

Python for Informatics

Exploring Information

Version 0.0.4

Charles Severance

©Nole

BY SA

Copyright © 2009, 2010 Charles Severance.

Printing history:

December 2009: Begin to producePython for Informatics: Exploring Informatioby re-mixing
Think Python: How to Think Like a Computer Scientist

June 2008: Major revision, changed title tdhink Python: How to Think Like a Computer Scientist

August 2007: Major revision, changed title thlow to Think Like a (Python) Programmer

April 2002: First edition ofHow to Think Like a Computer Scientist

This work is licensed under a Creative Commons Attribution-Share Alik&8ported License. This
license is available ateativecommons.org/licenses/by-sa/3.0/

The original form of this book isAIEX source code. Compiling thig'IeX source has the effect
of generating a device-independent representation of a textbookh whit be converted to other
formats and printed.

The BTEX source for theThink Python: How to Think Like a Computer Scientistsion of this book
is available frormhttp://www.thinkpython.com

The BTEX source for thePython for Informatics: Exploring Informatioversion of the book is avail-
able fromhttp://source.sakaiproject.org/contrib/csev/trunk/p yinf/

The cover image shows social connectivity of NSF grant investigatahedJniversity of Michigan
from September 1999 through October 2010 and was provided by Bfer ldnd visualized using
the GUESS software developed by Eytan Adar, both of the Universityiclilglan. The cover design
is by Terri Geitgey of the University of Michigan Library.

Preface

Python for Informatics: Remixing an Open Book

It is quite natural for academics who are continuously toldpublish or perish” to want
to always create something from scratch that is their owshfrereation. This book is
an experiment in not starting from scratch, but insteadnireing” the book titledThink
Python: How to Think Like a Computer Scientigitten by Allen B. Downey, Jeff Elkner
and others.

In December of 2009, | was preparing to te&iB02 - Networked Programmingat the
University of Michigan for the fifth semester in a row and disd it was time to write a
Python textbook that focused on exploring data instead détstanding algorithms and ab-
stractions. My goal in SI502 is to teach people life-longada@dndling skills using Python.
Few of my students were planning to be be professional coenpubgrammers. Instead,
they planned be librarians, managers, lawyers, biolggstsnomists, etc. who happened
to want to skillfully use technology in their chosen field.

| never seemed to find the perfect data-oriented Python bookn§ course so | set out
to write just such a book. Luckily at a faculty meeting threeeks before | was about to
start my new book from scratch over the holiday break, Dr.l Rikash showed me the
Think Pythonbook which he had used to teach his Python course that samésie a
well-written Computer Science text with a focus on shontecli explanations and ease of
learning.

The overall book structure has been changed to get to doitegatelysis problems as
quickly as possible and have a series of running examplesx@rdises about data analysis
from the very beginning.

The first 10 chapters are similar to tfi&ink Pythonbook but there have been some
changes. Nearly all number-oriented exercises have bedarcesl with data-oriented ex-
erises. Topics are presented in the order to needed to beilddsingly sophisticated data
analysis solutions. Some topics likg andexcept are pulled forward and presented as
part of the chapter on conditionals while other conceptsfilnctions are left until they are
needed to handle program complexity rather introduced asady lesson in abstraction.
The word “recursion” does not appear in the book at all.

Vi Chapter 0. Preface

In chapters 11-15, nearly all of the material is brand newati§ing on real-world uses and
simple examples of Python for data analysis including r@&gekpressons for searching
and parsing, automating tasks on your computer, retrieditig across the network, scrap-
ing web pages for data, using web services, parsing XML datid, creating and using

databases using Structured Query Language.

The ultimate goal of all of these changes is a shift from a QatempScience to an Infor-
matics focus is to only include topics into a first technolatpss that can be applied even
if one chooses not to become a professional programmer.

Students who find this book interesting and want to furthgae should look at Allen

B. Downey’sThink Pythorbook. Because there is a lot of overlap between the two books,
students will quickly pick up skills in the additional areascomputing in general and
computational thinking that are coveredTihink Python And given that the books have a
similar writing style and at times have identical text andrmyples, you should be able to
move quickly throughThink Pythorwith a minimum of effort.

As the copyright holder ofhink Python Allen has given me permission to change the
book’s license from the GNU Free Documentation License &rtiore recent Creative
Commons Attribution — Share Alike license. This follows angeal shift in open doc-
umentation licenses moving from the GFDL to the CC-BY-SA.(iWikipedia). Using
the CC-BY-SA license maintains the book’s strong copyieftiition while making it even
more straightforward for new authors to reuse this mateddhey see fit.

| feel that this book serves an example of why open materials@aimportant to the future
of education, and want to thank Allen B. Downey and Cambridgiersity Press for their
forward looking decision to make the book available undeo@en Copyright. | hope they
are pleased with the results of my efforts and | hope that ieu¢ader are pleased with
our collective efforts.

Charles Severance

www.dr-chuck.com

Ann Arbor, MI, USA
July 25, 2010

Charles Severance is a Clinical Associate Professor at tinetsity of Michigan School
of Information.

Preface for “Think Python”

The strange history of “Think Python”
(Allen B. Downey)

In January 1999 | was preparing to teach an introductoryraragiing class in Java. | had
taught it three times and | was getting frustrated. The faitate in the class was too high
and, even for students who succeeded, the overall levehiéaament was too low.

vii

One of the problems | saw was the books. They were too big, twittmuch unnecessary
detail about Java, and not enough high-level guidance dtmuto program. And they all

suffered from the trap door effect: they would start out epsyceed gradually, and then
somewhere around Chapter 5 the bottom would fall out. Thaestis would get too much
new material, too fast, and | would spend the rest of the stempiking up the pieces.

Two weeks before the first day of classes, | decided to writ@wy book. My goals were:

» Keep it short. It is better for students to read 10 pages tiwamead 50 pages.

» Be careful with vocabulary. | tried to minimize the jargomdadefine each term at
first use.

« Build gradually. To avoid trap doors, | took the most difficiopics and split them
into a series of small steps.

» Focus on programming, not the programming language. uded the minimum
useful subset of Java and left out the rest.

| needed a title, so on a whim | chos®w to Think Like a Computer Scientist

My first version was rough, but it worked. Students did thediieg, and they understood
enough that | could spend class time on the hard topics, theesting topics and (most
important) letting the students practice.

| released the book under the GNU Free Documentation Licesisieh allows users to
copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high sdeacher in Virginia, adopted
my book and translated it into Python. He sent me a copy ofraisstation, and | had the
unusual experience of learning Python by reading my own book

Jeff and | revised the book, incorporated a case study bys@heiyers, and in 2001 we
releasedHow to Think Like a Computer Scientist: Learning with Pythalso under the

GNU Free Documentation License. As Green Tea Press, | pailithe book and started
selling hard copies through Amazon.com and college boakst@ther books from Green
Tea Press are availablegugenteapress.com

In 2003 | started teaching at Olin College and | got to teadih@yfor the first time. The
contrast with Java was striking. Students struggled lessned more, worked on more
interesting projects, and generally had a lot more fun.

Over the last five years | have continued to develop the bamkecting errors, improving
some of the examples and adding material, especially eseexcln 2008 | started work on
a major revision—at the same time, | was contacted by an egitGambridge University
Press who was interested in publishing the next edition.dGimaing!

| hope you enjoy working with this book, and that it helps yearh to program and think,
at least a little bit, like a computer scientist.

viii Chapter 0. Preface

Acknowledgements for “Think Python”
(Allen B. Downey)

First and most importantly, | thank Jeff Elkner, who tratestbmy Java book into Python,
which got this project started and introduced me to what biagetd out to be my favorite
language.

| also thank Chris Meyers, who contributed several sectiot$ow to Think Like a Com-
puter Scientist

And | thank the Free Software Foundation for developing tiNtJG-ree Documentation
License, which helped make my collaboration with Jeff and<mossible.

| also thank the editors at Lulu who worked Blow to Think Like a Computer Scientist

I thank all the students who worked with earlier versionshig book and all the contribu-
tors (listed in an Appendix) who sent in corrections and ssgigns.

And | thank my wife, Lisa, for her work on this book, and GreezaPress, and everything
else, too.

Allen B. Downey
Needham MA

Allen Downey is an Associate Professor of Computer Sciendbe Franklin W. Olin
College of Engineering.

Contents

Preface %
1 Why should you learn to write programs? 1
1.1 Creativityand motivation 2
1.2 Computer hardware architecture 3
1.3 Understanding programming 4
1.4 The Python programminglanguage 5
1.5 Whatisaprogram? 7
1.6 Whatisdebugging? 7
1.7 Building “sentences”inPython 9
1.8 Thefirstprogram 11
1.9 Debugging. e 11
110 GloSSary . . . o v o o e e 12
111 EXErCISES o e 14
2 Variables, expressions and statements 15
2.1 Valuesandtypes. 15
22 VMariables. 16
2.3 Variablenamesandkeywords L. 17
24 StatementS 18
25 Operatorsandoperands 8 1

Contents

2.6 EXPressions e 19
27 Orderofoperations 20
2.8 Modulusoperator 20
2.9 Stringoperations e e 21
2.10 Askingtheuserforinput 21
211 Comments 22
2.12 Choosing mnemonic variablenames 23
213 Debugging 24
214 GloSSAry 25
215 EXercises 26
Conditional execution 29
3.1 Boolean expresSions. e 9 2
3.2 Logicaloperators e 30
3.3 Conditionalexecution 30
3.4 Alternative execution 31
3.5 Chainedconditionals, 23
3.6 Nestedconditionals 33
3.7 Catching exceptions usingtryandexcept. 34
3.8 Short circuit evaluation of logical expressions 36
3.9 Debugging e 37
310 Glossary e 38
311 EXEerCiSES o 39
Functions 41
41 Functioncalls 41
4.2 Built-infunctions 14
4.3 Typeconversionfunctions 42
44 Randomnumbers 43

Contents Xi
45 Mathfunctions 44
46 Addingnewfunctions 45
4.7 Definitionsanduses 46
48 Flowofexecution 47
4.9 Parametersandarguments 8. 4
4.10 Fruitful functions and void functions 49
411 Whyfunctions? 50
412 Debugging 50
413 Glossary 51
414 EXErCISES i it 52

5 lteration 55
5.1 Updatingvariables 55
5.2 Thewhile statement 55
5.3 Infiniteloops 56
5.4 “Infinite loops”andoreak L o 58
55 Finishing iterations witkontinue 59
5.6 Definite loopsusinépr L 59
5.7 Looppatterns 60
58 Debugging. 63
5.9 Glossary e 63
5,10 EXercises 64

6 Strings 65
6.1 Astringisasequence 65
6.2 Getting the length of astringusitepy 66
6.3 Traversal through a string withf@ loop 66
6.4 Stringslices 67
6.5 Stringsareimmutable oo oo 8 6

Xii

Contents

6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Files
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Lists
8.1
8.2
8.3
8.4

Searching
Looping and counting
Thein operator
String comparison
string methods
Parsing strings

Format operator
Debugging
Glossary

Exercises

Persistence.

Opening files

Text files and lines

Reading files

Searching through a file
Letting the user choose the file name
Usingtry, except,
Writingfiles
Debugging
Glossary

Exercises

A listis a sequence
Lists are mutable
Traversing a list

List operations

Contents Xiii
8.5 Listslices 96
86 Listmethods. 97
8.7 Deletingelements 97
8.8 Listsandstrings 98
89 Parsinglines. 99
8.10 Objectsandvalues 010
8.11 Aliasing e 101
8.12 Listarguments. 210
8.13 Debugging 103
8.14 Glossary e e 107
8.15 EXErCiSES 107

9 Dictionaries 109
9.1 Dictionaryasasetofcounters 111
9.2 Dictionariesandfiles 121
9.3 Loopinganddictionaries 113
9.4 Advancedtextparsing. 141
9.5 Debugging 116
9.6 Glossary e 117
9.7 EXercises 117

10 Tuples 119
10.1 Tuplesareimmutable L 191
10.2 Comparingtuples e 012
10.3 Tupleassignment 112
10.4 Dictionariesandtuples 0. 123
10.5 Multiple assignment with dictionaries 123
10.6 Themostcommonwords i 124
10.7 Usingtuples as keys in dictionaries126

Xiv

11

12

13

Contents
10.8 Sequences: strings, lists, and tuples—Oh My!127
10.9 Debugging e 127
10.10 Glossary o e e e 129
10.11 EXErCiSeS o v i e e 129
Automating common tasks on your computer 131
111 Filenamesandpaths 113
11.2 Example: Cleaning up a photo directory 132
11.3 Commandlinearguments 381
11.4 PIpes e 139
115 Glossary 140
11.6 EXErCISES i e 141
Networked programs 143
12.1 HyperText Transport Protocol -HTTP143
12.2 The World’s Simplest Web Browser 144
12.3 Retrieving web pages withllib oL 146
12.4 Parsing HTML and scrapingtheweb 146
125 Glossary 149
12.6 EXErCISES i 149
Using Web Services 151
13.1 eXtensible Markup Language-XML 151
13.2 Parsing XML 152
13.3 Loopingthroughnodes 531
13.4 Application Programming Interfaces (API) 154
13.5 Twitterwebservices 551
13.6 Handling XML datafromanAPI 571
13.7 Glossary o e 158
13.8 EXErCISES 159

Contents

14 Using databases and Structured Query Language (SQL)

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14

Whatisadatabase?
Databaseconcepts
SQLite Database Browser
Creating adatabasetable
Structured Query Language (SQL) summary
Spidering Twitter usinga database
Basicdatamodeling
Programming with multipletables
Threekindsofkeys
Using JOIN toretrievedata
Summary ... e e e
Debugging.o
Glossary

Exercises

15 Regular Expressions

15.1 Character Matching in Regular Expressions
15.2 Extracting Data Using Regular Expressions

15.3 Combining Searching and Extracting
154 Summary

15.5 Bonus SectionforUNIXUsers

15,6 Debugging.

157 Glossary e

15.8 Exercises

A Debugging

Al Syntaxerrors

A2 Runtimeerrors

A3 Semanticerrors

B Contributor List

XVi Contents

Chapter 1

Why should you learn to write
programs?

Writing programs (or programming) is a very creative and relivey activity. You can
write programs for many reasons ranging from making youndjwto solving a difficult
data analysis problem to having fun to helping someone else & problem. This book
assumes thatveryoneneeds to know how to program and that once you know how to
program, you will figure out what you want to do with your newfa skills.

We are surrounded in our daily lives with computers rangnogflaptops to cell phones.
We can think of these computers as our “personal assistaitg’can take care of many
things on our behalf. The hardware in our current-day coemguis essentially built to
continuously ask us the question, “What would you like me tmext?”.

What What What
Next? (Next? \Next? @
What What What
Next? (Next? (Next? PDA

Programmers add an operating system and a set of applisatahe hardware and we
end up with a Personal Digital Assistant that is quite hélpfid capable of helping many
different things.

Our computers are fast and have vast amounts of memory afdl lmewery helpful to us

if we only knew the language to speak to explain to the conrpubeat we would like it to
“do next”. If we knew this language we could tell the computedo tasks on our behalf
that were repetitive. Interestingly, the kinds of thingsnpmuters can do best are often the
kinds of things that we humans find boring and mind-numbing.

2 Chapter 1. Why should you learn to write programs?

For example, look at the first three paragraphs of this chaptd tell me the most com-
monly used word and how many times the word is used. While yae able to read and
understand the words in a few seconds, counting them is alpadsful because it is not
the kind of problem that human minds are designed to solveaomputer the opposite
is true, reading and understanding text from a piece of piagdeard for a computer to do
but counting the words and telling you how many times the miestd word was used is
very easy for the computer:

python words.py
Enter file:words.txt
to 16

Our “personal information analysis assistant” quicklydtak that the word “to” was used
sixteen times in the first three paragraphs of this chapter.

This very fact that computers are good at things that humemeat is why you need to
become skilled at talking “computer language”. Once youldais new language, you can
delegate mundane tasks to your partner (the computer)nteanore time for you to do the
things that you are uniquely suited for. You bring creajimvituition, and inventiveness to
this partnership.

1.1 Creativity and motivation

While this book is not intended for professional programmprsfessional programming

can be a very rewarding job both financially and personallyildihg useful, elegant, and

clever programs for others to use is a very creative activityur computer or Personal

Digital Assistant (PDA) usually contains many differenbgrams from many different

groups of programmers, each competing for your attentiohirsierest. They try their best

to meet your needs and give you a great user experience imabegs. In some situations,
when you choose a piece of software, the programmers amlgiommpensated because
of your choice.

If we think of programs as the creative output of groups ofgpammers, perhaps the
following figure is a more sensible version of our PDA:

R
Fac) (Bee) (B @

For now, our primary motivation is not to make money or pleasd-users, but instead
for us to be more productive in handling the data and infoionathat we will encounter
in our lives. When you first start, you will be both the prograemrand end-user of your

1.2. Computer hardware architecture 3

programs. As you gain skill as a programmer and programngats fmore creative to you,
your thoughts may turn toward developing programs for ather

1.2 Computer hardware architecture

Before we start learning the language we speak to give ictidns to computers to develop
software, we need to learn a small amount about how compatersuilt. If you were to
take apart your computer or cell phone and look deep insimewould find the following
parts:

What
Software /g@ Next?
Central O“
Input Processing
Output Unit Network
Devices
Main S q
Memory econdary
Memory

The high-level definitions of these parts are as follows:

« TheCentral Processing Unit(or CPU) is that part of the computer that is built to be
obsessed with “what is next?”. If your computer is rated 8t@igahertz, it means
that the CPU will ask “What next?” three billion times per sedoYou are going to
have to learn how to talk fast to keep up with the CPU.

» TheMain Memory is used to store information that the CPU needs in a hurry. The
main memory is nearly as fast as the CPU. But the informatiored in the main
memory vanishes when the computer is turned off.

« The Secondary Memoryis also used to store information, but it is much slower
than the main memory. The advantage of the secondary memtmgtiit can store
information even when there is no power to the computer. Exesnof secondary
memory are disk drives or flash memory (typically found in USBks and portable
music players).

e The Input and Output Devices are simply our screen, keyboard, mouse, micro-
phone, speaker, touchpad, etc. They are all of the ways weatttwith the com-
puter.

4 Chapter 1. Why should you learn to write programs?

» These days, most computers also haveawvork Connection to retrieve informa-
tion over a network. We can think of the network as a very sltaegto store and
retrieve data that might not always be “up”. So in a sensengteork is a slower
and at times unreliable form &econdary Memory

While most of the detail of how these components work is béstdecomputer builders, it
helps to have some terminology so we can talk about thesereliff parts as we write our
programs.

As a programmer, your job is to use and orchestrate each sé ttesources to solve the
problem that you need solving and analyze the data you neg@ pkogrammer you will
mostly be “talking” to the CPU and telling it what to do nexir8etimes you will tell the
CPU to use the main memory, secondary memory, network, anthug/output devices.

Software

Central O“

Input Processing
Output Unit Network

Devices

Main S d
Memory econdary

Memory

You =—>»

You need to be the person who answers the CPU’s “What next&tigune But it would be

very uncomfortable to shrink you down to 5mm tall and insem ynto the computer just
so you could issue a command three billion times per secoadnsead, you must write
down your instructions in advance. We call these storeduingbns gorogram and the act

of writing these instructions down and getting the instiarts to be corregbrogramming.

1.3 Understanding programming

In the rest of this book, we will try to turn you into a personavis skilled in the art

of programming. In the end you will be pgrogrammer — perhaps not a professional
programmer but at least you will have the skills to look at éaflaformation analysis

problem and develop a program to solve the problem.

In a sense, you need two skills to be a programmer:

1.4. The Python programming language 5

« First you need to know the programming language (Pythomu-need to know the
vocabulary and the grammar. You need to be able spell thesaiorthis new lan-
guage properly and how to construct well-formed “sentehicethis new languages.

« Second you need to “tell a story”. In writing a story, you dmne words and sen-
tences to convey an idea to the reader. There is a skill aiml@hstructing the story
and skill in story writing is improved by doing some writingdgetting some feed-
back. In programming, our program is the “story” and the pgobyou are trying to
solve is the “idea”.

Once you learn one programming language such as Python, jidind/it much easier to
learn a second programming language such as JavaScripttorite new programming
language has very different vocabulary and grammar but gagdearn problem solving
skills, they will be the same across all programming langsag

You will learn the “vocabulary” and “sentences” of Pythoretty quickly. It will take
longer for you to be able to write a coherent program to solbeaad new problem. We
teach programming much like we teach writing. We start nregidind explaining programs
and then we write simple programs and then write increagingimplex programs over
time. At some point you “get your muse” and see the patterngoom own and can see
more naturally how to take a problem and write a program tblaes that problem. And
once you get to that point, programming becomes a very pi¢asa creative process.

We start with the vocabulary and structure of Python prograBe patient as the simple
examples remind you of when you started reading for the first.t

1.4 The Python programming language

The programming language you will learn is Python. Pythamigxample of &igh-level
language some other high-level languages you might have heard of a@+-+, Perl, Java,
Ruby, and JavaScript.

There are alstow-level languagessometimes referred to as “machine languages” or “as-
sembly languages.” Loosely speaking, computers can ordgut® programs written in
low-level languages. So programs written in a high-levaplzage have to be processed
before they can run. This extra processing takes some tifniehvis a small disadvantage
of high-level languages.

However, the advantages are enormous. First, it is muckre@sprogram in a high-level
language. Programs written in a high-level language taetlme to write, they are shorter
and easier to read, and they are more likely to be correctorBedigh-level languages
areportable, meaning that they can run on different kinds of computett ¥éw or no
modifications. Low-level programs can run on only one kind@fputer and have to be
rewritten to run on another.

Due to these advantages, almost all programs are writteiginlavel languages. Low-
level languages are used only for a few specialized apitsit

6 Chapter 1. Why should you learn to write programs?

Two kinds of programs process high-level languages into-lemel languages:inter-
preters andcompilers. An interpreter reads a high-level program and executesigning
that it does what the program says. It processes the progtitie @t a time, alternately
reading lines and performing computations.

=
SOURCE INTERPRETER OUTPUT
CODE -

o

A compiler reads the program and translates it completeigrbehe program starts run-
ning. In this context, the high-level program is called veirce code and the translated
program is called thebject code machine codeor theexecutable Once a program is
compiled, you can execute it repeatedly without furthemgtation.

SOURCE COMPILER OBJECT EXECUTOR OUTPUT
CODE _| copE |

T I
1

Python is considered an interpreted language becauserPytbgrams are executed by an
interpreter. There are two ways to use the interprétéeractive modeandscript mode.

To start interactive mode, you have to run the Python ingggorprogram. In a UNIX or
Windows command window, you would typgthon to run the Python interpreter.

In interactive mode, you type Python programs and the ingéep prints the result:

>>> 1 + 1
2
>>>

The chevrony>>, is theprompt the interpreter uses to indicate that it is ready. If you type
1 + 1, theinterpreter replied. The chevron is the Python interpreter’s way of asking you,
“What do you want me to do next?”. You will notice that as soorPgghon finishes one
statement it immediately is ready for you to type anothdaestant.

Typing commands into the Python interpreter is a great wagxperiment with Python’s
features, but it is a bad way to type in many commands to sotaera complex problem.
When we want to write a program, we use a text editor to writd™ytbon instructions into
a file, which is called acript. By convention, Python scripts have names that end with

To execute the script, you have to tell the interpreter theanaf the file. In a UNIX or
Windows command window, you would typgthon dinsdale.py . In other development
environments, the details of executing scripts are differ&ou can find instructions for
your environment at the Python Webgitghon.org

1.5. What is a program? 7

Working in interactive mode is convenient for testing snpédices of code because you can
type and execute them immediately. But for anything more thdew lines, you should
save your code as a script so you can modify and execute ieifuthre.

1.5 Whatis a program?

A program is a sequence of instructions that specifies how to perforranapatation.
The computation might be something mathematical, suchlamga system of equations
or finding the roots of a polynomial, but it can also be a syrgbobmputation, such as
searching and replacing text in a document or (strangelygmocompiling a program.

The details look different in different languages, but a fesgic instructions appear in just
about every language:

input: Get data from the keyboard, a file, or some other device, pgufsnecessary.
output: Display data on the screen or send data to a file or other device

sequential execution: Perform statements one after another in the order they auan
tered in the script.

conditional execution: Check for certain conditions and execute or skip a sequehce o
statements.

repeated execution: Perform some set of statements repeatedly, usually witle s@ma-
tion.

reuse: Write a set of instructions once and give them a name and these teose instruc-
tions as needed throughout your program.

Believe it or not, that’s pretty much all there is to it. Evgmpgram you've ever used, no
matter how complicated, is made up of instructions that jo@ty much like these. So you
can think of programming as the process of breaking a lagraptex task into smaller and
smaller subtasks until the subtasks are simple enough tetfermed with one of these
basic instructions.

1.6 What is debugging?

Programming is error-prone. For whimsical reasons, prograng errors are calledugs
and the process of tracking them down is caliiethugging

Three kinds of errors can occur in a program: syntax errorgjme errors, and semantic
errors. Itis useful to distinguish between them in orderack them down more quickly.

8 Chapter 1. Why should you learn to write programs?

1.6.1 Syntax errors

Python can only execute a program if the syntax is correbgretise, the interpreter dis-
plays an error messag8yntaxrefers to the structure of a program and the rules about that
structure. For example, parentheses have to come in mgtphirs, sql1 + 2) is legal,
but8) is asyntax error.

In English readers can tolerate most syntax errors, whiefjswe can read certain abstract
poetry. Python is not so forgiving. If there is a single syn&ror anywhere in your
program, Python will display an error message and quit, andwill not be able to run
your program. During the first few weeks of your programmiageer, you will probably
spend a lot of time tracking down syntax errors. As you gaipegience, you will make
fewer errors and find them faster.

1.6.2 Runtime errors

The second type of error is a runtime error, so called bedheserror does not appear until
after the program has started running. These errors arealsoexceptionsbecause they
usually indicate that something exceptional (and bad) hapéned.

Runtime errors are rare in the simple programs you will seerfirst few chapters, so it
might be a while before you encounter one.

1.6.3 Semantic errors

The third type of error is theemantic error. If there is a semantic error in your program,
it will run successfully in the sense that the computer will generate any error messages,
but it will not do the right thing. It will do something elsep&cifically, it will do what you
told it to do but not what you meant for it to do.

The problem is that the program you wrote is not the programwanted to write. The
meaning of the program (its semantics) is wrong. Ident@ysemantic errors can be tricky
because it requires you to work backward by looking at the@wuof the program and
trying to figure out what it is doing.

1.6.4 Experimental debugging

One of the most important skills you will acquire is debuggiilthough it can be frus-
trating, debugging is one of the most intellectually richaltenging, and interesting parts
of programming.

In some ways, debugging is like detective work. You are awortérd with clues, and you
have to infer the processes and events that led to the rgsuitsee.

Debugging is also like an experimental science. Once yoe Aavdea about what is going
wrong, you modify your program and try again. If your hypatisewas correct, then you

1.7. Building “sentences” in Python 9

can predict the result of the modification, and you take a cleger to a working program.
If your hypothesis was wrong, you have to come up with a new #&seSherlock Holmes
pointed out, “When you have eliminated the impossible, wheateemains, however im-
probable, must be the truth.” (A. Conan Doyléde Sign of Fouyr

For some people, programming and debugging are the sante fhivat is, programming
is the process of gradually debugging a program until it doleat you want. The idea is
that you should start with a program that d@esnethingand make small modifications,
debugging them as you go, so that you always have a workirgygm

For example, Linux is an operating system that containsshods of lines of code, but it
started out as a simple program Linus Torvalds used to exple Intel 80386 chip. Ac-
cording to Larry Greenfield, “One of Linus’s earlier projgeatas a program that would
switch between printing AAAA and BBBB. This later evolved ltinux.” (The Linux
Users’ GuideBeta Version 1).

Later chapters will make more suggestions about debuggidgther programming prac-
tices.

1.7 Building “sentences” in Python

The rules (or grammar) of Python are simpler and more prabaethe rules of a natural
language that we use to speak and write.

Natural languagesare the languages people speak, such as English, Spardshrearch.
They were not designed by people (although people try to saEmme order on them);
they evolved naturally.

Formal languagesare languages that are designed by people for specific afiphs. For
example, the notation that mathematicians use is a formgllkage that is particularly good
at denoting relationships among numbers and symbols. Gitese a formal language to
represent the chemical structure of molecules. And mosbitaptly:

Programming languages are formal languages that have beeredigned to
express computations.

Formal languages tend to have strict rules about syntaxeXanple, 3- 3= 6 is a syntac-
tically correct mathematical statement, but 3-3@6 is not.H,O is a syntactically correct
chemical formula, buiZzis not.

Syntax rules come in two flavors, pertainingttikensand structure. Tokens are the basic
elements of the language, such as words, numbers, and clestéments. One of the
problems with 3t +3@6 is that @ is not a legal token in mathematics (at leastrassfa
know). Similarly,2Zzis not legal because there is no element with the abbrewizto

The second type of syntax error pertains to the structurestdtament; that is, the way the
tokens are arranged. The statement-83@6 is illegal because even thoughis a legal

10 Chapter 1. Why should you learn to write programs?

token and you can have more than one plus in an exressionaymothave one right after
another. Similarly, in a chemical formula the subscript esrafter the element name, not
before.

Exercise 1.1 Write a well-structured English sentence with invalid tokémit. Then write
another sentence with all valid tokens but with invalid stawe.

When you read a sentence in English or a statement in a formgl&ge, you have to
figure out what the structure of the sentence is (althoughnataral language you do this
subconsciously). This process is calfgtsing.

For example, when you hear the sentence, “The penny drdppmdunderstand that “the
penny” is the subject and “dropped” is the predicate. Oneehave parsed a sentence, you
can figure out what it means, or the semantics of the senteke®iming that you know
what a penny is and what it means to drop, you will understaadyeneral implication of
this sentence.

Although formal and natural languages have many featuresrinmon—tokens, structure,
syntax, and semantics—there are some differences:

ambiguity: Natural languages are full of ambiguity, which people dei#thdy using con-
textual clues and other information. Formal languages aségded to be nearly or
completely unambiguous, which means that any statemerexaasly one meaning,
regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstgsilinatural
languages employ lots of redundancy. As a result, they dem aferbose. Formal
languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If | sayhéTpenny
dropped,” there is probably no penny and nothing droppiffigrmal languages mean
exactly what they say.

People who grow up speaking a natural language—everyonen-adtee a hard time ad-
justing to formal languages. In some ways, the differendsvéen formal and natural
language is like the difference between poetry and progenbre so:

Poetry: Words are used for their sounds as well as for their meanijttee whole poem
together creates an effect or emotional response. Ampiguitot only common but
often deliberate.

Prose: The literal meaning of words is more important, and the $tmgccontributes more
meaning. Prose is more amenable to analysis than poetryilbaften ambiguous.

Programs: The meaning of a computer program is unambiguous and litera can be
understood entirely by analysis of the tokens and structure

1This idiom means that someone realized something after a pefrimzhfusion.

1.8. The first program 11

Here are some suggestions for reading programs (and othealftanguages). First, re-
member that formal languages are much more dense than Iniatgaages, so it takes
longer to read them. Also, the structure is very importamit §s usually not a good idea
to read from top to bottom, left to right. Instead, learn toggethe program in your head,
identifying the tokens and interpreting the structure.aliin the details matter. Small er-
rors in spelling and punctuation, which you can get away withatural languages, can
make a big difference in a formal language.

1.8 The first program

Traditionally, the first program you write in a new languagealled “Hello, World!” be-
cause all it does is display the words, “Hello, World!” In Rgh, it looks like this:

print ' Hello, World!

This is an example of print statement?, which doesn’t actually print anything on paper.
It displays a value on the screen. In this case, the resuieisords

Hello, World!

The quotation marks in the program mark the beginning andétit text to be displayed,;
they don't appear in the result.

Some people judge the quality of a programming languagedgithplicity of the “Hello,
World!" program. By this standard, Python does about as agfossible.

1.9 Debugging

Itis a good idea to read this book in front of a computer so yanutey out the examples as
you go. You can run most of the examples in interactive modeif lyou put the code into
a script, it is easier to try out variations.

Whenever you are experimenting with a new feature, you shivyltb make mistakes.
For example, in the “Hello, world!” program, what happengydiu leave out one of the
guotation marks? What if you leave out both? What if you gpgit wrong?

This kind of experiment helps you remember what you readsd helps with debugging,
because you get to know what the error messages mean. Ités teenake mistakes now
and on purpose than later and accidentally.

Programming, and especially debugging, sometimes bringstmng emotions. If you are
struggling with a difficult bug, you might feel angry, desplent or embarrassed.

2In Python 3.0print is a function, not a statement, so the syntapriis('Hello, World!") . We will get
to functions soon!

12 Chapter 1. Why should you learn to write programs?

There is evidence that people naturally respond to compateif they were peopleWhen
they work well, we think of them as teammates, and when theyhstinate or rude, we
respond to them the same way we respond to rude, obstingiéepeo

Preparing for these reactions might help you deal with th&me approach is to think of
the computer as an employee with certain strengths, likedsaiad precision, and particular
weaknesses, like lack of empathy and inability to grasp t@@ioture.

Your job is to be a good manager: find ways to take advantadedttengths and mitigate
the weaknesses. And find ways to use your emotions to engalge¢hsiproblem, without
letting your reactions interfere with your ability to workectively.

Learning to debug can be frustrating, but it is a valuabl# giat is useful for many activi-
ties beyond programming. At the end of each chapter therdébagging section, like this
one, with my thoughts about debugging. | hope they help!

1.10 Glossary
bug: An error in a program.

central processing unit: The heart of any computer. It is what runs the software that we
write; also called “CPU” or “the processor”.

compile: To translate a program written in a high-level language @nlmw-level language
all at once, in preparation for later execution.

debugging: The process of finding and removing any of the three kinds of@mming
errors.

exception: An error that is detected while the program is running.
executable: Another name for object code that is ready to be executed.

formal language: Any one of the languages that people have designed for specifi
poses, such as representing mathematical ideas or congpatgams; all program-
ming languages are formal languages.

high-level language: A programming language like Python that is designed to bg feas
humans to read and write.

interactive mode: A way of using the Python interpreter by typing commands aspoles-
sions at the prompt.

interpret: To execute a program in a high-level language by translatioge line at a
time.

3See Reeves and Nad$he Media Equation: How People Treat Computers, Televisiod New Media Like
Real People and Places

1.10. Glossary 13

low-level language: A programming language that is designed to be easy for a campu
to execute; also called “machine code” or “assembly langtiag

machine code: The lowest level language for software which is the language is di-
rectly executed by the central processing unit (CPU).

main memory: Stores programs and data. Main memory loses its informatioen the
power is turned off.

natural language: Any one of the languages that people speak that evolvedatigtur
object code: The output of the compiler after it translates the program.

parse: To examine a program and analyze the syntactic structure.

portability: A property of a program that can run on more than one kind offzdar.

print statement: An instruction that causes the Python interpreter to displaalue on
the screen.

problem solving: The process of formulating a problem, finding a solution, exgress-
ing the solution.

program: A set of instructions that specifies a computation.

prompt: Characters displayed by the interpreter to indicate thiatiitady to take input
from the user.

secondary memory: Stores programs and data and retains its information evem wie
power is turned off. Generally slower than main memory. Epi@® of secondary
memory include disk drives and flash member in USB sticks.

script: A program stored in a file (usually one that will be interpdte

script mode: A way of using the Python interpreter to read and executerstants in a
script.

semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other thant Wiea
programmer intended.

source code: A program in a high-level language before being compiled.
syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (aacetore im-
possible to interpret).

token: One of the basic elements of the syntactic structure of araroganalogous to a
word in a natural language.

14 Chapter 1. Why should you learn to write programs?

1.11 Exercises

Exercise 1.2Use a web browser to go to the Python Websitthon.org . This page
contains information about Python and links to Pythonteglgpages, and it gives you the
ability to search the Python documentation.

For example, if you enteprint in the search window, the first link that appears is the
documentation of therint statement. At this point, not all of it will make sense to you,
but it is good to know where it is.

Exercise 1.3 Start the Python interpreter and typap() to start the online help utility.
Or you can typéielp(' print ') to getinformation about thgrint statement.

If this example doesn’t work, you may need to install addisibPython documentation or
set an environment variable; the details depend on youratipgrsystem and version of
Python.

Exercise 1.4 Start the Python interpreter and use it as a calculator. dPsgtsyntax for
math operations is almost the same as standard mathenradiegilon. For example, the
symbols+, - and/ denote addition, subtraction and division, as you wouldeekp The
symbol for multiplication is.

If you run a 10 kilometer race in 43 minutes 30 seconds, whgbis average time per
mile? What is your average speed in miles per hour? (Hintethez 1.61 kilometers in a
mile).

Chapter 2

Variables, expressions and
statements

2.1 Values and types

A value is one of the basic things a program works with, like a lettea mumber. The
values we have seen so far are, and' Hello, World!

These values belong to differetypes 2 is an integer, antiHello, World! ' is astring,
so-called because it contains a “string” of letters. Youd(#me interpreter) can identify
strings because they are enclosed in quotation marks.

Theprint statement also works for integers. We use fiithon command to start the
interpreter.

python
>>> print 4
4

If you are not sure what type a value has, the interpreteralpdu.

>>> type(' Hello, World! ")
<type 'str'>

>>> type(17)

<type 'int '>

Not surprisingly, strings belong to the type and integers belong to the typg . Less
obviously, numbers with a decimal point belong to a typeechiloat , because these
numbers are represented in a format cafledting-point.

16 Chapter 2. Variables, expressions and statements

>>> type(3.2)
<type ' float ' >

What about values likel7' and' 3.2 ' ? They look like numbers, but they are in quotation
marks like strings.

>>> type(' 17")
<type 'str '>
>>> type('3.2")
<type ‘'str '>

They’re strings.

When you type a large integer, you might be tempted to use cenfi@iaveen groups of
three digits, as i1,000,000 . This is not a legal integer in Python, but it is legal:

>>> print 1,000,000
100

Well, that's not what we expected at all! Python interprg00,000 as a comma-
separated sequence of integers, which it prints with spaetegeen.

This is the first example we have seen of a semantic error:aithe ins without producing
an error message, but it doesn’t do the “right” thing.

