis Group, LLC

418 Python for Bioinformatics

#self.parsed_genbank.seq
#
#Biopython locations are zero-based so can be
#directly used in sequence splicing

locations = []
if len(feature.sub_features): # (4)

If there are sub_features, then this gene
is made up of multiple parts. Store the
start and end positins for each part.
for sf in feature.sub_features:

locations.append((sf.location.start.position,
sf.location.end.position))

else:
This gene is made up of one part. Store
its start and end position.
locations.append((feature.location.start.position,

feature.location.end.position))

Store the joined sequence and nucleotide
indices forming the CDS.
seq = ’’ # (5)
for begin,end in locations:

seq += self.parsed_genbank.seq[
begin:end].tostring()

Reverse complement the sequence if the CDS is on
the minus strand
if feature.strand == -1: # (6)

seq_obj = Seq.Seq(seq,IUPAC.ambiguous_dna)
seq = seq_obj.reverse_complement().tostring()

append the gene sequence
self.genes.append(seq) # (7)

1. Here we import the genbank module outlined in Example B.2, along with
two more biopython modules. The Bio.Seq module has methods for cre-
ating DNA sequence objects used later in the code, and the Bio.Alphabet
module contains definitions for the types of sequences to be used. In
particular, we use the Bio.Alphabet.IUPAC definitions.

2. We use the genbank methods to download and parse the GenBank record
for the input accession number.

© 2010 by Taylor and Francis Group, LLC

Selected Papers 419

3. The parsed object stores the different parts of the GenBank file as a list
of features. Each feature has a type, and in this case, we are looking for
features with type ’CDS’, which stores the coding sequence of a gene.

4. For many organisms, genes are not contiguous stretches of DNA, but
rather are composed of several parts. For GenBank files, this is indicated
by a feature having sub features. Here we gather the start and end
positions of all sub features, and store them in a list of 2-tuples. In
the case that the gene is a contiguous piece of DNA, there is only one
element in this list.

5. Once the start and end positions of each piece of the gene are obtained,
we use them to slice the seq of the parsed genbank object, and collect
the concatenated sequence into a string.

6. Since DNA has polarity, there is a difference between a gene that is en-
coded on the top, plus strand, and the bottom, minus strand. The strand
that the gene is encoded in is stored in feature.strand. If the strand is
the minus strand, we need to reverse compliment the sequence to get the
actual coding sequence of the gene. To do this we use the Bio.Seq mod-
ule to first build a sequence, then use the reverse complement() method
to return the reverse compliment.

7. We store each gene as an element of the Genome.genes list. The CDS
of the ith gene is then retrievable through Genome.genes[i].

For a more detailed introduction to the plethora of Biopython features, as
well as introductory information on Python, see [18] .

MatPlotLib

Matplotlib [3] is a suite of open-source Python modules that provide a
framework for creating scientific plots similar to the Matlab [8] graphical tools.
In this project, matplotlib was used to create genome landscape plots both
to have a quick look at data as it was generated, and to produce publication
quality figures. Genome landscapes are cumulative sums of a zero-mean se-
quence of numbers, and are useful visualization tools for understanding the
distribution of nucleotides across a genome (see [1] for more information).

Example B.5 outlines how matplotlib was used to quickly generate graphics
to test raw simulation data as it was being generated.

Listing B.5: Sample matplotlib script that calculates and plots the zero-
mean cumulative sum of the numbers listed in a single column of an input
file.

landscape.py - plotting a zero-mean cumulative sum of numbers.

© 2010 by Taylor and Francis Group, LLC

420 Python for Bioinformatics

import fileinput # (1)
import numpy
from matplotlib import pylab

def plot(filename):
"""Read single-column numbers in filename and plot zero-mean
cumulative sum"""

numbers = []
for line in fileinput.input(filename): # (2)

numbers.append(float(line.split(’\n’)[0]))

mean = numpy.mean(numbers) # (3)
cumulative_sum = numpy.cumsum([number -

mean for number in numbers])

pylab.plot(cumulative_sum[0::10],’k-’) # (4)
pylab.xlabel(’i’)
pylab.title(’Zero Mean Cumulative Sum’)

pylab.savefig(filename+’.png’) # (5)
pylab.show()

1. We use several Python community modules to plot the zero-mean cu-
mulative sum. As part of the Python standard library, fileinput can
be used as a quick and easy solution to reading in a file containing a
column of entries. numpy is a comprehensive Python project aimed
at providing numerical routines for scientific applications [19]. Finally
we import the matplotlib.pylab module which provides a Matlab-like
plotting environment.

2. Here we use fileinput to read successive lines of the input file, which
takes care of opening and closing the input file automatically. Notice
that we split each line by the newline character ’\n’, and take everything
to the left of it, assuming that each line contains a single number.

3. The numpy module provides many convenient methods such as mean to
compute the mean of a list of numbers, and cumsum which computes
the cumulative sum. To shift the input numbers by the mean, we use
a Python list comprehension to subtract the mean from each number,
and then input the shifted list to numpy.cumsum.

4. The pylab module presents a Matlab-like plotting environment. Here
we use several methods to create a basic line plot with an xlabel and
title.

© 2010 by Taylor and Francis Group, LLC

Selected Papers 421

5. To view the plot, we use pylab.show(), after we have saved the figure
as a PNG file using pylab.savefig. The following script uses the genome
class outlined in Example B.4, along with the landscape class to plot
the GC-landscape for the lambda phage genome. The genome class is
used to download and parse the GenBank file for lambda phage. Each
gene sequence is then scanned for ’G’ or ’C’ nucleotides. For every ’G’
or ’C’ nucleotide encountered, a 1 is appended to the list GC; for every
’A’ or ’T’ encountered, a 0 is appended. This sequence of 1’s and 0’s
representing the GC-content of the lambda phage genome is saved in a
file, and input into the landscape.plot method. A plot corresponding to
executing this stript is shown in Figure B.1.

Listing B.6: Plots the zero-mean cumulative sum.

import genome,landscape
lambda_phage = genome.Genome(’NC_001416’)
GC = []
for gene_sequence in lambda_phage.genes:

for nucleotide in gene_sequence:
if nucleotide == ’G’ or nucleotide == ’C’:

GC.append(1)
else:

GC.append(0)

f = file(’NC_001416.GC’,’w’)
for num in GC:

f.write(’%i\n’ % num)
f.close()

landscape.plot(’NC_001416.GC’)

Matplotlib was also used to make custom graphics classes for creating
publication-quality plots. To do this, we used the object oriented interface to
matplotlib plotting routines to inherit functionality in our classes.

The benefits of using matplotlib in this project were several:

1. The code that produced the scientific plots resided alongside the code
that produced the underlying data that was used to produce the plots.
The importance of this cannot be stressed enough as having the code
structured in this way removed many opportunities for human error in-
volved in manually shuffling raw data files into separate graphical pro-
grams. Moreover, the instructions for producing the plots from the
underlying raw data was Python code, which not only described these
instructions, but could be executed to produce the plots. Imagine in-
stead the often practiced use of spreadsheets to create plots from raw
data - in these spreadsheets, formulas are hidden by the results of the

© 2010 by Taylor and Francis Group, LLC

422 Python for Bioinformatics

FIGURE B.1: The lambda phage GC-landscape generated by the sample
code in Example B.5.

© 2010 by Taylor and Francis Group, LLC

Selected Papers 423

calculations, and it is often very confusing to construct a picture of the
computational flow used to produce a specific plot.

2. Having the graphics instructions in code allowed for quick trouble shoot-
ing when creating the plots, or evaluating raw data as it was generated.

3. Complicated plots were easily regenerated by tweaking the code for par-
ticular graphical plots.

SWIG

The Simple Wrapper and Interface Generator (SWIG) [4], is an easy-to-use
system for extending Python. In particular, it allows the speed up of selected
parts of an application by writing these routines in another more low-level
language such as C or C++. Furthermore, SWIG implements the use of this
low-level code using the standard Python module importing structure. This
allows developers to first prototype code in Python, then re-implement the
code in C and SWIG causing no change in the Python code that uses the
re-implemented module.

This project relied heavily on drawing random numbers from an input dis-
crete distribution. For example, we often needed to draw a sequence of As, Ts,
Cs, or Gs corresponding to the nucleotide sequence of the genome, but preserv-
ing the genomic distribution of these four nucleotide bases. For some viruses,
the distribution might look like: PA = 0.2, PT = 0.2, PC = 0.3, PG = 0.3,
with PA + PT + PC + PG = 1.0. Example B.7 illustrates the outline of a
Python module that has methods to draw numbers according to a discrete
distribution with 4 possible outcomes. It also illustrates how this module
could be implemented in C, and included in a Python module with SWIG.

Listing B.7: Drawing random numbers from a specified discrete distribu-
tion with four possibilities. The Python code to do this is shown first, followed
by a re-implementation in C and inclusion in a Python module with SWIG.
The procedure for using SWIG is described below.

module discrete_distribution.py - drawing numbers from
a discrete probability distribution

import random # (1)

def seed(): # (2)
random.seed()

def draw(distribution): # (3)
""" Drawing an index according to distribution.

distribution is a list of floating point numbers,

© 2010 by Taylor and Francis Group, LLC

424 Python for Bioinformatics

one for each index number, representing the probability
of drawing that index number.

Example: [0.5, 0.5] would represent equal probabilities
of returning a 0 or 1.
"""
sum = 0 # (4)
r = random.random()
for i in range(0,len(distribution)):

sum += distribution[i]
if r < sum:

return i

Listing B.8: Discrete Distribution

import discrete_distribution # (5)
discrete_distribution.seed()
print sum([discrete_distribution.draw([0.2,0.2,0.3,0.3])<=
for x in range(10000)])/10000.

1. Import the random number generator.

2. We use the discrete distribution.seed() method to seed the random num-
ber generator. If no arguments are supplied to random.seed(), the sys-
tem time is used to seed the number generator [20].

3. The draw function takes an argument distribution, which is a list of
floating point numbers.

4. The algorithm for drawing a number according to a discrete distribution
is to draw a number, r, from a uniform distribution on [0, 1]; compute
a cumulative sum of the probabilities in the discrete distribution for
successive indices of the distribution; when r is less than this cumulative
sum, return the index that the cumulative sum is at.

5. To test this code, plug in a distribution [0.2, 0.2, 0.3, 0.3], draw 10000
numbers from this distribution, and compute the mean, which theoret-
ically should be 0 ∗ 0.2 + 1 ∗ 0.2 + 2 ∗ 0.3 + 3 ∗ 0.3 = 1.7. In this case,
when this code was executed, the result 1.7013 was returned.

In the rest of the example, we implement this routine using C, and use
SWIG to create a Python module of the C implementation.

© 2010 by Taylor and Francis Group, LLC

Selected Papers 425

Listing B.9: Discrete distribution in C

//c_discrete_distribution.c -
//A C implementation of the discrete_distribution.py module

#include <stdlib.h> // (6)
#include <stdio.h>
#include <time.h>

void seed() {
srand((unsigned) time(NULL) * getpid());

}

int draw(float distribution[4]) { // (7)
float r= ((float) rand() / (float) RAND_MAX);
float sum = 0.;
int i = 0;
for(i = 0; i < 4; i++) {

sum += distribution[i];
if (r < sum) {

return i;
}
}

}

6. Here we define two functions, seed and draw, which correspond to the
Python methods in discrete distribution.py. Note that the Python im-
plementation of discrete distribution.draw() worked with distributions
of arbitrary numbers of elements. For simplicity, we are restricting the
C implementation to work with distributions of length 4.

7. The draw routine is implemented using the same algorithm as in the
Python implementation. For simplicity, we use the C standard library
rand() routine, although there are more advanced random number gen-
erators that would be more appropriate for scientific applications [21].

Listing B.10: Draw routine in C

// c_discrete_distribution.i - A Swig interface file for the <=
c_discrete_distribution module // (8)

// Grab a 4 element array as a Python 4-list // (10)
a local variable

© 2010 by Taylor and Francis Group, LLC

426 Python for Bioinformatics

int i;
if (PyList_Check($input)) {

PyObject* input_to_tuple = PyList_AsTuple($input);
if (!PyArg_ParseTuple(input_to_tuple,"ffff",temp,temp+1,<=

temp+2,temp+3)) {
PyErr_SetString(PyExc_TypeError,"tuple must have 4 <=

elements");
return NULL;

}
$1 = &temp[0];

} else {
PyErr_SetString(PyExc_TypeError,"expected a tuple.");
return NULL;

}
}

void seed(); // (11)
int draw(float distribution[4]);

8. To use SWIG, we create a SWIG interface file that describes how to
translate Python inputs to the C code, and C outputs to the Python
code.

9. SWIG directives are preceded by the % sign. Here we declare that the
module we are going to make is called c discrete distribution. In general,
the module name, the C source name, and the interface file name should
all be the same outside of the file extension.

10. SWIG will automatically handle the conversion of many data-types from
Python to C and C to Python. For illustration purposes, we create an
explicit typemap which converts a 4-element Python list into a 4 element
C list of floats. Since we are using the typemap(in) directive, SWIG
knows that we are converting Python to C. The rest of the code checks
that a list was passed from Python to C, and the list has 4 elements. If
these conditions are not met, Python errors are thrown. If they are met,
an array of floats called temp is called, and passed to C. This conversion
is adapted from the SWIG reference manual [4].

11. The last thing to do in the SWIG interface file is to declare the function
signatures of the C implementation.
To use this module then, we have to call SWIG to generate wrapper
code, then compile and link our code with the wrapper code. With
SWIG installed, the procedure would look something like

swig -python -o c_discrete_distribution_wrap.c c_discr<=
ete_distribution.i

© 2010 by Taylor and Francis Group, LLC

Selected Papers 427

We first use SWIG to generate the wrapper code. Using the c discrete -
distribution.i interface file, SWIG will generate c discrete distribution -
wrap.c using the Python C API, since we specified the -python flag. In
addition, SWIG will also generate c discrete distribution.py, which we
will use to import the module into our code.

gcc -c c_discrete_distribution.c c_discrete_distributi<=
on_wrap.c -I/usr/include/python2.5 -I/usr/lib/python2.5

Next we use a C compiler to compile each of the C files (our C source, and
the SWIG generated wrapper). We have to include the python header
files and libraries for the python version we are using. In our case, we
used python 2.5. After this procedure completes, we should have two ad-
ditional files: c discrete distribution.o and c discrete distribution-
wrap.o.

gcc -bundle -flat_namespace -undefined suppress -o _c_<=
discrete_distribution.so c_discrete_distribution.o c_d<=
iscrete_distribution_wrap.o

The final step is to link them all together. The linking options are
platform dependent, and the official SWIG documentation should be
consulted [4]. For Mac OS X, we use the “-bundle -flat namespace -
undefined suppress” options for gcc. When this step is done, the file
c discrete distribution.so is created.

The Python module file c discrete distribution.py can be used in
the same way as in (5) above,

import c_discrete_distribution as discrete_distribution
discrete_distribution.seed()
print sum([discrete_distribution.draw([

0.2,0.2,0.3,0.3]) for x in range(10000)])/10000.

This code produces the number 1.6942.

The benefits of using SWIG in this project were several:

1. We used all the benefits of Python with the increased speed for critical
bottlenecks of our simulation code.

2. The parts that were sped up were used in the exact same context through
the Python module import structure, removing the need for glue code
to tie in external C-programs.

© 2010 by Taylor and Francis Group, LLC

428 Python for Bioinformatics

More generally, SWIG allows scientists using Python to leverage experience
in other languages that they typically have, while staying within the Python
framework with all its benefits outlined above. This promotes a scientific work
flow which consists of prototyping simulation code using the more simple
Python, then profiling the Python code to identify the speed bottlenecks.
These can then be re-implemented in C or C++ and wrapped into the existing
Python code using SWIG. This is a much preferred methodology than writing
unnecessarily complicated and error-prone C programs, and using glue code
to integrate them within the larger simulation methodology.

Conclusions

There are several practical conclusions to draw for scientists. The first is
that Python, and its associated modules supported by the Python commu-
nity, offer a general platform for computing that is useful across a broad range
of scientific disciplines. We have only outlined several such tools in this ar-
ticle, but there exist many more relevant to scientists [22]. The second is
that Python and its community modules can easily be used by scientists. The
clean nature of the code is quick to learn, and its high-level features make
complicated tasks quick to accomplish. We have not discussed the interactive
programming environments offered by Python[23, 24], which when combined
with the power of the language makes prototyping ideas and algorithms ex-
tremely easy.

The bigger picture conclusion is that Python promotes good scientific prac-
tice. The code readability and package structure enables code to be easily
understood by different researchers working on the same project. In fact,
Python code is often self-documenting which allows researchers to go back to
code they wrote in the past and easily understand it. Python and its commu-
nity modules provide a consistent framework to generate data, and shuttle it
to the various analysis tasks. This in turn promotes data provenance through
a written record in code of every step used to analyze specific data, which
removes many manual steps, and thus many errors.

Finally, by using Python, scientists can start to use other community tools
and practices originally designed for professional programmers, but also useful
to scientists. The most important of these, but not discussed in this article, is
unit testing, whereby test code is written alongside scientific code that tests to
see if that code is working properly. This allows scientists to re-write aspects
of the code, perhaps using a different algorithm, and to rerun the tests to see
if it still works as they think it should. For large projects this is critical, and
removes the need for often-used adhoc practices of looking at some sample
data by eye, which is not only tedious, but not guaranteed to uncover subtle
numerical bugs that could cause crucial misinterpretation of scientific data.

Since Python is a well-established language and has a large and active com-
munity, the resources available for beginners can be overwhelming. For the
scientist interested in learning more about scientific programming in Python,

© 2010 by Taylor and Francis Group, LLC

Selected Papers 429

we recommend visiting the web page and mailing lists of the SciPy project
for an introduction to scientific modules [22], and [25, 26] for excellent intro-
ductory Python tutorials.

Materials and Methods

All code examples in this paper were written by the author. The particu-
lar versions of the relevant software used were: Python 2.5, Biopython 1.44,
MatPlotLib 0.91.2, and SWIG 1.3.33. Documentation and free downloads of
this software are available at the following URLs:

• Python - http://python.org

• Biopython - http://biopython.org

• MatPlotLib - http://matplotlib.sourceforge.net

• SWIG - http://www.swig.org/

Acknowledgments

The author would like to thank Adrian Del Maestro, Joao Xavier, David
Thompson, and Stanley Qi for helpful comments during the preparation of this
manuscript. The author also thanks the Miller Institute for Basic Research
in Science at the University of California, Berkeley for support.

References/Resources

1. J. B. Lucks, D. R. Nelson, G. Kudla, J. B. Plotkin. Genome land-
scapes and bacteriophage codon usage, PLoS Computational Biology, 4,
.1000001, 2008. (doi:10.1371/journal.pcbi.1000001) [LucksJB-PlOSCompBio-
2008].

2. The Biopython project homepage is at http://biopython.org, and the
documentation can be found at http://biopython.org/wiki/Documentation.

3. The Matplotlib project homepage is at http://matplotlib.sourceforge.
net, where the documentation can also be found.

4. The Simple Wrapper and Interface Generator (SWIG) project homepage
is at http://www.swig.org, and the documentation can be found at
http://www.swig.org/doc.html.

5. N. Ashcroft and N. Mermin. Solid State Physics. New York. Holt,
Reinhart and Winston, 1976.

6. E. Tufte. The Visual Display of Quantitative Information. 2nd ed.
Cheshire, CT. Graphics Press, 2001.

© 2010 by Taylor and Francis Group, LLC

http://python.org
http://biopython.org
http://matplotlib.sourceforge.net
http://www.swig.org
http://biopython.org
http://biopython.org
http://matplotlib.sourceforge
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.swig.org
http://matplotlib.sourceforge
http://biopython.org
http://biopython.org
http://www.swig.org
http://matplotlib.sourceforge.net
http://biopython.org
http://python.org

430 Python for Bioinformatics

7. L. Stein. How Perl Saved the Human Genome Project (http://www.
bioperl.org/wiki/How_Perl_saved_human_genome).

8. The Matlab programming environment is developed by Mathworks -
http://www.mathworks.com.

9. The Mathematica software is developed by Wolfram Research - http:
//www.wolfram.com.

10. The Stata statistical software is developed by StataCorp - http://www.
stata.com.

11. The SPSS statistical software is developed by SPSS - http://www.spss.
com.

12. The R statistical programming project homepage is at http://www.
r-project.org.

13. The Python project homepage is at http://python.org.

14. Alberts, Johnson, Lewis, Raff, Roberts, Walter. Molecular Biology of
the Cell, 4th ed. New York: Garland Science, 2002.

15. The GenBank data repository can be found at http://www.ncbi.nlm.
nih.gov/Genbank.

16. For information on the Analysis of Variances Statistical Method, see
Julian Faraway, Practical Regression and Anova using R, which can be
found at http://cran.r-project.org/other-docs.html.

17. The GenBank file for lambda phage can be downloaded from http:
//www.ncbi.nlm.nih.gov/nuccore/9626243 [Lambda-GenBank].

18. Bassi, S. (2007). A Primer on Python for Life Science Researchers. PLoS
Comput Biol 3(11): e199. ([http://dx.doi.org/10.1371/journal.pcbi.0030199
doi:10.1371/journal.pcbi.0030199).

19. The numpy project provides a numerical back-end for scientific applica-
tions. The project homepage is at http://numpy.scipy.org/.

20. The Python random module documentation can be found at http://
docs.python.org/lib/module-random.html.

21. For an extensive discussion of random numbers, see Numerical Recipes
in C Chapter 7, which can be found at http://www.nrbook.com/a/
bookcpdf.php.

22. The SciPy project is aimed at collecting and developing scientific tools
for Python. The project homepage is at http://www.scipy.org/.

© 2010 by Taylor and Francis Group, LLC

http://www.bioperl.org
http://www.bioperl.org
http://www.mathworks.com
http://www.wolfram.com
http://www.stata.com
http://www.spss.com
http://python.org
http://www.ncbi.nlm.nih.gov
http://cran.r-project.org
http://www.ncbi.nlm.nih.gov
http://dx.doi.org
http://dx.doi.org
http://numpy.scipy.org
http://docs.python.org
http://docs.python.org
http://www.nrbook.com
http://www.scipy.org
http://www.wolfram.com
http://www.stata.com
http://www.spss.com
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.nrbook.com
http://www.nrbook.com
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.spss.com
http://www.stata.com
http://www.wolfram.com
http://www.scipy.org
http://www.nrbook.com
http://docs.python.org
http://docs.python.org
http://numpy.scipy.org
http://dx.doi.org
http://dx.doi.org
http://www.ncbi.nlm.nih.gov
http://cran.r-project.org
http://www.ncbi.nlm.nih.gov
http://python.org
http://www.spss.com
http://www.stata.com
http://www.wolfram.com
http://www.mathworks.com
http://www.bioperl.org
http://www.bioperl.org

Selected Papers 431

23. The ipython project can be found at http://ipython.scipy.org.

24. F. Perez and B. Granger. IPython: A System for Interactive Scien-
tific Computing, Computing in Science and Engineering, 2007. http://
ieeexplore.ieee.org/iel5/5992/4160244/04160251.pdf?arnumber=
4160251.

25. Swaroop, C. H. A Byte of Python. http://www.ibiblio.org/swaroopch/
byteofpython/read/.

26. Pilgrim, M. Dive Into Python. http://www.diveintopython.org/.

B.2 Diving into the Gene Pool with Biopython

Zachary Voase. Published in Volume 2 Issue 4 of Python Magazine.
(http://pymag.phparch.com)

Bioinformatics is on the rise in the world of science. More and more com-
puter scientists have begun to gravitate towards this exciting field, and as
tools and libraries such as Biopython evolve, this number will only increase. In
this article I introduce developers and dabblers who are familiar with Python
to the biology powering this exciting subject, and the utilities available for
Pythonistas to work with biological data.

Introduction

DNA: The blueprint of life. Surely an oversimplified description of such
a complex and important molecule, but a necessity nonetheless. What most
people overlook is the effort that goes into determining, analyzing and using
this blueprint to gain even more information about the world, both around us
and within us. The creation of phylogenetic trees, for example, is one pursuit
of the field of bioinformatics. These trees show, with a high probability,
how organisms evolved from the thriving soup of the Earth into amazingly
intricate beings and expose genetic relationships between different organisms
or proteins.

Let’s begin with the basics. The DNA molecule is essentially a string of
small units known as nucleotides, held together by a sugar-phosphate back-
bone. Nucleotides have attached to them chemical groups known as bases
that distinguish the different types of nucleotide. In each of the nucleotides
that make up DNA, the base can be one of four possibilities: Adenine (A),
Guanine (G), Thymine (T) or Cytosine (C) (see Figure B.2). So, we can look
at DNA as being a string of information in base-4 notation. Figure B.3 shows

© 2010 by Taylor and Francis Group, LLC

http://ipython.scipy.org
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://www.ibiblio.org
http://www.diveintopython.org
http://pymag.phparch.com
http://ieeexplore.ieee.org
http://www.ibiblio.org
http://www.ibiblio.org
http://ieeexplore.ieee.org
http://pymag.phparch.com
http://www.diveintopython.org
http://www.ibiblio.org
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://ipython.scipy.org

432 Python for Bioinformatics

FIGURE B.2: Schema of an Adenine nucleotide.

a strand of nucleotides with the sugar-phosphate backbone as a pentagon with
two circles in the left and the bases at the right. The strands of bases join up
along their length in order to make a complete molecule of DNA, in the famous
double-helix structure. Given one strand, the second strand’s composition is
predictable because A will only join up with T, and C with G. The name
given to this other strand is the complementary strand or sequence. Figure
B.4 illustrates a strand of DNA along with its complementary strand. There
is no real chemical difference between the two strands; the strand on the left is
complementary to that on the right, and vice versa. The difference comes in
the interpretation of the information held by the DNA. Some information is
encoded in a strand-dependent way, and other information is not; the factors
affecting this are too numerous and complex to describe here.

Another feature of the DNA molecule is its directionality. The structure of
the molecule is such that a strand has two chemically distinct endpoints that
tell the DNA-reading machinery in the cell which end to start from. These
two ends are called 5′ and 3′ (pronounced “five prime” and “three prime”),
and conventionally DNA sequences are written from 5′ to 3′. In Figures B.3
and B.4, the arrows run in the direction the sequences are read and written.
The complementary strands run in opposite directions, so in order to represent
data in a conventional manner it is necessary to give complementary sequences
in reverse order, the so-called reverse complement. This can be seen in Figure
B.4 also; the strands running opposite to each other run in different directions,
because their 5′ and 3′ ends have been swapped.

Essentially, DNA provides a code for creating proteins, the machinery of our
cells. There are other regions of DNA which perform several other complex
and, at the moment, not entirely understood functions, but the main concern
of this article is in the protein-coding regions. This code is understood by
each and every cell in our body. Different sequences of three bases, known
as codons, correspond to one of 20 different chemical subunits called amino

© 2010 by Taylor and Francis Group, LLC

Selected Papers 433

FIGURE B.3: Nucleotides forming a DNA strand of Adenine, Thymine,
and Guanine (ATG).

© 2010 by Taylor and Francis Group, LLC

434 Python for Bioinformatics

FIGURE B.4: DNA strand and its complementary sequence.

acids. The amino acids string together to form proteins. A long sequence of
DNA, therefore, codes for many of these units. The units are strung together
to form the more complex molecules making up proteins via a process called
translation. During translation a sequence of codons is literally translated into
a sequence of amino acid subunits. These proteins carry out specific functions
in our cells. Some, called enzymes, allow particular chemical reactions to occur
in our cells. Others, known as hormones, send messages to other cells in our
body. Still others perform one of a host of other unique abilities.

That’s enough background material on DNA coding; it’s GATC time to get
back into the Python coding.

Basics of Sequences

Let’s look at how easy it is to manipulate a sequence of nucleotides. Ini-
tialize your environment by importing the Seq class, then create a sequence
by instantiating a Seq with a sequence as the only argument.

>>> from Bio.Seq import Seq
>>> sequence = Seq(’AAACAACTTCGTAAGTAAGTATA’)
>>> print sequence
Seq(’AAACAACTTCGTAAGTAAGTATA’,
SingleLetterAlphabet())

© 2010 by Taylor and Francis Group, LLC

Selected Papers 435

REQUIREMENTS
PYTHON: 2.3+
Other Software:

• Biopython v1.4.4

• C compiler (if compiling Biopython from source)

• mxTextTools v2.0

• Numerical Python v24.2

Useful/Related Links:

• AMY1.fa - http://tinyurl.com/2cgzrg

• AMY1.gb - http://tinyurl.com/yppgow

• Biopython Home Page - http://biopython.org

• SwissProt Protein Database - http://www.expasy.ch/sprot

• FASTA Format Wikipedia Entry - http://en.wikipedia.org/
wiki/FASTA_format

• PubMed Home Page - http://www.pubmed.gov

• Biopython SeqIO Wiki Page - http://www.biopython.org/wiki/
SeqIO

© 2010 by Taylor and Francis Group, LLC

http://tinyurl.com
http://tinyurl.com
http://biopython.org
http://www.expasy.ch
http://en.wikipedia.org
http://www.pubmed.gov
http://www.biopython.org
http://en.wikipedia.org
http://www.biopython.org
http://www.biopython.org
http://en.wikipedia.org
http://www.biopython.org
http://www.pubmed.gov
http://en.wikipedia.org
http://www.expasy.ch
http://biopython.org
http://tinyurl.com
http://tinyurl.com

436 Python for Bioinformatics

The reverse complement of a sequence can be found by calling reverse -
complement().

>>> print sequence.reverse_complement()
Seq(’TATACTTACTTACGAAGTTGTTT’,
SingleLetterAlphabet())

To reiterate, the reverse complement is a representation of the complement
as it would be read from the 5′ to 3′ end, due to the opposite directionality
of the complementary strand of DNA.

Alphabets

The problem with just using simple Seq objects as a way of storing se-
quences is that there is no meaning to the data. One way of adding metadata
to a sequence is to associate a particular alphabet with it. The alphabet spec-
ifies which characters should be present in a sequence, and protects it from
several illegal operations which we will see later. A lot of very commonly
used alphabets are held in Bio.Alphabet, with the ones we want located in
Bio.Alphabet.IUPAC.

>>> from Bio.Alphabet import IUPAC
>>> print IUPAC.unambiguous_dna
IUPACUnambiguousDNA()
>>> print IUPAC.unambiguous_dna.letters
GATC

From this, it’s clear that unambiguous dna is an instance of the IUPACUn-
ambiguousDNA class, which is held inside the same module. It has a set of
letters, which represent the valid characters forming a sequence of unambigu-
ous DNA. There is also an alphabet for ambiguous DNA, in which there are
several more letters to represent ambiguity in bases - for example, ’R’ indi-
cates that a base may be either ’A’ or ’G’, and ’Y’ represents ’T’ or ’C’. The
whole specification may be found at the Wikipedia entry for the FASTA for-
mat. To add an alphabet to a sequence, simply give the alphabet instance as
the second positional argument when initializing the sequence. Alternatively,
this may be done by changing the alphabet attribute of the sequence object.

>>> sequence.alphabet = IUPAC.unambiguous_dna
>>> print sequence
Seq(’AAACAACTTCGTAAGTAAGTATA’,
IUPACUnambiguousDNA())

Having access to the alphabet when working with a lot of sequences helps
because you can quickly see what sequence is what.

© 2010 by Taylor and Francis Group, LLC

Selected Papers 437

Using Sequences with Alphabets

The Seq object is very versatile. It supports slices, concatenation, and the
majority of operations which may be performed on strings. Using the usual
slicing syntax, and the sequence object we created previously, let’s cut out
the first five characters of the sequence.

>>> sub_seq1 = sequence[:5]
>>> print sub_seq1
Seq(’AAACA’, IUPACUnambiguousDNA())

The alphabet of the parent sequence is preserved in the newly created se-
quence. Create another sub-sequence of the last five characters, and stick the
two together.

Alphabets also act to validate sequence data and can help prevent illegal
operations between incompatible molecules. For example, RNA molecules
are similar to DNA molecules except that they do not form double stranded
molecules normally, and that the grey section in Figure B.2 varies between
the two. Another major difference is that Thymine (T) on the DNA molecule
is a counterpart to Uracil (U) on the RNA molecule. Due to their differing
structures the two are incompatible with one another; you cannot have a
mixed strand of DNA and RNA. We can make a new sequence using the
IUPAC.unambiguous rna alphabet, the alphabet for sequences of RNA, and
try to concatenate the two.

>>> rna_seq = Seq(’GUAAGUAUA’,
... IUPAC.unambiguous_rna)
>>> print rna_seq
Seq(’GUAAGUAUA’, IUPACUnambiguousRNA())
>>> new_seq + rna_seq
...
<type ’exceptions.TypeError’>: ...

An error message is returned: it is impossible to concatenate a DNA se-
quence with an RNA sequence. In this way, using alphabets helps to avoid
errors which may arise from trying to do something which is physically im-
possible.

Mutable Sequences

Sequences are like primitive strings or lists in that they allow slicing and ac-
cess to particular positions along the sequence. On the other hand, sequences
do not allow you to replace slices or give positions within the sequence different
values; in fact, they don’t actually have a setitem () method.

>>> sequence[5] = ’G’

© 2010 by Taylor and Francis Group, LLC

438 Python for Bioinformatics

Traceback (most recent call last):
...
AttributeError: Seq instance has no attribute
’__setitem__’

Objects like this are said to be immutable. So, if you want to make changes
to slices of a sequence, it is necessary to change the sequence so that it be-
comes mutable, using Biopython’s MutableSeq class. Seq instances can be
transformed into MutableSeq instances by calling their tomutable() method.

>>> mut_seq = sequence.tomutable()
>>> print mut_seq
MutableSeq(’AAACAACTTCGTAAGTAAGTATA’,
IUPACUnambiguousDNA())

Using a mutable sequence, you can reassign whole slices of a sequence, or
just single characters, and the newly changed mutable sequence can be made
immutable again by calling toseq().

>>> mut_seq[:5] = ’TCAGG’
>>> print mut_seq
MutableSeq(’TCAGGACTTCGTAAGTAAGTATA’,
IUPACUnambiguousDNA())
>>> changed_seq = mut_seq.toseq()
>>> print changed_seq
Seq(’TCAGGACTTCGTAAGTAAGTATA’,
IUPACUnambiguousDNA())

The functionality offered by the MutableSeq class is very useful, as it allows
sequences to be modified in order to carry out mutations, as would happen in
the body.

Reading Sequences from Files

Of course, all of this manipulation of genetic sequences would be useless if
you couldn’t store your data after manipulating it. One of the most popular
sequence storage formats is FASTA, which was originally developed for use
with the FASTA sequence alignment algorithm (a method for finding simi-
larity in sequences). It’s a very simple format, essentially consisting of a line
beginning with a > character, followed by information about a sequence, and
then several lines containing the sequence itself. This allows many sequences
to be placed in the same file, and it is trivial to implement a parser and writer
for this format. Biopython contains tools for working with FASTA files.

We can begin by getting an exemplar sequence file from the Internet. In
the related links for this article, I have provided a TinyURL version of a link

© 2010 by Taylor and Francis Group, LLC

Selected Papers 439

to a query on a public database called PubMed. Download that file and save
it as AMY1.fa so you can use it with the following examples.

As an example, we’ll write this sequence’s reverse complement to an output
file. The first step is to import the necessary Biopython resources. Bio.SeqIO
contains even more tools to read and write a variety of formats, but I’m
only going to demonstrate FASTA now. The IUPAC module contains needed
alphabets, and the SeqRecord class will be used later to write the sequence
to a file.

>>> from Bio.SeqIO import FastaIO
>>> from Bio.Alphabet import IUPAC
>>> from Bio.SeqRecord import SeqRecord

The generator function FastaIO.FastaIterator() reads the sequence data.
Biopython makes extensive use of generators, because they allow procedures
to be carried out on streams and provide more intuitive interfaces. We can
assign an alphabet to the data returned by this generator by specifying an
alphabet keyword argument. Invoke the generator using the sequence file as
the argument and specifying an alphabet.

>>> seq_file = open(’AMY1.fa’)
>>> seq_reader = FastaIO.FastaIterator(seq_file,

alphabet=IUPAC.unambiguous_dna)

Records are returned by successive calls to the generator’s next() method.
Get the first (and only) record from the file, and close the file.

>>> seq_record = seq_reader.next()
>>> seq_file.close()

The returned objects are instances of Bio.SeqRecord.SeqRecord. In addi-
tion to the sequence itself, sequence records contain metadata about a partic-
ular sequence, as parsed by the FASTA reader, including the name, ID, and
description of the sequence. In the case of the FASTA format, the name and
ID are the same when read. Other formats provide different names and IDs,
with IDs primarily being used for accessing records in large databases.

>>> print seq_record.__class__
Bio.SeqRecord.SeqRecord

Writing Sequences to Files

The sequence held in a SeqRecord instance is available through its seq
attribute. We can now get the reverse complement by extracting seq from
the original record, finding its reverse complement, and assigning it to a new
variable.

© 2010 by Taylor and Francis Group, LLC

440 Python for Bioinformatics

>>> seq = seq_record.seq
>>> seq_rc = seq.reverse_complement()

In order to write sequences out, you need to package them in a SeqRecord
object. SeqRecord. init () accepts the sequence as the first positional argu-
ment, with a host of other keyword arguments usually used for more complex
things such as database cross-references and annotations to the sequence. Se-
quence records to be written to FASTA-formatted files only need name, ID,
and description. Here I’ve created some variables to hold the information
before creating the record, in the interest of clean code.

>>> name = seq_record.name
>>> id = seq_record.id
>>> description = seq_record.description + \
... ’ (Reverse Complement)’
>>> seq_record_rc = SeqRecord(seq_rc,
... id=id, name=name,
... description=description)

In addition to passing them to the constructor, you can assign these at-
tributes to the SeqRecord object after instantiating the object, like this:

>>> seq_record_rc.name = name
>>> seq_record_rc.id = id
>>> seq_record_rc.description = description

The next step is to write this information in the FASTA format using Se-
qIO.write. It accepts iterable containing several records, a file handle and
the format name (“fasta” in this case). Create a writable output file called
AMY1 RC.fa to which we will write both the original sequence and its reverse
complement.

>>> seq_file_rc = open(’AMY1_RC.fa’,’w’)

Now import SeqIO and use its write method:

>>> from Bio import SeqIO
>>> SeqIO.write([seq_record, seq_record_rc], seq_file_rc, ’fasta’)

You now have a new FASTA-formatted file containing both the original
and reverse complement of the genetic sequence of the human alpha-amylase
1 enzyme.

© 2010 by Taylor and Francis Group, LLC

Selected Papers 441

Proteins

The last Biology section touched on proteins lightly, but it is relevant to go
slightly more in-depth now before doing more work with them.

Proteins, like DNA, are strands of units which are each different but link
together in a similar fashion. The units of proteins are known as amino acids,
and several of these join end-to-end to form a large molecule known as a
polypeptide. Often, proteins will be made up of only one polypeptide, but
some are composed of several polypeptides that combine in a very specific
way. Hemoglobin, the pigment that allows our blood to transport oxygen, is
one such protein; it is composed of four polypeptides known as hem groups,
with an atom of iron trapped between the molecular entanglement.

DNA has many functions in our cells. In this article, we are concentrating
on how it acts as a blueprint for the creation of proteins. As mentioned
before, there is a code that maps 3-base-long codons of DNA onto particular
amino acids in a process known as translation. Translation is carried out by a
structure in cells called the ribosome, which joins this string of amino acids up
to form a polypeptide. Because there are 64 possible codons and only 20 amino
acids, the code is called degenerate, as several different codons will code for
the same amino acid. Nevertheless, due to the structure of polypeptides it is
possible to write them as sequences, albeit using 20 letters instead of 4. If you
take a look at the Bio.Alphabet.IUPAC module, you will notice an alphabet
named protein. This is the alphabet of amino acids, the specification for which
may also be found at the FASTA format Wikipedia entry. It is also worth
noting that because polypeptides do not join up with another complementary
molecule, the concepts of complements and reverse complements do not apply.
If you try calling the reverse complement() method of a protein sequence,
you will receive an error.

Querying from Public Databases

Due to the rapid expansion of the field of bioinformatics, and the necessity
for information interchange between research parties around the world, sev-
eral resources have been created which contain quickly growing repositories of
information for bioinformaticists. PubMed, mentioned earlier, is a database of
articles, genes, whole genomes (the gene sequences of entire organisms), and
protein sequences run by the US National Center for Biotechnology Informa-
tion. Swiss-Prot, part of the Swiss Institute of Bioinformatics’ ExPASy server,
is a publicly available database of protein structures and information, com-
plete with large amounts of annotation and references. Biopython offers ways
to query these (and other) resources from within your Python programs, using
several modules included with the main distribution. In this section, we’re
going to grab a protein sequence from the Swiss-Prot protein knowledge-base.

The first step is to import Bio.ExPASy and SwissIterator.

>>> from Bio import ExPASy

© 2010 by Taylor and Francis Group, LLC

442 Python for Bioinformatics

>>> from Bio.SeqIO.SwissIO import SwissIterator

Then, using ExPASy.get sprot raw(), create a handle, that returns the data
fetched from Swiss-Prot on the protein specified by the identifier ’P04745’,
which is essentially the index of a record in the database.

>>> connection = ExPASy.get_sprot_raw(’P04745’)

Instantiate the SwissIterator class around this connection. Because the
connection acts like a file object, it is perfectly safe to iterate over it, in-
stead of reading data into a file or StringIO buffer and then using that. The
SwissIterator is a generator function which returns SeqRecord objects.

>>> sprot_reader = SwissIterator(connection)
>>> sprot_record = sprot_reader.next()
>>> connection.close()

Due to the large amount of annotative data held in the Swiss-Prot database,
this sequence record will have its other possible attributes filled; annotations,
dbxrefs and features, for example, will all contain a lot of information.

>>> print sprot_record.name
AMY1_HUMAN
>>> print sprot_record.annotations[’organism’]
Homo Sapiens (Human)

Protein P04745’s name is ’AMY1 HUMAN’, and it comes from the Homo
Sapiens organism, otherwise known as the human. ExPASy’s entries have a
lot of metadata bundled with them, including references to papers which talk
about the protein, and the location of the protein on other databases. You
have successfully downloaded and parsed the polypeptide sequence for the
alpha-amylase 1 enzyme, the genetic sequence of which we just worked with
a short while ago.

Proteins are not simply mapped from the gene to the polypeptide sequence.
Before being translated, DNA is copied onto a strand of RNA in a process
called “transcription.” This messenger RNA (mRNA) then moves from the
nucleus of the cell, where the DNA is stored, out into the cell’s cytoplasm.
There a process called splicing occurs. Splicing is essentially the removal
of particular fragments of code from the sequence, which has the effect of
changing the polypeptide sequence produced. The fragments which remain,
known as exons, join together to form a new sequence, and those that were
removed, called introns, move off and are recycled by the cell. The spliced
mRNA strand is used as the template to make the polypeptide.

Splicing is still not fully understood. Biologists spend a lot of time and effort
figuring out what parts of a gene are spliced, and why. It is useful to have the
gene and the protein sequences available at the same time because by using

© 2010 by Taylor and Francis Group, LLC

Selected Papers 443

the protein sequence it is possible to figure out what parts of the gene were
spliced out, and hence which parts of the gene are introns and which are exons.
Splicing is responsible for the large size difference between the human genome
(the collective set of all human genes) and the human proteome (the set of
all human proteins). This difference in size is because it is possible for one
gene to code for several different polypeptides by alternative splicing. New
evidence also suggests that some segments of RNA have a catalytic action
which causes them to splice themselves out of the mRNA strand, without
external help from proteins. The rapid advances occurring in this field every
day, combined with its incredible and exciting complexity, are what is making
it so attractive to computer scientists around the world.

Data Included with Biopython

In addition to a large collection of procedures, Biopython comes with a
rich set of useful data. The Bio.Data module includes data such as the
molecular weights of bases for both DNA and RNA and the codon mappings
used by several different organisms to translate mRNA into polypeptide se-
quences. The specification for ambiguous DNA is included in the dictionary
Bio.Data.IUPACData.ambiguous dna values. Individual character keys are
mapped onto strings of several letters. For example, ’R’ is mapped onto ’AG’
and ’Y’ onto ’CT’, with a whole host of other ambiguous letters.

As an example of the other features of Bio.Data, we’re going to write
a small application to calculate the molecular weight of a specific protein,
given its SwissProt identifier. The program will have to download a Swis-
sProt entry, parse it, and then use the molecular weight data included in
Biopython to calculate the weight of the protein. For this, it will need the
Bio.ExPASy.get sprot raw(), Bio.SeqIO.SwissIO.SwissIterator and
Bio.Data.IUPACData.protein weights respectively. Listing B.11 shows
the whole program, lines 3-7 of which contain the necessary imports.

Listing B.11: Using data included in Biopython

1 #!/usr/bin/env python
2
3 import sys
4
5 from Bio.Data.IUPAaCData import protein_weights
6 from Bio.ExPASy import get_sprot_raw
7 from Bio.SeqIO.SwissIO import SwissIterator
8
9 def get_prot_record(prot_id):
10 connection = get_sprot_raw(prot_id)
11 reader = SwissIterator(connection)
12 prot_record = reader.next()

© 2010 by Taylor and Francis Group, LLC

444 Python for Bioinformatics

13 connection.close()
14 return prot_record
15
16 def calc_weight(prot_seq):
17 weight_list = map(protein_weights.get, prot_seq)
18 return sum(weight_list)
19
20 def id_to_weight(prot_id):
21 prot_record = get_prot_record(prot_id)
22 weight = calc_weight(prot_record.seq)
23 return weight
24
25 if __name__ == ’__main__’:
26 args = sys.argv[1:]
27 for arg in args:
28 print ’%s: %.3f’ % (arg, id_to_weight(arg))

A good starting point is the small function to download the sequence record
for a specified protein identifier (lines 9-14). It is merely a repetition of the
procedure used earlier for the alpha-amylase 1 enzyme. It accepts a protein
ID, connects to SwissProt using get sprot raw(), and uses SwissIterator() to
grab the sequence record. It then closes the connection and returns the record.
The reason I chose not to make it return only the sequence, which is really
all that is needed, is so this function can be used again by other programs.
Next, the program needs another function to calculate the weight of a protein
given a sequence (lines 16-18). Because calc weight() only requires that its
argument implements iteration, it can accept strings, unicode objects, Seq,
and MutableSeq instances. The protein letter-to-weight mappings are held in
a simple dictionary, called protein weights, located in Bio.Data.IUPACData.
This dictionary allows calc weight() to simply map the weight of each amino
acid to a list, and then return the sum of this list.

Again, fragmenting this rather simple program up into several functions
enables other programs to use various parts of this one. Finally, the wrapper
function id to weight() cements it all together (lines 20-23). If id to weight()is
fed the protein identifier for alpha-amylase 1, ’P04745’, it gives back a float-
ing point number of approximately equal to 66955.810. I’ve also added a
small section which will allow the function to be run from the command line,
and called with several identifiers. As you can see, Biopython comes with a
real treasure trove of data, and I recommend you have a look around at the
Bio.Data module in the interpreter and online documentation as much as you
can to see what can be done with it.

© 2010 by Taylor and Francis Group, LLC

Selected Papers 445

Sequence Features

The sequences we have examined so far have all been pretty simple; just
strings of letters, with optional metadata if wrapped in a SeqRecord instance.
But, of course, different segments of sequences often have different functions
or roles. Sometimes you will have a sequence of pre-mRNA (i.e. mRNA
that has not yet been spliced) and you will want to know which parts are
introns and which parts are exons, etc. It is easy to do this with Biopython’s
SeqFeature module. Sequence Features are annotations to sequences which
can optionally span a segment of the sequence. In this section we will use
sequence features to separate out a DNA sequence into several different parts.
Each of these parts will correspond to an exon on the DNA sequence. For
us to do this, the FASTA format will not be enough; we’re going to have to
use a format known as GenBank. This format allows for verbose detail and
annotation of a sequence, and Biopython can parse the GenBank format’s
annotations into sequence features. I’ve made available a link to the data we
will need. Download the AMY1.gb file as you did for the FASTA-formatted
sequence, and make sure to save it under that name.

Listing B.12: Reading Sequence Features

1 from Bio.SeqIO import parse, write
2
3 gb_file = open(’AMY1.gb’)
4 gb_iterator = parse(gb_file, ’genbank’)
5 gb_record = gb_iterator.next()
6 gb_file.close()
7 exons = [feat for feat in gb_record.features
8 if feat.type == ’exon’]
9

10 seq_records = []
11 for exon in exons:
12 start = exon.location.start.position
13 end = exon.location.end.position
14 number = exon.qualifiers[’number’][0]
15 sequence = gb_record.seq[start:end]
16 record = SeqRecord(sequence)
17 record.name = ’AMY1.%s’ % (number,)
18 record.id = record.namev
19 record.description =
20 ’Human amylase gene, exon %s’ % (number,)
21 seq_records.append(record)
22 outfile = open(’AMY1_exons.fa’,’w’)
23 write(seq_records, outfile, ’fasta’)
24 outfile.close()

© 2010 by Taylor and Francis Group, LLC

446 Python for Bioinformatics

Listing B.12 starts by importing the necessary modules and functions. In
this case, we need to import only two functions that are held in the Bio.SeqIO
module: parse() and write(). These functions offer a general I/O ability, with
the type of file specified as the second positional argument. For example, on
line 4 we open the file using the ’genbank’ format string, meaning it will read
this as a GenBank file. Other file types include ’fasta’ (the file format of which
should be obvious) and ’swiss’ (for SwissProt files). The list of supported file
formats, along with their capabilities (with respect to reading and writing)
can be found at the Biopython wiki page for the SeqIO module.

Once the file is open, we grab the only record in the file, and close the file.
Lines 7-8 extract all the exon data from each feature in the sequence record.

SeqRecord instances contain a features attribute which is a list of SeqFea-
ture instances. Each feature has a type attribute; for example, a type of
’gene’ means that the feature contains information on where that particular
sequence can be found within an organism’s genome. Features of type ’exon’
contain information on a particular exon within that sequence, including the
exon number for that exon within that gene and its location, given as a range
of positions along the sequence. The location attribute of the first exon shows
that it is made up of the bases between positions 0 and 168 along that se-
quence, with 0 being the first base (as with all iterables in Python).

The next step is to create a list of the sequence records cut out of the
master sequence so we can write them to a file afterwards. This list is called
seq records. The loop processes the exons. First, it gets the start and end
positions by accessing its location attribute. Then, it retrieves the exon’s
number, or index on the strand, from the ’qualifier’ with title ’number’. The
first item in the list is used because the values are held in lists so keys can
be specified several times for a particular feature. Qualifiers are essentially
key/value pairs of metadata associated with features, which means you can
specify your own qualifiers without having to adhere to a globally defined
standard.

The sequence for the exon is then obtained by slicing out the region be-
tween the start and end positions previously obtained (line 15). A new record
is created around this sequence, and its name is set to our custom format,
which will be different for each exon. Because we are writing this out to the
FASTA format, the id and name attributes should be the same, so we can
set the record’s id to be its name. In addition, we can also give each record
a description, which we’ve set to give a basic summary of the whole gene’s
function and the particular exon number. Finally, each newly created record
is appended to the list.

Now that it has a list of fully created sequence records, the program can
write them all out to ’AMY1 exons.fa’ (lines 22-25). This example uses the
standard form of write(), which is usually used for writing output in a quick-
and-dirty way. For more precise control, it is often necessary to use the more
specialized writers such as the FastaWriter class used before. There you have
it: a FASTA-formatted file which contains all of the exons which will go on

© 2010 by Taylor and Francis Group, LLC

Selected Papers 447

to make the alpha-amylase 1 enzyme.

Conclusion

Biopython is an incredibly versatile and well documented tool for bioinfor-
maticists. In this article I have barely scraped the surface of all that it has
to offer. There are some very well-written tutorials out there that go into a
much greater depth. Biopython is constantly adapting to both the large and
the small discoveries being made every day, and it will continue to do so with
time. I can only wish you good luck getting to know it in the future.

© 2010 by Taylor and Francis Group, LLC

Appendix C

Included DVD: Virtual Machine
Installation and Use

C.1 General Overview

The DVD includes a virtual machine (VM) with a Linux distribution with
all the software included in this book. A VM is a software container that
can run its own operating systems and applications as if it were a physical
computer. A VM is composed of two elements: A virtual machine monitor
(VMM), and the VM data. The VMM is the software that allows one or
multiple operating systems (guest systems) to run on a physical computer
(host). The VM data are the files where the guest operating system is stored.

The VMM included in the DVD is called VM Player. This program can
run on top of most used operating systems.1 With a VM you can run a
pre-configured system in minutes with no hassle. In this particular case, the
included system is a special edition of DNALinux. In order to run DNALinux,
you have to install VM player and load the included VM.

In case you can’t or don’t want to install the VM, all programs and files
used in the book are available in the software directory in the DVD.

Installation from included DVD takes three steps:

1. Uncompress virtual machine files.

2. Install VM player.

3. Load virtual machine into the player.

C.1.1 Uncompress

Since the VM disk size is larger than DVD available space, it is compressed
with the 7zip utility. You must first install the uncompress utility (unless
you already have one) to be able to uncompress the virtual disk. This program
is included in the DVD. Find the apropiate version in your Operating System

1Windows and Linux players are freely available, but Mac OSX virtual machine (called
VMWare Fusion) is not free, but there is a 30-day free trial.

449

© 2010 by Taylor and Francis Group, LLC

450 Python for Bioinformatics

FIGURE C.1: Select the compressed virtual disk and extract it contents
with 7zip.

directory on the DVD. Windows version installation is straightforward. Linux
users may want to install xarchive since it provides a GUI front end for 7zip.

In any case, copy the VM disk file (DNALinux.7z) from the DVD to the
harddisk. In Windows, select the file and press the secondary mouse button.
From the popup menu, select 7-Zip and then Extract to DNALinux
as shown in Figure C.1.

C.1.2 VMWare Player Installation

The next step is to install the VM player. It is installed as any standard
Windows program (rebooting included). Double-click the “VMWare Player”
installer, VMware-player-2.5.2-156735.exe, and you will see a screen like
C.2.

Press “Install” and follow the prompts until you get a “Finished” screen
(see Figure C.3 in page 451).

Installing VMWare in Linux has almost the same procedure as Windows
installation, albeit without the rebooting stage.

Before installing VMWare, check if you have the kernel headers and a build
environment. In Ubuntu these packages are installed with

$ sudo apt-get install linux-headers-‘uname -r‘ build-essential

The executable file is called VMware-Player-2.5.2-156735.i386.bundle
and it should be called from the command line with:

© 2010 by Taylor and Francis Group, LLC

Included DVD: Virtual Machine Installation and Use 451

FIGURE C.2: VMWare First Installation Screen.

FIGURE C.3: VMWare Finish Screen.

© 2010 by Taylor and Francis Group, LLC

452 Python for Bioinformatics

FIGURE C.4: Starting VMWare Player.

$ sudo sh VMware-Player-2.5.2-156735.i386.bundle

C.1.3 Loading the VM

With the virtual machine player installed, start the virtual machine. You
should see a screen like C.4.

Press “Open an existing Virtual Machine” and go to the directory where
VM files were extracted and select the only .vmx file available. Figure C.5
shows how this dialog looks in Ubuntu Linux while Figure C.6 shows the
equivalent dialog in Windows.

DNALinux should boot. There will be a Xubuntu screen during boot-up
since Xubuntu is the Linux distribution taken as a base to make DNALinux.

© 2010 by Taylor and Francis Group, LLC

Included DVD: Virtual Machine Installation and Use 453

FIGURE C.5: Open File Dialog Box in Linux.

FIGURE C.6: Open File Dialog Box in Windows.

© 2010 by Taylor and Francis Group, LLC

454 Python for Bioinformatics

FIGURE C.7: DNALinux ready to use (inside a VMWare virtual machine).

C.2 Instructions for Mac Users

VMWare free player is not available for Mac. Although there are two
options: Use “VMWare Fusion”2 or use the .py programs included in the
software directory in the DVD. All programs are named with the same num-
ber of the py3.us URL. For example, program 10.1 (page 182) has as URL,
py3.us/36, so the program name is 36.py.

There is a Mac directory with the 7zip program. Use this program to
uncompress the DNAlinux.7z file if you want to use “VMWare Fusion.”

C.3 Accessing the Virtual Machine

Once the VMWare is installed and the DNALinux virtual machine is loaded,
you should see a screen like Figure C.7.

The DNALinux desktop is ready to use. There is no need to log-in since it
login automatically with the user sb. The password for this user is dnalinux.

2Available from http://www.vmware.com/products/fusion/.

© 2010 by Taylor and Francis Group, LLC

http://www.vmware.com
http://www.vmware.com

Included DVD: Virtual Machine Installation and Use 455

FIGURE C.8: Loading a page from the DNALinux Web server.

There is no root user. To execute a command with root privileges, use sudo
command. To issue the command top as root, type

$ sudo top

When prompt for a password, use your password (dnalinux).
To run the Python IDLE, go to Applications, Development and the

click on IDLE. From the IDLE menu, you can open any Python program.
All programs featured in the book are available in the /home/sb/bioinfo
directory. As mentioned in “Instructions for Mac Users,” programs are named
with the same number of the py3.us URL.

To run a terminal, go to Applications, Accessories, and Terminal.

C.3.1 Using DNALinux as a Server

An Apache Web server is preconfigured in DNALinux. It can be accessed
from your host computer. You need the IP address of the virtual machine to
point your browser in your host computer at the Web server. To find out the
IP address, open a terminal and type: ifcongif. Look at the second line of
the output and find a line starting with inet addr:. The IP I get is always
192.168.117.133, but this may change on other setup. Enter this IP in the
address bar on the browser of the host machine, and it should load a page like
Figure C.8.

The contents of this page is being served from the directory /var/www/.
Take this into account to test programs from Chapter 11 (Web Applications).

© 2010 by Taylor and Francis Group, LLC

456 Python for Bioinformatics

C.3.2 Using Databases in DNALinux

A MySQL server is installed and loaded in DNALinux. The password is
root and can be accessed from the command line with the MySQL client or
from the Web server using the installed PHPMyAdmin.

There is a SQLite viewer installed. It is called SQLite Database Browser
and it is available in Applications, Development menu.

C.4 Additional Resources

• VMWare Player. “Run Virtual Machines on Linux or Windows PCs for
Free.” http://www.vmware.com/products/player

• VMWare Player. Getting started guide (PDF). http://www.vmware.
com/pdf/vmware_player250.pdf

• DNALinux homepage.
http://www.dnalinux.com

• Citing DNALinux:
Bassi, Sebastian and Gonzalez, Virginia. DNALinux Virtual Desktop
Edition. Available from Nature Precedings <http://dx.doi.org/10.
1038/npre.2007.670.1> (2007).

• DNALinux forum.
http://groups.google.com/group/dnalinux-forum/

• Ubuntu Support
http://www.ubuntu.com/support/communitysupport

© 2010 by Taylor and Francis Group, LLC

http://www.vmware.com
http://www.vmware.com
http://www.dnalinux.com
http://dx.doi.org
http://dx.doi.org
http://groups.google.com
http://www.ubuntu.com
http://www.vmware.com
http://www.vmware.com
http://www.ubuntu.com
http://groups.google.com
http://dx.doi.org
http://dx.doi.org
http://www.dnalinux.com
http://www.vmware.com
http://www.vmware.com

Appendix D

Python Language Reference

Copyright notice for this chapter (Python Language Ref-
erence):

This text is based on Richard Gruet’s “Python Quick Reference.” It is
included here by permission of the author. This work is also available online at
http://rgruet.free.fr/PQR25/PQR2.5.html. The online version is under
a Creative Commons Attribution-Noncommercial-Share Alike 2.0 license. For
more information on this license please see: http://creativecommons.org/
licenses/by-nc-sa/2.0/fr/deed.en_US.

D.1 Python 2.5 Quick Reference

D.1.1 Invocation Options

python[w] [-dEhimOQStuUvVWxX?] [-c command | scriptFile | -] [args]
See Table D.1 on page 458 for a complete list.

(pythonw does not open a terminal/console; python does)

• Available IDEs in std distrib: IDLE (tkinter based, portable), Python-
win (on Windows). Other free IDEs: IPython (enhanced interactive
Python shell), Eric, SPE, BOA constructor, PyDev (Eclipse plugin).

• Typical python module header :

#!/usr/bin/env python
-*- coding: latin1 -*-

Since 2.3, the encoding of a Python source file must be declared as one
of the two first lines (or defaults to 7 bits ASCII) [PEP-0263], with
the format:

457

© 2010 by Taylor and Francis Group, LLC

http://rgruet.free.fr
http://creativecommons.org
http://creativecommons.org
http://creativecommons.org
http://creativecommons.org
http://rgruet.free.fr

458 Python for Bioinformatics

TABLE D.1: Invocation Options
Option Effect
-d Output parser debugging information (also PYTHONDE-

BUG=x)
-E Ignore environment variables (such as PYTHONPATH)
-h Print a help message and exit (formerly -?)
-i Inspect interactively after running script (also PYTHONIN-

SPECT=x) and force prompts, even if stdin appears not to be
a terminal.

-m module Search for module on sys.path and runs the module as a script.
(Implementation improved in 2.5: module runpy)

-O Optimize generated bytecode (also PYTHONOPTIMIZE=x).
Asserts are suppressed.

-OO Remove doc-strings in addition to the -O optimizations.
-Q arg Division options: -Qold (default), -Qwarn, -Qwarnall, -Qnew
-S Don’t perform import site on initialization.
-t Issue warnings about inconsistent tab usage (-tt: issue errors).
-u Unbuffered binary stdout and stderr (also PYTHONUN-

BUFFERED=x).
-U Force Python to interpret all string literals as Unicode literals.
-v Verbose (trace import statements) (also PYTHONVER-

BOSE=x).
-V Print the Python version number and exit.
-W arg Warning control (arg is action:message:category:module:lineno)
-x Skip first line of source, allowing use of non-unix forms of #!cmd
-c command Specify the command to execute (see next section). This termi-

nates the option list (following options are passed as arguments
to the command).

scriptFile The name of a python file (.py) to execute. Read from stdin.
- Program read from stdin (default; interactive mode if a tty).
args Passed to script or command (in sys.argv[1:])

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 459

-*- coding: encoding -*-

Std encodings are defined here, e.g. ISO-8859-1 (aka latin1), iso-8859-15
(latin9), UTF-8... Not all encodings supported, in particular UTF-16 is not
supported.

• It’s now a syntax error if a module contains string literals with 8-
bit characters but doesn’t have an encoding declaration (was a warning
before).

• Since 2.5, from future import feature statements must be declared at
beginning of source file. item Site customization: File sitecustomize.py
is automatically loaded by Python if it exists in the Python path (ideally
located in $PYTHONHOME/lib/site-packages).

D.2 Environment Variables

See Table D.2 on page 460.

D.3 Notable Lexical Entities

D.3.1 Keywords

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass with
def finally in print yield

• (List of keywords available in std module: keyword)

• Illegitimate Tokens (only valid in strings): $? (plus @ before 2.4)

• A statement must all be on a single line. To break a statement over
multiple lines, use “\”, as with the C preprocessor.

• Exception: can always break when inside any (), [], or {} pair, or in
triple-quoted strings.

• More than one statement can appear on a line if they are separated with
semicolons (“;”).

© 2010 by Taylor and Francis Group, LLC

460 Python for Bioinformatics

TABLE D.2: Environment Variables
Variable Effect
PYTHONHOME Alternate prefix directory (or prefix;exec prefix).

The default module search path uses prefix/lib
PYTHONPATH Augments the default search path for module

files. The format is the same as the shell’s
$PATH: one or more directory pathnames sepa-
rated by ’:’ or ’;’ without spaces around (semi-)
colons ! On Windows Python first searches
for Registry key HKEY LOCAL MACHINE\-
Software\Python\PythonCore\x.y\PythonPath
(default value). You can create a key named
after your application with a default string value
giving the root directory path of your appl.
Alternatively, you can create a text file with a
.pth extension, containing the path(s), one per
line, and put the file somewhere in the Python
search path (ideally in the site-packages direc-
tory). It’s better to create a .pth for each appli-
cation, to make it easy to uninstall them.

PYTHONSTARTUP If this is the name of a readable file, the Python
commands in that file are executed before the first
prompt is displayed in interactive mode (no de-
fault).