2.2 Variables

One of the most powerful features of a programming languadjeei ability to manipulate
variables. A variable is a name that refers to a value.

An assignment statementreates new variables and gives them values:
>>> message = ' And now for something completely different '
>>>n = 17

>>> pi = 3.1415926535897931

This example makes three assignments. The first assigns@tstra new variable named
message ; the second assigns the inted&rto n; the third assigns the (approximate) value
of rttopi .

A common way to represent variables on paper is to write theenaith an arrow pointing
to the variable’s value. This kind of figure is callegtate diagrambecause it shows what
state each of the variables is in (think of it as the variabtgate of mind). This diagram
shows the result of the previous example:

2.3. Variable names and keywords 17

message —= 'And now for something completely different’

n— 17

pi —= 3.1415926535897931

To display the value of a variable, you can use a print staté¢me

>>> print n
17

>>> print pi
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)

<type 'str '>
>>> type(n)
<type ‘'int '>

>>> type(pi)
<type ' float ' >

2.3 Variable names and keywords

Programmers generally choose names for their variablésithaneaningful—they docu-
ment what the variable is used for.

Variable names can be arbitrarily long. They can contaih baiters and numbers, but they
have to begin with a letter. It is legal to use uppercaserkttrit it is a good idea to begin
variable names with a lowercase letter (you'll see why Jater

The underscore charactel) can appear in a name. It is often used in names with multiple
words, such asy_nameor airspeed_of _unladen_swallow

If you give a variable an illegal name, you get a syntax error:

>>> T76trombones = ' big parade
SyntaxError: invalid syntax

>>> more@ = 1000000
SyntaxError: invalid syntax

>>> class = ' Advanced Theoretical Zymurgy
SyntaxError; invalid syntax

76trombones is illegal because it does not begin with a letteore@is illegal because it
contains an illegal characteg) But what’s wrong wittclass ?

It turns out thatclass is one of Python'keywords. The interpreter uses keywords to
recognize the structure of the program, and they cannotdx assvariable names.

18 Chapter 2. Variables, expressions and statements

Python reserves 31 keyword®r its use:

and del from not while
as elif global or with
assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

You might want to keep this list handy. If the interpreter gbamns about one of your
variable names and you don’t know why, see if it is on this list

2.4 Statements

A statementis a unit of code that the Python interpreter can execute. &/e Been two
kinds of statements: print and assignment.

When you type a statement in interactive mode, the intenpestecutes it and displays the
result, if there is one.

A script usually contains a sequence of statements. If tker®re than one statement, the
results appear one at a time as the statements execute.

For example, the script

print 1
X =2
print x

produces the output

1
2

The assignment statement produces no output.

2.5 Operators and operands

Operators are special symbols that represent computations like iadditnd multiplica-
tion. The values the operator is applied to are cadlpdrands

The operators, -, *,/ and** perform addition, subtraction, multiplication, divisiamd
exponentiation, as in the following examples:

1In Python 3.0exec is no longer a keyword, butonlocal is.

2.6. Expressions 19

20+32 hour-1 hour*60+minute minute/60 52 (5+9)*(15-7)
The division operator might not do what you expect:

>>> minute = 59
>>> minute/60
0

The value ofinute is 59, and in conventional arithmetic 59 divided by 60 is @38 not
0. The reason for the discrepancy is that Python is perfayiitdor division?.

When both of the operands are integers, the result is alsotegein floor division chops
off the fraction part, so in this example it rounds down tcozer

If either of the operands is a floating-point number, Pytherigrms floating-point division,
and the result is #oat

>>> minute/60.0
0.98333333333333328

2.6 Expressions

An expressionis a combination of values, variables, and operators. Aevaluby itself
is considered an expression, and so is a variable, so tleevial) are all legal expressions
(assuming that the variabehas been assigned a value):

17
X
x + 17

If you type an expression in interactive mode, the integretaluatesit and displays the
result:

>>> 1 + 1
2

But in a script, an expression all by itself doesn’t do anygtiThis is a common source of
confusion for beginners.

Exercise 2.1 Type the following statements in the Python interpretere® what they do:

x=25
X+ 1

2In Python 3.0, the result of this division isfiaat . In Python 3.0, the new operattir performs integer
division.

20 Chapter 2. Variables, expressions and statements

2.7 Order of operations

When more than one operator appears in an expression, theafreealuation depends
on therules of precedence For mathematical operators, Python follows mathematical
convention. The acronyfAREMDAS is a useful way to remember the rules:

« Parentheses have the highest precedence and can be usecktaricexpression to
evaluate in the order you want. Since expressions in pageathare evaluated first,
2 * (3-1) is 4, and(1+1)**(5-2) is 8. You can also use parentheses to make an
expression easier to read, agriinute * 100) / 60 , eveniifit doesn’t change the
result.

« Exponentiation has the next highest precedenc@dal is 3, not 4, and*1**3
is 3, not 27.

« Multiplication andDivision have the same precedence, which is higher fdition
and Subtraction, which also have the same precedence2*$d is 5, not 4, and
6+4/2 is 8, not 5.

» Operators with the same precedence are evaluated frorolgfiht. So in the ex-
pressiorb-3-1 is 1, not 3 because tt%e3 happens first and thenis subtracted from
2.

When in doubt always put parenthesis in your expressions k@ mare the computations
are performed in the order you intend.

2.8 Modulus operator

Themodulus operatorworks on integers and yields the remainder when the firsteoyker
is divided by the second. In Python, the modulus operatopieraent sign¥%). The syntax
is the same as for other operators:

>>> quotient = 7 / 3
>>> print quotient

2

>>> remainder = 7 % 3
>>> print remainder

1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly usefulr é@mple, you can check
whether one number is divisible by another-«ifo yis zero, therx is divisible byy.

Also, you can extract the right-most digit or digits from anmher. For examples % 10
yields the right-most digit of (in base 10). Similarlx % 100 yields the last two digits.

2.9. String operations 21

2.9 String operations

The+ operator works with strings, but it is not addition in the heahatical sense. Instead
it performsconcatenation which means joining the strings by linking them end-to-end
For example:

first = ' throat
second = ' warbler
print first + second

The output of this program throatwarbler

2.10 Asking the user for input

Sometimes we would like to take the value for a variable frbmuser via their keyboard.
Python provides a built-in function calleaw_input that gets input from the keyboatd
When this function is called, the program stops and waitsteruser to type something.
When the user press&sturn or Enter, the program resumes aralv_input returns what
the user typed as a string.

>>> input = raw_input()
Some silly stuff
>>> print input
Some silly stuff

Before getting input from the user, it is a good idea to priptampt telling the user what
to input.raw_input can take a prompt as an argument:

>>> name = raw_input(' What...is your name?\n ")
What...is your name?

Arthur, King of the Britons!

>>> print name

Arthur, King of the Britons!

The sequence at the end of the prompt representsaavline, which is a special character
that causes a line break. That's why the user’s input apedosy the prompt.

If you expect the user to type an integer, you can try to cdrkierreturn value tmt using
theint() function:

>>> prompt = ' What...is the airspeed velocity of an unladen swallow?\n
>>> speed = raw_input(prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

3In Python 3.0, this function is naméput .

22 Chapter 2. Variables, expressions and statements

17
>>> int(speed) + 5
22

But if the user types something other than a string of digits, get an error:

>>> speed = raw_input(prompt)

What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> int(speed)

ValueError: invalid literal for int()

We will see how to handle this kind of error later.

2.11 Comments

As programs get bigger and more complicated, they get mdfieudti to read. Formal
languages are dense, and it is often difficult to look at agpafacode and figure out what
it is doing, or why.

For this reason, it is a good idea to add notes to your programglain in natural language
what the program is doing. These notes are catlethments and they start with thé
symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You lsanpait comments at the end
of aline:

percentage = (minute * 100) / 60 # percentage of an hour
Everything from the# to the end of the line is ignored—it has no effect on the program

Comments are most useful when they document non-obviodgrésaof the code. It is
reasonable to assume that the reader can figurgvbatthe code does; it is much more
useful to explairwhy.

This comment is redundant with the code and useless:
v=>5 # assign 5 to v

This comment contains useful information that is not in tbdec
v=>5 # velocity in meters/second.

Good variable names can reduce the need for comments, lgutéones can make complex
expressions hard to read, so there is a tradeoff.

2.12. Choosing mnemonic variable names 23

2.12 Choosing mnemonic variable names

As long as you follow the simple rules of variable naming, amdid reserved words, you
have a lot of choice when you name your variables. In the Imtggy this choice can be
confusing both when you read a program and when you write gaur programs. For
example, the following three programs are identical in ®eohwhat they accomplish, but
very different when you read them and try to understand them.

a =350

b = 1250
c=a*bh
print ¢

hours = 35.0

rate = 12.50

pay = hours * rate
print pay

x1g3z9ahd = 35.0

x193z9afd = 12.50

x1g3p9afd = x1g3z9ahd * x1g3z9afd
print x1q3p9afd

The Python interpreter sees all three of these progranexastly the saméut humans
see and understand these programs quite differently. Heim#rmost quickly understand
theintent of the second program because the programmer has chosahlearames that
reflect the intent of the programmer regarding what datalweilstored in each variable.

We call these wisely-chosen variable names “mnemonic blariaames”. The word
mnemoni¢ means “memory aid”. We choose mnemonic variable names {o Ugke-
member why we created the variable in the first place.

While this all sounds great, and it is a very good idea to usenmané variable names,
mnemonic variable names can get in the way of a beginning-gnogier’s ability to parse
and understand code. This is because beginning progranmaezot yet memorized the
reserved words (there are only 31 of them) and sometimeghtas which have names that
are too descriptive start to look like part of the language 1aot just well-chosen variable
names.

Take a quick look at the following Python sample code whiapkthrough some data. We
will cover loops soon, but for now try to just puzzle throughat/this means:

for word in words:
print word

4Seehttp://en.wikipedia.org/wiki/Mnemonic for an extended description of the word “mnemonic”.

24 Chapter 2. Variables, expressions and statements

What is happening here? Which of the tokens (for, word, in) ete reserved words and
which are just variable names? Does Python understand ataruental level the notion
of words? Beginning programmers have trouble separatiraf warts of the codenust
be the same as this example and what parts of the code areysitmgites made by the
programmer.

The following code is equivalent to the above code:

for slice in pizza:
print slice

It is easier for the beginning programmer to look at this cadd know which parts are
reserved words defined by Python and which parts are simpighta hames chosen by
the programmer. It is pretty clear that Python has no funadah@nderstanding of pizza
and slices and the fact that a pizza consists of a set of onex sfices.

But if our program is truly about reading data and lookingvimrds in the datgpizza and
slice are very un-mnemonic variable names. Choosing them asolem@ames distracts
from the meaning of the program.

After a pretty short period of time, you will know the most coton reserved words and
you will start to see the reserved words jumping out at you:

for word in words :
print word

The parts of the code that are defined by Pyttfon (in , print , and:) are in bold and
the programmer chosen variablesid andwords) are not in bold. Many text editors are
aware of Python syntax and will color reserved words diffidseto give you clues to keep
your variables and reserved words separate. After a whilewith begin to read Python
and quickly determine what is a variable and what is a reslemgrd.

2.13 Debugging

At this point the syntax error you are most likely to make isillegal variable name,
like class andyield , which are keywords, ooddijob andUS$, which contain illegal
characters.

If you put a space in a variable name, Python thinks it is twerapds without an operator:

>>> bad name = 5
SyntaxError: invalid syntax

For syntax errors, the error messages don't help much. Th& owmnmon messages
areSyntaxError: invalid syntax and SyntaxError: invalid token , heither of
which is very informative.

2.14. Glossary 25

The runtime error you are most likely to make is a “use befa®&’dhat is, trying to use
a variable before you have assigned a value. This can happeu spell a variable name
wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError. name ' principle

is not defined
Variables names are case sensitive,&k®X is not the same datex

At this point the most likely cause of a semantic error is th@eo of operations. For
example, to evaluat%, you might be tempted to write

>>> 10/ 20 * pi

But the division happens first, so you would gg®, which is not the same thing! There is
no way for Python to know what you meant to write, so in thisecgsu don’t get an error
message; you just get the wrong answer.

2.14 Glossary
assignment: A statement that assigns a value to a variable.
concatenate: To join two operands end-to-end.

comment: Information in a program that is meant for other programni@rsnyone read-
ing the source code) and has no effect on the execution ofrtiyggm.

evaluate: To simplify an expression by performing the operations iteotto yield a single
value.

expression: A combination of variables, operators, and values thatesgmts a single re-
sult value.

floating-point: A type that represents numbers with fractional parts.
floor division: The operation that divides two numbers and chops off thdifnapart.
integer: A type that represents whole numbers.

keyword: A reserved word that is used by the compiler to parse a prggyaon cannot
use keywords likéf , def , andwhile as variable names.

mnemonic: A memory aid. We often give variables mnemonic names to hetpimnember
what is stored in the variable.

modulus operator: An operator, denoted with a percent sigf), (that works on integers
and yields the remainder when one number is divided by anothe

operand: One of the values on which an operator operates.

26 Chapter 2. Variables, expressions and statements

operator: A special symbol that represents a simple computation lddten, multipli-
cation, or string concatenation.

rules of precedence:The set of rules governing the order in which expressionsivig
multiple operators and operands are evaluated.

state diagram: A graphical representation of a set of variables and theegalbey refer
to.

statement: A section of code that represents a command or action. Sthéastatements
we have seen are assignments and print statements.

string: A type that represents sequences of characters.

type: A category of values. The types we have seen so far are istéiyeeint), floating-
point numbers (typéoat), and strings (typstr).

value: One of the basic units of data, like a number or string, thabgtam manipulates.

variable: A name that refers to a value.

2.15 Exercises

Exercise 2.2 Write a program that useaw_input to prompt a user for their name and
then welcomes them.

Enter your name: Chuck
Hello Chuck

Exercise 2.3 Write a program to prompt the user for hours and rate per hoconapute
gross pay.

Enter Hours: 35
Enter Rate: 2.75
Pay: 96.25

We won't worry about making sure our pay has exactly two digiter the decimal place
for now. If you want, you can play with the built-in Pythoound function to properly
round the resulting pay to two decimal places.

Exercise 2.4 Assume that we execute the following assignment statements

width = 17
height = 12.0

For each of the following expressions, write the value ofgkeression and the type (of the
value of the expression).

1. width/2

2.15. Exercises 27

2. width/2.0
3. height/3
4,1 +2*5
Use the Python interpreter to check your answers.

Exercise 2.5Write a program which prompts the user for a Celsius temperatonvert
the temperature to Fahrenheit and print out the convertageeature.

28

Chapter 2. Variables, expressions and statements

Chapter 3

Conditional execution

3.1 Boolean expressions

A boolean expressions an expression that is either true or false. The followixanaeples
use the operatar=, which compares two operands and produltes if they are equal and
False otherwise:

>> 5 == §
True
>>> 5 == §
False

True andFalse are special values that belong to the typel ; they are not strings:

>>> type(True)

<type ' bool ' >
>>> type(False)
<type ' bool ' >

The== operator is one of theomparison operators the others are:

X =y # x is not equal to y

X >y # x is greater than y

X<y # x is less than y

X >=y # x is greater than or equal to y
X <=y # x is less than or equal to y

X is'y # X is the same as y

X is not y # x is not the same as y

Although these operations are probably familiar to you,Rlgghon symbols are different
from the mathematical symbols. A common error is to use deiegual sign<£) instead

30 Chapter 3. Conditional execution

of a double equal sigrr€). Remember that is an assignment operator anedis a com-
parison operator. There is no such thing-aor =>.

3.2 Logical operators

There are threéogical operators and, or, andnot . The semantics (meaning) of these
operators is similar to their meaning in English. For exampl

x>0 and x < 10
is true only ifx is greater than @ndless than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the number is
divisible by 2or 3.

Finally, thenot operator negates a boolean expressiompsdx > y) istrueifx > y is
false, that is, ik is less than or equal to

Strictly speaking, the operands of the logical operatoosishbe boolean expressions, but
Python is not very strict. Any nonzero number is interpreiedtrue.”

>>> 17 and True
True

This flexibility can be useful, but there are some subtletiess that might be confusing.
You might want to avoid it (unless you know what you are doing)

3.3 Conditional execution

In order to write useful programs, we almost always need Hil@yato check conditions
and change the behavior of the program accordingbnditional statementsgive us this
ability. The simplest form is thgé statement:

if x>0 :

print ' x is positive '
The boolean expression after tlie statement is called theondition. We end theif
statement with a colon character () and the line(s) afteiftetatement are indented.

3.4. Alternative execution 31

print 'x is positive'

If the logical condition is true, then the indented statetrgets executed. If the logical
condition is false, the indented statement is skipped.

if statements have the same structure as function definitiolos doops. The statement
consists of a header line that ends with the colon charagtdolfowed by an indented
block. Statements like this are calledmpound statementsecause they stretch across
more than one line.

There is no limit on the number of statements that can apmpetirei body, but there has
to be at least one. Occasionally, it is useful to have a bodly nod statements (usually
as a place keeper for code you haven't written yet). In thaecgou can use thgass
statement, which does nothing.

if x<0:
pass # need to handle negative values!

3.4 Alternative execution

A second form of thef statement iglternative execution in which there are two pos-
sibilities and the condition determines which one gets etezt The syntax looks like
this:

if X%2 == 0 :

print ' x is even
else :

print ' x is odd '

If the remainder when is divided by 2 is 0, then we know thatis even, and the program
displays a message to that effect. If the condition is false second set of statements is
executed.

32 Chapter 3. Conditional execution

no yes
print 'x is odd’ print 'x is even'

-

Since the condition must be true or false, exactly one of lteeratives will be executed.
The alternatives are callditanches because they are branches in the flow of execution.

3.5 Chained conditionals

Sometimes there are more than two possibilities and we neeel timan two branches. One
way to express a computation like that isteained conditionat

if x <y

print ' x is less than y '
elif x >y

print ' x is greater than y '
else:

print ' x and y are equal

elif is an abbreviation of “else if.” Again, exactly one branchilwe executed.

3.6. Nested conditionals 33

yes

print 'less'

yes :
print ‘greater' |

print ‘equal’

e

Y

There is no limit on the number @fif statements. If there is afse clause, it has to be
at the end, but there doesn’t have to be one.

if choice == "a'
print ' Bad guess'
elif choice == "b':
print ' Good guess'
elif choice == "¢

print ' Close, but not correct '

Each condition is checked in order. If the first is false, tegtns checked, and so on. If
one of them is true, the corresponding branch executes,tengtatement ends. Even if
more than one condition is true, only the first true brancltetes.

3.6 Nested conditionals

One conditional can also be nested within another. We coale kvritten the trichotomy
example like this:

if x ==y:
print ' x and y are equal
else:
if x <y
print ' x is less than y '
else:

print ' x is greater than y '

34 Chapter 3. Conditional execution

The outer conditional contains two branches. The first braonitains a simple statement.
The second branch contains anotiierstatement, which has two branches of its own.
Those two branches are both simple statements, althougletlodd have been conditional
statements as well.

yes no

Y Y

print 'equal’ print 'less’ print 'greater’

| - |
<

Although the indentation of the statements makes the streieipparentiested condition-

als become difficult to read very quickly. In general, it is a godea to avoid them when
you can.

Logical operators often provide a way to simplify nestedditonal statements. For ex-
ample, we can rewrite the following code using a single ciiorkl:

if 0 <x:
if x < 10:
print ' x is a positive single-digit number. '

Theprint statement is executed only if we make it past both conditirsm we can get
the same effect with thand operator:

if 0 <x and x < 10:
print ' x is a positive single-digit number. '

3.7 Catching exceptions using try and except

Earlier we saw a code segment where we usedafenput andint functions to read
and parse an integer number entered by the user. We also satrdacherous doing this
could be:

>>> speed = raw_input(prompt)
What...is the airspeed velocity of an unladen swallow?

3.7. Catching exceptions using try and except 35

What do you mean, an African or a European swallow?
>>> int(speed)

ValueError: invalid literal for int()

>>>

When we are executing these statements in the Python interpwee get a new prompt
from the interpreter, think “oops” and move on to our nextestzent.

However if this code is placed in a Python script and thisreoozurs, your script imme-
diately stops in its tracks with a traceback. It does not eteethe following statement.

Here is a sample program to convert a Fahrenheit tempenatar€elsius temperature:

inp = raw_input(' Enter Fahrenheit Temperature: ")
fahr = float(inp)

cel = (fahr - 32.0) * 5.0 / 9.0

print cel

If we execute this code and give it invalid input, it simplylsawith an unfriendly error
message:

python fahren.py
Enter Fahrenheit Temperature:72
22.222222222?2

python fahren.py
Enter Fahrenheit Temperature:fred
Traceback (most recent call last):
File “fahren.py", line 2, in <module>
fahr = float(inp)
ValueError: invalid literal for float(): fred

There is a conditional execution structure built into Pythio handle these types of ex-
pected and unexpected errors called “try / except”. Theddégt andexcept is that you
know that some sequence of instruction(s) may have a proafehyou want to add some
statements to be executed if an error occurs. These extearsats (the except block) are
ignored if there is no error.

You can think of thetry andexcept feature in Python as an “insurance policy” on a
sequence of statements.

We can rewrite our temperature converter as follows:

inp = raw_input(' Enter Fahrenheit Temperature: ")
try:

fahr = float(inp)

cel = (fahr - 32.0) * 5.0 / 9.0

36 Chapter 3. Conditional execution

print cel
except:
print ' Please enter a number

Python starts by executing the sequence of statements trythblock. If all goes well,
it skips theexcept block and proceeds. If an exception occurs intthie block, Python
jumps out of thery block and executes the sequence of statements ixtept block.

python fahren2.py
Enter Fahrenheit Temperature:72
22.2222222222

python fahren2.py
Enter Fahrenheit Temperature:fred
Please enter a number

Handling an exception withtay statement is calledatchingan exception. In this exam-
ple, theexcept clause prints an error message. In general, catching aptixegives you
a chance to fix the problem, or try again, or at least end thgrpmo gracefully.

3.8 Short circuit evaluation of logical expressions

When Python is processing a logical expression suchas 2 and (xly) > 2, it eval-
uates the expression from left-to-right. Because of thendigfin of and, if x is less than 2,
the expressior >= 2 isFalse and so the whole expressiorFase regardless of whether
(xly) > 2 evaluates tdrue orFalse .

When Python detects that there is nothing to be gained by a&¥aduthe rest of a logical
expression, it stops its evaluation and does not do the ctatipus in the rest of the logical
expression. When the evaluation of a logical expressiorsdtepause the overall value is
already known, it is calledhort-circuiting the evaluation.

While this may seem like a fine point, the short circuit behaléads to a clever tech-
nigue called theyuardian pattern. Consider the following code sequence in the Python
interpreter:

>>> X = 6

>>>y = 2

>>> x >= 2 and (xfy) > 2
True

>>> x = 1

>>>y =0

>>> x >= 2 and (xly) > 2
False

>>> X = 6

3.9. Debugging 37

>>>y =0
>>> x >= 2 and (xly) > 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>>

The third calculation failed because Python was evaludkifyyy andy was zero which
causes a runtime error. But the second examplendidail because the first part of the
expressiox >= 2 evaluated té-alse sothe(xly) was not ever executed due to tieort
circuit rule and there was no error.

We can construct the logical expression to strategicadgg@bguard evaluation just before
the evaluation that might cause an error as follows:

>>x =1

>>>y =0

>>> x >= 2 and y 1= 0 and (xly) > 2
False

>>> X = 6

>>>y =0

>>> x >= 2 and y = 0 and (xly) > 2
False

>>> x> 2and (xly) >2andy =0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>>

In the first logical expression, >= 2 is False so the evaluation stops at thed. In the
second logical expression>= 2 isTrue buty != 0 isFalse so we never reacfx/y)

In the third logical expression, tlye!= 0 isafterthe(xly) calculation so the expression
fails with an error.

In the second expression, we say that 0 acts as guard to insure that we only execute
(xty) if y is non-zero.

3.9 Debugging

The traceback Python displays when an error occurs congaliosof information, but it
can be overwhelming, especially when there are many framéseostack. The most useful
parts are usually:

* What kind of error it was, and

38 Chapter 3. Conditional execution

* Where it occurred.

Syntax errors are usually easy to find, but there are a fewhgetcWhitespace errors can
be tricky because spaces and tabs are invisible and we ateaigmoring them.

>>> x = 5

>> y=6
File "<stdin>", line 1

y =56

SyntaxError: invalid syntax

In this example, the problem is that the second line is inetbbly one space. But the error
message points tp, which is misleading. In general, error messages indicéteravthe
problem was discovered, but the actual error might be eanlithe code, sometimes on a
previous line.

The same is true of runtime errors. Suppose you are tryingnepate a signal-to-noise
ratio in decibels. The formula ISNRy, = 1010g;o(Psignal/Proise)- In Python, you might
write something like this:

import math

signal_power = 9

noise_power = 10

ratio = signal_power / noise_power
decibels = 10 * math.log10(ratio)
print decibels

But when you run it, you get an error messtge

Traceback (most recent call last):
File "snr.py", line 5, in ?
decibels = 10 * math.log10(ratio)
OverflowError: math range error

The error message indicates line 5, but there is nothing gvragth that line. To find the
real error, it might be useful to print the value mfioc , which turns out to be 0. The
problem is in line 4, because dividing two integers does fttigision. The solution is to
represent signal power and noise power with floating-pchies.

In general, error messages tell you where the problem waewdised, but that is often not
where it was caused.

3.10 Glossary

body: The sequence of statements within a compound statement.

1in Python 3.0, you no longer get an error message; the divisienator performs floating-point division even
with integer operands.

3.11. Exercises 39

boolean expression:An expression whose value is eitfigne or False .
branch: One of the alternative sequences of statements in a conalitstatement.
chained conditional: A conditional statement with a series of alternative brasch

comparison operator: One of the operators that compares its operandst=, >, <, >=,
and<=,

conditional statement: A statement that controls the flow of execution depending on
some condition.

condition: The boolean expression in a conditional statement thatrrdetes which
branch is executed.

compound statement: A statement that consists of a header and a body. The headker en
with a colon (). The body is indented relative to the header.

guardian pattern: Where we construct a logical expression with additional carispns
to take advantage of the short circuit behavior.

logical operator: One of the operators that combines boolean expressamds:or , and
not .

nested conditional: A conditional statement that appears in one of the brandhesodher
conditional statement.

traceback: A list of the functions that are executing, printed when acegtion occurs.

short circuit: ' When Python is part-way through evaluating a logical expoesand stops
the evaluation because Python knows the final value for theesgion without need-
ing to evaluate the rest of the expression.

3.11 Exercises

Exercise 3.1 Rewrite your pay computation to give the employee 1.5 tirhesburly rate
for hours worked above 40 hours.

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

Exercise 3.2 Rewrite your pay program usingy andexcept so that your program han-
dles non-numeric input gracefully by printing a message exiting the program. The
following shows two executions of the program:

40 Chapter 3. Conditional execution

Enter Hours: 20
Enter Rate: nine
Error, please enter numeric input

Enter Hours: forty
Error, please enter numeric input

Exercise 3.3 Write a program to prompt for a score between 0.0 and 1.0. Kd¢bee is out
of range print an error. If the score is between 0.0 and 1i6t @agrade using the following
table:

Score Grade

>= 0.9 A
>= 0.8 B
>= 0.7 C
>= 0.6 D
< 0.6 F

Enter score: 0.95
A

Enter score: perfect
Bad score

Enter score: 10.0
Bad score

Enter score: 0.75
C

Enter score: 0.5
F

Run the program repeatedly as shown above to test the vatifberent values for input.

Chapter 4

Functions

4.1 Function calls

In the context of programming,fanction is a named sequence of statements that performs
a computation. When you define a function, you specify the nantethe sequence of
statements. Later, you can “call” the function by name. Weelaready seen one example
of afunction call:

>>> type(32)
<type 'int ' >

The name of the function itype . The expression in parentheses is calledatgment
of the function. The argument is a value or variable that vegaaissing into the function as
input ot the function. The result, for thgpe function, is the type of the argument.

It is common to say that a function “takes” an argument antlfres” a result. The result
is called thereturn value.

4.2 Built-in functions

Python provides a number of important built-in functionatttve can use without needing
to provide the function definition. In a sense, the creatoRython wrote a set of functions
to solve common problems and included them in Python for uséo

Themax andmin functions give us the largest and smallest values in a éspectively:
>>> max(' Hello world ")

'w

>>> min(' Hello world ")

42 Chapter 4. Functions

>>>

The max function tells us the “largest character” in the string (@fhiurns out to be the
letter “w”) and themin function shows us the smallest character which turns outta b
space.

Another very common built-in function is then function which tells us how many items
are in its argument. If the argumentién is a string, it returns the number of characters in
the string.

>>> len(' Hello world ')
11
>>>

These functions are not limited to looking at strings, thag operate on any set of values
as we will see in later chapters.

4.3 Type conversion functions

Python also provides built-in functions that convert valfi®m one type to another. The
int function takes any value and converts it to an integer, @it,@r complains otherwise:

>>> int(' 32")

32

>>> int(' Hello ")

ValueError: invalid literal for int(): Hello

int can convert floating-point values to integers, but it doesnind off; it chops off the
fraction part:

>>> int(3.99999)
3

>>> int(-2.3)

-2

float converts integers and strings to floating-point numbers:

>>> float(32)

32.0

>>> float(' 3.14159 ')
3.14159

Finally, str converts its argument to a string:
>>> str(32)

' 3o

>>> str(3.14159)

' 3.14159

4.4. Random numbers 43

4.4 Random numbers

Given the same inputs, most computer programs generataithe gutputs every time, so
they are said to bdeterministic. Determinism is usually a good thing, since we expect
the same calculation to yield the same result. For someaatans, though, we want the
computer to be unpredictable. Games are an obvious examyléhere are more.

Making a program truly nondeterministic turns out to be r@mesasy, but there are ways
to make it at least seem nondeterministic. One of them is¢@lgorithms that generate
pseudorandomnumbers. Pseudorandom numbers are not truly random betteysare
generated by a deterministic computation, but just by legkit the numbers it is all but
impossible to distinguish them from random.

Therandom module provides functions that generate pseudorandom ersnwhich | will
simply call “random” from here on).

The functionrandom returns a random float between 0.0 and 1.0 (including 0.0diLt Q).
Each time you caltandom, you get the next number in a long series. To see a sample, run
this loop:

import random

for i in range(10):
X = random.random()
print x

This program produces the following list of 10 random nursbmtween 0.0 and up to but
not including 1.0.

0.301927091705
0.513787075867
0.319470430881
0.285145917252
0.839069045123
0.322027080731
0.550722110248
0.366591677812
0.396981483964
0.838116437404

Exercise 4.1 Run the program on your system and see what numbers you getthu
program more than once and see what numbers you get.

Therandom function is only one of many functions which handle randormbers. The
functionrandint takes parametetew andhigh and returns an integer betwelew and
high (including both).

44 Chapter 4. Functions

>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

To choose an element from a sequence at random, you cahaise :

>>>t = [1, 2, 3
>>> random.choice(t)
2

>>> random.choice(t)
3

Therandom module also provides functions to generate random values @ontinuous
distributions including Gaussian, exponential, gammd,afew more.

4.5 Math functions

Python has a matmodule that provides most of the familiar mathematical functioBe-
fore we can use the module, we have to import it:

>>> import math

This statement createsn@odule objectnamed math. If you print the module object, you
get some information about it:

>>> print math
<module ' math' from ' /usr/lib/python2.5/lib-dynload/math.so ">

The module object contains the functions and variables e&fin the module. To access
one of the functions, you have to specify the name of the neodald the name of the
function, separated by a dot (also known as a period). Thiedbis callecdot notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the sigrabise ratio. The math
module also provides a function called that computes logarithms base

The second example finds the sinegatfians . The name of the variable is a hint thsat
and the other trigonometric functior$, tan , etc.) take arguments in radians. To convert
from degrees to radians, divide by 360 and multiply oy 2

4.6. Adding new functions 45

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)

0.707106781187

The expressiomath.pi gets the variabl@i from the math module. The value of this
variable is an approximation af accurate to about 15 digits.

If you know your trigonometry, you can check the previousuteBy comparing it to the
square root of two divided by two:

>>> math.sgrt(2) / 2.0
0.707106781187

4.6 Adding new functions

So far, we have only been using the functions that come withd?y but it is also possible
to add new functions. Aunction definition specifies the name of a new function and the
sequence of statements that execute when the functionéslc@lnce we define a function,
we can reuse the function over and over throughout our pnogra

Here is an example:

def print_lyrics():
print "I ''m a lumberjack, and I ' m okay."
print ' | sleep all night and | work all day.

def is a keyword that indicates that this is a function definitidhe name of the function
is print_lyrics . The rules for function names are the same as for variablesaletters,
numbers and some punctuation marks are legal, but the fiasacter can’'t be a number.
You can't use a keyword as the name of a function, and you draxdid having a variable
and a function with the same name.

The empty parentheses after the name indicate that thisidnndoesn'’t take any argu-
ments. Later we will build functions that take argumentshasrtinputs.

The first line of the function definition is called theader, the rest is called theody.
The header has to end with a colon and the body has to be indeBteconvention, the
indentation is always four spaces (see Section 4.12). Ttig &an contain any number of
statements.

The strings in the print statements are enclosed in douldtequSingle quotes and double
guotes do the same thing; most people use single quotesterasgses like this where a
single quote (which is also an apostrophe) appears in timg str

If you type a function definition in interactive mode, thedrgreter prints ellipses.() to
let you know that the definition isn’'t complete:

46 Chapter 4. Functions

>>> def print_lyrics():
print "l "m a lumberjack, and | ' m okay."
print " | sleep all night and | work all day. '

To end the function, you have to enter an empty line (this tsnegessary in a script).
Defining a function creates a variable with the same name.

>>> print print_lyrics

<function print_lyrics at Oxb7e99e9c>
>>> print type(print_lyrics)

<type ' function ' >

The value ofprint_lyrics is afunction object, which has type function ' .
The syntax for calling the new function is the same as forthnifunctions:

>>> print_lyrics()
' m a lumberjack, and I ' m okay.
| sleep all night and | work all day.

Once you have defined a function, you can use it inside anéithetion. For example, to
repeat the previous refrain, we could write a function chiépeat_lyrics

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then callrepeat_lyrics

>>> repeat_lyrics()

"' m a lumberjack, and | ' m okay.
| sleep all night and | work all day.
" m a lumberjack, and I ' m okay.

| sleep all night and | work all day.

But that's not really how the song goes.

4.7 Definitions and uses

Pulling together the code fragments from the previous secthe whole program looks
like this:

def print_lyrics():
print "I ''m a lumberjack, and I ' m okay."
print ' I sleep all night and | work all day. '

4.8. Flow of execution 47

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

This program contains two function definitiongrint_lyrics and repeat_lyrics
Function definitions get executed just like other statesyémit the effect is to create func-
tion objects. The statements inside the function do not getwed until the function is
called, and the function definition generates no output.

As you might expect, you have to create a function before yauexecute it. In other
words, the function definition has to be executed before thetiime it is called.

Exercise 4.2 Move the last line of this program to the top, so the functiafi appears
before the definitions. Run the program and see what errosagesyou get.

Exercise 4.3Move the function call back to the bottom and move the definitof
print_lyrics after the definition ofepeat_lyrics . What happens when you run this
program?

4.8 Flow of execution

In order to ensure that a function is defined before its firet yeu have to know the order
in which statements are executed, which is calledlthe of execution

Execution always begins at the first statement of the prog&tatements are executed one
at a time, in order from top to bottom.

Functiondefinitionsdo not alter the flow of execution of the program, but rementbat
statements inside the function are not executed until thetifon is called.

A function call is like a detour in the flow of execution. Inateof going to the next
statement, the flow jumps to the body of the function, execaliehe statements there, and
then comes back to pick up where it left off.

That sounds simple enough, until you remember that oneifumctn call another. While
in the middle of one function, the program might have to exetiie statements in another
function. But while executing that new function, the pragranight have to execute yet
another function!

Fortunately, Python is good at keeping track of where itdseach time a function com-
pletes, the program picks up where it left off in the functibat called it. When it gets to
the end of the program, it terminates.

What's the moral of this sordid tale? When you read a program,dan’t always want
to read from top to bottom. Sometimes it makes more senseuiffgibow the flow of
execution.

48 Chapter 4. Functions

4.9 Parameters and arguments

Some of the built-in functions we have seen require argusefRdr example, when you
call math.sin you pass a number as an argument. Some functions take moreitlea
argumentmath.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to vagalslkedparameters Here is an
example of a user-defined function that takes an argument:

def print_twice(bruce):
print bruce
print bruce

This function assigns the argument to a parameter naimed . When the function is
called, it prints the value of the parameter (whatever itisge.

This function works with any value that can be printed.

>>> print_twice(' Spam)
Spam

Spam

>>> print_twice(17)

17

17

>>> print_twice(math.pi)
3.14159265359
3.14159265359

The same rules of composition that apply to built-in funeti@lso apply to user-defined
functions, so we can use any kind of expression as an arguorenint_twice

>>> print_twice(' Spam ' *4)
Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))
-1.0

-1.0

The argument is evaluated before the function is calledy sloe examples the expressions
' Spam ' *4 andmath.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = ' Eric, the half a bee. '
>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

4.10. Fruitful functions and void functions 49

The name of the variable we pass as an argummiohdel) has nothing to do with the
name of the parameter(ice). It doesn’t matter what the value was called back home (in
the caller); here imprint_twice , we call everybodyruce .

4.10 Fruitful functions and void functions

Some of the functions we are using, such as the math fun¢tyeeld results; for lack of a
better name, | call therfruitful functions . Other functions, likerint_twice , perform
an action but don’t return a value. They are caled functions.

When you call a fruitful function, you almost always want tostamething with the result;
for example, you might assign it to a variable or use it as @iaah expression:

X = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displidngsresult:

>>> math.sqrt(5)
2.2360679774997898

But in a script, if you call a fruitful function and do not seothe result of the function in a
variable, the return value vanishes into the mist!

math.sqrt(5)

This script computes the square root of 5, but since it doessore the result in a variable
or display the result, it is not very useful.

Void functions might display something on the screen or hsorae other effect, but they
don't have a return value. If you try to assign the result tadable, you get a special value
calledNone.