PYTHONDEBUG If non-empty, same as -d option
PYTHONINSPECT If non-empty, same as -i option
PYTHONOPTIMIZE If non-empty, same as -O option
PYTHONUNBUFFERED If non-empty, same as -u option
PYTHONVERBOSE If non-empty, same as -v option
PYTHONCASEOK If non-empty, ignore case in file/module names

(imports)

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 461

Literal
”a string enclosed by double quotes”
’another string delimited by single quotes and with a ” inside’
”’a string containing embedded newlines and quote (’) marks, can be delimited
with triple quotes.”’
””” may also use 3- double quotes as delimiters ”””
u’a unicode string’
U”Another unicode string”
r’a raw string where are kept (literalized): handy for regular expressions and
windows paths!’
R”another raw string” – raw strings cannot end with a
ur’a unicode raw string’
UR”another raw unicode”

• Comments start with “#” and continue to end of line.

D.3.2 Identifiers

(letter | "_") (letter | digit | "_")*

• Python identifiers keywords, attributes, etc. are case-sensitive.

• Special forms: ident (not imported by ’from module import *’); ident
(system defined name); ident (class-private name mangling).

D.3.3 String Literals

Two flavors: str (standard 8 bits locale-dependent strings, like ASCII, iso
8859-1, utf-8, ...) and unicode (16 or 32 bits/char in utf-16 mode or 32
bits/char in utf-32 mode); one common ancestor basestring.

• Use \ at end of line to continue a string on next line.

• Adjacent strings are concatened, e.g. ’Monty ’ ’Python’ is the same
as ’Monty Python’.

• u’hello’ + ’ world’ --> u’hello world’ (coerced to unicode)

String Literal Escapes

See Table D.3 on page 462.

• NUL byte (\000) is not an end-of-string marker; NULs may be embed-
ded in strings.

• Strings (and tuples) are immutable: they cannot be modified.

© 2010 by Taylor and Francis Group, LLC

462 Python for Bioinformatics

TABLE D.3: String Literal Escapes
Escape Meaning
newline Ignored (escape newline)
\ \ Backslash (\)
\e Escape (ESC)
\v Vertical Tab (VT)
\’ Single quote (’)
\f Formfeed (FF)
\ooo char with octal value ooo
\” Double quote (”)
\n Linefeed (LF)
\a Bell (BEL)
\r Carriage Return (CR)
\xhh char with hex value hh
\b Backspace (BS)
\t Horizontal Tab (TAB)
\uxxxx Character with 16-bit hex value xxxx (unicode only)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (unicode

only)
\N{name} Character named in the Unicode database (unicode

only), e.g. u’\NGreek Small Letter Pi’ <=>
u’\u03c0’. (Conversely, in module unicodedata,
unicodedata.name(u’\u03c0’) == ’GREEK SMALL
LETTER PI’)

\AnyOtherChar left as-is, including the backslash, e.g. str(’\z’)
== ’\ \z’

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 463

D.3.4 Boolean Constants (Since 2.2.1)

• True

• False

In 2.2.1, True and False are integers 1 and 0. Since 2.3, they are of new type
bool.

D.3.5 Numbers

• Decimal integer: 1234, 1234567890546378940L (or l)

• Octal integer: 0177, 0177777777777777777L (begin with a 0)

• Hex integer: 0xFF, 0XFFFFffffFFFFFFFFFFL (begin with 0x or 0X)

• Long integer (unlimited precision): 1234567890123456L (ends with L
or l) or long(1234)

• Float (double precision): 3.14e-10, .001, 10., 1E3

• Complex: 1J, 2+3J, 4+5j (ends with J or j, + separates (float) real
and imaginary parts)

D.3.6 Sequences

• Strings (types str and unicode) of length 0, 1, 2 (see above) ”, ’1’,
”12”, ’hello\n’

• Tuples (type tuple) of length 0, 1, 2, etc: () (1,) (1,2) # parentheses
are optional if len > 0

• Lists (type list) of length 0, 1, 2, etc: [] [1] [1,2]

• Indexing is 0-based. Negative indices (usually) mean count backwards
from end of sequence.

• Sequence slicing [starting-at-index : but-less-than-index [: step]]. Start
defaults to 0, end to len(sequence), step to 1.

a = (0,1,2,3,4,5,6,7)
a[3] == 3
a[-1] == 7
a[2:4] == (2, 3)
a[1:] == (1, 2, 3, 4, 5, 6, 7)
a[:3] == (0, 1, 2)
a[:] == (0,1,2,3,4,5,6,7) # makes a \textbf{copy} of the sequence.
a[::2] == (0, 2, 4, 6) # Only even numbers.
a[::-1] = (7, 6, 5, 4, 3 , 2, 1, 0) # Reverse order.

© 2010 by Taylor and Francis Group, LLC

464 Python for Bioinformatics

TABLE D.4: Operators and Their Evaluation Order
Operator Comment
, [...] {...} ‘...‘ Tuple, list & dict. creation; string

conv.
s[i] s[i:j] s.attr f(...) indexing & slicing; attributes, fct

calls
+x, -x, ∼x Unary operators
x**y Power
x*y x/y x%y mult, division, modulo
x+y x-y addition, substraction
x<<y x>>y Bit shifting
x&y Bitwise and
x∧y Bitwise exclusive or
x|y Bitwise or
x<y x<=y x>y x>=y x==y x!=y
x<>y
x is y x is not y
x in s x not in s

Comparison
identity
membership

not x boolean negation
x and y boolean and
x or y boolean or
lambda args: expr anonymous function

D.3.7 Dictionaries (Mappings)

Dictionaries (type dict) of length 0, 1, 2, etc: 1 : ’first’ 1 : ’first’, ’two’:
2, key:value Keys must be of a hashable type; Values can be any type.

D.3.8 Operators and Their Evaluation Order

Operators and Their evaluation order: Table D.4 (page 464)

• Alternate names are defined in module operator (e.g. add and add
for +)

• Most operators are overridable

D.4 Basic Types and Their Operations

D.4.1 Comparisons (Defined between Any Types)

Comparisons: Table D.5 (page 465).

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 465

TABLE D.5: Comparisons
Comparison Meaning Notes
< strictly less than (1)
<= less than or equal to
> strictly greater than
>= greater than or equal to
== equal to
!= or < > not equal to
is object identity (2)
is not negated object identity (2)

Notes:

• Comparison behavior can be overridden for a given class by defining
special method cmp .

• (1) X < Y < Z < W has expected meaning, unlike C

• (2) Compare object identities (i.e. id(object)), not object values.

D.4.2 None

• None is used as default return value on functions. Built-in single object
with type NoneType. Might become a keyword in the future.

• Input that evaluates to None does not print when running Python in-
teractively.

• None is now a constant; trying to bind a value to the name “None” is
now a syntax error.

D.4.3 Boolean Operators

Boolean values and operators: Table D.6 (page 466)
Notes:

• Truth testing behavior can be overridden for a given class by defining
special method nonzero .

• (1) Evaluate second arg only if necessary to determine outcome.

D.4.4 Numeric Types

Floats, Integers, Long Integers, Decimals.

• Floats (type float) are implemented with C doubles.

© 2010 by Taylor and Francis Group, LLC

466 Python for Bioinformatics

TABLE D.6: Boolean Operators
Value or Operator Evaluates to Notes
built-in bool(expr) True if expr is true, False oth-

erwise.
see True, False

None, numeric zeros,
empty sequences and
mappings

considered False

all other values considered True
not x True if x is False, else False
x or y if x is False then y, else x (1)
x and y if x is False then x, else y (1)

• Integers (type int) are implemented with C longs (signed 32 bits, max-
imum value is sys.maxint)

• Long integers (type long) have unlimited size (only limit is system re-
sources).

• Integers and long integers are unified starting from release 2.2 (the
L suffix is no longer required). int() returns a long integer instead
of raising OverflowError. Overflowing operations such as 2<<32 no
longer trigger FutureWarning and return a long integer.

• Since 2.4, new type Decimal introduced (see module: decimal) to com-
pensate for some limitations of the floating point type, in particular
with fractions. Unlike floats, decimal numbers can be represented ex-
actly; exactness is preserved in calculations; precision is user settable
via the Context type [PEP 327].

Operators on all numeric types: abs, int, long, float, -, +, *, /, //, %, div-
mod and **. See Table D.7 in page 467.

Notes:

• (1) / is still a floor division (1/2 == 0) unless validated by a from
future import division.

• classes may override methods truediv and floordiv to redefine
these operators.

Bit operators on integers and long integers Bit Operators: See Table D.8
on page 467.

Complex Numbers

• Type complex, represented as a pair of machine-level double precision
floating point numbers.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 467

TABLE D.7: Operators on All Numeric Types
Operation Result
abs(x) the absolute value of x
int(x) x converted to integer
long(x) x converted to long integer
float(x) x converted to floating point
-x x negated
+x x unchanged
x + y the sum of x and y
x - y difference of x and y
x * y product of x and y
x / y true division of x by y: 1/2 -> 0.5 (1)
x // y floor division operator: 1//2 -> 0 (1)
x % y x modulo y
divmod(x, y) the tuple (x//y, x%y)
x ** y x to the power y (the same as pow(x,y))

TABLE D.8: Bit Operators on Integers and Long Integers
Operation Result
∼x the bits of x inverted
x ∧ y bitwise exclusive or of x and y
x & y bitwise and of x and y
x | y bitwise or of x and y
x << n x shifted left by n bits
x >> n x shifted right by n bits

• The real and imaginary value of a complex number z can be retrieved
through the attributes z.real and z.imag.

Numeric exceptions
TypeError
raised on application of arithmetic operation to non-number
OverflowError
numeric bounds exceeded
ZeroDivisionError
raised when zero second argument of div or modulo op

D.4.5 Operations on Sequence Types (Lists, Tuples, Strings)

Operations on all sequence types: in, not in, +, len, min, max, reversed,
and sorted. See Table D.9 on page 468.

© 2010 by Taylor and Francis Group, LLC

468 Python for Bioinformatics

TABLE D.9: Operations on All Sequence Types
Operation Result Notes
x in s True if an item of s is equal to x, else False (3)
x not in s False if an item of s is equal to x, else True (3)
s1 + s2 the concatenation of s1 and s2
s * n, n*s n copies of s concatenated
s[i] i’th item of s, origin 0 (1)
s[i: j] s[i: j:step] Slice of s from i (included) to

j(excluded). Optional step value, possibly
negative (default: 1).

(1),
(2)

len(s) Length of s
min(s) Smallest item of s
max(s) Largest item of s
reversed(s) [2.4] Returns an iterator on s in reverse order.

s must be a sequence, not an iterator (use
reversed(list(s)) in this case. [PEP 322]

sorted(iterable
[,cmp]
[,cmp=cmpFct]
[,key=keyGetter]
[,reverse=bool])

[2.4] works like the new in-place list.sort(),
but sorts a new list created from the iterable.

Notes:

• (1) if i or j is negative, the index is relative to the end of the string, i.e.,
len(s)+i or len(s)+j is substituted. But note that -0 is still 0.

• (2) The slice of s from i to j is defined as the sequence of items with
index k such that i¡= k ¡ j. If i or j is greater than len(s), use len(s).
If j is omitted, use len(s). If i is greater than or equal to j, the slice is
empty.

• (3) For strings: before 2.3, x must be a single character string; Since
2.3, x in s is True if x is a substring of s.

D.4.6 Operations on Mutable Sequences (Type list)

Operations on mutable sequences: append, extend, count, index, insert,
remove, reverse and sort. See Table D.10 in page 469.

Notes:

• (1) Raises a ValueError exception when x is not found in s (i.e. out of
range).

• (2) The sort() method takes an optional argument cmp specifying a
comparison function taking two list items and returning -1, 0, or 1 de-

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 469

TABLE D.10: Operations on Mutable Sequences
Operation Result Notes
s[i] =x item i of s is replaced by x
s[i:j[:step]] = t slice of s from i to j is replaced by t
del s[i:j[:step]] same as s[i:j] = []
s.append(x) same as s[len(s) : len(s)] = [x]
s.extend(x) same as s[len(s):len(s)]= x (5)
s.count(x) returns number of i’s for which s[i] == x
s.index(x[, start[,
stop]])

returns smallest i such that s[i]==x. start and
stop limit search to only part of the list.

(1)

s.insert(i, x) same as s[i:i] = [x] if i¿= 0. i == -1 inserts
before the last element.

s.remove(x) same as del s[s.index(x)] (1)
s.pop([i]) same as x = s[i]; del s[i]; return x (4)
s.reverse() reverses the items of s in place (3)
s.sort([cmp])
s.sort([cmp=cmpFct]
[, key=keyGetter] [,
reverse=bool])

sorts the items of s in place (2),
(3)

pending on whether the 1st argument is considered smaller than, equal
to, or larger than the 2nd argument. Note that this slows the sorting
process down considerably. Since 2.4, the cmp argument may be spec-
ified as a keyword, and 2 optional keywords args are added: key is a
fct that takes a list item and returns the key to use in the comparison
(faster than cmp); reverse: If True, reverse the sense of the compari-
son used. Since Python 2.3, the sort is guaranteed “stable.” This means
that two entries with equal keys will be returned in the same order as
they were input. For example, you can sort a list of people by name,
and then sort the list by age, resulting in a list sorted by age where
people with the same age are in name-sorted order.

• (3) The sort() and reverse() methods modify the list in place for
economy of space when sorting or reversing a large list. They don’t
return the sorted or reversed list to remind you of this side effect.

• (4) The pop() method is not supported by mutable sequence types other
than lists. The optional argument i defaults to -1, so that by default
the last item is removed and returned.

• (5) Raises a TypeError when x is not a list object.

D.4.7 Operations on Mappings / Dictionaries (Type dict)

Operations on mappings: See Table D.11 on page 470.

© 2010 by Taylor and Francis Group, LLC

470 Python for Bioinformatics

TABLE D.11: Operations on Mappings/Dictionaries
Operation Result Notes
len(d) The number of items in d.
dict()
dict(**kwargs)
dict(iterable)
dict(d)

Creates an empty dictionary.
Creates a dictionary init with the keyword
args kwargs.
Creates a dictionary init with (key, value)
pairs provided by iterable.
Creates a dictionary which is a copy of dic-
tionary d.

d.fromkeys(iterable,
value=None)

Class method to create a dictionary with
keys provided by iterator, and all values set
to value.

d[k] The item of d with key k. (1)
d[k] = x Set d[k] to x.
del d[k] Removes d[k] from d. (1)
d.clear() Removes all items from d
d.copy() A shallow copy of d.
d.has key(k) k in d. True if d has key emphk, else False
d.items() A copy of d’s list of (key, item) pairs (2)
d.keys() A copy of d’s list of keys. (2)
d1.update(d2) for k, v in d2.items(): d1[k] =

v Since 2.4, update(**kwargs) and
update(iterable) may also be used.

d.values() A copy of d’s list of values. (2)
d.get(k, defaultval) The item of d with key k. (3)
d.setdefault(k [, default-
val])

d[k] if k in d, else defaultval(also setting it) (4)

d.iteritems() Returns an iterator over (key, value) pairs.
d.iterkeys() Returns an iterator over the mapping’s

keys.
d.itervalues() Returns an iterator over the mapping’s val-

ues.
d.pop(k [, default]) Removes key k and returns the correspond-

ing value. If key is not found, default is
returned if given, otherwise KeyError is
raised.

d.popitem() Removes and returns an arbitrary (key,
value) pair from d

Notes:

• TypeError is raised if key is not acceptable.

• (1) KeyError is raised if key k is not in the map.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 471

• (2) Keys and values are listed in random order.

• (3) Never raises an exception if k is not in the map, instead it returns
defaultval. It is optional, when not provided and k is not in the map,
None is returned.

• (4) Never raises an exception if k is not in the map, instead returns
defaultVal, and adds k to map with value defaultVal. defaultVal
is optional. When not provided and k is not in the map, None is returned
and added to map.

D.4.8 Operations on Strings (Types str & unicode)

These string methods largely (but not completely) supersede the functions
available in the string module. The str and unicode types share a common
base class basestring.

Operations on strings: See Table D.4.8 on page 472.
Notes:

• (1) Padding is done using spaces or the given character.

• (2) If optional argument start is supplied, substring s[start:] is pro-
cessed. If optional arguments start and end are supplied, substring
s[start:end] is processed.

• (3) Default encoding is sys.getdefaultencoding(), can be changed
via sys.setdefaultencoding(). Optional argument errors may be
given to set a different error handling scheme. The default for errors
is ’strict’, meaning that encoding errors raise a ValueError. Other
possible values are ’ignore’ and ’replace’. See also module codecs.

• (4) If optional argument tabsize is not given, a tab size of 8 characters
is assumed.

• (5) Returns False if string s does not contain at least one character.

• (6) Returns False if string s does not contain at least one cased char-
acter.

• (7) A titlecased string is a string in which uppercase characters may only
follow uncased characters and lowercase characters only cased ones.

• (8) s is returned if width is less than len(s)

• (9) If the optional argument maxCount is given, only the first maxCount
occurrences are replaced.

• (10) If separator is not specified or None, any whitespace string is a
separator. If maxsplit is given, at most maxsplit splits are done.

© 2010 by Taylor and Francis Group, LLC

472 Python for Bioinformatics

Operation Result Notes
s.capitalize() Returns a copy of s with its first character

capitalized, and the rest of the characters low-
ercased.

s.center(width[,
fillChar=’ ’])

Returns a copy of s centered in a string of
length width, surrounded by the appropriate
number of fillChar characters.

(1)

s.count(sub[, start[,
end]])

Returns the number of occurrences of sub-
string sub in string s.

(2)

s.decode([encoding[,
errors]])

Returns a unicode string representing the de-
coded version of str s, using the given codec
(encoding). Useful when reading from a file or
a I/O function that handles only str. Inverse
of encode.

(3)

s.encode([encoding[,
errors]])

Returns a str representing an encoded version
of s. Mostly used to encode a unicode string
to a str in order to print it or write it to a file
(since these I/O functions only accept str).
Also used to encode a str to a str. Inverse
of decode.

(3)

s.endswith(suffix [,
start[, end]])

Returns True if s ends with the specified suffix,
otherwise return false. Since 2.5 suffix can also
be a tuple of strings to try.

(2)

s.expandtabs([tab-
size])

Returns a copy of s where all tab characters
are expanded using spaces.

(4)

s.find(sub
[,start[,end]])

Returns the lowest index in s where substring
sub is found. Returns -1 if sub is not found.

(2)

s.index(sub[, start[,
end]])

like find(), but raises ValueError when the
substring is not found.

(2)

s.isalnum() Returns True if all characters in s are alphanu-
meric, False otherwise.

(5)

s.isalpha() Returns True if all characters in s are alpha-
betic, False otherwise.

(5)

s.isdigit() Returns True if all characters in s are digit
characters, False otherwise.

(5)

s.islower() Returns True if all characters in s are lower-
case, False otherwise.

(6)

s.isspace() Returns True if all characters in s are whites-
pace characters, False otherwise.

(5)

s.istitle() Returns True if string s is a titlecased string,
False otherwise.

(7)

s.isupper() Returns True if all characters in s are upper-
case, False otherwise.

(6)

separator.join(seq) Returns a concatenation of the strings in
the sequence seq, separated by string sepa-
rator, e.g.: ",".join([’A’, ’B’, ’C’]) ->
"A,B,C"

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 473

s.ljust / rjust
/ center (width[,
fillChar=’ ’])

Returns s left/right justified/centered in a
string of length width.

(1),
(8)

s.lower() Returns a copy of s converted to lowercase.
s.lstrip([chars]) Returns a copy of s with leading chars (de-

fault: blank chars) removed.
s.partition(separ) Searches for the separator separ in s, and re-

turns a tuple (head, sep, tail) containing
the part before it, the separator itself, and the
part after it.

s.replace(old, new [,
maxCount =-1])

Returns a copy of s with the first maxCount
(-1: unlimited) occurrences of substring old
replaced by new.

(9)

s.rfind(sub[, start[,
end]])

Returns the highest index in s where substring
sub is found. Returns -1 if sub is not found.

(2)

s.rindex(sub[,
start[, end]])

like rfind(), but raises ValueError when the
substring is not found.

(2)

s.rpartition(separ) Searches for the separator separ in s, starting
at the end of s, and returns a tuple (head,
sep, tail) containing the (left) part before
it, the separator itself, and the (right) part
after it.

s.rstrip([chars]) Returns a copy of s with trailing
chars(default: blank chars) removed.

s.split([separator [,
maxsplit]])

Returns a list of the words in s, using separator
as the delimiter string.

(10)

s.rsplit([separator [,
maxsplit]])

Same as split, but splits from the end of the
string.

(10)

s.splitlines([keep-
ends])

Returns a list of the lines in s, breaking at line
boundaries.

(11)

s.startswith(prefix
[, start[, end]])

Returns True if s starts with the specified pre-
fix, otherwise returns False. Negative num-
bers may be used for start and end. Since 2.5
prefix can also be a tuple of strings to try.

(2)

s.strip([chars]) Returns a copy of s with leading and trailing
chars(default: blank chars) removed.

s.swapcase() Returns a copy of s with uppercase characters
converted to lowercase and vice versa.

s.title() Returns a titlecased copy of s, i.e. words start
with uppercase characters, all remaining cased
characters are lowercase.

s.translate(table [,
deletechars])

Returns a copy of s mapped through transla-
tion table.

(12)

s.upper() Returns a copy of s converted to uppercase.
s.zfill(width) Returns the numeric string left filled with ze-

ros in a string of length width.

© 2010 by Taylor and Francis Group, LLC

474 Python for Bioinformatics

• (11) Line breaks are not included in the resulting list unless keepends is
given and true.

• (12) table must be a string of length 256. All characters occurring in
the optional argument deletechars are removed prior to translation.

D.4.9 String Formatting with the % Operator

formatString % args --> evaluates to a string

• formatString mixes normal text with C printf format fields:

%[flag][width][.precision] formatCode

where formatCode is one of c, s, i, d, u, o, x, X, e, E, f, g, G, r, % (see
Table D.12).

• The flag characters -, +, blank, # and 0 are understood (see table D.12).

• Width and precision may be a * to specify that an integer argument
gives the actual width or precision. Examples of width and precision:

Examples

TABLE D.12: String Formatting Characters
Format string Result
’%3d’ % 2 ’ 2’
’%*d’ % (3, 2) ’ 2’
’%-3d’ % 2 ’2 ’
’%03d’ % 2 ’002’
’% d’ % 2 ’ 2’
’%+d’ % 2 ’+2’
’%+3d’ % -2 ’ -2’
’%- 5d’ % 2 ’ 2 ’
’%.4f’ % 2 ’2.0000’
’%.*f’ % (4, 2) ’2.0000’
’%0*.*f’ % (10, 4, 2) ’00002.0000’
’%10.4f’ % 2 ’ 2.0000’
’%010.4f’ % 2 ’00002.0000’

• %s will convert any type argument to string (uses str() function)

• args may be a single arg or a tuple of args

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 475

(’%s has %03d quote types.’ % (’Python’, 2) ==
’Python has 002 quote types.’)

• Right-handside can also be a mapping :

a = ’%(lang)s has %(c)03d quote types.’ % {’c’:2,’lang’:’Python’}

(vars() function very handy to use on right-handside)

Format codes

TABLE D.13: Format Codes
Code Meaning
d Signed integer decimal.
i Signed integer decimal.
o Unsigned octal.
u Unsigned decimal.
x Unsigned hexadecimal (lowercase).
X Unsigned hexadecimal (uppercase).
e Floating point exponential format (lowercase).
E Floating point exponential format (uppercase).
f Floating point decimal format.
F Floating point decimal format.
g Same as “e” if exponent is greater than -4 or less than precision, “f”

otherwise.
G Same as “E” if exponent is greater than -4 or less than precision, “F”

otherwise.
c Single character (accepts integer or single character string).
r String (converts any python object using repr()).
s String (converts any python object using str()).
% No argument is converted, results in a “%” character in the result.

(The complete specification is %%.)

Conversion flag characters: #, 0, - and +. See Table D.14 on page 476.

D.4.10 String Templating

Since 2.4 [PEP 292], the string module provides a new mechanism to sub-
stitute variables into template strings. Variables to be substituted begin
with a $. Actual values are provided in a dictionary via the substitute or
safe substitute methods (textttsubstitute throws textttKeyError if a key
is missing while safe substitute ignores it) :

© 2010 by Taylor and Francis Group, LLC

476 Python for Bioinformatics

TABLE D.14: Conversion Flag Characters
Flag Meaning
The value conversion will use the “alternate form”.
0 The conversion will be zero padded.
- The converted value is left adjusted (overrides “-”).

(a space) A blank should be left before a positive number (or empty
string) produced by a signed conversion.

+ A sign character (“+” or “-”) will precede the conversion (overrides
a “space” flag).

t = string.Template(’Hello $name, you won $$$amount’)
(note $$ to literalize $)
t.substitute({’name’: ’Eric’, ’amount’: 100000})
-> u’Hello Eric, you won $100000’

D.4.11 File Objects

(Type file). Created with built-in functions open() [preferred] or its alias
file(). May be created by other modules’ functions as well.

Unicode file names are now supported for all functions accepting or re-
turning file names (open, os.listdir, etc...).

D.4.12 Operators on File Objects

File operations: See Table D.15 on page 477.

D.4.13 File Exceptions

EOFError End-of-file hit when reading (may be raised many times, e.g. if
f is a tty). IOError Other I/O-related I/O operation failure

D.4.14 Sets

Since 2.4, Python has two new built-in types with fast C implementations
[PEP 218]: set and frozenset (immutable set). Sets are unordered collections
of unique (non duplicate) elements. Elements must be hashable. frozensets
are hashable (thus can be elements of other sets while sets are not). All sets
are iterable.

Since 2.3, the classes Set and ImmutableSet were available in the module
sets. This module remains in the 2.4 std library in addition to the built-in
types.

Main Set operations: len, in, issubset, issuperset, add, remove, discard, pop,
clear, intersection, union, difference, symmetric difference, copy, update.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 477

TABLE D.15: Operators on File Objects
Operation Result
f.close() Close file f.
f.fileno() Get fileno (fd) for file f.
f.flush() Flush file f ’s internal buffer.
f.isatty() 1 if file f is connected to a tty-like dev, else 0.
f.next() Returns the next input line of file f, or raises

StopIteration when EOF is hit. Files are their own it-
erators. next is implicitly called by constructs like for
line in f : print line.

f.read([size]) Read at most size bytes from file f and return as a string
object. If size omitted, read to EOF.

f.readline() Read one entire line from file f. The returned line has a
trailing \n, except possibly at EOF. Return ” on EOF.

f.readlines() Read until EOF with readline() and return a list of lines
read.

f.xreadlines() Return a sequence-like object for reading a file line-by-line
without reading the entire file into memory. From 2.2, use
rather: for line in f (see below).

for line in f: do
something...

Iterate over the lines of a file (using readline)

f.seek(offset[,
whence=0])

Set file f ’s position, like “stdio’s fseek()”. whence ==
0 then use absolute indexing. whence == 1 then offset
relative to current pos. whence == 2 then offset relative
to file end.

f.tell() Return file f ’s current position (byte offset).
f.truncate([size]) Truncate f ’s size. If size is present, f is truncated to (at

most) that size, otherwise f is truncated at current position
(which remains unchanged).

f..write(str) Write string to file f.
f..writelines(list) Write list of strings to file f. No EOL are added.

See Table D.16 on page 478.

D.4.15 Date/Time

Python has no intrinsic Date and Time types, but provides 2 built-in
modules:

• time: time access and conversions

• datetime: classes date, time, datetime, timedelta, tzinfo.

See also the third-party module: mxDateTime.

© 2010 by Taylor and Francis Group, LLC

478 Python for Bioinformatics

TABLE D.16: Main Set Operations
Operation Result
set/frozenset([iterable=None]) [using built-in types] Builds a set or

frozenset from the given iterable (de-
fault: empty), e.g. set([1,2,3]),
set("hello").

Set/ImmutableSet([iterable=None]) [using the sets module] Builds a Set or
ImmutableSet from the given iterable
(default: empty), e.g. Set([1,2,3]).

len(s) Cardinality of set s.
elt in s / not ins True if element elt belongs / does not

belong to set s.
for elt in s: process elt... Iterates on elements of set s.
s1.issubset(s2) True if every element in s1 is in s2.
s1.issuperset(s2) True if every element in s2 is in s1.
s.add(elt) Adds element elt to set s (if it doesn’t

already exist).
s.remove(elt) Removes element elt from set s.

KeyError if element not found.
s.discard(elt) Removes element elt from set s if

present.
s.pop() Removes and returns an arbitrary el-

ement from set s; raises KeyError if
empty.

s.clear() Removes all elements from this set (not
on immutable sets!).

s1.intersection(s2) or s1&s2 Returns a new Set with elements com-
mon to s1 and s2.

s1.union(s2) or s1 |emphs2 Returns a new Set with elements from
both s1 and s2.

s1.difference(s2) or s1-s2 Returns a new Set with elements in s1
but not in s2.

s1.symmetric difference(s2) or
emphs1∧emphs2

Returns a new Set with elements in ei-
ther s1 or s2 but not both.

s.copy() Returns a shallow copy of set s.
s.update(iterable) Adds all values from iterable to set s.

D.5 Advanced Types

See manuals for more details.

• Module objects

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 479

• Class objects

• Class instance objects

• Type objects (see module: types)

• File objects (see above)

• Ellipsis object, used by extended slice notation (unique, named Ellipsis)

• Null object (unique, named None)

• XRange objects

• Callable types:

– User-defined (written in Python):
∗ User-defined Function objects
∗ User-defined Method objects

– Built-in (written in C):
∗ Built-in Function objects
∗ Built-in Method object

• Internal Types:

– Code objects (byte-compile executable Python code: bytecode)
– Frame objects (execution frames)
– Traceback objects (stack trace of an exception)

D.5.1 Statements

See Table D.17 for Python statements: pass, del, print, exec, callable.

D.5.2 Assignment Operators

Assignment operators
Notes:

• (1) Can unpack tuples, lists, and strings:

equivalent to: first=l[0]; second=l[1]
first, second = l[0:2]
equivalent to: f=0; s=1
[f, s] = range(2)
equivalent to: c1=’a’; c2=’b’; c3=’c’
c1,c2,c3 = ’abc’
equivalent to: a=’a’; b=’b’; c=’c’; d=’d’; e=’e’; f=’f’
(a, b), c, (d, e, f) = [’ab’, ’c’, ’def’]

© 2010 by Taylor and Francis Group, LLC

480 Python for Bioinformatics

TABLE D.17: Statements
Statement Result
pass Null statement
del name[, name]* Unbind name(s) from object. Object will be

indirectly (and automatically) deleted only if
no longer referenced.

print[>> fileobject,] [s1 [, s2]*
[,]

Writes to sys.stdout, or to fileobject if sup-
plied. Puts spaces between arguments. Puts
newline at end unless statement ends with
comma [if nothing is printed when using
a comma, try calling system.out.flush()].
Print is not required when running interac-
tively, simply typing an expression will print
its value, unless the value is None.

exec x [in globals [, locals]] Executes x in namespaces provided. De-
faults to current namespaces. x can be a
string, open file-like object or a function ob-
ject. locals can be any mapping type, not
only a regular Python dict. See also built-in
function execfile.

callable(value,... [emphid=value]
, [*args], [**kw])

Call function callable with parameters. Pa-
rameters can be passed by name or be omit-
ted if function defines default values. E.g. if
callable is defined as ”def callable(p1=1,
p2=2)”
"callable()" <=> "callable(1, 2)"
"callable(10)" <=> "callable(10, 2)"
"callable(p2=99)" <=> "callable(1,
99)"

*args is a tuple of positional arguments.
**kw is a dictionary of keyword arguments.

Tip: x,y = y,x swaps x and y.

• (2) Multiple assignment possible:

a = b = c = 0
list1 and list2 points to the same list (l1 is l2)
list1 = list2 = [1, 2, 3]

• (3) Not exactly equivalent - a is evaluated only once. Also, where pos-
sible, operation performed in-place - a is modified rather than replaced.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 481

TABLE D.18: Assignment Operators
Operator Result Notes

a = b Basic assignment - assign object b to label a (1)(2)
a += b Roughly equivalent to a = a + b (3)
a -= b Roughly equivalent to a = a - b (3)
a *= b Roughly equivalent to a = a * b (3)
a /= b Roughly equivalent to a = a / b (3)
a //= b Roughly equivalent to a = a // b (3)
a %= b Roughly equivalent to a = a % b (3)
a **= b Roughly equivalent to a = a ** b (3)
a &= b Roughly equivalent to a = a & b (3)
a —= b Roughly equivalent to a = a — b (3)
a ∧= b Roughly equivalent to a = a ∧ b (3)

a >>= b Roughly equivalent to a = a >> b (3)
a <<= b Roughly equivalent to a = a << b (3)

D.5.3 Conditional Expressions

Conditional Expressions (not statements) have been added since 2.5 [PEP
308]:

result = (whenTrue if condition else whenFalse)

is equivalent to

if condition:
result = whenTrue

else:
result = whenFalse

() are not mandatory but recommended.

D.5.4 Control Flow Statements

Control flow Statements: if, elif, else, while, break, continue, return, and
yield. See Table D.19 on page 482

D.5.5 Exception Statements

Exception statements: See Table D.20 on page 483.

• An exception is an instance of an exception class (before 2.0, it may
also be a mere string).

• Exception classes must be derived from the predefined class: Exception,
e.g.:

© 2010 by Taylor and Francis Group, LLC

482 Python for Bioinformatics

TABLE D.19: Control Flow Statements
Statement Result
if condition: suite [elif condition:
suite]* [else: suite]

Usual if/else statement. See also Condi-
tional Expressions.

while condition: suite [else:
suite]

Usual while statement. The else suite is
executed after loop exits, unless the loop
is exited with break.

for element in sequence: suite
[else: suite]

Iterates over sequence, assigning each el-
ement to element. Use built-in range
function to iterate a number of times.
The else suite is executed at end unless
loop exited with break.

break Immediately exits for or while loop.
continue Immediately does next iteration of for

or while loop.
return [result] Exits from function (or method) and re-

turns result (use a tuple to return more
than one value). If no result given, then
returns None.

yield expression (Only used within the body of a gen-
erator function, outside a try of a
try..finally). ”Returns” the evalu-
ated expression.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 483

TABLE D.20: Exception Statements
Statement Result
assert expr [, message] expr is evaluated. if false, raises exception

AssertionError with message. Before 2.3, inhib-
ited if debug is 0.

try:
block1 [except [excep-

tion [, value]]:
handler]+

[else:
else-block]

Statements in block1 are executed. If an excep-
tion occurs, look in except clause(s) for matching
exception(s). If matches or bare except, execute
handler of that clause. If no exception happens,
else-block in else clause is executed after block1.
If exception has a value, it is put in variable value.
exception can also be a tuple of exceptions, e.g.
except(KeyError, NameError), e: print e.

try:
block1

finally:
final-block

Statements in block1 are executed. If no excep-
tion, execute final-block (even if block1 is exited
with a return, break or continue statement). If
exception did occur, execute final-block and then
immediately re-raise exception. Typically used to
ensure that a resource (file, lock...) allocated before
the try is freed (in the final-block) whatever the
outcome of block1 execution. See also the with
statement below.

try:
block1

[except [exception [,
value]]:

handler1]+
[else:

else-block]
finally:

final-block

Unified try/except/finally. Equivalent to
a try...except nested inside a try..finally
[PEP341]. See also the with statement below.

© 2010 by Taylor and Francis Group, LLC

484 Python for Bioinformatics

with allocate-expression
[as variable]

with-block

Alternative to the try...finally structure
[PEP343]. allocate-expression should evaluate to
an object that supports the context management
protocol, representing a resource. This object may
return a value that can optionally be bound to vari-
able (variable is not assigned the result of expres-
sion). The object can then run set-up code before
with-block is executed and some clean-up code
is executed after the block is done, even if the block
raised an exception. Standard Python objects such
as files and locks support the context management
protocol:

file automatically closed on block exit
with open(’/etc/passwd’, ’r’) as f:

for line in f:
print line

lock automatically released on block exit
with threading.Lock():

do something...

- You can write your own context managers. -
Helper functions are available in module contextlib.
In 2.5, the statement must be enabled by: from
future import with statement. The state-

ment will always be enabled in Python 2.6.
raise exceptionInstance Raises an instance of a class derived from

Exception (preferred form of raise).
raise exceptionClass [,
value [, traceback]]

Raises exception of given class exceptionClass with
optional value value. Arg traceback specifies a
traceback object to use when printing the excep-
tion’s backtrace.

raise A raise statement without arguments re-raises the
last exception raised in the current function.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 485

class TextException(Exception): pass
try:

if bad:
raise TextException()

except Exception:
This will be printed because TextException is a
subclass of Exception
print ’Oops’

• When an error message is printed for an unhandled exception, the class
name is printed, then a colon and a space, and finally the instance
converted to a string using the built-in function str().

• All built-in exception classes derive from StandardError, itself derived
from Exception.

PEP 352 : Exceptions can now be new-style classes, and all built-in ones are.
Built-in exception hierarchy slightly reorganized with the introduction
of base class BaseException. Raising strings as exceptions is now dep-
recated (warning).

D.5.6 Name Space Statements

Imported module files must be located in a directory listed in the Python
path (sys.path). Since 2.3, they may reside in a zip file [e.g. sys.path.insert(0,
”aZipFile.zip”)]. Absolute/relative imports (since 2.5 [PEP328]):

• Feature must be enabled by: from future import absolute import:
will probably be adopted in 2.7.

• Imports are normally relative: modules are searched first in the current
directory/package, and then in the built-in modules, resulting in possible
ambiguities (e.g. masking a built-in symbol).

• When the new feature is enabled:

– import X will look up for module X in sys.path first (absolute
import).

– import .X (with a dot) will still search for X in the current package
first, then in builtins (relative import).

– import ..X will search for X in the package containing the current
one, etc...

Packages (>1.5): a package is a name space which maps to a directory in-
cluding module(s) and the special initialization module init .py (possibly
empty). Packages/directories can be nested. You address a module’s symbol
via [package.[package...].module.symbol. [1.51: On Mac and Windows,

© 2010 by Taylor and Francis Group, LLC

486 Python for Bioinformatics

the case of module file names must now match the case as used in the import
statement].

Name space statements: See Table D.5.6 on page 487.

D.5.7 Function Definition

def funcName ([paramList]):
suite

Creates a function object and binds it to name funcName.

paramList ::= [param [, param]*]
param ::= value | id=value | *id | **id

• Args are passed by value, so only args representing a mutable object
can be modified (are inout parameters).

• Use return to return (None) from the function, or return value to
return value. Use a tuple to return more than one value, e.g. return
1,2,3

• Keyword arguments arg=value specify a default value (evaluated at
function def. time). They can only appear last in the param list, e.g.
foo(x, y=1, s=’’)

• Pseudo-arg *emphargs captures a tuple of all remaining non-keyword
args passed to the function, e.g. if def foo(x, *args): ... is
called foo(1, 2, 3), then args will contain (2,3).

• Pseudo-arg **kwargs captures a dictionary of all extra keyword argu-
ments, e.g. if def foo(x, **kwargs): ... is called foo(1, y=2,
z=3), then kwargs will contain ’y’:2, ’z’:3. if def foo(x, *args,
**kwargs): ... is called foo(1, 2, 3, y=4, z=5), then args will
contain (2, 3), and kwargs will contain ’y’:4, ’z’:5

• args and kwargs are conventional names, but other names may be used
as well.

• *args and **kwargs can be ”forwarded” (individually or together) to
another function, e.g,

def f1(x, *args, **kwargs):
f2(*args, **kwargs)

• See also Anonymous functions (lambdas).

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 487

Statement Result
import module1 [as name1]
[, module2]*

Imports modules. Members of module must be
referred to by qualifying with [package.]module
name, e.g.:

import sys; print sys.argv
import package1.subpackage.module
package1.subpackage.module.foo()

module1 renamed as name1, if supplied.
from module import name1
[as othername1][, name2]*

Imports names from module module in current
namespace.

from sys import argv; print argv
from package1 import module; module.foo()
from package1.module import foo; foo()

name1 renamed as othername1, if supplied. [2.4]
You can now put parentheses around the list of
names in a from module import names state-
ment (PEP 328).

from module import * Imports all names in module, except those start-
ing with “ ”. Use sparsely, beware of name
clashes!

from sys import *; print argv
from package.module import *; print x

Only legal at the top level of a module. If mod-
ule defines an all attribute, only names listed
in all will be imported. NB: “from package
import *” only imports the symbols defined in
the package’s init .py file, not those in the
package’s modules !

global name1 [, name2] Names are from global scope (usually meaning
from module) rather than local (usually mean-
ing only in function). E.g. in function without
global statements, assuming “x” is name that
hasn’t been used in function or module so far: -
Try to read from “x” -¿ NameError - Try to write
to “x” -¿ creates “x” local to function If “x” not
defined in fct, but is in module, then: - Try to
read from “x”, gets value from module - Try to
write to “x”, creates “x” local to fct But note
“x[0]=3” starts with search for “x”, will use to
global “x” if no local “x”.

© 2010 by Taylor and Francis Group, LLC

488 Python for Bioinformatics

D.5.8 Class Definition

class className [(super_class1[, super_class2]*)]:
suite

Creates a class object and assigns it name className. suite may contain local
“defs” of class methods and assignments to class attributes.
Examples:

class MyClass (class1, class2): ...

Creates a class object inheriting from both class1 and class2. Assigns new
class object to name MyClass.

class MyClass: ...

Creates a base class object (inheriting from nothing). Assigns new class object
to name MyClass. Since 2.5, the equivalent syntax class MyClass(): ... is
allowed.

class MyClass (object): ...

Creates a new-style class (inheriting from object makes a class a new-style
class -available since Python 2.2-). Assigns new class object to name MyClass.

• First arg to class instance methods (operations) is always the target
instance object, called ’self ’ by convention.

• Special static method new (cls[,...]) called when instance is created.
1st arg is a class, others are args to init (), more details here

• Special method init () is called when instance is created.

• Special method del () called when no more reference to object.

• Create instance by ”calling” class object, possibly with arg (thus in-
stance=apply(aClassObject, args...) creates an instance!)

• Before 2.2, it was not possible to subclass built-in classes like list, dict
(you had to ”wrap” them, using UserDict & UserList modules); since
2.2, you can subclass them directly (see Types/Classes Unification).

Example:

class c (c_parent):
def __init__(self, name):

self.name = name
def print_name(self):

print "I’m", self.name
def call_parent(self):

c_parent.print_name(self)

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 489

instance = c(’tom’)
print instance.name
’tom’
instance.print_name()
"I’m tom"

Call parent’s super class by accessing parent’s method directly and pass-
ing self explicitly (see call parent in example above). Many other special
methods are available for implementing arithmetic operators, sequence, map-
ping, indexing, etc.

Types / classes unification Base types int, float, str, list, tuple, dict, and
file now (2.2) behave like classes derived from base class object, and may
be subclassed:

built-in cast function now a constructor for base type
x = int(2)
(literals are instances of new base types)
y = 3 # <=> int(3)
int, int
print type(x), type(y)
replaces isinstance(x, types.IntType)
assert isinstance(x, int)
base types derive from base class ’object’.
assert issubclass(int, object)
s = "hello" # <=> str("hello")
assert isinstance(s, str)
f = 2.3 # <=> float(2.3)
class MyInt(int): pass # may subclass base types
x,y = MyInt(1), MyInt("2")

print x, y, x+y # => 1,2,3

class MyList(list): pass

l = MyList("hello")

print l # [’h’, ’e’, ’l’, ’l’, ’o’]

New-style classes extends object. Old-style classes don’t.
Documentation Strings
Modules, classes and functions may be documented by placing a string

literal by itself as the first statement in the suite. The documentation can be
retrieved by getting the ’ doc ’ attribute from the module, class or function.

© 2010 by Taylor and Francis Group, LLC

490 Python for Bioinformatics

Example:

class C:
"A description of C"

def __init__(self):
"A description of the constructor"
etc.

c.__doc__ == "A description of C".
c.__init__.__doc__ == "A description of the constructor"

D.5.9 Iterators

• An iterator enumerates elements of a collection. It is an object with a
single method next() returning the next element or raising StopIteration.

• You get an iterator on obj via the new built-in function iter(obj), which
calls obj. class . iter ().

• A collection may be its own iterator by implementing both iter ()
and next().

• Built-in collections (lists, tuples, strings, dict) implement iter ();
dictionaries (maps) enumerate their keys; files enumerates their lines.

• You can build a list or a tuple from an iterator, e.g. list(anIterator)

• Python implicitly uses iterators wherever it has to loop :

– for elt in collection:

– if elt in collection: when assigning tuples: x,y,z= collection

D.5.10 Generators

• A generator is a function that retains its state between 2 calls and pro-
duces a new value at each invocation. The values are returned (one at a
time) using the keyword yield, while return or raise StopIteration()
are used to notify the end of values.

• A typical use is the production of IDs, names, or serial numbers. Fancier
applications like nanothreads are also possible.

• In 2.2, the feature needs to be enabled by the statement: from future
import generators (not required since 2.3+)

• To use a generator: call the generator function to get a generator object,
then call generator.next() to get the next value until StopIteration
is raised.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 491

• 2.4 introduces generator expressions [PEP 289] similar to list compre-
hensions, except that they create a generator that will return elements
one by one, which is suitable for long sequences :

linkGenerator = (link for link in get_all_links() if not<=
link.followed)

for link in linkGenerator:
...process link...

Generator expressions must appear between parentheses.

PEP342 Generators before 2.5 could only produce output. Now values can be
passed to generators via their method send(value). yield is now
an expression returning a value, so val = (yield i) will yield i to the
caller, and will reciprocally evaluate to the value “sent” back by the
caller, or None. Two other new generator methods allow for additional
control:

– throw(type, value=None, traceback=None) is used to raise an
exception inside the generator (appears as raised by the yield
expression).

– close() raises a new GeneratorExit exception inside the genera-
tor to terminate the iteration.

Example:

def genID(initialValue=0):
v = initialValue
while v < initialValue + 1000:

yield "ID_%05d" % v
v += 1

return # or: raise StopIteration()

generator = genID() # Create a generator
for i in range(10): # Generates 10 values

print generator.next()

D.5.11 Descriptors/Attribute Access

• Descriptors are objects implementing at least the first of these 3 meth-
ods representing the descriptor protocol :

– get (self, obj, type=None) --> value

– set (self, obj, value)

– delete (self, obj)

© 2010 by Taylor and Francis Group, LLC

492 Python for Bioinformatics

Python now transparently uses descriptors to describe and access the
attributes and methods of new-style classes (i.e. derived from object).
[more info])

• Built-in descriptors now allow you to define:

– Static methods : Use staticmethod(f) to make method f(x)
static (unbound).

– Class methods: like a static but takes the Class as 1st argument
=> Use f = classmethod(f) to make method f(theClass, x) a
class method.

– Properties : A property is an instance of the new built-in type
property, which implements the descriptor protocol for attributes
=> Use propertyName = property(fget=None, fset=None, fdel=None,
doc=None) to define a property inside or outside a class. Then ac-
cess it as propertyName or obj.propertyName

– Slots. New style classes can define a class attribute slots
to constrain the list of assignable attribute names, to avoid typos
(which is normally not detected by Python and leads to the creation
of new attributes), e.g. slots = (’x’, ’y’) Note: According
to recent discussions, the real purpose of slots seems still unclear
(optimization?), and their use should probably be discouraged.

D.5.12 Decorators for Functions and Methods

PEP 318 A decorator D is noted @D on the line preceding the function/method
it decorates :

@D
def f(): ...

and is equivalent to:

def f(): ...
f = D(f)

• Several decorators can be applied in cascade :

@A
@B
@C
def f(): ...

is equivalent to:

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 493

f = A(B(C(f)))

• A decorator is just a function taking the fct to be decorated and returns
the same function or some new callable thing.

• Decorator functions can take arguments:

@A
@B
@C(args)

becomes :

def f(): ...
_deco = C(args)
f = A(B(_deco(f)))

• The decorators @staticmethod and @classmethod replace more ele-
gantly the equivalent declarations f = staticmethod(f) and f = class-
method(f).

D.5.13 Miscellaneous

lambda [param_list]: returnedExpr

Creates an anonymous function. returnedExpr must be an expression, not a
statement (e.g., not “if xx:...”, “print xxx”, etc.) and thus can’t contain new-
lines. Used mostly for filter(), map(), reduce() functions, and GUI callbacks.
List comprehensions

result = [expression for item1 in sequence1 [if condition1]
[for item2 in sequence2 ... for itemN in sequenceN]

]

is equivalent to:

result = []
for item1 in sequence1:

for item2 in sequence2:
...
for itemN in sequenceN:

if (condition1) and further conditions:
result.append(expression)

Nested scopes Since 2.2, nested scopes no longer need to be specially enabled
by a from future import nested scopes directive, and are always used.

© 2010 by Taylor and Francis Group, LLC

494 Python for Bioinformatics

D.6 Built-in Functions

Built-in functions are defined in a module builtin automatically im-
ported.

Built-in Functions

import (name[, globals[,locals[,from list]]]): Imports module within the
given context (see library reference for more details)

abs(x): Returns the absolute value of the number x.
all(iterable): Returns True if bool(x) is True for all values x in the iterable.
any(iterable): Returns True if bool(x) is True for any values x in the

iterable.
apply(f, args[, keywords]): Calls func/method f with arguments args and

optional keywords. deprecated since 2.3, replace apply(func, args, keywords)
with func(*args, **keywords) [details].

basestring(): Abstract superclass of str and unicode; can’t be called or
instantiated directly, but useful in: isinstance(obj, basestring).

bool([x]): Converts a value to a Boolean, using the standard truth testing
procedure. If x is false or omitted, returns False; otherwise returns True.
bool is also a class/type, subclass of int. Class bool cannot be subclassed
further. Its only instances are False and True. See also boolean operators.

buffer(object [, offset [, size]]): Returns a Buffer from a slice of object, which
must support the buffer call interface (string, array, buffer). Non essential
function, see [details].

callable(x): Returns True if x callable, else False.
chr(i): Returns one-character string whose ASCII code is integer i.
classmethod(function): Returns a class method for function. A class

method receives the class as implicit first argument, just like an instance
method receives the instance. To declare a class method, use this idiom:

class C:
def f(cls, arg1, arg2, ...): ...
f = classmethod(f)

Then call it on the class C.f() or on an instance C().f(). The instance is
ignored except for its class. If a class method is called for a derived class, the
derived class object is passed as the implied first argument. Since 2.4 you can
alternatively use the decorator notation:

class C:
@classmethod
def f(cls, arg1, arg2, ...): ...

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 495

cmp(x,y): Returns negative, 0, positive if x <, ==, > to y respectively.
coerce(x,y): Returns a tuple of the two numeric arguments converted to

a common type. Non essential function, see [details].
compile(string, filename, kind [, flags[, dont inherit]]): Compiles string

into a code object. filename is used in error message, can be any string.
It is usually the file from which the code was read, or e.g. ’<string>’ if
not read from file. kind can be ’eval’ if string is a single stmt, or ’single’
which prints the output of expression statements that evaluate to something
else than None, or be ’exec’. New args flags and dont inherit concern future
statements.

complex(real[, image]): Creates a complex object (can also be done using
J or j suffix, e.g. 1+3J).

delattr(obj, name): Deletes the attribute named name of object obj <=>
del obj.name

dict([mapping-or-sequence]): Returns a new dictionary initialized from the
optional argument (or an empty dictionary if no argument). Argument may
be a sequence (or anything iterable) of pairs (key,value).

dir([object]): Without args, returns the list of names in the current local
symbol table. With a module, class or class instance object as arg, returns
the list of names in its attr. dictionary.

divmod(a,b): Returns tuple (a//b, a%b)
enumerate(iterable): Iterator returning pairs (index, value) of iterable,

e.g. List(enumerate(’Py’)) -> [(0, ’P’), (1, ’y’)].
eval(s[, globals[, locals]]): Evaluates string s, representing a single python

expression, in (optional) globals, locals contexts. s must have no NUL’s or
new lines. s can also be a code object. locals can be any mapping type, not
only a regular Python dict.

Example:

x = 1; assert eval(’x + 1’) == 2

(To execute statements rather than a single expression, use Python statement
exec or built-in function execfile).

execfile(file[, globals[,locals]]): Executes a file without creating a new mod-
ule, unlike import. locals can be any mapping type, not only a regular Python
dict.

file(filename[,mode[,bufsize]]): Opens a file and returns a new file object.
Alias for open.

filter(function,sequence): Constructs a list from those elements of sequence
for which function returns true. function takes one parameter.

float(x): Converts a number or a string to floating point.
frozenset([iterable]) Returns a frozenset (immutable set) object whose (im-

mutable) elements are taken from iterable, or empty by default. See also Sets.
getattr(object,name[,default])): Gets attribute called name from object,

e.g. getattr(x, ’f’) <=> x.f). If not found, raises AttributeError or returns
default if specified.

© 2010 by Taylor and Francis Group, LLC

496 Python for Bioinformatics

globals(): Returns a dictionary containing the current global variables.
hasattr(object, name): Returns true if object has an attribute called name.
hash(object): Returns the hash value of the object (if it has one).
help([object]): Invokes the built-in help system. No argument − > inter-

active help; if object is a string (name of a module, function, class, method,
keyword, or documentation topic), a help page is printed on the console; oth-
erwise a help page on object is generated.

hex(x): Converts a number x to a hexadecimal string.
id(object): Returns a unique integer identifier for object. Since 2.5 always

returns non-negative numbers.
input([prompt]): Prints prompt if given. Reads input and evaluates it.

Uses line editing / history if module readline available.
int(x [, base]): Converts a number or a string to a plain integer. Optional

base parameter specifies base from which to convert string values.
intern(aString): Enters aString in the table of interned strings and returns

the string. Since 2.3, interned strings are no longer ’immortal’ (never garbage
collected), see [details].

isinstance(obj, classInfo): Returns true if obj is an instance of class class-
Info or an object of type classInfo (classInfo may also be a tuple of classes or
types). If issubclass(A,B) then isinstance(x,A) => isinstance(x,B)

issubclass(class1, class2): Returns true if class1 is derived from class2
(or if class1 is class2).

iter(obj [,sentinel]): Returns an iterator on obj. If sentinel is absent, obj
must be a collection implementing either iter () or getitem (). If
sentinel is given, obj will be called with no arg; if the value returned is
equal to sentinel, StopIteration will be raised, otherwise the value will be
returned. See Iterators.

len(obj): Returns the length (the number of items) of an object (sequence,
dictionary, or instance of class implementing len).

list([seq]): Creates an empty list or a list with same elements as seq. seq
may be a sequence, a container that supports iteration, or an iterator object.
If seq is already a list, returns a copy of it.

locals(): Returns a dictionary containing current local variables.
long(x [, base]): Converts a number or a string to a long integer. Optional

base parameter specifies the base from which to convert string values.
map(function, sequence[, sequence, ...]): Returns a list of the results of

applying function to each item from sequence(s). If more than one sequence
is given, the function is called with an argument list consisting of the corre-
sponding item of each sequence, substituting None for missing values when
not all sequences have the same length. If function is None, returns a list of
the items of the sequence (or a list of tuples if more than one sequence). =>
You might also consider using list comprehensions instead of map().

max(iterable[, key=func]), max(v1, v2, ...[, key=func]): With a single ar-
gument iterable, returns the largest item of a non-empty iterable (such as a
string, tuple or list). With more than one argument, returns the largest of the

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 497

arguments. The optional key arg is a function that takes a single argument
and is called for every value in the list.

min(iterable[, key=func]), min(v1, v2, ...[, key=func]): With a single ar-
gument iterable, returns the smallest item of a non-empty iterable (such as a
string, tuple or list). With more than one argument, returns the largest of the
arguments. The optional key arg is a function that takes a single argument
and is called for every value in the list.

object(): Returns a new featureless object. object is the base class for
all new style classes, its methods are common to all instances of new style
classes.

oct(x): Converts a number to an octal string.
open(filename [, mode=’r’, [bufsize]]): Returns a new file object. See also

alias file(). Use codecs.open() instead to open an encoded file and provide
transparent encoding / decoding.

• filename is the file name to be opened

• mode indicates how the file is to be opened:

– ’r’ for reading
– ’w’ for writing (truncating an existing file)
– ’a’ opens it for appending
– ’+’ (appended to any of the previous modes) open the file for up-

dating (note that ’w+’truncates the file)
– ’b’ (appended to any of the previous modes) open the file in binary

mode
– ’U’ (or ’rU’) open the file for reading in Universal Newline mode:

all variants of EOL (CR, LF, CR+LF) will be translated to a single
LF (’\n’).

• bufsize is 0 for unbuffered, 1 for line buffered, negative or omitted for
system default, >1 for a buffer of (about) the given size.

ord(c): Returns integer ASCII value of c (a string of len 1). Works with
Unicode char.

pow(x, y [, z]): Returns x to power y [modulo z]. See also ** operator.
property([fget [, fset [, fdel [, doc]]]]): Returns a property attribute for new-

style classes (classes deriving from object). fget, fset, and fdel are functions
to get the property value, set the property value, and delete the property,
respectively. Typical use:

def __init__(self): self.__x = None
def getx(self): return self.__x
def setx(self, value): self.__x = value
def delx(self): del self.__x
x = property(getx, setx, delx, "I’m the ’x’ property.")

© 2010 by Taylor and Francis Group, LLC

498 Python for Bioinformatics

range([start,] end [, step]): Returns list of ints from >= start and < end.
With 1 arg, list from 0..arg-1 With 2 args, list from start..end -1 With 3 args,
list from start up to end by step

raw input([prompt]): Prints prompt if given, then reads string from std
input (no trailing \n). See also input().

reduce(f, list [, init]): Applies the binary function f to the items of list so
as to reduce the list to a single value. If init is given, it is ”prepended” to list.

reload(module): Reparses and reinitializes an already imported module.
Useful in interactive mode, if you want to reload a module after fixing it.
If module was syntactically correct but had an error in initialization, must
import it one more time before calling reload().

repr(object): Returns a string containing a printable and if possible evalu-
able representation of an object. <=> ‘object‘ (using backquotes). Class
redefinable (repr). See also str().

round(x, n=0): Returns the floating point value x rounded to n digits
after the decimal point.

set([iterable]): Returns a set object whose elements are taken from iterable,
or empty by default. See also Sets.

setattr(object, name, value): This is the counterpart of getattr().setattr(o,
’foobar’, 3) <=> o.foobar = 3. Creates attribute if it doesn’t exist!

slice([start,] stop[, step]): Returns a slice object representing a range, with
R/O attributes: start, stop, step.

sorted(iterable[, cmp[, emphkey[, reverse]]]): Returns a new sorted list
from the items in iterable. This contrasts with list.sort() that sorts lists
in place and doesn’t apply to immutable sequences like strings or tuples. See
sequences.sort method.

staticmethod(function): Returns a static method for function. A static
method does not receive an implicit first argument. To declare a static
method, use this idiom:

:
class C:

def f(arg1, arg2, ...): ...
f = staticmethod(f)

Then call it on the class C.f() or on an instance C().f(). The instance is
ignored except for its class. Since 2.4 you can alternatively use the decorator
notation:

:
class C:

@staticmethod
def f(arg1, arg2, ...): ...

str(object): Returns a string containing a nicely printable representation
of an object. Class overridable (str). See also repr().

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 499

sum(iterable[, start=0]): Returns the sum of a sequence of numbers (not
strings), plus the value of parameter. Returns start when the sequence is
empty.

super(type[, object-or-type]): Returns the superclass of type. If the second
argument is omitted the super object returned is unbound. If the second
argument is an object, isinstance(obj, type) must be true. If the second
argument is a type, issubclass(type2, type) must be true. Typical use:

:
class C(B):

def meth(self, arg):
super(C, self).meth(arg)

tuple([seq]): Creates an empty tuple or a tuple with same elements as seq.
seq may be a sequence, a container that supports iteration, or an iterator
object. If seq is already a tuple, returns itself (not a copy).

type(obj): Returns a type object [see module types] representing the type
of obj. Example:
import types if type(x) == types.StringType: print ’It is a string’.

NB: it is better to use instead:
if isinstance(x, types.StringType)....
unichr(code): Returns a unicode string 1 char long with given code.
unicode(string [, encoding [,error]]]): Creates a Unicode string from an 8-bit

string, using the given encoding name and error treatment (’strict’, ’ignore’,
or ’replace’). For objects which provide a unicode () method, it will call
this method without arguments to create a Unicode string.

vars([object]): Without arguments, returns a dictionary corresponding to
the current local symbol table. With a module, class or class instance object
as argument, returns a dictionary corresponding to the object’s symbol table.
Useful with the “%” string formatting operator.

xrange(start [, end [, step]]): Like range(), but doesn’t actually store entire
list all at once. Good to use in ”for” loops when there is a big range and little
memory.

zip(seq1 [, emphseq2,...]): [No, that’s not a compression tool! For that,
see module zipfile] Returns a list of tuples where each tuple contains the nth
element of each of the argument sequences. Since 2.4, returns an empty list
if called with no arguments (was raising TypeError before).

D.7 Built-in Exception Classes

BaseException Mother of all exceptions (was Exception before 2.5).
New-style class. exception.args is a tuple of the arguments passed to the
constructor.

© 2010 by Taylor and Francis Group, LLC

500 Python for Bioinformatics

KeyboardInterrupt & SystemExit were moved out of Exception because
they don’t really represent errors, so now a try: ... except Exception:
will only catch errors while a try: ... except BaseException: (or sim-
ply try: ... except:) will still catch everything.

• KeyboardInterrupt On user entry of the interrupt key (often ‘CTRL-
C’). Before 2.5 was derived from Exception.

• SystemExit On sys.exit(). Before 2.5 was derived from Exception.

• Exception Base of all errors. Before 2.5 was the base of all exceptions.

– GeneratorExit Raised by the close() method of generators to
terminate the iteration.

– StandardError Base class for all built-in exceptions; derived from
Exception root class.

∗ ArithmeticError Base class for arithmetic errors.
· FloatingPointError When a floating point operation fails.
· OverflowError On excessively large arithmetic operation.
· ZeroDivisionError On division or modulo operation with

0 as 2nd argument.
∗ AssertionError When an assert statement fails.
∗ textbfAttributeError On attribute reference or assignment fail-

ure
∗ textbfEnvironmentError [new in 1.5.2] On error outside Python;

error arg. tuple is (errno, errMsg...)
· IOError [changed in 1.5.2] I/O-related operation failure.
· OSError [new in 1.5.2] Used by the os module’s os.error

exception.
· WindowsError When a Windows-specific error occurs or

when the error number does not correspond to an errno
value.

∗ EOFError Immediate end-of-file hit by input() or raw input()
∗ ImportError On failure of import to find module or name.
∗ KeyboardInterrupt Moved under BaseException.
∗ LookupError base class for IndexError, KeyError

· IndexError On out-of-range sequence subscript
· KeyError On reference to a nonexistent mapping (dict)

key
∗ MemoryError On recoverable memory exhaustion
∗ NameError On failure to find a local or global (unqualified)

name.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 501

· UnboundLocalError On reference to an unassigned lo-
cal variable.

∗ ReferenceError On attempt to access to a garbage-collected
object via a weak reference proxy. item RuntimeError Ob-
solete catch-all; define a suitable error instead.
· NotImplementedError [new in 1.5.2] On method not

implemented.
∗ SyntaxError On parser encountering a syntax error

· IndentationError On parser encountering an indentation
syntax error

· TabError On improper mixture of spaces and tabs
∗ SystemError On nonfatal interpreter error - bug - report it !
∗ TypeError On passing inappropriate type to built-in operator

or function.
∗ ValueError On argument error not covered by TypeError or

more precise.
· UnicodeError On Unicode-related encoding or decoding

error.
· UnicodeDecodeError On Unicode decoding error.
· UnicodeEncodeError On Unicode encoding error.
· UnicodeTranslateError On Unicode translation error.

– StopIteration Raised by an iterator’s next() method to signal
that there are no further values.

– SystemExit Moved under BaseException.