>>> result = print_twice(" Bing ')
Bing

Bing

>>> print result

None

The valueNone is not the same as the strihdlone' . It is a special value that has its own
type:

>>> print type(None)

<type ' NoneType' >

To return a result from a function, we use tteturn statement in our function. For
example, we could make a very simple function caléedtwo that adds two numbers
together and return a result.

50 Chapter 4. Functions

def addtwo(a, b):
added = a + b
return added

X = addtwo(3, 5)
print x

When this script executes, thent statement will print out “8” because thddtwo func-
tion was called with 3 and 5 as arguments. Within the functien parametera andb
were 3 and 5 respectively. The function computed the sumeofitio numbers and placed
it in the local function variable nameatided and used theeturn statement to send the
computed value back to the calling code as the function reghith was assigned to the
variablex and printed out.

4.11 Why functions?

It may not be clear why it is worth the trouble to divide a prgrinto functions. There
are several reasons:

 Creating a new function gives you an opportunity to nameaugrof statements,
which makes your program easier to read, understand andjdebu

« Functions can make a program smaller by eliminating répettode. Later, if you
make a change, you only have to make it in one place.

Dividing a long program into functions allows you to debbg arts one at a time
and then assemble them into a working whole.

Well-designed functions are often useful for many progga®nce you write and
debug one, you can reuse it.

Throughout the rest of the book, often we will use a functiefirdtion to explain a concept.
Part of the skill of creating and using functions is to haveiaction properly capture an
idea such as “find the smallest value in a list of values”. Late will show you code that
finds the smallest in a list of values and we will present itéa @s a function namedin
which takes a list of values as its argument and returns tialeshvalue in the list.

4.12 Debugging

If you are using a text editor to write your scripts, you migin into problems with spaces
and tabs. The best way to avoid these problems is to use spedasively (no tabs). Most
text editors that know about Python do this by default, bmealon't.

Tabs and spaces are usually invisible, which makes themtbatdbug, so try to find an
editor that manages indentation for you.

4.13. Glossary 51

Also, don't forget to save your program before you run it. 8aievelopment environments
do this automatically, but some don't. In that case the @gyou are looking at in the
text editor is not the same as the program you are running.

Debugging can take a long time if you keep running the saneeyiact, program over and
over!

Make sure that the code you are looking at is the code you arérg. If you're not sure,
put something likeprint ' hello ' at the beginning of the program and run it again. If
you don’t seéhello , you're not running the right program!

4.13 Glossary
algorithm: A general process for solving a category of problems.

argument: A value provided to a function when the function is called.isTValue is as-
signed to the corresponding parameter in the function.

body: The sequence of statements inside a function definition.

composition: Using an expression as part of a larger expression, or argtateas part of
a larger statement.

deterministic: Pertaining to a program that does the same thing each tinuast given
the same inputs.

dot notation: The syntax for calling a function in another module by spgog the mod-
ule name followed by a dot (period) and the function name.

flow of execution: The order in which statements are executed during a program r
fruitful function: A function that returns a value.

function: A named sequence of statements that performs some usefatiope Functions
may or may not take arguments and may or may not produce d.resul

function call: A statement that executes a function. It consists of thetfonamame fol-
lowed by an argument list.

function definition: A statement that creates a new function, specifying its naaeam-
eters, and the statements it executes.

function object: A value created by a function definition. The name of the fiamcits a
variable that refers to a function object.

header: The first line of a function definition.

import statement: A statement that reads a module file and creates a moduletobjec

52 Chapter 4. Functions

module object: A value created by aimport statement that provides access to the data
and code defined in a module.

parameter: A name used inside a function to refer to the value passed aggament.

pseudorandom: Pertaining to a sequence of numbers that appear to be rarmdrare
generated by a deterministic program.

return value: The result of a function. If a function call is used as an eggpi@n, the
return value is the value of the expression.

void function: A function that doesn’t return a value.

4.14 Exercises

Exercise 4.4 Rewrite your pay computation with time-and-a-half for diree and create
a function calleccomputepay which takes two parameterso{irs andrate).

Enter Hours: 45
Enter Rate: 10
Pay: 475.0

Exercise 4.5 Rewrite the grade program from the previous chapter usingetion called
computegrade that takes a score as its parameter and returns a grade agja str

Score Grade

> 09 A
> 0.8 B
> 0.7 C
> 0.6 D
<= 0.6 F

Program Execution:

Enter score: 0.95
A

Enter score: perfect
Bad score

Enter score: 10.0
Bad score

Enter score: 0.75
C

4.14. Exercises

53

Enter score: 0.5
F

Run the program repeatedly to test the various differentesafor input.

54

Chapter 4. Functions

Chapter 5

lteration

5.1 Updating variables

A common pattern in assignment statements is an assignrsatment that updates a
variable - where the new value of the variable depends onlthe o

X = x+1
This means “get the current valuexgfadd one, and then updatevith the new value.”

If you try to update a variable that doesn't exist, you get@arebecause Python evaluates
the right side before it assigns a valuecto

>>> X = x+1
NameError: name

x' is not defined

Before you can update a variable, you havénitalize it, usually with a simple assign-
ment:

>>>x =0
>>> X = x+1

Updating a variable by adding 1 is called srement; subtracting 1 is called decre-
ment.

5.2 Thewhile statement

Computers are often used to automate repetitive tasks.a®egédentical or similar tasks
without making errors is something that computers do well people do poorly. Because
iteration is so common, Python provides several languagfeifes to make it easier.

56 Chapter 5. Iteration

One form of iteration in Python is thehile statement. Here is a simple program that
counts down from five and then says “Blastoff!”.

n=>5

while n > 0:
print n
n=n-l

print " Blastoff!

You can almost read thehile statement as if it were English. It means, “Whiles greater
than 0, display the value ofand then reduce the value mby 1. When you get to 0, exit
the while statement and display the wdldstoffl "

More formally, here is the flow of execution fomdile statement:

1. Evaluate the condition, yieldinfjue or False .

2. If the condition is false, exit thehile statement and continue execution at the next
statement.

3. If the condition is true, execute the body and then go baskedp 1.

This type of flow is called #oop because the third step loops back around to the top. Each
time we execute the body of the loop, we call itiration. For the above loop, we would
say, “It had five iterations” which means that the body of a&f thop was executed five
times.

The body of the loop should change the value of one or morabtas so that eventually
the condition becomes false and the loop terminates. Weheallariable that changes each
time the loop executes and controls when the loop finishe#dfration variable. If there

is no iteration variable, the loop will repeat forever, igg in aninfinite loop.

5.3 Infinite loops

An endless source of amusement for programmers is the ligerthat the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop bsedhere is niteration variable
telling you how many times to execute the loop.

In the case ofountdown , we can prove that the loop terminates because we know that th
value ofn is finite, and we can see that the valuenajets smaller each time through the
loop, so eventually we have to get to 0. Other times a loopsooisly infinite because it
has no iteration variable at all.

In other cases, it is not so easy to tell. The code below defirffesiction that takes an
positive number as its parameter and computes a differedt & sequence. Remember
that the percent sign is thmodulo operator which gives us the remainder if a division
were performed.

5.3. Infinite loops 57

def sequence(n):

while n = 1:
print n, # Use comma to suppress newline
if nN%2 == 0: # n is even
n=n2
else: # n is odd
n = n*3+1

The condition for this loop is != 1 1, so the loop will continue unti is 1, which makes
the condition false.

Each time through the loop, the program outputs the valueasfd then checks whether it
is even or odd. Ifit is evem is divided by 2. If it is odd, the value af is replaced with
n*3+1 . For example, if the argument passedé¢quence is 3, the resulting sequence is 3,
10,5, 16, 8, 4, 2.

Sincen sometimes increases and sometimes decreases, there isasqgtroof thatn will
ever reach 1, or that the program terminates. For some planticalues ofi, we can prove
termination. For example, if the starting value is a powemnaf, then the value af will be
even each time through the loop until it reaches 1. The pvavixample ends with such a
sequence, starting with 16.

>>> def sequence(n):

while n = 1:
print n,
if n%2 == 0: # n is even
n=n/2
else: # nis odd
n = n*3+1

>>> sequence(3)

310516842

>>> sequence(16)

16 8 4 2

>>> sequence(50)

50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2

You can try this sequence with a variety of integer or floafiognt numbers as the argu-
ment. Since the main loop repeatedly divides a number byawargument in the billions
converges to one in relatively few steps. It is more fun tdlogting point arguments such
as 12.45 as it takes more iterations before the sequencergasto one.

The hard question is whether we can prove that this programirtates forall positive
valuesof n. So far, no one has been able to proveitdisprove it!

1Remember thdt is the operator for 'not equal’.
2Seewikipedia.org/wiki/Collatz_conjecture

58 Chapter 5. Iteration

5.4 “Infinite loops” and break

Sometimes you don’t know it's time to end a loop until you gaif vay through the body.
In that case you can write an infinite loop on purpose and tiserthebreak statement to
jump out of the loop.

This loop is obviously afnfinite loop because the logical expression on tige state-
ment is simply the logical constafitue :

n =10

while True:
print n,
n=n-1

print ' Done! '

If you make the mistake and run this code, you will learn glyidiow to stop a runaway
Python process on your system or find where the power-ofbhutt on your computer.
This program will run forever or until your battery runs owdause the logical expression
at the top of the loop is always true by virtue of the fact tihat éxpression is the constant
valueTrue .

While this is a dysfunctional infinite loop, we can still uséstpattern to build useful loops
as long as we carefully add code to the body of the loop to eitipliexit the loop using
break when we have reached the exit condition.

For example, suppose you want to take input from the usertbeti typedone . You could
write:

while True:
line = raw_input('>1)
if line == ' done" :
break
print line
print ' Done!'

The loop condition idrue , which is always true, so the loop runs repeatedly untilti hi
the break statement.

Each time through, it prompts the user with an angle bradkéhe user typesione, the
break statement exits the loop. Otherwise the program echoeswdrahe user types and
goes back to the top of the loop. Here’s a sample run:

> hello there
hello there
> finished
finished

> done
Done!

5.5. Finishing iterations with continue 59

This way of writingwhile loops is common because you can check the condition anywhere
in the loop (not just at the top) and you can express the stogition affirmatively (“stop
when this happens”) rather than negatively (“keep going thdt happens.”).

5.5 Finishing iterations with continue

Sometimes you are in an iteration of a loop and want to finighctlrrent iteration and
immediately jump to the next iteration. In that case you cemthecontinue statement to
skip to the next iteration without finishing the body of thepdfor the current iteration.

Here is an example of a loop that copies its input until the tygees “done”, but treats lines
that start with the hash character as lines not to be pritied 0f like Python comments).

while True:
line = raw_input(>
if line[0] == " #
continue
if line == " done' :
break
print line
print ' Done!’

Here is a sample run of this new program witintinue added.

> hello there

hello there

> # don' t print this
> print this!

print this!

> done

Done!

All the lines are printed except the one that starts with thshhsign because when the
continue is executed, it ends the current iteration and jumps bachketaltile statement
to start the next iteration, thus skipping tiret statement.

5.6 Definite loops usingor

Sometimes we want to loop throughsat of things such as a list of words, the lines in a
file or a list of numbers. When we have a list of things to looptiyh, we can construct
a definiteloop using aor statement. We call thehile statement amdefiniteloop be-
cause it simply loops until some condition becorRalse whereas théor loop is looping
through a known set of items so it runs through as many itaratas there are items in the
set.

60 Chapter 5. Iteration

The syntax of dor loop is similar to thevhile loop in that there is for statement and a
loop body:

friends = [' Joseph', 'Glenn', 'Sally ']
for friend in friends:

print ' Happy New Year:
print ' Done! '

, friend

In Python terms, the variabligends is a lisf of three strings and thfer loop goes
through the list and executes the body once for each of tlee #irings in the list resulting
in this output:

Happy New Year: Joseph
Happy New Year: Glenn
Happy New Year: Sally
Done!

Translating thigor loop to English is not as direct as thile , but if you think of friends
as aset, it goes like this: “Run the statements in the body of the &mp once for each
friendin the set named friends.”.

Looking at thefor loop, for andin are reserved Python keywords, afidnd and
friends are variables.

for friend in friends
print 'Happy New Year', friend

In particular,friend is theiteration variable for the for loop. The variabldriend
changes for each iteration of the loop and controls wherfaheloop completes. The
iteration variable steps successively through the three strings stored ifmi¢hés vari-
able.

5.7 Loop patterns

Often we use a for or while loop to go through a list of itemshar ¢ontents of a file and we
are looking for something such as the largest or smallegtvail the data we scan through.

These loops are generally constructed by:
« Initialize one or more variables before the loop starts.

» Perform some computation on each item in the loop body,iplysshanging the
variables in the body of the loop

* At the end of the loop, the variables contain the infornratiee are looking for

We will use a list of numbers to demonstrate the concepts andtauction of these loop
patterns.

3We will examine lists in more detail in a later chapter

5.7. Loop patterns 61

5.7.1 Counting and summing loops
For example, to count the number of items in a list, we woulierthe followingfor loop:

count = 0

for iterval in [3, 41, 12, 9, 74, 15]:
count = count + 1

print ' Count. ', count

We set the variableount to zero before the loop starts, then we writlora loop to run
through the list of numbers. Oiteration variable is namederval and while we do not
useiterval in the loop, it does control the loop and cause the loop bodyetexecuted
once for each of the values in the list.

In the body of the loop, we add one to the current valueoafit for each of the values in
the list. While the loop is executing, the valuemfint is the number of values we have
seen “so far”.

Once the loop completes, the valuecolint is the total number of items. The total number
“falls in our lap” at the end of the loop. We construct the lapthat we have what we
want when the loop finishes.

Another similar loop that computes the total of a set of nursleas follows:

total = 0

for iterval in [3, 41, 12, 9, 74, 15]:
total = total + iterval

print ' Total: ', total

In this loop wedo use theteration variable . Instead of simply adding one to theunt as

in the previous loop, we add the actual number (3, 41, 12, &i¢he running total during
each loop iteration. If you think about the variald&l , it contains the “running total of
the values so far”. So before the loop stawtal is zero because we have not yet seen any
values, during the looftal is the running total, and at the end of the Idojal is the
overall total of all the values in the list.

As the loop executeftal accumulates the sum of the elements; a variable used this way
is sometimes called aaccumulator.

Neither the counting loop nor the summing loop are partitylaseful in practice because
there are built-in functionken() andsum() that compute the number of items in a list and
the total of the items in the list respectively.

5.7.2 Maximum and minimum loops

To find the largest value in a list or sequence, we constrectdtowing loop:

62 Chapter 5. Iteration

largest = None
print ' Before: ', largest
for iterval in [3, 41, 12, 9, 74, 15]:
if largest is None or largest < iterval:
largest = iterval
print ' Loop: ', iterval, largest
print ' Largest. ', largest

When the program executes, the output is as follows:

Before: None
Loop: 3 3
Loop: 41 41
Loop: 12 41
Loop: 9 41
Loop: 74 74
Loop: 15 74
Largest: 74

The variabldargest is best thought of as the “largest value we have seen so faforg
the loop, we sefargest to the constanilone. None is a special constant value which we
can store in a variable to mark the variable as “empty”.

Before the loop starts, the largest value we have seen seNané since we have not yet
seen any values. While the loop is executinggriest is None then we take the first value
we see as the largest so far. You can see in the first iteratiemthe value otterval is
3, sincelargest is None, we immediately sdargest to be 3.

After the first iterationjargest is no longerNone, so the second part of the compound
logical expression that checlasgest < iterval triggers only when we see a value that
is larger than the “largest so far”. When we see a new “everefarglue we take that new
value forlargest . You can see in the program output theagest progresses from 3 to
41to 74.

At the end of the loop, we have scanned all of the values andatiablelargest now
does contain the largest value in the list.

To compute the smallest number, the code is very similar arghsmall change:

smallest = None
print ' Before: ', smallest
for iterval in [3, 41, 12, 9, 74, 15]:
if smallest is None or iterval < smallest;
smallest = iterval
print ' Loop: ', iterval, smallest
print ' Smallest: ', smallest

Again,smallest is the “smallest so far” before, during, and after the loopaeses. When
the loop has completedmallest contains the minimum value in the list.

5.8. Debugging 63

Again as in counting and summing, the built-in functiomex() andmin() make writing
these exact loops unnecessary.

The following is a simple version of the Python builtdrn() function:

def min(values):
smallest = None
for value in values:
if smallest is None or value < smallest:
smallest = iterval
return smallest

In the function version of the smallest code, we removedfaheprint statements so as
to be equivalent to thmin function which is already built-in to Python.

5.8 Debugging

As you start writing bigger programs, you might find yoursg&nding more time debug-
ging. More code means more chances to make an error and naaesgbr bugs to hide.

One way to cut your debugging time is “debugging by bisectiBor example, if there are
100 lines in your program and you check them one at a time, ilavake 100 steps.

Instead, try to break the problem in half. Look at the middléhe program, or near it, for
an intermediate value you can check. Adgtiat statement (or something else that has a
verifiable effect) and run the program.

If the mid-point check is incorrect, the problem must be ia finst half of the program. If
it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the nundidines you have to search.
After six steps (which is much less than 100), you would berdtovone or two lines of
code, at least in theory.

In practice it is not always clear what the “middle of the prag” is and not always possible
to check it. It doesn’t make sense to count lines and find thetaxidpoint. Instead, think
about places in the program where there might be errors amgphhere it is easy to put
a check. Then choose a spot where you think the chances arethbsame that the bug
is before or after the check.

5.9 Glossary
accumulator: A variable used in a loop to add up or accumulate a result.

counter: A variable used in a loop to count the number of times somgthizppened.
We initialize a counter to zero and then increment the cowrdeh time we want to
“count” something.

64 Chapter 5. Iteration

decrement: An update that decreases the value of a variable.
initialize: An assignment that gives an initial value to a variable thidtbe updated.
increment: An update that increases the value of a variable (often by.one

infinite loop: A loop in which the terminating condition is never satisfiedfar which
there is no termination condition.

iteration: Repeated execution of a set of statements using either esieefunction call
or a loop.

5.10 Exercises

Exercise 5.1 Write a program which repeatedly reads numbers until theargers “done”.
Once “done” is entered, print out the total, count, and ayemaf the numbers. If the user
enters anything other than a number, detect their mistakg trg andexcept and print
an error message and skip to the next number.

Enter a number: 4

Enter a number: 5

Enter a number: bad data
Invalid input

Enter a number: 7

Enter a number: done

16 3 5.33333333333

Exercise 5.2 Write another program that prompts for a list of numbers as@abod at the
end prints out both the maximum and minimum of the numbers.

Chapter 6

Strings

6.1 A stringis a sequence

A string is asequenceof characters. You can access the characters one at a tilméheit
bracket operator:

>>> fruit = ' banana'
>>> |etter = fruit[1]

The second statement extracts the character at indexguoditirom thefruit variable
and assigns it teetter variable.

The expression in brackets is callediadex. The index indicates which character in the
sequence you want (hence the name).

But you might not get what you expect:

>>> print letter
a

For most people, the first letter bbanana' is b, nota. But in Python, the index is an
offset from the beginning of the string, and the offset offirat letter is zero.

>>> letter = fruit[0]
>>> print letter
b

Sob is the Oth letter (“zero-eth”) of banana' , a is the 1th letter (“one-eth”), andis the
2th (“two-eth”) letter.

66 Chapter 6. Strings

You can use any expression, including variables and opsrae an index, but the value
of the index has to be an integer. Otherwise you get:

>>> letter = fruit[1.5]
TypeError: string indices must be integers

6.2 Getting the length of a string usingen

len is a built-in function that returns the number of characiers string:

>>> fruit = ' banana'
>>> |en(fruit)
6

To get the last letter of a string, you might be tempted to tnysthing like this:

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

The reason for thindexError is that there is no letter fbanana’ with the index 6. Since
we started counting at zero, the six letters are numbered0 T get the last character,
you have to subtract 1 frotangth :

>>> last = fruit[length-1]
>>> print last
a

Alternatively, you can use negative indices, which courtkiard from the end of the
string. The expressiofuit[-1] yields the last letterruit[-2] yields the second to
last, and so on.

6.3 Traversal through a string with afor loop

A lot of computations involve processing a string one chizraat a time. Often they start
at the beginning, select each character in turn, do songetbiit, and continue until the
end. This pattern of processing is callettaversal. One way to write a traversal is with a
while loop:

index = 0

while index < len(fruit):
letter = fruitfindex]
print letter
index = index + 1

6.4. String slices 67

This loop traverses the string and displays each letter medol itself. The loop condition
isindex < len(fruit) , so whenindex is equal to the length of the string, the condition
is false, and the body of the loop is not executed. The lagtacher accessed is the one
with the indexlen(fruit)-1 , Which is the last character in the string.

Exercise 6.1 Write awhile loop that starts at the last character in the string and witsks
way backwards to the first character in the string, printingheletter on a separate line,
except backwards.

Another way to write a traversal is withfer loop:

for char in fruit:
print char

Each time through the loop, the next character in the sta@gsigned to the variakdear .
The loop continues until no characters are left.

The following example shows how to use concatenation @aalidition) and dor loop to
generate an abecedarian series (that is, in alphabetied)otn Robert McCloskey’s book
Make Way for Ducklingsthe names of the ducklings are Jack, Kack, Lack, Mack, Nack,
Ouack, Pack, and Quack. This loop outputs these names in orde

prefixes = ' JKLMNOPQ
suffix = " ack'

for letter in prefixes:
print letter + suffix

The output is:

Jack

Kack
Lack

Mack
Nack
Oack
Pack
Qack

Of course, that's not quite right because “Ouack” and “Quark misspelled.

6.4 String slices

A segment of a string is calledsdice Selecting a slice is similar to selecting a character:

68 Chapter 6. Strings

>>> s = ' Monty Python
>>> print s[0:5]

Monty

>>> print s[6:13]

Python

The operatofn:m] returns the part of the string from the “n-eth” characteht® ‘tm-eth”
character, including the first but excluding the last. Thebdwior is counterintuitive, but
it might help to imagine the indices pointingetweerthe characters, as in the following
diagram:

it—"panana’

index 0 1 2 3 4 5 6
If you omit the first index (before the colon), the slice stat the beginning of the string.
If you omit the second index, the slice goes to the end of thiegst

>>> fruit = ' banana'
>>> fruit[:3]

' ban
>>> fruit[3]
' ana

If the first index is greater than or equal to the second thaltressanempty string, repre-
sented by two quotation marks:

>>> fruit = ' banana'
>>> fruit[3:3]

An empty string contains no characters and has length 0,that than that, it is the same
as any other string.

Exercise 6.2 Given thaffruit is a string, what doefsuit[:] mean?

6.5 Strings are immutable

It is tempting to use thg operator on the left side of an assignment, with the intentio
changing a character in a string. For example:

>>> greeting = ' Hello, world!
>>> greeting[0] = "J
TypeError: object does not support item assignment

6.6. Searching 69

The “object” in this case is the string and the “item” is theadcter you tried to assign.
For now, anobject is the same thing as a value, but we will refine that definitadarl An
item is one of the values in a sequence.

The reason for the error is that strings arenutable, which means you can’t change an
existing string. The best you can do is create a new stringglaavariation on the original:

>>> greeting = ' Hello, world! '

>>> new_greeting = ' J' + greeting[1]
>>> print new_greeting

Jello, world!

This example concatenates a new first letter onto a sligeeefing . It has no effect on
the original string.

6.6 Searching

What does the following function do?

def find(word, letter):
index = 0
while index < len(word):
if word[index] == letter:
return index
index = index + 1
return -1

Inasensdind isthe opposite of thg operator. Instead of taking an index and extracting
the corresponding character, it takes a character and fiedmtlex where that character
first appears. If the character is not found, the functioarret-1 .

This is the first example we have seen oftarn ~ statement inside a loop. Word[index]
== letter , the function breaks out of the loop and returns immediately

If the character doesn’t appear in the string, the loop exitisnally at the bottom and
returns-1.

This pattern of computation—traversing a sequence andniaetuwhen we find what we
are looking for—is a called search

Exercise 6.3Modify find so that it has a third parameter, the indexwiord where it
should start looking.

6.7 Looping and counting

The following program counts the number of times the leiteppears in a string:

70 Chapter 6. Strings

word = ' banana'
count = 0
for letter in word:
if letter == "a':
count = count + 1
print count

This program demonstrates another pattern of computatilbedcacounter. The variable
count isinitialized to 0 and then incremented each timaanfound. When the loop exits,
count contains the result—the total numberad.

Exercise 6.4 Encapsulate this code in a function nangednt , and generalize it so that it
accepts the string and the letter as arguments.

6.8 Thein operator

The wordin is a boolean operator that takes two strings and refles if the first appears
as a substring in the second:

>>> 'a'" in 'banana’
True

>>> "seed' in ' banana'
False

6.9 String comparison

The comparison operators work on strings. To see if twogsrare equal:

if word == ' banana' :
print " All right, bananas. '

Other comparison operations are useful for putting woraggphabetical order:

if word < ' banana':

print ' Your word, * + word + ', comes before banana.
elif word > ' banana':

print ' Your word, ' + word + ', comes after banana. '
else:

print ' All right, bananas.

Python does not handle uppercase and lowercase letterartteevgay that people do. All
the uppercase letters come before all the lowercase ledters

Your word, Pineapple, comes before banana.

6.10. string methods 71

A common way to address this problem is to convert stringsdtaadard format, such as
all lowercase, before performing the comparison. Keepithatind in case you have to
defend yourself against a man armed with a Pineapple.

6.10 string methods

Strings are an example of Pythobjects. An object contains both data (the actual string
itself) as well aamethodswhich are effectively functions which are built into the ebf
and available to aninstanceof the object.

Python has a function calledir that lists the methods available for an object. Type
function shows the type of an object and the function shows the available methods.

>>> stuff = ' Hello world '
>>> type(stuff)

<type 'str'>

>>> dir(stuff)

[' capitalize ', "center ', 'count ', 'decode’', 'encode"’,
"endswith ', 'expandtabs ', 'find ', 'format ', 'index ',
"isalnum ', 'isalpha ', 'isdigit ', 'islower ', 'isspace ',
"istite ', 'isupper ', "join ', "ljust ', 'lower ', 'lstrip ',
" partition ', 'replace ', 'rfind ', 'rindex ', 'rust ',

' rpartition “,otrsplit t, trstrip ', tsplit ", ' splitines .

' startswith ', 'strip ', 'swapcase', 'title ', 'translate ',

"upper ', "Zfill "]
>>> help(str.capitalize)
Help on method_descriptor:

capitalize(...)
S.capitalize() -> string

Return a copy of the string S with only its first character
capitalized.
>>>

While thedir function lists the methods, and you can hsip to get some simple doc-
umentation on a method, a better source of documentatiostifimg methods would be
docs.python.org/library/string.html

Calling amethodis similar to calling a function—it takes arguments and net.a value—
but the syntax is different. We call a method by appendingrththod name to the variable
name using the period as a delimiter.

For example, the methagper takes a string and returns a new string with all uppercase
letters:

72 Chapter 6. Strings

Instead of the function syntaxper(word) , it uses the method syntavord.upper()

>>> word = ' banana’

>>> new_word = word.upper()
>>> print new_word

BANANA

This form of dot notation specifies the name of the methipder , and the name of the
string to apply the method tajord . The empty parentheses indicate that this method takes
no argument.

A method call is called aimvocation; in this case, we would say that we are invoking
upper on theword .

As it turns out, there is a string method nanfed that is remarkably similar to the
function we wrote:

>>> word = ' banana'

>>> index = word.find('a')
>>> print index

1

In this example, we invokéind onword and pass the letter we are looking for as a param-
eter.

Actually, thefind method is more general than our function; it can find subgttinot just
characters:

>>> word.find(' na')
2

It can take as a second argument the index where it shoutd star

>>> word.find('na', 3)
4

One common task is to remove white space (spaces, tabs, bneg\Wrom the beginning
and end of a string using ths&ip method:

>>> |ine =
>>> line.strip()
' Here we go'

Here we go

Some methods such amrtswith return boolean values.

>>> line = ' Please have a nice day
>>> line.startswith(' Please ')

True

>>> line.startswith("p')

False

6.11. Parsing strings 73

You will note thatstartswith requires case to match so sometimes we take a line and
map it all to lowercase before we do any checking usingaluer method.

>>> line = ' Please have a nice day
>>> line.startswith(p)
False

>>> line.lower()

' please have a nice day
>>> |ine.lower().startswith(
True

p)

In the last example, the methdaiver is called and then we ustartswith ~ to check to
see if the resulting lowercase string starts with the l€figrAs long as we are careful with
the order, we can make multiple method calls in a single esgioe.

Exercise 6.5 There is a string method calledunt thatis similar to the function in the pre-
vious exercise. Read the documentation of this methafbatpython.org/library/

string.html and write an invocation that counts the number of times ttierl@ occurs
in' banana' .

6.11 Parsing strings

Often, we want to look into a string and find a substring. F@megle if we were presented
a series of lines formatted as follows:

From stephen.marquard@ uct.ac.za Sat Jan 5 09:14:16 2008

And we wanted to pull out only the second half of the addressygt.ac.za) from each
line. We can do this by using thied method and string slicing.

First, we will find the position of the at-sign in the stringadh we will find the position of
the first spacafterthe at-sign. And then we will use string slicing to extrae tfortion of
the string which we are looking for.

>>> data = ' From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008 '
>>> atpos = data.find(@)

>>> print atpos

21

>>> sppos = data.find(
>>> print sppos

31

>>> host = data[atpos+1:sppos]
>>> print host

uct.ac.za

>>>

,atpos)

74 Chapter 6. Strings

We use a version of thind method which allows us to specify a position in the string
where we wanfind to start looking. When we slice, we extract the characters flone
beyond the at-sign through upbat not includingthe space character”.

The documentation for thénd method is available adlocs.python.org/library/
string.html

6.12 Format operator

Theformat operator, %allows us to construct strings, replacing parts of the g&riwith
the data stored in variables. When applied to integéisthe modulus operator. But when
the first operand is a stringpis the format operator.

The first operand is théormat string, which contains one or mor®rmat sequences
which specify how the second operand is formatted. The tresalstring.

For example, the format sequeridéd means that the second operand should be formatted
as an integerd(stands for “decimal”):

>>> camels = 42
>>> ' %d % camels
"4

The result is the string42' , which is not to be confused with the integer valize

A format sequence can appear anywhere in the string, so yowemcded a value in a
sentence:

>>> camels = 42
>>> ' | have spotted %d camels.
"| have spotted 42 camels. '

% camels

If there is more than one format sequence in the string, thergeargument has to be a
tuple. Each format sequence is matched with an element afighe, in order.

The following example uses%d to format an integer, %d to format a floating-point
number (don’t ask why), and%s to format a string:

>>> ' In %d years | have spotted %g %s. ' % (3, 0.1, ' camels ')
"In 3 years | have spotted 0.1 camels. '

The number of elements in the tuple has to match the numbearfat sequences in the
string. Also, the types of the elements have to match thedbsmaquences:

>>> ' %d %d %d % (1, 2)

TypeError: not enough arguments for format string
>>> ' %d %' dollars

TypeError: illegal argument type for built-in operation

6.13. Debugging 75

In the first example, there aren’t enough elements; in theregdhe element is the wrong
type.

The format operator is powerful, but it can be difficult to u¥eu can read more about it
atdocs.python.org/lib/typesseq-strings.html|

6.13 Debugging

A skill that you should cultivate as you program is alwaysiaghkourself, “What could go
wrong here?” or alternatively, “What crazy thing might oueudo to crash our (seemingly)
perfect program?”.

For example, look at the program which we used to demonstinatehile loop in the
chapter on iteration:

while True:
line = raw_input(>)
if line[0] == "#
continue
if line == ' done' :
break
print line

print ' Done! '
Look what happens when the user enters an empty line of input:

> hello there
hello there
> # don' t print this
> print this!
print this!
>
Traceback (most recent call last):
File "copytildone.py", line 3, in <module>
if line[0] == "#

The code works fine until it is presented an empty line. Thendls no zeroth character
so we get a traceback. There are two solutions to this to niageHree “safe” even if the
line is empty.

One possibility is to simply use thgtartswith ~ method which returnBalse if the string
is empty.

if line.startswith("H#)

76 Chapter 6. Strings

Another way to safely write thé statement using thguardian pattern and make sure
the second logical expression is evaluated only where feexeleast one character in the
string.:

if len(line) > 0 and line[0] == " #

Another common source of problems is when you hand-cortsimdex values to move
through a sequence. It can be quite tricky to get the beginaid end of the traversal
right.

Here is a function that is supposed to compare two words andnrérue if one of the
words is the reverse of the other, but it contains two errors:

def is_reverse(wordl, word2):
if len(wordl) != len(word2):
return False

0
len(word2)

i
j

while j > 0:
if word1[i] != word2]j]:
return False
i+1
-1

i
j

return True

The firstif statement checks whether the words are the same length, ika@an return
False immediately and then, for the rest of the function, we canmssthat the words are
the same length. This is another example of the guardiaarpatt

i andj are indices:i traversesvordl forward whilej traversesord2 backward. If we
find two letters that don’t match, we can retliaise immediately. If we get through the
whole loop and all the letters match, we retliroe .

If we test this function with the words “pots” and “stop”, wepect the return valu&rue ,
but we get an IndexError:

>>> s reverse(' pots ', 'stop ')

File "reverse.py", line 15, in is_reverse
if word1[i] != word2[j]:
IndexError: string index out of range

For debugging this kind of error, my first move is to print thedues of the indices imme-
diately before the line where the error appears.

6.14. Glossary 77

while j > 0:
print i, | # print here

if word1[i] != word2][j]:
return False

i+1

-1

i
j

Now when | run the program again, | get more information:

>>> is reverse(' pots ', 'stop ')
04

IndexError: string index out of range

The first time through the loop, the value pfis 4, which is out of range for the
string' pots ' . The index of the last character is 3, so the initial valuejfahould be
len(word2)-1

If | fix that error and run the program again, | get:

>>> is_reverse(' pots ', 'stop ')
03
12
21
True

This time we get the right answer, but it looks like the loogyaan three times, which is
suspicious. To get a better idea of what is happening, iteguliso draw a state diagram.
During the first iteration, the frame fég reverse looks like this:

wordl —= ’pots’ word2 —= 'stop’

i—=0 i—=3

| took a little license by arranging the variables in the fesamd adding dotted lines to show
that the values af andj indicate characters wordl andword? .

Exercise 6.6 Starting with this diagram, execute the program on papeangimg the values
of i andj during each iteration. Find and fix the second error in thigfion.

6.14 Glossary

counter: A variable used to count something, usually initialized ésazand then incre-
mented.

78 Chapter 6. Strings

empty string: A string with no characters and length 0, represented by tuatagion
marks.

format operator: An operator,% that takes a format string and a tuple and generates a
string that includes the elements of the tuple formattedpasied by the format
string.

format sequence: A sequence of characters in a format string, e that specifies how
a value should be formatted.

format string: A string, used with the format operator, that contains fdrseguences.
flag: A boolean variable used to indicate whether a conditioruie.tr

invocation: A statement that calls a method.

immutable: The property of a sequence whose items cannot be assigned.

index: Aninteger value used to select an item in a sequence, sucthasacter in a string.

item: One of the values in a sequence.
method: A function that is associated with an object and called udivighotation.

object: Something a variable can refer to. For now, you can use “thgw “value”
interchangeably.

search: A pattern of traversal that stops when it finds what it is |ogkfor.

sequence:An ordered set; that is, a set of values where each value idifidel by an
integer index.

slice: A part of a string specified by a range of indices.

traverse: To iterate through the items in a sequence, performing dasiraperation on
each.

6.15 Exercises

Exercise 6.7 Write some code to parse lines of the form:
X-DSPAM-Confidence: 0.8475

Usefind and string slicing to extract the portion of the string aftex colon character and
then use thdoat function to convert the extracted string into a floating poinmber.

6.15. Exercises 79

Exercise 6.8 Read the documentation of the string methoddoas.python.org/lib/
string-methods.html . You might want to experiment with some of them to make sure
you understand how they worktrip andreplace are particularly useful.

The documentation uses a syntax that might be confusing. d@mple, in
find(sub[, start[, end]]) , the brackets indicate optional arguments. s8ib is re-
quired, butstart is optional, and if you includstart , thenend is optional.

Exercise 6.9 The following functions are alhtendedto check whether a string contains
any lowercase letters, but at least some of them are wrong.ed&eh function, describe
what the function actually does (assuming that the paramsetestring).

def any_lowercasel(s):
for ¢ in s:
if c.islower():
return True
else:
return False

def any_lowercase2(s):
for c in s
if ' c' .islower():
return ' True'
else:
return ' False '
def any_lowercase3(s):
for ¢ in s
flag = c.islower()
return flag

def any_lowercase4(s):
flag = False
for ¢ in s
flag = flag or c.islower()
return flag

def any_lowercase5(s):
for ¢ in s
if not c.islower():
return False
return True

Exercise 6.10ROT13 is a weak form of encryption that involves “rotatingich letter in

80 Chapter 6. Strings

a word by 13 placés To rotate a letter means to shift it through the alphabeapping
around to the beginning if necessary, so 'A shifted by 3 isabd 'Z’ shifted by 1 is 'A.

Write a function calledotate_ word that takes a string and an integer as parameters and
returns a new string that contains the letters from the aiggtring “rotated” by the given
amount.

For example, “cheer” rotated by 7 is “jolly” and “melon” ro¢al by -10 is “cubed”.

You might want to use the built-in functiorsd , which converts a character to a numeric
code, anchr , which converts numeric codes to characters.

Potentially offensive jokes on the Internet are sometinmesded in ROT13. If you are not
easily offended, find and decode some of them.

1Seewikipedia.org/wiki/ROT13

Chapter 7

Files

7.1 Persistence

So far, we have learned how to write programs and communimaténtentions to the
Central Processing Unitusing conditional execution, functions, and iteratione Neve
learned how to create and use data structures iMtia Memory . The CPU and memory
are where our software works and runs. It is where all of thanking” happens.

But if you recall from our hardware architecture discussjance the power is turned off,
anything stored in either the CPU or main memory is erasedipg30 now, our programs
have just been transient fun exercises to learn Python.

Software
Input Central
Processin

Output Unit 9 Network
Devices

Main

Secondar
Memory Memory y

In this chapter, we start to work witBecondary Memory (or files). Secondary memory
is not erased even when the power is turned off. Or in the ckadJ$B flash drive, the

82 Chapter 7. Files

data can we write from our programs can be removed from thersyand transported to
another system.