– Warning Base class for warnings (see module warning)

∗ DeprecationWarning Warning about deprecated code.
∗ FutureWarning Warning about a construct that will change

semantically in the future.
∗ ImportWarning Warning about probable mistake in module

import (e.g. missing init .py).
∗ OverflowWarning Warning about numeric overflow. Won’t

exist in Python 2.5.
∗ PendingDeprecationWarning Warning about future dep-

recated code.
∗ RuntimeWarning Warning about dubious runtime behavior.
∗ SyntaxWarning Warning about dubious syntax.
∗ UnicodeWarning When attempting to compare a Unicode

string and an 8-bit string that can’t be converted to Unicode
using default ASCII encoding (raised a UnicodeDecodeError
before 2.5).

∗ UserWarning Warning generated by user code.

© 2010 by Taylor and Francis Group, LLC

502 Python for Bioinformatics

D.8 Standard Methods and Operators Redefinition in
Classes

Standard methods and operators map to special methods ’ method ’ and
thus can be redefined (mostly in user-defined classes), e.g.,

class C:
def __init__(self, v): self.value = v
def __add__(self, r): return self.value + r

a = C(3) # sort of like calling C.__init__(a, 3)
a + 4 # is equivalent to a.__add__(4)

Special methods for any class

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 503

TABLE D.21: Special Methods for Any Class
Method Description

new (cls[, ...]) Instance creation (on construction). If new re-
turns an instance of cls then init is called with
the rest of the arguments (...), otherwise init is
not invoked. More details here.

init (self, args) Instance initialization (on construction)
del (self) Called on object demise (refcount becomes 0)
repr (self) repr() and ‘...‘ conversions
str (self) str() and print statement
cmp (self,other) Compares self to other and returns <0, 0, or >0.

Implements >, <, == etc...
index (self) [PEP357] Allows using any object as integer indice

(e.g. for slicing). Must return a single integer or long
integer value.

lt (self, other) Called for self < other comparisons. Can return any-
thing, or can raise an exception.

le (self, other) Called for self <= other comparisons. Can return
anything, or can raise an exception.

gt (self, other) Called for self > other comparisons. Can return any-
thing, or can raise an exception.

ge (self, other) Called for self >= other comparisons. Can return
anything, or can raise an exception.

eq (self, other) Called for self == other comparisons. Can return
anything, or can raise an exception.

ne (self, other) Called for self != other (and self ¡¿ other) compar-
isons. Can return anything, or can raise an excep-
tion.

hash (self) Compute a 32 bit hash code; hash() and dictionary
ops. Since 2.5 can also return a long integer, in
which case the hash of that value will be taken.

nonzero (self) Returns 0 or 1 for truth value testing. when this
method is not defined, len () is called if defined;
otherwise all class instances are considered ”true”.

getattr (self,name) Called when attribute lookup doesn’t find name. See
also getattribute .

getattribute (self,
name)

Same as getattr but always called whenever the
attribute name is accessed.

setattr (self,
name, value)

Called when setting an attribute (inside, don’t use
”self.name = value”, use instead ”self. dict [name]
= value”)

delattr (self,
name)

Called to delete attribute <name>.

call (self, *args,
**kwargs)

Called when an instance is called as func-
tion: obj(arg1, arg2, ...) is a shorthand for
obj. call (arg1, arg2, ...).

© 2010 by Taylor and Francis Group, LLC

504 Python for Bioinformatics

D.8.1 Operators

See list in the operator module. Operator function names are provided
with 2 variants, with or without leading and trailing ’ ’ (e.g. add or
add).

Numeric Operations Special Methods

TABLE D.22: Numeric Operations Special Methods
Operator Special method
self + other add (self, other)
self - other sub (self, other)
self * other mul (self, other)
self / other div (self, other) or truediv (self,other) if

future .division is active.
self // other floordiv (self, other)
self % other mod (self, other)
divmod(self,other) divmod (self, other)
self ** other pow (self, other)
self & other and (self, other)
self ∧ other xor (self, other)
self — other or (self, other)
self << other lshift (self, other)
self >> other rshift (self, other)
bool(self) nonzero (self) (used in boolean testing)
∼self neg (self)
+self pos (self)
abs(self) abs (self)
self invert (self) (bitwise)

self += other iadd (self, other)
self -= other isub (self, other)
self *= other imul (self, other)
self /= other idiv (self, other) or itruediv (self,other) if

future .division is in effect.
self //= other ifloordiv (self, other)
self %= other imod (self, other)
self **= other ipow (self, other)
self &= other iand (self, other)
self ∧= other ixor (self, other)
self —= other ior (self, other)
self <<= other ilshift (self, other)
self >>= other irshift (self, other)

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 505

TABLE D.23: Conversions
built-in function Special method
int(self) int (self)
long(self) long (self)
float(self) float (self)
complex(self) complex (self)
oct(self) oct (self)
hex(self) hex (self)
coerce(self, other) coerce (self, other)

Conversions

Right-hand-side equivalents for all binary operators exist (radd , rsub ,
rmul , rdiv , ...). They are called when class instance is on r-h-s of op-

erator:

• a + 3 calls add (a, 3)

• 3 + a calls radd (a, 3)

Special operations for containers

D.9 Special Informative State Attributes for Some Types

Tip: Use Module inspect to Inspect Live Objects.

Modules: See page table D.25 on 507.
Classes: See page table D.26 on 507.
Instances: See page table D.27 on 507.
User defined functions: See page table D.28 on 507.
User-defined Methods: See page table D.29 on 508.
Built-in Functions and methods: See page table D.30 on 508.
Codes: See page table D.31 on 508.
Frames: See page table D.32 on 509.

D.10 Important Modules

D.10.1 sys

System-specific parameters and functions. [Full doc]

© 2010 by Taylor and Francis Group, LLC

506 Python for Bioinformatics

TABLE D.24: Special Operations for Containers
Operation Special method Notes
All sequences
and maps :
len(self)

len (self) length of object, >= 0. Length 0 ==
false

self [k] getitem (self,
k)

Get element at indice /key k (indice
starts at 0). Or, if k is a slice object,
return a slice.

missing (self,
key)

Hook called when key is not found
in the dictionary, returns the default
value.

self [k] = value setitem (self,
k, value)

Set element at indice/key/slice k.

del self [k] delitem (self,
k)

Delete element at indice/key/slice k.

elt in self elt
not in self

contains (self,
elt) not
contains (self,

elt)

More efficient than std iteration thru
sequence.

iter(self) iter (self) Returns an iterator on elements (keys
for mappings <=> self.iterkeys()).
See iterators.

self + other add (self,
other)

(concat in the official doc but
doesn’t work!)

Mappings, gen-
eral methods,
plus:
hash(self)

hash (self) hashed value of object self is used for
dictionary keys

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 507

TABLE D.25: Special Informative State Attributes: Modules
Attribute Meaning

doc (string/None, R/O): doc string (<=> dict [’ doc ’])
name (string, R/O): module name (also in dict [’ name ’])
dict (dict, R/O): module’s name space
file (string/undefined, R/O): pathname of .pyc, .pyo or .pyd

(undef for modules statically linked to the interpreter).
Before 2.3 use sys.argv[0] instead to find the current
script filename.

path (list/undefined, R/W): List of directory paths where to
find the package (for packages only).

TABLE D.26: Special Informative State Attributes: Classes
Attribute Meaning

doc (string/None, R/W): doc string (<=> dict [’ doc ’])
name (string, R/W): class name (also in dict [’ name ’])
module (string, R/W): module name in which the class was de-

fined
bases (tuple, R/W): parent classes
dict (dict, R/W): attributes (class name space)

TABLE D.27: Special Informative State Attributes: Instances
Attribute Meaning

class (class, R/W): instance’s class
dict (dict, R/W): attributes

TABLE D.28: Special Informative State Attributes: User-Defined
Functions

Attribute Meaning
doc (string/None, R/W): doc string
name (string, R/O): function name

func doc (R/W): same as doc
func name (R/O, R/W from 2.4): same as name
func defaults (tuple/None, R/W): default args values if any
func code (code, R/W): code object representing the compiled func-

tion body
func globals (dict, R/O): ref to dictionary of func global variables

D.10.2 os

Miscellaneous operating system interfaces. Full doc: http://docs.python.
org/library/os.html.

© 2010 by Taylor and Francis Group, LLC

http://docs.python.org
http://docs.python.org
http://docs.python.org
http://docs.python.org

508 Python for Bioinformatics

TABLE D.29: Special Informative State Attributes: User Defined
Methods

Attribute Meaning
doc (string/None, R/O): doc string
name (string, R/O): method name (same as im func. name)

im class (class, R/O): class defining the method (may be a base
class)

im self (instance/None, R/O): target instance object (None if un-
bound)

im func (function, R/O): function object

TABLE D.30: Special Informative State
Attributes: Built-in Functions and Methods

Attribute Meaning
doc (string/None, R/O): doc string

name (string, R/O): function name
self [methods only] target object

TABLE D.31: Special Informative State Attributes: Codes
Attribute Meaning
co name (string, R/O): function name
co argcount (int, R/0): number of positional args
co nlocals (int, R/O): number of local vars (including args)
co varnames (tuple, R/O): names of local vars (starting with args)
co code (string, R/O): sequence of bytecode instructions
co consts (tuple, R/O): literals used by the bytecode, 1st one is func-

tion doc (or None)
co names (tuple, R/O): names used by the bytecode
co filename (string, R/O): filename from which the code was compiled
co firstlineno (int, R/O): first line number of the function
co lnotab (string, R/O): string encoding bytecode offsets to line num-

bers.
co stacksize (int, R/O): required stack size (including local vars)
co flags (int, R/O): flags for the interpreter bit 2 set if fct uses

“*arg” syntax, bit 3 set if fct uses ’**keywords’ syntax

“Synonym” for whatever OS-specific module (nt, mac, posix...) is proper
for current environment. This module uses posix whenever possible. See also
M.A. Lemburg’s utility platform.py (now included in 2.3+).

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 509

TABLE D.32: Special Informative State Attributes: Frames
Attribute Meaning
f back (frame/None, R/O): previous stack frame (toward the

caller)
f code (code, R/O): code object being executed in this frame
f locals (dict, R/O): local vars
f globals (dict, R/O): global vars
f builtins (dict, R/O): built-in (intrinsic) names
f restricted (int, R/O): flag indicating whether fct is executed in re-

stricted mode
f lineno (int, R/O): current line number
f lasti (int, R/O): precise instruction (index into bytecode)
f trace (function/None, R/W): debug hook called at start of

each source line
f exc type (Type/None, R/W): Most recent exception type
f exc value (any, R/W): Most recent exception value
f exc traceback (traceback/None, R/W): Most recent exception trace-

back

TABLE D.33: Special Informative State Attributes: Tracebacks
Attribute Meaning
tb next (frame/None, R/O): next level in stack trace (toward the

frame where the exception occurred)
tb frame (frame, R/O): execution frame of the current level
tb lineno (int, R/O): line number where the exception occured
tb lasti (int, R/O): precise instruction (index into bytecode)

TABLE D.34: Special Informative State
Attributes: Slices

Attribute Meaning
start (any/None, R/O): lowerbound, included
stop (any/None, R/O): upperbound, excluded
step (any/None, R/O): step value

TABLE D.35: Special Informative
State Attributes: Complex Numbers

Attribute Meaning
real (float, R/O): real part
imag (float, R/O): imaginary part

© 2010 by Taylor and Francis Group, LLC

510 Python for Bioinformatics

TABLE D.36: Special Informative State Attributes: xranges
Attribute Meaning
tolist (Built-in method, R/O): ?

D.10.3 posix

Posix OS interfaces. Full doc: http://www.python.org/doc/2.4/lib/
module-posix.html Do not import this module directly, import os instead !
(see also module: shutil for file copy and remove functions). See Table D.41
(page 513) for Variables and Table D.42 (page 514) for Functions.

posix Variables

D.10.4 posixpath

Posix pathname operations. Do not import this module directly, import os
instead and refer to this module as os.path. (e.g. os.path.exists(p)!)

See Table D.43 on page 516.

D.10.5 shutil

High-level file operations (copying, deleting and also, copyfile, copymode,
copystat, copy2.). See Table D.44 on page 517.

D.10.6 time

Time access and conversions. (See also module mxDateTime if you need a
more sophisticated date/time management.) See Table D.45 (page 517) for
variables and D.46 (page 518) for functions.

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

Python Language Reference 511

TABLE D.37: Some sys Variables
Variable Content
argv The list of command line arguments passed to a Python

script. sys.argv[0] is the script name.
builtin module names A list of strings giving the names of all modules written

in C that are linked into this interpreter.
byteorder Native byte order, either ’big’(-endian) or ’little’(-

endian).
copyright A string containing the copyright pertaining to the

Python interpreter.
exec prefix prefix Root directory where platform-dependent Python files

are installed, e.g. ’C:\\Python23’, ’/usr’.
executable Name of executable binary of the Python interpreter

(e.g. ’C:\\Python23\\python.exe’, ’/usr/bin/python’)
exitfunc User can set to a parameterless function. It will get

called before interpreter exits. Deprecated since 2.4.
Code should be using the existing atexit module

last type, last value,
last traceback

Set only when an exception not handled and interpreter
prints an error. Used by debuggers.

maxint Maximum positive value for integers. Since 2.2, inte-
gers and long integers are unified, thus integers have no
limit.

maxunicode Largest supported code point for a Unicode character.
modules Dictionary of modules that have already been loaded.
path Search path for external modules. Can be modified by

program. sys.path[0] == directory of script currently
executed.

platform The current platform, e.g. “sunos5”, “win32”
ps1, ps2 Prompts to use in interactive mode, normally “>>>”

and ”...”
stdin, stdout, stderr File objects used for I/O. One can redirect by assigning

a new file object to them (or any object: with a method
write(string) for stdout/stderr, or with a method read-
line() for stdin). stdin , stdout and stderr are
the default values.

subversion Info about Python build version in the Subver-
sion repository: tuple (interpreter-name, branch-name,
revision-range), e.g. (’CPython’, ’tags/r25’, ’51908’).

version String containing version info about Python interpreter.
version info Tuple containing Python version info - (major, minor,

micro, level, serial).
winver Version number used to form registry keys on Windows

platforms (e.g. ’2.2’).

© 2010 by Taylor and Francis Group, LLC

512 Python for Bioinformatics

TABLE D.38: Some sys Functions
Function Result
current frames() Returns the current stack frames for all running

threads, as a dictionary mapping thread identifiers
to the topmost stack frame currently active in that
thread at the time the function is called.

displayhook The function used to display the output of com-
mands issued in interactive mode - defaults to the
builtin repr(). displayhook is the original value.

excepthook Can be set to a user defined function, to which any
uncaught exceptions are passed. excepthook is
the original value.

exit(n) Exits with status n (usually 0 means OK). Raises
SystemExit exception (hence can be caught and
ignored by program).

getrefcount(object) Returns the reference count of the object. Gen-
erally 1 higher than you might expect, because of
object arg temp reference.

getcheckinterval()
/ setcheckinter-
val(interval)

Gets / Sets the interpreter’s thread switching in-
terval (in number of bytecode instructions, default:
10 until 2.2, 100 from 2.3).

settrace(func) Sets a trace function: called before each line of
code is exited.

setprofile(func) Sets a profile function for performance profiling.
exc info() Info on exception currently being handled; this is a

tuple (exc type, exc value, exc traceback). Warn-
ing: assigning the traceback return value to a local
variable in a function handling an exception will
cause a circular reference.

setdefaultencoding(en-
coding)

Change default Unicode encoding - defaults to 7-
bit ASCII.

getrecursionlimit() Retrieve maximum recursion depth.
setrecursionlimit() Set maximum recursion depth (default 1000).

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 513

TABLE D.39: Some os Variables
Variable Meaning
name name of O/S-specific module (e.g. “posix”, “mac”, “nt”)
path O/S-specific module for path manipulations. On Unix,

os.path.split() <=> posixpath.split()
curdir string used to represent current directory (eg ’.’)
pardir string used to represent parent directory (eg ’..’)
sep string used to separate directories (’/’ or ’\’). Tip: Use

os.path.join() to build portable paths.
altsep Alternate separator if applicable (None otherwise)
pathsep character used to separate search path components (as in

$PATH), eg. ’;’ for windows.
linesep line separator as used in text files, ie ’\n’ on Unix, ’\r\n’ on

Dos/Win, ’\r’ on Mac.

TABLE D.40: Some os Functions
Function Result
makedirs(path[,
mode=0777])

Recursive directory creation (create required intermediary
dirs); os.error if fails.

removedirs(path) Recursive directory delete (delete intermediary empty
dirs); fails (os.error) if the directories are not empty.

renames(old,
new)

Recursive directory or file renaming; os.error if fails.

urandom(n) Returns a string containing n bytes of random data.

TABLE D.41: Posix Variables
Variable Meaning
environ dictionary of environment variables, e.g. posix.environ[’HOME’].
error exception raised on POSIX-related error. Corresponding value is

tuple of errno code and perror() string.

© 2010 by Taylor and Francis Group, LLC

514 Python for Bioinformatics

TABLE D.42: Posix Functions
Function Result
chdir(path) Changes current directory to path.
chmod(path,
mode)

Changes the mode of path to the numeric mode

close(fd) Closes file descriptor fd opened with posix.open.
exit(n) Immediate exit, with no cleanups, no SystemExit, etc...

Should use this to exit a child process.
execv(p, args) “Become” executable p with args args
getcwd() Returns a string representing the current working direc-

tory.
getcwdu() Returns a Unicode string representing the current work-

ing directory.
getpid() Returns the current process id.
getsid() Calls the system call getsid() [Unix].
fork() Like C’s fork(). Returns 0 to child, child pid to parent [Not

on Windows].
kill(pid, signal) Like C’s kill [Not on Windows].
listdir(path) Lists (base)names of entries in directory path, excluding ’.’

and ’..’. If path is a Unicode string, so will be the returned
strings.

lseek(fd, pos,
how)

Sets current position in file fd to position pos, expressed as
an offset relative to beginning of file (how=0), to current
position (how=1), or to end of file (how=2).

mkdir(path[,
mode])

Creates a directory named path with numeric mode (de-
fault 0777).

open(file, flags,
mode)

Like C’s open(). Returns file descriptor. Use file object
functions rather than this low level ones.

pipe() Creates a pipe. Returns pair of file descriptors (r, w) [Not
on Windows].

popen(command,
mode=’r’, buf-
Size=0)

Opens a pipe to or from command. Result is a file object
to read to or write from, as indicated by mode being ’r’ or
’w’. Use it to catch a command output (’r’ mode), or to
feed it (’w’ mode).

remove(path) See unlink.
rename(old,
new)

Renames/moves the file or directory old to new. [error if
target name already exists]

renames(old,
new)

Recursive directory or file renaming function. Works like
rename(), except creation of any intermediate directories
needed to make the new pathname good is attempted first.
After the rename, directories corresponding to rightmost
path segments of the old name will be pruned away using
removedirs().

rmdir(path) Removes the empty directory path.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 515

read(fd, n) Reads n bytes from file descriptor fd and return as string.
stat(path) Returns st mode, st ino, st dev, st nlink, st uid,st gid,

st size, st atime, st mtime, st ctime. [st ino, st uid, st gid
are dummy on Windows]

system(command) Executes string command in a subshell. Returns exit sta-
tus of subshell (usually 0 means OK). Since 2.4 use sub-
process.call() instead.

times() Returns accumulated CPU times in sec (user, system, chil-
dren’s user, children’s sys, elapsed real time) [3 last not on
Windows].

unlink(path) Unlinks (“deletes”) the file (not dir!) path. Same as: re-
move.

utime(path,
(aTime,
mTime))

Sets the access & modified time of the file to the given
tuple of values.

wait() Waits for child process completion. Returns tuple of pid,
exit status [Not on Windows].

waitpid(pid, op-
tions)

Waits for process pid to complete. Returns tuple of pid,
exit status [Not on Windows].

walk(top[, top-
down=True [,
onerror=None]])

Generates a list of file names in a directory tree, by walking
the tree either top down or bottom up. For each directory
in the tree rooted at directory top (including top itself), it
yields a 3-tuple (dirpath, dirnames, filenames) - more info
here. See also os.path.walk().

write(fd, str) Writes str to file fd. Returns nb of bytes written.

© 2010 by Taylor and Francis Group, LLC

516 Python for Bioinformatics

TABLE D.43: Posixpath Functions
Function Result
abspath(path) Returns absolute path for path, taking current working dir

in account.
commonprefix(list) Returns the longuest path prefix (taken character-by-

character) that is a prefix of all paths in list (or ” if list
empty).

dirname/basename-
(path)

directory and name parts of path. See also split.

exists(path) True if path is the path of an existing file or directory. See
also lexists.

expanduser(path) Returns a copy of path with “∼” expansion done.
expandvars(path) Returns string that is (a copy of) path with environment

vars expanded. [Windows: case significant; must use Unix:
$var notation, not %var%]

getatime(path) Returns last access time of path (integer secs. since epoch).
getctime(path) Returns the metadata change time of path (integer secs.

since epoch).
getmtime(path) Returns last modification time of path (integer secs. since

epoch).
getsize(path) Returns the size in bytes of path. os.error if file inexistent

or inaccessible.
isabs(path) True if path is absolute.
isdir(path) True if path is a directory.
isfile(path) True if path is a regular file.
islink(path) True if path is a symbolic link.
ismount(path) True if path is a mount point [true for all dirs on Windows].
join(p[,q [,...]]) Joins one or more path components in a way suitable for

the current OS.
lexists(path) True if the file specified by path exists, whether or not it’s

a symbolic link (unlike exists).
normcase(path) Normalizes case of path. Has no effect under Posix.
normpath(path) Normalizes path, eliminating double slashes, etc...
realpath(path) Returns the canonical path for path, eliminating any sym-

bolic links encountered in the path.
samefile(f1,f2) True if the 2 paths f1 and f2 reference the same file.
sameopenfile(f1,f2) True if the 2 open file objects f1 and f2 reference the same

file.
samestat(s1, s2) True if the 2 stat buffers s1 and s2 reference the same file.
split(p) Splits p into (head, tail) where tail is last pathname com-

ponent and head is everything leading up to that. <=>
(dirname(p), basename(p))

splitdrive(p) Splits path p in a pair (’drive:’, tail) [Windows]

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 517

splitext(p) Splits into (root, ext) where last comp of root contains no
periods and ext is empty or starts with a period.

walk(p, visit, arg) Calls the function visit with arguments (arg, dirname,
names) for each directory recursively in the directory tree
rooted at p (including p itself if it’s a dir). The argument
dirname specifies the visited directory, the argument names
lists the files in the directory. The visit function may mod-
ify names to influence the set of directories visited below
dirname, e.g. to avoid visiting certain parts of the tree. See
also os.walk().

TABLE D.44: Shutil Functions
Function Result
copy(src, dest) Copies the contents of file src to file dest, retaining

file permissions.
copytree(src, dest [,
symlinks])

Recursively copies an entire directory tree rooted at
src into dest (which should not already exist). If sym-
links is true, links in src are kept as such in dest.

move(src, dest) Recursively moves a file or directory to a new loca-
tion.

rmtree(path [, ig-
nore errors[, onerror]]
)

Deletes an entire directory tree, ignoring errors
if ignore errors is true, or calling onerror(func,
path, sys.exc info()) if supplied, with arguments func
(faulty function), and path (concerned file). This fact
fails when the files are Read Only.

TABLE D.45: Time Access and Conversions: Variables
Variable Meaning
altzone Signed offset of local DST time zone in sec west of the 0th

meridian.
daylight Nonzero if a DST time zone is specified.
time zone The offset of the local (non-DST) time zone, in seconds west

of UTC.
tzname A tuple (name of local non-DST time zone, name of local DST

timezone)

© 2010 by Taylor and Francis Group, LLC

518 Python for Bioinformatics

TABLE D.46: Time: Some Functions
Function Result
clock() On Unix: current processor time as a floating point

number expressed in seconds. On Windows: wall-clock
seconds elapsed since the 1st call to this function, as a
floating point number (precision < 1µs).

time() Returns a float representing UTC time in seconds
since the epoch.

gmtime([secs]), lo-
caltime([secs])

Returns a 9-tuple representing time. Current time
is used if secs is not provided. Since 2.2, returns
a struct time object (still accessible as a tuple) with
the following attributes: tm year, tm mon, tm mday,
tm hour, tm min, tm sec, tm wday, tm yday, tm isdst

asctime([timeTuple]), 24-character string of the following form: ’Mon Apr 03
08:31:14 2006’. timeTuple defaults to localtime() if
omitted.

ctime([secs]) equivalent to asctime(localtime(secs))
mktime(timeTuple) Inverse of localtime(). Returns a float representing a

number of seconds.
strftime(format [,
timeTuple])

Formats a time tuple as a string, according to format
(see table below). Current time is used if timeTuple is
omitted.

strptime(string [,
format])

Parses a string representing a time according to for-
mat (same format as for strftime(), see below), default
”%a %b %d %H:%M:%S %Y” = asctime format. Re-
turns a time tuple/struct time.

sleep(secs) Suspends execution for secs seconds. secs can be a
float.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 519

TABLE D.47: Formatting in strftime() and strptime()
Directive Meaning
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. Yes, 61 !
%U Week number of the year (Sunday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (or by no characters if no time zone exists).
%% A literal “%” character.

© 2010 by Taylor and Francis Group, LLC

520 Python for Bioinformatics

TABLE D.48: Some String Variables
Variable Meaning
digits The string ’0123456789’.
hexdigits, octdigits Legal hexadecimal & octal digits.
letters, uppercase, lowercase,
whitespace

Strings containing the appropriate char-
acters.

ascii letters, ascii lowercase,
ascii uppercase

Same, taking the current locale in ac-
count.

index error Exception raised by index() if substring
(defined between any types) not found.

D.10.7 String

Common string operations. Full doc: http://www.python.org/doc/lib/
module-string.html. As of Python 2.0, much (though not all) of the func-
tionality provided by the string module has been superseded by built-in string
methods. See Operations on strings for details. See Table D.48 on page 520.

D.10.8 re (sre)

Regular expression operations. Full doc: http://www.python.org/doc/
lib/module-re.html.

Handles Unicode strings. Implemented in new module sre, re now a mere
front-end for compatibility. Patterns are specified as strings.

Tip: Use raw strings (e.g. r’\w*’) to literalize backslashes.

See Table D.50 on page 522.

D.10.9 Regular Expression Objects

RE objects are returned by the compile function. See Table D.54 on page
525.

D.10.10 Match Objects

Match objects are returned by the match and search functions. See Table
D.56 on page 526.

D.10.11 Math

For complex number functions, see module cmath. For intensive number
crunching, see Numerical Python and the Python and Scientific computing
page. See math constants in table D.58 (page 526) and math functions in

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

Python Language Reference 521

TABLE D.49: Some String Functions
Function Result
expandtabs(s, tabSize) Returns a copy of string emphs with tabs

expanded.
find/rfind(s, sub[, start=0[,
end=0])

Returns the lowest/highest index in s
where the substring sub is found such that
sub is wholly contained in s[start:end]. Re-
turn -1 if sub not found.

ljust/rjust/center(s, width[,
fillChar=’ ’])

Returns a copy of string emphs; left/right
justified/centered in a field of given width,
padded with spaces or the given character.
s is never truncated.

lower/upper(s) Returns a string that is (a copy of) s in
lowercase/uppercase.

split(s[, sep=whitespace[,
maxsplit=0]])

Returns a list containing the words of the
string s, using the string sep as a separa-
tor.

rsplit(s[, sep=whitespace[,
maxsplit=0]])

Same as split above but starts split-
ting from the end of string, e.g.
’A,B,C’.split(’,’, 1) == [’A’, ’B,C’] but
’A,B,C’.rsplit(’,’, 1) == [’A,B’, ’C’]

join(words[, sep=’ ’]) Concatenates a list or tuple of words with
intervening separators; inverse of split.

replace(s, old, new [, maxs-
plit=0]

Returns a copy of string s with all occur-
rences of substring old replaced by new.
Limits to maxsplit first substitutions if
specified.

strip(s[, chars=None]) Returns a string that is (a copy of) s with-
out leading and trailing chars (default:
whitespace), if any. Also: lstrip, rstrip.

© 2010 by Taylor and Francis Group, LLC

522 Python for Bioinformatics

TABLE D.50: Regular Expression Syntax
Form Description
. Matches any character (including new line if DOTALL flag spec-

ified).
∧ Matches start of the string (of every line in MULTILINE mode).
$ Matches end of the string (of every line in MULTILINE mode).
* 0 or more of preceding regular expression (as many as possible).
+ 1 or more of preceding regular expression (as many as possible).
? 0 or 1 occurrence of preceding regular expression.
*?, +?, ?? Same as *, + and ? but matches as few characters as possible.
{m,n} Matches from m to n repetitions of preceding RE.
{m,n}? Idem, attempting to match as few repetitions as possible.
[] Defines character set: e.g. ’[a-zA-Z]’ to match all letters (see

also \w \S).
[∧] Defines complemented character set: matches if char is NOT in

set.
\ Escapes special chars ’*?+&$—()’ and introduces special se-

quences (see below). Due to Python string rules, write as ’\\’ or
r’\’ in the pattern string.

\\ Matches a literal ’\’; due to Python string rules, write as ’\\\\’
in pattern string, or better using raw string: r’\\’.

— Specifies alternative: ’foo—bar’ matches ’foo’ or ’bar’.
(...) Matches any RE inside (), and delimits a group.
(?:...) Idem but doesn’t delimit a group (non capturing parenthesis).
(?P<name>...) Matches any RE inside (), and delimits a named group, (e.g.

r’(?P<id>[a-zA-Z]\w*)’ defines a group named id).
(?P=name) Matches whatever text was matched by the earlier group named

name.
(?=...) Matches if ... matches next, but doesn’t consume any of the

string e.g. ’Isaac (?=Asimov)’ matches ’Isaac’ only if followed
by ’Asimov’.

(?!...) Matches if ... doesn’t match next. Negative of (?=...).
(?<=...) Matches if the current position in the string is preceded by a

match for ... that ends at the current position. This is called a
positive lookbehind assertion.

(?<!...) Matches if the current position in the string is not preceded by
a match for This is called a negative lookbehind assertion.

(?(group)A—B) [2.4+] group is either a numeric group ID or a group name de-
fined with (?Pgroup...) earlier in the expression. If the specified
group matched, the regular expression pattern A will be tested
against the string; if the group didn’t match, the pattern B will
be used instead.

(?#...) A comment; ignored.
(?letters) letters is one or more of ’i’,’L’, ’m’, ’s’, ’u’, ’x’. Sets the corre-

sponding flags (re.I, re.L, re.M, re.S, re.U, re.X) for the entire
RE. See the compile() function for equivalent flags.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 523

TABLE D.51: Regular Expression Special Sequences
Sequence Description
\number Matches content of the group of the same number; groups are num-

bered starting from 1.
\A Matches only at the start of the string.
\b Empty str at beginning or end of word: ’\bis\b’ matches ’is’, but

not ’his’.
\B Empty str NOT at beginning or end of word.
\d Any decimal digit (<=> [0-9]).
\D Any non-decimal digit char (<=> [∧0-9]).
\s Any whitespace char (<=> [\t\n\r\f\v]).
\S Any non-whitespace char (<=> [∧ \t\n\r\f\v]).
\w Any alphaNumeric char (depends on LOCALE flag).
\W Any non-alphaNumeric char (depends on LOCALE flag).
\Z Matches only at the end of the string.

TABLE D.52: Regular Expression Variables
Variable Meaning
error Exception when pattern string isn’t a valid regexp.

Table D.59 (page 527).

D.10.12 getopt

Parser for command line options. Full doc: http://www.python.org/doc/
lib/module-getopt.html.