We will primarily focus on reading and writing text files suah those we create in a text
editor. Later we will see how to work with database files whica binary files, specifically
designed to be read and written through database software.

7.2 Opening files

When we want to read or write a file (say on your hard drive), wat fitrustopenthe file.
Opening the file communicates with your operating systenciwknows where the data
for each file is stored. When you open a file, you are asking tleeatipg system to find
the file by name and make sure the file exists. In this exampmegpen the filenbox.txt
which should be stored in the same folder that you are in wioersyart Python. You can
download this file fronwww.py4inf.com/code/mbox.txt

>>> fhand = open(' mbox.txt ')
>>> print fhand
<open file ' mbox.txt

, mode 'r' at 0x1005088b0>

If the open is successful, the operating system returns filechandle. The file handle
is not the actual data contained in the file, but instead it“isamdle” that we can use to
read the data. You are given a handle if the requested filésexigl you have the proper
permissions to read the file.

| mbox.txt

H
open From stephen.m..
read \ ﬁ Return-Path: <p..

. <> Date: Sat, 5 Jan ..
write / D To: source@coll..
close L From: stephen...

E Subject: [sakail...
Details: http:/...
Your
Program

If the file does not existopen will fail with a traceback and you will not get a handle to
access the contents of the file:

>>> fhand = open(' stuff.txt ")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory: " stuff.txt '

Later we will usetry andexcept to deal more gracefully with the situation where we
attempt to open a file that does not exist.

7.3. Text files and lines 83

7.3 Textfiles and lines

A text file can be thought of as a sequence of lines, much likgladh string can be thought
of as a sequence of characters. For example, this is a sampltext file which records
mail activity from various individuals in an open source jprt development team:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14;16 2008

Return-Path: <postmaster@collab.sakaiproject.org>

Date: Sat, 5 Jan 2008 09:12:18 -0500

To: source@collab.sakaiproject.org

From: stephen.marquard@uct.ac.za

Subject: [sakai] svn commit: 39772 - content/branches/

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772

The entire file of mail interactions is available fromww.py4inf.com/code/mbox.txt

and a shortened version of the file is available fmmw.py4inf.com/code/mbox-short.

txt . These files are in a standard format for a file containingipialmail messages. The
lines which start with “From ” separate the messages andrbs Which start with “From:”
are part of the messages. For more information gaaekipedia.org/wiki/Mbox

To break the file into lines, there is a special characterrdgaesents the “end of the line”
called thenewline character.

In Python, we represent theewline character as a backslash-n in string constants. Even
though this looks like two characters, it is actually a singiharacter. When we look at the
variable by entering “stuff” in the interpreter, it shows the \n in the string, but when

we useprint to show the string, we see the string broken into two lineshigyrtewline
character.

>>> stuff = ' Hello\nWorld! '
>>> stuff

' Hello\nworld!
>>> print stuff

Hello

World!

>>> stuff = ' X\nY'
>>> print stuff

X

Y

>>> len(stuff)

3

You can also see that the length of the stfibdnY ' isthreecharacters because the newline
character is a single character.

So when we look at the lines in a file, we needrtaginethat there is a special invisible
character at the end of each line that marks the end of thedilhed the newline.

84 Chapter 7. Files

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008\n

Return-Path: <postmaster@collab.sakaiproject.org>\n

Date: Sat, 5 Jan 2008 09:12:18 -0500\n

To: source@collab.sakaiproject.org\n

From: stephen.marquard@uct.ac.za\n

Subject: [sakai] svn commit: 39772 - content/branches/\n

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772\n

So the newline character separates the characters in thidilines.

7.4 Reading files

While thefile handle does not contain the data for the file, it is quite easy to canst
for loop to read through and count each of the lines in afile:

fhand = open(' mbox.txt ')
count = 0
for line in fhand:

count = count + 1
print ' Line Count: ', count
python open.py
Line Count: 132045

We can use the file handle as the sequence ifooutoop. Ourfor loop simply counts the
number of lines in the file and prints them out. The rough tietim of thefor loop into
English is, “for each line in the file represented by the filedia, add one to theount
variable.”

The reason that th@pen function does not read the entire file is that the file might bi¢eq
large with many gigabytes of data. Thpen statement takes the same amount of time
regardless of the size of the file. Tfee loop actually causes the data to be read from the
file.

When the file is read usingfer loop in this manner, Python takes care of splitting the data
in the file into separate lines using the newline charactgthd® reads each line through
the newline and includes the newline as the last characttheifine variable for each
iteration of thefor loop.

Because the for loop reads the data one line at a time, it é&reafly read and count the
lines in very large files without running out of main memorystore the data. The above
program can count the lines in any size file using very littenmory since each line is read,
counted, and then discarded.

If you know the file is relatively small compared to the sizeyofir main memory, you can
read the whole file into one string using tikad method on the file handle.

7.5. Searching through a file 85

>>> fhand = open(' mbox-shorttxt ')
>>> inp = fhand.read()

>>> print len(inp)

94626

>>> print inp[:20]

From stephen.marquar

In this example, the entire contents (all 94,626 charactdithe file mbox-short.txt are
read directly into the variabliap . We use string slicing to print out the first 20 characters
of the string data stored inp .

When the file is read in this manner, all the characters inolydll of the lines and newline
characters are one big string in the variailp. Remember that this form of thapen
function should only be used if the file data will fit comfortalin the main memory of
your computer.

If the file is too large to fit in main memory, you should writewyg@rogram to read the file
in chunks using ér orwhile loop.

7.5 Searching through a file

When you are searching through data in a file, it is a very compattern to read through
a file, ignoring most of the lines and only processing linegclvimeet a particular criteria.
We can combine the pattern for reading a file with stringthodsto build simple search
mechanisms.

For example, if we wanted to read a file and only print out linddéch started with the
prefix “From:”, we could use the string methathrtswith to select only those lines with
the desired prefix:

fhand = open(' mbox-short.txt ')
for line in fhand:
if line.startswith(" From: ") :
print line

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From; zgian@umich.edu

From: rjlowe@iupui.edu

86 Chapter 7. Files

The output looks great since the only lines we are seeindnasetwhich start with “From:”,
but why are we seeing the extra blank lines? This is due tarihisible newline character.
Each of the lines ends with a newline, sopiet statement prints the string in the variable
line which includes a newline and therint addsanothernewline, resulting in the double
spacing effect we see.

We could use line slicing to print all but the last charadbet,a simpler approach is to use
therstrip method which strips whitespace from the right side of a gtais follows:

frand = open(' mbox-short.txt ')
for line in fhand:
line = line.rstrip()
if line.startswith(" From: ") :
print line

When this program runs, we get the following output:

From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zgian@umich.edu

From: rjlowe@iupui.edu

From: zgian@umich.edu

From: rjlowe@iupui.edu

From: cwen@iupui.edu

As your file processing programs get more complicated, yoy want to structure your
search loops usingpntinue . The basic idea of the search loop is that you are looking for
“interesting” lines and effectively skipping “uninterex” lines. And then when we find
an interesting line, we do something with that line.

We can structure the loop to follow the pattern of skippin@iteresting lines as follows:

fhand = open(' mbox-short.txt ')
for line in fhand:

line = line.rstrip()

Skip ' uninteresting lines

if not line.startswith(" From: ") :
continue

Process our 'interesting ' line

print line

The output of the program is the same. In English, the urestarg lines are those which
do not start with “From:”, which we skip usingpntinue . For the “interesting” lines (i.e.
those that start with “From:”) we perform the processing sk lines.

We can use théind string method to simulate a text editor search which findsslwhere
the search string is anywhere in the line. Sificé looks for an occurrence of a string

7.6. Letting the user choose the file name 87

within another string and either returns the position ofgtrang or -1 if the string was not
found, we can write the following loop to show lines which tain the string “@uct.ac.za”
(i.e. they come from the University of Capetown in South édii

fhand = open(' mbox-short.txt ')
for line in fhand:
line = line.rstrip()
if line.find("@uctacza ') == -1:
continue
print line

Which produces the following output:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

X-Authentication-Warning: set sender to stephen.marquar d@uct.ac.za using -f
From: stephen.marquard@uct.ac.za

Author: stephen.marquard@uct.ac.za

From david.horwitz@uct.ac.za Fri Jan 4 07:02:32 2008

X-Authentication-Warning: set sender to david.horwitz@u ctac.za using -f
From: david.horwitz@uct.ac.za

Author: david.horwitz@uct.ac.za

7.6 Letting the user choose the file name

We really do not want to have to edit our Python code every tiveevant to process a
different file. It would be more usable to ask the user to etiterfile name string each
time the program runs so they can use our program on difféiteatwithout changing the
Python code.

This is quite simple to do by reading the file name from the wséngraw_input as
follows:

fname = raw_input(' Enter the file name: ")
fhand = open(fname)
count = 0
for line in fhand:
if line.startswith(' Subject: ') :

count = count + 1
print ' There were ', count, ' subject lines in ', fname

We read the file name from the user and place it in a variableedémame and open that
file. Now we can run the program repeatedly on different files.

python search6.py
Enter the file name: mbox.txt

88 Chapter 7. Files

There were 1797 subject lines in mbox.txt

python search6.py
Enter the file name: mbox-short.txt
There were 27 subject lines in mbox-short.txt

Before peeking at the next section, take a look at the abovgram and ask yourself,
“What could go possibly wrong here?” or “What might our friepdiser do that would
cause our nice little program to ungracefully exit with a&back, making us look not-so-
cool in the eyes of our users?”.

7.7 Usingtry, except, and open

| told you not to peek. This is your last chance.

What if our user types something that is not a file name?

python search6.py
Enter the file name: missing.txt
Traceback (most recent call last):
File "search6.py", line 2, in <module>
fhand = open(fname)
IOError: [Errno 2] No such file or directory: ' missing.txt
python search6.py
Enter the file name: na na boo boo
Traceback (most recent call last):
File "search6.py", line 2, in <module>
fhand = open(fname)
IOError: [Errno 2] No such file or directory: ''na na boo boo '

Do not laugh, users will eventually do every possible thingytcan do to break your
programs — either on purpose or with malicious intent. As @tenaf fact, an important
part of any software development team is a person or grolgdd@liality Assurance (or
QA for short) whose very job it is to do the craziest thingsgilole in an attempt to break
the software that the programmer has created.

The QA team is responsible for finding the flaws in programsieefve have delivered the
program to the end-users who may be purchasing the softwa@gyng our salary to write
the software. So the QA team is the programmer’s best friend.

So now that we see the flaw in the program, we can elegantly tisiiity thetry /except
structure. We need to assume thatdpen call might fail and add recovery code when the
open fails as follows:

7.8. Writing files 89

frame = raw_input(' Enter the file name: ")
try:
fhand = open(fname)
except:
print ' File cannot be opened: ", fname
exit()
count = 0
for line in fhand:
if line.startswith(' Subject: ') :

count = count + 1
print ' There were ', count, ' subject lines in ', fname

Theexit function terminates the program. It is a function that wé ttelt never returns.
Now when our user (or QA team) types in silliness or bad file @snwe “catch” them and
recover gracefully:

python search7.py
Enter the file name: mbox.txt
There were 1797 subject lines in mbox.txt

python search7.py
Enter the file name: na na boo boo
File cannot be opened: na na boo boo

Protecting thepen call is a good example of the proper usarpf andexcept in a Python
program. We use the term “Pythonic” when we are doing somgtthie “Python way”. We
might say that the above example is the Pythonic way to opde.a fi

Once you become more skilled in Python, you can engage imte2peith other Python
programmers to decide which of two equivalent solutionspoadlem is “more Pythonic”.
The goal to be “more Pythonic” captures the notion that paogning is part engineering
and part art. We are not always interested in just making gungework, we also want our
solution to be elegant and to be appreciated as elegant peeus.

7.8 Writing files

To write a file, you have to open it with mode/ as a second parameter:

>>> fout = open('outputtxt ', 'w)
>>> print fout
<open file ' outputtxt ', mode 'w at Oxb7eb2410>

If the file already exists, opening it in write mode clearstheatold data and starts fresh, so
be careful! If the file doesn’t exist, a new one is created.

20 Chapter 7. Files

Thewrite method of the file handle object puts data into the file.

>>> linel = ' This here 's the wattle\n
>>> fout.write(linel)

Again, the file object keeps track of where it is, so if you eaile again, it adds the new
data to the end.

We must make sure to manage the ends of lines as we write tdethe Explicitly inserting
the newline character when we want to end a line. P statement automatically
appends a newline, but tigite method does not add the newline automatically.

>>> |ine2 = ' the emblem of our land.\n
>>> fout.write(line2)

When you are done writing, you have to close the file to make thatethe last bit of data
is physically written to the disk so it will not be lost if thewer goes off.

>>> fout.close()

We could close the files which we open for read as well, but webesa little sloppy if we
are only opening a few files since Python makes sure that ati &fes are closed when the
program ends. When we are writing files, we want to explicitbse the files so as to leave
nothing to chance.

7.9 Debugging

When you are reading and writing files, you might run into peoid with whitespace.
These errors can be hard to debug because spaces, tabs déindsiave normally invisible:

>>>s="12t3n4
>>> print S

12 3

4

The built-in functionrepr can help. It takes any object as an argument and returnsg stri
representation of the object. For strings, it represenitespace characters with backslash
seguences:

>>> print repr(s)
"12t3n 4 '

This can be helpful for debugging.

One other problem you might run into is that different systarse different characters to
indicate the end of a line. Some systems use a newline, egieebn . Others use a return
character, representéd. Some use both. If you move files between different systems,
these inconsistencies might cause problems.

7.10. Glossary 91

For most systems, there are applications to convert fronfian@at to another. You can find
them (and read more about this issueviipedia.org/wiki/Newline . Or, of course,
you could write one yourself.

7.10 Glossary

catch: To prevent an exception from terminating a program usingtrthe and except
statements.

newline: A special character used in files and strings to indicate tideoé a line.

Pythonic: A technique that works elegantly in Python. “Using try andept is the
Pythonicway to recover from missing files.”.

Quality Assurance: A person or team focused on insuring the overall quality affensare
product. QA is often involved in testing a product and idigmtig problems before
the product is released.

text file: A sequence of characters stored in permanent storage liaedadhive.

7.11 Exercises

Exercise 7.1 Write a program to read through a file and print the contentbefite (line
by line) all in upper case. Executing the program will looKaltows:

python shout.py

Enter a file name: mbox-short.txt

FROM STEPHEN.MARQUARD@UCT.AC.ZA SAT JAN 5 09:14:16 2008
RETURN-PATH: <POSTMASTER@COLLAB.SAKAIPROJECT.ORG>
RECEIVED: FROM MURDER (MAIL.UMICH.EDU [141.211.14.90))

BY FRANKENSTEIN.MAIL.UMICH.EDU (CYRUS V2.3.8) WITH LMTPA,;
SAT, 05 JAN 2008 09:14:16 -0500

You can download the file fromww.py4inf.com/code/mbox-short.txt

Exercise 7.2 Write a program to loop through a mailbox-format file and looklfnes of
the form:

X-DSPAM-Confidence: 0.8475

When you encounter a line that starts with “X-DSPAM-Confidehgull apart the line to
extract the floating point number on the line. Count thegeslisnd the compute the total of
the spam confidence values from these lines. When you reaamthef the file, print out
the average spam confidence.

92 Chapter 7. Files

Enter the file name: mbox.txt
Average spam confidence: 0.894128046745

Enter the file name: mbox-short.txt
Average spam confidence: 0.750718518519

Exercise 7.3 Sometimes when programmers get bored or want to have a hinotliey

add a harmlesg&aster Eggto their program €n.wikipedia.org/wiki/Easter_egg_

(media)). Modify the program that prompts the user for the file naméhso it prints a

funny message when the user types in the exact file name 'nashdn’. The program
should behave normally for all other files which exist and’terist. Here is a sample
execution of the program:

python egg.py
Enter the file name: mbox.txt

There were 1797 subject lines in mbox.txt

python egg.py
Enter the file name: missing.tyxt

File cannot be opened: missing.tyxt

python egg.py
Enter the file name: na na boo boo

NA NA BOO BOO TO YOU - You have been punkd!

We are not encouraging you to put Easter Eggs in your progrdhis is just an exercise.

Chapter 8

Lists

8.1 Alistis a sequence

Like a string, dist is a sequence of values. In a string, the values are chasaitex list,
they can be any type. The values in list are ca&@mentsor sometimegems.

There are several ways to create a new list; the simplestisdinse the elements in square
brackets[(and]):

[10, 20, 30, 40]

[' crunchy frog ', 'ram bladder ', 'lark vomit ']

The first example is a list of four integers. The second is tadishree strings. The
elements of a list don’'t have to be the same type. The follgvlist contains a string, a
float, an integer, and (lo!) another list:

[' spam', 2.0, 5, [10, 20]]
A list within another list isnested

A list that contains no elements is called an empty list; yan create one with empty
brackets][] .

As you might expect, you can assign list values to variables:

>>> cheeses = [' Cheddar', ' Edanl, ' Gouda']
>>> numbers = [17, 123]

>>> empty = [|

>>> print cheeses, numbers, empty

[' Cheddar', 'Edam , ' Gouda'] [17, 123] []

94 Chapter 8. Lists

8.2 Lists are mutable

The syntax for accessing the elements of a list is the samer @ €essing the characters
of a string—the bracket operator. The expression inside thekbts specifies the index.
Remember that the indices start at O:

>>> print cheeses[0]
Cheddar

Unlike strings, lists are mutable. When the bracket operppears on the left side of an
assignment, it identifies the element of the list that wilkssigned.

>>> numbers = [17, 123]
>>> numbers[l] = 5

>>> print numbers

[17, 5]

The one-eth element ofimbers , which used to be 123, is now 5.

You can think of a list as a relationship between indices dathents. This relationship
is called amapping; each index “maps to” one of the elements. Here is a statealiag
showingcheeses , numbers andempty :

list

cheeses —= 0 —= 'Cheddar’
1 —= 'Edam’
2 —= 'Gouda’

list

numbers —= 0—— 17

list

empty —=

Lists are represented by boxes with the word “list” outsidd ¢he elements of the list
inside. cheeses refers to a list with three elements indexed 0, 1 andugibers contains
two elements; the diagram shows that the value of the sedentkat has been reassigned
from 123 to 5.empty refers to a list with no elements.

List indices work the same way as string indices:

8.3. Traversing a list 95

< Any integer expression can be used as an index.
« If you try to read or write an element that does not exist, getianindexError

« If an index has a negative value, it counts backward fronetiteof the list.

Thein operator also works on lists.

>>> cheeses = [' Cheddar', ' Edam , ' Gouda']
>>> ' Edanl in cheeses

True

>>> ' Brie ' in cheeses

False

8.3 Traversing a list

The most common way to traverse the elements of a list is with doop. The syntax is
the same as for strings:

for cheese in cheeses:
print cheese

This works well if you only need to read the elements of the But if you want to write
or update the elements, you need the indices. A common way tioad is to combine the
functionsrange andlen :

for i in range(len(numbers)):
numbers[i] = numbers[i] * 2

This loop traverses the list and updates each elentemntreturns the number of elements

in the list. range returns a list of indices from 0 to— 1, wheren is the length of the list.
Each time through the lodpgets the index of the next element. The assignment statement
in the body uses to read the old value of the element and to assign the new.value

A for loop over an empty list never executes the body:

for x in empty:
print ' This never happens.

Although a list can contain another list, the nested ligit@bunts as a single element. The
length of this list is four:

['spam', 1, ['Brie ', 'Roquefort ', 'Polle Veq '] [1, 2, 3]]

96 Chapter 8. Lists

8.4 List operations

The+ operator concatenates lists:

>>> a =[1, 2, 3]
>>> P = [4, 5, 6]
>>c=a+bh
>>> print ¢

[1, 2, 3, 4, 5, 6]

Similarly, the* operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>> (1, 2, 3] * 3

[1, 2,3 1,2 3 1, 2 3

The first example repeald four times. The second example repeats thgljsg, 3]
three times.

8.5 Listslices

The slice operator also works on lists:

>>t=["'a, 'b, 'c, "d, e, "]

>>> {[1:3]

['b, e

>>> {[:4]

["a', "b'", 'c', "d]

>>> {[3]

["d, "e, "]

If you omit the first index, the slice starts at the beginnifigou omit the second, the slice
goes to the end. So if you omit both, the slice is a copy of thelalist.

>>> {[]
["a", "b", "¢, "d, e, "f']

Since lists are mutable, it is often useful to make a copyregberforming operations that
fold, spindle or mutilate lists.

A slice operator on the left side of an assignment can updattpte elements:

>>> t - [' aI , L} bl , 1 CI , ' dl , L} eI , 1 fl]
>>> {13 =] 'x', 'y']
>>> print t

[a', "x', 'y, td, e,]

8.6. List methods 97

8.6 List methods

Python provides methods that operate on lists. For exarappend adds a new element
to the end of a list:

>>t=["'a, 'b, 'c]

>>> tappend('d')

>>> print t

[*a", "b", "c', "d']

extend takes a list as an argument and appends all of the elements:
>>tl=["a, 'b, 'c']

>>02=["'d, 'e']

>>> tl.extend(t2)

>>> print t1

[Ial’lblllcl'ldl’lel]

This example leave?2 unmodified.

sort arranges the elements of the list from low to high:
>>t=['d, 'c, 'e, 'b, "a]

>>> t.sort()

>>> print t
["a', "b', "¢, "d, te']

Most list methods are void; they modify the list and retliome. If you accidentally write
t = t.sort() , you will be disappointed with the result.

8.7 Deleting elements

There are several ways to delete elements from a list. If ymwithe index of the element
you want, you can USgeop:

>>t=["'a, 'b, '"¢c']
>>> x = t.pop(1)

>>> print t

[ra, e

>>> print X

b

pop modifies the list and returns the element that was removegoufdon’t provide an
index, it deletes and returns the last element.

If you don't need the removed value, you can usedéieoperator:

98 Chapter 8. Lists

>>> t = [1 al ,] bl ,] Cl]

>>> del t[1]

>>> print t

[I aI , 1 cl]

If you know the element you want to remove (but not the indga) can useemove :
>>> t = [1 aI , 1} bl , 1 CI]

>>> tremove('b')

>>> print t

[l al , 1 C|]

The return value fromemove is None.

To remove more than one element, you candgsewith a slice index:
>>>t=['a','b','C','d','e','f']

>>> del {[1:5]

>>> print t
[fa, 1]

As usual, the slice selects all the elements up to, but naidintg, the second index.

8.8 Lists and strings

A string is a sequence of characters and a list is a sequenedues, but a list of characters
is not the same as a string. To convert from a string to a lishafacters, you can ubs

>>> s = ' spam'
>>> t = list(s)
>>> print t

[lsllel"a"lm]

Becausdist is the name of a built-in function, you should avoid usingstaavariable
name. | also avoitl because it looks too much like So that's why | usé.

Thelist function breaks a string into individual letters. If you wao break a string into
words, you can use theplit method:

>>> s = ' pining for the fjords '

>>> t = s.split()

>>> print t

["pining ', "for ', "the', 'fiords ']

>>> print 2]
the

8.9. Parsing lines 99

Once you have usesplit to break the string into a list of tokens, you can use the index
operator (square bracket) to look at a particular word inigte

You can calkplit with an optional argument calleddelimiter specifies which characters
to use as word boundaries. The following example uses a Inyphea delimiter:

>>> g = ' spam-spam-spam '
>>> delimiter = ta

>>> s.split(delimiter)

['spam’, 'spam', ' spam']

join is the inverse ofplit . It takes a list of strings and concatenates the elemginis.
is a string method, so you have to invoke it on the delimitel paiss the list as a parameter:

>>>t =1 "'pining ', "for ', '"the', 'fiords ']
>>> delimiter = t
>>> delimiter.join(t)

' pining for the fijords

In this case the delimiter is a space characteljpiso puts a space between words. To
concatenate strings without spaces, you can use the emipty, 8t , as a delimiter.

8.9 Parsing lines

Usually when we are reading a file we want to do something tdities other than just
printing the whole line. Often we want to find the “interestilines” and therparse the
line to find some interestingart of the line. What if we wanted to print out the day of the
week from those lines that start with “From .

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Thesplit method is very effective when faced with this kind of probléie can write a
small program that looks for lines where the line starts vifitom ” and thersplit ~ those
lines and then print out the third word in the line:

fhand = open(' mbox-short.txt ')
for line in fhand:
line = line.rstrip()
if not line.startswith(" From ') : continue
words = line.split()
print words[2]

We also use the contracted form of the statement where we put tltentinue on the
same line as thi& . This contracted form of thi# functions the same as if thentinue
were on the next line and indented.

The program produces the following output:

100 Chapter 8. Lists

Sat
Fri
Fri
Fri

Later, we will learn increasingly sophisticated technigéer picking the lines to work on
and how we pull those lines apart to find the exact bit of infation we are looking for.

8.10 Objects and values

If we execute these assignment statements:

' banana'
' banana'

a
b

We know thata andb both refer to a string, but we don’t know whether they refeth®
samestring. There are two possible states:

a —= ’'banana’ a
™ panana’
b —= ’banana’ b —

In one casea andb refer to two different objects that have the same value. érsttcond
case, they refer to the same object.

To check whether two variables refer to the same object, yowse thés operator.

>>> g = ' banana'
>>> p = ' banana'
>>> ais b

True

In this example, Python only created one string object, atd&andb refer to it.
But when you create two lists, you get two objects:

>>> a = [1, 2, 3]
>>> b =1, 2, 3]
>>> ais b

False

So the state diagram looks like this:

a—=[1,2, 3]
b—1[1,2 3]

8.11. Aliasing 101

In this case we would say that the two lists atpiivalent, because they have the same ele-
ments, but noidentical, because they are not the same object. If two objects ar&geen
they are also equivalent, but if they are equivalent, theynat necessarily identical.

Until now, we have been using “object” and “value” interchaably, but it is more precise
to say that an object has a value. If you exeaute [1,2,3] , a refers to a list object
whose value is a particular sequence of elements. If anbghéras the same elements, we
would say it has the same value.

8.11 Aliasing

If a refers to an object and you assigr= a, then both variables refer to the same object:

>>a =[1, 2, 3]

>>> Db = a
>>> b is a
True

The state diagram looks like this:

a
\
.= [12,3]

The association of a variable with an object is calle@farence In this example, there
are two references to the same object.

An object with more than one reference has more than one rewveg say that the object
is aliased

If the aliased object is mutable, changes made with one affast the other:

>>> b[0] = 17
>>> print a
[17, 2, 3]

Although this behavior can be useful, it is error-prone. &neral, it is safer to avoid
aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as muich problem. In this example:

' banana"
' banana'

a
b

It almost never makes a difference whethemdb refer to the same string or not.

102 Chapter 8. Lists

8.12 Listarguments

When you pass a list to a function, the function gets a referém¢he list. If the function
modifies a list parameter, the caller sees the change. Forpealelete_head removes
the first element from a list:

def delete_head(t):
del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', '¢']
>>> delete_head(letters)

>>> print letters

['b e

The parameter and the variabldetters are aliases for the same object. The stack dia-
gram looks like this:

. list
__main__ letters —

™| 0—a
e R

2—=717

delete_head t

Since the list is shared by two frames, | drew it between them.

It is important to distinguish between operations that fydiits and operations that create
new lists. For example, trewpend method modifies a list, but theoperator creates a new
list:

>>> {1 = [1, 2]

>>> {2 = tl.append(3)
>>> print t1

[1, 2, 3]

>>> print t2

None

>>> 13 = t1 + [3]
>>> print t3

[1, 2, 3]

>>> 12 is 13
False

This difference is important when you write functions theg aupposed to modify lists.
For example, this functiodoes nodelete the head of a list:

8.13. Debugging 103

def bad_delete_head(t):
t = 1] # WRONG!

The slice operator creates a new list and the assignmentsha&éer to it, but none of that
has any effect on the list that was passed as an argument.

An alternative is to write a function that creates and retirmew list. For exampléail
returns all but the first element of a list:

def tail(t):
return t[1:]

This function leaves the original list unmodified. Here'sshibis used:

>>> letters = ['a', 'b', 'c¢']

>>> rest = tail(letters)

>>> print rest

[I bl , 1 Cl]

Exercise 8.1 Write a function callecthop that takes a list and modifies it, removing the

first and last elements, and retuiMme.

Then write a function calledhiddle that takes a list and returns a new list that contains all
but the first and last elements.

8.13 Debugging

Careless use of lists (and other mutable objects) can Idadgchours of debugging. Here
are some common pitfalls and ways to avoid them:

1. Don't forget that most list methods modify the argumerd agturnNone. This is
the opposite of the string methods, which return a new stimdyleave the original
alone.

If you are used to writing string code like this:
word = word.strip()

It is tempting to write list code like this:

t = t.sort() # WRONG!

Becausesort returnsNone, the next operation you perform withis likely to fail.

Before using list methods and operators, you should readidbamentation care-
fully and then test them in interactive mode. The methodsapetators that lists
share with other sequences (like strings) are documentiedsapython.org/lib/
typesseq.html . The methods and operators that only apply to mutable segsen
are documented dbcs.python.org/lib/typesseq-mutable.html .

104

Chapter 8. Lists

2. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many waysgd things. For
example, to remove an element from a list, you canpegeremove , del , or even a
slice assignment.

To add an element, you can use #ppend method or thet operator. But don't
forget that these are right:

t.append(x)
t=t+ [

And these are wrong:

t.append([x]) # WRONG!
t = t.append(x) # WRONG!
t + [# WRONG!
t=1t+x # WRONG!

Try out each of these examples in interactive mode to makeyaur understand what
they do. Notice that only the last one causes a runtime afreigther three are legal,
but they do the wrong thing.

. Make copies to avoid aliasing.

If you want to use a method likeort that modifies the argument, but you need to
keep the original list as well, you can make a copy.

orig = []
t.sort()

In this example you could also use the built-in functiamted , which returns a
new, sorted list and leaves the original alone. But in thaggeu should avoid using
sorted as a variable name!

. Lists,split , and files

When we read and parse files, there are many opportunitiesctuster input that
can crash our program so it is a good idea to revisitghardian pattern when
it comes writing programs that read through a file and look&dineedle in the
haystack”.

Lets revisit our program that is looking for the day of the weea the from lines of
our file.:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Since we are breaking this line into words, we could dispemik the use of
startswith and simply look at the first word of the line to determine if we &-
terested in the line at all. We can usmtinue to skip lines that don’t have “From”
as the first word as follows:

8.13. Debugging 105

fhand = open(' mbox-short.txt ')

for line in fhand:
words = line.split()
if words[0] != " From' : continue
print words[2]

This looks much simpler and we don’t even need to dorsti®@ to remove the
newline at the end of the file. But is it better?

python search8.py
Sat
Traceback (most recent call last):
File "search8.py", line 5, in <module>
if words[0] != " From' : continue
IndexError: list index out of range

It kind of works and we see the day from the first line (Sat) bettthe program fails
with a traceback error. What went wrong? What messed-up dasedaur elegant,
clever and very Pythonic program to fail?

You could stare at it for a long time and puzzle through it d¢ seameone for help,
but the quicker and smarter approach is to agdra statement. The best place to
add the print statement is right before the line where thgnam failed and print out
the data that seems to be causing the failure.

Now this approach may generate a lot of lines of output bugadtlyou will imme-
diately have some clue as to the problem at hand. So we addtaopthe variable
words right before line five. We even add a prefix “Debug:” to the Isewe can
keep our regular output separate from our debug output.

for line in fhand:
words = line.split()
print ' Debug: ', words
if words[0] != " From' : continue
print words[2]

When we run the program, a lot of output scrolls off the scragnabthe end, we
see our debug output and the traceback so we know what happesidoefore the

traceback.

Debug: [' X-DSPAM-Confidence: ', ' 0.8475 ']
Debug: [' X-DSPAM-Probability: ", '0.0000 ']
Debug: []

Traceback (most recent call last):
File "search9.py", line 6, in <module>
if words[0] != " From' : continue
IndexError: list index out of range

106 Chapter 8. Lists

Each debug line is printing the list of words which we get wiansplit the line
into words. When the program fails the list of words is enfpty If we open the file
in a text editor and look at the file, at that point it looks aléofws:

X-DSPAM-Result: Innocent

X-DSPAM-Processed: Sat Jan 5 09:14:16 2008
X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772

The error occurs when our program encounters a blank linecddfse there are
“zero words” on a blank line. Why didn’t we think of that when were writing the
code. When the code looks for the first woreb(d[0]) to check to see if it matches
“From”, we get an “index out of range” error.

This of course is the perfect place to add saynardian code to avoid checking the
first word if the first word is not there. There are many waysrtuigrct this code, we
will choose to check the number of words we have before we &idke first word:

fhand = open(' mbox-short.txt ')
count = 0
for line in fhand:
words = line.split()
print ' Debug: ', words
if len(words) == 0 : continue
if words[0] != " From' : continue
print words[2]

First we commented out the debug print statement insteaghadving it in case our
modification fails and we need to debug again. Then we added@@zn statement
that checks to see if we have zero words, and if so, weearggue to skip to the
next line in the file.

We can think of the twa@ontinue statements as helping us refine the set of lines
which are “interesting” to us and which we want to process esanore. A line
which has no words is “uninteresting” to us so we skip to the tiee. A line which
does not have “From” as its first word is uninteresting to us/sckip it.

The program as modified runs successfully so perhaps it iectorOur guardian
statement does make sure that treeds[0] will never fail, but perhaps it is not
enough. When we are programming, we must always be thinkitipat might go
wrong?”.

Exercise 8.2Figure out which line of the above program is still not prdper
guarded. See if you can construct a text file which causesrtigram to fail and
then modify the program so that the line is properly guardetitast it to make sure
it handles your new text file.

8.14. Glossary 107

Exercise 8.3 Rewrite the guardian code in the above example withoutiftwstate-
ments. Instead use a compound logical expression usingnthéogical operator
with a singleif statement.

8.14 Glossary

aliasing: A circumstance where two or more variables refer to the sanjecb
delimiter: A character or string used to indicate where a string shoelsidtit.
element: One of the values in a list (or other sequence), also cakenst
equivalent: Having the same value.

index: An integer value that indicates an element in a list.

identical: Being the same object (which implies equivalence).

list: A sequence of values.

list traversal: The sequential accessing of each element in a list.

nested list: A list that is an element of another list.

object: Something a variable can refer to. An object has a type antla.va

reference: The association between a variable and its value.

8.15 Exercises

Exercise 8.4 Download a copy of the file frormww.py4inf.com/code/romeo.txt

Write a program to open the fitemeo.txt and read it line by line. For each line, split the
line into a list of words using theplit function.

For each word, check to see if the word is already in a lishéfword is not in the list, add
it to the list.

When the program completes, sort and print the resulting svordlphabetical order.
Enter file: romeo.txt

["Arise ", "But', "It"', '"Juliet ', 'Whd, 'already ',
"and', 'breaks ', 'east', 'envious ', 'fair ', 'grief ',
"is', "kl ', "light ', "moon, 'pale', 'sick ', 'soft ',
"sun', 'the', 'through ', "what', ' window",

"with *, " yonder ']

108 Chapter 8. Lists

Exercise 8.5Write a program to read through the mail box data and when yalilifie
that starts with “From”, you will split the line into words gl thesplit ~ function. We are
interested in who sent the message which is the second wdtddtrom line.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

You will parse the From line and print out the second word fmrteFrom line and then you
will also count the number of From (not From:) lines and pduat a count at the end.

This is a sample good output with a few lines removed:

python fromcount.py

Enter a file name: mbox-short.txt
stephen.marquard@uct.ac.za
louis@media.berkeley.edu
zgian@umich.edu

[...some output removed...]

ray@media.berkeley.edu

cwen@iupui.edu

cwen@iupui.edu

cwen@iupui.edu

There were 27 lines in the file with From as the first word

Chapter 9

Dictionaries

A dictionary is like a list, but more general. In a list, the positions (@.kndices) have to
be integers; in a dictionary the indices can be (almost) ype.t

You can think of a dictionary as a mapping between a set of@dfwhich are callekieys)
and a set of values. Each key maps to a value. The associatidtey and a value is called
akey-value pair or sometimes aitem.

As an example, we'll build a dictionary that maps from Englis Spanish words, so the
keys and the values are all strings.

The functiondict creates a new dictionary with no items. Becadist is the name of a
built-in function, you should avoid using it as a variablenea

>>> eng2sp = dict()
>>> print eng2sp

{

The squiggly-bracketd} , represent an empty dictionary. To add items to the dictigna
you can use square brackets:

>>> eng2sp['one'] = ' uno'
This line creates an item that maps from the kag’ to the valué uno' . If we print the
dictionary again, we see a key-value pair with a colon betvitke key and value:

>>> print eng2sp
{*one': "uno'}

This output format is also an input format. For example, yan create a new dictionary
with three items:

>>> eng2sp = { ' one':

uno', '"two': 'dos', 'three ': 'tres '}

110 Chapter 9. Dictionaries

But if you printeng2sp , you might be surprised:

>>> print eng2sp
{*one': "uno', ' three

":'tres ', '"two': 'dos'}

The order of the key-value pairs is not the same. In fact, if fype the same example
on your computer, you might get a different result. In gehefee order of items in a
dictionary is unpredictable.

But that's not a problem because the elements of a dicticer@pever indexed with integer
indices. Instead, you use the keys to look up the correspgnailues:

>>> print eng2sp] ' two']
' dos

The key'two' always maps to the valualos' so the order of the items doesn’t matter.
If the key isn’t in the dictionary, you get an exception:

>>> print eng2sp[' four ']
KeyError: ' four

Thelen function works on dictionaries; it returns the number of keyue pairs:

>>> |en(eng2sp)
3

Thein operator works on dictionaries; it tells you whether sorimgttappears as keyin
the dictionary (appearing as a value is not good enough).

>>> 'one' in eng2sp
True
>>> 'uno' in eng2sp
False

To see whether something appears as a value in a dictionamycgn use the method
values , which returns the values as a list, and then uséntheperator:

>>> vals = eng2sp.values()
>>> 'uno' in vals
True

Thein operator uses different algorithms for lists and dictigegr For lists, it uses a
search algorithm, as in Section 6.6. As the list gets lorthersearch time gets longer in
direct proportion. For dictionaries, Python uses an atoricalled ehashtablethat has a
remarkable property; the operator takes about the same amount of time no matter how
many items there are in a dictionary. | won’t explain why hésfrctions are so magical,
but you can read more about itwikipedia.org/wiki/Hash_table

9.1. Dictionary as a set of counters 111

Exercise 9.1 Write a function that reads the wordswiords.txt ~ and stores them as keys
in a dictionary. It doesn’t matter what the values are. Thaemgan use th& operator as
a fast way to check whether a string is in the dictionary.

9.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how mamgsteach letter appears.
There are several ways you could do it:

1. You could create 26 variables, one for each letter of thleaddet. Then you could tra-
verse the string and, for each character, increment thesonding counter, proba-
bly using a chained conditional.

2. You could create a list with 26 elements. Then you couldredreach character to
a number (using the built-in functioord), use the number as an index into the list,
and increment the appropriate counter.

3. You could create a dictionary with characters as keys auodters as the correspond-
ing values. The firsttime you see a character, you would adtéierto the dictionary.
After that you would increment the value of an existing item.

Each of these options performs the same computation, bhtafabem implements that
computation in a different way.

An implementation is a way of performing a computation; some implementatiomrs a
better than others. For example, an advantage of the disfamplementation is that we
don't have to know ahead of time which letters appear in thagtnd we only have to
make room for the letters that do appear.

Here is what the code might look like:

def histogram(s):

d = dict()
for ¢ in s:
if ¢ not in d:
dc] = 1
else:
dic] = dc] + 1
return d

The name of the function isistogram, which is a statistical term for a set of counters (or
frequencies).

The first line of the function creates an empty dictionarye™h loop traverses the string.
Each time through the loop, if the charaatds not in the dictionary, we create a new item
with key ¢ and the initial value 1 (since we have seen this letter orite)is already in the
dictionary we incremerd|c] .

112 Chapter 9. Dictionaries

Here’s how it works:

>>> h = histogram(' brontosaurus ')
>>> print h
{*a’: 1, 'b':1 '0:2 ‘'n:1, "'s':2; ‘'r':2 ‘'u:2 "'t':1}

The histogram indicates that the lett&’'s and' b' appear once;o0' appears twice, and
so on.

Exercise 9.2 Dictionaries have a method callget that takes a key and a default value. If
the key appears in the dictionaggt returns the corresponding value; otherwise it returns
the default value. For example:

>>> h = histogram(
>>> print h

{+a': 1}

>>> hget('a', 0)
1

>>> hget('b', 0)
0

a')

Useget to write histogram more concisely. You should be able to eliminateithestate-
ment.

9.2 Dictionaries and files

One of the common uses of a dictionary is to count the occoeresf words in
a file with some written text. Lets start with a very simple fié words taken
from the text ofRomeo and Juliethanks tohttp://shakespeare.mit.edu/Tragedy/
romeoandjuliet/romeo_juliet.2.2.html

For the first set of examples, we will use a shortened and Higgplrersion of the text with
no punctuation. Later we will work with the text of the scenigwpunctuation included.

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

We will write a Python program to read through the lines of fitee break each line into
a list of words, and then loop through each of the words inities land count each word
using a dictionary.

You will see that we have twéor loops. The outer loop is reading the lines of the file
and the inner loop is iterating through each of the words anplrticular line. This is an
example of a pattern callatested loopshecause one of the loops is theterloop and the
other loop is thenner loop.

9.3. Looping and dictionaries 113

Because the inner loop executes all of its iterations eawh tihe outer loop makes a single
iteration, we think of the inner loop as iterating “more ddy¢ and the outer loop as
iterating more slowly.

The combination of the two nested loops ensures that we wilhtevery word on every
line of the input file.

frame = raw_input(' Enter the file name: ")
try:
fhand = open(fname)
except:
print ' File cannot be opened: ', fname
exit()

counts = dict()
for line in fhand:
words = line.split()
for word in words:
if word not in counts:
countsfword] = 1
else:
countsfword] += 1

print counts

When we run the program, we see a raw dump of all of the countasarted hash order.
(theromeo.txt file is available atvww.py4inf.com/code/romeo.txt)

python countl.py

Enter the file name: romeo.txt

{*and': 3, ‘'envious ': 1, ‘already ': 1, ‘'fair ': 1,
"is':3, ‘'through ': 1, ‘'pale': 1 ‘'yonder': 1,
"what': 1, 'sun':2, 'Whd: 1, 'But':1, ‘'moon: 1,
"window': 1, 'sick ': 1, ‘'east': 1 'breaks ': 1,

"grief ': 1, "with':1, ‘light *:1, "It"':1, *Arise ': 1,
"kill ' 1, 'the': 3, ‘'soft ':1, "Juliet ': 1}

It is a bit inconvenient to look through the dictionary to fithee most common words and
their counts, so we need to add some more Python code to geé witput that will be
more helpful.

9.3 Looping and dictionaries

If you use a dictionary as the sequence ifora statement, it traverses the keys of the
dictionary. For exampleyrint_hist prints each key and the corresponding value:

114 Chapter 9. Dictionaries

def print_hist(h):
for ¢ in h:
print ¢, h[c]

Here’s what the output looks like:
>>> h = histogram(' parrot ')

>>> print_hist(h)
al

p
r
t
0

= PN

Again, the keys are in no particular order.

If you want to print the keys in alphabetical order, you firsitka a list of the keys in the
dictionary using thé&eys method available in dictionary objects, and then sort isathd
loop through the sorted list, looking up each key printinglay/value pairs in sorted order
as follows as follows:

def print_sorted_hist(h):

Ist = h.keys()

Ist.sort()

for ¢ in Ist:
print ¢, h[c]

Here’s what the output looks like:
>>> h = histogram(' parrot ')

>>> print_sorted_hist(h)
al

0
p1l
r2
t1

So now the keys are in alphabetical order.

9.4 Advanced text parsing

In the above example using the filameo.txt , we made the file as simple as possible by
removing any and all punctuation by hand. The real text hssdbpunctuation as shown
below:

9.4. Advanced text parsing 115

But, soft! what light through yonder window breaks?
It is the east, and Juliet is the sun.

Arise, fair sun, and kill the envious moon,

Who is already sick and pale with grief,

Since the Pythosplit function looks for spaces and treats words as tokens sepangt
spaces, we would treat the words “soft!” and “soft’differentwords and create a separate
dictionary entry for each word.

Also since the file has capitalization, we would treat “whaddWho” as different words
with different counts.

We can solve both these problems by using the string metbads , punctuation , and
translate . Thetranslate is the most subtle of the methods. Here is the documentation
for translate

string.translate(s, table[, deletechars])

Delete all characters from s that are in deletechars (if pr@3, and then translate the
characters using table, which must be a 256-character gtgiving the translation for
each character value, indexed by its ordinal. If table is Bothen only the character
deletion step is performed.

We will not specify thetable but we will use thedeletechars ~ parameter to delete all
of the punctuation. We will even let Python tell us the listcbfaracters that it considers
“punctuation”:

>>> import string
>>> string.punctuation
"IHS%EN ()4, [<=>2@0N] Yy

We make the following modifications to our program:

import string # New Code
fname = raw_input(' Enter the file name: ")
try:
fhand = open(fname)
except:
print ' File cannot be opened: ', fname
exit()

counts = dict()

for line in fhand:
line = line.translate(None, string.punctuation) # New Cod e
line = line.lower() # New Code
words = line.split()
for word in words:

116 Chapter 9. Dictionaries

if word not in counts:
countsfword] = 1
else:
countsfword] += 1

print counts

We usetranslate to remove all punctuation andwer to force the line to lowercase.
Otherwise the program is unchanged. Note for Python 2.5 arligetranslate does not
acceptNone as the first parameter so use this code for the translate call:

print a.translate(string.maketrans(,), string.punctuation

Part of learning the “Art of Python” or “Thinking Pythonidgl is realizing that Python
often has built-in capabilities for many common data-asialyproblems. Over time, you
will see enough example code and read enough of the docutioenta know where to
look to see if someone has already written something thaemgéur job much easier.

The following is an abbreviated version of the output:

Enter the file name: romeo-full.txt

{"swearst ': 1, ‘'all ':6, 'afeard ': 1, 'leave ': 2, 'these': 2,
"kinsmen ': 2, ‘what': 11, ‘thinkst ': 1, ‘'love ': 24, ‘cloak ': 1,
a': 24, ‘'orchard ': 2, ‘'light ':5 ‘'lovers ': 2, 'romeo': 40,
"maiden’ : 1, ' whiteupturned ': 1, 'juliet ': 32, ‘'gentleman ': 1,

“it ' 22, ‘'leans ': 1, ‘canst': 1, ‘having ':1, ..}

Looking through this output is still unwieldy and we can usgh®n to gives us exactly
what we are looking for, but to do so, we need to learn abouidhuples. We will pick
up this example once we learn about tuples.

9.5 Debugging

As you work with bigger datasets it can become unwieldy taidely printing and check-
ing data by hand. Here are some suggestions for debuggupg datasets:

Scale down the input: If possible, reduce the size of the dataset. For exampleiptb-
gram reads a text file, start with just the first 10 lines, ohwiite smallest example
you can find. You can either edit the files themselves, orébattodify the program
so it reads only the first lines.

If there is an error, you can reduaeo the smallest value that manifests the error,
and then increase it gradually as you find and correct errors.

Check summaries and types:Instead of printing and checking the entire dataset, con-
sider printing summaries of the data: for example, the nurobigems in a dictionary
or the total of a list of numbers.

9.6. Glossary 117

A common cause of runtime errors is a value that is not the tygte. For debugging
this kind of error, it is often enough to print the type of aual

Write self-checks: Sometimes you can write code to check for errors autométidabr
example, if you are computing the average of a list of numbyensg could check that
the result is not greater than the largest element in thedikss than the smallest.
This is called a “sanity check” because it detects resudtsdre “insane.”

Another kind of check compares the results of two differerhputations to see if
they are consistent. This is called a “consistency check.”

Pretty print the output: Formatting debugging output can make it easier to spot am.err

Again, time you spend building scaffolding can reduce theetiyou spend debugging.

9.6 Glossary

dictionary: A mapping from a set of keys to their corresponding values.
hashtable: The algorithm used to implement Python dictionaries.

hash function: A function used by a hashtable to compute the location forya ke
histogram: A set of counters.

implementation: A way of performing a computation.

item: Another name for a key-value pair.

key: An object that appears in a dictionary as the first part of auadye pair.
key-value pair: The representation of the mapping from a key to a value.
lookup: A dictionary operation that takes a key and finds the cornedipg value.

nested loops: When there is one or more loops “inside” of another loop. Teiroop
runs to completion each time the outer loop runs once.

value: An object that appears in a dictionary as the second part efyavéllue pair. This
is more specific than our previous use of the word “value.”

9.7 Exercises

Exercise 9.3Write a program that categorizes each mail message by whiglofitne
week the commit was done. To do this look for lines which stath “From”, then look
for the third word and then keep a running count of each of tesaf the week. At the
end of the program print out the contents of your dictionarglér does not matter).

118 Chapter 9. Dictionaries

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Sample Execution:

python dow.py

Enter a file name: mbox-short.txt
{*Fri ":20, 'Thu':6 "'Sat': 1}

Exercise 9.4 Write a program to read through a mail log, and figure out whothadnost
messages in the file. The program looks for “From” lines akégsahe second parameter
on those lines as the person who sent the mail.

The program creates a Python dictionary that maps the seiadieiress to the total number
of messages for that person.

After all the data has been read the program looks througtitienary using a maximum
loop (see Section 5.7.2) to find who has the most messagesoanthhny messages the
person has.

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zgian@umich.edu 195

Exercise 9.5 This program records the domain name (instead of the addndege the
message was sent from instead of who the mail came fromlifeenhole e-mail address).
At the end of the program print out the contents of your diticy.

python schoolcount.py

Enter a file name: mbox-short.txt

{' media.berkeley.edu ': 4, ‘'wuctacza ': 6, 'umichedu ': 7,
' gmail.com ': 1, ' caretcam.acuk ': 1, ‘'jupuiedu ': 8}

Chapter 10

Tuples

10.1 Tuples are immutable

Atuple is a sequence of values much like a list. The valugsdto a tuple can be any type,
and they are indexed by integers. The important differeadhat tuples areanmutable.
Tuples are alseomparable andhashableso we can sort lists of them and use tuples as
key values in Python dictionaries.

Syntactically, a tuple is a comma-separated list of values:

>>t="a,'b, 'c,"'d, e

Although it is not necessary, it is common to enclose tuptepdarentheses to help use
quickly identify tuples when we look at Python code:

>>t=('a, 'b, 'c, 'd, 'e)

To create a tuple with a single element, you have to includditial comma:
>>>tl=('a",)

>>> type(tl)
<type 'tuple '>

Without the comma Python tredtsa') as an expression with a string in parentheses that
evaluates to a string:

>>12=("'a")
>>> type(t2)
<type ‘'str '>

Another way to construct a tuple is the built-in functiaple . With no argument, it creates
an empty tuple:

120 Chapter 10. Tuples

>>> t = tuple()
>>> print t

0

If the argument is a sequence (string, list or tuple), thalted the call totuple is a tuple
with the elements of the sequence:

>>> t = tuple(' lupins ')
>>> print t
("1, tuy, tpt, i, 'Rt s

Becausduple is the name of a constructor, you should avoid using it asialarname.
Most list operators also work on tuples. The bracket operattexes an element:

>>>t=("'a
>>> print t[0]
'a

, by otet, td, et

And the slice operator selects a range of elements.

>>> print {[1:3]

(‘b e

But if you try to modify one of the elements of the tuple, you ge error:

>>> {0 = A
TypeError: object doesn "'t support item assignment

You can’t modify the elements of a tuple, but you can replawetople with another:

>>t=("A) + 1]
>>> print t
("A, "b, tc, "d, "e)

10.2 Comparing tuples

The comparison operators work with tuples and other se@semython starts by compar-
ing the first element from each sequence. If they are equgdeis on to the next element,
and so on, until it finds elements that differ. Subsequemhefds are not considered (even
if they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)
True

10.3. Tuple assignment 121

Thesort function works the same way. It sorts primarily by first eleméut in the case
of a tie, it sorts by second element, and so on.

This feature lends itself to a pattern calle&U for

Decorate a sequence by building a list of tuples with one or more sors kgeceding the
elements from the sequence,

Sort the list of tuples uring the Python built-sort , and

Undecorate by extracting the sorted elements of the sequence.

For example, suppose you have a list of words and you wantrtarsam from longest to
shortest:

def sort_by_length(words):
t = list()
for word in words:
t.append((len(word), word))

t.sort(reverse=True)

res = list()

for length, word in t:
res.append(word)

return res

The first loop builds a list of tuples, where each tuple is adymeceded by its length.

sort compares the first element, length, first, and only consitterssecond element to
break ties. The keyword argumenterse=True tellssort to go in decreasing order.

The second loop traverses the list of tuples and builds afligtords in descending order
of length.

10.3 Tuple assignment

One of the unique syntactic features of the Python langusagfeei ability to have a tuple
on the left hand side of an assignment statement. This aljowdo assign more than one
variable at a time when the left hand side is a sequence.

In this example we have a two element list (which is a seqUesmte assign the first and
second elements of the sequence to the variabtggly in a single statement.

>>>m = [' have',
>>> X, Yy = m
>>> X

fun']

122 Chapter 10. Tuples

" have'
>>> y
' fun
>>>

It is not magic, Pythomoughlytranslates the tuple assignment syntax to be the following:

>>>m = [' have',
>>> x = m[0]

>>> y = m[l]

>>> X

" have'

>>>y

" fun
>>>

fun']

Stylistically when we use a tuple on the left hand side of g#@gnment statement, we omit
the parentheses, but the following is an equally valid synta

>>>m = "have', 'fun']
>>> (X, y) = m

>>> X

' have'

>>> y

' fun
>>>

A particularly clever application of tuple assignment aifous toswapthe values of two
variables in a single statement:

>>>a, b=Db a

Both sides of this statement are tuples, but the left sidetigke of variables; the right
side is a tuple of expressions. Each value on the right sidessfgned to its respective
variable on the left side. All the expressions on the rigtiesire evaluated before any of
the assignments.

The number of variables on the left and the number of valuethemight have to be the
same:

>>>a, b=1 23
ValueError: too many values to unpack

More generally, the right side can be any kind of sequenaandgstlist or tuple). For
example, to split an email address into a user name and a dpyaai could write:

1python does not translate the syntax literally. For exanfplei try this with a dictionary it will not work as
might expect.

10.4. Dictionaries and tuples 123

>>> addr = ' monty@python.org
>>> uname, domain = addr.split('@)

The return value fronsplit is a list with two elements; the first element is assigned to
uname, the second tdomain .

>>> print uname
monty

>>> print domain
python.org

10.4 Dictionaries and tuples

Dictionaries have a method calléeims that returns a list of tuples, where each tuple is a
key-value paif.

>>>d={"a:10, 'b':1, 'c':22}

>>> t = d.items()

>>> print t
[(*a', 10), ('c', 22, ('"b', 1)

As you should expect from a dictionary, the items are in néi@aar order.

However, since the list of tuples is a list, and tuples arepanaible, we can now sort the list
of tuples. Converting a dictionary to a list of tuples is a Vi@yus to output the contents of
a dictionary sorted by key:

>>>d={"a:10, 'b':l, ‘'c':22}
>>> t = d.items()

>>>

(("a', 10), ("¢, 22), ("b", 1)
>>> t.sort()

>>> t

(("a", 10, ("b", 1), ("c', 22)]

The new list is sorted in ascending alphabetical order bkéyevalue.

10.5 Multiple assignment with dictionaries

Combiningitems , tuple assignment arfdr , you can see a nhice code pattern for traversing
the keys and values of a dictionary in a single loop:

for key, val in d.items():
print val, key

2This behavior is slightly different in Python 3.0.

124 Chapter 10. Tuples

This loop has twateration variables becauséems returns a list of tuples arly, val
is a tuple assignment that successively iterates through efathe key/value pairs in the
dictionary.

For each iteration through the loop, bédy andvalue are advanced to the next key/value
pair in the dictionary (still in hash order).

The output of this loop is:

= NN O
o O o

Again in hash key order (i.e. no particular order).

If we combine these two techniques, we can print out the cdsitaf a dictionary sorted by
thevaluestored in each key/value pair.

To do this, we first make a list of tuples where each tupl@akie, key) . Theitems
method would give us a list ¢key, value) tuples—but this time we want to sort by value
not key. Once we have constructed the list with the valuetipies, it is a simple matter
to sort the list in reverse order and print out the new, sdistd

>>>d={"a:10, 'b":1, 'c':22

>>> | = list()

>>> for key, val in d.items() :
l.append((val, key))

>>> |

(@, *a"), (22, ‘c'), (1, b))

>>> |.sort(reverse=True)

>>> |

(22, "c) (10, "a') (L, b))

>>>

By hand-constructing the list of tuples to have the valuehaditst element of each tuple,
we can sort the list of tuples and get our dictionary contsatted by value.

10.6 The most common words

Coming back to our running example of the text fr&@@meo and Juliefct 2, Scene 2, we
can augment our program to use this technique to print thentesst common words in the
text as follows:

import string
fhand = open(' romeo-full.txt ")
counts = dict()

10.6. The most common words 125

for line in fhand:
line = line.translate(None, string.punctuation)
line = line.lower()
words = line.split()
for word in words:
if word not in counts:
countsfword] = 1
else:
countsfword] += 1

Sort the dictionary by value

Ist = list()

for key, val in counts.items():
Ist.append((val, key))

Ist.sort(reverse=True)

for key, val in Ist[:10] :
print key, val

The first part of the program which reads the file and computeslictionary that maps
each word to the count of words in the document is unchangad.ifBtead of simply

printing outcounts and ending the program, we construct a lisfvaf, key) tuples and

then sort the list in reverse order.

Since the value is first, it will be used for the comparisond ithere is more than one
tuple with the same value, it will look at the second elemémd key) so tuples where the
value is the same will be further sorted by the alphabetimdgioof the key.

At the end we write a nicéor loop which does a multiple assignment iteration andtprin
out the ten most common words by iterating through a slicaefist (st[:10]).

So now the output finally looks like what we want for our wordduency analysis.

61 i

42 and
40 romeo
34 to

34 the
32 thou
32 juliet
30 that
29 my
24 thee

The fact that this relatively complex data parsing and aislgan be done with a relatively
easy-to-understand 19 line Python program is one reasorPytinon is a good choice as a

126 Chapter 10. Tuples

language for exploring information.

10.7 Using tuples as keys in dictionaries

Because tuples al@mshableand lists are not, if we want to create@ampositekey to use
in a dictionary we must use a tuple as the key.

We would encounter a composite key if we wanted to createephelne directory that maps
from last-name, first-name pairs to telephone numbers. rAggythat we have defined the
variableslast , first andnumber, we could write a dictionary assignment statement as
follows:

directory[last,firstf = number

The expression in brackets is a tuple. We could use tuplgrassnt in afor loop to
traverse this dictionary.

for last, first in directory:
print first, last, directory[last,first]

This loop traverses the keys directory , which are tuples. It assigns the elements of
each tuple tdast andfirst , then prints the name and corresponding telephone number.

There are two ways to represent tuples in a state diagram. nidre detailed version
shows the indices and elements just as they appear in a list. eXample, the tuple
(' Cleese ', 'John') would appear:

tuple

0 —= ’Cleese’

1 ——= 'John’

But in a larger diagram you might want to leave out the det&its example, a diagram of
the telephone directory might appear:

dict

('Cleese’, 'John’) —= ’'08700 100 222’
(Chapman’, 'Graham’) —= '08700 100 222’
(ldle’, 'Eric’) —= '08700 100 222’

(Gilliam’, 'Terry’) —= 08700 100 222’
("Jones’, 'Terry’) —= '08700 100 222’
('Palin’, '"Michael’) — 08700 100 222’

10.8. Sequences: strings, lists, and tuples—Oh My! 127

Here the tuples are shown using Python syntax as a graphimdhand.

The telephone number in the diagram is the complaints lin¢ghi® BBC, so please don’t
call it.

10.8 Sequences: strings, lists, and tuples—Oh My!

I have focused on lists of tuples, but almost all of the examjh this chapter also work
with lists of lists, tuples of tuples, and tuples of lists. a&eid enumerating the possible
combinations, it is sometimes easier to talk about sequarfcgequences.

In many contexts, the different kinds of sequences (strigs and tuples) can be used
interchangeably. So how and why do you choose one over tlees®th

To start with the obvious, strings are more limited than pdexuences because the ele-
ments have to be characters. They are also immutable. Ifged the ability to change the
characters in a string (as opposed to creating a hew stging)might want to use a list of
characters instead.

Lists are more common than tuples, mostly because they aa@biau But there are a few
cases where you might prefer tuples:

1. Insome contexts, likeraturn ~ statement, it is syntactically simpler to create a tuple
than a list. In other contexts, you might prefer a list.

2. If you want to use a sequence as a dictionary key, you havsetan immutable type
like a tuple or string.

3. If you are passing a sequence as an argument to a funcsiog, tuples reduces the
potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methdds dort and reverse ,

which modify existing lists. However Python provides thélteim functionssorted and
reversed , which take any sequence as a parameter and return a newitlisthe& same
elements in a different order.

10.9 Debugging

Lists, dictionaries and tuples are known genericallydat structures; in this chapter

we are starting to see compound data structures, like lidigptes, and dictionaries that
contain tuples as keys and lists as values. Compound dat@wsts are useful, but they
are prone to what | calhape errors that is, errors caused when a data structure has the
wrong type, size or composition or perhaps you write some godl forget the shape of
your data and introduce an error.

128 Chapter 10. Tuples

For example, if you are expecting a list with one integer agiyé¢ you a plain old integer
(notin a list), it won't work.

When you are debugging a program, and especially if you arkimgpon a hard bug, there
are four things to try:

reading: Examine your code, read it back to yourself, and check thsays what you
meant to say.

running: Experiment by making changes and running different vessi@ften if you dis-
play the right thing at the right place in the program, thebjgon becomes obvious,
but sometimes you have to spend some time to build scaffpldin

ruminating: Take some time to think! What kind of error is it: syntax, ramgi, semantic?
What information can you get from the error messages, or fitwenoutput of the
program? What kind of error could cause the problem you'rng@eWhat did you
change last, before the problem appeared?

retreating: At some point, the best thing to do is back off, undoing recw@inges, until
you get back to a program that works and that you understahdn You can start
rebuilding.

Beginning programmers sometimes get stuck on one of theéisé@ias and forget the oth-
ers. Each activity comes with its own failure mode.

For example, reading your code might help if the problem ygpagraphical error, but not if
the problem is a conceptual misunderstanding. If you damdeustand what your program
does, you can read it 100 times and never see the error, lgettauerror is in your head.

Running experiments can help, especially if you run smathpte tests. But if you run

experiments without thinking or reading your code, you nifgll into a pattern | call

“random walk programming,” which is the process of makingdam changes until the
program does the right thing. Needless to say, random walgramming can take a long
time.

You have to take time to think. Debugging is like an experitabscience. You should have
at least one hypothesis about what the problem is. If therénar or more possibilities, try
to think of a test that would eliminate one of them.

Taking a break helps with the thinking. So does talking. léyaxplain the problem to
someone else (or even yourself), you will sometimes find thewar before you finish
asking the question.

But even the best debugging techniques will fail if theretatemany errors, or if the code
you are trying to fix is too big and complicated. Sometimesltast option is to retreat,
simplifying the program until you get to something that weodad that you understand.

Beginning programmers are often reluctant to retreat tsrthey can't stand to delete a
line of code (even if it's wrong). If it makes you feel betteopy your program into another

10.10. Glossary 129

file before you start stripping it down. Then you can pastepikees back in a little bit at a
time.

Finding a hard bug requires reading, running, ruminating, ometimes retreating. If you
get stuck on one of these activities, try the others.

10.10 Glossary

comparable: A type where one value can be checked to see if it is greatar tbss than
or equal to another value of the same type. Types which argarable can be put
in a list and sorted.

data structure: A collection of related values, often organized in listgtidinaries, tuples,
etc.

DSU: Abbreviation of “decorate-sort-undecorate,” a patteat thvolves building a list of
tuples, sorting, and extracting part of the result.

gather: The operation of assembling a variable-length argumee tup

hashable: A type that has a hash function. Immutable types like integyats and strings
are hashable; mutable types like lists and dictionariesate

scatter: The operation of treating a sequence as a list of arguments.

shape (of a data structure): A summary of the type, size and composition of a data struc-
ture.

singleton: A list (or other sequence) with a single element.
tuple: An immutable sequence of elements.

tuple assignment: An assignment with a sequence on the right side and a tupkeriables
on the left. The right side is evaluated and then its elemargsassigned to the
variables on the left.

10.11 Exercises

Exercise 10.1Revise a previous program as follows: Read and parse thetHnoes and
pull out the addresses from the line. Count the number of agessfrom each person using
a dictionary.

After all the data has been read print the person with the swamits by creating a list of
(count, email) tuples from the dictionary and then sortimgltst in reverse order and print
out the person who has the most commits.

130 Chapter 10. Tuples

Sample Line:
From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Enter a file name: mbox-short.txt
cwen@iupui.edu 5

Enter a file name: mbox.txt
zgian@umich.edu 195

Exercise 10.2This program counts the distribution of the hour of the dayefach of the
messages. You can pull the hour from the “From” line by findimg time string and then
splitting that string into parts using the colon charact@nce you have accumulated the
counts for each hour, print out the counts, one per linegddsy hour as shown below.

Sample Execution;

python timeofday.py

Enter a file name: mbox-short.txt
04 3

06
07
09
10
11
14
15
16
17
18
19

P RPNPRANPEPOOOWONRE R

Exercise 10.3Write a function callednost frequent that takes a string and prints the
letters in decreasing order of frequency. Find text sanfptes several different languages
and see how letter frequency varies between languages. &empur results with the
tables atvikipedia.org/wiki/Letter_frequencies

Chapter 11

Automating common tasks on
your computer

Up to now, we have focused on writing programs that read tkeeidaa single file. Python
can also read data from a network, database, or even loolghrall the folders on your
computer.

In this chapter, we will write programs that scan scan thhoygur computer and perform
some operation on each file. Files are organized into direst¢also called “folders”).
Simple Python scripts can make short work of simple taskisrttust be done to hundreds
or thousands of files spread across a directory tree or ydine @omputer.

To walk through all the directories and files in a tree weasswalk and afor loop. This
is similar to howopen allows us to write a loop to read the contents of a fibeket allows
us to write a loop to read the contents of a network connectéiodurlib allows us to
open a web document and loop through its contents.

11.1 File names and paths

Every running program has a “current directory,” which ie tefault directory for most
operations. For example, when you open a file for readindyd®piooks for it in the current
directory.

The os module provides functions for working with files and direts (s stands for
“operating system”)os.getcwd returns the name of the current directory:

>>> import 0s
>>> cwd = os.getewd()
>>> print cwd
/home/dinsdale

132 Chapter 11. Automating common tasks on your computer

cwd stands focurrent working directory . The result in this example Isome/dinsdale
which is the home directory of a user nantitbdale

A string like cwd that identifies a file is called a path.rélative path starts from the current
directory; anabsolute pathstarts from the topmost directory in the file system.

The paths we have seen so far are simple file names, so theglatige to the current
directory. To find the absolute path to a file, you canassgath.abspath

>>> 0s.path.abspath(" memo.txt ')
' [home/dinsdale/memo.txt '

0s.path.exists checks whether a file or directory exists:

>>> 0s.path.exists(" memo.txt ')

True

If it exists, os.path.isdir checks whether it's a directory:
>>> 0s.path.isdir(' memo.txt ')

False

>>> 0s.path.isdir(' music ')

True

Similarly, os.path.isfile checks whether it's a file.

os.listdir returns a list of the files (and other directories) in the gid@ectory:

>>> os.listdir(cwd)
[" music', 'photos ', ' memo.txt ']

11.2 Example: Cleaning up a photo directory

Some time ago, | built a bit of Flickr-like software that ra@s photos from my cellphone
and stored those photos on my server. | wrote this beforé&réixisted and kept using it
after Flickr existed because | wanted to keep original copfany images forever.

| would also send a simple one-line text description in the 8Message or the subject
line of the E-Mail message. | stored these messages in alext the same directory as
the image file. | came up with a directory structure based emtbnth, year, day and time
the photo was taken. The following would be an example of tiraing for one photo and
its existing description:

/2006/03/24-03-06_2018002.jpg
/2006/03/24-03-06_2018002.txt

11.2. Example: Cleaning up a photo directory 133

After seven years, | had a lot of photos and captions. Oveydlaes as | switched cell
phones, sometimes my code to extract the caption from theageswvould break and add
a bunch of useless data on my server instead of a caption.

| wanted to go through these files and figure out which of thefikes were really captions
and which were junk and then delete the bad files. The firsgttardo was to get a simple
inventory of how many text files | had in of the sub-foldersngsihe following program:

import os
count = 0
for (dirname, dirs, files) in os.walk(B
for filename in files:
if filename.endswith(ixt ')
count = count + 1

print ' Files: ', count
python txtcount.py
Files: 1917

The key bit of code that makes this possible is dbavalk library in Python. When we
call os.walk and give it a starting directory, it will “walk” through allfahe directories
and sub-directories recursively. The string “.” indicatiestart in the current directory and
walk downward. As it encounters each directory, we get thiediges in a tuple in the body
of thefor loop. The first value is the current directory name, the sda@tue is the list
of sub-directories in the current directory, and the thiatlre is a list of files in the current

directory.

We do not have to explicitly look into each of the sub-direigte because we can count on
os.walk to visit every folder eventually. But we do want to look at lkedite, so we write

a simplefor loop to examine each of the files in the current directory. Weck each file
to see if it ends with “.txt” and then count the number of filesough the whole directory
tree that end with the suffix “.txt".

Once we have a sense of how many files end with “.txt", the neixigtto do is try to
automatically determine in Python which files are bad andctvifiiles are good. So we
write a simple program to print out the files and the size ohdde:

import 0s
from os.path import join
for (dirname, dirs, files) in os.walk(L)
for filename in files:
if filename.endswith(xt ')
thefile = os.path.join(dirnamefilename)
print os.path.getsize(thefile), thefile

Now instead of just counting the files, we create a file namedmgatenating the directory
name with the name of the file within the directory usasgath.join . Itis important to

134 Chapter 11. Automating common tasks on your computer

useos.path.join instead of string concatenation because on Windows we usekallash

(\) to construct file paths and on Linux or Apple we use a forwéadhs() to construct file
paths. Thes.path.join knows these differences and knows what system we are running
on and it does the proper concatenation depending on thensySio the same Python code
runs on either Windows or UNIX-style systems.

Once we have the full file name with directory path, we useothgath.getsize utility
to get the size and print it out, producing the following auttp

python txtsize.py

18 ./2006/03/24-03-06_2303002.txt
22 ./2006/03/25-03-06_1340001.txt
22 ./2006/03/25-03-06_2034001.txt

2565 ./2005/09/28-09-05_1043004.txt
2565 ./2005/09/28-09-05_1141002.txt

2578 ./2006/03/27-03-06_1618001.txt
2578 ./2006/03/28-03-06_2109001.txt
2578 ./2006/03/29-03-06_1355001.txt

Scanning the output, we notice that some files are prettyt ahdra lot of the files are pretty
large and the same size (2578 and 2565). When we take a lookwataf these larger files
by hand, it looks like the large files are nothing but a genbitiof identical HTML that
came in from mail sent to my system from my T-Mobile phone:

<html>
<head>
<title>T-Mobile</title>

Skimming through the file, it looks like there is no good infation in these files so we
can probably delete them.

But before we delete the files, we will write a program to lookfiles that are more than
one line long and show the contents of the file. But let's ndhboshowing ourselves those
files that are exactly 2578 or 2565 characters long since we khat these files have no
useful information.

So we write the following program:

import 0s

from os.path import join

for (dirname, dirs, files) in os.walk(L)
for filename in files:

11.2. Example: Cleaning up a photo directory 135

if filename.endswith(txt ')
thefile = os.path.join(dirnamefilename)
size = os.path.getsize(thefile)
if size == 2578 or size == 2565:

continue
fhand = open(thefile, r')
lines = list()

for line in fhand:
lines.append(line)

fhand.close()

if len(lines) > 1.
print len(lines), thefile
print lines[:4]

We use aontinue to skip files with the two “bad sizes”, then open the rest offiles and
read the lines of the file into a Python list and if the file hagertban one line we print out
how many lines are in the file and print out the first three lines

It looks like filtering out those two bad file sizes, and asswgrthat all one-line files are
correct, we are down to some pretty clean data:

python txtcheck.py

3 ./2004/03/22-03-04_2015.txt

[' Little horse rider\fin B 1 B

2 ./2004/11/30-11-04_1834001.txt

[' Testing 123\n ', "\n']

3 ./2007/09/15-09-07_074202_03.txt

[*\Wn ", "\dn ', " Sent from my iPhone\rin "]
3 ./2007/09/19-09-07_124857_01.txt

[*\n ", "\\n ', " Sent from my iPhone\rin "]
3 ./2007/09/20-09-07_115617_01.txt

But there is one more annoying pattern of files: there are sbmee-line files that consist
of two blank lines followed by a line that says “Sent from mydpe” that have slipped
into my data. So we make the following change to the progradetd with these files as
well.

lines = list()
for line in fhand:
lines.append(line)
if len(lines) == 3 and lines[2].startswith(' Sent from my iPhone
continue
if len(lines) > 1
print len(lines), thefile
print lines[:4]

136 Chapter 11. Automating common tasks on your computer

We simply check if we have a three-line file, and if the thimklistarts with the specified
text, we skip it.

Now when we run the program, we only see four remaining niimiéfiles and all of those
files look pretty reasonable:

python txtcheck2.py

3 ./2004/03/22-03-04_2015.txt

[' Little horse rider\fin B 11 B
2 ./2004/11/30-11-04_1834001.txt

[' Testing 123\n ', "\n"]

2 ./2006/03/17-03-06_1806001.txt

[' On the road again..\r\n ", "\in]

2 .12006/03/24-03-06_1740001.txt

[' On the road again...\r\n o'\]

If you look at the overall pattern of this program, we havecassively refined how we
accept or reject files and once we found a pattern that was thadsedcontinue to skip
the bad files so we could refine our code to find more file pattiiatsvere bad.

Now we are getting ready to delete the files, so we are goingptth logic and instead of
printing out the remaining good files, we will print out theatt files that we are about to
delete.

import 0s
from os.path import join
for (dirname, dirs, files) in os.walk(L)
for filename in files:
if filename.endswith(txt ')
thefile = os.path.join(dirname,filename)
size = os.path.getsize(thefile)
if size == 2578 or size == 2565:
print ' T-Mobile: ' thefile

continue
fhand = open(thefile, r')
lines = list()

for line in fhand:
lines.append(line)
fhand.close()

if len(lines) == 3 and lines[2].startswith(" Sent from my iPhone ') :
print ' iPhone: ', thefile
continue

We can now see a list of candidate files that we are about téedahel why these files are
up for deleting. The program produces the following output:

11.2. Example: Cleaning up a photo directory 137

python txtcheck3.py

T-Mobile: ./2006/05/31-05-06_1540001.txt
T-Mobile: ./2006/05/31-05-06_1648001.txt
iPhone: ./2007/09/15-09-07_074202_03.txt
iPhone: ./2007/09/15-09-07_144641_01.txt
iPhone: ./2007/09/19-09-07_124857_01.txt

We can spot-check these files to make sure that we did noténigshtly end up introducing
a bug in our program or perhaps our logic caught some files dvaatiwant to catch.

Once we are satisfied that this is the list of files we want tetéelwe make the following
change to the program:

if size == 2578 or size == 2565:
print ' T-Mobile: ' thefile
os.remove(thefile)
continue

if len(lines) == 3 and lines[2].startswith(' Sent from my iPhone ') :
print ' iPhone: ', thefile
os.remove(thefile)
continue

In this version of the program, we will both print the file oumderemove the bad files using
o0s.remove .

python txtdelete.py
T-Mobile: ./2005/01/02-01-05_1356001.txt
T-Mobile: ./2005/01/02-01-05_1858001.txt

Just for fun, run the program a second time and it will procuzeutput since the bad files
are already gone.