This was the standard parser until Python 2.3, now superseded by opt-
parse. [See also: Richard Gruet’s simple parser getargs.py (shameless self
promotion)]

Functions:

getopt(list, optstr)
-- Similar to C. <optstr> is option letters to look for.
Put ’:’ after letter if option takes arg. E.g.
invocation was "python test.py -c hi -a arg1 arg2"

opts, args = getopt.getopt(sys.argv[1:], ’ab:c:’)
opts would be

[(’-c’, ’hi’), (’-a’, ’’)]
args would be

[’arg1’, ’arg2’]

© 2010 by Taylor and Francis Group, LLC

http://www.python.org/doc
http://python.org
http://python.org
http://www.python.org/doc

524 Python for Bioinformatics

TABLE D.53: Regular Expression Functions
Function Result
compile(pattern[,
flags=0])

Compiles a RE pattern string into a regular expression
object. Flags (combinable by —):
I or IGNORECASE <=> (?i)
case insensitive matching
L or LOCALE <=> (?L)
make \w, \W, \b, \B dependent on the current locale
M or MULTILINE <=> (?m)
matches every new line and not only start/end of the
whole string
S or DOTALL <=> (?s)
’.’ matches ALL chars, including new line
U or UNICODE <=> (?u)
Make \w, \W, \b, and \B dependent on the Unicode
character properties database.
X or VERBOSE <=> (?x)
Ignores whitespace outside character sets

escape(string) Returns (a copy of) string with all non-alphanumerics
backslashed.

match(pattern,
string [, flags])

If 0 or more chars at beginning of string matches the
RE pattern string, returns a corresponding MatchOb-
ject instance, or None if no match.

search(pattern,
string [, flags])

Scans thru string for a location matching pattern, re-
turns a corresponding MatchObject instance, or None
if no match.

split(pattern, string [,
maxsplit=0])

Splits string by occurrences of pattern. If capturing
() are used in pattern, then occurrences of patterns or
subpatterns are also returned.

findall(pattern,
string)

Returns a list of non-overlapping matches of pattern
in string, either a list of groups or a list of tuples if
the pattern has more than 1 group.

finditer(pattern,
string [, flags])

Returns an iterator over all non-overlapping matches
of pattern in string. For each match, the iterator re-
turns a match object. Empty matches are included in
the result unless they touch the beginning of another
match.

sub(pattern, repl,
string [, count=0])

Returns string obtained by replacing the (count first)
leftmost non-overlapping occurrences of pattern (a
string or a RE object) in string by repl ; repl can be
a string or a function called with a single MatchObj
arg, which must return the replacement string.

subn(pattern, repl,
string [, count=0])

Same as sub(), but returns a tuple (newString, num-
berOfSubsMade).

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 525

TABLE D.54: re Object Attributes
Attribute Description
flags Flags arg used when RE obj was compiled, or 0 if none provided.
groupindex Dictionary of {group name: group number} in pattern.
pattern Pattern string from which RE obj was compiled.

TABLE D.55: re Object Methods
Method Result
match(string [, pos][,
ndpos])

If zero or more characters at the beginning of string
match this regular expression, returns a corresponding
MatchObject instance. Returns None if the string does
not match the pattern; note that this is different from
a zero-length match. The optional second parameter
pos gives an index in the string where the search is to
start; it defaults to 0. This is not completely equivalent
to slicing the string; the ” pattern character matches
at the real beginning of the string and at positions just
after a new line, but not necessarily at the index where
the search is to start. The optional parameter endpos
limits how far the string will be searched; it will be
as if the string is endpos characters long, so only the
characters from pos to endpos will be searched for a
match.

search(string [, pos][,
ndpos])

Scans through string looking for a location where this
regular expression produces a match, and returns a
corresponding MatchObject instance. Returns None
if no position in the string matches the pattern; note
that this is different from finding a zero-length match
at some point in the string. The optional pos and
endpos parameters have the same meaning as for the
match() method.

split(string [, maxs-
plit=0])

Identical to the split() function, using the compiled
pattern.

findall(string [, pos[,
endpos]])

Identical to the findall() function, using the compiled
pattern.

finditer(string [,
pos[, endpos]])

Identical to the finditer() function, using the compiled
pattern.

sub(repl, string [,
count=0])

Identical to the sub() function, using the compiled pat-
tern.

subn(repl, string [,
count=0])

Identical to the subn() function, using the compiled
pattern.

© 2010 by Taylor and Francis Group, LLC

526 Python for Bioinformatics

TABLE D.56: Match Object Attributes
Attribute Description
pos Value of pos passed to search or match functions; index into string

at which RE engine started search.
endpos Value of endpos passed to search or match functions; index into

string beyond which RE engine won’t go.
re RE object whose match or search fct produced this MatchObj

instance.
string String passed to match() or search().

TABLE D.57: Match Object Functions
Function Result
group([g1,
g2, ...])

Returns one or more groups of the match. If one arg, result is
a string; if multiple args, result is a tuple with one item per arg.
If gi is 0, returns the entire matching string; if 1 <= gi <= 99,
returns string matching group #gi (or None if no such group);
gi may also be a group name.

groups() Returns a tuple of all groups of the match; groups not participat-
ing to the match have a value of None. Returns a string instead
of tuple if len(tuple)== 1.

start(group),
end(group)

Returns indices of start & end of substring matched by group
(or None if group exists but didn’t contribute to the match).

span(group) Returns the 2-tuple (start(group), end(group)); can be (None,
None) if group didn’t contribute to the match.

TABLE D.58: Math Constants
Name Value
pi 3.1415926535897931
e 2.7182818284590451

D.11 List of Modules and Packages in Base Distribution

Built-ins and content of python Lib directory. The subdirectory Lib/site-
packages contains platform-specific packages and modules. (See Table D.60
on page 528)

[Main distributions (Windows, Unix), some OS specific modules may
be missing.]

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 527

TABLE D.59: Math Functions
Name Result
acos(x) Returns the arc cosine (measured in radians) of x.
asin(x) Returns the arc sine (measured in radians) of x.
atan(x) Returns the arc tangent (measured in radians) of x.
atan2(y, x) Returns the arc tangent (measured in radians) of y/x. The result

is between -pi and pi. Unlike atan(y/x), the signs of both x and
y are considered.

ceil(x) Returns the ceiling of x as a float. This is the smallest integral
value >= x.

cos(x) Returns the cosine of x (measured in radians).
cosh(x) Returns the hyperbolic cosine of x.
degrees(x) Converts angle x from radians to degrees.
exp(x) Returns e raised to the power of x.
fabs(x) Returns the absolute value of the float x.
floor(x) Returns the floor of x as a float. This is the largest integral value

<= x.
fmod(x, y) Returns fmod(x, y), according to platform C. x % y may differ.
frexp(x) Returns the mantissa and exponent of x, as pair (m, e). m is a

float and e is an int, such that x = m * 2.**e. If x is 0, m and e
are both 0. Else 0.5 <= abs(m) < 1.0.

hypot(x, y) Returns the Euclidean distance sqrt(x*x + y*y).
ldexp(x, y) x * (2**i)
log(x [,
base])

Returns the logarithm of x to the given base. If the base is not
specified, returns the natural logarithm (base e) of x.

log10(x) Returns the base 10 logarithm of x.
modf(x) Returns the fractional and integer parts of x. Both results carry

the sign of x. The integer part is returned as a float.
pow(x, y) Returns x**y (x to the power of y). Note that for y=2, it is more

efficient to use x*x.
radians(x) Converts angle x from degrees to radians.
sin(x) Returns the sine (measured in radians) of x.
sinh(x) Returns the hyperbolic sine of x.
sqrt(x) Returns the square root of x.
tan(x) Returns the tangent (measured in radians) of x.
tanh(x) Returns the hyperbolic tangent of x.

D.12 Workspace Exploration and Idiom Hints

Tips for exploring the Python workspace. See Table D.61 on page 538.

© 2010 by Taylor and Francis Group, LLC

528 Python for Bioinformatics

TABLE D.60: Standard Library Modules
Operation Result

builtin Provide direct access to all ‘built-in’ identifiers of Python,
e.g. builtin .open is the full name for the built-in func-
tion open().

future Future statement definitions. Used to progressively in-
troduce new features in the language.

main Represent the (otherwise anonymous) scope in which the
interpreter’s main program executes – commands read
either from standard input, from a script file, or from an
interactive prompt. Typical idiom to check if a code was
run as a script (as opposed to being imported):

if __name__ == ’__main__’:
main() # (this code was run as script)

aifc Stuff to parse AIFF-C and AIFF files.
anydbm Generic interface to all dbm clones. (dbhash, gdbm, dbm,

dumbdbm).
array Efficient arrays of numeric values.
asynchat A class supporting chat-style (command/response) pro-

tocols.
asyncore Basic infrastructure for asynchronous socket service

clients and servers.
atexit Register functions to be called at exit of Python inter-

preter.
audiodev Classes for manipulating audio devices (currently only for

Sun and SGI).
audioop Manipulate raw audio data. 2.5: Supports the a-LAW

encoding.
base64 Conversions to/from base64 transport encoding as per

RFC-1521.
BaseHTTPServer HTTP server base class
Bastion “Bastionification” utility (control access to instance vars).
bdb A generic Python debugger base class.
binascii Convert between binary and ASCII.
binhex Macintosh binhex compression/decompression.
bisect Bisection algorithms.
bsddb (Optional) improved BSD database interface [package].
bz2 BZ2 compression.
calendar Calendar printing functions.
cgi Wraps the WWW Forms Common Gateway Interface

(CGI).

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 529

CGIHTTPServer CGI-savvy HTTP Server.
cgitb Traceback manager for CGI scripts.
chunk Read IFF chunked data.
cmath Mathematical functions for complex numbers. See also

math.
cmd A generic class to build line-oriented command inter-

preters.
code Utilities needed to emulate Python’s interactive inter-

preter.
codecs Lookup existing Unicode encodings and register new

ones. 2.5: support for incremental codecs.
codeop Utilities to compile possibly incomplete Python source

code.
collections high-performance container datatypes. Currently, the

only datatype is a double-ended queue. 2.5: Type deque
has now a remove method. New type defaultdict.

colorsys Conversion functions between RGB and other color sys-
tems.

commands Execute shell commands via os.popen [Unix].
compileall Force “compilation” of all .py files in a directory.
ConfigParser Configuration file parser (much like windows .ini files).
contextlib Utilities for with statement contexts.
Cookie HTTP state (cookies) management.
copy Generic shallow and deep copying operations.
copy reg Helper to provide extensibility for modules

pickle/cPickle.
cPickle Faster, C implementation of pickle.
cProfile Faster, C implementation of profile.
crypt Function to check Unix passwords [Unix].
cStringIO Faster, C implementation of StringIO.
csv Tools to read comma-separated files (of variations

thereof). 2.5: Several enhancements.
ctypes “Foreign function” library for Python. Provides C

compatible data types, and allows to call functions in
dlls/shared libraries. Can be used to wrap these libraries
in pure Python.

curses Terminal handling for character-cell displays
[Unix/OS2/DOS only].

datetime Improved date/time types (date, time, datetime,
timedelta). 2.5: New method strptime(string, format)
for class datetime.

dbhash (g)dbm-compatible interface to bsdhash.hashopen.
decimal Decimal floating point arithmetic.

© 2010 by Taylor and Francis Group, LLC

530 Python for Bioinformatics

difflib Tool for comparing sequences, and computing the
changes required to convert one into another. 2.5:
Improved SequenceMatcher.get matching blocks()
method .

dircache Sorted list of files in a dir, using a cache.
dis Bytecode disassembler.
distutils Package installation system. 2.5: Function setup

enhanced with new keyword parameters requires,
provides, obsoletes, and download url [PEP314].

distutils.command-
.register

Registers a module in the Python package index
(PyPI). This command plugin adds the register
command to distutil scripts.

distutils.debug
distutils.emxccompiler
distutils.log
dl Call C functions in shared objects [Unix].
doctest Unit testing framework based on running examples

embedded in docstrings. 2.5: New SKIP option.
New encoding arg to testfile() function.

DocXMLRPCServer Creation of self-documenting XML-RPC servers,
using pydoc to create HTML API doc on the fly.
2.5: New attribute rpc paths.

dumbdbm A dumb and slow but simple dbm clone.
dummy thread
dummy threading Helpers to make it easier to write code that uses

threads where supported, but still runs on Python
versions without thread support. The dummy
modules simply run the threads sequentially.

email A package for parsing, handling, and generating
email messages. New version 3.0 dropped various
deprecated APIs and removes support for Python
versions earlier than 2.3. 2.5: Updated to version
4.0.

encodings New codecs: idna (IDNA strings), koi8 u (Ukra-
nian), palmos (PalmOS 3.5), punycode (Punycode
IDNA codec), string escape (Python string escape
codec: replaces non-printable chars w/ Python-
style string escapes). New codecs in 2.4: HP Ro-
man8, ISO 8859-11, ISO 8859-16, PCTP-154, TIS-
620; Chinese, Japanese and Korean codecs.

errno Standard errno system symbols. The value of each
symbol is the corresponding integer value.

exceptions Class based built-in exception hierarchy.
fcntl The fcntl() and ioctl() system calls [Unix].
filecmp File and directory comparison.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 531

fileinput Helper class to quickly write a loop over all standard input
files. 2.5: Made more flexible (Unicode filenames, mode
parameter, etc...)

fnmatch Filename matching with shell patterns.
formatter Generic output formatting.
fpectl Floating point exception control [Unix].
fpformat General floating point formatting functions.
ftplib An FTP client class. Based on RFC 959.
functools tools for functional-style programming. See in particular

function partial() [PEP309].
gc Perform garbage collection, obtain GC debug stats, and

tune GC parameters. 2.5: New get count() function.
gc.collect() takes a new generation argument.

gdbm GNU’s reinterpretation of dbm [Unix].
getopt Standard command line processing. See also optparse.
getpass Utilities to get a password and/or the current user name.
gettext Internationalization and localization support.
glob Filename “globbing” utility.
gopherlib Gopher protocol client interface.
grp The group database [Unix].
gzip Read & write gzipped files.
hashlib Secure hashes and message digests.
heapq Heap queue (priority queue) helpers. 2.5: nsmallest() and

nlargest() takes a key keyword param.
hmac HMAC (Keyed-Hashing for Message Authentication).
hotshot.stones Helper to run the pystone benchmark under the Hotshot

profiler.
htmlentitydefs HTML character entity references.
htmllib HTML2 parsing utilities
HTMLParser Simple HTML and XHTML parser.
httplib HTTP1 client class.
idlelib (package) Support library for the IDLE development envi-

ronment.
ihooks Hooks into the “import” mechanism.
imageop Manipulate raw image data.
imaplib IMAP4 client.Based on RFC 2060.
imghdr Recognizing image files based on their first few bytes.
imp Access the import internals.
imputil Provides a way of writing customized import hooks.
inspect Get information about live Python objects.
itertools Tools to work with iterators and lazy sequences. 2.5: is-

lice() accepts None for start & step args.
keyword List of Python keywords.
linecache Cache lines from files.

© 2010 by Taylor and Francis Group, LLC

532 Python for Bioinformatics

locale Support for number formatting using the current lo-
cale settings. 2.5: format() modified; new fcts for-
mat string() and currency()

logging (package) Tools for structured logging in log4j style.
macpath Pathname (or related) operations for the Macintosh

[Mac].
macurl2path Mac specific module for conversion between path-

names and URLs [Mac].
mailbox Classes to handle Unix style, MMDF style, and MH

style mailboxes. 2.5: added capability to modify mail-
boxes in addition to reading them.

mailcap Mailcap file handling (RFC 1524).
marshal Internal Python object serialization.
markupbase Shared support for scanning document type declara-

tions in HTML and XHTML.
math Mathematical functions. See also cmath
md5 MD5 message digest algorithm. 2.5: Now a mere

wrapper around new library hashlib.
mhlib MH (mailbox) interface.
mimetools Various tools used by MIME-reading or MIME-

writing programs.
mimetypes Guess the MIME type of a file.
MimeWriter Generic MIME writer. Deprecated since release 2.3.

Use the email package instead.
mimify Mimification and unmimification of mail messages.
mmap Interface to memory-mapped files - they behave like

mutable strings.
modulefinder Tools to find what modules a given Python program

uses, without actually running the program.
msilib Read and write Microsoft Installer files [Windows].
msvcrt File & Console Windows-specific operations [Win-

dows].
multifile A readline()-style interface to the parts of a multipart

message.
mutex Mutual exclusion – for use with module sched. See

also std module threading, and glock.
netrc Parses and encapsulates the netrc file format.
new Creation of runtime internal objects (interface to in-

terpreter object creation functions).
nis Interface to Sun’s NIS (Yellow Pages) [Unix]. 2.5:

New domain arg to nis.match() and nis.maps().
nntplib An NNTP client class. Based on RFC 977.
ntpath Common operations on Windows pathnames [Win-

dows].
nturl2path Convert a NT pathname to a file URL and vice versa

[Windows].

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 533

olddifflib Old version of difflib (helpers for computing deltas between
objects)?

operator Standard operators as functions. 2.5: itemgetter() and attr-
getter() now supports multiple fields.

optparse Improved command-line option parsing library (see also
getopt). 2.5: Updated to Optik library 1.51.

os OS routines for Mac, DOS, NT, or Posix depending on what
system we’re on. 2.5: os.stat() return time values as floats; new
constants to os.lseek(); new functions wait3() and wait4(); on
FreeBSD, os.stat() returns times with nanosecond resolution.

os.path Common pathname manipulations.
os2emxpath os.path support for OS/2 EMX.
parser Access Python parse trees.
pdb A Python debugger.
pickle Pickling (save/serialize and restore/deserialize) of Python ob-

jects (a faster C implementation exists in built-in module:
cPickle). 2.5: Value returned by reduce () must be different
from None.

pickletools Tools to analyze and disassemble pickles.
pipes Conversion pipeline templates [Unix].
pkgutil Tools to extend the module search path for a given package.

2.5: PEP302’s import hooks support; works for packages in
ZIP format archives.

platform Get info about the underlying platform.
popen2 Spawn a command with pipes to its stdin, stdout, and option-

ally stderr. Superseded by module subprocess since 2.4
poplib A POP3 client class.
posix Most common POSIX system calls [Unix].
posixfile (deprecated since 1.5, use fcntl.lockf() instead) File-like objects

with locking support [Unix].
posixpath Common operations on POSIX pathnames.
pprint Support to pretty-print lists, tuples, & dictionaries recursively.
pre Support for regular expressions (RE) - see re.
profile Class for profiling python code. 2.5: See also new fast C im-

plementation cProfile
pstats Class for printing reports on profiled python code. 2.5: new

stream arg to Stats constructor.
pty Pseudo terminal utilities [Linux, IRIX].
pwd The password database [Unix].
py compile Routine to “compile” a .py file to a .pyc file.
pyclbr Parse a Python file and retrieve classes and methods.
pydoc Generate Python documentation in HTML or text for interac-

tive use.
pyexpat Interface to the Expat XML parser. 2.5: now uses V2.0 of the

expat parser.

© 2010 by Taylor and Francis Group, LLC

534 Python for Bioinformatics

Queue A multi-producer, multi-consumer queue.
quopri Conversions to/from quoted-printable transport

encoding as per RFC 1521.
rand Don’t use unless you want compatibility with C’s

rand().
random Random variable generators.
re Regular Expressions.
readline GNU readline interface [Unix].
repr Alternate repr() implementation.
resource Resource usage information [Unix].
rfc822 Parse RFC-8222 mail headers.
rgbimg Read and write ’SGI RGB’ files.
rlcompleter Word completion for GNU readline 2.0 [Unix]. 2.5:

Doesn’t depend on readline anymore; now works
on non-Unix platforms.

robotparser Parse robot.txt files, useful for web spiders.
sched A generally useful event scheduler class.
select Waiting for I/O completion.
sets A Set datatype implementation based on dictio-

naries (see Sets).
sgmllib A parser for SGML, using the derived class as a

static DTD.
sha SHA-1 message digest algorithm. 2.5: Now a mere

wrapper around new library hashlib.
shelve Manage shelves of pickled objects.
shlex Lexical analyzer class for simple shell-like syntaxes.
shutil Utility functions for copying files and directory

trees.
signal Set handlers for asynchronous events.
SimpleHTTPServer Simple HTTP Server.
SimpleXMLRPCServer Simple XML-RPC Server. 2.5: New attribute

rpc paths.
site Append module search paths for third-party pack-

ages to sys.path.
smtpd An RFC 2821 SMTP server.
smtplib SMTP/ESMTP client class.
sndhdr Several routines that help recognizing sound.
socket Socket operations and some related functions. Now

supports timeouts thru function settimeout(t).
Also supports SSL on Windows. 2.5: Now sup-
ports AF NETLINK sockets on Linux; new socket
methods recv buf(buffer), recvfrom buf(buffer),
getfamily(), gettype() and getproto() .

SocketServer Generic socket server classes.
spwd Access to the UNIX shadow password database

[Unix].
sqlite3 DB-API 2.0 interface for SQLite databases.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 535

sre Support for regular expressions (RE). See re.
stat Constants/functions for interpreting results of os.
statcache Maintain a cache of stat() information on files.
statvfs Constants for interpreting statvfs struct as re-

turned by os.statvfs() and os.fstatvfs() (if they ex-
ist).

string A collection of string operations (see Strings).
StringIO File-like objects that read/write a string buffer (a

faster C implementation exists in built-in module
cStringIO).

stringprep Normalization and manipulation of Unicode
strings.

struct Perform conversions between Python values and C
structs represented as Python strings. 2.5: faster
(new pack() and unpack() methods); pack and
unpack to and from buffer objects via methods
pack into and unpack from.

subprocess Subprocess management. Replacement for
os.system, os.spawn*, os.popen*, popen2.*
[PEP324]

sunau Stuff to parse Sun and NeXT audio files.
sunaudio Interpret sun audio headers.
symbol Non-terminal symbols of Python grammar (from

“graminit.h”).
symtable Interface to the compiler’s internal symbol tables.
sys System-specific parameters and functions.
syslog Unix syslog library routines [Unix].
tabnanny Check Python source for ambiguous indentation.
tarfile Tools to read and create TAR archives. 2.5: New

method TarFile.extractall().
telnetlib TELNET client class. Based on RFC 854.
tempfile Temporary files and filenames.
termios POSIX style tty control [Unix].
test Regression tests package for Python.
textwrap Tools to wrap paragraphs of text.
thread Multiple threads of control (see also threading be-

low).
threading New threading module, emulating a subset of

Java’s threading model. 2.5: New function
stack size([size]) allows to get/set the stack size for
threads created.

threading api (doc of the threading module).
time Time access and conversions.
timeit Benchmark tool.
Tix Extension widgets for Tk.
Tkinter Python interface to Tcl/Tk.
toaiff Convert “arbitrary” sound files to AIFF (Apple

and SGI’s audio format).
token Token constants (from “token.h”).

© 2010 by Taylor and Francis Group, LLC

536 Python for Bioinformatics

tokenize Tokenizer for Python source.
trace Tools to trace execution of a function or program.
traceback Extract, format and print information about

Python stack traces.
tty Terminal utilities [Unix].
turtle LogoMation-like turtle graphics.
types Define names for all type symbols in the std inter-

preter.
tzparse Parse a time zone specification.
unicodedata Interface to unicode properties. 2.5: Updated to

Unicode DB 4.1.0; Version 3.2.0 still available as
unicodedata.ucd 3 2 0.

unittest Python unit testing framework, based on Erich
Gamma’s and Kent Beck’s JUnit.

urllib Open an arbitrary URL.
urllib2 An extensible library for opening URLs using a

variety of protocols.
urlparse Parse (absolute and relative) URLs.
user Hook to allow user-specified customization code to

run.
uu Implementation of the UUencode and UUdecode

functions.
uuid UUID objects according to RFC 4122.
warnings Python part of the warnings subsystem. Issue

warnings, and filter unwanted warnings.
wave Stuff to parse WAVE files.
weakref Weak reference support for Python. Also allows

the creation of proxy objects. 2.5: new meth-
ods iterkeyrefs(), keyrefs(), itervaluerefs() and val-
uerefs().

webbrowser Platform independent URL launcher. 2.5: several
enhancements (more browsers supported, etc...).

whichdb Guess which db package to use to open a db file.
whrandom Wichmann-Hill random number generator (obso-

lete, use random instead).
winsound Sound-playing interface for Windows [Windows].
wsgiref WSGI Utilities and Reference Implementation.
xdrlib Implements (a subset of) Sun XDR (eXternal Data

Representation).
xmllib A parser for XML, using the derived class as static

DTD.
xml.dom Classes for processing XML using the DOM (Doc-

ument Object Model). 2.3: New modules expat-
builder, minicompat, NodeFilter, xmlbuilder.

xml.etree.ElementTree Subset of Fredrik Lundh’s ElementTree library for
processing XML.

xml.parsers.expat An interface to the Expat non-validating XML
parser.

© 2010 by Taylor and Francis Group, LLC

Python Language Reference 537

xml.sax Classes for processing XML using the SAX API.
xmlrpclib An XML-RPC client interface for Python. 2.5:

Supports returning datetime objects for the XML-
RPC date type.

xreadlines Provides a sequence-like object for reading a file
line-by-line without reading the entire file into
memory. Deprecated since release 2.3. Use for line
in file instead. Removed since 2.4

zipfile Read & write PK zipped files. 2.5: Supports ZIP64
version, a .zip archive can now be larger than 4GB.

zipimport ZIP archive importer.
zlib Compression compatible with gzip. 2.5: Compress

and Decompress objects now support a copy()
method.

xml.etree.ElementTree Subset of Fredrik Lundh’s ElementTree library for
processing XML.

xml.parsers.expat An interface to the Expat non-validating XML
parser.

xml.sax Classes for processing XML using the SAX API.
xmlrpclib An XML-RPC client interface for Python. 2.5:

Supports returning datetime objects for the XML-
RPC date type.

xreadlines Provides a sequence-like object for reading a file
line-by-line without reading the entire file into
memory. Deprecated since release 2.3. Use for line
in file instead. Removed since 2.4

zipfile Read & write PK zipped files. 2.5: Supports ZIP64
version, a .zip archive can now be larger than 4GB.

zipimport ZIP archive importer.
zlib Compression compatible with gzip. 2.5: Compress

and Decompress objects now support a copy()
method.

© 2010 by Taylor and Francis Group, LLC

538 Python for Bioinformatics

TABLE D.61: Workspace Exploration and Idiom Hints
dir(object) List valid attributes of object (which can be a

module, type or class object).
dir() List names in current local symbol table.
if name == ’ main ’:

main()
Invoke main() if running as script.

map(None, lst1, lst2,
...)

Merge lists; see also zip(lst1, lst2, ...).

b = a[:] create a copy b of sequence a.
b = list(a) If a is a list, create a copy of it.
a,b,c = 1,2,3 Multiple assignment, same as a=1; b=2; c=3.
for key, value in
dic.items(): ...

Works also in this context.

if 1 < x <= 5: ... Works as expected.
for line in
fileinput.input(): ...

Process each file in command line args, one
line at a time.

(underscore) In interactive mode, refers to the last value
printed.

© 2010 by Taylor and Francis Group, LLC

Appendix E

Answers to Odd-Numbered
Questions

E.1 Chapter 2

1. Define: Program, instruction, and variable.

A program is a set of ordered instructions designed to command the
computer to do something. An instruction is a single order, for ex-
ample: print, add, and append. A variable is a value that may vary
during program execution. Note that in Pyhon the term variable doesn’t
fully describe the way data is handled, that is why they are referred as
names.

3. Name some Python implementations.

cPython, Jython, IronPython, Stackless, and PyPy.

5. What is the difference between input and raw input in Python 2.x?

input expects a valid Python expression as input while raw input
reads a line from input and converts it to a string. input represents a
security risk since a malicious user can enter unchecked code into your
program.

7. How do you make a float division in Python 2.x?

One of the member of the division must be float. To make 1/2, you can
do 1.0/2 or float(1)/2. As an alternative, import division from future
:

>>> from __future__ import division
>>> 1/2
0.5

9. What is a comment in a source code?

A comment is part of the code that is not executed. It purpose is to
annotate what the programmer is attempting to accomplish with the
source code.

539

© 2010 by Taylor and Francis Group, LLC

540 Python for Bioinformatics

11. What is a “shebang”?

Is a way to tell the operation system (at leat those linux based) where is
the path to Python interpreter. It is used to execute the script without
calling the interpreter in a explicit way. When there is more than one
interpreter available, a shebang line tells the computer which one to use.

E.2 Chapter 3

1. Which are the principal data types in Python?

String, List, Tuples, Set, and Dictionary.

3. What is a set and when would you use it?

A set is defined as an unordered collections of unique elements. And
it is used to test membership and to store data that we may apply set
operations like intersection, difference, union, issubset, and others.

5. What is a dictionary?

It is defined as an unordered set of key:value pairs.

7. What is a “dictionary view”?

Since Python 3, objects returned by dict.keys(), dict.values(), and
dict.items() are dictionary views. They are dynamic in the sense that
when the dictionary changes, this objects also change. Compare it with
what is returned by dict.keys(), dict.values(), and dict.items()
in Python versions before Python 3.

9. Sort the data types below according to the following criteria:

• Mutable - immutable

• Sorted - unsorted

• Sequence - mapping

Data types to sort: Lists, tuples, dictionaries, sets, strings.

List: Mutable, sorted, and sequence.

Tuple: Immutable, sorted, and sequence.

Dictionary: Mutable, unsorted, and mapping.

Set: Mutable, unsorted, and sequence.

String: Immutable, sorted, sequence.

© 2010 by Taylor and Francis Group, LLC

Answers to Odd-Numbered Questions 541

11. How do you convert any iterable data type into a list?

With the list() function:

>>> list(’Hello’)
[’H’, ’e’, ’l’, ’l’, ’o’]

13. How do you create a list from a dictionary?

With the list() function:

>>> list({’a’: 1, ’b’: 2})
[’a’, ’b’]

E.3 Chapter 4

1. What is a control structure?

Control structures are instructions to direct the flow of the program.

3. When would you use for and when would you use while?

for is used to walk thought an (iterable) object and while is used to
repeat a block of code until a condition is met.

5. Explain when you would use pass and when you would use break.

pass is used as a placeholder where there is a syntactic need to put code
but the program requires no action. break is used to exit a loop.

7. Make a program that outputs all possible IP addresses, that is, from
0.0.0.0 to 255.255.255.255.

There are several ways to archive the same result. Here is one:

iprange = range(256)
for i in iprange:

for j in iprange:
for k in iprange:

for l in iprange:
print ’%s.%s.%s.%s’%(i,j,k,l)

9. Make a program to check if a given number is a palindrome (that is, it
remains the same when its digits are reversed, like 404).

© 2010 by Taylor and Francis Group, LLC

542 Python for Bioinformatics

n = raw_input("Enter a number: ")
if n == n[::-1]:

print "Palindrome"
else:

print "Not palindrome"

11. Make a program that converts everything you type into Leetspeak, using
the following equivalence: 0 for O, 1 for I (or L), 2 for Z (or R), 3 for E,
4 for A, 5 for S, 6 for G, 7 for T, 8 for B and 9 for P (or Q). So “Hello
world!” is rendered as “H3770 w02ld!”

Without the use of a dictionary:

x = raw_input(’Enter a string: ’)
x = x.replace(’O’,’0’).replace(’o’,’0’).replace(’I’,’1’)
x = x.replace(’i’,’1’).replace(’L’,’1’).replace(’l’,’1’)
x = x.replace(’Z’,’2’).replace(’z’,’2’).replace(’R’,’2’)
x = x.replace(’r’,’2’).replace(’E’,’3’).replace(’e’,’3’)
x = x.replace(’A’,’4’).replace(’a’,’4’).replace(’S’,’5’)
x = x.replace(’s’,’5’).replace(’G’,’6’).replace(’g’,’6’)
x = x.replace(’T’,’7’).replace(’t’,’7’).replace(’B’,’8’)
x = x.replace(’b’,’8’).replace(’P’,’9’).replace(’p’,’9’)
x = x.replace(’Q’,’9’).replace(’q’,’9’)
print x

Using a dictionary:

e2l = {’O’:0,’I’:1, ’L’:1, ’R’:2,’E’:3, ’A’:4, ’S’:5,
’G’:6,’T’:7,’B’:8,’P’:9,’Q’:9}

xin = raw_input(’Enter a string: ’)
xout = ’’
for x in xin:

xout += str(e2l.get(x.upper(),x))
print xout

13. Given a protein sequence in the one letter code, calculate the percentage
of methionine (M) and cysteine (C). For example from MFKFASAVILC-
LVAASSTQA the result must be 10% (1 M and 1 C over 20 amino acids).

seq = raw_input(’Enter a sequence: ’).upper()
m = float(seq.count(’M’))
c = seq.count(’C’)
res = (m+c)/len(seq)*100
print ’%2.f%%’%res

© 2010 by Taylor and Francis Group, LLC

Answers to Odd-Numbered Questions 543

E.4 Chapter 5

1. What is the difference between “w” and “a” modes if both allow to write
files?

w is used to write a new file while a is used to append data to an existing
file.

3. Program 5.9 estimates the average in line 6. Instead of dividing over
the total number of rows, it does on the total less one. Why?

Because the first row contains the header and not actual data.