If we reruntxtcount.py ~ we can see that we have removed 899 bad files:

python txtcount.py
Files: 1018

In this section, we have followed a sequence where we useRythfirst look through
directories and files seeking patterns. We slowly use Pytbdrelp determine what we
want to do to clean up our directories. Once we figure out wfiieh are good and which
files are not useful, we use Python to delete the files and eittee cleanup.

138 Chapter 11. Automating common tasks on your computer

The problem you may need to solve can either be quite simmlaraght only depend on
looking at the names of files, or perhaps you need to read eiegje file and look for
patterns within the files. Sometimes you will need to reathalffiles and make a change to
some of the files. All of these are pretty straightforwardeopou understand hows.walk

and the otheos utilities can be used.

11.3 Command line arguments

In earlier chapters, we had a number of programs that praimigtea file name using
raw_input and then read data from the file and processed the data asgollo

name = raw_input(' Enter file: ")
handle = open(name, 'r')
text = handle.read()

We can simplify this program a bit by taking the file name fréra tommand line when we
start Python. Up to now, we simply run our Python programsrasgond to the prmompts
as as follows:

python words.py
Enter file: mbox-short.txt

We can place additional strings after the Python file and sscttiosecommand line ar-
gumentsin our Python program. Here is a simple program that dematestrreading
arguments from the command line:

import sys
print ' Count: ', len(sys.argv)
print ' Type: ', type(sys.argv)
for arg in sys.argv:
print ' Argument:

, arg

The contents ofys.argv are a list of strings where the first string is the name of the
Python program and the remaining strings are the argumarnteacommand line after the
Python file.

The following shows our program reading several commareldiguments from the com-
mand line:

python argtest.py hello there
Count: 3

Type: <type 'list ' >
Argument: argtest.py
Argument: hello

Argument: there

11.4. Pipes 139

There are three arguments are passed into our program aseaellement list. The first
element of the list is the file name (argtest.py) and the sthee the two command line
arguments after the file name.

We can rewrite our program to read the file, taking the file nénm@ the command line
argument as follows:

import sys

name = sys.argv[l]

handle = open(name, 'r')
text = handle.read()
print name, 'is "', len(text), " bytes '

We take the second command line argument as the name of thgKifping past the
program name in th®] entry). We open the file and read the contents as follows:

python argfile.py mbox-short.txt
mbox-short.txt is 94626 bytes

Using command line arguments as input can make it easieuse gour Python programs
especially when you only need to input one or two strings.

11.4 Pipes

Most operating systems provide a command-line interfalse, known as ahell. Shells
usually provide commands to navigate the file system andclaapplications. For exam-
ple, in Unix, you can change directories witth, display the contents of a directory with
Is , and launch a web browser by typing (for examiilejox

Any program that you can launch from the shell can also beclaeah from Python using a
pipe. A pipe is an object that represents a running process.

For example, the Unix commahds -| normally displays the contents of the current
directory (in long format). You can laundf with os.popen :

>>>cmd = 'Is -
>>> fp = o0s.popen(cmd)

The argument is a string that contains a shell command. Tthenrealue is a file pointer
that behaves just like an open file. You can read the output fheels process one line at
a time withreadline or get the whole thing at once withad :

>>> res = fp.read()

lWhen using pipes to talk to operating system commandsldikeit is important for you to know which
operating system you are using and only open pipes to commiaiare supported on your operating system.

140 Chapter 11. Automating common tasks on your computer

When you are done, you close the pipe like a file:

>>> stat = fp.close()
>>> print stat
None

The return value is the final status of tlse processNone means that it ended normally
(with no errors).

11.5 Glossary

absolute path: A string that describes where a file or directory is stored $tarts at the
“top of the tree of directories” so that it can be used to asd¢hs file or directory,
regardless of the current working directory.

checksum: See alschashing The term “checksum” comes from the need to verify if
data was garbled as it was sent across a network or writtebaockup medium and
then read back in. When the data is written or sent, the sersjisigm computes
a checksum and also sends the checksum. When the data is reszbioed, the
receiving system re-computes the checksum from the reteiag and compares it
to the received checksum. If the checksums do not match, ve assume that the
data was garbled as it was transferred.

command line argument: Parameters on the command line after the Python file name.

current working directory: The current directory that you are “in”. You can change your
working directory using thed command on most systems in their command-line
interfaces. When you open a file in Python using just the fileeharith no path
information the file must be in the current working directerigere you are running
the program.

hashing: Reading through a potentially large amount of data and priodua unique
checksum for the data. The best hash functions produce gerycollisions” where
you can give two different streams of data to the hash functial get back the same
hash. MD5, SHA1, and SHA256 are examples of commonly usel faastions.

pipe: A pipe is a connection to a running program. Using a pipe, youwrite a program
to send data to another program or receive data from thatgmogA pipe is similar
to asocketexcept that a pipe can only be used to connect programs gionithe
same computer (i.e. not across a network).

relative path: A string that describes where a file or directory is storedtiet to the
current working directory.

shell: A command-line interface to an operating system. Also dadl&erminal program”
in some systems. In this interface you type a command andnedeas on a line and
press “enter” to execute the command.

11.6. Exercises 141

walk: A term we use to describe the notion of visiting the entire wédirectories, sub-
directories, sub-sub-directories, until we have visiteel all of the directories. We
call this “walking the directory tree”.

11.6 Exercises

Exercise 11.11n a large collection of MP3 files there may be more than oneg djthe
same song, stored in different directories or with différle names. The goal of this
exercise is to search for these duplicates.

1. Write a program that walks a directory and all of its sutediories for all files
with a given suffix (like.mp3) and lists pairs of files with that are the same size.
Hint: Use a dictionary where the key of the dictionary is tiee of the file from
0s.path.getsize and the value in the dictionary is the path name concatenated
with the file name. As you encounter each file check to see ifajmady have a file
that has the same size as the current file. If so, you have &dtegsize file and print
out the file size and the two files names (one from the hash anothier file you are
looking at).

2. Adapt the previous program to look for files that have digté content using a hash-
ing or checksumalgorithm. For example, MD5 (Message-Digest algorithmaekes
an arbitrarily-long “message” and returns a 128-bit “cteerk.” The probability is
very small that two files with different contents will retutimee same checksum.

You can read about MD5 aiikipedia.org/wiki/Md5 . The following code snippet
opens afile, reads it and computes its checksum.

import hashlib

fhand = open(thefile, r')

data = fhand.read()

fhand.close()

checksum = hashlib.md5(data).hexdigest()

You should create a dictionary where the checksum is the kdytlze file name is
the value. When you compute a checksum and it is already ini¢kiertary as a key,
you have two files with duplicate content so print out the filghe dictionary and
the file you just read. Here is some sample output from a runfoider of image

files:

.12004/11/15-11-04_0923001.jpg ./2004/11/15-11-04 10 16001.jpg
.12005/06/28-06-05_1500001.jpg ./2005/06/28-06-05_15 02001.jpg
.12006/08/11-08-06_205948 01.jpg ./2006/08/12-08-06 155318 02.jpg
.12006/09/28-09-06_225657 01.jpg ./2006/09-50-years/ 28-09-06_225657_01.jpg

/2006/09/29-09-06_002312_01.jpg ./2006/09-50-years/ 29-09-06_002312_01.jpg

142 Chapter 11. Automating common tasks on your computer

Apparently | sometimes sent the same photo more than onceade m copy of a
photo from time to time without deleting the original.

Chapter 12

Networked programs

While many of the examples in this book have focused on reafiliesyand looking for
data in those files, there are many different sources ofiimdtion when one considers the
Internet.

In this chapter we will pretend to be a web browser and regrieeb pages using the
HyperText Transport Protocol (HTTP). Then we will read thgh the web page data and
parse it.

12.1 HyperText Transport Protocol - HTTP

The network protocol that powers the web is actually quitepde and there is built-in
support in Python callesbckets which makes it very easy to make network connections
and retrieve data over those sockets in a Python program.

A socketis much like a file, except that it provides a two-way conrattbetween two
programs with a single socket. You can both read from ancuaithe same socket. If you
write somthing to a socket it is sent to the application atatiner end of the socket. If you
read from the socket, you are given the data which the othaicagion has sent.

But if you try to read a socket when the program on the otherdtite socket has not sent
any data - you just sit and wait. If the programs on both endee&ocket simply wait for
some data without sending anything, they will wait for a vienyg time.

So an important part of programs that communicate over ttegriat is to have some sort
of protocol. A protocol is a set of precise rules that detemmwho is to go first, what they
are to do, and then what are the responses to that messagehamse&nds next and so on.
In a sense the two applications at either end of the sockedang a dance and making
sure not to step on each other’s toes.

144 Chapter 12. Networked programs

There are many documents which describe these networkgoistorhe HyperText Trans-
port Protocol is described in the following document:

http://iwww.w3.org/Protocols/rfc2616/rfc2616.txt

This is along and complex 176 page document with a lot of befgiou find it interesting
feel free to read it all. But if you take a look around page 3&B£C2616 you will find the
syntax for the GET request. If you read in detail, you will fithét to request a document
from a web server, we make a connection towmsv.pydinf.com server on port 80, and
then send a line of the form:

GET http://www.py4inf.com/code/romeo.txt HTTP/1.0

Where the second parameter is the web page we are requedtingesmwe also send a
blank line. The web server will respond with some headermédion about the document
and a blank line followed by the document content.

12.2 The World’s Simplest Web Browser

Perhaps the easiest way to show how the HTTP protocol worksusite a very simple
Python program that makes a connection to a web server alwiviod) the rules of the
HTTP protocol, requests a document and displays what tlverseends back.

import socket

mysock = socket.socket(socket. AF_INET, socket.SOCK_STR EAM)
mysock.connect((' www.pydinf.com ', 80))

mysock.send(' GET http://www.py4inf.com/code/romeo.txt HTTP/1.0\n\n ")
while True:

data = mysock.recv(512)

if (len(data) < 1) :
break

print data

mysock.close()

First the program makes a connection to port 80 on the semepydinf.com . Since our
program is playing the role of the “web browser” the HTTP poatl says we must send
the GET command followed by a blank line.

12.2. The World’s Simplest Web Browser 145

Our Computer Web Server
www.py4inf.com

send

~a Web Pages
Socket 80 .
<

recv

Once we send that blank line, we write a loop that receives ithab12 character chunks
from the socket and prints the data out until there is no mata tb read (i.e. the recv()
returns an empty string).

The program produces the following output:

HTTP/1.1 200 OK

Date: Sun, 14 Mar 2010 23:52:41 GMT

Server: Apache

Last-Modified: Tue, 29 Dec 2009 01:31:22 GMT
ETag: "143c1b33-a7-4b395bea"

Accept-Ranges: bytes

Content-Length: 167

Connection: close

Content-Type: text/plain

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

The output starts with headers which the web server sendssitride the document. For
example, the€ontent-Type header indicated that the document is a plain text document
(text/plain).

After the server sends us the headers, it adds a blank limgliweite the end of the headers
and then sends the actual data of therfileeo.txt

This example shows how to make a low-level network conneatiith sockets. Sockets
can be use to communicate with a web server or with a mail serv@any other kinds of
servers. All that is needed is to find the document which dessithe protocol and write
the code to send and receive the data according to the ptotoco

However, since the protocol that we use most commonly is fhieRH(i.e. the web) proto-
col, Python has a special library specifically designed fpsut the HTTP protocol for the
retrieval of documents and data over the web.

146 Chapter 12. Networked programs

12.3 Retrieving web pages withurllib

Theurllib library makes it very easy to retrieve web pages and probessata in Python.
Usingurllib you can treat a web page much like a file. You simply indicatectviveb
page you would like to retrieve andlib handles all of the HTTP protocol details.

The equivalent code to read theneo.txt file from the web usingrllib is as follows:

import urllib

fhand = urllib.urlopen(" http:/lwww.py4inf.com/code/romeo.txt ")
for line in fhand:
print line.strip()

Once the web page has been opened witib.urlopen we can treat it like a file and
read through it using fr loop.

When the program runs, we only see the output of the contenttedile. The headers are
still sent, but theurllib ~ code consumes the headers and only returns the data to us.

But soft what light through yonder window breaks
It is the east and Juliet is the sun

Arise fair sun and kill the envious moon

Who is already sick and pale with grief

As an example, we can write a program to retrieve the dateofego.txt and compute
the frequency of each word in the file as follows:

import urllib

counts = dict()
fhand = urllib.urlopen(" http:/lwww.py4inf.com/code/romeo.txt ")
for line in fhand:
words = line.split()
for word in words:;
countsfword] = counts.get(word,0) + 1
print counts

Again, once we have opened the web page, we can read it lileakfile.

12.4 Parsing HTML and scraping the web

One of the common uses of thdlib capability in Python is tescrapethe web. Web
scraping is when we write a program that pretends to be a watsler and retrieves pages
and then examines the data in those pages looking for pattern

12.4. Parsing HTML and scraping the web 147

As an example, a search engine such as Google will look abtives of one web page and
extract the links to other pages and retrieve those pagtagctnrg links, and so on. Using
this technique, Googlspidersits way through nearly all of the pages on the web. Google
also uses the frequency of links from pages it finds to a pdatigpage as one measure of
how “important” a page is and how highly the page should apjpeits search results.

There are a number of Python libraries which can help youepld®ML and extract data
from the pages. Each of the libraries has its strengths aa#ivesses and you can pick one
based on your needs.

As an example, we will simply parse some HTML input and extlia&s using theBeau-
tifulSoup library. You can download and install the BeautifulSoupeémm:

www.crummy.com

You can download and “install” BeautifulSoup or you can dyngplace the
BeautifulSoup.py file in the same folder as your application.

Even though HTML looks like XML and some pages are carefuligstructed to be XML,
most HTML is generally broken in ways that cause an XML patseeject the entire page
of HTML as improperly formed. BeautifulSoup tolerates Higflawed HTML and still
lets you easily extract the data you need.

Here is a simple web page:

<h1>The First Page</hl>

<p>

If you like, you can switch to the

Second Page.

</p>

We will useurllib to read the bage and then uBeautifulSoup to extract thehref
attributes from the anchoa) tags.

import urllib
from BeautifulSoup import *

url = raw_input(' Enter - ')
html = urllib.urlopen(url).read
soup = BeautifulSoup(html)

Retrieve all of the anchor tags
tags = soup('a')
for tag in tags:

print tag.get("href ', None)

The program prompts for a web address, then opens the webrpads the data and passes
the data to the BeautifulSoup parser, and then retrieved tie anchor tags and prints out
thehref attribute for each tag.

148 Chapter 12. Networked programs

When the program is run it looks as follows:

python urllinks.py
Enter - http://iwww.dr-chuck.com/pagel.htm
http:/iwww.dr-chuck.com/page2.htm

python urllinks.py

Enter - http://www.py4inf.com/
http://iwww.greenteapress.com/thinkpython/thinkpytho n.html
http://allendowney.com/

http:/iwww.si502.com/

http://www.lib.umich.edu/espresso-book-machine
http:/lwww.py4inf.com/code

http://www.pythonlearn.com/

You can use BeautifulSoup to pull out various parts of eaghatafollows:

import urllib
from BeautifulSoup import *

url = raw_input(' Enter - ')
html = urllib.urlopen(url).read
soup = BeautifulSoup(html)

Retrieve all of the anchor tags
tags = soup('a')
for tag in tags:
Look at the parts of a tag
print ' TAG:" tag
print ' URL:" jtag.get(' href ', None)
print ' Content: ' ,tag.contents[0]
print ' Attrs: ' tag.attrs

This produces the following output:

python urllink2.py

Enter - http://www.dr-chuck.com/pagel.htm

TAG:

Second Page

URL: http://www.dr-chuck.com/page2.htm

Content: [u ' \nSecond Page ']

Attrs: [(u " href ', u' http://www.dr-chuck.com/page2.htm "]

These examples only begin to show the power of BeautifulSaugn it comes to parsing
HTML. See the documentation and sampleswat.crummy.com for more detail.

12.5. Glossary 149

12.5 Glossary

BeautifulSoup: A Python library for parsing HTML documents and extractirggalfrom
HTML documents that compensates for most of the imperfestio the HTML
that browsers generally ignore. You can download the Bkd8tup code from
Www.crummy.com .

port: A number that generally indicates which application you @etacting when you
make a socket connection to a server. As an example, welt tuaffially uses port
80 while e-mail traffic uses port 25.

scrape: When a program pretends to be a web browser and retrieves aagetapd then
looks at the web page content. Often programs are followiadihks in one page to
find the next page so they can traverse a network of pages aia setwork.

socket: A network connection between two applications where thdiegipons can send
and receive data in either direction.

spider: The act of a web search engine retrieving a page and thereadkigpes linked from
a page and so on until they have nearly all of the pages on thenkt which they
use to build their search index.

12.6 Exercises

Exercise 12.1Change thairllinks.py program to extract paragraph (p) tags from the
retrieved HTML document and simply count how many paragsaguie in the document
and display the count of the paragraphs as the output of yogrgm. Test your program
on several small web pages as well as some larger web pages.

150 Chapter 12. Networked programs

Chapter 13

Using Web Services

Once it became easy to retrieve documents and parse docimanrtHTTP using pro-

grams, it did not take long to develop an approach where weedtaroducing documents
that were specifically designed to be consumed by other anogi(i.e. not HTML to be

displayed in a browser).

The most common approach when two programs are exchangiagdass the web is to
exchange the data in a format called the “eXtensible Markapguage” or XML.

13.1 eXtensible Markup Language - XML

XML looks very similar to HTML, but XML is more structured thaHTML. Here is a
sample of an XML document:

<person>
<name>Chuck</name>
<phone type="intl">
+1 734 303 4456
</phone>
<email hide="yes"/>
</person>

Often it is helpful to think of an XML document as a tree stiuetwhere there is a top tag
person and other tags such abone are drawn ashildrenof their parent nodes.

152 Chapter 13. Using Web Services

hide=
yes

{ Chuck

+1734
303 4456

13.2 Parsing XML

Here is a simple application that parses some XML and estisaine data elements from

the XML:

import xml.etree.ElementTree as ET

data = ™

<person>
<name>Chuck</name>
<phone type="intl">

+1 734 303 4456

</phone>
<email hide="yes">

</person> "

tree = ET.fromstring(data)
print ' Name:' tree.find(' name').text
print ' Attr: " tree.find("email ').get(' hide ')

Calling fromstring converts the string representation of the XML into a 'treEXdIL
nodes. When the XML is in a tree, we have a series of method$gw¥yecan call to extract
portions of data from the XML.

Thefind function searches through the XML tree and retrieve®de that matches the
specified tag. Each node can have some text, some attriiigedike hide) and some
“child” nodes. Each node can be the top of a tree of nodes.

Name: Chuck
Attr: yes

Using an XML parser such &ementTree has the advantage that while the XML in this
example is quite simple, it turns out that there are manysredgarding valid XML and
usingElementTree allows us to extract data from XML without worrying about thaes
of XML syntax.

13.3. Looping through nodes 153

13.3 Looping through nodes

Often the XML has multiple nodes and we need to write a loopréegss all of the nodes.
In the following program, we loop through all of thieer nodes:

import xml.etree.ElementTree as ET

input = ™
<stuff>
<users>
<user x="2">
<id>001</id>
<name>Chuck</name>
<luser>
<user x="7">
<id>009</id>
<name>Brent</name>
<luser>
<lusers>
<[stuff> ™

stuff = ET.fromstring(input)
Ist = stuff.findall(' usersfuser ')
print ' User count: ', len(lst)

for item in Ist:

print ' Namé , item.find(' name').text
print ' Id", item.find("id ').text
print ' Attribute ', item.get(' x')

Thefindall method retrieves a Python list of sub-trees that reprekenser structures
in the XML tree. Then we can writefar loop that looks at each of the user nodes, and
prints thename andid text elements as well as theattribute from thaiser node.

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent
Id 009
Attribute 7

154 Chapter 13. Using Web Services

13.4 Application Programming Interfaces (API)

We now have the ability to exchange data between applicatismg HyperText Transport
Protocol (HTTP) and a way to represent complex data that wesemding back and forth
between these applications using eXtensible Markup Lagey(@$ML).

The next step is to begin to define and document “contractsiden applications using
these techniques. The general name for these applicatiapglication contracts isppli-
cation Program Interfacesor APIs. When we use an API, generally one program makes
a set ofservicesavailable for use by other applications and publishes this ARe. the
“rules”) which must be followed to access the services mtediby the program.

When we begin to build our programs where the functionalityoof program includes
access to services provided by other programs, we call theaph aService-Oriented
Architecture or SOA. A SOA approach is one where our overall applicatiokkesause
of the services of other applications. A non-SOA approachitisre the application is a
single stand-alone application which contains all of thdecoecessary to implement the
application.

We see many examples of SOA when we use the web. We can go tgla sieb site and
book air travel, hotels, and automobiles all from a singte.sThe data for hotels is not
stored on the airline computers. Instead, the airline cderpicontact the services on the
hotel computers and retrieve the hotel data and presenttietaser. When the user agrees
to make a hotel reservation using the airline site, therarsiite uses another web service
on the hotel systems to actually make the reservation. Arghvithcomes to charge your
credit card for the whole transaction, still other compsitegcome involved in the process.

Airline
Reservation
Service

Auto
Rental
Service

Hotel
Reservation
Service

API

API

API

\

Travel
Application

A Service-Oriented Architecture has many advantagesdimdy (1) we always maintain
only one copy of data - this is particularly important forths like hotel reservations where
we do not want to over-commit and (2) the owners of the dataseathe rules about the

13.5. Twitter web services 155

use of their data. With these advantages, a SOA system muasrékilly designed to have
good performance and meet the user’s needs.

When an application makes a set of services in its AP| availabér the web, we call these
web services

13.5 Twitter web services

You are probably familiar with the Twitter web site and itsplpations http://www.
twitter.com . Twitter has a very unique approach to its APIl/web servicethat all of
its data is available to non-Twitter applications using Thétter API.

Because Twitter has been so liberal in allowing access tiaits, it has enabled thousands
of software developers to build their own customized Twitiased software. These addi-
tional applications greatly increase the value of Twiteerlfeyond simply a web site. The
Twitter web services allow the building of whole new applicas that the Twitter team
may never have thought of. It is said that over 90 percent®ige of Twitter is through
the API (i.e. not through thiwitter.com web user interface).

You can view the Twitter API documentation fatp://apiwiki.twitter.com/ . The
Twitter APl is an example of the REST style of web services.Willefocus on the Twitter
API to retrieve a list of a user’s friends and their statugesan example, you can visit the
following URL.:

http://api.twitter.com/1/statuses/friends/drchuck.x mi

To see a list of the friends of the twitter accouwinthuck . It may look like a mess in
your browser. To see the actual XML returned by Twitter, yan giew the source of the
returned “web page”.

We can retrieve this same XML using Python usingutié utility:

import urllib
TWITTER_URL =" http://api.twitter.com/l/statuses/friends/ACCT.xml '

while True:
print
acct = raw_input(' Enter Twitter Account: ")
if (len(acct) < 1) : break
url = TWITTER_URL.replace(' ACCT , acct)
print ' Retrieving ', url
document = urllib.urlopen (url).read()
print document[:250]

The program prompts for a Twitter account and opens the URthiofriends and statuses
API and then retrieves the text from the URL and shows us teeZB0 characters of the
text.

156 Chapter 13. Using Web Services

python twitterl.py

Enter Twitter Account:drchuck
Retrieving http://api.twitter.com/l/statuses/friends [drchuck.xml
<?xml version="1.0" encoding="UTF-8"?>
<users type="array">
<user>
<id>115636613</id>
<name>Steve Coppin</name>
<screen_hame>steve_coppin</screen_name>
<location>Kent, UK</location>
<description>Software developing, best practicing, agil ee

Enter Twitter Account:

In this application, we have retrieved the XML exactly ag iivere an HTML web page.
If we wanted to extract data from the XML, we could use Pythimimg functions but this
would become pretty complex as we tried to really start toilig the XML in detail.

If we were to dump out some of the retrieved XML it would lookighly as follows:

<?xml version="1.0" encoding="UTF-8"?>
<users type="array">
<user>
<id>115636613</id>
<name>Steve Coppin</name>
<screen_name>steve_coppin</screen_name>
<location>Kent, UK</location>
<status>
<id>10174607039</id>
<source>web</source>
</status>
<luser>
<user>
<id>17428929</id>
<name>davidkocher</name>
<screen_name>davidkocher</screen_name>
<location>Bern</location>
<status>
<id>10306231257</id>
<text>@MikeGrace If possible please post a detailed bug rep ort </text>
</status>
<luser>

The top level tag is asers and there are multipleser tags below within theisers tag.

13.6. Handling XML data from an API 157

There is also atatus tag below thauser tag.

13.6 Handling XML data from an API

When we receive well-formed XML data from an API, we generalbg an XML parser
such aslementTree to extract information from the XML data.

In the program below, we retrieve the friends and statuses the Twitter APl and then
parse the returned XML to show the first four friends and th&ituses.

import urllib
import xml.etree.ElementTree as ET

TWITTER_URL =" http://api.twitter.com/l/statuses/friends/ACCT.xml '

while True:
print
acct = raw_input(' Enter Twitter Account: ")
if (len(acct) < 1) : break
url = TWITTER_URL.replace(' ACCT , acct)
print ' Retrieving ', url
document = urllib.urlopen (url).read()
print ' Retrieved ', len(document), ' characters.
tree = ET.fromstring(document)
count = 0
for user in tree.findall("user '):
count = count + 1
if count > 4 : break

print user.find(' screen_name ').text
status = user.find(' status ')
if status :
txt = status.find("text ').text
print ' ' L txt[:50]

We use thdindall method to get a list of theser nodes and loop through the list using
afor loop. For eachuiser node, we pull out the text of theereen_name node and then
pull out thestatus node. If there is atatus node, we pull out the text of thext node
and print the first 50 characters of the status text.

The pattern is pretty straightforward, we dmeall andfind to pull out a list of nodes
or a single node and then if a node is a complex element witteraob-nodes we look
deeper into the node until we reach the text element that eveterested in.

The program runs as follows:

158 Chapter 13. Using Web Services

python twitter2.py

Enter Twitter Account:drchuck
Retrieving http://api.twitter.com/l/statuses/friends [drchuck.xml
Retrieved 193310 characters.
steve_coppin

Looking forward to some "oh no the markets closed,
davidkocher

@MikeGrace If possible please post a detailed bug
hrheingold

From today ' s Columbia Journalism Review, on crap d
huge_idea

@drchuck #cnx2010 misses you, too. Thanks for co

Enter Twitter Account:hrheingold

Retrieving http://api.twitter.com/l/statuses/friends [hrheingold.xml
Retrieved 208081 characters.
carrzn
RT @tysone: Saturday ' s proclaimation by @carr2n pr
tiffanyshlain
RT @ScottKirsner: Turning smartphones into a tool
soniasimone
@ACCompanyC Funny, smart, cute, and also nice! He
JenStone7617

Watching "Changing The Equation: High Tech Answers

Enter Twitter Account:

While the code for parsing the XML and extracting the fieldsig&ilementTree takes a
few lines to express what we are looking for in the XML, it ischusimpler than trying to
use Python string parsing to pull apart the XML and find thaddéments.

13.7 Glossary

API: Application Program Interface - A contract between appiices that defines the
patterns of interaction between two application companent

ElementTree: A built-in Python library used to parse XML data.

XML: eXtensible Markup Language - A format that allows for the ko@rof structured
data.

REST: REpresentational State Transfer - A style of Web Servicaspghovide access to
resources within an application using the HTTP protocol.

13.8. Exercises 159

SOA: Service Oriented Architecture - when an application is maideomponents con-
nected across a network.

13.8 Exercises

Exercise 13.1Change the program that retrieves twitter data to also pribthe location
for each of the friends indented under the name by two spacfsiews:

Enter Twitter Account:drchuck
Retrieving http://api.twitter.com/l/statuses/friends [drchuck.xml
Retrieved 194533 characters.
steve_coppin

Kent, UK

Looking forward to some "oh no the markets closed,
davidkocher

Bern

@MikeGrace If possible please post a detailed bug
hrheingold

San Francisco Bay Area

RT @barrywellman: Lovely AmBerhSci Internet & Comm
huge_idea

Boston, MA

@drchuck #cnx2010 misses you, too. Thanks for co

160 Chapter 13. Using Web Services

Chapter 14

Using databases and Structured
Query Language (SQL)

14.1 What is a database?

A databaseis a file that is organized for storing data. Most database®aganized like
a dictionary in the sense that they map from keys to valuese [ibgest difference is
that the database is on disk (or other permanent storagé)pecsists after the program
ends. Because a database is stored on permanent storagesiooe far more data than a
dictionary, which is limited to the size of the memory in trenguter.

Like a dictionary, database software is designed to keem#wegting and accessing of data
very fast, even for large amounts of data. Database softmanetains its performance by
building indexesas data is added to the database to allow the computer to juinklyto

a particular entry.

There are many different database systems which are usedwite variety of purposes
including: Oracle, MySQL, Microsoft SQL Server, PostgraS@nd SQLite. We focus on
SQLite in this book because it is a very common database aalteiady built into Python.
SQLite is designed to bembeddednto other applications to provide database support
within the application. For example, the Firefox browsesoalises the SQLite database
internally as do many other products.

http://sqlite.org/

SQLite is well suited to some of the data manipulation protd¢hat we see in Informatics
such as the Twitter spidering application that we descriltais chapter.

162 Chapter 14. Using databases and Structured Query Languge (SQL)

14.2 Database concepts

When you first look at a database it looks like a spreadsheét mitltiple sheets. The
primary data structures in a database #ables rows, andcolumns

Table Relation

tuple
row
2.3 ™~ 2.3

column attribute/

In technical descriptions of relational databases the eotsoof table, row, and column are
more formally referred to alation, tuple, andattribute , respectively. We will use the
less formal terms in this chapter.

14.3 SQLite Database Browser

While this chapter will focus on using Python to work with dateBQLite database files,
many operations can be done more conveniently using a gegktgram called th8QLite
Database Browsemwhich is freely available from:

http://sourceforge.net/projects/sqlitebrowser/

Using the browser you can easily create tables, insert ddiadata, or run simple SQL
gueries on the data in the database.

14.4. Creating a database table

163

SQLite Database Browser -

D@ W o | m e

,"Users,l'c_sev,l'_de_v,"_p\,_ul_inf_,‘!ex.l’code,"twdata,db

? |

Database Structure

Browse Data | Execute SQL

Name
Friends tabie

Ohbject

from_id field
to_id field
People table
id field
name field
retrieved field

sqlite_autoindex_Friends_1 index
sqlite_autoindex_People_1 index

| Type

INTEGER
INTEGER

INTEGER PRIMARY KEY
TEXT
INTEGER

In a sense, the database browser is similar to a text editenwiorking with text files.
When you want to do one or very few operations on a text file, yujest open it in a text
editor and make the changes you want. When you have many chtrage/ou need to do
to a text file, often you will write a simple Python program.uvill find the same pattern
when working with databases. You will do simple operatianthe database browser and
more complex operations will be most conveniently done ith8Yy.

14.4 Creating a database table

Databases require more defined structure than Python tigistmnaries.

When we create a databasdle we must tell the database in advance the names of each
of the columnsin the table and the type of data which we are planning to stoeach
column. When the database software knows the type of data in eactmopitican choose

the most efficient way to store and lookup the data based otyplesof data.
You can look at the various data types supported by SQLiteeafidilowing url:

http://www.sqlite.org/datatypes.html

Defining structure for your data up front may seem inconvaré¢ the beginning, but the
payoff is fast access to your data even when the databasgim®atlarge amount of data.

The code to create a database file and a table ndmaekls with two columns in the

database is as follows:

1sQLite actually does allow some flexibility in the type of datared in a column, but we will keep our data

types strict in this chapter so the concepts apply equalbhier database systems such as MySQL.

164 Chapter 14. Using databases and Structured Query Languge (SQL)

import sqlite3

conn = sqlite3.connect(" music.db ')
cur = conn.cursor()

cur.execute(' DROP TABLE IF EXISTS Tracks ')
cur.execute(' CREATE TABLE Tracks (title TEXT, plays INTEGER) ')

conn.close()

Theconnect operation makes a “connection” to the database stored fil¢heusic.db in
the current directory. If the file does not exist, it will becated. The reason this is called a
“connection” is that sometimes the database is stored opaate “database server” from
the server on which we are running our application. In oumpsinexamples the database
will just be a local file in the same directory as the Pythonecag are running.

A cursor is like a file handle that we can use to perform operations eml#ta stored in the
database. Callingursor() is very similar conceptually to callingpen() when dealing
with text files.

- Database
select\ U
insert S
create/ o
R
Your
Program

Once we have the cursor, we can begin to execute commands coritents of the database
using theexecute() method.

Database commands are expressed in a special languagashsdn standardized across
many different database vendors to allow us to learn a sidgtebase language. The
database language is call8ttuctured Query Languageor SQL for short.

http://en.wikipedia.org/wiki/SQL

In our example, we are executing two SQL commands in our databAs a convention,
we will show the SQL keywords in uppercase and the parts ottimemand that we are
adding (such as the table and column names) will be showmierkase.

The first SQL command removes thieacks table from the database if it exists. This
pattern is simply to allow us to run the same program to criéeg&racks table over and
over again without causing an error. Note thatBfROP TABLEommand deletes the table
and all of its contents from the database (i.e. there is nddln

14.4. Creating a database table 165

cur.execute(' DROP TABLE IF EXISTS Tracks ')

The second command creates a table nafnsgks with a text column nametitle and
an integer column nameahys .

cur.execute(' CREATE TABLE Tracks (title TEXT, plays INTEGER) ")

Now that we have created a table narmettks , we can put some data into that table using
the SQLINSERT operation. Again, we begin by making a connection to thelueta and
obtaining thecursor . We can then execute SQL commands using the cursor.

The SQLINSERT command indicates which table we are using and then definesva n
row by listing the fields we want to includgtle, plays) followed by theVALUES
we want placed in the new row in the table. We specify the wmhgequestion mark8,

?) to indicate that the actual values are passed in as a tuplg Way', 15) as the
second parameter to tlegecute() call.

import sqlite3

conn = sqlite3.connect(" music.db ')
cur = conn.cursor()

cur.execute(' INSERT INTO Tracks (title, plays) VALUES (?, ?) Y
(' Thunderstruck ', 20))

cur.execute(' INSERT INTO Tracks (title, plays) VALUES (?, ?) "
("My Way, 15))

conn.commit()

print ' Tracks: '

cur.execute(' SELECT title, plays FROM Tracks ")

for row in cur :
print row

cur.execute(' DELETE FROM Tracks WHERE plays < 100)
conn.commit()

cur.close()

First weINSERT two rows into our table and usemmit() to force the data to be written
to the database file.

Friends

Thunderstruck 20

My Way 15

166 Chapter 14. Using databases and Structured Query Languge (SQL)

Then we use th&ELECTcommand to retrieve the rows we just inserted from the table.
On the SELECTcommand, we indicate which columns we would litiée, plays)

and indicate which table we want to retrieve the data fromedfve execute th8ELECT
statement, the cursor is something we can loop throughdn atatement. For efficiency,
the cursor does not read all of the data from the database whesxecute th&ELECT
statement. Instead, the data is read on-demand as we lammgththe rows in théor
statement.

The output of the program is as follows:

Tracks:
(u' Thunderstruck ', 20)
(u" My Way, 15)

Our for loop finds two rows, and each row is a Python tuple with the fiattie as the
titte and the second value as the numbeplajs . Do not be concerned that the title
strings are shown starting with . This is an indication that the strings asaicodestrings
that are capable of storing non-Latin character sets.

At the very end of the program, we execute an SQL commabéta TEthe rows we have
just created so we can run the program over and over. DEA&ETEcommand shows the
use of aWHER[Elause that allows us to express a selection criterion somba@an ask the
database to apply the command to only the rows that matchritleei@an. In this example
the criterion happens to apply to all the rows so we emptydbktout so we can run the
program repeatedly. After tHeELETEis performed we also cadbmmit() to force the data
to be removed from the database.

14.5 Structured Query Language (SQL) summary

So far, we have been using the Structured Query LanguageriRydthon examples and
have covered many of the basics of the SQL commands. In thi®sewe look at the
SQL language in particular and give an overview of SQL syntax

Since there are so many different database vendors, thet@®d Query Language (SQL)
was standardized so we could communicate in a portable mémdatabase systems from
multiple vendors.

A relational database is made up of tables, rows, and colufirescolumns generally have
a type such as text, numeric, or date data. When we createea tabindicate the names
and types of the columns:

CREATE TABLE Tracks (title TEXT, plays INTEGER)
To insert a row into a table, we use the SQISERT command:

INSERT INTO Tracks (title, plays) VALUES ("My Way, 15)

14.6. Spidering Twitter using a database 167

The INSERT statement specifies the table name, and then a list of tha/fteldmns that
you would like to set in the new row, and then the keywdALUESand then a list of
corresponding values for each of the fields.

The SQLSELECTcommand is used to retrieve rows and columns from a databise.
SELECTstatement lets you specify which columns you would like toiege as well as a
WHERElause to select which rows you would like to see. It alsonadlan optionaDRDER
BY clause to control the sorting of the returned rows.

SELECT * FROM Tracks WHERE title = ' My Way

Using* indicates that you want the database to return all of thensotufor each row that
matches th&/HERElause.

Note, unlike in Python, in a SQWHERI[Elause we use a single equal sign to indicate a test
for equality rather than a double equal sign. Other logigarations allowed in &/HERE
clause include, >, <=, >=, I= | as well asANDandORand parentheses to build your logical
expressions.

You can request that the returned rows be sorted by one ofetlals fs follows:
SELECT title,plays FROM Tracks ORDER BY title

To remove a row, you heed/®dHERElause on an SQDELETEstatement. Th&HERElause
determines which rows are to be deleted:

DELETE FROM Tracks WHERE title = ' My Way

It is possible tdJPDATEa column or columns within one or more rows in a table using the
SQL UPDATEstatement as follows:

UPDATE Tracks SET plays = 16 WHERE title = ' My Way

The UPDATEstatement specifies a table and then a list of fields and véadugsange after
theSETkeyword and then an option&HEREIlause to select the rows that are to be updated.
A single UPDATEstatement will change all of the rows that match WiéERElause, or if a
WHERElause is not specified, it performs tHEDATEon all of the rows in the table.

These four basic SQL commands (INSERT, SELECT, UPDATE, aBUEY E) allow the
four basic operations needed to create and maintain data.

14.6 Spidering Twitter using a database

In this section, we will create a simple spidering prograrmt till go through Twitter
accounts and build a database of théote: Be very careful when running this program.
You do not want to pull too much data or run the program for tmeg and end up having
your Twitter access shut off.

168 Chapter 14. Using databases and Structured Query Languge (SQL)

One of the problems of any kind of spidering program is thateiéds to be able to be
stopped and restarted many times and you do not want to leséatta that you have re-
trieved so far. You don’t want to always restart your dateeeal at the very beginning so
we want to store data as we retrieve it so our program cantstaktup and pick up where
it left off.

We will start by retrieving one person’s Twitter friends aheir statuses, looping through
the list of friends, and adding each of the friends to a datalba be retrieved in the future.
After we process one person’s Twitter friends, we check indaabase and retrieve one of
the friends of the friend. We do this over and over, pickinguvisited” person, retrieving
their friend list and adding friends we have not seen to atifdir a future visit.

We also track how many times we have seen a particular frietitei database to get some
sense of “popularity”.

By storing our list of known accounts and whether we havéawtd the account or not,
and how popular the account is in a database on the disk obtheuter, we can stop and
restart our program as many times as we like.

This program is a bit complex. It is based on the code from Xeecise earlier in the book
that uses the Twitter API.

Here is the source code for our Twitter spidering applicatio

import sglite3
import urllib
import xml.etree.ElementTree as ET

TWITTER_URL =" http://api.twitter.com/l/statuses/friends/ACCT.xml '

conn = sqlite3.connect(' twdata.db ')
cur = conn.cursor()

cur.execute("™
CREATE TABLE IF NOT EXISTS
Twitter (name TEXT, retrieved INTEGER, friends INTEGER) ")
while True:
acct = raw_input(' Enter a Twitter account, or quit; ")
if (acct == "quit ') : break

if (len(acct) <1):
cur.execute(' SELECT name FROM Twitter WHERE retrieved = O LIMIT 1 ')
try:
acct = cur.fetchone()[0]
except:
print ' No unretrieved Twitter accounts found
continue

14.6. Spidering Twitter using a database 169

url = TWITTER_URL.replace(' ACCT, acct)
print ' Retrieving ', url

document = urllib.urlopen (url).read()

tree = ET.fromstring(document)

cur.execute(' UPDATE Twitter SET retrieved=1 WHERE name = ? ', (acct,))

countnew = 0

countold = 0
for user in tree.findall("user ')
friend = user.find(' screen_name ').text
cur.execute(' SELECT friends FROM Twitter WHERE name = ? LIMIT 1 ',
(friend,))
try:

count = cur.fetchone()[0]
cur.execute(' UPDATE Twitter SET friends = ? WHERE name = ? ',
(count+1, friend))
countold = countold + 1
except:
cur.execute(™ INSERT INTO Twitter (name, retrieved, friends)
VALUES (2,0, 1) ™ , (friend,))
countnew = countnew + 1
print ' New accounts= ' ,countnew,
conn.commit()

revisited= ' ,countold

cur.close()

Our database is stored in the filelata.db and it has one table nam@&ditter and each
row in theTwitter table has a column for the account name, whether we havevedri
the friends of this account, and how many times this accoastdeen “friended”.

In the main loop of the program, we prompt the user for a Twatecount name or “quit”

to exit the program. If the user enters a Twitter account, etave the list of friends and
statuses for that user and add each friend to the databasedfready in the database. If
the friend is already in the list, we add one to thends field in the row in the database.

If the user presses enter, we look in the database for theTigtter account that we have
not yet retrieved and retrieve the friends and statuseshfatr dccount, add them to the
database or update them and increase ffigids count

Once we retrieve the list of friends and statuses, we loogutyin all of theuser items in
the returned XML and retrieve trsereen_name for each user. Then we use tBELECT
statement to see if we already have stored this partisolegn_name in the database and
retrieve the friend counfriends) if the record exists.

countnew = 0

170 Chapter 14. Using databases and Structured Query Languge (SQL)

countold = 0
for user in tree.findall(' user '):
friend = user.find(' screen_name ').text

cur.execute(' SELECT friends FROM Twitter WHERE name = ? LIMIT 1 ',
(friend,))
try:
count = cur.fetchone()[0]
curexecute(' UPDATE Twitter SET .riends = ? WHERE name = ? ',
(count+1, friend))
countold = countold + 1
except:
curexecute("™ INSERT INTO Twitter (name, retrieved, friends)
VALUES (?,0,1) ™ , (friend,))
countnew = countnew + 1
print ' New accounts= ' ,countnew,
conn.commit()

revisited= ' ,countold

Once the cursor executes tBELECT statement, we must retrieve the rows. We could do
this with afor statement, but since we are only retrieving one roIT 1), we can use
thefetchone() method to fetch the first (and only) row that is the result & $ELECT
operation. Sincéetchone() returns the row as tuple (even though there is only one
field), we take the first value from the tuple usii#y to get the current friend count into
the variablecount .

If this retrieval is successful, we use the SQRDATEstatement with &/HERElause to add
one to thdriends column for the row that matches the friend’s account. Ndtiee there
are two placeholders (i.e. question marks) in the SQL, ardsdtond parameter to the
execute() is atwo-element tuple which holds the values to be substitirtto the SQL in
place of the question marks.

If the code in thery block fails it is probably because no record matchedNRERE name

= ? clause on the SELECT statement. So in¢keept block, we use the SQINSERT
statement to add the friendisreen_name to the table with an indication that we have not
yet retrieved thacreen_name and setting the friend count to zero.

So the first time the program runs and we enter a Twitter adcdli@ program runs as
follows:

Enter a Twitter account, or quit: drchuck

Retrieving http://api.twitter.com/l/statuses/friends /drchuck.xml
New accounts= 100 revisited= O

Enter a Twitter account, or quit: quit

Since this is the first time we have run the program, the datasempty and we create
the database in the fitedata.db and add a table nam@&dahitter to the database. Then
we retrieve some friends and add them all to the database #inaatabase is empty.

14.6. Spidering Twitter using a database 171

At this point, we might want to write a simple database duntpeéake a look at what is in
ourtwdata.db file:

import sglite3

conn = sqlite3.connect(" twdata.db ')
cur = conn.cursor()
cur.execute(' SELECT * FROM Twitter ')
count = 0
for row in cur :

print row

count = count + 1
print count, ' rows.
cur.close()

This program simply opens the database and selects all ebthiens of all of the rows in
the tableTwitter , then loops through the rows and prints out each row.

If we run this program after the first execution of our Twitsgider above, its output will
be as follows:

(u"' opencontent ', 0, 1)
(u' Ihawthorn ', 0, 1)
(u' steve coppin ', 0, 1)
(u"' davidkocher ', 0, 1)
(u' hrheingold ', 0, 1)

100 rows.

We see one row for eac$creen_name , that we have not retrieved the data for that
screen_name and everyone in the database has one friend.

Now our database reflects the retrieval of the friends of osir Twitter accountdrchuck).
We can run the program again and tell it to retrieve the fréeofdthe next “unprocessed”
account by simply pressing enter instead of a Twitter actasifiollows:

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/l/statuses/friends lopencontent.xml|
New accounts= 98 revisited= 2

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/l/statuses/friends llhawthorn.xml
New accounts= 97 revisited= 3

Enter a Twitter account, or quit: quit

Since we pressed enter (i.e. we did not specify a Twitter @upthe following code is
executed:

172 Chapter 14. Using databases and Structured Query Languge (SQL)

if (len(acct) < 1) :
cur.execute(' SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1

try:
acct = cur.fetchone()[0]

except:
print ' No unretrieved twitter accounts found '
continue

We use the SQISELECTstatement to retrieve the name of the fitsk((T 1) user who still
has their “have we retrieved this user” value set to zero. & ase thdetchone()[0]
pattern within a try/except block to either extractcaeen_name from the retrieved data
or put out an error message and loop back up.

If we successfully retrieved an unprocesserden_name , we retrieve their data as follows:

url = TWITTER_URL.replace(' ACCT, acct)
print ' Retrieving ', url

document = urllib.urlopen (url).read()

tree = ET.fromstring(document)

cur.execute(' UPDATE Twitter SET retrieved=1 WHERE name = ? ', (acct,))

Once we retrieve the data successfully, we usdJ#igATEstatement to set thetrieved
column to one to indicate that we have completed the retrathe friends of this account.
This keeps us from re-retrieving the same data over and owtikeeps us progressing
forward through the network of Twitter friends.

If we run the friend program and press enter twice to retrédieenext unvisited friend’s
friends, then run the dumping program, it will give us thddeling output:

(u' opencontent ', 1, 1)
(u' lhawthorn ', 1, 1)
(u' steve coppin ', 0, 1)
(u"' davidkocher ', 0, 1)
(u' hrheingold ', 0, 1)
u'cnxorg ', 0, 2
u'knoop', 0, 1)

u' kthanos ', 0, 2)

u' LectureTools ', 0, 1)

—_~ o~~~

295 rows.

We can see that we have properly recorded that we have visitmdhorn and
opencontent . Also the accountgnxorg and kthanos already have two followers.
Since we now have retrieved the friends of three peogiehifck , opencontent and
lhawthorn) our table has 295 rows of friends to retrieve.

")

14.7. Basic data modeling 173

Each time we run the program and press enter, it will pick #se onvisited account (e.g.
the next account will beteve_coppin), retrieve their friends, mark them as retrieved and
for each of the friends ofteve_coppin , either add them to the end of the database, or
update their friend count if they are already in the database

Since the program’s data is all stored on disk in a databhsesfidering activity can be
suspended and resumed as many times as you like with no ldssaof

Note: One more time before we leave this topic, be very clardfan running this Twitter
spidering program. You do not want to pull too much data or thum program for too long
and end up having your Twitter access shut off.

14.7 Basic data modeling

The real power of a relational database is when we make rfeuttiples and make links
between those tables. The act of deciding how to break up gpplication data into
multiple tables and establishing the relationships betwtbe two tables is calledata
modeling. The design document that shows the tables and their nethiips is called a
data model

Data modeling is a relatively sophisticated skill and wd willy introduce the most basic
concepts of relational data modeling in this section. Foramztail on data modeling you
can start with:

http://en.wikipedia.org/wiki/Relational_model

Let's say for our Twitter spider application, instead oftjosunting a person’s friends, we
wanted to keep a list of all of the incoming relationships soosuld find a list of everyone
who is following a particular account.

Since everyone will potentially have many accounts thdbfolthem, we cannot simply
add a single column to odiwitter table. So we create a new table that keeps track of
pairs of friends. The following is a simple way of making swctable:

CREATE TABLE Pals (from_friend TEXT, to_friend TEXT)

Each time we encounter a person wiichuck is following, we would insert a row of the
form:

INSERT INTO Pals (from_friend,to_friend) VALUES (" drchuck ', ' lhawthorn ')

As we are processing the 100 friends from thehuck Twitter feed, we will insert 100
records with “drchuck” as the first parameter so we will endluplicating the string many
times in the database.

This duplication of string data violates the best practifmmsdatabase normalization
which basically states that we should never put the sanmgystiata in the database more

174 Chapter 14. Using databases and Structured Query Languge (SQL)

than once. If we need the data more than once, we create a isuagifor the data and
reference the actual data using this key.

In practical terms, a string takes up a lot more space thantager on the disk and in the
memory of our computer and takes more processor time to cangral sort. If we only
have a few hundred entries the storage and processor tirdly Ingaitters. But if we have a
million people in our database and a possibility of 100 millfriend links, it is important
to be able to scan data as quickly as possible.

We will store our Twitter accounts in a table namegbple instead of thelwitter table
used in the previous example. TReople table has an additional column to store the
numeric key associated with the row for this Twitter user.L8&has a feature that auto-
matically adds the key value for any row we insert into a talsieg a special type of data
column (NTEGER PRIMARY KEY

We can create theople table with this additionatl column as follows:

CREATE TABLE People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R)

Notice that we are no longer maintaining a friend count irherev of thePeople table.
When we seleciNTEGER PRIMARY KEMs the type of ouid column, we are indicating
that we would like SQLite to manage this column and assigrniguemnumeric key to each
row we insert automatically. We also add the keywdNIQUEto indicate that we will not
allow SQLite to insert two rows with the same value fiame.

Now instead of creating the tabRals above, we create a table callBdlows with two
integer columndgrom_id andto_id and a constraint on the table that tembinationof
from_id andto_id must be unique in this table (i.e. we cannot insert duplicates) in
our database.

CREATE TABLE Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))

When we addJNIQUEclauses to our tables, we are communicating a set of rulésvina
are asking the database to enforce when we attempt to ieserds. We are creating these
rules as a convenience in our programs as we will see in a moffilea rules both keep us
from making mistakes and make it simpler to write some of aafec

In essense, in creating thisllows table, we are modelling a "relationship” where one
person "follows” someone else and representing it with & gihumbers indicating that
(a) the people are connected and (b) the direction of th&orkhip.

14.8. Programming with multiple tables 175

opencontent

drchuck lhawthorn
steve_coppin

People

Follows

drchuck
opencontent

Ihawthorn
steve_coppin

14.8 Programming with multiple tables

We will now re-do the Twitter spider program using two tablie primary keys, and the
key references as described above. Here is the code fortheansion of the program:

import sglite3
import urllib
import xml.etree.ElementTree as ET

TWITTER_URL =" http://api.twitter.com/l/statuses/friends/ACCT.xml

conn = sqlite3.connect(' twdata.db ')
cur = conn.cursor()

cur.execute("™ CREATE TABLE IF NOT EXISTS People

(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R)"™)
cur.execute(" CREATE TABLE IF NOT EXISTS Follows

(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id)) ")

while True:
acct = raw_input(' Enter a Twitter account, or quit: ")
if (acct == "quit ') : break
if (len(acct) < 1) :
cur.execute("™ SELECT id,name FROM People
WHERE retrieved = 0 LIMIT 1 ™)
try:
(id, acct) = cur.fetchone()
except:

176 Chapter 14. Using databases and Structured Query Languge (SQL)

print ' No unretrieved Twitter accounts found

continue
else:

cur.execute(' SELECT id FROM People WHERE name = ? LIMIT 1,
(acct,))

try:
id = cur.fetchone()[0]

except:
curexecute("™ INSERT OR IGNORE INTO People

(name, retrieved) VALUES (?, 0) "o, (acet,))

conn.commit()

if cur.rowcount = 1 :
print ' Error inserting account: ' ,acct
continue

id = cur.lastrowid

url = TWITTER_URL.replace(' ACCT, acct)
print ' Retrieving ', url

document = urllib.urlopen (url).read()

tree = ET.fromstring(document)

cur.execute(' UPDATE People SET retrieved=1 WHERE name = ? ', (acct,))

countnew = 0

countold = 0
for user in tree.findall("user ')
friend = user.find(' screen_name ').text
cur.execute(' SELECT id FROM People WHERE name = ? LIMIT 1 ,
(friend,))
try:

friend_id = cur.fetchone()[0]
countold = countold + 1
except:
curexecute("™ INSERT OR IGNORE INTO People (name, retrieved)
VALUES (2, 0) ™ , (friend,))
conn.commit()
if currowcount = 1 :
print ' Error inserting account: ' friend
continue
friend_id = cur.lastrowid
countnew = countnew + 1
curexecute(™ INSERT OR IGNORE INTO Follows
(from_id, to_id) VALUES (?, ?) ", (id, friend_id))
print ' New accounts= ' ,countnew, ' revisited= ' countold

14.8. Programming with multiple tables 177

conn.commit()

cur.close()

This program is starting to get a bit complicated, but itsthates the patterns that we need
to use when we are using integer keys to link tables. The Ipagierns are:

1. Creating tables with primary keys and constraints.

2. When we have a logical key for a person (i.e. account naneenneed thed
value for the person. Depending on whether or not the persairéady in the
People table, we either need to: (1) look up the person in Reeple table and
retrieve theid value for the person or (2) add the person theRbaple table and
get theid value for the newly added row.

3. Insert the row that captures the “follows” relationship.

We will cover each of these in turn.

14.8.1 Constraints in database tables

As we design our table structures, we can tell the databastemythat we would like it
to enforce a few rules on us. These rules help us from makisgakes and introducing
incorrect data into out tables. When we create our tables:

curexecute(" CREATE TABLE IF NOT EXISTS People

(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGE R)™)
cur.execute(" CREATE TABLE IF NOT EXISTS Follows

(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id)) ")

We indicate that th@ame column in thePeople table must b&JNIQUE We also indicate
that the combination of the two numbers in each row offttilews table must be unique.
These constraints keep us from making mistakes such asgithéiisame relationship more
than once.

We can take advantage of these constraints in the followoag:c

cur.execute("™ INSERT OR IGNORE INTO People (name, retrieved)
VALUES (2, 0) ™ , (friend,))

We add theOR IGNOREclause to outNSERT statement to indicate that if this particular
INSERT would cause a violation of thendme must be unique” rule, the database system is
allowed to ignore théNSERT. We are using the database constraint as a safety net to make
sure we don’t inadvertently do something incorrect.

Similarly, the following code ensures that we don’t add thact saméd-ollows relation-
ship twice.

178 Chapter 14. Using databases and Structured Query Languge (SQL)

cur.execute(™ INSERT OR IGNORE INTO Follows
(from_id, to_id) VALUES (?, ?) ", (id, friend_id))

Again we simply tell the database to ignore our attempt&ERT if it would violate the
unigueness constraint that we specified forRblows rows.

14.8.2 Retrieve and/or insert a record

When we prompt the user for a Twitter account, if the accourgt&xwe must look up its
id value. If the account does not yet exist in eople table, we must insert the record
and get thed value from the inserted row.

This is a very common pattern and is done twice in the progriaovea This code shows
how we look up théd for a friend’s account when we have extractesddraen_name from
auser node in the retrieved Twitter XML.

Since over time it will be increasingly likely that the acoowill already be in the database,
we first check to see if theeople record exists using 8ELECTstatement.

If all goes welf inside thetry section, we retrieve the record usifetchone() and then
retrieve the first (and only) element of the returned tuple store it infriend_id

If the SELECT fails, thefetchone()[0] code will fail and control will transfer into the
except section.

friend = user.find(' screen_name ').text
cur.execute(' SELECT id FROM People WHERE name = ? LIMIT 1,
(friend,))

try:
friend_id = cur.fetchone()[0]
countold = countold + 1
except:
curexecute("™ INSERT OR IGNORE INTO People (name, retrieved)
VALUES (2, 0) ™ , (friend,))

conn.commit()

if cur.rowcount != 1 :
print ' Error inserting account: ' friend
continue

friend_id = cur.lastrowid

countnew = countnew + 1

If we end up in theexcept code, it simply means that the row was not found so we must
insert the row. We ustNSERT OR IGNORHust to avoid errors and then cadbmmit()
to force the database to really be updated. After the writdoise, we can check the

2In general, when a sentence starts with “if all goes well” yallifind that the code needs to use try/except.

14.8. Programming with multiple tables 179

cur.rowcount to see how many rows were affected. Since we are attemptingséot
a single row, if the number of affected rows is something othan one, it is an error.

If the INSERT is successful, we can look atir.lastrowid to find out what value the
database assigned to tide column in our newly created row.

14.8.3 Storing the friend relationship

Once we know the key value for both the Twitter user and thenttiin the XML, it is a
simple matter to insert the two numbers into Bolows table with the following code:

cur.execute(' INSERT OR IGNORE INTO Follows (from_id, to_id) VALUES (?, ?) "
(id, friend_id))

Notice that we let the database take care of keeping us fraublé-inserting” a relation-
ship by creating the table with a uniqueness constraint lag &ddingOR IGNOREo our
INSERT statement.

Here is a sample execution of this program:

Enter a Twitter account, or quit:

No unretrieved Twitter accounts found

Enter a Twitter account, or quit: drchuck

Retrieving http://api.twitter.com/l/statuses/friends Idrchuck.xml
New accounts= 100 revisited= 0

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/l/statuses/friends lopencontent.xml
New accounts= 97 revisited= 3

Enter a Twitter account, or quit:

Retrieving http://api.twitter.com/l/statuses/friends /lhawthorn.xml
New accounts= 97 revisited= 3

Enter a Twitter account, or quit: quit

We started with th@rchuck account and then let the program automatically pick the next
two accounts to retrieve and add to our database.

The following is the first few rows in th@eople andFollows tables after this run is
completed:

People:

(1, u " drchuck ', 1)

(2, u ' opencontent ', 1)
(3, u " lhawthorn ', 1)
(4, u ' steve_coppin ', 0)
(5, u " davidkocher ', 0)

295 rows.

180 Chapter 14. Using databases and Structured Query Languge (SQL)

Follows:
1 2
1 3
1 4
1, 9)
(1, 6)
300 rows.

You can see thi , name, andvisited fields in thePeople table and you see the numbers
of both ends of the relationshijpllows table. In thePeople table, we can see that the first
three people have been visited and their data has beerveetri¢he data in th€ollows
table indicates thadrchuck (user 1) is a friend to all of the people shown in the first five
rows. This makes sense because the first data we retrievedtanmed was the Twitter
friends ofdrchuck . If you were to print more rows from thepllows table, you would see
the friends of user two and three as well.

14.9 Three kinds of keys

Now that we have started building a data model putting owa ohd multiple linked tables,
and linking the rows in those tables usikgys we need to look at some terminology
around keys. There are generally three kinds of keys usedatadase model.

« A logical key is a key that the “real world” might use to look up a row. In our
example data model, tmame field is a logical key. It is the screen name for the user
and we indeed look up a user’s row several times in the progsang thenamefield.
You will often find that it makes sense to addJHIQUEconstraint to a logical key.
Since the logical key is how we look up a row from the outsidelehat makes little
sense to allow multiple rows with the same value in the table.

» A primary key is usually a number that is assigned automatically by thaldese.
It generally has no meaning outside the program and is oy tslink rows from
different tables together. When we want to look up a row in &etalsually searching
for the row using the primary key is the fastest way to find a r8imce primary keys
are integer numbers, they take up very little storage andbeatompared or sorted
very quickly. In our data model, the field is an example of a primary key.

A foreign key is usually a number that points to the primary key of an as¢edirow
in a different table. An example of a foreign key in our datadelds thefrom_id .

We are using a nhaming convention of always calling the pynkay field named and
appending the suffixid to any field name that is a foreign key.

14.10. Using JOIN to retrieve data 181

14.10 Using JOIN to retrieve data

Now that we have followed the rules of database normalinagiod have data separated
into two tables, linked together using primary and foreiggk we need to be able to build
a SELECTthat re-assembles the data across the tables.

SQL uses thdOIN clause to re-connect these tables. IniI&N clause you specify the
fields that are used to re-connect the rows between the tables

The following is an example of ELECTwith aJOIN clause:

SELECT * FROM Follows JOIN People
ON Follows.to_id = People.id WHERE Follows.from_id = 2

The JOIN clause indicates that the fields we are selecting cross betkotlows and
People tables. TheONclause indicates how the two tables are to be joined. Takeothe
from Follows and append the row froreople where the fieldrom_id in Follows is
the same th@ value in thePeople table.

People

Follows
[aTneme RS [omia toJd
1x.drchuck 1 -1 5
opencontent
2 P ! >~1 3
3 lhawthorn 1 g 4
4 steve_coppin 0
from_id [to_id name
drchuck 1—1 2 opencontent
drchuck 1—1 3 lhawthorn
drchuck 1—1 4 steve _coppin

The result of the JOIN is to create extra-long “meta-rowsichthave both the fields from
People and the matching fields frofrollows . Where there is more than one match be-
tween thed field from People and thefrom_id from People , then JOIN creates a meta-
row for eachof the matching pairs of rows, duplicating data as needed.

The following code demonstrates the data that we will hatbérdatabase after the multi-
table Twitter spider program (above) has been run sevenakti

import sglite3

conn = sqlite3.connect(' twdata.db ')
cur = conn.cursor()

182 Chapter 14. Using databases and Structured Query Languge (SQL)

cur.execute(' SELECT * FROM People)

count = 0

print ' People:

for row in cur :
if count < 5: print row
count = count + 1

print count, ' rows.

cur.execute(' SELECT * FROM Follows")

count = 0

print " Follows:

for row in cur :
if count < 5: print row
count = count + 1

print count, ' rows. '
cur.execute("™ SELECT * FROM Follows JOIN People

ON Follows.to_id = People.id WHERE Follows.from_id = 2 ")
count = 0

print ' Connections for id=2:
for row in cur :
if count < 5: print row
count = count + 1
print count, ' rows.

cur.close()

In this program, we first dump out tiReople andFollows and then dump out a subset of
the data in the tables joined together.

Here is the output of the program:

python twjoin.py

People:

(1, u " drchuck ', 1)

(2, u " opencontent ', 1)
(3, u ' lhawthorn ', 1)
(4, u " steve _coppin ', 0)
(5, u ' davidkocher ', 0)
295 rows.

Follows:

1, 2

(1,3

1, 4)

(1, %)

(1, 6)

14.11. Summary 183

300 rows.

Connections for id=2;

(2, 1, 1, u "drchuck ', 1)

(2, 28, 28, u 'cnxorg ', 0)

(2, 30, 30, u ' kthanos ', 0)

(2, 102, 102, u ' SomethingGirl ', 0)
(2, 103, 103, u ‘'ja_ Pac ', 0)

100 rows.

You see the columns from theeople andFollows tables and the last set of rows is the
result of theSELECTwith theJOIN clause.

In the last select, we are looking for accounts that are diseaf “opencontent” (i.e.
People.id=2).

In each of the “meta-rows” in the last select, the first twauomhs are from th&ollows
table followed by columns three through five from #eople table. You can also see that
the second columrFfllows.to_id) matches the third columrPéople.id) in each of
the joined-up “meta-rows”.

14.11 Summary

This chapter has covered a lot of ground to give you an owereiethe basics of using a
database in Python. It is more complicated to write the codesé a database to store data
than Python dictionaries or flat files so there is little reamuse a database unless your
application truly needs the capabilities of a database.sltoations where a database can
be quite useful are: (1) when your application needs to maiadlsnany random updates
within a large data set, (2) when your data is so large it cafihim a dictionary and you
need to look up information repeatedly, or (3) you have a{anging process that you
want to be able to stop and restart and retain the data fromuont® the next.

You can build a simple database with a single table to suitynggplication needs, but
most problems will require several tables and links/refehips between rows in different
tables. When you start making links between tables, it is maob to do some thoughful
design and follow the rules of database normalization toattla& best use of the database’s
capabilities. Since the primary motivation for using a date is that you have a large
amount of data to deal with, it is important to model your d=feciently so your programs
run as fast as possible.

14.12 Debugging

One common pattern when you are developing a Python prograonnect to an SQLite
database will be to run a Python program and check the rasitig the SQLite Database

184 Chapter 14. Using databases and Structured Query Languge (SQL)

Browser. The browser allows you to quickly check to see ifryptogram is working
properly.

You must be careful because SQLite takes care to keep twagmsgfrom changing the
same data at the same time. For example, if you open a databhscbrowser and make
a change to the database and have not yet pressed the “sat@i uthe browser, the
browser “locks” the database file and keeping any other pragrom accessing the file.
In particular, your Python program will not be able to acdbssfile if it is locked.

So a solution is to make sure to either close the dababaseéraruse th&ile menu to
close the database in the browser before you attempt tosattedatabase from Python to
avoid the problem of your Python code failing because thaliete is locked.

14.13 Glossary

attribute: One of the values within a tuple. More commonly called a “cattl or “field”.

constraint: When we tell the database to enforce a rule on a field or a rowabla.t A
common constraint is to insist that there can be no duplicaliges in a particular
field (i.e. all the values must be unique).

cursor: A cursor allows you to execute SQL commands in a databaseeddrieve data
from the database. A cursor is similar to a socket or file hafal network connec-
tions and files respectively.

database browser: A piece of software that allows you to directly connect to tatlase
and manipulate the database directly without writing a paog

foreign key: A numeric key that points to the primary key of a row in anottadrle. For-
eign keys establish relationships between rows storedfereit tables.

index: Additional data that the database software maintains as e inserted into a
table designed to make lookups very fast.

logical key: A key that the “outside world” uses to look up a particular réwer example
in a table of user accounts, a person’s E-Mail address miglat gpood candidate as
the logical key for the user’s data.

normalization: Designing a data model so that no data is replicated. We eturle item
of data at one place in the database and reference it elsewsieig a foreign key.

primary key: A numeric key assigned to each row that is used to refer to oweirr a
table from another table. Often the database is configureditoamatically assign
primary keys as rows are inserted.

relation: An area within a database that contains tuples and attebutéore typically
called a “table”.

14.14. Exercises 185

tuple: A single entry in a database table that is a set of attributésre typically called

row".

14.14 Exercises

Exercise 14.1Retrieve the following filenttp://www.py4inf.com/code/wikidata.db

and use the SQLite browser to figure out how many tables afeeiatbase and list the
fields for each of the tables including the type of the fielde®@hthe fields is a type that is
not described in this chapter. Use the SQLite online docuatiem to describe the purpose
of that type of data?

186 Chapter 14. Using databases and Structured Query Languge (SQL)

Chapter 15

Regular Expressions

So far we have been reading through files, looking for pastard extracting various bits
of lines that we find interesting. We have been using strinthods likesplit andfind
and using lists and string slicing to extract portions oflthes.

This task of searching and extracting is so common that Pytlas a very powerful library
calledregular expressionsthat handles many of these tasks quite elegantly. The reason
we have not introduced regular expressions earlier in tlo& because while they are very
powerful, they are a little complicated and their syntavetak little getting used to.

Regular expressions are almost their own little prograngnfmguage for searching and
parsing strings. As a matter of fact, entire books have beétew on the topic of regular
expressions. In this chapter, we will only cover the basfaggular expressions. For more
detail on regular expressions, see:

http://en.wikipedia.org/wiki/Regular_expression
http://docs.python.org/library/re.html

The regular expression library must be imported into yoagpam before you can use it.
The simplest use of the regular expression library is#aech() function. The following
program demonstrates a trivial use of the search function.

import re
hand = open(' mbox-short.txt ')
for line in hand:
line = line.rstrip()
if re.search(" From: ', line) :
print line

We open the file, loop through each line and use the regulaesgjonsearch() to only
print out lines that contain the string “From:”. This prograloes not use the real power

188 Chapter 15. Regular Expressions

of regular expressions since we could have just as easitylnsdind() to accomplish
the same result.

The power of the regular expressions comes we add to spéeialaers to the search string
that allow us to more precisely control which lines matchgtreng. Adding these special

characters to our regular expression allow us to do sophtsti matching and extraction
while writing very little code.

For example, if we wanted to only match lines where “From:’svaathe beginning of the
line, we could add the caret character which a special ctearacregular expressions that
matches the beginning of a line and change our applicatiéollass:

import re
hand = open(' mbox-short.txt ')
for line in hand:
line = line.rstrip()
if re.search(" "From:
print line

, line) :

Now we will only match lines thastart withthe string “From:”. This is still a very simple
example that we could have done equivalently with dtagtswith() method from the
string library. But it serves to introduce the notion thajukar expressions contain special
action characters that give us more control as to what witchn¢he regular expression.

15.1 Character Matching in Regular Expressions

There are a number of other special characters that let ldsdwgn more powerful regular
expressions. The most commonly used special charactee ipdtiod character which
matches any character.

In the following example, the regular expression “F..m:” uMbmatch any of the strings
“From:”, “Fxxm:”, “F12m:", or “F!@m:” since the period chacters in the regular expres-
sion match any character.

import re
hand = open(' mbox-short.txt ')
for line in hand:
line = line.rstrip()
if re.search(' "F.m:
print line

, line) :

This is particularly powerful when combined with the alyilib indicate that a character can
be repeated any number of times using the “*” or “+” charaxtelyour regular expression.
These special characters mean that instead of matchinggke siharacter in the search
string they match zero-or-more in the case of the asterigikeror-more of the characters
in the case of the plus sign.

15.2. Extracting Data Using Regular Expressions 189

We can further narrow down the lines that we match usingvifiecard character repeated
one or more times in the following example:

import re
hand = open(' mbox-short.txt ')
for line in hand:
line = line.rstrip()
if re.search(" "From:.+@ ', line) :
print line

The search string™From:.+@” will successfully match lines that start with ten:” fol-
lowed by one or more characters “.+” followed by an at-sign.tlds will match the fol-
lowing line:

From: stephen.marquard @uct.ac.za

You can think of the “.+” wildcard as expanding to match ak ttharacters between the
colon character and the at-sign.

From:+ @

Itis good to think of the plus and asterisk characters astiypug-or example the following
string would match the last at-sign in the string as the “u$lpes outwards as shown below:

From: stephen.marquard@uct.ac.za, csev@umich.edu, and cwen @iupui.edu

It is possible to tell an asterisk or plus-sign not to be seégly” by adding another char-
acter. See the detailed dcumentation for information oningr off the greedy behavior.

15.2 Extracting Data Using Regular Expressions

If we want to extract data from a string in Python we can usefitidall() method to
extract all of the substrings which match a regular exposssiets use the example of
wanting to extract anything that looks like an E-Mail addr&®m any line regardless of
format. For example, we want to pull the e-mail addresses fach of the following lines:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>
for <source@collab.sakaiproject.org>;
Received: (from apache@Ilocalhost)
Author: stephen.marquard@uct.ac.za

We don’t want to write code for each of the types of lines, tiplj and slicing differ-
ently for each line. This following program ustrgdall() to find the lines with E-Mail
addresses in them and extracts one or more addresses froroféhose lines.

190 Chapter 15. Regular Expressions

import re

s = ' Hello from csev@umich.edu to cwen@iupui.edu about the meet ing @2PM
Ist = re.findall("\S+@\S+' ,)

print Ist

The findall() method searches the string in the second argument and setuist of
all of the strings that look like E-Mail addresses. We arengsi special character that
indicates a non-whitespace charactes)(

The output of the program would be:

[' csev@umich.edu ', ' cwen@iupui.edu ']

Translating the regular expression, we are looking for sirgs that have at least one
non-whitespace character, followed by an at-sign, folldbye at least one more non-white
space characters. Also, theS+” matches as many non-whitespace characters as possible
(this is called‘greedy” matching in regular expressions).

The regular expression would match twice (csev@umich.eduwcaven@iupui.edu) but it

would not match the string “@2PM” because there are no nankbotharacters before the
at-sign. We can use this regular expression in a programaib a the lines in a file and

print out anything that looks like an E-Mail address as folo

import re
hand = open(' mbox-short.txt ')
for line in hand:
line = line.rstrip()
x = re.findall("\S+@\S+' , line)
if len(x) > 0 :
print x

We read each line and then extract all the substrings thathhair regular expression.
Sincefindall() returns a list, we simple check if the number of elements inreturned
list is more than zero to print only lines where we found asteme substring that looks
like an E-Mail address.

If we run the program on mbox.txt we get the following output:

" wagnermr@iupui.edu ']
cwen@iupui.edu ']

' <postmaster@collab.sakaiproject.org> "]

' <200801032122.m03LMF04005148@nakamura.uits.iupui.ed u>']
<source@collab.sakaiproject.org>; "]

' <source@collab.sakaiproject.org>; "]

' <source@collab.sakaiproject.org>; "]

apache@localhost) ']
source@collab.sakaiproject.org; "]

—————————

15.2. Extracting Data Using Regular Expressions 191

Some of our E-mail addresses have incorrect charactersdikar “;” at the beginning or
end. Lets declare that we are only interested in the portidineostring that starts and ends
with a letter or a number.

To do this, we use another feature of regular expressionslar8dprackets are used to
indicate a set of acceptable characters we are willing tgiden matching. In a sense, the
“\S” is asking to match the set of “non-whitespace characteksw we will be a little
more explicit in terms of the characters we will match.

Here is our new regular expression:
[a-zA-Z0-9)\S*@\S*[a-zA-Z]

This is getting a little complicated and you can begin to ség vegular expressions are
their own little language unto themselves. Translating thgular expression, we are look-
ing for substrings that start with single lowercase letter, upper case letter, or number
“[a-zA-Z0-9]" followed by zero or more non blank charactéiss*”, followed by an at-
sign, followed by zero or more non-blank characteyS*” followed by an upper or lower
case letter. Note that we switched from “+" to “*” to indicatero-or-more non-blank char-
acters. Remember that the “*” or “+” applies to the singlereltter immediately to the left
of the plus or asterisk.

If we use this expression in our program, our data is muchmelea

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()

x = re.findall(' [a-zA-Z0-9]\S+@\S+[a-zA-Z] ", line)
if len(x) > 0 :
print x

[wagnermr@iupui.edu ']
[' cwen@iupui.edu ']

[' postmaster@collab.sakaiproject.org "]

[' 200801032122.m0O3LMF04005148@nakamura.uits.iupui.edu "]
[' source@collab.sakaiproject.org "]

[* source@collab.sakaiproject.org "]

[' source@collab.sakaiproject.org "]

[' apache@Ilocalhost ']

Notice that on the “source@collab.sakaiproject.org” dineur regular expression elimi-
nated two letters at the end of the string;{J. This is because when we append “[a-
zA-Z]" to the end of our regular expression, we are demandiag whatever string the
regular expression parser finds, it must end with a letterwBen it sees the>" after
“sakaiproject.org;” it simply stops at the last “matching” letter it found (i.the “g” was
the last good match).

192 Chapter 15. Regular Expressions

Also note that the output of the program is a Python list ttes & string as the single
element in the list.

15.3 Combining Searching and Extracting

Lets say we want to find numbers on lines that start with thiegstiX-" like the following.:

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

We don't just want any floating point point numbers from ameB. We only to extract
numbers from lines that have the above syntax.

We can construct the following regular expression to setextines:
“X-* [0-9.]+

Translating this, we are saying, we want lines that staft tt” followed by zero or more
characters “.*” followed by a colon (“;") and then a spacetekfthe space we are looking
for one or more characters that are either a digit (0-9) orreo@€é[0-9.]+". Note that in
between the square braces, the period matches an actuad fiesi it is not a wildcard
between the square brackets).

This is a very tight expression that will pretty much matclydhe lines we are interested
in as follows:

import re
hand = open(' mbox-short.txt ')
for line in hand:
line = line.rstrip()
if re.search(' X\S* [0-9.]+ ", line) :
print line

When we run the program, we see the data nicely filtered to stmytbe lines we are
looking for.