5. Is it possible to parse csv files without csv module? If so, how it is
done?

It is possible to parse csv files without csv module, using the split
method.

7. What is the most efficient way to walk through a file line by line?

for line in open(FILENAME):
do something with line

9. Make a program to detect in a text which lines have two consecutive
identical words. To detect typos like “the the.”

filename = # enter a file name here
fin = open(filename,’ru’)
for line in fin:

pword = ’ ’
for word in line.replace(’\n’,’’).split(’ ’):

if len(line.split(’ ’))>1 and word!=’’ and word==pword:
print line
break

else:
pword = word

fin.close()

E.5 Chapter 6

1. What is a function?

A function is a portion of code that is defined once and may be used
multiple times. It helps code reusability and maintainance.

© 2010 by Taylor and Francis Group, LLC

544 Python for Bioinformatics

3. Can a function be called without any parameters?

Yes. Try for example: dir().

5. Does every function need to know in advance how many parameters will
receive?

It depends on how the function was defined. When defined with *args
or **kwargs as argument, it may receive a non-determined number of
arguments.

7. Why must all optional arguments in a function be placed at the end in
the function call?

Since arguments are put in the same order as originally defined and
optional arguments may be omitted, to preserve the order, optional
arguments are placed to the end.

9. Why are modules invoked at the beginning of the program?

A module must be invoked before using it. It is invoked at the beginning
for convention.

11. How can you test if your code is being executed as a stand alone program
or called as a module?

Checking the contents of the name variable:

if __name__ == "__main__":
main()

E.6 Chapter 7

1. What is the meaning of LBYL and EAFP? Which one is used in Python?

LBYL stands for “Look Before You Leap” and EAFP stands for “It’s
Easier to Ask Forgiveness Than Permission.” Python support both
methods to handling errors.

3. What is an “unhandled exception”?

Is an exception that is not caught by any code.

5. Exceptions are often associated with file handling. Why?

File operations are prone to errors (as disk full, disk write-protected, file
or directory not found) to both are usually introduced together.

© 2010 by Taylor and Francis Group, LLC

Answers to Odd-Numbered Questions 545

7. Why is it not advisable to use except to catch all kind of exceptions,
instead of using, for example, except IOError?

Using except to catch all exceptions doesn’t allow us to take an apropi-
ate action for a specific error. Another problem is that we may think
that we know what error is catched but we may be missing (or overlook-
ing) another type of error without realizing it.

9. What is the purpose of sys.exc info()?

It gives information about the exception that is currently being handled.

E.7 Chapter 8

1. Why is Python often characterized as a multi-paradigm language?

Because Python supports both the procedural object paradigm. It
doesn’t force programmers to use a particular paradigm.

3. Explain the following concepts: Inheritance, Encapsulation, and Poly-
morphism.

Inheritance: When methods and attributes are transmitted between
related classes (from parent to child classes). Encapsulation: The ability
to hide the internal operation of an object and leave access for the
programmers only through their public methods. Polymorphism: The
ability of different types of objects to respond to the same method with
a different behaviour.

5. What is a special method attribute? Name at least four.

It is a method that is executed under a pre-established condition, for
example: iter , len , str , and setitem .

7. What is a private method? Are they really private in Python?

A private method is a method that is intended to be used only inside an
object. There is no such a method in Python, but there is a convention
that when a method is named with two underscores at the begining
(name), it is considered “private.”

9. Define a class that keeps track of how many instances have instantiated.

class Foo(object):
i = 0
def __init__(self):

Foo.i += 1

© 2010 by Taylor and Francis Group, LLC

546 Python for Bioinformatics

E.8 Chapter 9

1. What is a REGEX?

REGEX is a shorthand for regular expression, that are expressions that
sumarize a text pattern.

3. How text patterns search can be applied to biology?

To look for DNA features that have known patterns like ribosome bind-
ing sites, promotors, enhancers, TATAbox and so on. Protein motives
are also a good application for REGEX.

5. In Code 9.7 (page 170), the pattern used was “|\d|\n|\t”. What other
alternative could have been employed?

“\s \d”

or

“[ˆa-zA-Z]”

7. Make a program to retrieve every e-mail address ending in .com present
in every file in a given directory.

import os
import re

def retrv_email(f):
for line in open(f):

if regex.findall(line):
for email in regex.findall(line):

emails.append(email)
return emails

dirname = raw_input(’Enter directory name: ’)
regex = re.compile(’[A-Za-z0-9.-]+@[A-Za-z0-9.-]+.com$’)
allfiles = os.listdir(dirname)
emails = []
for f in allfiles:

if os.path.isfile(os.path.join(dirname,f)):
emails = retrv_email(os.path.join(dirname,f))

print emails

9. Write a REGEX pattern to detect a HindII restriction site. This enzyme
recognizes the DNA sequence GTYRAC (where “Y” means “C” or “T” and
“R” means “G” or “A”).

© 2010 by Taylor and Francis Group, LLC

Answers to Odd-Numbered Questions 547

GT[CT]{1}[GA]{1}AC

E.9 Chapter 10

1. What is an Alphabet in Biopython? Name at least four.

An alphabet is a Biopython object used to declare sequence type and
letters.

DNAAlphabet, RNAAlphabet, SecondaryStructure, and ThreeLetter-
Protein.

3. What advantage provides a Seq object over a string?

On Seq objects you can apply operations that are permitted to se-
quences. Seq objects have specific methods for dealing with common
sequence manipulation (like transcribe and translate).

5. What is a MutableSeq object?

Is a Seq object that is not “read-only”.

7. Name the methods of the SeqIO module.

parse, read, to alignment, to dict and write.

9. Name five functions found in SeqUtils.

GC, molecular weight, nt search, reverse, and six frame transla-
tions.

11. What module would you use to retrieve data from the NCBI Web server?

The Bio.Entrez module.

E.10 Chapter 11

1. What is CGI?

CGI, Common Gateway Interface, is a protocol to connect an applica-
tion, written in any language with a Web server.

3. How do you use cgi.FieldStorage to retrieve values sent over an HTML
form?

First instanciate the FieldStorage class and then call the getvalue
method (in this case, the field to retrieve is called username):

© 2010 by Taylor and Francis Group, LLC

548 Python for Bioinformatics

form = cgi.FieldStorage()
name = form.getvalue("username","NN")

5. What is WSGI? Why is it the recommended choice for Web program-
ming?

WSGI, Web Server Gateway Interface) is a specification for Web
servers and application servers to communicate with Web applications.
It is the recommended choice because it can be easily deployed in any
WSGI compatible server.

7. Python includes a limited Web server. Why would you use such a web
server if there are free full featured Web servers like Apache?

This server is meant for testing purposes. It requires no installation and
it is available in any platform that Python runs.

9. Why is client-side data validation not useful as server-side data valida-
tion?

Because you should never trust on data sent by the client. Client-side
data validation can be by-passed.

E.11 Chapter 12

1. What does the OpenOffice format have in common with RSS feeds and
GoogleEarth’s geographic coordinates?

All those files use XML to store data.

3. When you will not use XML?

For simple configuration files, XML is an overkill. XML is very verbose,
so is no the best container for large amounts of data.

5. Distinguish between the terms: tag, element, attribute, value, DTD,
and Schema.

Tag: Keywords written between angled brackets that defines elements.

Element: An element is the information from the beginning of the start
tag to the end of the end tag, including all that lies in between. For
example, in: <data>23</data>, <data>23</data> is the element, 23 is
the element content and <data></data> are start and end tags.

Attribute: Is an optional information that is related to an element.
For example, in: <seq len="8" checksum="F188A">acggtcga</seq>,
both len and checksum are atributes.

© 2010 by Taylor and Francis Group, LLC

Answers to Odd-Numbered Questions 549

Value: Is referred to the value of the attribute, in <seq len="8" checksum
="F188A">acggtcga</seq> there are two values: 8 and F188A.

DTD: Document Type Definition. It contains information about the
particular structure of the XML file: permited tags and attributes, as
well as where they can be found.

Schema: XML Schemas contain the same type of information as a DTD
file, but is based in XML.

7. What is the difference between the SAX and DOM models of XML file
processing?

SAX is based on events and doesn’t build a tree in memory while DOM
works by reading the whole document and creating a tree based on the
XML document.

9. In cElementTree.iterparse there are both start and end event types.
By default it returns only end event. When would you use the infor-
mation in a start event?

I would you use the information in a start event when I need only the
event name and attributes.

E.12 Chapter 13

1. What is a database?

A database is an ordered collection of related data.

3. What is a relational database?

A relational database is a database that groups data using common
attributes.

5. What is SQL?

SQL is a database computer language designed for managing data in
relational database management systems (RDBMS).

7. Translate this query into English:
SELECT LastName,Score FROM Student,Scores WHERE Scores.Score>3;

Shows the information on the fields LastName and Score from the tables
Student and Scores, but only when the field Score from the table
Scores is greater than three.

9. When is it appropriate to use SQLite?

© 2010 by Taylor and Francis Group, LLC

550 Python for Bioinformatics

Where the data you want to store doesn’t require a full feature database,
when your application has few concurrent users and when you don’t want
distribute an external database server with your application.

E.13 Chapter 14

1. What is version control software?

It is a program that allows a developer or a group of developers to
handle multiple revisions of the same set of documents. With this kind
of software a group of developers can coordinate their work.

3. Why would a single programmer may use such a program?

If a programmer works on different locations (like home and work) and
want to keep track of different versions. To go back to a previous point.
To have multiple versions of the same program.

5. Define (in the context of version control): repository, branch, commit,
merge, and check-out.

Repository: The place where all the shared files and complete revision
history are stored.

Branch: A set of files under version control which may be branched or
forked at a point in time so that, from that time forward, two copies
of those files may be developed at different speeds or in different ways
independently of the other.

Commit: When a change made by a programmer is written into the
repository (either personal or shared).

Merge: A merge brings together two sets of changes from a set of files
into a unified version of these files.

Check-out: Creates a copy of the code from the repository. Usually the
latest version is requested, but also a specific version can be retrieved if
needed.

7. What kind of server is needed to publish a branch using Bazaar?

There is no special need on the server side to publish a bransh using
Bazaar. As long as users has access to those files, any kind of service
can be used (such as FTP, sFTP, Remote Directory).

9. What is a patch file and how do you submit one?

A patch is a file that contains information on what is changed from
una version of the code to another version. A patch can be submited

© 2010 by Taylor and Francis Group, LLC

Answers to Odd-Numbered Questions 551

by e-mail, uploaded to a web interface, or applied to the target source
code.

© 2010 by Taylor and Francis Group, LLC

Appendix F

Python Style Guide

F.1 Introduction

The notion of coding style was introduced on page 5 and it is expected that
all code listing in the book has served the reader to get the feeling of how
code should look like. This reference chapter has a more formal approach to
this subject.

Remember that keeping a consistent coding style helps to keep your code
clean and makes bugs easier to spot. There are programs like pep8.py1 to
help you format your code properly.

This document is based on coding conventions posted for the Python code
in the One Laptop Per Child project, which in turn was adapted from several
sources: Guido’s original Python Style Guide essay,2 with some additions
from Barry’s style guide.3

Copyright notice for this chapter (Python Style Guide):

Portions of this text are from PEP 8 that are in the public domain. Other
portions are under a CC-Attribution license, that means you are free to
distribute the contents of this chapter as long as you attribute authorship
to OLPC and link it to this URL: http://wiki.laptop.org/go/Python_
Style_Guide. For a complete description of this license, please see: http:
//creativecommons.org/licenses/by/2.5.

A Foolish Consistency Is the Hobgoblin of Little Minds

One of Guido’s key insights is that code is read much more often than it is
written. The guidelines provided here are intended to improve the readability

1Source code available at http://svn.browsershots.org/trunk/devtools/pep8/pep8.py.
2http://www.python.org/doc/essays/styleguide.html and http://www.python.org/

dev/peps/pep-0008/.
3http://barry.warsaw.us/software/STYLEGUIDE.txt

553

© 2010 by Taylor and Francis Group, LLC

http://wiki.laptop.org
http://svn.browsershots.org
http://www.python.org
http://www.python.org
http://creativecommons.org
http://creativecommons.org
http://wiki.laptop.org
http://www.python.org
http://barry.warsaw.us
http://barry.warsaw.us
http://www.python.org
http://wiki.laptop.org
http://creativecommons.org
http://creativecommons.org
http://www.python.org
http://www.python.org
http://svn.browsershots.org
http://wiki.laptop.org

554 Python for Bioinformatics

of code and make it consistent across the wide spectrum of Python code. As
PEP 20 says, “Readability counts.”4

A style guide is about consistency. Consistency with this style guide is
important. Consistency within a project is more important. Consistency
within one module or function is most important.

But most importantly: know when to be inconsistent – sometimes the style
guide just doesn’t apply. When in doubt, use your best judgment. Look at
other examples and decide what looks best. And don’t hesitate to ask!

Two good reasons to break a particular rule:

1. When applying the rule would make the code less readable, even for
someone who is used to reading code that follows the rules.

2. To be consistent with surrounding code that also breaks it (maybe for
historic reasons)—although this is also an opportunity to clean up some-
one else’s mess (in true XP style).

A Note on Consistency

When you are interfacing with another library and providing a Python
wrapping for its functions, you should always adopt the naming style of that
library.

If you are changing the style of a piece of code, this should be done all at
once and no other changes should be made at the same time. Whitespace
changes in particular should be done separate from even naming changes.

F.2 Code Lay-Out

Indentation

Use 4 spaces per indentation level. Do not use tabs.
The number of spaces used can be easily changed with a script. I think we

should give serious consideration to reducing this to 2 spaces per indentation
level to minimize the number of line breaks needed and also minimize the
whitespace on a screenful of code. Admittedly, lots of people, using 19 and
21 inch monitors, currently use a 4-space standard, but that can be easily
fixed with a simple script. Python has a built-in parser module that can be
used to do this. If all the code lives in a repository such as SVN, then this
can be done as part of the code check-in process without anyone needing to

4http://www.python.org/dev/peps/pep-0020, also available by typing “import this” at the
Python shell.

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org

Python Style Guide 555

think about it. However, the end-users of the laptop, working on their small
screens, will thank you for it.

Maximum Line Length

Limit all lines to a maximum of 79 characters.
There are still many devices around that are limited to 80 character lines.

The default wrapping on such devices looks ugly. Plus, limiting windows to
80 characters on a large display makes it possible to have several windows
side-by-side.

Therefore, please limit all lines to a maximum of 79 characters. For flow-
ing long blocks of text (docstrings or comments), limiting the length to 72
characters is recommended.

The preferred way of wrapping long lines is by using Python’s implied line
continuation inside parentheses, brackets and braces. If necessary, you can
add an extra pair of parentheses around an expression, but sometimes using a
backslash looks better. Make sure to indent the continued line appropriately.
Some examples,

class Rectangle(Blob):

def __init__(self, width, height,
color=’black’, emphasis=None, highlight=0):

if width == 0 and height == 0 and \
color == ’red’ and emphasis == ’strong’ or \
highlight > 100:
raise ValueError("sorry, you lose")

if width == 0 and height == 0 and (color == ’red’ or
emphasis is None):

raise ValueError("I don’t think so")
Blob.__init__(self, width, height,

color, emphasis, highlight)

Assert statements in particular tend to go over the line boundaries; so
generally asserts should look like this:

assert value is not None, (
"value should not be None")

Blank Lines

Vertical whitespace (blank lines) are not that important to readability. For
the most part this can be left to the developer’s discretion. As a general
guideline,

• Separate top-level function and class definitions with two blank lines.

© 2010 by Taylor and Francis Group, LLC

556 Python for Bioinformatics

• Method definitions inside a class are separated by a single blank line.

• Extra blank lines may be used (sparingly) to separate groups of related
functions. Blank lines may be omitted between a bunch of related one-
liners (e.g. a set of dummy implementations).

• Use blank lines in functions, sparingly, to indicate logical sections.

Encodings (PEP 263)

Python source must contain a Unicode UTF-8 encoding declaration, which
looks like:

coding: UTF8

Only UTF8 should be used even if you are not using non-ASCII characters
in your code. The reason is to make it easy for others to take up any Python
file, make modifications and add comments in their own language.

As a special case a file with the UTF8 signature ’\xef\xbb\xbf’ at the
beginning of the file will be detected by Python as a UTF8 file. Do not use
or rely on this signature since some editors will remove it. Always include the
UTF-8 encoding declaration.

Note that you cannot use unicode in any identifiers in Python; the encoding
only applies to Unicode strings like u”a string” and comments. Long strings
of text (that are not English) should be in localization files, not in the code
itself.

Imports

Imports should usually be on separate lines, e.g.,

Yes: import os
import sys

No: import sys, os

it’s okay to say this though:

from subprocess import Popen, PIPE

[note: this is a soft requirement]
Imports are always put at the top of the file, just after any module

comments and docstrings, and before module globals and constants.
Imports should be grouped in the following order: standard library imports,

related third party imports, and application/library specific imports.
You should put a blank line between each group of imports. [note: I don’t

care about the blank line, and consider the ordering to be only a suggestion]

© 2010 by Taylor and Francis Group, LLC

Python Style Guide 557

Put any relevant all specification after the imports.
Relative imports for intra-package imports are highly discour-

aged.
Always use the absolute package path for all imports. If or until we settle

on Python 2.5 we cannot use PEP 328, and so cannot do explicit relative
imports.

“from x import *” is generally discouraged.
You should only import this way from packages that are intended to be

used like this (the packages generally define all).
You should never use “import *” more than once in a file. If you use it more

than once then there is no way to know (without leaving the file) exactly where
a name comes from. So long as “import *” is used just once, one can assume
when no other source can be found for a name that it must come from this
import.

When importing a class from a class-containing module
It’s usually okay to spell this:

from myclass import MyClass
from foo.bar.yourclass import YourClass

If this spelling causes local name clashes, then spell them

import myclass
import foo.bar.yourclass

and use myclass.MyClass and foo.bar.yourclass.YourClass

In summary, a file should generally look like this:

-*- coding: UTF8 -*- (MUST always be used)
"""
docstring: may also be a unicode or ’raw’ string
If you are using doctest then a raw string is recommended
(prefix the string with an r)
[are unicode strings generally preferred for docstrings?
that would give a prefix or u or ur]
"""
from __future__ ...
import stdlib modules
import external modules
import internal modules
__all__ = [...] # If you use __all__
constants...
functions and classes...

© 2010 by Taylor and Francis Group, LLC

558 Python for Bioinformatics

F.3 init .py Files

init .py files should generally contain no substantive code. Instead they
should import from other modules. Importing from other modules is done
so that a package can provide a front-facing set of objects and functions it
exports, without exposing each of the internal modules in the package. Note
however that this causes the submodules to be eagerly imported; if this is
likely to cause unnecessary overhead then the import in init .py should be
reconsidered.

F.4 Whitespace in Expressions and Statements

Pet Peeves

Avoid extraneous whitespace in the following situations:
Immediately inside parentheses, brackets, or braces.

Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

Immediately before a comma, semicolon, or colon:

Yes: if x == 4: print x, y; x, y = y, x
No: if x == 4 : print x , y ; x , y = y , x

[Note: if you do not put a space after a comma, it is harder to visually
distinguish from: e.g., foo(a,b) and foo(a.b). Please use spaces after commas!]

Immediately before the open parenthesis that starts the argument
list of a function call:

Yes: spam(1)
No: spam (1)

Immediately before the open parenthesis that starts an indexing
or slicing:

Yes: dict[’key’] = list[index]
No: dict [’key’] = list [index]

More than one space around an assignment (or other) operator
to align it with another.

© 2010 by Taylor and Francis Group, LLC

Python Style Guide 559

Yes:

x = 1
y = 2
long_variable = 3

No:

x = 1
y = 2
long_variable = 3

[note: I’m soft on this one, though less soft on the others]

F.5 Other Recommendations

Always surround these binary operators with a single space on either side:
assignment (=), augmented assignment (+=, -= etc.), comparisons (==, <,
>, !=, <>, <=, >=, in, not in, is, is not), Booleans (and, or, not).

Use spaces around arithmetic operators:

Yes:

i = i + 1
submitted += 1
x = x * 2 - 1
hypot2 = x * x + y * y
c = (a + b) * (a - b)

No:

i=i+1
submitted +=1
x = x*2 - 1
hypot2 = x*x + y*y
c = (a+b) * (a-b)

Don’t use spaces around the ’=’ sign when used to indicate a keyword
argument or a default parameter value.

Yes:

def complex(real, imag=0.0):

© 2010 by Taylor and Francis Group, LLC

560 Python for Bioinformatics

return magic(r=real, i=imag)

No:

def complex(real, imag = 0.0):
return magic(r = real, i = imag)

[note: this is really helpful to make the code more readable; please use
this convention. Keyword arguments aren’t assignments, and this makes that
visually clear.]

Compound statements (multiple statements on the same line) are strongly
discouraged.

Yes:

if foo == ’blah’:
do_blah_thing()

do_one()
do_two()
do_three()

Rather not:

if foo == ’blah’: do_blah_thing()
do_one(); do_two(); do_three()

Don’t be lazy, just hit enter!

if/else expressions and list comprehensions should not be deeply nested.

Yes:

if x>5 and t>10 and m<20:
print x,t,m

No:

if x>5:
if t>10:

if m<20:
print x,t,m

© 2010 by Taylor and Francis Group, LLC

Python Style Guide 561

F.6 Comments

Comments that contradict the code are worse than no comments. Always
make a priority of keeping the comments up-to-date when the code changes!

Comments should go before the thing they are commenting on, like:

match will be the regex match object:
match = None

Or sometimes inside an if statement or other control structure:

if match is None:
None of our attempts to match worked
raise ValueError("Nothing matched!")

Comments should be complete grammatically correct sentences.
If a comment is short, the period at the end can be omitted. Block com-

ments generally consist of one or more paragraphs built out of complete sen-
tences, and each sentence should end in a period.

Regardless of the language you use, you should write clear and easily under-
standable sentences. If you use English, many readers will only understand
basic English. If you use your native language, many readers will be children
who are still learning their language.

When choosing the language for comments, think of who will have to read
these comments. If you are writing code that will be used by people in many
countries, then English is probably the best choice.

Block Comments

Block comments generally apply to some (or all) code that follows them,
and are indented to the same level as that code. Each line of a block com-
ment starts with a # and a single space (unless it is indented text inside the
comment).

Paragraphs inside a block comment are separated by a line containing a
single #.

Inline Comments

Use inline comments sparingly.
An inline comment is a comment on the same line as a statement. Inline

comments should be separated by at least two spaces from the statement.
They should start with a # and a single space.

Inline comments are unnecessary and in fact distracting if they state the
obvious. Don’t do this:

© 2010 by Taylor and Francis Group, LLC

562 Python for Bioinformatics

x = x + 1 # Increment x

But sometimes, this is useful:

x = x + 1 # Compensate for border

Generally comments on separate lines are easier to edit:

Compensate for border:
x = x + 1

F.7 Documentation Strings

Conventions for writing good documentation strings (“docstrings”) are im-
mortalized in PEP 257.5

Write docstrings for all public modules, functions, classes, and methods.
Docstrings are not necessary for nonpublic methods, but you should have a
comment that describes what the method does. This comment should appear
after the “def” line.

PEP 257 describes good docstring conventions. Note that most importantly,
the ””” that ends a multiline docstring should be on a line by itself, and
preferably preceded by a blank line, e.g.:

"""Return a foobang

Optional plotz says to frobnicate the bizbaz first.

"""

For one liner docstrings, it’s okay to keep the closing ””” on the same line.
Avoid using ’ ’ ’ for docstrings.

F.8 Naming Conventions

Descriptive: Naming Styles

There are a lot of different naming styles. It helps to be able to recognize
what naming style is being used, independently from what they are used for.

The following naming styles are commonly distinguished:

5http://www.python.org/dev/peps/pep-0257

© 2010 by Taylor and Francis Group, LLC

http://www.python.org
http://www.python.org

Python Style Guide 563

• b (single lowercase letter)

• B (single uppercase letter)

• lowercase

• lower case with underscores

• UPPERCASE

• UPPER CASE WITH UNDERSCORES

• CapitalizedWords (or CapWords, or CamelCase – so named because
of the bumpy look of its letters). This is also sometimes known as
StudlyCaps. (Note: When using abbreviations in CapWords, capitalize
all the letters of the abbreviation. Thus HTTPServerError is better
than HttpServerError.)

• mixedCase (differs from CapitalizedWords by initial lowercase charac-
ter!)

• Capitalized Words With Underscores (ugly!)

There’s also the style of using a short unique prefix to group related names
together. This is not used much in Python, but it is mentioned for com-
pleteness. For example, the os.stat() function returns a tuple whose items
traditionally have names like st mode, st size, st mtime and so on. (This is
done to emphasize the correspondence with the fields of the POSIX system
call struct, which helps programmers familiar with that.)

The X11 library uses a leading X for all its public functions. In Python, this
style is generally deemed unnecessary because attribute and method names
are prefixed with an object, and function names are prefixed with a module
name.

In addition, the following special forms using leading or trailing underscores
are recognized (these can generally be combined with any case convention):

single leading underscore:
Weak “internal use” indicator. E.g. “from M import *” does not import

objects whose name starts with an underscore.
single trailing underscore :
used by convention to avoid conflicts with Python keyword, e.g.

Tkinter.Toplevel(master, class_=’ClassName’)

double leading underscore:
When naming a class attribute, invokes name mangling (inside class FooBar,

boo becomes FooBar boo; see below).
double leading and trailing underscore :

“magic” objects or attributes that live in user-controlled namespaces. E.g.
init , import or file . Never invent such names; only use them as

documented.

© 2010 by Taylor and Francis Group, LLC

564 Python for Bioinformatics

Prescriptive: Naming Conventions

Names to Avoid

Never use the characters ‘l’ (lowercase letter el), ‘O’ (uppercase letter oh),
or ‘I’ (uppercase letter eye) as single character variable names.

In some fonts, these characters are indistinguishable from the numerals one
and zero. When tempted to use ‘l’, use ‘L’ instead.

Do not abbreviate names by removing vowels. Instead truncate the name.

Yes:

func
decl

No:

fnctn
dcln [note: these aren’t very good examples, because they are just

too ugly to be plausible...]

F.8.1 Module Names

Modules should have short, lowercase names, without underscores.
This naming convention distinguishes modules from both functions and

classes. This is important; consider this example from Zope 2:

from DateTime.DateTime import DateTime

In Zope 2 the DateTime package contained a DateTime module with a
DateTime class. As a result when you see “DateTime” in the source you
can’t be sure if it’s referring to the package, module, or class. If the module
had been named datetime it would be obvious when you were referring to the
module and when you were referring to the class. Similar confusion can exist
with functions, which is the motivation for leaving underscores out of module
names (but using them in function names).

When an extension module written in C or C++ has an accompanying
Python module that provides a higher level (e.g. more object oriented) inter-
face, the C/C++ module has a leading underscore (e.g. socket).

Like modules, Python packages should have short, all-lowercase names,
without underscores.

Class Names

Almost without exception, class names use the CapWords convention. Classes
for internal use have a leading underscore in addition.

© 2010 by Taylor and Francis Group, LLC

Python Style Guide 565

Exception Names

Because exceptions should be classes, the class naming convention applies
here. However, you should use the suffix “Error” on your exception names (if
the exception actually is an error).

Global Variable Names

(Let’s hope that these variables are meant for use inside one module only.)
The conventions are about the same as those for functions.

Modules that are designed for use via “from M import *” should use the
all mechanism to prevent exporting globals, or use the older convention

of prefixing such globals with an underscore (which you might want to do to
indicate these globals are “module nonpublic”).

Many modules are not really intended to be used with “from M import *”
and will export many unintended objects (like other modules). Generally you
should not use ”import *” unless a module is intended to be used like that,
and the presence of all is a good indication if a module is intended to be
used that way.

Function Names

Function names should be lowercase, with words separated by underscores
as necessary to improve readability.

mixedCase is allowed only in contexts where that’s already the prevailing
style (e.g. threading.py).

Function and Method Arguments

Always use ’self’ for the first argument to instance methods.
Always use ’cls’ for the first argument to class methods.
Always use ’metacls’ for the first argument to metaclass method. These

are technically class methods of the metaclass, but if you don’t distinguish
metaclasses from classes you will confuse readers terribly.

If a function argument’s name clashes with a reserved keyword, it is gener-
ally better to append a single trailing underscore rather than use an abbre-
viation or spelling corruption. Thus print is better than prnt. (Perhaps
better is to avoid such clashes by using a synonym.)

Method Names and Instance Variables

Use the function naming rules: lowercase with words separated by under-
scores as necessary to improve readability.

Use one leading underscore only for nonpublic methods and instance vari-
ables.

© 2010 by Taylor and Francis Group, LLC

566 Python for Bioinformatics

Do *not* use two leading underscores. Python mangles these names with
the class name: if class Foo has an attribute named a, it cannot be accessed
by Foo. a. (An insistent user could still gain access by calling Foo. Foo a.)
If you have some reason to want to avoid name clashes in subclasses, you
should use *explicit* name mangling by using an explicit prefix in front of
your attributes or functions, like Foo. Foo a.

Designing for Inheritance

[note: this is rather complex; generally I think designing for inheritance
should be avoided except in specific cases where it provides real benefits. In
many cases first class functions and other techniques are easier to understand
and manage than subclassing.]

Always decide whether a class’s methods and instance variables (collec-
tively: ”attributes”) should be public or nonpublic. If in doubt, choose non-
public; it’s easier to make it public later than to make a public attribute
nonpublic.

Public attributes are those that you expect unrelated clients of your class
to use, with your commitment to avoid backward incompatible changes. Non-
public attributes are those that are not intended to be used by third parties;
you make no guarantees that nonpublic attributes won’t change or even be
removed.

We don’t use the term “private” here, since no attribute is really private in
Python (without a generally unnecessary amount of work).

Another category of attributes are those that are part of the “subclass API”
(often called “protected” in other languages). Some classes are designed to
be inherited from, either to extend or modify aspects of the class’s behavior.
When designing such a class, take care to make explicit decisions about which
attributes are public, which are part of the subclass API, and which are truly
only to be used by your base class.

With this in mind, here are the Pythonic guidelines:

• Public attributes should have no leading underscores.

• If your public attribute name collides with a reserved keyword, append
a single trailing underscore to your attribute name. This is preferable
to an abbreviation or corrupted spelling. (However, notwithstanding
this rule, ’cls’ is the preferred spelling for any variable or argument
which is known to be a class, especially the first argument to a class
method.) Note 1: See the argument name recommendation above for
class methods.

• For simple public data attributes, it is best to expose just the attribute
name, without complicated accessor/mutator methods. Keep in mind
that Python provides an easy path to future enhancement, should you
find that a simple data attribute needs to grow functional behavior.

© 2010 by Taylor and Francis Group, LLC

Python Style Guide 567

In that case, use properties to hide functional implementation behind
simple data attribute access syntax. Note 1: Properties only work on
new-style classes. Note 2: Try to keep the functional behavior side-
effect free, although side-effects such as caching are generally fine. Note
3: Avoid using properties for computationally expensive operations; the
attribute notation makes the caller believe that access is (relatively)
cheap.

F.9 Programming Recommendations

Code should be written in a way that does not disadvantage other
implementations of Python (PyPy, Jython, IronPython, Pyrex, Psyco,
and such).

For example, do not rely on CPython’s efficient implementation of in-place
string concatenation for statements in the form a+=b or a=a+b. Those
statements run more slowly in Jython. In performance sensitive parts of
the library, the .join() form should be used instead. This will assure that
concatenation occurs in linear time across various implementations.

[note: I think we can be softer about this, as we need to target more than
just CPython but the performance characteristics of our particular software
and hardware stack.]

Comparisons to singletons like None should always be done with
’is’ or ’is not’, never the equality operators.

Note is and is not compare the identity of an object. == can be overridden
and does more complex comparisons, and so there is a small performance
penalty. There is and only will ever be one None.

Also, beware of writing “if x” when you really mean “if x is not None” – e.g.
when testing whether a variable or argument that defaults to None was set
to some other value. The other value might have a type (such as a container)
that could be false in a boolean context!

Use class-based exceptions.
String exceptions in new code are strongly discouraged, as are deprecated

(since Python 2.5) and then (in Python 3000 or perhaps sooner) removed.
Modules or packages should define their own domain-specific base exception

class, which should be subclassed from the built-in Exception class. Always
include a class docstring.