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000
X-DSPAM-Confidence: 0.6178
X-DSPAM-Probability: 0.0000

But now we have to solve the problem of extracting the numheisgsplit . While it
would be simple enough to usplit , we can use another feature of regular expressions to
both search and parse the line at the same time.

Parentheses are another special character in regulassigre. When you add parentheses
to a regular expression they are ignored when matching timg sbut when you are using

15.3. Combining Searching and Extracting 193

findall() , parentheses indicates that you while you want the wholeesgjon to match,
you only are interesed in extracting a portion of the subgtthat matches the regular
expression.

So we make the following change to our program:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()

x = re.findall("OX\S* ([0-9.]4) ", line)
if len(x) > 0 :
print X

Instead of callingearch() , we add a parentheses around the part of the regular exqmessi
that represents the floating point number to indicate we wsgt findall() to give us
back the floating point number from the matching substring.

The output from this program is as follows:

[0.8475 ']
[' 0.0000 ']
['0.6178 ']
[' 0.0000 ']
[0.6961 ']
[' 0.0000 ']

The numbers are still in a list and need to be converted fromgstto floating point but we
have used the power of regular expressions to both searcbxaratt the information we
found interesting.

If you look at the file there are a number of lines of the form:
Details: http://source.sakaiproject.org/viewsvn/?vie w=rev&rev=39772

Lets say, we wanted to extract all of the revision numbers ifiteger number at the end of
these lines) using the same technique as above. We coubtheifollowing program:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()

x = re.findall(' "Details:.*rev=([0-9.]+) ", line)
if len(x) > 0:
print X

Translating our regular expression, we are looking forditteat start with “Details:’, fol-
lowed by any any number of characters “.*” followed by “revaiid then by one or more

194 Chapter 15. Regular Expressions

digits. We want lines that match the entire expression bubwnlg want to extract the
integer number at the end of the line so we surround “[0-9]ithywarentheses.

When we run the program, we get the following output:

['39772"]
['39771"]
[*39770"]
['39769"]

Remember that the “[0-9]+" is “greedy” and it tries to makel@ge a string of digits as
possible before extracting those digits. This “greedy”dwbr is why we get all five digits
for each number. The regular expression library expandstimdirections until it counters
a non-digit, the beginning, or the end of a line.

Now lets use regular expressions to re-do an exercise froliereim the book where we
were interested in the time of day of each mail message. Wetbfor lines of the form:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

And wanted to extract the hour of the day for each line. Preslipwe did this with two
calls tosplit . First the line was split into words and then we pulled outfiftle word and
split it again on the colon character to pull out the two chtes we were interested in.

While this worked, it actually results in pretty brittle cotteat is assuming the lines are
nicely formatted. If you were to add enough error checkinga(big try/except block) to
insure that your program never failed when presented wibrirectly formatted lines, the
code would balloon to 10-15 lines of code that was pretty bhareéad.

We can do this far simpler with the following regular expiess
"From .* [0-9][0-9]:

The translation of this regular expression is that we aré&itagpfor lines that start with
“From ” (note the space) followed by any number of charactgtsfollowed by a space

followed by two digits “[0-9][0-9]" followed by a colon chacter. This is the definition of
the kinds of lines we are looking for.

In order to pull out only the hour usinfindall() , we add parentheses around the two
digits as follows:

"From .* ([0-9][0-9]):
This results in the following program:

import re
hand = open(' mbox-short.txt ')
for line in hand:

line = line.rstrip()

15.4. Summary 195

x = re.findall(" “From .* ([0-9][0-9]): ", line)
if len(x) > 0 : print x

When the program runs, it produces the following output:
["09]
(18]
["16"]
['15]

15.4 Summary

While this only scratched the surface of regular expressiaeshave learned a bit about
the language of regular expressions. They are search sttiag have special characters
in them that communicate your wishes to the regular exprassistem. Here are some of
those specal characters and character sequences:

Matches the beginning of the line

$
Matches the end of the line

Matches any character (a wildcard)

\s

Matches a whitespace character

\S

Matches a non-whitespace character (oppositespf

*

Applies to the immediately preceding character and indg#& match zero or more of the
preceding character.

+
Applies to the immediately preceding character and indE#&t match zero or more of the
preceding character.

[abc]
Matches a single character as long as that character is sp#wuified set. In this example,
it would match “a”, “b”, or “c” but no other characters.

[a-z0-9]
You can specify ranges of characters using the minus sigis. édample is a single char-
acter that must be a lower case letter or a digit.

196 Chapter 15. Regular Expressions

[A-Za-zZ]
When the first character in the set notation is a caret, it tavdie logic. This example
matches a single character that is anythatiier thanan upper or lower case character.

()

When parentheses are added to a regular expression, theynared for the purpose of
matching, but allow you to extract a particular subset ofrtta#ched string rather than the
whole string when usinfindall()

\b

Matches the empty string, but only at the start or end of a word

\B

Matches the empty string, but not at the start or end of a word.

\d

Matches any decimal digit; equivalent to the set [0-9].

\D
Matches any non-digit character; equivalent to the '$&49].

15.5 Bonus Section for UNIX Users

Support for searching files using regular expressions wisibto the UNIX operating
since the 1960’s and it is avaiable in nearly all programmamguages in one form or
another.

As a matter of fact, there is a command-line program buidt WNIX calledgrep (General-
ized Regular Expression Parser) that does pretty much the aa theearch() examples
in this chapter. So if you have a Macintosh or Linux systemy gan try the following
commands in your command line window.

$ grep ' "From: ' mbox-short.txt
From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zgian@umich.edu

From: rjlowe@iupui.edu

This tellsgrep to show you lines that start with the string “From:” in the filgbox-
short.txt. If you experiment with the rep command a bit anddréhe documentation
for grep , you will find some subtle difference between the regularesgion support in
Python and the regular expression suppogrép . As an examplegrep does not support
the non-blank charactekS” so you will need to use the slightly more complex set notati
“[” T"- which simply means - match a character that is anythidgeothan a space.

15.6. Debugging 197

15.6 Debugging

Python has some simple and rudimentary built-in documiemtahat can be quite helpful
if you need a quick refresher to trigger your memory aboutetkect name of a particular
method. This documentation can be viewed in the Pythongreegr in interactive mode.

You can bring up an interactive help system using help()

>>> help()

Welcome to Python 2.6! This is the online help utility.

If this is your first time using Python, you should definitel y check out
the tutorial on the Internet at http://docs.python.org/tu torial/.

Enter the name of any module, keyword, or topic to get help on w riting
Python programs and using Python modules. To quit this help u tility and

return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules”,
"keywords", or "topics". Each module also comes with a one-I ine summary
of what it does; to list the modules whose summaries contain a given word

such as "spam", type "modules spam".

help> modules

If you know what module you want to use, you can sue the dirfhroand to find the
methods in the module as follows:

>>> import re

>>> (dir(re)

[. 'compile ", 'copy_reg ', "eror ', 'escape', 'findall ',

'finditer ', "match', 'purge', 'search ', "split ', 'sre_compile ',
"sre_parse ', "sub', 'subn', 'sys', 'template ']

You can also get a small amount of documentation on a paaticukthod using the dir
command.

>>> help (re.search)
Help on function search in module re:

search(pattern, string, flags=0)
Scan through string looking for a match to the pattern, retur ning
a match object, or None if no match was found.

>>>

The built in documentation is not very extensive, but it canhlelpful when you are in a
hurry or don’'t have access to a web browser or search engine.

198 Chapter 15. Regular Expressions

15.7 Glossary

greedy matching: The notion that the “+” and “*” charactersairegular expression ex-
pand outward to match the largest possible string.

grep: Acommand available in most UNIX systems that searttiresgh text files looking
for lines that match regular expressions. The command nteamdsfor "Generalized
Regular Expression Parser”.

regular expression: A language for expressing more conmgeaxch strings. A regular
expression may contain special characters that indicateatbiearch only matches at
the beginning or end of a line or many other similar capaéedit

wild card: A special character that matches any characteedular expressions the wild
card character is the period character.

15.8 Exercises

Exercise 15.1Write a simple program to simulate the operation of thegtep command
on UNIX. Ask the user to enter a regular expression and cdwntumber of lines that
matched the regular expression:

$ python grep.py
Enter a regular expression: "Author
mbox.txt had 1798 lines that matched "Author

$ python grep.py
Enter a regular expression: “X-
mbox.txt had 14368 lines that matched “X-

$ python grep.py
Enter a regular expression: java$
mbox.txt had 4218 lines that matched java$

Exercise 15.2Write a program to look for lines of the form
New Revision: 39772

And extract the number from each of the lines using a regukgression and the
findall() method. Compute the average of the numbers and print outérage.

Appendix A

Debugging

Different kinds of errors can occur in a program, and it isfulss distinguish among them
in order to track them down more quickly:

« Syntax errors are produced by Python when it is translatiegsource code into
byte code. They usually indicate that there is somethinghg/mith the syntax of
the program. Example: Omitting the colon at the end défa statement yields the
somewhat redundant messa&yataxError: invalid syntax

« Runtime errors are produced by the interpreter if somgtigioes wrong while the
program is running. Most runtime error messages includerinétion about where
the error occurred and what functions were executing.

« Semantic errors are problems with a program that runs withmducing error mes-
sages but doesn’t do the right thing. Example: An expressiapn not be evaluated
in the order you expect, yielding an incorrect result.

The first step in debugging is to figure out which kind of errouyare dealing with. Al-
though the following sections are organized by error typejestechniques are applicable
in more than one situation.

A.1 Syntax errors

Syntax errors are usually easy to fix once you figure out whay dre. Unfortunately,
the error messages are often not helpful. The most commosages ar&yntaxError:
invalid syntax and SyntaxError; invalid token , heither of which is very infor-
mative.

On the other hand, the message does tell you where in thegonatipe problem occurred.
Actually, it tells you where Python noticed a problem, whismot necessarily where the

200 Appendix A. Debugging

error is. Sometimes the error is prior to the location of theremessage, often on the
preceding line.

If you are building the program incrementally, you shouldéra good idea about where
the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing youtecto the book’s code
very carefully. Check every character. At the same time gratver that the book might be
wrong, so if you see something that looks like a syntax eitrarjght be.

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variadeen

2. Check that you have a colon at the end of the header of evenpaund statement,
includingfor , while ,if , anddef statements.

3. Make sure that any strings in the code have matching qaotatarks.

4. If you have multiline strings with triple quotes (single double), make sure you
have terminated the string properly. An unterminated gtnray cause aimvalid
token error at the end of your program, or it may treat the followpeyt of the
program as a string until it comes to the next string. In thmsed case, it might not
produce an error message at all!

5. An unclosed opening operatofs<, or [—makes Python continue with the next
line as part of the current statement. Generally, an erronmgcalmost immediately
in the next line.

6. Check for the classk instead of= inside a conditional.

7. Check the indentation to make sure it lines up the way iigesed to. Python can
handle space and tabs, but if you mix them it can cause prablérhe best way
to avoid this problem is to use a text editor that knows abgtitéh and generates
consistent indentation.

If nothing works, move on to the next section...

A.1.1 |keep making changes and it makes no difference.

If the interpreter says there is an error and you don’t sehdt, might be because you and
the interpreter are not looking at the same code. Check ymgramming environment to
make sure that the program you are editing is the one Pythioyirig to run.

If you are not sure, try putting an obvious and deliberateéayerror at the beginning of
the program. Now run it again. If the interpreter doesn't fihnd new error, you are not
running the new code.

There are a few likely culprits:

A.2. Runtime errors 201

* You edited the file and forgot to save the changes beforeimgribh again. Some
programming environments do this for you, but some don't.

* You changed the name of the file, but you are still runningaldename.
e Something in your development environment is configurediirectly.

« If you are writing a module and usirigport , make sure you don't give your module
the same name as one of the standard Python modules.

« If you are usingimport to read a module, remember that you have to restart the
interpreter or useeload to read a modified file. If you import the module again, it
doesn’t do anything.

If you get stuck and you can't figure out what is going on, onpraach is to start again
with a new program like “Hello, World!,” and make sure you agat a known program to
run. Then gradually add the pieces of the original prograthémew one.

A.2 Runtime errors

Once your program is syntactically correct, Python can difpand at least start running
it. What could possibly go wrong?

A.2.1 My program does absolutely nothing.

This problem is most common when your file consists of fumgtiand classes but does
not actually invoke anything to start execution. This mayritentional if you only plan to
import this module to supply classes and functions.

If it is not intentional, make sure that you are invoking adtion to start execution, or
execute one from the interactive prompt. Also see the “Flb#n@cution” section below.

A.2.2 My program hangs.

If a program stops and seems to be doing nothing, it is “hayigibften that means that it
is caught in an infinite loop. If there is a particular looptthau suspect is the problem, add
aprint statement immediately before the loop that says “entefiegdop” and another
immediately after that says “exiting the loop.”

Run the program. If you get the first message and not the segontve got an infinite
loop. If you think you have an infinite loop and you think youoknwhat loop is causing
the problem, add arint statement inside the loop as the last statement in the lagp lo
that prints the values of the variables in the condition dedMalue of the condition.

For example:

202 Appendix A. Debugging

while x >0 and y < 0 :
do something to x
do something to y

print X ", X
print yi 'y
print ' condition: ', (x>0andy <0

Now when you run the program, you will see three lines of oufpueach time through
the loop. The last time through the loop, the condition stidndfalse . If the loop keeps
going, you will be able to see the valuesxoindy, and you might figure out why they are
not being updated correctly.

Flow of Execution

If you are not sure how the flow of execution is moving throughiyprogram, adgrint
statements to the beginning of each function with a messkgédntering functiorfoo ,”
wherefoo is the name of the function.

Now when you run the program, it will print a trace of each fime as it is invoked.

A.2.3 When I run the program | get an exception.

If something goes wrong during runtime, Python prints a mgsghat includes the name
of the exception, the line of the program where the problecued, and a traceback.

The traceback identifies the function that is currently ingnand then the function that
invoked it, and then the function that invok#that, and so on. In other words, it traces the
sequence of function invocations that got you to where yeu #ralso includes the line
number in your file where each of these calls occurs.

The first step is to examine the place in the program wherertiog eccurred and see if
you can figure out what happened. These are some of the most@onmuntime errors:

NameError: You are trying to use a variable that doesn’t exist in theentrenvironment.
Remember that local variables are local. You cannot refénéo from outside the
function where they are defined.

TypeError: There are several possible causes:

* You are trying to use a value improperly. Example: indexinstring, list, or
tuple with something other than an integer.

¢ There is a mismatch between the items in a format string la@itéms passed
for conversion. This can happen if either the number of iteloss not match
or an invalid conversion is called for.

A.2. Runtime errors 203

* You are passing the wrong number of arguments to a functionesthod. For
methods, look at the method definition and check that the gmsameter is
self . Then look at the method invocation; make sure you are imgpkine
method on an object with the right type and providing the otrguments
correctly.

KeyError: You are trying to access an element of a dictionary using ahiaythe dictio-
nary does not contain.

AttributeError: You are trying to access an attribute or method that does«it €heck
the spelling! You can usdir to list the attributes that do exist.

If an AttributeError indicates that an object hémeType, that means that it idone.
One common cause is forgetting to return a value from a fangtif you get to
the end of a function without hitting @turn ~ statement, it returnSone. Another
common cause is using the result from a list method,dike , that returndNone.

IndexError: The index you are using to access a list, string, or tuple esitgr than its
length minus one. Immediately before the site of the erdd, &print statement to
display the value of the index and the length of the arrayhdsarray the right size?
Is the index the right value?

The Python debuggepdb) is useful for tracking down Exceptions because it allows yo
to examine the state of the program immediately before tiar.eYou can read abouptdb
atdocs.python.org/lib/module-pdb.html

A.2.4 |added so manyrint statements | get inundated with output.

One of the problems with usingfint statements for debugging is that you can end up
buried in output. There are two ways to proceed: simplifydhgut or simplify the pro-
gram.

To simplify the output, you can remove or comment it ~ statements that aren’t help-
ing, or combine them, or format the output so it is easier eustand.

To simplify the program, there are several things you carritst, scale down the problem
the program is working on. For example, if you are searchihigtasearch amalllist. If
the program takes input from the user, give it the simplgattithat causes the problem.

Second, clean up the program. Remove dead code and re@dheiprogram to make it
as easy to read as possible. For example, if you suspecthéngiroblem is in a deeply
nested part of the program, try rewriting that part with diengtructure. If you suspect a
large function, try splitting it into smaller functions atekting them separately.

Often the process of finding the minimal test case leads ydletdoug. If you find that a
program works in one situation but not in another, that gix@sa clue about what is going
on.

Similarly, rewriting a piece of code can help you find subtlgé If you make a change
that you think shouldn’t affect the program, and it doest taa tip you off.

204 Appendix A. Debugging

A.3 Semantic errors

In some ways, semantic errors are the hardest to debug,dsettaiinterpreter provides no
information about what is wrong. Only you know what the peogris supposed to do.

The first step is to make a connection between the progranatekthe behavior you are
seeing. You need a hypothesis about what the program isligatoing. One of the things
that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to lamrspeed, and with some
debuggers you can. But the time it takes to insert a few waltqmprint statements is
often short compared to setting up the debugger, insertidgemoving breakpoints, and
“stepping” the program to where the error is occurring.

A.3.1 My program doesn’t work.
You should ask yourself these questions:

* Is there something the program was supposed to do but whieknd seem to be
happening? Find the section of the code that performs tinatifin and make sure it
is executing when you think it should.

* Is something happening that shouldn’t? Find code in yoog@am that performs
that function and see if it is executing when it shouldn't.

« Is a section of code producing an effect that is not what wpeeted? Make sure that
you understand the code in question, especially if it ineslinvocations to functions
or methods in other Python modules. Read the documentatidhd functions you
invoke. Try them out by writing simple test cases and chegkire results.

In order to program, you need to have a mental model of howrprog work. If you write
a program that doesn’t do what you expect, very often thelprols not in the program;
it's in your mental model.

The best way to correct your mental model is to break the prognto its components
(usually the functions and methods) and test each companéapendently. Once you
find the discrepancy between your model and reality, you obre she problem.

Of course, you should be building and testing componentsoasdgvelop the program.
If you encounter a problem, there should be only a small amofinew code that is not
known to be correct.

A.3.2 I've got a big hairy expression and it doesn’t do what | &pect.

Writing complex expressions is fine as long as they are readbabt they can be hard to
debug. Itis often a good idea to break a complex expresstoraigeries of assignments to
temporary variables.

A.3. Semantic errors 205

For example:
self.hands]i].addCard(self.hands[self.findNeighbor(i)].popCard())
This can be rewritten as:

neighbor = self.findNeighbor(i)
pickedCard = self.hands[neighbor].popCard()
self.hands]i].addCard(pickedCard)

The explicit version is easier to read because the variadniees provide additional doc-
umentation, and it is easier to debug because you can chedypbs of the intermediate
variables and display their values.

Another problem that can occur with big expressions is thatarder of evaluation may
not be what you expect. For example, if you are translatiegettpressiony; into Python,
you might write:

y = x [2 * math.pi

That is not correct because multiplication and divisionenthe same precedence and are
evaluated from left to right. So this expression compute.

A good way to debug expressions is to add parentheses to makader of evaluation
explicit:

y = x [(2 * math.pi)

Whenever you are not sure of the order of evaluation, use freeses. Not only will the
program be correct (in the sense of doing what you intendkadl] also be more readable
for other people who haven't memorized the rules of preceelen

A.3.3 I've got a function or method that doesn’t return what | expect.

If you have areturn statement with a complex expression, you don’t have a chimce
print thereturn value before returning. Again, you can use a temporary blriaFor
example, instead of:

return self.hands]i].removeMatches()
you could write:

count = self.hands[i].removeMatches()
return count

Now you have the opportunity to display the valueadnt before returning.

206 Appendix A. Debugging

A.3.4 I'mreally, really stuck and | need help.

First, try getting away from the computer for a few minutesnfputers emit waves that
affect the brain, causing these symptoms:

« Frustration and rage.

 Superstitious beliefs (“the computer hates me”) and nadfinking (“the program
only works when | wear my hat backward”).

« Random walk programming (the attempt to program by wrigrgry possible pro-
gram and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, getand go for a walk. When
you are calm, think about the program. What is it doing? Whasaree possible causes
of that behavior? When was the last time you had a working pragand what did you do
next?

Sometimes it just takes time to find a bug. | often find bugs wham away from the
computer and let my mind wander. Some of the best places tbtigs are trains, showers,
and in bed, just before you fall asleep.

A.3.5 No, I really need help.

It happens. Even the best programmers occasionally get. sBametimes you work on a
program so long that you can't see the error. A fresh pair ebéy just the thing.

Before you bring someone else in, make sure you are prepéoedprogram should be as
simple as possible, and you should be working on the smatipst that causes the error.
You should haverrint statements in the appropriate places (and the output thuelupe

should be comprehensible). You should understand the garoblell enough to describe it

concisely.

When you bring someone in to help, be sure to give them therrdton they need:

« If there is an error message, what is it and what part of tbgnam does it indicate?

* What was the last thing you did before this error occurred? tWieae the last lines
of code that you wrote, or what is the new test case that fails?

« What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you duatd done to find it
faster. Next time you see something similar, you will be ablénd the bug more quickly.

Remember, the goal is not just to make the program work. Theigto learn how to make
the program work.

Appendix B

Contributor List

Contributor List for “Python for Informatics”

Bruce Shields for copy editing early drafts, Sarah Heggeyest Cherry, Sarah Kathleen
Barbarow, Andrea Parker, Radaphat Chongthammakun, Megam Hirby Urner, Sarah
Kathleen Barbrow, Katie Kujala, Noah Botimer, Emily Alindélark Thompson-Kular,
James Perry, Eric Hofer, Eytan Adar, Peter Robinson, DébdraNelson, Jonathan C.
Anthony, Eden Rassette, Jeannette Schroeder, Justinl-é&zeanqi Li, Gerald Gor-
dinier, Gavin Thomas Strassel, Ryan Clement, Alissa TalBaijtlin Holman, Yong-Mi
Kim, Karen Stover,

Contributor List for “Think Python”

(Allen B. Downey)

More than 100 sharp-eyed and thoughtful readers have sengestions and corrections
over the past few years. Their contributions, and enthosias this project, have been a
huge help.

For the detail on the nature of each of the contributions fthese individuals, see the
“Think Python” text.

Lloyd Hugh Allen, Yvon Boulianne, Fred Bremmer, Jonah Cqhdithael Conlon, Benoit
Girard, Courtney Gleason and Katherine Smith, Lee Harre3adaylin, David Kershaw,
Eddie Lam, Man-Yong Lee, David Mayo, Chris McAloon, MatthédwMoelter, Simon
Dicon Montford, John Ouzts, Kevin Parks, David Pool, Midh&ehmitt, Robin Shaw,
Paul Sleigh, Craig T. Snydal, lan Thomas, Keith VerheydetePWinstanley, Chris Wro-
bel, Moshe Zadka, Christoph Zwerschke, James Mayer, Hajtfee, Angel Arnal,

Tauhidul Hoque and Lex Berezhny, Dr. Michele Alzetta, Andijtdflell, Kalin Harvey,

208 Appendix B. Contributor List

Christopher P. Smith, David Hutchins, Gregor Lingl, Juletd?®s, Florin Oprina, D. J. We-
bre, Ken, Ivo Wever, Curtis Yanko, Ben Logan, Jason Armgjrdrouis Cordier, Brian
Cain, Rob Black, Jean-Philippe Rey at Ecole Centrale P&a&yn Mader at George Wash-
ington University made a number Jan Gundtofte-Bruun, AbaVi and Alexis Dinno,
Charles Thayer, Roger Sperberg, Sam Bull, Andrew CheunGo€y Capel, Alessandra,
Wim Champagne, Douglas Wright, Jared Spindor, Lin Peiheray, Ragtvedt, Torsten
Hubsch, Inga Petuhhov, Arne Babenhauserheide, Mark E. &aSicbtt Tyler, Gordon
Shephard, Andrew Turner, Adam Hobart, Daryl Hammond andlSaimmerman, George
Sass, Brian Bingham, Leah Engelbert-Fenton, Joe Funke-Clo Chen, Jeff Paine, Lu-
bos Pintes, Gregg Lind and Abigail Heithoff, Max HailperZhotipat Pornavalai, Stanis-
law Antol, Eric Pashman, Miguel Azevedo, Jianhua Liu, Nidkg¢{ Martin Zuther, Adam
Zimmerman, Ratnakar Tiwari, Anurag Goel, Kelli Kratzer, td&riffiths, Roydan Ongie,
Patryk Wolowiec, Mark Chonofsky, Russell Coleman, Wei Hyiakaren Barber, Nam
Nguyen, Séphane Morin, and Paul Stoop.

Index

abecedarian, 67
absolute path, 132
access, 94
accumulator, 63
sum, 61
algorithm, 51
MD5, 141
aliasing, 100, 101, 107
copying to avoid, 104
alternative execution, 31
ambiguity, 10
and operator, 30
API, 158
append method, 97, 102
argument, 41, 45, 48, 51, 102
keyword, 121
list, 102
optional, 72, 99
arguments, 138
arithmetic operator, 18
assignment, 25, 93
item, 69, 94, 120
tuple, 121, 129
assignment statement, 16
attribute, 184
AttributeError, 203

BeautifulSoup, 147, 149
big, hairy expression, 204
bisection, debugging by, 63
body, 38, 45, 51, 56
bool type, 29
boolean expression, 29, 39
boolean operator, 70
bracket

squiggly, 109

bracket operator, 65, 94, 120
branch, 32, 39

break statement, 58
bug, 7, 12

BY-SA, vi

calculator, 14

case-sensitivity, variable names, 25

catch, 91
CC-BY-SA, vi
celsius, 35
central processing unit, 12
chained conditional, 32, 39
character, 65
checksum, 140, 141
choice function, 44
close method, 90, 140
Collatz conjecture, 57
colon, 45, 200
comment, 22, 25
comparable, 119, 129
comparison

string, 70

tuple, 120
comparison operator, 30
compile, 5, 12
composition, 48, 51
compound statement, 31, 39

concatenation, 21, 25, 67, 69, 99

list, 96, 102
condition, 31, 39, 56, 201
conditional, 200

chained, 32, 39

nested, 33, 39
conditional execution, 30
conditional statement, 30, 39

210

Index

connect function, 164
consistency check, 117
constraint, 184
continue statement, 59
contributors, 207
conversion

type, 42
copy

slice, 68, 96

to avoid aliasing, 104
count method, 73
counter, 63, 69, 77, 84, 111
counting and looping, 69
CPU, 12
Creative Commons License, vi
cursor, 184
cursor function, 164

data structure, 127, 129
database, 161

indexes, 161
database browser, 184
database normalization, 184
dead code, 203
debugger (pdb), 203

stack, 102

state, 16, 77, 94, 100, 101, 126

dict function, 109
dictionary, 109, 117, 123, 203
looping with, 113
traversal, 123
directory, 131
current, 140
cwd, 140
working, 132, 140
divisibility, 20
division
floating-point, 19
floor, 19, 38
documentation, 14
dot notation, 44, 51, 72
Doyle, Arthur Conan, 9
DSU pattern, 121, 129
duplicate, 141

element, 93, 107
element deletion, 97
ElementTree, 152, 158
find, 152
findall, 153

debugging, 7, 11, 12, 24, 37,50, 75, 90, 103, fromstring, 152

116, 127, 199
by bisection, 63

emotional response, 12, 206

experimental, 8
superstition, 206

decorate-sort-undecorate pattern, 121

decrement, 55, 64
def keyword, 45
definition
function, 45
del operator, 97
deletion, element of list, 97
delimiter, 99, 107
deterministic, 43, 51
development plan
incremental, 200

random walk programming, 128, 206

diagram

get, 153
elif keyword, 33
ellipses, 45
else keyword, 31
email address, 122

emotional debugging, 12, 206

empty list, 93
empty string, 78, 99
encapsulation, 70
end of line character, 90
equivalence, 101
equivalent, 107
error
compile-time, 199
runtime, 8, 24, 38, 199

semantic, 8, 16, 25, 77, 199, 204

shape, 127
syntax, 8, 24, 199

Index

211

error message, 8, 11, 16, 24, 199
evaluate, 19
exception, 8, 12, 24, 199, 202
AttributeError, 203
IndexError, 66, 76, 95, 203
IOError, 88
KeyError, 110, 203
NameError, 202
OverflowError, 38
TypeError, 66, 68, 74, 120, 202
ValueError, 22, 122
executable, 6, 12
exists function, 132
experimental debugging, 8, 128
expression, 18, 19, 25
big and hairy, 204
boolean, 29, 39
extend method, 97
eXtensible Markup Language, 158

fahrenheit, 35
False special value, 29
file, 81

open, 82

reading, 84

writing, 89
file handle, 82
file name, 131
filter pattern, 85
find function, 69
findall, 189
flag, 78
float function, 42
float type, 15
floating-point, 25
floating-point division, 19
floor division, 19, 25, 38
flow of execution, 47, 51, 56, 202
folder, 131
for loop, 66, 95
for statement, 59
foreign key, 184
formal language, 9, 12
format operator, 74, 78, 202

format sequence, 74, 78
format string, 74, 78
Free Documentation License, GNU, vii, viii
frequency, 111

letter, 130
fruitful function, 49, 51
frustration, 206
function, 45, 51

choice, 44

connect, 164

cursor, 164

dict, 109

exists, 132

find, 69

float, 42

getcwd, 131

int, 42

len, 66, 110

list, 98

log, 44

open, 82, 88

popen, 139

randint, 43

random, 43

raw_input, 21

reload, 201

repr, 90

reversed, 127

sorted, 127

sqrt, 45

str, 42

tuple, 119
function argument, 48
function call, 41, 51
function definition, 45, 46, 51
function object, 46
function parameter, 48
function, fruitful, 49
function, math, 44
function, reasons for, 50
function, trigonometric, 44
function, void, 49

gather, 129

212 Index

get method, 112 interpret, 5, 12
getcwd function, 131 invocation, 72, 78
GNU Free Documentation License, vii, viii IOError, 88
greedy, 189, 198 is operator, 100
greedy matching, 198 item, 78, 93
grep, 198 dictionary, 117
guardian pattern, 36, 39, 76 item assignment, 69, 94, 120
) item update, 95
hanging, 201 items method, 123
hardware, 3 iteration, 55, 64
architecture, 3
hash function, 117 join method, 99
hashable, 119, 126, 129
hashing, 140 key, 109, 117
hashtable, 110, 117 key-value pair, 109, 117, 123
header, 45, 51, 200 keyboard input, 21
Hello, World, 11 KeyError, 110, 203
help utility, 14 keys method, 114
high-level language, 5, 12 keyword, 17, 25, 200
histogram, 111, 117 def, 45
Holmes, Sherlock, 9 elif, 33
HTML, 147 else, 31
keyword argument, 121
identical, 107
identity, 101 language
if statement, 30 formal, 9
immutability, 68, 69, 78, 101, 119, 127 high-level, 5
implementation, 111, 117 low-level, 5
import statement, 51 natural, 9
in operator, 70, 95, 110 programming, 5
increment, 55, 64 safe, 8
incremental development, 200 len function, 66, 110
indentation, 45, 200 letter frequency, 130
index, 65, 66, 76, 78, 94, 107, 109, 184, 20@tter rotation, 79
looping with, 95 Linux, 9
negative, 66 list, 93, 98, 107, 127
slice, 67, 96 as argument, 102
starting at zero, 65, 94 concatenation, 96, 102
IndexError, 66, 76, 95, 203 copy, 96
infinite loop, 56, 64, 201 element, 94
initialization (before update), 55 empty, 93
int function, 42 function, 98
int type, 15 index, 95
integer, 25 membership, 95

interactive mode, 6, 12, 18, 49 method, 97

Index

213

nested, 93, 95
operation, 96
repetition, 96
slice, 96
traversal, 95, 107
literalness, 10
log function, 44
logical key, 184
logical operator, 29, 30
lookup, 117
loop, 56
condition, 201
for, 66, 95
infinite, 56, 201
maximum, 61
minimum, 61
nested, 112, 117
traversal, 66
while, 55
looping
with dictionaries, 113
with indices, 95
with strings, 69
looping and counting, 69
low-level language, 5, 13
Is (Unix command), 139

machine code, 13
main memory, 13
mapping, 94
math function, 44
McCloskey, Robert, 67
MDS5 algorithm, 141
membership
dictionary, 110
list, 95
set, 111
mental model, 204
method, 71, 78
append, 97, 102
close, 90, 140
count, 73
extend, 97
get, 112

items, 123

join, 99

keys, 114

pop, 97

read, 139

readline, 139

remove, 98

sort, 97, 103, 120

split, 98, 122

string, 79

values, 110

void, 97
method, list, 97
mnemonic, 23, 25
model, mental, 204
module, 44, 52

os, 131

random, 43

reload, 201

sqlite3, 163
module object, 44
modulus operator, 20, 25
MP3, 141
multiline string, 200

mutability, 68, 94, 96, 101, 119, 127

NameError, 202

natural language, 9, 13
negative index, 66

nested conditional, 33, 39
nested list, 93, 95, 107
nested loops, 112, 117
newline, 21, 83, 90, 91

None special value, 49, 61, 97, 98

normalization, 184
not operator, 30
number, random, 43

object, 69, 78, 100, 101, 107

function, 46
object code, 6, 13
open function, 82, 88
operand, 18, 25
operator, 26

and, 30

214 Index

boolean, 70 PEMDAS, 20

bracket, 65, 94, 120 persistence, 81

comparison, 30 pi, 45

del, 97 pipe, 139, 140

format, 74, 78, 202 poetry, 10

in, 70, 95, 110 pop method, 97

is, 100 popen function, 139

logical, 29, 30 port, 149

modulus, 20, 25 portability, 5, 13

not, 30 precedence, 26, 205

or, 30 primary key, 184

slice, 67, 96, 103, 120 print statement, 11, 13, 203

string, 21 problem solving, 4, 13
operator, arithmetic, 18 program, 7, 13
optional argument, 72, 99 programming language, 5
or operator, 30 prompt, 6, 13, 21
order of operations, 20, 25, 205 prose, 10
os module, 131 pseudorandom, 43, 52
OverflowError, 38 Python 3.0, 11, 19, 21

Python debugger (pdb), 203

parameter, 48, 52, 102 python.org, 14
parentheses Pythonic, 89, 91

argument in, 41

empty, 45, 72 QA, 88, 91

Quality Assurance, 88, 91

matct_upg, 8 guotation mark, 11, 15, 16, 68, 200
overriding precedence, 20
parameters in, 48 radian, 44
regular expression, 193 rage, 206
tuples in, 119 randint function, 43
parse, 10, 13 random function, 43
parsing random module, 43
HTML, 147 random number, 43
pass statement, 31 random walk programming, 128, 206
path, 131 raw_input function, 21
absolute, 132, 140 re module, 187
relative, 132, 140 read method, 139
pattern readline method, 139
decorate-sort-undecorate, 121 redundancy, 10
DSU, 121 reference, 101, 102, 107
filter, 85 aliasing, 101
guardian, 36, 39, 76 regex, 187
search, 69, 78 character sets(brackets), 191
swap, 121 findall, 189

pdb (Python debugger), 203 parentheses, 193

Index

215

search, 187

wild card, 188
regular expressons, 187
relation, 184
relative path, 132
reload function, 201
remove method, 98
repetition

list, 96
repr function, 90
return statement, 205
return value, 41, 52
reversed function, 127
rotation, letter, 79
rules of precedence, 20, 26
running pace, 14
runtime error, 8, 24, 38, 199, 202

safe language, 8

sanity check, 117
scaffolding, 117

scatter, 129

script, 6, 13

script mode, 6, 13, 18, 49
search pattern, 69, 78
secondary memory, 13, 81

semantic error, 8, 13, 16, 25, 77, 199, 204

semantics, 8, 13

sequence, 65, 78, 93, 98, 119, 127
Service Oriented Architecture, 159

set membership, 111
shape, 129
shape error, 127
shell, 139, 140
short circuit, 36, 39
sine function, 44
singleton, 119, 129
slice, 78
copy, 68, 96
list, 96
string, 67
tuple, 120
update, 96
slice operator, 67, 96, 103, 120

SOA, 159
socket, 149
sort method, 97, 103, 120
sorted function, 127
source code, 6, 13
special value
False, 29
None, 49, 61, 97, 98
True, 29
spider, 149
split method, 98, 122
sqlite3 module, 163
sqgrt function, 45
squiggly bracket, 109
stack diagram, 102
state diagram, 16, 26, 77, 94, 100, 101, 126
statement, 18, 26
assignment, 16
break, 58
compound, 31
conditional, 30, 39
continue, 59
for, 59, 66, 95
if, 30
import, 51
pass, 31
print, 11, 13, 203
return, 205
try, 88
while, 55
str function, 42
string, 15, 26, 98, 127
comparison, 70
empty, 99
find, 188
immutable, 68
method, 71
multiline, 200
operation, 21
slice, 67
split, 192
startswith, 188
string method, 79
string representation, 90

216

Index

string type, 15

structure, 9

superstitious debugging, 206
swap pattern, 121

syntax, 8, 13, 200

syntax error, 8, 13, 24, 199

temperature conversion, 35
temporary variable, 205
test case, minimal, 203
testing
interactive mode, 6
minimal test case, 203
text file, 91
token, 9, 13
traceback, 35, 37, 39, 202
traversal, 66, 69, 76, 78, 111, 113,121
list, 95
traverse
dictionary, 123
trigonometric function, 44
True special value, 29
try statement, 88
tuple, 119, 127, 129, 185
as key in dictionary, 126
assignment, 121
comparison, 120
in brackets, 126
singleton, 119
slice, 120
tuple assignment, 129
tuple function, 119
type, 15, 26
bool, 29
dict, 109
file, 81
float, 15
int, 15
list, 93
str, 15
tuple, 119
type conversion, 42
TypeError, 66, 68, 74, 120, 202
typographical error, 128

underscore character, 17
Unicode, 166
Unix command
Is, 139
update, 55
item, 95
slice, 96
use before def, 24, 47

value, 15, 26, 100, 101, 117
ValueError, 22, 122
values method, 110
variable, 16, 26
temporary, 205
updating, 55
void function, 49, 52
void method, 97

walk, 141

while loop, 55

whitespace, 38, 50, 90, 200
wild card, 188, 198
working directory, 132

XML, 158

zero, index starting at, 65, 94