E.g.:

class MessageError(Exception):
"""Base class for errors in the email package."""

© 2010 by Taylor and Francis Group, LLC

568 Python for Bioinformatics

Class naming conventions apply here, although you should add the suffix
“Error” to your exception classes, if the exception is an error. Non-error
exceptions need no special suffix.

When raising an exception, use raise ValueError(’message’) in-
stead of the older form raise ValueError, ’message’.

The paren-using form is preferred because when the exception arguments
are long or include string formatting, you don’t need to use line continua-
tion characters thanks to the containing parentheses. The older form will be
removed in Python 3000.

Use string methods instead of the string module.
String methods are always much faster and share the same API with unicode

strings. Override this rule if backward compatibility with Pythons older than
2.0 is required.

[note: we can be strict here. string.Template is an exception, which is the
only reason the string module should be used at all.]

Use .startswith() and .endswith() instead of string slicing to check
for prefixes or suffixes.

startswith() and endswith() are cleaner and less error-prone. For example:

Yes: if foo.startswith(’bar’):

No: if foo[:3] == ’bar’:

Object type comparisons should always use isinstance() instead of compar-
ing types directly.

Yes: if isinstance(obj, int):

No: if type(obj) is type(1):

When checking if an object is a string, keep in mind that it might be a
unicode string too! In Python 2.3, str and unicode have a common base class,
basestring, so you can do:

if isinstance(obj, basestring):

In Python 2.2, the types module has the StringTypes type defined for that
purpose, e.g.:

from types import StringTypes
if isinstance(obj, StringTypes):

In Python 2.0 and 2.1, you should do:

\begin{verbatim}
from types import StringType, UnicodeType
if isinstance(obj, StringType) or \

isinstance(obj, UnicodeType) :

© 2010 by Taylor and Francis Group, LLC

Python Style Guide 569

[note: obviously we can just use basestring, though we need to be careful
about distinguishing str and unicode. It is valid and perhaps preferred for us
to be careful in distinguishing these two values. assert isinstance(value,
unicode) is probably an assert we should use liberally]

The exception is if your code must work with Python 1.5.2 (but let’s hope
not!). [note: clearly we don’t]

For sequences, (strings, lists, tuples), use the fact that empty sequences are
false.

Yes: if not seq:
if seq:

No: if len(seq)
if not len(seq)

Don’t write string literals that rely on significant trailing whites-
pace.

Such trailing whitespace is visually indistinguishable and some editors (or
more recently, reindent.py) will trim them.

[note: this only applies to multiline/triple-quoted strings]
Don’t compare boolean values to True or False
Using:

Yes: if greeting:

No: if greeting == True:

Worse: if greeting is True:

F.10 Strings and Unicode

Generally there are three types of strings:

1. 8-bit strings (“str”) that contain binary data

2. Unicode strings that contain textual data

3. Encoded strings, represented as 8-bit strs, that contain textual data

The third form can cause problems. Python is encoding agnostic; the only
encoding it does automatically is ASCII. When using ASCII text, an encoded
and unicode string look very similar; they compare as equal, they hash to
the same value, and str() and unicode() will convert cleanly between the two.
Once non-ASCII text is introduced this all breaks.

© 2010 by Taylor and Francis Group, LLC

570 Python for Bioinformatics

We should avoid encoded strings when possible. When we expect to re-
ceive unicode strings, it is acceptable and even encouraged to do assert
isinstance(value, unicode).

F.11 Internationalization and Localization

If you are writing code for use in many countries then all user-visible strings
should be in English and should be translatable. You do this like so:

from gettext import gettext as _
import getpass

print _("Hello %(name)s!") % {’name’: getpass.getuser()}

Note that string substitutions should be done after the translation via ().
Also, named values should be used. You may find string.Template preferable
to %-based substitution; you can use it like:

import string
print string.Template(_("Hello $name!")).substitute(name=getpass<=
.getuser())

There’s a long document on internationalizing Pylons, most of which applies
to any Python i18n code.

F.12 Testing

The Testing Tool Taxonomy6 provides a long and comprehensive list of test
systems available for Python.

There are three core packages that can be used for testing:

doctest

doctest7 is a standard library module, and a testing system. It’s probably
the simplest test system to use and read.

This is a common pattern for testing a package:

6http://pycheesecake.org/wiki/PythonTestingToolsTaxonomy
7http://python.org/doc/current/lib/module-doctest.html

© 2010 by Taylor and Francis Group, LLC

http://pycheesecake.org
http://python.org
http://python.org
http://pycheesecake.org

Python Style Guide 571

if __name__ == ’__main__’:
import doctest
doctest.testmod()
doctest.testfile(’test_this_module.txt’)

While this works, it’s very easy to forget to run tests after making changes.
It’s also easy to forget to test for regressions. Because of this, you should
provide a way to run all of your tests.

Note that you can put tests in your file’s docstrings, or in an external text
file. For tests that don’t have documentation value an external text file is best
(it won’t clutter your source or the helpful information in your docstrings).
For extended examples external files are also best; inline docstring doctests are
mostly best to simply confirm those examples are correct, not to do extensive
testing of your routines.

unittest

unittest8 is the “standard” standard library testing module. It is modeled
after SUnit, JUnit, etc. Tests using this tend to be somewhat long-winded,
and not very readable (this is Ian’s personal opinion, but he holds it very
strongly).

When a project is already using unittest, you should use it for new tests
to maintain consistency. Note that doctest can produce unittest-compatible
tests.9 When creating new tests, seriously consider using doctest, as the
resulting tests are usually much more readable. This is less true for tests that
contain considerable logic (especially things like stress testing, or using fuzzed
input).

If you are using unittest-based tests you should provide a test runner as part
of your code; this is a script that will run all the tests in your code. While
some people use the same kind of name == ’ main ’ trick for unittest
that they do for doctest, this is not desirable (for all the same reasons).

nose

nose10 is a (nonstandard) library/script for finding and running tests. It is
based on unittest, and provides the tests collection that the other two modules
are missing. It also can run doctests directly (without having to explicitly
wrap them as unittests) and has some improved features over typical unittest
test runners (like showing detail about failed assertions, and dropping into a

8http://python.org/doc/current/lib/module-unittest.html
9http://python.org/doc/current/lib/doctest-unittest-api.html.
10http://somethingaboutorange.com/mrl/projects/nose

© 2010 by Taylor and Francis Group, LLC

http://python.org
http://python.org
http://somethingaboutorange.com
http://somethingaboutorange.com
http://python.org
http://python.org

572 Python for Bioinformatics

debugger on failure). It has features very similar to py.test,11 but is easier to
install and is more compatible with unittest-based tests than py.test.

Nose also lets you use simpler tests than unittest’s class-based tests. Func-
tions with names starting with test will be run.

If you use this test runner, it is recommended that you include a shell script
or Python script to run nose with your project; this will make it easy for other
developers to see how you run your tests.

File Names

Except for embedded doctests, tests should generally go in files separate
from the module they are testing. This way importing the module will not
load the tests and won’t add any overhead unless you are actually running
the tests.

Tests should be named test modulename.... You can add more to the name
if you have multiple files associated with one module. Use .py for Python-
based files (of course), and .txt for external doctests. Tests are sometimes put
in a subpackage called tests (note that test is unfortunately used by a very
boring standard library module,12 and it can lead to confusing situations if
you use that name). It’s also fine to simply put tests right beside the modules
they test.

External doctest files that have documentation value should be named the
same as the module (with .txt), and should not have a test prefix; their
primary value is not the testing they do, but the information they convey.
Ideally all programmer documentation will use doctest, so that the accuracy
of the documentation can be easily confirmed.

F.13 Documentation

Deprecations and Warnings

When other people use code of yours, you will have to support them as you
update your code. Even if you mark your package as being “version 0.1,” it
doesn’t matter—if your code is useful, and someone uses it, then you’ll need
to start thinking about backward compatibility, or else make life difficult for
your users.

Deprecations and warnings are specifically meant to deal with this. Warn-
ings should seldom go in new code. For instance, you could do:

11http://codespeak.net/py/current/doc/test.html
12http://python.org/doc/current/lib/module-test.html.

© 2010 by Taylor and Francis Group, LLC

http://codespeak.net
http://python.org
http://python.org
http://codespeak.net

Python Style Guide 573

def send_content(dest, data):
if not isinstance(data, str):

warnings.warn(’You should only send str data’)
data = str(data)

But because there are no current users (if this is new code), this should
simply be an error:

def send_content(dest, data):
assert isinstance(data, str), (

"data should be a str, not %r" % data)

Then callers will see this error and call str(data) on their end, removing
any potential ambiguity.

When you want to use warnings is when in the past you’ve allowed non-str
data, and you want to change that. There is no firm rule about when you
should simply turn something into an error, and when you should provide
warnings.

If you provide a warning, it should be in this form:

import warnings
def send_content(dest, data):

if not isinstance(data, str):
Deprecated since 2005-05-01
warnings.warn(’send_data(dest, data=%r) should only be<=

passed a str value for data’,
DeprecationWarning, stacklevel=2)

data = str(data)

DeprecationWarning is a category of warnings. You can disable warnings by
category, or turn them into errors. stacklevel=2 means that the bad behavior
happened at stack level 2 (the immediate caller of this function). This will
show the caller’s filename and line number in the warning. You might have
to increase this number if you are using more indirection in your code.

Including the date of the deprecation in a comment makes it easier to
determine when the deprecated usage should be turned into an error (after
some time one can assume all callers have fixed their code).

When a function has been moved or removed, you should start with a
warning and then turn it into an error like:

def send_content(dest, data):
Moved on 2005-07-10
raise NotImplementedError(

’The send_content function has been moved to mypkg.<=
content_sending.send_content’)

© 2010 by Taylor and Francis Group, LLC

574 Python for Bioinformatics

You should not simply remove a public function; by putting in an error you
tell callers exactly how they should update their code. Like warnings, these
should eventually be removed. There should always be a stage where you
make it an explicit error, as some users may ignore warnings entirely until it
is turned into an error.

str, unicode, and repr

There are three ways to coerce an object to text: str(obj), unicode(obj) and
repr(obj).

str coerces an object to its non-unicode textual representation. Though this
is very commonly used, unicode(obj) should be preferred as it creates unicode
text. As an example, here’s code that can cause a problem:

class User(object):
def __init__(self, name):

self.name = name
def __str__(self):

return ’User %s’ % self.name
u = User(u’Itrntinliztin’)
This works fine:
print repr(unicode(u))
This won’t work:
print str(u)
This won’t work either:
print u
This won’t work either:
’Hi ’ + str(u)

So what happened there? Well, self.name was a unicode string. When you
do ’User %s’ % self.name it returns a unicode string as well (str strings are
turned into unicode when used with % – this itself is a little scary). Then str()
calls u. str (). It sees unicode, and it tries u’Internationalizatión’.encode(’ascii’)
(’ascii’ is sys.getdefaultencoding()).

What is scary is here is that if you do your testing with this:

u = User(u’Bob’)

then everything will work, because u’Bob’.encode(’ascii’) succeeds.
The moral of this story? If you had implemented unicode there would

have been no problem. (Well, calling code could still be broken, but your code
would not be broken.)

So:

• If you are dealing with textual data, use unicode and unicode(obj).

© 2010 by Taylor and Francis Group, LLC

Python Style Guide 575

• If you are really just dealing with binary data, str is okay to use,
but it is usually preferable to just use another method that returns the
string/binary form of the object. It is not necessary to overload every
magic method just because you can.

repr()

The repr(obj) form (and its repr magic method) are intended for Pro-
grammer representations of objects. These are handy representations that
you can use to see what kind of object it is. Sometimes it is true that
eval(repr(obj)) == obj, but this should never be relied upon (in fact eval()
should generally never be used). More to the point, the repr() of an ob-
ject should show useful or interesting information about an object. It should
never be confused for a textual description. It should never be shown to a
user (unless that user is acting as a programmer). If you want to override the
default repr() for an object (and that is encouraged!) The general form for
this method is:

class User(object):
def __init__(self, name):

self.name = name
def __repr__(self):

return ’<%s %s name=%r>’ % (
self.__class__.__name__, hex(id(self)), self.name)

Note: we use self. class . name so that subclasses won’t lie about their
class. We use hex(id(self)) so that two similar objects will look distinct (it
is often important when there are two different objects with the same data).
The id is not necessary for Value Objects.13 Lastly, any instance variables you
want to expose are done through %r, which puts the repr() of those objects
into the string. This is very helpful when, for instance, a new line is embedded
in the value. Because repr() is most useful when there are bugs, you shouldn’t
assume all instance variables contain well formed data.

It is also acceptable (especially for Value Objects) to use:

def __repr__(self):
return ’%s(name=%r)’ % (self.__class__.__name__, self.name)

You should be careful that repr() return values are not too long. If you
sometimes have long data in a value, you might do this:

def __repr__(self):
bio_repr = repr(self.bio)

13http://c2.com/cgi/wiki?ValueObject

© 2010 by Taylor and Francis Group, LLC

http://c2.com
http://c2.com

576 Python for Bioinformatics

if len(bio_repr) > 20:
bio_repr = bio_repr[:15]+’...’+bio_repr[-5:]

return ’<%s bio=%s>’ % (self.__class__.__name__, bio_repr)

© 2010 by Taylor and Francis Group, LLC

	1584889292
	PYTHON FOR BIOINFORMATICS
	Contents
	List of Tables
	List of Figures
	Preface
	Acknowledgments

	Part I: Programming
	Chapter 1: Introduction
	1.1 Who Should Read This Book
	1.1.1 What You Should Already Know

	1.2 Using this Book
	1.2.1 Python Versions
	1.2.2 Typographical Conventions
	1.2.3 Code Style
	1.2.4 Get the Most from This Book without Reading It All

	1.3 Why Learn to Program?
	1.4 Basic Programming Concepts
	1.4.1 What Is a Program?

	1.5 Why Python?
	1.5.1 Main Features of Python
	1.5.2 Comparing Python with Other Languages
	Readability
	Speed

	1.5.3 How It Is Used?
	1.5.4 Who Uses Python?
	1.5.5 Flavors of Python
	1.5.6 Special Python Bundles

	Chapter 2: First Steps with Python
	2.1 Installing Python
	2.1.1 Learn Python by Using It
	2.1.2 Python May Be Already Installed
	2.1.3 Testing Python
	2.1.4 First Use

	2.2 Interactive Mode
	2.2.1 Baby Steps
	2.2.2 Basic Input and Output
	Output: Print
	Input: raw input and input in Python 2.x
	Input: input in Python 3

	2.2.3 More on the Interactive Mode
	2.2.4 Mathematical Operations
	Division in Python 2.x
	Division in Python 3

	2.2.5 Exit from Python Shell

	2.3 Batch Mode
	2.3.1 Comments
	2.3.2 Indentation

	2.4 Choosing an Editor
	2.4.1 Kate
	Availability

	2.4.2 Eric
	Availability

	2.4.3 Eclipse
	Availability

	2.4.4 IDLE
	Availability

	2.4.5 Final Words about Editors

	2.5 Additional Resources
	2.6 Self-Evaluation

	Chapter 3: Basic Programming: Data Types
	3.1 Strings
	3.1.1 Not All Strings Are Created Equal
	Python 2.x
	Python 3

	3.1.2 String Manipulation
	3.1.3 Methods Associated with Strings

	3.2 Lists
	3.2.1 List Is the Workhorse Datatype in Python
	3.2.2 List Initialization
	3.2.3 List Comprehension
	3.2.4 Accessing List Elements
	3.2.5 Copying a List
	3.2.6 Modifying Lists
	Adding
	Removing

	3.3 Tuples
	3.3.1 Tuples Are Immutable Lists

	3.4 Common Properties of the Sequences
	Indexing
	Slicing
	Membership Test
	Concatenation
	len, max, and min
	Turn a Sequence into a List

	3.5 Dictionaries
	3.5.1 Mapping: Calling Each Value by a Name
	3.5.2 Operating with Dictionaries
	Dictionaries Are Made of Keys and Values
	Safe Query of Dictionary Values
	Erasing Elements

	3.5.3 New in Python 3: Dictionary Views

	3.6 Sets
	3.6.1 Unordered Collection of Objects
	Creating a Set

	3.6.2 Set Operations
	Intersection
	Union
	Difference
	Symmetric Di®erence

	3.6.3 Shared Operations with Other Data Types
	Maximum, Minimum, and Length
	Converting a Set into a List

	3.6.4 Immutable Set: Frozenset

	3.7 Naming Objects
	3.8 Assigning a Value to a Variable versus Binding a Name to an Object
	3.9 Additional Resources
	3.10 Self-Evaluation

	Chapter 4: Programming: Flow Control
	4.1 If-Else
	4.1.1 Pass Statement

	4.2 For Loop
	4.3 While Loop
	4.4 Break: Breaking the Loop
	4.5 Wrapping It Up
	4.5.1 Estimate the Net Charge of a Protein
	4.5.2 Search for a Low Degeneration Zone
	First Version
	Version with While
	Version without List of Subchains

	4.6 Additional Resources
	4.7 Self-Evaluation

	Chapter 5: Dealing with Files
	5.1 Reading Files
	5.1.1 Example of File Handling

	5.2 Writing Files
	5.2.1 File Reading and Writing Examples

	5.3 A Special Kind of File: CSV
	5.3.1 More Functions from the CSV Module

	5.4 Pickle: Storing the Contents of Variables
	Retrieving a Stored Object

	5.5 File Handling: os Module
	5.5.1 Consolidate Multiple DNA or Protein Sequences into One FASTA File
	5.5.2 Estimating Net Charge of Several Proteins

	5.6 With: An Alternative Way to Open Files
	5.7 Additional Resources
	5.8 Self-Evaluation

	Chapter 6: Code Modularizing
	6.1 Functions
	6.1.1 Standard Way to Modularize Python Code
	Function Scope

	6.1.2 Function Parameter Options
	Placement of Arguments
	Arguments with Default Values
	Undetermined Numbers of Arguments
	Undetermined Number of Keyword Arguments

	6.1.3 Generators
	Creating a Generator

	6.2 Modules
	6.2.1 Using Modules
	6.2.2 Installing Modules
	Copying to PYTHONPATH
	Using System Package Management
	Easy Install with easy_install
	Easy Install without Administrative Rights
	Standard Build and Install

	6.2.3 Creating Modules
	6.2.4 Testing Our Modules
	Doctest, Testing Modules in an Automatic Way

	6.3 Additional Resources
	6.4 Self-Evaluation

	Chapter 7: Error Handling
	7.1 Introduction to Error Handling
	7.1.1 Try and Except
	7.1.2 Exception Types
	How to Respond to Different Exceptions:

	7.1.3 Provoking Exceptions

	7.2 Creating Customized Exceptions
	All Exceptions Derive from Exception Class

	7.3 Additional Resources
	7.4 Self-Evaluation

	Chapter 8: Introduction to Object Orienting Programming (OOP)
	8.1 Object Paradigm and Python
	8.2 Exploring the Jargon
	Classes: Object Generators
	Instance: Particular Implementation of Class
	Attributes or Instance Variables: Characteristic of Objects
	Methods: Behavior of Objects
	Class Variables: The Characteristics of Classes
	Inheritance: Properties Are Transmitted between the Related Classes
	Polymorphism
	Encapsulation

	8.3 Creating Classes
	8.4 Inheritance in Action
	Introducing Some Biopython Objects

	8.5 Special Methods Attributes
	8.5.1 Create a New Data Type Out of a Built-in Data Type

	8.6 Making Our Code Private
	8.7 Additional Resources
	8.8 Self-Evaluation

	Chapter 9: Regular Expressions
	9.1 Introduction to Regular Expressions (REGEX)
	9.1.1 REGEX Syntax

	9.2 The re Module
	9.2.1 Compiling a Pattern
	Groups

	9.2.2 REGEX Examples
	9.2.3 Pattern Replace

	9.3 REGEX in Bioinformatics
	9.3.1 Cleaning Up a Sequence

	9.4 Additional Resources
	9.5 Self-Evaluation

	Part II: Biopython
	Chapter 10: Introduction to Biopython
	10.1 What Is Biopython?
	10.1.1 Project Organization

	10.2 Biopython Components
	10.2.1 Alphabet
	10.2.2 Seq
	Seq Objects as a String

	10.2.3 MutableSeq
	10.2.4 SeqRecord
	10.2.5 Align
	AlignInfo

	10.2.6 ClustalW
	Passing Parameters to ClustalW

	10.2.7 SeqIO
	Reading Sequence Files
	Writing Sequence Files

	10.2.8 AlignIO
	10.2.9 BLAST
	BLAST Running and Processing with Biopython
	Starting a BLAST Job
	Reading the BLAST Output
	What’s in a BLAST Record Object?

	10.2.10 Data
	10.2.11 Entrez
	eUtils at a Glance
	Biopython and eUtils
	eUtils: Retrieving Bibliography
	eUtils: Retrieving Gene Information

	10.2.12 PDB
	Bio.PDB Module

	10.2.13 PROSITE
	10.2.14 Restriction
	Bio.Restriction Module
	Analysis Class: All in One

	10.2.15 SeqUtils
	DNA Utils
	Protein Utils

	10.2.16 Sequencing
	Phd Files
	Ace Files

	10.2.17 SwissProt

	10.3 Conclusion
	10.4 Additional Resources
	10.5 Self-Evaluation

	Part III: Advanced Topics
	Chapter 11: Web Applications
	11.1 CGI in Python
	11.1.1 Configuring a Web Server for CGI
	11.1.2 Testing the Server with Our Script
	Sending Data to a CGI Program

	11.1.3 Web Program to Calculate the Net Charge of a Protein (CGI version)

	11.2 mod_python
	11.2.1 Configuring a Web Server for mod_python
	11.2.2 Web Program to Calculate the Net Charge of a Protein (mod_python version)
	11.2.3 mod_python with Publisher
	Modifying Apache to Use Publisher

	11.2.4 Web Program to Calculate the Net Charge of a Protein (mod_python.publisher version)

	11.3 WSGI
	11.3.1 Preparatory Steps
	11.3.2 “Hello World” in WSGI

	11.4 Alternative Options for Making Python Based Dynamic Web Sites
	11.5 Some Words about Script Security
	11.6 Where to Host Python Programs
	11.7 Additional Resources
	11.8 Self-Evaluation

	Chapter 12: XML
	12.1 Introduction to XML
	What Is XML?
	XML in 10 Points

	12.2 Structure of an XML Document
	Prologue
	Body

	12.3 Methods to Access Data inside an XML Document
	12.3.1 DOM: Minidom
	12.3.2 ElementTree
	cElementTree

	12.3.3 SAX: cElementTree Iterparse

	12.4 Summary
	12.5 Additional Resources
	12.6 Self-Evaluation

	Chapter 13: Python and Databases
	13.1 Introduction to Databases
	What Is a Database?
	Database Types
	13.1.1 Database Management: RDBMS
	13.1.2 Components of a Relational Database
	A Key Concept: Primary Key

	13.1.3 Database Data Types

	13.2 Connecting to a Database
	13.3 Creating a MySQL Database
	13.3.1 Creating Tables
	13.3.2 Loading a Table

	13.4 Planning Ahead
	13.4.1 PythonU: Sample Database
	Score Table
	Courses Table

	13.5 SELECT: Querying a Database
	Simple Query
	Combining Two Queries
	Querying Several Tables
	13.5.1 Building a Query
	13.5.2 Updating a Database
	13.5.3 Deleting a Record from a Database

	13.6 Accessing a Database from Python
	13.6.1 MySQLdb Module
	13.6.2 Establishing the Connection
	13.6.3 Executing the Query from Python

	13.7 SQLite
	13.8 Additional Resources
	13.9 Self-Evaluation

	Chapter 14: Collaborative Development: Version Control
	14.1 Introduction to Version Control
	14.1.1 Little History

	14.2 Version Control Terminology
	14.3 Centralized versus Distributed
	14.4 Bazaar: Distributed Revision Control System
	14.4.1 Installing Bazaar

	14.5 Using Bazaar for the First Time
	14.6 Different Ways to Use a VCS
	14.6.1 Workflow: Single User
	14.6.2 Workflow: Two Users Sharing Code without a Central Server
	14.6.3 Workflow: Multiple Users Sharing Code with a Central Server

	14.7 VCS Conclusion
	14.8 Additional Resources
	14.9 Self-Evaluation

	Part IV: Python Recipes with Commented Source Code
	Chapter 15: Sequence Manipulation in Batch
	15.1 Problem Description
	15.2 Problem One: Create a FASTA File with Random Sequences
	15.2.1 Commented Source Code

	15.3 Problem Two: Filter Not Empty Sequences from a FASTA File
	15.3.1 Commented Source Code

	15.4 Problem Three: Modify Every Record of a FASTA File
	15.4.1 Commented Source Code

	Chapter 16: Web Application for Filtering Vector Contamination
	16.1 Problem Description
	16.1.1 Commented Source Code
	HTML form

	16.2 Additional Resources

	Chapter 17: Searching for PCR Primers Using Primer3
	17.1 Problem Description
	17.2 Primer Design Flanking a Variable Length Region
	17.2.1 Commented Source Code

	17.3 Batch Primer Design from Multiple Sequences
	17.3.1 Commented Source Code

	17.4 Additional Resources

	Chapter 18: Calculating Melting Temperature from a Set of Primers
	18.1 Problem Description
	18.1.1 Commented Source Code

	18.2 Additional Resources

	Chapter 19: Filtering Out Specific Fields from a Genbank File
	19.1 Extracting Selected Protein Sequences
	19.1.1 Commented Source Code

	19.2 Extracting the Upstream Region of Selected Proteins
	19.2.1 Commented Source Code

	19.3 Additional Resources

	Chapter 20: Converting XML BLAST File into HTML
	20.1 Problem Description
	20.1.1 XML to HTML without Biopython Commented Source Code
	20.1.2 Biopython Version Commented Source Code
	20.1.3 Biopython Version for Multiple BLAST Commented Source Code

	Chapter 21: Infering Splicing Sites
	21.1 Problem Description
	21.1.1 Infer Splicing Sites with Commented Source Code
	21.1.2 Sample Run of Estimate Intron Program

	Chapter 22: DNA Mutations with Restrictions
	22.1 Problem Description
	22.1.1 Introduce Point Mutations and Get Restriction Profile
	22.1.2 Sample Run of Introduce Point Mutations Program

	22.2 Additional Resources

	Chapter 23: Web Server for Multiple Alignment
	23.1 Problem Description
	23.1.1 Web Interface: Front-End. HTML Code
	23.1.2 Web Interface: Server Side Script. Commented Source Code

	23.2 Additional Resources

	Chapter 24: Drawing Marker Positions Using Data Stored in a Database
	24.1 Problem Description
	24.1.1 Preliminary Work on the Data
	24.1.2 MySQL and SQLite Database Creation
	24.1.3 MySQL Version with Commented Source Code
	24.1.4 SQLite Version with Commented Source Code

	Appendix A: Python and Biopython Installation
	A.1 Python Installation
	A.1.1 Windows
	A.1.2 Mac OS X
	A.1.3 Linux
	A.1.4 Installing Python with No Administrative Permissions

	A.2 Biopython Installation
	A.2.1 Windows
	Requirements
	Installing Biopython

	A.2.2 Linux
	Installing with Package Manager
	Installing Biopython from Sources
	ReportLab
	MySQLdb
	Biopython

	A.2.3 Installing Old Biopython Versions
	Installing mx-texttools
	Numeric (or Numerical Python)

	A.3 Biopython with Easy Install

	Appendix B: Selected Papers
	B.1 Python All a Scientist Needs
	Abstract
	The Scientist’s Dilemma
	Comparative Genomics Case Study
	Biopython
	MatPlotLib
	SWIG
	Conclusions
	Materials and Methods
	Acknowledgments
	References/Resources

	B.2 Diving into the Gene Pool with Biopython
	Introduction
	Basics of Sequences
	Alphabets
	Using Sequences with Alphabets
	Mutable Sequences
	Reading Sequences from Files
	Writing Sequences to Files
	Proteins
	Querying from Public Databases
	Data Included with Biopython
	Sequence Features
	Conclusion

	Appendix C: Included DVD: Virtual Machine Installation and Use
	C.1 General Overview
	C.1.1 Uncompress
	C.1.2 VMWare Player Installation
	C.1.3 Loading the VM

	C.2 Instructions for Mac Users
	C.3 Accessing the Virtual Machine
	C.3.1 Using DNALinux as a Server
	C.3.2 Using Databases in DNALinux

	C.4 Additional Resources

	Appendix D: Python Language Reference
	D.1 Python 2.5 Quick Reference
	D.1.1 Invocation Options

	D.2 Environment Variables
	D.3 Notable Lexical Entities
	D.3.1 Keywords
	D.3.2 Identifiers
	D.3.3 String Literals
	String Literal Escapes

	D.3.4 Boolean Constants (Since 2.2.1)
	D.3.5 Numbers
	D.3.6 Sequences
	D.3.7 Dictionaries (Mappings)
	D.3.8 Operators and Their Evaluation Order

	D.4 Basic Types and Their Operations
	D.4.1 Comparisons (Defined between Any Types)
	D.4.2 None
	D.4.3 Boolean Operators
	D.4.4 Numeric Types
	D.4.5 Operations on Sequence Types (Lists, Tuples, Strings)
	D.4.6 Operations on Mutable Sequences (Type list)
	D.4.7 Operations on Mappings / Dictionaries (Type dict)
	D.4.8 Operations on Strings (Types str & unicode)
	D.4.9 String Formatting with the % Operator
	D.4.10 String Templating
	D.4.11 File Objects
	D.4.12 Operators on File Objects
	D.4.13 File Exceptions
	D.4.14 Sets
	D.4.15 Date/Time

	D.5 Advanced Types
	D.5.1 Statements
	D.5.2 Assignment Operators
	D.5.3 Conditional Expressions
	D.5.4 Control Flow Statements
	D.5.5 Exception Statements
	D.5.6 Name Space Statements
	D.5.7 Function Definition
	D.5.8 Class Definition
	D.5.9 Iterators
	D.5.10 Generators
	D.5.11 Descriptors/Attribute Access
	D.5.12 Decorators for Functions and Methods
	D.5.13 Miscellaneous

	D.6 Built-in Functions
	Built-in Functions

	D.7 Built-in Exception Classes
	D.8 Standard Methods and Operators Redefinition in Classes
	D.8.1 Operators
	Conversions

	D.9 Special Informative State Attributes for Some Types
	D.10 Important Modules
	D.10.1 sys
	D.10.2 os
	D.10.3 posix
	D.10.4 posixpath
	D.10.5 shutil
	D.10.6 time
	D.10.7 String
	D.10.8 re (sre)
	D.10.9 Regular Expression Objects
	D.10.10 Match Objects
	D.10.11 Math
	D.10.12 getopt

	D.11 List of Modules and Packages in Base Distribution
	D.12 Workspace Exploration and Idiom Hints

	Appendix E: Answers to Odd-Numbered Questions
	E.1 Chapter 2
	E.2 Chapter 3
	E.3 Chapter 4
	E.4 Chapter 5
	E.5 Chapter 6
	E.6 Chapter 7
	E.7 Chapter 8
	E.8 Chapter 9
	E.9 Chapter 10
	E.10 Chapter 11
	E.11 Chapter 12
	E.12 Chapter 13
	E.13 Chapter 14

	Appendix F: Python Style Guide
	F.1 Introduction
	A Foolish Consistency Is the Hobgoblin of Little Minds
	A Note on Consistency

	F.2 Code Lay-Out
	Indentation
	Maximum Line Length
	Blank Lines
	Encodings (PEP 263)
	Imports

	F.3 init__.py Files
	F.4 Whitespace in Expressions and Statements
	Pet Peeves

	F.5 Other Recommendations
	F.6 Comments
	Block Comments
	Inline Comments

	F.7 Documentation Strings
	F.8 Naming Conventions
	Descriptive: Naming Styles
	Prescriptive: Naming Conventions
	Names to Avoid
	F.8.1 Module Names
	Class Names
	Exception Names
	Global Variable Names
	Function Names
	Function and Method Arguments
	Method Names and Instance Variables
	Designing for Inheritance

	F.9 Programming Recommendations
	F.10 Strings and Unicode
	F.11 Internationalization and Localization
	F.12 Testing
	doctest
	unittest
	nose
	File Names

	F.13 Documentation
	Deprecations and Warnings
	str, unicode, and repr
	repr()

